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Editorial on the Research Topic

Advanced imaging in breast cancer: New hopes, new horizons!
Frontier’s in Oncology is a coveted journal encompassing technologies, fields and

categories related to Cancer Research. An internationally recognized journal, Frontier’s in

Oncology is cited by more than 25,000 articles over the past few years. Under the dedicated

leadership and guidance of Dr. Abhishek Mahajan, Consultant Radiologist at Clatterbridge

Cancer Centre, Liverpool, UK, and ex-Consultant Radiologist at Tata Memorial Hospital,

Mumbai, India, having more than 15 years of experience in Oncoimaging, the Research

Topic of “Advanced Imaging in Breast Cancer” hopes to present high quality articles with a

goal to continuously strive towards advancing the knowledge and understanding of

Breast Cancer.
Introduction

Breast cancer is the most commonly diagnosed cancer worldwide with more than 2

million new cases in 2020. The incidence of breast cancer has increased over the past few

decades and this can be attributed to change in the risk factor profiles, better cancer

registration and advances in cancer detection. Breast cancer is the fifth most common cause

of cancer-related deaths globally, with a disturbing estimated number of 2.3 million new

cases, as per the GLOBOCAN 2020 data (1), and the global burden is only expected to

increase. The breast cancer morbidity and mortality rates have significantly increased over

the past few decades (2). There are more lost disability-adjusted life years (DALYs) by

women to breast cancer globally than any other type of cancer. Breast cancer also

represents a large social and economic burden to the society. The increase in the fiscal

costs borne by the Government and Insurance companies as well as the emotional and

physical costs borne by the patient and their families is unparalleled.

In order to maintain a good survival rate there have been constant efforts by scientists,

researchers and the medical fraternity to not only introduce effective screening programs

for early detection, but also for updating their knowledge database about evolving risk

factors and epidemiology and recent advances in imaging for monitoring and surveillance

of breast cancer in order to provide insights into new treatment strategies and patient
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stratifications that can impact management and eventual outcome

of a patient with breast cancer.

Various new breast imaging tools have been identified and are

being constantly developed to further improve our current ability to

identify and treat early-stage breast cancer. This include advances in

current technologies as well as introduction and implementation of

new breast imaging platforms. Mammography is the gold standard

first line imaging technique in preliminary diagnosis. Advances like

Digital breast Tomosynthesis (DBT) as well as Volumetric Breast

Density add incremental value in characterising normal and

abnormal findings in the clinical setting of primary evaluation as

well as post operative follow up in breast cancer (3). However,

breast lesions identified on mammography usually require further

investigation by ultrasonography. Ultrasonography (USG) has a

useful role in characterizing the tumor as well as guiding

interventions. There are recent advances in fusion based approach

of mammography and ultrasonography, developing algorithms

which improve the accuracy of computer-aided diagnosis (CAD)

for analyzing breast lesion on ipsilateral mammography views (4).

Recently, Contrast enhanced Mammography (CEM), a novel

imaging modality, was developed as an adjunct to mammography

to provide additional physiologic information about local breast

perfusion in order to characterize enhancing lesions of the breast.

Magnetic Resonance Imaging (MRI), however has been a game

changer in breast imaging owing to its high soft tissue resolution

and its use is becoming more prevalent, providing detailed three

dimensional and cross-sectional models which are highly useful in

diagnosis and monitoring. Diffusion weighted imaging (DWI)

particularly has revolutionized oncological imaging, by giving

vital qualitative and quantitative information regarding tumor

biology that helps in detection, characterization and post

treatment surveillance of lesions (5). Over the past years, Positron

Emission Tomography (PET) has seen progress from being solely a

research tool to replacing conventional imaging in various types of

cancers (6). In breast imaging, there is strong supporting evidence

that PET-CT is more rigorous than CT alone for revelation of breast

lesions and distant metastases (7).
Current challenges and opportunities
in advanced breast imaging
Fron
1. Lack of awareness, delay in seeking healthcare, delay from

the healthcare provider’s side, shortage of resources and

high attrition rate have been few of the largest roadblocks.

The emphasis of early diagnosis of breast cancer cannot be

stressed upon enough in an era where there is evidence that

newer emerging imaging techniques have facilitated

improved outcome upon timely treatment. Beginning

with education of women for self-breast examination to

effective government policies for screening, one can ensure

prompt diagnosis.

2. Requirement of large and homogeneous data representation

across the globe has been another challenge. The varying
tiers in Oncology 027
demographics of breast cancer in different populations

coupled with different socio-economic backgrounds and

disorganized policies has not allowed for formulation and

implementation of uniform and universally accepted

protocols for screening programs. Encouraging and

promoting incentives for research as well as providing

support and funding from influential agencies and national

and international health-care departments can positively

impact and motivate the medical fraternity for continued

research and development.

3. The controversies surrounding the appropriate techniques

for imaging of breast cancer has been an on-going and ever-

growing debate among radiologists. The acceptance of

newer imaging modalities has been a serious challenge

especially in developing nations, where the resistance

towards use of these advanced techniques is not only

because of the lack of awareness and training of the

health care provider but also the lack of availability and

funding. Acceptance and adequate penetration of newer

health-care technologies can significantly improve the

greater good of precision medicine.

4. Lack of expertise among health care providers regarding

revolution in cancer research that has ushered in following

the introduction of Artificial Intelligence (AI). There is an

existing gap between the acceptance and implementation of

AI in healthcare worldwide. Adoption of AI in clinical

workflow applications can enable doctors and hospitals to

offer new healthcare services. Government initiatives,

ethical considerations and joint public private sector

collaborations will ease the progress of AI, especially in

developing countries (8).

5. Adding fuel to fire was the COVID pandemic. Besides the

socio-economic and financial crisis to humankind, the

pandemic also negatively impacted health-care by

delaying research, which was on one of its fastest tracks

in centuries (9). As the world continues to be at war and

grapples with the aftermath of this disaster, health care

providers and radiologists began realize the challenges of

the large number of advanced breast cancer cases. There is

always a silver lining though. The thrust towards setting up

newer and more advanced health-care technologies came

from the pressing need of the large number of backlog cases

of breast cancer and also for providing remote health-care.
Articles in the Research Topic

The aim of this Research Topic is to provide a diverse selection

of stimulating research in the field of breast cancer by respected

authors who have sacrificed countless hours in trying to bring forth

well-researched and eloquent articles.This Research Topic aims to

identify new ways researchers are refining and optimizing

techniques in order to improve patient outcomes in diagnosed

cases of breast cancer and to enable better monitoring and follow up

throughout the course of treatment.
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In this Research Topic, we present 21 topics, 16 of which are

original research articles, 3 are systematic reviews and 2 are

case reports.

The two unique case reports presented include one byWei et al.,

who discuss a rare case of Inflammatory MyofibroblasticTumor

(IMT) of the Breast with insights in the clinical, imaging and

pathological findings. The other is by Jiang et al., discussing the

imaging features (especially highlighting the MRI characteristics),

pathology and clinical management of Mucocele-Like Tumor of the

Breast Associated With Ductal Carcinoma In Situ.

One of the review articles, by Lei et al. discusses the challenges

and future perspectives of the application of Artificial Intelligence in

Medical Imaging of the Breast. A systemic review and meta-

analysis, by Jiang et al., highlights the accuracy and feasibility of

Sentinel Lymph Node Biopsy Mapped With Carbon Nanoparticle

Suspensions in Patients With Breast Cancer. A systemic review

article by Majithia et al., discuss the comprehensive literature on the

various imaging appearances of fat necrosis in the breast.

Gao et al. conducted a study to assess the Screening Efficiency of

Breast Cancer by Combining Conventional Medical Imaging

Examinations With Circulating Tumor Cells.Amongst original

research work done in the field of Artificial Intelligence, Zhang

et al. discuss the clinical application of Ultrasound Image Deep

Learning Model in Evaluating the Accuracy of Breast Cancer and

Molecular Subtype Diagnosis. Song et al. evaluated the use of

Texture Analysis, Using Semiquantitative Kinetic Parameter Maps

from Dynamic Contrast Enhanced MRI, an imaging biomarker for

pre-operative prediction of HER2 status in Breast Cancer. Similarly,

Zhang et al. discuss the use of Texture Analysis of Dynamic

Contrast Enhanced MRI Intra-tumoral Subregions to Identify

Benign and Malignant Breast Tumors. A multi-centre prospective

study by Zhao et al., elaborate on the enhancing diagnostic

performance of breast ultrasound for patients with opportunistic

screening-detected breast lesions by a Deep Learning-Based System.

Wang et al. evaluated the Combined Use of Shear Wave

Elastography, Microvascular Doppler Ultrasound Technique and

BI-RADS for the Differentiation of Benign and Malignant Breast

Masses. With their retrospective multicentre study, Zhang et al.,

aimed at developing and validating and interpretable and simple-

to-use ultrasound nomogram that is based on quantitative

morphometric features for the prediction of breast malignancy. In

a prospective study, Zhang et al., studied the association between

vascular index (in Doppler evaluation) measured via Superb

Microvascular Imaging and molecular subtype of invasive breast

cancer and concluded that there was certain degree of correlation

between the two and that vascular index has a limited role in

predicting the luminal type A with high sensitivity and triple-

negative subtype with high specificity. Zhao et al. investigated the

diagnostic value of contrast-enhanced cone-beam breast computed

tomography (CE-CBBCT) in predicting breast lesion with rim

enhancement for malignancy. There were three studies on MRI,

particularly centred around the use of DiffusionWeighted sequence.

One was by He et al., exploring the Applications of Diffusion

Weighted Imaging Techniques for Differentiating Benign and
Frontiers in Oncology 038
Malignant Breast Lesions. Another was a study by Lv et al. to

evaluate the role of apparent diffusion coefficient (ADC) values

obtained from diffusion-weighted imaging (DWI) in the

differentiation of malignant from benign papillary breast lesions.

A retrospective study by Yang et al. evaluated the performance of

readout-segmented echo-planar imaging DWI (rs-EPI DWI) in

detecting and characterizing breast cancers in a large Chinese

cohort in comparison to dynamic contrast-enhanced MRI.

Bourgeois et al., evaluated the distribution of free indocyanine

green following intravenous injection, in Near-Infrared

Fluorescence imaging of breast cancer and axillary lymph nodes.

Li et al. developed a comprehensive model for diagnosis and

differentiation of primary breast lymphoma from breast cancer.

In a non-imaging based study, He et al. studied the Feasibility

and Clinical Value of CT-Guided 125I Brachytherapy for Pain

Palliation in Patients With Breast Cancer and Bone Metastases

After External Beam Radiotherapy Failure. Another non-imaging

based original article based on Animal model, Wang et al.,

envisioned that intraoperative real-time fluorescence imaging with

a human serum albumin decorated indocyanine green probe could

enable complete surgical removal of breast cancer in a

mouse model.
Conclusion

The field of breast imaging is always evolving with significant

advances. There is always a learning curve in the interpretation of

new technologies, and as medical practitioners we owe it to the vast

global community to constantly advance ourselves in order to come

up with more advanced technologies that can serve humanity. This

will further aid the development of novel approaches for precision

medicine in breast cancer. This issue aims to provide a

comprehensive summary of recent advances and possibilities in

the field of clinical breast imaging. The support of our esteemed

authors, expertise of our panel of reviewers, round-the-clock hard

work of the editorial and production staff and the keen interest of

our beloved readers keeps the motivation going for Frontier’s in

Oncology to continue to contribute to the ever-expanding field of

breast oncology and to strive better each time.
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Background: Breast ultrasound is the first choice for breast tumor diagnosis in China,

but the Breast Imaging Reporting and Data System (BI-RADS) categorization routinely

used in the clinic often leads to unnecessary biopsy. Radiologists have no ability

to predict molecular subtypes with important pathological information that can guide

clinical treatment.

Materials and Methods: This retrospective study collected breast ultrasound images

from two hospitals and formed training, test and external test sets after strict selection,

which included 2,822, 707, and 210 ultrasound images, respectively. An optimized deep

learning model (DLM) was constructed with the training set, and the performance was

verified in both the test set and the external test set. Diagnostic results were compared

with the BI-RADS categorization determined by radiologists. We divided breast cancer

into different molecular subtypes according to hormone receptor (HR) and human

epidermal growth factor receptor 2 (HER2) expression. The ability to predict molecular

subtypes using the DLM was confirmed in the test set.

Results: In the test set, with pathological results as the gold standard, the accuracy,

sensitivity and specificity were 85.6, 98.7, and 63.1%, respectively, according to the

BI-RADS categorization. The same set achieved an accuracy, sensitivity, and specificity of

89.7, 91.3, and 86.9%, respectively, when using the DLM. For the test set, the area under

the curve (AUC) was 0.96. For the external test set, the AUC was 0.90. The diagnostic

accuracy was 92.86% with the DLM in BI-RADS 4a patients. Approximately 70.76% of

the cases were judged as benign tumors. Unnecessary biopsy was theoretically reduced

by 67.86%. However, the false negative rate was 10.4%. A good prediction effect was

shown for the molecular subtypes of breast cancer with the DLM. The AUC were 0.864,

0.811, and 0.837 for the triple-negative subtype, HER2 (+) subtype and HR (+) subtype

predictions, respectively.
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Conclusion: This study showed that the DLM was highly accurate in recognizing breast

tumors from ultrasound images. Thus, the DLM can greatly reduce the incidence of

unnecessary biopsy, especially for patients with BI-RADS 4a. In addition, the predictive

ability of this model for molecular subtypes was satisfactory,which has specific clinical

application value.

Keywords: breast cancer, deep learning, ultrasound, cancer diagnosis, molecular subtype

INTRODUCTION

Breast cancer is the most common malignant tumor in
women in China (1, 2). Breast ultrasound is more suitable
for tumor discovery in Asian women considering the higher
breast density (3, 4) and the younger age at diagnosis (5,
6). Patients with Breast Imaging Reporting and Data System
(BI-RADS) 4a or higher findings are usually recommended
to undergo core needle biopsy or surgery. BI-RADS has
a wide range of possibilities to predict the presence of
malignancies, but its false positive findings lead to unnecessary
biopsies in a large number of individuals without breast
cancer (7).

The combination of deep learning (8) and large datasets
has shown good performance in the diagnosis of many
diseases, including cancer (9–12). The deep learning model
(DLM) takes the original image pixels and corresponding
category labels in medical image data as inputs and does
not require manual design features required by traditional
methods but automatically learns features related to category
classification (13).

Based on receptor status, breast cancers are divided into
five subtypes (14). If the molecular subtype is identified
before surgery, we can determine whether the patient is
suitable for neoadjuvant treatment and which scheme should
be more efficient. However, currently, we cannot obtain subtype
information through traditional ultrasound examinations.

In addition to the differentiation of benign and malignant
breast tumors from ultrasound images, previous studies have
focused on the correlation between imaging features and
molecular subtypes. Breast cancers with the triple-negative
subtype were more likely to be associated with circumscribed
margins and were less associated with calcifications (15–18).
Human epidermal growth factor receptor 2 (HER2) (+) breast
cancers usually show enhanced posterior acoustics on ultrasound
images (15, 17). Tumors with posterior shadowing are often
found in hormone receptor (HR) (+) HER2 (–) breast cancers
(16, 19, 20). In addition, echogenic halos were frequently present
in the HR (+) HER2 (–) subtype (17, 20). Due to the various
imaging features of different subtypes, there is potential to
predict molecular subtypes with DLM by analyzing only the
ultrasound images.

In this study, we constructed a DLM based on ultrasound
images. We obtained a higher accuracy for breast tumor
diagnosis with the DLM than with radiologists. We obtained
a good prediction for tumor molecular subtypes, which may
provide more choices for therapy.

MATERIALS AND METHODS

This study was approved by the Institutional Review Board
of Harbin Medical University Cancer Hospital. Because of its
retrospective nature, the study was exempt from obtaining
informed consent from patients.

Datasets
We obtained original ultrasound images for the training and
testing datasets from the breast image database of HarbinMedical
University Cancer Hospital (a total of 17,226 images from
2,542 patients). All patients underwent surgical treatment with
definitive pathological results. The cohort selection flowchart is
shown in Figure 1. Patients in the external test set were enrolled
from The First Affiliated Hospital of Harbin Medical University
and were selected with the same criteria as those for the training
and test sets. Exclusion criteria for the datasets are described in
the Supplementary Material.

We selected ultrasound images of breast cancer patients with
corresponding pathological results. We excluded tumors with
incomplete immunohistochemistry results and then separated
the tumors into molecular subtypes. Data on estrogen receptor
(ER) and progesterone receptor (PR) expression were collected.
Patients with positivity for either or both receptors were defined
as being HR positive. According to the expression of two
indicators, HR and HER2, we regrouped patients into three
molecular subtypes: HER2 (+) subtype, HR (+) subtype and
triple-negative subtype. HER2 (+) subtype = HR (+) HER2 (+)
or HR (–) HER2 (+); HR (+) subtype = HR (+) HER2 (–);
triple-negative subtype=HR (–) HER2 (–).

In Figure 2, we listed some samples of breast ultrasound
images from the datasets, which were presented by classification
of benign and malignant tumors and molecular subtypes.

The training and test sets were formed by a random sampling
method at a ratio of 4:1. The compositions of these sets are shown
in Figure 1. It is noteworthy that within the training set, we
redivided it into a new training set and a validation set for model
tuning and training at a ratio of 4:1. The optimal model obtained
was tested with the test set and the external test set.

Development of the DLM
All images in the datasets were 8-bit and 3-channel images, so
they could be used as training set and test set images to fine-
tune the deep convolutional neural network (DCNN) directly.
Supplementary Figure 1 shows the whole process of breast
ultrasound image analysis.
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FIGURE 1 | Cohort selection flowchart and the composition of the training, test and external test sets. The black rectangles represent the process of data selection.

The orange rectangles represent the composition of datasets for the diagnosis of breast tumors. The blue rectangles represent the composition of datasets used to

predict the molecular classification of breast cancer. n, the number of images; N, the number of patients; M, malignant; B, benign; HER2, human epidermal growth

factor receptor 2; HR, hormone receptor.

To obtain a better deep learning effect, the necessary image
preprocessing algorithm was used to improve the image quality.
In the image preprocessing of the Supplementary Material, we
specifically described how to carry out preprocessing of breast
ultrasound images.

Considering the amount of data compared with the
depth of deep learning, we used data enhancement to
enhance the diversity and generalization of the data.
We used data enhancement in the Keras model, which
could enhance the real-time data with the help of a
central processing unit (CPU) during training. Due to
the particularity of the ultrasound image data, we used
four kinds of random operations to enhance the data:

vertical rotation, horizontal rotation, center rotation, and
scale reduction.

Because the data had enough high-quality samples after
preprocessing and expansion, we used the deep learning Keras
framework to transfer and fine-tune the Xception network,
making it a network that could extract features for breast
ultrasound images (21). The Xception convolution neural
network (CNN) has trained more than 1.2 million images from
the ImageNet large-scale vision recognition challenge (ILSVRC)
knowledge base.

The structure of the Xception model mainly consisted of a
convolutional layer and a fully connected classification layer.
Figure 3 shows the structure diagram of our model training,
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FIGURE 2 | Some samples of breast ultrasound images from the datasets. In the first column, the samples were divided according to the diagnosis results of the

tumor, which were benign and malignant; in the second column, the samples were classified according to molecular subtypes, which were divided into images of HR

(+) subtype, HER2 (+) subtype, and triple-negative subtype. HR, hormone receptor; HER2, human epidermal growth factor receptor 2.

which mainly adopted the transfer learning method to train the
model. CNN-1 represented the training model on the ImageNet
dataset and outputted 1,000 classification results. The CNN-2
model was obtained through transfer learning of the CNN-1
model and used for the classification of benign and malignant
breast tumors by ultrasound images. The specific model training
methodwas to freeze the convolutional layer parameters of CNN-
2 and then train the fully connected layer of the CNN-2 model.
After the training was stable, we defrosted the convolutional
layer for retraining to achieve the best effect. CNN-3 was a
classification model of molecular subtypes, which was acquired
from the transfer learning of the CNN-2 model. Two specific
training parameters are shown in the Supplementary Material.

Statistical Analysis
Evaluation of the DLM was performed with R version 3.5.1. For
binary classification in discriminating breast cancer patients from
controls, a classification matrix (caret version 6.0–80) and the
receiver operating characteristic (ROC) curve (pROC version
1.13.0) were generated to visualize the diagnostic ability of the
DLM. For the triple classification of the threemolecular subtypes,
a classification matrix and the ROC curve using a one-vs-all
approach (multiROC version 1.1.1) were generated. The area
under the curve (AUC), accuracy, sensitivity, and specificity were
calculated to compare the predictive performance between the
DLM and BI-RADS classification systems in the test and external
test sets. P < 0.05 was considered to indicate a statistically
significant difference. Moreover, the calculation of sample size is
shown in the Supplementary Material.

RESULTS

Cohort Composition
Wedivided the ultrasound images collected fromHarbinMedical
University Cancer Hospital into two sets (Figure 1). The training
set was composed of 2,822 images, including 1,786 images from
1,217 patients with malignant tumors and 1,036 images from
603 patients with benign tumors. The test set was composed
of 707 images, including 447 images from 392 patients with
malignant tumors and 260 images from 228 patients with benign
tumors. After applying the same exclusion criteria, external test
set images were collected from The First Affiliated Hospital of
Harbin Medical University, including 93 images from 38 patients
with malignant tumors and 117 images from 45 patients with
benign tumors.

Two datasets were used for molecular subtype prediction
(Figure 1). The training set consisted of 212 images from 149
HER2 (+) subtype patients, 588 images from 417 HR (+)
subtype patients and 186 images from 118 triple-negative subtype
patients. The test set comprised 54 images from 47 HER2 (+)
subtype patients, 148 images from 135 HR (+) subtype patients
and 47 images from 40 triple-negative subtype patients.

Performance in Diagnosis
The DLM was more accurate (0.897, 95% CI: 0.872–0.918) than
ultrasound doctors (0.856, 95% CI: 0.828–0.881) (P = 0.024)
(Tables 1, 2). The doctors used the malignant probability and
BI-RADS system to determine positive ultrasound findings. For
sensitivities, 91.3 and 98.7% (P < 0.001) were achieved for
the DLM and BI-RADS systems, respectively. However, the
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FIGURE 3 | Structural diagram of the transfer learning model for breast cancer ultrasound images. CNN-1 represents the classification model trained on the ImageNet

dataset, which is divided into 1,000 categories of natural images. CNN-2 is the benign and malignant tumor diagnostic model obtained by model transfer and

retraining on the basis of the CNN-1 model, and CNN-3 is the classification model of tumor molecular subtypes obtained by model transfer and retraining on the basis

of the CNN-2 model. CNN, convolution neural network.

specificity of the DLM (86.9%) was significantly higher than
that of BI-RADS (63.1%) (P < 0.001). This result indicates that
the DLM may reduce the unnecessary biopsy of false positive
findings with the BI-RADS system. For the test set, the AUC was
0.96. For the external test set, the AUCwas 0.90 (Figure 4). These
results suggest that the DLM has good performance in breast
cancer diagnosis.

Reducing Unnecessary Biopsy
Each ultrasound image had corresponding BI-RADS, DLM, and
pathological results. The proportion of all patients with BI-
RADS 4a judged as benign (70.76%) by the DLM was greater
than that judged as malignant (29.24%) (Figure 5A). This result
indicated that 70.76% of BI-RADS 4a patients did not need
surgery when diagnosed using the DLM. The diagnostic accuracy
for BI-RADS 4a patients reached 92.86%, and unnecessary

TABLE 1 | Confusion matrices of the test set and external test set.

Pathology

Test set External test set

+ − + −

BI-RADS + 441 96 – –

– 6 164 – –

DLM + 408 34 76 18

– 39 226 17 99

+, malignant; –, benign; BI-RADS, Breast Imaging Reporting and Data System; DLM,

deep learning model.

biopsy was reduced by 67.86%, with a false negative rate of
10.4% for the DLM (Figure 5B). These findings suggest that
the DLM can greatly reduce the incidence of unnecessary
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biopsy, especially for BI-RADS 4a patients with a low false
negative rate.

Molecular Subtype Prediction
The DLM can be used not only in the diagnosis of breast cancer
but also in the prediction of molecular subtypes. From the results
of the triple classification, the triple-negative subtype reached the
highest AUC of 0.864. The AUC of the HER2 (+) subtype was
0.811, and the AUC of the HR (+) subtype was 0.837 (Figure 6).
Accuracy of theHR (+) subtype (85.14%)was significantly higher
than that of the HER2 (+) subtype (50%) and triple-negative
subtype (53.19%) (Supplementary Table 1).

TABLE 2 | Identification performance of BI-RADS and the DLM on the test set

and external test set.

Test set External test set

BI-RADS DLM P-value* BI-RADS DLM

Accuracy 0.856 0.897 0.024 – 0.833

Sensitivity 0.987 0.913 <0.001 – 0.817

Specificity 0.631 0.869 <0.001 – 0.846

Positive predictive value 0.821 0.923 <0.001 – 0.809

Negative predictive value 0.965 0.853 <0.001 – 0.853

Kappa 0.666 0.779 – – 0.663

BI-RADS, Breast Imaging Reporting and Data System; DLM, deep learning model;

*chi-square test.

DISCUSSION

We successfully established a DLM for breast cancer diagnosis
and molecular subtype prediction based on ultrasound images.
The accuracy of the DLM in the diagnosis of breast cancer was
higher than that of BI-RADS, and the DLM performed well in
both the test set and external test set. The DLM can apparently
reduce unnecessary biopsy for patients with BI-RADS 4a. In the
predictive results of the DLM for themolecular subtypes of breast
cancer, we could see that its performance for various subtypes was
ideal, and there were no significant disparities among them.

In many studies of cancer diagnosis, the accuracy of DLMs is
higher than that of radiologists. Li et al. successfully developed a
DCNNmodel for the diagnosis of thyroid cancer with ultrasound
images. The accuracy was 89.8% with the DCNNmodel vs. 78.8%
with radiologists (22). To classify invasive adenocarcinomas from
preinvasive lesions, Wang et al. (23) developed a CNN model.
The accuracy of the model (84%) was higher than that of
three radiologists (radiologist 1: 80.2%; radiologist 2: 80.7%; and
radiologist 3: 81.7%). He et al. used a CNN to predict the local
recurrence of giant cell bone tumors. The accuracy of the CNN
model was 75.0%, while the accuracy of radiologists was 64.3%
(24). Our study had similar results. The DLM was more accurate
(0.897, 95% CI: 0.872–0.918) than radiologists (0.856, 95% CI:
0.828–0.881) (P = 0.024). In summary, the DLM performed
well and has the potential to provide better diagnostic results
than radiologists.

At present, there are few studies on the diagnosis of breast
cancer with DLMs based on ultrasound images. In recent studies,
researchers used different DLMs to diagnose breast tumors on
ultrasound images, and the one that performed best was selected

FIGURE 4 | Identification performance of the DLM on the test set (A) and external test set (B). The blue dot on the left ROC curve indicates the performance of

BI-RADS. DLM, deep learning model; ROC, receiver operating characteristic; BI-RADS, Breast Imaging Reporting and Data System; AUC, area under the curve.
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FIGURE 5 | Diagnostic results of the DLM for breast tumors with different BI-RADS categorizations compared with the definitive pathological results. (A) The width of

the extended branches corresponds to the size of the data; 70.76% represents the percentage of BI-RADS 4a patients diagnosed as benign by the DLM; 29.24%

represents the percentage of BI-RADS 4a patients diagnosed as malignant by the DLM. (B) The numbers in this graph represent the number of images; 92.86%

represents the diagnostic accuracy of BI-RADS 4a patients with the DLM; 67.86% represents the reduction rate of unnecessary biopsy in BI-RADS 4a patients with

the DLM; 10.4% represents the false negative rate of BI-RADS 4a patients with the DLM. Negative means the diagnosis of the DLM is benign. Positive means the

diagnosis of the DLM is malignant. DLM, deep learning model; BI-RADS, Breast Imaging Reporting and Data System.

FIGURE 6 | Performance of the DLM in identifying different molecular

subtypes with triple classification on the test set. HER2 (+) subtype = HR (+)

HER2 (+) or HR (–) HER2 (+); HR (+) subtype = HR (+) HER2 (–);

triple-negative subtype = HR (–) HER2 (–). DLM, deep learning model; HER2,

human epidermal growth factor receptor 2; HR, hormone receptor.

after comparison. The purpose of these studies was to develop
only a DLM for the classification of malignant and benign masses
(25–29). In our study, we sought to develop a DLM not only
for classifying masses but also for reducing unnecessary biopsy.
Unnecessary biopsy was theoretically reduced by 67.86% with
the DLM in BI-RADS 4a patients. Zhu et al. (30) developed a
DLMbased on breastMRIs that showed some predictive value for
molecular subtypes. However, these researchers only considered
the distinction between the luminal A subtype and all other
subtypes. Unlike their model, our model can differentiate each
molecular subtype and guide individualized treatment. To the
best of our knowledge, this is the first study to apply a DLM to
the prediction of molecular subtypes using ultrasound images.

The DLM is better than traditional methods in identifying
benign and malignant breast tumors. It performs well with high
AUC values and other indicators and reduces the burden of
radiologists (31). DLMs do not require time-consuming tumor
boundary labeling, which is a necessary step for traditional
methods. In addition, the DLM can make better use of the
hidden information around the tumor, which is ignored by
traditional methods.

Currently, most studies use statistical analysis to obtain low-
dimensional features of breast ultrasound images for molecular
classification. These low-dimensional features are easily affected
by the number and quality of the samples collected, making it
difficult to mine and quantify the relationships between images
and subtypes (32). However, deep learning methods can extract
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abstract features. All extracted features are high-dimensional
features related to molecular classification. Although difficult to
visualize, molecular classification is important and can greatly
improve recognition accuracy.

There are limitations in our study. First, the training set
data came from one hospital, and we did not summarize the
basic information on patients and tumors. Second, regardless
of the training, test or external test sets, the sample size was
small. Thus, these results need to be validated with a larger
cohort to determine the value of our model in clinical practice.
Third, because the study was retrospective, all patients underwent
surgical treatment. However, there are many women who have
a BI-RADS categorization with certain malignant potential who
choose observation instead of surgical treatment. This factor
may be one of the reasons why our study did not achieve a
better result.

CONCLUSION

We demonstrated that our DLM can recognize breast tumors
and predict molecular subtypes with high accuracy based solely
on ultrasound images, which may make DLM an effective
alternative to clinical biopsy. It is necessary to cooperate with
other institutions to expand the dataset to better confirm our
model and make it an important decision-making tool with great
potential in clinical application.
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Feasibility and Clinical Value of
CT-Guided 125I Brachytherapy for
Pain Palliation in Patients With Breast
Cancer and Bone Metastases After
External Beam Radiotherapy Failure
Jian He 1†, Qicong Mai 1†, Fangfang Yang 2, Wenhang Zhuang 1, Qing Gou 1, Zejian Zhou 1,

Rongde Xu 1, Xiaoming Chen 1* and Zhiqiang Mo 1*

1Department of Interventional Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical

Sciences, Guangzhou, China, 2Department of Medical Simulation Center, Guangdong Provincial People’s Hospital,

Guangdong Academy of Medical Sciences, Guangzhou, China

Objectives: To evaluate the feasibility and clinical value of CT-guided iodine-125 (125I)

brachytherapy for pain palliation in patients with breast cancer and bone metastases

after external beam radiotherapy failure.

Methods: From January 2014 to July 2016, a total of 90 patients, who had received the

standard therapies for bone metastases but still suffered moderate-to-severe pain, were

retrospectively studied. About 42 patients were treated with both 125I brachytherapy and

bisphosphonates (Group A), and 48 patients were treated with bisphosphonates alone

(Group B).

Results: In Group A, 45 125I brachytherapy procedures were performed in 42 patients

with 69 bone metastases; the primary success rate of 125I seed implantation was 92.9%,

without severe complications. Regarding pain progression of the two groups, Group A

exhibited significant relief in “worst pain,” “least pain,” “average pain,” and “present pain”

3-day after treatment and could achieve a 12-week-remission for “worst pain,” “least

pain,” “average pain,” and “present pain.” The morphine-equivalent 24-h analgesic dose

at 3 days, 4 weeks, 8 weeks, and 12 weeks was 91 ± 27, 53 ± 13, 31 ± 17, and 34 ±

12mg for Group A, and 129 ± 21, 61 ± 16, 53 ± 15, and 105 ± 23mg for Group B.

Group A experienced a lower incidence of analgesic-related adverse events and better

quality of life than Group B.

Conclusion: The CT-guided 125I brachytherapy is a feasible and an effective treatment

for the palliation of pain caused by bone metastases from breast cancer after external

beam radiotherapy failure.

Keywords: iodine-125, brachytherapy, palliative medicine, bone neoplasms, breast neoplasms
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INTRODUCTION

Approximately 65–75% of patients with advanced breast cancer
develop bone metastases (1), which may cause skeletal-related
events (SREs), such as bone pain, pathological fracture, and
hypercalcemia (2). Of these events, bone pain is the earliest
symptom that conspicuously decreases the quality of life of
patients (1). Thus, pain palliation is the primary therapeutic goal
in the management of bone metastases.

Chemotherapy and endocrine therapy are the currently used
common baseline treatments for patients with advanced breast
cancer and bone metastases (3). Nevertheless, previous studies
have shown that such systemic therapies achieve limited long-
term bone pain relief (4). Consequently, the loco-regional
treatment is used to supplement systemic therapies. The external
beam radiation therapy (EBRT) is the most effective local
treatment for pain palliation, reportedly achieving remission in
up to 60% of patients (2). In some patients, the prescribed the
EBRT dose is limited when the bone metastases are adjacent to
vital organs such as the spinal cord (5); therefore, the pain relief
effect could be compromised. For patients with relapsing pain,
bisphosphonates in combination with analgesics are needed to
manage the response of the body to the pain. However, when
patients receive high dosages of analgesics for pain control, dose-
related adverse effects increase significantly, and the quality of
life of patients is not improved (1). Radiofrequency ablation
effectively and promptly achieves pain palliation in patients with
bone tumors (6). However, the ablation has a critical limitation:
The ablation margin cannot be visualized or monitored by CT.
Thus, the ablation of vertebral bone tumors can cause intra-
or post-procedural injury to the spinal cord within the ablation
zone (7).

Previous studies have confirmed that iodine-125 (125I)
brachytherapy has advantages in regard to disease control in
patients with solid tumors (8, 9). Thus, 125I brachytherapy might
be effective in bone pain palliation in patients with breast cancer
after the failure of EBRT; however, few reports have evaluated
125I brachytherapy in these patients. The purpose of our study
was to evaluate the feasibility and clinical value of CT-guided
125I brachytherapy for pain palliation in patients with bone
metastases from breast cancer.

MATERIALS AND METHODS

Cohort and Sample Selection
In this retrospective study, we used data from patients with breast
cancer and bonemetastases who experiencedmoderate-to-severe
pain. The radiological assessment of bone metastases includes
enhanced CT, PET/CT, and radionuclide bone imaging. There
were two groups in this study. Group A (n= 42) was treated with
both 125I brachytherapy and bisphosphonates, and Group B (n
= 48) was treated with bisphosphonates alone. This study was

Abbreviations: 125I, iodine-125; BPI-SF, brief pain inventory-short form; CT,

computed tomography; PTV, planned target volume; SREs, skeletal-related

events; TPS, treatment planning system; PET/CT, positron emission tomography-

computed tomography.

approved by The Ethics Committee of the Guangdong Provincial
People’s Hospital.

All patients in the study underwent attempts to manage their
pain using chemotherapy, endocrine therapy, molecular-targeted
therapy, or EBRT but did not achieve satisfactory pain relief.
All enrolled patients met the following criteria: (a) underwent
resection of primary tumors, which had been histologically
diagnosed as breast cancer; (b) bone metastases were the only
possible cause of pain; (c) score of at least four points on the
“worst pain” item of the Brief Pain Inventory (BPI) in the
24 h prior to completing the inventory (10); (d) four or fewer
metastatic lesions with diameter ≤5 cm; (e) expected lifespan ≥3
months; (f) the Karnofsky Performance Status Scale≥50 (11); (g)
no severe coagulation disorder [prothrombin activity <40% or
platelet count <5 × 10(9)/L]; and (h) the absence of spinal cord
compression or impending fracture. Additionally, all patients
had received high doses of analgesics for a period of more than
1 month.

125I Seed
The radioactive 125I seeds (Yunke Pharmaceutical, Sichuan,
China) were cylindrical titanium packages being 0.8mm in
diameter and 4.5mm in length. The central source of the particle
was an 125I radionuclide silver rod with a diameter of 0.5mm and
length of 3.0mm. The matched peripheral dose was 100–140Gy,
and the average energy was 27–35 KeV. The radius of effective
antitumor activity was 1.7 cm. Each seed had an initial activity
of 0.0296 Gbq and a half-life of 59.6 days; about 93–97% of the
brachytherapy dose was delivered within 3–5 months.

125I Brachytherapy
Before 125I seed implantation, 5-mm thick CT sections were
obtained for all patients. A computerized treatment planning
system (TPS) (BT-RSI; Beijing Atom and High Technique
Industries) was used to create a treatment plan for each patient.
The gross tumor volume, planned target volume (PTV), and
the surrounding vital organs were carefully delineated in every
CT slice. PTV was defined as a 0.5–1.0 cm extension around
the gross tumor volume. According to the three orthogonal
diameters within the targeted tumor site and a prescribed
matched peripheral dose, the TPS calculated the position of
the brachytherapy applicator and the number of seeds to be
implanted (Figures 1A,B); then, the TPS generated a dose-
volume histogram that includes the isodose curves of different
targets. According to the guideline of American Brachytherapy
Society, the prescribed dose of the planned target was an
average of 120Gy (100–140Gy) (12). The dose received by
the surrounding organs was based on normal tissue constraint
guidelines. The PTV edge accounted for 70–90% of the isodose
curve; thus, 95% of the prescribed dose covered the PTV.

On the day of the procedure, patients were positioned on
the CT gantry and were evaluated to locate the lesion site(s).
Several 5-mm axial slices were obtained to delineate the upper
and lower borders of the tumors. After achieving anesthesia
with local infiltration of 5–15ml of 1% lidocaine (Liduokayin;
Yimin), an 18G spinal needle (Yunke Pharmaceutical, Sichuan,
China) was inserted into the farthest tumor edge, ∼5mm
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FIGURE 1 | Iodine-125 (125 I) brachytherapy treatment plan for bone metastases from breast cancer: (A) CT images of the lesion were reconstructed using a

computerized treatment planning system (TPS), and the position of the brachytherapy applicators was calculated. (B) Three-dimensional image showing the

relationship between the positions of the applicators, lesions, and spinal cord. (C) Two-dimensional image showing the irradiation dose (red area) of the 125 I

brachytherapy field, tumor contour (purple line), and spinal cord (green line). (D) Dose-volume histogram indicating the prescribed dose to the lesion and the dose

received by the spinal cord.

or less from the tumor border. A clip implant gun (Yunke
Pharmaceutical, Sichuan, China) was then attached to the
applicator for implantation. The 125I seeds were released from
deep to superficial while retracting the needle and keeping
adjacent 125I seeds at a distance of 5–15mm. CT was performed
after completing the implantation to identify any post-procedural
complications and to verify that the position and intensity of the
125I seeds were in accordance with the TPS (Figures 1C,D). If
the lesion showed insufficient radioactivity, the procedure was
repeated to implant additional 125I seeds.

Follow-Up and Evaluation Criteria
The BPI short-form (BPI-SF) (a validated visual analog scale
with the score ranging from 0 to 10) was completed by each
patient to obtain a measure of pain intensity (worst pain, least
pain, average pain, and present pain) and pain interference
(with the seven health-related quality of life dimensions: general
activity, mood, walking, normal work, social activities, sleep
quality, and life satisfaction). Patients completed the BPI- SF
by the assistance of a study coordinator who was familiar with
focal painful metastases. When multiple metastases were treated

in one patient, the response was recorded for the painful area
that was mostly treated. The BPI-SF was administered pre- and
post-procedure. All patients underwent dynamic enhanced CT
and clinical hematological examinations within 3–5 weeks after
the procedure to evaluate the safety and efficacy of the therapy.
The percentage of intra- and post-procedural complications was
recorded according to the Toxicity Criteria of the Radiation
Therapy Oncology Group (13).

Statistical Analysis
Statistical analyses were performed using SPSS version 25.0
statistical software (IBM Corp.). Values are presented as the
mean ± SD. We compared the characteristics of patients using
the Pearson’s chi-squared test. Statistical significance was set at
p < 0.05. For pain palliation analyses, patients were analyzed
according to their groups. Changes from baseline in the BPI-
SF score were analyzed using the analysis of covariance with
the treatment group and randomization stratification parameters
as factors and the baseline value as a covariate. Pain palliation
endpoints were analyzed using a step-down approach, in which
the primary and secondary endpoints were tested sequentially
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TABLE 1 | Clinical characteristics of the patients and tumors.

Characteristic Group A Group B p

n = 42 n = 48

Age, years 0.517

Mean age (y ± SD) 54 ± 7 51 ± 8

Range 36–63 33–69

Site of bone metastases 0.770

Thoracic/lumbar vertebra 27 31

Iliac/ischium/pubic bones 7 9

Rib/chest wall 5 3

Other 3 5

Lesion diameter 0.846

≤2 21 25

>2, ≤4 17 20

>4 4 3

Metastases numbers 0.969

1 19 21

2 20 24

≥3 3 3

Type of bone metastases 0.970

Osteolytic 21 23

Osteoplastic 13 16

Mixed 8 9

Radiological assessment 0.862

Enhanced CT 30 33

PET/CT 9 10

Radionuclide bone imaging 3 5

History of treatment 0.714

Chemotherapy alone 14 18

Endocrine therapy alone 9 12

Combination therapy 19 18

p, p-value; SD, standard deviation; PET/CT, Positron Emission

Tomography-Computed Tomography.

to preserve the family-wise type I error rate using the following
order: 12 weeks, 8 weeks, 4 weeks, and 3 days with the BPI-SF
score (worst pain, least pain, average pain, and present pain). The
BPI-SF score of worst pain at 12 weeks was defined as a primary
endpoint. Each hypothesis was tested at a significance level of 0.05
(two-sided). Statistical significance at each step was required to
test the next hypothesis.

RESULTS

Characteristics of Patients
In Group A, a total of 45 125I brachytherapy procedures were
performed by experienced radiologists in 42 patients with 69
bone metastases. Thirty-nine (92.9%) of the 42 patients met the
TPS criteria after the first procedure. Three patients who did not
meet the TPS criteria received additional implantations. The final
125I brachytherapy achievement rate was 97.6% (41/42 patients),
and the total number of implanted seeds was 1,410, with an
average of 20 ± 6 seeds per lesion (range: 10–35). As shown

in Table 1, Groups A and B did not significantly differ in any
clinicopathological variables.

Palliation of Bone Pain
Pre-Therapy (T0) Pain Evaluation
The BPI-SF score for pain intensity is summarized in Table 2.
There was no statistical difference in the mean score for “worst
pain,” “least pain,” “average pain,” and “present pain” at T0

between Groups A and B.

Pain Evaluation 3 Days (T1) After Therapy
In Group A, the score for “worst pain,” “least pain,” “average
pain,” and “present pain” was decreased at 3 days after therapy. In
Group B, there were no changes in the score for all pain intensities
during T0 and T1. There was a significant difference in the score
for “worst pain,” “least pain,” “average pain,” and “present pain”
between Groups A and B at T1, as shown in Table 2.

Pain Evaluation 4 Weeks (T2), 8 Weeks (T3), and 12

Weeks (T4) After Therapy
In comparison with T0, the score for “worst pain,” “present pain,”
“average pain,” and “least pain” was falling from T2 to T4 in
Groups A and B. Regarding the pattern of pain remission, Group
A achieved a continuous decline in the score for all pain intensity
indices from T2 to T4, whereas Group B showed a reduction in
the score from T2 to T3 and then rebounded at T4. There were
statistical differences in the score for all pain intensity indices
between Groups A and B at T4, and no statistical differences in
the score for all pain intensity indices between Groups A and B at
T2 and T3, as shown in Table 2.

Prescribed Dose and Adverse Reactions to

Analgesics
The prescribed dose (morphine-equivalent 24-h dose) of
analgesics is shown in Table 2. At T0, there was no significant
difference in the baseline ofmeanmorphine-equivalent 24-h dose
between Groups A and B (p = 0.261). In addition to patients
experiencing pain relief, the mean morphine-equivalent 24-h
dose of Group A was decreased gradually from T0 to T4, whereas
that of Group B was decreased from T0 to T3 and rebounded at
T4. In both groups, there were statistical differences in the mean
morphine-equivalent 24-h dose at T1 and T4, but no statistical
differences in the mean morphine-equivalent 24-h dose at T2

and T3.
The incidence of adverse reactions (AEs) to analgesics is

summarized in Table 3. As patients in Groups A and B received
different dosages of analgesics, the incidence of AE or serious AE
(SAE) in Group Awas significantly lower than that of in Group B.

Domains of Interference by Pain
The score for interference by bone pain in daily life is
summarized in Table 4. In addition to patients experiencing pain
relief, the score on general activity, mood, sleep, normal work,
and enjoyment of life was increased in both groups. However, the
score for all domains shows a significant greater improvement in
Group A as compared to Group B.
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TABLE 2 | Pain-related variables and score from different therapy strategies.

BPI-SF scores T0 p T1 p T2 p T3 p T4 p

Group A Group B Group A Group B Group A Group B Group A Group B Group A Group B

Worst pain 0.067 0.021 0.071 0.197 0.028

Mean scores 7 ± 0.5 7 ± 0.8 5 ± 0.4 7 ± 0.5 3 ± 0.6 4 ± 0.4 3 ± 0.2 3 ± 0.6 3 ± 0.5 6 ± 0.7

Range 6–8 5–8 3–6 5–8 3–5 3–6 2–5 2–6 2–5 5–7

Least pain 0.131 0.039 0.191 0.063 0.015

Mean scores 4 ± 0.7 4 ± 0.9 3 ± 0.7 5 ± 0.2 2 ± 0.5 3 ± 0.3 2 ± 0.6 3 ± 0.6 2 ± 0.4 4 ± 0.2

Range 3–5 3–6 2–5 3–6 1–3 2–4 1–3 2–4 1–3 3–5

Average pain 0.073 0.017 0.227 0.243 0.027

Mean scores 6 ± 0.6 6 ± 0.4 4 ± 0.4 6 ± 0.4 3 ± 0.6 4 ± 0.3 3 ± 0.5 3 ± 0.5 3 ± 0.4 5 ± 0.8

Range 5–7 5–7 5–7 5–7 2–4 3–6 2–4 2–4 2–5 4–7

Present pain 0.158 0.018 0.338 0.479 0.011

Mean scores 6 ± 0.3 6±0.6 4 ± 0.8 6 ± 0.6 3 ± 0.3 4 ± 0.3 3 ± 0.5 3 ± 0.7 3 ± 0.5 5 ± 0.6

Range 5–7 5–7 3–6 5–7 2–5 3–5 2–5 2–5 2–5 3–6

Morphine-equivalent 24-h dose 0.261 0.041 0.161 0.097 0.019

Mean doses (mg) 136 ± 35 140 ± 29 91 ± 27 129 ± 21 53 ± 13 61 ± 16 31 ± 17 53 ± 15 34 ± 12 105 ± 23

Range (mg) 100–180 100–180 65–120 95–160 35–70 40–75 30–65 35–75 30–65 75–135

T0, preoperatively; T1, 3 days post-procedure; T2, 4 weeks post-procedure; T3, 8 weeks post-procedure; T4, 12 weeks post-procedure; BPI-SF, brief pain inventory-short form,

p, p-value.

Mean scores with standard deviation for points on “worst pain,” “least pain,” “average pain,” and “present pain.” The points were graded on a numeric scale ranging from 0 to 10.

TABLE 3 | Adverse reactions to analgesics from different therapy strategies.

Adverse reactions to analgesics Group A Group B

AE SAE AE SAE

Fatigue

8 (19) 7 (17) 17 (35) 15 (31)

Nausea

9 (21) 6 (14) 15 (31) 13 (27)

Constipation

8 (19) 5 (12) 20 (42) 14 (29)

Vomiting

6 (14) 3 (7) 16 (33) 10 (21)

Dizzy

7 (17) 6 (14) 19 (40) 16 (33)

AE, adverse event; SAE, serious adverse event.

Data are shown as n (%).

Procedure-Related Complications
Procedure-related complications are summarized in Table 5. In
Group A, the incidence of radiodermatitis, wound infection, and
subcutaneous hematomas was 10, 5, and 14%, respectively. In
four patients (10%), minor displacement of the 125I seeds was
found after tumor volume shrinkage. No severe complications,
such as massive bleeding and vital organ radiation injury,
occurred after 125I brachytherapy.

DISCUSSION

Bone pain is the most common clinical symptom in
patients with breast cancer and bone metastases (14).

According to National Comprehensive Cancer Network
guidelines, the aim of the treatment for these advanced
stage patients is symptom relief rather than complete disease
eradication (1).

Regional therapies for relieving pain are indicated. In clinical
practice, radiotherapy due to its minimal invasion is preferred
to surgical resection. A prospective clinical trial of 1,016
patients performed by the Radiation Therapy Oncology Group
showed that single and multiple EBRT fractions provided equal
palliation of bone pain caused by metastatic lesions and also
showed that 53 and 83% of patients achieved complete pain
relief and partial relief, respectively, with durable responses
(ranging from 12 to 28 weeks) (15). Generally, the EBRT
is promising in regard to pain palliation for most patients
with breast cancer and bone metastases (16); however, in
patients with a high burden of lesions and with unclear
margins relative to vital organs, the role of EBRT in pain
palliation might be compromised because of its less than optimal
radiation dose to the lesion(s) (17). For patients with relapsing
pain after receiving EBRT, bisphosphonates and personalized
dosages of analgesics show the benefits in pain control, but
the long-term effect was not satisfactory due to dose-related
adverse effects.

In the present study, the main findings were that 125I
brachytherapy in combination with bisphosphonates provided
more efficient pain control than bisphosphonates alone in
patients with breast cancer and bone metastases after external
beam radiotherapy failure. After 3 days of treatment, Group
A showed a significant greater decrease in visual analog scale
score for pain intensity as compared to Group B, especially
for “worst pain,” “worst on average,” and “present pain.” We
suggest that this may be because 125I seeds provide a cytocidal
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TABLE 4 | Pain interference-related variables from different therapy strategies.

Domains of interference by pain Group A Group B p

BT AT IM BT AT IM

General activity 61 ± 15 79 ± 9 19 ± 10 59 ± 13 64 ± 11 7 ± 4 0.023

Mood 57 ± 9 80 ± 12 25 ± 7 61 ± 10 70 ± 9 8 ± 5 0.017

Sleep 51 ± 13 77 ± 15 28 ± 11 54 ± 7 69 ± 13 11 ± 7 0.039

Normal work 62 ± 7 85 ± 11 24 ± 7 59 ± 11 71 ± 9 9 ± 6 0.014

Enjoyment of life 59 ± 11 76 ± 13 19 ± 10 61 ± 12 69 ± 9 6 ± 3 0.027

BT, before treatment; AT, after treatment; IM, improvement; p, p-value.

Mean scores with standard deviation for pain interference as “general activity,” “mood,” “sleep,” “normal work,” and “enjoyment of life.” Pain interference scores were graded on a

numeric scale ranging from 0 to 100.

effect without causing radioedema by continuously emitting
low doses of X- and γ-rays (18). During the study, we found
that patients who received 125I brachytherapy in combination
with bisphosphonates achieved up to 12 weeks of pain control,
even with lower doses of analgesics. This result may be related
to the fact that 125I seeds have a long half-life of 59.6 days
and could deliver 110–160Gy during decay (12). Because the
irradiation diameter of the 125I seeds is 1.7 cm, the surrounding
vital organs received a less than lethal dose of irradiation, even
when the prescribed dose of 125I brachytherapy was up to 160Gy
(19). Our findings suggested that 125I brachytherapy might
play a good role as ablation therapy, analogous to stereotactic
ablative radiotherapy (20), and our results showed that the
incidence of analgesic-related adverse events of Group A were
significantly lower than that of Group B. As a result, patients
experienced a better quality of life and could be well-treated
as close to home as possible. At the end of follow-up, we
observed the pain recurrence mainly due to the attenuation
of 125I radiation. In this case, the second 125I brachytherapy
should be considered. 125I brachytherapy was a feasible treatment
modality for bone metastases in this study, with a success
rate of up to 97.6%. According to disease progression, we
could implant the 125I seeds to the same or other lesions
after the first treatment cycle without increasing the risk of
complications (21). In this study, TPS was used to plan 125I seed
implantation in accordance with the American Brachytherapy
Society guidelines (more than 95% of the tumor receives
100% of the prescribed dose) (12). During the procedure, CT
guidance clearly showed the implant volume and location of
vital organs, allowing 125I seed implantation to be as accurate as
planned. However, we found that it was not easy to manually
puncture osteoplastic lesions with brachytherapy applicators,
which decreased the accuracy of 125I seed implantation and
increased the intensity of intra-procedure pain. We believe that
a robotic technique for 125I seed implantation would improve the
procedural performance.

How do our findings affect clinical practice? We found
that 125I brachytherapy could achieve 12-week pain control
and a high quality of life in patients with breast cancer and
bone metastases after the failure of the EBRT. When the

TABLE 5 | 125 I brachytherapy-related complications.

Complication Group A (n = 42)

n %

Radiodermatitis 4 10

Wound infection 2 5

Small amount of subcutaneous haematoma 6 14

Massive bleeding 0 0

Minor displacement of 125 I seed 4 10

Vital organ radiation injures 0 0

pain recurrence due to the attenuation of 125I radiation, we
could repeat 125I brachytherapy without technique difficulty,
which implies that the currently available approaches probably
have the cytocidal effect in bone metastases, leading to
the regression of pain. To draw definite conclusions, the
mechanism of 125I seed on killing bone metastases cancer
cell to relieve pain is needed. In addition, other reported
studies on 125I brachytherapy have an advantage in local
control for different malignant tumors (8, 9). We did not
observe a significant lesion progression after 12-week post-125I
brachytherapy (data not shown). This may be explained by the
modality of radiation release of 125I seed. We should argue
the role of 125I brachytherapy in the regional control of bone
metastases and the prevention of SREs in a long-term follow-
up study.

Our findings should be considered in the context of
the limitations of this study. This was a retrospective
study with a small sample size. Large sample sizes are
needed to confirm our results. Further studies should
also aim to study the optimal dose of 125I brachytherapy
and the clinical benefit of treatment in regard to
the prevention of SRE, progression-free survival, and
overall survival.

In conclusion, the results of our study demonstrated
the effectiveness of CT-guided 125I brachytherapy in
pain palliation for patients with breast cancer and bone
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metastases after the failure of the EBRT. After CT-
guided 125I brachytherapy, patients achieved a 12-week
extension in pain palliation, which resulted in less analgesic
consumption, shorter hospitalization, and a better quality
of life.

CONCLUSION

CT-guided 125I brachytherapy is a feasible and an
effective treatment for the palliation of pain caused by
bone metastases from breast cancer after external beam
radiotherapy failure.
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Zun Wang1†, Min Chen2,3,4, Jing-Jing Liu3,4,5, Rong-He Chen6, Qian Yu6,
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Xiamen University, School of Medicine, Xiamen University, Xiamen, China

Objective: Achieving negative resection margin is critical but challenging in breast-
conserving surgery. Fluorescence-guided surgery allows the surgeon to visualize the
tumor bed in real-time and to facilitate complete resection. We envisioned that
intraoperative real-time fluorescence imaging with a human serum albumin decorated
indocyanine green probe could enable complete surgical removal of breast cancer in a
mouse model.

Methods: We prepared the probe by conjugating indocyanine green (ICG) with human
serum albumin (HSA). In vitro uptake of the HSA-ICG probe was compared between
human breast cancer cell line MDA-MB-231 and normal breast epithelial cell line MCF
10A. In vivo probe selectivity for tumors was examined in nude mice bearing MDA-MB-
231-luc xenografts and the FVB/N-Tg (MMTV-PyMT) 634Mul/J mice model with
spontaneous breast cancer. A positive-margin resection mice model bearing MDA-MB-
231-luc xenograft was established and the performance of the probe in assisting surgical
resection of residual lesions was examined.

Results: A significantly stronger fluorescence intensity was detected in MDA-MB-231 cells
than MCF 10A cells incubated with HSA-ICG. In vivo fluorescence imaging showed that
HSA-ICG had an obvious accumulation at tumor site at 24 h with tumor-to-normal tissue
ratio of 8.19 ± 1.30. The same was true in the transgenic mice model. The fluorescence
intensity of cancer tissues was higher than that of non-cancer tissues (58.53 ± 18.15
vs 32.88 ± 11.34). During the surgical scenarios, the residual tumors on the surgical bed
were invisible with the naked eye, but were detected and resected with negative margin
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under HSA-ICG guidance in all the mice (8/8). Recurrence rate among mice that underwent
resection with HSA-ICG (0/8) was significantly lower than the rates among mice with ICG
(4/8), as well as the control group under white light (7/7).

Conclusions: This study suggests that real-time in vivo visualization of breast cancer with
an HSA-ICG fluorescent probe facilitates complete surgical resection of breast cancer in a
mouse xenograft model.
Keywords: breast cancer, tumor margin, indocyanine green, fluorescence-guided surgery, human serum albumin
INTRODUCTION

Breast-conserving surgery (BCS) with adjuvant whole-breast
radiation therapy is the standard care for early-stage breast
cancer. Successful BCS involves removal of malignant tissues
with enough surrounding normal breast tissues to ensure
complete tumor excision (negative margin), while leaving
enough normal tissues to preserve the breast and provide an
aesthetically acceptable result. However, 20–40% patients show
positive margins after BCS, leading to unwanted reoperation
(1, 2). This causes patients’ anxiety and suffering, which may also
compromise aesthetic results and increase infection risks and
healthcare costs. In addition, margin status is a key risk factor for
local recurrence and a prognostic factor for overall survival after
BCS (3). A meta-analysis based on 33 studies showed that
positive margins were associated with a 2-fold higher risk of
local recurrence than negative margins (4).

To identify the resection margins involved and perform
immediate selective margin re-excision, intraoperative margin
assessment techniques have been investigated. Established
methods include frozen sectioning, imprint cytology,
intraoperative ultrasound, and specimen mammography (5).
However, all the above techniques have their own limitations to
some extent. Frozen sectioning and imprint cytology often disrupt
the surgical workflow and are labor-intensive and time-consuming
(6). Anatomical imaging modalities such as intraoperative
ultrasound and specimen mammography could provide instant
feedback of margin status but lack diagnostic accuracy (7). So far,
no technique has been universally adopted for intraoperative
margin assessment to the best of our knowledge. Therefore, it is
imperative to develop an ideal method to identify involved
margins rapidly and accurately.

Molecular fluorescence imaging coupled with contrast agent
introduces a promising technique to visualize the tumor lesion,
which can delineate tumor margins against normal tissues. It
could provide instant feedback during surgery and augment the
visual range for surgeons. For example, fluorescence-guided
surgery with 5-aminolevulinic acid could make more complete
resections with malignant glioma, which also improves patient
outcomes (8). Near-infrared fluorescence imaging, at wavelengths
in the 700–900 nm range, is particularly promising because
autofluorescence from native tissue is minimal in this range,
allowing a high signal-to-background ratio (9). Indocyanine
green (ICG) is the only near-infrared fluorescent dye approved
by the U.S. Food and Drug Administration for intravenous
227
injections in humans. Several studies reported that
intraoperative ICG fluorescence could localize non-palpable or
occult breast cancer lesion and guide its excision (10, 11). Studies
in mouse models of breast cancer showed that ICG is superior to
visual inspection and palpation for identifying retained tumor
margins (12, 13). But in the clinical application for fluorescence-
guided surgery, ICG seemed to be less reliable for identifying
positive margins. The potential explanation is that ICG cannot
bind to specific ligands within the target tumor but spread to
peritumoral tissues (13).

It is desirable to engineer ICG that binds selectively to tumors
by combining it with human serum albumin (HSA). HSA plays
an active role in tumor nutrition and demonstrates an obvious
increased uptake by solid tumors (14). The tumor targeting
makes HSA a promising carrier for cancer bioimaging and
drug delivery (15, 16). It has been reported that HSA-ICG
nanoparticles can be successfully applied to photothermal and
photodynamic therapy (17), and tumor diagnosis based on
fluorescence imaging and photoacoustic imaging (18, 19) in
the literature. In the present study, we focused on its
performance in guiding surgical removal of breast cancer in a
mouse model. ICG was conjugated with HSA as a contrast agent
for fluorescence imaging of breast cancer. Then, we evaluated the
tumor selectivity of the HSA-ICG probe in vitro and in vivo. We
subsequently used a mice model of positive margin resection
with MDA-MB-231-luc xenograft to investigate whether HSA-
ICG fluorescence guidance could detect tumor deposits. Finally,
we compared the local recurrence rate and overall survival rate
after surgery with HSA-ICG fluorescence guidance or not.
MATERIALS AND METHODS

Preparation and Characterization of
Human Serum Albumin-Indocyanine Green
ICG-NHS (Xinyan Bomei Bio, Xi’an, China) was conjugated to
HSA (Solarbio, Beijing, China) using a previously published
protocol with minor modifications (20). Briefly, HSA was
incubated with ICG at a molar ratio of 1:5 in 0.1 M Na2HPO4
(pH 8.5) at room temperature for 2 h. The mixture was purified on
a Sephadex G50 column (PD-10; GE Healthcare, Piscataway,
USA). The morphology of the resulting HSA-ICG conjugate was
observed by G2 F30 Twin transmission electron microscopy (FEI/
TECNAI, Hillsboro, USA). The molecular weight of the conjugate
was determined using SDS-PAGE and Coomassie Brilliant Blue
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staining. Gels were scanned at 800 nm using the Odyssey CLx
scanner (LI-COR Bio, Lincoln, USA) to determine the intactness
of HSA-ICG. The absorption spectrum of the conjugate was
measured using a spectrophotometer (Thermo Multiskan GO,
Thermo Fisher Scientific, Waltham, USA). The fluorescence
emission spectrum was obtained after excitation at 745 nm
using a fluorimeter (TECAN SPARK, Mannedorf, Switzerland).
Protein concentration of the samples was determined using
bicinchoninic acid assay (Solarbio, Beijing, China). The
concentration of ICG of the probe was also measured by
absorption with the above spectrophotometer to calculate the
number of fluorophores conjugated to HSA. The purified HSA-
ICG probes were stored in 0.1M phosphate-buffered saline (PBS)
at 4°C.

Cell Cultures
Human breast cancer cell line MDA-MB-231 and non-cancerous
breast epithelial cell line MCF 10A were purchased from the
American Type Culture Collection (Rockville, USA). The MDA-
MB-231-luc cell line was purchased from ZQXZ Biotechnology
(Shanghai, China). These cell lines were cultured according to
the vendors’ recommendations.

Uptake and Cytotoxicity of Human Serum
Albumin-Indocyanine Green In Vitro
MDA-MB-231 cells were seeded in six-well plates at a density of 2 ×
105 cells per well, and incubated overnight for cell attachment. Then
the cells were treated with HSA-ICG (at a final ICG concentration
of 10 µg/ml) alone or in the presence of excess HSA (10 mg/ml) for
8 h. Cells were collected at 1, 2, 4, and 8 h, washed with cold PBS (1–
4°C). Then the signal intensity of HSA-ICG was measured by flow
cytometry (BD, Franklin Lakes, USA).

To investigate whether HSA-ICG is selectively taken up by
cancer cells, MDA-MB-231 cells or MCF 10A cells were seeded at
a density of 1 × 105 cells per well and cultured for 24 h. Afterward,
the cells were incubated in fresh medium containing HSA-ICG (10
µg/ml) at 37°C for 4 h. Cells were washed with cold PBS and then
fixed in 4% paraformaldehyde and nuclei were stained with DAPI.
The internalization of HSA-ICGwas observed using a confocal laser
scanning microscope (FV1000, Olympus, Tokyo, Japan).

Cytotoxicity of HSA-ICG against MDA-MB-231 cells was
measured by incubating them for 24 h in the presence of the
conjugate at concentrations of 1.25–40 mg/ml. The viability was
measured using a standard CCK8 assay (Promega, Beijing, China).

Real-Time PCR Analysis of Secreted
Protein, Acidic And Rich In Cysteine
Expression
Total RNA ofMDA-MB-231 cells andMCF 10A cells was extracted
and reverse-transcribed using Takara kits (Takara, Beijing, China)
according to the manufacturer’s instructions. Real-time PCR was
performed with SYBR Green qPCR Master Mix (Thermo Fisher
Scientific, Waltham, USA) using a CFX96 Real-time PCRDetection
System machine (Bio-Rad, Hercules, USA). SPARC primers were
synthesized by Brogene Biotechnology (Xiamen, China). The
primers for the amplification of SPARC were as follows: forward,
Frontiers in Oncology | www.frontiersin.org 328
5’-TGAGGTATCTGTGGGAGCTAATC-3’; and reverse, 5’-
CCTTGCCGTGTTTGCAGTG-3’. We normalized Ct values
to those of beta-actin and calculated relative expression using the
2−DDCt method.

Xenograft Models and Fluorescence
Imaging
Animal experiments were approved by the Institutional Animal
Care and Use Committee of Xiamen University, which were
conducted accordance to relevant guidelines. Female BALB/c
nude mice (6 weeks old, Charles River Labs, Beijing, China)
received subcutaneous injection of MDA-MB-231-luc cells (5 ×
106) in the right hind limb. Tumor volume was calculated as
[p/6 × length × (width)2].

When tumor volume reached 80 mm3, HSA-ICG at doses
equivalent to 1 mg ICG per kg or free ICG at 1 mg/kg was
injected through the tail vein (n = 3 for each group). Mice were
anesthetized with 2% isoflurane and fluorescence was imaged in
vivo using an IVIS Lumina II imaging system (Perkin Elmer,
Waltham, USA) at different time points (0, 3, 6, 9, 12, 24, 36, 48,
72, 96, and 120 h) after injection. Blood samples were also
collected to determine fluorescence signal using a fluorimeter
(TECAN SPARK). Ex vivo imaging was conducted at 24 h to
determine fluorescence in the heart, liver, spleen, lungs, kidneys,
and tumor. Tumor-to-background ratio (TBR) was defined as
the fluorescence intensity in the tumor divided by the intensity in
the upper limb.

Fluorescence Imaging Using Human
Serum Albumin-Indocyanine Green in a
Mouse Model of Spontaneous
Breast Cancer
FVB/N-Tg(MMTV-PyMT)634Mul/J mice (Jackson Laboratory)
were used to model orthotopic breast cancer. These mice
spontaneously developed invasive breast carcinoma at a mean
age of 53 days (21). At 7–9 weeks old, 10 mice were injected
with HSA-ICG (1 mg/kg) through the tail vein. Twenty-four hours
later, the combined 4th and 5th mammary glands (n = 20) were
divided into four quadrants, each quadrant of the gland was
removed sequentially. Fluorescence images of the mice were
obtained before and after removal of each quadrant of the gland.
All resected tissues were also analyzed by fluorescence imaging and
histology. The latter was performed by an experienced pathologist
according to mammary pathology of genetically engineered mice
as described (22). The gland tissues were diagnosed as malignant or
not based on histology. At last we correlated the pathology results
with the fluorescence images of the resected tissues.

Establishment of a Positive-Margin
Resection Model
Mice bearing MDA-MB-231-luc tumors of 600–700 mm3

underwent resection under 2% isoflurane anesthesia. To
establish a positive-margin resection model, 95% of the tumor
mass was resected using a blunt dissection technique under white
light (23). Then all the surgical bed was examined independently
by two investigators. The mice were excluded if residual tumor
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was visible to the naked eye. At the same time, all the mice were
examined to confirm the presence of residual tumor by
bioluminescence imaging with 150 mg/kg D-luciferin (Perkin
Elmer, Waltham, USA) via intraperitoneal administration. All
the remaining animals thought to be disease-free were then
scanned using the hand-held near-infrared imaging system.

Residual Breast Cancer Tissue Resection
Under the Human Serum Albumin-
Indocyanine Green Fluorescence
Guidance
At 24 h prior to surgery, the mice were received an intravenous
injection of HSA-ICG (1 mg/kg of ICG, n = 10). Fluorescence
imaging of tumor was performed prior to surgery using a hand-
held near-infrared imaging system (Mingde Biotech, Langfang,
China) with filters of 760/30 nm for excitation and 820/20 nm
for emission. When the positive-margin resection model was
established, two mice were excluded because of the visible
residual tumor and eight remaining mice were used for the
next surgery. Tissues with high fluorescence signals in the
tumor bed were removed. Then, standard pathological
procedures were used to determine whether residual foci exist
in the resected fluorescence tissues with free margin. In
addition, a margin of remaining nonfluorescent tissue was
also removed and processed as control. Margins were defined
as positive if tumor cells extended to the outside surface of the
resected tissue.

Fluorescence Imaging of Specimen
After excision of the specimen, ex vivo imaging was performed
with the hand-held near-infrared imaging system. Then, all the
specimen was fixed in formalin and embedded in paraffin blocks
and made into10-µm-thick tissue sections. We scanned the slides
using the Odyssey CLx scanner (LI-COR Bio, Lincoln, USA).
Microscopic assessment of the slides derived from HSA-ICG
fluorescence signal was made to demonstrate the tracer
distribution at a cellular level.

Fluorescence Image Analysis Related to
Fluorescence-Guided Surgery
Intraoperative fluorescence images were recorded at three
predefined time points: before the operation, before and after
removal of tissue with fluorescence signals. Fluorescence images
of specimens and slides were also recorded. Heatmap were
created based on gray-scaled fluorescence images using
MATLAB (MathWorks, Natick, USA). Fluorescence images as
well as the regions of interest representing different tissue
components were imported into ImageJ (National Institutes of
Health, USA). Mean fluorescence intensity (MFI) was measured
in arbitrary units for tumor and normal tissue in vivo, ex vivo and
at tissue slice. TBR was defined as the MFI of tumor tissues
divided by the MFI of surrounding normal tissues.

In addition, tumor lysates from mice that underwent
fluorescence-guided surgery were analyzed by SDS-PAGE to
confirm the presence of HSA-ICG in the tumor. The gel was
scanned using the Odyssey CLx scanner at 800 nm.
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Local Recurrence and Survival After the
Fluorescence-Guided Surgery
During the fluorescence-guided surgery, HSA-ICG or free ICG
(1 mg/kg) or saline as control was injected 24 h before the
operation (n = 10 per group). After the establishment of positive-
margin resection model, all the residual tumor mice (eight in the
HSA-ICG group, eight in the ICG group, seven in control group)
undergone fluorescence-guided surgery. After the surgery, mice
were returned to their home cages. Local recurrence was
observed every 2 days for 2 weeks and survival for 5 weeks.
Mice were euthanized if weight loss exceeded 20% or recurrence
tumor volume reached 1,500 mm3.

Evaluation on Biosafety of Human Serum
Albumin-Indocyanine Green
Healthy female FVB/NCrl mice (4–6 weeks old, XiamenUniversity)
were randomly divided into two groups (n = 15 for each group).
Mice in the HSA-ICG group received the injection of HSA-ICG
probe (6 mg ICG per kg), while mice in the control group received
the injection of saline solution. The mice were sacrificed on days 1,
7, and 30 (n = 5 per time point) to collect blood samples and major
organs (heart, liver, spleen, lung, and kidney). The blood samples
were measured for serum biochemical markers, including aspartate
aminotransferase, alanine aminotransferase, albumin, total protein,
total bilirubin, creatinine, and blood urea nitrogen. The major
organs were stained with hematoxylin and eosin for histological
analysis. During the observation period, the weight of the mice (n =
5) in each group was recorded every other day.

Statistical Analysis
We used GraphPad Prism 7.0b (GraphPad Software Inc., San
Diego, USA) for statistical analyses. Quantitative results were
presented as mean ± standard deviation. Differences among
more than two groups were assessed for significance using one-
way ANOVA followed by the Duncan multiple comparisons
test. Differences between two groups were assessed using the
Student’s t test. Inter-group differences in postoperative
recurrence and overall survival were assessed using the log-
rank test. A two-sided P value of less than 0.05 was considered
to be statistically significant.
RESULTS

Human Serum Albumin-Indocyanine
Green Characterization
Negative staining of transmission electron microscopy images
revealed that the diameters of HSA and HSA-ICG were 5.38 ±
0.92 and 5.69 ± 0.82 nm, respectively (Figure S1A). Thus, the
conjugation of ICG to HSA almost had no effect on the overall
size. The apparent molecular weight of HSA-ICG was only
slightly higher than that of HSA, and SDS-PAGE did not
detect any substantial aggregates of HSA (Figure S1B).
Furthermore, fluorescence scanning showed that the
fluorescence signal coincided with the location of HSA-ICG
on the gel, while free ICG was located at the bottom of the gel
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(Figure S1B). This indicated that the HSA-ICG conjugate was
stable and did not dissociate during SDS-PAGE. ICG alone
and HSA-ICG showed similar absorption peaks (788 vs 795
nm) and fluorescence emission peaks (820–825 nm) (Figures
S1C, D). The slight red shift in absorption (~7 nm) further
suggest the successful conjugation of ICG to HSA. The
purified HSA-ICG conjugate was estimated to contain 3.5
ICG per 1 HSA.

Uptake of Human Serum Albumin-
Indocyanine Green In Vitro
Fluorescence signals in MDA-MB-231 cells detected increased
when incubated with HSA-ICG probes for 1, 2, 4, or 8 h, while
the signals decreased when excess HSA was added (Figure 1A).
This suggested that MDA-MB-231 cells internalized HSA-ICG
in a time-dependent manner, the process of which was
weakened in the presence of excess HSA. Quantitatively, the
mean fluorescence intensity was significantly higher in HSA-
ICG treated cells than in HSA-ICG treated cells with HSA
blocking at selected time points (Figure 1B, one-way ANOVA,
P < 0.05). Moreover, the probe mainly localized in the
cytoplasm of MDA-MB-231 cells. On the contrary, normal
breast epithelial MCF 10A cells internalized little HSA-ICG
(Figure 1C). Relative mRNA expression of SPARC was
significantly higher in breast cancer MDA-MB-231 cells than
in human breast epithelial cells (Figure S2, unpaired Student’s
t test, P < 0.05).
Frontiers in Oncology | www.frontiersin.org 530
In Vivo and Ex Vivo Fluorescence Imaging
When mice received ICG alone, the fluorescence signal appeared
primarily in liver 3 h post-injection, but it was detected mainly in
liver and tumor at 48 h, albeit considerably weaker. In contrast,
the HSA-ICG fluorescence signal retained in the body for a
longer time, as shown by a gradual increase that finally peaked at
the tumor site at about 24 h (Figures 2A, B). Ex vivo fluorescence
images of dissected organs and tumors 24 h post-injection
confirmed that most free ICG accumulated in the liver,
whereas enhanced fluorescent signals could be detected in
liver, kidney, and tumor of HSA-ICG treated mice (Figures
2C, D). Compared with ICG-treated mice, blood from HSA-ICG
treated mice showed significantly higher fluorescence intensity
within 72 h after injection (Figure 2E). Furthermore, TBR
reached the peak at 24 h in HSA-ICG treated mice,
significantly higher than in ICG-treated mice (8.19 ± 1.30 vs
3.87 ± 0.68, unpaired Student’s t test, P < 0.05) (Figure 2F,
Figure S3).

Human Serum Albumin-Indocyanine Green
Imaging in a Mouse Model of Spontaneous
Breast Cancer
Fluorescence imaging was performed before and after surgical
resection of breast tissue in a mouse model of spontaneous breast
cancer (Figures 3A, B). Resected samples (n = 80) were also
examined histologically (Figure 3C) and classified as non-
A

B C

FIGURE 1 | Cell uptake of HSA-ICG. (A) Histogram showing flow cytometry based on fluorescence in MDA-MB-231 cells incubated for 1, 2, 4, or 8 h with HSA-
ICG (10 µg/ml) alone or in the presence of excess HSA (10 mg/ml). (B) Mean fluorescence intensity from the flow cytometry in panel A at selected time points (n = 3,
one-way ANOVA, *P < 0.05). (C) Confocal laser scanning micrographs of MDA-MB-231 and MCF 10A after 4 h incubation with HSA-ICG. Scale bar = 20 µm.
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cancerous (n = 57) or cancerous (n = 23). The fluorescence
intensity of all the samples were assessed in each mouse (Figure
3D). MFI of cancerous tissue was significantly higher than that of
non-cancerous tissue (58.53 ± 18.15 vs 32.88 ± 11.34, unpaired
Student’s t test, P < 0.05) (Figure 3E).

Residual Breast Cancer Resection Guided
by Human Serum Albumin-Indocyanine
Green Fluorescence
We established a residual tumor model using MDA-MB-231-luc
tumor-bearing mice whose xenografts were missed during
surgery under white light alone. We confirmed the presence of
tumor deposits in the tumor bed by bioluminescence (Figure
4A). Next, following the guidance of real-time fluorescence
imaging, we observed the aggregated fluorescent signal in the
tumor bed. Subsequently, the tissues with high fluorescence
Frontiers in Oncology | www.frontiersin.org 631
signal (Figure 4B) were resected and postoperative pathology
examination validated the presence of cancer foci (Figure 4C).
The fluorescence images obtained after the excision process
indicated the removal of tissues with high fluorescence signal
on the surgical bed (Figure 4D). Histology of tissues from the
area confirmed the absence of residual tumors (Figure 4E).

Quantitative Analysis of Human Serum
Albumin-Indocyanine Green Fluorescence
Imaging During Surgery
Intraoperative and postoperative fluorescence images were analyzed
to determine the ability of HSA-ICG in fluorescence-guided surgery
for residual disease resection (Figures 5A–J) as recommended (24).
The MFI were significantly higher for tumor tissues than
surrounding normal tissues both in vivo (54.93 ± 13.37 vs 22.25 ±
3.32, paired Student’s t test, P < 0.05, TBR 2.45 ± 0.36) and ex vivo
A B

C

E F

D

FIGURE 2 | In vivo and ex vivo fluorescence imaging of HSA-ICG in MDA-MB-231 tumor-bearing mice. (A) In vivo fluorescence images at indicated time points after
intravenous injection of ICG or HSA-ICG (1 mg ICG per kg). Tumor tissue is delineated with a dashed line in the “0” images at far left. (B) Semi-quantitative analysis
of in vivo fluorescence intensity of tumors. (C) Fluorescence images from organs and tumors excised 24 h after the injection of ICG or HSA-ICG. (D) Semiquantitative
analysis of fluorescence signals from the samples in panel (C). (E) Fluorescence images (inset) and semiquantitative analysis of fluorescence in blood sampled at
different times after intravenous injection of the probe. (F) Tumor-to-background tissue ratios obtained at 24 h after injection of HSA-ICG or ICG. Background tissue
was from the upper limb. Each group n = 3, (unpaired Student’s t test, *P < 0.05).
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(111.68 ± 12.59 vs 16.20 ± 2.54, paired Student’s t test, P < 0.05, TBR
7.03 ± 1.27) (Figures 5K, L). This demonstrates that fluorescence
imaging ex vivo can also be a useful diagnostic test to confirm
successful removal. Histology of tissue sections confirmed
significantly higher MFI in tumors than normal tissues (60.03 ±
20.88 vs 15.13 ± 7.94, paired Student’s t test, P < 0.05, TBR 4.50 ±
1.45) (Figure 5M). Analysis of tumor lysates confirmed that the
HSA-ICG conjugate was intact in tumor tissue (Figure S4).

Tumor-Free Surgical Margins Following
Resection With Human Serum Albumin-
Indocyanine Green Guidance
During the guidance of HSA-ICG fluorescent probes, there were
multiple sites of fluorescence adjacent to a single tumor bed. A
total of 12 such sites in eight animals were detected and resected,
and confirmed by histology to be cancerous. Diameters of tumor
foci on the slices of resected tissues (n = 12) ranged from 1.16 to
3.37 mm (mean, 2.19 mm). Histology showed that the margins of
tissues resected under fluorescence guidance were tumor-free
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(Figure 6A), and that no residual tumor was detectable in the
resected surgical bed in any of the eight animals (Figure 6B).

Decreased Local Recurrence and
Improved Overall Survival With Human
Serum Albumin-Indocyanine Green Guided
Surgery
Next, local recurrence and overall survival was observed to assess
the effectiveness of HSA-ICG fluorescence imaging. Until 2 weeks
after surgery, none of the eight HSA-ICG-treated animals showed
local recurrence, compared to 50% of the ICG-treated mice (4/8)
and all seven control mice (Figure 7A). Overall survival differed in
the same way across the three groups: 75% of the HSA-ICG-
treated animals (6/8) survived within 5 weeks after operation,
compared to only 25% of the ICG-treated animals (2/8) (Figure
7B). All control mice died from residual disease within 30 days
after surgery. The HSA-ICG group showed significantly better
overall survival than the control group (log-rank test, * P < 0.05)
and a trend of better survival compared with the ICG group.
A B

C

D E

FIGURE 3 | HSA-ICG fluorescence imaging in a mouse model of spontaneous breast cancer. (A) Picture of mammary glands 4 and 5 divided into four
approximately equal quadrants (P1–4), which were resected sequentially 24 h after the injection of HSA-ICG (1 mg/ml). (B) Representative fluorescence images
before resection (leftmost) and after each sequential resection. Tissues resected (P1–4) are marked in white circles, and the corresponding ex vivo fluorescence
images of excised tissues are shown as insets on the lower left. (C) Histological examination of resected pieces (P1–4), corresponding to the fluorescence images in
panel (B) A yellow triangle in P1 marks a lymph node; a red asterisk in P4, a cancer lesion. (D) The fluorescence intensity distribution of the resected mammary
gland tissues (P1–P4) in every case (n = 10). (E) Mean fluorescence intensity of 23 resected cancer tissues and 57 non-cancer tissues pooled from the 10 mice in
panel (D) (unpaired Student’s t test, *P < 0.05).
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Human Serum Albumin-Indocyanine
Green Biosafety
The CCK8 assays revealed that HSA-ICG did not significantly
decrease MDA-MB-231 cell viability for 24 h, even at
concentrations up to 40 mg/ml (Figure S5). In the HSA-ICG-
treated mice, there was neither obvious damage nor
inflammation in the heart, liver, spleen, lung, and kidney on
the 1st, 7th, and 30th days (Figure S6A). HSA-ICG also did not
seem to substantially alter serum biomarkers of key organ
function (Figure S6B). HSA-ICG-treated group and the
control group showed similar trends in body weight during the
30 days after tracer injection (Figure S6C).
DISCUSSION

It is essential to determine the margin status accurately during
breast-conserving surgery to avoid reoperation and reduce the
risk of local recurrence. Fluorescence-guided surgery images the
tumor and detects residual tumor in real-time, thus providing
critical guidance to the surgeon. Here we show that conjugating
ICG to HSA allows to selectively accumulate in MDA-MB-231-
luc xenograft tumors, where it can guide tumor removal to
ensure negative margins, leading to reduced recurrence and
improved overall survival.
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By conjugating HSA with ICG, we developed and validated an
optical imaging probe (HSA-ICG) that could accumulate
selectively in MDA-MB-231-luc xenografts and the FVB/N-Tg
spontaneous breast cancer lesion of (MMTV-PyMT) 634Mul/J
mouse model. The molecular weight of HSA-ICG is
approximately 67 kDa after the conjunction, which
subsequently results in an accumulation of macromolecules
(>40 kDa) within the tumor interstitium known as the
enhanced permeation and retention effect (14, 25). Moreover,
it also has been reported that tumors uptake albumin as a source
of energy actively for their accelerated growth, by breaking down
albumin into its component amino acids in lysosomes (26). In
addition, receptor-mediated albumin uptake pathways by
albumin binding proteins were also involved, such as
membrane-associated 60 kDa glycoprotein and “secreted
protein, acidic and rich in cysteine” (SPARC) (27). In previous
studies, the expression level of SPARC was found to be higher in
human breast cancer tissue when compared with healthy breast
tissue (28–30). In the present study, we also detected that SPARC
was expressed at higher levels in breast cancer MDA-MB-231
cells than in normal breast epithelial MCF 10A cells. All the
reasons above may elucidate the mechanism of selective
accumulation of HSA-ICG in tumors.

In several previous studies, ICG with HSA premixing by the
absorption of ICG to HSA was used for near-infrared
fluorescence imaging of sentinel lymph nodes (SLN), but no
A B

C D E

FIGURE 4 | HSA-ICG enabled fluorescence-guided resection of residual lesions in MDA-MB-231-luc tumor-bearing mice. (A) Establishment of the model of
positive-margin resection. The residual cancer was not clearly seen by the unaided eye (left), and was confirmed by bioluminescence imaging (right).
(B) Fluorescence image of the tumor bed showed residual cancer undetectable by white light. (C) Hematoxylin and eosin staining of the resected tissue
from (B). A yellow asterisk marks the tumor. (D) Fluorescent image of the tumor bed following fluorescence-guided resection, indicating the absence of
fluorescence signal. (E) Tissues on the tumor bed from (D) were collected and examined histologically to confirm the absence of residual tumor.
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direct benefit was found with this probe for SLN mapping in
preclinical and clinical trials (31, 32). It may be dissociated ICG
from the complex due to low affinity of albumin compared with
other serum protein, a1-lipoprotein, and g-globulin (33). In the
present study, HSA was conjugated with ICG derivatives (ICG-
NHS ester), which could rapidly and high-specifically react to
primary amine (-NH2) on HSA without altering the cyanine
structure important for NIR absorption. Similar method was
used with ICG derivatives (ICG-Sulfo-OSu) in previous study
(19). Moreover, we confirmed that HSA-ICG was intact and
present in tumor tissue by comparing the height of the band of
the tumor lysates with the lane containing diluted HSA.

In the present study, we demonstrated that HSA-ICG
fluorescence imaging was superior to ICG and naked eye for the
Frontiers in Oncology | www.frontiersin.org 934
detection of positive tumor margins in a surgical mice model for
residual tumor. A mice model of MDA-MB-231-luc xenograft
retained disease (12, 13, 23), in which the tumor deposits were not
visible but could be detected by bioluminescence, was chosen to
provide a scenario for examining the hypothesis that HSA-ICG
can aid in identifying and completely resecting small foci of
residual cancer. When using HSA-ICG to guide surgical
resection, the signal on the surgical bed was sufficiently strong
to be seen easily and to guide surgery in real-time with TNR
approximately 2.5. During specimen imaging procedure,
fluorescence imaging of the fresh surgical specimen and the
pathology slides showed TNR with 7.03 and 4.50, which can
provide the pathologist to outlines tumor tissue quickly and
precisely. Most importantly, we confirmed the correlation of the
FIGURE 5 | Quantitative analysis of fluorescence images from fluorescence-guided surgery using HSA-ICG. (A–J) Correlation of fluorescence signals with pathology
during fluorescence-guided surgery. (A, F) white-light images and corresponding fluorescence images of MDA-MB-231 tumors prior to surgery. (B, G) the
corresponding images of the surgical bed of residual cancer model under HSA-ICG guidance. The yellow arrow in (G) points to the local aggregated fluorescence
signal on the surgical bed. (C, H) ex vivo images of tissue resected from (B). (D) hematoxylin and eosin staining of resected tissue, while (I) the corresponding
fluorescence image. (E, J) the tracer at much higher cellular resolution. (K–M) Quantitative analysis of fluorescence signals of tumor and surrounding normal tissues
in vivo (K), ex vivo (L), and in pathology slices (M). Mean fluorescence intensity of normal tissues (red) and tumor tissues (blue) is depicted on the left y-axis, while
the right y-axis shows the mean fluorescence intensity ratio of tumors to normal tissues. Tumors are outlined with a dashed line. Scale bars in all panels = 5 mm
except (D, I), where the scale bar = 500 µm; and (E, J), where the scale bar = 25 µm. (paired Student’s t test, * P < 0.05).
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fluorescence signal of the resected tissue with final histopathology.
Furthermore, compared with surgery guided by ICG or visual
inspection, HSA-ICG fluorescence-guided surgery resulted in
significantly lower recurrence rate within14 days. The recurrence
Frontiers in Oncology | www.frontiersin.org 1035
rate with ICG in our study (four of eight mice) was higher than the
rate reported in a previous study (two of 22 mice) (12). It may be
related with the usage dose of ICG, which was higher in previous
study (7 vs 1 mg ICG per kg).
A

B

FIGURE 6 | Fluorescence-guided surgery based on HSA-ICG enabled complete removal of residual breast cancer lesions. (A) Representative hematoxylin and eosin
staining of resected tissues that showed fluorescence signal during surgery and a negative margin. Dashed lines demarcate the tumor. Rectangles indicate the
location of the higher-magnification views of the tissue margins, shown in the lower row. (B) Representative hematoxylin and eosin staining of the tissues on the
surgical bed after surgery to confirm the absence of residual tumor.
A B

FIGURE 7 | Local recurrence and overall survival of MDA-MB-231-luc tumor-bearing mice after fluorescence-guided surgery. (A) Local recurrence within 2 weeks
for mice that underwent resection under the guidance with HSA-ICG (n = 8 animals), ICG (8) or the control group (7). (B) Overall survival of the same mice as (A).
(log-rank test, *P < 0.05).
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Our mice model suggests that fluorescence-guided surgery
based on HSA-ICG provides a promising solution of negative
margin and reduces local recurrence rates. however, small-
animal models of tumor surgery could not fully reflect the
complexities of human breast cancer therapy, it remains to be
validated in patients. Interestingly, we found the lymph nodes
surrounding the xenografts were highlighted during
fluorescence-guided surgery (data not shown). Therefore,
future work should also examine whether our approach can
help map lymphatic metastasis, as suggested for HSA-ICG
nanoprobes (18). However, specific labeling of such metastases
must be established, since HSA in the tumor microenvironment
is cleared via the lymphatic system through a natural
recycling mechanism.

One limitation of our approach is that the relatively shallow
penetration depth in fluorescence imaging may limit more
complex resections, in which the target lesion lies behind other
tissues or satellite lesions. We found that HSA-ICG can facilitate
photoacoustic detection of tumors (data not shown), and this
modality can penetrate down to several centimeters (34). We are
exploring the use of photoacoustic imaging and HSA-ICG to
detect residual lesions.

Despite these limitations, our study shows that fluorescence
imaging by HSA-ICG can provide real-time imaging of tumors
with high TBR, enable the surgeon to judge the completeness of
resection of tumor lesion. With high biocompatibility and
minimal toxicity, HSA-ICG fluorescence guidance is promising
for further clinical translation in primary breast cancer patients.
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Background: Near-infrared fluorescence imaging (NIRFI) of breast cancer (BC) after the
intravenous (IV) injection of free indocyanine green (fICG) has been reported to be feasible.
However, some questions remained unclarified.

Objective: To evaluate the distribution of fICG in BC and the axillary lymph nodes (LNs) of
women undergoing surgery with complete axillary LN dissection (CALND) and/or selective
lymphadenectomy (SLN) of sentinel LNs (NCT no. 01993576 and NCT no. 02027818).

Methods: An intravenous injection of fICG (0.25 mg/kg) was administered to one series of
20 women undergoing treatment with mastectomy, the day before surgery in 5 (group 1)
and immediately before surgery in 15 (group 2: tumor localization, 25; and pN+ CALND, 4)
as well as to another series of 20 women undergoing treatment with tumorectomy (group
3). A dedicated NIR camera was used for ex vivo fluorescence imaging of the 45 BC
lesions and the LNs.

Results: In group 1, two of the four BC lesions and one large pN+ LN exhibited
fluorescence. In contrast, 24 of the 25 tumors in group 2 and all of the tumors in group
3 were fluorescent. The sentinel LNs were all fluorescent, as well as some of the LNs in all
CALND specimens. Metastatic cells were found in the fluorescent LNs of the pN+ cases.
Fluorescent BC lesions could be identified ex vivo on the surface of the lumpectomy
specimen in 14 of 19 cases.

Conclusions: When fICG is injected intravenously just before surgery, BC can be
detected using NIRFI with high sensitivity, with metastatic axillary LNs also showing
fluorescence. Such a technical approach seems promising in the management of BC and
merits further investigation.

Keywords: breast cancer, axillary lymph nodes, indocyanine green, fluorescence imaging, sentinel lymph nodes
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INTRODUCTION

Indocyanine green (ICG) is a fluorescent cyanine dye used in
medical diagnostics and approved by the Food and Drugs
Administration and European Medicines Agency for several
indications (1). Using near-infrared fluorescence imaging
(NIRFI)-dedicated cameras, the intravenous (IV) injection of
ICG enables imaging of the vascularization of the eye and
transplants (2, 3). More recently, its use after intradermal and/
or subcutaneous injection has been emphasized for lymphatic
imaging in the evaluation of lymphedema (4, 5) and the
detection of sentinel lymph nodes (LNs) (6–15). The ability of
ICG to reveal various tumors after IV injection had also been
demonstrated in both animals and humans (16–23).

In breast cancers (BC), its potential to enable their imaging in
human patients was recognized as early as 2000 (24). Different
subsequent studies (25–30) have shown that the kinetics of the
accumulation and clearance of free ICG (fICG) allow the
mammary cancerous tissues to be differentiated from healthy
tissues. However, these data were obtained from a limited number
of patients and at varying time points after fICG injection.

Because cancerous cells are found by pathologists near or in
the surgical margins in 5.6 to 66% of cases after conservative
surgery (31), a technical approach that would allow the
visualization of tumor tissues and identification of tumor
remnants after lumpectomy is of major interest. Currently,
cryosection analysis represents the reference technique, but
various techniques have been proposed for the evaluation and
identification of tumor margins (32). Preliminary data of
intraoperative NIRFI after the IV injection of methylene blue
(MB) (33) or fluorescent molecules such as bevacizumab-
IRDye800CW (34–39), among others, have been published.
The injection of MB represents a simple approach but carries
the risk of an allergic reaction (40), and fluorescent molecules
such as bevacizumab-IRDye800CW present the main drawbacks
of imaging agents in development, with all the limitations of
such products.

This situation led us to launch the present studies in 2013 to
evaluate the following in women undergoing surgery for
histologically proven BC: 1) the best timing for fICG to be
injected (the day before or just before the operation); 2) the
accumulation of intravenously injected fICG in mammary
tumors and in their respective axillary LNs; 3) the sensitivity of
the approach in identifying these malignant lesions; and the
potential contributions of such imaging methods in patients
undergoing lumpectomy.
MATERIAL AND METHODS

Patients
The first study was approved by the Investigational Review Board
(IRB) of the Jules Bordet Institute (CE2075) and was registered at
ClinicalTrial.gov (NCT no. 01993576; https://clinicaltrials.gov/
ct2/home) and the European Clinical Trials Database (EudraCT
Frontiers in Oncology | www.frontiersin.org 239
number 2013-000100-41; http://eudract.emea.europa.eu/).
Between May 2013 and April 2014, twenty women (mean age,
60.3 years; range, 32 to 89 years) who were scheduled to undergo
mastectomy (n = 19) or lumpectomy (n = 1) with selective
lymphadenectomy (SLN) of axillary sentinel LNs (n = 5) and/or
complete axillary LN dissection (CALND) (n = 15) for a
histologically proven mammary tumor were enrolled in the
study after providing written informed consent (see Table S1
and Table S2 for their characteristics). One patient (no. 8) was
enrolled after neoadjuvant hormone therapy, and two (nos. 16
and 17) were enrolled in the framework of a relapse at the site of
a previous lumpectomy.

The second study was also approved by the IRB of the Jules
Bordet Institute (CE2200) and was registered at the
ClinicalTrial.gov (NCT no. 02027818; https://clinicaltrials.gov/
ct2/home) and the European Clinical Trials Database (EudraCT
number 2013-005178-23; http://eudract.emea.europa.eu/).
Between February and June 2014, twenty women (mean age,
60.1 years; range, 37 to 81 years) who were scheduled to undergo
a lumpectomy with selective lymphadenectomy of axillary
sentinel SLNs for a histologically proven mammary tumor were
enrolled in the study after providing written informed consent
(group 3: see Table S3 for their characteristics).

The exclusion criteria were pregnancy, significant renal
failure (creatinine >400 mmol/L), severe cardiac or pulmonary
disease (ASA III-IV), a history of iodine allergy or anaphylactic
reactions to insect bites or medication, and the presence or a
history of hyperthyroidism. Patients were not limited in their
normal behavior, diet, or medication intake before the study.
Surgery and Specimen Preparation
A total of 0.25 mg of fICG/kg patient weight was intravenously
injected in the first five patients (nos. 1–5) the day before the
operation (group 1). Because fluorescence was detected in only
two of the four tumors, the subsequent 15 patients (group 2) of
our first study and every patient of our 2nd study were injected
immediately after anesthesia and before surgery.

The surgeons performed mastectomy or lumpectomy as
usual, either preceded by the selective lymphadenectomy of the
axillary sentinel LNs demonstrated by the pre-operative intra-
mammary and peri-tumoral injections of radio-colloids (SLN;
n = 25 patients) or followed by CALND (n = 15 patients). The
delay between ICG injection and SLN dissection was 12–25 min,
and that between ICG injection and CALND was 55–120 min.

The fresh specimens were always thereafter processed by the
pathologist as usual. After dying the resection margins with India
ink, each mastectomy and lumpectomy specimen was sliced at a
thickness of 5–7 mm (see Figure 1) and 2–3 mm (see Figure 2),
respectively, before being immersed in 4% buffered formalin
overnight for fixation. For the mastectomy specimens, the area of
interest, the tumor, and other areas after gross examination were
also sliced thinner and processed as usual (dehydration and
paraffin-embedding). Each LN was sliced at a thickness of 2 mm
and fixed overnight in 4% buffered formalin before dehydration
and paraffin-embedding.
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Fluorescence Imaging
Fluorescence images of the freshly sliced specimens (see Figures
1A, B), specimens after incubation in formalin (see Figures 2A,
B), mammary lesions isolated by the pathologists, and all sentinel
LNs and/or non-sentinel LNs before (see Figures 2C, D) and after
embedding in paraffin (see Figures 3 and 4) were obtained under
standard conditions in the department of anatomo-pathology
using a dedicated NIR camera system (Photodynamic Eye, PDE;
Hamamatsu Photonics, Hamamatsu, Japan).

Fresh lumpectomy specimens were also imaged in the
operating room (see Figure 5) using a dedicated NIR camera
Frontiers in Oncology | www.frontiersin.org 340
system (Photodynamic Eye, PDE; Hamamatsu Photonics,
Hamamatsu, Japan).

Semiquantitative Analysis of Fluorescence
Images
Videos were recorded and converted to AVI format still images
for semiquantitative image analysis. Based on white-light images,
regions of interest (ROIs) were drawn over the tumor tissues and
the adjacent healthy mammary tissue (considered “background”),
and the fluorescence intensity (expressed in arbitrary units, AU)
was measured using IC-CALC software. Finally, the tumor-to-
background fluorescence ratio (fTBR) was calculated for each
tumor at different steps: when fresh, after fixation in formalin, and
after embedding in paraffin. Dissected LNs were processed the
same way.
RESULTS

Fluorescence of Mammary Tumors in
Mastectomy and Lumpectomy Specimens
The first five patients in our 1st study were injected the day
before surgery (group 1). In patient no. 1, the mammary lesion
(one large in situ lesion limited to one-half of the breast)
appeared faint but definitely more fluorescent than the normal
mammary tissue. The largest LN, which was also fluorescent, was
invaded by one ductal carcinoma. In the next four patients, who
were also injected the day before surgery, only two mammary
tumors fluoresced (Table 1).

In the subsequent five patients, who received an ICG injection
immediately before the operation (following anesthesia),
fluorescent mammary lesions were observed (Table 1). Thus,
the last 10 patients were also injected immediately after
anesthesia and before the operation.

In the 15 patients in group 2 who were injected just after
anesthesia and before surgery (Table 1), 24 of the 25 clinically
identified invasive cancerous lesions (14 ductal, 9 lobular, and 1
mucinous) were fluorescent, yielding a sensitivity of 96% in the
mastectomy group. One tumor was not visualized well when
examined as a fresh specimen (patient 18), and this was
considered a false negative for fluorescence imaging because
the lesion had been diagnosed on a biopsy performed the day
before the mastectomy. No benign lesions were found in the
mastectomy specimens and specificity of such ICG accumulation
could not be established.

With regard to the possible influence of tumor size, one focus as
small as 2 mm was detected in the multifocal lesion of one patient
(no. 11), and small groups of cancerous cells dispersed on one
surface 6 mm in diameter on the slide analyzed by the pathologist
were reported in patient 17, who had mammary relapse.

Histological validation of ICG-positive tumors revealed a
clear overlap between the fluorescence signals and tumor tissue
(Figure 2E). In the last patient (no. 20), one tumor site was
fluorescent, but no residual tumor was found after microscopic
analysis. However, granulation tissue and inflammatory cells
were observed.
A

B

FIGURE 1 | Normal and fluorescent images of the freshly sliced specimen
from patient n° 20 in group 2 (panel A: the two ductal lesions—shown by the
author’s finger—are fluorescent: the smallest was only 3 mm large) and from
patient n° 19 in group 2 (panel B: with one lobular invasive).
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When the lumpectomy specimens were imaged in the
department of pathology after slicing, all the tumors were
fluorescent, with no difference among the histopathological
subtypes of tumors, giving an overall sensitivity of 100% in the
lumpectomy group.
Frontiers in Oncology | www.frontiersin.org 441
The mean maximum fTBR for the tumors (see Table 1) was
3.43 (standard deviation, ± 0.9) in the mastectomy specimens
and 2.54 in the lumpectomy specimens (standard deviation,
+/-0.73), and this metric did not seem to be influenced by the
size (pT) of the tumors. However, this mean ratio in the
A

C

D

E

B

FIGURE 2 | Images obtained for patient N° 8 who underwent a tumorectomy with CALND after neoadjuvant hormone therapy. (A) Lesion (arrow) on the freshly
sliced specimen. (B) NIR fluorescence image of the same slices with the arrow showing the tumor. (C, D) Fluorescent and optical images of the axillary LNs.
(E) Fluorescent images of the tumor embedded in paraffin and the corresponding H&E-stained pathological slices with delineation of the tumor tissues.
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lumpectomy group was significantly higher (2p < 0.05 using the
Kruskal-Wallis test) for the 12 patients (of Group 3) with
histological grade 2 or 3 tumors (2.83 +/− 0.67; range = 2.0–
4.0, with four cases of fTBR = 2.0) than for the eight patients with
grade 1 tumors (1.84 +/− 0.2; range = 1.5–2.0).
Perioperative Ex Vivo Detection of Tumor
Fluorescence in Lumpectomy Specimens
Tumor fluorescence was detected ex vivo in the operating room
by NIR imaging of the whole lumpectomy specimens in 14 out of
the 19 patients who were evaluated (Group 3: see Figure 4).

Tumor fluorescence could be detected in eleven out of thirteen
lumpectomy specimens when the tumor size was larger than
10 mm but only three out of six lumpectomy specimens when the
tumor size was less than 10 mm.

Among the 11 patients for whomwe had the distance between
the “closest”margins (n° 1, 4, 5, 7, 8, 10, 13, and 16–20: patient n°
8 was not evaluated in the operating room) and those for whom
at least one surface of the tumor was fluorescent ex vivo (two
surfaces were fluorescent for n° 5, 13, and 16), the tumor, except
in one (patient n° 10), was not deeper than 5 mm (“final distance
from invasive tumor to margin”) under (one of) the
corresponding ex vivo fluorescent walls of the specimen. In
other words, if the margin was defined as “close” when the
tumor was within 5 mm from the resection margin, the
corresponding surface was fluorescent in the operating room
in 100% out of 10 patients, but fluorescence was observed in only
one (patient n° 10) out of the three in whom the distance from
the tumor to the margin was greater than 5 mm.
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Ex Vivo Free Indocyanine Green-FI of
Axillary LNs
Patients Treated With Selective Lymphadenectomy
All the sentinel LNs were fluorescent in the 20 patients of Group 3
and in the four patients of Group 2 who underwent selective SLN
guided by the preoperative peritumoral injection of radiocolloids.

Patients Treated With Complete Axillary Lymph
Node Dissection
Among the 11 patients in group 2 who underwent CALND
(Table 2), at least one of the dissected LNs was fluorescent in
each patient. If the whole series is considered, a mean of 4.54 LNs
per patient (from 1 to 8) were fluorescent, or 22.2% of all LNs
found by the pathologist (from 10 to 60% if the number of
fluorescent LNs is analyzed per patient).

The fluorescence in the normal LNs was localized and/or
diffuse (Figures 2C, 3, and 4), sometimes with a (small or large)
center that was not fluorescent (Figure 3). Histological
validation of ICG-positive LNs showed a clear overlap between
fluorescence and normal nodal tissues (Figure 3), with the hilum
of the LNs not showing fluorescence.

In the four patients in group 2 who presented with LN
metastases, 13 LNs harbored metastases, 10 (77%) of which
were fluorescent. On the other hand, 17 (22%) of the 78 lymph
nodes were fluorescent, and 10 (82%) of these 17 fluorescent LNs
harbored metastases. In contrast, metastases were found in only
3 of the 61 non-fluorescent LNs, representing a false-negative
rate (FNR) of 5%. The distribution of ICG in the metastatic LNs
appeared somewhat different from what was observed in the
normal LNs and in metastatic tumor areas.
FIGURE 3 | Comparison between fluorescence images of the lymph node embedded in paraffin (upper pictures) and the corresponding AP slices (lower pictures)
obtained from pN- patients. From left to right, the first three sets of pictures correspond to lymph nodes from patient n° 8 (of group 2) and the last right-sided set of
pictures are lymph nodes from patient n° 9 (of group 2).
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DISCUSSION

Indocyanine Green in Mammary Tumors
After IV injection, unbound fICG demonstrates rapid clearance
from the blood circulation through the hepatobiliary system,
with a half-life of 150 to 180 s (41). Because ICG has both
lipophilic and hydrophilic properties, it also exhibits reversible
binding to albumin and serum globulins, such as alpha1-
lipoproteins. Unlike fICG, the complex formed by ICG and
these proteins behaves like a macromolecule in the circulation.

With regard to our field of application in patients with tumors,
the imaging of tumors immediately after the injection of ICG
depends on their relative hypervascularization. In 2008, Wall et al.
(42) demonstrated the correlation between the intensity of
Frontiers in Oncology | www.frontiersin.org 643
fluorescence and tumor vascularization in mammary tumor
graft-bearing animals (MCF7 cell line).

Cancer tissues also exhibit “vascular fenestrations,” which
allow the extravasation of molecules over 50 kDa in molecular
weight (MW) (43). In contrast, normal tissues have smaller
vascular fenestrations that prevent the extravasation of
molecules over 20 kDa in MW (44).

Two mechanisms, hypervascularization and the enhanced
permeability retention (EPR) effect, can thus explain the ICG
fluorescence of mammary tumors, but theoretically with
potential differences in terms of sensitivity (and of specificity)
over time.

Our observation that the mean maximum fTBR was higher in
histological grade 2 and 3 tumors than in grade 1 tumors
FIGURE 4 | Comparison of the “real” images (upper panel), of the fluorescence images (mid panel) and of the corresponding AP slices of pN+ lymph nodes (arrows)
embedded in paraffin obtained, from left to right, in patient n° 11 (two first series), in patient n° 18 (third series), and in patient n° 19 (fourth series) from Group 2.
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supports the hypothesis of fluorescence related to the EPR effect.
Daldrup et al. (45) showed in mammary tumor-bearing animals
that capillary hyperpermeability to proteins with a highMW (i.e.,
the EPR effect) increases with the histological grade of tumors.
Sensitivity and Specificity of Indocyanine
Green Near-Infrared Fluorescence
Imaging for the Detection of Mammary
Tumor Tissues
In the present series (with the injection of 0.25 mg per kg of
patient weight), the accumulation of ICG as observed ex vivo in
sliced specimens appears highly sensitive, with 44 of the 45
tumors showing fluorescence. The “falsely negative” non-
fluorescent tumor had been biopsied the day before surgery,
and the hematoma observed on pathology could explain its
negative fluorescence. However, no benign lesions were found
in the mastectomy specimens, and the specificity of such ICG
accumulation could not be evaluated in our study.

Using ex vivo optical breast imaging after the IV injection of
fICG (25 mg as a bolus), Schneider et al. (29) reported a
sensitivity of 85.7% based on the positive detection of in vivo
Frontiers in Oncology | www.frontiersin.org 744
fluorescence in 12 out of 14 malignant lesions and a specificity of
87.5%, with no in vivo fluorescence detected in seven of eight
benign lesions. A false-negative result was found in one patient
for a micropapillary carcinoma (although the pT was 16 mm)
and in another patient due to the presence of necrotic tissue at
the center of the lesion.

Using intraoperative NIR imaging in 12 patients with BC but
with fICG being injected 24 h before the operation and at a
relatively high concentration (5 mg/kg), Keating et al. (46)
reported fluorescence in all tumors, while in the department of
pathology, we identified fluorescence in only two out of four
tumor specimens when ICG was injected the day before the
operation at a concentration of 0.25 mg/kg.

In the article published recently by our group (47), the
sensitivity of ICG (injection unchanged) for detecting the
fluorescent tumor in lumpectomy specimen was lower (31/35
or 87%). However, this result was obtained with a different
NIRFI camera-device (and other parameters) and this
difference stresses the importance of defining the optimal
acquisition parameters for each imaging system. Interestingly,
the false negatives were four of the (32) ductal carcinomas, which
also showed the lowest fTBR in two of our patients with
ductal cancer.
FIGURE 5 | Ex vivo NIR fluorescence imagings of lumpectomy specimens (in the operating room) and of their slicings (in the department of Pathology) obtained:
Upper panel: in patient n° 5 of Group 3 with a lobular invasive carcinoma, 19 × 10 × 11 mm large, close to the posterior margin (<1 mm) and to the anterior margin
(4 mm) within a tumorectomy specimen sized 35 mm × 27 mm × 20 mm, histologically graded 1, with a maximum tumor to background fluorescence ratio equal to
2.0: the corresponding views of the whole specimen showed clear fluorescence at the surface of the specimen- Lower panel: in patient n° 6 of Group 3 with a
canalar invasive carcinoma, 14 mm large within a tumorectomy specimen sized 62 mm × 75 mm × 35 mm, histologically graded 2 and with a maximum tumor to
background fluorescence ratio equal to 4.0: the tumor was well centered and the corresponding views of the whole specimen showed no clear fluorescence at the
surface of the specimen.
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Timing of Imaging After IV Indocyanine
Green Injection
Not only the amount of ICG injected but also the timing of the
injection thus appears to influence the fluorescence of mammary
tumors. In addition, when the studies were initiated, the data
were somewhat confusing. In animals, Reynold et al. (19)
reported that spontaneous mammary tumors (in two female
dogs) remained fluorescent for up to 120 min after the injection
of ICG (which corresponds to the “vascular” phase of the tracer),
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and Gurfinkel et al. (18) found that, in one female dog operated
on for a spontaneous mammary tumor, fluorescence remained
detectable for 72 h after ICG injection (which is in agreement
with the hypothesis of the extravasation and retention of ICG-
labeled proteins). In patients and on ex vivo optical breast
imaging after the IV injection of fICG (25 mg as a bolus),
Poellinger et al. (30) reported the results of an analysis by two
different readers of images recorded for during the IV
administration of ICG (early imaging) and approximately
25 min after the IV injection of ICG (delayed imaging). The
sensitivity of early imaging was low (~50 and 67%), but the
corresponding specificity was high (88 and 75%). The sensitivity
of delayed imaging was 85 and 92%, and the corresponding
specificity was 75 and 62%. A higher mean contrast value was
also reported for delayed imaging than for early imaging (0.64
vs. 0.25).
Potential Clinical Applications of Free
Indocyanine Green Fluorescence Imaging
in Breast Cancer
Although fICG is not tumor-specific, our data show that when ICG
is injected at a concentration of 0.25mg/kg just before the operation,
it allows visualization of the tumor and not of the surrounding
healthy tissues, which may have practical implications. For the
purpose of intra- and postoperative diagnostic imaging, the
identification of any abnormal tissues (sensitivity) is more
important than specificity for tumor detection. Several new
optical imaging agents targeting specific cell surface markers, such
as HER2 receptor (48), have been reported, but these specific
cellular markers may or may not be expressed on all cancer cells
and are only related to tumors expressing these biomarkers on the
cell surface (only 15–20% for HER2). Furthermore, these markers
will have to be approved by the relevant authorities before use in
clinical applications. Such agents could demonstrate superior
sensitivity and specificity to ICG and merit consideration.
However, none of these agents are as easy to apply in humans
as ICG.

We identified four fields of clinical applications for the IV
injection of fICG in the management of BC.
TABLE 1 | Fluorescence or not (and maximum fTBR) of tumors found in patients.

Patient Inj
ICG

BC1
fluo?

BC2
fluo?

BC3
fluo?

fTBR
n°.

1st
study

Group
1

1 D-1 (Yes) (2.0)
2 D-1 No Neg
3 D-1 Yes Data lost Data

lost
4 D-1 No Neg
5 D-1 Yes 3.5

Group
2

6 Preop Yes Yes 5.0
7 Preop Yes Yes 2.5
8 Preop Yes 3.0
9 Preop Yes Yes 3.0
10 Preop Yes ND
11 Preop Yes Yes Yes 4.0
12 Preop Yes 4.0
13 Preop Yes 2.5
14 Preop Yes Yes 5.0
15 Preop Yes 4.5
16 Preop Yes 2.5
17 Preop Yes 2.0
18 Preop Yes No 2.5
19 Preop Yes Yes Yes 3.0
20 Preop Yes Yes 4.5

2nd
study

Group
3

1 Preop Yes 3
2 Preop Yes 2
3 Preop Yes 2
4 Preop Yes 3
5 Preop Yes 2
6 Preop Yes 4
7 Preop Yes 4
8 Preop Yes 1.7
9 Preop Yes 2
10 Preop Yes 2
11 Preop Yes 1.5
12 Preop Yes 2
13 Preop Yes 4
14 Preop Yes 2
15 Preop Yes 4
16 Preop Yes 1.5
17 Preop Yes 2.5
18 Preop Yes 2
19 Preop Yes 2.5
20 Preop Yes 3
(Inj ICG D-1, patients injected the day before surgery; Inj ICG Preop, patients injected
immediately after anesthesia and before surgery.
TABLE 2 | Number of LNs found by the pathologist in axillary specimens from
patients in group 2.

Patient N° Total LNs pN+ LNs Fluo LNs pN + fluo LNs

6 16 0 2 0
7 22 0 5 0
8 34 0 8 0
9 7 0 4 0
11 35 4 7 4
14 21 3 5 3
15 29 0 5 0
16 10 0 6 0
18 9 1 1 1
19 13 5 4 2
20 29 0 3 0
March 2021
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First, the detection of such fluorescence may be used by
pathologists to look for the limits of mammary lesions and may
represent an easy way to determine the tumor margin status. This
approach could be particularly useful in cases where gross
examination cannot allow clear mapping of the tumor limits
(e.g., extensive fibrosis) and/or in cases of special patterns of
infiltration without a fibrotic reaction of the stroma (e.g., lobular
growth pattern with tumor cells infiltrating the tissue in single file
or as single cells); these pathological situations can be anticipated
on the basis of biopsies and/or radiological investigations.

Second, the perioperative detection of fluorescent lesions
while the surgeon is performing lumpectomy represents
another possible application of such fluorescence imaging.
When the surgeon has cut the skin above the tumor location,
the fluorescence emitted by the tumor may be detected and used
to guide lumpectomy. Keating et al. (46) reported that the IV
injection of 5.0 mg/kg of fICG 24 h before the operation allowed
the positive identification of all 12 patients’ breast tumors by
intraoperative NIR imaging in situ; in the present study, with the
injection of a lower concentration when the patient was
anesthetized, we were able to observe tumor fluorescence in
only 15 out of 19 cases ex vivo and mainly in the lumpectomy
specimens of patients in which the tumor was close to the margin
of the specimen. Our ability to visualize tumors is thus
dependent on not only the concentration of ICG (injected and
finally located in the tumor) but also the attenuation of the
fluorescence by surrounding tissues.

This 2nd result may represent an advantage but also a drawback
with regard to the third field of application: the detection of
remnants by imaging of the surgical margins. Here, we feel it is
important to stress the work reported by Madajewski et al. (49).
These authors demonstrated the ability of fICG to show the limits
of tumor areas (grafts in animals derived from cells of pleural,
breast, lung, and esophageal cancer) and more precisely to identify
the presence of malignant fluorescent remnants in surgical
margins previously considered negative at first glance by the
surgeon. The survival in the group in which these fluorescent
remnants were removed was better than the survival in the control
group, in which no such additional ICG-guided resection was
performed. In a similar approach, Jiang et al. (50) confirmed the
interest in NIR-guided surgery and reported the results of a series
of 60 mice bearing 4TI BC tumors in their flank that traditional
margin assessment identified 30% of positive margins, while NIR
imaging identified 90% of positive margins.

Using NIR imaging after the injection of ICG, the problem of
tumor remnants can be approached in two complementary ways.
First, the tumor specimen, once ex vivo, can be examined for
fluorescence emitted by the tumor. In the present series,
fluorescence emitted by the tumor could be detected ex vivo on
the surface of the lumpectomy specimen in 14 of the 19 evaluated
cases but in only three out of six with a diameter <11 mm and in
11 out of 13 with a diameter >10 mm. The fact that the
fluorescent tumors were also frequently close to the margin (12
being reported by the pathologist with a distance from the tumor
to the margin of the lumpectomy specimen of 5 mm or less) also
explains the detection of tumor fluorescence and might represent
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the most important factor allowing detectability when observing
fresh specimens ex vivo, even for small tumors (<10 mm).
However, such an approach would only allow (at the present
stage of our developments) fluorescent areas at risk (of being
positive) to be observed ex vivo and to be controlled in vivo. The
second approach is more direct and consists of controlling the
surgical bed and searching for and removing any remaining
fluorescent tissue.

The feasibility of such NIR imaging, perioperatively and in
the framework of conservative surgery, to observe fluorescence
from BC tissue (and remnants) was reported by Tummers et al.
(33), but after the IV injection of MB, another NIR fluorophore.
Their overall identification rate was 18/21 for invasive
carcinomas. This slightly lower sensitivity than that of ICG (at
least 96% in the present study) might be explained by the greater
attenuation with MB (penetration depth = approximately 5 mm)
than with ICG (penetration depth = around 10 mm). Another
hypothetical explanation might be that the cationic structure of
MB would render MB the substrate of multidrug-resistant
proteins known to be present in several types of BC (51) and
that MB would thus be cleared from the tumor in such cases,
with no or low fluorescence. Finally, Tummers et al. also reported
(33) that they did not detect one mucinous adenocarcinoma,
whereas such a lesion was detected by ICG fluorescence in our
first series of patients treated with mastectomy. Of utmost
interest, they also detailed that, in two patients with
pathologically positive resection margins, fluorescent tumor
tissues could be identified perioperatively on the surface of the
resected specimen and/or in the wound bed.

Keating et al. also found (46) that ICG fluorescence could be
detected in six cases in the surgical bed following lumpectomy,
although all their patients had clear margins. With the high
concentration of ICG they administered (also injected the day
before), the fluorescence seems to no longer be limited to the
tumor (as in our series) but to diffuse into the surrounding
healthy tissues (Keating et al. mention in the discussion of their
article that smears of fluid from the specimen were fluorescent)
(46), which thus limits the value and potential of their approach
in the detection of tumor remnants.

In a previous study, we had reported that the negative
predictive value was 100% for the ex vivo ICG-FI detection of
viable BCs tissues after neoadjuvant chemotherapy (52) as well as
for the in vivo detection of ICG fluorescence in the tumoral bed
after lumpectomy (47). The major contribution of the technique
seems thus to be its excellent NPV, allowing the surgeon
confidence that resection margins are clean if no residual
fluorescence is visualized in the tumoral bed.

Fluorescence Imaging of Axillary Lymph
Nodess After IV Indocyanine Green
Injection
When our study was launched, the systematic presence of ICG
fluorescence in the sentinel LNs and some LNs collected by
CALND was unexpected despite some preliminary observations
in the literature. Reynold et al. (19) reported in 1999 that the IV
injection of ICG allowed the detection offluorescence in draining
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reactive LNs of spontaneous mammary tumors in two female
dogs and that these structures remained fluorescent for up to
120 min after the injection of ICG. In humans, such visualization
of fluorescence in LNs after the IV injection of fICG was reported
in 2013 by Yokoyama et al. in patients who underwent
lymphadenectomy for the nodal relapse of head and neck
cancer (53). Our group confirmed their observation in 2016 in
a series of 11 patients who had undergone cervical
lymphadenectomy for primary and relapsing head and neck
cancer (54) but also reported such accumulation of ICG in
metastatic LNs in cases of colorectal and ovarian cancer (55–57).

In our patients who underwent SLN after peri-tumoral
injection of radio-colloids, fluorescence was observed in all
sentinel LNs. Due to the short delay between the excision of
the sentinel LNs and the injection of ICG (<15 min), the
fluorescence may be related to vascularization.

In patients who underwent CALND 50 to 120 min after the
IV injection of ICG, no definitive explanations can be proposed
regarding why some LNs remained fluorescent. At this stage of
our analysis, we can propose two explanatory hypotheses: one
consists of ICG accumulation viametastatic tumor tissues for pN
+ nodes, and the other consists of ICG accumulation by normal
nodal tissues in an inflammatory state, stimulated by factors
arising from the tumoral bed.

These results might be interesting for pathologists. The simple
categorization of fluorescent LNs gives the following values
(diagnosing one LN as pN+ on pathological examination):
sensitivity and specificity of 77 and 81%, respectively, with a
low positive predictive value of 20% but a high negative
predictive value of 98.2%. In our limited series of 11 patients,
pathologists have also isolated and analyzed 225 LNs but found
only 13 pN+ LNs (in four patients) on histological examination,
for an efficiency rate of only 5.5%; however, if they had isolated
and analyzed the 50 fluorescent LNs, they would have found 10
pN+ LNs, for a higher efficiency rate of 20%. However, analysis
of only the fluorescent LNs would have led to underestimation of
the prognostic risk (related to the number of pN+ LNs) in one of
the four pN+ patients, for whom only two of the pN+ LNs were
fluorescent. The sensitivity of our ICG imaging (to show the
lymph nodes at risk) may appear “low” and is based on ex vivo
imaging. However, the aim of our study was not to evaluate the
per-operative detection of fluorescent sentinel lymph nodes after
the IV injection of ICG and we think that the lymphatic
approaches after sub-cutaneous and/or intra-mammary
injection of a dye and/or radio-tracer will remain the standard
methods. HowH

These observations also concern a limited number of pN+
patients, and the next challenge will be to determine whether this
technique can be used more specifically by pathologists to detect
LNs at risk and with metastatic deposits without a loss of
sensitivity or prognostic value.
CONCLUSION

Injecting fICG at a concentration of 0.25 mg/kg just before
surgery seems to be an approach of interest in the management
Frontiers in Oncology | www.frontiersin.org 1047
of patients with BC. In all, 44 out of 45 tumors were fluorescent.
Fluorescent tumor tissues could also be identified perioperatively
on the surface of the resected lumpectomy specimen in 14 of 19
cases. The fluorescence depended on the depth and location of the
tumor in the specimen and on the histological grade of the tumor.
The approach might be of interest in the management of patients
with BC in order to perioperatively observe fluorescent tumor
tissue and/or, more importantly, the persistent fluorescence of
tumor remnants in the surgical bed. The unexpected detection of
ICG fluorescence in some LNs obtained by CALND after IV
injection of the dye and the presence of metastatic cells in these
fluorescent LNs merit further investigations.
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Objectives: To evaluate the performance of readout-segmented echo-planar imaging

DWI (rs-EPI DWI) in detecting and characterizing breast cancers in a large Chinese cohort

with comparison to dynamic contrast-enhanced MRI (DCE-MRI).

Methods: The institutional review board approved this retrospective study with waived

written informed consent. A total of 520 women (mean age, 43.1- ± 10.5-years) were

included from July 2013 to October 2019. First, the ability of rs-EPI DWI in detecting

breast lesions identified by DCE-MRI was evaluated. The lesion conspicuity of rs-EPI-DWI

and DCE-MRI was compared using the Wilcoxon signed rank test. With pathology as a

reference, the performance of rs-EPI DWI and DCE-MRI in distinguishing breast cancers

was evaluated and compared using the Chi-square test.

Results: Of 520 women, 327/520 (62.9%) patients had 423 lesions confirmed by

pathology with 203 benign and 220 malignant lesions. The rs-EPI DWI can detect 90.8%

(659/726) (reader 1) and 90.6% (663/732) (reader 2) of lesions identified by DCE-MRI.

The lesion visibility was superior for DCE-MRI than rs-EPI-DWI (all p < 0.05). With

pathology as a reference, the sensitivities and specificities of rs-EPI DWI in diagnosing

breast cancers were 95.9% (211/220) and 85.7% (174/203) for reader 1 and 97.7%

(215/220) and 86.2% (175/203) for reader 2. No significant differences were found for the

performance of DCE-MRI and rs-EPI DWI in discriminating breast cancers (all p > 0.05).

Conclusions: Although with an inferior lesion visibility, rs-EPI DWI can detect about

90% of breast lesions identified by DCE-MRI and has comparable diagnostic capacity to

that of DCE-MRI in identifying breast cancer.

Keywords: breast neoplasms, magnetic resonance imaging, diffusion weighted MRI, sensitivity, specificity
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KEY POINTS

- Readout-segmented echo-planar imaging DWI (rs-EPI DWI)
can detect about 90% of breast lesions identified by dynamic
contrast-enhanced MRI (DCE-MRI).

- With pathology as reference, the sensitivity and specificity
of rs-EPI DWI in characterizing breast cancers were 95.9%
(211/220) and 85.7% (174/203) for reader 1 and 97.7%
(215/220) and 86.2% (175/203) for reader 2.

- No significant differences were found between rs-EPI DWI
and DCE-MRI for the sensitivity, specificity, accuracy,
positive predictive value, and negative predictive value in
distinguishing breast cancers (all p > 0.05).

INTRODUCTION

Breast cancer is the most common cancer for women worldwide
and has become the leading cause of cancer-related death in
Chinese women younger than 45-years old (1, 2). Chinese
patients contribute significantly to the global burden of breast
cancer and related deaths given the large population (1, 3).
Miller et al. (4) reported that the 5-year relative survival rates for
patients with breast cancer at stage I and stage IV were 100 and
26%, respectively. Early detection and treatment are crucial for
improving the prognosis of patients with breast cancer.

Currently, mammography is recommended by clinical
guidelines for breast cancer screening in manyWestern countries
for women older than 40-years (5–7). However, Asian women
usually have relatively dense and small breasts, making it difficult
to effectively detect lesions in these women with mammography
alone (7). Dynamic contrast-enhanced MRI (DCE-MRI) is
so far the most sensitive imaging modality for identifying
breast cancers, and it is therefore recommended for cancer
screening of high-risk women as a supplement to mammography
and/or breast ultrasound (8, 9). However, several disadvantages
prevent its widespread use in screening average-risk women,
including intravenous injection of gadolinium-based contrast
agents (GBCAs), higher cost, longer acquisition time, and lower
availability (10, 11). Abbreviated breast MRI protocols have
been proposed to overcome some of these limitations and show
feasibility in MRI breast cancer screening (12, 13). However, the
gadolinium deposition in the body due to repeated injection of
GBCAs has attracted broad attention over the world (14), which
makes DCE-MRI unreasonable for breast cancer screening in the
general population.

In order to identify a safe and effective screening tool,
many studies have considered using non-contrast MRI protocols
based on diffusion-weighted imaging (DWI) (10, 11, 15–17).
In early studies, conventional single-shot echo-planar imaging
DWI (ss-EPI DWI) sequences were used offering an advantage

Abbreviations: DWI, diffusion-weighted imaging; rs-EPI, readout-segmented

echo-planar imaging; DCE-MRI, dynamic contrast-enhanced MRI; BI-RADS,

Breast Imaging Reporting and Data System; ADC, apparent diffusion coefficient;

PPV, positive predictive value; NPV, negative predictive value; GBCAs,

gadolinium-based contrast agents; FGT, fibroglandular tissue; BPE, background

parenchymal enhancement; TIC, time-signal intensity curve; ER, estrogen

receptor; PR, progesterone receptor; HER2, human epidermal growth factor

receptor-2; ROI, region of interest.

of speed and no requirement for GBCA contrast. However,
it suffered from susceptibility artifacts, geometric distortions,
and spatial blurring (18–21), which partly contributed to the
discrepant and unsatisfactory sensitivities and specificities of
DWI for breast cancer detection (17, 22, 23). Pinker et al.
concluded that conventional ss-EPI DWI was not sufficient as
a stand-alone modality for breast cancer detection (11). DWI
based on readout-segmented technique (a multi-shot strategy)
may improve spatial resolution for superior sensitivity and/or
specificity and provide more potential when combined with a
new technique (24, 25). During diffusion encoding in readout-
segmented echo-planar imaging (rs-EPI), each shot involves only
a limited transversal of k-space in the readout direction, but
full resolution along the phase encoding direction (26). rs-EPI
DWI should improve the visualization of anatomic structures
with less image distortion and superior spatial resolution (19, 27,
28). Recently, the consensus recommendations of the European
Society of Breast Radiology (EUSOBI) breast DWI working
group stated that breast DWI had high specificity and may
improve lesion classification in cancer screening. However,
evidence supporting the use of DWI for screening as a stand-
alone test or as a part of an unenhancedMRI protocol is currently
insufficient (29).

The purpose of this study was to evaluate the ability of rs-
EPI DWI in detecting breast lesions identified by DCE-MRI and
the performance of rs-EPI DWI in distinguishing breast cancers
with comparison to DCE-MRI in a large Chinese cohort by using
pathology as the reference standard.

MATERIALS AND METHODS

Patients
The institutional review board of our hospital approved this
single-institution retrospective study. The written informed
consents of patients were waived. From July 2013 to October
2019, 956 women (mean age, 43.2- ± 10.5-years) were
referred for breast MRI in our hospital due to one of
the following conditions (inclusion criteria): (a) suspicious
lesions on mammography and/or ultrasonography; (b) clinical
symptoms/signs, such as breast pain, mass, and abnormal
changes of skin and nipple; (c) high risk of breast cancer; and
(d) presurgical evaluation or baseline assessment for monitoring
therapeutic response.

The exclusion criteria included: (a) previous treatments
including surgery, radiotherapy, and chemotherapy (patients
underwent MRI for the assessment of therapy response or
recurrence, n = 247); (b) needle biopsy performed prior to the
breast MRI (n= 148); (c) patients with breast implants (n= 28);
(d) poor image quality due to marked motion artifacts and/or
insufficient field of view (n = 3); (e) only nipple lesions without
involving breast parenchyma (n = 3); (f) pregnancy or lactation
(n= 7); and (g) simple cysts (as a per-lesion exclusion). Finally, a
total of 520 women (mean age, 43.1-± 10.5-years) were included
in this study.

Medical records were reviewed to record corresponding
pathology results and status of estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor

Frontiers in Oncology | www.frontiersin.org 2 March 2021 | Volume 11 | Article 63647151

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Detection of Breast Cancers

receptor-2 (HER2), and Ki-67 if available. The flowchart of this
study is depicted in Figure 1.

Imaging Protocols
All breast MR images were obtained using a 3T MRI scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)
with bilateral, dedicated 4- or 16-channel phased-array breast
coil with patients in the prone position. The scanning protocol
mainly included T2-weighted imaging, rs-EPI DWI, and DCE-
MRI. For DWI scanning in this study, 4 b values (0, 50, 1,000,
and 2,000 s/mm2) were used. The imaging parameters of each
sequence are described in Table 1. For all DCE-MRI protocols,
the gadodiamide contrast medium (Omniscan, GE Healthcare,
Milwaukee, WI, USA) was intravenously injected at the end of
the third dynamic acquisition phase, with a dose of 0.1 mmol/kg
body weight at 2.5 ml/s. Contrast administration was followed
with a 20ml saline flush.

Image Assessment
All image datasets were reviewed using software RadiAnt
DICOM-Viewer (version 5.0.2, Medixant, Poznán, Poland) by
two readers (TA and ZLY with 10 and 3-years of experience in
the breast MRI interpretation, respectively). Each reviewer was
blinded to the corresponding clinical information, other imaging
results, and pathology reports.

For DCE-MRI, the two readers independently evaluated
images and determined the lesion types (mass or non-mass),
lesion locations (by clock position), the distance of the lesions
from the nipple, and maximal trans-axial diameters (only for
mass lesions). For multiple lesions of the ipsilateral breast,
a “separate” lesion was identified if the lesion location was
relatively separate, and its boundary was disconnected/not
continuous with other lesions. The amount of fibroglandular
tissue (FGT) and background parenchymal enhancement (BPE)
was also recorded by two readers by consensus according to
the fifth edition of the Breast Imaging Reporting and Data
System (BI-RADS R© 5th edition) (30). The mean signal intensity
of a region of interest (ROI) in each phase from 35/28/60
phases (all phases were involved) was used to generate a
time-signal intensity curve (TIC) for each lesion by using
a dedicated Syngo MR Workstation (Siemens Healthcare,
Erlangen, Germany) with software program “Mean Curve.”
(Siemens Healthcare, Erlangen, Germany) An ROI for each
lesion was manually drawn with an area of 0.2–0.4 cm2 by
avoiding vessels and necrotic regions. The BI-RADS categories
of lesions on DCE-MRI were performed by referring criteria
described in Supplementary Table 1, and reasonable adjustment
was allowed according to the experience of readers. In brief,
lesions were categorized as BI-RADS 2 or 5 when meeting all
benign suspicious or malignant suspicious criteria, respectively.
In case of fulfilling only one or more than one malignant
suspicious criteria, BI-RADS 3 or 4 were given, respectively.
The lesions with BI-RADS 2 or 3 were regarded as benign
lesions; and the lesions with BI-RADS 4 or 5 were regarded as
malignant lesions.

For rs-EPI DWI, the two readers independently analyzed
the DWI images with different b-values and apparent diffusion

coefficient (ADC) maps to record the lesion types (mass or
non-mass), lesion locations (by clock position), the distance
of the lesions from the nipple, and BI-RADS categories.
The criteria of identifying lesion type on rs-EPI DWI was
similar to that on DCE-MRI according to BI-RADS R© 5th
edition (30). T2-weighted MR images were included in DWI-
based evaluation to exclude simple cysts. Mean ADC values
were calculated using an in-house developed software called
body diffusion laboratory on basis of a computing language
and interactive environment (BoDiLab, Siemens Healthineers,
Erlangen, Germany) as described in prior studies (31). All b-value
data (0, 50, 1,000, and 2,000 s/mm2) were used for generating
ADC maps by using the following equation: S(b)= S0× exp (–b
× ADC), where S(b) is the DWI signal intensity at a certain b-
value, S(0) is the baseline signal at b = 0, and b is the applied
diffusion sensitization. For these measurements, an ROI for
each lesion (0.2–0.4 cm2) was drawn manually on the darkest
portion of the ADC map by avoiding fatty and necrotic tissues
by referring to corresponding T2-weighted images (29). The
previously reported ADC cutoff values of 1.25 × 10−3 mm2/s,
which produced an excellent diagnostic accuracy (16), were used
to distinguish malignant from benign lesions. The BI-RADS
categories of lesions on rs-EPI DWI were referred to the criteria
in Supplementary Table 1 with the same rules mentioned in
DCE-MRI assessment’s subsection.

Reader 2 (ZLY) was responsible for matching lesions on
DCE-MRI and rs-EPI DWI according to lesion size, location,
and distance of the lesion from the nipple. The lesions
on rs-EPI DWI or DCE-MRI were also correlated with the
corresponding pathological findings according to the lesion
locations described in the surgery/needle biopsy records and
detailed pathology reports.

Additionally, the lesion visualization (lesion conspicuity) on
DCE-MRI and on rs-EPI DWI with b-value of 1,000 s/mm2 was
evaluated independently by two readers using a 3-point scale: 3-
excellent (clearly showing lesions and its detailed morphological
features); 2-good (clearly showing lesions, but with loss of
anatomic details); and 1-poor (barely showing lesions with
unsatisfactory contrast).

Statistical Analysis
Statistical Package for the Social Sciences (SPSS) version 21.0
(IBM, Armonk, NY, USA) was applied for statistical analysis. The
continuous variable was shown as mean ± SD, and categorical
variable was displayed as percentage.

For summarizing lesion characteristics between benign and
malignant lesions, data recorded by reader 2 (TA, who was more
experienced in interpreting the breast MRI) was used for analysis,
including lesion size, shape, margin, internal enhancement,
distribution of non-mass-like lesions, TIC, and mean ADC
value. Those characteristics were compared using the Student’s
t-test or the Chi-square test between benign and malignant
lesions groups.

The ability of rs-EPI DWI in detecting breast lesions identified
by DCE-MRI was evaluated on a per-patient and per-lesion level,
respectively. Then, with pathology results as a reference, the
performance of rs-EPI DWI and DCE MRI in distinguishing
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FIGURE 1 | Flowchart of this study. DCE-MRI, dynamic contrast material-enhanced MRI; rs-EPI DWI, readout-segmented echo-planar imaging diffusion-weighted

imaging.

TABLE 1 | Sequence parameters for T2-weighted imaging, diffusion-weighted imaging, and dynamic contrast-enhanced MRI.

Dynamic contrast-enhanced MRI

Parameters T2-weighted

sequence

Readout-segmented

echo-planar imaging

diffusion-weighted

sequence (RESOLVE)

TWIST-VIBE with

35 phases

(n = 61, from Jul.

2013 to Jun. 2015)

TWIST-VIBE with

28 phases

(n = 184, from Jul.

2015 to Oct. 2017)

TWIST-VIBE with

60 phases

(n = 275, from Nov.

2017 to Oct. 2019)

Repetition time (ms) 3,700 5,000 5.40 5.91 5.24

Echo time (ms) 101 70 2.46 2.46 2.46

Field of view (mm2 ) 320 × 320 169 × 280 270 × 320 290 × 320 260 × 320

Matrix 224 × 320 114 × 188 243 × 320 203 × 320 182 × 320

Flip angle (◦) 137 180 9 10 10

Slice thickness (mm) 4.0 5.0 1.5, no gap 1.5, no gap 1.5, no gap

Pixel bandwidth (Hz/Px) 347 887 980 780 780

Parallel imaging GRAPPA (x2) GRAPPA (x2) CAIPIRINHA (x4) CAIPIRINHA (x4) CAIPIRINHA (x4)

b-values (sec/mm2 ) 0, 50, 1,000, 2,000

Diffusion acquisition 5 readout segments, 1

average

Diffusion gradient mode 3-scan-trace

Temporal resolution (sec/phase) 11.24 7.96 (12 s of time

interval for the late

10 phases)

5.74

Acquisition time (min:s) 2:06 4:27 6:48 5:51 5:57

TWIST, time-resolved angiography with stochastic trajectories; VIBE, volume-interpolated breath-hold examination.
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breast lesions was assessed on per-patient and per-lesion basis
and was compared by using the Chi-square test. The inter-reader
agreement for lesion visualization on rs-EPI DWI (readers 1 and
2) and DCE-MRI (readers 1 and 2) was, respectively, assessed by
the Cohen’s Kappa analysis: κ = 0.81–1.00, excellent agreement;
κ = 0.61–0.80, good agreement; κ = 0.41–0.60, moderate
agreement; κ = 0.21–0.40, fair agreement; κ = 0.01–0.20, slight
agreement; and κ= 0, no agreement (32). Additionally, the lesion
conspicuity between rs-EPI-DWI and DCE-MRI was compared
using theWilcoxon signed rank test.When a p< 0.05, a statistical
significance was considered. Based on available data, mean
ADC values of invasive breast cancers with different molecular
subtypes were compared by the one-way ANOVA test or by the
Student t-test. The molecular subtypes of breast cancers include
luminal A (ER or PR positive, or both, HER2 negative, and low
expression of Ki-67), luminal B (ER or PR positive, or both,
HER2 negative, and high expression of Ki-67), HER2-enriched
(HER2 positive), and triple-negative tumors (ER, PR, and HER2
negative) (33).

RESULTS

General Characteristics
Of 520 women (mean age, 43.1- ± 10.5-years), FGT was
observed in 21.7% (113/520) patients with low density (a and
b) and 78.3% (407/520) patients with high density (c and d). Of
patients with high density, 58.2% (237/407) were older than 40-
years. Minimal or mild BPE was observed in 61.9% of patients
(322/520), and moderate or marked BPE was observed in 38.1%
of patients (198/520) (Table 2). Of 520 patients, 327/520 (62.9%)
patients had 423 breast lesions confirmed by pathology with 203
benign lesions and 220 malignant lesions (Table 2). The lesion
characteristics of benign and malignant lesions are shown in
Supplementary Table 2.

Detection Ability of rs-EPI DWI for Breast
Lesions Identified by DCE-MRI
On DCE-MRI, reader 1 detected 726 breast lesions (<10mm,
n = 293; ≥10mm, n = 368; non-mass-like, n = 65) in 433
patients (low breast density, n = 93; high breast density, n =

340). The reader 2 diagnosed 732 breast lesions (<10mm, n
= 299; ≥10mm, n = 368; non-mass-like lesions, n = 65) in
437 patients (low breast density, n = 93; high breast density,
n = 344). The rs-EPI DWI can detect 95.4% (413/433) of
patients and 90.8% (659/726) of lesions identified by DCE-
MRI by reader 1, and 95.4% (417/437) of patients and 90.6%
(663/732) of lesions depicted by DCE-MRI by reader 2. Of
lesions ≥10mm on DCE-MRI, 96.2% (354/368) and 96.2%
(354/368) can be detected on rs-EPI DWI by reader 1 and
reader 2, respectively. For lesions <10mm on DCE-MRI, rs-
EPI DWI can depict 82.6% (242/293) and 82.3% (246/299) of
lesions by reader 1 and reader 2, respectively. Figure 2 shows
lesions delineated by rs-EPI DWI with good visualization of
morphological details.

A good or excellent lesion visualization (2 or 3 score) was
given in 94.0% (640/681) of lesions by reader 1 and 92.7%

TABLE 2 | Characteristics of 520 women study cohort.

Characteristic Result

Mean age (years) 43.1 ± 10.5, Range of 12–83

Amount of FGT

Almost entirely fat (a) 14 (2.7%)

Scattered fibroglandular tissue (b) 99 (19.0%)

Heterogeneous fibroglandular tissue (c) 324 (62.3%)

Extreme fibroglandular tissue (d) 83 (16.0%)

BPE level

Minimal 60 (11.5%)

Mild 262 (50.4%)

Moderate 164 (31.5%)

Marked 34 (6.5%)

Available pathology results

Patients 327

Benign 120/327 (36.7%)

Malignant 207/327 (63.3%)

Breast lesions 423

Benign 203/423 (48.0%)

Mass-like 192/423 (45.4%)

Non-mass-like 11/423 (2.6%)

Malignant 220/423 (52.0%)

Mass-like 181/423 (42.8%)

Non-mass-like 39/423 (9.2%)

Data percentages in parentheses. Mean age is mean ± SD.

DCE-MRI, dynamic contrast-enhanced MRI; FGT, fibroglandular tissue; BPE, background

parenchymal enhancement.

(636/686) by reader 2 on rs-EPI DWI, and 97.4% (707/726)
of lesions by reader 1 and 97.0% (710/732) by reader 2 on
DCE-MRI. The inter-reader agreement of the lesion visualization
evaluation was good on rs-EPI-DWI (k = 0.780) and on DCE-
MRI (k= 0.683). The lesion visibility was superior for DCE-MRI
than rs-EPI-DWI (all p < 0.05).

Discrepant Findings of DCE-MRI and
rs-EPI DWI in Detecting Breast Lesions
The details of discrepant findings of DCE-MRI and rs-EPI DWI
in detecting breast lesions by two readers are shown in Table 3.
A total of 22 lesions in 16 patients (reader 1) and 23 lesions in
17 patients (reader 2) were positive detection on rs-EPI DWI,
whereas negative on DCE-MRI. A majority of those lesions
were rated as BI-RADS 2 or 3 on rs-EPI DWI by the two
readers and without any malignant pathology reports (Table 3,
Figures 3a–c).

A total of 67 lesions in 56 patients (reader 1) and 69
lesions in 57 patients (reader 2) were positive on DCE-MRI,
whereas negative on rs-EPI DWI (Table 3). Among those lesions,
76.1% (51/67) (reader 1) and 76.8% (53/69) (reader 2) had
maximal diameter smaller than 10mm, and more than 90% were
categorized as BI-RADS 2 or 3 on DCE-MRI. According to the
available pathological results, 34.3% (23/67) (reader 1) and 33.3%
(23/69) (reader 2) of lesions missed by rs-EPI DWI were benign
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FIGURE 2 | Three lesions accurately detected by rs-EPI DWI with detailed morphology characteristics in three patients. (a–c) rs-EPI DWI (b-value, 1,000 s/mm2 ),

ADC map, and DCE-MRI of a 60-year-old woman with the left breast invasive carcinoma. (a) rs-EPI DWI shows an irregular mass (arrow) with markedly low signal on

ADC map (b), and the lesion shape and extent are consistent with that delineated on DCE-MRI (arrow) (c). (d–f) rs-EPI DWI (b-value, 1,000 s/mm2 ), ADC map, and

DCE-MRI of a 50-year-old woman with the left breast ductal carcinoma in situ. (d) rs-EPI DWI shows abnormal linear hyper-intensity distributed along the duct (arrow)

with superior visualization than observed on DCE-MRI (arrow) (f), which may reflect the distribution of ductal carcinoma in situ. (g–i) rs-EPI DWI (b-value, 1,000

s/mm2), ADC map, and DCE-MRI of a 57-year-old woman with the left breast invasive carcinoma. (g) rs-EPI DWI shows a mass with the heterogeneous internal

structure (arrow) and low signal in the rim on ADC map (h). (i) DCE-MRI shows an irregular mass (arrow) with heterogeneous enhancement.

TABLE 3 | Discrepant findings of DCE-MRI and rs-EPI DWI in detecting breast lesions.

Findings Age (y) Size (mm) Mass Non-mass BI-RADS ratings BI-RADS ratings Histopathological

(Mean ± SD) (Mean ± SD) (n) (n) (DCE-MRI) (rs-EPI DWI) results

2 or 3

(n)

4 or 5

(n)

2 or 3

(n)

4 or 5

(n)

Malignant

(n)

Benign

(n)

NA

(n)

DCE-MRI (-) and rs-EPI DWI (+)

R1 (n = 22) 43.6 ± 6.8 6.9 ± 2.5 21 1 19 3 0 5 17

R2 (n = 23) 43.8 ± 6.6 6.8 ± 2.4 22 1 18 5 0 5 18

DCE-MRI (+) and rs-EPI DWI (–)

R1 (n = 67) 42.1 ± 10.3 8.0 ± 4.6 65 2 62 5 2 23 42

R2 (n = 69) 42.1 ± 10.3 7.9 ± 4.5 67 2 64 5 2 23 44

SD, standard deviation; BI-RADS, Breast Imaging Reporting and Data System; rs-EPI DWI, readout-segmented echo-planar imaging diffusion-weighted imaging; DCE-MRI, dynamic

contrast-enhanced MRI; NA, not applicable; R1, reader 1; R2, reader 2.

diseases (Figures 3d–f), and only two lesions were confirmed as
malignant (Figure 4).

Performance of rs-EPI DWI and DCE-MRI
for Diagnosing Breast Cancers
With pathology as a standard reference, the performances
of DCE-MRI and rs-EPI DWI for identifying breast cancers

on per-patient basis and per-lesion basis are shown in
Supplementary Table 3 and Table 4, respectively.

The sensitivity, specificity, and accuracy of rs-EPI DWI in
distinguishing breast cancers on per-lesion level were 95.9%
(211/220), 85.7% (174/203), and 91.0% (385/423) for reader 1,
and 97.7% (215/220), 86.2% (175/203), and 92.2% (390/423)
for reader 2. The sensitivity, specificity, and accuracy of DCE-
MRI in diagnosing breast cancers on per-lesion level were 98.2%
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FIGURE 3 | Discrepant findings of DCE-MRI and rs-EPI DWI for detecting breast lesions. (a) rs-EPI DWI (b-value, 1,000 s/mm2 ) shows a round, well-defined, and

homogeneous nodule (6.7mm) (arrow) with markedly low signal on ADC map (b) (mean ADC value, 0.47 × 10−3 mm2/s) (arrow) in the right breast of a 43-year-old

woman, whereas (c) DCE-MRI shows no abnormal enhancement at that location. This lesion was pathologically verified as the right breast fibroadenosis. (d–f) rs-EPI

DWI (b-value, 1,000 s/mm2 ), ADC map, and DCE-MRI of a 47-year-old woman with the left breast adenosis. (f) DCE-MRI depicts a well-defined lesion (14.6mm)

(arrow), whereas there is no abnormal signal on rs-EPI DWI (d) and ADC map (e).

(216/220), 84.7% (172/203), and 91.7% (388/423) for reader 1
and 99.1% (218/220), 80.8% (164/203), and 90.3% (382/423) for
reader 2. There were no significant differences for the overall
performance in distinguishing breast cancers from benign lesions
between DCE-MRI and rs-EPI DWI, and also for the analysis of
the subgroups with different lesion types (all p > 0.05).

Based on the available data, the mean ADC values of
the invasive breast cancers with different molecular subtypes
are shown in Supplementary Table 4. A higher ADC value
was found for non-luminal tumors when compared with
luminal tumors.

False Findings Depicted by rs-EPI DWI
During Diagnosing Breast Cancers
Several malignant tumors were classified as benign diseases
based upon rs-EPI DWI including invasive carcinoma (n = 5
and 3 for readers 1 and 2, respectively), ductal carcinoma in
situ (n = 3 and 2), and mucinous carcinoma (n = 1 and 0)
(Figures 5a–d). A total of 29 (reader 1) and 28 (reader 2) benign
lesions were classified as malignancies on rs-EPI DWI, including:
intraductal papilloma (n = 10 and 8 for reader 1 and reader 2,
respectively), fibroadenoma/fibroadenomatous hyperplasia (n =

5 and 6), inflammatory change (n = 5 and 7) (Figures 5e–h),
adenosis (n= 7 and 6), fibromatosis (n= 1 and 1), and phyllodes
tumor (n= 1 and 0).

DISCUSSION

Readout-segmented echo-planar imaging DWI shows potential
in breast cancer screening and diagnosis. In our study, rs-
EPI DWI can detect about 90% of breast lesions identified by
DCE-MRI. The sensitivity, specificity, and negative predictive

value (NPV) of rs-EPI DWI for distinguishing breast lesions are
comparable to those of DCE-MRI.

Non-contrast DWI has shown the potential to detect and
differentiate breast lesions without the long-term toxicities
potentially associated with contrast dosing. However, reported
sensitivities (from 45 to 94%) and specificities (from 79 to 95.7%)
varied greatly in earlier studies (34–37). Recently, several studies
demonstrated improved diagnostic performance when using the
readout-segmented technique (10, 19, 38).

In this study, we intended to explore the feasibility of rs-
EPI DWI as an imaging tool for breast cancer screening, in
particular in women with high breast density. For this purpose,
rs-EPI DWI should firstly achieve the ability to detect lesions
as many as possible, in particular for non-cystic lesions, which
are of higher risk of malignancy. DCE-MRI is the most sensitive
imaging modality for breast cancer detection and has an excellent
spatial resolution. Based on our results, rs-EPI DWI can detect
about 90% of the breast lesions identified by DCE-MRI, even
with a slice thickness of 5.0mm. The detection ability was slightly
lower than the result reported by Telegrafo et al. (37) using an
unenhanced-MRI protocol of short TI inversion recovery (STIR),
T2-weighted and DWI (90% vs. 96%), which may be due to the
thicker slice thickness of DWI in our study (5.0mm vs. 3.0mm).
Small and benign lesions on DCE-MRI may be more easily
overlooked by rs-EPI DWI. Of those missed lesions, however,
most were rated as BI-RADS 2 or 3 on DCE-MRI, and only two
of these lesions were finally verified as malignancies based upon
histopathological examination. Therefore, although rs-EPI DWI
may overlook some breast lesions identified by DCE-MRI, the
probability of missing breast malignancies was quite low.

The second ability that rs-EPI DWI should reach is to pick up
suspiciously malignant lesions. Thus, we included pathological
results as a reference to evaluate the performance of DCE-MRI
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FIGURE 4 | Two breast malignancies missed by rs-EPI DWI in two patients. (a–d) DCE-MRI, time-signal intensity curve (TIC), rs-EPI DWI (b-value, 1,000 s/mm2 ), and

ADC map of a 55-year-old woman with the right breast ductal carcinoma in situ. (a) DCE-MRI shows a lobulated and spiculated nodule (8.7mm) (arrow) with initial

fast enhancement followed by a washout (b) classified as BI-RADS 4. No lesion was found on corresponding rs-EPI DWI (c) and ADC map (d). (e–h) DCE-MRI, TIC,

rs-EPI DWI (b-value, 1,000 s/mm2 ), and ADC map of a 42-year-old woman with the right breast ductal carcinoma in situ. (e) DCE-MRI shows non-mass-like

enhancement along the parenchyma surface (arrow) with initial fast enhancement followed by plateau (f) classified as BI-RADS 4. No lesion can be identified on

corresponding rs-EPI DWI (g) and ADC map (h). Slight high signal can be retrospectively observed for both cases on rs-EPI DWI (c,g, respectively) (arrow), but it was

not considered sufficient to confirm the presence of lesions. The latter finding may be attributable to the inferior spatial resolution (5mm) of our rs-EPI DWI protocol

relative to DCE-MRI protocol.
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TABLE 4 | Diagnostic performance of rs-EPI DWI and DCE-MRI for characterizing the breast cancers with pathology as reference standard.

Results (n) Test performance (%)

Imaging modality TP TN FP FN Sens. Spec. PPV NPV Acc.

rs-EPI DWI

Overall

R1 211 174 29 9 95.9 (211/220) [92.4–97.8] 85.7 (174/203) [80.2–89.9] 87.9 (211/240) [83.2–91.5] 95.1 (174/183) [90.9–97.4] 91.0 (385/423) [87.9–93.4]

R2 215 175 28 5 97.7 (215/220) [94.8–99.0] 86.2 (175/203) [80.8–90.3] 88.5 (215/243) [83.9–91.9] 97.2 (175/180) [93.7–98.8] 92.2 (390/423) [89.3–94.5]

Mass-like lesion

R1 174 170 22 7 96.1 (174/181) [92.2–98.1] 88.5 (170/192) [83.3–92.3] 88.8 (174/196) [83.6–92.5] 96.0 (170/177) [92.1–98.1] 92.2 (344/373) [89.1–94.5]

R2 177 172 20 4 97.8 (177/181) [94.5–99.1] 89.6 (172/192) [84.5–93.2] 89.8 (177/197) [84.8–93.3] 97.7 (172/176) [94.3–99.1] 93.6 (349/373) [90.6–95.6]

Non-mass-like lesion

R1 37 4 7 2 94.9 (37/39) [83.1–98.6] 36.4 (4/11) [15.2–64.6] 84.1 (37/44) [70.6–92.1] 66.7 (4/6) [30.0–90.3] 82.0 (41/50) [69.2–90.2]

R2 38 3 8 1 97.4 (38/39) [86.8–99.6] 27.3 (3/11) [9.7–56.6] 82.6 (38/46) [69.3–90.9] 75.0 (3/4) [30.1–95.4] 82.0 (41/50) [69.2–90.2]

DCE-MRI

Overall

R1 216 172 31 4 98.2 (216/220) [95.4–99.3] 84.7 (172/203) [79.1–89.0] 87.4 (216/247) [82.7–91.0] 97.7 (172/176) [94.3–99.1] 91.7 (388/423) [88.7–94.0]

R2 218 164 39 2 99.1 (218/220) [96.8–99.8] 80.8 (164/203) [74.8–85.6] 84.8 (218/257) [79.9–88.7] 98.8 (164/166) [95.7–99.7] 90.3 (382/423) [87.1–92.8]

Mass-like lesion

R1 177 167 25 4 97.8 (177/181) [94.5–99.1] 87.0 (167/192) [81.5–91.0] 87.6 (177/202) [82.4–91.5] 97.7 (167/171) [94.1–99.1] 92.2 (344/373) [89.1–94.5]

R2 179 161 31 2 98.9 (179/181) [96.1–99.7] 83.9 (161/192) [78.0–88.4] 85.2 (179/210) [79.8–89.4] 98.8 (161/163) [95.6–99.7] 91.2 (340/373) [87.8–93.6]

Non-mass-like lesion

R1 39 5 6 0 100 (39/39) [91.0–100] 45.5 (5/11) [21.3–72.0] 86.7 (39/45) [73.8–93.7] 100 (5/5) [56.6–100] 88.0 (44/50) [76.2–94.4]

R2 39 3 8 0 100 (39/39) [91.0–100] 27.3 (3/11) [9.7–56.6] 83.0 (39/47) [69.9–91.1] 100 (3/3) [43.9–100] 84.0 (42/50) [71.5–91.7]

TP, true positive; TN, true negative; FP, false positive; FN, false negative; Sens., sensitivity; Spec., specificity; PPV, positive predictive value; NPV, negative predictive value; Acc., Accuracy; R1, reader 1; R2, reader 2; rs-EPI DWI,

readout-segmented echo-planar imaging diffusion-weighted imaging; DCE-MRI, dynamic contrast-enhanced MRI.

Data in parentheses are the numerator and denominator. Data in brackets are 95% CIs.
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FIGURE 5 | Two breast lesions falsely classified by rs-EPI DWI in two patients. (a–d) rs-EPI DWI (b-value, 1,000 s/mm2 ), ADC map, DCE-MRI, and time-signal

intensity curve (TIC) from a 46-year-old woman with the right breast mucinous carcinoma. (a) rs-EPI DWI shows a lesion with an irregular shape and heterogeneous

internal structure, but high signal on ADC map (arrow) (b). The lesion was considered as fibrocystic hyperplasia and rated as BI-RADS 3. (c) DCE-MRI shows that this

lesion has an irregular shape and heterogeneous signal enhancement (arrow) with initial fast enhancement followed by washout (d). Thus, lesion was categorized as

BI-RADS 4. (e–h) rs-EPI DWI (b-value, 1,000 s/mm2 ), ADC map, DCE-MRI, and TIC from a 33-year-old woman with the left breast granulomatous mastitis

accompanying a small abscess. (e) rs-EPI DWI shows irregular high signals with markedly low signal on ADC map (arrow) (f). Lesion was categorized as malignancy

based upon rs-EPI DWI. (g) DCE-MRI shows non-mass-like enhancement with segmental distribution (arrow) and initial fast enhancement followed by plateau (h),

thus categorized as BI-RADS 4.
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and rs-EPI DWI in distinguishing breast cancers from benign
diseases. During identifying breast cancers, rs-EPI DWI not
only provided quantitative parameters (ADC values) but also
detailed visualization of lesion morphological characteristics.
By integrating each of these parameters together into a
comprehensive diagnostic protocol, the performance of rs-EPI
DWI for distinguishing breast lesions was actually equivalent to
that of DCE-MRI, which was also provided by previous studies
(10, 37). The sensitivity of DWI in our study was a little higher
than that reported by Bickelhaupt et al. (17) (95.9%−97.7% vs.
92.0%), which may be partly due to the larger mean lesion size
of our study. There were different causes for the inclusion into
our study, such as clinical symptoms, which may explain the
larger lesion size compared to the study using only patients with
suspicious x-ray mammography (17).

Although encouraging results were found, several
malignancies were still diagnosed as benign diseases according
to rs-EPI DWI alone. Some small breast cancers (<10mm)
showed a relatively well-defined margin and homogeneous
internal structures, and ROI of those lesions for quantitative
measurements may be inaccurate due to partial volume effects.
These factors may have led to the false classification of some
small malignant lesions by rs-EPI-DWI. Some difficulties
were also found when attempting to distinguish between
the breast fibrocystic hyperplasia and breast cancers. In this
study, a pathologically proven breast mucinous carcinoma
was characterized as fibrocystic hyperplasia in a 46-year-old
woman by an experienced radiologist (Figures 5a–d). This lesion
had an irregular shape and heterogeneously increased T2 signal
intensity with a high ADC value, thus resembling a manifestation
of the breast fibrocystic hyperplasia. Conversely, some cases of
the benign disease were wrongly interpreted as malignancies
by the readers when only rs-EPI DWI data were used for the
diagnosis. For example, a granulomatous mastitis, presenting as
a large lesion with an irregular shape, heterogeneous internal
structures, and decreased ADC value, was misdiagnosed as
breast cancer (Figures 5e–h). It was also difficult to accurately
identify non-mass-like lesions due to irregular distribution and
inaccurate measurements of the ADC value. In this context,
clinical symptoms and signs, and enhancement characteristics
on DCE-MRI may provide additional information for the
differential diagnosis.

Several limitations existed in our study. First, this study
was conducted retrospectively at a single center. Second, the
spatial resolution for the breast DWI in our study (5.0mm)
was lower than that of DCE-MRI (1.5mm), which may result
in missing some small lesions. In order to act as a reliable
screening tool, the spatial resolution of the breast DWI needs to
be further improved. Newly explored simultaneous multi-slice
(SMS) acquisition based on the blipped controlled aliasing
in parallel imaging results in the higher acceleration (blipped

CAIPIRINHA) technique (39). The latter method has the
potential to substantially reduce acquisition time and make it
possible to improve the spatial resolution (smaller than 5.0mm),
without requiring additional scan time. Lastly, MR examinations
in this study were performed using two types of the breast coils
because of a system update and different scanning protocols
were used for DCE-MRI, which may have introduced some
variations in the results. Thus, a future multi-center clinical study
using optimized standard MR sequences should be performed to
further validate these results for rs-EPI DWI in the breast cancer
screening and diagnosis.

In conclusion, rs-EPI DWI can detect about 90% of breast
lesions identified with DCE-MRI, and provides comparable
diagnostic performance to that of DCE-MRI for characterizing
breast cancers. These findings suggest that rs-EPI DWI may
provide a safe and reliable supplemental imaging modality for
breast cancer screening, particularly for patients with dense
breasts and contraindication for GBCA.
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Purpose: Ultrasound (US) and mammogram (MMG) are the two most common breast
cancer (BC) screening tools. This study aimed to assess how the combination of
circulating tumor cells (CTC) with US and MMG would improve the diagnostic
performance.

Methods: CTC detection and imaging examinations, US and MMG, were performed in
238 treatment-naive BC patients, 217 patients with benign breast diseases (BBD), and 20
healthy females. Correlations of CTC, US and MMG with patients’ clinicopathological
characteristics were evaluated. Diagnostic performances of CTC, US and MMG were
estimated by the receiver operating characteristic curves.

Results: CTC, US and MMG could all distinguish BC patients from the control (p <
0.0001). Area under curve (AUC) of CTC, US and MMG are 0.855, 0.861 and 0.759,
respectively. While US has the highest sensitivity of 0.79, CTC and MMG have the same
specificity of 0.92. Notably, CTC has the highest accuracy of 0.83. Combination with CTC
increases the AUC of US and MMG to 0.922 and 0.899, respectively. Combining MMG
with CTC or US increases the sensitivity of MMG to 0.87, however “CTC + MMG” has a
higher specificity of 0.85. “CTC + US” performs the best in BC diagnosis, followed by
“CTC + MMG” and then “US + MMG”.

Conclusion: CTC can be used as a diagnostic aid for BC screening. Combination with
CTC increases the diagnostic potency of conventional BC screening imaging
examinations, US and MMG, in BC diagnosis, especially for MMG.

Keywords: breast cancer, circulating tumor cells, mammogram, ultrasound, screening
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INTRODUCTION

Breast cancer (BC) is the most frequently diagnosed cancer and
the leading cause of cancer-related death in women worldwide
(1). Every year there are more than 2 million of newly diagnosed
cases and more than 630,000 people died of BC globally (1).
About 12.4% of women (1 in 8) will develop BC at some point in
their lives (1, 2). Although the incidence and mortality rates of
BC are ranked 120 and 163 respectively in the world, BC is still
the most common cancer among females in China (2, 3). It is
estimated that 304,000 BC cases were newly diagnosed and
approximately 69,900 women died of BC in China in 2015 (3).
BC mortality rates have declined over the passing decades in
developed countries such as the United States and United
Kingdom, but death from BC in China is still slowly increasing
(2). BC is generally diagnosed through either screening or a
symptom (breast swelling or a palpable mass) that leads to a
medical examination (4). The decline in BC mortality is mainly
attributed to a combination of advances in prevention or
screening and improved treatment methods (4). The aims of
cancer prevention and screening are to reduce cancer incidence
by removing carcinogenic factors from the daily-life and to
identify asymptomatic patients at very early stage of tumor.
Patients with smaller tumors have a higher chance to be cured.
Recent innovations in cancer prevention and detection have
come to the molecular level to allow for a more accurate
identification of at-risk individuals (4). Introduction of new
drugs and treatment regimens, such as adjuvant chemotherapy,
hormonal therapy and immunotherapy, prolongs the survival of
BC patients, especially for the patients at advanced cancer stage.
BC screening is not yet a common routine practice in each
province in China. Most BC patients have already reached the
middle or late stage at the time of diagnosis, which may explain
why the mortality of BC is still increasing and why 5-year-
survival rate of BC in China is lower than that in the United
States (82% VS 90%) (5).

Common screening modalities for BC include palpation,
blood-based assay and medical imaging methods (6). Palpation
can be further divided into self-breast examinations (SBE) and
clinical breast examinations (CBE) (6). SBE was used to be
considered as the first line of BC screening, but results of two
clinical trials failed to show a BC mortality benefit due to SBE (7,
8). On the contrary, SBE usually leads to self-panic and
unnecessary testing or biopsies, which turns out to be harmful
for the subject (6). CBE is a palpation performed by trained clinic
staff. CBE has a high specificity of 0.94-0.99, but a very low
sensitivity of 0.21-0.54 (6). Therefore, CBE cannot exclude the
presence of BC. Blood-based assay is a non-invasive method to
detect serum BC specific biomarkers. Suggested biomarkers, such
as carcinoembryonic antigen (CEA) and cancer antigen 15-3 or
27-29 (CA15-3, CA27-29), usually lack sensitivity and/or
specificity, and thus not suitable for early disease detection (9).

Diagnostic imaging modalities recommended by American
Joint Committee on Cancer (AJCC) for BC screening include
mammography (MMG), ultrasound (US) and magnetic
resonance imaging (MRI). MMG uses low dose X-rays to
Frontiers in Oncology | www.frontiersin.org 264
examine lesions in the breast, allowing the examinations of
small calcification points, tumor in situ (Tis), and structure of
the breast. MMG sensitivity for BC declines significantly with
increasing breast density (10). Breast US is a non-invasive
examination that uses high-frequency acoustic reflection to
reveal tissue inside the breast. Breast US is often used in
conjunction with MMG to increase the sensitivity of BC
detection for women at average risk. US can help to identify
whether the lumps found in MMG is solid or filled with fluid.
Although US is more accurate than MMG in differentiating
breast masses or cysts, it cannot detect the small calcification
points, the sign of early stage lesion, and is less sensitive to
tumors with size less than 5 mm or deep in the breast. US also
generates more false-positive examinations. MRI is often used in
conjunction with MMG for high-risk women BC screening. MRI
has no radiation exposure and can provide excellent images with
high contrast and resolution under appropriate conditions. MRI
is the most sensitive diagnostic tool for breast diseases because it
can be performed in any direction without the influence of tissue
overlap or breast composition. In the cost-effective aspect, MRI is
more used in the diagnosing and staging process rather than BC
screening. Aforementioned imaging methods can all detect early
stage BC, however, these conventional imaging methods still
have some limitations that would affect image quality and thus
the diagnostic accuracy of the breast examination. Therefore, it is
still in an urgent need to find a reliable biomarker allowing better
screening and early diagnosis of BC.

Circulating tumor cells (CTC) are tumor cells shed from the
primary tumor or metastatic sites into circulation. The 7th
edition of AJCC Staging Manual for BC has introduced a new
cancer stage, cM0(i+), at which no clinical or radiographic
evidence of distant metastases is found, but tumors cells are
still detected in the bone marrow, blood or distant non-regional
lymph nodes. Therefore, CTC represent the process of tumor
metastasis. CTC has been proven to be a prognostic factor in BC
to predict patients’ survival outcomes (11, 12). Patients with
metastatic BC (MBC) usually have more CTC and BC patients
with more CTC usually have shorter progression free survival
and overall survival (11). In addition, studies show as well that
CTC can reflect the tumor burden and can be used as a
monitoring biomarker to assess patients’ response to treatment
and tumor recurrences (13). CTC are rare cells in the
bloodstream. The most common strategy to enrich and
identify CTC from the surrounding blood cells is based on the
epithelial cell biomarkers. CellSearch® (Menarini Silicon
Biosystems, Huntingdon Valley, US), the only U.S. Food and
Drug Administration (FDA) approved CTC system, use
epithelial cell adhesion molecule (EpCAM) and cytokeratin
(CK) antibody to enrich and identify CTC. Blood cells would
not express EpCAM or CK, while most of the epithelial cells
found in the circulation are tumor cells detaching from the solid
tumors of epithelial origin. Therefore, it is common to use
epithelial markers to detect CTC.

Previous studies showed CTC could reflect tumor burden in
BC and can distinguish diseased patients from the healthy control
(14). Overall CTC detection rate with CytoSorter® (Hangzhou
May 2021 | Volume 11 | Article 643003
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Watson Biotech, Hangzhou, China), a microfluidic-based
immuno-capture CTC platform, in BC is 85.16%, and detection
rates in early stage (stage I-II) BC are still more than 80%,
suggesting that CTC could be used a diagnostic tool for BC
screening (14). US andMMG are the two most commonmethods
for BC screening in Chinese clinic. 238 BC patients, 217 patients
with benign breast diseases (BBD), and 20 healthy females from 2
hospitals were enrolled in this study. We aimed to compare the
performances of CTC, US and MMG in BC diagnosis and to
assess whether the combination with CTC would enhance the
diagnostic potency of US and MMG.
MATERIAL AND METHODS

Patients
In total, 238 female BC patients, including 17 ductal carcinoma
in situ (DCIS), 82 stage I, 106 stage II, 31 stage III and 2 stage IV,
217 patients with BBD and 20 healthy females from Zhejiang
University Medical College Affiliated Sir Run Shaw Hospital and
Sun Yat-Sen University Sun Yat-Sen Memorial Hospital were
enrolled in this study between December 2017 and December
2018. Control referred to patients with BBDs and healthy
volunteers. Stage I-II BC patients were considered as patients
at early stage. Inclusion criteria were as follows: (1) female
patients age between 18 to 75 years; (2) patients had negative
history of malignancy and were treatment-naive before
enrollment; (3) patients received US and MMG examinations
before diagnosis. (4) healthy females had no medical history of
any malignant disease and no findings in breast by palpation, US
and/or MMG. Exclusion criteria were as follows: (1) patients
were pregnant or breast-feeding; (2) patients were currently
undergoing or had prior cancer treatment; (3) patients had
other malignant tumors or other malignant diseases within 5
years prior to enrollment; (4) patients had other conditions
which investigators thought not suitable for the study. Patients’
clinicopathological characteristics, including age, menstrual
state, histological type, grade, hormone receptors, human
epidermal growth factor receptor 2 (HER2) and the clinical
stage at diagnosis were collected.

Blood Collection and CTC Detection
CTC were enriched by CytoSorter® epithelial cells detection kit.
CTC detection procedure was following CytoSorter®

manufacturer protocol and was described in the previous study
(14, 15). In brief, the CytoChipNano was first coated with
EpCAM antibody before placing onto CytoSorter®. The first 2
mL of peripheral blood was discarded to avoid potential skin
epithelial cell contamination from venipuncture and 4 mL of
blood was proceed to gradient-centrifuge within 6 hours after
collection to collect the peripheral blood mononuclear cells
(PBMC) layer. PBMC sample solution was then transferred
into the spiral sample tube. Once the CTC enrichment was
finished, the CytoChipNano was removed from CytoSorter®

and proceed to the immunofluorescence staining of PanCK-
Frontiers in Oncology | www.frontiersin.org 365
FITC (pan-cytokeratin-fluorescein isothiocyanate), CD45-PE
(cluster of differentiation 45-phycoerythrin) and DAPI (4,6-
diamidino-2-phenylindole). An OPPNO immunofluorescence
microscopy (DSY5000X, OPPNO, Chongqing, China) was used
to identify CTC by searching for PanCK-FITC+, CD45-PE-,
and DAPI+ cells.

Medical Imaging Examinations
US examination was performed with IU Elite® (Philips Healthcare,
Best, Netherlands). MMG examination was performed using
Selenia® (Hologic, Santiago, USA). Examination results were
evaluated by experienced radiologists according to American
College of Radiology (ACR) Breast Imaging-Reporting and Data
System (BI-RADS) assessment categories.

Statistical Analysis
Statistical analyses were performed using Prism 5.0 (Graphpad,
La Jolla, CA, USA) and SPSS 20 (IBM, Armonk, NY, USA).
Student t test was used for continuous variables, as appropriate.
The x2 test and Fisher’s exact test were used for the comparison
of categorical parameters. One-way analysis of variance
(ANOVA) was performed to calculate the differences among
multiple groups. The receiver operating characteristic (ROC)
curves were plotted to evaluate the sensitivity, specificity and area
under the curve (AUC) value of the diagnostic methods. CTC,
US and MMG cut-off values were determined by the highest
Youden index (sensitivity + specificity - 1). A two-sided p value
less than 0.05 was considered statistically significant.

Combinational ROC Model
Combinational ROC analyses were performed using SPSS 20.
The multiple variable were combined using logistic regression. In
brief, the BI-RADS categories, 1, 2, 3, 4a, 4b, 4c, 5 and 6, were
first convert into scores, 1, 2, 3, 4, 5, 6, 7 and 8, respectively.
Binary logistic regression analysis was used to calculate the
correlation coefficient of each variable in the combination with
respect to diagnosis. Combination score would be obtained based
on the variables and correlation coefficients. ROC of
combination scores was drawn. The point closest to the left
upper corner of the combinational ROC would be used as the
combination score cut-off to calculate the sensitivity
and specificity.
RESULTS

CTC Can Reflect BC Patients’ Tumor
Burden and Can Be Used as a Diagnostic
Aid for BC Screening
CTC were identified as PanCK positive, CD45 negative and
DAPI positive cells as shown in Figure 1A. Correlation of CTC
with patients’ clinicopathological features are listed in Table 1.
CTC are detected in 199 out of 238 BC patients, 71 out of 217
patients with BBD and 5 out of 20 healthy females. The average
CTC counts (maximum CTC count) are 2.38 (15), 0.43 (4) and
May 2021 | Volume 11 | Article 643003
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0.25 (1), respectively. Most control (patients with BBD and
healthy females) have less than 2 CTC. Statistical results show
that CTC enumeration could be able to differentiate BC patients
from patients with BBD and healthy females as shown in Figure
1B (both p < 0.0001). Statistical results show as well that CTC are
correlated with AJCC stage (p = 0.0007), tumor size (p = 0.0015)
and lymph node involvement (p = 0.0034) as shown in Figures
Frontiers in Oncology | www.frontiersin.org 466
1C–E. Patients at advanced cancer stage or with bigger tumors or
more lymph node involvement tend to have more CTC. CTC
detection rates in early stages (stage I & II) BC patients are
82.93% and 86.79%, respectively. Furthermore, CTC are detected
in 11 out of 17 Tis (DCIS) patients. Overall CTC detection in BC
patients is 83.61%. Taken together, the results suggest that CTC
could be used as a diagnostic tool for BC screening.
A

B D EC

FIGURE 1 | CTC are correlated with BC patients’ cancer stage, tumor size and lymph node involvement and can be used to distinguish BC patients from patients
with benign tumors and healthy female. (A) Immunofluorescent staining of a captured CTC, indicated by the yellow arrow. CTC is defined as a DAPI (blue) positive,
PanCK-FITC (green) positive and CD45-PE (orange) negative cell, while a white blood cell is indicated by the white arrow as a DAPI positive, CD45-PE positive and
PanCK-FITC negative cell. (B) CTC enumeration can differentiate BC patients from patients with benign tumors and healthy females (both p < 0.0001). (C) CTC
enumerations are correlated with BC patients’ cancer stage (p = 0.0007), tumor size (p = 0.0015) and lymph node involvement (p = 0.0034). More CTC are found in
patient with bigger tumors and more lymph node involvement as shown in (D, E). **** indicates P < 0.0001, *** indicates 0.0001< P < 0.001, while ** indicates 0.001
< P < 0.01.
TABLE 1 | Correlations of CTC with patients’ pathoclinical characteristics.

Group n Average Age (Median, Range) (years) CTC detected in CTC Detection Rate (%) Average CTC Count (Range)
(/4 mL)

p Value*

BC Patients 238 52.34 (51, 29-75) 199 83.61 2.38 (0-15) <0.0001
Patients with BBD 217 46.97 (45, 20-73) 71 32.72 0.43 (0-4)
Healthy volunteers 20 50.58 (49, 29-67) 5 25 0.25 (0-1)
(All BC patients number = 238)
AJCC Stage 0.0007
0 17 51.75 (46, 40-67) 11 64.71 1.29 (0-4)
I 82 54.6 (55, 31-73) 68 82.93 2.06 (0-7)
II 106 51.91 (51, 29-73) 92 86.79 2.63 (0-15)
III 31 48.37 (46, 29-75) 27 87.1 3.06 (0-9)
IV 2 48.5 (48.5, 34-63) 1 50 0.5 (0-1)
TNM Stage
Tumor Size 0.0015
Tis 17 51.75 (46, 40-67) 11 64.71 1.29 (0-4)
T1 117 53.49 (54, 31-73) 98 83.76 2.23 (0-13)
T2 91 51.52 (50, 29-75) 77 84.62 2.59 (0-15)
T3 11 50.28 (54, 29-64) 11 100 3.73 (1-8)
T4 2 38 (38, 37-39) 2 100 3 (2-4)
Lymph Node
Involvement

0.0034

N0 142 53.76 (53, 29-73) 111 78.17 2.06 (0-8)
N1 72 50.99 (50.5, 29-69) 66 91.67 2.86 (0-15)
N2 15 46.49 (45, 33-75) 11 73.33 1.93 (0-4)
N3 9 50.52 (54, 34-64) 9 100 4.11 (1-9)
May 2021 | Volume 11 | Artic
CTC, circulating tumor cell; n, number of patients; BC, breast cancer; BBD, benign breast diseases; AJCC, American Joint Committee on Cancer; TNM, tumor-node-metastasis; Tis,
tumor in situ.
*The p value of comparisons is based on the CTC enumeration of each group.
Bold values mean statistical significances.
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Comparison of Diagnostic Potency of
CTC, US and MMG in BC Diagnosis
The most common methods for BC screening in clinic are MMG
and US. Therefore, we compared the performances of CTC, US and
MMG in BC diagnosis. First, ROC curves were plotted separately as
shown in Figure 2. When CTC cut-off value was set to 2, and both
Frontiers in Oncology | www.frontiersin.org 567
US BI-RADS and MMG BI-RADS cut-off scores were set to 4b, the
highest Youden index of 0.65, 0.65 and 0.5 would be generated for
CTC, US, and MMG, respectively. Detailed diagnostic
performances of CTC, US and MMG are listed in Table 2.
Among these three methods, US shows the highest sensitivity of
0.79. CTC and MMG have the same specificity of 0.92, while CTC
A B D

E F G H

C

FIGURE 2 | Combination of conventional medical imaging examinations with CTC enhances the diagnostic efficiency for BC. The performances of CTC, US and
MMG in BC diagnosis are shown in (A–C) by the receiver operating characteristic (ROC) curves. Area under the curve (AUC) of CTC, US and MMG are 0.855, 0.861
and 0.759, respectively. CTC exhibits a similar diagnostic performance as US as shown in (D). Combination of CTC enhances the performances of US and MMG in
BC diagnosis as shown in (E, F) with AUC increasing from 0.855 to 0.922 and 0.759 to 0.899, respectively. However, combination of MMG with US does not
improve the diagnostic performance of US much as shown in (F) with AUC increasing slightly from 0.855 to 0.884. “CTC + US” gives the best diagnostic
performance, while “CTC + MMG” and “US + MMG” have similar improved diagnostic performances as shown in (H).
TABLE 2 | Diagnostic power of CTC, US and MMG in breast cancer diagnosis*.

CTC 95% CI US 95% CI MMG 95% CI

Sensitivity 0.73 0.67 - 0.79 0.79 0.74 - 0.84 0.58 0.51 - 0.64
Specificity 0.92 0.88 - 0.95 0.81 0.75 - 0.86 0.92 0.88 - 0.95
Accuracy 0.83 0.79 - 0.86 0.80 0.76 - 0.84 0.75 0.71 - 0.79
Positive Likelihood Ratio (LR+) 9.12 5.88 - 14.13 4.18 3.19 - 5.48 7.18 4.60 - 11.20
Negative Likelihood Ratio (LR-) 0.29 0.24 -0.36 0.25 0.20 - 0.33 0.46 0.40 - 0.54
Youden Index 0.65 N/A 0.65 N/A 0.50 N/A
Area Under Curve (AUC)# 0.855 0.819 - 0.890 0.861 0.828 - 0.894 0.759 0.712 - 0.805

CTC + US 95% CI CTC + MMG 95% CI US + MMG 95% CI

Sensitivity 0.90 0.86 - 0.94 0.87 0.82 - 0.91 0.87 0.82 - 0.91
Specificity 0.76 0.70 - 0.81 0.85 0.80 - 0.89 0.79 0.73 - 0.84
Accuracy 0.83 0.79 - 0.86 0.86 0.83 - 0.89 0.83 0.79 - 0.86
Positive Likelihood Ratio (LR+) 3.69 2.94 - 4.63 5.89 4.32 - 8.03 4.12 3.21 - 5.30
Negative Likelihood Ratio (LR-) 0.13 0.09 - 0.19 0.15 0.11 - 0.21 0.17 0.12 - 0.23
Youden Index 0.66 N/A 0.72 N/A 0.66 N/A
Area Under Curve (AUC)# 0.922 0.898 - 0.946 0.899 0.870 - 0.928 0.884 0.855 - 0.914
May
 2021 | Volume 11 |
CTC, circulating tumor cell; CI, confidence interval; US, ultrasound; MMG, mammogram; N/A,. not applicable.
Confidence intervals for sensitivity, specificity and accuracy are “exact” Clopper-Pearson confidence intervals. Confidence intervals for the likelihood ratios are calculated using the “Log
method”.
*CTC, US and MMG cut-off values were determined by the highest Youden index (sensitivity + specificity - 1). When CTC cut-off value was set to 2, and both US BI-RADS and MMG BI-
RADS cut-off scores were set to 4b, the highest Youden index of 0.65, 0.65 and 0.5 would be generated for CTC, US, and MMG, respectively. Subjects with more than 2 CTC, or with US
or MMG BI-RADS score higher than 4b are classified as CTC, US and MMG positive for diagnosis, respectively. As long as any measurement of composing parameter was higher than its
cut-off value, the combination result would be considered as positive for diagnosis.
#AUC was determined by the ROC.
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shows the highest accuracy of 0.83. Based on the AUC, CTC
exhibits a similar diagnostic potency as US.

Subjects with more than 2 CTC, or with US or MMG BI-RADS
score higher than 4b are classified as CTC, US and MMG positive
for diagnosis, respectively. Correlation of CTC, US and MMG
positive rates with patients’ clinicopathological characteristics are
listed in Table 3 and shown in Figure 3. CTC, US and MMG
positive rates show significant differences among BC patients,
patients with BBD and healthy females (all p < 0.0001). CTC and
US positive rates are associated with cancer stage (p = 0.0021 and
0.0034, respectively), tumor size (p = 0.0444 and 0.0054,
respectively) and lymph node metastases (p = 0.0086 and 0.0271,
respectively), while MMG positive rate is only associated with
lymph node metastases (p = 0.0195). For early stage BC
diagnosis, US has the highest sensitivity of 0.80, followed by CTC
(0.74) and then MMG (0.57). Taken together, CTC and US have
similar performances in BC diagnosis, and MMG shows the least
diagnostic potency.

Combination With CTC Improves
the Performances of US and MMG
in BC Diagnosis
Next, we investigated whether the combination with CTC would
enhance the performances of US and MMG in BC diagnosis. As
shown in Table 2 and Figure 2, combining with CTC increases the
AUC of US and MMG from 0.861 to 0.922 and 0.759 to 0.899,
respectively, while combining with MMG increases only slightly the
AUC of US from 0.861 to 0.884. Although US has a slightly higher
AUC of 0.861 than CTC (0.855), the combination of CTC with
MMG generates a higher AUC of 0.899 than the conjugation of US
Frontiers in Oncology | www.frontiersin.org 668
with MMG (0.884). As long as any measurement of composing
parameter was equal to or higher than its cut-off value, the
combination result would be considered as positive for diagnosis.
Combination with CTC increases the diagnostic sensitivity of US
andMMG from 0.79 to 0.90 and 0.58 to 0.87, respectively. But at the
same time, the specificity decreases from 0.81 to 0.76 and 0.92 to
0.85, respectively. Among these three combinations, “CTC + US”
has the highest AUC of 0.922, followed by “CTC + MMG” (0.899)
and then “US +MMG” (0.884). However, “CTC + MMG” has the
highest accuracy of 0.86, followed by “CTC +US” (0.83) and “US +
MMG” (0.83). Combination with CTC or US increases the
sensitivity of MMG both to 0.87, but “CTC + MMG” has a
higher specificity of 0.85.

As shown in Table 4, due to decreased specificity caused by the
combinations, “CTC + US”, “CTC + MMG” and “US +MMG” all
show less statistical correlation with the patients’ clinicopathological
features. As for early stage BC diagnosis, “CTC + US”, “CTC +
MMG” and”US +MMG” have sensitivities of 0.91, 0.87 and 0.88,
respectively. Taken together, combining with CTC would improve
the performances of US and MMG in BC diagnosis, especially for
MMG. Regarding improved diagnostic performance, the
combination of CTC with either of US or MMG is better than
the combination of US and MMG together.
DISCUSSIONS

Although our results confirmed the previous findings that CTC
could be used to distinguish BC patients from the healthy females
or patients with BBD (both p < 0.0001) and CTC could reflect
TABLE 3 | Clinicopathological characteristics of BC patients with ≥ 2 or < 2 CTC, with US BI-RADS score ≥ 4b or < 4b, and with MMG BI-RADS score ≥ 4b or < 4b.

Groups n CTC p Value* US BI-RADS p Value* MMG BI-RADS p Value*

≥ 2 < 2 ≥ 4b < 4b ≥ 4b < 4b

BC Patients 238 174 64 <0.0001 189 49 <0.0001 137 101 <0.0001
Patients with BBD 217 19 198 45 172 19 198
Healthy volunteers 20 0 20 0 20 0 20
(All BC patients number = 238)
AJCC Stage 0.0021 0.0034 0.1573
0 17 8 9 8 9 7 10
I 82 56 26 62 20 42 40
II 106 83 23 89 17 65 41
III 31 27 4 28 3 21 10
IV 2 0 2 2 0 2 0
Tumor Size 0.0444 0.0054 0.1857
Tis 17 8 9 8 9 7 10
T1 117 83 34 91 26 63 54
T2 91 71 20 78 13 57 34
T3 11 10 1 10 1 9 2
T4 2 2 0 2 0 1 1
Lymph Node Metastasis 0.0086 0.0271 0.0195
Yes 96 79 17 83 13 64 32
No 142 95 47 106 36 73 69
May 2021 | Volume 11 | Articl
BC, breast cancer; CTC, circulating tumor cell; US, ultrasound; BI-RADS, breast imaging-reporting and data system; MMG, mammogram; n, number of patients; BBD, benign breast
diseases; AJCC, American Joint Committee on Cancer; Tis, tumor in situ.
*Based on the Youden index analysis, CTC, US and MMG cut-off values were 2, 4b, and 4b, respectively. Subjects with more than 2 CTC, or with US or MMG BI-RADS score higher than
4b are classified as CTC, US and MMG positive for diagnosis, respectively. The p value of comparisons is based on the positive proportion among groups.
Bold values mean statistical significances.
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tumor burden (14), still 71 out of 217 patients with BBD had
CTC detected. We used epithelial markers to detect CTC and the
identified cells were not further validated by any tumor specific
marker. Therefore, the CTC found in patients with BBD were not
truly tumor cells but circulating epithelial cells. A study with
CellSearch® system showed as well that positive events that met
the criteria for “CTC” were detected in 11.3% of patients with
benign colon diseases (16). Our results showed that CTC are
correlated with tumor stage, tumor size and lymph node
involvement (p= 0.0007, 0.0015 and 0.0034, respectively.
Clinical value of CTC in BC has started to be recognized
gradually by most BC experts worldwide. In the 8th edition of
the AJCC BC guidelines published in 2018, it is written that CTC
can be used as a prognostic biomarker to predict patients’
survival outcomes. In the 2019 Chinese Society of Clinical
Oncology (CSCO) BC clinical guidelines, it is written that CTC
can reflect the condition of tumor tissue and can be used as a
replacement of biopsy samples for pathological diagnosis, disease
monitoring and molecular sequencing. CTC can be used to
monitor treatment response and to predict prognosis (11–13).
CTC has been proposed as a screening tool for lung cancer in
high-risk groups of people (17). Based on the reviews of CTC in
BC published in 2013 and 2016, maximum CTC detection rates
in early stage and metastatic BC are 55% and 54%, respectively
(11, 18). The detection rate varied depending on which CTC
enrichment method was used (11, 18). CellSearch® system has
Frontiers in Oncology | www.frontiersin.org 769
CTC detection rates in BC less than 40% (18). Metastasis is an
inevitable process during tumor progression. According to the
recent study on ex vivo colorectal tumor model, a CTC can be
released into circulation even when the tumor is smaller than
0.01 cm3 (19). CTC represents the process of metastasis. Just due
to the heterogeneous tumor nature, some patients would have
less CTC in the circulation. In theory, as long as a detection
method is sensitive, CTC should be detected in every cancer
patient. Thus, CTC should be a reliable method for cancer
screening. The reason why CTC has not been suggested as a
screening tool for BC in practice might be due to the low
detection rates. However, with the improvements of the CTC
enrichment techniques recently, CTC detection is getting more
sensitive. Liang et al. used CanPatrol™ system to detect CTC in
early stage BC, and the detection rate is 81% (20). We used
CytoSorter® to detect CTC in BC, and the overall CTC detection
rate is 83.61% and the detection rate in early stage is 84.86%.
With such a high detection rate, CTC can no doubt be used as a
screening tool for BC. But a breast cancer specific marker might
be required to be ascertained that the captured CTC originate
from breast lesions and to reduce the false positive results in
patients with BBD and healthy people.

Our results suggest that CTC can reflect tumor burden. BC
patients at advanced stage, with bigger tumor and more lymph
node involvement have usually more CTC. But in fact, less CTC
were detected and a lower CTC detection rate was found in stage
A B D

E F G

I

H

J K L

C

FIGURE 3 | CTC and US are more sensitive than MMG for BC diagnosis. When CTC cut-off value of 2, US and MMG BI-RADS cut-off score of 4b were set,
positive rates of CTC, US and MMG show significant differences between BC patients and controls (patients with BBDs and healthy volunteers) as shown in (A, E, I),
respectively (all p < 0.0001). US should be slightly more sensitive than CTC in BC diagnosis, for positive rates of US are more correlated with BC patients’ cancer
stage and tumor size than CTC as shown in (B, C, F, G). No statistical significance is found between positive rate of MMG and BC patients’ cancer stage and tumor
size as shown in (J) and (K). Positive rates of CTC, US and MMG showed significant differences between BC patients with and without lymph node metastases as
shown in (D), (H) and (L) (p = 0.0086, 0.0271 and 0.0195, respectively). **** indicates P < 0.0001, ** indicates 0.001< P < 0.01, while * indicates 0.01 < P < 0.05.
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IV patients. It could be due to that the sample size is too small (n
= 2) or we used the wrong antibody to capture CTC. EpCAM
antibody is supposed to capture the epithelial type of CTC.
According to the AJCC BC staging guidelines, any TxNx patient
with distant metastasis is classified as a stage IV patient.
Epithelial-mesenchymal transition (EMT) plays an important
role during tumor metastasis (21, 22). An epithelial type of CTC
must transform into a migratory mesenchymal CTC before it
settles down to a distant site. During EMT, cells lose expression
of epithelial markers, such as EpCAM or CK, which might
explain why less CTC were detected in stage IV BC patients
with EpCAM antibody (22). Studies have shown patients with
more mesenchymal type of CTC usually have worse survival
outcomes (22, 23). However, further studies need to be
conducted to confirm whether BC patients at advanced stage,
with bigger tumors, or more lymph node involvement would
have more mesenchymal type of CTC.

US and MMG are the two most common screening tools for
BC in China. Next, we compared the diagnostic potency of CTC,
US and MMG for diagnosing BC, especially in the detection of
early stage BC. As shown in Tables 2 and 3, US has the highest
sensitivity of 0.79, followed by CTC (0.73) and then MMG
(0.58). CTC and MMG have the same specificity of 0.92,
followed by US (0.81). The AUC of CTC, US and MMG are
0.855, 0.861 and 0.759, respectively. CTC has the highest
Frontiers in Oncology | www.frontiersin.org 870
accuracy of 0.83, followed by US (0.80) and then MMG (0.75).
As for early stage tumor diagnosis, US has the highest sensitivity
of 0.80, followed by CTC (0.74) and then MMG (0.57). Based on
the AUC, CTC and US have similar diagnostic potency.
Although the sensitivity of US is higher, it generates more
false-positives as well, which might lead to over-diagnosis and
panic in patients with BBD. The specificity and accuracy of CTC
are slightly higher than those of US. Taken together, in our
study, CTC performs the best in BC diagnosis, followed by US
and then MMG. There are two limitations that restrain the use
of CTC in routine practice as a diagnostic aid. First, a standard
for CTC is still lacking. Many techniques have been developed
to enrich CTC. Methodologies with low sensitivities are not
suitable for clinical use. But for the ones with high sensitivities,
results of different methods are sometimes not comparable with
each other. Thus, a standard must be established before CTC
can be used as a common diagnostic tool. Second, comparing to
other diagnostic tools in clinic, CTC is pricey and usually not
covered by the health insurances. High cost limits the clinical
use of CTC in practice.

MMG is in fact the gold standard for BC screening, and is the
only screening modality that has shown to lead to a reduction in
BC mortality (24). Screening MMG leads to a 19% overall
reduction in BC mortality (25). However, the sensitivity of
MMG depends on the patients’ age and breast composition
TABLE 4 | Clinicopathological characteristics of BC patients diagnosed by CTC combined with US, CTC combined with MMG, or US combined with MMG.

Groups n CTC + US p Value# CTC + MMG p Value# US + MMG p Value#

Positive* Negative Positive* Negative Positive* Negative

BC Patients 238 215 23 <0.0001 207 31 <0.0001 207 31 <0.0001
Patients with BBD 217 58 159 35 182 50 167
Healthy volunteers 20 0 20 0 20 0 20
(All BC patients number = 238)
AJCC Stage 0.0137 0.0951 0.03
0 17 12 5 12 5 11 6
I 82 71 11 68 14 69 13
II 106 100 6 96 10 96 10
III 31 30 1 29 2 29 2
IV 2 2 0 2 0 2 0
TNM Stage
Tumor Size 0.0662 0.119 0.0695
Tis 17 12 5 12 5 11 6
T1 117 106 11 99 18 102 15
T2 91 85 6 84 7 82 9
T3 11 10 1 10 1 10 1
T4 2 2 0 2 0 2 0
Lymph Node Involvement 0.0115 0.0596 0.1872
N0 142 121 21 118 24 118 24
N1 72 71 1 68 4 67 5
N2 15 14 1 12 3 14 1
N3 9 9 0 9 0 8 1
Lymph Node Metastasis 0.0011 0.0307 0.0307
Yes 96 94 2 89 7 89 7
No 142 121 21 118 24 118 24
May 2021 | Volume 11 | Articl
BC, breast cancer; CTC, circulating tumor cell; US, ultrasound; MMG, mammogram; n, number of patients; BBD, benign breast diseases; AJCC, American Joint Committee on Cancer;
TNM, tumor-node-metastasis; Tis, tumor in situ.
*Based on the Youden index analysis, CTC, US and MMG cut-off values were 2, 4b, and 4b, respectively. As long as any measurement of composing parameter was higher than its cut-off
value, the combination result would be considered as positive for diagnosis.
#The p value of comparisons is based on the positive proportion among groups.
Bold values mean statistical significances.
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(26). MMG is more sensitive in women over 50 than in younger
women, and in women with fatty breasts than ones with dense
breasts (27). Regarding BC mortality, screening MMG is less
beneficial for women in their 40s (15%) and more useful for
women in their 60s (32%) (25). Sensitivity of MMG was 0.82
among women with predominantly fatty breast, but 0.24 in
women with heterogeneous dense breasts (28). As older
women tend to have fatty breasts, we analyzed the diagnostic
potency of MMG in BC diagnosis among different BC patients
grouped by age and found that sensitivity and AUC of MMG
increased in older women (data not shown). Furthermore,
Chinese women usually have dense breasts (29). Taken
together, the dense breast should be the reason why MMG has
the lowest diagnostic sensitivity in our study. The sensitivity of
US depends on the patient’s age and breast composition as well
(28). US usually has a higher sensitivity than MMG in women
younger than 45 years, whereas MMG has a higher sensitivity
than US in women older than 60 years (28). But in our study, US
showed higher sensitivities of BC detection in both women
younger than 45 years and older than 60 years (data not
shown). Sensitivity of US was 0.71 among women with
predominantly fatty breast and 0.57 for heterogeneous dense
breasts (28). In a cohort study of 30-39 years old women, US
showed a better sensitivity of 0.96 compared to MMG (0.61)
(30). However, MMG had a better specificity of 0.94 compared to
0.89 for US (30). The use of US in conjugation with MMG
increase both sensitivity and specificity for BC screening (28). In
another single-center, prospective, non-randomized comparison
study, Cortesi et al. found that MRI, MMG and US had different
diagnostic sensitivity in different group of people (31). In BRCA
mutated patients, MRI alone with annual US could be offered. In
high risk patients, MMG plus biannual US provide the most
sensitive diagnosis and for intermediate risk group an annual
MMG could be sufficient (31). Overall, the most sensitive
technique was MRI (0.94) followed by MMG (0.55) and US
(0.29) (31). Berg et al. shows that US is comparable with MMG
for BC screening, and US is more sensitive for invasive and node-
negative cancers (32). Common limitation for US and MMG is
the false positives. In our study, US has a higher false positive rate
of 19% than MMG (8%), which is consistent with previous study
showing that false positive are more common with US
screening (32).

MMG is the gold standard for BC screening recommended
by American Cancer Society, but MMG shows the lowest
sensitivity of 0.58 in our study. Lastly, we investigated whether
combination with CTC would increase the sensitivity of MMG
and at the same time maintain the specificity in an acceptable
level. As shown in Table 2, the combination with CTC enhances
the diagnostic performances of US and MMG indicated by the
increased AUC. Among these three combinations, “CTC + US”
has the highest AUC and sensitivity of 0.922 and 0.90,
respectively. “CTC + MMG” has the highest specificity and
accuracy of 0.85 and 0.86, respectively. The combination with
CTC or US increases the sensitivity of MMG by 50% to 0.87, but
“CTC + MMG” has a higher specificity of 0.85 than “US +
MMG” of 0.79. Therefore, “CTC + MMG” performs better than
Frontiers in Oncology | www.frontiersin.org 971
“US + MMG” in BC diagnosis. Based on the AUC, combination
improves the diagnostic performance. “CTC + US” has the best
performance, followed by “CTC + MMG” and then “US +
CTC”. Based on the specificity and accuracy, “CTC + MMG”
is the best combination. Theoretically, we should use the point
closest to the left upper corner of the combinational ROC as
the combination score cut-off to calculate the sensitivity and
specificity. However, this model would be too complicated to be
used in practice. In practice, the combinational results would be
considered as positive as long as either one of composing
measurements is higher than its cut-off or all of the
composing measurements are higher than cut-off. We used
the former definition in our study. When CTC is more than 2
or US/MG BI-RADS is higher than 4b, the combination result
would be considered as positive. The sensitivity would usually
increase while specificity would decrease in this model.
However, it still fit the combinational ROC as shown in
Figures 2E–G. The points closest to the upper left corners of
the curves had higher sensitivities and slightly lower specificity.
Since previous study (32) and our results showed US generated
falser positive, it would be more logic to define the positive
result for “CTC + US” as CTC ≧ 2 and BI-RADS ≧ 4b at the
same time. In this definition, “CTC + US” has a sensitivity,
specificity and accuracy of 0.62, 0.97 and 0.80, respectively.
The specificity of US is much improved in this model. Thus, in
practice, we can choose which model to be used depending on
sensitivity or specificity we want to improve. MMG usually has a
low sensitivity for BC diagnosis, therefore, it would be better to
use the definition of positive result for “CTC + MMG” as CTC ≧
2 or BI-RADS ≧ 4b. Our results indicate “CTC + US” or “CTC
+ MMG” performs better than “US + MMG” in BC diagnosis.

Our study is the first study comparing the diagnostic
performances of CTC, US and MMG in the same cohort.
Results of this work show that CTC detected by CytoSorter®

can be used as a diagnostic aid to assist in early diagnosis and
screening of BC. Combination of CTC enhances the diagnostic
efficiency of US and MMG for BC screening, especially for MMG
in Chinese women. Still more studies on larger patient
population should be conducted to confirm our findings.
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Inflammatory myofibroblastic tumor (IMT) is a rare tumor with low-grade malignant risk
mainly occurring in soft tissues and lungs, and it is extremely rare in the breast. Meanwhile,
imaging findings of the tumor often present with non-specific features that lead to
misdiagnosis and delayed treatment. Here, we report a case of inflammatory
myofibroblastic tumor in the breast with the imaging findings of mammography,
magnetic resonance imaging (MRI), and pathologic findings to improve the
understanding of the disease. The patient was treated by surgical operation, and was
followed up for 44 months, no local recurrence and distant metastasis.
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INTRODUCTION

Inflammatory myofibroblastic tumor (IMT) of the breast, first reported at 1988 (1), is now
considered as a true low-grade neoplasm and mixture of spindle cells and chronic inflammatory
cells, such as lymphocytes, plasma cells, and eosinophils according to the 2013 World Health
Organization classification of tumors of soft tissue (2). Although it is more often seen in the lung,
soft tissue, and viscera in children and young adults, broad age range has been documented in recent
years (3). The incidence of breast IMT is unknown, to our knowledge, approximately 30 cases have
been described in the literature, one of which is reported to appear near a previous surgical site. The
case we reported also occurred at the site of a previous operation. Breast IMTs are easily
misdiagnosed and confused with other breast disorders like cancer or fibroadenoma due to lack
of typical clinical and imaging characteristics. The purpose of this report is to shed new
understanding on this rare tumor-like disorder by analyzing the complete pathological and
imaging documentation of one breast IMT in our hospital.
CASE REPORT

A 50-year-old woman presented with a gradually increasing mass in the right breast, accompanied by
progressive pain and slight redness of the localized skin. Two months ago, a quail egg-like mass was
detected in the inner upper quadrant of the right breast when she underwent a physical examination, but
she did not take any diagnostic and treatment measures. The woman had a history of surgery for
fibroadenoma of the right breast two years ago, so it is worthy of being mentioned that the mass is just
located right at the site of the previous surgery. Physical examination revealed a 5-cm old postoperative
scar at the inner upper quadrant of the right breast, and a well-circumscribed mass measuring 4.5 cm in
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diameter was identified here with regular shape and slightly
mobility. She had no family history of breast cancer.
Ultrasonography (US) revealed an irregular shaped, hypoechoic
mass with well-definedmargins at the 2 o’clock position in the right
breast, while septum and punctate blood flow signals were detected
in the lesion. The lesion was classified as Breast Imaging Reporting
and Data System (BI-RADS) category 4A.

Mammography obtained before fibroadenoma surgery
showed a well-defined high-density mass in the inner upper
quadrant of the right breast (Figures 1A, B). Mammography,
performed two years after the initial operation, showed a high
density, irregular mass with spiculated margins, accompanied by
an incomplete halo sign (Figures 1C arrow, D) in the inner
upper quadrant of the right breast. In addition, the skin adjacent
to the areola had thickened. We classified the mass as BI-RADS
category 4B according to imaging findings in mammography,
including irregular shape, ill-defined margins, and incomplete
halo sign around the mass.

MRI of the breast performed during a prior hospital admission,
including traditional MRI and gadolinium-enhanced breast MRI,
revealed an irregular mass, accompanied by architectural distortion,
measuring 4.5 × 3.5 × 3.0 cm in size under the scar area of the inner
upper quadrant of the right breast (Figure 2). The lesion had iso/
hyper-intensity on axial fat-suppressed T2-weighted imaging
(Figure 2A) and iso/hypo-intensity on axial T1-weighted imaging
(Figure 2B), which showed heterogeneous high signal intensity on
DWI (b = 1000 s/mm2) with low signal intensity ADC map
(Figures 2C, D) that suggested restricted diffusion. Dynamic-
contrast enhanced MRI showed a rapid heterogeneous rim
enhancement mass with dark internal septation (Figure 2E,
arrow), accompanied by non-mass enhancement in the initial
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period (Figure 2E), increased blood flow around the lesion in the
maximal intensity projection (Figure 2F), and 201% of the early
enhanced rate and a plateau in the delayed period and in the time
intensity curve of the lesion (Figure 3). The lesion was assessed as
BI-RADS category 4B by the readers, which suggested the
likelihood of a malignant lesion. However, there was a history of
surgery at the site of the mass two years ago and the clinical picture
was characterized by progressive pain and mild skin redness. So a
suspicion of inflammatory lesion was raised. After multidisciplinary
discussion between breast surgeons and radiologists, the decision
was made to proceed with surgical resection.

Gross examination of the surgical specimen revealed a 5 × 4 ×
4 cm mass that was solid and greyish-white and yellowish.
Pathologic analysis of the mass showed proliferating spindle
cells interwoven within inflammatory cells, including plasma
cells and lymphocytes (Figure 4A). On immunohistochemical
examination (Figure 4), the mass was positive for smooth muscle
actin (SMA) (Figure 4B), vimentin (Figure 4D), and Ki-67 in
about 30% of the spindle tumor cells (Figure 4C) while negative
for CD34. Meanwhile, no ALK gene rearrangement was detected
by fluorescence in situ hybridization (Figure 5). The diagnosis of
inflammatory myofibroblastic tumor (IMT) was established by
the pathological findings.
DISCUSSION

Inflammatory myofibroblastic tumor of the breast is an extremely
rare entity that can recur, with a recurrence rate of 25% (4). So far,
the pathogenesis of IMT is still unclear, and it was initially thought to
be related to trauma, infection, surgery, and other stimuli, which
FIGURE 1 | (A–D) images represent RCC and RMLO views before the first fibroadenoma surgery and in the current presentation (the inflammatory myofibroblastic
tumor), respectively. Mammography obtained before fibroadenoma surgery showed (A, B) an oval-shaped, circumscribed mass and mammography performed two
years after the operation showed (C, D) a slight hyperdense mass with an ill-defined, spiculated margin, accompanied by an incomplete halo sign (arrow) and
thickened the skin adjacent to the areolar in the inner upper quadrant of the right breast.
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finally activated myofibroblasts with proliferative potential to
proliferate and form tumors, and were called inflammatory
pseudotumors. However, recent studies have shown that both
intrapulmonary and extrapulmonary IMT are abnormal with
chromosomes 2 and 9. Approximately 50% ~ 75% of IMT
showed the fusion of ALK, TPM3, and TPM4 genes on 2P23,
leading to the overexpression of theALKprotein (5, 6). Some groups
Frontiers in Oncology | www.frontiersin.org 375
reported that IMT was related to the expression of p53 and MDM2
genes (7). ALK gene fusion caused by a non-classical pathway was
also found in IMT, suggesting that the ALK signaling pathway plays
an important role in the majority of IMT tumors (8, 9). These
findings suggest that IMT is a true tumor and not an inflammatory
lesion, and that genetics andmolecular studies confirm that IMT is a
monoclonal proliferation.
FIGURE 2 | (A–F) MRI obtained two years after the operation revealed a circumscribed mass with irregular shape and slightly distorted structure, accompanied by
thickening of adjacent skin in the inner upper quadrant of the right breast, a mass showed heterogeneous high signal intensity on fat-suppressed T2-weighted
images and low signal intensity on T1-weighted images (A, B). The lesion with high signal intensity on DWI (C) had low signal intensity on ADC map (D), which
indicated restricted diffusion. Dynamic contrast-enhanced MRI revealed a fast, heterogeneous enhanced mass in the initial phase (E). Maximum intensity projection
(MIP) revealed a mass with increased blood supply (F).
FIGURE 3 | A time intensity curve of the mass showed a plateau (TIC II) in the delayed period.
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FIGURE 5 | Fluorescence in situ hybridization analysis showing no ALK gene rearrangement (× 100).
FIGURE 4 | (A–D) Histologic, immunohistochemical staining of inflammatory myofibroblastic tumor (IMT). The mass showed spindle cells admixed with inflammatory
cells (H&E stain, × 100) (A). Immunohistochemical staining showed positive staining for smooth muscle actin (SMA) in the spindle tumor cells (SMA, × 200) (B),
positive staining for Ki-67 in about 30% of the spindle tumor cells (Ki-67, × 200) (C), as well as positive staining for vimentin in the spindle tumor cells (vimentin,
× 200) (D).
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At present, the diagnosis of the disease is challenging. In this
regard, wemake some differential diagnoses of some breast diseases
according to the imaging and pathology of the case to improve the
understanding of the disease. Based on this case, many other causes
of breast mass may be considered in differential diagnoses.

Fibroadenoma and phyllodes tumor should firstly be included in
the differential diagnosis due to the black septum and lobulated
shape of the mass shown on contrast-enhanced MRI. Duman L
et al. (10) reported that fibroadenoma tended to be homogeneously
enhanced and had a hypointense internal septum, while in this case,
even with a hypointense septum, the mass showed rapid
heterogeneous enhancement which made a fibroadenoma
unlikely. Although phyllode tumors are frequently lobulated in
shape–this is similar to the MRI findings in this case–the internal
cystic areas were detected in the former. Imaging findings of the two
diseases are non-specific, hence final diagnoses are based on
histopathological findings. A phyllode tumor is a tumor in which
epithelial cells and stromal cells grow simultaneously. It is
diagnosed when the fibroepithelial architecture shows an inflated
intracanalicular pattern with leaf-like fronds protruding into
cystically dilated spaces accompanied by hypercellularity (11). So,
a phyllode tumor was excluded from the differential diagnosis.

Meanwhile, the differential diagnosis may secondly
include spindle cell lesions, either benign or malignant.
Myofibroblastomas of the breast (MFB) are common in men,
and their clinical manifestations are a steady and slow-growing
mass with the duration of months to years. Imaging
manifestations of MFB are usually benign, showing high signal
and internal septum on T2WI without restricted diffusion, but
malignancy cannot be ruled out safely just with MRI. The
diagnosis is mainly based on immunohistochemical analysis
including positive results for SMA, CD34, CD10, and desmin
whereas CD117 is usually negative (12, 13).

Nodular fasciitis (NF) of the breast is a benign,
pseudomyofibroblastic proliferative lesion. Rapid growth and
spontaneous dissipation may be the characteristics of NF. The
typical imaging findings of NF include low or iso-signal intensity
on T1WI and hyperintensity on T2WI with enhancement after
contrast injection (14). These features are not specific, however,
its diagnosis often depends on pathology. It is reported in the
literature that SMA and CD38 are positive, vimentin is positive,
and AE1/AE3 are negative (15).

Breast fibromatosis is a locally invasive benign tumor with a
high recurrence tendency and no metastasis potential, which can
occur in the breast parenchyma, or originate from the pectoral
fascia and extend into the breast. The typical manifestation of
breast fibromatosis is a mass with unclear boundary and irregular
shape, which sometimes may be accompanied by stretching and
binding of the Cooper ligament. Fascia involvement may be the
feature of breast fibromatosis (16). Although the imaging findings
of breast fibromatosis are unspecific, MRI can be used to evaluate
the location and degree of lesion before operation, and to evaluate
residual lesions and detect recurrence after operation. The typical
immunohistochemical features of fibromatosis are localized
expression of SMA and calcium protein, but no cytokeratin
Frontiers in Oncology | www.frontiersin.org 577
CD34 or S100. Almost all reported cases had focal expression of
beta catenin (17).

Spindle cell carcinoma to the breast (SpCC) usually manifests
as a rapidly growing mass, however, their prominent clinical
manifestations remain unclear. A high density ill-defined mass is
seen on mammography whereas an irregular mass with
microlobulated margin, complex echogenicity, and posterior
acoustic enhancement on ultrasound imaging are common
features in the diagnostic images of SpCC (18). The evidence
of diffuse cytokeratin or p63 immunoreactivity in the malignant
spindle cells suggests a diagnosis of spindle cell breast carcinoma
(19, 20).

We present a rare case of inflammatory myofibroblastoma that
may be associated with trauma of the breast, similar cases have been
reported where the lesion occurred near the postoperative site of
fibroadenoma in the literature (21), which may provide some
instruction for future clinical work: if a patient with a history of
surgery has lesions in the surgical site, inflammatorymyofibroblastic
tumor may be included in the diagnosis. The patient was followed
for 44 months without recurrence or metastasis.

In conclusion, IMT of the breast is a very rare condition. Its
clinical findings are mostly related to inflammatory conditions
but some of the features are more similar to the lines of the
tumor pathology. Even if it is a low grade malignant tumor,
recurrence and metastasis may be picked up by systematic
follow-up and for this reason it is treated usually by surgical
resection. Therefore, it is so important to determine the correct
diagnosis and treatment of this condition.
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Objective: To evaluate whether texture features derived from semiquantitative kinetic
parameter maps based on breast dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) can determine human epidermal growth factor receptor 2 (HER2)
status of patients with breast cancer.

Materials and Methods: This study included 102 patients with histologically confirmed
breast cancer, all of whom underwent preoperative breast DCE-MRI and were enrolled
retrospectively. This cohort included 48 HER2-positive cases and 54 HER2-negative
cases. Seven semiquantitative kinetic parameter maps were calculated on the lesion area.
A total of 55 texture features were extracted from each kinetic parameter map. Patients
were randomly divided into training (n = 72) and test (n = 30) sets. The least absolute
shrinkage and selection operator (LASSO) was used to select features in the training set,
and then, multivariate logistic regression analysis was conducted to establish the
prediction models. The classification performance was evaluated by receiver operating
characteristic (ROC) analysis.

Results: Among the seven prediction models, the model with features extracted from the
early signal enhancement ratio (ESER) map yielded an area under the ROC curve (AUC)
of 0.83 in the training set (sensitivity of 70.59%, specificity of 92.11%, and accuracy
of 81.94%), and the highest AUC of 0.83 in the test set (sensitivity of 57.14%, specificity of
100.00%, and accuracy of 80.00%). The model with features extracted from the slope of
signal intensity (SIslope) map yielded the highest AUC of 0.92 in the training set (sensitivity
of 82.35%, specificity of 97.37%, and accuracy of 90.28%), and an AUC of 0.79 in the test
set (sensitivity of 92.86%, specificity of 68.75%, and accuracy of 80.00%).
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Conclusions: Texture features derived from kinetic parameter maps, calculated based
on breast DCE-MRI, have the potential to be used as imaging biomarkers to distinguish
HER2-positive and HER2-negative breast cancer.
Keywords: breast cancer, HER2, dynamic contrast-enhanced magnetic resonance imaging, texture analysis,
semiquantitative kinetic parameter map
INTRODUCTION

Breast cancer is one of the most common cancers in women, and
breast cancer alone accounts for 30% of new cancer cases in
females (1). The status of human epidermal growth factor
receptor 2 (HER2) is a biological factor that influences breast
cancer survival. The 5-year relative survival rate has increased to
91% largely due to improvements in treatment, such as
aromatase inhibitors for hormone receptor-positive tumors
and trastuzumab for HER2-positive tumors. Of patients with
hormone receptor-positive tumors, 81% receive hormonal
therapy (2). With the development of new therapeutic drugs,
better responses are seen with more specific pharmaceutical
treatment options based on different molecular markers (3, 4).
Therefore, it is very important to accurately identify HER2 status
to individualize treatment. At present, HER2 amplification status
is determined by immunohistochemistry (IHC); tumors are
considered to be HER2-positive if the IHC analysis is scored as
3, whereas tumors are considered to be HER2-negative if scored
as 0 or 1. For tumors with IHC scores of 2, further analysis by
fluorescence in situ hybridization (FISH) is needed to detect the
amplification status of the HER2 gene. However, these methods
require invasive biopsies, and are also subject to sampling errors
due to intratumoral heterogeneity (5). Moreover, FISH
examination is costly and time-consuming. Thus, it would be
clinically beneficial to develop a cost- and time-effective,
accurate, noninvasive method to detect HER2 status.

Breast dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is the most widely used and clinically
proven imaging technique in breast cancer, and it has high
sensitivity for detecting breast lesions. It provides anatomical
information as well as hemodynamic information of the tumor
with a high spatial resolution (6). Previous studies on breast
DCE-MRI have indicated that morphological and kinetic
characteristics were associated with benign and malignant
tumors, response to neoadjuvant chemotherapy, and
histopathological factors of breast cancer (7–11).

Texture analysis has been widely applied to characterize the
spatial distribution of gray level intensities in images, capturing
image patterns which are usually unrecognizable or unresolved
by the human eye (12–14). This approach aims to extract high-
throughput information to characterize image heterogeneity in
specific target regions (15, 16). The most commonly used texture
features can be layered by the statistical order of the voxel
information encoded within the target regions, including first-
order (also called histogram), second-order (gray level co-
occurrence matrix and run-length matrix), and high-order
(structural and transformed) texture features, proving to be
280
helpful in assessing tumors. Earlier studies on rectal cancer
revealed that texture features were useful for prediction of
pathologica l comple te response af ter neoadjuvant
chemotherapy (17–19). Moreover, histogram features have
been shown to be useful in evaluating tumor heterogeneity in
glioma and cervical cancers (20, 21).

In previous studies, texture features derived from
mammography and multidetector computed tomography
images have been applied and shown to potentially identify
HER2 status in patients with breast cancer (22, 23). However,
DCE-MRI is recognized as the most common and effective
method in breast cancer imaging. Montemurro et al. (10)
showed that Fischer ’s score, which included three
morphological, two functional, and five DCE-MRI features,
was inversely associated with HER2-overexpression. Another
study demonstrated that texture features from DCE-MRI were
predictive of HER2 status (24). Semiquantitative kinetic
parameter maps provide a technique for leveraging the pre-
and post-contrast acquisitions, and can reflect kinetic
information for breast cancer. A recent study demonstrated
that the model based on texture features from semiquantitative
kinetic parameter maps was able to discriminate sentinel lymph
node status (25). To the best of our knowledge, no previous study
has investigated the association between HER2 status in breast
cancer and texture features extracted from semiquantitative
kinetic parameter maps calculated from breast DCE-MRI.

Thus, the aim of this study was to evaluate whether features
derived from semiquantitative kinetic parameter maps could be
used to identify HER2 status in patients with breast cancer.
MATERIALS AND METHODS

Study Population
This retrospective study was approved by our institutional review
board (NO.2019PS175K) and the requirement for informed
consent was waived. From January 2019 to January 2020,
female patients with histologically confirmed breast cancer
who underwent breast DCE-MRI were reviewed with our
picture archiving and communication system (PACS). The
inclusion criteria were as follows: (1) visible breast lesion on
DCE-MRI; (2) histologically confirmed breast cancer; and (3)
exact HER2 amplification status determined by IHC/FISH
examination. The exclusion criteria were: (1) patients who
underwent a biopsy before MRI examination; (2) patients who
received neoadjuvant chemotherapy before MRI; and (3)
insufficient MRI quality due to obvious motion artifacts.
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Finally, a total of 102 patients were enrolled in this study
retrospectively. Of these patients, 48 were HER2-positive and 54
were HER2-negative. The clinical characteristics collected using
the PACS included age, maximum tumor diameter, estrogen
receptor status, progesterone receptor status, Ki-67 status,
histological grade, and histological type. Patients were
randomly divided into a training set (n = 72, 34 HER2-positive
and 38 HER2-negative) and a test set (n = 30, 14 HER2-positive
and 16 HER2-negative) at a proportion of 70% and 30%,
respectively. Figure 1 shows the workflow of this study.

MRI Acquisition
All patients received a pretreatment breast DCE-MRI at our
institution using a 3.0 Tesla MR scanner (Ingenia, Philips
Medical System, Best, Netherlands) equipped with a dedicated
7-channel bilateral breast coil with patient in a prone position.
First, an axial fat-saturated T1-weighted precontrast scan based
on the VIBRANT-VX technique was acquired. Then, eight axial
Frontiers in Oncology | www.frontiersin.org 381
contrast-enhanced fat-saturated T1-weighted scans were
acquired after the intravenous bolus injection of a contrast
agent (Magnevist, Bayer Healthcare Pharmaceuticals, Berlin,
Germany) with a dose of 0.15 mmol per kg body weight. The
imaging parameters were as follow: repetition time, 4.14 ms; echo
time, 2.10 ms; flip angle, 12°; slice thickness, 2.00 mm; spacing
between slices, 1.00 mm; field of view, 340 × 340 mm2; matrix,
380 × 380. Eight subtraction sequences were obtained by
subtracting the precontrast scan from each of the eight
postcontrast scans.
Image Processing and Semiquantitative
Kinetic Parameter Calculation
Two breast radiologists, each with over 6 years of experience, were
blinded to HER2 status of patients and invited to help review the
images. Slices with the maximum tumor diameter were chosen in
consensus. The third-phase subtraction image, the eight phases of
FIGURE 1 | The workflow of this study.
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postcontrast images, and the precontrast image of the slice were
downloaded and used for subsequent processing.

The lesion area was first delineated automatically on the
third-phase subtraction image using an in-house software
programmed with MATLAB 2018a (Mathworks, Natick, MA,
USA). Seven semiquantitative kinetic parameter maps were
calculated on the lesion area, respectively. The seven kinetic
parameters included the initial percentage of enhancement
(Einitial), the percentage of peak enhancement (Epeak), the early
signal enhancement ratio (ESER), the maximum slope of
increase (MSI), the second enhancement percentage (SEP), the
signal enhancement ratio (SER), and the slope of signal intensity
(SIslope). The calculation formulas of the parameters are as
follows:

Einitial = (SI1 − SI0)=SI0 � 100% (1)

where SI1 and SI0 represent the signal intensities of the first
postcontrast image and the precontrast image, respectively.

Epeak = (SIpeak − SI0)=SI0 � 100% (2)

where SIpeak represents the peak signal intensity value of the
contrast enhancement.

ESER = (SI1 − SI0)=(SI2 − SI0)� 100% (3)

where SI2 represents the signal intensity at the second
postcontrast time point.

MSI = max (SIi+1 − SIi) (4)

where SIi and SIi+1 stand for the signal intensity of a certain
phase and the following phase respectively, with i ranges from 0
to 7.

SEP = (SI2 − SI0)=SI0 � 100% (5)

SER = (SIpeak − SI0)=(SI8 − SI0)� 100% (6)

where SI8 is the signal intensity at the eighth postcontrast
time point.
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SIslope = ½(SI8 − SImean)=SImean� � 100% (7)

where SImean is the mean value of the signal intensity at the
first two postcontrast time points.

Texture Feature Extraction
All texture feature extraction was performed using an in-house
software developed in MATLAB 2018a. Fifty-five texture features
were derived from each kinetic parameter map, including
histogram features, gray level co-occurrence matrix (GLCM)
features, gray level run-length matrix (GRLM) features, and
discrete wavelet transformation (DWT) features. The details of
these features are provided in Table 1. GLCM parameters were
calculated from four GLCMs corresponding to a distance of one
pixel and four angles (0°, 45°, 90°, 135°), and the mean value of
each feature over the four GLCMs was utilized. GRLM
parameters were calculated from four GRLMs corresponding
to four angles (0°, 45°, 90°, 135°), and the mean value of each
feature over the four GRLMs was utilized. DWT parameters were
calculated for two layers and three directions (horizontal,
vertical, diagonal) to produce low and high frequency
components. For example, harr_L represented the low
frequency component using harr wavelet, and harr_DH2
represented the diagonal high frequency component of the
second layer using harr wavelet.

Model Construction and
Statistical Analysis
The clinical characteristics and kinetic parameters of the patients
were statistically analyzed using SPSS 22.0 (IBM, Corp).
Categorical variables included estrogen receptor status,
progesterone receptor status, Ki-67 status, histological grade,
and histological type, and these variables were compared
between HER2-positive and -negative groups using the chi-
square test or Fisher’s exact test. For quantitative data
including age, maximum tumor diameter, kinetic parameters,
and texture features, the independent sample t-test was utilized
when the data was normally distributed with homogeneous
variance, and the Mann-Whitney U test was used when the
TABLE 1 | Details of extracted texture features.

Methods Texture features Quantity

Histogram Mean, Variance, Skewness, Kurtosis 4

GLCM Autocorrelation, Contrast, Correlation, Cluster Prominence, Cluster Shade, Dissimilarity, Energy, Entropy, Homogeneity, Maximum Probability,
Variance, Sum Average, Sum Variance, Sum Entropy, Difference Variance, Difference Entropy, Information Measure of Correlation 1, Information
Measure of Correlation 2, Inverse Difference Normalized

19

GRLM Short Run Emphasis, Long Run Emphasis, Gray Level Nonuniformity, Run-Length Nonuniformity, Run Percentage, Low Gray Level Run
Emphasis, High Gray Level Run Emphasis, Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis, Long Run Low Gray
Level Emphasis, Long Run High Gray Level Emphasis

11

DWT Harr parameters 7
Deubechies2 parameters 7
Symlet4 parameters 7

Total 55
June 2021 | Volume 11 | Artic
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data was not normally distributed. A two-sided P value less than
0.05 was considered statistically significant.

The data from 72 patients in the training set were used for
feature selection and model construction. Feature selection was
performed using MATLAB 2018a. Separately for each kinetic
map, Pearson’s correlation analysis was first performed among
features in the training set. Highly correlated features with
coefficients greater than 0.95 were marked, and the ones with
higher correlations with other features were removed. Then, the
least absolute shrinkage and selection operator (LASSO) was
used to select features with nonzero coefficients among the
remaining features by 10-fold cross-validation. After removal,
the features were randomly divided into 10 groups. At each
feature selection loop, one group of features was chosen as the
validation set and the remaining groups were used as the training
set. The optimal subset of features for prediction was generated
after each loop, and this process was repeated for all ten folds. All
selected features were recorded for further analysis.

The multivariate logistic regression analysis using forward
stepwise selection was applied with entry of the selected features
to establish the prediction model. Spearman’s correlation
analysis was performed to evaluate the correlation between
texture features contained in the model and HER2 status. The
performance of the trained model was assessed through the area
under the receiver operating characteristic (ROC) curve (AUC).
The sensitivity, specificity, and accuracy were calculated
correspondingly. The optimal threshold was chosen according
to the maximum Youden index. The established prediction
model was further tested on the test set using the same
threshold determined on the training set. The corresponding
AUC, sensitivity, specificity, and accuracy were also calculated.
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The above analysis was performed on MedCalc (version
14.10.20, http://www.medcalc.org/).
RESULTS

Characteristics of the Study Population
A total of 102 patients (51.60 ± 10.10 years) were included in this
study. The detailed clinical and histopathological characteristics
between HER2-positive and -negative groups are listed in
Table 2. There was no statistical difference between the two
groups with respect to age (P = 0.57), maximum tumor diameter
(P = 0.26), histological grade (P = 0.17), or histological type (P =
0.91). The two groups showed significant differences in terms of
estrogen receptor status (P < 0.01), progesterone receptor status
(P = 0.02), and Ki-67 status (P = 0.04). Figure 2 shows two
randomly selected cases used to display the results of lesion
segmentation along with seven semiquantitative DCE maps and
corresponding pathological results.

Performance of the Prediction Model
The comparison results of the average value of seven kinetic
parameters in the lesion area between HER2-positive and
-negative groups is provided in Table 3. There were no
significant differences in the average value of seven kinetic
parameters between the two groups. Table 4 presents the
logistic regression models obtained from the training set.
Table 5 shows comparison results of texture features included
in models in the training set between HER2-positive and
-negative groups. Short Run Emphasis derived from Einitial,
TABLE 2 | Clinical and histopathological characteristics of all patients.

Characteristics HER2 status P-value

Positive (n = 48) Negative (n = 54)

Age (mean ± SD) 50.96 ± 10.59 52.09 ± 9.69 0.57a

Maximum tumor diameter (mm) 20.79 ± 5.13 19.69 ± 4.79 0.26a

Estrogen receptor status <0.01b

Positive 26 (54.20%) 43 (79.60%)
Negative 22 (45.80%) 11 (20.40%)
Progesterone receptor status 0.02b

Positive 21 (43.80%) 36 (66.70%)
Negative 27 (56.20%) 18 (33.30%)
Ki-67 status 0.04c

≥14% 44 (91.70%) 40 (74.10%)
<14% 4 (8.30%) 14 (25.90%)
Histological grade 0.17c

I 0 3 (5.60%)
II 33 (68.80%) 39 (72.20%)
III 15 (31.20%) 12 (22.20%)
Histological type 0.91c

Invasive carcinoma of no special type 45 (93.80%) 50 (92.60%)
Ductal carcinoma in situ 3 (6.20%) 2 (3.70%)
Invasive lobular carcinoma 0 1 (1.75%)
Invasive micropapillary carcinoma 0 1 (1.75%)
June 2021 | Volume 11 | Article
aVariables were tested using the independent sample t-test.
bVariables were tested using the c2 test.
cVariables were tested using Fisher’s exact test.
The bold P-values are considered statistically significant.
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ESER, MSI, and SER maps were significantly different between
HER2-positive and -negative patients (P < 0.01, < 0.01, < 0.01,
and < 0.01, respectively). Contrast (P < 0.01) and harr_HH2
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(P < 0.01) from Epeak maps, autocorrelation (P < 0.01) from SEP
maps, and gray level nonuniformity (P < 0.01) from SIslope were
also significantly different between the two groups.

The performance of the prediction models is summarized in
Table 6. Among the seven prediction models, models with
features extracted from the ESER map yielded an AUC of 0.83
in the training set [95% confidence interval (CI), 0.72–0.91;
sensitivity of 70.59%, specificity of 92.11%, and accuracy of
81.94%], and the highest AUC of 0.83 in the test set (95% CI,
0.64–0.94; sensitivity of 57.14%, specificity of 100.00%, and
accuracy of 80.00%). The model with features extracted from
the SIslope map yielded the highest AUC of 0.92 in the training set
(95% CI, 0.84–0.97; sensitivity of 82.35%, specificity of 97.37%,
and accuracy of 90.28%), and an AUC of 0.79 in the test set (95%
CI, 0.59–0.91; sensitivity of 92.86%, specificity of 68.75%, and
accuracy of 80.00%). The corresponding ROC curves of the
models with features extracted from the seven kinetic
parameter maps are shown in Figure 3.
DISCUSSION

In this study, the correlation between texture features and HER2
status in breast cancer was investigated using a texture analysis of
seven semiquantitative kinetic parameter maps based on breast
DCE-MRI. The results demonstrated that texture analysis based
on DCE-MRI images has the potential to discriminate HER2
TABLE 4 | Logistic regression models.

Parameter
maps

Logistic regression model

Einitial Y = 11.52-0.42*Kurtosis-15.89*Short Run Emphasis
Epeak Y = 1.23 + 6.39*Contrast-1.02*harr_HH2
ESER Y = 8.33-13.80*Short Run Emphasis
MSI Y = 8.53-14.83*Short Run Emphasis
SEP Y = -4.46+1.80*Autocorrelation
SER Y = 7.90-12.60*Short Run Emphasis
SIslope Y = -24.22+0.34*harr_DH2+0.24*symlet4_HH1+0.12*Gray Level

Nonuniformity-0.01*High Gray Level Run Emphasis-0.08*Mean
TABLE 3 | Comparison results of the average value of seven kinetic parameters
from the lesion area.

Parameters HER2 Positive HER2 Negative P-value

Einitial 185.57 ± 10.95 173.52 ± 10.08 0.42
Epeak 269.21 ± 104.98 276.41 ± 87.37 0.71
ESER 80.80 ± 13.94 63.41 ± 75.78 0.12
MSI 110.45 ± 31.41 106.13 ± 33.13 0.50
SEP 227.19 ± 86.98 227.47 ± 82.95 0.99
SER 132.47 ± 23.23 131.13 ± 19.68 0.75
SIslope 7.68 ± 17.26 12.26 ± 16.72 0.18
Variables were tested using the independent sample t-test.
A

B

FIGURE 2 | Typical cases of HER2 positivity and negativity. (A) Sample images of HER2 positivity, including lesion segmentation, seven semiquantitative DCE maps,
and corresponding pathological results. (B) Sample images of HER2 negativity.
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status in breast cancer. HER2 is a cell surface receptor expressed
in normal breast cells that controls growth, division, and repair
of breast cells (26). HER2-positive breast cancer is considered an
aggressive disease, because the amplification of the HER2 gene
results in an abnormally high amount of HER2 gene expression
and HER2 proteins per cancer cell. Therefore, HER2-positive
cancers promote the rapid growth and division of cancer cells,
and the prognosis is generally poor (27). Trastuzumab treatment
can be beneficial for breast cancer with HER2 amplification and
overexpression, and therefore the HER2 status serves as a guide
for treatment and is a crucial indicator of prognosis (28).
Frontiers in Oncology | www.frontiersin.org 785
In recent years, there have been some studies on the
association between radiomic features and HER2 status (22–24,
26, 29–31). Several studies investigated the relationship between
HER2 status and radiomic features in gastric cancer and
colorectal cancer (29–31). Li et al. (29) built and validated a
CT-based radiomics nomogram for HER2 status prediction,
which showed good performance. Zhou et al. (22) reported
that mammography radiomics features can effectively diagnose
HER2 status of patients with breast cancer, most notably with a
model built using a combination of features from cranial caudal
and mediolateral oblique views. One study indicated that
TABLE 6 | Performance of prediction models.

AUC 95% CI Sensitivity Specificity Accuracy

Einitial

Training set 0.85 0.75-0.93 67.65% 94.74% 81.94%
Test set 0.71 0.52-0.86 71.43% 68.75% 70.00%
Epeak

Training set 0.84 0.73-0.91 70.59% 89.47% 80.56%
Test set 0.61 0.42-0.78 35.71% 100.00% 70.00%
ESER
Training set 0.83 0.72-0.91 70.59% 92.11% 81.94%
Test set 0.83 0.64-0.94 57.14% 100.00% 80.00%
MSI
Training set 0.84 0.74-0.92 73.53% 84.21% 79.17%
Test set 0.81 0.63-0.93 57.14% 100.00% 80.00%
SEP
Training set 0.81 0.70-0.89 58.82% 92.11% 76.39%
Test set 0.63 0.44-0.80 64.29% 75.00% 70.00%
SER
Training set 0.81 0.71-0.90 67.65% 86.84% 77.78%
Test set 0.81 0.63-0.93 92.86% 56.25% 73.33%
SIslope
Training set 0.92 0.84-0.97 82.35% 97.37% 90.28%
Test set 0.79 0.59-0.91 92.86% 68.75% 80.00%
June 2021 | Volume 11 | Arti
AUC, area under the receiver operating characteristic curve; CI, confidence interval.
TABLE 5 | Comparison of texture features included in the logistic regression models in the training set between HER2-positive and -negative groups.

Parameter maps Texture features HER2 Positive HER2 Negative P-value Correlation with HER2 status (rs)

Einitial Kurtosis 4.53 ± 2.99 5.72 ± 3.28 0.12a -0.30
Short Run Emphasis 0.55 (0.45-0.62) 0.67 (0.62-0.71) <0.01b -0.52

Epeak Contrast 0.34 (0.21-0.52) 0.19 (0.16-0.26) <0.01b 0.44
harr_HH2 2.07 (1.66-2.54) 2.40 (2.15-3.35) <0.01b -0.50

ESER Short Run Emphasis 0.53 (0.43-0.64) 0.68 (0.62-0.73) <0.01b -0.57

MSI Short Run Emphasis 0.49 (0.41-0.60) 0.65 (0.61-0.70) <0.01b -0.60

SEP Autocorrelation 3.14 (2.14-3.61) 1.92 (1.56-2.42) <0.01b -0.37

SER Short Run Emphasis 0.56 (0.47-0.67) 0.69 (0.64-0.74) <0.01b -0.54

SIslope harr_DH2 5.01 ± 1.84 4.79 ± 2.07 0.63a 0.08
symlet4_HH1 10.31 ± 6.36 10.20 ± 4.48 0.93a -0.07
Gray Level Nonuniformity 263.25 (217.54-400.84) 215.25 (209.30-226.33) <0.01b 0.43
High Gray Level Run Emphasis 1.23E+5 (1.00E+5-1.66E+5) 1.44E+5 (1.27E+5-1.57E+5) 0.10b -0.20
Mean 9.60 ± 19.63 13.00 ± 17.87 0.44a -0.08
aVariables were tested using the independent sample t-test.
bVariables were tested using the Mann-Whitney U test.
The bold P-values are considered statistically significant.
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FIGURE 3 | ROC curves of the training set and the test set from Einitial (A), Epeak (B), ESER (C), MSI (D), SEP (E), SER (F), and SIslope (G) maps.
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radiomics features from multidetector computed tomography
images were associated with HER2 status in patients with breast
cancer (23). Another study developed support vector machine
models based on radiomic features from fat-suppressed T2-
weighted images and DCE-MRI and, using a combination of
these features, noninvasively evaluated the HER2 status of
patients with breast cancer. The model based on the
combination of fat-suppressed T2-weighted images and DCE-
MRI exhibited the best performance for predicting the HER2
status of patients with an AUC of 0.86 and an accuracy of 79.5%
in the primary cohort, and an AUC of 0.81 and an accuracy of
78.3% in the validation cohort (24). However, no previous
studies have explored the relationship between HER2 status
in breast cancer and radiomic features derived from
semiquantitative kinetic parameter maps based on breast
DCE-MRI.

In the present study, the association between texture features
from semiquantitative kinetic parameter maps and HER2 status
in breast cancer was investigated. Fifty-five texture features were
extracted from each of the seven semiquantitative kinetic
parameter maps for each patient. Logistic regression models
using forward stepwise selection were developed and validated to
predict different HER2 status in breast cancer. Among the seven
prediction models based on texture features from Einitial, Epeak,
ESER, MSI, SEP, SER, and SIslope maps, two of the prediction
models showed relatively good performance. The model built
using features from the ESER map yielded an AUC of 0.83 in
the training set, and the highest AUC of 0.83 in the test set. The
model with features extracted from the SIslope map yielded the
highest AUC of 0.92 in the training set, and an AUC of 0.79 in
the test set. The texture features selected in the seven models
included mean, kurtosis, contrast, autocorrelation, gray level
nonuniformity, short run emphasis, high gray level run
emphasis, and three DWT features. Contrast represents local
variations presented in maps. Autocorrelation detects repetitive
patterns of texture elements. Gray level nonuniformity measures
the similarity of the gray level throughout the lesion area. Short
run emphasis reflects the distribution of short runs. Compared
with HER2-negative breast cancer, semiquantitative kinetic
parameter maps of HER2-positive breast cancer showed higher
contrast, autocorrelation, and gray level nonuniformity, as well
as lower short run emphasis in the training set. The
manifestation of these features indicated that semiquantitative
kinetic parameter maps of HER2-positive breast cancer may
show more heterogeneity and higher texture complexity than
HER2-negative breast cancer.

Fusco et al. (32) calculated 10 semiquantitative kinetic
parameters, maximum signal difference (MSD), time to peak
between wash-in and wash-out segments, wash-in slope (WIS),
wash-out slope (WOS), wash-in intercept, wash-out intercept,
area under the curve of wash-in, area under the curve of wash-
out, area under the curve of wash-in and wash-out, and
standardized index of shape (SIS) as well as 50 textural
features to predict breast cancer therapy response. The results
demonstrated that SIS achieved the highest AUC value (0.93),
suggesting that the joint feature from semiquantitative
Frontiers in Oncology | www.frontiersin.org 987
parametric maps may obtain the best diagnostic performance.
In our study, we evaluated the texture features based on seven
independent semiquantitative kinetic parameter maps.

A recent study showed that deforming autoencoder
convolutional neural networks based on 3TP (three-channel
images representing a given slice at three different time points,
uniquely identified by means of the three time points) slices of
DCE-MRI could be developed to discriminate malignant from
benign lesions, and good diagnostic performance was achieved
(33). In comparison, the performance of deep learning features
was not investigated in our research, as we focused solely on the
feasibility of the texture features from semiquantitative kinetic
parameter maps. In addition, MRI scans in our study included
more phases for post-contrast acquisitions, based on which of the
seven kinetic maps were obtained. To improve the performance
of the prediction model, further work should be conducted to
develop the classification models by combining texture and deep
learning features from kinetic maps of DCE-MRI for preoperative
prediction of HER2 status in patients with breast cancer.

This study had several limitations. First, the sample size in
this study was relatively small and this may have impeded the
generalizability of the findings. Second, our results may not be
applicable in all other institutions as our study was performed in
a single institution with uniform MRI parameters. Additional
studies are needed to increase cohort size and consider various
conditions. Third, only the texture features extracted from
semiquantitative kinetic parameter maps were used to
discriminate different HER2 status in breast cancer in this
study. Other clinical and histopathological characteristics such
as volume, tumor location, lymph-vascular invasion, and
diffusion-weighted imaging radiomics may also be good
signatures for distinguishing positive and negative status of
hormone receptors in breast cancer (25, 34). Combining
texture features and clinical characteristics in models may
improve prediction performance. Fourth, the slices with
maximum tumor diameter were selected and utilized in our
study. Texture analysis was performed on two-dimensional
images, and the representation of the entire volume of the
tumor may have been limited compared with three-
dimensional analysis. Finally, Piantadosi et al. (35) reported a
U-shaped deep convolutional neural network that exploited the
well-known 3TP approach for the automatic lesion segmentation
task, which showed a good result in breast DCE-MRI
segmentation. However, our study used the semi-automatic
segmentation based on Otsu’s algorithm, which was time-
consuming. Thus, in our future research, automatic lesion
segmentation will be performed using the U-shaped deep
convolutional neural network.
CONCLUSION

In conclusion, our results indicated that texture features derived
from kinetic parameter maps, calculated based on breast DCE-
MRI, have the potential to be used as imaging biomarkers for
distinguishing HER2-positive and HER2-negative breast cancer.
June 2021 | Volume 11 | Article 675160
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Further studies with larger sample sizes are necessary to verify
the results of this study.
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Application of Diffusion Weighted
Imaging Techniques for
Differentiating Benign and
Malignant Breast Lesions
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To explore the value of apparent diffusion coefficient (ADC), intravoxel incoherent motion
(IVIM), and diffusional kurtosis imaging (DKI) based on diffusion weighted magnetic
resonance imaging (DW-MRI) in differentiating benign and malignant breast lesions. A
total of 215 patients with breast lesions were prospectively collected for breast MR
examination. Single exponential, IVIM, and DKI models were calculated using a series of b
values. Parameters including ADC, perfusion fraction (f), tissue diffusion coefficient (D),
perfusion-related incoherent microcirculation (D*), average kurtosis (MK), and average
diffusivity (MD) were compared between benign and malignant lesions. ROC curves were
used to analyze the optimal diagnostic threshold of each parameter, and to evaluate the
diagnostic efficacy of single and combined parameters. ADC, D, MK, and MD values were
significantly different between benign and malignant breast lesions (P<0.001). Among the
single parameters, ADC had the highest diagnostic efficiency (sensitivity 91.45%,
specificity 82.54%, accuracy 88.84%, AUC 0.915) and the best diagnostic threshold
(0.983 mm2/ms). The combination of ADC and MK offered high diagnostic performance
(sensitivity 90.79%, specificity 85.71%, accuracy 89.30%, AUC 0.923), but no statistically
significant difference in diagnostic performance as compared with single-parameter ADC
(P=0.268). The ADC, D, MK, and MD parameters have high diagnostic value in
differentiating benign and malignant breast lesions, and of these individual parameters
the ADC has the best diagnostic performance. Therefore, our study revealed that the use
of ADC alone should be useful for differentiating between benign and malignant breast
lesions, whereas the combination of MK and ADC might improve the diagnostic
performance to some extent.

Keywords: breast lesion, magnetic resonance imaging, apparent diffusion coefficient, intra-voxel incoherent
motion, diffusion kurtosis imaging
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INTRODUCTION

Breast cancer is the most common cancer in women. In 2018
there were approximately 2.1 million newly diagnosed female
breast cancer cases worldwide, accounting for a quarter of female
cancer cases (1). In China the incidence of breast cancer is
relatively low, but since 1990 the incidence of breast cancer has
increased rapidly, especially in urban areas (2, 3). Survival rates
for breast cancer are greatly improved by early diagnosis. The
main techniques used for identification of breast lesions are
ultrasound, mammography, and magnetic resonance imaging
(MRI). MRI offers better sensitivity and specificity than
mammography and ultrasonography, especially for lesions in
dense breasts (4, 5).

MRI can not only analyze the nature of the lesion through
morphological features, but also obtain a variety of quantitative
parameters using functional imaging sequences for more
objective evaluation and diagnosis (6). Diffusion weighted MRI
(DW-MRI), which indirectly reflects the degree of tissue
differentiation and the integrity of cell membranes, is routinely
used to improve the accuracy of differential breast lesion
diagnoses (7–9).

The single exponential model is useful to distinguish benign
from malignant breast lesions, and has been most widely used in
clinical practice because of its short scanning time and simple
post-processing (8, 10, 11). The ADC model requires two b-
values to fit the curve. Many studies have shown that ADC has a
certain significance in the identify of benign and malignant
breast lesions (8, 9). The intravoxel incoherent motion (IVIM)
model is first proposed by Bihan et al. (12) and has been reported
to have good diagnostic performance for the diagnosis of
pancreatic ductal adenocarcinoma (13). When b-value is low
(≤200 s/mm2), tissue diffusion is affected by microcirculation
perfusion. As the b-value increases, the proportion of
microcirculation perfusion is gradually reduced and it probably
reflects the diffusion of water molecules in the tissue (14).
However, the disadvantage of a high b-value is that it can
reduce the signal-to-noise ratio. Therefore, in IVIM studies the
b-value usually ranges from 0 to 1000 s/mm2, and four to more
than 10 different b-values are required to obtain perfusion
fraction (f), tissue diffusion coefficient (D) and perfusion-
related incoherent microcirculation (D*) values (14, 15). Liu
et al. (16) have shown that when b<200 s/mm2, the attenuation
speed of malignant lesions is significantly faster than that of
normal breast tissue and benign lesions.

In the traditional DWI model, the diffusion of water
molecules follows a Gaussian distribution, so the b-value
affects the ADC value. In the diffusional kurtosis imaging
(DKI) model first proposed by Jensen et al. (17), when the b-
value is high (>1000 s/mm2) the diffusion of water molecules
follows a non-Gaussian distribution, the DKI model is more
accurate at assessing the diffusion of water molecules in a lesion
(17–19). In recent years, extended DWI models based on
different b-values, including IVIM and DKI, have been used
for the identification of tumors in liver (20), prostate (21, 22),
thyroid (23) and brain (24). However, there have been few
Frontiers in Oncology | www.frontiersin.org 291
studies combining ADC, IVIM, and DKI values for use in the
differentiation of benign and malignant breast lesions.
MATERIALS AND METHODS

Patients
The institutional ethics committee of our hospital approved this
prospective study, and informed consent was provided by each
patient. Patients with suspicious breast lesions from June 2019
to October 2020 were prospectively collected. Inclusion criteria:
(1) No puncture, biopsy, radiotherapy, or chemotherapy were
performed before MRI examination. (2) No contraindications to
MRI examination. (3) All patients underwent plain MRI and
multi-b-value DWI. (4) There was complete biopsy or surgical
pathology. Exclusion criteria: (1) The solid part of the lesion was
too small to delineate the ROI. (2) Image quality was poor and
did not meet the post-processing requirements.

Scanning Method
All MR examinations were performed in a 3.0T MR
(MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany) with 18-channel dual breast-dedicated phase-
controlled surface coil. All patients were scanned in the prone
position, with breasts naturally suspended in the coil. The
sequences included T1WI (TR/TE=6.03/2.82 ms, thickness =
0.9 mm, number of slices = 160, bandwidth = 300 Hz/Px, FOV
read = 340 mm, FOV phase = 100%, matrix size = 403×448), Fat
saturation T2WI (TR/TE = 3730/69 ms, thickness = 4 mm,
number of layers = 35, bandwidth = 246 Hz/Px, FOV read =
340 mm, FOV phase = 100%, matrix size = 384×384, averages = 2,
concatenations = 2) and dynamic contrast enhanced MRI (DCE-
MRI) (TR/TE = 4.03/1.33ms, thickness = 1.5 mm, number of
slices = 112, bandwidth = 1120 Hz/Px, FOV read = 350 mm, FOV
phase = 100%, matrix size = 259×320, Measurements 36, scan
time = 343 s). The parameters of multiple b-value DWI sequences
were TR/TE = 5700/62 ms, layer thickness = 4 mm, number of
layers = 35, bandwidth = 2024 Hz/Px, FOV read = 340 mm, FOV
phase = 60%, matrix size = 114×190; b-values = 0, 30, 50, 80, 120,
160, 200, 500, 1000, 1500, 2000 s/mm2, averages = 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 3; scan time = 308 s.

Data Analysis
For each model, all DWI data were fitted pixel by pixel using a
prototype software (Body Diffusion Toolbox, Siemens
Healthcare, Erlangen, Germany), and the relevant parameter
maps of ADC, IVIM, and DKI were obtained. Parameters
including perfusion fraction (f), tissue diffusion coefficient
(D), perfusion-related incoherent microcirculation (D*), mean
kurtosis (MK), and mean diffusivity (MD) were calculated. For
the single exponential model, two b-values (0 and 1000 s/mm2)
were chosen with the equation. S(b)=S(0)×exp(-b× ADC) (1,
25). For the IVIM model, a total of nine b-values (0, 30, 50, 80,
120, 160, 200, 500, and 1000 s/mm2) were used for data
calculation using the classic two-step calculation method (26).
The applied equation was: S (b)/S (0) = (1-f) × exp(-b·D) + f ×
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exp[-b·(D* + D)] (2, 13). The parameter D was obtained using
the data of b > 400 s/mm2. D* and f over all b values was
calculated by a nonlinear regression algorithm, while keeping D
constant (27). Five high b-values (0, 500, 1000, 1500, and 2000
s/mm2) were selected for the DKI model, using the equation
(17) S(b)=S (0) ×exp (-b× MD) + 1/6× b2× MD2× MK) (3). For
all the formulas above, b is the diffusion-sensitive gradient
factor, S(0) is the tissue signal intensity in the voxel when b=0
s/mm2, and S(b) is the signal strength of the tissue within the
element when b>0 s/mm2. The mean value of signal intensity
distribution within the region of interest (ROI) was calculated
for each b value. Then, the mean signal intensities of b values
in Eqs. (2) and (3) were fitted with the least square method
using the Levenberg-Marquardt algorithm. The upper and
lower limits of f and D* were 0%-40% and 0-50×10−3 mm2/s
respectively by referring to the range of each parameter in an
earlier report (28). The goodness of fit in both the IVIM and
DKI fittings was assessed by the coefficient of determination R2
(R2 = 1−ESS/TSS), where ESS and TSS is the sum of the
squared errors between the data points and IVIM/DKI fitting
curve, and the sum of the squared differences between the data
Frontiers in Oncology | www.frontiersin.org 392
points and the mean value of all data points, respectively. The
pixel was excluded if its R2 value was < 0.8 (29).

ROI Delineation and
Parameter Calculation
The ROI was measured by two radiologists with 10 years and 2
years of experience in breast imaging diagnosis. They read the
images independently without knowing the pathological results
and measured twice on the ADC image (b=1000 s/mm2) at the
largest level of the solid component of the lesion, avoiding
obvious necrosis, cystic and liquefaction areas by referring to
fat saturation T2WI and DCE-MRI imaging. The averaged ROI
was then overlaid on the other parameter maps to obtain their
corresponding parameters (Figure 1).

Statistical Methods
The Shapiro-Wilk normality test and the Levene variance
homogeneity test were performed for all continuous variables.
Values are described as mean ± standard deviation, and either a t-
test or Mann-Whitney U test was used for comparisons between
groups. The receiver operating characteristic (ROC) was used to
FIGURE 1 | A 56-year-old female patient with the left breast mass. The mass is located in outer quadrant of left breast (red round ROI), showing heterogeneous
hyperintensity on TIRM (A), hypointensity on T1WI (B), ADC (C), D (D) maps, isointensity on f (E), D* (F) maps, hypointensity on MD (G) and hyperintensity on MK
(H) maps. Graphs show signal intensity vs. b value fits in single pixels of invasive ductal carcinoma of the breast with the IVIM (I) and DKI (J) models.
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evaluate the diagnostic efficacy of each parameter. The stepwise
backward logistic regression method was used to fit multiple
parameters (P<0.1), and the parameters that were retained in
the equation were combined to generate predicted probabilities for
ROC curve evaluation. GraphPad Prism software (version 7.0) was
used to draw the box plots, and SPSS (version 22.0) and R (version
3.6.0) software were used for statistical analysis. Significance was
defined as p<0.05. The DeLong test was used to compare
diagnostic efficiency across different parameters.

Consistency of the parameters was evaluated by comparing
correlation factors within and between groups. Consistency
within a group was evaluated by comparing two measurements
by the same radiologist, and consistency between groups was
evaluated by comparing the first measurement of each
radiologist. When the interclass correlation coefficient (ICC)
was greater than 0.75, consistency was considered good;
between 0.50 and 0.75, fair; less than 0.50, very poor.
RESULTS

Clinical Data
A total of 202 female patients were enrolled. The average age
of 54 patients in the benign group was 43.8 ± 9.2 years (range
Frontiers in Oncology | www.frontiersin.org 493
28–62), and the average age of 148 patients in the malignant
group was 52.1 ± 11.0 years (range 27–80). The age difference
between the two groups was statistically significant (P<0.001).

Pathological Results
Among the 202 patients there were 215 lesions, 63 of which
were benign (including 15 adenopathy, 45 fibroadenoma, and
3 abscesses), and 152 of which were malignant (including
16 carcinomas in situ, 135 invasive carcinomas, and 1
adenoid cystadenocarcinoma).

Quantitative Parameters
ADC, D, MK, and MD values were statistically significant in the
identification of benign and malignant breast lesions (P<0.001),
while f andD* were not (P>0.05) (Table 1). The average values of
ADC, D, and MD were greater in the benign lesion group than in
the malignant lesion group, while the average MK value was
smaller (Table 1 and Figure 2).

Diagnostic Efficiency
Among the single-parameter indicators, ADC achieved the highest
sensitivity (91.45%), specificity (82.54%), and accuracy (88.84%).
The area under the ROC curve (AUC) was 0.915, and the critical
value for diagnosis was 0.983 mm2/ms. After logistic regression
TABLE 1 | Statistical result of various quantitative parameters in distinguishing benign and malignant breast lesions.

Benign Lesions (n = 63) Malignant Lesions (n = 152) Z value P value

ADC (mm2/ms) 1.26 ± 0.21 (1.03-1.41) 0.80 ± 0.09 (0.70-0.90) -9.570 <0.001
f (%) 6.85 ± 0.54 (5.03-9.45) 6.93 ± 0.71 (4.85-8.81) -0.322 0.748
D (mm2/ms) 1.15 ± 0.22 (0.99-1.39) 0.74 ± 0.17 (0.66-0.83) -9.432 <0.001
D* (mm2/ms) 6.71 ± 0.41 (5.21-8.40) 7.73 ± 0.73 (5.25-10.31) 1.717 0.086
MK (mm2/ms) 0.74 ± 0.19 (0.6-0.93) 1.05 ± 0.29 (0.92-1.17) 6.200 <0.001
MD (mm2/ms) 1.55 ± 0.56 (1.34-1.78) 1.07 ± 0.23 (0.87-1.21) -9.100 <0.001
June
 2021 | Volume 11 | Article
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FIGURE 2 | Box and scatter plots for the average distribution of ADC, D, MK, MD, D*, and f of benign vs. malignant breast lesions. (A–D) Average value of ADC, D,
MK and MD. (E, F) Average values of D* and f.
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analysis, the combined application of ADC and MK outperformed
ADC on most measures, demonstrating higher specificity (85.71%),
accuracy (89.30%), and AUC (0.923) (Table 2). AUCs for all single
parameters, as well as for ADC + MK, are shown in Figure 3.

The DeLong test showed that the diagnostic efficacy of ADC
was better than that of MK and D* (P<0.001), and there was no
statistical difference between D and MD (P=0.524, 0.180). There
was no significant difference in diagnostic efficacy between ADC
alone as compared to ADC + MK (P=0.268).

Consistency Testing
ICC values for ADC, D, MK and MD measurements were all
greater than 0.75, with good consistency of the inter- and intra-
reader reproducibility. The ICC values for fmeasurement (inter-
reader) was 0.675, and f and D* measurements (intra-reader)
was 0.724.
DISCUSSION

In this study, we find that the ADC, D, MK and MD values of
different DWI techniques have high diagnostic value in
Frontiers in Oncology | www.frontiersin.org 594
differentiating benign and malignant breast lesions. Of these
parameters, ADC had the best diagnostic performance, and the
combined application of ADC and MK values achieved even
higher diagnostic accuracy. A meta-analysis based on 13,847
lesions showed that ADC was meaningful in the differentiation of
benign and malignant lesions, and recommended using an ADC
value of 1.0 mm2/ms as the threshold (9). In the present study, we
found that if ADC <0.983 mm2/ms was used as the threshold, the
sensitivity was 91.45%, specificity was 82.54%, accuracy was
88.84%, and AUC was 0.915. Two b-values (0 and 1000 s/
mm2) were selected and the results showed that the average
ADC of benign lesions of this group was significantly lower than
that benign ones of meta-analysis, which is likely due to the
mainly inclusion of fibroadenoma in the benign group of this
study; fibrosis is known to reduce ADC values (25).

According to previous studies, the IVIM model should
include b-values greater than 200 s/mm2 (14). In the present
study a total of nine b-values were selected, seven of which were
less than 200 s/mm2 to ensure accurate reflection of the diffusion
of water molecules and blood microcirculation perfusion. In this
analysis only D was able to reliably differentiate between benign
and malignant breast lesions. D reflects the true diffusion of
TABLE 2 | The diagnostic performance of single and combined parameters.

Threshold AUC (95%CI) Sensitivity Specificity Accuracy

ADC (mm2/ms) <0.983 0.915 (0.870-0.960) 91.45% (139/152) 82.54% (52/63) 88.84% (191/215)
D (mm2/ms) <0.952 0.909 (0.864-0.954) 90.13% (137/152) 80.95% (51/63) 87.44% (188/215)
D* (mm2/ms) >0.873 0.574 (0.490-0.658) 42.76% (65/152) 77.78% (49/63) 53.02% (114/215)
MK (mm2/ms) >0.864 0.768 (0.688-0.849) 83.55% (127/152) 71.43% (45/63) 80.00% (172/215)
MD (mm2/ms) <1.297 0.895 (0.849-0.940) 88.82% (135/152) 79.37% (50/63) 86.05% (185/215)
ADC+MK / 0.923 (0.881-0.964) 90.79% (138/152) 85.71% (54/63) 89.30% (192/215)
June 2021 | Volume 1
FIGURE 3 | ROC curves of ADC, D, D*, MK, and MD.
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water molecules after removing the effects of microcirculation
perfusion, and the D value of malignant lesions is significantly
lower than that of benign ones, as we and others have shown (16,
26, 30). f represents the ratio between microcirculation perfusion
and overall diffusion. In a study by Liu et al. (16), the f value of
malignant lesions was found to be significantly higher than that
of benign lesions, which was thought to be related to the higher
microcirculation blood volume of malignant tumors. In the
present study, the average value of f was slightly higher in the
malignant group, but the difference was not statistically
significant. This may be due to the poor repeatability of f
values between different observers and different machines (31).
D* represents the perfusion-related diffusion of microcirculation
within the voxel, which is easily affected by neighboring
structures and motion artifacts. As such, it is not known to be
a good indicator of benign vs. malignant lesions (16, 30). Of the
three IVIM parameters, we would recommend only D for use in
differentiating benign and malignant breast lesions.

According to a preliminary study by Nogueira et al. (19), the
DKI model needs to contain high (>200 s/mm2) b-values. This
study used five b-values (0, 500, 1000, 1500 and 2000 s/mm2), and
showed that MD of the malignant group was significantly lower
than that of the benign group. This level of diagnostic efficiency is
consistent with the results of other studies (18, 32). MK takes into
account the heterogeneity and restriction of diffusion, and
therefore reflects the complexity of biological tissues (24).
Malignant lesions tend to have higher MK values than benign
lesions due to structural heterogeneity, high cell density,
interstitial vascular proliferation, and complex tissue structure,
which was demonstrated in this and other studies (18, 32).

In this study, the diagnostic power of the ADC value was
slightly higher than that of the DKI model. However, there was
no significant difference between the two groups, which is
consistent with the meta-analysis of Li et al. (32). The
combined parameters of ADC and MK had the highest
diagnostic efficiency, but there was no statistically significant
difference between the combined parameters and single-
parameter ADC. Taking into account the increased cost of
combined parameter scanning and processing times, the
single-parameter ADC value is more suitable for routine
clinical applications.

There are limitations to this study. First, to ensure objectivity
of data selection, ROIs were selected on an ADC map with
b=1000 s/mm2 and then copied to other parameter maps.
However, this method may have allowed for the inclusion of
images with poor signal-to-noise ratio, so the repeatability of
IVIM and DKI parameters in this group is likely to be poor.
Second, ROI measurements on one or even several selected
sections of the tumor cannot reflect the tumor heterogeneity
Frontiers in Oncology | www.frontiersin.org 695
comprehensively. Therefore, the whole-tumor histogram
analysis may be a more integrated method to investigate the
histopathologic basis. Finally, some scholars believe that there is
a correlation between IVIM or DKI parameters and prognostic
factors of breast cancer, such as tumor size, nuclear grade,
biological markers, and metastatic lymph nodes (26, 32, 33),
but we did not investigate the correlation between them and need
to be further improved in future research.

In conclusion, in the single parameter index of each DW-MRI
model in this study, ADC was most valuable in the differential
diagnosis of benign and malignant breast lesions. Although the
combined application of ADC and MK values can achieve higher
diagnostic efficacy than ADC alone, the difference is not
statistically significant. Since the ADC image offers high signal-
to-noise ratio, good data repeatability, and has the advantages of
simple and quick detection, the single index model is worthy of
further promotion in clinical applications.
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Purpose: To evaluate the potential of the texture features extracted from dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) intratumoral subregions to
distinguish benign from malignant breast tumors.

Materials andMethods: A total of 299 patients with pathologically verified breast tumors
who underwent breast DCE-MRI examination were enrolled in this study, including 124
benign cases and 175 malignant cases. The whole tumor area was semi-automatically
segmented on the basis of subtraction images of DCE-MRI in Matlab 2018b. According to
the time to peak of the contrast agent, the whole tumor area was partitioned into three
subregions: early, moderate, and late. A total of 467 texture features were extracted from
the whole tumor area and the three subregions, respectively. Patients were divided into
training (n = 209) and validation (n = 90) cohorts by different MRI scanners. The least
absolute shrinkage and selection operator (LASSO) method was used to select the
optimal feature subset in the training cohort. The Kolmogorov-Smirnov test was first
performed on texture features selected by LASSO to test whether the samples followed a
normal distribution. Two machine learning methods, decision tree (DT) and support vector
machine (SVM), were used to establish classification models with a 10-fold cross-
validation method. The performance of the classification models was evaluated with
receiver operating characteristic (ROC) curves.

Results: In the training cohort, the areas under the ROC curve (AUCs) for the DT_Whole
model and SVM_Whole model were 0.744 and 0.806, respectively. In contrast, the AUCs
of the DT_Early model (P = 0.004), DT_Late model (P = 0.015), SVM_Early model (P =
0.002), and SVM_Late model (P = 0.002) were significantly higher: 0.863 (95% CI, 0.808–
0.906), 0.860 (95% CI, 0.806–0.904), 0.934 (95% CI, 0.891–0.963), and 0.921 (95% CI,
0.876–0.954), respectively. The SVM_Early model and SVM_Late model achieved better
performance than the DT_Early model and DT_Late model (P = 0.003, 0.034, 0.008, and
0.026, respectively). In the validation cohort, the AUCs for the DT_Whole model and
SVM_Whole model were 0.670 and 0.708, respectively. In comparison, the AUCs of the
DT_Early model (P = 0.006), DT_Late model (P = 0.043), SVM_Early model (P = 0.001),
and SVM_Late model (P = 0.007) were significantly higher: 0.839 (95% CI, 0.747–0.908),
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0.784 (95% CI, 0.601–0.798), 0.890 (95% CI, 0.806–0.946), and 0.865 (95% CI, 0.777–
0.928), respectively.

Conclusion: The texture features from intratumoral subregions of breast DCE-MRI
showed potential in identifying benign and malignant breast tumors.
Keywords: breast tumors, magnetic resonance imaging, machine learning, texture analysis, DCE-MRI
INTRODUCTION

Breast cancer is one of the most common cancers and the main
cause of cancer deaths in women, accounting for approximately
30% of new cancer cases in women and 14% of cancer deaths (1).
Advances in medical technology have resulted in a relatively high
cure rate for early breast cancer through radiotherapy,
chemotherapy, and surgery (2, 3). The treatment options for
benign and malignant breast tumors differ, as do the local
recurrence and survival rates (4). Benign breast tumors are
generally curable through active treatment, whereas malignant
tumors are difficult to cure and usually require surgery after
neoadjuvant therapy to suppress local recurrence (5–7).
Therefore, distinguishing benign from malignant breast tumors
quickly and accurately is important.

Magnetic resonance imaging (MRI) is a non-invasive imaging
method increasingly being used to detect and diagnose breast
cancer. MRI has a higher sensitivity for the detection of breast
lesions than mammography or breast ultrasound (8, 9). Among
the available MRI methods, dynamic contrast-enhanced MRI
(DCE-MRI) can provide tumor anatomical information and
hemodynamic information with high spatial resolution, and it
plays an important role in the diagnosis, differential diagnosis,
and treatment response assessment of breast cancer (10–13).
However, many benign lesions show strong contrast
enhancement, which can lead to false-positive diagnoses,
unnecessary biopsies, or overtreatment (14). The rate of
preoperative breast DCE-MRI examinations is increasing, and
an effective method for characterizing enhanced lesions is crucial
to improve the accuracy of diagnosis.

Texture analysis refers to the extraction of texture feature
parameters through specific image processing technology to
obtain a quantitative or qualitative description of the texture
(15, 16). Texture analysis is applied to breast MRI through image
processing methods, which can be used to quantify the
heterogeneity of lesions (17, 18). Studies have shown that
texture features that characterize intratumoral heterogeneity
can help identify benign and malignant breast tumors and
distinguish molecular subtypes of breast cancer (19–21).

Previous studies have mainly extracted texture features from
the whole tumor area in MRI images. However, the texture
features derived from subregions within the breast tumor may
provide valuable information to aid in clinical diagnosis and help
patients develop personal treatment plans (22–25). Fan et al. (26)
have shown that the texture features extracted from intratumoral
subregions of DCE-MRI can be used to predict Ki-67 status in
estrogen receptor (ER)-positive breast cancer. To our knowledge,
no research has been performed on the identification of benign
298
and malignant breast tumors on the basis of texture features
extracted from intratumoral subregions of breast DCE-MRI. The
purpose of this study was to evaluate the potential of the texture
features extracted from DCE-MRI of intratumoral subregions for
distinguishing benign and malignant breast tumors.
MATERIALS AND METHODS

Study Cohort
This study was approved by the Ethics Review Committee at
Shengjing Hospital of China Medical University (No.
2019PS175K), and the requirement for informed consent was
waived because of the retrospective nature of the study. Between
January 2017 and January 2020, patients who underwent breast
DCE-MRI examinations were reviewed through the image
archiving and communication system (PACS) at our
institution. The study cohort initially included 378 patients.
The inclusion criteria were as follows: (1) patients who
underwent breast DCE-MRI and (2) patients with benign or
malignant breast tumors confirmed by histopathology. The
exclusion criteria were as follows: (1) patients treated with
surgery, chemotherapy, or radiotherapy before DCE-MRI (n =
43); (2) patients diagnosed through excisional biopsy before
DCE-MRI (n = 26); and (3) patients with insufficient image
quality for subsequent processing because of obvious motion
artifacts (n = 10). Consequently, 299 patients (mean age, 48.30 ±
9.74 years; range, 25–84 years) were divided into training (n =
209) and validation (n = 90) cohorts by different MRI scanners,
including 124 benign and 175 malignant breast tumors. The
clinical characteristics of the study cohort are summarized in
Table 1. The flowchart of this study is shown in Figure 1.

Image Acquisition
In the training cohort, DCE-MRI examinations were performed
with a GE 3.0T MRI scanner (Signa HDxt, GE Healthcare)
equipped with a dedicated eight-channel bilateral breast coil on
patients in a prone position. A transverse fat-suppression T1-
weighted pre-contrast scan was first obtained with the
VIBRANT-VX technique. Eight phases of fat-suppression T1-
weighted post-contrast scans were acquired after intravenous
injection of the contrast agent (Magnevist, Bayer-Schering
Pharmaceuticals, Germany) at a dose of 0.15 mmol per kg
body weight at 4 mlL/s and subsequent flushing with an equal
volume of saline at the same injection speed. The following
imaging parameters were used: repetition time (TR), 7.42 ms;
echo time (TE), 4.25 ms; flip angle, 15°; slice thickness, 2.20 mm;
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spacing between slices, 2.20 mm; field of view, 340 × 340 mm2;
image matrix, 1,024 × 1,024; slice number, 78. For each patient,
eight phases of subtraction images were obtained by subtracting
pre-contrast images from eight post-contrast images.

In the validation cohort, DCE-MRI examinations were
performed with a Philips 3.0T MRI scanner (Ingenia, Philips
Medical System, Best, Netherlands) equipped with a dedicated
seven-channel bilateral breast coil with patient in a prone
position. First, an axial fat-saturated T1-weighted pre-contrast
scan was acquired. Then, eight axial contrast-enhanced fat-
saturated T1-weighted scans were acquired after the
intravenous bolus injection of the same contrast with the same
dose. The imaging parameters were as follow: repetition time
(TR), 4.14 ms; echo time (TE), 2.10 ms; flip angle, 12°; slice
thickness, 2.00 mm; spacing between slices, 1.00 mm; field of
view, 340 × 340 mm2; matrix, 380 × 380; slice number, 78. Eight
subtraction sequences were obtained by subtracting the pre-
contrast scan from each of the eight post-contrast scans.

Image Processing and
Lesion Segmentation
Two senior radiologists, with 10 and 15 years of experience in
interpreting breast MRI were invited to review the subtraction
images in the fourth phase and reached a consensus in selecting
the slice image with the maximum tumor diameter for each
patient for subsequent analysis (27). During the image review,
the radiologists were blind to the patients’ pathological results.
The whole tumor area was segmented with a semi-automatic
method in Matlab 2018b (Mathworks, Natick, MA, USA), as
described below (28, 29). One of the two radiologists manually
delineated a region of interest (ROI) with an arbitrary shape
around the lesion area on the subtraction image. The pixel gray
levels within the ROI were first normalized to m ± 3s (m: mean
gray level of pixels within the ROI; s: standard deviation), and
the range was quantized to 8 bits/pixel to change the signal to
Frontiers in Oncology | www.frontiersin.org 399
noise ratio of the texture results (30–32). A spatial fuzzy C-means
(FCM) algorithm was then used to delineate the contour
boundary of the lesion according to the ROI, and the whole
lesion area was refined through morphological processing
methods (33–35). Another radiologist verified and proofread
the results of the semi-automatic breast tumor segmentation.

Intratumoral Subregion Partition
To better understand the intratumoral heterogeneity of breast
tumors, as in a previous study (26), we divided the lesion area
into three subregions according to the variations in pixel signal
intensity in different phases. The specific partition details are
as follows:

The relative enhancement of the post-contrast image
compared with the pre-contrast image on a pixel-by-pixel basis
was calculated with the following formula:

H(m, n, t) =
I(m, n, t) − I(m, n, t0)

I(m, n, t0)
(1)

where I(m, n, t) and I(m, n t0) represent the signal intensity of the
pixel (m, n) captured at times t and t0 (the pre-contrast moment)
(36). The time-signal intensity curve, H(m, n, t), was defined to
describe the variation in the relative enhancement over time
(37–39). The time to peak (TTP), which represents the arrival
time of the peak relative enhancement, was calculated with the
following formula:

TTP(m, n) = argmax
t
 H(m, n, t) (2)

Then the pixels within the tumor region were divided into
three subregions according to their TTP values. More
specifically, pixel sets at the first four, fifth or sixth, and
seventh or eighth phases to achieve peak enhancement values
were defined as early, moderate, and late subregions, respectively;
this method was similar to those described in previous studies
TABLE 1 | Clinical characteristics of the patients selected for this study.

Characteristic Training cohort Validation cohort

Number % Number %

Total patients 209 90
Benign (age range, 25–82 years) 84 40.2 40 44.4
Malignant (age range, 29–84 years) 125 59.8 50 55.6

BI-RADS
3 18 8.6 7 7.8
4A 56 26.8 27 30
4B 43 20.6 16 17.8
4C 68 32.5 35 38.9
5 24 11.5 5 5.5

Histopathological Type
Benign 84 40.2 40 44.4
Adenosis 48 23.0 23 25.5
Fibroadenoma 32 15.3 14 15.5
Papilloma 4 1.9 3 3.4

Malignant 125 59.8 50 55.6
Invasive carcinoma of no special type 116 55.5 41 45.6
Ductal carcinoma in situ 6 2.8 5 5.6
Invasive micropapillary carcinoma 2 1.0 3 3.3
Invasive lobular carcinoma 1 0.5 1 1.1
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(26, 36). Therefore, the tumor was divided into three regions
representing different sets of TTP values.

Texture Feature Extraction
A total of 467 texture features were extracted from the whole
tumor area and the three subregions with Matlab 2018b. The
feature extraction methods could be classified into the following
four categories: histogram, gray-level co-occurrence matrix
(GLCM), gray-level run length matrix (GRLM), and discrete
wavelet transform (DWT). Detailed information on the features
is shown in Table 2. Each GLCM feature was calculated by using
four angles (0, 45, 90, and 135°) and four distances (1, 2, 3, and 4
pixels). Each GRLM feature was calculated by using four angles
(0, 45, 90, and 135°) and a distance of 1 pixel. In the following,
Frontiers in Oncology | www.frontiersin.org 4100
(d, 0), (d, d), (0, d), and (-d, -d) were used to represent 0, 45, 90,
and 135°, respectively, where d is the distance. Each DWT feature
was calculated with four scales and three directions (horizontal,
vertical, and diagonal) to generate low and high frequency
components. In the following content, for example, Haar_2HH
was used to represent the horizontal high frequency component
of the second scale with the Haar wavelet.

Feature Selection and Model Construction
To reduce the dimensionality of the features, the correlation
between features was first tested with Pearson’s correlation
analysis, and features with correlation coefficients of >0.95
relative to other features were removed. The remaining
features were filtered by the least absolute shrinkage and
FIGURE 1 | The flowchart adopted in this study.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics on Breast DCE-MRI
selection operator (LASSO) method to select the optimal feature
subset (40). Two machine learning models, decision tree (DT)
and support vector machine (SVM), were used to construct
classification models based on the optimal feature subset in the
training cohort with a 10-fold cross-validation method for
identifying benign and malignant breast tumors. And the
classification models were tested by using a independent
validation cohort. The 10-fold cross-validation refers to
random division of the data set into 10 sets, nine of which
were used for training and the last of which was used for testing.
This process was repeated 10 times, and the test data differed
each time.

Statistical Analysis
All statistical analyses were performed in SPSS 22.0 (IBM, Armonk,
NY, USA). The Kolmogorov-Smirnov test was first performed on
texture features selected by LASSO to assess whether the samples
followed a normal distribution (41); if so, the variables in the tables
are represented by means ± standard deviation (SD), and if not, the
variables in the tables are represented by medians ± interquartile
range. Univariate logistic regression analysis was used to evaluate
the performance of an independent feature in distinguishing benign
frommalignant breast tumors. The receiver operating characteristic
(ROC) curve constructed in the professional statistics software
MedCalc (version 14.10.20, http://www.medcalc.org/) was used to
assess the classification performance by calculating the area under
the ROC curve (AUC). The corresponding accuracy, sensitivity, and
specificity were also determined. The DeLong test was used to
determine the statistical significance of differences between AUCs. A
two-tailed P value of <0.05 was considered statistically significant.

The intraobserver variability of texture features extracted by
the two radiologists was evaluated by using intraclass correlation
coefficients [ICC, (0, 0.4), poor agreement; (0.4, 0.6), moderate
agreement; (0.6, 0.8), good agreement; and (0.8, 1), excellent
agreement] (42, 43).
RESULTS

Study Cohort
A total of 299 patients were enrolled in this study. In the training
cohort, the patients had 84 (40.2%) benign breast tumors classified
Frontiers in Oncology | www.frontiersin.org 5101
into three histopathological types: adenosis (48), fibroadenoma (32),
and papilloma (4). The 125 (59.8%) malignant breast tumors
comprised 116 invasive carcinomas of no special type, 6 ductal
carcinomas in situ, 2 invasive micropapillary carcinomas, and 1
invasive lobular carcinoma. In the validation cohort, the patients
had 40 (44.4%) benign breast tumors classified into three
histopathological types: adenosis (23), fibroadenoma (14), and
papilloma (3). The 50 (55.6%) malignant breast tumors
comprised 41 invasive carcinomas of no special type, 5 ductal
carcinomas in situ, 3 invasive micropapillary carcinomas, and 1
invasive lobular carcinoma. The results of the whole tumor area
segmentation and intratumoral subregion partition are displayed in
Figure 2, which shows two randomly selected cases, one benign case
and the other malignant case.

Univariate Analysis
The results of univariate logistic regression analysis for
identifying benign and malignant breast tumors are displayed
in Table 3, which shows the top six features with the best
performance extracted from the three subregions and the
whole tumor area. The AUCs of features derived from the
whole tumor area ranged from 0.732 to 0.786. Features from
the early subregion performed best among the three subregions,
with AUC values ranging from 0.787 to 0.886. The AUCs of the
run length non-uniformity (1, 0) (P < 0.001), difference square
(0, 1) (P = 0.004), and short run emphasis (1, 0) (P < 0.001) from
the early subregion were significantly higher than those from the
whole tumor area. The AUCs from the moderate subregion
ranged from 0.715 to 0.777, and the AUCs from the late
subregion ranged from 0.685 to 0.884. Among all individual
features, the run length nonuniformity (1, 0) extracted from the
early region achieved the highest AUC of 0.886 [95% confidence
interval (CI), 0.836–0.926].

Performance of Classification Models
Table 4 shows the performance of the classification models for
distinguishing benign from malignant breast tumors in the training
and validation cohorts, and the corresponding ROC curves are
presented in Figures 3 and 4. In the training cohort, the AUCs of
the DT_Whole model and SVM_Whole model were 0.744 and
0.806, respectively. In contrast, the AUCs of the DT_Early model
(P = 0.004), DT_Late model (P = 0.015), SVM_Early model
TABLE 2 | Detailed information on the extracted features.

Methods Texture features Number

Histogram Mean, Kurtosis, Skewness, Variance 4
GLCM Autocorrelation, Contrast, Correlation, Cluster prominence, Cluster shadow, Dissimilarity, Energy, Entropy, Homogeneity, Maximum probability,

Sum of square, Sum average, Sum variance, Sum entropy, Difference square, Difference entropy, Information measure of correlation, Inverse
difference normalized, Inverse difference moment normalized

380

GRLM Short run emphasis, Long run emphasis, Gray-level non-uniformity, Run length non-uniformity, Fraction of image in runs, Low gray-level run
emphasis, High gray-level run emphasis, Short run low gray-level emphasis, Short run high gray-level emphasis, Long run low gray-level
emphasis, Long run high gray-level emphasis

44

DWT Harr parameters 13
Deubechies2 parameters 13
Symlet4 parameters 13

Total 467
July 2021 | Volume 11 | Articl
GLCM, gray-level co-occurrence matrix; GRLM, gray-level run length matrix; DWT, discrete wavelet transform.
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(P = 0.002), and SVM_Late model (P = 0.002) were significantly
higher: 0.863 (95% CI, 0.808–0.906), 0.860 (95% CI, 0.806–0.904),
0.934 (95% CI, 0.891–0.963), and 0.921 (95% CI, 0.876–0.954),
respectively. The SVM_Early model and SVM_Late model achieved
Frontiers in Oncology | www.frontiersin.org 6102
better performance than the DT_Early model and DT_Late model
(P = 0.003, 0.034, 0.008, and 0.026, respectively), as shown in
Table 5. In the validation cohort, the AUCs of the DT_Whole
model and SVM_Whole model were 0.670 and 0.708, respectively.
TABLE 3 | Univariate analysis for predicting benign and malignant breast tumors.

Methods Subregions Features AUC 95% CI P-valuea

Intratumoral subregions Early Run length nonuniformity (1, 0) 0.886 0.836–0.926 <0.001
Difference square (0, 1) 0.877 0.825–0.918 0.004
Short run emphasis (1, 0) 0.870 0.817–0.913 <0.001
Correlation (−1, 0) 0.836 0.779–0.884 0.081
Information measure of correlation (−2, 0) 0.820 0.761–0.870 0.391
Deubechies2_2HH 0.787 0.725–0.840 0.186

Moderate Gray-level non-uniformity (1, 0) 0.777 0.715–0.832 <0.001
Deubechies2_1VH 0.740 0.675–0.798 0.357
Haar_1DH 0.736 0.671–0.795 <0.001
Symlet4_1DH 0.729 0.664–0.788 0.016
Deubechies2_1DH 0.718 0.651–0.778 0.003
Mean 0.715 0.648–0.775 0.238

Late Information measure of correlation (0,1) 0.884 0.833–0.924 0.002
Information measure of correlation (−1,0) 0.853 0.798–0.898 0.059
Deubechies2_2VH 0.849 0.797–0.898 0.001
Haar_1HH 0.840 0.784–0.887 0.001
Haar_4HH 0.724 0.658–0.783 <0.001
Mean 0.685 0.617–0.747 0.157

Whole tumor area / Deubechies2_2DH 0.786 0.725–0.840 /
Haar_2DH 0.779 0.717–0.833 /
Symlet4_2VH 0.776 0.713–0.831 /
Symlet4_2HH 0.747 0.682–0.804 /
Deubechies2_3DH 0.734 0.669–0.793 /
Mean 0.732 0.667–0.791 /
July 2
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AUC, area under the receiver operating characteristic curve; CI, confidence interval.
aP-value represents the comparison results of the features from the three intratumoral subregions and the same features from the whole tumor area.
The symbol ("/") represents null.
FIGURE 2 | Results of whole tumor segmentation and intratumoral subregion partition. The first row shows the results of a benign case: (A) subtraction image with
the maximum tumor diameter; (B) result of the whole tumor area segmented with a semi-automatic method; (C) result of intratumoral subregion partition, in which
red, green, and blue represent the early, moderate, and late subregions, respectively. The second row shows the results of a malignant case: (D) subtraction image;
(E) result of the whole tumor area; (F) result of intratumoral subregion partition.
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In comparison, the AUCs of the DT_Early model (P = 0.006),
DT_Late model (P = 0.043), SVM_Early model (P = 0.001), and
SVM_Late model (P = 0.007) were significantly higher: 0.839 (95%
CI, 0.747–0.908), 0.784 (95% CI, 0.601–0.798), 0.890 (95% CI,
0.806–0.946), and 0.865 (95% CI, 0.777–0.928), respectively. The
SVM_Early model and SVM_Late model achieved better
performance than the DT_Early model and DT_Late model
(P = 0.018, 0.047, 0.035, and 0.029, respectively), as shown in
Table 6. However, there was no significant difference between the
SVM_Early model and the SVM_Late model in the training and
validation cohorts (P = 0.524 and P = 0.523, respectively), and no
significant difference between the DT_Earlymodel and the DT_Late
model (P = 0.945 and P = 0.332, respectively). Fifteen texture
features extracted from the early subregion and 17 features extracted
from the late subregion were selected by LASSO, as listed inTable 7.
Frontiers in Oncology | www.frontiersin.org 7103
Interobserver Agreement Evaluation
The texture features derived from the two groups of ROIs
delineated independently by two radiologists showed excellent
agreement [ICCs for whole lesion region, (0.875, 0.943); ICCs for
early region, (0.853, 0.936); ICCs for moderate region, (0.837,
0.928); and ICCs for late region, (0.842, 0.931)].
DISCUSSION

This study investigated the relationship between texture features
extracted from intratumoral subregions of breast DCE-MRI and
the differential diagnosis of benign and malignant breast tumors.
Features from subregions were able to distinguish benign from
A B

FIGURE 3 | ROC curves of the DT classification models established by using the features extracted from the three intratumoral subregions and the whole tumor
area. (A) ROC curves from the training cohort. (B) ROC curve from the external validation cohort.
TABLE 4 | Performance of classification models for identifying benign and malignant breast tumors.

Models Cohort AUC 95% CI Sensitivity Specificity Accuracy P-valuea

DT Early Training 0.863 0.808–0.906 80.0% 91.7% 79.8% 0.004
Validation 0.839 0.747–0.908 90.0% 80.0% 77.8% 0.006

Moderate Training 0.777 0.715–0.832 79.2% 76.2% 76.5% 0.473
Validation 0.718 0.613–0.808 70.0% 75.0% 74.4% 0.406

Late Training 0.860 0.806–0.904 80.8% 84.5% 78.5% 0.015
Validation 0.784 0.601–0.798 82.0% 77.5% 76.7% 0.043

Whole Training 0.744 0.679–0.802 86.4% 67.9% 74.2% /
Validation 0.670 0.563–0.766 74.0% 65.0% 67.8% /

SVM Early Training 0.934 0.891–0.963 89.6% 86.9% 88.5% 0.002
Validation 0.890 0.806–0.946 84.0% 85.0% 83.3% 0.001

Moderate Training 0.868 0.814–0.911 81.6% 84.5% 80.4% 0.078
Validation 0.737 0.634–0.824 80.0% 73.5% 72.2% 0.664

Late Training 0.921 0.876–0.954 86.4% 85.7% 84.5% 0.002
Validation 0.865 0.777–0.928 82.0% 80.0% 80.0% 0.007

Whole Training 0.806 0.746–0.857 69.6% 83.3% 65.5% /
Validation 0.708 0.602–0.799 88.0% 67.5% 61.1% /
July 2021
 | Volume 11 | Artic
AUC, area under the receiver operating characteristic curve; CI, confidence interval; DT, decision tree; SVM, support vector machine.
aP-value represents the comparison results of the AUC value of the same model established by features from intratumoral subregions and the whole tumor area..
The symbol ("/") represents null.
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malignant breast tumors, and features from subregions
representing the early and late TTP values achieved better
performance than those from the whole tumor area in the
training and validation cohorts. The SVM_Early model,
SVM_Moderate model, and SVM_Late model demonstrated
higher performance than the DT_Early model, DT_Moderate
model, and DT_Late model, respectively.

Texture analysis can characterize intratumoral heterogeneity
on the basis of quantitative image features extracted from
conventional medical imaging to help diagnose, stage, and
predict the prognosis and response to treatment in multiple
oncology fields (44–46). Intratumoral heterogeneity reflects
differences in biological characteristics, such as gene expression,
metabolism, and angiogenesis (23, 47). Texture features derived
Frontiers in Oncology | www.frontiersin.org 8104
from intratumoral subregions that reflect the heterogeneity of
breast tumors, rather than the whole tumor area, may play a more
important role in the prognostic analysis and identification of
hormone receptor status in breast cancer (26, 36). A previous
study has shown that texture features extracted from subregions
with rapid delayed washout can be used to assess ER status and
lymph node classification in breast cancer (48). Chang et al. (49)
have quantified intratumoral heterogeneity on breast DCE-MRI
by using a subregion-based feature extraction method for
predicting ER status, human epidermal growth factor receptor 2
(HER2) status, and triple-negative breast cancer, achieving
accuracy of 73.53, 82.35, and 77.45%, respectively. In this study,
an intratumoral subregion partition method was used to
distinguish benign from malignant breast tumors. Texture
TABLE 5 | P-values of DeLong tests between subregion models in the training cohort.

Classifier DT_Early DT_Moderate DT_Late SVM_Early SVM_Moderate SVM_Late

DT_Early / 0.013 0.945 0.003 0.002 0.034
DT_Moderate 0.013 / 0.035 0.001 0.004 0.001
DT_Late 0.945 0.035 / 0.008 0.843 0.026
SVM_Early 0.003 0.001 0.008 / 0.020 0.524
SVM_Moderate 0.002 0.004 0.843 0.020 / 0.091
SVM_Late 0.034 0.001 0.026 0.524 0.091 /
July 2021 | Volume 11 | Art
DT, decision tree; SVM, support vector machine.
The symbol ("/") represents null.
TABLE 6 | P-values of DeLong tests between subregion models in the validation cohort.

Classifier DT_Early DT_Moderate DT_Late SVM_Early SVM_Moderate SVM_Late

DT_Early / 0.068 0.332 0.018 0.111 0.047
DT_Moderate 0.068 / 0.370 0.006 0.760 0.012
DT_Late 0.332 0.370 / 0.035 0.511 0.029
SVM_Early 0.018 0.006 0.035 / 0.007 0.523
SVM_Moderate 0.111 0.760 0.511 0.007 / 0.032
SVM_Late 0.047 0.012 0.029 0.523 0.032 /
The symbol ("/") represents null.
A B

FIGURE 4 | ROC curves of the SVM classification models established by using the features extracted from the three intratumoral subregions and the whole tumor
area. (A) ROC curves from the training cohort. (B) ROC curves from the external validation cohort.
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features were derived from three subregions and the whole tumor
area, and the corresponding classification models were
established. The models built with features from the early and
late subregions achieved better performance than models built
with features from the whole tumor area. A possible explanation
for this finding is that the intratumoral subregions reflect
angiogenesis, which may be indicative of the aggressiveness of
malignant breast tumors (50).

A previous study has investigated the diagnostic performance
of mammography texture analysis in differentiating benign from
malignant breast tumors (51). In the present study, the
subtraction images of DCE-MRI were used for texture analysis.
Previous studies have discussed the roles of histograms, GLCM,
and GRLM-based texture features in the differential diagnosis or
treatment response assessment in breast cancer (14, 44). In
addition to the features used in these studies, DWT-based
features were extracted in this study. DWT is used to modify
the image from the spatial domain to the frequency domain and
has been extensively applied to feature extraction from
electroencephalogram signals (52, 53). In the present univariate
analysis, the DWT-based features derived from the late
subregion, including Deubechies2_2VH (P = 0.001),
Haar_1HH (P = 0.001), and Haar_4HH (P < 0.001),
Frontiers in Oncology | www.frontiersin.org 9105
performed better in distinguishing benign from malignant
breast tumors than those derived from the whole tumor area.

Two prevalent machine learning methods, DT and SVM, were
applied to establish classification models in this study. To prevent
overfitting, a 10-fold cross-validation method was used. The models
established with features from the early and late subregions achieved
better performance than models from the whole tumor area in the
training and validation cohorts. However, no significant differences
were found between the performance of models from the moderate
subregion and that of models from the whole tumor area in the
training and validation cohorts (P = 0.473 and P = 0.078, P = 0.406
and P = 0.664, respectively). Furthermore, the SVM_Early model,
SVM_Moderate model, and SVM_Late model had higher AUCs
than the DT_Early model, DT_Moderate model, and DT_Late
model. SVM initially maps the input vector to a higher-
dimensional feature space and identifies the hyperplane that
divides the data points into two categories; the resulting classifier
can reliably classify new samples and achieve considerable
versatility (54).

A previous study by Li et al. (55) has applied four methods to
classify benign and malignant breast tumors, and reported that the
DT model achieved the best performance, with an AUC of 0.781, a
sensitivity of 0.6, and a specificity of 0.894. Another study has used
TABLE 7 | Texture features extracted from early and late subregions selected with LASSO.

Features Benign Malignant

Early subregion
Meana 133.642 ± 41.162 168.686 ± 42.720
Variancea 27.638 ± 10.281 33.551 ± 8.434
Difference square (0, 1)b 0.220 ± 0.104 0.991 ± 0.357
Correlation (−2, 0)b 0.654 ± 0.259 0.823 ± 0.0987
Information measure of correlation (0, 1)b 0.6131 ± 0.186 0.822 ± 0.0691
Short run emphasis (1, 0)b 0.897 ± 0.0944 0.622 ± 0.114
Run length non-uniformity (1, 0)b 560.054 ± 13.620 426.963 ± 52.547
Deubechies2_2HHb 7.810 ± 2.364 4.399 ± 1.231
Deubechies2_1VHb 9.040 ± 4.241 4.853 ± 1.680
Symlet4_1VHb 8.174 ± 3.807 4.359 ± 1.445
Haar_4HHb 3.231 ± 1.749 5.317 ± 1.992
Deubechies2_3HHb 4.963 ± 1.313 3.826 ± 0.831
Symlet4_4VHb 3.089 ± 1.469 4.938 ± 1.845
Symlet4_1DHb 5.212 ± 2.273 2.517 ± 0.964
Late subregion
Meana 117.859 ± 29.076 136.495 ± 29.933
Variancea 30.496 ± 7.022 35.016 ± 7.631
Contrast (0,1)b 0.384 ± 0.203 0.716 ± 0.252
Information measure of correlation (0, 1)a −0.595 ± 0.099 −0.441 ± 0.0807
Information measure of correlation (−1, 0)b −0.594 ± 0.0807 −0.462 ± 0.0492
Short run emphasis (1, 0)b 0.672 ± 0.117 0.810 ± 0.149
Haar_1HHa 7.709 ± 4.446 13.814 ± 4.073
Deubechies2_2VHa 5.455 ± 2.949 9.708 ± 2.897
Haar_2HHa 6.651 ± 4.085 8.691 ± 2.746
Haar_4HHb 5.029 ± 1.993 2.895 ± 0.978
Haar_3VHb 4.496 ± 1.049 5.425 ± 1.343
Haar_4DHb 2.048 ± 0.881 1.567 ± 0.569
Deubechies2_3VHb 4.640 ± 1.481 5.489 ± 1.427
Deubechies2_4VHb 4.287 ± 1.630 3.103 ± 1.293
Deubechies2_4DHb 1.292 ± 0.393 1.835 ± 0.720
Symlet4_3HHb 3.335 ± 1.161 4.755 ± 1.129
Symlet4_3VHb 3.722 ± 1.434 5.611 ± 1.262
July 2021 | Volume 11
aThe data are means ± SD.
bThe data are medians ± interquartile range.
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an SVM model for classifying benign and malignant breast tumors
and obtained a sensitivity of 66.67% and a specificity of 93.55% (56).
Wang et al. (20) have used logistic regression analysis to distinguish
benign and malignant breast tumors, and achieved an accuracy of
79.5%, a sensitivity of 0.607, a specificity of 0.800, and an AUC of
0.802. In comparison, the best classification performance of our
SVM_Early model achieved an AUC of 0.934, a sensitivity of 89.6%,
a specificity of 86.9%, and an accuracy 88.5%. However, studies in
which the classification model is based on deep learning methods
have reported higher accuracy in distinguishing benign and
malignant breast lesions (57, 58).

In addition, we separately evaluated the intraobserver variability
of texture features extracted from the whole lesion region and from
three different intratumoral subregions. The two radiologists
showed high consistency in calculating texture features from the
single-slice method, and all ICCs were greater than 0.8. The
intraobserver variability was mainly related to slice selection and
ROI delineation. Hence, standardized strategies for ROI
determination are crucial.

This study has some limitations. First, the sample size was
relatively small. Second, only a representative single-slice image
was analyzed, and thus some useful information on the tumor
might have been missed. Texture analysis based on three-
dimensional breast tumor lesions may yield more useful
information (59). Finally, the subtraction images of breast DCE-
MRI were used to extract texture features. Features derived from
post-contrast images or diffusion weighted imaging images may be
helpful in distinguishing benign frommalignant breast tumors (60).
CONCLUSION

The texture features extracted from intratumoral subregions of
breast DCE-MRI can be used as imaging biomarkers for the
differential diagnosis of benign from malignant breast tumors.
Specifically, features derived from subregions representing the
early and late TTP values achieved better performance than
features from the whole tumor area. Further research with a
larger sample size is needed to verify the results of this study.
Frontiers in Oncology | www.frontiersin.org 10106
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12. Dalmış MU, Gubern-Mérida A, Vreemann S, Karssemeijer N, Mann R, Platel
B. A Computer-Aided Diagnosis System for Breast DCE-MRI at High
Spatiotemporal Resolution.Med Phys (2016) 43(1):84. doi: 10.1118/1.4937787

13. Pinker K, Helbich TH, Morris EA. The Potential of Multiparametric MRI of
the Breast. Br J Radiol (2017) 90(1069):20160715. doi: 10.1259/bjr.20160715

14. Zhou J, Zhang Y, Chang KT, Lee KE, Wang O, Li J, et al. Diagnosis of Benign
and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep
Learning With Consideration of Peritumor Tissue. J Magn Reson Imaging
(2020) 51(3):798–809. doi: 10.1002/jmri.26981

15. Aker M, Ganeshan B, Afaq A, Wan S, Groves AM, Arulampalam T. Magnetic
Resonance Texture Analysis in Identifying Complete Pathological Response
to Neoadjuvant Treatment in Locally Advanced Rectal Cance. Dis Colon
Rectum (2019) 62(2):163–70. doi: 10.1097/DCR.0000000000001224

16. Castellano G, Bonilha L, Li LM, Cendes F. Texture Analysis of Medical
Images. Clin Radiol (2004) 59(12):1061–9. doi: 10.1016/j.crad.2004.07.008

17. Scalco E, Rizzo G. Texture Analysis of Medical Images for Radiotherapy
Applications. Br J Radiol (2017) 90(1070):20160642. doi: 10.1259/bjr.20160642

18. Alobaidli S, McQuaid S, South C, Prakash V, Evans P, Nisbet A. The Role of
Texture Analysis in Imaging as an Outcome Predictor and Potential Tool in
Radiotherapy Treatment Planning. Br J Radiol (2014) 87(1042):20140369.
doi: 10.1259/bjr.20140369

19. Mai H, Mao Y, Dong T, Tan Y, Huang X, Wu S, et al. The Utility of Texture
Analysis Based on Breast Magnetic Resonance Imaging in Differentiating
Phyllodes Tumors From Fibroadenomas. Front Oncol (2019) 9:1021.
doi: 10.3389/fonc.2019.01021

20. Wang BT, Fan WP, Xu H, Li LH, Zhang XH, Wang K, et al. Value of Magnetic
Resonance Imaging Texture Analysis in the Differential Diagnosis of Benign and
Malignant Breast Tumors. ChinMed Sci J (2019) 34(1):33–7. doi: 10.24920/003516

21. FanM, Zhang P, Wang Y, PengW,Wang S, Gao X, et al. Radiomic Analysis of
Imaging Heterogeneity in Tumours and the Surrounding Parenchyma Based
on Unsupervised Decomposition of DCE-MRI for Predicting Molecular
Subtypes of Breast Cancer. Eur Radiol (2019) 29(8):4456–67. doi: 10.1007/
s00330-018-5891-3

22. Carvalho ED, Filho AOC, Silva RRV, Araújo FHD, Diniz JOB, Silva AC, et al.
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Artificial intelligence (AI) has invaded our daily lives, and in the last decade, there have been
very promising applications of AI in the field of medicine, including medical imaging, in vitro
diagnosis, intelligent rehabilitation, and prognosis. Breast cancer is one of the common
malignant tumors in women and seriously threatens women’s physical and mental health.
Early screening for breast cancer viamammography, ultrasound and magnetic resonance
imaging (MRI) can significantly improve the prognosis of patients. AI has shown excellent
performance in image recognition tasks and has been widely studied in breast cancer
screening. This paper introduces the background of AI and its application in breast
medical imaging (mammography, ultrasound and MRI), such as in the identification,
segmentation and classification of lesions; breast density assessment; and breast cancer
risk assessment. In addition, we also discuss the challenges and future perspectives of
the application of AI in medical imaging of the breast.

Keywords: artificial intelligence, machine learning, deep learning, breast, imaging
INTRODUCTION

Artificial intelligence (AI) is commonly defined as “a system’s ability to correctly interpret external
data, to learn from such data, and to use those learnings to achieve specific goals and tasks through
flexible adaptation”. Over the past 50 years, the dramatic growth of computer functions related to
big data intrusion has pushed AI applications into new areas (1). Currently, AI can be found in voice
recognition, face recognition, driverless cars and other new technologies, and the application of AI
in medical imaging has gradually become an important topic of research. AI algorithms, particularly
deep learning (DL) algorithms, have demonstrated remarkable progress in image recognition tasks.
Methods ranging from convolutional neural networks to variational autoencoders have been found
in a myriad applications in the medical image analysis field and have promoted the rapid
development of medical imaging (2). AI has made great contributions to early detection, disease
evaluation and treatment response assessments in the field of medical image analysis for diseases
such as pancreatic cancer (3), liver disease (4), breast cancer (5), chest disease (6), and neurological
tumors (7).
July 2021 | Volume 11 | Article 6005571109
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Approximately 2.1 million newly diagnosed cases of breast
cancer occurred in 2018 worldwide, accounting for almost 1 in 4
of all cases of cancer among women (8). Breast cancer is the most
frequently diagnosed cancer in most countries (154 of 185) and is
the leading cause of death due to cancer in over 100 countries (9).
Breast cancer has a marked impact on women’s physical and
mental health, which seriously threatens women’s lives and
health. The early screening and treatment of breast diseases
have become major health problems in the world. The correct
diagnosis, especially the early detection and treatment of breast
cancer, has a decisive impact on the prognosis. The clinical cure
rate of early breast cancer can reach more than 90%; in the
middle stage, it is 50 - 70%, and in the late stage, the treatment
effect is very poor. Currently, Mammography, ultrasound and
MRI are invaluable screening and supplemental diagnostic tool
for breast cancer, they also have become important means of
detection, staging and efficacy evaluations and follow-up
examinations of breast cancer (10).

At present, breast images are mainly read, analyzed and
diagnosed by radiologists. Under a large and long-term
workload, radiologists are more likely to misjudge images due to
fatigue, resulting in a misdiagnosis or missed diagnosis, which can
be avoided with AI. To avoid human errors, computer-aided
diagnosis (CAD) has been implemented. In CAD systems, a
suitable algorithm completes the processing and analysis of an
image (11). The latest breakthrough is DL, especially convolutional
neural networks (CNNs), which has made significant progress in
the field of medical imaging (12). This article briefly introduces the
background of AI and mainly reviews its application in breast
mammography, ultrasound and MRI image analysis. This paper
also discusses the prospects for the application of AI in
medical imaging.
BRIEF OVERVIEW OF AI

AI refers to the ability of application machines to imitate humans
or human brain functions to learn and solve problems (13). It has
been more than 60 years since John McCarthy put forward the
concept of AI in 1956. Over the past ten years, AI technology has
made explosive progress. As a branch of computer science, it
attempts to produce a new kind of intelligent machine that
responds like a human brain; its application field is very wide and
includes robots, image recognition, language recognition, natural
language processing, data mining, pattern recognition and expert
system, etc. (14, 15). In the medical field, AI can be applied to
health management, clinical decision support, medical imaging,
disease screening and early disease prediction, medical records/
literature analysis, and hospital management, etc. AI can analyze
medical images and information for disease screening and
prediction and assist doctors in making diagnosis. In breast
imaging, Al-antari MA et al. studied a complete integrated
CAD system that can be used for detection, segmentation, and
classification of masses in mammography in 2018, and its
accuracy was more than 92% in all aspects (16). Alejandro
Rodriguez-Ruiz et al. gathered 2654 exams and readings by
101 radiologists, using a trained AI system to score the
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possibility of cancer between 1 and 10, they found that using
an AI score of 2 as the threshold could reduce the workload by
17%, which proved that the AI automatic preselection can
significantly reduce the workload of radiologists (17).

Machine learning (ML) is one of the most important ways to
realize AI. ML is divided into unsupervised and supervised.
Unsupervised ML classifies the radiomics features without
using any information provided by or determined by an
available historical set of imaging data of the same kind of the
one under investigation. Supervised ML methods are first trained
by means of an available data archive, i.e. all parameters in the
algorithm are tuned until the method provides an optimal trade-
off between its ability to fit the training set and its generalization
power when a new data example arrives. In the world of
supervised ML, sparsity-enhancing regularization networks are
able to make the prediction while, at the same time, identifying
the extracted features that mostly impact such prediction (18).
ML indicates those computational algorithms that utilize as
input the image features extracted by radiomics in order to
provide as output predictions concerning disease outcomes on
follow-up, such as linear regression, K-means, decision trees,
random forest, PCA (principal component analysis), SVM
(support vector machine), and ANNs (artificial neural networks).

DL, one of the AI systems based on neural networks, is
structured by building models that imitate the human brain
and is currently considered to be the latest technology for image
classification. Neural networks first simulate nerve cells and then
try to simulate the human brain using a simulation model called
a perceptron. A neural network consists of continuous layers,
including the input layer, the hidden layer, and the output layer.
The input layer can process multi-dimensional data, and the
hidden layer includes a convolutional layer, pooling layer and
fully connected layer. The feature map created in the
convolutional layer is initially passed through a non-linear
activation function, and this is then transferred to the pooling
layer to enable down-sampling of the feature map. The output is
then passed into the fully connected layer to classify the overall
outcome, and the output layer directly outputs data analysis
results. A multilayer perceptron is constructed by making and
arranging layers with perceptrons in which all nodes in the
model are fully connected together, thus solving more complex
problems (19). The learning paradigm of CNNs also involves
supervised learning and unsupervised learning; supervised
learning refers to the training procedure in which the observed
training data and the associated ground truth labels for that data
(or sometimes referred to as “targets”) are both required for
training the model. In contrast, unsupervised learning involves
training data that has no diagnosis or normal/abnormal labels.
Currently, supervised learning seems to be the most popular
approach in image classification tasks (20).
APPLICATIONS OF AI IN MAMMOGRAPHY

Mammography is one of the most widely used methods for
breast cancer screening (21, 22). Mammography is a non-
invasive detection method associated with relatively decreased
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pain, easy operation, high resolution, and good repeatability. The
retained image can be compared before and after and is not
limited by age or body shape. Mammography can detect breast
masses that cannot be palpated by doctors and can reliably
identify benign lesions and malignant tumors of the breast.
Mammograms are currently acquired with full-field digital
mammography (DM) systems and are provided in both for-
processing (the raw imaging data) and for-presentation (a
postprocessed version of the raw data) image formats (23, 24).
To date, AI has been used to analyze mammography images in
most studies mainly for the detection and classification of breast
mass and microcalcifications, breast mass segmentation, breast
density assessment, breast cancer risk assessment and image
quality improvement.

Detection and Classification of
Breast Masses
Among the different abnormalities seen on mammograms,
masses are one of the most common symptoms of breast
cancer. It is difficult to detect and diagnose masses because of
variation in the shape, size, and margins, especially in the
presence of dense breasts. Therefore, mass detection is an
essential step in CAD. Some studies proposed a Crow search
optimization based intuitionistic fuzzy clustering approach with
neighborhood attraction (CrSA-IFCM-NA), and it has been
proven that CrSA-IFCM-NA effectively separated the masses
from mammogram images and had good results in terms of
cluster validity indices, indicating the clear segmentation of the
regions (24). Others developed a complete integrated CAD
system, which included a regional DL approach You-Only-
Look-Once (YOLO) and a new deep network model full
resolution convolutional network (FrCN) and a deep CNN, to
detect, segment, and classify masses in mammograms and used
the INbreast dataset to verify that quality detection accuracy
reached 98.96%, effectively assisting radiologists make an
accurate diagnosis (16, 25, 26).

Detection and Classification of
Microcalcifications
Breast calcifications are small spots of calcium salts in the breast
tissue, and they appear as small white spots on mammography.
There are two different types of calcifications: microcalcifications
and macrocalcifications. Macrocalcifications are large and coarse
and are mostly benign and age-related. Microcalcifications may
be early signs of breast cancer, with sizes ranging from 0.1 mm to
1 mm, with or without visible masses (27). At present, several
CAD systems have been developed to detect calcifications in
mammography images. Cai H et al. developed a CNN model for
the detection, analysis and classification of microcalcifications in
mammography images and confirmed that the function of CNN
model to extract images outperformed handcrafted features; they
achieved a classification precision of 89.32% and a sensitivity of
86.89% by using filtered deep features that are fully utilized by
the proposed CNN structure for traditional descriptors (28).
Zobia Suhail et al. developed a novel method for the classification
of benign and malignant microcalcifications using an improved
Frontiers in Oncology | www.frontiersin.org 3111
Fisher linear discriminant analysis approach for the linear
transformation of segmented microcalcification data in
combination with a SVM variant to distinguish between the two
classes; 288 region of interests (ROIs) (139 malignant and 149
benign) in the Digital Database for Screening Mammography
(DDSM) were classified with an average accuracy of 96% (29). Jian
W et al. developed a CAD system to detect breast microcalcifications
based on dual-tree complex wavelet transform (DT-CWT) (30). To
detect microcalcification in mammograms, Guo Y et al. proposed a
new hybrid method via combining contourlet transform and non-
linking simplified pulse-coupled neural network (31). An automatic
neural network can automatically detect, segment and classify masses
and microcalcifications in mammography, providing a reference for
radiologists and significantly improving the work efficiency and
accuracy of radiologists.

Breast Mass Segmentation
The true segmentation of masses is directly related to the effective
treatment of the patient. Some researchers used the method of
fuzzy contours to automatically segment breast masses from
mammograms and evaluated the ROIs extracted from the mini-
MIAS database. The results showed that the average true positive
rate was 91.12%, and the precision was 88.08% (32). Global
segmentation of masses on mammograms is a complex process
due to low-contrast mammogram images, irregular shapes of
masses, spiculated margins, and the presence of intensity
variations in pixels. Some used the mesh-free based radial basis
function collocation approach for the evolution of a level set
function for segmentation of the breast as well as suspicious mass
regions. Then, an SVM classifier was used to classify the
suspicious areas into abnormal and normal areas. The results
showed that the sensitivity and specificity for the DDSM dataset
were 97.12% and 92.43% respectively (33). Plane fitting and
dynamic programming were applied to detect and classify breast
mass in mammography, the accuracy of segmentation of breast
lesions got improved greatly (34). The correct segmentation of
breast lesions provides a guarantee for accurate disease
classification and diagnosis (35). The use of an automatic
image segmentation algorithm shows the application and
potential of DL in precision medical systems.

Breast Density Assessment
Breast density is a strong risk factor for breast cancer and is
usually evaluated by two-dimensional (2D) mammograms.
Women with higher breast density have a two- to six-fold
higher risk of developing breast cancer than women with low
breast density (36). Mammographic density has traditionally
been assessed as the absolute or relative amount (as percentage
of the total breast size) occupied by dense tissue, which appears
on a mammographic images as white “cotton-like” patches (37).
In the current context of breast density identification, accurate
and consistent breast density assessment is highly desirable to
provide clinicians and patients with more informed clinical
decision-making support. Many studies have shown that AI
technology can assist in the evaluation of mammographic
breast density (BD). Mohamed AA et al. studied a CNN model
based on the Breast Imaging Reporting and Data System
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(BI-RADS) for BD categorization and classified the density of
large (i.e., 22000 images) DM datasets (i.e., “scattered density”
and “heterogeneous density”); they showed that with an increase
in training samples could achieve the highest the area under the
receiver operating characteristic curve (AUC) of 0.94-0.98 (38).
They also used a CNN model to show that radiologists mostly
used a medial oblique (MLO) view rather than a head-to-tail
(CC) view to determine the category of BD (39). Le Boulc’h M
and others evaluated the agreement between DenSeeMammo (an
AI-based automatic BD assessment software approved by the
Food and Drugs Administration) and visual assessment by a
senior and a junior radiologist, and found that the BD assessment
between the senior radiologist and the AI model was basically the
same on DM (weighted=0.79; 95%CI:0.73-0.84) (40). Lehman
CD et al. developed and tested a DL model to assess BD by using
58 894 randomly selected digital mammograms, and
implemented the model by using a deep CNN, ResNet-18, with
PyTorch. And it is concluded that the agreement between density
assessments with the DL model and those of the original
interpreting radiologist was good (k = 0.67; 95% CI: 0.66,
0.68), and in the four-way BI-RADS categorization, 9729 of
10763 (90%; 95% CI: 90%, 91%) DL assessments were accepted
by the interpreting radiologist (41). The assessment of MBD by
AI can reduce the variation between radiologists, better predict
the risk of breast cancer and provide a basis for further detection
and treatment.

Breast Cancer Risk Assessment
The high incidence and mortality of breast cancer are seriously
threatening women’s physical and mental health. At present,
there are many known risk factors for breast cancer, as Sun YS
et al. concluded in 2017, aging, family history, reproductive
factors (early menarche, late menopause, late age at first
pregnancy and low parity), estrogen (endogenous and
exogenous estrogens), lifestyle (excessive alcohol consumption,
too much dietary fat intake, smoking) are all risk factors for
breast cancer (42), the early detection and prevention of breast
cancer can be promoted by increasing the overall understanding
and recognition of breast cancer risk.

Relevant literature shows that the research of AI in breast
cancer risk prediction is also very extensive. Nindrea RD et al.
conducted a systematic review of the published ML algorithms
for breast cancer risk prediction between January 2000 and May
2018, summarized and compared five ML algorithms including
SVM, ANN, decision tree (DT), naive Bayes, and K-nearest
neighbor (KNN) algorithms, and confirmed that the SVM
algorithm was able to calculate breast cancer risk with better
accuracy than other ML algorithms (43). Some studies have
shown that the mammography results, risk factors, and clinical
findings were analyzed and learned through an ANN combined
with cytopathological diagnosis to evaluate the risk of breast
cancer for doctors to estimate the probability of malignancy and
improve the positive predictive value (PPV) of the decision to
perform biopsy (44). Yala A and his team also developed a hybrid
DL model that operates on both the full-field mammogram and
traditional risk factors, and found that it was more accurate than
a current clinical standard, i.e. the Tyrer-Cusick model (45). As a
Frontiers in Oncology | www.frontiersin.org 4112
result, AI predicts breast cancer risk with higher accuracy than
other methods, which in turn helps physicians guide high-risk
populations to conduct appropriate interventions to reduce the
incidence of breast cancer.

Image Quality Improvement
Good image quality is the basis of accurate diagnoses of diseases.
Image quality has a significant impact on the diagnosis rate and
accuracy rate of AI for assessing breast diseases on mammography,
and clear images are conducive to the detection and diagnosis of
microscopic lesions. Computer algorithms for improving image
quality have been proposed one after another. Because it provides
more details on the data phase, directionality and shift invariance,
multi-scale shearlet transform can yield multi-resolution results,
which is helpful to detect cancer cells, particularly those with small
contours. Shenbagavalli P and his colleagues enhanced
mammogram image quality by using a shearlet transform image
enhancement method and classified the DDSM database as benign
and malignant with an accuracy of up to 93.45% (11). Teare P et al.
used a novel form of a false color enhancement method to optimize
the characteristics of mammography through contrast-limited
adaptive histogram equalization (CLAHE) and utilized dual deep
CNNs at different scales for classification of mammogram images
and derivative patches combined with a random forest gating
network, they achieved a sensitivity of 0.91 and a specificity of
0.80 (46). Image quality is the premise of an accurate diagnosis,
therefore, strict image quality evaluation and improvement
measures must be carried out to effectively assist radiologists and
ANN systems for further analysis and diagnosis (Table 1).
APPLICATIONS OF AI IN BREAST
ULTRASOUND

As a diagnostic method with a high utilization rate, ultrasound
has many advantages, such as simple operation, no radiation,
and real-time operation. Therefore, ultrasound imaging has
gradually become a common imaging method for the detection
and diagnosis of breast cancer. To avoid a missed diagnosis or
misdiagnosis caused by lack of physician experience or subjective
influence and to achieve the quantification and standardization
of ultrasound diagnosis, an AI system was developed to detect
and diagnose breast lesions in ultrasound images (47). Related
studies (48, 49) have shown that the AI systems are mainly used
for the identification and segmentation of ROIs, feature
extraction and classification of benign and malignant lesions in
breast ultrasound imaging.

Identification and Segmentation of ROIs
To accurately represent and diagnose the breast lesions, the
lesions should first be segmented from the background. In the
current clinical work, the manual segmentation of breast images
was mainly carried out by ultrasound doctors, this process not
only depends on the doctors’ working experience but also takes
time and effort. In addition, breast ultrasound images have low
contrast, blurry boundaries, and a large amount of shadows,
July 2021 | Volume 11 | Article 600557
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therefore, an automatic segmentation method for breast
ultrasound image lesions using AI is proposed. The
segmentation process of breast ultrasound images mainly
includes the detection of an ROI containing the lesion and
delineation of its contours. Hu Y et al. proposed an automatic
tumor segmentation method that combined a dilated fully
convolutional network (DFCN) with a phase-based active
contour (PBAC) model. After training, 170 breast ultrasound
images were identified and segmented, and they achieved a mean
DSC of 88.97%, which showed that the proposed segmentation
method could partly replace the manual segmentation results in
medical analysis (50). Kumar V. et al. proposed a multi-U-net
algorithm and segmented masses from 258 women’s breast
ultrasound images, they achieved a mean Dice coefficient of
0.82, a true positive fraction (TPF) of 0.84, and a false positive
fraction (FPF) of 0.01, which are obviously better than the results
with the original U-net algorithm (51). Feng Y. et al. combined a
Hausdorff-based fuzzy c-means (FCM) algorithm with an
adaptive region selection scheme to segment ultrasound images
of breast tumors. Based on the mutual information between
regions, the neighborhood around each pixel is adaptively
selected for Hausdorff distance measurement. The results
showed that the adaptive Hausdorff-based FCM algorithm had
a better performance than the Hausdorff-based and traditional
FCM algorithms (52). The identification and segmentation of
lesions in breast ultrasound images saves a considerable amount
of time for ultrasound physicians to quickly identify and
diagnose diseases and provide a foundation and guarantee for
the development of AI for automatic diagnosis of breast diseases.

Feature Extraction
Ultrasound doctors usually identify and segment suspicious
masses based on the morphological and texture features of the
breast images. These features may be shape, orientation, edge,
echo type, rear features, calcification location and hardness.
Then, they classify suspicious masses according to the BI-
RADS scale to quantify the degree of cancer suspicion in breast
Frontiers in Oncology | www.frontiersin.org 5113
masses. The morphological features are very essential for the
diagnosis of benign and malignant masses, and obtaining them
correctly requires high demands on the ultrasound examiner. To
reduce the dependence on the physician’s experience, AI systems
have been applied to the feature extraction of breast ultrasound
images. According to the research by Hsu SM et al. morphological-
feature parameters (e.g., standard deviation of the shortest
distance), texture features (e.g., variance), and the Nakagami
parameter are combined to extract the physical features of breast
ultrasound images, they classified the data using FCM clustering
and achieved an accuracy of 89.4%, a specificity of 86.3%, and a
sensitivity of 92.5%. Compared with logistic regression and SVM
classifiers, the maximum discrimination performance of the
optimal feature collection was independent of the type of
classifier, indicating that the combination of different feature
parameters should be functionally complementary to improve
the performance of breast cancer classification (53). Zhang et al.
constructed a two-layer DL architecture to extract the shear-wave
elastography (SWE) features by combining feature learning and
feature selection. Compared with the statistical features of
quantified image intensity and texture, the results showed that
the DL features had better classification performance with an
accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%,
and an area under the receiver operating characteristic curve of
0.947 (54). Relevant studies have shown that using CAD systems
(S-Detect, Samsung RS80A ultrasound system) to analyze the
ultrasound features of breast masses can significantly improve
the diagnostic performance of experienced and inexperienced
radiologists (Figure 1). CAD systems may be helpful in refining
breast lesion descriptions and in making management decisions,
and it improves the consistency of the characteristics of breast
masses among observers (49, 55).

Benign and Malignant Classification
Breast cancer has a high incidence and mortality among women
all over the world, therefore, many countries have carried out
breast cancer screening for women of appropriate age. In breast
TABLE 1 | Summary of key studies on the role of AI in mammography.

n Task Algorithms No. of
Cases

Results Ref.

1 detect, segment, and classify
the breast masses

a completely integrated CAD system (the You-Only-Look-Once to detect, the full resolution
CNN to segment, the deep CNN to recognize and classify)

112 ACC= 95.64% (16)

2 detect, analysis, and classify
microcalcifications

a deep CNN with the same 5 convolutional layers 990 ACC=89.32% (28)
Sen = 86.89%

3 classify microcalcifications an improved fisher linear discriminant analysis approach combined with a support vector
machine variant

288 ACC=96% (29)

4 segment breast masses a hybrid method based on the active contours and fuzzy logic 57 ACC=88.08% (32)
Sen=91.12%

5 detect and segment breast
masses

globally supported radial basis function based collocation method 300 AUC=98% (33)
Sen=97.12%
Spe=92.43%

6 categorize breast density a two-class CNN-based deep learning model 7000 AUC=94.21% (38)
7 estimate breast cancer risk a back-propagation learning algorithm 655 AUC=95.5%

Sen=82% Spe=90%
(44)

8 enhance image quality shearlet transform and neural network 300 ACC=93.45% (11)
J
uly 2021 |
 Volume 11 | Article 60
AI, artificial intelligence; CAD, computer aided diagnosis; CNN, convolutional neural network; ACC, accuracy; Sen, sensitivity; AUC, the area under the receiver operating characteristic
curve; Spe, specificity.
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disease screening, the most important thing is to distinguish
breast cancer from benign breast diseases. Physicians mainly
classify the lesions in breast ultrasound images based on BI-
RADS. To allow doctors with different experience to reach a
consistent conclusion, AI systems with benign and malignant
classification functions have been developed gradually. Cirtisis A
et al. classified an internal data set and an external test data set by
using a deep convolution neural network (dCNN) and classified
breast ultrasound images into BI-RADS 2-3 and BI-RADS 4-5.
The results showed that the dCNN reached a classification
accuracy of 93.1% (external 95.3%), whereas the classification
accuracy of radiologists was 91.6 ± 5.4% (external 94.1 ± 1.2%).
This shows that dCNNs may be used to mimic human decision
making (56). Becker AS et al. used DL software to analyze 637
breast ultrasound images (84 malignant and 553 benign lesions).
A randomly chosen subset of the images (n=445, 70%) was used
for the training of the software, and the remaining cases (n=192)
were used to validate the resulting model in the training process.
The results were compared with three readers with variable
expertise (a radiologist, resident, and trained medical student),
and the findings showed that the neural network, which was
trained on only a few hundred cases, exhibited comparable
accuracy to the reading of a radiologist. There was a tendency
for the neural network to perform better than a medical student
who was trained with the same training data set (57). This
finding indicates that the classification and diagnosis of breast
diseases assisted by AI can significantly shorten the diagnostic
time of physicians and improve the diagnostic accuracy of
inexperienced doctors (Table 2).
APPLICATIONS OF AI IN BREAST MRI

MRI is the most sensitive modality for breast cancer detection
and is currently indicated as a supplement to mammography for
patients at high risk (59). MRI can comprehensively evaluate the
Frontiers in Oncology | www.frontiersin.org 6114
shape, size, scope and blood perfusion of breast masses through a
variety of scanning sequences. However, it has disadvantages
of low specificity, high cost, long examination time and
selectivity for patients, therefore it is not as popularly used as
mammography and ultrasound examinations. Most studies on
breast imaging and DL have focused on mammography, less
evidence is available concerning breast MRI (60). The study of
DL in breast MRI mainly focuses on the detection, segmentation,
characterization and classification of breast lesions (61–64).
Ignacio Alvarez Illan et al. detected and segmented non-mass-
enhanced lesions on dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) of the breast with a CAD
system, and the optimized CAD system reduced and controlled
the false positive rate and finally achieved satisfactory results
(65). Herent P. et al. developed a DL model to detect,
characterize and classify lesions on breast MRI (mammary
glands, benign lesions, invasive ductal carcinoma and other
malignant lesions) and achieved fine performance (60).
Antropova N. et al. incorporated the dynamic and volumetric
components of DCE-MRIs into breast lesion classification with
DL methods using maximum intensity projection images. The
results showed that incorporating both volumetric and dynamic
DCE-MRI components can significantly improve CNN-based
lesion classification (66). Jiang Y. et al. set up 19 breast imaging
radiologists (eight academics and eleven private practices) to
classify benign and malignant from DCE-MRI, and compared
the classification results that only using conventionally available
CAD evaluation software including kinetic maps and
supplement using AI analytics through CAD software. It was
found that the use of AI systems improved radiologists’
performance in differentiating benign and malignant breast
lesions on MRI (67). Breast MRI is still necessary to screen
patients at high risk of breast cancer. The CAD system can
improve the sensitivity of examination, decrease the false positive
rate, and reduce unnecessary biopsy and psychological burden of
patients (68) (Table 3).
A B

FIGURE 1 | (A) A 50-year-old woman was diagnosed with invasive cancer, and the results of CAD (S-Detect, Samsung RS80A ultrasound system) were “possibly
malignant”; (B) A 48-year-old woman was diagnosed with adenosis, and the results of CAD were “possibly benign”.
July 2021 | Volume 11 | Article 600557
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CONCLUSION

AI, particularly DL, is increasingly widely used in medical
imaging and shows excellent performance in medical image
analysis tasks. With its advantages of fast computing speed,
good repeatability and no fatigue, AI can provide objective and
effective information to doctors and reduce the workload of
doctors and the rates of missed diagnosis and misdiagnosis (72).
At present, the CAD system for breast cancer screening has been
widely studied. In mammography, ultrasound, MRI and other
imaging examinations, these systems can identify and segment
breast lesions, extract features, classify them, estimate BD and the
risk of breast cancer, and evaluate treatment effect and prognosis
(39, 73–78). These systems show great advantages and potential
Frontiers in Oncology | www.frontiersin.org 7115
in relieving pressure on doctors, optimizing resource allocation
and improving accuracy.
CHALLENGES AND PROSPECTS

AI is still in the stage of “weak AI”. Although it has made rapid
developments in themedical field in the past decade, it is far from the
goal of being fully integrated into the work of clinicians and large-
scale application in the world. At present, there are many limitations
in CAD systems for breast cancer screening, such as the lack of large-
scale public datasets, the dependence on ROI annotation, high image
quality requirements, regional differences, and overfitting and binary
classification problems. In addition, AI mostly aims for one task
TABLE 3 | Summary of key studies on the role of AI in breast MRI.

n Task Algorithms No. of
Cases

Results Ref.

1 detect, characterize and categorize lesions a supervised-attention model with deep learning 335 AUC=81.6% (60)
2 classify lesions radiomic analysis and CNN 1294 AUC=98% (62)
3 characterize and classify lesions the combination of unsupervised dimensionality reduction and embedded space

clustering followed by a supervised classifier
792 AUC=81% (63)

4 classify breast tumors QuantX 111 AUC=76% (67)
5 assess and diagnose contralateral BI-RADS 4

lesions
MRI radiomics-based machine learning 178 AUC=77% (69)

ACC=74.1%
6 assess tumor extent and multifocality CADstream software (version 5.2.8.591) 86 AUC =

88.8%
(70)

Spe=92.1%
PPV=90.0%

7 early predict pathological complete response
to neoadjuvant chemotherapy and survival
outcomes

linear support vector machine, linear discriminant analysis, logistic regression, random
forests, stochastic gradient descent, decision tree, adaptive boosting and extreme
gradient boosting

38 AUC=86% (71)
July 2021 |
 Volume
 11 | Article 60
AI, artificial intelligence; MRI, magnetic resonance imaging; AUC, the area under the receiver operating characteristic curve; CNN, convolutional neural network; BI-RADS, Breast Imaging
Reporting and Data System; ACC, accuracy; CAD, computer-aided detection; Spe, specificity; PPV, positive predictive value.
TABLE 2 | Summary of key studies on the role of AI in breast ultrasound.

n Task Algorithms No. of
Cases

Results Ref.

1 segment breast tumors a dilated fully convolutional network combined with an active contour model 170 AUC=79.5% (50)
ACC=71.9%
Sen=71.2%
Spe=72.6%

2 segment breast masses the underlying multi u-net algorithm based on CNN 433 Sen=84% (51)
3 characterize breast tumors fuzzy c-means clustering algorithm 160 AUC=96% (53)

ACC=89.4%
Sen=92.5%
Spe=86.3%

4 detect, highlight, and classify
breast lesions

deep CNN 101 AUC=83.8% (56)

5 classify breast tumors an industrial grade image analysis software (ViDi Suite v. 2.0) 192 AUC=98% (57)
Sen=97.12%
Spe=92.43%

6 classify breast tumors a two-layer DL architecture comprised of the point-wise gated boltzmann machine and
the restricted boltzmann machine

227 ACC=93.4% (54)
Sen=88.6%
Spe=97.1%
AUC=94.7%

7 identify ALN involvement DL radiomics 584 AUC=90.2% (58)
AI, artificial intelligence; AUC, the area under the receiver operating characteristic curve; ACC, accuracy; Sen, sensitivity; Spe, specificity; CNN, convolutional neural networks; DL, deep
learning; ALN, axillary lymph node.
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training and cannot solve multiple tasks at the same time, which are
the challenges and difficulties that DL faces in the development of
breast imaging. Meanwhile, these also provide a new impetus for the
development of breast imaging diagnostic disciplines and show the
broad prospect of intelligent medical imaging in the future.

In addition to their application in traditional imaging methods,
CAD systems based on DL are developing rapidly in the fields of
digital breast tomosynthesis (79–81), ultrasound elastography
(82), contrast-enhanced mammography, ultrasound and MRI
et al. (83, 84). We believe that AI in breast imaging can not only
be used for the detection, classification and prediction of breast
diseases, but also further classify specific breast diseases (e.g. breast
fibroplasia) and predict lymph node metastasis (85) and disease
recurrence (86). It is believed that with the progress of AI
technology, radiologists will achieve higher accuracy with higher
efficiency and more accurate classification and determination of
adjuvant treatment for breast diseases to achieve early detection,
early diagnosis and early treatment of breast cancer and benefit the
majority of patients.
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Enhancing Performance of Breast
Ultrasound in Opportunistic
Screening Women by a Deep
Learning-Based System:
A Multicenter Prospective Study
Chenyang Zhao1, Mengsu Xiao1, Li Ma1, Xinhua Ye2, Jing Deng2, Ligang Cui3,
Fajin Guo4, Min Wu5, Baoming Luo6, Qin Chen7, Wu Chen8, Jun Guo9, Qian Li10,
Qing Zhang1, Jianchu Li1, Yuxin Jiang1* and Qingli Zhu1*

1 Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2 Department of Ultrasound, First Affiliated
Hospital, Nanjing Medical University, Nanjing, China, 3 Department of Ultrasound, Peking University Third Hospital, Beijing,
China, 4 Department of Ultrasound, Beijing Hospital, Beijing, China, 5 Department of Ultrasound, Nanjing Drum Tower
Hospital, Nanjing, China, 6 Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, China, 7 Department of
Ultrasound, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,
8 Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China, 9 Department of Ultrasound, Aero
Space Central Hospital, Beijing, China, 10 Department of Ultrasound, Henan Provincial Cancer Hospital, Zhengzhou, China

Purpose: To validate the feasibility of S-Detect, an ultrasound computer-aided diagnosis
(CAD) system using deep learning, in enhancing the diagnostic performance of breast
ultrasound (US) for patients with opportunistic screening-detected breast lesions.

Methods: Nine medical centers throughout China participated in this prospective study.
Asymptomatic patients with US-detected breast masses were enrolled and received
conventional US, S-Detect, and strain elastography subsequently. The final pathological
results are referred to as the gold standard for classifying breast mass. The diagnostic
performances of the three methods and the combination of S-Detect and elastography
were evaluated and compared, including sensitivity, specificity, and area under the
receiver operating characteristics (AUC) curve. We also compared the diagnostic
performances of S-Detect among different study sites.

Results: A total of 757 patients were enrolled, including 460 benign and 297 malignant
cases. S-Detect exhibited significantly higher AUC and specificity than conventional US
(AUC, S-Detect 0.83 [0.80–0.85] vs. US 0.74 [0.70–0.77], p < 0.0001; specificity, S-
Detect 74.35% [70.10%–78.28%] vs. US 54.13% [51.42%–60.29%], p < 0.0001), with
no decrease in sensitivity. In comparison to that of S-Detect alone, the AUC value
significantly was enhanced after combining elastography and S-Detect (0.87 [0.84–
0.90]), without compromising specificity (73.93% [68.60%–78.78%]). Significant
differences in the S-Detect’s performance were also observed across different study
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sites (AUC of S-Detect in Groups 1–4: 0.89 [0.84–0.93], 0.84 [0.77–0.89], 0.85 [0.76–
0.92], 0.75 [0.69–0.80]; p [1 vs. 4] < 0.0001, p [2 vs. 4] = 0.0165, p [3 vs. 4] = 0.0157).

Conclusions: Compared with the conventional US, S-Detect presented higher overall
accuracy and specificity. After S-Detect and strain elastography were combined, the
performance could be further enhanced. The performances of S-Detect also varied
among different centers.
Keywords: breast cancer, ultrasound, deep learning, computer-aided diagnosis, elastography
INTRODUCTION

A dramatic increase in breast cancer incidence was reported in
China in recent years and early detection is essential to reduce
the mortality of breast cancer (1). Different from western
countries, in which mammography is the most used method
for breast screening, in China, mammography is not so popular
due to its relatively low accuracy for women with dense breasts,
which accounts for more Chinese women than Caucasian
women (2), as well as the inaccessibility of the equipment in
some regions of the country. Ultrasound (US) has become the
most common method for screening breast cancer in China, due
to its high detection rate of breast cancers in dense breast tissue
and convenience (3, 4). A multicenter study of the country
revealed a better diagnostic performance and higher cost
efficiency of US than that of mammography in breast
screening, and US screening has been recommended for high-
risk women by a nationwide guideline (5–7). To note, US
screening is often opportunistic in China due to different
economic statuses and the insurance policies of different areas.

Despite the good performance, there still exist several
drawbacks of breast US. In consideration of its widespread use
in China, it is imperative to enhance the diagnostic performance
of US. Moreover, US tends to present a high sensitivity in
detecting malignant lesions but a relatively low positive
predictive value (PPV), causing unnecessary biopsies or
repeated examinations in short intervals (8). Usually, the
category 4 and 5 lesions of the Breast Imaging Reporting and
Data System (BI-RADS) lexicon identified by screening US are
strongly recommended for further evaluation. But in clinical
practice, patients with screening-detected BI-RADS 3 lesions also
tend to choose a second-time US examination or biopsies,
resulting in a high recall rate and false-positive results (9).
Moreover, the operator dependence of breast US also has an
adverse impact on the screening results (10, 11). Hence, new
imaging techniques that can overcome these defects of US can be
of great clinical value.

Computer-aided diagnosis (CAD) systems, which are
designed to help doctors in diagnosing diseases to provide
ADS, Breast Imaging Reporting, and
; CAD, computer-aided diagnosis; DL,
itive likelihood ratio; NLR, negative
ive value; ROC, receiver operating
iver operating characteristics curve;
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automatic segmentation or diagnosis of medical images (12),
has been intensively investigated in the field of breast imaging in
recent years, especially the systems constructed on deep learning
(DL) method (13–16). S-Detect™ is one of the DL-based CAD
programs for classifying breast lesions through US images. It is
an onboard software integrated on a commercial US machine.
The software is composed of a DL algorithm, which has been
trained by a large number of ultrasonic images of breast lesions.
When provided with a static US figure showing a suspicious
breast lesion, the software can give a dichotomic diagnosis of the
lesion, as possibly benign or possibly malignant. Several studies
from Europe and Asia have validated its excellent performance in
enhancing the diagnostic accuracy of US by increasing the
specificity, consequently assisting in reducing unnecessary
biopsies of breast lesions (17–20). According to our
preliminary single-center research, S-Detect™ can provide a
reliable classification for the asymptomatic screening-detected
breast lesions (21). In order to further investigate its benefit for
those asymptomatic patients with US screening-detected breast
lesions, we launched this nationwide multicenter study about the
clinical use of S-Detect™ in China. In this study, patients with
opportunistic screening-detected breast lesions who were going
to receive a second-time breast US examination were enrolled
and evaluated by the new CAD technique. As far as we know, this
is the first multicenter study about S-Detect™, and none of the
previous studies have investigated the feasibility of the software
for US screening-detected breast lesions.

Apart from utilizing the CAD system alone, we also
investigated the role of combining the CAD technique and
elastography in promoting the diagnostic efficacy of US in re-
evaluating opportunistic US screening-detected breast lesions.
Elastography is applied as a complementary for US to
characterize breast lesions by providing information about
tissue stiffness (22–24). For strain elastography, compressive
force is implemented on breast tissues, and the tissue stiffness
is often expressed as pseudo-color mapping or fat-to-lesion
strain ratio (SR), both of which have been verified as an
effective method to present the elasticity of tumor tissues and
help increase accuracy and specificity of diagnosing breast
cancers (25, 26). Recently, a newly developed built-in software
of strain elastography, E-breast™, has been put into clinical use
and distinguished with its ability in providing a relative objective
value of SR. Considering that both S-Detect™ and E-breast™

can provide relatively objective imaging parameters for breast
US, it will be of interest to explore the potential value of
February 2022 | Volume 12 | Article 804632
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combining the use of the two novel imaging methods. Therefore,
in this multicenter study, we also evaluated the diagnostic
performance of the combination of S-Detect™ and E-breast™

in diagnosing breast lesions and investigate the clinical value of
the combination. Therefore, in this multicenter study, we aim
to investigate the feasibility of S-Detect™, a DL CAD tool for
breast US, and its combination with elastography in diagnosing
breast cancer for patients with opportunistic screening-detected
breast lesions. We also compared the diagnostic performances of
S-Detect™ among different centers.
MATERIALS AND METHODS

This study was designed as a prospective multicenter one, and it
was approved by the institutional review board of all of the
participating centers. Written informed consent was signed by
each recruited patient. A total of 9 medical centers from six
provinces and municipalities were involved in this study. All the
centers are general hospitals and own large-scale breast imaging
departments, where US is performed for patients with breast
lesions as a clinical routine. Before the inception of the study, we
enacted a protocol regulating standards for image and clinical
data acquisition, operation method for the software, and
classification criteria for enrolled patients and lesions. The
investigators of these medical centers received training on the
protocol and participated in the study after fully understanding
the protocol and breast US knowledge. The study has also been
registered at ClinicalTrials.gov (NCT03851497).

Patient Recruitment
From January 2019 to December 2019, a total of 757 patients
from the medical centers were consecutively recruited in this
study. Asymptomatic female patients with breast masses from
the participated hospitals were enrolled in this study. Before
participation, those patients were found to have BI-RADS 3–5
breast masses by bilateral breast US screening within 3 months
and referred to the medical centers for further diagnostic
imaging tests.

The definitions for asymptomatic individuals are listed
as follows.

1. no self-palpable breast masses
2. no severe breast pain that could not be explained by

physiological reason
3. no nipple discharge
4. no changes in breast appearance, including nipple inversion,

skin redness, and skin retraction

Exclusion criteria included breast malignancy history,
pregnancy, lactation, and refusal to participate in the study.
When more than one lesion was found eligible in a patient, we
selected the suspicious lesions or the largest ones. The patients
received biopsies after US examinations within 2 weeks and had
final pathological results referred to as the gold standard for
classifying breast mass.
Frontiers in Oncology | www.frontiersin.org 3121
Imaging Analysis
Conventional Breast Ultrasound Examinations and
Image Acquisition
The radiologists in this study who performed US examinations
had at least 5-year experience in breast US. In all medical
centers, the radiologists performed US examinations with a
high-frequency linear transducer (L3-12), under the breast
preset on the US machine (RS80A, Samsung Medison Co.,
Ltd., Korea) according to standard scanning protocol. For the
grayscale US, the focal zone was adjusted with the lesion depth,
and the gain was set at 25%–50%. For color Doppler, the
imaging settings included a scale of 3 cm/s, a wall filter of
50–100 Hz, and a rectangular sampling box with no angulation.
After detection of the target lesion, conventional grayscale US
and color Doppler US were consecutively performed on two
orthogonal planes. The radiologists assessed the lesions after
the dynamic scanning. The image on the largest diameter of the
lesion was recorded for further reading and CAD analysis by
the radiologists.

Strain Elastography
The built-in software of strain elastography, E-breast™

(Samsung Healthcare, Seoul, South Korea), was utilized in this
study. After the acquisition of elastographic imaging of a breast
lesion, the SR between the mass and surrounding fat can be
calculated using E-breast™. Elastography was performed by the
same radiologist after completing a conventional breast US
examination. Elastography imaging was acquired with freehand
compression. Imaging methods have been previously described
in detail (22, 26). Briefly, the radiologist put the probe
perpendicular to the chest wall and parallel to the pectoralis
muscle and applied the probe with only light pressure. The
proper pressure was gauged under the guidance of a compression
guide bar to acquire appropriate images for analysis. The
compression guide bar was on the right side of the working
interface of E-breast™ to guide the operators in applying
compressive force. The compression guide bar displayed the
degree of pressure in colors between 0 and 7 stages. 0 stage (all
black) represented no movement of the probe; 1–2 stage (gray)
represented not enough compression speed; and 3–7 stage
(green) represented moderate compression speed, indicating a
good-quality strain image. When the guide bar reached the 3–7
stage, the strain image was regarded as qualified for further
analysis and selected for calculation subsequently.

For calculating SR, one elliptical frame for sampling region of
interest (ROI) was placed on the target lesion on the
elastographic image, and the straining value on the fat area
was provided automatically by the software (22).

SR =
Average fat strain ðautomatically derivedÞ

Average lesion strain ðlesion ROIÞ
Elastography was performed three times for each patient. The

maximal SR was used for final analyses. The same depth, focus,
and gain parameters were employed for elastography as were
used for conventional imaging.
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S-Detect™ Classifications for Breast Lesions
S-Detect™ (Samsung Healthcare, Seoul, South Korea) was
embedded in the RS80A US system, and the radiologists
opened the working interface of S-Detect™ after finishing
giving a diagnosis of the lesions. The slice with the maximal
size of the lesion was recorded by the radiologists performing US
examinations for S-Detect™ analysis. The grouping for breast
lesions of S-Detect™ was performed automatically after clicking
the center of the lesion on a grayscale slice, presenting
dichotomic results as possibly benign and possibly malignant
by the software, along with automatically recognized
ultrasonographic features, including shape, orientation,
margins, pattern, and posterior acoustic features.

Image Interpretation
Before performing elastography and the CAD system, the
radiologists gave a diagnosis of the lesion based on the BI-
RADS lexicon on site (27). The lesions were classified into BI-
RADS 3, 4, and 5 according to their ultrasonographic features,
and the results of elastography and S-Detect had no impact on
the diagnosis of radiologists. The BI-RADS classification of each
lesion was decided by the US-operating radiologists after
identifying the aforementioned US features. A cutoff value was
set at category 4 to transform BI-RADS classification into a
dichotomic form. Category 3 lesions were allocated to possibly
benign, and categories 4 and 5 were put as possibly malignant.

Statistical Analysis
Previous studies showed that S-Detect could increase AUC from
0.76 to 0.83 (17–20). By applying that the disease prevalence of
10%, 90% power, 5% two-sided significance, and 10% missing
data, a sample size of 768, including 192 malignancies and 576
benign, was figured out for this multicenter study.

A series of statistical parameters pertaining to the diagnostic
performance of a test were calculated, including sensitivity,
specificity, positive likelihood ratio (PLR), negative likelihood
ratio (NLR), PPV, negative predictive value (NPV), receiver
operating characteristic (ROC) curve, and area under the ROC
curve (AUC) (28). The optimal cutoffs of SR were also
calculated using ROC analysis, defined as the closest point on
the ROC curve to the point (0, 1). We used 2 × 2 contingency
tables, a chi-square test for comparing sensitivity and
positivity, a generalized estimating equation for comparing
PPV, and the method proposed by DeLong et al. for
comparing AUC values (29). A p-value of <0.05 was
considered statistically significant. A forward stepwise logistic
regression method was applied to combine S-Detect™ and
strain elastography. We regarded the result of S-Detect as
categorical data and SR as continuous variables to construct
the model. An equation was acquired subsequently after
regression. We presented the equation representing the
combination of the two methods determined by the multiple
regression method in the form of a nomogram. The model
underlying the nomogram was to classify breast lesions based
on the results of S-Detect and strain elastography.

Then we divided the nine medical centers into four groups
(Groups 1–4), on the basis of local economic and medical service
Frontiers in Oncology | www.frontiersin.org 4122
resources of the geographical regions with different breast cancer
incidence. Group 1 and Group 2 were the centers located in
Beijing and the east area of China, respectively, both of which
were highly developed regions of China. Group 3 and Group 4
were the centers in less-developed regions, including the west
and central regions of China, respectively. Compared with
Groups 3 and 4, Groups 1 and 2 are located in regions with
better economic status and a higher level of medical care. In
China, the incidence rate of breast cancer is higher in
socioeconomically developed coastal cities, with the highest
age-standardized rate (ASR) of 46.6 cases/100,000 women. In
contrast, in less developed areas of the central and western
regions, the ASR for breast cancer can be less than 7.94 cases
per 100,000 women (30). In general, the incidence rates of breast
cancer in the regions of Groups 1 and 2 were higher than those of
Groups 3 and 4. The diagnostic performances of conventional
US and S-Detect of the four groups were calculated and
compared, respectively. The AUC values of the four groups,
representing the overall accuracy, were compared. The AUC
values of S-Detect in different regions or medical centers were
also compared using the method described by Hanley and
McNeil (31) for comparing the AUC of two independent ROC
curves. We compared the sensitivity and specificity among
different groups using the Mann–Whitney test of the Normal
approximation in independent samples (32).

Statistical analysis was performed using Medcalc (MedCalc
software, version 15, Ghent, Belgium), R (http://www.R-project.
org), and EmpowerStats software (X&Y Solutions).
RESULTS

Basic Characteristics of Enrolled Patients
A total of 831 patients participated in the study from the nine
medical centers, of which 768 were eligible. Among them, 757
patients (mean age 47.5 years; median age 47.5 [15–82] years)
with satisfactory imaging and pathological results were finally
enrolled for statistical analysis, including 297 malignant cases
and 460 benign cases, of the medical centers (Figure 1). The
clinical characteristics and pathological results of the patients are
shown in Table 1.

Diagnostic Performances of S-Detect™
The diagnostic performances of S-Detect™ and conventional US
are listed in Table 2. The ROC curves of the tests are illustrated
in Figure 2. S-Detect™ was distinguished by its higher specificity
and PPV than those of conventional US (specificity, 74.35%
[70.10%–78.28%] vs. 54.13% [51.42%–60.29%], p [S-detect vs.
conventional US] < 0.0001; PPV 69.59% [64.74%–74.13%] vs.
55.89% [51.42%–60.29%], p [S-detect vs. conventional US] <
0.0001). In the meantime, S-Detect™ possessed good sensitivity,
which presented no statistical difference with that of the
radiologist (91.91% [87.05%–93.92%] vs. 94.28% [90.99%–
96.63%], p [S-Detect vs. conventional US] = 0.09). S-Detect™

also presented a high AUC value (0.83 [0.80–0.85] vs. 0.74 [0.70–
0.77], p [S-Detect vs. conventional US] < 0.0001), suggesting its
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http://www.R-project.org
http://www.R-project.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Deep Learning for Breast Ultrasound
great diagnostic performance in dichotomic classification of
breast lesion.

Combined Diagnosis of S-Detect™ and
Strain Elastography
Among the 757 enrolled patients, 521 patients also received
strain elastography and had SR values. The results of the 521
patients were further used for combining diagnosis of S-Detect™

and elastography. The results of S-Detect™ and strain
elastography were combined through the multiple regression
method. The equation for combining diagnosis was logit(Y) =
−3.80213 + 0.72155 * SR + 2.78571 * S-Detect (0/1) (Y: predictive
percentage), and it was illustrated as a nomogram (Figure 3).
The best threshold of predictive percentage for the nomogram
was 0.4304. As presented in Table 1, under the best threshold for
the combined diagnosis, the diagnostic performance was
significantly enhanced after combination with an AUC value of
0.860, higher than that of S-Detect (p < 0.0001). The combined
diagnosis also presented higher specificity and PPV (specificity,
Frontiers in Oncology | www.frontiersin.org 5123
73.93% [68.60%–78.78%] vs. 69.31% [63.78%–74.45%], p
[combination vs. E-breast] < 0.0001; PPV 70.96% vs. 67.71%, p
[combination vs. S-Detect] = 0.005). The ROC curves for
combining results, S-Detect, and the conventional US are
presented in Figure 4. A typical case that was misdiagnosed by
the conventional US and corrected by combining diagnosis is
demonstrated in Figure 5.

The Differences in Diagnostic
Performances Among Groups 1–4
As shown in Table 3, for Group 1, S-Detect presented higher
specificity than the conventional US, but the sensitivity showed
no difference (p[Sp] = 0.016; p[Se] = 0.25). The AUC value of S-
Detect was significantly higher than the conventional US (0.89
[0.84–0.93] vs. 0.81 [0.75–0.86], p = 0.0013). For Group 2, S-
Detect also had lower sensitivity and higher specificity than the
conventional US (p[Sp] = 0.0001; p[Se] < 0.0001), and the AUC
value showed no difference (0.79 [0.72–0.85] vs. 0.84 [0.77–0.89],
p = 0.1791). For Group 3, S-Detect presented higher specificity
FIGURE 1 | The schematic of the study flow.
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than the conventional US, but the sensitivity showed no
difference (p[Sp] = 0.016; p[Se] = 0.25). The AUC value of S-
Detect was significantly higher than that of the conventional US
(0.85 [0.76–0.92] vs. 0.68 [0.58–0.78], p = 0.0014). For Group 4,
S-Detect had lower sensitivity and higher specificity than the
conventional US (p[Sp] = 0.0001; p[Se] = 0.035), and it also
presented a higher AUC value (0.75 [0.69–0.80] vs. 0.66 [0.60–
0.72], p = 0.0038). In all groups, S-Detect presented higher
Frontiers in Oncology | www.frontiersin.org 6124
specificity than the conventional US, and it also had higher
AUC values.

The diagnostic performances of S-Detect and conventional
US among the groups were also compared. For the performances
of S-Detect in different groups, Group 1, 2, and 3 presented a
significantly higher AUC value than Group 4, and others have no
differences (0.89 [0.84–0.93], 0.84 [0.77–0.89], 0.85 [0.76–0.92],
and 0.75 [0.69–0.80], respectively; p [1 vs. 4] < 0.0001, p [2 vs. 4] =
0.0165, p [3 vs. 4] = 0.0156). Specifically, both S-Detect of Groups
1 and 2 had higher specificity than that of Group 4 (83.87%
[77.12%–89.28%], 80.81% [71.66%–88.03%], and 59.59%
[51.16%–48.53%], respectively; p [1 vs. 4] < 0.0001, p [2 vs. 4] =
0.0004). For the performances of conventional US in different
groups, Groups 1 and 2 had a significantly higher AUC value
than Groups 3 and 4 (p [1 vs. 3] = 0.0107, p [1 vs. 4] < 0.0001, p
[2 vs. 3] = 0.0036, p [2 vs. 4] < 0.0001). The comparisons in
sensitivity, specificity, and AUC values among the four groups
are shown in Table 3.
TABLE 1 | Clinical information and pathological results of the patients.

Clinical information

Age (year)
Median (25% - 75% quartiles) 47.5 (38.00 - 56.00)

Tumor Size (cm)
Median (25% - 75% quartiles) 1.50 (1.00 - 2.20)

Histories of benign disease
No 654
Papillary tumors 2
Fibroma 68
Atypical hyperplasia 33

Family histories
No 748
Yes 9

Menopause
No 561
Yes 196

Pathologic findings
Benign 460
Fibroma 205
Adenosis 173
Papillary tumors 43
Sclerosing adenopathy 9
Inflammatory lesions 19
Phyllodes tumor 11

Malignant 297
Invasive ductal carcinoma 213
Invasive lobular carcinoma 7
In situ ductal carcinoma 41
Mucinous carcinoma 8
Solid papillary carcinoma 6
Micro-papillary carcinoma 2
Encapsulated papillary carcinoma 1
Adenoid-cystic carcinoma 3
Neuroendocrine carcinoma 3
tubular carcinoma 3
Malignant phyllodes tumor 6
Lymphoma 3
Leukemia 1
TABLE 2 | The diagnostic performances of S-Detect™, conventional US, and combining diagnosis.

x Sensitivity (%) Specificity (%) PPV (%) NPV (%) PLR NLR AUC

Conventional US1 94.28
(90.99–96.63)

54.13
(51.42–60.29)

55.89
(51.42–60.29)

93.61
(89.96–96.23)

2.00
(1.81–2.22)

0.11
(0.07–0.17)

0.74
(0.70–0.77)

S-Detect1 91.91
(87.05–93.92)

74.35
(70.10–78.28)

69.59
(64.74–74.13)

92.68
(89.53–95.12)

3.54
(3.02–4.16)

0.12
(0.08–0.18)

0.83
(0.80–0.85)

Elastograohy + S-Detect2 88.94
(83.99–92.78)

73.93
(68.60–78.78)

70.96
(65.17–76.28)

90.32
(85.94–93.70)

3.41
(2.81–4.15)

0.15
(0.10–0.22)

0.87
(0.84–0.90)
February 2022
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PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; AUC, area under the receiver operating characteristics; US,
ultrasound.
1Results for 757 patients.
2Results for 521 patients.
FIGURE 2 | Receiver operating characteristic (ROC) curves of S-Detect and
the conventional ultrasound (US) for 757 patients.
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DISCUSSION

US has enjoyed great popularity in China as one of the most
essential imaging methods for detecting breast cancer. It usually
presents very high sensitivity but relatively low specificity (8).
The low specificity and PPV of breast US causing high recall rate
and unnecessary biopsies in breast screening have been major
problems in the clinical utilization of US (33, 34). Efforts have
been made to conquer this problem by applying other US
modalities in addition to the grayscale US. In this multicenter
study, we investigated the value of CAD and elastography in
strengthening the diagnostic performance of US for the
asymptomatic breast lesions detected by opportunistic
screening US. The recruited patients in this study underwent
breast US screening and were recalled for the diagnostic US.
With the addition of S-Detect and the combination of S-Detect™

and elastography, the performance of US can be significantly
enhanced, especially the specificity and PPV. These US
techniques are promising in further clinical promotion for
breast imaging, as an important adjunct to the routine US in
detecting and diagnosing breast cancer.

In recent years, several self-developed or commercialized
CAD systems for breast US based on DL methods have been
developed and shown good performance in the detection,
segmentation, and diagnosis of breast lesions (35, 36). S-
FIGURE 3 | Nomogram of combined diagnosis. E, elastography; strain ratio (SR) value; S, S-Detect result; P, predictive percentage.
FIGURE 4 | Receiver operating characteristic (ROC) curves of three methods
and combined diagnosis for 521 patients.
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Detect™ is one of the DL-based CAD systems, constructed on
convolutional neural networks (CNN) and trained by a large
number of images of breast masses. Free from impact from
handcrafted features, the CAD system can make segmentation
and dichotomic classification of breast lesions automatically.
According to previous studies from 2016 to 2019 about S-
Detect™, the commercial CAD system presented outstanding
accuracy and specificity in classifying breast lesions, thus holding
potentials in enhancing the diagnostic performance of human
readers (17–20). In this study, the higher AUC value and
specificity of S-Detect™ compared with the conventional US
were also verified (AUC, 0.799; specificity, 0.695), similar to
previous reports, which also revealed an increment in specificity
(0.78–0.90) and AUC value (0.80–0.92). The sensitivity was still
maintained at a relatively high level, without statistical decrease.
With the use of S-Detect™, unnecessary biopsies can be
effectively reduced for those asymptomatic screening
breast lesions.

In a common clinical situation, radiologists make a diagnosis
of breast lesions by integrating clinical information and
comprehensive imaging information. For those patients with
typical clinical manifestations, such as severe pain, nipple
discharge, and fast-growing nodules, the lesions might be
upgraded by radiologists. In terms of the asymptomatic US
screening-detected breast lesions, based on the results of our
study, we can safely conclude that S-Detect™ is a reliable method
in downgrading possibly benign lesions and avoiding
unnecessary biopsies, which can be further applied in
US screening.

The role of elastography has been established in recent years
as an essential assisting method for breast US. A combination of
Frontiers in Oncology | www.frontiersin.org 8126
elastography and the conventional US could benefit the diagnosis
of breast lesions by improving specificity without lowering
sensitivity (37, 38). In this study, we combined the CAD
technique and elastography to further enhance the diagnostic
performance of US for asymptomatic breast nodules. The
combined diagnosis presented higher accuracy and specificity,
compared with a single use of S-Detect™ and the conventional
US, without lowering sensitivity. Moreover, both S-Detect™ and
strain elastography (E-breast) can make objective assessments of
breast lesions, independent of the conventional US diagnosis
process. The two methods can play a complementary role for
each other in collecting diagnostic information of breast nodules.
In view of the results of this study, the combination of
elastography and S-Detect™ has a significant clinical value in
improving the specificity and overall performance of US in
classifying the asymptomatic breast lesions, which in turn can
reduce unnecessary biopsies for those US-screening-detected
lesions. The easy access of the two built-in US techniques may
also further facilitate their integration into US operating routine,
without increasing workload.

We also compared the diagnostic performances in different
groups of medical centers in this study. Based on the results, we
can conclude that in most cases, S-Detect presents higher
specificity and overall performances than the conventional US,
which further validates its feasibility in diagnosing breast lesions.
Additionally, due to its considerable accuracy in different regions
of China, S-Detect’s stability can be recognized in this
multicenter study, and it is promising for further clinical
promotion. However, significant differences in the AUC values
of S-Detect of different regions were detected between groups.
These centers also had different performances of conventional
FIGURE 5 | A typical case of a 45-year-old patient with a breast lesion detected and classified as BI-RADS 4a by screening ultrasound (US) (A; grayscale of the
US). S-Detect classified it as possibly benign (B), and its strain ratio (SR) was 1.19 (C). According to the nomogram, the point for SR result was near 10, and the
point for S-Detect was 0 (blue vertical lines), thus acquiring a total score of 10 for the lesion and a predictive percentage of less than 0.1 (D). The pathological result
for the lesion was adenosis.
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US. For the centers with better performances of human readers,
S-Detect also exhibited higher diagnostic accuracy. This issue
was not previously reported in other single-center studies of S-
Detect. It might be suggested that the training of US operators in
the application of CAD is still essential. In the medical centers
with better-trained US operators, more standard acquisition of
US imaging for the CAD analysis can be realized, thus realizing
the better performance of S-Detect.

There existed several limitations in this study. Firstly, the
cases included are suspicious lesions found by US. The
proportion of invasive ductal carcinoma is relatively high, and
further studies are required to evaluate the value of the methods
in diagnosing in situ ductal carcinoma. Also, we did not take the
results of mammography into consideration in this study. The
clinical information of the patients could also be included in
further studies to construct a more comprehensive
diagnostic model.
CONCLUSION

S-Detect™, a CAD system for breast US, presented a good
diagnostic performance in classifying asymptomatic breast
lesions detected by opportunistic screening, with a higher
overall AUC value and specificity than the conventional US.
After the results and strain elastography were combined, both of
which could provide objective imaging information for breast
nodules, the overall performance and specificity could be further
improved. Characterized by the aid for screening US in
enhancing diagnostic efficacy and reducing unnecessary
biopsies, S-Detect™ and its combination with elastography can
be further utilized clinically.
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Association Between Vascular
Index Measured via Superb
Microvascular Imaging and
Molecular Subtype of Breast Cancer
Xiao-Yan Zhang1, Si-Man Cai1, Li Zhang1, Qing-Li Zhu1, Qiang Sun2, Yu-Xin Jiang1,
Hong-Yan Wang1*† and Jian-Chu Li1*†

1 Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences,
Beijing, China, 2 Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical
Sciences, Beijing, China

Background: To determine whether vascular index (VI; defined as the ratio of Doppler
signal pixels to pixels in the total lesion) measured via superb microvascular imaging in
breast cancer correlates with immunohistochemically defined subtype and is able to
predict molecular subtypes.

Methods: This prospective study involved 225 patients with 225 mass-type invasive
breast cancers (mean size 2.6 ± 1.4 cm, range 0.4~5.9 cm) who underwent ultrasound
and superb microvascular imaging (SMI) at Peking Union Medical College Hospital before
breast surgery from December 2016 to June 2018. The correlations between primary
tumor VI measured via SMI, clinicopathological findings, and molecular subtype were
analyzed. The performance of VI for prediction of molecular subtypes in invasive breast
cancer was investigated.

Results: The median VI of the 225 tumors was 7.3% (4.2%~11.8%) (range 0%~54.4%).
Among the subtypes of the 225 tumors, 41 (18.2%) were luminal A, 91 (40.4%) were luminal
B human epidermal growth factor receptor-2 (HER-2)-negative, 26 (11.6%) were luminal B
HER-2-positive, 17 (7.6%) were HER-2-positive, and 50 (22.2%) were triple-negative, and
the corresponding median VI values were 5.9% (2.6%~11.6%) (range 0%~47.1%), 7.3
(4.4%~10.5%) (range 0%~29.5%), 6.3% (3.9%~11.3%) (range 0.6%~22.2%), 8.2%
(4.9%~15.6%) (range 0.9%~54.4%), and 9.2% (5.1%~15.3%) (range 0.7%~32.9%),
respectively. Estrogen receptor (ER) negativity, higher tumor grade, and higher Ki-67
index (≥20%) were significantly associated with a higher VI value. Tumor size, ER status,
and Ki-67 index were shown to independently influence VI. A cutoff value of 4.1% yielded
79.9% sensitivity and 41.5% specificity with an area under the receiver operating
characteristic curve (AUC) of 0.58 for predicting that a tumor was of the luminal A
subtype. A cutoff value of 16.4% yielded 30.0% sensitivity and 90.3% specificity with an
AUC of 0.60 for predicting a triple-negative subtype.
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Conclusions: VI, as a quantitative index obtained by SMI examination, could reflect
histologic vascular changes in invasive breast cancer and was found to be higher in more
biologically aggressive breast tumors. VI shows a certain degree of correlation with the
molecular subtype of invasive breast cancer and plays a limited role in predicting the
luminal A with high sensitivity and triple-negative subtype with high specificity.
Keywords: breast cancer, molecular subtype, ultrasonography, superb microvascular imaging, vascular index
INTRODUCTION

Breast cancer is the cancer type with the highest prevalence and
the second highest cancer-related premature mortality rate
among women worldwide (1). According to the 12th St. Gallen
International Expert Consensus, breast cancer is categorized into
five subtypes: luminal A, luminal B human epidermal growth
factor receptor-2 (HER-2)-positive, luminal B HER-2-negative,
HER-2-enriched, and triple-negative based on the expression
status of the estrogen receptor (ER), progesterone receptor (PR),
HER-2-positive, and Ki-67 index (2). Owing to the different
molecular classifications, along with tumor size, tumor grade,
and nodal status, breast cancer is a heterogeneous disease in
biological behavior and prognosis (3). ER/PR-positive cancers
are usually low grade and less aggressive. Luminal A and B
cancers account for approximately 70% of breast cancers with
positive hormone receptors. Generally speaking, luminal A
cancers are low grade with the best prognosis among all
subtypes. Luminal B cancers tend to be higher grade and have
a worse prognosis than luminal A. HER-2 overexpression is
associated with aggressive clinical course and poor prognosis (4).
Triple-negative breast cancers (TNBCs), which accounted for
about 15%–20% of breast cancers (5), are in general high grade
and associated with a poor prognosis (6).

The formation of neovascularization and the increase of
blood flow are the basis of cancer cell growth. Tumors cannot
exceed 2 mm3 without vascular support (7). Angiogenesis in
breast cancer is a well-established driver of cancer aggressiveness,
therapy resistance, and poor prognosis (8, 9). Color Doppler
ultrasound (US) imaging is the primary noninvasive modality for
the vasculature evaluation of breast lesions. High-grade tumors
usually have abundant vasculature, while low-grade tumors may
have no demonstrable vascularization on Doppler US (10).
Superb microvascular imaging (SMI; Canon Medical Systems)
is a novel feasible microflow imaging technique applying
multidimensional wall filtering systems that could improve
sensitivity for low-flow tiny vessels and quantitatively assess
tumor vascularity via measuring vascular index (VI) without
the injection of contrast agents. VI was defined as the ratio of
Doppler signal pixels to pixels in the total lesion measured via
SMI. VI measured via SMI was a highly reproducible and
ast cancers; ER, estrogen receptor; PR,
ermal growth factor receptor-2; FISH,
, invasive ductal carcinoma; MVD,
tive value; NPV, negative predictive
e curve.
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objective quantitative parameter to estimate the degree of
vascularity in breast lesions (11). Increased microvessel
proliferation, an indicator of angiogenesis, was significantly
correlated with negative ER status and basal-like phenotype in
breast cancer (12–15). Previous studies showed that VI values of
malignant breast lesions were significantly higher than those in
benign breast lesions, and the combination of VI values with
conventional B-mode US can enhance the diagnostic
performance in differentiating benign from malignant breast
masses (11, 16–19). However, the correlation between VI
measured by SMI and the molecular subtypes in invasive
breast cancer and the performance of VI for prediction of
molecular subtypes in invasive breast cancer has not
been investigated.

Therefore, the purpose of this study was to determine 1)
whether a correlation exists between VI measured via SMI and
the molecular subtype of invasive breast cancer defined by the St.
Gallen International Expert Consensus and 2) whether VI could
predict the molecular subtype of the invasive breast cancer.
MATERIALS AND METHODS

Patients
The institutional review board approved this prospective study,
and all patients provided a written informed consent. From
December 2016 to June 2018, 482 consecutive female patients
with 490 breast lesions who were referred to our hospital
underwent US and SMI. Of these patients, 262 were malignant
breast lesions. The following inclusion criteria were applied: 1)
female patients older than 18 years of age; 2) patients for whom
US and SMI screening were performed; 3) lesion size <6 cm (no
more than the maximum scope of the probe display); 4) the
pathological type was invasive breast cancer. The exclusion
criteria were as follows: 1) lesions larger than the probe
because the US parameter would be shielded; 2) Patients who
received treatment like biopsy, surgery, or neoadjuvant
chemotherapy were excluded because these treatments may
have altered the blood supply of the breast lesions; 3) Pregnant
women were excluded because breast parenchymal changes can
also alter the blood flow to the targeted lesions. All patients
underwent excision biopsy and were histopathologically
examined. A total of 225 patients were finally included; the
study flowchart is shown in Figure 1. The final pathologic results
were considered the diagnostic gold standard. The clinical
features of the patients were recorded.
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Ultrasound and Superb Microvascular
Imaging Examination
All lesions were detected using the US Aplio 500 (L14-5, Aplio
500, Canon Medical Systems Corporation, Tokyo, Japan) that
could perform US and SMI examination. One radiologist (HW
with >15 years of ultrasonic work experience and 2 months of
experience in SMI) conducted US and SMI examinations. First,
US images of the lesions were obtained, including B-mode and
color Doppler images. The tumor size, shape, echogenicity,
margin, presence of architectural distortion, acoustic
shadowing, microcalcifications, and vascularity were evaluated
by conventional US. After conventional US, SMI images were
obtained by the same radiologists. SMI examination was
performed using color mode. The parameters of the SMI were
set to a low-velocity range (1.2~1.6 cm/s) to visualize extremely
low-velocity flow with good resolution and a high frame rate with
minimal flash artifacts (frame rate, 25~30/s; pulse repetition
frequency, 15.4~20.2 kHz; dynamic range, 21 dB). The range of
depth was adjusted to 2.5~6 cm according to lesion size, and the
detectable width of the linear probe was 6 cm. Three-
dimensional (3-D) SMI vasculature volume could be
reconstructed from 2-D SMI images scanned using 2-D linear
transducers. The 3-D SMI was used as a qualitative guidance to
identify the 2-D SMI plane with the most abundant vasculature.
The VI (%) was automatically calculated by manually tracing the
boundary of the breast lesion on the 2-D SMI image with the
most abundant vasculature by a radiologist three times and then
averaged. The total inspection time was about 15–20 min.

Molecular Classification of Groups
ER, PR , and HER-2 l eve l s were eva lua t ed us ing
immunohistochemistry (IHC). The Allred scoring system was
used to assess ER and PR with a score of more than 2 points
being considered positive (20). HER-2 expression was defined as
positive when membrane 3+ and a 2+ were analyzed using
Frontiers in Oncology | www.frontiersin.org 3132
fluorescence in situ hybridization (FISH) to determine a
positive or negative status. In addition, Ki67 expression of 14%
or more was considered positive, and Ki-67 index was stratified
into three groups: “low” (<14%),”intermediate” (14%–20%), and
“high” (≥20%) (21, 22). Molecular subtypes identified by St.
Gallen International Expert Consensus (2) were as follows:

1. Luminal A: ER-positive and/or PR-positive, HER-2-negative,
Ki-67 low (<14%);

2. Luminal B HER-2-negative: ER-positive and/or PR-positive,
HER-2-negative, and Ki-67 high (≥14%);

3. Luminal B HER-2-positive: ER-positive and/or PR-positive,
HER-2-positive, and any Ki-67 index;

4. HER-2-positive:ER-negative,PR-negative, andHER-2-positive;
5. Triple-negative: ER-negative, PR-negative, andHER-2-negative.
TNM Stage
TNM staging, published by the American Joint Committee on
Cancer, uses both clinical and pathologic information of tumor
size (T), status of regional lymph nodes (N), and distant
metastases (M). The staging combines these factors and
stratifies the disease into one of 5 stages (0, I, II, III, and IV) (23).

Nuclear Grade
Modified Bloom Richardson grading system was used for
grading the tumors as grades 1, 2, and 3 (24).

Statistical Analysis
Kolmogorov–Smirnov test was used to test the normality of
quantitative data. The quantitative data of normal distribution were
expressed in means and standard deviations, and t test was used for
the comparison between the two groups. The non-normality
quantitative data were expressed in median (P25~P75), and the
Mann–Whitney U rank sum test was used for the comparison
between the two groups. The qualitative data were presented as
FIGURE 1 | Flowchart of patient selection and inclusion in the study.
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frequencies. The correlations between the VI of the breast cancer
and the clinical, pathological, and immunohistochemical data were
evaluated using the Mann–Whitney U rank sum test (two variables),
the Kruskal–Wallis test (three or more nominal variables), linear-by-
linear association test (three or more ordered variables), and linear
regression. Multiple regression analysis was used to determine
the clinicopathological and immunohistochemical variables that
were independently associated with VI (The VI values were
transformed into logarithm). The significant difference in median
VI among the five subgroups was calculated using single-factor
analysis of variance and a multiple comparison test for parametric
data with Bonferroni correction. Receiver operating characteristic
(ROC) curve analysis was performed to examine which subgroups
could be differentiated from the others on the basis of VI. The
diagnostic performance of the optimal cutoff value for differentiating
one subgroup from the others was also determined by ROC
analysis. All statistical analyses were conducted using SPSS
software version 20.0 (IBM, Armonk, NY, USA). Differences
with P < 0.05 were considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 4133
RESULTS

A total of 482 patients with 490 breast lesions were screened by US
and SMI. The final analysis included 225 patients with invasive
breast cancers (mean age: 51.3 ± 12.2 years, range 23~83 years).
The mean size of the invasive tumors was 2.6 ± 1.4 cm (range
0.4~5.9 cm). The histological classifications of the cancers were as
follows: invasive ductal carcinoma (IDC; 210 patients, 93.3%),
invasive lobular carcinoma (4 patients, 1.8%), and other specified
cancers (11 patients, 4.9%; six mucinous carcinomas, two invasive
solid papillary carcinoma, one micro invasive solid papillary
carcinoma, one invasive encapsulated papillary carcinoma plus
IDC,one sarcoma).Themolecular subtypes of the225 tumorswere
luminal A in 41 patients (18.2%), luminal B HER-2-negative in 91
patients (40.4%), luminal BHER-2-positive in 26 patients (11.6%),
HER-2-positive in 17 patients (7.6%), and triple-negative in 50
patients (22.2%). The clinicopathological findings and results of
univariate regression analysis for the 225 breast cancers are
summarized in Table 1.
TABLE 1 | Correlations between clinicopathological and vascular index (VI) values of breast cancers.

Number VI (%)M (25%~75%) Z P value

Size(cm) -0.819 0.413
≤2 94 7.7 (4.0~13.4)
>2 131 7.0 (4.4~11.3)
ER status -2.361 0.018
Positive 158 6.7 (4.0~10.8)
Negative 67 8.8 (5.1~18.2)
PR status -1.835 0.066
Positive 134 6.6 (3.9~10.8)
Negative 91 8.2 (4.4~14.2)
HER-2 status -0.516 0.606
Negative 181 7.4 (4.3~12.1)
Positive 44 6.7 (4.1~11.6)
Ki-67 index (%) -1.650 0.099
<14 45 5.9 (2.7~11.3)
≥14 180 7.6 (4.4-12.4)
Ki-67 index (%) 5.563 0.062
<14 45 5.9 (2.7~11.3)
14~20 20 6.8 (2.6~9.3)
≥20 160 7.7 (4.5~12.7)
Ki-67 index (%) -2.322 0.020
<20 65 6.2 (2.7~10.8)
≥20 160 7.7 (4.5~12.7)
Histology
Invasive ductal carcinoma 210 7.5 (4.3~12.1) 2.931 0.231
Invasive lobular carcinoma
Others

4
11

5.4 (1.5~12.0)
4.8 (1.4~9.5)

Nuclear grade 6.792 0.034
1 32 5.3 (1.8~9.6)
2 101 7.3 (4.3~12.4)
3 92 8.2 (4.5~13.7)
Axillary lymph node metastasis -0.009 0.992
Absent 138 7.6 (3.8~13.3)
Present 87 7.0 (4.7~10.6)
Stage 2.646 0.449
I 66 8.5 (4.1~13.8)
II 137 7.0 (4.3~11.4)
III 21 6.5 (4.6~11.8)
IV 1 11.7
Marc
h 2022 | Volume 12 | Article
VI (%)M (25%~75%), Vascular index (%) Median (25%~75%); ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2.
The difference is statistically significant in bold.
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ER negativity (Z = -2.166, P = 0.031), higher nuclear grade
(Z = 6.792, P = 0.034), and higher Ki-67 index (≥20%)
(Z = -2.322, P = 0.020) were significantly associated with
higher VI value, whereas the tumor size, PR status, HER-2
status, histology, axillary lymph node metastasis, and TNM
stage were not associated with VI value significantly (Table 1).
VI decreased with the increase of tumor size of the infiltrative
breast cancer. The median VI values were 5.9% (2.6%~11.6%),
7.3% (4.4%~10.5%), 6.3% (3.9%~11.3%), 8.2% (4.9%~15.6%),
and 9.2% (5.1%~15.3%) for the luminal A, luminal B HER-2-
negative, luminal B HER-2-positive, HER-2-positive, and triple-
negative subgroups, respectively (Table 2). The VI did not differ
significantly among the five subgroups (F = 1.855, P = 0.119).

Multiple regression analysis was performed to select
independent clinicopathological variables associated with VI in
all patients with primary invasive breast cancer. The variables
entered into the multivariate models included tumor size (≤2 cm
vs. >2 cm), ER status, and Ki-67 expression. Backward regression
analysis showed that tumor size, ER status, and Ki-67 index
independently influenced VI (Table 3).

The median VI was 5.9% (2.6%~11.6%) (range 0%~47.1%)
for luminal A tumors (n = 41, 18.2%) and 7.4% (4.2%~11.7%)
(range 0~54.4%) for non-luminal A tumors (n = 184, 81.8%) (P =
0.1059). A cutoff VI of 4.1% yielded a sensitivity of 79.9% [95%
confidence interval (95% CI), 73.4%~85.4%], a specificity of
41.5% (95% CI, 26.3%~57.9%), positive predictive value (PPV)
of 86.0% (95% CI, 82.4%~88.9%), negative predictive value
(NPV) of 31.5% (95% CI, 22.4%~42.2%), an accuracy of 72.9%,
and an AUC of 0.58 (95% CI, 0.51~0.65) for differentiation of
luminal A from non-luminal A subtypes (Z = 1.507, P = 0.0315).
The positive likelihood ratio was 2.065 (95% CI, 0.9~1.6) (Table 4).

The median VI was 8.2% (4.9%–15.6%) (range 0.9%~54.4%)
for HER-2-positive tumors (n = 17, 7.6%) and 7.3% (4.2%
~11.7%) (range 0~47.1%) for non-HER-2-positive tumors (n =
208, 92.4%) (P = 0.5052). A cutoff VI of 5.3% yielded a sensitivity
of 76.5% (95% CI, 50.1%–93.2%), a specificity of 37.0% (95% CI,
30.4%~44.0%), PPV of 9.0% (95% CI, 7.0%~11.6%), NPV of
95.1% (95% CI, 88.9%~97.9%), an accuracy of 40%, and an AUC
of 0.55 (95% CI, 0.48~0.62) for prediction of HER-2-positive
tumors (Z = 0.659, P = 0.5099). The positive likelihood ratio was
1.214 (95% CI, 0.9~1.6).

The median VI was 9.2% (5.1%~15.3%) (range 0.7%~32.9%) for
triple-negative tumors (n = 50, 22.2%) and 6.8% (4.1%–10.9%)
(range 0%~54.4%) for non-triple-negative tumors (n = 175, 77.8%)
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(P = 0.0298). A cutoff VI of 16.4% yielded a sensitivity of 30.0%
(95% CI, 17.9%~44.1%), a specificity of 90.3% (95% CI, 84.9%
~94.24%), PPV of 46.9% (95% CI, 32.2%~62.1%), NPV of 81.9%
(78.9%~84.5%), an accuracy of 76.9%, and an AUC of 0.60 (95% CI,
0.533–0.665) for prediction of triple-negative tumors (Z = 2.151, P =
0.0315). The positive likelihood ratio was 3.093 (95% CI, 1.7~5.7).
DISCUSSION

The major findings of the present study were as follows: 1) VI
shows a certain degree of correlation with the molecular subtype
in invasive breast cancer; 2) ER negativity, higher tumor grade,
and higher Ki-67 index (≥20%) were significantly associated with
a higher VI value; (3) Tumor size, ER status, and Ki-67 index
were shown to independently influence VI; (4) VI was of value in
predicting the luminal A with high sensitivity and PPV and
triple-negative type with high specificity and NPV.

Recent studies confirmed the predictive value of microvascular
imaging features in the differentiation of breast tumors; malignant
breast tumors have a higher VI than benign tumors, and VI could
help distinguish malignant from benign breast tumors (16, 17, 19,
25). Accurately assessing the blood flow status in tumor can
provide a basis for judging the malignancy of tumors. Tumor
angiogenesis is variable according to the hormone receptor status
and molecular subtype of breast cancer (26). The 3-D power
Doppler sonographic vascular features are associated with the
molecular subtypes and tumor grades in breast cancer;
differences in 3-D power Doppler vascular features among
subtypes of IDCs are attributed to the ER status (27). Malignant
masses negative for ER or positive for Ki67 had highermicrovessel
density (MVD) (17).VIwas significantly correlatedwithMVD(17,
28). Our results showed that ER negativity, higher nuclear grade,
and higher Ki-67 index (≥20%) were significantly associated with
higher VI value in invasive breast tumors, as reported in literature
(17). It may be because ER inhibits tumor angiogenesis pathway
resulting in decreased tumor vascular proliferation and perfusion.
Ki-67 is a nuclear protein being associated with cellular
proliferation. Ki-67 plays an important role in the process of cell
proliferation and has a positive correlation with vascular
endothelial growth factor (VEGF), which could promote
angiogenesis. This also causes a mass to grow faster and increase
in size with a higher degree. In the condition of high expression of
Ki-67, theproliferating cells are accompaniedbynewblood vessels,
TABLE 2 | VI in different molecular subgroups of breast cancer.

Subgroup Number (%) VI (%)

M (25%~75%) Range

Luminal A 41 (18.2) 5.9 (2.6~11.6) 0~47.1
Luminal B HER-2-negative 91 (40.4) 7.3 (4.4~10.5) 0~29.5
Luminal B HER-2-positive 26 (11.6) 6.3 (3.9~11.3) 0.6~22.2
HER-2-positive 17 (7.6) 8.2 (4.9~15.6) 0.9~54.4
Triple-negative 50 (22.2) 9.2 (5.1~15.3) 0.7~32.9
Total 225 (100) 7.3 (4.2~11.8) 0~54.4
March 2022 | Volume 12 | Articl
Single-factor analysis of variance and Bonferroni correction showed no significant differences among the five subgroups (F = 1.855; P = 0.119) and any two subgroups (P > 0.05).
VI (%)M (25%~75%), Vascular index (%) Median (25%~75%); ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2.
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with the blood vessel density increasing, resulting in a rich blood
flow, a high colorDopplerflow imaging (CDFI) grade, and ahigher
VI (29). A mass with diameter >2 cm is positively correlated with
high Ki-67 (30), thus the more tumor vasculature. However, VI is
defined as the ratio of Doppler signal pixels to pixels in the total
lesion, so in the present study, VI decreased with the increase of
tumor size of the infiltrative breast cancer.

VI was not significantly correlated with all the molecular
subtypes of invasive breast cancer, this may be due to that one of
the most important limitations in this study was that ER, PR, and
HER-2 levels were evaluated using IHC. We know very well that
this determination represents a surrogate and cannot establish the
Frontiers in Oncology | www.frontiersin.org 6135
intrinsic subtype of any given cancer while the correct correlation
shouldhavebeen assessedbygenomics (31),withdiscordance rates
between IHC‐basedmarkers and gene‐based assays as high as 30%
(32). Another reason may be due to the high heterogeneity of
vasculature in invasive breast cancer, and there is considerable
vasculatureoverlap amongdifferentmolecular subtypes in invasive
breast cancer. The luminal A tumors had lower VI values
compared to non-luminal A tumors in the present study,
consistent with the study that reported that the luminal A
subtype was composed of masses with low vascularity (33)
(Figure 2). Furthermore, vascular features including the number
of vascular trees, total vessel length, number of bifurcations, and
TABLE 4 | Diagnostic performance of VI for luminal A, triple-negative, and HER-2-positive invasive breast cancers.

Molecular subtype Cut point Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) ACC AUC (95% CI)

Luminal A 4.1% 79.9% (73.4%~85.4%) 41.5% (26.3%~57.9%) 86.0% (82.4%~88.9%) 31.5% (22.4%~42.2%) 72.9% 0.58 (0.51~0.65)
Triple-negative 16.4% 30.0% (17.9%~44.1%) 90.3% (84.9%~94.24%) 46.9% (32.2%~62.1%) 81.9% (78.9%~84.5%) 76.9% 0.60 (0.53 ~ 0.67)
HER-2 5.3% 76.5% (50.1%~93.2%) 37.0% (30.4%~44.0%) 9.0% (7.0%~11.6%) 95.1% (88.9%~97.9%) 40.0% 0.55 (0.48~0.62)
March 2022 |
 Volume 1
HER-2, human epidermal growth factor receptor-2.
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FIGURE 2 | A 46-year-old woman with luminal A invasive ductal cancer [1.7 cm, ER 90%, PR 95%, HER-2(-), Ki-67 10%, nuclear grade 1, T1N0M0]. (A) Color
Doppler flow imaging image shows linear blood flow signals. (B, C) Smart three-dimensional superb microvascular imaging reveals linear blood flow. (D) Vascular
index was measured on the plane containing the most abundant vasculature with a value of 4.0%.
TABLE 3 | Multiple regression analysis showing the effect of different characteristics on VI.

Factor Favorable Unfavorable P value b t value Lower 0.95 Upper 0.95

ER Positive Negative 0.046 -0.288 -2.007 -0.571 -0.005
Ki-67 <20% ≥20% 0.035 0.355 2.120 0.025 0.684
Size >2cm ≤2cm 0.023 -0.306 -2.287 -0.570 -0.042
2 | Ar
ER, estrogen receptor.
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vessel-to-volume ratio in luminal type were significantly lower
compared to HER-2-enriched or triple-negative types (27). HER-
2-enriched cancers more commonly present as Adler grades 2 and
3 on ultrasonography (73.3%) (34). Here, 30.0% TNBCs had
abundant blood supply on SMI images in the present study
(Figure 3), consistent with the previous reports that 32.9%–
43.4% TNBCs showed hypervascularity or Adler grades 2 and 3
on color Doppler flow imaging (34, 35). VI had good performance
in predicting luminal A type with high sensitivity and PPV and
triple-negative type with high specificity and NPV in the
present study.

Thepresent studyhas a few limitations. First, this study includeda
limited number of patients. Thus, VI value did not reflect the
vascularity of all the invasive breast tumors. Second, VI value did
not reflect the overall vascularity of the breast lesion. Since the
measurements of VI were obtained on a 2-D SMI plane with the
abundantvasculaturealthoughunder theguidanceof3-DSMI, itwas
impossible to quantify the total volumetric vascularity of the lesion.
CONCLUSIONS

In conclusion, VI, as a quantitative index obtained by SMI
examination, could reflect histologic vascular changes in
invasive breast cancer and was found to be higher in more
biologically aggressive breast tumors. VI shows a certain degree
of correlation with the molecular subtype in invasive breast
cancer and plays a limited role in predicting the luminal A and
triple-negative subtype.
Frontiers in Oncology | www.frontiersin.org 7136
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FIGURE 3 | A 40-year-old woman with triple-negative invasive ductal cancer [2.3 cm, ER (-), PR (-), HER-2(-), Ki-67 95%, nuclear grade 2, T2N1M0]. (A) Color
Doppler flow image shows abundant and disordered blood flow signals. (B, C) Smart three-dimensional superb microvascular imaging reveals detailed and abundant
vascular architecture with crab claw-like blood flow. (D) Vascular index was measured on the plane containing the most abundant vasculature with a value of 21.1%.
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Mucocele-like tumor of the breast is histologically characterized as mucin-containing cysts
with mucin leaking to the stroma. It could be associated with atypical ductal hyperplasia
(ADH), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC). We report a
case of mucocele-like tumor of the breast associated with DCIS confirmed by paraffin
section. We review the literature and discuss the imaging features, pathology, and clinical
management of the lesion. These lesions demonstrate characteristic imaging features,
and we especially highlight the MR characteristics, as they have not been well
documented. Performing a diagnostic fine-needle aspiration cytology (FNAC) of
mucocele-like tumor carries a risk of tumor underestimation; therefore, excision for all
mucocele-like tumors is suggested to be the best approach. However, some recent
reports recommend close follow-up for patients with low-risk factors who have mucocele-
like tumor without atypia on FNAC.

Keywords: mucocele-like tumor, breast, ductal carcinoma in situ, case report, imaging
INTRODUCTION

Mucocele-like tumor of the breast was first described by Rosen in 1986 as mucin containing cysts
with extravasated mucin in the stroma (1). Mucocele-like tumor associated with atypical ductal
hyperplasia (ADH), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC) were
reported subsequently (2–4). In this report, we present imaging features, pathology findings, and
clinical management of a 42-year-old woman diagnosed with mucocele-like tumor associated with
DCIS. This report aims to illustrate these features and especially highlight the MR characteristics, as
these have not been well described previously.
CASE PRESENTATION

A 42-year-old woman accidentally felt a mass in her right breast 2 years ago. The following
ultrasound examination reported bilateral cystic dilatation of the ducts (categorized as BI-RADS 2),
and routine follow-up was recommended. Two years later, the patient returned to our center right
after a heterogeneous irregular mass was revealed on her routine ultrasound follow-up.
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Physical examination revealed a 2-cm moderately mobile mass
in the right breast with ill-defined margins. Mammography was
performed, which demonstrated an irregular high-density mass
with microlobulated margin (Figure 1). Scattered calcifications
were observed in both breasts, but no calcification was found
within the lesion. Ultrasound in our center confirmed the
presence of a heterogeneous irregular mass with circumscribed
margins in the upper outer quadrant of the right breast.
Furthermore, the patient underwent an enhanced breast MR
examination. The lesion was lobular and showed high signal
intensity on T2-weighted sequence, which seemed like clustered
cystic lesions. Following Gadolinium enhancement, the lesion
showed persistent slight peripheral enhancement but no internal
enhancement in all phases.

A fine-needle aspiration cytology (FNAC) was obtained,
which showed mucocele-like tumor with ADH, and surgical
excision was recommended. A partial right mastectomy was then
performed. The frozen section showed mucocele-like tumor with
atypical intraductal proliferative lesion and microcalcification. A
definitive categorization required evaluation of the entire
specimen. Paraffin section demonstrated multiple enlarged
cystic ducts containing mucinous secretion and extravasated
mucin in the stroma (Figure 2). Most of the ducts were lined
by flat or columnar epithelium cells, and some micropapillary
structures were present. In a few areas, we noticed neoplastic
proliferations of epithelial cells with cytological atypia. These
Frontiers in Oncology | www.frontiersin.org 2140
atypical ductal proliferations were multiple (homogeneous
involvement of more than two ducts) and >2 mm in size. The
proliferation foci were composed of monomorphic cells with
low-grade cytological atypia, locally growing in micropapillae
and cribriform. Microcalcifications were also noted within the
enlarged ducts. The tumor measured 2 cm in total size (including
the mucin-filled ducts without atypical proliferations), and the
resection margins were negative. As for immunohistochemical
staining, ER (+), PR (+), HER2-negative (focally weak positive),
and Ki67 (positive expression rate 1%) immunohistochemistry
stains for markers of myoepithelial cells (SMA, CK5/6, Calponin,
and P63) confirmed the presence of myoepithelial cells at the
outer layer of the ducts. According to the WHO Classification of
Tumors of the Breast (1), the diagnosis of mucocele-like tumor
associated with low-grade DCIS was established.

In this case, neither radiotherapy nor chemotherapy
was indicated because the foci of intraductal carcinoma were not
extensive, and the carcinoma did not involve the margins.
According to the China Anti-cancer Association breast
cancer diagnosis and treatment guideline and criterion (2),
mammography and ultrasound were recommended for follow-up.
The initial short-term follow-up interval is 3 months in the first 2
years. Assuming stability during this period, the follow-up interval
could be increased to 6 months during the third to the fifth year.
Again, assuming stability, the follow-up interval could be increased
to 1 year for the remainder of her life. An ultrasound follow-up was
FIGURE 1 | (A) Irregular high-density mass with microlobulated margins on mammography, no calcification within the lesion. (B) Heterogeneous irregular mass with
circumscribed margins on ultrasound. (C) MR T2-weighted sequence, the lesion is lobular and shows high signal intensity. (D, E) MR-enhanced T1-weighted
sequence (immediately after contrast injection and about 6 min delay), the lesion shows persistent slight enhancement at the periphery with no internal enhancement.
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done 3 months after the surgery, and no tumor recurrence
was found.
DISCUSSION

Mucocele-like tumor is defined as mucin-containing cysts, and
the extravasated mucin is commonly present in the stroma. It
was first described by Rosen in 1986 as a benign lesion at first (3).
In the years that followed, subsequent studies reported
mucocele-like tumor associated with ADH, DCIS, and IDC (4–
7), indicating that it has a potential for malignancy. Thus,
Weaver et al. (8, 9) concluded that mucocele-like tumor and
mucinous carcinoma may represent the two ends of pathological
spectrum of mucocele-like lesions of the breast.

Recent reports (10, 11) have reached a common consensus
that microcalcifications secreted by mucin were the most
characteristic finding on mammography. In our case, the lesion
appears as a lobulated mass on mammography. We could not
observe any calcification within the lesion, even though the
photomicrograph suggests that microcalcifications are present.
Perhaps, the microcalcifications are too subtle to be detected on
routine mammograms. It must be noted here that mammography
findings of mucocele-like tumor are nonspecific, especially when
there is lack of calcifications (12). It is therefore challenging to
diagnose mucocele-like tumor correctly based on mammography
Frontiers in Oncology | www.frontiersin.org 3141
features alone. On ultrasound, previous reports suggest that
mucocele-like tumors usually manifest as grouped cysts with or
without hyperechoic spots (13). The imaging and pathological
features in this case demonstrate aggregated clustered cysts, which
is consistent with previous studies.

To our knowledge, the MR features of mucocele-like tumor have
not been well documented. This case has several MR features. One
of the features is the lobular shape, which is consistent with its
histological feature of multiple cystic enlarged ducts. Another
feature is persistent slight enhancement at the periphery, which
could be explained by the gradual movement of contrast medium
into the mucin. These features are similar to those of mucinous
carcinomas reported previously. Due to the similar histological
structure, we hypothesize that the whole spectrum of mucocele-
like lesions could have identical characteristics on MRI. This
hypothesis still needs to be verified by more cases.

Although there are several MR features of mucocele-like
tumor as mentioned above, mucocele-like tumor still needs to
be differentiated from other lesions on imaging. The differential
diagnosis includes fibroadenoma, pure cyst, and invasive
carcinoma of no special type. Sometimes, it would be difficult
to identify mucocele-like tumor and fibroadenoma on MRI,
especially myxoid fibroadenoma. Both lesions could be lobular,
show high signal intensity on T2 weighted sequence, and have
persistent enhancement, but fibroadenoma is more likely to be
round or oval in shape with a circumscribed margin.
FIGURE 2 | (A) Multiple cystic enlarged ducts containing mucinous secretion and extravasated mucin in the stroma (HE, original magnification, 40×). (B) Multifocal
neoplastic proliferation of epithelial cells (>2mm in size) with low-grade cytological atypia. Microcalcifications are also noted within the enlarged ducts (arrow) (HE,
original magnification, 100×). (C) Myoepithelial cells at the outer layer of the duct were stained with P63 (original magnification, 100×).
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Furthermore, in a typical fibroadenoma, calcifications are mainly
coarse or “popcorn-like” on mammography, and it has a
homogeneous echo-texture on ultrasound (14). A pure cyst is
easy to distinguish; it is mostly round or oval in shape with
circumscribed margins and does not enhance after contrast
injection on MRI. As for invasive carcinoma of no special type,
calcifications are usually suspicious on mammography, and the
margins are not well-circumscribed. Invasive carcinoma of no
special type usually enhances fast on initial phase and has a
wash-out kinetic curve (15).

Management of mucocele-like tumor is still not standardized.
It is difficult to identify mucocele-like tumor correctly by FNAC
because of tumor heterogeneity. Moreover, there is possibility of
the presence of ADH, DCIS, or IDC. This case was diagnosed
with mucocele-like tumor with ADH by FNAC but upgraded to
mucocele-like tumor with DCIS after surgical excision. Previous
investigations reported the upgrading rates of mucocele-like
tumor on FNAC range from 4% to 30% (16, 17). The potential
for upgrading led to recommendations for excision of all
mucocele-like tumors. However, recent studies showed that the
upgrading rate of mucocele-like tumor without atypia on FNAC
is relatively low (<5%). Close clinical and radiological follow-up
may be a safe alternative to immediate surgical excision for these
patients with low risk factors (18).
Frontiers in Oncology | www.frontiersin.org 4142
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Background: The mapping method represents a crucial factor affecting the rate of
sentinel lymph node detection in breast cancer. We carried out this meta-analysis to
assess the clinical utility of carbon nanoparticle suspensions (CNSs) in guiding sentinel
lymph node biopsy (SLNB) for breast cancer patients.

Methods: Electronic databases, which comprised the China National Knowledge
Infrastructure, the Wanfang electronic database, the Cochrane Library, EMBASE, and
PubMed, were explored to identify relevant studies from database inception to July 2021
that studied the detection rate of CNSs-guided SLNB. A meta-analysis was performed to
generate pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood
ratio (NLR), a summary receiver operator characteristic curve (SROC), and a diagnostic
odds ratio (DOR).

Results: A total of 33 publications that enrolled 2,171 patients were analyzed. The pooled
sensitivity, specificity, PLR, and NLR were 0.93 (95% CI: 0.91–0.95, I2 = 0.0%), 0.99 (95%
CI: 0.98–0.99, I2 = 56.5%), 42.85 (95% CI: 29.73–61.77, I2 = 47.0%), and 0.09 (95% CI:
0.07–0.11, I2 = 0.0%), respectively. The area under the curve (AUC) of the SROC curve
was 0.98. There were no significant differences when analyzed based on the dose and site
of CNS injection. There was significant publication bias among the included publications
based on Deeks’ funnel plot [Slope (Bias) = −7.35, P = 0.00]. Nonetheless, the sensitivity
analysis identified the results to be reliable and stable.

Conclusion: This meta-analysis highlights the accuracy and feasibility of using CNSs for
SLNB in patients with breast cancer. Clinically, the identification and predictive values of
CNSs as an optimal tracer for SLNB remains undisputed.

Keywords: meta-analysis, diagnosis, sentinel lymph node biopsy, carbon nanoparticle suspensions, breast cancer
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INTRODUCTION

The modern era of breast cancer surgery is progressing towards
the direction of minimally invasive treatment. Previously, axillary
lymph node dissection (ALND) represented an indispensable
treatment component for breast cancer. However, the current
standard of care for axillary staging is SLNB. The sentinel lymph
node refers to the first axillary lymph node draining the tumor site
and may potentially harbor metastatic deposits (1). SLNB is
mainly determined by evaluating the SLN status to determine
whether ALND is required. SLNB allows for careful selection of
patients who are candidates for ALND. SLNB is as effective as
ALNB but has the benefits of lower postoperative complications
such as arm lymphedema and sensory loss (2–5). The mapping
method is a crucial factor that determines the positive and negative
detection rates of SLNB in breast cancer. SLNB techniques
incorporate the use of either blue dye (BD) or radioisotopes (RI)
(6). The RI method requires specialized equipment, authorized
radiation protection areas, and nuclear medicine licensing, thus
limiting the widespread use of this approach. BD, on the other
hand, is a cost-effective method for SLNB but possesses a lower
detection rate (7).

The past decade has seen a surge in research in the field of
nanomaterials and nanotechnology. Several novel diagnostic and
therapeutic techniques in the field of medicine have begun to
incorporate nanobiotechnology. CNSs is a 150 nm nanoparticle
lymphatic tracer made up of polymeric carbon granules and has
been approved for clinical usage by the Chinese Food and Drug
Administration (CFDA). CNSs selectively populate the lymphatic
system (diameter: 120–500 nm) over the vascular system
(diameter: 20–50 nm), given its permeability and molecular size
(8). CNSs have received substantial attention over the recent years,
especially with regards to their postulated benefits in lymphatic
mapping. Thus, the aim of our analysis was to assess the
effectiveness of CNSs for SLN mapping in breast cancer.
MATERIALS AND METHODS

Literature Search
A systematic literature search was carried out on the China
National Knowledge Infrastructure, the Wanfang electronic
database, the Cochrane Library, EMBASE, and PubMed to
extract all related papers present from database inception until
July 2021. The medical subject heading (MESH) terms used were
as follows: breast neoplasm, breast carcinoma, breast tumor,
breast cancer, carbon nanoparticle, nano-carbon, carbon
nanoparticles suspensions, CNSs, sentinel lymph node biopsy,
and SLNB.

Inclusion and Exclusion Criteria
The inclusion criteria were as follows:

1. Patients with breast cancer who had clinically negative lymph
nodes.

2. The concurrent use of CNSs and other modalities for SLNB
mapping.
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3. The availability of diagnostic method and clinicopathological
data.

4. The SLNB as the main study topic.
5. The reported primary data were sufficient to calculate totals

of true negative (TN), false negative (FN), false positive (FP),
and true positive (TP).

The exclusion criteria were as follows:

1. Letters, editorials, review articles, and case reports.
2. Overlapping information between studies.
Data Extraction and Quality Assessment
All studies were reviewed by two independent reviewers in order
to extract the relevant data. A third reviewer was consulted to
reach a consensus in case of a disagreement. A datasheet
containing the following information was compiled: year of
publication, author, age, dose of CNSs, injection site, TN, FN,
FP, and TP values. The Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) protocols were referenced for
quality assessment of the selected studies (9). These guidelines
evaluate the degree of biases in the included studies across four
major domains that included flow and timing, reference
standard, index test, and patient selection. The highest possible
score is 14, which indicates high study quality.

Statistical Analysis
The STATA version 15.1 (Stata Corporation, College Station,
Texas, USA) and Meta-Disc version 1.4 Software (XI Cochrane
Colloquium; Barcelona, Spain) was utilized for this meta-
analysis. The degree of heterogeneity among the studies was
estimated using I2, while heterogeneity itself was assessed with
the Chi-square-based Q statistic test. Heterogeneity was
interpreted as being statistically significant when I2 >50% or P
<0.05. The fixed-effect model (Mantel–Haenszel) was used in
cases of no study heterogeneity. In cases where there was study
heterogeneity, a random-effect model (DerSimonian and Laird)
was implemented.

Study sensitivity, specificity, PLR, NLR, and DOR were
evaluated using a bivariate meta-analysis model. A suitable
statistical analysis model was first used to calculate the
estimates with the corresponding 95% CI. The AUC and
SROC of these models were also determined. A higher
diagnostic effect was recognized in results that had an AUC
closer to 1.0. Publication bias was determined with the Deek test
for funnel plot asymmetry.
RESULTS

Characteristics of Identified Studies
We extracted 277 potentially relevant publications. Of these, 131
duplicates were removed, and 61 were deemed irrelevant based
on screening titles and abstracts. A total of 85 remaining full-text
articles were then scrutinized for eligibility (Figure 1). Another
52 articles were additionally excluded: 7 articles were excluded
due to duplicate use of the same data, 7 articles were summary
March 2022 | Volume 12 | Article 818812
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and summary data, while 38 articles contained incomplete data.
Finally, 33 studies (10–42) including 2,171 patients were
included in our meta-analysis. The amount of CNSs injected
ranged from 0.2 to 2 ml. Peritumoral CNSs injection for SLNB
was used in 3 studies, subareolar CNSs injection was used in 15
studies, and both peritumoral and subareolar CNSs injection
were used in 14 studies. Table 1 depicts the characteristics of the
identified papers.

Diagnostic Accuracy
Figures 2–6 demonstrate the forest plot of sensitivity, specificity,
PLR, NLR, and DOR for CNS in SLNB. The overall pooled
sensitivity and specificity of all studies were 0.93 (95% CI:
0.91–0.95, I2 = 0.0%) and 0.99 (95% CI: 0.98–0.99, I2 = 56.5%).
The overall pooled PLR and NLR were 42.85 (95% CI:
29.73–61.77, I2 = 47.0%) and 0.09 (95% CI: 0.07–0.11,
I2 = 0.0%), respectively. The pooled DOR was 530.19 (95% CI:
314.70–893.22, I2 = 0.0%). The SROC curve demonstrated an
AUC of 0.98, which indicated excellent diagnostic accuracy
(Figure 7). Additionally, the left upper quadrant (LUQ) in the
likelihood ratio scatter diagram was occupied by summary PLR
and NLR, indicating that CNSs was useful in improving the
diagnostic accuracy of SLNB in breast cancer (Figure 8).

There is controversy over the optimal dose and site of
injection for the tracking agents. We compared the combined
sensitivity and specificity of SLNB according to different CNSs
doses (Table 2). For the studies that used a less than or equal to 1
ml injection of CNSs, the combined sensitivity was 0.93 (95% CI:
0.91–0.95, I2 = 0.0%) and specificity was 0.98 (95% CI: 0.97–0.99,
I2 = 63.0%) (Figure S1). For the studies that used a 2 ml injection
of CNSs, the combined sensitivity and specificity was 0.93 (95%
CI: 0.87–0.97, I2 = 0.0%) and 0.99 (95% CI: 0.97–1.00, I2 = 9.3%)
(Figure S2). The results suggested that the diagnostic value of
CNSs was not dose-dependent over the range of doses tested.
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We further compared the effect of different injection sites,
peritumoral or subareolar, on the SLNB (Table 2). The pooled
sensitivity for studies that used subareolar injection was 0.93
(95% CI: 0.89–0.95, I2 = 0.0%), while in studies using peritumoral
and mixed injection, the pooled sensitivity was 0.94 (95% CI:
0.85–0.98, I2 = 0.0%) and 0.93 (95% CI: 0.90–0.96, I2 = 0.0%).
The combined specificity for studies using subareolar,
peritumoral and mixed injection was 0.99 (95% CI: 0.98–1.00,
I2 = 37.5%), 0.98 (95% CI: 0.93–0.99, I2 = 50.6%) and 0.99 (95%
CI: 0.97–0.99, I2 = 71.2%), respectively. All groups were not
significantly different from each other (Figures S3–5).

Publication Bias and Sensitivity Analysis
All studies harbored significant publication bias, as indicated by
the Deeks’ funnel plot [Slope (Bias) = −7.35, P = 0.00; Figure 9].
Nonetheless, the sensitivity analysis showed that the results were
reliable and stable (Table S1).
DISCUSSION

SLNBwas first reported in cutaneousmelanoma byMorton et al. in
1992 (43). The SLNB concept was soon accepted for use in patients
with breast cancer and led to better, less debilitating, axillary
management (44). Both ALND and SLNB are not significantly
different in terms of patient survival and tumor recurrence, thus
further popularizing the widespread use of SLNB. SLNB carries the
significant benefits of lower morbidity, especially with regards to
arm lymphedema, paresthesia, and overall dysfunction (2–5).
Currently, SLNB represents the standard surgical approach for
axillary management in early breast cancer.

The mapping method is a decisive factor that determines the
identification rate of SLN in breast cancer. RI technetium-99m
was first used for SLNB mapping in 1993, followed by the use of
FIGURE 1 | Flowchart of the study selection process.
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TABLE 1 | Detailed characteristics and QUADAS scores of the included study.

Study Year No. of patients Age (years) Dose of CNSs (ml) Injection site TP FP FN TN QUADAS

Liu et al. (10) 2019 59 51.5 ± 9.7 1 ml Peritumoral 15 1 2 41 12
Wu et al. (11) 2019 46 53.63 ± 8.57 2 ml Mixed 15 0 1 30 12
Xia et al. (12) 2019 86 51.37 ± 5.23 1 ml Mixed 25 0 1 60 12
Gao et al. (13) 2018 58 47.2 ± 15.1 2 ml Mixed 24 0 2 32 12
Li et al. (14) 2018 47 43.25 ± 10.15 2 ml Subareolar 15 0 1 31 12
Wang et al. (15) 2018 77 NA 0.6 ml Mixed 20 0 1 56 12
Qi et al. (16) 2018 52 50.2 ± 9.5 1 ml Mixed 16 0 1 35 12
Zhang et al. (17) 2018 91 NA 1 ml Subareolar 47 0 2 42 12
Yang et al. (18) 2018 136 50.9 ± 10.8 1 ml Mixed 55 0 4 77 12
Zou et al. (19) 2017 86 NA 0.5 ml Mixed 23 0 2 60 12
Wang et al. (20) 2017 77 NA 0.5 ml Subareolar 28 0 1 48 12
Wang et al. (21) 2017 53 NA 0.6 ml Mixed 12 0 1 40 12
Yue et al. (22) 2017 50 NA 0.4 ml Subareolar 22 0 2 26 12
Zhang et al. (23) 2017 140 NA NA Mixed 20 0 2 118 12
Kong et al. (24) 2016 56 57.2 ± 11.1 2 ml Subareolar 15 2 1 38 11
Sang et al. (25) 2016 42 NA 1 ml NA 17 0 3 22 12
Kong et al. (26) 2016 63 NA 0.2–0.5 ml Mixed 13 8 1 41 12
Huang et al. (27) 2016 83 NA 1 ml Subareolar 16 1 2 64 12
Liu et al. (28) 2016 83 NA NA Subareolar 24 0 3 56 12
Chen et al. (29) 2015 50 42.39 ± 3.1 1 ml Mixed 9 2 0 39 12
Wu et al. (30) 2015 49 NA 1 ml Peritumoral 20 2 1 27 12
Mai et al. (31) 2015 43 NA 1 ml Mixed 19 0 2 22 12
Wang et al. (32) 2015 41 NA 0.8 ml Subareolar 16 3 1 21 12
Tu et al. (33) 2015 58 52.5 ± 13.1 0.5 ml Subareolar 15 0 1 42 12
Guan et al. (34) 2015 87 NA 1 ml Subareolar 31 0 2 54 12
Wu et al. (35) 2015 83 NA NA Subareolar 24 0 3 56 12
Lei et al. (36) 2014 56 NA 1 ml Mixed 20 0 1 35 11
Ge et al. (37) 2013 88 NA 0.5 ml Peritumoral 37 0 2 49 12
Gao et al. (38) 2013 34 NA 0.4 ml Subareolar 14 0 2 19 11
Zhou et al. (39) 2012 74 NA 1 ml Mixed 29 0 2 43 11
Chen et al. (40) 2012 44 NA 2 ml Subareolar 22 0 2 20 12
Yang et al. (41) 2011 40 NA 2 ml Subareolar 11 0 1 28 12
Li et al. (42) 2008 38 NA 2 ml Subareolar 13 0 1 24 12
Frontiers in Oncology
 | www.fro
ntiersin.org
 4146
 March
 2022 |
 Volume
 12 | Artic
TP, true positive; FP, false positive; FN, false negative; TN, true negative; NA, not available; Mixed, the injection site is subareolar and peritumoral; QUADAS, quality assessment of
diagnostic accuracy studies.
FIGURE 2 | Forest plot of pooled sensitivity of the diagnosis value of CNSs in SLNB of breast cancer. 95% CI, 95% confidence interval.
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FIGURE 3 | Forest plot of pooled specificity of the diagnosis value of CNSs in SLNB of breast cancer. 95% CI, 95% confidence interval.
FIGURE 4 | Forest plot of pooled PLR of the diagnosis value of CNSs in SLNB of breast cancer. 95% CI, 95% confidence interval; PLR, positive likelihood ratio.
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FIGURE 5 | Forest plot of pooled NLR of the diagnosis value of CNSs in SLNB of breast cancer. 95% CI, 95% confidence interval; NLR, negative likelihood ratio.
FIGURE 6 | Forest plot of pooled DOR of the diagnosis value of CNSs in SLNB of breast cancer. 95% CI, 95% confidence interval. DOR, diagnostic odds ratio.
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blue dye (44, 45). The NSABP B-32 trial found that a
combination of BD and radiocolloid resulted in a 97.1%
detection rate for SNLB, compared with a 70.2% for BD and
89.4% for radiocolloid when used alone (46). Similar findings
were noted in the ALMANAC study that demonstrated that a
combination of isotope and BD had a 96.1% detection rate, but
Frontiers in Oncology | www.frontiersin.org 7149
the use of either isotope or BD alone was 85.6% (47). Therefore,
the method of combining BD and RI is currently regarded as the
gold standard. Nevertheless, there are also disadvantages
associated with this approach, namely, BD allergic reactions,
the need for highly specialized nuclear medicine units, and the
risk of radiation exposure to healthcare professionals and
FIGURE 7 | Symmetric SROC curve of the diagnosis value of CNSs in SLNB of breast cancer. SROC, summary receiver operating characteristic curve; AUC, the
area under the receiver-operator characteristic curve.
FIGURE 8 | Scattergram of the PLR and NLR of the diagnosis value of CNSs in SLNB of breast cancer. PLR, positive likelihood ratio; NLR, negative likelihood ratio;
LLQ, left lower quadrant; LUQ, left upper quadrant; RLQ, right lower quadrant; RUQ, right upper quadrant.
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TABLE 2 | Subgroup analysis was performed based on Carbon Nanoparticle injection doses and site.

Subgroup Sensitivity Specificity PLR NLR DOR

Dose of CNSs (ml)
≤1 ml 0.93 (0.91–0.95) 0.98 (0.97–0.99) 39.09 (20.01–76.36) 0.08 (0.06–0.11) 510.16 (275.17–945.81)
2 ml 0.93 (0.87–0.97) 0.99 (0.97–1.00) 40.30 (16.24–100.03) 0.09 (0.05–0.16) 458.56 (145.49–1,445.35)
Injection site
Subareolar 0.93 (0.89–0.95) 0.99 (0.98–1.00) 43.53 (24.56–77.14) 0.09 (0.07–0.13) 521.22 (244.10–1,112.97)
Peritumoral 0.94 (0.85–0.98) 0.98 (0.93–0.99) 31.93 (11.15–91.39) 0.08 (0.03–0.17) 476.71 (109.29–2,079.27)
Mixed 0.93 (0.90–0.96) 0.99 (0.97–0.99) 53.40 (18.17–156.95) 0.08 (0.06–0.12) 591.05 (252.32–1,384.52)
Frontiers in Oncology
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PLR, positive likelihood ratio; NLR, negative likelihood ratio; DOR, diagnostic odds ratio; CNSs, carbon nanoparticles suspensions; Mixed, the injection site is subareolar and peritumoral.
FIGURE 9 | Deeks’ funnel plot for publication bias test.
FIGURE 10 | The specific operation steps of CNSs as lymphatic tracer in SLNB. (A) The morphology of CNSs; (B) Injection site of CNSs; (C) Color rendering of
CNSs in SLNB (Black arrow: Lymphatic vessel; Yellow arrow: Lymph node). (A) is the image of CNSs under transmission electron microscopy. Republished with
permission of SAGE Publications, Inc., from Liu X, Chang S, Jiang XL, Huang P, Yuan ZT. Identifying parathyroid glands with carbon nanoparticle suspension does
not help protect parathyroid function in thyroid surgery: a prospective, randomized control clinical study. Surg Innov (2016) 23(4):381–9. doi: 10.1177/
1553350615624787. © The Author(s) 2016; permission conveyed through Copyright Clearance Center, Inc (49).
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patients. New methods of lymphatic mapping that offer equal
accuracy without the risks of allergies or irradiation are currently
being trialed. A network meta-analysis showed that in contrast to
using BD alone, superparamagnetic iron oxide nanoparticles or
indocyanine green fluorescence alone are superior. The use of
these novel agents alone is even comparable to the standard dual-
modality technique. However, their use still mandates specialized
equipment that may not be widely available (48).

CNSs is a new method that requires no specialized medical
facilities for SLNB. This meta-analysis aimed to evaluate the
diagnostic performance of CNSs for SLNB in breast cancer. The
pooled sensitivity, specificity, and AUC of the SROC were 0.93,
0.99, and 0.98, respectively. The pooled DOR, a diagnostic
performance index that takes into consideration specificity and
sensitivity, in the current analysis was 530.19. Higher DOR
values indicate a stronger discriminating power. The results
suggest CNSs could be utilized to identify true positive patients
with SLN metastases while also ruling out false negatives.

The optimal dose and injection site of CNSs for SLNB is
controversial. The most regularly used doses are 1 and 2 ml. In
the 33 studies analyzed, the volume of CNSs varied from 0.2 to 2
ml (Table 1). Subgroup analysis highlighted that there was no
difference in specificity or sensitivity between the studies that
used ≤1 ml versus 2 ml injections of CNSs (Table 2), which
indicated that 1 ml volume of CNSs is sufficient. In this meta-
analysis, peritumoral CNSs injection for SLNB was used in 3
studies, subareolar CNSs injection was used in 15 studies, and 14
studies were used in both approaches. No significant difference in
the sensitivity and specificity of SLNB was detected between
studies using peritumoral and subareolar CNSs injection.
Therefore, both peritumoral and subareolar are appropriate
injection sites for SLNB with CNSs (Figure 10) (49).

In terms of adverse effects, none of the 2,171 included patients
in this analysis developed a local inflammatory response, fat or
skin necrosis, or an anaphylactic reaction. Nevertheless, the use
of CNSs does have some limitations, with skin staining being the
most frequently encountered side effect of CNSs (18, 35). This
complication appears to be linked to the depth of injection based
on our empirical observations. Therefore, a subcutaneous
injection should be used instead of an intradermal injection.
Another disadvantage of CNSs is that they cannot be seen
through the skin and fatty tissue, therefore possessing lower
visualization clarity compared to a fluorescent tracer (e.g.,
Frontiers in Oncology | www.frontiersin.org 9151
indocyanine green). Interestingly, a recent study suggests that
CNSs have not only been employed as lymph node tracers but
may also be useful as a carrier for antitumor therapy (50).

Conclusions
This meta-analysis highlights the accuracy and feasibility of
using CNSs for SLNB mapping in breast cancer patients. The
CNSs mapping method would be especially helpful in
institutions without access to fluorescence imaging systems or
RI. CNSs may be incorporated in a wide range of clinical
applications, namely, theranostics and in breast cancer therapy.
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Background: With advances in high-throughput computational mining techniques,
various quantitative predictive models that are based on ultrasound have been
developed. However, the lack of reproducibility and interpretability have hampered
clinical use. In this study, we aimed at developing and validating an interpretable and
simple-to-use US nomogram that is based on quantitative morphometric features for the
prediction of breast malignancy.

Methods: Successive 917 patients with histologically confirmed breast lesions were
included in this retrospective multicentric study and assigned to one training cohort and
two external validation cohorts. Morphometric features were extracted from grayscale US
images. After feature selection and validation of regression assumptions, a dynamic
nomogram with a web-based calculator was developed. The performance of the
nomogram was assessed with respect to calibration, discrimination, and clinical
usefulness.

Results: Through feature selection, three morphometric features were identified as being
the most optimal for predicting malignancy, and all regression assumptions of the
prediction model were met. Combining all these predictors, the nomogram
demonstrated a good discriminative performance in the training cohort and in the
two external validation cohorts with AUCs of 0.885, 0.907, and 0.927, respectively.
In addition, calibration and decision curves analyses showed good calibration and
clinical usefulness.

Conclusions: By incorporating US morphometric features, we constructed an
interpretable and easy-to-use dynamic nomogram for quantifying the probability of
breast malignancy. The developed nomogram has good generalization abilities, which
may fit into clinical practice and serve as a potential tool to guide personalized treatment.
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Our findings show that quantitative morphometric features from different ultrasound
machines and systems can be used as imaging surrogate biomarkers for the
development of robust and reproducible quantitative ultrasound dynamic models in
breast cancer research.
Keywords: breast cancer, models, quantitative imaging, nomogram, morphometrics, ultrasound
INTRODUCTION

Globally, breast cancer is the leading cause of cancer-associated
death in women (1). Effective screening approaches have the
ability to reduce cancer-related mortality rates (2, 3). Due to its
safety and wide availability, US examination is recommended as a
supplemental screening tool for women of all ages (4). In
asymptomatic women, the ability of US to detect breast cancer
is comparable to that of mammography (5–7). Over the years, a
structured reporting and classification system has been widely
adopted for qualitatively describing breast US findings in routine
clinical practice (e.g., ACR BI-RADS) (8). However, image
interpretation for the traditional structured classification is
generally subjective and is possibly affected by radiologists’
experience (9–11). Moreover, predictions of malignancies by the
classification system are not always precise, and there are
significant differences between hospitals. As reported in the
literature, BI-RADS category 4 lesions have a broad range of
malignancy rates (3-94%) (12). Thus, the US capacity for detecting
breast malignancy still needs to be upgraded considerably.

In the precision medicine context, quantitated methods
provide the unique potential for making breast cancer screening
more rapid and accurate using artificial intelligence and machine
learning algorithms (13). Many studies are evaluating the
applicability of US prediction models that are based on
quantitated methods (e.g., radiomics) (14–17). These models
have been developed to mine high-throughput quantitative
image features fusing image pixels and morphology through
machine learning methods to improve cancer diagnosis and
prognosis (18). However, to varying degrees, reproducibility of
quantification features derived from image pixels is sensitive to
image preprocessing (19), particularly for US technology, which
has the distinct inherent characteristic of operator- and device-
dependent, not to mention that such pixel-based features often
lack interpretability (20). This may lead to limitations in usability
for real end-users, impeding their large-scale clinical applications.

Morphometrics, which are associated with tumor histological
findings (21), refers to the quantified assessment of shape
variations of organisms and their covariations with other
variables. Unlike image pixel-based features, morphometric
features characterize the shape and contour of lesions and are
nearly independent of the different system settings and US
machines (22). We hypothesized that a set of quantified
morphological features are related to malignant breast lesions
and may, therefore, act as independent predictive markers,
without the involvement of pixels-based features. We tested
this hypothesis and further build an interpretable and simple-
to-use US nomogram for predicting breast malignancy.
2155
MATERIALS AND METHODS

Study Population
In this multicenter retrospective study, patients were recruited
from three tertiary medical centers; The First Affiliated Hospital
of Wannan Medical College in Anhui Province (Center A),
Shandong Provincial Third Hospital Affiliated to Cheeloo
College of Medicine, Shandong University (Center B), and
Linyi People’s Hospital in Shandong Province (Center C). The
training cohort for nomogram development was obtained from
among the patients at Center A between January 2020 and
September 2021 while the external validation cohorts were
derived from Centers B and C between January 2021 and
September 2021.

All consecutive female patients with US findings of breast
lesions who fulfilled the inclusion/exclusion criteria were enrolled.
The inclusion criteria were: i. The definitive pathological diagnosis
was available from the breast lesion, either by biopsy or surgery; ii.
US examination performed before biopsy or surgery; and iii.
Breast lesions classified as BI-RADS US category 4 or 5
according to the second edition of the ACR BI-RADS US atlas.
The exclusion criteria were: i. Indeterminate pathological results
(difficult to distinguish between “benign” and “malignant”), ii.
Incomplete clinical information, iii. Patients administered with
radiotherapy or chemotherapy before US examination, and iv.
Patients whose longest diameter of the lesion was beyond the
display range of the US transducer. For patients with more than
one lesion, only the lesion with confirmed pathological diagnosis
was included for quantitative analysis.

The First Affiliated Hospital of Wannan Medical College
Review Board, Shandong Provincial Third Hospital Review
Board and Linyi People’s Hospital Review Board approved this
retrospective study. Patient consent was waived due to the use of
retrospective, de-identified information from the image database.

Ultrasound Examination
Five different high-resolution US scanners equipped with a linear
array transducer, including Esaote Mylab 90 (Genova, Italy) with
a 4-13 MHz transducer, Siemens Acuson S3000 (IL, USA) with a
4-9 MHz transducer, Philips IU22 (PA, USA) with a 3-12 MHz
transducer, Philips EPIQ5 (PA, USA) with a 5-12 MHz
transducer, and Mindray Resona 7T (SZ, China) with 5-14
MHz transducer were used in this study.

All lesions were examined by 7 sonographers who had over 5
years of experience in breast US scanning. Parameters were
adjusted to optimize image quality, then, the grey-scale image
of the longest diameter section of target lesions was documented
in the JPG format for further quantification analysis.
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Outcome Measures
The outcome was the definitive histopathologic diagnosis by
biopsy or surgery. Pathological results were reported
independently by the pathologist of the participating hospitals
and grouped into malignant and benign lesions. Histological
processing was performed in the accredited Department of
Pathology and conducted using a standardized procedure to
ensure reproducibility.

Data Quality Control
Imaging and clinical data were collected by an independent
investigator from respective hospitals. A radiologist with more
than eight years of experience in breast US reviewed the results of
data collecting and further confirmed the final datasets according
to the inclusion/exclusion criteria. These data were anonymized
and randomly attached with a number ID. Images of benign and
malignant lesions from the training cohort were mixed and
stored in a single folder for quantification analysis, so were
those from the validation cohorts.

Morphometric analyses of images were independently
performed by three sonographers who were not involved in
data collection. Three identical lap-tops with 1920 × 1280
resolution were used, and each image was magnified by the
delineate process so that the lesion occupied at least half of the
display area. Lesions from the training cohort were measured by
sonographer QL, while those from the validation cohorts were
respectively measured by sonographers TB and YY. All the
sonographers had 4 years of work experience in breast US. At
the beginning of the study, they were uniformly trained on the
use of the image quantification software. In addition, they were
blinded to the clinical information and pathologic results as well
as on the ratios of malignant to benign lesions.

Morphometric Feature Extraction
Image morphometric analysis was performed using the ImageJ
software (https://imagej.nih.gov/ij, version 1.52p, NIH, USA).
First, grey-scale US images of all target lesions were exported
from the machines and imported into the ImageJ software. For
each lesion, only one image was extracted. Next, using the Set
Scale function of the Analyze Tab menu in ImageJ, lesion sizes
were calibrated according to depth bar on each US image to
obtain the actual size value. Finally, the contour of each lesion
was manually delineated as the region of interest (ROI).

After delineating the ROI of lesions, thirteen morphometric
features were automatically calculated and extracted:
(1) Perimeter, the length of the outside boundary of the ROI;
(2) Bounding Rectangle Width (BRW), the width of the smallest
rectangle enclosing the ROI; (3) Bounding Rectangle Height
(BRH), the height of the smallest rectangle enclosing the ROI;
(4) Major Axis (MaA), the primary axis of the best fitting ellipse
to the ROI; (5) Minor Axis (MiA), the secondary axis of the best
fitting ellipse to the ROI; (6) Angle, the angle between the Major
Axis and a line parallel to the x-axis of the US image, its range is
0 -180 degrees; (7) Circularity, a morphological feature that can
mathematically indicate the degree of similarity to a perfect
circle, taking into consideration the smoothness of the
perimeter. This means that circularity is a measure of both
Frontiers in Oncology | www.frontiersin.org 3156
lesion shape and roughness, the further away from a perfectly
round and smooth circle, the lower the circularity value of the
target lesion; (8) Axis Ratio (AR), the ratio of Major Axis and
Minor Axis; (9) Roundness (Round), a value of 1.0 indicates a
perfect circle. It is similar to circularity but is insensitive to
irregular borders along the perimeter of the target lesion, also
takes into consideration the major axis of the best fit ellipse; (10)
Solidity, the ratio of contour area to its convex hull area,
describes the extent to which a target lesion morphology is
convex or concave. As lesion morphology becomes rough, the
solidity value approaches zero. Conversely, very smooth,
rounded lesions have solidity values that approach one; (11)
Feret Diameter (FD), the longest distance between any two
points along the ROI boundary, also known as a maximum
caliper; (12) Min Feret (MinF), the minimum caliper diameter;
(13) Feret Angle (FA), the angle between the Feret
Diameter and a line parallel to the x-axis of the US image, its
range is 0 -180 degrees. Figure 1 shows illustrations of all the
morphometric features.

Assessment of Intra- and
Inter-Rater Reliability
Based on the calculated sample size (23), 80 lesions from the
training cohorts were randomly selected to assess intra- and
inter-rater reliability. Using the same procedure, the original
assessor QL and another assessor TB performed the second
measurements, three weeks after the first one.

Feature Selection
Feature selection was performed on the training cohort. A two-
step feature selection procedure was used to generate optimal
feature subsets. First, the features were ranked by the wrapper
method Boruta algorithm (24). Boruta assesses if the importance
of each individual feature is significantly higher than the
importance of a random feature by iteratively fitting the
Random Forest algorithm until all predictor features are
classified as “confirmed,” “tentative,” or “rejected”. Features
“confirmed” by Boruta were deemed available for further
analyses. Second, if two features are highly correlated among
themselves, they provide redundant information in regards to
the outcome, so a filter method that is based on Spearman’s
correlation was conducted to further reduce the dimensionality.
A correlation matrix was created with all the Boruta “confirmed”
features. Highly correlated features (Spearman’s correlation
coefficients > 0.75) were identified and removed, after which
the final selected features were used to construct the nomogram.

Development of the Nomogram
Data from the training cohort was used to develop the
nomogram. First, univariate and multivariate logistic
regression analyses were performed to determine the
independent predictor of breast malignancy. Candidate factors
included results from feature selection and patient age. Non-
linear relationships between continuous predictors and
malignancy risk were assessed, and continuous predictors with
significant non-linearity were transformed into categorical
variables using restricted cubic splines (RCS) with three
April 2022 | Volume 12 | Article 868164
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knots (25). Factors with p value < 0.2 in univariable analyses were
entered in multivariable analyses, which were conducted using
stepwise logistic regression with backward elimination at an a
level of 0.05.

Basic assumptions that must be met for logistic regression
model include linearity between each predictor and outcome,
absence of high multicollinearity among predictors, and no
strongly influential outliers. To ensure that all logistic
regression assumptions were valid, multicollinearity and
influential outliers were also assessed. Multicollinearity was
estimated by variance inflation factor (VIF), VIF values greater
than 4 were an indication of multicollinearity problems (26).
Influential outliers were checked by visualizing Cook’s distance
(27) and standardized residuals, cases with Cook’s distance of ≥
0.05 or standardized residuals of ≥3 (28) were considered to be
outliers that had unduly large influences on the results.
Therefore, they were further analyzed to determine whether
they could be excluded from the model.

Finally, based on findings from the above logistic regression
analysis, a web-based interactive nomogram was formulated.
Validation of the Nomogram
Internal and external validations were used to measure the
nomogram’s performance. The training cohort was used for
internal validation while the two validation cohorts were used
for external validation.

Performance was assessed using tests for discrimination,
calibration, and clinical usefulness. The discriminative capacity
was evaluated via receiver operating characteristic (ROC) curve
analysis and measured by the area under the receiver operating
characteristic curve (AUC). Calibration performance was
visually assessed using a calibration plot (29), representing the
agreement between observed outcomes and predicted
probabilities. The Hosmer–Lemeshow test (30) was performed
to assess goodness-of-fit. Finally, decision curve analysis (31, 32)
Frontiers in Oncology | www.frontiersin.org 4157
was used to evaluate the clinical benefit of the nomogram by
quantifying net benefits at different threshold probabilities.
Data Analysis
All data analyses and plots were performed and established using
R Studio software (R version 4.0.2). The reported statistical
significance levels were all two-sided, with p value < 0.05 being
the threshold for significance, unless otherwise indicated.

Normality of distributions of continuous variables was
assessed using the Shapiro–Wilk test. Continuous variables are
expressed as medians and ranges, while categorical variables are
shown as numbers and percentages. Comparisons between
groups were performed using the Chi-square test for
categorical variables, while the Wilcoxon test or Student’s t-test
were used for continuous variables.

Sample size estimation for reliability analysis was performed
using “ICC Sample Size” in R. Inter-rater and intro-rater
reliability was calculated using a single-rating, absolute-
agreement, 2-way random-effects correlation coefficients (ICCs,
model A,1). Reliability was classified as excellent (ICC > 0.90),
good (ICC = 0.76–0.90), moderate (ICC = 0.51–0.75), or poor
(ICC < 0.50) (33).

Feature selection was performed using “Boruta” in R.
Correlations between any two morphological features were
measured by Spearman rank correlation coefficient while
“ggcorrplot” in R was used for visualization of the correlation
matrix. The 3D scatter plots were produced using “plotly” in R.

The “glm” function in R was used to fit the multivariate logistic
regression model. Regression diagnostics were used to assess the
validity of themodel, RCS analyseswere performed using the “rms”
package, multicollinearity was tested by calculating VIF using the
“car” package, while influential outliers were graphly inspected by
Cook’s distance using the “broom” package. The “rms” and
“DynNom” packages were used to develop the nomogram and
the web-based calculator, respectively.
FIGURE 1 | Illustrations of the morphometric features.
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Performance evaluation, including visualizations of ROC,
Calibration, and DCA, were generated with R packages
“ggplot2”, “Caret” and “rmda”. The “pROC” package was used
to measure AUCs and conduct the Delong test, while the
“ResourceSelection” package was used for the Hosmer–
Lemeshow test.
RESULTS

Basic Information
The flow chart of the study population is presented in Figure 2.
In total, 917 breast lesions from 917 women were assessed in the
study. The final histopathological diagnoses revealed 502
(54.74%) benign and 415 (45.26%) malignant lesions. The
training cohort had 520 patients, the external validation cohort
Frontiers in Oncology | www.frontiersin.org 5158
from Center B (cohort 1) had 191 patients, while the external
validation cohort from Center C (cohort 2) had 206 patients.
Table 1 presents an overview of demographics and baseline
characteristics for these study cohorts. While the cohorts did not
show significant differences in patients’ age and maximum
diameters of lesions, there were significant differences with
regards to proportions of benign and malignant lesions among
the cohorts. As shown in Table 1, the predominant histology of
malignant lesions for each cohort was invasive ductal carcinoma,
the majority of benign lesions in this study had a breast
tumor histology described as fibroadenoma, followed by
mammary adenosis.

Morphometric Features
All of the morphometric feature data are available on GitHub
(see Data Availability). Figure 3 shows the findings obtained
A B C

FIGURE 2 | Flow chart of study population. (A) training cohort, (B) external validation cohort 1, and (C) external validation cohort 2.
TABLE 1 | Comparisons of patient demographics and baseline characteristics in the training and validation cohorts.

Training Cohort
(n = 520)

External Validation Cohorts P-value

Cohort 1
(n = 191)

Cohort 2
(n = 206)

Age, years (Md (IQR)) 51.5 (44.0, 58.0) 52.0 (45.0, 60.0) 54.0 (46.0, 58.0) 0.430
Maximum diameter (n,%) 0.786
<10 mm 34 (6.54) 15 (7.85) 9 (4.37)
10-20 mm 201 (38.65) 71 (37.17) 77 (37.38)
20-30 mm 150 (28.85) 59 (30.89) 68 (33.01)
≥30 mm 135 (25.96) 46 (24.09) 52 (25.24)

Pathological outcome (n,%) 0.010
Benign lesions 295 (56.73) 113 (59.16) 94 (45.63)
Malignant lesions 225 (43.27) 78 (40.84) 112 (54.37)

Histologic subtypes (n,%), Benign
Fibroadenoma 135 (25.96) 52 (27.23) 44 (21.36)
Mammary adenosis 97 (18.65) 42 (21.99) 41 (19.90)
Intraductal papilloma 53 (10.19) 17 (8.90) 7 (3.40)
Mastitis 8 (1.54) 2 (1.05) 2 (0.97)
Benign phyllodes tumor 2 (0.38) 0 (0.00) 0 (0.00)

Histologic subtype (n,%), Malignant
Invasive ductal carcinoma 192 (36.92) 75 (39.27) 102 (49.51)
Ductal carcinoma in situ 22 (4.23) 2 (1.05) 4 (1.94)
Mucous carcinoma 6 (1.15) 0 (0.0) 2 (0.97)
Invasive lobular carcinoma 3 (0.58%) 1 (0.52) 2 (0.97)
Solid papillary carcinoma 2 (0.38%) 0 (0.0) 1 (0.49)
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from preliminary analysis of morphometric features in the
training cohort. Apart from Angle and FA, the other
morphometric features were significantly different between
benign and malignant groups. Perimeter, BRW, BRH, MaA,
MiA, Round, FD, and MinF values of benign lesions were
significantly lower than those of malignant lesions (p < 0.001),
while Circularity, AR, and Solidity were significantly higher than
those of malignant lesions (p < 0.001). Morphometric features of
the validation cohorts are presented in Supplementary
Figures 1, 2, respectively.

Reliability of Morphological
Feature Measurements
Inter- and intra-rater reliability of measurement as estimated by
the ICC was good or excellent for all morphometric features,
apart from inter-rater reliability of Circularity, which was
moderate. The ICCs for all morphological features are shown
in Supplement Material Page 6, 7.

Feature Selection
Figure 4 shows the feature selection results. The Boruta
algorithm and Spearman’s correlation analysis identified 3
features as important and less correlated variables. The results
are presented by interactive three-dimensional scatter plots
(https://chart-studio.plotly.com/~qingling.go/5/#plot). The
selected features were Solidity, AR, and MiA, which were then
fed into the nomogram as inputs.

Development of the Nomogram
Univariate and Multivariate Analyses
We used restricted cubic splines to flexibly model and visualize
the associations between age and morphometric features with
malignancy risk (Figure 5). Since all these variables showed non-
Frontiers in Oncology | www.frontiersin.org 6159
linear relationships with malignancy risk, we transformed them
into categorical variables. The points where odds ratio (OR) ≈
1.00 were chosen as the cutoff value according to the trend and
knots position of the RCS curve; more importantly, these cut
points showed the best performance in the following model fit
test. As shown in Figure 5, for age < 51 years, malignancy risk
gradually increased with age, while above 51 years, the risk was
relatively flat, reaching the highest at around 59 years and
gradually decreasing thereafter. When AR < 1.75 or Solidity <
0.92, malignancy risk decreased sharply and then leveled off.
Regarding the strong inverted-U-shaped relationship between
MiA and malignancy risk, the plot showed a substantial increase
in the risk, which was highest at around 16, and decreased
thereafter. After multiple comparisons of model fits, we found
that the model with MiA cutoff at 11 and 25 can achieve the
smallest Akaike information criterion (AIC), suggesting the best
model fit.

Table 2 shows the results of univariate and multivariate
analyses in the training cohorts. Morphometric features (AR,
MiA, Solidity, and age) of patients were all identified as
independent predictors for breast malignancy (all p < 0.05).

Logistics Regression Diagnostics
(1) Nonlinear relationships. Nonlinear relationships between
predictors and pathological outcomes were resolved by RCS
analyses. (2) Multicollinearity. All VIF values are below the
threshold value of 2 (Age, VIF = 1.02; AR, VIF = 1.04, MiA,
VIF = 1.23, Solidity, VIF = 1.20), indicating the absence of
collinearity among predictors. (3) Influential outliers. As
shown in Supplementary Figures 3, 4, no outliers were
identified by Cook’s distance or standardized residuals. The
above findings indicate that all logistic regression assumptions
for our model were met.
FIGURE 3 | Comparisons of morphological features between benign and malignant groups in the training cohort. Boxplots grouped by pathology show median
(horizontal bars), IQR (boxes), and 95% CI (whiskers). Raw data points for each group are shown at the bottom of each box plot. Data were normalized and
centered by Z-score transformation to appear on the same scale. Statistical analysis was performed using the Wilcoxon rank-sum test (all features except Round)
and Student’s t test (Round). ***p < 0.001, ****p < 0.0001, ns, not significant.
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Nomogram and Web-Based Calculator
Figure 6A shows the nomogram for predicting breast
malignancy based on independent risk factors, including US
morphometric features AR, MiA, and Solidity. Based on the
above nomogram, we established an online risk calculator to
facilitate the use of the nomogram by clinicians, which can be
freely accessed at https://qingling.shinyapps.io/DynNomapp/
(Figure 6B). Using quantitative values of lesion morphological
features, the calculator can individually predict the risk of breast
malignancy. For instance, for patients aged > 51 years whose
AR ≤ 1.75, MiA 11-25 and Solidity ≤ 0.92, the risk probability of
malignancy was approximately 91.5% (95% CI 86.0–94.9%).

Validation of the Nomogram
Discrimination
The AUCs of the nomogram in the training and validation
cohorts were 0.885, 0.907, and 0.927, respectively (Figure 7A).
There were no significant differences in AUCs between any two
Frontiers in Oncology | www.frontiersin.org 7160
cohorts (DeLong test, p > 0.05 for each comparison,
Supplementary Table 2). Therefore, our nomogram performed
well in all the training and validation cohorts.

Calibration
Calibration curves of the nomogram are close to the diagonal line
in the training and validation cohorts, demonstrating that the
predictive probability has good agreement with observed
outcomes (Figure 7B). The Hosmer–Lemeshow test yielded a
non-significant statistic (p = 0.94), indicating a good fit.

Clinical Utility
DCA curves of the training and validation cohorts revealed clinical
usefulness of the nomogram (Figure 7C). From this figure, it can be
seen that in all the training and validation cohorts, the nomogram
has a higher net benefit than both “treat all” and “treat none” across
the range of threshold probabilities 10-90%, indicating that the
nomogram was clinically useful, that is, the nomogram would
A

B C

FIGURE 4 | Feature selection. (A) Selection of relevant morphometric features for discrimination between benign and malignant groups in the training cohort using
the Boruta algorithm. Boxplots of features were sorted by increasing importance according to Z-scores. Blue boxes (Shadow) correspond to minimal, mean, and
maximal importance, calculated from randomly permuted features. (B) Correlation matrix plot shows pairwise positively stronger correlations (blue) or negatively
stronger correlations (red). Non-significant correlations (p > 0.05) are marked with a cross. (C) 3D scatter plots for final selected feature combinations displaying
separations of benign and malignant groups.
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improve patient outcome irrespective of patient or doctor
preference for a reasonable threshold probability.
DISCUSSION

In this retrospective multicenter study of 917 patients with breast
lesions, we analyzed US morphometric features and developed a
simple-to-use nomogram for predicting cancer. The newly
developed nomogram performed well, and its predictive value
was validated using data from other hospitals in a different
Frontiers in Oncology | www.frontiersin.org 8161
geographic region. Our nomogram has three ultrasonic
morphometric features that are easy to generate using ImageJ
software and that radiologists can easily understand and
interpret. The nomogram can adapt to different ultrasonic
instruments and settings, and it has a high generalization
ability and practicality. To make the nomogram user-friendly,
we have availed it as a free web-based calculator. Consequently,
the nomogram developed in this study will potentially be a
valuable tool in clinical practices.

As precision medicine advances, the nomogram, which can
provide an individual patient with a quantitative risk assessment
A B

DC

FIGURE 5 | The relationship between age and morphometric features with malignancy risk. OR and 95% CI for age (A), AR (B), MiA (C), and Solidity (D). The
analyses used restricted cubic splines. Purple shaded areas, 95% CIs. Black horizontal dotted line, OR=1.00. Yellow vertical solid line, cut-off value.
TABLE 2 | Results of univariate and multivariate analyses for breast malignancy in the training group.

Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

Age
>51 Ref. Ref.
≤51 0.61 0.43~0.87 0.006 0.618 0.38~0.99 0.048

AR
>1.75 Ref. Ref.
≤1.75 2.37 1.66~3.38 <0.001 2.01 1.24~3.26 0.005

MiA
<11 Ref. Ref.
11-25 3.24 2.24~4.68 <0.001 3.83 2.32~6.46 < 0.001
≥25 1.95 0.78~4.89 0.156 8.02 2.65~23.83 < 0.001

Solidity
>0.92 Ref. Ref.
≤0.92 20.28 12.83~32.06 <0.001 25.81 15.47~44.80 < 0.001
A
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of a particular outcome by a graphical interface, has been
proposed as a simple and reliable means to improve disease
prediction or prognosis (34, 35). Several US-based nomograms
for predicting cancer risk or prognosis have been reported in the
literature; all of these nomograms demonstrated high predictive
performance with AUC = 0.747–0.951. Some of the nomograms
were based on subjective evaluations using qualitative descriptors
(e.g., spiculated, rounded, microcalcification, etc.), which are
highly dependent on the level of expertise and experience and
can suffer from a large intra- and inter-observer variability (36–
39). However, other nomograms were based on quantitative
methods such as radiomics, which can objectively describe
tumor phenotypes using numerical features extracted from
radiological images (14–16). These features, which are mainly
related to tumor size, shape, texture, and intensity, provide a
comprehensive tumor characterization. In this scenario,
quantitative evaluation of US images is a natural consequence
of the path towards personalized medicine.

The present study is based on quantitative features, and the
performance of our nomogram was very comparable to that of the
preceding studies, with a few notable differences. The first difference
is that we only used the morphometric features to construct the
nomogram, which was due to the following reasons. As a diagnostic
or prognostic tool, a nomogrammust be practical and generalizable
in clinical settings. However, the reproducibility of quantitative
Frontiers in Oncology | www.frontiersin.org 9162
features based on image pixels, including textural features, intensity-
based features, and wavelet-based features, is affected by image
preprocessing to variable degrees (19, 40, 41). Recently, Lee SE et al.
found that the radiomics of textural features differed depending on
the type of US machine (42). Previous literature has also associated
the measurement of textural parameters with nonlinear variations
in ultrasonic system settings such as time-gain compensation, total
gain, and focal depth (43). Overall, these studies consistently
indicated that due to variations in acquisition modes, parameter
selections, or implementation procedures, the features derived from
the pixel gray-level statistics in terms of intensity and spatial
distribution have greater variability, particularly for US technique,
which is more operator- and system-dependent. In contrast, the
morphometric features characterize the shape and contour of a
lesion and are essentially independent of the system settings and
machines (22, 44). More importantly, the morphologic traits of
breast cancer are associated with histological findings (21, 45, 46),
which can provide valuable information for deriving robust
multidisciplinary models (47). In this study, we found that most
of the morphometric features differed significantly between benign
and malignant groups, and the contributions of the selected
features to the prediction model were as follows: Solidity >
Circularity > Minor Axis. These results confirmed the
association between ultrasonography morphologic features and
histopathological findings.
A

B

FIGURE 6 | Nomogram and online risk calculator. (A) Nomogram based on US morphometric features. Applications of the nomogram were exemplified in
Supplementary Figure 5. (B) The online calculator application version of the nomogram.
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The second difference is that in previous studies, the images
from the US were almost entirely collected in one specific US
machine and system (14–16), whereas in this study, the training
and validation data were both pooled from different US
machines and systems. Moreover, the US transducers used for
imaging had different transmission frequencies, which is more
congruent with the actual clinical settings and a significant
strength of this study. The results with the external validation
cohorts strengthened the predictive potential of the model,
increasing our confidence in the robustness and generality of
the novel nomogram. Furthermore, we built a web-based
calculator with user-friendly digital interfaces to display the
nomogram, which makes risk assessment easier. The user
inputs the details of the lesion on the web page, and the
probability of breast malignancy is calculated automatically for
the patient.

Finally, when compared to other quantification-based
nomograms (14–17), the predictor variables in our nomogram
are easily accessed and interpreted. In general, lack of
interpretability is one of the major barriers to successful
translation of predictive models from research to clinical
practice, particularly for data-driven precision medicine (20).
Frontiers in Oncology | www.frontiersin.org 10163
From a clinical perspective, interpretability is critical for winning
the trust of physicians, developing a robust decision-making
system, and overcoming regulatory concerns (48). For example,
it is difficult for radiomics practitioners to interpret first-order
entropy or grey level co-occurrence matrix features and to assign
biological meaning to them (49). Physicians must be able to
interpret the nomogram model and identify the predictors
separately for rejected and accepted outcomes, and decide on
the subsequent treatment protocols (50). The morphometric
features in our nomogram are relatively non-abstract and can be
considered an extension of the analytical thinking of a radiologist.
This assists radiologists in understanding the decision process of
the nomogram and facilitates doctor–patient communication.
Furthermore, the morphometric features are relatively easy to
retrieve via the interactive freeware ImageJ, without the need to
run scripts from the command line.

This study has several limitations that are worth mentioning.
First, this was a retrospective study, which had inherent biases.
Therefore, larger, high-quality prospective studies should be
conducted in the future. Second, the distribution of pathological
subtypes of breast cancer included in this study was unbalanced,
especially for the specific pathological types such as mucinous or
A B

C

FIGURE 7 | Performance of the nomogram. (A) ROC curves of the nomogram in the training and external validation cohorts, respectively. (B) Calibration curves of
the nomogram, which depict calibration of the nomogram in terms of agreement between the predicted risk of breast malignancy and observed outcomes. The
diagonal dotted line denotes a perfect prediction, the closer the calibration curve fit is to the diagonal line, the better the predictive accuracy of the nomogram.
(C) DCA curves of the nomogram. The gray and black dotted lines represent the hypothesis that all patients had a diagnosis of breast malignancy (“treat all”) and
that no patients had a diagnosis of breast malignancy (“treat none”), respectively. X-axis indicates the threshold probability for pathological outcomes while the Y-axis
indicates the standardized net benefit for a given threshold probability.
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medullary breast cancer. In addition, the sample size was relatively
small and the specific pathological types had different histological
substrates that manifest as different imaging features on US (51,
52), which may have resulted in bias. Third, large dimension
lesions were not included in this study, which could have caused
spectrum bias in patient selection. Finally, accurate segmentation
is necessary for extracting quantitative features from a tumor (53).
Although the features extracted usingmanual segmentation in this
study showed high inter-observer and intra-observer reliability,
the process was relatively time-consuming when compared to
automatic segmentation. These limitations highlight the need for
additional research to potentially improve model performance.
CONCLUSIONS

In this multicentric study, we developed an interpretable and
simple-to-use dynamic nomogram to quantify the probability of
breast malignancy based on US morphometrics. The nomogram
demonstrated good discrimination performance between
malignant and benign lesions, as well as good calibration and
clinical usefulness. Moreover, the nomogram showed high
generalization capabilities, suggesting that it may be used in
clinical practice as a tool to guide personalized treatment. Our
findings show that quantitative morphometric features from
different ultrasound machines and systems can be used as
imaging surrogate biomarkers for the development of robust
and reproducible quantitative ultrasound dynamic models in
breast cancer research.
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Combined Use of Shear Wave
Elastography, Microvascular Doppler
Ultrasound Technique, and BI-RADS
for the Differentiation of Benign and
Malignant Breast Masses
Bin Wang1, Yu-Yuan Chen1, Si Yang1, Zhen-Wen Chen1, Jia Luo1, Xin-Wu Cui2*,
Christoph F. Dietrich3 and Ai-jiao Yi1*

1 Department of Medical Ultrasound, Yueyang Central Hospital, Yueyang, China, 2 Department of Medical Ultrasound, Tongji
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 3 Department Allgemeine
Innere Medizin, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland

Objective: To evaluate the value of the combined use of Breast Imaging Reporting and
Data System (BI-RADS), qualitative shear wave elastography (SWE), and AngioPLUS
microvascular Doppler ultrasound technique (AP) for distinguishing benign and malignant
breast masses.

Materials and Methods: A total of 210 pathologically confirmed breast lesions in 210
patients were reviewed using BI-RADS, qualitative SWE, and AP. The sensitivity,
specificity, negative predictive value (NPV), positive predictive value (PPV), accuracy,
and area under the receiver operating characteristic curve (AUC) of BI-RADS and the
combination of qualitative SWE and/or AP with BI-RADS were compared, respectively.

Results: Compared with using BI-RADS alone, the use of combined qualitative SWE and/
or AP with BI-RADS had higher AUC values (P < 0.001). Besides this, the combination of
qualitative SWE and AP with BI-RADS had the best diagnostic performance for
differentiating between benign and malignant masses. When AP and SWE were
combined with BI-RADS, 49/76 benign masses were downgraded from BI-RADS
category 4a into BI-RADS category 3, while no benign masses were upgraded from BI-
RADS category 3 into BI-RADS category 4a. Three sub-centimeter malignant masses
were downgraded from BI-RADS category 4a into BI-RADS category 3, while three
malignant masses remain in BI-RADS category 3 due to a benign manifestation in both AP
and qualitative SWE. Moreover, 5/6 of themwere sub-centimeter masses, and 4/6 of them
were intraductal carcinoma. The sensitivity, specificity, PPV, NPV, accuracy, and AUC
were 91.0%, 81.1%, 69.3%, 95.1%, 84.3%, and 0.861 (95% confidence interval, 0.806–
0.916; P < 0.001), respectively. Compared with BI-RADS alone, the sensitivity slightly
decreased, while the specificity, PPV, NPV, and accuracy were significantly improved.
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Conclusion: Combination of qualitative SWE and AP with BI-RADS improved the
diagnostic performance in differentiating benign from malignant breast lesions, which is
helpful for avoiding unnecessary biopsies. However, we should be careful about the
downgrading of sub-centimeter BI-RADS 4a category lesions.
Keywords: breast mass, ultrasound, shear wave elastography, Angio PLUS, Breast Imaging Reporting and
Data System
INTRODUCTION

Breast cancer is the leading cause in the morbidity and mortality
of women all over the world. In recent years, the incidence of
breast cancer has been increasing (1, 2). Breast ultrasound gives
real-time results, is convenient, is of a low cost, and is non-
radiative; thus, it has been a crucial tool for screening of breast
lesions. The fifth edition of the Breast Imaging Reporting and
Data System (BI-RADS) was widely used to standardize the risk
evaluation of breast lesions (3). However, there was a highly
variable rate of breast cancer and a high rate of benign lesions
(61.2%) (4) in BI-RADS category 4, which might cause
unnecessary biopsies.

Some studies showed that breast cancer was highly related to
the angiogenesis of microvessels (5). Microvessels are essential to
the growth, invasion, and survival of breast tumors.
Furthermore, the microvascular architecture in benign tumors
was markedly different from that of the malignant ones (6).
Currently, color Doppler flow imaging (CDFI), power Doppler
imaging (PDI), contrast-enhanced ultrasound (CEUS), and
dynamic contrast-enhanced magnetic resonance imaging (CE-
MRI) are widely used to detect vascularity in breast tumors (7–
9). CDFI is the most widely used method, which is noninvasive
and simple to operate, and it can provide some vascularity
character is t ics which suggest mal ignancy, such as
hypervascularity, central or penetrating vessels, and a
branching or disordered morphology (5, 10, 11). Compared
with CDFI, PDI has an advantage in the detection of low-
velocity vessels and allows one to observe blood vessels in real
time. However, CDFI was limited in evaluating vessels <0.2 mm
in diameter, PDI has low sensitivity in the detection of
microvessels, and the differences of vascularity between
malignant and benign lesions had great overlaps (12, 13),
which impacted their differentiation ability compared with
other invasive methods, such as CEUS and CE-MRI (14).

Angio PLUS microvascular Doppler ultrasound technique
(AP) is an innovative Doppler ultrasound technique
(Aixplorer, Supersonic Imaging, France). AP relies on two key
pillars to achieve unfocused or plane waves and 3D wall filtering.
Plane or unfocused waves are sent into the body at the maximum
allowed pulse repetition, and all pixels of the explored tissue can
be reconstructed from a single unfocused insonification with a
significantly higher sampling rate than in classical CDFI. Thus,
AP can increase the imaging sensitivity and resolution to get a
better detection of microvessels (15, 16).

Shear wave elastography (SWE) is a technique that can
assess tissue stiffness by using acoustic radiation to induce
2168
mechanical vibration. The SWE images are displayed in a real-
time color overlay box with different colors to indicate the speed
of the shear wave (in meters per second, m/s) or the degree of
tissue stiffness (Young’s modulus; in kilopascal, kPa) in each
pixel. The stiffness of a tissue can be assessed by a quantitative
measurement or a qualitative map. Previous studies have found
that a quantitative measurement or a qualitative map is useful in
the diagnosis of breast lesions, and it had been proven to be a
reproducible technique (17–19).

To our best knowledge, there was no study on the combined
use of SWE and AP with BI-RADS for the differentiation of
benign and malignant breast masses. The purpose of this study
was to compare the diagnostic efficiency of AP, SWE, and the
combined use of SWE and/or AP with BI-RADS for breast
lesions. We attempt to find optimal methods to differentiate
benign breast lesions from malignant ones.
MATERIALS AND METHODS

This prospective study was approved by the ethics committee of
our institution.

Patients
From August 2018 to July 2019, a total of 210 patients with solid
breast masses were recruited. The inclusion criteria were patients
aged 18 years or older with at least a solid mass detected on the
B-mode ultrasound, and the pathology of all the breast masses
was confirmed via ultrasound-guided core needle biopsy and/or
surgery in 1 month according to standard clinical protocols.
People were excluded if lactating or pregnant, had a previous
needle biopsy, or had any treatment of the same lesions. When
one patient had multiple lesions, the most suspicious lesion
was included.

Ultrasound Examination
All ultrasound examinations, including grayscale ultrasound, CDFI,
AP, and SWE were performed with a high-frequency transducer
(L15-4 or L10-5 Aixplorer, Supersonic Imaging, France).

Bilateral breast ultrasound was performed. When a target
lesion was detected, the general characteristics were observed.
The B-mode features of the lesion were clearly depicted,
including the shape, margin, orientation, echo pattern,
posterior features, calcifications, and associated features. Each
lesion was classified as either category 3 (probably benign), 4a
(low suspicion for malignancy), 4b (moderate suspicion for
malignancy), 4c (high suspicion for malignancy), or 5 (highly
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suggestive of malignancy) according to the fifth edition of BI-
RADS (3).

Two orthogonal planes containing the richest vascularity of
each lesion were scanned with CDFI and AP. The following
settings were used for the CDFI examination: the color velocity
scale was adjusted at 3 cm/s, and the color gain was adjusted
adequately as the background noise was just suppressed. The
region of interest included the whole masses and the breast tissue
surrounding the lesion for at least 3 mm. For those large breast
masses (>40 mm) that were not single-screen included, we
observed the lesions in different planes to cover all the masses
and the surrounding areas.

In terms of the setting for AP, gain settings were tuned to the
optimum degree without color noise for each imaging. During
the examination of CDFI and AP, the patients were asked to hold
their breath for a while, and no pressure was applied through the
transducer to prevent the vessels from collapsing (12).

After the AP imaging, SWE imaging was obtained by the
following recommendations: SWE imaging examination was
induced by the transducer without pressure. The region of
interest included the whole lesion and breast tissue surrounding
the lesion for at least 3 mm. The stiffness range of the color map
was from blue to red (0–180 kPa). The standard SWE imaging
was obtained with several seconds of immobilization.

All sonographic scanning was performed by the same
investigator who had more than 20 years of experience in
breast ultrasound and 2 years of experience in AP and SWE.

Imaging Analysis
The imaging data were analyzed by two radiologists (about 10
years of experience in breast ultrasound and 2 years of experience
in AP and SWE) who were blinded to the pathological results.
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The third investigator evaluated the lesions when a disagreement
occurred. Pathology was considered to be a golden standard.

The morphologic and distribution features detected on AP
were divided into five patterns according to the shape of the
vascular networks: (1) non-vascular pattern, which was due to a
lack of vessels; (2) a linear or curvilinear pattern, with a single or
a few straight or slightly curved vessels without crossing which
were found inside the lesion; (3) a treelike pattern, which
consisted of proportioned microvessels branching within the
lesions; (4) a root hair-like pattern, which was dominated by a
twist and a chaotic arrangement, and the irregular vessels within
the lesions had less than two enlarged and twisted vessels
surrounding the lesion; and (5) a crab claw-like pattern, which
was characterized by radial vessels and with small speculated
vessels commonly seen in the peripheral region (Figure 1).

As for the qualitative SWE features, we used seven color
patterns in this study (20): (1) no finding: no difference is
observed at the margin of or inside the lesion with the color
around the lesion (homogeneously blue); (2) vertical stripes
pattern: a color is observed at the margin of or inside the
lesion, which differs from the color around the lesion. The
differing color extends beyond the lesion and continues
vertically in cords on the cutaneous side and/or the thoracic
wall; (3) spots pattern: colored areas are visible above and/or
below the lesion; and (4) rim of stiffness pattern: a localized
colored area appears at the margin of the lesion and creates a
continuous closed circle; (5) colored lesion pattern: colored areas
are heterogeneously visible inside the lesion; (6) void center
pattern: There is a lack of SWE signal inside the lesion. The rest
of the SWE Box fills correctly; and (7) horseshoe pattern: a
localized colored area appears at the margin of the lesion and
creates an open circle (Figure 2).
FIGURE 1 | The morphologic and distribution features of Angio PLUS. (A) Non-vascular pattern. (B) A linear or curvilinear pattern. (C) A treelike pattern. (D) A root
hair-like pattern. (E) A crab claw-like pattern.
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Statistical Analysis
According to the final pathological results, the sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), accuracy, and area under the receiver operating
characteristic curve (AUC) of BI-RADS and the combination of
BI-RADS, qualitative SWE, and APwere calculated and compared,
respectively. A P-value <0.05 was considered statistically
significant. SPSS 22.0 was used for all statistical analysis.
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RESULTS

Pathological Findings
Of the 210 enrolled breast lesion cases (Figure 3),
histopathologically, 67 (67/210) lesions were malignant, and
143 (143/210) lesions were benign (Table 1). Finally, 70
(33.3%) lesions were assigned to BI-RADS category 3, of which
3 (4.3%) were malignant. A total of 140 lesions were assigned to
FIGURE 2 | The color pattern features of shear wave elastography. (A) No finding. (B) Vertical stripes pattern. (C) Spots pattern. (D) Rim of stiffness pattern.
(E) Colored lesion pattern. (F) Void center pattern. (G) Horseshoe pattern.
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BI-RADS categories 4 and 5 (4a, 68 lesions; 4b, 32 lesions; 4c, 35
lesions; and 5, 5 lesions), and the confirmed malignant rates for
4a, 4b, 4c, and 5 were 10.3, 56, 97, and 100%, respectively.

Reclassification for BI-RADS Category 3
and 4a Lesions
In this study, the modified BI-RADS category combining SWE
or/and AP with ultrasound (US) was only for BI-RADS
categories 3 and 4a. When combining AP with BI-RADS, the
morphologic and distribution features of BI-RADS category 4a
manifested a non-vascular pattern, a linear or curvilinear
pattern, and a treelike pattern which were downgraded into
BI-RADS category 3. The morphologic and distribution features
of BI-RADS category 3, which manifested a root hair-like pattern
and a claw-like pattern, were upgraded into BI-RADS category
4a. When combining SWE with BI-RADS alone, the qualitative
Frontiers in Oncology | www.frontiersin.org 5171
SWE features of BI-RADS category 4a showed no finding,
vertical stripes, and spots above/below, which were
downgraded to BI-RADS category 3. The qualitative SWE
features of BI-RADS category 3 showed rim of stiffness, horse
shoe, void center, and colored lesion, which were upgraded to BI-
RADS 4a category (Table 2). When combining SWE and AP
with BI-RADS, BI-RADS 4a category was downgraded into BI-
RADS 3 category with the morphologic and distribution features
that manifested a non-vascular pattern, linear or curvilinear
pattern, and treelike pattern, and the qualitative SWE features
showed no finding, vertical stripes, and spots above/below, while
BI-RADS 3 category was upgraded into BI-RADS 4a category
with the morphologic and distribution features manifested as
root hair-like pattern and claw-like pattern, and the qualitative
SWE features showed rim of stiffness, horse shoe, void center,
and colored lesion.

Diagnostic Performance of BI-RADS,
BI-RADS + AP, and BI-RADS + SWE
and the Combination of SWE and
AP With BI-RADS
BI-RADS category 3 was regarded as benign, while BI-RADS
categories 4a, 4b, 4c, and 5 were regarded as malignant. The AUC
of B-mode US with BI-RADS was 0.712 [95% confidence interval
(CI), 0.643–0.781]. The sensitivity, specificity, PPV, NPV, and
accuracy were 95.5, 46.9, 45.7, 95.7, and 62.4%, respectively. The
sensitivity, specificity, PPV, NPV, and accuracy of AP alone were
59.7, 87.4, 69.0, 82.2, and 78.6%, respectively. The sensitivity,
specificity, PPV, NPV, and accuracy of SWE alone were 83.6, 79,
65.1, 91.1, and 80.5%, respectively (Table 3). When AP was
combined with BI-RADS, 89.7% (61/68) of BI-RADS 4a lesions
were downgraded into BI-RADS 3, including 9.8% (6/61)
FIGURE 3 | Flow chart for the selection of breast lesions.
TABLE 1 | Pathology of 210 breast lesions.

Pathology result Number of lesions

Benign 143
Fibroadenoma 98
Fibrocystic mastopathy 29
Benign phyllodes tumor 2
Mastitis 9
Breast abscess 3
Intraductal papilloma 2

Malignant 67
Invasive ductal carcinoma 47
Intraductal carcinoma 11
Invasive lobular carcinoma 5
Papillary carcinoma 2
Mucinous carcinoma 2
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malignant lesions. The AUC of BI-RADS and AP was 0.828 (95%
CI, 0.767–0.889). The sensitivity, specificity, PPV, NPV, and
accuracy were 86.6, 79.0, 65.9, 92.6, and 81.4%, respectively.
When SWE was combined with BI-RADS, the sensitivity was
reduced from 95.5 to 91%, while the specificity increased from
46.9 to 74.1%. Four malignant breast masses were downgraded
from BI-RADS category 4a into BI-RADS 3 category, and one
malignant breast mass was upgraded from BI-RADS category 3
into BI-RADS category 4a. The AUC of BI-RADS and SWE was
0.826 (95% CI, 0.767–0.885). The sensitivity, specificity, PPV,
NPV, and accuracy were 91.0, 74.1, 62.2, 94.6, and 79.5%,
respectively. When AP and SWE were combined with BI-
RADS, 49/76 (64.5%) benign masses were downgraded into BI-
RADS category 3, while no benign masses were upgraded from
BI-RADS category 3 into BI-RADS category 4a. Three sub-
centimeter malignant masses were downgraded into BI-RADS
category 3, and three malignant masses remain in BI-RADS
category 3 due to benign manifestation in both AP and
qualitative SWE—5/6 of them were sub-centimeter masses, and
4/6 of them were intraductal carcinoma. Compared with BI-
RADS alone, the diagnostic performance of the combination of
AP and qualitative SWE improved. The AUC was increased from
0.712 (95% CI, 0.643–0.781) to 0.861 (95% CI, 0.806–0.916) (P <
0.001) (Figure 4), and the sensitivity slightly decreased, while the
specificity, PPV, NPV, and accuracy were increased from 46.9,
45.7, and 62.4% to 81.1, 69.3, and 84.3%, respectively (Table 4).
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DISCUSSION

Our studies found that qualitative SWE can provide extra
stiffness information of breast masses, AP can depict the
morphologic and distribution features of microvessels, and the
combination of qualitative SWE and AP with BI-RADS could
significantly improve the diagnostic specificity to avoid
unnecessary biopsy.

The American College of Radiology (ACR) BI-RADS lexicon
mainly focused on morphology, which is widely used in
ultrasound examination. This system could improve the
reproducibility and reliability of cancer risk assessment (21,
22), and it has high sensitivity but with a low PPV with a
substantial number of false-positive findings that cause
unnecessary biopsies, which is the major limitation (13, 14). In
this study, the sensitivity and specificity of using BI-RADS alone
were 95.5 and 46.9%, respectively.

According to the 2013 ACR BI-RADS guideline, vascularity is
one of the associated features. It is classified into 3 types in CDFI
or PDI, including absent, internal vascularity, and vessels in rim.
However, angiogenesis plays a critical role in tumor development
and metastasis. Therefore, it is important to use vascularity as a
diagnostic feature. However, microvessel detection was limited in
CDFI or PDI, and AP can display more internal small vessels.

There were a few studies on morphologic and distribution
features in differentiating benign breast lesions from malignant
ones. Feng et al. (23) found that breast lesions with a centrally
distributed branching or chaotic vessels were informative signs of
breast malignancy. Chang et al. (24) found morphologic and
tortuous features of microvessels in 3D power Doppler
ultrasound, which was useful in distinguishing benign from
malignant lesions. Xiao et al. (25) found that malignant lesions
always showed penetrating vessels and spiculated or radial
vessels in the peripheral regions, displaying root hair-like or
crab claw-like patterns, whereas benign lesions mainly showed
peripheral annular, non-vascular, linear, and treelike patterns.

In this study, we observed the morphologic and distribution
features of AP in breast lesions. It was consistent with Xiao’s
study, but we found that there was an overlap between benign
and malignant breast lesions, especially between inflammatory
lesions and malignant breast lesions. Furthermore, since
vascularity is an important factor for tumor differentiation, and
AP performed well in vascular detection, in our study, we tried to
combine AP with BI-RADS. When the morphologic and
distribution features in AP were used alone, the sensitivity was
reduced from 95.5 to 59.7%, while the specificity increased from
46.9 to 87.4%. Furthermore, 40.3% (27/67) malignant lesions
were manifested in a non-vascular or linear pattern. It may be
TABLE 3 | Diagnostic performance of Breast Imaging Reporting and Data System, shear wave elastography, and AngioPLUS microvascular Doppler ultrasound
technique in distinguishing malignant from benign lesions.

Sensitivity (%) Specificity (%) Positive predictive value (%) Negative predictive value (%) Accuracy (%)

BI-RADS 95.5 46.9 45.7 95.7 62.4
AP 59.7 87.4 69 82.2 78.6
SWE 83.6 79.0 65.1 91.1 80.5
May 2022 | Volume 12 |
TABLE 2 | Comparison of qualitative SWE and AP features between benign and
malignant lesions with pathological results.

Benign Malignant P

Agea 44 (37–49) 53 (47–49) <0.001
Size (mm)a 12 (9–18) 20 (13–28) <0.001
APb <0.001
Non-vascular pattern 44 4
Linear or curvilinear pattern 73 19
Treelike pattern 9 1
Root hair-like pattern 10 13
Crab claw-like pattern 7 30

SWEb <0.001
No finding 84 9
Vertical stripes pattern 15 1
Spots pattern 14 1
Rim of stiffness pattern 21 31
Colored lesion pattern 6 15
Void center pattern 1 3
Horseshoe pattern 2 7
aData are expressed as median (interquartile range).
bData are expressed as numbers.
AP, Angio PLaneWave UltraSensitive ultrasound imaging; SWE, shear wave elastography.
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because the vascular velocity of some microvessels was lower
than the threshold for AP, and some ductal carcinoma in situ or
invasive cancers manifested low blood perfusion (26), which also
indicates that the angiogenesis in malignant breast tumors was
heterogeneous (27).

When AP was combined with BI-RADS, 6/61 malignant
lesions were missed. All these 6 malignant lesions manifested a
non-vascular or linear pattern. The final pathological results of
these lesions were different grades of intraductal carcinoma or
mucinous carcinoma: two were high-grade intraductal
carcinoma, two were intermediate-grade intraductal carcinoma,
one was low-grade intraductal carcinoma, which may be related
to that part of intraductal carcinomas where there is a lack of
blood supply, and two intraductal carcinoma were located at a
depth of over 20 mm. The maximal diameter of one lesion was
5 mm, so AP could not depict a complete vascular caliber. What
is more, one benign lesion was upgraded from BI-RADS 3 to BI-
RADS 4a category because the morphologic and distribution
Frontiers in Oncology | www.frontiersin.org 7173
features of AP manifested a claw-like pattern. Therefore, it was
useful but insufficient to consider morphologic and distribution
features as the only diagnostic feature in the interpretation.

In recent years, there were many studies on the differentiation
of benign and malignant breast lesions with elastography. Lin et
al. (20) found that malignant breast lesions mainlymanifested rim
of stiffness pattern, colored lesion pattern, void center pattern, and
horseshoe pattern with qualitative SWE, while benign breast
lesions mainly manifested no finding, vertical stripes pattern,
and spots pattern, which were consistent with our study.

When SWE was combined with BI-RADS, four malignant
breast lesions were missed. All these masses showed no finding
with qualitative SWE, and 2/4 of these lesions were high-grade
intraductal carcinoma, 1/4 of these was intermediate-grade
intraductal carcinoma, 1/4 of these was invasive ductal carcinoma,
and 3/4 of these lesions were sub-centimeter masses. Intraductal
carcinoma is a precancerous lesion with a complicated pathological
entity, so the lack of morphologic changes was difficult to be
FIGURE 4 | ROC of Breast Imaging Reporting and Data System alone and combined qualitative shear wave elastography and/or AngioPLUS microvascular Doppler
ultrasound technique. ROC, receiver operating characteristic; AUC, area under the ROC curve.
TABLE 4 | Diagnostic performance of the combined qualitative parameters of shear wave elastography (SWE) or/and AngioPLUS microvascular Doppler ultrasound
technique (AP) with Breast Imaging Reporting and Data System (BI-RADS) in distinguishing malignant from benign lesions.

Sensitivity
(%)

Specificity
(%)

Positive predictive
value (%)

Negative predictive
value (%)

Accuracy
(%)

Area under the receiver operating
characteristic curve (95%CI)

pa

BI-RADS 95.5 (64/67) 46.9 45.7 95.7 62.4 71.2 (0.643–0.781) –

BI-RADS + AP 86.6 (58/67) 79 65.9 92.6 81.4 82.8 (0.767–0.889) <0.001
BI-RADS + SWE 91.0 (61/67) 74.1 62.2 94.6 79.5 82.6 (0.767–0.885) <0.001
BI-RADS + AP +
SWE

91.0 (61/67) 81.1 69.3 95.1 84.3 86.1 (0.806–0.916) <0.001
May 2022 | Volume 12 | Article
Data are expressed as percentage (numbers).
aComparison of the diagnostic performance between BI-RADS alone with the combination of the qualitative SWE and/or AP with BI-RADS.
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detected by ultrasound (28), and the stiffness may be lower than that
of invasive carcinoma, which caused the no-finding manifestation
of qualitative SWE. In addition, 1 malignant breast mass manifested
a horseshoe pattern and was upgraded into BI-RADS category 4a.
The final pathology result was invasive ductal carcinoma, and the
maximum diameter of the lesion was 9 mm. Therefore, SWE
features were useful for differentiation between benign and
malignant lesions, and compared with AP, 4 sub-centimeter
malignant lesions manifested malignant qualitative SWE features
earlier than the malignant morphologic and distribution features of
AP. However, 4 malignant breast lesions were downgraded into BI-
RADS category 3, which was recommended with a short-time
follow-up. Thus, it is insufficient to use SWE alone to differentiate
benign from malignant breast lesions.
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There was a study (29) which reported that the combination of
the quantitative values of SWE and the vascular index in SMI could
significantly improve the accuracy and specificity, but the sensitivity
decreased slightly, which was consistent with this study. However,
the ultrasound system of a previous study is different with this study,
and the cutoff values of quantitative SWE and vascular index for
differentiating benign from malignant breast masses may be varied
in different ultrasound systems. The SWE technique of this study
had been widely used and recognized in official clinical guidelines
(20, 30). This study first found that the combination of qualitative
SWE and AP with BI-RADS had an added value. When we
combined SWE and AP with BI-RADS to modify the original BI-
RADS category, we found that 64.5% of benign BI-RADS category
4a masses were downgraded into BI-RADS category 3 (Figure 5).
FIGURE 5 | A 45-year-old woman with breast lesions. (A) Conventional B-mode ultrasound revealed a 10 × 6-mm round, hypoechoic lesion with a clear margin in
the right breast, which was categorized as Breast Imaging Reporting and Data System (BI-RADS) 4a. (B) The morphologic and distribution features of the
microvessels in AngioPLUS microvascular Doppler ultrasound technique (AP) followed a linear pattern. (C) The qualitative shear wave elastography (SWE) feature
showed no finding. Considering the benign manifestation both in AP and qualitative SWE, the final category was downgraded into BI-RADS 3. The ultrasound-
guided biopsy revealed the lesion as fibroadenoma.
May 2022 | Volume 12 | Article 906501
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The diagnostic specificity was significantly improved, thus avoiding
a lot of unnecessary biopsies. However, 6 malignant masses were
misdiagnosed due to benign manifestation in both AP and
qualitative SWE; 5/6 of them were sub-centimeter, and 4/6 of
them were intraductal carcinoma (Figure 6). For some sub-
centimeter intraductal carcinoma masses, AP and SWE cannot
detect obvious malignant features, which may be caused by
heterogeneous angiogenesis or a small collagen fiber area. Thus,
we should be careful in downgrading sub-centimeter BI-RADS
category 4a lesions, and especially for sub-centimeter intraductal
carcinoma masses, mammography and MRI can be combined
if necessary.

There were several limitations in this study. First, it was a
preliminary study in one center with a small sample. Second, some
final pathology results of the patients were not available, which
may have caused a selection bias of enrollment. Third, the time
span was short, and the pathological categories were limited.
Frontiers in Oncology | www.frontiersin.org 9175
CONCLUSION

In conclusion, the morphologic and distribution features of
microvessels in AP and the stiffness information in SWE were
useful in the differential diagnosis of benign and malignant
lesions. The combination of qualitative SWE and AP with BI-
RADS could improve specificity, thus avoiding unnecessary
biopsy. However, we should be careful when downgrading sub-
centimeter BI-RADS category 4a lesions.
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FIGURE 6 | A 33-year-old woman with breast lesions. (A) The conventional B-mode ultrasound revealed an 8 × 7-mm round, hypoechoic lesion with unclear margin
in the right breast, which was categorized as Breast Imaging Reporting and Data System (BI-RADS) 4a. (B) The morphologic and distribution features of the
microvessels in AngioPLUS microvascular Doppler ultrasound technique followed a linear pattern. (C) The qualitative shear wave elastography (SWE) feature showed
no finding. Considering the benign manifestation both in AP and qualitative SWE, the final category was downgraded into BI-RADS 3. The ultrasound-guided biopsy
revealed the lesion as intermediate-grade intraductal carcinoma.
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Xin Zhao, Jun Yang, Yang Zuo, Wei Kang, Hai Liao, Zhong-Tao Zheng and Dan-Ke Su*

Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China

Background: The objective of the current study was to investigate the diagnostic value of
contrast-enhanced cone-beam breast computed tomography (CE-CBBCT) for breast
lesion with rim enhancement (RE).

Methods: All 36 patients were examined by non-contrast (NC-CBBCT) and contrast-
enhanced CBBCT (CE-CBBCT) after contrast media (CM) injection. Qualitative
morphological enhancement parameters and quantitative enhancement parameters
were compared between malignant and benign groups. Multivariable logistic
regression analysis was performed to identify independent factors that could predict
breast lesion with RE malignancy. Receiver operating curve (ROC) was used to evaluate
prediction performance.

Results: A total of 36 patients with 40 lesions underwent breast CE-CBBCT were
enrolled. There were significant differences in most qualitative morphological
enhancement parameters between the two groups. A multivariate logistic regression
model showed that △standardized HU (INRphase 2−INRpreCM) [odds ratio (OR) = 1.148,
95% CI = 1.034–1.276, p = 0.01] and △standardized HU (RPphase 2 − RPphase 1)
(OR = 0.891, 95% CI = 0.814–0.976, p = 0.013) were independent indicators in predicting
breast lesion with RE malignancy. △standardized HU (INRphase 2 − INRpreCM) combined
with △standardized HU (RPphase 2 − RPphase 1) showed significant larger area under the
receiver operating curve (AUC) and higher sensitivity than each alone (p < 0.001,
AUC = 0.932, sensitivity = 92.59%, specificity = 92.31%). The regression equation of
the prediction model was as follows: Logit (p) = 0.351 + 0.138X × △standardized HU
(INRphase 2 − INRpreCM) − 0.115 × △standardized HU (RPphase 2 − RPphase 1).

Conclusion: With the observation of qualitative morphological enhancement parameters
and the comparison of quantitative enhancement parameters of CBBCT, a reliable basis
for the diagnostic accuracy in predicting breast lesion with RE could be provided. These
conclusions should be verified in large, well-designed studies.

Keywords: contrast-enhanced cone-beam breast computed tomography, clustered rim enhancement, qualitative
morphological enhancement parameters, quantitative enhancement parameters, diagnostic accuracy
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INTRODUCTION

Breast lesion with rim enhancement (RE) is a special type of
lesion with more enhancement in the edge than in the central
region of the lesion through dynamic enhanced magnetic
resonance imaging (MRI) scanning. Previous studies (1, 2)
have indicated that REs are highly suggestive of malignant
lesion. However, in clinical practice, REs may also appear in
some of those benign lesions and often partially overlap with the
malignant lesions, thus affecting the accuracy of qualitative
diagnosis of lesions. With the rapid development of imaging
technology, cone-beam breast computed tomography (CBBCT),
as a new dedicated breast CT imaging technology based on cone-
beam X-ray and flat panel detector (3, 4), has opened a new
chapter in breast imaging diagnosis. In particular, the diagnostic
effectiveness of contrast-enhanced cone-beam breast computed
tomography (CE-CBBCT) is close to MRI (5), providing a new
direction for the diagnosis of breast diseases. In the current
study, the diagnostic value of CE-CBBCT in predicting breast
lesion with RE malignancy was investigated.
MATERIALS AND METHODS

Ethics Statement
This study was conducted in accordance with the Declaration of
Helsinki and approved by the Institutional Review Board of
Guangxi Medical University Cancer Hospital. Written informed
consent was given by all participants for their clinical records to
be used in this study.
Patients
Patients who received CE-CBBCT as standard of care from July
2019 to October 2019 were retrospectively reviewed

The inclusion criteria were as follows: (1) the affected breast was
imaged before breast biopsy, lumpectomy, and chemoradiotherapy;
(2) CE-CBBCT scan was performed, and mass lesions with RE was
detected by radiologist in the affected breast; and (3) the
malignancy of the mass lesion was proven by pathology after
biopsy or surgery.

A total of 36 patients with 40 lesions underwent breast CE-
CBBCT were enrolled.
CBBCT Scanning
CBBCT examinations were performed using a dedicated flat-panel
breast CT system (Koning Breast CT, CBCT 1000, Koning
Corporation). The CBBCT system has been approved by the
Food and Drug Administration (FDA) and the National Food
Abbreviations: CE-CBBCT, contrast-enhanced cone-beam breast computed
tomography; NC-CBBCT, non-contrast CBBCT; MRI, magnetic resonance
imaging; HU, Hounsfield units; INR, the inner of the rim; RP, rim paries; CI,
confidence interval; ORs, odds ratios; AUC, area under the receiver operating
curve; ROC, receiver operating curve.
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and Drug Administration of China for diagnostic breast imaging.
The CBBCT examinations were performed with a constant tube
voltage of 49 kVp and variable tube currents (between 50 and 160
mA) depending on breast size and density (4, 6). Tube current was
automatically selected after an initial scout image acquisition and
kept constant for pre- and post-contrast CBBCT imaging. The
patients took prone position with their arms raising, keeping the
breasts naturally pendant at the center of the imaging field.
The position was not changed during the whole examination.
After the initial pre-contrast CBBCT scanning, ioversol contrast
media (CM) (320 mgI/ml) was injected intravenously with a dual-
chamber power injector at the flowrate of 2 ml/s and at the dose of
1.5–2.0 ml/kg. Two separate post-contrast CBBCT scans were
performed at 60 s (phase 1) and 110 s (phase 2) after the
injection of CM.
Image and Data Analyses
Image analyses were performed by two breast radiologists who
were highly experienced in breast imaging including CBBCT.
Both radiologists were blinded to clinicopathological and other
imaging modality findings. When the diagnosis was inconsistent,
the final decision was based on the agreement of the two
radiologists. Koning Breast CT Image Viewer workstation was
used to observe the qualitative morphological enhancement
parameters and measure the quantitative enhancement
parameters. CBBCT intensity was measured in Hounsfield
units (HUs). Qualitative morphological enhancement
parameters were described based on MRI breast imaging
reporting and data system (BI-RADS), including the overall
shape of the rim enhancement, the situation of rim paries
(outer margin of the rim paries, border of outer margin, inner
margin of the rim paries, border of inner margin, and uniformity
of the rim paries), and peripheral vascular signs. Quantitative
enhancement parameters included were as follows. First is the
maximum thickness difference of the rim paries: the coronal
plane of the lesion in the phase 1 of CE-CBBCT was selected to
measure the thickest and thinnest diameter of rim paries; then,
the difference between the two was calculated. Second is the
△standardized CT value (HU): regions of interest (ROI) were
selected at the same positions in different phases (non-enhanced
and two-phase enhanced scans) of the rim paries, the inner of the
rim, and the fat for CT value measurement (ROI area was 2–5
mm2). When selecting an ROI for CT value measurement, it
should be noted that (1) the ROI of the rim paries is selected in
the area where the rim paries was significantly enhanced in the
enhanced scan image, and the ROI in the non-enhanced scan
image should correspond with it; (2) the ROI of the inner of the
rim is selected in the area where the inner of the rim was not
enhanced or not obviously enhanced in the enhanced scan
image, and the ROI in the non-enhanced scan image should
correspond with it; (3) when selecting the ROI of the fat, glands,
blood vessels, skin, and other structures should be avoided; and
(4) the measurement is performed on the image of coronal
section with a thickness of 0.27 mm. After measuring the CT
value, referring to the calculation methods of the enhancement
May 2022 | Volume 12 | Article 868975
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parameters of Liu et al. (7) and Uhlig et al. (8), △standardized
HUs were calculated according to the following formula:

Formula 1 :Dstandardized HU ðINRphase 1 −  INRpreCMÞ 
=  HUðINRphase 1 −  INRpreCMÞ  −  HUðfatphase 1 −  fatpreCMÞ :

Formula 2 :Dstandardized HU ðINRphase 2 −  INRpreCMÞ 
=  HUðINRphase 2 −  INRpreCMÞ  −  HUðfatphase 2 −  fatpreCMÞ :

Formula 3 :Dstandardized HU (INRphase 2 −  INRphase 1)

=  HUðINRphase 2 −  INRphase 1Þ  −  HUðfatphase 2 −  fatphase 1Þ :

Formula 4 :Dstandardized HU ðRPphase 1 −  RPpreCMÞ 
=  HUðRPphase 1 −  RPpreCMÞ  −  HUðfatphase 1 −  fatpreCMÞ :

Formula 5 :Dstandardized HU ðRPphase 2 −  RPpreCMÞ 
=  HUðRPphase 2 −  RPpreCMÞ  −  HUðfatphase 2 −  fatpreCMÞ :

Formula 6 :Dstandardized HU ðRPphase 2 −  RPphase 1Þ 
=  HUðRPphase 2 −  RPphase 1Þ  −  HUðfatphase 2 −  fatphase 1Þ :

Statistical Analysis
SPSS Version 25.0 (IBM, Armonk, NY, USA) was used. Continuous
variables arepresentedasmean±standarddeviation (SD)asmeasure
of dispersion. The normality assumption of continuous variableswas
tested via the Shapiro–Wilks test. Continuous variables that did not
conform to normal distribution are expressed as quartiles, which
were presented as median (P25, P75). Categorical variables are
presented as absolute number and percent.

Qualitative morphological enhancement parameters between
malignant and benign groups were compared by using c2 or
Fisher’s exact tests. Quantitative enhancement parameters
between malignant and benign groups were compared by
Student’s t-test or Mann–Whitney U-tests. Those quantitative
enhancement parameters with p < 0.1 in the univariate analysis
were included in the multivariable logistic regression analysis using
forward:LR to identify independent factors that could predict breast
lesion with REmalignancy. Diagnostic accuracy was assessed lesion
based via test sensitivity, specificity, and area under the receiver
operating curve (AUC) separately for those quantitative
enhancement parameters with p < 0.05 in the multivariable
logistic regression analysis by calculating the receiver operating
curve (ROC). A p value < 0.05 was considered significant.
RESULTS

Patient Characteristics
The clinicopathological data of the patients included are
presented in Table 1. A total of 36 patients with 40 lesions
Frontiers in Oncology | www.frontiersin.org 3180
fulfilled the inclusion criteria. NC-CBBCT, post-CM CE-CBBCT
scans at 60 s (phase 1), and 110 s (phase 2) were performed in all
patients. All patients were female. The age of the patients ranged
from 35 to 64 years, and the median age was 46 years. A total of
13 benign lesions (6 were proliferative lesions with inflammation,
3 were purulent inflammation, 3 were plasma cell mastitis, and 1
was fibroadenoma) were found in 11 patients. A total of 27
malignant lesions (all of them were invasive ductal carcinoma: 3
were luminal A subtype, 6 were luminal B subtype, 11 were Her-
2-positive subtype, and 7 were triple negative subtype) were
found in 25 patients.

Radiation Dose
The radiation doses of the 36 patients enrolled in this study
ranged from 15.3 to 22.7 mGy, with a mean dose of 17.73 ±
1.53 mGy.

Comparison of the Qualitative
Morphological Enhancement Parameters
Between Malignant and Benign Groups
Most of the malignant lesions with REs showed irregular shape,
irregular/spicula outer margin of the rim paries, unsmooth and
indefinite inner margin of the rim paries, uneven thickness of the
rim paries, and positive peripheral vascular sign (Figure 1). Most
of the benign lesions showed round/quasi-circular shape,
smooth/lobulate outer margin of the rim paries, smooth and
definite inner margin of the rim paries, and uniform thickness of
the rim paries (Figure 2). There were significant differences in
most signs between the two groups except for one (border of
outer margin) (Table 2).

Univariate Analysis and Multivariable
Logistic Regression Analysis of the
Quantitative Enhancement Parameters
Those quantitative enhancement parameters including thickness
difference of the rim paries, △standardized HU (INRphase 1 −
INRpreCM), △standardized HU (INRphase 2 − INRpreCM),
△standardized HU (RPphase 1 − RPpreCM), and △
standardized HU (RPphase 2 − RPphase 1) in malignant group
were significantly higher than that in the benign group (Table 3).

The quantitative enhancement parameters with p < 0.1 in
univariate analysis above were included in the multivariable
TABLE 1 | The clinicopathological data and molecular pathological subtypes of
these patients.

Malignant group
(n = 25)

Benign group
(n = 11)

p-value

Number of lesions (n) 27 13
Age (years) 48.36 ± 6.775 43.36 ± 4.433 0.032
Menstrual status (n) 0.387
Non-menopause 18 10
Menopause 7 1

Gland type (n) 0.411
Non-compact 12 4
compact 13 7

Size of lesion (cm) 2.24 ± 0.93 1.60 ± 0.58 0.005
May 2022
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logistic regression analysis to identify independent factors that
could predict breast lesion with RE malignancy. Results showed
that △standardized HU (INRphase 2 − INRpreCM) (OR = 1.148,
95% CI =1.034–1.276, p = 0.01) and △standardized HU
(RPphase 2 − RPphase 1) (OR = 0.891, 95% CI =0.814–0.976,
p = 0.013) were independent indicators in predicting breast
lesion with RE malignancy (Table 4).

Diagnostic Accuracy of the
Enhancement Parameters
Both △standardized HU (INRphase 2 − INRpreCM) and
△standardized HU (RPphase 2 − RPphase 1) alone showed
comparable AUC, sensitivity, and specificity for assessment of
breast lesions malignancy. While△standardized HU (INRphase 2 −
INRpreCM) combinedwith△standardizedHU(RPphase 2−RPphase 1)
showedsignificant largerAUCandhigher sensitivity thaneachalone.
The regression equation of the prediction model for combined both
was as follows: Logit (p) = 0.351 + 0.138X × △standardized HU
(INRphase 2 − INRpreCM) − 0.115 ×△standardized HU (RPphase 2 −
RPphase 1) (Table 5).
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DISCUSSION

REs may be found in both benign and malignant lesions. Most
previous studies mainly focused on the differential diagnosis of RE
inMRI technology, andmost researchers believed that the post-CM
morphological characteristicsof lesions after scanningare vital basis
for qualitative diagnosis (9–12). As a new type of equipment
dedicated to breast imaging, CBBCT has the advantages including
fast scanning speed and high image quality. It can obtain three-
dimensional images with high spatial resolution and contrast from
all directions and multiple perspectives without displacement and
deformation. In addition, it has strong ability to display lesions of
microcalcifications and soft tissue and to improve the detection of
post-CM lesions and highlight their morphological characteristics
after scanning (3, 5).

In the current study, the morphological enhancement
parameters of breast lesions with REs by CE-CBBCT were
analyzed, and the results indicated that there were significant
differences in overall shape of the REs and the situation of rim
paries (outer margin of the rim paries, border of outer margin,
A B C D

FIGURE 1 | Female, 48 years old, invasive ductal carcinoma in the left breast. (A) Transverse section. (B) Coronal section. (C) Median sagittal section. (D) MIP
reconstruction images in phase 1 by CE-CBBCT. Those images showed an irregular rim-shaped enhanced mass with uneven thickness of rim paries, spicular outer
margin of the rim paries, unsmooth and undefinite inner margin of the rim paries, and positive peripheral vascular signs (increased, thickened blood vessels around
the mass and partially connected to it) in the upper quadrant of the left breast at about 12 o’clock. CE-CBBCT, contrast-enhanced CBBCT (CE-CBBCT); MIP,
maximum intensity projection.
A B C D

FIGURE 2 | Female, 32 years old, cystic fibrosis with inflammation in right breast. (A) Transverse section. (B) Coronal section. (C) Median sagittal section. (D) MIP
reconstruction images in phase 1 by CE-CBBCT. Those image showed a circular rim-shaped enhanced mass with uniform thickness of rim paries, smooth and
definite inner and outer margin of the rim paries, and negative peripheral vascular signs (without obvious increased and thickened blood vessels around the mass) in
the inner and lower quadrant of the right breast at about 4 o’clock. CE-CBBCT, contrast-enhanced CBBCT (CE-CBBCT); MIP, maximum intensity projection.
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inner margin of the rim paries, border of inner margin, and
uniformity of the rim paries, and peripheral vascular signs)
between malignant and benign lesions. These findings were
consistent with the conclusions of most previous studies on the
morphological characteristics of breast lesions with REs by MRI
scanning (9–15). The difference in post-CM morphology
between benign and malignant lesions with REs is mainly
related to the difference in their biological behavior and
pathological basis (16). The rim paries of benign lesions of
which the growth rates are slow and uniform mostly consist of
abscess wall, cyst wall with dilated duct wall, or inflammatory cell
Frontiers in Oncology | www.frontiersin.org 5182
infiltration. Therefore, the corresponding imaging characteristics
of the REs in benign lesions are mostly round/quasi-circular
shape with smooth/lobulate outer margin and definite inner
margin, and uniform thickness of their rim paries. The rim
paries of malignant lesions of which the growth rates are fast and
nonuniform consist of tumor cells that are high value added and
heterogeneous. In addition, much vascular tumor angiogenesis
around the tumor body are induced by endothelial growth factor
(VEGF). Thus, the corresponding imaging characteristics of the
REs in malignant lesions are mostly irregular shape with
irregular/spicula outer margin, unsmooth and indefinite inner
margin, uneven thickness of their rim paries, and positive
peripheral vascular sign. The positive peripheral vascular sign
is common. In this study, there was no significant difference
between benign and malignant groups in the border of outer
margin of the rim paries. The proportion of benign lesions with
unclear border was equivalent to that with clear border of outer
margin (6:7). A similar proportion was observed in malignant
group (unclear border:clear border, 11:16). The proportion of
benign lesions with blurred outer boundary was equivalent to
that with clear outer boundary (6:7) to that of malignant group
(11:16). This may be due to the fact that the benign group in the
current study mainly consisted of inflammatory or benign
lesions combined with inflammation, and the inflammatory
edema or granulation tissue hyperplasia around the lesion
caused by inflammation may be the reason for the unclear
border of the outer margin of the rim paries between benign
lesions and adjacent tissues.

In addition to the qualitative diagnosis of breast lesions by
qualitative morphological enhancement parameters, the
quantitative enhancement parameters of CE-CBBCT could
reflect the hemodynamic characteristics of the lesions to a
certain extent, so as to provide quantitative diagnostic basis for
the identification of benign and malignant lesions. At present,
there is no uniform standard for the time point setting of CE-
CBBCT phases and the measurement methods of CE-CBBCT CT
value in lesions all over the world (3, 5, 7, 8, 17). The traditional
TABLE 2 | Morphological enhancement signs of the breast lesions with rim
enhancements by CE-CBBCT.

Morphological enhancement
signs

Malignant
group
(n = 27)

Benign
group
(n = 13)

c2 p-value

Shape 9.548 0.002
Round/quasi-circular shape 11 12
Irregular 16 1

Outer margin of the rim paries 15.506 <0.001
Smooth/lobulate 7 12
Irregular/spicular 20 1

Border of outer margin 0.105 0.746
Clear 16 7
Unclear 11 6

Inner margin of the rim paries 13.713 <0.001
Smooth and definite 2 8
Unsmooth and undefinite 25 5

Border of inner margin 19.551 <0.001
Clear 5 12
Unclear 22 1

Uniformity of the rim paries 14.661 <0.001
Uniform thickness 0 6
Uneven thickness 27 7

Peripheral vascular signs 4.569 0.033
Positive 18 4
Negative 9 9
CE-CBBCT, contrast-enhanced cone-beam breast computed tomography.
TABLE 4 | Multivariable logistic regression analysis to identify independent factors that could predict breast lesion with RE malignancy.

Parameters Coefficient Standard error Wald value p-value OR (95%CI)

△standardized HU (INRphase 2 − INRpreCM) (Hu) 0.138 0.054 6.637 0.01 1.148 (1.034–1.276)
△ standardized HU (RPphase 2 − RPphase 1) (Hu) −0.115 0.047 6.107 0.013 0.891 (0.814–0.976)
M
ay 2022 | Volume
RE, rim enhancement; HU, Hounsfield units; INR, the inner of the rim; RP, rim paries; CI, confidence interval; OR, odds ratios.
TABLE 3 | Comparison of the quantitative enhancement parameters between malignant and benign groups by CE-CBBCT.

Parameters Malignant group (n = 27) Benign group (n = 13) t or U p-value

Maximum thickness difference of the rim paries (cm) 0.35 (0.2–0.7) 0.06 (0.04–0.07) U = 37.500 <0.001
△standardized HU (INRphase 1 − INRpreCM) (Hu) 13.56 ± 17.26 0.37 ± 12.53 t = −2.455 0.019
△standardized HU (INRphase 2 − INRpreCM) (Hu) 23.24 ± 28.26 3.81 ± 14.52 t = −2.325 0.026
△standardized HU (INRphase 2 − INRphase 1) (Hu) 9.68 ± 22.05 3.44 ± 11.31 t = −0.957 0.345
△standardized HU (RPphase 1 − RPpreCM) (Hu) 85.9 ± 42.18 55.52 ± 34.14 t = 0.260 0.03
△standardized HU (RPphase 2 − RPpreCM) (Hu) 84.62 ± 41.43 75.08 ± 37 t = −0.705 0.485
△standardized HU (RPphase 2 − RPphase 1) (Hu) −1.27 ± 33.89 19.56 ± 16.22 t = 2.094 0.043
12 | Article
CE-CBBCT, contrast-enhanced cone-beam breast computed tomography; HU, ounsfifield Units; INR, the inner of the rim; RP, rim paries.
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CT value is not suitable for cone-beam breast CT because the
cone-line-beam imaging characteristics of cone-beam breast CT
are different from those of conventional spiral CT. Our previous
study (18) has shown that the stability of absolute CT value of
CBBCT is lower than that of conventional spiral CT. Even in the
same tissue of a breast, the corresponding absolute CT values of
CBBCT in different positions of the breast differ. Therefore, in
order to reduce the influence from the instability of absolute CT
value, breast fat was used by researchers to standardize the CT
value of CBBCT to get a △CT value in breast lesion (8). In this
study, △CT value was used as the value of the density
measurement for rim enhancement. Whether the relative CT
value obtained by this method is more stable than the absolute
CT value needs more experimental and theoretical confirmation in
the future. Liu et al. (7) obtained the △CT value through
calculation of the difference in CT value before and after
injection of CM with single phase of post-CM scanning at 120 s.
Uhlig et al. (8) obtained the △standardized CT value through
calculation of the difference in CT value before and after injection
of CM with two phases of post-CM scanning at 2 and 3 min,
respectively. Referring to the calculation methods of the
enhancement parameters of the two researchers above (7, 8), in
the current study, with two phases of post-CM scanning at 60 and
110 s, respectively, a series of quantitative enhancement
parameters by CE-CBBCT were obtained. In addition, the
diagnostic value with different combinations of those
quantitative enhancement parameters were compared to get the
optimal diagnostic parameters. The results suggested that
△standardized HU (INRphase 2 − INRpreCM), as one of the
parameters with differential diagnostic significance in
multivariable logistic regression analysis, was higher in the
malignant group than that in the benign group, indicating that
the degree on enhancement of the inner rim in the malignant
lesion was significantly higher than that in the benign lesion. These
findings support the conclusion of some previous studies. In the
study of Buadu et al. (19), REs were observed in nine cases of
invasive cancer, of which seven cases were connective tissue in the
central region but not necrotic components. The results of Liu
et al. (20) showed that the microvascular density in the margin
area of the malignant lesion was significantly higher than that in
the central area, resulting in lower perfusion of CM in the central
area than that in the margin area. This indicates that the
appearance of REs in malignant tumors are related to the
regional differences in distribution of tumor microvascular,
resulting in delayed enhancement in the central region. The
pathological basis of REs in benign lesions are mainly related to
central liquefaction necrosis, mammary duct dilatation, or
high degree of fibrous tissue hyperplasia, resulting in post-CM
non-enhancement or low degree of enhancement in the central
region (13). Our results also suggested that △standardized HU
(INRphase 2 − INRpreCM), as another one of the parameters with
differential diagnostic significance in multivariable logistic
regression analysis, is significantly lower in the malignant group
than that in the benign group, which indicated that the degree of
enhancement of RE in malignant lesion is lower in phase 2 than
that in phase 1, and the degree of enhancement of RE in benign
T
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lesion is gradually enhanced from phase 1 to 2. The results are
consistent with the fact that outflow type is often found in
malignant lesions and gradual increase type is often found in
malignant lesions by MRI enhancement curve of time signal.
However, whether the significance of types in MRI enhancement
curve of time signal for the qualitative diagnosis of breast lesion is
applicable to CE-CBBCT has not been reported at present,
highlighting the need for further verification.

In terms of radiation dose control, it is worth mentioning that
CBBCT could precisely control X-ray-related technical
parameters such as tube voltage, tube current, and output
power, and could adjust the scanning protocol individually
according to the type, size, characteristics of breast glands, and
the clinical requirements. In addition, during the examination,
the system’s self-shielding prevents the contralateral breast and
other parts of the body from being exposed to radiation.
Radiation dose of CBBCT reported in the literature varied
(6, 21–24), with a minimum total radiation dose of 4 mGy and
a maximum of 16.6 mGy. The variability in radiation doses may
be related to X-ray technology-related factors, breast
characteristics, and different scanning protocols (non-enhanced
scan and non-enhanced scan combined with single- or multi-
phase enhancement). At present, researchers have not reached
consensus on scanning protocols in CE-CBBCT examinations.
Regulatory agencies such as US Food and Drug Administration
regulate the radiation dose of breast cancer screening (3 mGy per
view) but does not set limit for breast cancer diagnostic workup.
The standard-of-care procedure in the hospital takes one pre-
contrast and two post-contrast scans to achieve preferable
enhancement while keeping the radiation dose at a level safe
for diagnostic patients. The total radiation dose of 36 patients
enrolled ranged from 15.3 to 22.7 mGy, with a mean dose of
17.73 ± 1.53 mGy. According to the International Commission
on Radiological Protection (ICRP) publication 103 (2007), the
breast tissue effective dose weighting factor is 0.12. The effective
dose level of this CE-CBBT exam is between 1.83 and 2.72 mSv,
which is equivalent to 8–12 months of natural background
radiation (25) and only 20% of a whole-body CT dose (26).

To the best of our knowledge, this is the first study
investigating the diagnostic value of CE-CBBCT for breast
lesion with RE using a combination of post-CM qualitative
morphological enhancement parameters and quantitative
enhancement parameters. The results were significant, and we
hope they would provide a reference for future studies;
nonetheless, the work has several limitations that may affect
interpretation of the results. On the one hand, comparative study
has not been performed between imaging findings and
pathology. On the other hand, the sample size was relative
Frontiers in Oncology | www.frontiersin.org 7184
small, and the few pathological types were covered. Therefore,
in the future, the sample size should be further expanded, the
pathological types should be increased, and the comparative
study on pathological and imaging findings should be performed
to improve the accuracy of the conclusions.

In conclusion, with the observation of qualitative
morphological enhancement parameters and the comparison of
quantitative enhancement parameters by CBBCT, a reliable basis
for the diagnostic accuracy in predicting breast lesion with RE
malignancy could be provided. However, these conclusions should
be verified in large, well-designed studies.
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Background: The objective of this work was to discriminate between primary breast
lymphoma (PBL) and breast cancer by systematically analyzing clinical characteristics,
laboratory examination results, ultrasound features, and mammography findings to
establish a diagnostic model for PBL and to analyze the influence of surgical treatment
on the prognosis of PBL patients.

Method: We analyzed 20 PBL and 70 breast cancer patients treated during the same
period by comparing several characteristics: clinical features, such as age, tumor position,
and breast complaints; laboratory examination findings, such as the lactate
dehydrogenase (LDH) level, and imaging features such as the maximum diameter,
shape, margins, aspect ratio, and calcification of the mass and axillary lymph node
involvement. A diagnostic model was then developed using logistic regression analysis.
The impact of surgery on the prognosis of PBL patients was assessed through Kaplan–
Meier survival analysis.

Result: Breast cancer and PBL could be distinguished based on imaging features,
including the maximum diameter, shape, margin, and calcification of the mass, and lymph
node involvement (P < 0.05). There were no significant differences between PBL and
breast cancer patients in terms of clinical features, or the LDH level. The area under the
receiver operating characteristic curve was 0.821. The log-rank test showed that surgery
had no significant influence on the prognosis of PBL patients.

Conclusion: Ultrasound and mammography are the most useful methods for detecting
malignant breast tumors. Compared with breast cancer tumors, breast lymphoma tumors
are larger with a more regular shape and less calcification and are often accompanied by
axillary lymph node involvement. Patients with a breast malignancy should not undergo
surgical excision without an accurate diagnosis.
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INTRODUCTION

Breast cancer has the highest incidence rate and second highest
mortality rate in women. There are nearly 279,100 cases of the
disease each year, with 42,690 patients dying from breast cancer
annually in America (1). Primary breast lymphoma (PBL) is a
relatively rare extranodal lymphoma of the breast that accounts
for only 0.04%–0.5% of all breast malignancies (2). However,
PBL generally exhibits early progression and a poor prognosis.
Breast cancer and breast lymphoma are similar with respect to
their clinical manifestations, performing as painless breast
masses with poor mobility, and imaging examinations reveal
nodules with low echo in ultrasound and solitary mass on
mammography (3–5). In clinical practice, breast lymphoma is
often misdiagnosed as breast cancer or other breast
malignancies; however, the treatment of PBL is primarily
immunochemotherapy rather than surgery. There are quite a
few PBL patients who undergo surgical excision and then suffer
from a poor quality of life and have no improvement in
prognosis. To date, there is no systematic analysis of the
difference between these two malignant cancer types. The
purpose of this study was therefore to explore the difference in
clinical manifestations and imaging findings between breast
cancer and primary breast lymphoma and then to establish a
clinical diagnostic model for breast lymphoma. Then, we
compared the impact of surgery on the prognosis of primary
breast lymphoma patients to provide a diagnostic reference for
clinical diagnoses and to help these patients avoid unnecessary
radical surgery.
MATERIALS AND METHODS

Patients
Our study included all of 20 patients with primary breast
lymphoma and 70 patients with breast cancer treated at the
same time in Peking Union Medical College Hospital during the
period from 2000 to 2020. The inclusion criteria were as follows:
1) age ≥18 years, with a diagnosis of breast cancer or PBL by
pathological examination and 2) pathological subtype of diffuse
large B-cell lymphoma (DLBCL) for PBL patients and invasive
carcinoma for breast cancer patients. The exclusion criteria were
as follows: 1) incomplete imaging or laboratory examination
data, including the absence of both ultrasound and
mammography data, and 2) other types of breast tumors.
Detailed patient information is shown in Table 1. All PBL
patients were followed up via telephone until February 1, 2021.
The follow-up rate was 90.0%, and the median follow-up time
was 36.5 months.

Data Collection
General information was collected from the patients, including sex
and age. Clinical manifestations included tumor position, breast-
related complaints such as nipple retraction, bloody nipple
discharge, and orange peel- or eczema-like skin changes. The
main laboratory finding was the serum lactate dehydrogenase
(LDH) level. Imaging examinations included color Doppler
Frontiers in Oncology | www.frontiersin.org 2187
ultrasound and mammography. Ultrasonography acted as the
main modality for assessing the following characteristics: the
maximum diameter, shape, margin, and aspect ratio of the
mass, and axillary lymph node involvement. We depended on
mammography to identify mass calcification. The descriptions of
imaging features were based on Breast Imaging Reporting & Data
System (BI-RADS) Fifth Edition (2013) (6, 7). The mass shape was
classified as 1) regular, including oval and round, or 2) irregular.
The mass margin was classified as 1) circumscribed or 2) other,
including obscured, microlobulated, indistinct, and spiculated.
The aspect ratio was defined as ≥1 when the anteroposterior
diameter of any section was greater than or equal to the
transverse diameter; otherwise, it was defined as <1. Mass
calcification was classified as 1) no or typically benign (rim,
round) calcification or 2) suspicious morphology (amorphous,
coarse heterogeneous, fine pleomorphic, and fine linear or fine
linear branching) morphology.

The gold standard method for diagnosing breast malignancies
was pathological examination. Tissues were observed after
hematoxylin and eosin (H&E) staining, and the expression of
cellular antigens, such as MUM1, Bcl-2, CD10, Bcl-6, CD79a,
CD45, CD20, CD3, E-cadherin, ER, PR, and HER-2, was
identified through immunohistochemistry (Figure 1). In our
study, the surgical methods applied to treat breast cancer
included classical radical mastectomy, modified radical
mastectomy, simple mastectomy, and local mastectomy,
excluding breast mass biopsy. The survival of PBL patients was
evaluated by the overall survival (OS), defined as the time from
the diagnosis of breast lymphoma to the date of death or the date
when the follow-up endpoint was reached due to any cause, and
progression-free survival (PFS), defined as the time from the
beginning of treatment to the date of disease progression or the
date when the follow-up endpoint was reached. Examinations of
the recorded clinical data were performed by one person. Data
verification and regular follow-up visits were used to avoid
missing data.

Data Analysis
SPSS version 20 (IBM) was adopted to process all quantitative
data, such as age, tumor site, LDH level, mass shape, mass
margin, mass aspect ratio, mass calcification, and axillary
lymph node involvement, into dichotomous/trichotomous
variables. Then, the c2 test was used to analyze the differences
between the PBL and breast cancer patients in terms of age,
tumor location, LDH level, and imaging manifestations. T tests
or Kolmogorov–Smirnov tests were used to analyze the
differences in continuous variables, such as the maximum mass
diameter and tumor growth. Taking the characteristics above as
independent variables and the type of breast tumor as the
dependent variable, bivariate forward stepwise logistic
regression was performed. The Wald c2 test was used to
estimate the regression parameters, and the likelihood ratio test
was used to fit the whole model. Receiver operating characteristic
(ROC) curves were used to evaluate the predictive ability of the
logistic model. The Kaplan–Meier method was used to analyze
the survival outcomes of PBL patients, and the log-rank test was
used to calculate the influence of surgery on PFS and OS. All data
May 2022 | Volume 12 | Article 858696
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were analyzed by SPSS 20.0 statistical software, and P < 0.05 was
considered statistically significant.
RESULTS

All 20 patients with PBL in this study had DLBCL; among them,
60% had the germinal center B-cell (GCB) subtype and 40% had
the non-GCB subtype. The distribution of BI-RADS categories
for PBL patients was as follows: none was categories 0–2;
category 3 was 4; category 4 was 13 (4 of category 4A, 7 of
category 4B, and 2 of category 4C); and category 5 was 3.
Frontiers in Oncology | www.frontiersin.org 3188
Unfortunately, 65% underwent surgery, and all 20 patients
later underwent standard immunochemotherapy. All 70
patients with breast cancer were pathologically diagnosed with
invasive carcinoma and underwent surgery excision. The
distribution of BI-RADS categories for breast cancer was as
follows: none was categories 0–2; category 3 was 1; category 4
was 45 (4 of category 4A, 12 of category 4B, and 29 of category
4C); and category 5 was 24. Other clinical and imaging
characteristics of the patients are shown in Table 1 and
Figures 2, 3.

Clinical characteristics such as age, tumor location, breast
complaints, and LDH level did not differ significantly between
A B

FIGURE 1 | Pathological results of breast cancer and primary breast lymphoma. (A) Female, 47, diffuse large B-cell lymphoma. Microscopically, large tumor cells
were diffusely infiltrated and homogeneous in shape. Immunohistochemistry: CD20(++), PAX-5(+), CD5(+), Bcl-6(-), CD10(-), Mum-1(-), Ki-67(index 80%). (B) Female,
65, invasive breast cancer (non-specific, moderately differentiated), microscopically large tumor cells with invasive growth and acinar distribution, obvious atypia and
mitotic visible. Immunohistochemistry: Her-2 (3+), CD10(-), PR(-), CgA(-), Syn(-), P53(+), Ki67 (index 70%).
TABLE 1 | Clinical and image characteristics between breast cancer and primary breast lymphoma.

Breast cancer (n = 70) Primary breast lymphoma (n = 20) Sig (c2 test)

Age 0.360
<50 27 (38.6%) 10 (50.0%)
≥50 43 (61.4%) 10 (50.0%)
Position 0.958
Left 33 (47.1%) 10 (50.0%)
Right 34 (48.6%) 9 (45.0%)
Both 3 (4.3%) 1 (5.0%)
Breast complaints 1.000
Absence 64 (91.4%) 19 (95%)
Presence 6 (8.6%) 1 (5.0%)
LDH 0.410
Normal 64 (91.4%) 17 (85.0%)
More than normal 6 (8.6%) 3 (15.0%)
Shape <0.001
Regular 4 (5.7%) 9 (45.0%)
Irregular 66 (94.3%) 11 (55.0%)
Margin <0.001
Circumscribed 4 (5.7%) 8 (40%)
Others 66 (94.3%) 12 (60%)
Calcification 0.017
Absence 35 (50%) 16 (80%)
Presence 35 (50%) 4 (20%)
Aspect ratio 0.141
<1 51 (72.9%) 18 (90%)
≥1 19 (27.1%) 2 (10%)
Lymph node involved 0.007
Absence 48 (68.6%) 7 (35.0%)
Presence 22 (31.4%) 13 (65.0%)
May 2022 | Volume 12 | A
rticle 858696

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Diagnostic Model for Breast Malignancies
the two groups. Among the imaging features, maximum mass
diameter (P = 0.007), mass shape (P < 0.001), mass margin (P <
0.001), mass calcification (P = 0.017), and lymph node
involvement (P = 0.007) were significantly different between
the two groups (Table 1 and Supplemental Table 1). These
results indicate that it is difficult to distinguish PBL from breast
cancer based on clinical manifestations and that this
differentiation mainly depends on imaging examinations.

The dichotomous characteristics above were summarized in
terms of predictive probability, and finally, three independent
risk factors were chosen for inclusion in the logistic model, i.e.,
mass shape, mass calcification, and lymph node involvement
(Table 2): Logit(P) = -0.573 + 2.748 × regular shape + 1.296 × no
calcification - 1.744 × lymph node involvement. The likelihood
ratio test of the above model yielded a statistically significant
result (c2 = 27.815, P < 0.001). The Wald c2 test of each
regression coefficient showed that the P values of mass shape,
mass calcification, and lymph node involvement were less than
0.05. If P = 0.5 was chosen as the threshold, the predictive
accuracy was as high as 84.4%, and the sensitivity, specificity,
breast lymphoma predictive value, and breast cancer predictive
value were 0.814, 0.650, 0.971, and 0.4, respectively. The area
Frontiers in Oncology | www.frontiersin.org 4189
under the ROC curve was 0.821 (standard error = 0.053, 95% CI:
0.718–0.924) (Figure 4), indicating that the predictive accuracy
of the model was high.

We then analyzed the impact of surgery on the prognosis of
PBL patients. A total of 13 PBL patients (65%) underwent
surgical treatment. Figure 2 shows that surgery had no
significant influence on the PFS or OS of these patients,
suggesting that surgical treatment did not confer a better
prognosis or longer survival time (Figure 5). The 10-year PFS
and OS rates reached 71% and 87.5%, respectively. With the
arrival of the rituximab era, the prognosis of PBL patients has
been estimated to be better because of immunochemotherapy.
Therefore, while it is not necessary for patients with PBL to
undergo surgical treatment, it is vital for doctors to remain
vigilant to avoid misdiagnosis.
DISCUSSION

Breast cancer has high incidence, and aggressive surgery can be
used after early detection. However, primary breast lymphoma is
rare, and its clinical manifestations are generally similar to those
of breast cancer, so clinicians may misdiagnose breast lymphoma
as breast cancer. However, the first-line treatment for breast
lymphoma is immunochemotherapy rather than surgery (8). A
multicenter study showed that mastectomy did not improve the
prognosis of PBL patients, and the 5-year OS was 77.3% during
the rituximab era (9). Therefore, early differential diagnosis is
necessary for the selection of appropriate treatments and to
improve quality of life. Although pathology is the gold
standard to distinguish breast cancer from breast lymphoma,
ultrasound and mammography are the most widely used
detection methods in the clinic, playing an important role in
the differential diagnosis of breast malignancies. Breast
malignancies clinically manifest as palpable and painless
masses with poor mobility, which may be accompanied by
nipple invagination or discharge. Laboratory tests may show
elevated LDH. Previous studies have summarized the ultrasonic
characteristics of breast cancer, generally an irregular shape,
irregular, spiculated, or microlobulated margins, low echo
attenuation, micro/macro-calcification, and the presence of the
retraction phenomenon. In contrast, primary breast lymphoma
on mammography or ultrasound often shows isolated oval
hypoechoic nodules with no obvious obscured margins (10). In
addition, PBL has the general characteristics of lymphoma,
exhibiting fast growth and a large tumor size. However, no
research has systematically and quantitatively differentiated the
clinical, laboratory, and imaging manifestations of these two
types of cancer. In our research, we evaluated the differences in
10 features (Table 1 and Supplemental Table 1) between the two
tumor types and developed a model to differentiate primary
breast lymphoma. Significant features with P < 0.05 (including
mass maximum diameter, shape, margin, calcification, and
lymph node involvement) were found to be primarily related
to imaging findings according to the c2 test and t test. Moreover,
lymphoma is more likely to invade and metastasize due to the
May 2022 | Volume 12 | Article 858696
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B C

FIGURE 2 | Ultrasound and Mammography images for breast cancer.
Legend: Female, 80, invasive carcinoma of left breast. (A) showed irregular
heterogeneous echo in left breast, spiculated margins. The mammography of
CC (B) and MLO (C) of left breast showed high-density mass, obscure
margins, and clustered microcalcifications in the lesion.
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mutation of MYD88 or BCL6 genes and the action of multiple
immune cells in the tumor microenvironment (11). There were
more regular shapes for breast lymphoma, consistent with
previous studies (12, 13). The calcification of breast cancer
may be related to the mutation of HER2 or other intrinsic
genes (14), or due to the acquisition of osteoblastic
characteristics during the process of epithelial-to-mesenchymal
transition (EMT), forming matrix vesicles and promoting
calcification (15).

Our study is the first to summarize the differences between
breast cancer and breast lymphoma and to fit a regression model
combining clinical manifestations, laboratory tests, and
ultrasound and mammography features, the most widely used
modalities in clinical practice. Clinically, the results revealed that
at diagnosis, breast lymphoma is typically large in size, with
involvement of the surrounding lymph nodes, regular shapes,
Frontiers in Oncology | www.frontiersin.org 5190
and no obvious calcification (Figures 2, 3). The area under the
ROC curve plotted by the prediction value fitted by logistic
analysis was 0.821, supporting the differential diagnosis of breast
lymphoma. Therefore, it is necessary for surgeons to perfect
breast biopsy when imaging manifestation shows suspected
malignancy as more than category 3 (16), rather than an
arbitrary diagnosis and surgical resection.

Our research has some limitations, which should be mentioned.
First, this was a retrospective study, and the sample size for breast
lymphoma was small. Second, we did not analyze the differences in
the equipment used between different hospitals. We look forward to
performing systematic error correction between instruments and
using larger-sample studies in future work.

In conclusion, conventional ultrasound and mammography
are useful tools for distinguishing breast cancer from breast
lymphoma. The distinguishing characteristics of breast
A B

DC

FIGURE 3 | Ultrasound and mammography images for PBL. Legend: Female, 49, right non-Hodgkin breast lymphoma. (A) shows irregular hypoecho in the right
breast with circumscribed margins. (B) CDF1 shows abundant blood flow signals. Right breast mammography CC position (C) and MLO position (D) image showed
high density mass, no micro/macro-calcification.
TABLE 2 | Logistic regression model analysis.

Variables Regression coefficient S.E c2 P value OR

Shape 2.748 0.817 11.32 0.001 15.60
Calcification 1.296 0.671 3.73 0.05 3.66
Lymph node involvement -1.744 0.659 7.00 0.008 0.18
constant -0.573 0.738 0.60 0.437 0.56
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lymphoma included mass maximum diameter, shape, margin,
calcification, and lymph node involvement, which are expected to
be suggested for clinical differential diagnosis by breast surgeons.
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This study aimed to evaluate the role of apparent diffusion coefficient (ADC) values
obtained from diffusion-weighted imaging (DWI) in the differentiation of malignant from
benign papillary breast lesions. The magnetic resonance imaging (MRI) data of 94 breast
papillary lesions confirmed by pathology were retrospectively analyzed. The differences in
ADC values of papillary lesions under different enhancements in MRI and different
pathological types were investigated, and the ADC threshold was determined by the
receiver operating characteristic curve for its potential diagnostic value. The mean ADC
values in borderline and malignant lesions (1.01 ± 0.20 × 10-3 mm2/s) were significantly
lower compared to benign lesions (1.21 ± 0.27 × 10-3 mm2/s) (P < 0.05). The optimal
threshold of the ADC value could be 1.00 × 10-3 mm2/s. The ADC values were statistically
significant in differentiating between benign and malignant papillary lesions whether in
mass or non-mass enhancement (P < 0.05). However, there were no statistical differences
in the ADC values among borderline or any other histological subtypes of malignant
lesions (P > 0.05). Measuring ADC values from DWI can be used to identify benign and
malignant breast papillary lesions. The diagnostic performance of the ADC value in
identifying benign and malignant breast lesions is not affected by the way of lesion
enhancement. However, it shows no use for differential diagnosis among malignant lesion
subtypes for now. The ADC value of 1.00 × 10-3 mm2/s can be used as the most
appropriate threshold for distinguishing between benign and malignant breast
papillary lesions.

Keywords: diffusion-weighted imaging, apparent diffusion coefficient values, papillary breast lesions, magnetic
resonance imaging, mass enhancement, non-mass enhancement, receiver operating characteristic curve
INTRODUCTION

Papillary breast lesions indicate a heterogeneous group of diseases including benign intraductal
papilloma (IDP), borderline intraductal papilloma with atypical hyperplasia [intraductal papilloma
with atypical ductal hyperplasia (ADH)], and malignant papillary lesions. Intraductal papilloma with
ductal carcinoma in situ (intraductal papilloma with DCIS), papillary ductal carcinoma in situ
June 2022 | Volume 12 | Article 9117901193
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(papillary DCIS), encapsulated papillary carcinoma (EPC), solid
papillary carcinoma (SPC), and invasive papillary carcinoma
(IPC) fall into the third category (1). Papillary protrusions with
a dendritic fibrovascular stroma represent the general
histopathological feature of papillary breast lesions (2).

Magnetic resonance imaging (MRI) is widely applied in
detecting papillary breast lesions as a prominently viable
imaging modality. Due to the diversity of pathological
subtypes, the variability among observational factors in MRI,
such as morphology feature, enhancement mode, and time–
signal intensity curve, and coupled with the absence of
evidence from large samples or prospective studies (3–6), the
imaging diagnostic criteria for papillary lesions have not been
unified. Diffusion-weighted imaging (DWI) is emerging as a
favorable alternative for deriving perfusion information to
complement dynamic contrast-enhanced magnetic resonance
imaging of the breast. By calculating the apparent diffusion
coefficient (ADC), DWI, which is sensitive to water diffusion,
can provide a quantitative analysis of both the cellularity and
perfusion of tumors and has the potential to provide an
evaluation of lesion characterization. Hyunseok Seo reports
that a high-resolution ADC map and a DWI can be accurately
obtained by using isotropic diffusion-weighted imaging while
reducing the artifacts caused by the diffusion anisotropy,
compared to diffusion-weighted echo-planar-imaging (7). More
other studies have already proved DWI and ADC values as
promising tools in breast lesion detection, prognostic assessment,
and therapeutic response prediction (8–10).

However, fewer studies were capable of proving DWI’s positive
association with a diagnosis of breast papillary lesions, which
contributed to the limited use of breast DWI in clinical practice.
This retrospective study analyzes the mean ADC values observed
from 94 different papillary breast lesions and aims to evaluate the
role of ADC values in distinguishing malignant from benign
lesions, especially in differentiating the histological subtypes of
malignant lesions as well as in assessing the potential diagnostic
contribution to papillary lesions in different enhancements.
MATERIALS AND METHOD

Data Collection
Clinical data were collected retrospectively on 69 female patients
with papillary lesions who were admitted to our hospital from
January 2021 to February 2022, with a total of 94 lesions. Among
them, 51 cases were benign breast papillary lesions, all of which
were IDP; 16 cases were borderline lesions, all of which were
intraductal papilloma with ADH; and 27 cases were malignant
lesions, including 13 cases of intraductal papilloma with DCIS, 3
cases of papillary DCIS, 1 case of EPC, 9 cases of SPC and 1 case
of IPC. The inclusion criteria for this study were as follows:
breast papillary lesions confirmed by postoperative pathology
(one patient may have multiple lesions) and preoperative MRI
examination was available from which the ADC values of the
lesions corresponding to the postoperative pathology could be
obtained on DWI. The exclusion criteria were as follows: lesions
Frontiers in Oncology | www.frontiersin.org 2194
with non-high signal on DWI—namely, ADC values could not
be obtained—and lesions with the coexistence of multiple
pathological types, of which it was impossible to determine
what kind of pathological type the ADC value belongs to.

MRI Examination
Imaging was performed on the same 3T MR unit (Philips
Ingenia). All patients were in the prone position. The Philips
MRI scanning sequence included the following: (1) cross-
sectional T2WI, using two-dimensional fast spin-echo
sequence, SPAIR fat suppression, and the following scanning
parameters: TR/TE, 5,000/65 ms; slice thickness/slice interval, 4/
1 mm; FOV, 37.2 cm; matrix, 465 × 381; (2) cross-sectional
diffusion-weighted imaging DWI, using single-shot SE-EPI
sequence, NEX = 1, SPIR + SSGR fat suppression, b = 0, 800 s/
mm2, and the following scanning parameters: TR/TE, 5,100/72
ms; layer thickness/layer spacing, 4/1 mm; FOV, 35 cm; matrix,
136 × 140; and (3) cross-sectional dynamic enhancement, three-
dimensional gradient-echo sequence, and SPIR fat suppression.
First, the plain scanned images were acquired and then collected
by 4 to 5 consecutive phases without intervals after injecting the
contrast agent (gadopentetate meglumine), followed by injection
in the amount of 0.1 mmol/kg with a high-pressure syringe
through the dorsal vein of the hand at a flow rate of 2.0 ml/s and
then 15 ml of normal saline at the same flow rate. The scanning
parameters were as follows: TR/TE, 4.2/2.1 ms; layer thickness/
layer spacing, 1/0 mm; flip angle, 12°; FOV, 34 cm; and matrix,
407 × 404. Each scan lasted for 65 s. Imaging of all lesions was
analyzed in consensus by two experienced breast radiologists.
The solid area was selected at the layer with the largest diameter
of the lesion to delineate the region of interest (ROI) on DWI
corresponding to T2WI, dynamic enhancement, and subtraction
images. The necrotic, cystic hemorrhagic parts of the lesion and
where ROI was smaller than the range of the high signal area
should be avoided as much as possible. The ADC value of the
solid component of the lesion was measured on ADC maps.

Statistical Analysis
Statistical analysis was performed using IBM SPSS 26.0 (the mean
ADC value was made for lesions whose ADC values were
presented as a range). The statistical diagram was performed by
GraphPad Prism 8.4. T-test or one-way analysis of variance was
used to compare the quantitative variables between two groups
and the Bonferroni method for multiple comparisons. The
receiver operating characteristic (ROC) curves were constructed
to obtain the area under the curve (AUC) and the optimal
threshold of the ADC value with its sensitivity and specificity
for potential diagnosis contribution to papillary lesions. P-value
<0.05 was considered statistically significant.
RESULTS

Clinical Features
This study included a total of 94 papillary lesions of 69 patients
ranging from 31 to 73 years old. The lesions were categorized as
June 2022 | Volume 12 | Article 911790
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mass and non-mass enhancement according to the BI-RADS
fifth edition (11). Among them, 54 cases were mass lesions, while
40 cases were non-mass lesions; 35 cases were lesions with
diameters <1 cm, while the others were with diameters ≥1 cm.
The general features of benign, borderline, and malignant lesions
are summarized in Table 1.

Comparison of Mean ADC Values in
Benign, Borderline, and Malignant
Papillary Lesions
The mean ADC values of benign, borderline, and malignant
papillary lesions are shown in Table 2. The ADC values of
benign papillary lesions (1.21 ± 0.27 × 10-3 mm2/s) were
significantly higher than those of borderline and malignant
papillary lesions (1.03 ± 0.19 × 10-3 mm2/s and 1.00 ± 0.21 ×
10-3 mm2/s) (P < 0.05), while the ADC values proved no
significant difference between borderline lesions and malignant
lesions (P > 0.05) (Figure 1).

In total, 13 cases of borderline papillary lesions were all
intraductal papilloma with ADH, of which the mean ADC
value was 1.03 ± 0.19 × 10-3 mm2/s. Among malignant
papillary lesions, the mean ADC value of 13 cases of
intraductal papilloma with DCIS was 1.05 ± 0.12 × 10-3 mm2/
s, the mean ADC value of 3 cases of papillary DCIS was 1.08 ±
0.49 × 10-3 mm2/s, there was only 1 case of EPC and IPC each,
and the ADC values were 1.15 × 10-3 mm2/s and 0.99 × 10-3

mm2/s respectively. SPC had the lowest mean ADC value which
was 0.89 ± 0.21 × 10-3 mm2/s. However, there was no significant
difference in the mean ADC values of borderline or any other
malignant lesion subtypes (P > 0.05) (Figure 2). The MRI
features of 3 different lesion subtypes are shown in Figures 3–5.

ROC Curves for Papillary Breast Lesions
Therefore, our study categorized borderline lesions and
malignant lesions as one group. The mean ADC value in
borderline and malignant lesions was significantly lower than
that in benign lesions (1.21 ± 0.27 × 10-3 vs. 1.01 ± 0.20 × 10-3

mm2/s, P < 0.05), and the differences between the mean ADC
values of the two categories were statistically significant whether
in mass or non-mass enhancement (P < 0.05) (Table 3).

The ROC curves and AUC for papillary breast lesions with
different subtypes are presented on Figure 6. The threshold of
ADC value to differentiate benign papillary breast lesions from
malignant was 1.00 × 10-3 mm2/s (AUC, 0.728; sensitivity, 55.8%;
specificity, 82.4%; P < 0.05). The threshold of the ADC value for
mass lesions was 1.00 × 10-3 mm2/s (AUC, 0.706; sensitivity,
Frontiers in Oncology | www.frontiersin.org 3195
63.2%; specificity, 74.3%; P < 0.05), while for the non-mass
lesions this was 1.14 × 10-3 mm2/s (AUC, 0.842; sensitivity,
70.8%; specificity, 87.5%; P < 0.05).
DISCUSSION

Papillary breast lesions had drawn increasing attention in clinical
practice recently. Benign intraductal papillomas are currently
recognized as premalignant lesions. The World Health
Organization (WHO) classification of papillary breast lesions
suggests that the risk of subsequent invasive breast cancer
development in central papillomas without epithelial atypia is
believed to increase to two times that of the general population
while to three times that of peripheral papillomas (1, 12). It is
strongly recommended to closely follow up through imaging
examination for such benign lesions in the long term.

DWI is an advanced MRI technique that can measure the
mobility of water molecules diffusing in tissue, which is impacted
by biophysical characteristics such as cell density, membrane
TABLE 1 | General features of benign, borderline, and malignant papillary breast
lesions.

Groups Benign Borderline Malignant Total

Mean age (years old) 49.8 50.4 58.0 51.7
Number (cases) 51 16 27 94
Mass enhancement (cases) 35 7 12 54
Non-mass enhancement (cases) 16 9 15 40
Diameter, <1 cm (cases) 26 5 4 35
Diameter, ≥1 cm (cases) 25 11 23 59
TABLE 2 | Comparison of the mean apparent diffusion coefficient (ADC) values
among benign, borderline, and malignant papillary breast lesions.

Papillary
lesions

Number
(cases)

Mean ADC values (×10-3mm2/s) P

Benign 51 1.21 ± 0.27 0.030a

Borderline 16 1.03 ± 0.19 1.000b

Malignant 27 1.00 ± 0.21 0.001c
June 2022 | Volume 12 | Article 9
aCompared to borderline lesions.
bCompared to malignant lesions.
cCompared to benign lesions.
FIGURE 1 | Comparison of mean apparent diffusion coefficient values
among benign, borderline, and malignant papillary breast lesions. *P < 0.05;
**P < 0.01; ns, P > 0.05.
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integrity, and microstructure of the breast. DWI is now widely
used as an important addition to standard breast MRI protocol to
screen early breast cancer and potentially predict the response to
and monitor the effect of neoadjuvant treatment over time (8,
13). The ADC derived from DWI that provides a quantitative
Frontiers in Oncology | www.frontiersin.org 4196
measure of observed diffusion restriction can be used to
distinguish between benign and malignant breast lesions.
Numerous studies have demonstrated significantly lower ADC
values in malignant versus benign lesions (14). The ADC values
of benign and malignant papillary breast lesions in this research
were consistent with previous studies. The mean ADC value of
benign papillary lesions (1.21 ± 0.27 × 10-3 mm2/s) was
significantly higher than borderline lesions (1.03 ± 0.19 × 10-3

mm2/s) and malignant lesions (1.00 ± 0.21 × 10-3 mm2/s) (P <
0.05, respectively). We suggest that ADC values can also be used
to differentiate between benign and malignant papillary lesions.

In our study, we achieved the optimal threshold of ADC value
as 1.00 × 10-3 mm2/s through the ROC curve. The ADC value
was the same as that what a meta-analysis based on 13,847 breast
lesions concluded (15). Furthermore, this result from the meta-
analysis was independent of Tesla strength, measure methods,
and the choice of b values. In the study of Yildiz S et al. (16), the
mean ADC values of benign and malignant papillary lesions were
1.339 × 10-3 and 0.744 × 10-3 mm2/s, respectively, with a
threshold of around 0.859 × 10-3 mm2/s. The reason for the
differences in results between the abovementioned research and
our study lay in the fact that Yildiz S enrolled fewer papillary
lesions (only 29 lesions), among which benign lesions took a big
proportion (80%). Compared to his study, the ratio of benign
and malignant lesions exhibited more reasonably in our research.
We suggest that the optimal threshold of ADC value should be
FIGURE 2 | Comparison of mean apparent diffusion coefficient values
among different malignant papillary breast lesion subtypes. ns, P > 0.05.
A B

C D

FIGURE 3 | (A–D) Intraductal papilloma in a 38-year-old woman. (A) T2-weighted image showing an isointensity signal mass lesion (yellow arrow) in the left breast.
(B) Diffusion-weighted imaging showing a hyperintensity signal and apparent diffusion coefficient (ADC) map showing mean ADC = 1.62 × 10-3 mm2/s. (C) Enhanced
T1-weighted image showing a strong nodular enhancement (yellow arrow) with clear margins. (D) Time–signal intensity curve manifests as a rapid increase (initial
phases) and a plateau type (delayed phases).
June 2022 | Volume 12 | Article 911790
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1.00 × 10-3 mm2/s for discrimination of benign and malignant
papillary lesions.

Papillary lesions of the breast represent diverse histological
subtypes. Malignant lesion subtypes were difficult to distinguish
through ADC values in our study (P > 0.05). Maric J et al. (17)
also reported that there were no significant correlations between
malignant lesion subtypes and ADC values. The highest ADC
value of malignant pathology in our study attributed to EPC was
1.15 × 10-3 mm2/s, which did not correspond to the study of
Tang WJ et al. (18). The mean ADC value in his study was 0.876
× 10-3 mm2/s based on 11 EPC lesions. SPC exhibited the lowest
malignant pathology ADC values, which varied from 0.56 to 1.24
× 10-3 mm2/s, and the mean ADC value was 0.89 ± 0.21 × 10-3

mm2/s. The previous study (19) reported that the ADC values of
SPC varied from 1.3 to 1.9 × 10-3 mm2/s. Several potential factors
might explain the disparities between the results. Malignant
papillary lesions represented heterogeneous histological
subtypes that show various cellularity and vascularization
causing different degrees of diffusion. ROI placement in two
studies also significantly influenced the ADC values measured in
breast tumors (20). We suggest that the performance of ADC to
distinguish among these subtypes might be variable, and
presumably more studies with larger cohorts from multiple
institutions might be needed or it might be helpful to
Frontiers in Oncology | www.frontiersin.org 5197
apply ADC dataset to machine learning techniques for
lesion classification.

ADH occurring within an intraductal papilloma considered
as a borderline lesion deserves increasing attention clinically of
late for the risk of subsequent invasive breast cancer
development in such lesion is believed to be increased to 7.5×
that of the general population. The WHO Working Group’s
classification of breast tumors defines atypical epithelial
proliferation to be limited to <3 mm of extent as intraductal
papilloma with ADH, whereas in intraductal papilloma with
DCIS, it spanned ≥3 mm (21). There was no statistical
significance of ADC value in differentiating between
intraductal papilloma with ADH (1.03 ± 0.19 × 10-3 mm2/s)
and with DCIS (1.05 ± 0.12 × 10-3 mm2/s) (P > 0.05) in our
study. We presume that image examination such as MRI even
with DWI is incapable of discriminating lesions of millimetric
pathologic difference, especially between ADH and DCIS to date.
We strongly recommend taking an active surgical procedure if
any suspicious signs of ADH lesions are visible in MRI.

Correlations of ADC with discrimination of non-mass-like
breast lesions had been inconsistent to date in conventional
studies (22, 23). Wang LJ et al. (24) found that papilloma
manifesting as non-mass enhancement (NME) could be due to
the concomitant benign, atypical, and malignant proliferative
A B

C D

FIGURE 4 | (A–D) Intraductal papilloma with atypical ductal hyperplasia in a 43-year-old woman. (A) T2-weighted image showing an isointensity signal and unclear
lesion in the left breast. (B) Diffusion-weighted imaging showing a hyperintensity signal and apparent diffusion coefficient (ADC) map showing mean ADC = 1.28 × 10-3

mm2/s. (C) Enhanced T1-weighted image showing the nonhomogeneous enhancement of an irregular-shaped lesion with ill-defined margins (yellow arrow). (D) Time–
signal intensity curve manifests as a rapid increase (initial phases) and a plateau type (delayed phases).
June 2022 | Volume 12 | Article 911790
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lesions, and the ADC value showed no significant difference
between benign and malignant NME papillary lesions. Our
study demonstrated the diagnostic value of ADC to differentiate
benign from malignant papillary lesions whether in mass
enhancement or in non-mass enhancement. For the mass-
enhanced lesions, the mean ADC values of benign and
malignant lesions are 1.16 ± 0.28 × 10-3 and 0.97 ± 0.20 × 10-
3 mm2/s, respectively, with a threshold of 1.00 × 10-3 mm2/s and
diagnostic accuracy of 70.6%. For the non-mass-enhanced
lesions, the mean ADC values of benign and malignant
lesions are 1.34 ± 0.21 × 10-3 and 1.05 ± 0.21 × 10-3 mm2/s,
Frontiers in Oncology | www.frontiersin.org 6198
respectively, with a threshold of 1.14 × 10-3 mm2/s and
diagnostic accuracy of 84.2%. We confirm the positive
association of ADC value with discrimination between benign
and malignant lesions in both enhancements. The high
performance of ADC will not be affected by the way lesions
are enhanced.

In conclusion, the ADC value derived by DWI is capable of
differentiating between malignant and benign papillary lesions.
The optimal threshold of the ADC value can be 1.00 × 10-3 mm2/
s. The ADC value is statistically significant in differentiating
between benign and malignant papillary lesions whether in mass
A B

C D

FIGURE 5 | (A–D) Papillary ductal carcinoma in situ in a 72-year-old woman. (A) T2-weighted image showing a hypointensity signal mass lesion (yellow arrow) and
a large edema signal behind the mass (red arrow) in the left breast. (B) Diffusion-weighted imaging showing a hyperintensity signal mass lesion and apparent diffusion
coefficient map showing mean ADC = 0.54 × 10-3 mm2/s. (C) Plain T1-weighted image showing duct dilatation (red arrow) in front of the mass. (D) Enhanced T1-
weighted image showing the nonhomogeneous enhancement of an irregular-shaped mass with ill-defined margins (yellow arrow). Time–signal intensity curve
manifests as a slow increase (initial phases) and a persistent type (delayed phases).
TABLE 3 | Comparison of mean apparent diffusion coefficient (ADC) values in different papillary breast lesion groups.

Groups Mean ADC value (×10-3 mm2/s) P

Benign Borderline and malignant

All lesions 1.21 ± 0.27 (n = 51) 1.01 ± 0.20 (n = 43) 0
Mass enhancement lesions 1.16 ± 0.28 (n = 35) 0.97 ± 0.20 (n = 19) 0.011
Non-mass enhancement lesions 1.34 ± 0.21 (n = 16) 1.05 ± 0.21 (n = 24) 0
June 2022 | Volume 12 | Article 9
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or non-mass enhancement. There is no statistical difference in
the ADC value among histological subtypes of malignant lesions,
and studies with larger patient groups are needed to assess the
potential diagnostic performance. A surgical procedure should
Frontiers in Oncology | www.frontiersin.org 7199
be performed at the first opportunity if any papillary lesion is
diagnosed as a borderline lesion by MRI.
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Fat necrosis: A consultant’s
conundrum

Jinita Majithia, Purvi Haria, Palak Popat, Aparna Katdare,
Sonal Chouhan, Kunal Bharat Gala, Suyash Kulkarni
and Meenakshi Thakur*

Radiology Department, Tata Memorial Hospital, Mumbai, India
Fat necrosis of the breast is a benign non-suppurative inflammation of the

adipose tissue and often mimics breast cancers, posing a diagnostic challenge

for the clinician and radiologist. It has a myriad of appearances on different

imaging techniques, ranging from the pathognomic oil cyst and benign

dystrophic calcifications to indeterminate focal asymmetries, architectural

distortions, and masses. A combination of different modalities can assist a

radiologist in reaching a logical conclusion to avoid unnecessary interventions.

The aim of this review article was to provide a comprehensive literature on the

various imaging appearances of fat necrosis in the breast. Although a purely

benign entity, the imaging appearances onmammography, contrast-enhanced

mammography, ultrasound, and magnetic resonance imaging can be quite

misleading, especially in post-therapy breasts. The purpose is to provide a

comprehensive and all-inclusive review on fat necrosis with a proposed

algorithm allowing a systematic approach to diagnosis.

KEYWORDS

fat necrosis, breast imaging, radiology, mammography, ultrasonography
Introduction

Fat necrosis of the breast is a benign non-suppurative inflammation of the adipose

tissue (1). It often mimics breast cancer and poses a diagnostic challenge for the clinician

and radiologist. In the majority of cases, imaging provides conclusive evidence of its

benignity; however, in a small percentage of cases, histological sampling becomes

necessary to exclude malignancy, owing to its close semblance on imaging.

The breast parenchyma, which is composed of adipose, epithelial, and stromal

tissues, is enveloped by skin and subcutaneous tissue. Adipose tissue forms the majority

of the bulk of the breast volume, and the amount of adipose tissue varies throughout the

reproductive life of a woman. An injury to the adipose tissue results in fat necrosis.

This review article aims to discuss and illustrate the spectrum of appearances of fat

necrosis using different imaging techniques. In this article, we also review the literature on

the clinical features and etiopathogenesis relevant to a radiologist. The purpose is to provide
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a comprehensive and all-inclusive review on fat necrosis with a

proposed algorithm allowing a systematic approach to diagnosis.
Pathophysiology

The most common stimulus for fat necrosis is hypoxia,

leading to ischemia. The fragmentation of adipose cells

following ischemic damage leads to the formation of

intracellular vacuoles filled with necrotic lipid material.

Fibroblasts, multinucleated giant cells, and lipid-laden or

foamy histiocytes (“fat-filled macrophages” or “foam cells”)

along with enucleated adipocytes begin to accumulate (2).

Damage to adipose cells also releases lipase in the interstitium

which leads to triglyceride breakdown and the release of fatty

acids. When unresolved, this leads to a cavity formation due to

liquefactive necrosis, also known as membranous fat necrosis.

Simultaneous fibrinogen secretion in the interstitium from the

damaged blood vessels is followed by conversion to active fibrin

catalyzed by thrombin (3), which is key to the development of

fibrosis. Thus, loculated necrotic fat within the cystic cavity

eventually gets surrounded by dense fibrous tissue. Sometimes,

the negatively charged fatty acids bind to the positively charged

calcium ions in a process called saponification (4), which leads to

the development of calcification within the fat necrosis.

Irreversible cell injury is of two types: apoptosis and necrosis.

In the breast, both these processes prevail. The intensity of initial

insult determines which process will predominate which in turn

determines the clinical presentation, the radiological

appearance, and the histological finding (2). The greater the

necrotic component, the greater the inflammation and the worse

the clinical condition (3). Thus, a close correlation exists

between the clinical age of the lesion, radiological appearances,

and expected gross and histological findings in breast fat

necrosis. All of these vary based on the time lapse from an

inciting event.
Etiology

The common etiological factors leading to breast fat necrosis

include trauma (accidental or iatrogenic), radiotherapy, systemic

anticoagulation therapy like warfarin, infection, and idiopathic

disease. The most common cause is accidental trauma

accounting for 21%–70% of all cases of fat necrosis (2). Seat-

belt injury is the most common type of blunt accidental trauma.

Iatrogenic causes of trauma include interventions like cyst

aspirations, incisional or excisional biopsies, and vacuum-

assisted biopsies (VAB). Idiopathic fat necrosis of the breast is

common in fatty pendulous breasts of middle-aged women (5).

Various surgeries, including but not limited to lumpectomy,

breast conservative surgery (BCS), mastectomy, reduction
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mammoplasty, implant removal, and breast reconstruction,

increase the risk of fat necrosis in the breast. A recent study by

Dolan et al., comparing the imaging and biopsy results after

breast surgery, found that the rate of fat necrosis after

oncoplastic BCS was 7% as confirmed by pathology (6). Fat

necrosis in the flap following reconstruction surgeries occurs due

to ischemia from inadequate arterial inflow or poor venous

outflow and is dependent on the type of flap (pedicled tissue flap

vs. free fat flap), the surgeon’s experience, and the administration

of adjuvant radiation. Nakada et al. reported a 39% incidence of

fat necrosis following pedicled tissue flap and almost 100%

following free dermal fat flaps. Furthermore, symptomatic fat

necrosis also showed a lower incidence following pedicled tissue

flaps (2.9%) as compared with the free flaps (25%) (7). A

confounding factor associated with fat necrosis following free

flaps was smoking, and often the surgeons required patients to

quit smoking at least 8 weeks prior to surgery (8–10). Fat

grafting, which is used as a cosmetic procedure following BCS,

involves harvesting fat from one part of the body and injecting it

at the site that needs correction of the contour deformity. This

leads to random diffusion and neovascularization of the grafted

fat globules leading to fat necrosis. The incidence of fat necrosis

following fat grafting varies from 2% to 18% (11).

Alone or following BCS, radiotherapy is an independent risk

factor for the development of fat necrosis secondary to

inflammation (12). The observation that recurrences tend to

occur commonly at or near the previous lumpectomy site has led

to the widespread use of accelerated partial breast irradiation

(APBI) which delivers a larger dose per fraction over a shorter

period of time to a targeted portion of the breast, i.e., the tumor

bed, instead of the entire breast just like in whole-breast

radiation (13). Brachytherapy, which can be used by itself as a

form of APBI, is of two types: intracavitary and interstitial.

Interstitial brachytherapy is delivered using hollow needles

implanted in the tumor bed with radioactive pellets inserted

through them at the time of radiotherapy (14). There is some

evidence that interstitial brachytherapy causes additional trauma

to the breast parenchyma from the implanted needles and, thus,

leads to a higher incidence of fat necrosis. A similar incidence of

symptomatic and asymptomatic fat necrosis has been reported

following conventional WBI and APBI brachytherapy; however,

it is greatly influenced by the volume of the irradiated breast as

well as the strength and duration of irradiation (15). Different

studies have reported a variable crude incidence of fat necrosis

following radiation therapy in early-stage breast cancer. Wazer

et al. found that the crude incidence for clinically evident fat

necrosis was 27% (16). Garsa et al. studied 238 breasts in 236

women and reported that the crude incidence of fat necrosis was

17.6% and the rate of symptomatic fat necrosis was 10.1% (13).

The median time to the development of fat necrosis following

radiation to the breast was found to be 12.7 months (average

range 3–42 months) by Rahimi et al. (17).
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Clinical features

Fat necrosis is more often than not asymptomatic and

diagnosed incidentally on imaging. The clinical findings do

not normally vary according to the etiology of fat necrosis and

are neither specific nor sensitive. Palpable lumps of fat necrosis

may present as indolent nodular and mobile masses with smooth

margins or as hard fixed irregular masses. Associated features

like induration, ecchymosis, erythema, nipple retraction, skin

retraction or dimpling, and lymphadenopathy may be present.

More than 50% of symptomatic fat necrosis has clinical features

of malignancy such as hard mass, nipple retraction, and skin

tethering (18). Lesions developing following trauma are usually

at or near the site of trauma, and when no relevant history is

found, the lesions were most commonly located in the upper

outer quadrant (18). Fat necrosis in obese women with

pendulous breasts was commonly seen in the superficial and

subareolar tissues (5).
Imaging

The imaging modalities for the diagnosis of fat necrosis in

the breast include mammography (MMG), ultrasound (USG),

and magnetic resonance imaging (MRI). The emerging newer

technique of contrast-enhanced mammography (CEM) aids in

the diagnosis of fat necrosis in disputed cases and, along with

MRI, serves as a road map for targeted biopsies.
Mammography

Mammography, digital mammography (DM), or digital

breast tomosynthesis (DBT) plays a pivotal role in the imaging

of fat necrosis especially in clinically suspicious symptomatic

women above the age of 40 years and in post-therapy cases. In

fact, in a postoperative and post-therapy breast, a regular annual

follow-up mammogram is the gold standard for imaging

surveillance (19). It should be borne in mind, however, that a

normal mammogram does not rule out an underlying pathology

especially in dense breasts due to the overlap of lesions by

glandular parenchyma. In such cases, USG is performed as a

complementary investigation tool.

The appearance of fat necrosis on mammogram is in

concordance with the stage of evolution of fat necrosis and

ranges from focal asymmetries, architectural distortions, mass-

forming solid lesions, cystic lesions, oil cysts, and calcifications.

Early lesions develop hemorrhagic foci or areas of indurated fat

with trabecular edema and can appear as focal asymmetry on

MMG (12). Occasionally, like in post-traumatic cases, a

hematoma formation is seen which evolves into a seroma,

both appearing as small isodense mass-forming lesions on

MMG. Some lesions develop a central cavity with liquified and
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necrotic contents called membranous fat necrosis also appearing

as isodense lesions on MMG.

A loculated necrotic fat-containing cavity called an oil cyst

appears as a radiolucent lesion on MMG, owing to the internal

fat component, with a thin dense peripheral rim of fibrosis. Oil

cysts are pathognomic of fat necrosis and are the second most

prevalent finding on MMG after dystrophic calcifications,

accounting for 27% of the cases (20). The fibrous rim of an oil

cyst may calcify over time forming a thin dense rim of

calcification, formerly called as “egg-shell calcification.” The

rim calcification does not develop entirely at the same time

with inception as small foci of calcification, leading to curvilinear

or arc-like calcification and eventually progressing into a

complete rim. Thus, in the early stages, the small foci of

calcification in the wall of an oil cyst appear similar to fine

microcalcifications and need differentiation from the disease

process (Supplementary Figures 1, 2). In certain instances, when

the oil cysts are not purely fat-containing and have fat–fluid or

fat–blood levels within, ultrasound serves as a problem-solving

tool. With the incomplete replacement of fat and associated

intense fibrotic reaction surrounding the oil cyst, thickened

irregular walls may develop around the residual necrotic fat,

giving a spiculated appearance onMMG, mimicking cancer (12).

MMG is usually sufficient for the diagnosis of oil cysts,

warranting no further investigation or follow-up; however, it is

important to note that oil cysts may occasionally be occult on

MMG, especially when overlapped by normal fatty and

fibroglandular breast parenchyma and get diagnosed on USG

or MRI. Supplementary Table 1 summarizes the key points of

oil cysts.

An intermediate to late presentation of fat necrosis on MMG

is focal asymmetry or architectural distortion. DBT is most

useful in such cases to decrease the confounding effect of

overlapping breast tissue. The underlying pathophysiology is

the presence of varying amounts of inflammatory changes and

areas of fibrosis interspersed with radiolucent necrotic fat. These

are usually not clinically palpable and, in the majority of cases,

are diagnosed solely on imaging. A post-surgical scar may

appear as an area of architectural distortion with overlying

contour deformity and skin thickening or nipple retraction at

the site of surgery, features that may also mimic recurrence

(Supplementary Figure 3). The identification of interspersed fat

within an asymmetry can increase the confidence levels for

benignity; however, existing fat within the breast can be

engulfed by an evolving malignant process and must be

viewed with suspicion and evaluated further, either with DBT,

CEM, or MRI, and further histological confirmation as

required (21).

Calcification is one of the most common findings following

lumpectomy and radiation and also the most important imaging

biomarker for local recurrence (22). With a rising trend toward

breast conservation, there has been a learning curve with the

imaging evaluation of post-therapy calcifications, to be able to
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adequately differentiate benign calcifications of fat necrosis from

malignant microcalcifications of residual or recurrent disease (23).

It is observed that the median time for the development of benign

calcifications is much earlier thanmalignant calcifications. Günhan-

Bilgen et al. (24), Giess et al. (23), and Chang Sen et al. (25) reported

that the median times for the development of benign calcifications

were 24, 23, and 27 months, respectively, and for malignant

calcifications, the median times were 52, 39, and 41 months,

respectively. Therefore, a lower probability of malignancy is

observed with early developing calcification (6–24 months) (23).

The incidence of benign calcifications was also observed to be

higher than malignant microcalcifications in post-therapy breasts

(23, 24, 26). In the majority of cases, the calcifications of fat necrosis

occur in and around the area of surgery, usually within the same

quadrant (22, 27). Thus, calcifications observed elsewhere in the

breast or in the contralateral breast should be addressed with

caution (Supplementary Figure 4).

Calcifications representing recurrence commonly have an

amorphous or fine pleomorphic morphology with segmental or

regional distribution (28). Calcifications of early-stage fat

necrosis may also appear fine and pleomorphic closely

mimicking cancer; however, they show gradual coarsening

with evolution into dystrophic calcifications (Supplementary

Figure 5). Although not a ground rule, fine microcalcifications

may be differentiated by the presence of fat-density radiolucent

areas around and within the calcifications in fat necrosis,

whereas the presence of high density associated with

calcification is suggestive of recurrent disease (29). Unless

unequivocally benign, all post-therapy calcifications should be

viewed with caution. It is imperative to emphasize that

suspicious-looking calcifications must undergo tissue diagnosis

(Supplementary Figure 6).

The most common calcification in fat necrosis is dystrophic

calcifications. These are larger than 1 mm, rough, and irregular and

tend to coalesce to become larger. Calcificationswithin the irradiated

breast are usually dystrophic with a typical benign appearance. They

appear linear or round and coarse, within the irradiated field. The

tubular appearance of these calcifications following brachytherapy is

secondary to the fat necrosis developing along the implanted needle

tract which on serial MMG shows classical interval coarsening

(Supplementary Figure 7). The calcifications that develop in

silicone granulomas or after autologous fat grafting are also coarse

and dystrophic (Supplementary Figure 8). As mentioned, rim

calcification in the wall of the oil cyst is also typically benign. The

keypointsof calcifications inapost-therapybreastaresummarized in

Supplementary Table 2.
Ultrasonography

Ultrasound is a well-established, quick, and effective

modality for imaging the breast for fat necrosis. The absence

of hazardous radiation makes it the preferred investigation tool
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for symptomatic women less than 30 years of age as well as

pregnant and lactating women. The sensitivity of USG is higher

than mammograms especially in dense breasts of women less

than 50 years of age (30, 31); however, MMG and USG are most

effective when used in combination with the highest diagnostic

accuracy when utilized together (31). Complemented with color

Doppler and elastography, ultrasound is meritorious in

differentiating benign fat necrosis from malignant lesions by

allowing non-invasive characterization of tissue vascularity and

stiffness, respectively. The absence of color flow on color

Doppler hints toward the benignity of fat necrosis, but it is not

reliable (32). On elastography, malignant lesions are expected to

be hard, and benign lesions are presumed to be soft; however, a

classic example of a confounding finding on elastography is the

increased stiffness of benign lesions such as fibrosis and fat

necrosis (33).

Fat necrosis on ultrasound may appear as solid or cystic

masses. The solid masses of fat necrosis have well-circumscribed

margins and may distort breast parenchyma. The cystic lesions

may have clear contents, internal echoes, and fluid–debris levels

or may appear as complex intracystic masses. The common

appearances of oil cyst on USG include anechoic cystic lesions

with posterior acoustic enhancement or anechoic lesions with

posterior acoustic shadowing (34). The typical oil cysts on

mammograms often appear as solid masses on USG (34)

(Supplementary Figures 9, 10). An internal echogenic band,

formed by the interface between lipid and serous/hemorrhagic

fluid, that shifts its orientation with a change in patient position

is a hallmark of oil cysts (34). With increasing complexity,

internal echogenic mural nodules, thick septations, or

calcifications may be seen (35). Conventionally, malignant

hypoechoic masses are expected to demonstrate posterior

acoustic shadowing; however, oil cysts , dystrophic

calcifications, and focal architectural distortions of fat necrosis

may also show dense posterior shadowing (36).

Increased echogenicity of surrounding breast parenchyma or

subcutaneous fat is a reliable indicator of benignity (32). Fat

necrosis, especially when precipitated from trauma, is superficial

in location and appears as a hyperechoic mass with or without a

small central hypoechoic focus (Supplementary Figures 11, 12).

Only a small proportion, less than 0.8%, of hyperechoic masses

represent malignancy (37). When situated deeper in the

fibroglandular parenchyma of the breast, a hyperechoic mass

needs to be viewed with caution and warrants differentiation

from malignant lesions, such as lymphoma, leukemia,

metastasis, intralobular carcinoma, or rarely intraductal

carcinoma (37).
Contrast-enhanced mammography

CEM is a novel imaging modality developed as an adjunct to

mammography to provide additional physiologic information
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about local breast perfusion. An extensive search of the medical

database revealed no publications describing or reviewing the

appearance of fat necrosis on CEM. Very little literature was

found on the benefits of CEM in the evaluation of mass-forming

lesions, calcifications, or architectural distortions.

One of the common indications of CEM is a palpable mass in a

postoperative breast. Mixed-density lesions on mammogram and

ultrasound may need further characterization with CEM

(Supplementary Figure 10). A heterogeneous area of intermixed

fibroglandular and fatty tissue either shows no enhancement or

shows thin uniform peripheral and/or septal enhancement (38). An

oil cyst with a fibrous rim also shows thin uniform peripheral

enhancement on CEM. For the assessment of calcifications, CEM

may be beneficial in differentiating benign calcification of fat

necrosis from suspicious microcalcifications by the absence of

enhancement. The presence of enhancement supports the

diagnosis of malignancy; however, the absence does not exclude it

(39, 40). The interpretation of architectural distortion secondary to

fat necrosis can be rather challenging on imaging. Although

distortions are better evaluated on DBT, it is questionable

whether it can obviate the need for biopsy owing to the low

positive predictive value of DBT, especially when no ultrasound

correlate is found (41). CEM can be of particular value in such cases

as architectural distortion or focal asymmetry from fat necrosis

usually does not demonstrate enhancement on CEM. A few benign

causes of architectural distortions like a radial scar or complex

sclerosing lesions, sclerosing adenosis, and post-surgical changes are

close differentials. CEM may not always prove to be beneficial in

equivocal cases for differentiating benign and malignant

architectural distortions, and the paucity of data often compels

the radiologist to consider biopsy in many cases of architectural

distortion irrespective of demonstrable enhancement on CEM (42).
Magnetic resonance imaging

MRIhas been a game changer inbreast imagingowing to its high

soft tissue resolution. It is not routinely required while evaluating

breasts for fat necrosis; however, in some post-therapy complicated

cases, whenmammography and ultrasound findings are ambiguous

and the clinical suspicion is high, the utility of MRI is justified.

The T1-weighted sequence (T1W) is one of the most important

sequences for the diagnosis of fat necrosis. Demonstration of fat-

containing lesions and tissue distortion in the operative bed (fat-

engulfingscar tissue)onT1Wsequence can significantly improve the

diagnostic conviction even in the presence of suspicious

enhancement or kinetics which can be misleading (43). Fat-

saturated T1W images can confirm the fatty nature of the lesion.

Diffusion-weighted imaging (DWI) with apparent coefficient of

diffusion (ADC) map provides quantitative and qualitative data for

differentiating postoperative fat necrosis from recurrence and

improves the overall diagnostic accuracy of MRI breast (43, 44).
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Visualization of bright signal intensity in the postoperative bed with

increasing b-values and low-signal intensity on the ADC map

corresponds to recurrent disease (44). The kinetic curve assessment

following dynamic post-contrast image acquisition may help in

distinguishing benign from malignant causes of enhancement;

however, it is non-specific and varies from slow and gradual to

rapid enhancement (44).

Post-treatment or post-traumatic breasts with early-onset

hemorrhage at the local site show a well-defined or an ill-defined

mass or a focal asymmetry with altered signal intensity on different

sequences. The signal intensity varies based on the age of blood,

typically hyperintense on T1W images and hypointense on T2W

images.Noenhancementormildperipheral enhancement canbe seen

on the post-contrast sequence (45). One of the most common MRI

findingsoffatnecrosis isofanoil cyst,withawell-definedroundtooval

lesionwith T1WandT2Whyperintense contents, following fat signal

intensity on all sequences. Suppression of the signal on fat-saturated

(FAT-SAT) T1 and short tau inversion recovery (STIR) images

confirms the presence of fat within the lesion. The thin fibrous rim

of an oil cyst shows subtle uniform enhancement (Supplementary

Figures 13, 14). A signal drop in the rim of the oil cyst is suggestive of

rim calcification. Fat necrosis showing decreased signal intensity on

T1- and T2-weighted images can be a result of iron-containing

siderophages (46, 47).

Architectural distortions occurring at or near the lumpectomy

site under ideal circumstances would show signal intensity similar

to fat on all sequences with adjacent parenchymal enhancement

(48, 49). It can be quite a challenge to interpret architectural

distortions, especially in the early postoperative phases because of

the intense enhancement seen due to acute inflammation and

edema. Mild mass-like enhancement is usually seen lasting for up

to 18 months in the postoperative and post-radiation breast (50).

A minimal or a small focal area of enhancement or thin linear

homogeneous non-mass enhancement (NME) can be seen

persisting for up to 5 years post-lumpectomy (51). Fibrosis,

which is often identified in conjunction with fat necrosis, leads

to the development of an irregular mass or architectural distortion

and focal asymmetry with varying appearances on the T1W

sequence (52). Multiple enhancement patterns of fibrosis are

identified on MRI correlating with the stage of evolution of fat

necrosis in a post-therapy breast. More recent lesions generally

have an irregular contour with variable enhancement surrounding

the lesion, whereas older lesions have markedly irregular margins,

owing to fibrosis and retraction, and generally do not enhance

(53) (Supplementary Figure 14). Fibrosis usually shows persistent

or delayed plateau kinetics.

Certain patterns of enhancement are highly suspicious, like

mass-like enhancement, nodular enhancement (more than 5 mm),

and clumped or heterogeneous non-mass enhancement with

segmental or regional distribution and suspicious kinetics (like

rapid initial enhancement and washout), and should not be

considered as benign fat necrosis.
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Positron emission tomography/
computed tomography

The imaging features of fat necrosis on positron emission

tomography/computed tomography (PET/CT) are all

incidentally detected. 18F-FDG PET/CT is not a routine

recommendation for the detection of breast abnormalities and

is primarily done for staging and metastatic evaluation. It cannot

be emphasized enough that PET/CT is neither indicated nor

recommended for recurrent disease evaluation in post-

therapy breasts.

Fat necrosis shows no uptake on PET/CT; however, few

studies have detected “false positive” cases demonstrating uptake

on PET/CT (47, 54). The increased FDG uptake of fat necrosis

can be attributed to the presence of locally increased

metabolically active inflammatory cells reflecting hyperemia

(2) (Supplementary Figure 15). Intense uptake in the setting of

transverse rectus abdominis myocutaneous (TRAM) flap

reconstruction is seen when the fat-rich tissue is damaged

intraoperatively (55). Other benign conditions showing FDG

uptake that may sometimes need differentiation from fat

necrosis are acute and chronic inflammation.

Tissue diagnosis

Cases that are clinically and radiologically equivocal require

confirmation with tissue diagnosis. Minimally invasive methods

for tissue sampling are fine needle aspiration cytology (FNAC),

core needle biopsy, and vacuum-assisted biopsy (VAB). The

sensitivity and specificity of FNAC are 87% and 99%,
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respectively; however, it bears limitations such as inadequate

sampling and repeated needling (2). Core needle biopsy has a

higher sensitivity and diagnostic accuracy, almost comparable to

surgical biopsy, and also allows immunohistochemistry testing

of the tissue. The false-negative rate of core biopsy is 1.2% to

1.5% (56); thus, in a small proportion of cases when clinical

suspicion is high, a surgical biopsy is recommended despite a

negative core biopsy.

A spiculated dense mass on mammogram and a hypoechoic

mass with angular margins and a taller-than-wide appearance on

ultrasound in a post-therapy breast are suspicious features and

warrant a tissue diagnosis. Amorphous or fine pleomorphic

microcalcifications also require a histological sampling,

compared with dystrophic and rim calcifications which are

classically benign.

A summary of the different stages of fat necrosis is tabulated

with its clinical and radiological features as well as its gross

histopathological and microscopic features in Table 1.

Approach to the diagnosis of
fat necrosis

Mammography has stood the test of time for imaging the

breast in eligible women. It is the best and first investigation tool

for most cases. The diagnostic accuracy of mammogram

increases when combined with ultrasound (31). Ultrasound is

the first investigation tool for women under 30 years of age (57).

It is also the most common modality used for guided

interventions. MRI is usually reserved for complicated cases

when MMG and USG yield ambiguous results. However, MRI
TABLE 1 Clinical-Radiological-Pathological correlation with underlying pathology in Fat Necrosis.

Clinical Stage Radiological Gross Pathological Microscopic

AsymptomaticI Induration /
Firmness/ Palpable Lump
(tenderness+/-)

Early Focal asymmetry or
isodense mass-
forming lesion

Haemorrhagic foci in the breast or
areas of indurated fat. Bright yellow

fat (Saponification)

Haemorrhage within fat
with enucleated adipocytes,foamy histiocytes

and multinucleated giantcells (due to
phagocytosisof necrotic adioocvtes)

Intermediate
to Late

Isodenselesion
corresponding to a

cystic lesion

Cystic lesion filled with liquefied
content

Cavity formation due to
liquefactive necrosis,

known as membranousfat necrosis

Oil Cyst: Fat density
lesion with well-
defined margins
Peripheral rim of
calcification+/-

Cavitary lesion with firm/gritty walls
and soft necrotic contents
"membranousfat necrosis"

Loculated necrotic fat
within a cyst surrounded
by dense fibrous tissue.

Egg-shell calcification +/-

Micro or
macrocalcification

Chalky white gritty areas
(Calcification)

Specks or massesof
dystrophic calcification±

giant cell reaction

!Asymmetry I
Architectural
distortion

Yellow-Grey firm areasof
Fibrosis

Reactive inflammatory
response,hemosiderin laden

macrophages, areasof fibrosis and
eventual scar formation
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can be used as a frontline tool for imaging dense breasts,

especially in young women less than 40 years of age (58).

The following flowcharts aspire to serve as a road map as an

approach to various possible imaging appearances of fat necrosis

in the post-therapy setting or a clinical setting of high suspicion

for fat necrosis such as with a history of trauma, as depicted in

Figure 1. The approach to calcifications in a post-therapy breast

has also been depicted in a flowchart for ease of understanding in

Figure 2 and for interpretation of various morphologies and

distribution of calcifications.
Conclusion

Fat necrosis in the breast, albeit a benign entity, is a cause of

concern for the clinician and often a cause of anxiety for the
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patient, and owing to its myriad of appearances on various

imaging modalities, fat necrosis may be a cause of diagnostic

dilemma for the radiologist. A radiologist should be conversant

with the many typical and atypical features of fat necrosis and bear

knowledge of the different evolution patterns enabling early

diagnosis to circumvent unnecessary intervention. The overlap

in imaging features of fat necrosis with breast cancer in a few cases

makes it extremely difficult to reach a confident diagnosis based

on imaging alone and often warrants histological sampling. Once

diagnosed, fat necrosis requires no further attention or

intervention as it bears no risk of malignant transformation.

With this comprehensive review article, one can attain

information on the interplay of various imaging modalities

such as MMG, USG, CEM, and MRI and their use in different

permutations and combinations in a nutshell to aid in arriving at

a logical conclusion for the diagnosis of fat necrosis. The one-of-
FIGURE 1

Algorithm for the approach to fat necrosis.
FIGURE 2

Algorithm for the approach to calcifications seen in fat necrosis.
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a-kind tabulated information on the clinical–radiological–

pathological correlation for different stages of fat necrosis

makes it easy for a radiologist to better interpret the imaging

findings based on the clinical presentation and expected cellular

evolution. A visually stimulating flowchart for the approach to a

post-therapy breast as well as calcifications allows one to become

a clinical radiologist.
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