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Editorial on the Research Topic

Innovative applications with artificial intelligence methods in

neuroimaging data analysis

Developing advanced analytic techniques to process neuroimaging data is crucial

in advancing our understanding of the human brain structure and function. Most

traditional image processing methods are unable to meet the accuracy and efficiency

requirements of clinical practice and neuroscience research. Alternatively, advanced

data processing methods such as artificial intelligence have yielded promising results

in medical image analysis (Shen et al., 2017; England and Cheng, 2019), such as tumor

detection (Saba et al., 2020; Sharif et al., 2020), brain registration (Wu et al., 2015; Fu et al.,

2020; Wei et al., 2021), tissue segmentation (Wu et al., 2014; Ronneberger et al., 2015;

Zhao et al., 2022), image reconstruction (Kainz et al., 2015; Cerrolaza et al., 2018), and

neuropsychiatric disease diagnosis (Liu et al., 2015, 2017). Advanced artificial intelligence

methods have shown improved accuracy and efficiency of neuroimaging data processing.

As a result, this will advance the understanding of the human brain, which may assist

in early diagnosis and developing intervention and/or surgery in patients with brain

disorders. Currently, artificial intelligence is still in its infancy regarding its application

to medical field and has the potential to be extensively used in clinical settings.

This Research Topic focuses on developing and applying artificial intelligence

methods in medical image analysis, especially in the human brain, as well as using
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novel data processing methods and tools to address

neuroimaging-related clinical and neuroscience questions.

A total of 14 articles were exclusively selected and published in

this topic.

Brain structure segmentation

Two studies applied deep learning methods in brain

structure segmentation using magnetic resonance imaging

(MRI) scans. Theaud et al. proposed a DenseUNet-based deep

learning segmentation algorithm for 10 tissues (i.e., white

matter, gray matter, cerebrospinal fluid, ventricles, putamen,

pallidum, hippocampus, caudate, amygdala, and thalamus)

in diffusion weighted MR images. This method was trained

and validated on 1,000 individuals from 22 to 90 years

old from 5 public databases. Segmentation accuracy was

superior to Freesurfer and FSL-FAST and the impacts on

tractography were evaluated. Chai et al. proposed a contrast

attention U-Net for deep gray matter nuclei segmentation

in concatenated T1-weighted and quantitative susceptibility

mapping sequences. This method was evaluated on two datasets

acquired using different parameters from different MRI devices.

Their results also suggested that sufficient data augmentation,

deep supervision, and non-uniform patch sampling contributed

to improving the segmentation accuracy.

Brain functional images

Ren et al. employed Pearson’s correlation and nearest

neighbor to identify individuals in different conditions including

right-handed tapping, left-handed tapping, foot tapping and

resting state on functional near-infrared spectroscopy. Wang

et al. proposed a functional MRI encoding model to study the

hierarchy of neural auditory processing in the human brain

through an unsupervised deep convolutional auto-encoder

model. Their findings showed that the neural representation

of hierarchical auditory features is not limited to the superior

temporal gyrus, but is also related to the bilateral insula,

ventral visual cortex, and thalamus. Yu et al. developed a

computational framework that incorporates both spatial and

temporal characteristics of the brain to investigate brain states

and high-level semantic features from naturalistic functional

MRI. The framework is shown to be effective in classifying

audio categories and identifying semantically meaningful high-

level features. Su et al. utilized support vector machine to

identify brain activity changes in response to short-term real-

world visual experience in a group of radiologists, which may

provide novel insights into the neural mechanism of visual

experts. Banerjee et al. proposed a seizure onset zone localization

algorithm, namely “EPIK,” based on independent components

derived from resting-state functional MRI in children with drug

resistant epilepsy. EPIK outperforms support vector machine

and convolutional neural network and shows consistent

performance across different demographic subgroups.

Feature extraction

An et al. proposed a semiautomatic prediction model for

the rupture risk estimation of aneurysms, which consisted

of multidimensional feature fusion, feature selection, and

the construction of classification methods. Features included

morphological features, radiomics features, clinical features,

and deep learning features. Three dimensional EfficientNet-B0

was used to extract and analyze the classification capabilities

of three sets of deep learning features (no-sigmoid features,

sigmoid features, and binarization features). Five classification

models were compared, and the k-nearest neighbor produced

the best results. This study suggests that the full use of

multidimensional feature fusion can improve the performance

of aneurysm rupture risk assessment. Jiang et al. proposed

a multi-scale feature extraction by the neural network with

multi-task learning in continuous blood pressure estimation.

Specifically, segmentation, denoising, and normalization

were used to preprocess the target (electrocardiograph and

photoplethysmography) and label signals (arterial blood

pressure), and then a neural network with multi-task learning

was designed to extract multi-scale features related to blood

pressure from preprocessed target signals. Three blood pressure

values (systolic blood pressure, diastolic blood pressure, and

mean arterial pressure) were estimated simultaneously through

multi-task learning, thus improving the accuracy of blood

pressure estimation.

Brain disease diagnosis

Liu et al. developed a method using decomposition-

based correlation learning to capture the relationship between

structural and functional MRI data. This method was evaluated

in the classification of multiple neuropsychiatric disorders

including schizophrenia, bipolar disorder, and attention deficit

hyperactivity disorder. Chen et al. used MR spectroscopy to

measure biochemical metabolites in prefrontal white matter and

hippocampus in bipolar disorder patients with and without

suicidal ideation, and combined brain biochemical metabolites

with support vector machine algorithm to predict the severity

of suicide risk in patients with bipolar disorder. Zhao, Han

et al. proposed a hierarchical sub-network strategy to construct

functional connectivity network from resting-state functional

MRI based on matrix variate normal distribution theory. This

method showed promising results in the classification of patients

with autism spectrum disorder and normal controls. Zhao, Pan

et al. proposed a scheme for constructing a high-order brain

functional network from electroencephalography data based on

sliding window, correlation, and clustering. Results demonstrate
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the efficiency of the high-order brain functional network in

the identification of major depressive disorder. Hou et al.

successfully employed linear support vector machine to classify

patients with obstructive sleep apnea from healthy controls

based on whole-brain resting-state functional connectivity,

indicating these features can serve as neuroimaging biomarkers

for this disorder.

The articles in this Research Topic proposed and applied

advanced processing techniques in medical image analysis,

mainly focusing on the human brain. This topic may benefit

researchers and clinicians who are interested in artificial

intelligence methods and neuroimaging data analysis.
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Functional connectivity network (FCN) calculated by resting-state functional magnetic
resonance imaging (rs-fMRI) plays an increasingly important role in the exploration
of neurologic and mental diseases. Among the presented researches, the method
of constructing FCN based on Matrix Variate Normal Distribution (MVND) theory
provides a novel perspective, which can capture both low- and high-order correlations
simultaneously with a clear mathematical interpretability. However, when fitting MVND
model, the dimension of the parameters (i.e., population mean and population
covariance) to be estimated is too high, but the number of samples is relatively quite
small, which is insufficient to achieve accurate fitting. To address the issue, we divide the
brain network into several sub-networks, and then the MVND based FCN construction
algorithm is implemented in each sub-network, thus the spatial dimension of MVND
is reduced and more accurate estimates of low- and high-order FCNs is obtained.
Furthermore, for making up the functional connectivity which is lost because of the
sub-network division, the rs-fMRI mean series of all sub-networks are calculated, and
the low- and high-order FCN across sub-networks are estimated with the MVND based
FCN construction method. In order to prove the superiority and effectiveness of this
method, we design and conduct classification experiments on ASD patients and normal
controls. The experimental results show that the classification accuracy of “hierarchical
sub-network method” is greatly improved, and the sub-network found most related to
ASD in our experiment is consistent with other related medical researches.

Keywords: functional connectivity network, resting-state functional magnetic resonance imaging, matrix variate
normal distribution, autism spectrum disorder, hierarchical sub-network method
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INTRODUCTION

Functional connectivity networks (FCN), usually calculated
from resting-state functional magnetic resonance imaging (rs-
fMRI), using blood oxygenation level dependent (BOLD) signals
as neurophysiological indicators, are playing an increasingly
important role in exploring the working mechanism of the brain
and investigating the brain’s functional variations of some mental
disorders, such as autism spectrum disorder (ASD) (Felouat
and Oukid-Khouas, 2020; Sun et al., 2021), major depressive
disorder (Mousavian et al., 2020), Alzheimer’s disease (Jones
et al., 2012; Wang et al., 2017), and its early stage, i.e., mild
cognitive impairment (Chen et al., 2016; Zhang et al., 2020), et al.

FCN is a weighted network based on the graph theory, which
takes the regions of interest (ROIs) in the brain as the nodes,
the correlation of the rs-fMRI time series between different ROIs
as the functional connectivity (FC) and the FC strength as the
weight of the edge (Smith et al., 2013). Among all the methods for
FC estimation, the most classic and popular example is Pearson’s
Correlation (PC) (Chen et al., 2016; Zhao et al., 2018; Sun
et al., 2021). So far, it has been commonly known that the brain
network structures and edge weights of the patients are different
from those of the normal population due to the occurrence of
pathological changes (Greicius et al., 2003).

At present, researchers have proposed many FCN models
for disease diagnosis, which can be roughly divided into two
categories. The first class is the so-called “low-order FCN” (Zhou
et al., 2018b) that can only reflect FC characteristics between
any two ROIs. For example, the conventional FCN assumes
that all the rs-fMRI time series are static during the whole
scanning period. Under such assumption, FC is quantified with
the correlation (e.g., Pearson’s correlation) between a pair of rs-
fMRI time series derived from two ROIs (Achard, 2006). The
dynamic FCN overcomes the drawback that the conventional
FCN cannot reflect the dynamic information of brain activity.
Based on the sliding window strategy, the rs-fMRI time series
are divided into a set of short time series fragments, and the
conventional FCN is constructed on each fragment. This can
capture dynamic FC changes over time to a certain extent (Kudela
et al., 2017). Notice that the low-order FCNs only calculate the
pairwise correlation between two brain ROIs while fail to reflect
deeper linkage mechanism involving multiple ROIs inside the
brain. And the functional connectivity involving multiple ROIs
may contain complementary information to low-order FC. The
second class of FCN model is the so-called “high-order FCN”
(Song et al., 2020) that can capture deeper brain information
by designing FC model of multiple ROIs. For example, on the
basis of dynamic FCN, Chen et al. (2016) and Zhao et al. (2018)
took each FC time series as the network node and the correlation
coefficient of FC time series of each ROI pair as the edge weight to
construct a high-order FCN, which fills the interaction between
paired ROI and other ROI pairs. Zhang et al. (2016) proposed
a novel method to capture second-level relationship between
two brain regions using inter-regional resemblance of the FC
topographical profiles, which complements the discovery of more
biologically meaningful inter-group differences. Furthermore,
Zhao et al. (2020) combined inter-regional resemblance of the

FC topographical profiles with dynamic network and central
moment to explore dynamic and high-order relationships
between two brain regions, which mines the dynamic FC
relationship of multiple ROIs from multiple perspectives. Of
note, the above methods all share the “correlation’s correlation”
strategy. In addition, in the literatures, many authors (e.g., Zhang
et al., 2016, 2017) have presented the importance of high-order
FC and explained potential biological meanings of high-order FC
networks in dedicated studies. Since this paper mainly focuses
on the applications of high-order FCNs for diagnosis, detailed
discussion about general biological meanings of high-order FC
networks can be found in these published works.

Zhou et al. (2018a) proposed a novel FC estimation method
based on Matrix Variate Normal Distribution (MVND) theory.
Compared with other higher-order models, MVND-based FCN
can simultaneously obtain both low- and high-order FCNs
with a clear mathematical explanation, and has demonstrated
superior performance in identifying MCI patients from NCs.
Specifically, the FCN sequence is constructed with the sliding
window strategy, and then the so-constructed FCNs are taken as
the samples to estimate the final low-order and high-order FCNs.
In other words, each FCN is regarded as a random variable matrix
(RVM) which obeys MVND, and all the FCNs in the sequence are
taken together as the sample population to fit an MVND model.
Like the other models mentioned above, Zhou’s work is an FCN
construction method based on fully brain network (FBN). So, we
use the term “fully network FCN method” to refer to the method
presented by Zhou et al. (2018a).

However, the “fully network FCN method” has the problem
of “high dimension but small sample,” which makes it actually
impossible to fit an MVND model accurately. Theoretically,
when fitting any distribution, the more samples there are, the
more accurate the distribution will be. Besides, the higher spatial
dimension where the distribution is located, the more samples
will be needed in a fitting task. However, there exist the following
facts in the “fully network FCN method”: (1) each FCN is
represented as a 116 × 116 matrix. (2) Each rs-fMRI time series
contains only 137 volumes at most leading that no more than 137
FCNs can be generated even through the sliding window strategy.
In fact, it is almost impossible to fit such a high-dimensional
distribution with such a small number of samples.

In general, for fitting a more accurate MVND, either reducing
the dimension of the RVM or increasing the number of RVM
will be helpful. In other words, the fitting accuracy of MVND
can be improved by reducing the ratio between the dimension
of RVM and the number of RVM. However, as mentioned
above, it is impossible to generate more than 137 FCNs through
sliding windows even in extreme cases, then increasing the
number of RVM is not feasible. Therefore, we put forward
the “hierarchical sub-network method” to improve the “fully
network FCN method” from the perspective of reducing the
dimension of RVM in this paper. Specifically, the brain network
is divided into several sub-networks, and each sub-network
contains only part of rs-fMRI time series. Firstly, the MVND
based FCN construction algorithm is implemented in each sub-
network, so as to reduce the spatial dimension of MVND and
obtain more accurate estimates of intra-sub-network low- and
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high-order FCNs. Furthermore, the rs-fMRI mean series of all
sub-networks are obtained, and the low- and high-order FCN
across sub-networks are estimated according to the same strategy
to compensate for the loss of FC information caused by sub-
network division.

We propose the “hierarchical sub-network method” based on
the following two motivations. On one hand, the ratio of the
dimension of RVM to the number of RVM can be effectively
decreased, so as to improve the fitting effect of MVND through
the sub-network strategy. In fact, in this paper, the brain is
divided into six relatively independent sub-networks according
to the BrainNet Viewer software (Xia et al., 2013) like: the default
mode network (DMN), the execution and attention network
(EAN), etc. In other word, each sub-network is a relatively
independent functional area and just contains a little part of
ROIs. We take the largest sub-network as an example to illustrate
the effectiveness of this method in improving MVND fitting. The
largest sub-network only contains 26 ROIs, so in the MVND-
based FCN construction method, RVM is expressed as a 26 × 26
matrix. Each ROI measured 170 signal elements, the ratio of
the dimension of RVM to the number of RVM is 3.97 in our
method, while in the “fully network FCN method,” as analyzed
earlier, the RVM is represented as a 116 × 116 matrix and the
dimension quantity ratio of RVM is 79.15. Therefore, our method
can reduce the difficulty of MVND fitting from the perspective of
spatial dimension.

On the other hand, although the sub-network strategy can
achieve more accurate fitting of MVND and more accurate
extraction of FC information in sub-networks, we have to
point out the fact that merely building FCN in sub-networks
inevitably loses FC information of ROIs across different sub-
networks, which can be understood more clearly by comparing
FC information captured in fully network (Figure 1A) and sub-
network (Figure 1B) of brain. Figure 1A represents the eight
FCs among the six ROIs before network division. Figure 1B
reflects that the attention to FC information of ROI within the
sub-network ignores the two FCs belonging to ROI of different
networks. In this paper, we defuse this problem skillfully through
the correlation of any pair of sub-networks. Specifically, we first

average all the rs-fMRI time series in each sub-network to get 6
(the number of sub-networks) mean time series, and then take all
sub-networks as nodes to construct the low- and high-order FCN
with MVND based FCN construction method. Corresponding
to intra-sub-network features, these features are called inter-
sub-network features. Finally, both intra-sub-network features
and inter-sub-network features are used as the basis for autism
classification experiments.

In summary, the advantages of the “hierarchical sub-network
method” are as follows: first, combining the MVND-based
FCN construction method with functional sub-networks can
reduce the spatial dimension of MVND and achieve more
accurate fitting of MVND; Second, capturing intra-sub-network
features and inter-sub-network features from macro and micro
perspectives to achieve the full expression of FC information in
brain networks. In order to verify that the “hierarchical sub-
network method” is superior to the “fully network FCN method,”
we apply both methods to the Autism Brain Imaging Data
Exchange (ABIDE) database for individual based classification
between ASD patients and NCs.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
In this study, 92 rs-fMRI images of subjects with ages ranging
from 7 to 15 years old from the publicly available Autism Brain
Image Data Exchange Database (ABIDE) (Di Martino et al., 2014)
are used, including 45 ASD patients and 47 NCs In order to avoid
the influences of the heterogeneity of multi-site data on the results
due to the difference in medical device, collection protocol, etc.,
we chose 45 ASD patients (36 males and 9 females) and 47 NC
subjects (36 males and 11 females) with ages ranging from 7 to
15 years old. The mean frame-wise displacement was computed
to describe head motion for each individual. The individuals
were excluded if their mean FD is larger than 1 mm (Lin et al.,
2015; Ray et al., 2015). All these considered subjects had no
excessive head motion with a displacement of < 1.5 mm or an
angular rotation of < 1.5 in any of three directions. The detailed

FIGURE 1 | The comparison of the FC information captured in fully network (A) and sub-network (B) of brain. The dots represent ROIs and the red lines represent
FCs. Yellow dots and green dots depict two different sub-networks.
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demographic information of these subjects is summarized in
Table 1. As shown in Table 1, there are no significant differences
(p > 0.05) in gender, age, and FIQ between two groups.

The observed rs-fMRI images are scanned at New York
University (NYU) Langone Medical Center using a 3 -T Siemens
Allegra scanner with the following parameters: flip angle = 90,
33 slices, TR/TE = 2,000/15 ms, 180 volumes, and voxel
thickness = 4 mm. More details on the data collection, exclusion
criteria, and scan parameters can be obtained from the ABIDE
website.1

The acquired rs-fMRI data is preprocessed by the Statistical
Parametric Mapping (SPM8) software.2 Then, the brain is
parcellated into 116 ROIs using the Automated Anatomical
Marker (AAL) atlas (Tzourio-Mazoyer et al., 2002), and the
average rs-fMRI time series for each ROI are calculated and
expressed as a data matrix X ∈ R170 × 116, where 170 denotes
the total number of temporal image volumes and 116 denotes the
total number of brain ROIs.

The Pipeline of the “Hierarchical
Sub-Network Method”
The pipeline of our proposed “hierarchical sub-network method”
is shown in Figure 2, which mainly includes the following
four steps: (1) Sub-network division. The division labels of the
sub-network are obtained according to the BrainNet Viewer
software (Xia et al., 2013), and the rs-fMRI time series of each
subject are divided into 6 groups according to the division
labels. (2) Intra-sub-network feature extraction. In each sub-
network, the FCN sequence is constructed with sliding window,
and the MVND is fitted with the FCN sequence being the
RVM sample to obtain the intra-sub-network features. (3) Inter-
sub-network feature extraction. The mean time series of each
subnetwork is calculated, and then the low-order and high-
order FCNs of the fully network are estimated synchronously
with the MVND-based FCN construction method. (4) Feature
normalization, feature selection and feature fusion. The features
obtained in steps (2)—(3) are normalized. Then we use T-test

1http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

TABLE 1 | Demographic information of the subjects.

Characteristic NC ASD p-value

Gender (M/F) 36/9 36/11 0.2135a

Age (mean ± SD) 11.1 ± 2.3 11.0 ± 2.3 0.773b

FIQ (mean ± SD) 106.8 ± 17.4 113.3 ± 14.1 0.0510b

ADI-R (mean ± SD) 32.2 ± 14.3c - -

ADOS (mean ± SD) 13.7 ± 5.0 - -

FD (mm)(mean ± SD) 0.14 ± 0.05 0.15 ± 0.07 0.36b

ASD, autism spectrum disorders; NC, normal control; M, male; F, female; FIQ, Full
Intelligence Quotient; ADI-R, Autism Diagnostic Interview-Revised; ADOS, autism
diagnostic observation schedule.
aThep-value was obtained byχ2-test.
bThe p-value was obtained by two-sample two-tailed t-test.
cTwo patients do not have the ADI-R score.

and LASSO algorithms to select the most relevant features for the
classification task. (5) ASD classification. We use SVM with linear
kernel for ASD classification.

In the following subsections, we describe the above steps
in detail. The meanings of the mathematical symbols are that
bold uppercase letters represent matrices (i.e., M), regular
uppercase letters represent total values (i.e.,M), bold lowercase
letters represent vectors (i.e., m), and regular lowercase letters
represent scalars (i.e., m).

Dividing the Brain Into Sub-Networks
For each subject, we define
xi = (xi1, xi2, · · · , xiM)(i = 1, 2, · · · ,N) as the average
rs-fMRI time series across all voxels belonging to the i-th
ROI, where M denotes the total number of temporal image
volumes, and N denotes the total number of ROIs. According
to the experimental data mentioned above, here M = 170
and N = 116. Divide all ROIs into U different sub-networks
{�1, �2, · · · , �u, · · · , �U}, where U consists of index i if
xi is included in the u-th sub-network. In the current study,
the 116 ROIs in the Automated Anatomical Labeling (AAL)
template were divided into six common functional networks
according to the BrainNet Viewer software (Xia et al., 2013):
the default mode network (DMN), the execution and attention
network (EAN), the sensorimotor network (SMN), the visual
network (Visual), the subcortical nuclei (SBN) regions and the
cerebellum (Cerebel), so here U = 6. Of note, we choose this
division method for the following two reasons. On one hand,
the generated six sub-networks based on the BrainNet Viewer
software have clear biological explanation, which makes this
study have a broader medical reference value. On the other hand,
dividing six sub-networks is enough to satisfy the dimensionality
reduction needs of this study. Since the number of ROIs varies in
each sub-network, we can use Nu to denote the total number of
ROIs in the u-th sub-network. Figure 3 gives an intuitive view of
the division of the sub-network. In section “Discussion,” we also
discuss the sub-network division method based on similarity.

Constructing the Functional Connectivity
Network Time Series With
Sliding-Window Strategy
In Figure 4, step 1 illustrate the construction of the FCN time
series with sliding-window strategy vividly. Let the correlation
between the i-th and the j-th ROIs be:

cij = corr(xi, xj) (1)

Then, an FCN can be established using the classical method
by taking xi as nodes and cij as weights of edges. Here, cij is the
weight of the edge connecting the i-th ROI and the j-th ROI. In
the u-th sub-network, i, j ∈ �u, the total number of nodes of
FCN is Nu, thus FCN can be expressed as a symmetric matrix,
defined as follows:

Wu =
(
cij
)
i, j ∈ �u (2)

where Wu ∈ RNu × Nu represents the FCN in the u-th sub-
network. Next, the sliding window strategy is introduced. The
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FIGURE 2 | The pipeline of the “hierarchical sub-network method.”

FIGURE 3 | Visualization of the location of each sub-network in brain.

FIGURE 4 | The MVND based FCN construction method. Where, step 1 shows the sliding-window strategy, step 2 shows the MVND based feature extraction.

entire rs-fMRI time series of all ROIs is divided into K segments
by window sliding, and corresponding FCNs are established
on each rs-fMRI time series segment, thus forming a sequence
containing K FCNs where K is determined by the window width
lw and step size ls of the sliding window.

Specifically, taking the u-th sub-network as an example,
the total number of ROIs is Nu, the total number of timing
image voxels is M, and a sequence containing K FCNs, denoted
by {W1

u, W2
u, · · · , WK

u }, will be obtained through the sliding

window strategy, where K =
[
M−lw
ls

]
+ 1,M = 170, lw and

ls are variable parameters.

Extracting the Intra-Sub-Network
Features
In Figure 4, step 2 displays the pipeline of the extraction
of intra-sub-network features. In each sub-network, we regard
the obtained FCN sequence as a sample population obeying a
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multivariate Gaussian distribution, then each FCN is regarded as
a random variable matrix sample, then

Wk
u ∼ N (Mu,6u) 1 ≤ k ≤ K (3)

where, Mu ∈ RNu × Nu is the population mean or mathematical
expectation, and 6u ∈ RN

2
u × N2

u is the population covariance of
Wu. As mentioned in the introduction, Mu and 6u correspond
to the low-order FC Features and high-order FC Features of
brain networks, respectively. Since the dimension of 6u is too
high, in order to avoid overfitting in the classification experiment,
and consistent with the method in Zhou et al. (2018a) we
replace the population variance with the form of Kronecker
product decomposition (Gupta and Nagar, 2000), i.e., 6 = C1

u ⊗

C2
u, where C1

u, C2
u ∈ RNu × Nu are positive semi-definite,

representing the column and row covariance matrices of Wu,
respectively. Since Wu is a symmetric matrix, C1

u = C2
u, we

can use Cu = C1
u = C2

u to replace 6u with the advantage of
not losing information, so as to achieve the dimension reduction
of 6u. Specifically, according to maximum likelihood estimation
(MLE) theory of MVND, in each sub-network, the MLE of Mu is

Mu =
1
K

K∑
k = 1

Wk
u (4)

The MLE of Cu can be achieved by the following iteration
formula:

Cu =
1

KNu

K∑
k = 1

(Wk
u −Mu)C−1

u ( Wk
u −Mu)

T
(5)

where, 1 ≤ k ≤ K, 1 ≤ u ≤ U.

Extracting the Inter-Sub-Network
Features
As mentioned in the introduction, after the sub-network division,
we must consider both intra-sub-network and inter-sub-network

features. The overview of the extraction of inter-sub-network
features is vividly illustrated in Figure 5 and the extraction
of inter-sub-network features is divided into two steps: (1)
Calculating the mean correlation time series for each sub-
network (see Figure 5A). (2) Estimating low- and high-order
FCNs simultaneously with the MVND based FCN construction
method from rs-fMRI mean time series (see Figure 5B). The
estimated low- and high-order FCNs are the inter-low-order
features and the inter-high-order features, respectively.

The inter-sub-network feature extraction method is equivalent
to the construction of FCN in the whole brain scale and the
FCN construction method is the same as that in the sub-network
scale. Both are constructed by MVND based FCN construction
method, which can be referred to section “Constructing the
FCN Time Series With Sliding-Window Strategy” and section
“Extracting the Intra-Sub-Network Features.” Here we describe
in detail the generation of mean time series of each sub-network
by taking the u-th subnetwork as an example.

The mean correlation time series yu of the u-th sub-network
can be calculated by averaging those rs-fMRI time series assigned
to this sub-network. Specifically, each element in yu is defined as:

ymu =
∑

i ∈ �u ymi
||�u||

, 1 ≤ m ≤ M (6)

Where, m represents the subscript of the element in yu, and
||u|| represents the total number of rs-fMRI time series contained
in the u-th sub-network.

Feature Normalization, Selection, Fusion,
and Classification
All the features we have obtained include the intra-sub-network
features and the inter-sub-network features, each of which
consists of both high-order features and low-order features. Let’s
call them f 1, f 2, f 3, and f 4. These four feature vectors are
acquired in different ways, so there are inevitably scale differences

FIGURE 5 | The overview of the extraction of inter-sub-network features. (A) Shows the calculation of rs-fMRI mean series. (B) Shows the pipeline of the extraction
of the inter-sub-network features.
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among different features. In order to treat each feature equally,
we normalize them in the same way. Here, f 1, f 2, f 3, and f 4
are normalized by the “min-max normalization” method,
respectively. Take f 1 as an example:

f ′1i =
f 1i −min(f 1)

max
(
f 1
)
−min(f 1)

(7)

Where, f 1 represents the vector of intra-sub-network high-
order features. f 1i represents the i-th element in f 1, min(f 1)
represents the minimum value in f 1, and max(f 1) represents
the maximum value in f 1. The four types of features obtained
by the “sub-network FCN method” just reflect the functional
connectivity relationship between or among ROIs from four
perspectives and they are complementary and homogeneous.
Therefore, our fusion method is to simply combine them as a
whole. In other words, the normalized feature data of four feature
vectors are concatenated and expressed as a long vector f, that is
f = [f ′1, f

′
2, f
′
3, f
′
4].

However, the intra-sub-network low-order features and the
inter-sub-network low-order features expressed by f 2 and f 4
exists as the form of FCN. FCN is a symmetric matrix, and the
repeated feature leads to redundancy. So, we vectorize their lower
off-diagonal-triangular parts to redefine the feature vectors. In
this way, the original feature represented by f is replaced by a
new one denoted by f a. Obviously, f a may still contain features
unrelated to ASD disease. In order to reduce the interference of
irrelevant features and improve the generalization performance,
we use the two-stage feature selection strategy to select a small set
of most discriminative features for ASD diagnosis.

The first step is to perform a two-sample t-test between NCs
and ASD subjects for each feature in the f a. Those features
whose p-value is smaller than a certain threshold are preserved.
At this point, we label the newly obtained feature set as f b. In
the second step, we apply the L1-norm regularized least squares
regression, known as LASSO (Tibshirani, 1996), to further select
the discriminative features from f b. Specifically, we used f lb to
denote the features of the l-th subject and Il to represent the
label of the l-th subject. If the l-th subject is a patient with ASD,
Il = 1; otherwise, Il = − 1. Let w represents the weight vector
for the feature selection task. The LASSO model is expressed by
mathematical formula as:

min
1
2

L∑
l = 1

∣∣∣∣∣∣Il − (f lb)
T

w
∣∣∣∣∣∣2

2
λ||w||1 (8)

Where, L represents the total number of subjects, and L = 92
in this experiment. λ is a parameter, controlling the model’s
sparsity based on the L1-norm regularization. The larger the
value of λ, the sparser the model is. Different from the t-test,
which selects feature separately, LASSO investigates all features
synchronously. The t-test method and the LASSO method select
features from different perspectives. As a binary classification
problem, the t-test method can effectively select the features with
high significance in ASD subjects and NC subjects. However,
t-test method treats each feature independently without taking
into account their inherent correlation, thus possibly resulting

in many redundant features. Therefore, we further use LASSO
method for the second selection which is able to consider the
relationship between features. Therefore, we combine the two
methods and design a two-stage feature selection strategy. We
use F to represent the final feature for classification. In the
classification phase, we use SVM (Chang and Lin, 2011) with
a simple linear kernel for ASD identification. SVM seeks a
maximum margin hyper-plane to separate the two kinds of
samples. By adjusting the hyperparameter γ, the empirical risk
of the training data and the complexity of the model can be
balanced, so as to obtain good generalization performance on
unlabeled test data.

Evaluation Methodology
We use nested fivefold cross-validation strategy which consists
of two nested loops to evaluate classification performance in
this experiment. In outer loop, 92 subjects are divided into 5
subsets of the roughly same size, where one subset is selected
as the test-set, and the other 4 subsets are used as the training-
set. In inner loop, the data of the training-set are combined
and redivided into five subsets of similar size, four of which
are used for tuning the hyperparameters and one for model
evaluation. The performance of our method is mainly affected
by three hyperparameters, they are p and λ in feature selection
and γ in SVM model. The optimal hyperparameters can be
determined when the average classification accuracy reaches its
optimum. we determine the optimal values for the parameters in
the following range: p∈ [0.01 : 0.01 : 0.1] , λ ∈ [0.1 : 0.1 : 0.9],
and γ ∈

[
2−4, · · · ,24]. When the optimal hyperparameters are

selected in inner loop, they are returned to the outer loop where
the model will be trained based on the training dataset and
evaluated on the testing dataset. Besides classification accuracy
(ACC), we use sensitivity or true positive rate (TPR), specificity
or true negative rate (TNR), positive predictive value (PPV), and
negative predictive value (NPV)3 to comprehensively evaluate the
classification performance of the two methods.

RESULTS

Autism Spectrum Disorder Classification
Performance
In this work, we compare the performance of the “hierarchical
sub-network method” and the “fully network FCN method”
in the ASD classification experiment. Specifically, we use the
fusion of all the features extracted by each method to perform
classification experiments. The experimental results are shown
in Table 2 and can be found with Sub-Fusion and Fully Fusion
as pointers. Furthermore, in order to analyze the influence
of different types of features in two compared methods on
the experimental results, we carry out separate experiments on
intra-sub-network high-order features, intra-sub-network low-
order features, inter-sub-network high-order features, inter-sub-
network low-order features, fully network high-order features
and fully network low-order features. In Table 2, they are

3https://en.wikipedia.org/wiki/Sensitivity\_and\_specificity
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TABLE 2 | ASD classification performance using different features.

Feature type ACC (%) TPR (%) TNR (%) PPV (%) NPV (%)

Sub-Intra-Low 74 ± 0.21 73 ± 0.33 75 ± 0.39 75 ± 0.38 73 ± 0.49

Sub-Intra-High 77 ± 0.30 73 ± 0.45 81 ± 0.14 79 ± 0.47 76 ± 0.12

Sub-Intra-Fusion 79 ± 0.49 76 ± 0.45 82 ± 0.23 81 ± 0.13 77 ± 0.25

Sub-Inter-Low 66 ± 0.30 62 ± 0.22 70 ± 0.21 67 ± 0.45 66 ± 0.00

Sub-Inter-High 72 ± 0.38 69 ± 0.22 74 ± 0.40 72 ± 0.09 71 ± 0.43

Sub-Inter-Fusion 73 ± 0.45 71 ± 0.45 72 ± 0.34 71 ± 0.11 72 ± 0.34

Sub-Fusion 81 ± 0.44 78 ± 0.30 83 ± 0.11 81 ± 0.45 80 ± 0.44

Fully Low 74 ± 0.30 78 ± 0.29 70 ± 0.30 71 ± 0.45 77 ± 0.37

Fully High 71 ± 0.45 65 ± 0.37 77 ± 0.45 72 ± 0.50 69 ± 0.25

Fully Fusion 75 ± 0.18 72 ± 0.34 74 ± 0.48 74 ± 0.22 73 ± 0.14

Con-static 74 ± 0.04 72 ± 0.23 76 ± 0.01 74 ± 0.05 73 ± 0.07

Con-dynamic 75 ± 0.12 73 ± 0.14 76 ± 0.29 74 ± 0.23 75 ± 0.08

Values highlighted in bold mean the best results.

abbreviated as Sub-Intra-High, Sub-Intra-Low, Sub-Inter-High,
Sub-Inter-Low, Fully High, and Fully Low. In addition, we
conduct experiments on the fusion of intra-sub-network features
and inter-sub-network features in the “hierarchical sub-network
method” and the results can be found with the pointer Sub-Intra-
Fusion and Sub-Inter-Fusion in Table 2. Finally, we experimented
with two traditional methods under the same data, and reported
the experimental results in Table 2. Traditional static FCN
method and low-order dynamic FCN method are abbreviated as
con-static and con-dynamic, respectively, in Table 2.

Table 2 shows the mean classification performance for each
compared feature type. From the experimental results shown
in Table 2, we can make the following judgments: (1) The
classification accuracy of the intra-sub-network low- and high-
order features of the “hierarchical sub-network method” (i.e.,
Sub-Intra-Low, Sub-Intra-High) is better than the corresponding
features extracted by the “fully-network FCN method” (i.e., Fully-
Low, Fully-High). (2) Both in the “hierarchical sub-network
method” and the “fully-network FCN method”, the classification
performance of fusion features is significantly better than those
of each type of features alone. (3) The performance of the
fusion features (i.e., Sub-Fusion) of the “hierarchical sub-network
method” is significantly higher than those (i.e., Fully-Fusion)
of the “fully-network FCN method”. (4) The classification
performance of the fusion of the Intra-sub-network features
extracted by “hierarchical sub-network method” (i.e., Sub-Intra-
Fusion) is significantly better than the fusion of features extracted
by "fully-network FCN method"(i.e., Fully-Fusion) . (5) Both the
“fully-network FCN method” and the “hierarchical sub-network
FCN method” perform better than the two traditional FCN
methods, and the “hierarchical sub-network FCN method” has
the most obvious advantages.

Influence of Parameters on Accuracy
In the “hierarchical sub-network method”, we use the sliding
window strategy to generate FCN sequences. There are two
key parameters of the sliding window strategy that have a
crucial impact on feature extraction and further affect the final
recognition accuracy. They are the window width (W) and

the step size (S) of the sliding window. In order to evaluate
the influence of these two parameters on the experimental
results, we conducted an ASD classification experiment under
different parameter combinations. The window width is set
as [30:10:120] and the step size is set as [1:1:12]. Figure 6
shows the average accuracy of ASD classification under different
parameter combinations. Referring to Figure 6, we can draw
the following conclusions: (1) Sliding window parameters have
great influence on classification performance. In the “hierarchical
sub-network method,” the maximum recognition accuracy is
obtained when the window width is 60 and the step size is 4;
The best performance of the “fully network FCN method” is
achieved when the window width is 50 and the step size is 7. (2)
In the performance comparison between the “hierarchical sub-
network method” and the “fully network FCN method” under the
same sliding window parameters, the “hierarchical sub-network
method” is superior to the “fully network FCN method” in the
majority of cases. (3) In each method, the best classification
performance is achieved on average when the window width is
between 50 and 90.

In addition, in the stage of feature fusion and classifier
training, three hyperparameters have great impact on the results,
that is, p-values in t-test, λ in lasso and γ in SVM. In this
experiment, we explored the effects of different combinations
of λ and γ on the results. Before that, the window width and
step size are fixed as 60 and 4, respectively, which are also the
parameter when the “hierarchical sub-network method” reaches
the maximum. Figure 7 shows the classification accuracy under
different combinations of λ and γ in the two methods when
the hyperparameter p = 1 of the t-test. From Figure 7, we
can see that hyperparameter λ and γ have significant influence
on the experimental results, and the effects are different in the
two experiments.

The Most Discriminative Sub-Networks
and Features for Autism Spectrum
Disorder Diagnosis
According to the feature selection method mentioned in Feature
normalization, selection, and classification,t-test and LASSO
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FIGURE 6 | Histogram of classification accuracy of the “hierarchical sub-network method” (A) and the “fully-network FCN method” (B) under various sliding window
parameters.

FIGURE 7 | Histogram of classification accuracy of the “hierarchical sub-network method” (A) and the “full-network FCN method” (B) under various
hyper-parameter combinations.
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are used to extract the most discriminative features from
the original features in two steps for the ASD classification
experiment. From all fivefold validation experiments, we take
out and analyze the features used for training classifier each
time. We trace each feature to each sub-network and count how
often each sub-network is tracked. According to the frequency,
the contribution of each sub-network to ASD recognition is
calculated. The higher the frequency, the greater the contribution
of the sub-network. Figure 8 shows the contribution and
distribution of different sub-networks. In order to have a more
vivid and deep impression, the distribution of sub-network
contribution is displayed on a surface rendering of the brain
using the BrainNet viewer software (see Figure 9). The larger
the volume of the ball, the greater the contribution rate of the
sub-network to ASD recognition. Each sphere represents an ROI,
we only use the set of spheres with the same color to represent
the sub-network to observe the relationship between each sub-
network and ASD.

Combined with Figures 8, 9, we can see that only four
sub-networks provide discriminative features for classification
experiments, and DMN is the sub-network that contributes the
most. This suggests that sub-network DMN is closely related to
the diagnosis of ASD. Sub-network SMN and Visual provide zero
contribution in this study, and precise judgments need further
research. In addition, we believe that tracing the FC features
that contribute most is also a convincing perspective to compare
the differences between the two methods. The intra-sub-network
low-order FCN and the fully network low-order FCN are used in
the classification experiment. Then t-test and LASSO regression
are used to select the features twice to get the final features
for training. This part of the feature is considered the most
discriminating. Each of these features represents an FC between
a pair of ROIs. The features extracted in 10 repeated experiments
are counted, and the top 10 features with the highest frequency
are selected and shown in Figure 10. The name of the ROIs and
brain anatomic areas shown in Figure 10 are referred to the file
(“Node\_AAL116.node”) provided by BrainNet Viewer software.

FIGURE 8 | The feature contribution rate of different sub-networks to classifier
training.

Although certain genes have been found to be involved in
ASD, the affected brain regions and the mechanisms behind
specific defects are still poorly understood. According to
Figure 10, except that the functional connections of REC in
the left FRO region and PreCG in the right FRO region are
selected by both methods, other features are different. The
functional connection features selected by the “hierarchical sub-
network method” are mostly concentrated in the FRO region.
In fact, current studies have confirmed the relationship between
FRO lesions and ASD disease (Scott-Van Zeeland et al., 2010;
Solso et al., 2016).

DISCUSSION

We proposed “hierarchical sub-network method” based on
MVND theory. This method not only inherits the advantages of
MVND based FCN construction, being able to simultaneously
obtain high-order features reflecting FC information among
multiple ROIs and low-order features reflecting FC information
between any two ROIs, but also improves the fitting effect of
MVND with the help of sub-network division, so as to capture the
functional connections of the brain more accurately and provide
more discriminative features. We believe that compared with
the “fully network FCN method,” the “hierarchical sub-network
method” can fully mine the disease-disturbed FCN variation
information and has a better performance in ASD classification
experiments. We will give a more detailed discussion on the
comparison of the two methods.

In order to have an intuitive understanding of the dimension
of features extracted by the “hierarchical sub-network method”
and the “fully network FCN method,” we select the dimension
of intra-sub-network low-order features and fully network low-
order features as the representative to display. In detail, we set the
window width parameter as 60 and the step size parameter as 1,
which is the combination of sliding window parameters when the
intra-sub-network-low-order features have the best performance
in ASD classification experiment.

We can take the area of the feature image as a reference
to perceive the dimension of the feature extracted by the two
methods. The larger the area, the higher the dimension. In
this experiment, the number of ROI in each sub-network is
as follows: 18 in SMN, 14 in Visual, 17 in EAN, 22 in DMN,
19 in SBC, and 26 in Cerebel. Each sub-network is shown
in order from top to bottom in Figure 11. We can see that
the intra-sub-network low-order feature dimensions extracted
by different sub-networks are, respectively, about 2.41, 1.45,
2.15, 3.60, 2.68, 5.02% of the fully network low-order feature
dimensions. Therefore, the “high dimensional but small-sample
of RVM” problem is greatly improved in the calculation of fitting
multivariate Gaussian distribution in each sub-network. Since the
MVND based FCN construction method generates a high-order
FCN and a low-order FCN with the same dimensions at one time,
the dimension comparison of the high-order FCNs in the two
methods is similar to that of the low-order FCNs. Overall, intra-
sub-network features are more concise and discriminative than
the fully network features.
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FIGURE 9 | The sub-network associated with ASD and the strength of its contribution to ASD.

FIGURE 10 | The comparison of the most discriminative features in the “hierarchical sub-network method” (A) and the “fully-network FCN method” (B). The left-side
of each diagram represents the left hemisphere of the brain, and the right-side represents the right hemisphere of the brain. In the inner circle, each line connects
two ROIs, and the thickness of the line represents the strength of its identification ability.

The results of ASD classification experiments show that:
(1) when the high-order and low-order features extracted by
the “hierarchical sub-network method” are trained separately,
the classification accuracy is higher than that of the “fully
network FCN method,” and the classification performance
of the “hierarchical sub-network method” is better than
that of the “fully network FCN method.” This means that
the “hierarchical sub-network method” can capture the FC
changes more accurately. There are two factors that play a
role together: first, in technology, the dimensionality of the
FCN is reduced due to the division of the sub-network, i.e.,
the dimension decline of RVM, which makes the MVND
fitting more accurately. Another factor is about the biological

mechanism. The sub-network division of the brain integrates
the ROIs which are closely related in function, and focuses
on observing the functional connection relationship among
the ROIs belonging to the same sub-network, so that the
information reflected by the RVM is more concise and
effective, and the extracted low-order features and high-
order features have a more discriminative power in ASD
classification experiment. (2) The fusion of features in each
method leads to better classification performance, respectively.
To be sure, high-order features and low-order features can
provide complementary information, which is the reason why
the fusion features have better classification performance in ASD
classification experiments.
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FIGURE 11 | The comparison of the feature dimension in both methods. (A) Shows the feature dimension of each sub-network. (B) Shows the feature dimension of
the fully-network.

In the experiment to explore the influence of sliding window
parameters on the classification accuracy, we found that the
classification results of the two methods were changed with
the combination of window width and step size parameters,
especially the window width. Short window width and long
window width have their own advantages and disadvantages.
Short window width can provide rich short-term dynamic change
information, but it is not stable due to the lack of low-frequency
cycle (Sakoğlu et al., 2010). Long window width can make FC
estimation more robust (Wang et al., 2018). From Figure 6,
we can see the phenomenon that the maximum classification
accuracy can be achieved in the middle length of the window
width. In addition, under the same parameter combination,
the “hierarchical sub-network method” is almost always more
accurate than that of the “fully network FCN method.” Since
the dimension of the RVM is lower in each sub-network, more
accurate fitting can be obtained. This proves in practice that the
superiority of the “hierarchical sub-network method” is not a
special result under special conditions.

To further demonstrate the validity of the “hierarchical sub-
network method” in the diagnosis of ASD disease, we trace
the sub-network to which the features of the classifier used for
training belong. The experimental results showed that features
in DMN was selected most frequently, suggesting that DMN
was closely related to the pathogenesis of ASD. We found that
this conclusion was basically consistent with the conclusion of
other studies (Rutter et al., 2009; Simon and Engstrom, 2015;
Churchill et al., 2018), and abnormalities of the DMN were

TABLE 3 | Experimental results of the application of similarity based sub-network
division.

Feature type ACC (%) TPR (%) TNR (%) PPV (%) NPV (%)

Intra-cluster 73 ± 0.91 77 ± 0.78 70 ± 0.21 71 ± 0.43 76 ± 0.74

Inter-cluster 61 ± 0.96 55 ± 0.56 68 ± 0.09 62 ± 0.50 61 ± 0.54

Cluster-Fusion 78 ± 0.26 77 ± 0.78 78 ± 0.72 77 ± 0.78 75 ± 0.72

commonly regarded as prominent ASD neurobiological features
(Padmanabhan et al., 2017). From a biomedical perspective,
DMN plays a crucial role in socially related stimuli because
it is involved in the mental state of self-reflective thinking
and considering the perspective of others, which is consistent
with the fact that ASD is characterized by difficulties in
social communication and interaction (Padmanabhan et al.,
2017). Some studies have reported that the widely decreased
of the FC in DMN in ASD not only contributes to the
core defect of ASD, but also has a significant impact on
the symptom severity (Assaf et al., 2010; Weng et al., 2010;
Kiselev, 2014). For example, Assaf et al. (2010) pointed out
that the decrease of functional connectivity in DMN of ASD
patients was negatively correlated with the severity of social and
communication disorders.

In this study, we choose the medical template as the
framework of sub-network division because of its advantage of
biological interpretation. Of note, this is not the only scheme
for sub-network partition. For example, ROI grouping based on
the similarity of rs-fMRI time series can also be used as a sub-
network division method. Specifically, k-means algorithm is used
to cluster rs-fMRI time series, and the number of sub-networks
is determined by specifying the number of clusters. By fixing the
number of clusters from 6 to 11, we try to apply the similarity
based sub-network division as an alternative to the “hierarchical
sub network,” and verify it in the classification experiments
of ASD and NC. When the number of clusters is fixed at 8,
the classification accuracy gets maximum, and the experimental
results are shown in Table 3. In order to distinguish from the
existing features, we use “intra-cluster” and “inter-cluster” to
represent the intra-sub-network and inter-sub-network features
in this method, respectively, and “Cluster-Fusion” to represent
the fusion features. From the results, the random division of
sub-networks according to the similarity of rs-fMRI time series
does not perform better than the existing methods, and as far
as we know, this method has two obvious shortcomings: first,
although it shows better performance, it cannot make a biological
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explanation for the results. Second, the number of clusters is not
easy to determine which is greatly affected by subjects.

CONCLUSION

This paper proposes a new strategy for mental illness diagnosis
based on FCN. The proposed method is based on the following
two considerations: Technically, the FCN based on MVND is not
well constructed in the fully network domain, and there exists the
problem of “high dimension but small sample of RVM.” From
the biological point of view, many mental diseases reflect the
sub-network property of brain function, and the aggregation of
functional linkage makes the diagnosis of diseases more targeted.
The results of ASD classification experiments show that the
“hierarchical sub-network method” is comparable to the “fully
network FCN method,” and the biomedical findings obtained are
consistent with other studies.

Besides Pearson’s correlation, we can also utilize other
candidates, such as Flexible Least Squares (FLS) method provided
by the DynamicBC toolbox, to construct low-order FC network.
In comparison with Pearson’s correlation, FLS method has the
advantage that more dynamic FC networks can be calculated by
avoiding the sliding-window approach. The influence of different
low-order FC networks to the performance of high-order FC
network will be one of our directions for further study. One
limitation of this work is that the ROIs corresponding to the
higher-order features cannot be traced in the ASD classification
experiment and this makes higher-order features useless for the
discovery of ASD lesions. Further exploration of physiological
markers of ASD and effective algorithms is our future work.
Another limitation is that the “hierarchical sub-network method”
could only explore the network-wise inter-network FCs, but
would miss the ROI-wise inter-network FCs. How to compensate
for the lost FCs with ROI-wise inter-network FCs needs to be
further explored.
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Individual identification based on brain functional network (BFN) has attracted a lot

of research interest in recent years, since it provides a novel biometric for identity

authentication, as well as a feasible way of exploring the brain at an individual level.

Previous studies have shown that an individual can be identified by its BFN fingerprint

estimated from functional magnetic resonance imaging, electroencephalogram, or

magnetoencephalography data. Functional near-infrared spectroscopy (fNIRS) is an

emerging imaging technique that, by measuring the changes in blood oxygen

concentration, can respond to cerebral activities; in this paper, we investigate whether

fNIRS-based BFN could be used as a “fingerprint” to identify individuals. In particular,

Pearson’s correlation is first used to calculate BFN based on the preprocessed fNIRS

signals, and then the nearest neighbor scheme is used to match the estimated BFNs

between different individuals. Through the experiments on an open-access fNIRS

dataset, we have two main findings: (1) under the cases of cross-task (i.e., resting,

right-handed, left-handed finger tapping, and foot tapping), the BFN fingerprints generally

work well for the individual identification, and, more interestingly, (2) the accuracy

under cross-task is well above the accuracy under cross-view (i.e., oxyhemoglobin

and de-oxyhemoglobin). These findings indicate that fNIRS-based BFN fingerprint is a

potential biometric for identifying individual.

Keywords: functional near-infrared spectroscopy, brain functional network (BFN), cross-task, individual

identification, cross-view

1. INTRODUCTION

Identifying individuals from a group is a significant task that has largely related to social security
system and health care system (Ginther et al., 1992; Schmidt et al., 2005; Gershon et al., 2009).
The mainstream identification characteristics, including face, fingerprint, and so on, are easily
counterfeited, unstable in time, and involve privacy implications (Prabhakar et al., 2003; Jain
et al., 2004, 2006). Advanced studies indicate that brain functional network (BFN) estimated
by the temporal correlation between pairs of brain regions has the advantages of anti-imitation
and stability in timing (Hilger et al., 2017, 2020; Wang et al., 2019b; Sastry et al., 2021). More
importantly, the BFN-based “fingerprint” provides a potential way of exploring the brain at the
individual level.
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Up to now, several modalities of data have been utilized
for constructing BFN fingerprints (Finn et al., 2015; Wang
et al., 2019a, 2020; da Silva Castanheira et al., 2021; Sareen
et al., 2021), including functional magnetic resonance (fMRI),
electroencephalography (EEG), and magnetoencephalography
(MEG). Among these modalities, fMRI was first used to
estimate and identify BFN “fingerprint” by Finn et al. (2015).
Their experimental result indicated that the fMRI-based BFN
fingerprint can lead to a high identification accuracy, and
individual functional connectivity is intrinsic and reliable.
After Finn’s work, Wang et al. (2019a) represented EEG
signals as BFNs and used the deep intrinsic features of
BFNs captured by the graph neural network for subject
identification, showing that BFNs demonstrated more robust
biometric traits than univariate features such as power spectral
density functions and coefficients of auto-regressive stochastic
models. Furthermore, da Silva Castanheira et al. (2021) generated
functional connectivity fingerprints fromMEG that measures the
resting-state brain activity, and achieved a similar recognition
rates to fMRI in the individual identification task.

As a complementary functional neuroimaging technique
to fMRI and MEG, the emerging functional near-infrared
spectroscopy (fNIRS) fNIRS has successfully explored the
functional activation of shallow cerebral cortex during
human behavior (Quaresima and Ferrari, 2019). The fNIRS
simultaneously provides the concentration changes in de-
oxyhemoglobin (Deoxy-Hb) and oxyhemoglobin (Oxy-Hb), and
the latter delivers additional information with respect to the fMRI
signal (Irani et al., 2007; Duan et al., 2012). Also, the insensitivity
of fNIRS to movements and the portability of the device make it
possible for long-term monitoring and repeated measurements
of cortical activities possible in various scenarios, such as outdoor
activity or resting state. More importantly, the relatively low-
cost and non-invasive technology makes the fNIRS applicable
among larger groups, including infants and children (Strangman
et al., 2002). Based on these advantages, fNIRS is naturally
suitable for the study of individual identification under motion
stimulating condition.

In this study, we mainly investigate whether the bio-specific
BFNs extracted from fNIRS data are discriminative enough
to identify individuals. More specifically, we use an open-
access fNIRS dataset (Bak et al., 2019) from 30 subjects with
multiple tasks, including resting state (REST), right-handed
tapping (RHT), left-handed tapping (LHT), and foot tapping
(FT) in this study. Note that we regard the resting state as
a special task. The BFN fingerprints corresponding to each
task are first calculated by Pearson’s correlation (PC). Then,
based on the nearest neighbor scheme, we demonstrate that
an individual-specific BFN fingerprint extracted from one task
can be used to match those from another. The results show
that BFN fingerprints estimated from different tasks are strongly
intrinsically linked and that they are stable and reliable biometric
features for individual identification. Additionally, since the
BFNs from different views (i.e., Oxy-Hb and Deoxy- Hb) are
involved, we can naturally design cross-view experiment to
explore the possibility of individual identification. Furthermore,
we believe that BFN fingerprinting has a potential in the brain

exploration and patient identification for medical systems, which
also presents a viable thinking for decoding the brain functional
states at the individual level.

The rest of this paper is organized as follows. In Section
2, we introduce the fNIRS data preparation, BFN fingerprints
estimation, and their identification. In Section 3, we report
the identification accuracy across different tasks. In Section
4, we analyze the experimental results and point out some
limitations of the involved scheme. Finally, we summarize this
paper in Section 5.

2. MATERIALS AND METHODS

In this section, we describe the data preparation (including
acquisition and preprocessing), BFN estimation, and BFN-based
fingerprint identification.

2.1. Data Preparation
2.1.1. Data Acquisition

In this paper, an open-access dataset of fNIRS with three kinds of
tasks (including RHT, LHT, and FT) is used to conduct individual
identification experiments. In particular, 30 subjects (23.4 ± 2.5
years old) participated in the experiment. All of them declared
that they have no psychiatric and neurological disorder that could
affect the experimental results. The data are freely downloaded
from https://figshare.com, and more details about the dataset can
be found in Bak et al. (2019).

Following the literature (Bak et al., 2019), the equipment
used in the experiment was a three-wavelength continuous-time
multi-channel fNIRS system (LIGHTNIRS, Shimadzu, Kyoto,
Japan) consisting of eight light sources and eight detectors,
which formed 20 channels to record changes in blood oxygen
concentration. As shown in Figure 1, the light source and
detector were located 3 cm apart and evenly distributed around
C3 and C4 that represent the motor cortex (Georgopoulos, 1988;
Gratton et al., 2006).

During the data collection, all subjects were informed to seat
in front of a 27-inch monitor and executed random commands
that appeared on the screen. The detection pipeline for a
individual consisted of three sessions. Each session contained
25 trials, and each trial lasted an average of 30 s as shown in
Figure 2. The 30-s trial consisted of three phases: the first 2 s were
the introduction period, during which instructions appeared
randomly on the screen; the next 10 s were the experiment period,
during which the subjects need to make corresponding actions;
and the last 17–19 s were the rest period, during which the brain
returned to the resting state.

2.1.2. Data Preprocessing

The original optical density information is collected using the
multi-channel fNIRS system and need to be converted into the
changes in blood oxygen concentration by modified Lambert–
Beer law (Khan et al., 2020). Due to different motion artifacts
(like heartbeat, respiration, andMayer wave) and the interference
from the instrument, the signals need to be further processed
for the subsequent identification experiment (Delpy et al., 1988).
First, a band-pass filtering is implemented by the third-order

Frontiers in Neuroscience | www.frontiersin.org 2 February 2022 | Volume 16 | Article 81329323

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ren et al. Identifying Individuals

FIGURE 1 | Arrangement of channels. Light sources and detectors were placed around C3, C4; red circles, blue circles, and green squares represented sources,

detectors, and channels, respectively; total of eight sources and eight detectors, having separation of 3 cm between each source-detector pair, formed 20 channels

to record cerebral activities.

FIGURE 2 | Paradigm for data acquisition. The data acquisition experiment was separated into three sessions, each session contained 25 trials, and each trial lasted

about 30 seconds. As a result, for each subject, 75=25*3 trials were recorded with a complete experiment duration of about 2250 seconds = 75*30 seconds. Three

tasks were involved, and each trial randomly selected one task to perform. A single trial consisted of three stages: 2-second introduction phase followed by

10-second task period and again followed by 17–19 seconds rest stage.

Butterworth filter with a cut-off frequency of 0.01–0.1 Hz to
eliminate the physiological noise (approximately 0.1 Hz for

Mayer wave, 0.25 Hz for respiration, and 1 Hz for a heartbeat).

Then, the baseline correction is used to subtract the global signal

(i.e., the average signals of all channels) from all signals (Nguyen
et al., 2018; Zhang et al., 2021). All the preprocessing mentioned
above is done through the BBCI toolkit (Blankertz et al., 2016).

Note that, in order to maintain data integrity, we
do not abandon any channel signal (even with low

signal-to-noise ratio) since they may contain some
individual variability.

2.2. BFN Fingerprints Estimation and
Identification
2.2.1. BFN Estimation

After data preprocessing, we convert the signals into BFNs
according to the pipeline shown in Figure 3. Since the involved
subjects are treated in a similar way, we only take one subject
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FIGURE 3 | The pipeline of converting functional near-infrared spectroscopy (fNIRS) signals to brain functional networks (BFNs) (only take the first subject in the

dataset as an example). The size of the original Oxy-Hb data is 30003*20, where the 30003 is the number of time points, and the 20 is the number of channels. By

segmenting the original data according to the phase of task and resting state for each trial, we obtain 150 data matrices, half of which have a size of 133*20 under

task state, and the remaining have a size of 200*20 under resting state. Note that, when conducting the segmentation operation, we truncate the time points that lie at

task phase and the intermediate of the rest phase, respectively, for ensuring signal purity and eliminating the signal noise caused by task-resting switching. The data

matrix is then used to estimate BFN fingerprint by PC. As a result, the subject obtains 150 BFNs, each of which has a size of 20*20. All BFNs are classified into four

classes according to four tasks (i.e., RHT, LHT, FT, and REST). Each task class contains 25 BFNs and the resting class contains 75 BFNs. Since the size of each BFN

is same, the subject would obtain a new BFN by averaging the element of the corresponding position of all BFNs within one class. Eventually each subject obtains 4

BFNs corresponding to 4 tasks.

under Oxy-Hb view in the dataset as an example to illustrate
the conversion process. The first step is signal segmentation
according to the trials. In consideration of the time point of one
trial consisting of task and resting states, we segment task and
resting data. As a result, we acquire 150 signal matrices, half of
which correspond to task state and the remaining correspond to
resting state. The second step is BFN estimation based on these
signal matrices. In particular, the nodes of the BFN correspond
to 20 channels, and the edge or edge weights are estimated
as the PC between the time series (the columns of the signal
matrix) associated with the channels. Finally, these estimated
BFNs are divided into four groups according to the type of tasks
(including RHT, LHT, FT, and REST), and the BFNs in each
group are then averaged to generate a representative BFN for
each task. Consequently, we acquire four BFNs for each subject,
corresponding to four different tasks.

2.2.2. BFN Identification

Individual identification is performed across tasks based on the
“source set” and “target set,” as shown in Figure 4A. In particular,
given a target BFN x∗t , we calculate its similarity to each BFN

x
(i)
s in the source set, denoted by Sim(x∗t , x

(i)
s ), i = 1, 2, · · · , 30,

where the similarity is defined as PC between two BFNs. Then,

we use the nearest neighbor principle to predict the label ID∗ of
the target BFN as follows:

ID∗ = arg max
i∈{1,2,··· ,30}

Sim(x∗t , x
(i)
s ) (1)

If the predicted label is equal to the actual label, the prediction
score is counted as 1, and 0, otherwise.

After matching all pairs of BFNs in the target-source set, we
can get the recognition accuracy as

ACC =
the sum of prediction scores

the total number of subjects
(2)

Since different tasks are involved in the dataset, we conduct cross-
task individual identification experiment by setting all pairs of
target-source mode, as shown in Figure 4B.

3. RESULTS

We eventually get the prediction accuracies within all
pairs of target-source modes and the experimental results
between the same views are shown in Figure 5. The
accuracy varies from 20/30 (63%) to 30/30 (100%) in
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FIGURE 4 | Individual identification procedure. (A) We calculate the similarity between a given target brain functional network (BFN) and all the source BFNs,

respectively, and the label of the source BFN corresponding to the maximum similarity is the prediction label of the target matrix. (B) After data preprocessing, each

subject obtains four BFNs corresponding to four tasks. By setting all BFNs from one state as source set and another state as target set for identification, we can get

16 possible combinations of the target-source separation.

FIGURE 5 | Accuracy of identification under cross-task condition. Individual identification accuracy for the source set from one task and the target set from another

task. Each row represents the same target set and each column means the same source set. Oxy-Hb is on the left and Deoxy-Hb is on the right.

different modes (REST vs. RHT, REST vs. LHT, REST vs.
FT, RHT vs. LHT, RHT vs. FT, LHT vs. FT for Oxy-Hb and
Deoxy-Hb, respectively).

Since the BFNs from different views are involved, we can
naturally design cross-view experiment to place BFNs from
Oxy-Hb and Deoxy-Hb into source/target sets, respectively.
However, compared to the performance associated with the
same views, the overall recognition accuracy under cross-view
condition shown in Figure 6 changes significantly, ranging from
9/30 (23%) to 23/30 (76%). Meanwhile, we acquire the highest
accuracy in REST–REST mode and the lowest accuracy in
RHT–FT mode.

4. DISCUSSION

4.1. Results Comparison
On the basis of experimental results, we have the following
findings: (1) The identification accuracy under cross-task is

95.69% ± 0.29 for Deoxy-Hb and 86.00% ± 1.87 for Oxy-Hb,
meaning that the identification performance based on Deoxy-
Hb is better and more stable than Oxy-Hb in this experiment.
Meanwhile, the identification accuracy under cross-view of using
Deoxy-Hb as the source set to identify Oxy-Hb as the target set is
higher than the opposite view setting. This finding encourages us
to explore more potential on cross-view identification based on
fNIRS data. (2) The accuracy under cross-task is well above the
accuracy under cross-view. To explain this finding, we retrace the
experimental process, and discover that the similarity between
BFNs estimated under different tasks by one subject is much
higher than the similarity between BFNs estimated under the
same task state by different subjects. That is, the variability of
BFNs is closely related to individual behavioral differences, but
is more dependent on the inherent structure and function of
the brain itself. (3) In most cases, the resting-state BFNs can be
uniquely identified by a given BFN obtained from another task
state. This phenomenon illustrates that the BFN in the rest phase
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FIGURE 6 | Accuracy of identification under cross-view condition. Individual identification accuracy between Oxy-Hb and Deoxy-Hb consists of four tasks. On the left,

each row represents the target set of Deoxy-Hb, and each column represents the source set of Oxy-Hb. On the right side, it is the opposite.

is more suitable for individual identification than the BFNs in the
task phase.

4.2. Limitations
However, there are some limitations that need to be considered.
At the data level, in addition to the unavoidable small sample,
all channels are located in motion cortex, which prevents us
to estimate more representative BFN fingerprints based on the
whole-brain changes in blood oxygen concentration. At the
method level, we combine PC and the nearest neighbor scheme
to conduct the identification experiment. In particular, PC is
the simplest and wildly used method for estimating BFNs, but
it captures the full correlation between pairs of channels and
does not remove the confounding effect of other channels.
According to previous studies (Hiwa et al., 2016; Guo et al.,
2021; Sun et al., 2021; Xue et al., 2022), we can estimate more
discriminative BFNs to identify individual. This is a direction for
future research.

4.3. Additional Considerations
Note that, since the subjects’ behaviors are constantly changing,
BFNs are also vary dynamically and significantly within short
periods of time (Hutchison et al., 2013). Hence, longer
measurement time is one of the prerequisites for obtaining the
discriminative and stable BFNs, and future work should focus
on the correlation between the length of the signal and the
discriminative nature of the BFN. In addition, we find that all
signals of one subject in cross-task experiment are collected on
the same day, and it is unclear to what extent does the interval
between sessions affect the discriminative BFN fingerprints.
Future work should focus on the stability or variability
of BFN fingerprints over several months or years rather
than days.

5. CONCLUSION

In this paper, we conduct individual identification experiments
on fNIRS data under cross-task and cross-view conditions,

respectively. The identification process includes the BFNs
estimation and identification. In particular, we calculate PC
between BFNs as similarity, and then evaluate the feasibility
of subject recognition. The experimental results show that
fNIRS-based BFN fingerprints have good bio-specificity and
the properties of difficulty to imitation, which have the
potential to serve as an alternative biometric feature for
identifying individuals. However, this method, in this paper, only
considers the similarity of BFNs estimated between different
states or views, without mining the association between BFNs.
Therefore, we plan to explore the consistency of BFNs based
on fNIRS from the perspective of multi-task, even multi-view in
the future.
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The rupture of aneurysms is the main cause of spontaneous subarachnoid hemorrhage
(SAH), which is a serious life-threatening disease with high mortality and permanent
disability rates. Therefore, it is highly desirable to evaluate the rupture risk of aneurysms.
In this study, we proposed a novel semiautomatic prediction model for the rupture risk
estimation of aneurysms based on the CADA dataset, including 108 datasets with 125
annotated aneurysms. The model consisted of multidimensional feature fusion, feature
selection, and the construction of classification methods. For the multidimensional
feature fusion, we extracted four kinds of features and combined them into the feature
set, including morphological features, radiomics features, clinical features, and deep
learning features. Specifically, we applied the feature extractor 3D EfficientNet-B0
to extract and analyze the classification capabilities of three different deep learning
features, namely, no-sigmoid features, sigmoid features, and binarization features. In
the experiment, we constructed five distinct classification models, among which the
k-nearest neighbor classifier showed the best performance for aneurysm rupture risk
estimation, reaching an F2-score of 0.789. Our results suggest that the full use of
multidimensional feature fusion can improve the performance of aneurysm rupture risk
assessment. Compared with other methods, our method achieves the state-of-the-art
performance for aneurysm rupture risk assessment methods based on CADA 2020.

Keywords: intracranial aneurysm, risk estimation, feature fusion, machine learning, radiomics

INTRODUCTION

An intracranial aneurysm is an abnormal local dilatation of the cerebral artery due to the weakness
of the vessel wall. It occurs in approximately 2–5% of the population and is the main cause
of non-traumatic subarachnoid hemorrhage (SAH) (Xu et al., 2019). SAH caused by aneurysm
rupture is a serious neurological disease with high mortality and morbidity. Despite treatment
technology advances and imaging technology improvements currently, the death rate of SAH is
approximately 40–50% and leaves approximately half of survivors with permanent neurological
deficits (Boulouis et al., 2017; Roked and Reddy, 2020). Therefore, early detection of aneurysms
and rupture risk assessment of unruptured aneurysms are clinically significant for the treatment
and prognosis of patients.
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Aneurysmal morphology such as shape and size, patient-
specific clinical factors such as hypertension, smoking, a history
of SAH, sex, and population, as well as hemodynamics of
aneurysms are known to be risk factors associated with
intracranial aneurysm rupture (Abboud et al., 2017; Boulouis
et al., 2017). At present, digital subtraction angiography
(DSA), computed tomography angiography (CTA), and magnetic
resonance angiography (MRA) are primary imaging techniques
clinically for rupture risk assessment of aneurysm. Doctors
comprehensively assess the rupture risk of aneurysm mainly
based on the high-resolution angiographic images and patient-
specific clinical factors. However, due to the variations in the level
of experience and proficiency among physicians, the evaluation is
highly subjective and lacks consistency among experts. Therefore,
it is necessary to develop a computer-aided diagnosis system for
assessing the rupture risk of the aneurysm to assist doctors in
diagnosis and decision-making to avoid overtreatment and risks
associated with surgery.

As an important branch of artificial intelligence, machine
learning (ML) enables to identify and process complex
relationships between features in big data sets and can be rapidly
applied to unknown data for prediction (Senders et al., 2018).
Some recent studies have shown that ML plays an important
role in the rupture risk assessment of aneurysm. Silva et al.
(2019) demonstrated the ability of ML to distinguish ruptured
and unruptured aneurysms based on conventional radiographic
characteristics of aneurysms and patient-specific clinical
features. Tanioka et al. (2020) constructed ML classification
models for the identification of ruptured aneurysms by
applying manually measured morphological variables and
hemodynamic parameters. However, for the assessment of
the rupture state of aneurysms, incorporating abundant
variables into the classification model is the key to affecting the
assessment performance.

Radiomics refers to the technology of analyzing and mining
high volumes of quantitative features extracted from medical
images and then developing a robust model based on the key
information that works to support the clinical decision ultimately
(Limkin et al., 2017). It has shown considerable potential in many
medical challenges, such as auxiliary diagnosis, classification,
and grading of diseases (Yun et al., 2019; Peeken et al., 2021).
Recently, the application of radiomics combined with ML in
the rupture assessment of intracranial aneurysms has shown
initial results. A preliminary study (Ou et al., 2021) employed
conventional morphological features and radiomics features to
construct an ML classification model, which proves the potential
use of radiomics signatures in predicting aneurysm rupture.
Alwalid et al. (2021) developed a radiomics classification model
on CTA images to identify patients with ruptured aneurysms.
However, the ability of radiomics features characterizing regions
of interest is subject to low-level properties to some extent (Hua
et al., 2020). In recent years, deep learning methods, especially
convolutional neural networks (CNNs), have achieved excellent
results in dealing with the tasks of classification, segmentation,
and detection in medical imaging (Zeng et al., 2020; Yang et al.,
2021). The convolution and pooling operations in the network
automatically learn and capture the local details as well as more

complex information and structure features of images, so as to
obtain the abstract representation of the image at various scales.

Thus, we deemed that the complementary advantages of
deep learning and radiomics technologies could enrich feature
representations of medical images and further improve the
prediction performance for the rupture risk of the aneurysm.
In this study, we explored multidimensional features derived
from both high-resolution angiographic images and high-
quality three-dimensional aneurysm modeling data to build a
semiautomatic prediction model for rupture risk estimation
of the aneurysm.

MATERIALS AND METHODS

Dataset
The challenge for aneurysm rupture risk estimation is task 3 in
cerebral aneurysm detection and analysis (CADA) challenge. The
challenge organizers provided 110 datasets with 128 annotated
aneurysms. The image data of patients were acquired utilizing the
digital subtraction AXIOM Artis C-arm system by a rotational
acquisition time of 5 s with 126 frames. Postprocessing was
performed using LEONARDO InSpace 3D (Siemens, Forchheim,
Germany). All segmentation masks provided by a skilled
annotator were checked by an experienced neurosurgeon later.
Figure 1 shows the example of the two types of segmentation
masks (stereolithography files and image files) for the same
aneurysm. In addition, the rupture state and rupture information
of each aneurysm are provided. After removing 3 cases with
missing information, the remaining 125 cases are included for
model training and validation.

Feature Extraction
In this study, we extracted multidimensional features derived
from both angiographic images and three-dimensional aneurysm
modeling data, consisting of radiomics features, morphological
features, deep learning features, and clinical information. Details
are described as follows.

Radiomics Features
Before radiomics feature extraction, image preprocessing with
intensity normalization to the grayscale range of [0, 100]
and isotropic resampling to a uniform pixel dimension of
0.5 × 0.5 × 0.5 mm3 was performed. We extracted radiomics
features including aneurysm intensity, shape-based, and texture

FIGURE 1 | An example case for angiographic image of the aneurysm and
corresponding two types of segmentation masks.
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features from regions of interest defined by the angiography
images and segmentation masks (image files) using the open-
source PyRadiomics package (version 3.0.1) (van Griethuysen
et al., 2017). Texture features are visual features that reflect the
uniformity of the image and the slow or periodic changes on the
surface of the object. Specifically, these extracted characteristics
were divided into the following seven groups, including first-
order statistics (18 features), shape 3D-based (14 features),
gray-level co-occurrence matrix (24 features), gray-level run-
length matrix (16 features), gray-level size zone matrix (16
features), neighboring gray-tone difference matrix (5 features),
and gray-level dependence matrix (14 features). Most features
listed above were in accordance with the recommendations
of the Imaging Biomarker Standardization Initiative (IBSI)
(Zwanenburg et al., 2020).

Morphological Features Based on Stereolithography
Files
Currently, shape-based features have shown to be beneficial
in assessing the rupture risk of the aneurysm (Abboud et al.,
2017; Silva et al., 2019; Tanioka et al., 2020). Therefore, we
extracted morphological features of the aneurysm based on the
three-dimensional modeling data for a more reliable estimation,
including the length, width, height, surface area, and volume.
In addition, we considered that curvature features provided
additional representations for describing the morphology of
aneurysms. The extracted curvature features of aneurysms
included the principal curvature, Gaussian curvature, and
mean curvature. The maximum, minimum, mean and standard
deviation of curvature were calculated, respectively. In this study,
25 morphological features were extracted for each case.

Deep Learning Features
To acquire high-level image features, we employed the
convolutional neural network method to mine the abstract
features. In this study, we selected and trained a 3D EfficientNet-
B0 as the feature extractor (Tan and Le, 2019), which balanced
the depth, width, and resolution of the model with a highly
effective compound coefficient, thereby achieving satisfactory
accuracy. Figure 2 shows the network architecture, and its
main building block is MBConv (Sandler et al., 2018) with
squeeze-and-excitation optimization (Hu et al., 2020), as shown
in Figure 3. We, respectively, took the image and mask as
the input of the convolutional neural network and explored
three various deep learning features from convolutional neural
network outputs.

1) No-sigmoid features: outputs of the feature maps only
through the final fully connected layer.

2) Sigmoid features: outputs of the feature maps
through the final fully connected layer and sigmoid
function successively.

3) Binarization features: outputs of the feature maps through
the final fully connected layer, sigmoid function, and
binarization operation successively. Binarization operation
can be calculated as follows:

f (x) =
{

1, x ≥ 0.5
0, x < 0.5

(1)

In summary, we combined the multidimensional features
above to enrich the feature representation of rupture risk. All the
feature sets are shown in Figure 4.

We obtained three types of feature sets as original
multidimensional feature sets, namely, no-sigmoid type,
sigmoid type, and binarization type. Each original feature set
contained four parts of features, which were morphological
features (25 features), radiomics features (107 features), the
corresponding type of deep learning features (2 features,
different feature sets have different deep learning features), and
patient-specific clinical factors (2 features, sex, and age). That is,
each of the three types of original multidimensional feature sets
contained 136 features.

Nested Cross-Validation
Cross-validation can evaluate the generalization ability of ML
algorithms to data sets independent of training data and
prevent over-fitting effectively (Arlot and Celisse, 2010). Stratified
sampling was used in this study to perform cross-validation
to ensure that the proportion of samples in each target class
in the training set and validation set is the same as the full
set. Considering that this traditional cross-validation method
cannot solve the problem of optimal model selection and
model parameter tuning well, we used nested cross-validation
(Varoquaux et al., 2017) in order to search for hyperparameters
by estimating the generalization error of the basic model to
obtain the best parameters of the model. The process of 8-
fold cross-validation is shown in Figure 5, which contains a
two-loop nested cross-validation scheme. Hyperparameters were
optimized using grid search as part of the inner loop. The optimal
hyperparameters were then used for testing on the outer loop.

FIGURE 2 | EfficientNet-B0 structure.
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FIGURE 3 | Mobile inverted bottleneck convolution (MBConv) module
structure. It mainly consists of depthwise convolution and
squeeze-and-excitation block.

Feature Selection
We uniformly standardized all the features by removing the
mean and scaling to unit variance. To improve the stability
and generalization performance of the model, it is critical to
select discriminative features. We chose the random forest (RF)
(Genuer et al., 2010) and XGboost (Chen and Guestrin, 2016)
methods for feature selection. Both methods could generate a

ranking of the feature importance after training and further select
some profitable features by setting the threshold. In this study, the
following two feature selection steps were applied.

Step 1: We took the features selected simultaneously by
RF and XGboost based on the training set of the original
multidimensional feature set of each cross-validation fold and
merged the features retained by all 8 folds to get the feature set M.

Step 2: We accumulated the important scores of the features
in each fold and counted the top 1/2 features of the RF and
Xgboost methods in the M set to obtain feature set Mr and
Mx, respectively. Mr represented feature selection by RF. Mx
represented feature selection by Xgboost. The feature subset N
was obtained by N = Mr∩Mx.

Therefore, the corresponding feature subsets were obtained
from the three original feature sets, among which 22 features were
retained for the no-sigmoid type feature subset, 24 features for
the sigmoid type feature subset, and 24 for the binarization type
feature subset. The selected features in the three types of feature
subsets are shown in Supplementary Table 1.

Classification Model
To find an optimal classifier for the classification task of ruptured
and unruptured aneurysms, five distinct ML models were used
to build the classification model using the selected features,
respectively, including support vector machine (SVM) (Cortes
and Vapnik, 1995), RF (Breiman, 2001), k-nearest neighbor
(KNN) (Fix and Hodges, 1989), logistic regression (LR) (Berkson,
1946), and XGBoost (Chen and Guestrin, 2016) classifiers. To
ensure the robustness of the experimental results, we adopted 8-
fold cross-validation and then took the average of classification
metrics as the final result.

Model Evaluation
Considering that the identification of aneurysms at risk is more
important than the avoidance of false-positive risk classification,
F2-score was selected as the final score metric in the rupture
risk estimation challenge. The F2-score integrates two indicators
of recall and precision, and it is considered that recall is twice
as important as precision, as shown in Eq. 2. In addition, we
also calculated other metrics including accuracy (ACC), the area
under the curve (AUC), recall, and precision.

F2 =
5 ∗ Precision ∗ Recall

4 ∗ Precision + Recall
(2)

RESULTS

Implementation Details
For the EfficientNet-B0 feature extractor, we trained this model
on an NVIDIA GeForce RTX 3090 GPU with 24 GB memory. All
the images were employed spacing normalization to a common
spacing of 0.5 × 0.5 × 0.5 mm3 and intensity normalization
to the grayscale range of [0, 1]. We resized all the images to
128 × 128 × 128 and set total epochs to 100 for each fold
of cross-validation, with the learning rate 3e-4 and batch size
4. The AdamW algorithm was adopted to optimize the feature
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FIGURE 4 | Multidimensional feature set consists of four groups. (A) Morphological features extracted from stereolithography files. (B) Radiomics features extracted
from the angiography images and segmentation masks. (C) Deep learning features extracted from the angiography images and segmentation masks. (D)
Patient-specific clinical factors.

FIGURE 5 | Model training and nested cross-validation. (A) General overview. (B) 8-fold cross-validation.

extraction network. We also used weight decay with 1e-8. Our
other experiments were implemented on an AMD Ryzen 5 5600H
CPU @3.30 GHz with 16 GB RAM.

Rupture Risk Estimation Results
After feature selection, we constructed five different
classification models with the three feature subsets, and
the final results are shown in Table 1. It can be seen
that the KNN model based on the sigmoid type feature
set achieved the best mean performance on the F2-score.
Thus, we chose the sigmoid feature subset as the final
feature subset. A heat map was constructed to show

the association between selected features and aneurysm
rupture status based on the feature subset, as shown in
Supplementary Figure 1.

Table 2 shows the comparison of results among different
classifiers constructed with this feature set. Based on the F2-
score, the KNN model shows the best result with a mean F2-
score of 0.789 on the test set. Thus, the KNN algorithm was
chosen as the final model. For the presented five classification
models, the KNN classifier shows the best performance on most
metrics for aneurysm rupture risk estimation. Evaluating the
performance of accuracy, the KNN model shows the best result
with a mean of 0.791.
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TABLE 1 | The mean F2-score for different feature sets and classification methods
on the test set.

Classifier Binarization Sigmoid No-sigmoid

SVM 0.730 0.724 0.609

LR 0.747 0.731 0.644

RF 0.695 0.675 0.707

XGBoost 0.708 0.715 0.698

KNN 0.752 0.789 0.580

The best results for each specified classifier are highlighted in bold red.

TABLE 2 | Comparison of the results of different classifiers based on the
sigmoid feature set.

Classifier F2-score ACC AUC Precision Recall

SVM 0.724 0.775 0.820 0.779 0.732

LR 0.731 0.776 0.834 0.761 0.732

RF 0.675 0.751 0.810 0.771 0.660

XGBoost 0.715 0.767 0.803 0.773 0.714

KNN 0.789 0.791 0.811 0.755 0.803

The best results for each of these metrics are highlighted in bold red.

In addition, the corresponding mean receiver operating
characteristic (ROC) curve over all outer folds based on the
optimal model is shown in Figure 6. The KNN model shows a
good performance in the classification of aneurysm rupture with
a mean AUC of 0.811 on the test set.

Ivantsits et al. (2021) and Liu et al. (2021), respectively,
proposed two excellent semiautomatic aneurysm rupture risk
estimation methods on the CADA dataset. Table 3 shows
the comparison on the metrics of our approach with two
related works. It is observed that our approach achieved better
performance than both related works on the CADA dataset.
Under the condition of using the same classifier, our methods
performed better, which proves that the features we extracted
were more suitable and effective for this task.

DISCUSSION

Intracranial aneurysm rupture is a catastrophic medical event
with high mortality and permanent disability risk. A timely
and accurate rupture risk estimation of aneurysms is necessary
for clinical treatment. At present, the widespread availability
of vascular neuroimaging has allowed more unruptured
aneurysms to be discovered incidentally, but the treatment
decision-making for aneurysms is still a challenge that the
clinic needs to face because doctors are required to weigh the
risk of SAH along with the risks of surgical or endovascular
treatments and subsequent complications with discretion
(Boulouis et al., 2017).

The morphology of the intracranial aneurysm is considered
to be associated with the rupture state of the aneurysm (Abboud
et al., 2017; Boulouis et al., 2017). Most of the previous

FIGURE 6 | The mean receiver operating characteristic (ROC) curve of the k-nearest neighbor (KNN) classifier based on 8-fold cross-validation.
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TABLE 3 | Aneurysm rupture risk estimation performance of our method and two
related works based on CADA dataset.

Classifier Method F2-score ACC AUC Precision Recall

XGBoost Liu et al., 2021 0.673 0.652 n/a 0.583 0.700

Ours 0.715 0.767 0.803 0.773 0.714

KNN Ivantsits et al., 2021 0.690 0.660 n/a n/a n/a

Ours 0.789 0.791 0.811 0.755 0.803

RF Ivantsits et al., 2021 n/a 0.690 n/a n/a n/a

Ours 0.675 0.751 0.810 0.771 0.660

SVM Ours 0.724 0.775 0.820 0.779 0.732

LR Ours 0.731 0.776 0.834 0.761 0.732

Better results for each specified classifier are highlighted in bold black. The best
results for each of these metrics are highlighted in bold red.

reports employed manually measured morphological indicators
to identify the rupture risk (Liu et al., 2018; Silva et al., 2019;
Tanioka et al., 2020), which did not fully explore the rich
information of angiography images.

In this study, we proposed a classification method based
on diverse types of risk factors for the assessment of aneurysm
rupture state, so as to promote timely management of patients
and provide some guidance for follow-up treatment decisions.
In the pipeline for assessing the rupture risk of aneurysm,
our proposed method consisted of multidimensional feature
fusion, feature selection to capture the discriminative variables,
and followed by the construction of classification models.
We combined multidimensional feature representations
related to rupture risk factors of aneurysms including
radiomics features, morphological features, deep learning
features, and patient-specific clinical factors. Considering
the powerful feature extraction capability of deep learning
for images, we took the deep learning network as a
feature extractor to extract and analyze the classification
capability of three different deep learning features. The
results indicate a great potential of the sigmoid type
feature subset as a risk factor for intracranial aneurysm
rupture estimation.

The sigmoid type feature subset included deep learning
descriptors, shape descriptors, first-order histogram descriptors,
and texture descriptors. As high-level semantic features, the
deep learning features proposed in this study could learn
complex information patterns and structural features in image
data, which are invisible to human eyes. Curvature features
represented as additional morphological features may reflect
changes related to the aneurysm rupture state. Radiomics
features are calculated in a pixel-by-pixel manner, which can
quantitatively describe the morphology of the 3D lesion. In
this study, nine radiomics features were finally retained. It
proves the potential of radiomics features for the classification
of aneurysm rupture, which is consistent with previous
studies (Alwalid et al., 2021; Ou et al., 2021). Texture
patterns within the aneurysm region especially the aneurysmal
lumen may be caused by the uneven distribution of contrast
agents, which were thought to be related to turbulence
flow (Ou et al., 2021). It is generally considered that
turbulent flow could activate inflammatory mechanisms and

could be associated with higher-risk lesions (George et al.,
2016). This further explains why texture features could be
used as the risk factor for assessing aneurysm rupture. For
clinical variables, both sex and age were not included in
the final feature subset. It could be due to its complicated
mechanism on aneurysm rupture and the experiment being
based on a small data set, and further studies are needed
to prove the relationship between clinical variables and
rupture outcome.

Our study has some limitations that are worth noting.
One is that it takes some computational cost to extract
deep learning features due to the large size of angiographic
images. The other is that due to the limited amount of
data provided, further verification is required on external
data. In the future, we plan to collect clinical data to verify
the robustness of our approach and take steps to further
optimize the performance of our model to achieve a more
efficient automatic aneurysm rupture risk assessment. Recent
studies have shown that computer-aided diagnosis algorithms
for aneurysm detection have the potential to shorten reading
times and enhance the performances of radiologists (Shi et al.,
2020). A further idea is considered to effectively integrate this
work with aneurysm detection to build a complete automatic
aneurysm diagnosis system, which may improve efficiency in the
radiology department (Alwalid et al., 2021) and promote timely
management for patients.

CONCLUSION

In this study, we assumed that multidimensional feature fusion
and feature selection strategies are necessary to enhance the level
of aneurysm rupture risk assessment. Based on the inspiration,
we combined morphological features, radiomics features, clinical
features, and deep learning features with the feature extractor 3D
EfficientNet-B0 to propose a novel semiautomatic ML algorithm
for aneurysm rupture risk assessment. Our results demonstrate
that the multidimensional risk factors we proposed could
improve the ability to identify the ruptured state of the aneurysm.
Compared with other methods, our method outperforms the
state-of-the-art aneurysm rupture risk assessment method based
on CADA 2020, which shows the good prospect of application in
decision support systems for patients with aneurysms.
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By integrating hierarchical feature modeling of auditory information using deep neural
networks (DNNs), recent functional magnetic resonance imaging (fMRI) encoding
studies have revealed the hierarchical neural auditory representation in the superior
temporal gyrus (STG). Most of these studies adopted supervised DNNs (e.g., for
audio classification) to derive the hierarchical feature representation of external auditory
stimuli. One possible limitation is that the extracted features could be biased toward
discriminative features while ignoring general attributes shared by auditory information in
multiple categories. Consequently, the hierarchy of neural acoustic processing revealed
by the encoding model might be biased toward classification. In this study, we explored
the hierarchical neural auditory representation via an fMRI encoding framework in which
an unsupervised deep convolutional auto-encoder (DCAE) model was adopted to derive
the hierarchical feature representations of the stimuli (naturalistic auditory excerpts in
different categories) in fMRI acquisition. The experimental results showed that the neural
representation of hierarchical auditory features is not limited to previously reported STG,
but also involves the bilateral insula, ventral visual cortex, and thalamus. The current
study may provide complementary evidence to understand the hierarchical auditory
processing in the human brain.

Keywords: hierarchical auditory representation, deep convolutional auto-encoder, naturalistic experience, neural
encoding, fMRI

INTRODUCTION

There are growing evidences supporting the hierarchy of auditory representations during auditory
processing in the human brain (Chevillet et al., 2011; Sharpee et al., 2011; Durschmid et al., 2016; De
Heer et al., 2017; Kell et al., 2018). For example, the neural processing of narrative speech involves
hierarchical representations starting from the primary auditory areas and laterally to the temporal
lobe (De Heer et al., 2017). In addition, the localization and identification of relevant auditory
objects are accomplished via parallel “where” and “what” pathways (Ahveninen et al., 2006; Lomber
and Malhotra, 2008; Bizley and Cohen, 2013). The hierarchy of neural auditory representation
is important to understand what sensory information is processed as one traverses the sensory
pathways from the primary sensory areas to higher-order areas.
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In light of their hierarchical feature representation ability,
recently advanced deep neural networks (DNNs) have gained
increasing interest in exploring the hierarchy of neural auditory
representation. These studies offer promising prospects to
understand the fundamental mechanisms of brain functions
responding to external stimuli. Specifically, brain encoding
models (Naselaris et al., 2011; Han et al., 2014; Mesgarani
et al., 2014; Du et al., 2019) have been used to establish the
relationship between acoustic features represented in different
layers of DNNs and brain activities. Brain regions of interest
that selectively respond to extracted features in different
layers were then inferred according to encoding performance.
Using such a neural encoding framework, researchers have
revealed a representational gradient in the superior temporal
gyrus (STG) during auditory information processing (Evans
and Davis, 2015; Kell et al., 2018; O’Sullivan et al., 2019;
Kiremitçi et al., 2021). For example, Kell et al. (2018)
found that latent features in intermediate network layers best
predicted neural responses in the primary auditory cortex,
while features in deeper layers can better explain brain
activities in anterior, lateral and posterior directions of the non-
primary areas.

In the majority of existing studies, the hierarchical features
of external acoustic stimuli were derived using supervised
DNNs that are designed for specific tasks, such as audio
genre classification (Güçlü et al., 2016) or speech recognition
(Kell et al., 2018). One possible limitation is that the
supervised hierarchical representations could be biased toward
discriminative features while ignoring the common ones shared
by auditory excerpts in different categories. Consequently, the
hierarchical organization of neural auditory processing revealed
by the encoding model may be confined to classification or
recognition domain. However, the neural processing of auditory
information during naturalistic experience is not restricted to
classification or recognition (Hasson and Honey, 2012; Fasano
et al., 2020). Unlike supervised DNNs that use predefined
labels as targets for model optimization, unsupervised DNNs
such as deep convolutional auto-encoder (DCAE) adopts
data reconstruction errors as objective functions and hence
learn intrinsic and hierarchical features of input data directly
(Masci et al., 2011). Thus, unsupervised DNNs may serve as
possible tools to comprehensively map the hierarchy of neural
auditory processing.

In this manuscript, we proposed an fMRI encoding framework
to explore the hierarchy of neural auditory processing in the
human brain. In brief, an unsupervised DCAE model (Masci
et al., 2011), instead of supervised DNNs used in existing studies
(Güçlü et al., 2016; Kell et al., 2018), was trained to derive
unbiased hierarchical feature representations of naturalistic
auditory excerpts in three semantic categories (pop music, classic
music, and speech). An encoding model based on LASSO
algorithm (Tibshirani, 2011) was learned to predict fMRI brain
activities using acoustic features represented in each layer of
the DCAE model. Brain regions that selectively response to the
hierarchical features were inferred according to the encoding
performance subsequently.

MATERIALS AND METHODS

Overview
As illustrated in Figure, we acquired fMRI data when the
participants were freely listening to naturalistic auditory excerpts
(Figure 1A). Then the hierarchical feature representations
of each audio excerpt were derived via an unsupervised
DCAE model (Masci et al., 2011; Figure 1B). Afterward, the
hierarchical acoustic features were correlated to fMRI brain
activities using an encoding model based on LASSO algorithm
(Tibshirani, 2011; Figure 1C and Section “Encoding Model
and Group-Wise Analysis”). In brief, the hierarchical feature
representation was used to predict fMRI brain activities with
a sparsity regularization, and the prediction accuracies was
used to measure how well the acoustic features and brain
activities were correlated. After that, a group-wise analysis
was performed to identify brain regions whose activities were
predicted with accuracies significantly above chance to infer
hierarchical auditory representation in the brain.

Functional Magnetic Resonance Imaging
Acquisition and Preprocessing
Auditory excerpts in three semantic categories (classical music,
pop music, and speech) were used as naturalistic stimuli in fMRI
data acquisition. Each category was composed of seven excerpts
and each excerpt was around 90 s. All excerpts were taken from
legal copies of compressed MP3 audio files. These audio excerpts
were aggregated in a random order to avoid the influence of the
internal structure of audio data on human brain’s perception.
FMRI data were acquired using a GE 3T Signa MRI system (GE
Healthcare, Milwaukee, WI, United States) with an 8-channel
head coil at the Bio-Imaging Research Center of the University
of Georgia (UGA) under UGA Institutional Review Board (IRB)
approval. Six healthy university students voluntarily participated
in the study. The audio stimuli were delivered to the participants

FIGURE 1 | The schematic illustration of the study. (A) fMRI acquisition using
naturalistic auditory excerpts as stimuli. (B) Hierarchical feature representation
of the naturalistic auditory stimuli via an unsupervised DCAE model.
(C) Hierarchical acoustic features were correlated to fMRI brain activities using
an encoding model based on LASSO to infer hierarchical auditory
representation in the brain.
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using an MRI-compatible audio headphone (Nordic NeuroLab,
Bergen, Norway).

The detailed fMRI acquisition parameters were as follows:
TR = 1.5 s, TE = 25 ms, 64× 64 matrix, 30 axis slices, 4 mm slice
thickness, 220 mm Field of View (FOV). FMRI data were pre-
processed using FSL FEAT (FMRI Expert Analysis Tool) (Smith
et al., 2004). The preprocessing included brain skull removal,
slice timing and motion correction, spatial smoothing with 5 mm
full-width at half-maximum (FWHM) Gaussian kernel, high
pass temporal filtering, and linear registration to the standard
Montreal Neurological Institute (MNI) brain template. After
preprocessing, the time course of each voxel was normalized to
have zero mean and unit standard deviation.

Hierarchical Feature Representation
Based on Deep Convolutional
Auto-Encoder
Deep Convolutional Auto-Encoder Model
The DCAE model used in this study is composed of an encoding
block and a decoding block, as shown in Figure 2. The encoder
transforms the input data into a detailed feature representation
(feature maps), and the decoder performs data reconstruction
(Masci et al., 2011). The objective of the DCAE model is to
minimize the reconstruction errors between the input auditory
signals and reconstructed ones.

Each block in the encoder consists of a convolutional layer
and a max-pooling layer. A convolutional layer acts as feature
extractor and the max-pooling layer reduces computational cost
in the upper convolutional layer and gains translation/scale-
invariance (Peterson et al., 2018; Song et al., 2018). Each block
in the decoder consists of a deconvolution layer and an un-
pooling layer. It is notable that the max-pooling operation is
not invertible. To address this problem, we adopted a switch-
based un-pooling approach (Zeiler and Fergus, 2014). The
“switches” record the exact location of the max value in each
pooling region during max-pooling, and then these “switches”

are placed to its original position with corresponding max values
(Huang et al., 2017). A linear activation function was applied
in the first convolutional layer in the encoder and the last
deconvolution layer in the decoder. The Rectified Linear Unit
(ReLU) (Dahl et al., 2013) was used as activation function
elsewhere. The objective function of the DCAE model consists of
two terms. The first term represents the reconstruction error. The
second term is an L2 regularization applied on weights to prevent
overfitting and make the learned features more interpretable
(Bilgic et al., 2014).

The number of layers in the DCAE model here was empirically
set to balance the effectiveness of hierarchical feature learning and
the interpretability of the subsequent inference of the hierarchical
neural auditory processing. Intuitively, a larger number of layers
would result in a finer featural representation of the input
auditory excerpts. However, this would bring difficulties in
interpreting the cortical hierarchy of acoustic feature processing
in the human brain. In contrast, a smaller number of layers may
not sufficient to learn the hierarchical feature representations
of the input acoustic excerpts and consequently interrupt the
encoding inference.

Deep Convolutional Auto-Encoder Parameter
Settings and Model Training
During model training, the length of an input training sample
was the same as the TR (1.5 s) in fMRI acquisition. The
naturalistic auditory stimuli used in fMRI acquisition contribute
1,260 samples, which are not sufficient to train the DCAE
model. To address this problem, we constructed additional 36,000
samples from the MagnaTagATune Dataset (Law et al., 2009)
and the LibriSpeech Corpus (Panayotov et al., 2015) to pre-
train the model (Data 1). The pre-trained model was then fine-
tuned using the samples from the fMRI stimuli (Data 2). We
implemented the DCAE model using Keras (Chollet, 2015) with
CUDA and cuDNN. Based on our prior experiences (Huang et al.,
2017), hyper-parameters in the DCAE including the number

FIGURE 2 | The DCAE model used for the hierarchical feature modeling.
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and the length of the filters were detailed in Table 1. The
regularization parameter κ is experimentally set as 0.001. We
used the Adam optimizer with default parameters β1 = 0.5,
β2 = 0.999, epsilon = 1e−8 and a mini-batch size of 32 to train
the model. We manually tuned the learning rate α = 0.0002 and
weight decay = 0.001 to iteratively minimize the mean square
error (MSE) loss function. The DCAE model converged after
about 5,000 epochs.

Hierarchical Acoustic Feature Representation
Similar to a previous study (Kell et al., 2018), the acoustic
features encoded in each of the four max-pooling layers in the
encoder were regarded as a single level of the hierarchical feature
representation of an input auditory sample. For each input
sample (1.5 s∗16k/s = 24k∗1), its hierarchical feature maps on the
four max-pooling layers are in the dimension of ti

∗ci, where ti is
the length of sample in the output of i-th max-pooling layer (24k,
12k, 6k, and 3k for i = 1, . . ., 4, respectively). ci is the number
of filters (channels) in the i-th convolutional layer. Following the
feature dimensionality reduction strategy used in Güçlü et al.
(2016), the high dimensional feature map on each max-pooling
layer was temporally averaged, resulted in a ci-dimensional
feature vector. For a given auditory excerpt consisting of 60
samples that was used as stimulus in fMRI acquisition, its
hierarchical feature representation is in the dimension of 60∗ci.
Subsequently, each column of these hierarchical acoustic features
was convolved with the canonical double-gamma hemodynamic
response function (HRF).

Encoding Model and Group-Wise
Analysis
Linear encoding models are preferred in fMRI encoding studies
due to their good interpretability (Naselaris et al., 2011).
Compared to other linear regression models such as ridge
regression and support vector regression (SVR) with a linear
kernel, LASSO enforces a sparse encoding model that is able to
identify a more compact set of variables of interest. Thus, an
encoding model based on LASSO algorithm (Tibshirani, 2011)
was trained to predict fMRI responses using the hierarchical
feature representation described above. In the encoding model,
we treated each 60-s auditory excerpt in fMRI acquisition and
the corresponding individual excerpt-specific fMRI data as a
single sample, resulting in a collection of 126 (3 auditory
categories × 7 excerpts in each category × 6 participants)
samples. The encoding model can be formulated as a matrix
factorization with a sparsity penalty:

minαi∈ Rm 1
2
||xi − Dαi||

2
2 + λ||αi||1 (1)

TABLE 1 | The number and length of filters in the DCAE model.

Filter number/filter length Layer 1 Layer 2 Layer 3 Layer 4

Encoder 32/64 64/32 128/16 256/8

Decoder 256/8 128/16 64/32 32/64

FIGURE 3 | The architecture of the supervised DNNs for audio classification.
GAP, global average pooling.

where xi is the fMRI signal of each voxel in an individual
participant, D is the corresponding hierarchical feature
representation in each layer, ai is the encoding coefficients, and
λ is a sparsity controlling parameter. The encoding model was
trained for each voxel independently. The encoding performance
for each voxel was calculated as the Pearson correlation
coefficient (PCC) between the predicted fMRI activities and
the recorded ones. Repeating encoding model training and
performance evaluating for each voxel resulted in an encoding
performance map for each sample. The parameter λ balances the
regression residual and sparsity level. The encoding model with
a smaller λ better predicts xi using a larger subset of D at the risk
of over-fitting, while a larger λ decreases the prediction accuracy
using a more compact subset of features. In our study, λ was
varied from 0.05 to 0.15 with interval of 0.05 and was optimized
via a leave-one-out cross-validation strategy to maximize the
average encoding performance in the testing set.

A group-wise analysis was then performed to infer the
corresponding brain regions that selectively encoded each
level of the hierarchical feature representations in the DCAE
model. In brief, for a given level of the hierarchical feature
representations, the encoding performance map for each sample
was independently normalized and aggregated to perform one-
sample t-test to infer the corresponding brain regions that have
encoding accuracy significantly above chance (p < 0.01, Z≥ 2.3).

A Comparison Study
A comparison study was performed to compare the neural
encoding of unsupervised hierarchical feature representations
with that of a supervised classification model described as follows.
A global average pooling (GAP) layer (Yu et al., 2017) followed
by a fully connected soft-max classification layer were connected
to the fourth max-pooling layer of the unsupervised DCAE
model (Figure 3). Adopting cross-entropy loss function, Adam
optimizer, early stopping strategy and batch size of 32, it was pre-
trained using Data 1 and followed by fine-tuning using Data 2.
Supervised hierarchical feature representations of input auditory
excerpts were derived from the converged classification model.
The neural encoding of supervised hierarchical features was
probed using the same encoding framework described in Section
“Encoding Model and Group-Wise Analysis” and was compared
with that of the unsupervised DCAE model.
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FIGURE 4 | Visualization of learned filters in the DCAE model. (A) Examples of the learned filters in each layer. (B) The power-spectrum patterns of learned filters.
The x-axis represents the index of filters, the y-axis represents the frequency ranging from 0 to 8000 Hz.

FIGURE 5 | Encoding performance of the trained DCAE model. (A) The distribution of Pearson correlation coefficients (PCC) between the input audio signals and
reconstructed ones in the MagnaTagATune dataset and LibriSpeech Corpus. (B) The distribution of PCC in the auditory samples from the fMRI stimuli.

RESULTS

Evaluation of Hierarchical Feature
Learning
Figure 4A shows some examples of the learned filters in the
DCAE model. The power-spectrum patterns of the learned filters
are depicted in Figure 4B, where the filters in each layer are
sorted according to the frequency (low to high) at which its
magnitude reaches the maximum (Lee et al., 2018). In the first
layer, the frequency of the filters increases approximately linearly
in low frequency filter banks whereas filters that are selective
for higher frequency are more spread out. As the layer goes
deeper, the trend of frequency becomes non-linearly steeper
in high frequency filter banks. These spectrum patterns are
consistent with those in frame-level end-to-end learning for
music classification (Dieleman and Schrauwen, 2014; Lee et al.,
2018), suggesting the effectiveness of hierarchical feature learning
in the DCAE model.

The distribution of Pearson correlation coefficients (PCCs)
between the input audio signals and reconstructed ones is
shown in Figure 5. The PCC is relatively high in both Data
1 (0.9859 ± 0.0024, Figure 5A) and Data 2 (0.9274 ± 0.0297,
Figure 5B). The discriminative ability of the hierarchical features

learned by the DCAE model was then examined using a
classification task based on support vector machine (SVM)
with an RBF kernel. The classification performance in 5-fold
cross-validations is summarized in Table 2 for each layer.
The classification accuracy slowly increases as the layer goes
deeper. Both the high data reconstruction performance and high
classification accuracy indicate that the trained DCAE model
could well capture the intrinsic features of the input samples.
Similar classification results are observed in the supervised
model (Table 3).

Encoding Performance
The optimal sparsity controlling parameter λ = 0.1 maximized
the overall encoding performance depicted in Figure 6 for the
unsupervised DCAE (Figure 6A) and supervised classification
model (Figure 6B). Each subgraph shows the PCC between the
original fMRI signals and the ones predicted by the hierarchical
feature representations in each layer. In general, the distribution
of brain regions in each layer is similar in the unsupervised
DCAE and supervised classification model. The primary auditory
cortex is selective to acoustic features learned in the first
layer, the non-primary auditory cortex in the superior temporal
gyrus (STG) is more sensitive to intermediate-layer acoustic
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TABLE 2 | The classification accuracies in different layers of the DCAE model (mean ± std).

Layer 1 Layer 2 Layer 3 Layer 4

Data 1 0.7787 ± 0.0326 0.9079 ± 0.0060 0.9168 ± 0.0096 0.9198 ± 0.0077

Data 2 0.7528 ± 0.0221 0.9044 ± 0.0104 0.9084 ± 0.0169 0.9181 ± 0.0220

TABLE 3 | The classification accuracies in different layers of the supervised model.

Layer 1 Layer 2 Layer 3 Layer 4

Data 1 0.9093 ± 0.0160 0.9489 ± 0.0110 0.9558 ± 0.0086 0.9679 ± 0.0025

Data 2 0.8545 ± 0.1661 0.9309 ± 0.0139 0.9531 ± 0.0056 0.9552 ± 0.0033

FIGURE 6 | The encoding performance for each layer in the unsupervised DCAE model (A) and supervised classification model (B).

features, while the prefrontal cortex, visual cortex, and precuneus
are involved in the processing of higher-level features learned
in the last layer.

We further adopted a paired-sample t-test to compare the
encoding performance between the unsupervised DCAE and
supervised classification models. It is observed that the encoding
performance in some brain regions in the unsupervised DCAE
model is significantly higher (p ≤ 0.01, Z ≥ 2.3) than those
in the supervised classification model, including the primary

auditory cortex (A1) in the first layer, part of middle temporal
gyrus (MTG) and visual cortex in the second layer, anterior
STG, posterior STG, part of prefrontal cortex (PFC), cuneus
and precuneus in the third and last layer (Figure 7). No
obvious brain regions showed significantly higher encoding
performance in supervised classification model compared to the
unsupervised one. These results suggested that the hierarchical
features learned in the unsupervised DCAE model can achieve
better encoding performance.
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FIGURE 7 | The comparison of encoding performance between the unsupervised DCAE model and supervised classification model in each layer. A1, primary
auditory cortex; aSTG, anterior superior temporal gyrus; pSTG, posterior superior temporal gyrus; MTG, middle temporal gyrus; VC, visual cortex; PFC, prefrontal
cortex.

FIGURE 8 | Brain regions that are selectively activated by the hierarchical acoustic features represented in each encoder layer of the unsupervised DCAE model.
Panels (A–D) represent the first four layers in the unsupervised DCAE model.

FIGURE 9 | Brain regions that are selectively activated by the hierarchical acoustic features represented in each layer of the supervised classification model. Panels
(A–D) represent the first four layers in the supervised classification model.

Hierarchical Neural Auditory
Representation
Group-wise analysis was used to evaluate whether the encoding
performance was significantly above chance (Z ≥ 2.3) for each
voxel independently. Brain regions of interest that were selective
to each level of the hierarchical acoustic feature representation
were inferred accordingly to probe the hierarchy of neural
auditory processing. Figure 8 shows the Z-maps of encoding
performance for each encoder layer in the unsupervised DCAE

model. In the first layer (Figure 8A), brain activities in the
primary and association auditory cortices were with significantly
(Z ≥ 2.3) high encoding accuracy, indicating that the features
learned in the first layer may represent basic acoustic features.
Part of the middle temporal gyrus (MTG) was activated in
the second and third layer (Figures 8B,C). In the fourth layer,
bilateral insula and ventral visual cortex were with significantly
high encoding accuracy (Figure 8D). In addition, we observed
that the thalamus was activated by the features represented in
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the second and third layers. The statistical details of these brain
regions are listed in Supplementary Table 1.

In comparison, the hierarchy of neural auditory processing
revealed by the encoding model using supervised feature learning
model is partly in line with the one in the unsupervised model, as
shown in Figure 9. For example, the primary auditory cortex and
visual cortex were selectively activated by the features represented
in the first and fourth layer of the supervised model, respectively.
However, those selective brain regions were much sparser and
scattered distributed compared to the ones in the unsupervised
model. In addition, the bilateral insula and thalamus were not
activated in the supervised classification model.

DISCUSSION

In this study, we investigated the hierarchy of neural acoustic
processing in the human brain via an fMRI encoding model.
Compared to existing studies that used supervised feature
learning models that are designed for classification or recognition
to achieve a hierarchical feature representation of input acoustic
information (Kell et al., 2018; O’Sullivan et al., 2019), the novelty
of the current study is adopting an unsupervised DCAE feature
learning model to derive intrinsic and unbiased hierarchical
feature representation of naturalistic auditory stimuli in fMRI
acquisition. Our experimental results showed that the neural
representation of hierarchical auditory features is not limited
to previously reported STG (Kell et al., 2018; O’Sullivan et al.,
2019), but also involves the bilateral insula, ventral visual
cortex and thalamus.

In the current study, our experimental results showed that
the visual cortex and insula are related to the encoding of high-
level acoustic features represented in the deepest layers of the
DCAE model. It may indicate that these high-level features carry
higher-order attributes such as emotion (Gu et al., 2013) and
visual imagery (Vetter et al., 2014) elicited by auditory excerpts.
For example, an fMRI study that uses auditory stimulation to
examine the activity in the early visual cortex suggested that
the auditory input enables the visual system to predict incoming
information and could confer a survival advantage (Vetter et al.,
2014). It also has been reported that the higher-level abstract
or categorical information of acoustic stimulation is fed down
to early visual cortex (Cate et al., 2009; Vetter et al., 2014). In
addition, we observed that the thalamus may encode middle-
level features. It has been reported that the thalamus plays an
important role in auditory processing (Schonwiesner et al., 2006),
especially for sound source localization (Proctor and Konishi,
1997), and tones modulated by attention (Frith and Friston,
1996). Our findings, in conjunction with previous results on the
visual and auditory cortical representations (King and Nelken,
2009; Khalighrazavi and Kriegeskorte, 2014; Cichy et al., 2016),
suggest that the existence of multiple representational gradients
that processes increasingly complex conceptual information as
we have experienced the sensory hierarchy of the human brain.

In the comparison study, the supervised model achieved
better classification performance compared to the unsupervised
DCAE model (Tables 2, 3). However, the unsupervised DCAE

model outperformed the supervised model in terms of encoding
performance (Figures 8, 9). More importantly, the cortical
hierarchy pattern inferred by the supervised model was much
sparser and scattered distributed compared to the ones in the
unsupervised model (Figures 6, 7). These observations indicate
that the intrinsic and unbiased hierarchical features learned in the
DCAE model may provide additional evidence to understand the
cortical hierarchy in neural auditory processing compared to the
features learned in the supervised model that were biased toward
discriminative ones while ignoring general attributes shared by
auditory information in multiple categories.

In summary, the findings in this study may provide
complementary evidences to understand the hierarchical
auditory processing in the human brain. The current study
can be improved in several ways in the future. It is expected
to validate the findings using larger-scale fMRI datasets that
recruit more participants. In the current study, we adopted an
unsupervised DCAE model to derive the hierarchical feature
representations of the acoustic stimuli in fMRI acquisition.
The architecture and some of the hyperparameters (e.g., the
number of layers, the number and length of the filters) of
the DCAE model were empirically set. Although this DCAE
model was able to effectively learn the hierarchical feature
representation of the input acoustic excerpts as indicated
by the SVM-based classification tasks in our experiments, it
could be optimized by automated machine learning technique
such as neural architecture search neural architecture search
(NAS) (Elsken et al., 2019). In addition, the recently advanced
self-supervised learning models (Sermanet et al., 2018; Li et al.,
2020) may serve as more efficient and ecological approaches to
unsupervised acoustic feature learning, and thus could enrich
our understanding of the cortical hierarchy of neural auditory
processing in future studies.
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In this article, a novel method for continuous blood pressure (BP) estimation based on
multi-scale feature extraction by the neural network with multi-task learning (MST-net)
has been proposed and evaluated. First, we preprocess the target (Electrocardiograph;
Photoplethysmography) and label signals (arterial blood pressure), especially using
peak-to-peak time limits of signals to eliminate the interference of the false peak. Then,
we design a MST-net to extract multi-scale features related to BP, fully excavate and
learn the relationship between multi-scale features and BP, and then estimate three
BP values simultaneously. Finally, the performance of the developed neural network is
verified by using a public multi-parameter intelligent monitoring waveform database.
The results show that the mean absolute error ± standard deviation for systolic blood
pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP)
with the proposed method against reference are 4.04 ± 5.81, 2.29 ± 3.55, and
2.46 ± 3.58 mmHg, respectively; the correlation coefficients of SBP, DBP, and MAP are
0.96, 0.92, and 0.94, respectively, which meet the Association for the Advancement of
Medical Instrumentation standard and reach A level of the British Hypertension Society
standard. This study provides insights into the improvement of accuracy and efficiency of
a continuous BP estimation method with a simple structure and without calibration. The
proposed algorithm for BP estimation could potentially enable continuous BP monitoring
by mobile health devices.

Keywords: continuous blood pressure estimation, multi-scale features, neural networks, multi-task learning,
photoplethysmography and electrocardiograph

INTRODUCTION

The World Health Organization estimated that nearly 17.9 million people worldwide died of
cardiovascular diseases in 2016 (World Health Organization, 2020), posing a serious threat
to human health (El-Hajj and Kyriacou, 2020). Blood pressure (BP) monitoring plays an
important part in the prevention, diagnosis, and prognosis of cardiovascular disease. The mercury
sphygmomanometer is the most common method of measuring BP, but its measured value is
instantaneous, random, and might be easily affected by human and environmental factors (O’brien
et al., 2003). Therefore, efficient methods are needed to monitor BP continuously and accurately.
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Intra-arterial monitoring is the gold standard method for
continuous and accurate BP monitoring, but it can result in
trauma to the human body and is not suitable for home
monitoring. Compared with invasive intra-arterial continuous
BP monitoring, non-invasive continuous BP monitoring is more
secure and can be measured over a long time. At present, cuff-
less arterial tonometry (Pressman and Newgard, 1963) and the
volume-compensation method (Penaz, 1973) are mainly used
to non-invasive monitor BP continuously. However, arterial
tonometry is difficult to operate, which requires professional
operation and may be greatly affected by human factors; the
volume-compensation method has low precision and needs large
equipment. In a word, monitoring theories of these methods limit
their wide application in clinical and home use. Therefore, it
is necessary to develop an easy-to-use and accurate method for
continuous BP monitoring (Lázaro et al., 2019; Yang et al., 2021;
Yen and Liao, 2022).

Exploring the relationship between the characteristic
parameters of pulse waves and BP is a promising easy-to-use
method for continuous and accurate BP monitoring. Recently,
many studies have assessed the relationship between pulse wave
transit time (PTT) and BP based on traditional methods to
estimate BP, but its accuracy is low and these methods need to
be calibrated (Chung et al., 2013; Mukkamala et al., 2015; Ding
et al., 2016; Huynh et al., 2018). The combination of multiple
features (e.g., PTT and pulse wave waveforms features) from
photoplethysmography (PPG) and electrocardiograph (ECG)
can improve the accuracy of BP estimation (Kachuee et al.,
2017; Yoon et al., 2018; Thambiraj et al., 2020). However, these
multiple features related to BP from pulse waves are mainly
extracted through the feature engineering method, which has
been identified as a heavy workload at work, and is difficult to
find all of the features from PPG and ECG accurately. Besides,
due to the many factors affecting BP, these traditional methods
such as support vector machine, random forest, and adaptive
boosting, are difficult to accurately fit the relationship between
features and BP, which have limited accuracy.

With the development of artificial intelligence especially the
deep learning (Ravì et al., 2017; Miotto et al., 2018; Argha
et al., 2022), it is possible to extract multiple features related to
BP from PPG and ECG and assess their relationship with BP
accurately via the deep convolutional neural network (Radha
et al., 2019; Yan et al., 2019; Li et al., 2020; Song et al., 2020;
Paviglianiti et al., 2021). Some researchers have first extracted
features manually and then used deep convolutional neural
networks to estimate BP (Xu et al., 2017; Yan et al., 2019; Song
et al., 2020; Paviglianiti et al., 2021). For example, Xu et al.
(2017) have first manually extracted 15 features related to BP
from PPG and ECG and then assessed their relationship with
BP accurately by using artificial neural networks regression;
Maqsood et al. (2021) have first manually extracted time-domain
features, statistical features, and frequency domain features and
then regressed BP values by using Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) regression. However,
these methods also have the disadvantages of inaccuracy and
time-consuming of manual feature extraction. Subsequently, the
deep neural network methods based on end-to-end learning are

used to automatically extract features related to BP and evaluate
their relationship with BP, which achieves good performance
(Eom et al., 2020). However, to improve the accuracy of
BP estimation, the network structure (e.g., the number of
network layers) used in these methods are complicated, which
would increase the difficulty of model calculation and device
deployment. In addition, most of them can only complete
one task at a time using their model or complete multi-task
using trained multiple models for BP estimation, which greatly
reduces the efficiency of BP estimation (Gaurav et al., 2016;
Rong and Li, 2021). Therefore, it is necessary to provide a
simplified network with high accuracy and efficiency to monitor
BP continuously.

In this study, in order to continuously and accurately estimate
continuous BP without calibration from ECG and PPG signals,
a new method for continuous BP estimation based on multi-
scale feature extraction by the neural network with multi-task
learning (MST-net) has been proposed and evaluated. Firstly,
target signals and label signals arterial blood pressure (ABP)
are preprocessed via segmenting, extracting labels, denoising,
and normalizing. In particular, the interference of abnormal
values and the false peak of wave signals are eliminated by
peak amplitude and peak-to-peak timing limit. Subsequently,
the multi-scale features related to BP are extracted from
preprocessed target signals, and the relationship between multi-
scale features and BP is trained and learned by the neural
network with multi-task learning. Finally, the performance of the
neural network is verified and compared with the Association
for the Advancement of Medical Instrumentation (AAMI)
standards, the British Hypertension Society (BHS) standards,
and previous works. This model can not only estimate systolic
blood pressure (SBP), diastolic blood pressure (DBP), and
mean arterial pressure (MAP) simultaneously but also extract
more scale features.

MATERIALS AND METHODS

The core concepts of continuous BP estimation based on multi-
scale feature extraction by the neural network with multi-
task learning proposed in this study are as follows: we adopt
segmentation, denoising, and normalization to preprocess the
target and label signals, especially using peak-to-peak timing
limits of signals to eliminate the interference of the false peak of
wave signal; we design a neural network with multi-task learning
to extract multi-scale features related to BP from preprocessed
target signals, fully excavate and learn the relationship between
the multi-scale features and BP, and then estimate three BP values
simultaneously through multi-task learning, thus improving the
accuracy of BP estimation (Figure 1).

Problem Definition
To estimate BP continuously and accurately, target signals (PPG
and ECG) and label signals (ABP) are synchronously divided into
short segments with the same length, which are used as model
inputs xi and reference label BP values (SBP, DBP, and MAP) ySBP

i ,
yDBP

i , and yMAP
i , respectively. Then all the xi are used as the input
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FIGURE 1 | Block diagram of the proposed continuous BP estimation method.

of the neural network, which is used to simultaneously estimate
three BP values zSBP

i , zDBP
i , and zMAP

i , and defined as follows:

zSBP
i = F(xi; θ

SBP) (1)

zDBP
i =F(xi; θ

DBP) (2)

zMAP
i =F(xi;θ

MAP) (3)

Where xi represents input signals, F(·) represents the input-
output function of the neural network with multi-task learning;
SBP is the force exerted by blood on arterial walls during
ventricular contraction, DBP is the force exerted by the artery
walls during ventricular relaxation, and the MAP is the average
pressure throughout the cardiac cycle; θSBP, θDBP, and θMAP

represent the specific task parameters of the function; zSBP
i , zDBP

i ,
and zMAP

i are the estimated SBP, DBP, and MAP output values
of the network, and these three values are produced at the same
time through an output layer (3 neurons) followed by the last fully
connected (FC) layer.

The convergence of the neural network is evaluated by loss
function MSE, and the MSE depends on the difference between
the reference label BP values and estimated BP values and is
defined as follows:

MSE =
1
n

n∑
i=1

[(ySBP
i − zSBP

i )2

+(yDBP
i − zDBP

i )2
+ (yMAP

i − zMAP
i )2

] (4)

Where yi ranges from 60 to 180 mmHg (60 ≤
ySBP

i , yDBP
i , yMAP

i ≤ 180), and n is the number of signal segments.
The smaller the MSE, the better performance of the model.

Preprocessing of Signals
Segmentation and label extraction. Our raw data comes from
the University of California, Irvine (UCI) Machine Learning
Repository dataset (Goldberger et al., 2000; Kachuee et al.,
2015), which is derived from the public Multi-parameter
Intelligent Monitoring in Intensive Care (MIMIC-II) database.
This database contains multiple physiological signals collected
simultaneously from intensive care unit patients. In this research,
we extract simultaneous recordings of ECG, PPG, and ABP
signals of 3,000 subjects from the database which was available
at a 125 Hz sampling rate, and select signals with appropriate

time (more than 8 min) as the data source. All selected signals
were segmented into short segments of 8 s. Subsequently,
the peak amplitude limit (80 mmHg ≤ SBP ≤ 180 mmHg,
60 mmHg ≤ DBP ≤ 130 mmHg; Kachuee et al., 2017) and the
peak-to-peak time limit (greater than 0.6 s) were set for ABP
signal to exclude abnormal value and false peaks. Then, the peaks
and troughs were extracted from the processed ABP as reference
values of SBP and DBP, respectively. The reference MAP value
was calculated as the following formula:

MAP =
(SBP+ 2DBP)

3
(5)

Noise Reduction
The segmented ECG and PPG signals are first preprocessed using
the discrete wavelet decomposition (DWT) filter with Daubechies
8 wavelet (db8) to remove high-frequency noise, baseline drift,
and other noise (Singh and Tiwari, 2006). Specifically, combined
with the DWT filter and Nyquist sampling theorem (Unser,
2000), all the ECG and PPG signals are sampled at 125 Hz, and
then decomposed layers to extract the approximate coefficients
(CAs) and detail coefficients (CDs), respectively. For ECG
signals, the number of the decomposed layers is seven, and
CDs of the first layer and CAs of the seventh are set to zero
to remove the baseline drift (0∼0.5 Hz) and high-frequency
noises (31.125∼62.25 Hz); For PPG signals, the number of the
decomposed layers is eight, and CDs of the first layer and CAs of
the eighth are set to zero to remove the baseline drift (0∼0.25 Hz)
and high-frequency noises (31.125∼62.25 Hz). Subsequently, the
rest of the CAs and CDs are denoised via a soft threshold and
then reconstructed to obtain the target PPG and ECG signals.

Layer Normalization
Layer normalization is the normalization of a single training
data to all neurons in a layer. Through layer normalization, the
amplitude of the preprocessed target PPG and ECG signal is
distributed within the range of [-1, 1], so that the input signals
distribution of the model is similar, and the MST-net model has
better converged. The normalization formula is defined as:

Normalized = 2×
x− xmin

xmax − xmin
− 1 (6)

Where x is the amplitude of the target PPG and ECG signals,
xmax and xmin are the maximum amplitude and minimum
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FIGURE 2 | Raw signals preprocessing pipeline.

amplitude, respectively, in the target signals. The pre-processing
of signals is shown in Figure 2.

Model Architecture
The core concept of the neural network with multi-task
learning we design is as follows (Table 1): we input the ECG
and PPG signals (two one-dimensional ECG and PPG; input
size: 2 × 1,000) at the same time and then process them
using a one-dimensional (1D) convolution layer (Conv; with
a convolution kernel of 15) to keep the information of the
original signals as much as possible; we utilize the maximum
pooling layer to remove redundant information and retain the
main signal features; we adopt three network channels whose
sizes of convolution kernels are 5, 7, and 9, respectively, to
capture multi-scale features related to BP from target signals
by using different receptive fields on each channel; we set
four modules in each channel and set two convolution layers
in each module to extract features; we set 64, 128, 256, and
512 filters on the four modules of each channel, respectively,
to learn 1,536 features of target PPG and ECG signals; we
set up two FC layers (1,536 and 256 neurons) for regression
estimation of BP values, and the output layer consists of
three neurons. In addition, to estimate SBP, DBP, and MAP
simultaneously, we design a multi-task learning module in the
designed neural network to reduce the over-fitting of specific
tasks and improve the adaptability and efficiency of different tasks
(Ruder, 2017).

Setting of Model Parameter
Batch normalization layer and activation function. Batch
normalization is the normalization of individual neurons
between different training data. The batch normalization layer
can accelerate the convergence rate. Non-linear function rectifier
linear unit (RELU) is introduced as the activation function after
the normalization layer to avoid the gradient disappearance
problem during the training process of the designed network
and make the network train faster (Han and Moraga, 1995;

Nair and Hinton, 2010; Chung et al., 2015). The RELU formula
is defined as follows:

Relu(x) =

{
0, x < 0
x, x ≥ 0

(7)

Adam
Adam can combine the advantages of AdaGrad (adjusting the
learning rate (LR) of each different parameter) and Rmsprop

TABLE 1 | The network architecture of the MST-net model.

MST (5) MST (7) MST (9)

Input (2 × 1,000)

Stream 1 Stream 2 Stream 3

Layer 1 Conv (15)

Layer 2 Max-pooling (3)

Layer 3 Conv (5)-64 Conv (7)-64 Conv (9)-64

** ** **

Layer 4 Conv (5)-64 Conv (7)-64 Conv (9)-64

** ** **

Layer 5 Conv (5)-128 Conv (7)-128 Conv (9)-128

** ** **

Layer 6 Conv (5)-128 Conv (7)-128 Conv (9)-128

** ** **

Layer 7 Conv (5)-256 Conv (7)-256 Conv (9)-256

** ** **

Layer 8 Conv (5)-256 Conv (7)-256 Conv (9)-256

** ** **

Layer 9 Conv (5)-512 Conv (7)-512 Conv (9)-512

** ** **

Layer 10 Conv (5)-512 Conv (7)-512 Conv (9)-512

** ** **

Layer 11 AvgPool1d (1) AvgPool1d (1) AvgPool1d (1)

Layer 12 FC-512 FC-512 FC-512

Layer 13 FC-256

Output-3

**Represents “Batch Normalization layer + non-linear function rectifier linear unit.”
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(overcome the problem that the gradient of AdaGrad decreases
sharply) optimization algorithms to update the parameter of the
designed network to find the appropriate parameters and better
convergence (Kingma and Ba, 2014).

Hyperparameters
In the training process, to train the designed network better and
obtain the expected learning effect, the data input batch size is set
to 100. The epoch is set to 150. The initial LR of the network is set
to 0.01, and the fixed LR is decayed once every 5 epochs, which is
defined as follows:

LR = lrbase × gamma
step

5 (8)

Where lrbase is the original LR, gamma is the decay rate, and
step represents the running number of epochs.

L2 Regularization
L2 regularization is added in the training process to improve
the fitting effects and the generalization performance when the
training set is small and the model is complex in the process of
designed network training, that is, a constraint term is added to
the MSE loss function L(θ) (Eq. 3) to generate a new loss function
which is defined as follows:

L = L(θ)+ λ

k∑
i=1

w2
i (9)

Where i is the layer number of the network, w is the weight of
the network. λ is the coefficient of the L2 regularization which
weighs the weight between the constraint term

∑k
i=1 w2

i and
L(θ). Through the L2 regularization term, w can be reduced,
and the smaller w, the lower the complexity and better the
fitting of the network.

Model Performance Verification
The neural network with multi-task learning proposed in this
study runs under the Pytorch1.8.1 framework, using Windows
Server 2019 as the operating system. The server is equipped
with an RTX 2080ti GPU with 11 G memory and an Intel
Xeon Gold 5218 CPU with 32 cores and 64 GB memory. Based
on existing methods for creating training/test data sets in BP
estimation studies (Yan et al., 2019; Li et al., 2020; Miao et al.,
2020a; Panwar et al., 2020), we set different training and test
data. Due to the limited number of target signals data sets,
five-fold cross-validation is used to evaluate the performance
of the model. Our data is randomly divided into five equal-
sized subsets, four of which are trained as training data, and
the other one is tested as test data in turn, and the average
of the five results is used as an estimate of the accuracy
of the algorithm.

Model Performance Evaluation
To evaluate the BP estimation accuracy of the designed neural
network, Pearson correlation coefficient (r), mean absolute error
(MAE), mean error (ME), and standard deviation (SD) are

examined. r represents the consistency of the estimated BP value
and the reference BP value, ME represents the error between the
estimated BP value and the reference BP value, MAE represents
the absolute error between the estimated BP value and the
reference BP value, and SD represents the degree of dispersion
between the estimated BP value and the reference BP value. r,
MAE, ME, and SD equations are defined as follows:

r =
∑n

i=1(zi − z)(yi − y)√∑n
i=1(yi − y)2

√∑n
i=1(zi − z)2

(10)

ME =
∑n

i=1(yi − zi)

n
(11)

MAE =
∑n

i=1 |zi − yi|

n
(12)

SD =

√∑n
i=1(zi − yi −ME)2

n− 1
(13)

Where yi is the reference BP label value obtained from ABP,
y is the average of yi, zi is the estimated BP value of the MST-
net model, z is the average value of zi, and n is the total
number of target PPG and ECG signals segments in the test
data set. Finally, BP estimation accuracy of the MST-net model
is compared with the AAMI standards (Association for the
Advancement of Medical Instrumentation, 2002) and the BHS
standards (O’Brien et al., 1990) which are widely used as criteria
for evaluating BP devices.

RESULTS AND DISCUSSION

Data Source
To accurately extract the true BP value (reference BP value) from
ABP, the amplitude and peak-to-peak time of the ABP signal
were restricted to exclude the interference of abnormal signals
and false peaks. We can notice that multiple dicrotic wave peaks
(false peaks) existed in the ABP signal (Figure 3A), and this might
cause the number of detecting peak values to be more than the
true number. We can extract the peak value more accurately
after our restriction processing (Figure 3A; red dots). When
limited the signal amplitude (<180 mmHg) and time constraints
(>8 min) during ABP signals processing, the total number of
subjects was reduced from 3,000 to 514. Then we obtained a
total of 21,334 segments of BP data after the data segmentation
process, that is, we use 213,340 beats in our model. The peaks
and troughs were extracted from the processed ABP and used as
the reference values of SBP and DBP, respectively, and calculated
MAP based on SBP and DBP. The results showed that the DBP
was mainly distributed in the range of 60 to 130 mmHg, the
SBP was mainly distributed in the range of 80 to 180 mmHg,
and the MAP was calculated based on DBP and SBP was mainly
distributed between 70 and 135 mmHg (Figure 3B). This result
was the same as the distribution of BP values obtained by Miao
et al from ABP before (Kachuee et al., 2017; Miao et al., 2020b),
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FIGURE 3 | (A) blue “I” represents peak detection before processing, red “x” represents peak detection after processing, (B) Statistical histogram of BP data
extracted from ABP.

which could provide the reference BP values for our designed
neural network to estimate BP values.

Estimation Performance
To judge whether there is overfitting in our model, we used
training loss and validation loss during the training process,
and the training loss and validation loss were in a stable state
after 100 epochs in the model training process, that is, the
model had converged.

In order to investigate the performance of the designed
neural network, the BP estimation accuracy of the network was
evaluated according to r, ME, MAE, and SD. As result, the r of
SBP, DBP, and MAP estimated by the MST-net model were 0.96,
0.92, and 0.94, respectively, and ME ± SD were 0.01 ± 5.81,
0.02 ± 3.55, and 0.01 ± 3.58 mmHg, respectively, (Figure 4).
It can be observed that all reference values have a strong linear
relationship with BP estimates (SBP, DBP, and MAP). The p-value
for SBP, DBP, and MAP were 0.972, 0.796, and 0.969, respectively.
It implied that the population mean of the samples was equal.
These data points fell on both sides of the regression line and were
close to the regression line (Figures 4A–C), indicating estimated

BP data with high accuracy. The average values and difference
values of reference and estimated BP values were the horizontal
axis and vertical axis of the Bland-Altman plot (Figures 4D–F),
respectively, these data points fall within the 95% confidence
interval [-1.96 × SD, 1.96 × SD], indicating a good level of
consistency of the reference and estimated BP data. Also, the
average error between the reference and the estimate (red line) is
very close to zero mmHg, indicating a high degree of consistency
between the reference and estimated BP data. In addition, we
provided the histogram of the error distribution between the
estimate and the reference value, and we can observe that most
of the errors are concentrated around 0 (Figures 4G–I). On the
other hand, our network had fewer parameters than previous
network models (Biswas et al., 2019; Panwar et al., 2020). That
is to say, our network with an optimized algorithm was of lower
complexity which can contribute to avoiding the constraints of
computing power and memory for platform deployments (e.g.,
mobile devices, wearable devices). From the above analysis, it can
be noted that the method of this study can achieve a precision
estimation of SBP, DBP, and MAP. It is noted that the estimated
SBP values through our model were not limited to less than
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FIGURE 4 | Evaluation of the estimated BP performance of the MST-net model: (A) SBP correlation coefficient plot; (B) DBP correlation coefficient plot; (C) MAP
correlation coefficient plot; (D) Bland-Altman plot of SBP; (E) Bland-Altman plot of DBP; (F) Bland-Altman plot of MAP; (G) Error histogram for SBP; (H) Error
histogram for DBP; and (I) Error histogram for MAP.

180 mmHg, and the SBP values beyond 180 mmHg can be also
predicted through our model. However, we just predicted SBP
values within 180 mmHg same as many references (Kachuee
et al., 2017; Baek et al., 2019; Thambiraj et al., 2020, etc.). The
reasons were as follows: First, there were a few cases of SBP
reaching 180 mmHg in the database; Secondly, when analyzing
the reference signal and input signal values, the SBP values greater

TABLE 2 | Comparison of estimated BP values between our work
and AAMI standard.

ME (mmHg) SD (mmHg) Subjects Assessment result

Our results SBP 0.007 5.81

DBP 0.022 3.55 514 Satisfied

MAP 0.009 3.58

AAMI SBP ≤5 ≤8 ≥85

(AAMI, 2002) DBP

MAP

than 180 mmHg were calculated from the reference signal, which
was generally caused by irregular noise signals.

In order to evaluate the accuracy of BP estimation based on
this study, the BP estimation results of this study were compared
with international AAMI and BHS standards. According to the

TABLE 3 | Comparison of estimated BP values between our work
and BHS standard.

Cumulative error percentage

C. P. 5 C. P. 10 C. P. 15 Assessment

result

SBP 71.56% 92.28% 97.66% A

Our result DBP 89.88% 98.25% 99.40% A

MAP 87.89% 98.05% 99.52% A

Grade A 60% 85% 95%

BHS (O’Brien et al., 1990) Grade B 50% 75% 90%

Grade C 40% 65% 80%
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TABLE 4 | Comparison with other experimental performance.

Work Dataset Method SBP DBP MAP

MAE SD MAE SD MAE SD

Miao et al., 2020a Own dataset Feature extraction 6.13 7.76 4.54 5.52 4.81 6.03

Ding et al., 2016 4.09 5.21 3.18 4.13 3.18 4.06

Sharifi et al., 2019 MIMIC II Deep learning algorithm 7.83 9.10 4.86 5.21 3.63 4.60

Baker et al., 2021 MIMIC III 4.41 6.11 2.91 4.23 2.77 3.88

This work MIMIC II MST deep learning algorithm 4.04 5.81 2.29 3.55 2.46 3.39

AAMI standard (Table 2), the target subjects of this study were
514, far more than the 85 required by the AAMI standard. the
ME of SBP, DBP, and MAP were 0.007, 0.022, and 0.009 mmHg,
respectively, which were far lower than the ME ≤ 5 mmHg
required by the AAMI standard. SD of SBP, DBP, and MAP
estimated were 5.81, 3.55, and 3.58 mmHg, respectively, which
were far lower than SD ≤ 8 mmHg required by the AAMI
standard. It showed that the estimated BP values by our
customized model met the AAMI standard. The cumulative error
percentage estimated by our model of the SBP reached 71.56,
92.28, and 97.66%, respectively; the DBP reached 89.88, 98.25,
and 99.40%, respectively, and the MAP reached 87.89, 98.03, and
99.52%, respectively, (Table 3), which all showed much higher
than the A grade standard of BHS (60, 85, and 95%). To sum
up, BP values (SBP, DBP, and MAP) estimated by our customized
model reached a small error and achieved good results.

In order to verify the effectiveness of the designed network,
the proposed BP estimation method was compared with previous
work. In general, it is difficult to make a fair comparison
of BP estimation work due to different evaluation metrics
and inadequately specified datasets. For example, for some BP
estimation work based on ECG and PPG, Miao et al. (2020a)
and Ding et al. (2016) used their own data sets, Baker et al.
(2021) used the MIMIC III database, Sharifi et al. (2019) used

TABLE 5 | Comparison of predicted BP values between our and previous work
based on our dataset from MIMIC-II.

Work MAE ± SD (mmHg)

SBP DBP MAP

Resnet (He et al., 2016) 4.12 ± 5.97 2.31 ± 3.60 2.50 ± 3.67

VGG (Simonyan and Zisserman, 2015) 8.47 ± 11.45 4.70 ± 6.70 5.09 ± 6.94

This work 4.04 ± 5.81 2.29 ± 3.55 2.46 ± 3.39

TABLE 6 | Comparison of No. model for BP evaluation between our
and previous work.

Work Subjects Model SBP (mmHg) DBP (mmHg)

Rong and Li, 2021 11,546 samples 2 5.59 ± 7.25 3.36 ± 4.48

Kachuee et al., 2017 942 subjects 2 11.17 ± 10.09 5.35 ± 6.14

Gaurav et al., 2016 3,000* subjects 2 4.47 ± 6.85 3.21 ± 4.72

This work 21,334 samples 1 4.04 ± 5.81 2.29 ± 3.55

*Number of subjects before signal processing.

the same database like ours. From the results, our proposed
method performed better than these studies (Table 4). For a fair
comparison, we selected two popular machine learning methods,
VGG network (Simonyan and Zisserman, 2015) and Resnet (He
et al., 2016), to compare BP estimation results using the same
dataset. We can notice that the MAE ± SD of SBP, DBP, and
MAP in our study (SBP: 4.04± 5.81, DBP: 2.29± 3.55, and MAP:
2.46 ± 3.39) all were smaller than the popular machine learning
methods results (VGG, SBP: 8.47 ± 11.45, DBP: 4.70 ± 6.70,
MAP: 5.09 ± 6.94; Resnet, SBP: 4.12 ± 5.97, DBP: 2.31 ± 3.60,
and MAP: 2.50 ± 3.67), indicating that the network model we
designed performed better at a BP estimated work (Table 5). It
should be noted that the setting of hyperparameters in the two
popular machine learning methods is the same as our proposed
method (except that the LR of the VGG network is set to 0.005).
In addition, we noticed that compared with previous studies that
used a separate training method to estimate a BP value, our model
can simultaneously estimate multiple BP values by using only one
model, which not only reduced the complexity but also improved
the work efficiency (Table 6).

Overall, the MST-net model proposed in this study had a
relatively simple structure and achieved good accuracy in the
field of continuous BP estimation, which was a very competitive
method and made contributions to the improvement of BP
estimation accuracy.

Impacts of Model Architecture
In order to determine the effects of network structure on
the performance of BP estimation, the effects of the number
of network channels and the size of the convolution kernel
of network channels on BP estimation performance were
investigated (Table 7). Compared to the BP estimation results
of the single-channel model with convolution kernels of 7, the

TABLE 7 | Impacts of that number of network channels and the size of channel
convolution kernel on the performance of BP estimation.

Kernel size SBP (mmHg) DBP (mmHg) MAP (mmHg)

MST-net (3) 4.40 2.50 2.68

MST-net (5) 4.20 2.41 2.58

MST-net (7) 4.13 2.33 2.52

MST-net (9) 4.07 2.31 2.48

MST-net (3, 5, 7) 4.10 2.28 2.47

MST-net (5, 7, 9) 4.04 2.29 2.46
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estimation errors of SBP, DBP, and MAP via the three-channel
model with convolution kernels of (3, 5, 7) were reduced by
0.03, 0.05, and 0.05 mmHg, respectively. The reason was that
multi-channel can extract more abundant features than single-
channel. In the single-channel model, when the size of the
convolution kernel increased from 3 to 9, the errors of SBP, DBP,
and MAP decreased significantly, indicating that the increase of
the convolution kernel in the model could improve BP estimation
performance. The reason was that the larger convolution kernel
has a larger receptive field which contributes to extracting the
features related to BP from time-series signals with periodic
patterns. These results also showed that the features related to
BP have a larger span of time. At the same time, with the
increase in the size of the convolution kernel, the increase of
BP estimation performance gradually decreased, indicating that
the size of the convolution kernel used to extract features was
limited, and cannot be infinite. When the size of the multi-
channel convolution kernel was increased from (3, 5, 7) to (5, 7,
9), the estimated errors of SBP, DBP, and MAP were improved by
0.06, 0.01, and 0.01 mmHg, respectively. This also showed that
the larger convolution kernel could improve the performance of
the BP estimation model.

CONCLUSION

In this article, a novel continuous BP estimation based on
multi-scale feature extraction by the neural network with multi-
task learning was proposed to estimate BP continuously and
accurately without calibration using PPG and ECG signals. This
research was a step toward developing an efficient and lightweight
solution. We adopted segmenting, denoising, and normalizing
to preprocessed target and label signals and then extracted the
reference BP value from the preprocessed label signals, especially
using peak-to-peak timing limits of signals to eliminate the
interference of the false peak of the wave; we designed a neural
network with multi-task learning to extract multi-scale features
related to BP from preprocessed target signals, fully excavated

and learned the relationship between the multi-scale features
and BP, and then estimated three BP values simultaneously
through multi-task learning. The results showed that the errors
of MAE ± SD for SBP, DBP, and MAP were 4.04 ± 5.81,
2.29 ± 3.55, and 2.46 ± 3.58 mmHg, respectively, and the
correlation coefficients were 0.96, 0.92, and 0.94, respectively.
These results met the AAMI standard and reached A level of
the BHS standard, and showed better BP continuous monitoring
results than other previous works, and without calibration.

In conclusion, our study provided convincing evidence that
our method can achieve high precision continuous BP estimation
and had a relatively simple structure, which can be further applied
to wearable devices.
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Visual experience modulates the intensity of evoked brain activity in response to
training-related stimuli. Spontaneous fluctuations in the restful brain actively encode
previous learning experience. However, few studies have considered how real-world
visual experience alters the level of baseline brain activity in the resting state. This study
aimed to investigate how short-term real-world visual experience modulates baseline
neuronal activity in the resting state using the amplitude of low-frequency (<0.08 Hz)
fluctuation (ALFF) and a visual expertise model of radiologists, who possess fine-level
visual discrimination skill of homogeneous stimuli. In detail, a group of intern radiologists
(n = 32) were recruited. The resting-state fMRI data and the behavioral data regarding
their level of visual expertise in radiology and face recognition were collected before
and after 1 month of training in the X-ray department in a local hospital. A machine
learning analytical method, i.e., support vector machine, was used to identify subtle
changes in the level of baseline brain activity. Our method led to a superb classification
accuracy of 86.7% between conditions. The brain regions with highest discriminative
power were the bilateral cingulate gyrus, the left superior frontal gyrus, the bilateral
precentral gyrus, the bilateral superior parietal lobule, and the bilateral precuneus. To
the best of our knowledge, this study is the first to investigate baseline neurodynamic
alterations in response to real-world visual experience using longitudinal experimental
design. These results suggest that real-world visual experience alters the resting-state
brain representation in multidimensional neurobehavioral components, which are closely
interrelated with high-order cognitive and low-order visual factors, i.e., attention control,
working memory, memory, and visual processing. We propose that our findings are likely
to help foster new insights into the neural mechanisms of visual expertise.

Keywords: SVM, recursive feature elimination, visual expertise, resting state fMRI, ALFF

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 90462359

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.904623
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.904623
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.904623&domain=pdf&date_stamp=2022-05-25
https://www.frontiersin.org/articles/10.3389/fnins.2022.904623/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-904623 May 25, 2022 Time: 8:53 # 2

Su et al. Visual Experience Modulates Baseline Neurodynamic

INTRODUCTION

Visual experts refer to individuals with superior behavioral
performance in visual recognition in specific domains (Curby
and Gauthier, 2010). To become a visual expert, it requires visual
learning with at least hundreds of cases of samples (Clark et al.,
2012). A few real-world visual expertise models have been used
to study the neural substrate underlying this behavioral expertise
(Rossignoli-Palomeque et al., 2018). Increased level of activation
was found in the left superior frontal gyrus and left cingulate
cortex in radiologists, which is responsible for better working
memory capability (Haller and Radue, 2005). Harel et al. (2010)
demonstrated enhanced neuronal activity in the right precuneus
of a group of car experts related to better memory retrieval
strategies. Song et al. (2021) reported increased activation in
the right anterior cingulate gyrus, but decreased activation in
the superior parietal lobule in chess players (Song et al., 2020),
which is closely related to improved visual processing and better
attention control. These results derived from cross-sectional
studies demonstrated that real-world visual experience alters
the strength of evoked brain activity across widely distributed
regions, which are supportive of high-order cognitive, such as
attention control, working memory, and memory, and low-order
visual components, such as visual processing (Khader et al., 2005;
Cavanna and Trimble, 2006; Schipul and Just, 2016).

Low-frequency spontaneous fluctuations (0.01–0.1 Hz) of
the restful brain play an important role in maintaining the
ongoing internal brain representations (Oldfield, 1971; Tang
et al., 2010; Evans et al., 2011), which are involved in the coding
of previous experience and support learned skills (Dong et al.,
2014). Particularly, patterns of spontaneous activity within the
resting brain are shaped by experience-dependent changes in
neural plasticity (Chakraborty, 2006). However, less attention
has been paid to analyze how real-world visual experience alters
the patterns of resting-state brain activity using longitudinal
experimental design. In this regard, the baseline spontaneous
neuronal activity reflects cortical excitability (Logothetis et al.,
2001; Boly et al., 2007), and the level of cortical excitability may
smear the spatial patterns of evoked brain activity (Di et al., 2013;
Dong et al., 2015). We propose that the level of baseline brain
activity is fundamentally important; therefore, this study aimed
at investigating how short-term real-world visual experience
modulates baseline neuronal activity in the resting state.

The amplitude of low-frequency fluctuations (ALFF) serves as
an indicator of cortical excitability (Duff et al., 2008). Previous
studies have used ALFF to measure the level of baseline brain
activity in healthy subjects (Yang et al., 2007; Dong et al., 2015).
In our study, a group of 32 radiology interns were recruited
from our collaborative hospital. The resting-state MRI data were
collected before and after 1 month of training in the X-ray
department, and ALFF was calculated to quantify the level of
baseline brain activity. To better capture the subtle changes in
the strength of neuronal activity, a novel but sensitive machine
learning analytical framework, support vector machine (SVM),
was employed (Xu et al., 2019). We expected to see an altered
level of activity in brain regions related to the multidimensional
neurobehavioral component that supports visual recognition,

such as attention control, working memory, memory extraction,
and visual processing (Humphreys et al., 1999). To the best
of our knowledge, this study is the first to investigate baseline
neurodynamic alterations in response to short-term real-world
visual experience using longitudinal experimental design.

MATERIALS AND METHODS

Subjects
The subjects in this study consisted of a cohort group of radiology
interns, who were medical students in the undergraduate
program in national medical schools. They were recruited from
the First Affiliated Hospital of Medical College, Xi’an Jiaotong
University. Thirty-two radiology interns [15 male participants,
age: 22.47 ± 1.02 years old, mean ± standard deviation (SD)].
The participants were aware of the purpose of the study and
the reason why they were recruited. All the subjects are medical
students in the undergraduate program in national medical
schools, and they underwent a 4-week rotation in the First
Affiliated Hospital of Medical College, Xi’an Jiaotong University.
The subjects worked in the X-ray department during the rotation
and reviewed approximately 35 cases per day, 6 days a week. Their
daily training included interpreting X-ray images and drafting
reports for each case. Senior radiologists were assigned to these
interns as mentors and provided response to their clinical reports
each day. The intern radiologists reviewed a minimum of 831
cases during the rotation period, as recorded in the Picture
Archiving and Communication System (PACS). Moreover, all the
subjects had no neurological or psychiatric brain diseases, had no
history of head trauma, and had not taken recreational drugs or
drugs that influence brain function during the time window of
this study (Oldfield, 1971).

Behavioral Tasks
This study employed a longitudinal experimental design, which
is rare in visual expertise studies. Basically, the subjects
underwent the behavioral assessment (including prescreening
tasks and behavioral tasks) and MRI scanning before training,
and behavioral assessment (only behavioral tasks) and MRI
scanning after a 4-week visual training. Note that the purpose
of prescreening and the behavior tasks were different. The
prescreening procedures were conducted before MRI scanning,
aiming to exclude confounding factors such as visual expertise
from other known domains (e.g., cars, chess, birds, and
mushrooms). Specifically, we used questionnaires to ensure that
the subjects had no visual expertise of other known domains,
such as aircrafts, animals, and plants. The behavioral tasks were
conducted after MRI scanning, aiming to quantify the level of
face expertise and radiological expertise, using the Cambridge
face memory test (CFMT) (Duchaine and Nakayama, 2006) and
radiological expertise task (Evans et al., 2011) respectively, as
introduced in our previous studies (Wang et al., 2021; Zhang
et al., 2022).

A standard behavioral task, i.e., radiological expertise task
(Evans et al., 2011), was used to quantify the radiological expertise
of the subjects before and after radiological training. The images
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selected for RET were identical for both tests. Basically, the
subjects were shown 100 standard lung X-ray images and were
asked to render a diagnostic decision (e.g., tumor present or
absent) and prognosis (e.g., malignant vs. benign) for each
image in RET. The 100 standard lung X-ray images were
carefully chosen from the X-ray image library in the Medical
Imaging Department of the First Affiliated Hospital of the College
of Medicine under the guidance of three independent senior
radiologists with more than 15 years of diagnostic radiology
experience. These 100 images used for RET consisted of three
ascending levels of difficulty with a portion of 50, 30, and 20%,
respectively. Each lung X-ray image contained 0∼N nodules, and
there was no mention of a diagnosis unrelated to pulmonary
nodules. Sixty-five X-ray images containing only 1∼3 nodules
were selected as positive cases, and 35 X-ray images without
tumors were selected as negative cases. The pathologies in
the images were carefully examined and reconfirmed by these
three experts. The detailed procedure of CFMT and RET was
introduced in our previous study (Zhang et al., 2022).

MRI Data Acquisition
Before MRI scanning, all subjects underwent complete physical
and neurological examination. Note that, to eliminate the
potential influence of behavioral tasks on central representation,
the behavioral task took place after MRI data acquisition. The
MRI scanning was performed on the 3 Telsa MRI system
(EXCITE, General Electric, Milwaukee, Wisc.) at the First
Affiliated Hospital of Medical College, Xi’an Jiaotong University
in Xi’an, China. To eliminate the time-of-day effect, the scanning
was performed from 8:30 to 12:30 a.m. (Hasler et al., 2014).
A resting scan and a structural scan were conducted. A standard
birdcage head coil was used, along with restraining foam pads to
minimize head motion and to diminish scanner noise. Prior to
the scan, subjects were instructed to close their eyes, keep their
heads still, and stay awake during the scanning process. After
scanning, the subjects would be asked whether they had fallen
asleep during the process.

For the resting MRI scanning, the following parameters
were used. Each volume contains 35 axial slices, scan
duration = 370 s, repetition time (TR)/echo time
(TE) = 2,000 ms/30 ms, field of view = 240 mm, total brain
volume collection = 185, matrix = 64× 64, flip angle = 90◦, voxel
size = 3.8× 3.8× 5.0 mm3, gap = 0 mm, thickness = 4 mm, layer
spacing = 0 mm. The resting-state fMRI scans lasted for 8 min
and 20 s. High-resolution T1-weighted structural imaging data
used 3D magnetization preparation to quickly acquire gradient
echo sequence for acquisition.

MRI Data Preprocessing
Statistical Parametric Mapping (SPM12)1 and the Data
Processing Assistant for Resting-State fMRI (DPARSF 4.5)2

were used for MRI data preprocessing. The first 10 images were
deleted to eliminate non-equilibrium effects of magnetization
and allow the participants to adapt to the experimental

1http://www.fil.ion.ucl.ac.uk/spm
2http://rfmri.org/DPARSF

environment. The images were corrected for the acquisition
delay between slices, motion corrected and co-registered to the
subject’s anatomical images in native space. Two subjects had
head motion exceeding the threshold of 0.2 mm (frame-wise
displacement, i.e., Power FD). For the remaining 30 subjects, a
two-sample t-test was used to verify that there was no significant
difference in head movement between the two groups for
the remaining subjects. Next, all the functional images were
normalized to the MRI space using the deformation field maps
obtained from structural image segmentation, following the
segmentation routine in SPM12. The normalized images were
resampled to 3 mm isotropic voxels, which were then spatially
smoothed with a 6-mm full width-at-half-maximum Gaussian
kernel. Finally, the linear trend was removed (Dale et al., 2000),
and temporal filtering (0.01–0.08 Hz) was performed on the time
series of each voxel to reduce the effect of low-frequency drifts
and high-frequency noise (Zou et al., 2008).

Feature Extraction
Generation of Voxel-Wise Amplitude of
Low-Frequency Fluctuations Map
Resting-State fMRI Data Analysis Toolkit (REST)3 was used to
compute ALFF (Song et al., 2011). ALFF measures the level
of intrinsic or spontaneous neuronal activity in a given voxel
(Jiang et al., 2004). The ALFF serves as an indicator of cortical
excitability (Duff et al., 2008), and the volume of regional cerebral
blood flow is correlated with ALFF in the brain region from
the resting-state data (Li et al., 2012); therefore, it is taken as
the index for the level of baseline brain activity. To calculate
ALFF, after preprocessing, a fast Fourier transform (FFT) was
used to transform from time domain to frequency domain for a
given voxel, and the specific parameters are as follows: the taper
percentage was zero, and the FFT length was set to short. Then,
the square root of the power spectrum at each frequency was
calculated, and the average value was taken in the range of 0.01–
0.08 Hz. The average square root of a given voxel was taken as
ALFF (Jia et al., 2020). To minimize the impact of variability
among participants and reduce noise interference, we divided the
ALFF of a given voxel by the average ALFF value of whole brain
voxels to obtain the standardized value.

Generation of Region-Wise Amplitude of
Low-Frequency Fluctuations Map
The voxel-wise ALFF map was averaged into a region-wise ALFF
map. The Brainnetome atlas was used to divide the ALFF map
into 246 regions of interest (ROIs) (Fan et al., 2016), and the
average ALFF value of each region was obtained by averaging
the ALFF value in this region (Li et al., 2012). Mean ALFF
values from the 246 ROIs then served as the input vector to the
classification procedure.

Feature Selection
Feature selection is necessary in MRI data analysis to avoid
dimension disaster (Mladenić, 2006), reduce training time,
and increase classification performance (Jiang et al., 2004;

3http://rest.restfmri.net
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Dosenbach et al., 2010). A two-stage feature selection
procedure was conducted, identifying features with the highest
discriminative power. For the first-level selection, the paired
sample t-test was performed between the region-wise post-
and pre-training ALFF maps in a leave-one-out fashion. The
combined region-wise features that survived the statistical
threshold (p < 0.05) from each iteration were used as the input
for a second-level feature elimination. Note that the remaining
ALFF was regressed against the outcome of CFMT individually
to remove the confounding effect from other domains of visual
expertise, i.e., face in this study. Second, a recursive feature
elimination-support vector machine (RFE-SVM) approach was
used. This process recursively eliminates the least useful features
until further elimination reduces the accuracy (Ding et al., 2015).
The specific steps were as follows:

1. The training set was regressed against the
outcome of CFMT.

2. The resulting beta-maps were normalized across all brain
feature data between 0 and 1 through normalization
of mean variance.

3. RFE reduced the dimension of features again and used
the classifier itself to discard irrelevant features (Figure 1).
Our implementation of RFE is described by the following
pseudo-code:

a. Input all training samples and class labels, train SVM
classifier, calculate the classification accuracy of the
model accuracy0;

b. Sequentially subtract one feature, inputting the other
into LOOCV-SVM, calculating the classification
accuracyi of the model, finding all accuracyi greater
than or equal to accuracy0, and determining the
corresponding removed feature featurei;

c. Delete these features and update the feature set; and
d. Repeat the above steps until further elimination reduces

the accuracy.

As a result, we were able to identify a set of brain regions of the
highest discriminative power.

Support Vector Machine
Basically, SVM is a binary classification model (Cortes and
Vapnik, 1995). The basic idea is to find the separation hyperplane
with the largest interval in the feature space to make the data
binary classification efficiently (Li et al., 2007). Linear SVM is
often used in neuroimaging data in that it produces interpretable
results (Rasmussen et al., 2011). Therefore, this study adopted
the linear SVM classifier model of soft interval separation and
hinge loss function. LIBSVM toolbox4 was used in this study
(Chang and Lin, 2011).

The leave-one-out cross-validation (LOOCV) was used to
assess the performance of the classifier (Dai et al., 2012). In
LOOCV, each sample was designated as the test sample, while
the remaining samples were used to train the multi-classifier.

4https://ww2.mathworks.cn/matlabcentral/fileexchange/75567-svm-boundary-
libsvm?s_tid=srchtitle_libsvm_4

To quantify the performance of the classifier, according to
the prediction results of LOOCV, the accuracy, sensitivity, and
specificity were defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

where TP, FN, TN, and FP denoted the number of samples
correctly predicted, the number of trained subjects classified
as untrained ones, the number of untrained subjects correctly
predicted, and the number of untrained subjects classified as
trained ones, respectively. In this study, the area under the
curve (AUC) was also used to represent the classification
ability of SVM. A greater AUC value also represented a better
classification ability.

Statistical Analysis
The non-parametric permutation test (Filgueiras et al., 2014) was
used to evaluate the statistical significance of the classification
results. The features with the highest discriminative power were
used in this step, i.e., the 10 features after feature selection. Each
subject was treated as an independent sample. For a given sample,
the label was randomly set to 1/-1 (1: post-training data, -1: pre-
training data), while the label of the testing sample remained
unchanged to determine the outcome of SVM. The procedure
was repeated 1,000 times. Accordingly, the statistical significance
of the original accuracy was calculated as the probability that
the SVM classification result was greater than or equal to the
original accuracy in the 1,000 replacement. The average accuracy
was obtained in all permutations, and the p-value was calculated
as a proportion larger than the average accuracy obtained by
our method. The threshold of p < 0.05 was used to determine
the significance.

Regression Analysis
To assess the relationship between behavioral measurement
and brain activity, Pearson’s correlation analysis was conducted
between alterations in outcomes of CFMT and RET and
alterations in region-wise ALFF. The significance level was
set at p < 0.05 after multiple comparison correction (false
discovery rate, FDR).

RESULTS

Results of Behavioral Tasks
During 1 month of training, the subjects reviewed at least 831
cases (926 ± 73, mean ± SD). As shown in Table 1, after 1
month of training, the performance of the radiologist interns
significantly improved as revealed by higher scores in RET
(p < 0.001, Mann-Whitney U-test) and shorter response time
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FIGURE 1 | The pipeline of data analysis. After the resting-state fMRI data were preprocessed, voxel-wise and region-wise amplitudes of low-frequency fluctuations
were extracted and used for feature selection, which consisted of two steps, including region-wise paired t-test and recursive feature elimination embedded in a
leave-one-out cross-validation framework, resulting in 10 features of highest discriminative power. These features were used for SVM modeling with LOOCV. ALFF,
amplitude of low-frequency fluctuations; RFE, recursive feature elimination; LOOCV, leave-one-out cross-validation.

in RET (p < 0.001, Mann-Whitney U-test). Whereas the level
of face expertise remained the same after 1 month of training
in the domain of radiology (p = 0.19, Mann-Whitney U-test)
(Figure 2).

Performance of Support Vector Machine
After feature selection, 10 features remained corresponding to
the highest accuracy (Figure 1). The classification accuracy of
SVM after LOOCV reached 86.7% (Figure 3A), and the AUC was
0.8244 (Figure 3B). The specificity and sensitivity of SVM after
LOOCV were 80.00 and 83.33%, respectively. The classification

results were tested 1,000 times, and no repetition reached the
classification accuracy of 86.7%. Thus, the statistical significance
was p < 0.001, indicating that the results of our study were
significantly higher than the chance value.

As for the brain regions, 10 regions were identified with
the highest discriminative power, including the left cingulate
cortex (CG_L_7_4), the right cingulate cortex (CG_R_7_2), the
left superior frontal gyrus (SFG_L_7_2), the right precentral
gyrus (PrG_R_6_4), the left precentral gyrus (PrG_L_6_4), the
right superior parietal lobule (SPL_R_5_4), the right superior
parietal lobule (SPL_R_5_1), the left superior parietal lobule
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TABLE 1 | The results of behavioral tasks within the subjects pre-
and post-training.

Pre-training (n = 30) Post-training (n = 30) p-values

Mean SD Mean SD

Cases reviewed N/A N/A 926 73 –

RET 0.61 0.05 0.84 0.04 <0.001

*RT of RET(s) 3.08 0.30 2.53 0.34 <0.001

CFMT 56.90 4.29 57.30 4.67 0.19

Note that the Mann-Whitney U-test was used to investigate group difference
between groups. *Denotes the items showing significant difference between
groups after Mann-Whitney U-test (p < 0.001).
SD, standard deviation; s, seconds; RET, radiological expertise task; RT, response
time; CFMT, Cambridge face memory test.

(SPL_L_5_4), the right precuneus (PCun_R_4_4), and the left
precuneus (PCun_L_4_3) (Figure 4 and Table 2).

Results of Regression Analysis
No significant correlations were found between alterations in the
outcomes of CFMT and RET and alterations in region-wise ALFF
after multiple comparisons.

DISCUSSION

The acquisition of visual expertise requires at least hundreds
of cases of training within a specific domain (Annis and
Palmeri, 2018). In real-world visual learning, several behavioral
components, including high-order cognitive, such as memory
(Viggiano et al., 2006), attention (Rose et al., 2004), and
working memory (Ennaceur, 2010), and low-order visual
factors, such as visual processing (Binder and Desai, 2011),
are required. Existing neuroimaging studies demonstrated
differentiated patterns of brain response in visual experts under
tasks, which are modulated by their accumulated experience in
a given domain. Resting-state spontaneous brain fluctuations
actively encode previous learning experience. However, few
studies have considered how real-world visual experience alters
the level of baseline brain activity in the resting state. This
study aimed to investigate how short-term real-world visual
experience modulates baseline neuronal brain activity in the
resting state using the amplitude of low frequency (<0.08 Hz)
and a group of intern radiologists (n = 32). The resting-state
fMRI data and the behavioral data regarding their level of
visual expertise in radiology and face recognition were collected
before and after 1 month of training in the X-ray department.
A novel machine learning analytical method, i.e., recursive
feature elimination SVM embedded in LOOCV, was used to
identify subtle changes in the level of baseline brain activity
(Figure 1). With a superb classification accuracy of 86.7%
(Figure 3A), the results demonstrated that the left posterior
cingulate cortex (CG_L_7_4), the right anterior cingulate cortex
(CG_R_7_2), the left superior frontal gyrus (SFG_L_7_2),
the bilateral precentral gyrus (PrG_L_6_4 and PrG_R_6_4),
the bilateral superior parietal lobule (SPL_R_5_4, SPL_R_5_1,
and SPL_L_5_4), the bilateral precuneus (PCun_R_4_4 and

PCun_L_4_3) showed highest discriminative power after short-
term visual learning (Figure 4 and Table 2). To the best of
our knowledge, this study is the first to investigate the baseline
neurodynamic alterations in response to real-world visual
experience using longitudinal experimental design. Our findings
may help develop new insights into the neural mechanism
of visual experts and provide new ideas for the cultivation
of visual experts.

Increased Level of Activity in Brain
Regions Supporting Working Memory
Working memory (WM) supports the online maintenance
and manipulation of information without external stimulation
(Baddeley, 1987). The capacity of WM serves as a reliable
predictor for the performance of visual experts (Sohn and Doane,
2004). In this study, after training, the radiology interns had
increased ALFF in the anterior cingulate gyrus, the posterior
cingulate gyrus, and the superior frontal gyrus (Figure 4 and
Table 2). Jonides (2004) reported deactivation in the anterior
cingulate gyrus, which supported increased WM load under
task condition. Duan et al. (2012) found that the activation of
posterior cingulate gyrus was enhanced in professional chess
players in the game, which was related to enhanced requirement
in the WM. Teresa et al. (2018) found increased activation in
the superior frontal gyrus under the visual tasks, which required
online monitoring and manipulation of task-related information.
In sum, all these regions, i.e., the anterior cingulate gyrus,
the posterior cingulate gyrus, and the superior frontal gyrus,
are closely related to the WM process. The increased level of
baseline brain activity in these regions might reflect tuning with
training, which in turn decreases the need for executive control
in the maintenance of task-relevant information. We propose
that these alterations during expertise acquisition might support
more automated encoding and maintenance of objects in their
expert domain, indicating a more efficient mechanism subserving
visual expertise.

Decreased Level of Activity in Brain
Regions Underlying Memory Extraction
In our study, compared with the pre-training condition, the
radiology interns had decreased level of ALFF in the bilateral
precuneus (Figure 4 and Table 2). Visual recognition intensively
depends on the retrieval of conceptual knowledge (Binder and
Desai, 2011). The difference in memory extraction predicts
the performance difference between visual experts and novices
(Binder and Desai, 2011). Assaf et al. (2013) reported the
involvement of the right precuneus in memory extraction using
the visual expertise model of car experts. While in the resting-
state study, Duan et al. reported the reduction of default mode
network activity, including left precuneus in the professional
chess players, which is closely related to episodic memory
extraction. In this study, the bilateral precuneus explicated
decreased level of activity after short-term visual training. Given
the fact that the resting-state brain activity is involved in the
coding of expected sensory stimuli (Jin et al., 2017), we propose
that the tuning in these regions is likely to reflect the optimal

Frontiers in Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 90462364

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-904623 May 25, 2022 Time: 8:53 # 7

Su et al. Visual Experience Modulates Baseline Neurodynamic

FIGURE 2 | Results of behavioral tasks pre- and post-training. (A) The level of radiological expertise assessed by the radiological expertise task. The radiology
interns had a significantly greater scores after training compared with scores before training (p < 0.001, Mann-Whitney U-test), indicating improved performance in
visual recognition of radiological images. (B) Response time of radiological expertise task pre- and post-training. The radiology interns had a significantly faster in
behavioral response after training compared with that before training (p < 0.001, Mann-Whitney U-test). (C) The level of face expertise measured by the Cambridge
face memory test. No significant differences were found (p = 0.19, Mann-Whitney U-test). RET, radiological expertise task; RT, response time; CMFT, Cambridge
face memory test. Error bars indicate the standard deviation. * indicats the significant differences between groups (p < 0.001).

FIGURE 3 | Performance of the proposed analytical framework. (A) Ten features corresponding to best classification accuracy. (B) The receiver operating
characteristic curve. The area under the curve is 0.8244, which indicates outstanding performance.

internal coping mechanism that supports the redistribution
of cognitive resources into more demanding brain process
(Fox et al., 2005).

Decrement in the Level of Activity in
Brain Regions Underlying Attention
Control
Visual attention is a critical component in visual recognition,
which facilitates subjects to focus on the target objects in a more
efficient way when dealing with complex visual scenes and gives
priority to the target visual objects to ensure task completion
(Cohen and Lefebvre, 2005). Therefore, the difference in the
brain representation underlying attention control may serve to
distinguish the brain states of experts and novices (Memmert
et al., 2009). In this study, the radiology interns had decreased
ALFF in the superior parietal lobule after training (Figure 4

and Table 2). Reilhac et al. (2013) reported deactivation in
the right superior parietal lobules, which was closely related
to visual attention in radiologists. Ouellette et al. (2020) also
found deactivation in the left SPL in radiologists, which was
attributed to more efficient control of visual attention supported
by accelerated eye-tracking data. We propose that decreased
ALFF in SPL also reflects a similar trend. After visual training,
the attention control is more efficient, which gives the subjects
more flexibility in manipulating attentional resources, so that the
resource allocated to attention before training might be allocated
later to other brain regions supporting more demanding tasks.

Enhanced Level of Activity in Brain
Regions Supporting Visual Recognition
In our study, the bilateral precentral (the PrG_L_6_4 and
the PrG_R_6_4) showed enhanced ALFF after short-term
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FIGURE 4 | Brain regions with highest discriminative power pre- and post-training. The color bar indicates the weight of the feature. Note that positive weights refer
to higher level of ALFF after training, and negative weights refer to lower level of ALFF after training. CG, cingulate cortex; SFG, superior frontal gyrus; PrG, precentral
gyrus; SPL, superior parietal lobule; PCun, precuneus; L, left; R, right.

TABLE 2 | Brain regions that show highest discriminative power pre- and post-training.

Cognitive component Labels Brain region Brodmann area Hemisphere Weight

Working memory CG_L_7_4 Posterior cingulate cortex BA23 L 0.59

CG_R_7_2 Anterior cingulate cortex BA24 R 0.99

SFG_L_7_2 Superior frontal gyrus BA8 L 0.26

Memory PCun_L_4_3 Precuneus - L -0.85

PCun_R_4_4 Precuneus BA31 R -1.02

Attention control SPL_L_5_4 Postcentral area BA7 L -0.55

SPL_R_5_4 Superior parietal lobule BA7 R -0.92

SPL_R_5_1 Postcentral area BA7 R -0.54

Visual processing PrG_L_6_4 Precentral gyrus BA4 L 0.12

PrG_R_6_4 Precentral gyrus BA4 R 0.44

Note that positive weights refer to higher level of ALFF after training, and negative weights refer to lower level of ALFF after training.
L, left; R, right.

visual training (Figure 4 and Table 2). Activations were
found in the bilateral anterior central gyrus when visual
stimuli were shown to subjects (Marks et al., 2019) and the
level of brain activity increased with the number of stimuli
(Mechelli et al., 2014). Studies using car experts reported
an increase in gray matter volumes in this region (Gilaie-
Dotan et al., 2012) and an increased level of evoked brain
response to expertise-related visual stimuli in this region
(Bentin, 2010). We suggest that our finding also reflects similar

changes, but the exact nature of the alteration remained
to be elucidated.

LIMITATIONS

Several issues should be mentioned when the findings from
this study are considered. First, the sample size is not optimal.
Given the longitudinal design and the COVID pandemic, the
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current size is the best that can be achieved. Second, given
the ratio between the number of discriminative features and
the number of samples, this study faced an overfitting issue,
which is quite common in MRI studies using a machine learning
analytical framework. But it should be noted that three steps
were taken to minimize the possibility of overfitting in our study.
Particularly, a region-wise feature extraction strategy was used,
which decreased the number of features from tens of thousands
to 246. Then, a two-step feature selection was conducted, which
decrease the number of features from 246 to 25. At last, an RFE-
SVM analytical framework was employed to cut off the number
of features to an optimal level, resulting in 10 features, i.e., 10
brain regions. Taken together, we do recommend further studies
to repeat the current findings using larger samples. Third, for
the behavioral tasks, only visual tasks were used. Tasks for WM,
visual attention, and memory should be taken into consideration
in future studies.

CONCLUSION

Our results suggest that real-world visual experience alters
the resting-state brain representation in multidimensional
neurobehavioral components, which are closely interrelated with
high-order cognitive and low-order visual factors, i.e., attention
control, WM, memory, and visual processing. We propose that
our findings are likely to help foster new insights into the neural
mechanisms of visual expertise.
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Multi-modal magnetic resonance imaging (MRI) is widely used for diagnosing brain

disease in clinical practice. However, the high-dimensionality of MRI images is challenging

when training a convolution neural network. In addition, utilizing multiple MRI modalities

jointly is even more challenging. We developed a method using decomposition-based

correlation learning (DCL). To overcome the above challenges, we used a strategy to

capture the complex relationship between structural MRI and functional MRI data. Under

the guidance of matrix decomposition, DCL takes into account the spike magnitude of

leading eigenvalues, the number of samples, and the dimensionality of the matrix. A

canonical correlation analysis (CCA) was used to analyze the correlation and construct

matrices. We evaluated DCL in the classification of multiple neuropsychiatric disorders

listed in the Consortium for Neuropsychiatric Phenomics (CNP) dataset. In experiments,

our method had a higher accuracy than several existing methods. Moreover, we found

interesting feature connections from brain matrices based on DCL that can differentiate

disease and normal cases and different subtypes of the disease. Furthermore, we

extended experiments on a large sample size dataset and a small sample size dataset,

compared with several other well-established methods that were designed for the multi

neuropsychiatric disorder classification; our proposed method achieved state-of-the-art

performance on all three datasets.

Keywords: multi-modal, decomposition-based, matrix decomposition, canonical correlation analysis,

neuropsychiatric disorders

1. INTRODUCTION

Many neuropsychiatric disorders (NDs) not only result in a huge socioeconomic burden but are
also accompanied by several comorbidities (Kessler et al., 2012). Although NDs arise from physical
defects or injuries, they are usually considered a chronic course of mental disease, resulting in
the collapse of an understanding of the real world, cognitive problems, and persistent damage
(Heinrichs and Zakzanis, 1998). Diagnosis of NDs is important for tracking the development of
the disease and for choosing and evaluating the effects of an intervention such as drug treatment.
Furthermore, subtyping an ND can help in personalizing treatment. As a result, increasing
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attention has been paid to the identification of the subtypes of
the ND, such as schizophrenia (SZ), bipolar disorder (BD), and
attention deficit hyperactivity disorder (ADHD). However, it is
difficult to distinguish these subtypes due to a lack of standard
clinical criteria (McIntosh et al., 2005; Strasser et al., 2005; Finn
et al., 2015; Liu Z. et al., 2018; Hu et al., 2019; Lake et al., 2019;
Jiang et al., 2020).

Multi-modal magnetic resonance imaging (MRI) is a useful
tool for clinical diagnosis of ND. It can provide information
on different aspects of the brain. Functional MRI (fMRI)
can be used to analyze the functional connections (FCs)
between different brain regions. These FCs reveal individual
differences in neural activity patterns, which can predict
continuous phenotypic measurements (Dubois and Adolphs,
2016; Rosenberg et al., 2018; Hu et al., 2021). On the other
hand, structural MRI (sMRI) reflects the location, volume,
and lesions of brain tissue (McIntosh et al., 2005; Liu et al.,
2019), in addition to providing information about structural
connections among brain regions (Wang et al., 2009). A number
of MRI studies have been conducted on ND classification,
including Alzheimer’s disease (Fan et al., 2020), ADHD
(Connaughton et al., 2022), SZ (de Filippis et al., 2019), BD
(Madeira et al., 2020), depression (Han et al., 2019), and
autism (Rakić et al., 2020). However, most of these studies
focus only on one type of MRI image or one type of ND.
They overlook complementary information, resulting in lower
classification accuracy.

Compared to natural image studies, the limited number
of medical MRI samples is a challenge for the state-of-the-
art convolutional neural networks and graph convolutional
networks (Yu et al., 2019; Willemink et al., 2020). In particular,
the high-dimensionality of MRI and nonlinear relations between
the matrices of MRIs pose challenges for these machine learning
methods. In addition, the imaging principles of sMRI and fMRI
are different, and there is no direct correlation between them.
Exploring the relationship between them is itself challenging.

Previous multi-modal MRI studies have demonstrated the
potential of a multi-modal fusion approach in studying the
relationship between fMRI and sMRI images (Qiao et al., 2019;
Gao et al., 2020; Jiang et al., 2021; Mill et al., 2021). For
example, Qiao et al. (2019) proposed a hybrid feature selection
method based on statistical approaches and machine learning.
This method explored the brain abnormalities in SZ using
both fMRI and sMRI images. A multi-kernel support vector
machine (SVM) was used for SZ classification, which was based
on the similarity of the decomposed components from multi-
modal MRI (Gao et al., 2020). Jiang et al. (2021) combined
the multi-dimensional features of sMRI and fMRI to predict
the state of SZ and guide medication. Different modalities
contain complementary information, which can improve the
performance of the model (Jiang et al., 2021; Mill et al., 2021).
However, the poor interpretability of somemodels has become an
issue when identifying significant biomarkers (Olesen et al., 2003;
Seghier et al., 2004). Various strategies are widely used in multi-
modal data analysis, includingmulti-modal canonical correlation
analysis (CCA) (Correa et al., 2010), deep collaborative learning
(Hu et al., 2019), parallel independent component analysis (Liu

et al., 2008), and methods similar to independent component
analysis (Sui et al., 2009; Calhoun et al., 2010; Groves et al., 2011).

Some previous studies have identified a correlation between
fMRI and sMRI images in ND groups (Sui et al., 2011; Qiao et al.,
2019; Su et al., 2020). Therefore, we propose a predictionmethod,
called decomposition-based correlation learning (DCL), for the
multi-modal MRI-based classification of NDs. We first used
the shrinkage principal orthogonal complement thresholding
method (S-POET) (Fan andWang, 2015) to estimate spiked fMRI
and sMRI matrices. Subsequently, in the DCL method, we use
decomposition-based CCA to decompose each pair of matrices
into two common matrices and two orthogonal distinctive
matrices. Finally, we computed the correlation between the
common matrices and the distinctive matrices. We validated
the DCL method on the Consortium for Neuropsychiatric
Phenomics (CNP) dataset. Our results demonstrate that the
proposed DCL model outperforms several other methods. We
also discovered interesting feature connections when identifying
significant features in fMRI data.

The rest of this paper is organized as follows. Section 2
describes the DCL pipeline and provides a quantitative
evaluation of our method. The dataset and experiments in
applying DCL to NDs are presented in Sections 3, 4. A discussion
and analysis of the results are in Section 5. Section 6 concludes
this paper.

2. METHODOLOGY

The DCL pipeline is shown in Figure 1. DCL has three
steps: data processing (feature extraction), S-POET (spiked
covariance matrix estimation), and CCA (canonical correlation
and matrix construction).

2.1. Overview of Principal Component
Analysis (PCA)
Principal component analysis is a powerful tool for feature
extraction and data visualization. PCA can extract principal
components from multivariate data by maximizing the variance
of the features while minimizing the reconstruction error.

Let X ∈ R
m×n be a matrix, where m and n are the size of the

matrix. Hence,

X = [x1, x2, x3, . . . , xm]. (1)

Let X̂ be the average signal, which is defined as follows:

X̂ =
1

m

m∑

n=1

xn. (2)

The normalized vectors are computed by subtracting the average
signal from each training vector. They are defined as follows:

φi = xi − X̂. (3)

These vectors go through PCA. Let C be a covariance matrix:

C =
1

m

m∑

n=1

φnφ
⊤
i . (4)
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FIGURE 1 | Overview of the architecture of the proposed integration model.

2.2. Overview of S-POET
The shrinkage principal orthogonal complement thresholding
method (Fan and Wang, 2015) is a covariance estimator with an
approximate factor model. It is based on sparse PCA. Feature
matrices from fMRI and sMRI data are input into S-POET,
which calculates an asymptotic first-order distribution for the
eigenvalues and eigenvectors of the sample correlation matrices.

Specifically, let k be the number of datasets and n be the
number of samples in the k-th dataset. A high-dimensional
dataset can be written as matrix X̃ ∈ R

pk×n. In our experiment,
we have two matrices, one from fMRI and one from sMRI, so we
set k = 2. pk is a row, which corresponds to a mean-zero variable.
S-POET constructs X̃k, which is the estimate of matrix Xk. Before
defining X̃k, we let the full singular value decomposition of Yk be
as follows:

Yk = Vk1λykV
⊤
k2, (5)

where Vk1 and Vk2 are two orthogonal matrices. λyk is a
rectangular diagonal matrix whose singular values on the main
diagonal are arranged in descending order. X̃k is a matrix:

X̃k = V
[:,1 : rk]
k1

diag(̂σ S
1 (Yk), . . . , σ̂

S
rk
(Yk))(V

[:,1 : rk]
k2

)⊤, (6)

σ̂ S
l (Yk) =

√
max{σ 2

l
(Yk)− τkpk, 0}, (7)

τk =

pk∑

l=rk+1

σ 2
l (Yk)/(npk − nrk − pkrk), (8)

where r̃k = rank(X̃k) and r̃k = rk.
We summarize the S-POET method in Algorithm 1.

Algorithm 1 | S-POET

Input: X ∈ R
pk×n

Output: X̃k

1: K ← rank cov(X) //Covariance estimator
2: p, n← shape(X)
3: V , S,Ut ← SVD(X, fullmatrices = False)
4: S← diag(S)
5: Lambda← S ∗ ∗2/n //lambda expression
6: c̃← Sum(Lambda.diagonal()[K :])/(p− K − p ∗ K/n)
7: Lambdas ← Maximum(Lambda[:K, :K]− c̃ ∗ p/n, 0)
8: X̃k ← V[:, :K]@ Sqrt(Lambdas ∗ n)@Ut[:K, :]
9: return X̃k, Lambdas, V[:, :K], K

2.3. Overview of CCA
Canonical correlation analysis is a multivariate statistical analysis
method. It determines the overall correlation between two groups
of indicators. We use CCA to examine the cross-covariances of
multi-modal MRI data.

Let X̃1 ∈ R
n×r and X̃2 ∈ R

n×s be two matrices, where n is the
number of samples, and r and s are the feature sizes of the two
matrices, respectively. CCA is used to find two coefficient vectors
v1 ∈ R

r×1 and v2 ∈ R
s×1 by optimizing the Pearson correlation

between X̃1v1 and X̃2v2, which is defined as follows:

(v∗1 , v
∗
2) = argmax

v1 ,v2

v′1812v2, (9)

where v′1811v1 = 1, v′2822v2 = 1, v1 ∈ R
r×1, v2 ∈ R

s×1, and
8ij = X̃′iX̃j. X̃1v1 and X̃2v2 are two identified canonical vectors,
both of which are linear combinations of raw features in the
original data, X̃1 and X̃2, respectively. X̃1v1 and X̃2v2 facilitate
the interpretation of multi-omics associations by reducing the
dimensionality (X̃1v1, X̃2v2 ∈ R

n×1). We use Equation (9) as a
constraint, and v′1812v2 can be used as the cross-data correlation,
i.e.,

v′1812v2 =
v′1812v2√

v′1811v1v
′
2822v2

.

Canonical correlation analysis is used to guarantee the highest
total correlation of the pair-wise independent canonical vectors,
which is defined as follows:

(V∗1 ,V
∗
2 ) = argmax

V1 ,V2

trace(V ′1812V2), (10)

where V ′1811V1 = V ′2822V2 = In, V1 ∈ R
r×k, V2 ∈ R

s×k, and
k = min[rank(X̃1), rank(X̃2)]. Since811 and822 may be singular
when calculating the loading vectors, matrix regularization is
usually enforced on them to ensure that they are positive definite:

8̂11 = 811 + r1Ir ,

8̂22 = 822 + r2Ir .
(11)
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2.4. Decomposition-Based Correlation
Learning
Let X1 and X2 be paired matrices of fMRI and sMRI, which
are the input of S-POET methods. We use the DCL method to
decompose this pair of matrices into two common matrices and
two orthogonal distinctive matrices. Then, we collect these two
types of matrices into a common matrix (Ck) and a distinctive
matrix (Dk), respectively. Based on the output (X̃k) of S-POET, we
use X̃k to develop two estimators for Ck and Dk. First, we define
the common variable cbase as follows:

cbase ∝ n−1 argmax
w∈(l20 ,cov)

{corr2(X1,w)+ corr2(X2,w)}, (12)

where the constraints X1 = C1 + D1, X2 = C2 + D2,
corr(D1,D2) = 0, and cbase ∈ [0, 1].

Then, the estimator of Ck can be defined as follows:

Ĉk = n−1X̃k(V̂
[1 : r12 ,:]
k

)⊤Â
(r12)
C

2∑

j=1

V̂
[1 : r12,:]
k

cbase, (13)

where Â
(r)
C = diag(̂a1, . . . âr), C1 and C2 have the maximum

correlation between each other, while the vectors within each are
uncorrelated and whitened. Their correlation vectors â1, â2,. . . ,
âr are called the canonical correlation coefficients.

The estimator of Dk is defined as follows:

D̂k = X̃k − n−1X̃k(V̂
[1 : r̃12,:]
k

)⊤Â
(̃r12)
C

2∑

j=1

V̂
[1 : r̃12,:]
k

cbase. (14)

In our experiment, we use the relationship between D̂1 and D̂2

to represent the orthogonal relationship between two distinctive
matrices, and D̂1D̂2 = 0p1×p2. Finally, X̂k, the estimator of Xk, is
defined as follows:

X̂k = Ĉk + D̂k. (15)

We summarize DCL in Algorithm 2.

3. METHODS

3.1. CNP Dataset
We evaluated the proposed DCL method in classifying NDs
in the CNP dataset (Poldrack et al., 2016). The CNP dataset
was collected by a consortium at the University of California,
Los Angeles (UCLA), with financial support provided by the
National Institutes of Health. This dataset has been used to
elucidate the association between the human genome and
complex psychological syndromes and promote the development
of new therapies for NDs. All of this research was based on image
phenotypic features in the mental disease.

The consortium for neuropsychiatric dataset was obtained
from the OpenfMRI project (Gorgolewski et al., 2016). It
includes sMRI data, task-based fMRI data, and resting-state
fMRI data. These MRI images were acquired on one of two 3T
Siemens Trio scanners at UCLA. The database contains extensive

Algorithm 2 | DCL

Input: X1 ∈ R
p×n, X2 ∈ R

s×n //Input of sMRI and fMRI,
respectively.
Output: X̂1,X̂2

1: X̃1, Lambda1,U1 ← S-POET(X1) //processed by S-POET
method

2: X̃2, Lambda2,U2 ← S-POET(X2) //processed by S-POET
method

3: Lambda11 ← Construct diag(Lambda1)
4: Lambda22 ← Construct diag(Lambda2)
5: Theta← (Lambda11@U1.T@X̃1)@(X̃2.T@U2@Lambda22)/n
6: Vtheta,Dtheta ← SVD(Theta, fullmatrices = True) //Singular

Value Decomposition
7: Gamma1 ← U1@Lambda11@Vtheta

8: Gamma2 ← U2@Lambda22@Vtheta

9: Amat ← diag(Dtheta) //Diagonal matrix
10: Cbase ← Common variables corr(X̃1, X̃2)
11: C̃1 ← Common matrix (X̃1,Cbase,Amat)
12: C̃2 ← Common matrix (X̃2,Cbase,Amat)
13: D̃1 ← Distinctive matrix (X̃1, C̃1)
14: D̃2 ← Distinctive matrix (X̃2, C̃2)
15: X̃1 ← Combination of common and distinctive matrices
16: X̃2 ← Combination of common and distinctive matrices
17: return X̂1, X̂2

details of neuropsychologic assessments, neurocognitive tasks,
and demographic information (including biological sex, age, and
education). In addition, there are also details of the medication
taken by those in ND groups.

The present study includes 272 images of subjects in one of
four categories: 130 healthy controls (HCs), 50 SZ subjects, 49
BD subjects, and 43 ADHD subjects. These 272 images were from
people in the Los Angeles area aged between 21 and 50 years
old who were recruited through community advertisements. The
details of the CNP dataset are listed in Table 1.

3.2. Brain Connectivity Data
Brain connectivity information may be reflected in fMRI images.
In the CNP dataset, each sample has seven fMRI modalities,
which were collected during different task states: BOLD contrast,
resting state (with physiological monitoring), breath-holding
tasks (with physiological monitoring), balloon analog risk tasks,
stop-signal tasks, task switching, and spatial working memory
capacity tasks. In this study, we attempted to classify NDs using
resting-state fMRI images.

Resting-state fMRI is an imaging technique that obtains a
brain activity function map when the subject is in a resting state
undisturbed by other activities, which is better for distinguishing
ND groups. The CNP dataset has resting-state fMRI images with
scans lasting 304 s. The participants were relaxed with their eyes
open. They were not stimulated or asked to respond during
scanning (Poldrack et al., 2016). The fMRI data were collected
under the following parameters: the slice thickness was 4mm, 34
slices were taken, TR was 2 s, TE was 30ms, the flip angle was 90◦,
the matrix size was 64 × 64, the field of view was 192mm, and
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TABLE 1 | Details of the Consortium for Neuropsychiatric Phenomics (CNP) dataset.

ID Subtype Number Details

0 Healthy controls (HC) 130 –

1 Schizophrenia (SZ) 50 Disorganized, paranoid, or residual types

2 Bipolar disorder (BD) 49 Most recent hypomanic or manic episode, mild or moderate

3 Attention deficit hyperactivity disorder (ADHD) 43 Predominantly inattentive, combined, or predominantly hyperactive-impulsive types

the orientation was an oblique slice. In addition, high-resolution
anatomical MP-RAGE data were collected under the following
parameters: TR was 1.9 s, TE was 2.26ms, the field of view was
250mm, the matrix size was 256 × 256, the slices were in the
sagittal plane, the slice thickness was 1mm, and 176 slices were
taken. We excluded 24 samples for which the whole-brain image
volumes were unavailable or the head had moved excessively.
Finally, we had 248 samples.

Before subsequent experiments, we preprocessed the fMRI
data according to Gorgolewski et al. (2017), including slice
timing, head motion corrections, spatial smoothing, band-pass
filtering (0.01–0.1 Hz), nuisance signal regression, and Montreal
Neurological Institute (MNI) space normalization and so on.
Then, we used FSL to skull stripped and co-registered fMRI
to the corresponding T1 weighted volume using boundary
based registration with 9 degrees of freedom implemented in
FreeSurfer. Finally, we obtained the functional connectivity
matrix of the brain through the following steps: first, we used
the BioImage Suite (Joshi et al., 2011) to calculate connectivity
matrices for the fMRI images. We then used the Anatomical
Automatic Labeling 90 (AAL90) brain atlas, which divided the
brain images into 90 regions. The Pearson correlation coefficient
was used to calculate the node values. The Fisher transformation
was used to normalize the z scores. Finally, we obtained a
90 × 90 symmetric connectivity matrix for each sample. These
connectivity matrices were not thresholded or binarized.

3.3. Brain Structure Data
Structural MRI are also used as inputs to the DCL
method. It was obtained with the same parameter values
used for the fMRI images. We used the open-source
software FreeSurfer to process and analyze these sMRI
images. FreeSurfer is used to analyze and visualize cross-
sectional structural images. It can be used for stripping
the skull, correcting the B1 bias field, registering an image,
reconstructing the cortical surface, and estimating the
cortical thickness.

We used FreeSurfer to generate high-precision gray and
white matter segmentation surfaces and gray matter and
cerebrospinal fluid segmentation surfaces. From these two
surfaces, we calculated the cortical thickness and other surface
features, such as the cortical surface area, curvature, and gray
matter volume. Overall, there were 248 subjects, we obtained
2,196 features from the sMRI image of a subject. Finally, we
constructed a 248 × 2, 196 matrix from the sMRI image of
248 subjects.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Design and Metrics
In our experiments, we focused on two aspects of brain
connectivity: (1) classifying NDs into different subtypes using
fMRI and sMRI data and (2) extracting important features
from the fMRI and sMRI images. The classification task was to
validate the performance of the DCLmethod for the different ND
groups, whereas the feature extraction task was used to assess the
capability of the method in detecting correlated features.

We obtained the correlation matrices by inputting the 248
fMRI (90 × 90) and sMRI (248 × 2196)matrices into S-POET.
Then, we decomposed each pair of canonical matrices and
computed their correlations. Finally, we used the leave-one-out
(LOO) method to select the important features in the test sample
matrix. For a dataset with n samples, verification based on LOO is
carried out over n iterations. In each iteration, the classifier uses
n− 1 samples as training samples and uses the remaining sample
as testing samples.

In our experiments, accuracy (ACC), precision (PRE), recall
(REC), and F-score (F1) are used to measure the classification
performance. They are defined as follows:

ACC =
TP+ TN

TP+ TN+ FP+ FN
,

PRE =
TP

TP+ FP
,

REC =
TP

TP+ FN
,

F1 = 2
PRE× REC

PRE+ REC
,

(16)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is
the number of false negatives. The values of these metrics were
obtained from a LOO-based cross-validation.

Our experiments were implemented in Python on an NVIDIA
Titan X Pascal CUDA GPU processor.

4.2. LOO Classification Method
We compared the performance of the DCL method with other
methods: SVM, random forest (RF), XGBoost, PCA+SVM,
PCA+RF, PCA+XGBoost, CCA+SVM, CCA+RF, and
CCA+XGBoost. The linear kernel in the SVM classifier was
used, as it provides better experimental performance than other
kernels. As a trade-off between performance and computational
cost, we set the number of trees in RF to 100. To prevent
overfitting by XGBoost, we set the maximum tree depth for base
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TABLE 2 | Mean values in the evaluation of the classification performance on the

CNP dataset.

Classifier ACC (%) PRE (%) REC (%) F1 (%)

SVM 38.00 (4.00) 40.00 (10.00) 39.00 (5.00) 37.00 (6.00)

RF 41.00 (10.00) 32.00 (11.00) 42.00 (7.00) 35.00 (9.00)

XGBoost 45.00 (6.00) 32.00 (9.00) 46.00 (4.00) 36.00 (5.00)

PCA+SVM 46.00 (2.00) 43.00 (7.00) 50.00 (7.00) 40.00 (3.00)

PCA+RF 47.00 (9.00) 49.00 (7.00) 46.00 (6.00) 44.00 (3.00)

PCA+XGBoost 49.00 (11.00) 45.00 (8.00) 49.00 (8.00) 45.00 (7.00)

CCA+SVM 45.00 (9.00) 42.00 (18.00) 49.00 (15.00) 38.00 (12.00)

CCA+RF 47.00 (13.00) 48.00 (11.00) 48.00 (10.00) 43.00 (10.00)

CCA+XGBoost 49.00 (8.00) 46.00 (14.00) 49.00 (12.00) 44.00 (14.00)

DCL+SVM 64.00 (9.00) 69.00 (7.00) 66.00 (6.00) 65.00 (8.00)

DCL+RF 68.00 (10.00) 73.00 (3.00) 72.00 (4.00) 72.00 (4.00)

DCL+XGBoost 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)

learners and the turning parameter for the L2 regularization
term to 10 and 5, respectively. In the experiments, SVM, RF,
and XGBoost use concatenated fMRI and sMRI matrices as
their input, while the fMRI and sMRI matrices input to the
other methods were first processed by the PCA, CCA, or
DCL methods.

The classification results for the DCL method and the
other classifiers are shown in Table 2. Each experiment
was verified with 10-fold cross-validation. The conventional
machine learning classifiers (SVM, RF, and XGBoost) had the
lowest accuracy. These classifiers cannot capture distinguishable
information from the union matrix. Compared with SVM,
RF, and XGBoost, the PCA and CCA classifiers achieved
better classification results. The best accuracy for both was
49.00%, which demonstrates that correlation information can be
incorporated to improve the classification. The classifiers based
on DCL had much better performance than those based on
PCA or CCA. The best accuracy was 72.00%. Our proposed
DCL method is a natural extension of the traditional CCA
method. Based on the CCA decomposition, DCL determines
the common and discernibility matrices and establishes an
orthogonal relationship between the two discernibility matrices.

In addition, our comparative experiment was based on a
sample size of 248. As shown in Table 2, we used three typical
machine learning methods (SVM, RF, and XGBoost) as the
baseline. The performance of these three machine learning
methods was very different from that based on the PCA, CCA,
or DCL methods. There are two reasons:

1. Machine learning methods can be effective for classifying
simple images, but because medical images are very complex,
these three machine learning methods were overwhelmed.

2. The limited sample size does not meet the training
requirements of the three machine learning methods. The
multi-class classification task increased the imbalance for
the samples, making it difficult for these methods to
obtain key feature information from the high latitude and
limited samples.

Therefore, unlike the other methods, the DCL method first
preprocesses the complex relationship between the sMRI and
fMRI data, which reduces the complexity of the input data.
Table 2 shows that, despite the limited sample size, DCL can
better deal with the relations in high latitude data and improve
the performance of machine learning.

Of the DCL-based classifiers, XGBoost had the best results in
the multi-class classification task. The best accuracy was 72.00%.
The receiver operating characteristic (ROC) curves for XGBoost
in multi-class classification is plotted in Figure 2. The areas
under the micro-averaged and macro-averaged ROC curves in
Figures 2B,C aremuch larger than those in Figure 2A. Moreover,
the areas under the curves for the four subtypes in Figures 2B,C

are much larger than those in Figure 2A. These results indicate
that the correlation information obtained by PCA or CCA can
improve the performance of a classifier. The classification results
for DCL are much better than those for PCA or CCA. The
areas under all the ROC curves in Figure 2D are larger than
those in Figures 2B,C. This indicates that our DCL method can
better describe brain connection networks and thus improve the
performance of the classifiers.

4.3. Feature Selection Based on the LOO
Method
Besides assessing the performance of the DCL method, we
also identified the important features with the DCL+XGBoost
method. The aim was to find which edges contribute to brain
connectivity. The extracted features are mapped back into the
brain space, which facilitates the interpretation of the known
relationship between brain structure and function. However,
due to the dimensionality of the connectivity network, the
visualization is challenging. In the LOO method, we used a
weight-based method to evaluate the importance of features
in the test sample matrix. The weight in XGBoost is used to
calculate the number of times a feature is used as a split point
across all trees. Finally, we counted the number of samples whose
feature weights were >0. We visualized the representations of all
important features for both the sMRI and fMRI data.

4.4. Visualization of FCs
It is interesting to investigate how different brain networks
cooperate and connect with each other. We found that
there were significant differences between the FCs of
each group, which indicates that these FCs not only
reflect the information common to the different groups
but also the differences among them. We used the
BrainnetViewer software (https://www.nitrc.org/projects/
bnv/) to visualize which FCs have the strongest relationships in
the brain network.

The first row in Figure 3 is for the HC group, whereas
the second row is for the ND group. Figure 3A shows 3D
plots of the brain network to visualize the selected edges. A
sphere denotes the center of a node. Different colors denote
different brain regions. If two brain regions are functionally
related, they are connected by a colored line. The colors of
the lines indicate the edge strength and whether there is a
positive correlation between the behaviors and the FCs. The
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FIGURE 2 | Receiver operating characteristics (ROC) curves of XGBoosts with different pretreatment methods. (A) XGBoost method is used in classification task.

(B) The PCA-based XGBoost is used in classification task. (C,D) CCA and DCL-based XGBoosts are used in classification task.

brain network visualization has a small number of edges, which
demonstrate the degree of the distribution across the whole
brain network.

The 2D circle plots in Figure 3B are also used to visualize
relationships between pairs of brain regions. The wider the
edge between two regions, the closer their relationship is. These
circle plots indicate how many FCs a region has with other
brain regions.

Figure 3C has mappings of the 90 × 90 connectivity
matrices, which are used to visualize aggregate statistics
within and between predefined regions or networks.
In a connectivity matrix, nodes represent brain regions
and links measure conditional dependence between the
brain regions. Brain connectivity analysis is equivalently
transformed into the estimation of a spatial partial
correlation matrix.

4.5. Analysis of HCs and NDs
In both HC group (the first row in Figure 3) and ND group
(the second row in Figure 3), most of the FCs are common to
both groups. These overlapping FCs are mainly within or across
the temporal lobes or across the frontal, occipital, and parietal
lobes, which confirm the results of previous studies. For instance,
Haier et al. (2005) and Rubia et al. (2007) showed that temporal
lobe dysfunction is strongly correlated with ADHD. Several brain
regions in the frontal, parietal, temporal, and occipital lobes have
been identified as significant predictors of ND (Gaudio et al.,
2019; Zhang et al., 2020).

Furthermore, Figures 3A,B show that there are significant
differences between the FCs of the two groups. Compared with
the HCs, the ND group has abnormal brain regions, mainly in
the supramarginal gyrus, cingulate gyrus, middle frontal gyrus,
etc. Other studies have also found that there are fewer FCs in
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FIGURE 3 | Visualizations of the connectivity of HC and neuropsychiatric disorders (NDs) in different manners on the CNP dataset. The first row and second row show

the HC group and ND group, respectively. (A) Shows the connectivity in glass brain plots. (B) Shows the connectivity in circle plots. (C) Shows the connectivity in

symmetric matrices.

the middle frontal gyrus and anterior cingulate regions in SZ
brains compared to HCs (Camchong et al., 2011; Liu et al., 2011).
However, the FCs in the ND group are more complicated than
those in the HC group, which may be due to their mental illness.
These differences may affect the behaviors and mental states of
the ND group. There are many highlighted cells in the HCmatrix
in Figure 3C, whereas the highlighted cells in the ND matrix are
more dispersed. This also indicates that NDs may affect the FCs
between brain regions.

4.6. Analysis of Different NDs
To study the specificity of subtypes in NDs, we visualized the FCs
of the three ND subtypes in Figure 4. Figure 4A is for all the ND
subtypes. Figure 4B is for the SZ subtype. Figures 4C,D are for
the BD and ADHD subtypes, respectively.

The brain networks clearly suggest that the FCs of these
diseases are very similar, but their differences are also very
obvious. In particular, the FCs in the ADHD plots are obviously
different from those in the SZ and BD plots. This is why
classifying ADHD is usually a separate task in most approaches

to classifying NDs. Moreover, the connections between brain
regions shown in the circle plots in the second column are
obviously different for the three diseases.

4.7. Features Distribution of PCA and DCL
Figure 5 compares the principal components found by the
PCA method with those found by the proposed DCL method.
Figures 5A,B visualize the fMRI and sMRI feature matrices
found by PCA. Figure 5C is the visualization of the combined
featurematrix for the fMRI and sMRI images for PCA. Figure 5D
is the feature matrix produced by DCL.

As shown in Figure 5, the figure shows that the three
distributions of features produced by PCA are disordered
(Figures 5A–C). Although the distributions of the PCA-
processed fMRI and sMRI matrices (Figure 5C) are
relatively concentrated, the four icons of subtypes are still
indistinguishable. It would be difficult for classifiers to distinguish
the features of the four subtypes. In contrast, the distribution of
fMRI and sMRI matrices after DCL processing shows the effect
of aggregation, which is shown in Figure 5D. The features of
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FIGURE 4 | Visualizations of the connectivity of three ND subtypes in glass brain plot graph, circle plot graph, and symmetric matrix graph on CNP dataset. (A)

Shows all the ND subtypes. (B) Shows the SZ subtype. (C,D) Show the BD and ADHD subtypes, respectively.
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FIGURE 5 | Representation of feature distribution on CNP dataset. (A,B) Visualize the fMRI and sMRI feature matrices processed by PCA, respectively. (C) Visualizes

the combined feature matrix for the fMRI and sMRI images processed by PCA. (D) Visualizes the feature matrix produced by DCL. In the legend, 0 represents HC, 1

represents SZ, 2 represents BD, and 3 represents ADHD.

the four subtypes can be clearly distinguished. Therefore, the
performance of a classifier would be greatly improved by using
a feature matrix produced by the DCL method. At the same
time, in order to eliminate the difference in the distribution of
subtypes, we normalized the matrices in the DCL method, so
that the subtypes are distributed in a smaller range.

5. ABLATION EXPERIMENTS AND
DISCUSSION

We proposed the DCL framework to classify psychiatric
disorders using fMRI and sMRI. In this section, we discussed
several factors that influence the experimental results. To
validate the performance of DCL on different size of datasets,
we extended experiments on a larger sample size dataset (a
subset of ADNI) and a small sample size dataset (a subset of
OpenfMRI), respectively.

5.1. Influence of S-POET
The shrinkage principal orthogonal complement thresholding
method is a covariance estimator with the approximate factor
model, which is based on sparse PCA. In our method,
we used the S-POET method to obtain asymptotic first-
order distribution for the eigenvalues and eigenvectors of
the fMRI and sMRI correlation matrices, respectively. To
verify the effect of the S-POET method in our proposed
DCL method, we extended two different DCL methods on
XGBoost: one is based on PCA[DCL(PCA)] and another is based
on S-POET[DCL(S-POET)].

As shown in Table 3, we extended the experiments on CNP
dataset. For both datasets, compared with the DCL(PCA)-
based XGBoost, the DCL(S-POET)-based XGBoost obtained
the super performance. The accuracy was almost improved by
13% on CNP. Although S-POET is obtained by sparse PCA
extension, S-POET is more suitable for sparse high-latitude data.
PCA has widely been proved that it is a powerful tool for
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dimensionality reduction and data visualization. Its theoretical
properties such as the consistency and asymptotic distributions of
empirical eigenvalues and eigenvectors are challenging especially
in the high dimensional regime. While, in the method S-POET,
the spike magnitude of leading eigenvalues, sample size, and
dimensionality of the leading eigenvalues are considered. In
addition, a new covariance estimator is introduced in S-POET
to correct the bias of PCA estimation of leading eigenvalues
and eigenvectors. Therefore, S-POET is more advantageous in
the process of fMRI and sMRI matrices analysis with high
dimensionality and sparse features (Fan and Wang, 2015).
Therefore, in the end, we build the DCL method with S-POET.

5.2. Effectiveness of Different Inputs on
XGBoosts
To verify the influence of different MRI modalities on model,
we separately used fMRI, sMRI, and fMRI+sMRI matrices as
inputs to three types of XGBoosts, namely PCAXGBoost, CCA-
XGBoost, and DCL-XGBoost.

The results are shown in Table 4. The classification results
of three XGBoost-based methods, using a single fMRI or sMRI
matrix as input, are similar. However, the results of using PCA,
CCA, and DCL processed fMRI and sMRI matrices as input
to the XGBoost classifier have greatly improved. Especially for
the DCL-XGBoost method, the accuracy is improved by almost
14% on the CNP dataset. As the two modalities complement
each other, their combination results in higher classification
accuracy. Furthermore, the performance of PCA and CCA-
processed matrices is not as good as when using DCL-processed
matrices as the XGBoost input.

TABLE 3 | Influence of shrinkage principal orthogonal complement thresholding

method (S-POET) on XGBoost with CNP dataset.

Method ACC (%) PRE (%) REC (%) F1 (%)

DCL(PCA) 59.00 (5.00) 60.00 (9.00) 61.00 (11.00) 59.00 (7.00)

DCL(S-POET) 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)

5.3. Influence of Medication Taken
Some patients in the ND group had taken medication for their
mental illness. To analyze the impact of these medications on
the patients, we visualized the selected FCs for a group who
had taken medication and for a group who had not. There are
significant differences between these two groups, as shown in
Figure 6. Figure 6A shows NDs without medication. Figure 6B
shows NDs with medication. The representations of the FCs over
the whole brain are similar, but for the group who had not used
medication, there are more edges over the boundary of the brain.
This may be due to the fact that some FCs are interrupted by
the patient taking certain medication, resulting in remission or
deepening of mental illness.

5.4. Extend Experiments
To verify the performance of DCL on different datasets, we
extended experiments on a larger sample size dataset (a subset of
ADNI) and a small sample size dataset (a subset of OpenfMRI),
respectively. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Carrillo et al., 2012) is a large dataset including
Alzheimer’s disease (AD) and mild cognitive impairment (MCI).
We selected a subset of the ADNI dataset to evaluate our

FIGURE 6 | Visualizations of the connectivity of NDs who took medicine or not

in the glass brain plot graph on the CNP dataset. (A) Shows NDs without

medication. (B) Shows NDs with medication.

TABLE 4 | Evaluation of different inputs to the different combinations of XGBoost on the CNP dataset.

Method Input ACC (%) PRE (%) REC (%) F1 (%)

PCA+XGBoost fMRI 38.00 (7.00) 35.00 (4.00) 36.16 (3.00) 33.00 (2.00)

sMRI 37.00 (8.00) 35.00 (3.00) 36.00 (10.00) 32.00 (9.00)

fMRI+sMRI 49.00 (11.00) 45.00 (8.00) 49.00 (8.00) 45.00 (7.00)

CCA+XGBoost fMRI 36.00 (10.00) 34.00 (4.00) 36.00 (7.00) 35.00 (8.00)

sMRI 38.20 (1.00) 37.06 (7.00) 35.00 (9.00) 36.00 (4.00)

fMRI+sMRI 49.00 (8.00) 46.00 (14.00) 49.00 (12.00) 44.00 (14.00)

DCL-XGBoost fMRI 56.00 (2.00) 58.00 (8.00) 60.00 (3.00) 53.00 (9.00)

sMRI 58.00 (6.00) 62.00 (8.00) 52.00 (11.00) 55.00 (6.00)

fMRI+sMRI 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)
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proposed DCL method. This subset includes 420 samples with
sMRI (T1w MRI) and fMRI (rs-fMRI). It consists of 105 subjects
with AD, 105 late mild cognitive impairment (LMCI) subjects,
105 early mild cognitive impairment (EMCI) subjects, and 105
HC subjects. The OpenfMRI Poldrack et al. (2013) was designed
to serve as a repository for the open sharing and dissemination
of task-based fMRI data. As it has grown, it has broadened to
encompass other data types as well, including EEG, MEG, rs-
fMRI (fMRI), and diffusionMRI (sMRI), which were acquired on
both healthy and clinical populations. We selected a small subset
of OpenfMRI dataset with the resting state. This subset includes
93 samples with sMRI and fMRI. It consists of 20 HC subjects, 16
BD subjects, 28 SC subjects, and 29 ADHD subjects.

In our study, the subsets of ADNI and OpenfMRI are used
as the external datasets to evaluate the performance of DCL.
The data processing steps followed the manner in Section 3. The
experimental design and metrics follow the design in Section 4.
The classification results of this subset are show in Table 5.
We also used three typical machine learning methods (SVM,
RF, and XGBoost) as the baseline. As shown in Tables 5, 6,
the accuracy trend of the experimental results is similar to
that in Table 2. The DCL-based classifiers achieve much better
classification results, which further proves that the DCL method
can reduce the complexity of the data by preprocessing the two
types of MRI, thereby improving the classification performance
of the classifiers. By comparing Tables 2, 5, 6, it can be found
that the classification results of the three classifiers on the
subset of ADNI achieve the best performance and that on
the subset of OpenfMRI achieve the worst performance. In
addition to the reasons for the samples themselves, in these
three datasets, the subset of ADNI has the largest sample
size, which can lead to better training and prediction of the
machine learning methods. While the subset of OpenfMRI has
the smallest sample size, which limits the training and prediction
of the machine learning methods. Furthermore, in the case of a
limited sample size on the subset of OpenfMRI, the performance
of DCL-based methods got obvious advantages compared to
other methods.

We compared DCL+XGBoost with several other well-
established methods that were designed for the multi
neuropsychiatric disorders classification: mMLDA (Janousova
et al., 2015), MFMK-SVM (Liu J. et al., 2018), KFCM (Baskar
et al., 2019), MK-SVM (Zhuang et al., 2019), and mRMR-
SVM (Zhang et al., 2021). These methods used one or
both types of MRI data as input of the model for multi
neuropsychiatric disorder classification. These methods were
trained using different datasets and utilize very different
predictive architectures. We either re-implemented them exactly
as described by the authors or used the code released by the
author. To ensure that the comparative evaluation is fair, we used
the same training data and test data for all considered methods
on tree datasets. The results are shown in Table 7, it can be found
that our proposed method achieves state-of-the-art performance
on all three datasets. These methods needed much more feature
selection work and parameter settings, for example, mRMR-SVM
needs mutual selected information as a measure to solve the
trade-off between feature redundancy and relevance (Morgado

TABLE 5 | Mean values in the evaluation of the classification performance on the

subset of Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Classifier ACC (%) PRE (%) REC (%) F1 (%)

SVM 54.00 (8.00) 53.00 (5.00) 59.00 (4.00) 57.00 (7.00)

RF 54.00 (4.00) 52.00 (10.00) 58.00 (4.00) 55.00 (8.00)

XGBoost 55.00 (10.00) 52.00 (15.00) 58.00 (7.00) 56.00 (9.00)

PCA+SVM 60.00 (10.00) 62.00 (4.00) 61.00 (7.00) 60.00 (6.00)

PCA+RF 65.00 (7.00) 61.00 (8.00) 63.00 (10.00) 63.00 (3.00)

PCA+XGBoost 72.00 (3.00) 68.00 (10.00) 73.00 (13.00) 72.00 (9.00)

CCA+SVM 62.00 (10.00) 63.00 (11.00) 65.00 (8.00) 63.00 (7.00)

CCA+RF 62.00 (4.00) 64.00 (3.00) 66.00 (6.00) 62.00 (6.00)

CCA+XGBoost 75.00 (4.00) 73.00 (6.00) 76.00 (7.00) 75.00 (9.00)

DCL+SVM 77.00 (12.00) 78.00 (3.00) 77.00 (9.00) 79.00 (10.00)

DCL+RF 78.00 (6.00) 79.00 (4.00) 78.00 (10.00) 80.00 (13.00)

DCL+XGBoost 80.00 (9.00) 79.00 (9.00) 80.00 (5.00) 82.00 (7.00)

TABLE 6 | Mean values in the evaluation of the classification performance on the

subset of OpenfMRI.

Classifier ACC (%) PRE (%) REC (%) F1 (%)

SVM 33.00 (7.00) 33.00 (3.00) 35.00 (9.00) 34.00 (8.00)

RF 34.00 (6.00) 34.00 (11.00) 33.00 (2.00) 35.00 (7.00)

XGBoost 35.00 (6.00) 35.00 (7.00) 34.00 (9.00) 36.00 (2.00)

PCA+SVM 39.00 (7.00) 38.00 (10.00) 39.00 (10.00) 40.00 (4.00)

PCA+RF 41.00 (2.00) 40.00 (10.00) 41.00 (6.00) 41.00 (13.00)

PCA+XGBoost 43.00 (9.00) 44.00 (8.00) 45.00 (8.00) 42.00 (7.00)

CCA+SVM 43.00 (2.00) 44.00 (5.00) 46.00 (9.00) 45.00 (2.00)

CCA+RF 45.00 (7.00) 46.00 (7.00) 47.00 (3.00) 46.00 (10.00)

CCA+XGBoost 51.00 (14.00) 53.00 (7.00) 56.00 (7.00) 50.00 (5.00)

DCL+SVM 55.00 (6.00) 57.00 (8.00) 56.00 (8.00) 57.00 (6.00)

DCL+RF 62.00 (10.00) 64.00 (3.00) 64.00 (7.00) 63.00 (9.00)

DCL+XGBoost 67.00 (8.00) 69.00 (10.00) 68.00 (9.00) 68.00 (10.00)

et al., 2015). It increases the difficulty of model optimization.
In addition, the performance of these methods improved as the
sample size increased. This means that sample size and model
performance are positively correlated.

5.5. Limitations
There are several limitations to this study. (1) We used only
MRI data as the input. However, the classification of complex
disorders could be made more accurate by including phenotypic
information. (2) The amount and uneven quality of the MRI data
have a significant influence on the performance of a model and
reduce the accuracy of classification.

6. CONCLUSION

This work demonstrated that the DCL method can effectively
combine different information from fMRI and sMRI images.
DCL identifies both the common and distinct information
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TABLE 7 | Comparison results with other methods on tree datasets.

Dataset Classifier MRIs ACC (%) PRE (%) REC (%) F1 (%)

CNP

mMLDA (Janousova et al., 2015) sMRI 65.00 (7.00) 65.00 (6.00) 67.00 (9.00) 64.00 (6.00)

MFMK-SVM (Liu J. et al., 2018) sMRI, DTI 67.00 (9.00) 64.00 (12.00) 65.00 (7.00) 68.00 (9.00)

KFCM (Baskar et al., 2019) sMRI 70.00 (7.00) 71.00 (7.00) 70.00 (6.00) 69.00 (10.00)

MK-SVM (Zhuang et al., 2019) sMRI, fMRI 70.00 (11.00) 75.00 (4.00) 72.00 (4.00) 74.00 (7.00)

mRMR-SVM (Zhang et al., 2021) sMRI, fMRI 71.00 (9.00) 78.00 (7.00) 71.00 (6.00) 72.00 (10.00)

DCL+XGBoost sMRI, fMRI 72.00 (8.00) 81.00 (2.00) 70.00 (3.00) 75.00 (3.00)

ADNI

mMLDA (Janousova et al., 2015) sMRI 70.00 (8.00) 72.00 (8.00) 70.00 (10.00) 69.00 (9.00)

MFMK-SVM (Liu J. et al., 2018) sMRI, DTI 73.00 (9.00) 72.00 (10.00) 74.00 (6.00) 75.00 (7.00)

KFCM (Baskar et al., 2019) sMRI 75.00 (9.00) 74.00 (1.00) 76.00 (4.00) 74.00 (8.00)

MK-SVM (Zhuang et al., 2019) sMRI, fMRI 75.00 (11.00) 74.00 (9.00) 75.00 (8.00) 75.00 (2.00)

mRMR-SVM (Zhang et al., 2021) sMRI, fMRI 79.00 (12.00) 82.00 (10.00) 79.00 (6.00) 81.00 (7.00)

DCL+XGBoost sMRI, fMRI 80.00 (9.00) 79.00 (9.00) 80.00 (5.00) 82.00 (7.00)

OpenfMRI

mMLDA (Janousova et al., 2015) sMRI 54.00 (7.00) 53.00 (10.00) 55.00 (7.00) 53.00 (9.00)

MFMK-SVM (Liu J. et al., 2018) sMRI, DTI 57.00 (5.00) 58.00 (7.00) 56.00 (10.00) 57.00 (6.00)

KFCM (Baskar et al., 2019) sMRI 63.00 (11.00) 64.00 (8.00) 64.00 (4.00) 64.00 (9.00)

MK-SVM (Zhuang et al., 2019) sMRI, fMRI 66.00 (8.00) 65.00 (12.00) 67.00 (8.00) 64.00 (10.00)

mRMR-SVM (Zhang et al., 2021) sMRI, fMRI 67.00 (5.00) 70.00 (7.00) 71.00 (6.00) 72.00 (10.00)

DCL+XGBoost sMRI, fMRI 67.00 (8.00) 69.00 (10.00) 68.00 (9.00) 68.00 (10.00)

between the two input MRI matrices. The decomposition-
based CCA is used to analyze the correlation and construct
the required matrices. Thus, DCL has better performance
in both classification and identifying FCs. The DCL method
can be used to detect complex and nonlinear relationships
between the two types of MRI images. Our experiments
showed that the DCL method can improve classification
performance so that it is a suitable method for classifying
mental illnesses.
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The abnormal iron deposition of the deep gray matter nuclei is related to many
neurological diseases. With the quantitative susceptibility mapping (QSM) technique,
it is possible to quantitatively measure the brain iron content in vivo. To assess the
magnetic susceptibility of the deep gray matter nuclei in the QSM, it is mandatory
to segment the nuclei of interest first, and many automatic methods have been
proposed in the literature. This study proposed a contrast attention U-Net for nuclei
segmentation and evaluated its performance on two datasets acquired using different
sequences with different parameters from different MRI devices. Experimental results
revealed that our proposed method was superior on both datasets over other commonly
adopted network structures. The impacts of training and inference strategies were also
discussed, which showed that adopting test time augmentation during the inference
stage can impose an obvious improvement. At the training stage, our results indicated
that sufficient data augmentation, deep supervision, and nonuniform patch sampling
contributed significantly to improving the segmentation accuracy, which indicated that
appropriate choices of training and inference strategies were at least as important as
designing more advanced network structures.

Keywords: convolutional neural network (CNN), deep learning, medical image segmentation, gray matter nuclei,
quantitative susceptibility mapping, strategically acquired gradient echo (STAGE) imaging

INTRODUCTION

In the last decade, the advent of the quantitative susceptibility mapping (QSM) technique can
achieve the quantitative measurement of brain iron content in vivo (Langkammer et al., 2010; Liu
et al., 2015, 2017). QSM employed the magnetic susceptibility of tissue as the inherent physical
magnetic resonance imaging (MRI) parameter, which indicated how the local magnetic field in
tissues changes when an external magnetic field is applied (Li et al., 2019). Magnetic susceptibility
of tissue can provide unique information of tissue iron composition (Li et al., 2019). Compared
with other iron-sensitive techniques, including the transverse relaxation rates (R2, R2

∗, and R2’),
field-dependent rate increase, phase information from susceptibility-weighted imaging (SWI), and
magnetic field correlation imaging, QSM can overcome the limitations of these techniques, such as
the relatively low accuracy of R2

∗ due to other confounding factors (water content and calcium),
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geometry- and orientation-dependence of phase images, and low
sensitivity to small changes in brain iron (Stankiewicz et al.,
2007; Bilgic et al., 2012; Deistung et al., 2013; Chai et al., 2019).
QSM was more accurate in measuring the iron content and
strongly correlated with the iron concentration of postmortem
brain tissues (Langkammer et al., 2010).

The quantitative measurement of brain iron content using
QSM has brought into focus the role of iron in the brain
development, physical function modulation, and aging (Salami
et al., 2018; Peterson et al., 2019), as well as in various neurological
diseases, including Alzheimer’s disease, Parkinson’s disease,
multiple sclerosis, metabolic diseases (hepatic encephalopathy
and renal encephalopathy), sleep disorders, hematological system
diseases, and cerebrovascular diseases (Chai et al., 2015a; Xia
et al., 2015; Miao et al., 2018; Chai et al., 2019; Valdés Hernández
et al., 2019; Pudlac et al., 2020; Cogswell et al., 2021; Thomas
et al., 2021; Zhang et al., 2021; Galea et al., 2022). As iron has
been proned to accumulate in the gray matter nuclei in normal
people and all these neurological diseases have abnormal iron
deposition in the gray matter nuclei, the gray matter nuclei
are the critical target structures to explore the abnormal iron
deposition. Previous studies have found that routine structural
MR images such as T1-weighted images could hardly show iron-
rich gray matter nuclei clearly, such as substantia nigra (SN), red
nucleus (RN), and dentate nucleus (DN; Beliveau et al., 2021).
Therefore, these nuclei were not found in the most popular brain
atlas, including FreeSurfer, FMRIB Software Library (FSL), and
Statistical Parametric Mapping (SPM). Most segmentation tools
cannot extract these nuclei (Beliveau et al., 2021). However, all
the gray matter nuclei, including SN, RN, and DN, showed the
obvious contrast (high signal) relative to the surrounding brain
tissues in the QSM images because QSM was very sensitive to
the iron, even when the amount was small and QSM can also
enhance the iron-related contrast (Beliveau et al., 2021). The
apparent contrast can help to identify the gray matter nuclei
clearly and accurately. The measurement of iron content needs
to manually outline the volumes of interest (VOIs) of the gray
matter nuclei, which heavily depend on the operator’s experience
and cause some bias (Chai et al., 2022). The manual drawing
of VOIs was also a tedious task and consumed an amount of
time, which limited the wide application beyond research interest.
To date, one study has used the SWI as the target modality
because SWI can provide the enhanced contrast to visualize
the gray matter nuclei compared to the other iron-sensitive
modalities besides QSM and SWI also has a wide range of clinical
applications (Beliveau et al., 2021). However, it was not far from
enough to visualize and segment the nuclei using SWI, and the
quantitative measurement of iron content was also a very critical
step for the clinical evaluation of abnormal iron deposition for
the diagnosis of neurological diseases. Therefore, QSM as the
target modality can provide the enhanced contrast as good as SWI
and directly quantitatively provide the information about iron
content (Liu et al., 2015).

Deep learning has recently been successfully applied in
biomedical image segmentation tasks (Minaee et al., 2021). It
has been shown that, in many medical image segmentation
tasks, such as tumor segmentation (Menze et al., 2015;

Chang et al., 2018), stroke lesion segmentation (Maier et al.,
2017; Liu et al., 2018), and organ segmentation (Gibson et al.,
2018), deep learning methods were able to significantly exceed
the conventional atlas-based methods. Most deep-learning-
based medical image segmentation tasks adopted the U-Net
(Ronneberger et al., 2015) or its variants (Cicek et al., 2016; Chang
et al., 2018; Liu et al., 2018; Meng et al., 2018; Wang et al., 2020).
By introducing dense skip connections between the encoder and
decoder layers, U-Net like structures were able to effectively fuse
the spatial and semantic information even when the training
set was small. To further improve the segmentation accuracy of
U-Net, some modifications at the encoder part or at the skip
connections were proposed in the literature. The modications at
the encoder mainly focused on making the encoders wider (Chen
et al., 2019; Wang et al., 2019; Ibtehaz and Rahman, 2020), so as to
enrich the feature maps from multiple fields of view. At the skip
connections, the modifications were applied by incorporating
various attention mechanisms to guide the decoder to utilize the
most essential features (Oktay et al., 2018; Guo et al., 2021).

When applied to the brain gray matter nuclei segmentation
task, deep learning methods have also been more robust and
accurate than the atlas-based methods (Guan et al., 2021; Chai
et al., 2022). For instance, Chai et al. (2022) proposed a double-
branch U-Net structure for gray matter nuclei segmentation in
the QSM images, which incorporated the local feature maps from
image patches with the original resolutions and the global feature
maps from down-sampled image patches and presented high
accuracy in nuclei segmentation with a light-weighted neural
network. Guan et al. (2021) also developed a segmentation
method known as DeepQSMSeg to segment five pairs of nuclei,
including CN, PUT, GP, SN, and RN in the QSM images,
which incorporated the spatial-wise and channel-wise attention
mechanism into the U-Net architecture.

Most deep-learning methods mainly focused on proposing
novel network architectures, and most of them were developed
based on U-Net. The training strategies, however, were not
emphasized. In this study, we attempted to emphasize not
only the network structures, but also the importance in fine
tuning the networks with appropriate training and inference
strategies. In particular, we adopted a minor modification in the
U-Net by introducing contrast attention (CA) modules at the
skip connections and attempted to improve the segmentation
accuracy without introducing additional network parameters.
Experiments were conducted on two different datasets (Datasets
I and II) with QSM acquired using different MRI sequences
with different imaging parameters from different MRI devices.
Dataset I was randomly split as a training set with 42
subjects and a test set with 20 subjects. The network was
trained on the training set and evaluated on the test set
and Dataset II. Experimental results revealed that on both
datasets, the proposed method was able to overperform the
other popular U-Net-shaped structures, including 3D U-Net
(Cicek et al., 2016), Attention U-Net (Oktay et al., 2018),
and DeepQSMSeg (Guan et al., 2021), which highlighted
the ability of generalization of our proposed method. The
effects of various training strategies were also discussed,
which implied that data augmentation, deep supervision, and
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nonuniform patch sampling were beneficial for improving the
segmentation accuracy.

MATERIALS AND METHODS

Datasets
This prospective study was approved by the Tianjin First
Central Hospital Review Board and Ethics Committee. The
informed consent of all subjects was obtained before the MRI
examination. Our study included two datasets acquired using
different MRI sequences from different MRI devices, Dataset I
with sixty-two healthy subjects (age range 22–60 years, mean
age 37.34 ± 11.32 years; male 24 and female 38) and Dataset
II with twenty-six healthy subjects (age range 54–72 years,
mean age 62.44 ± 4.35 years; male 18 and female 9). All were
enrolled from Tianjin First Central Hospital staff or community
members by advertisement. The inclusion criteria were as follows:
(1) the age of the subjects was 18 years or older; (2) the
subjects had no MRI contraindications, including metal implant,
pacemaker, or claustrophobia; (3) the subjects had no history of
central nervous system diseases, including the cerebral infarction,
cerebral hemorrhage, cerebral tumor, traumatic cerebral injury,
or contusion, which might affect the segmentation of the cerebral
structures. The exclusion criteria were as follows: (1) the subjects
cannot finish the MRI scanning and acquire the available SWI
images and 3D T1-weighted images; (2) the subjects had the
congenital abnormalities and above central nervous system
diseases, which might affect the segmentation of the cerebral
structures; (3) the quality of MRI images was not good for the
post process and analysis.

Dataset I was randomly split into the training set and test set,
with 42 (age range 22–55 years, mean age 36.6± 10.94 years; male
15 and female 27) and 20 subjects (age range 25–60 years, mean
age 38.9 ± 12.22 years; male 9 and female 11), respectively. The
training set was used to train the neural networks, while the test
set was used to evaluate the performance. All subjects in Dataset
II were used for evaluation.

MRI data of Dataset I included SW images and 3D T1W
images and were collected using a 3.0 T MRI scanner (Magnetom
TIM TRIO scanner, Siemens Healthineers, Erlangen, Germany)
equipped with an 8-channel phased-array head coil. The
acquisition parameters of Dataset I were listed as follows: (1) the
parameters of SWI: TR (time repetition)/TE (time echo) = 27/20
ms, number of slices = 56, FoV = 230 mm × 200 mm, voxel
resolution = 0.5 mm × 0.5 mm × 2 mm, corresponding matrix
sizes = 336 × 448 × 56, receiver bandwidth = 120 Hz/pixel, flip
angle = 15◦, and acquisition time = 334 s; (2) the parameters
of 3D T1WI: TR/TE = 1,900/2.52 ms, TI (time inversion) = 900
ms, number of slices = 176, FoV = 250 × 250 mm2, voxel size
= 1.0 mm × 1.0 mm × 1.0 mm, corresponding matrix sizes =
256 × 256 × 176, flip angle = 9◦, and acquisition time = 258 s.
MRI data of Dataset II were collected using another 3.0T MRI
scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany) equipped with a 20-channel phased-array head coil.

The subjects of Dataset II had strategically acquired the
gradient echo (STAGE)-MR angiography and venography

(MRAV) sequence instead of the SWI sequence and also 3D
T1WI. The STAGE-MRAV sequence is a multi-parametric MRI
sequence, which can be post-processed to acquire the QSM
images directly. The acquisition parameters of Dataset II were
listed as follows: (1) the parameters of STAGE sequence:
TR/TE = 20/(2.5, 12.5) ms, matrix sizes = 384 × 288, flip angle =
12◦, number of slices = 64, slice thickness = 2 mm, in-plane spatial
resolution = 0.67 mm × 0.67 mm, FoV = 256 mm × 192 mm,
receiver bandwidth/pixel = 240 Hz/pixel, and total acquisition
time = 368 s; (2) the parameters of 3D T1WI: TR/TE = 2,000/2.98
ms, TI = 900 ms, number of slices = 176, FoV = 256 mm × 248
mm, voxel size = 1.0 mm × 1.0 mm × 1.0 mm, corresponding
matrix sizes = 256 × 248 × 176, flip angle = 9◦, and acquisition
time = 269 s.

Considering that the SWI and QSM images of STAGE-MRAV
and 3D T1WI were acquired using different parameters and
different FoVs, we first registered the T1WI images and the
SWI images or QSM images of STAGE-MRAV using rigid affine
transformation with mutual information as the criterion, and
then resampled the T1WI images using linear interpolation, so
that the T1WI image and its corresponding SWI image or QSM
images of STAGE-MRAV were with the same spatial resolutions
and matrix sizes.

The QSM images were reconstructed from the phase and
magnitude images of SWI by employing the SMART software
(Susceptibility Mapping and Phase Artifacts Removal Toolbox,
Detroit, MI. The QSM images from the STAGE-MRAV sequence
were acquired using the STAGE software (SpinTech Inc., MI,
United States). The postprocessing steps of reconstruction
of QSM have been reported in several studies (Chai et al.,
2015b, 2022; Tang et al., 2020; Zhang et al., 2021). First, the
elimination of the skull and other regions with low signals
was performed using the Brain Extraction Tool (BET) in the
FMRIB Software Library (FSL; Smith, 2002). Second, excluding
the phase wraps in the original phase images was performed
using a 3D best-path algorithm (Abdul-Rahman et al., 2007).
Third, the elimination of the background phase information
was performed using a sophisticated harmonic artifact reduction
for the phase data (SHARP) algorithm (Schweser et al., 2011).
Finally, the reconstruction of QSM images was performed using
the truncated k-space division algorithm with a k-space threshold
of 0.1 (Haacke et al., 2010).

Manual Annotation
The drawing of gray matter nuclei’s volume of interest (VOI)
in the QSM images was performed using the SPIN software
(Signal Processing in Nuclear Magnetic Resonance, Detroit, MI,
United States). The gray matter nuclei in our study included
the bilateral caudate nuclei (CN), globus pallidus (GP), putamen
(PUT), thalamus (THA), red nuclei (RN), substantia nigra (SN),
and dentate nuclei (DN), as shown in Figure 1. These nuclei
showed a high signal in the QSM images. Considering the
personal difference in the shape and size of the nuclei in different
people and in order to assure that the susceptibility values were
assessed as accurately as possible for each subject, the VOIs were
outlined manually on the contiguous slices of gray matter nuclei
to include the whole volume of each nucleus by two well-trained
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FIGURE 1 | The deep gray matter nuclei of interest outlined in the QSM
images.1, CN; 2, GP; 3, PUT, 4, THA; 5, SN; 6, RN; and 7, DN.

neuroradiologists (C.C. and H.Y.W.) with 11 and 6 years of
experience in neuroradiology who were blinded to the clinical
and epidemiological information. When drawing the VOIs of
the nuclei, we also magnified the images to obtain the more
precise margin of nuclei. The topmost and lowermost slices of
nuclei were excluded to eliminate the influence of edge partial
volume effects. The susceptibility values of gray matter nuclei
were presented as mean values and standard deviation.

Proposed Method
In this study, we employed both T1WI and QSM for nuclei
segmentation, so as to utilize the high structural contrast of
T1WI and the enhanced iron-related contrast of QSM. To
better segment the nuclei, a contrast-attention U-Net (CAU-
Net) was proposed for nuclei segmentation. In the classical
U-Net, skip connections were employed to fuse the feature maps
hierarchically with the decoder feature maps. In our proposed
network, the CA module was added at the skip connections to
encourage the network to extract the most prominent features
and pass them to the decoder. As shown in Figure 2, the proposed
CAU-Net employed a U-Net like structure in general, but made
several significant modifications. The detailed hyperparameters,
such as the numbers of filters and kernel sizes, can be found in
Figures 2, 3.

Contrast Attention
U-Net is the most successful network architecture in medical
image segmentation, which fuses high-level and low-level
features by skipping connections to obtain rich contextual
information and precise location information.

Basically, to obtain accurate segmentation results, the network
should be able to utilize both semantic and spatial information.
In the encoder layers of a U-Net, the semantic information is
extracted by many consecutive convolution layers, making it
necessary to down-sample the feature maps to enlarge the FoVs
of the convolution layers. In the decoder part, to recover the
spatial information and generate accurate segmentation, it has
to utilize both the semantic information from the deepest layer
of the encoder and the spatial information from the shallower
layers of the encoder. To generate a fine segmentation map,
contour information and local details of images are meaningful

for semantic segmentation. For instance, high-pass filters, such
as Sobel and Laplacian operators, are widely used to extract the
image’s contour in image signal processing. Therefore, we assume
that it is more important to pass the contour information to the
decoder layers, instead of directly passing all output feature maps
of the encoder layers to the decoder.

To cope with this problem, we added the CA at the skip
connections of the U-Net, which can remove the identical
information and extract the local differential information from
the feature maps. Figure 4 shows the structure of the CA module.
The CA module does not include any parameter, and it is simply
calculated as follows:

Y = X − Avg3(X), (1)

where Avg3(X) denotes the output of the average pooling layer
with kernel size 3 and stride 1. It can be easily seen that the
CA module works as a high-pass filter, which captures the local
differential information and filters out the identical information
from each feature map. It can also be interpreted as an implicit
edge attention module, making the model better distinguish the
edges of different tissues.

Training Strategy
Before training, both the T1WI and the QSM images were
normalized to zero mean and unit variance. The mean and
variance values were calculated on all foreground regions of the
training set. The T1WI and corresponding QSM images were
then concatenated to a dual-channel 3D image.

Due to limited GPU memory, cutting the whole volume
into volumetric patches was necessary and commonly used in
training 3D CNN segmentation networks. In our method, the
whole volume was split into multiple patches with the size
128 × 128 × 32. The patches were randomly sampled while
ensuring that at least 2/3 of the patches were centered at the
foreground voxels.

In our study, the training dataset size was significantly limited.
Deep supervision was adopted to train the millions of network
parameters and force the convolution layers to efficiently extract
valuable features. In particular, a convolution layer with softmax
activation was used at each stage of the decoder to generate a
segmentation map, as shown in Figure 2. The deep supervision
outputs were then up-sampled to the original size and the losses
were computed. All deep supervision losses were summed up
with the loss at the final output with equal weights, and the sum
loss was used to update the network parameters. We used the
same loss function at the deep supervision outputs and the final
output, which was the sum of Dice loss and the cross entropy loss
given as follows:

L
(
y, ŷ

)
=−

7∑
k = 0

∑
i

yi,k log ŷi,k−
7∑

k = 1

2
∑

i yi,k · ŷi,k∑
i yi,k +

∑
i ŷi,k

, (2)

where yi,k ∈ {0, 1} denotes whether the i-th voxel was classified
as the k-th class or not, and ŷi,k denotes the value of the i-th voxel
at the k-th channel of the network output. It is noted that we
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FIGURE 2 | The architecture of our proposed CAU-NET. The red arrows denote maxpooling, and the blue arrows denote the transposed convolution. The black
arrows denote the copying of feature maps. “Concat” denotes the channel-wise concatenation. “ResBlk” denotes the residual block, whose structure is shown in
Figure 3.

FIGURE 3 | Structure of the residual blocks in CAU-Net. Conv, ConvTrans, IN, and LReLU denote the convolution layer, transposed convolution layer, instance
normalization, and Leaky ReLU activation function, respectively. “+” denotes the element-wise addition.

FIGURE 4 | Structure of the CA module. “−” denotes the element-wise
subtraction.

only computed the Dice loss of the foreground voxels because
the numbers of the foreground and the background voxels were
significantly imbalanced.

Sufficient data augmentation is another appropriate technique
in dealing with the small training dataset. In our method, we used
random zooming, random rotation within the range [−30, 30],

TABLE 1 | Data augmentation methods adopted in our proposed method.

Data augmentation method Probability Parameter

Random flipping 0.5 Along with X, Y, and Z axes

Random zooming 0.2 Range: 0.7–1.3

Random rotation 0.2 Range: [−30,30]

Gaussian smoothing 0.1 σ=0.125

Random intensity rescale 0.2 Range: [0.9,1.1]

random flipping, and random Gaussian smoothing to improve
the data diversity. The detailed parameters of data augmentations
are summarized in Table 1.

The network parameters were initialized as suggested by He
et al. (2015). Stochastic gradient descent (SGD) with Nestrov
trick was adopted as the optimizer. The momentum was set to
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FIGURE 5 | Architectures of the comparative structures. (A) U-Net. (B) AU-Net. (C) DeepQSMSeg. AG denotes the attention gate. EA and DA denote the encoder
attention and decoder attention, respectively.

FIGURE 6 | Visualized examples of the segmentations of manual delineation, U-Net, AU-Net, DeepQSMSeg, and our proposed method on the test set of Dataset I.
The segmentation results were overlaid on QSM images.

be 0.99, and the initial learning rate was set to be 0.01. To train
the network parameters sufficiently, we trained the network for
a sufficient number of updates. We defined an epoch as 250
batch iterations and trained the network for 500 epochs. The
learning rate was adjusted after each epoch, and reduced in
a polynomial way.

Inference Strategy
During inference, the patches of matrix size 128 × 128 × 32
were extracted from the image with the overlapping rate
of 0.5. The whole segmentation map was constructed by
combining the segmentations of all patches. Test time
augmentation (TTA) was also adopted to further improve

the segmentation accuracy. The augmentation included four
procedures, namely, augmentation, prediction, disaugmentation,
and merging. During the inference, to avoid introducing
errors on the segmentation maps due to interpolation, we
only used the augmentation methods without requiring
interpolation. In particular, we adopted mirroring along
all 3 axes and rotating ±90◦ and generated 8 augmented
copies of the original image. We predicted on both the
original and the augmented images, and then reverted the
transformations on the predictions. Finally, we merged the
predictions to generate the final prediction. In our study,
we used the soft majority voting method to merge the
multiple predictions.
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Evaluation Metrics
In this study, we adopted both symmetric and surface distance
metrics to evaluate the segmentation performance. In particular,
the symmetric metric we adopted was Dice Coefficient (DC),
which was defined as

DCk = 2 ×

∣∣Pk⋂Gk
∣∣

|Pk| + |Gk|
,

where Pk and Gk denote the regions identified as the k-
th class at the prediction and the ground truth, respectively.
| · | denotes the area. DC measured how similar the two
segmentation maps were.

In addition to DC, we further used surface distance metrics,
including surface Dice Coefficient (SDC), Hausdorff distance
(HD), and average symmetric surface distance (ASSD) to
thoroughly evaluate the segmentation accuracy. These metrics
were calculated based on the measurement of the surface
distances, i.e., the distances between the surface points of the
two segmentation volumes. Similar to the DC, the SDC was also
defined as follows:

SDCk = 2 ×

∣∣A⋂B
∣∣

|A| + |B|
,

where A and B are surface point sets of the prediction and the
ground truth volumes, respectively, and the intersection between
the two sets was measured with a given tolerance. In our study,
we set the tolerance as 1 mm.

The HD measured the maximum distance between two
volume surface points, which was defined as follows:

HD (A,B) = max
(

max
a∈A

min
b∈B

d
(
a, b

)
,max
b∈B

min
a∈A

d
(
a, b

) )
.

To reduce the influence of some rare outliers, we used the 95%
HD, denoted as HD95, which was obtained by measuring the
95th percentile value instead of the maximum value. The ASSD
denoted the average distance between the volume surface points
averaged over both directions, which was given as follows:

ASSD (A,B) =
1
2

(∑
a∈A minb∈B d

(
a, b

)
|A|

+

∑
b∈B mina∈A d

(
b, a

)
|B|

)

Both HD95 and ASSD were given in mm, and the lower, the
better. Unlike DC and SDC, the HD95 and ASSD worked equally
well for large and small objects.

RESULTS

Comparative Methods
To evaluate the performance of our proposed method, we further
trained three other models on the same training set, which were
3D U-Net (Cicek et al., 2016), 3D Attention U-Net (AU-Net;, and
DeepQSMSeg (Guan et al., 2021). The network structures can be
found in Figure 5, and the detailed structures of the attention
modules can be found in their studies.

The U-Net had a similar structure to the CAU-Net, and the
only difference was the absence of the CA modules. On the
other hand, the AU-Net introduced an additive soft attention
mechanism at the attention gates (AGs) at the skip connections
of U-Net. The AG fused the feature maps from the current layer
and the next lowest layer of the network to generate the attention
weights for the most critical positions. DeepQSMSeg was a
network structure specifically designed for nuclei segmentation
from the QSM. It employed the basic encoder-decoder structure
as U-Net, while inserting attention modules between the last
two encoder stages and the first two decoder stages to capture

TABLE 2 | Numerical evaluation results on the test set.

Metric CN GP PUT THA SN RN DN Average

DC U-Net 0.8232 0.8620 0.8582 0.8595 0.7142 0.8271 0.8050 0.8213

AU-Net 0.8128 0.8472 0.8559 0.8563 0.7052 0.8418 0.8056 0.8178

DeepQSMSeg 0.7551 0.8278 0.8137 0.7997 0.6391 0.7966 0 0.6617

Proposed 0.8306 0.8694 0.8629 0.8595 0.7161 0.8465 0.7950 0.8257

SDC U-Net 0.8169 0.8843 0.8596 0.76 0.8588 0.9354 0.8661 0.8544

AU-Net 0.8033 0.8677 0.8584 0.7582 0.852 0.9431 0.8701 0.8504

DeepQSMSeg 0.7167 0.8321 0.7968 0.6533 0.7864 0.911 0 0.6709

Proposed 0.8240 0.8913 0.8675 0.7648 0.8600 0.9515 0.8549 0.8591

ASSD (mm) U-Net 0.5183 0.3272 0.3881 0.5544 0.3794 0.2235 0.3614 0.3932

AU-Net 0.5548 0.3725 0.3972 0.5620 0.3994 0.1934 0.3540 0.4047

DeepQSMSeg 0.7622 0.4693 0.5448 0.8131 0.5503 0.2705 ∞ /

Proposed 0.4995 0.3055 0.3676 0.5505 0.3763 0.1837 0.3992 0.3832

HD95 (mm) U-Net 2.7923 1.6541 1.9375 2.1780 2.1834 1.2474 1.9552 1.9926

AU-Net 2.9685 1.8428 1.9730 2.1899 2.2985 1.1228 2.0141 2.0585

DeepQSMSeg 3.5513 2.3229 2.5590 2.9516 2.9403 1.3858 ∞ /

Proposed 2.6380 1.5405 1.8432 2.1323 2.0489 1.0143 2.1697 1.9124

The most prominent value for each metric is highlighted in bold font. DeepQSMSeg fails in segmenting DN on all subjects.
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the small target structures’ semantic features. In each attention
module of DeepQSMSeg, the channel-wise attention and spatial-
wise attention were consecutively used to exploit both the
channel and spatial relationships, and guide the decoder to
generate a finer segmentation.

In our study, as the U-Net and AU-Net were not specifically
designed for nuclei segmentation, we used the same training
strategy as our proposed one. For DeepQSMSeg, we strictly
followed the training protocol introduced by Guan et al. (2021).

Implementation Setup
The experiments were performed on a workstation with an Intel
Core i7-7700K CPU, 64GB RAM, and Nvidia Geforce GTX
1080Ti GPU with 11GB memory. The workstation operated
on Linux (Ubuntu 18.04 LTS) with CUDA 11.1. The networks

were implemented on PyTorch (Paszke et al., 2019) v1.9.0 and
trained using the framework of monai (MONAI Consortium,
2021) v0.6.0. The MR image files were stored as Neuroimaging
Informatics Technology Initiative (NIfTI) format, and processed
using a Simple Insight Toolkit (SimpleITK; Lowekamp et al.,
2013) v2.1.0. The visualized results were presented using ITK-
SNAP (Yushkevich et al., 2006) v3.8.0.

Results on the Test Set
We evaluated the segmentation performance on the test dataset
with 20 subjects. Figure 6 presents the visualized examples on
a randomly chosen subject. As we can see, U-Net, AU-Net,
and our proposed CAU-Net achieved better performance than
DeepQSMSeg. The DeepQSMSeg failed in identifying DNs on
all subjects. To further compare the results, we presented the

FIGURE 7 | Scatter plot of susceptibility values measured from manual segmentations and automatic segmentations on the subjects of the test set of Dataset I. The
correlation lines are also plotted. For DeepQSMSeg, we omitted the results on DN.
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FIGURE 8 | Visualized examples of the segmentations of manual delineation,
U-Net, AU-Net, DeepQSMSeg, and our proposed method on Dataset II. The
segmentation results were overlaid on QSM images.

DC, SDC, ASSD and HD95 of our interested deep nuclei in
Table 2. To compare the overall performance, the mean value of
the metrics over all 7 nuclei was also presented in the last column.

As we can see from Table 2, our proposed CAU-Net achieved
the best segmentation accuracy on all nuclei except DN. On DN,
our proposed method was slightly worse than AU-Net. Across the
nuclei, all methods achieved lower DC and SDC values on SN.
The main reason was that the DC was more sensitive to small
objects, while ASSD and HD95 were equally sensitive to small
and large objects.

To further show the accuracy in segmenting each nucleus of
each subject, we plotted scatter maps to show the correlations
between the ground truth and the predictions in terms of

the measured susceptibility values, as shown in Figure 7. Our
proposed method presented the highest correlation with the
manual delineations, while the DeepQSMSeg presented the
lowest. As the DeepQSMSeg was originally developed on a large
QSM dataset with 631 subjects, which is much larger than ours,
it did not include as many data augmentation approaches as we
did, and it may lead to the performance reduction compared with
that reported by Guan et al. (2021).

Results on Dataset II
All subjects in Dataset II were used as an additional test set. We
adopted the networks trained on the training set of Dataset I
to generate the segmentation maps on the subjects in Dataset
II. Figure 8 presents some visualized examples. As we can see
from Figure 8, most methods presented good segmentation
accuracy on Dataset II. For DeepQSMSeg, it can still not segment
the DN out, which implies that it may not be able to learn
the features of DN.

To better investigate the segmentation accuracy, the
segmentation metrics are summarized in Table 3. As we can see,
our proposed method achieved the best performance in terms of
mean DC, mean SDC, and mean ASSD. The U-Net performed
the best on HD95, while our proposed CAU-Net had a very
close performance. Our proposed method achieved the highest
segmentation accuracy on CN, GP, PUT, and RN, while U-Net is
the best on THA and DN.

As Dataset II was acquired by using a different machine
with different parameters from the training set, the overall
performance of all methods degraded compared to their
performance on the test set of Dataset I. Interestingly, when
segmenting DN, all methods had better accuracy on Dataset II,
which implies that the QSMs stemmed from STAGE had better
tissue contrast on DN.

The correlations of the measured susceptibility values between
the manual segmentations and the automatic segmentations
are also plotted in Figure 9. As shown in the figure,

TABLE 3 | Numerical evaluation results on the Dataset II.

Metric CN GP PUT THA SN RN DN Average

DC U-Net 0.7694 0.8428 0.8502 0.7920 0.6724 0.7685 0.8472 0.7918

AU-Net 0.7511 0.8507 0.8517 0.7811 0.6949 0.7725 0.8381 0.7914

DeepQSMSeg 0.7129 0.8199 0.8232 0.7516 0.7544 0.7145 0 0.6538

Proposed 0.7792 0.8519 0.8561 0.7782 0.6816 0.7750 0.8448 0.7953

SDC U-Net 0.7741 0.8729 0.8919 0.6565 0.8199 0.9030 0.9138 0.8331

AU-Net 0.7565 0.8860 0.8942 0.6370 0.8343 0.8983 0.9044 0.8301

DeepQSMSeg 0.7194 0.8491 0.8559 0.6054 0.8942 0.8800 0.0000 0.6863

Proposed 0.7847 0.8866 0.9005 0.6343 0.8258 0.8994 0.9109 0.8346

ASSD (mm) U-Net 0.6605 0.3863 0.3536 0.9056 0.5126 0.2995 0.2683 0.4838

AU-Net 0.7164 0.3482 0.3445 0.9447 0.4704 0.3055 0.2924 0.4889

DeepQSMSeg 0.8148 0.4584 0.4326 1.0112 0.3216 0.3625 ∞ /

Proposed 0.6246 0.3535 0.3334 0.9515 0.4958 0.2992 0.2764 0.4763

HD95 (mm) U-Net 2.9219 1.9752 1.8634 2.8873 2.7109 1.5878 1.6721 2.2312

AU-Net 3.1908 1.9015 1.9278 2.9552 2.5247 1.6501 1.7910 2.2773

DeepQSMSeg 3.3003 2.3239 2.1374 3.2131 1.9669 1.7993 ∞ /

Proposed 2.9194 2.0064 1.8305 2.9671 2.5369 1.6748 1.7071 2.2346
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FIGURE 9 | Scatter plot of susceptibility values measured from manual segmentations and automatic segmentations on the subjects of the Dataset II. The
correlation lines are also plotted. For DeepQSMSeg, we omitted the results on DN.

all segmentation methods presented a high agreement with
the values measured on manual segmentations. DeepQSMSeg
had the highest correlation, which, however, was calculated
by omitting the DN. Our proposed method achieved the
highest performance among the other three methods, which all
successfully segmented all nuclei.

DISCUSSION

To further investigate the impact of various training and
inference strategies on the segmentation accuracy, the
segmentation performance under different training and
inference settings is discussed.

Test Time Augmentation
In our proposed method, we adopted TTA to improve the
segmentation accuracy during inference. To illustrate the impact
of TTA on the segmentation accuracy, we evaluated the
segmentation performance without using TTA as summarized
in Table 4. To clearly illustrate the gain, the column “Delta”
explicitly quantized the improvement on the average metrics of
all 7 gray matter nuclei. As we can see from Table 4, U-Net,
AU-Net, and CAU-Net had achieved prominent improvement
on the DCs of all nuclei. DeepQSMSeg, on the other hand,
suffered from performance loss when TTA was introduced. It
implied that the DeepQSMSeg might overfit on the training
set. On the other hand, our proposed method presented the
most significant difference with and without TTA. It implied
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that our proposed CA module might be able to filter irrelevant
features from the encoder output feature maps, and had less
risk in overfitting.

As Table 4 shows, the TTA was an effective method for
improving the DC. However, it is interesting to observe from
Table 4 that when TTA is adopted, the performance of U-Net
and AU-Net became worse in terms of surface distance metrics,
i.e., SDC, ASSD, and HD95. Our proposed CAU-Net, on the
other hand, presented substantial performance improvement
in all metrics when TTA was adopted. Such a phenomenon
indicates that the CAU-Net could be much more robust to
the input variations, and the generalization ability of the
proposed CAU-Net is stronger than that of other comparative
methods. The improvement in the generalization capability
should be attributed to the high-pass filter nature of the CA
module. By filtering out unnecessary information and only
preserving the edge information on each feature map, the
feature maps fed to the decoder layers were simplified by the
CA module, making the decoder layers easier to utilize the
spatial information.

The expense of using TTA was, however, the inference time.
With TTA, as we had to make predictions on the original
and augmented images, we had to take much more time
for inference. For instance, in our study, as we generated 9
augmented images, the inference time with TTA would be 10
times that without TTA.

Training Strategy
This subsection would like to demonstrate the importance
of properly designed training strategies. In our proposed
method, we adopted data augmentation, deep supervision, and a
nonuniform patch sampling strategy to train the neural network
well. To demonstrate the effectiveness of training strategies,
we trained the CAU-Net using different training setups. In
particular, in the three experiments shown in Table 5, we
removed the nonuniform patch sampling, deep supervision,
and data augmentation as shown in Table 1 to see their
contributions to the segmentation accuracies. To make it clear,
we only presented the average values of DC, SDC, ASSD, and
HD95. As we can see, the segmentation accuracies reduced
in all the three additional experiments, indicating that they
contributed to improving the segmentation performance. The
data augmentations contributed most to the DC, while the deep
supervision was the most essential factor in terms of surface
distance metrics.

In particular, data augmentation techniques have
been shown to be one of the most essential approaches
in image segmentations. It has been well known that
data augmentation approaches have been beneficial
for improving the classifiers’ performance since the
success of AlexNet. In our study, we used various data
augmentation methods to improve the performance as
summarized in Table 1. As shown in Table 5, after removing

TABLE 4 | Segmentation performance on the test set of Dataset I without adopting TTA during inference.

Metric CN GP PUT THA SN RN DN Average Delta

DC U-Net 0.8204 0.8594 0.8577 0.8593 0.7134 0.8215 0.8029 0.8192 −0.0021

AU-Net 0.8112 0.8472 0.8533 0.852 0.7021 0.8421 0.7991 0.8153 −0.0025

DeepQSMSeg 0.7943 0.8447 0.8348 0.8375 0.6669 0.8194 0 0.6854 +0.0237

Proposed 0.8263 0.8669 0.8598 0.859 0.7097 0.8383 0.794 0.822 −0.0037

SDC U-Net 0.8252 0.8897 0.8719 0.7765 0.8609 0.9342 0.8613 0.86 +0.0056

AU-Net 0.8183 0.8753 0.87 0.7661 0.858 0.9453 0.8661 0.857 +0.0066

DeepQSMSeg 0.77 0.8545 0.8299 0.7319 0.8098 0.9289 0 0.7036 +0.0327

Proposed 0.8177 0.889 0.8641 0.7662 0.8562 0.9498 0.8528 0.8565 −0.0026

ASSD U-Net 0.5045 0.3142 0.3646 0.5285 0.3736 0.2289 0.3708 0.3836 −0.0096

(mm) AU-Net 0.519 0.3521 0.3681 0.5521 0.3872 0.1896 0.3651 0.3904 −0.0143

DeepQSMSeg 0.6277 0.4268 0.4786 0.6453 0.4964 0.2361 ∞ ∞ /

Proposed 0.5147 0.3133 0.3754 0.5514 0.3823 0.1957 0.4025 0.3908 +0.0076

HD95 U-Net 2.7117 1.5892 1.8551 2.108 2.0384 1.258 1.9874 1.9354 −0.0572

(mm) AU-Net 2.7192 1.7431 1.8281 2.123 2.2067 1.1061 2.0545 1.9687 −0.0898

DeepQSMSeg 3.1397 2.8627 2.2427 2.4159 2.4404 1.3513 ∞ ∞ /

Proposed 2.6915 1.5994 1.8388 2.104 2.0481 1.1243 2.1912 1.9425 +0.0301

The Delta value indicates the difference with and without TTA.

TABLE 5 | Segmentation performance on the test set under different training strategies.

Method DC SDC ASSD (mm) HD95 (mm)

Proposed 0.8257 0.8591 0.3832 1.9124

w/o nonuniform patch sampling 0.8108 (−0.0149) 0.8455 (−0.0136) 0.4259 (+0.0427) 2.1384 (+0.2260)

w/o deep supervision 0.8048 (−0.0209) 0.8324 (−0.0267) 0.4500 (+0.0668) 2.2460 (+0.3336)

w/o data augmentation 0.7893 (−0.0364) 0.8461 (−0.0130) 0.4242 (+0.0410) 2.1782 (+0.2658)
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the data augmentations from training, the DC significantly drops
from 0.8257 to 0.7893. The main reason should be blamed for
the small size of our dataset. When data augmentation was
adopted, the methods listed in Table 1 can generate many
different versions of images, which increased the diversity of
the training data and improved the representation ability of
the neural network.

Deep supervision was also a critical approach that affected
the performance. As Table 5 shows, when deep supervision is
absent, the DC drops to 0.0209 and the SDC drops to 0.0267.
In our study, deep supervision is implemented by adding a
convolution layer at each decoder stage to generate an auxiliary
segmentation map. By incorporating additional classifier outputs
at the middle stages, the network can be forced to learn effective
representations to reduce the loss. Moreover, it also helped
the deeper layers to be updated at the beginning of training,
and was beneficial for improving the convergence behavior.
By introducing deep supervision at the decoder layers, all the
decoder layers were forced to extract spatial information from the
skip connections. Combined with the edge information extracted
from the CA module, much finer segmentation maps can be
obtained as the decoder layers recover the feature maps to their
original resolution.

The effect of the patch sampling scheme was also discussed.
In our task, as it is not possible to feed the whole volume into
the memory due to the limited memory size, splitting the images
into patches was necessary. In our study, we chose to sample
the patches with bias because the foreground voxels (i.e., the
nuclei) and the background voxels are severely imbalanced. In
particular, the sampling method ensured that at least two-third
patches were centered at the foreground voxel during training.
The nonuniform patch sampling method can also be regarded
as an implicit way of data augmentation, which over-samples
the foreground voxels to train the network. As we can see from
Table 5, the segmentation performance was slightly improved by
using the nonuniform patch sampling scheme. Despite that the
contribution is relatively small compared to the contributions
of deep supervision and data augmentation, the nonuniform
patch sampling was shown to be able to further improve the
performance with almost no additional computational cost.

After all, to improve the segmentation accuracy, it has been
shown in our experiments that the training strategy was at least
as important as developing more advanced networks. In our
study, we can see that the performance gain of our proposed
method came from several aspects, which are as follows: (1)
the CA module that reduces the redundant information passed
to the decoder layers; (2) the deep supervision’s assistance in
forcing the decoder layers to learn effective representations;
(3) sufficient data augmentation and the bias patch sampling
strategy to increase the diversity of patches; (4) TTA to utilize the
ensembling of various predictions.

CONCLUSION

In our study, a deep-learning-based method was proposed for the
gray matter nuclei segmentation task on T1WI and QSM. A CA

module was proposed and incorporated in the skip connections
of U-Net to filter out the redundant information from the
encoder feature maps. Experimental results on two test sets
acquired with various parameters revealed that our proposed
method could overperform all popular network structures. To
investigate the origination of our proposed method, the results
obtained under different training and inference strategies were
also discussed, which implied that the appropriate choices of
training and inference strategies were at least as important as
developing more effective network structures.
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Objective: Obstructive sleep apnea (OSA) is a sleep-related breathing disorder

with high prevalence and is associated with cognitive impairment. Previous

neuroimaging studies have reported abnormal brain functional connectivity

(FC) in patients with OSA that might contribute to their neurocognitive

impairments. However, it is unclear whether patients with OSA have a

characteristic pattern of FC changes that can serve as a neuroimaging

biomarker for identifying OSA.

Methods: A total of 21 patients with OSA and 21 healthy controls (HCs) were

included in this study and scanned using resting-state functional magnetic

resonance imaging (fMRI). The automated anatomical labeling (AAL) atlas was

used to divide the cerebrum into 90 regions, and FC between each pair of

regions was calculated. Univariate analyses were then performed to detect

abnormal FCs in patients with OSA compared with controls, and multivariate

pattern analyses (MVPAs) were applied to classify between patients with

OSA and controls.

Results: The univariate comparisons did not detect any significantly altered

FC. However, the MVPA showed a successful classification between patients

with OSA and controls with an accuracy of 83.33% (p = 0.0001). Furthermore,

the selected FCs were associated with nearly all brain regions and widely

distributed in the whole brain, both within and between, many resting-

state functional networks. Among these selected FCs, 3 were significantly

correlated with the apnea-hypopnea index (AHI) and 2 were significantly

correlated with the percentage of time with the saturation of oxygen (SaO2)

below 90% of the total sleep time (%TST < 90%).

Conclusion: There existed widespread abnormal FCs in the whole brain in

patients with OSA. This aberrant FC pattern has the potential to serve as a
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neurological biomarker of OSA, highlighting its importance for understanding

the complex neural mechanism underlying OSA and its cognitive impairment.

KEYWORDS

resting-state functional magnetic resonance imaging, functional connectivity,
multivariate pattern analyses, obstructive sleep apnea, machine learning

Introduction

Obstructive sleep apnea (OSA) is a common sleep-
related breathing disorder resulting from obstruction of the
upper airway, and the symptoms include snoring at night,
frequent stop in breathing, and daytime sleepiness (Park
et al., 2011). The major consequences of OSA contain
intermittent nocturnal hypoxia and fragmented sleep
(Verstraeten, 2007). About 936 million people worldwide
between the ages of 30 and 69 years suffered from OSA,
when the apnea-hypopnea index (AHI) ≥ 5/h criterion was
used (Benjafield et al., 2019). OSA not only increases the
risk of hypertension, cardiovascular disease and diabetes,
as well as traffic accidents, but also shows an impairment
of cognitive functions, such as attention, working memory,
episodic memory, and executive function (Gagnon et al.,
2014). Moreover, OSA has also been reported to be associated
with psychological and neurological problems, such as
depression, anxiety, post-traumatic stress disorder, and
Alzheimer’s disease (Gupta and Simpson, 2015; Vanek et al.,
2020). Sleep fragmentation and intermittent nocturnal
hypoxia are considered the main contributing factors to
neuropsychological impairments in patients with OSA (Lim
and Pack, 2014). However, the neural mechanisms are still
largely unclear.

Resting-state functional magnetic resonance imaging
(fMRI) provided a non-invasive and effective tool to explore the
human brain. Functional connectivity (FC) was a commonly
used technique for studying the neural mechanisms underlying
cognitive impairment in patients with OSA. In the resting-
state FC studies of OSA, researchers found abnormal FCs in
patients with OSA associated with several brain regions such
as insula (Zhang et al., 2015; Park et al., 2016a), hippocampus
(HIP) (Song et al., 2018; Zhou et al., 2020a), amygdala
(Yu et al., 2019), caudate nuclei (Song et al., 2018), and
posterior cingulate cortex (PCC) (Qin et al., 2020). Besides,
a fair amount of studies on OSA reported abnormal within-
network and between-network FCs of resting-state brain
functional networks (Khazaie et al., 2017), such as default
mode network (DMN) (Zhang et al., 2013; Peng et al., 2014;
Li et al., 2015, 2016b; Chen et al., 2018a), central executive
network (CEN) (Zhang et al., 2013), and salience network
(SN) (Yu et al., 2019). However, all these studies on the

alterations of resting-state FCs in OSA were based on univariate
analysis, i.e., comparing a single FC between patients and
controls at a time and repeating this univariate comparison
for every FC (i.e., a mass univariate analysis). Therefore, it
is unclear whether OSA has a characteristic pattern of FC
alterations which can serve as a neuroimaging biomarker for
identifying OSA.

Multivariate pattern analysis (MVPA) is a machine learning
technique that uses a pattern classifier to identify the specific
spatial pattern of brain activities or connectivities in a
particular experimental condition or a group of patients
(Mur et al., 2009; Pereira et al., 2009). Unlike the mass
univariate analysis employed in the above previous studies
which only focused on one FC at a time, MVPA performs
a joint analysis of all FCs in the whole brain at once and
examines their spatial pattern and, thus, has greater power
for detecting the differences in FCs between patients with
OSA and controls. The higher sensitivity of MVPA also comes
from the fact that it naturally avoids multiple comparisons
problem and thus corrections for multiple comparisons are
usually not needed (Liang et al., 2019). MVPA has been used
successfully in detecting abnormal FC patterns and identifying
neuroimaging biomarkers in other diseases, such as major
depressive disorder (Zhu et al., 2020), schizophrenia (Hua
et al., 2020), and social anxiety disorder (Liu et al., 2015).
Zhou et al. (2020b) also used this technique based on the
spatial pattern of regional homogeneity (ReHo) of resting-
state neural activities to distinguish between patients with OSA
and HCs. These studies have shown a promising potential of
MVPA to identify the characteristic patterns of FC alterations
in patients with OSA.

Therefore, in this study, we aimed to characterize the
spatial patterns of resting-state FCs in OSA using MVPA
and test its potential to serve as a neuroimaging biomarker
to aid the diagnosis of OSA. We first performed univariate
analyses to compare every FC between patients with OSA
and controls, and then performed MVPA, combined with a
feature selection procedure, to distinguish patients with OSA
from healthy controls (HCs) using the spatial pattern of FCs.
To characterize the model-selected FCs that contributed to
the successful classification between patients and controls, we
further examined the spatial distribution of these selected
FCs and their relationship with the known resting-state
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functional networks. Furthermore, the relationship between
MVPA-selected FCs and disease severity of OSA was explored.

Materials and methods

Participants

This study included twenty-one male patients with
moderate-to-severe OSA and twenty-one male HCs matched
for handedness, education, and age. All subjects were recruited
from the Sleep Laboratory of the Respiratory Department of
Tianjin Medical University General Hospital. The inclusion
criteria for patients with OSA included that the AHI was more
than 15 times/h. The inclusion criteria for HCs included (1) the
AHI < 5 times/h, (2) no history of sleep breathing disorders, (3)
no symptoms of nocturnal snoring confirmed by a physician,
and (4) male. The exclusion criteria for both patients with
OSA and HCs were as follows: (1) Other sleep disorders except
OSA, (2) left-handedness, (3) history of severe hypertension,
diabetes, respiratory disease, and cardiovascular disease, (4)
mental diseases and other neurological conditions, (5) the score
of Mini-Mental State Examination (MMSE) less than 24, (6)
alcohol or illicit drug abuse or current intake of psychoactive
medications, (7) body weight more than 125 kg, and (8)
MRI contraindications such as claustrophobia and metallic
implants or devices in the body. This study was approved
by the local ethics committee and all subjects signed written
informed consent.

The clinical manifestations of all patients included nocturnal
snoring, irregular breathing, choking in sleep, and daytime
sleepiness. None of them received drug therapy, surgery, or
continuous positive pressure (CPAP) treatment. All patients
underwent nocturnal polysomnography (PSG), and relevant
clinical indicators were calculated based on the PSG results.
According to the American Academy of Sleep Medicine (AASM)
guidelines, apnea was defined as a reduction ≥ 90% in airflow
lasting for at least 10 s during sleep and associated with
persistent respiratory effort, and hypopnea was defined as a
reduction ≥ 30% in airflow lasting for at least 10 s and
accompanied by 4% or more oxygen saturation (Redline et al.,
2007). The AHI was the average number of apnea and hypopnea
that occurred per hour during sleep. The percentage of time with
the saturation of oxygen (SaO2) less than 90% of the total sleep
time (i.e., %TST < 90%) was recorded. The Epworth Sleepiness
Scale (ESS) (Johns, 1991), a self-reported questionnaire assessing
the severity of daytime sleepiness, was also recorded. The total
score in ESS was 24. An ESS score of more than 6, 11, and 16 was
defined as sleepiness, excessive sleepiness, and risky sleepiness,
respectively (Kapur et al., 2017; Yu et al., 2019). Furthermore,
all subjects were also assessed on MMSE, the most commonly
used screening scale for cognitive impairment (Folstein et al.,
1975). The maximal score of MMSE was 30. A score between

27 and 30 is considered normal, and a score < 27 is considered
cognitively impaired.

Data acquisition

The MR images were acquired using a 3.0 Tesla MRI scanner
(Signa HDx, General Electric, Milwaukee, WI, United States)
in Tianjin Medical University General Hospital. To reduce
head movements and scanner noise, foam pads and earplugs
were used, respectively. The resting-state fMRI data were
acquired using an echo-planar imaging (EPI). Its sequence
parameters were as follows: repetition times (TR) = 2,000 ms,
echo time (TE) = 30 ms, flip angle (FA) = 90◦, field of
view (FOV) = 240 × 240 mm2, matrix = 64 × 64, slice
thickness = 3 mm, slice gap = 1 mm, and 38 axial slices.
Each functional run included 180 volumes. In a single session,
subjects were asked to relax without thinking about anything in
particular, keep their eyes closed, and stay awake.

Functional magnetic resonance
imaging data preprocessing

The fMRI data preprocessing was performed using Data
Processing and Analysis of Brain Imaging (DPABI; Chinese
Academy of Sciences, Beijing, China)1 (Yan et al., 2016), which
is a convenient plug-in software based on Statistical Parametric
Mapping (SPM12)2 in MATLAB platform. The first 10 volumes
were discarded to eliminate the effects of the instability of the
machine and the subjects’ inadaptability to the environment in
the very beginning of the scan. After slice-timing correction
and six-dimensional head motion correction, the remaining
170 images were spatially normalized to the standard Montreal
Neurological Institute (MNI) EPI template with a resampling
voxel size of 3 × 3 × 3 mm3. The effect of linear drift or
trends in signal was removed. Then, several sources of spurious
variance were regressed out by linear regression, such as 12 head
motion parameters, global mean signal, white matter signal,
cerebrospinal fluid, and the spike volumes if the frame-wise
displacement (FD) exceeded 0.5 mm. A temporal band-pass
filtering (0.01 ≤ f ≤ 0.08 Hz) was also performed. The head
motion (the maximum displacements and maximum spin) of all
participants was less than 2 mm and 2◦, respectively.

Anatomical parcellation and
construction of brain network

The cerebrum was segmented into 90 regions by the
automated anatomical labeling (AAL) template (Tzourio-
Mazoyer et al., 2002). The Pearson’s correlation coefficient of the

1 http://rfmri.org/DPABI

2 http://www.fil.ion.ucl.ac.uk/spm
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averaged time series between each pair of regions was calculated
to define FC, and then a 90 × 90 symmetric correlation
matrix was obtained for every participant. A Fisher’s r-to-z
transformation of the correlation coefficients was applied to
improve the normality of FC values (Liu et al., 2017).

Univariate analysis

A two-sample t-test was used to compare every FC
between OSA and HC groups, and the statistical significance
for multiple comparisons was determined by three methods,
namely, Bonferroni correction (corrected p < 0.05), a false
discovery rate (FDR, q < 0.05), and the network-based statistic
(NBS) approach (corrected p < 0.05 determined by 10,000
permutations, with a cluster-defining threshold of p < 0.001 by
two-sample t-tests) (Zalesky et al., 2010). Besides, this univariate
analysis was performed using the graph theoretical network
analysis toolbox (GRETNA)3 (Wang et al., 2015).

Multivariate pattern analysis

The MVPA was performed using the MVPANI toolbox4

(Peng et al., 2020) to classify patients with OSA from HCs.
Linear support vector machine (SVM) was used to find a
hyperplane between patients with OSA and HCs which had a
maximal distance to the support vectors on each side. The SVM
model was trained and tested using a leave-one-participant-
out cross-validation procedure. In each cross-validation, 41
participants were used to train the classifier and the remaining
one participant was used to test the trained classifier. In this
way, every participant was used once as a test sample, and the
classification accuracy was calculated as the percentage of the
correctly classified participants over all participants.

Feature selection
As the number of features (i.e., the FCs) was far more than

the number of subjects, to avoid over-fitting, a feature selection
based on the features’ F scores was performed during the
model training in each cross-validation step using the following
procedure as implemented in the MVPANI toolbox: first, in
each cross-validation step, an F score was calculated for each FC
using an F-test comparing the two groups of participants (i.e.,
patients and controls) in the training dataset, and then all FCs
were ranked according to their F scores; second, only the top N
percentage of FCs were selected for building the SVM model that
was trained using the training samples and then tested using the
test sample; third, this feature selection procedure was repeated
for all cross-validation steps for a particular percentage N. In

3 http://www.nitrc.org/projects/gretna/

4 http://funi.tmu.edu.cn

this study, a series of N (from 10% to 100% in steps of 10%; i.e.,
ten percentages in total) was tested and a classification accuracy
was obtained for each N. The final classification accuracy was
determined by the highest one among the ten accuracies.

Permutation test
The statistical significance of the final classification accuracy

(against the chance-level accuracy) was determined and
corrected for multiple comparisons using a permutation test
(n = 10,000) as follows. First, in each permutation step, exactly
the same MVPA procedure as described earlier was performed,
i.e., a linear SVM combined with the same feature selection
procedure (i.e., feature selection based on F scores with 10
percentages of selected FCs from 10% to 100% in steps of
10%), except that in every cross-validation step, the class
labels of the training samples were randomly shuffled; this
procedure yielded 10 chance-level classification accuracies and
the highest accuracy was taken as the final accuracy of this
permutation step. Second, the first step was repeated 10,000
times, yielding 10,000 highest chance-level accuracies of all
permutation steps with which a null distribution of chance-
level accuracies was formed. Third, the 10 true classification
accuracies obtained from the true labels (each corresponding
to a feature selection percentage) were compared with this null
distribution, resulting in a p-value for each true classification
accuracy that was calculated as the percentage of chance-
level accuracies greater than or equal to the true classification
accuracy. The resultant 10 p-values corresponded to the family-
wise-error (FWE) corrected p-values, and the true accuracies
were considered statistically significant if p < 0.05.

Characterization of the multivariate pattern
analysis-selected functional connectivities

To characterize the FCs contributing to the “patients vs.
controls” classification, we further examined the FCs selected
by the above MVPA procedure in two aspects, i.e., the spatial
distribution of the selected FCs and the relationships of
the selected FCs with the predefined resting-state functional
networks. Here, the MVPA-selected FCs included the FCs
selected in at least one cross-validation step during the feature
selection that led to the highest classification accuracy.

To examine the spatial distribution of the selected FCs, we
visually inspected which parts of the brain were involved in
these FCs. Furthermore, we also evaluated the importance of
the brain regions associated with these FCs by calculating the
weighted degrees of each region. This was done for positive
weights and negative weights separately by calculating the sum
of all positive weights of the FCs associated with a given region
and the sum of all negative weights of the FCs associated with a
given region, respectively.

As the resting-state functional networks have been
reported to play an important role in many sensory and
cognitive functions related to OSA (Zhang et al., 2013, 2015;
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TABLE 1 Regions belonging to each functional network.

Network Regions with abbreviation

VN CAL, CUN, LING, SOG, MOG, IOG, FFG

SMN PreCG, ROL, PoCG, PCL, HES, STG

AN SPG, ITG.R, SMA, INS, MCG, SMG, PUT, PAL

FPN MFG, MFGorb, IFGoper, IFGtri, IPL

LS SFGorb, OLF, REC, AMYG, CAU, THA, TPOsup, TPOmid

DMN SFG, SFGmed, SFGmorb, IFGorb, ACG, PCG, HIP, PHG,
ANG, PCUN, MTG, ITG.L

Khazaie et al., 2017; Chen et al., 2018b; Chang et al., 2020) and
their disruptions have been indicated in patients with OSA
(Zhang et al., 2015; Park et al., 2016b; Wu et al., 2020), we
further examined the relationship of the selected FCs with the
predefined resting-state functional networks. Specifically, we
categorized the 90 brain regions into 7 functional networks,
namely, visual network (VN), somatomotor network (SMN),
dorsal attention network (DAN), ventral attention network
(VAN), limbic system (LS), frontoparietal network (FPN),
and DMN, according to Yeo’s parcellation of the cerebral
cortex (Yeo et al., 2011). In our results, we merged DAN and
VAN into AN (Table 1). The full name of all brain regions is
summarized in Supplementary Table 1. According to such
categorization of all brain regions, the MVPA-selected FCs
were divided into two sets, namely, intra-network FCs (if an
FC connects two regions that belong to the same functional
network) and inter-network FCs (if an FC connects two regions
that belong to different functional networks). The number
of intra-network FCs was standardized by the total number
of all possible intra-network FCs (i.e., dividing the number
of intra-network FCs by the total number of all possible
intra-network FCs), and similarly, the number of inter-network
FCs was standardized by the total number of all possible
inter-network FCs.

Correlations between the selected functional
connectivities and clinical variables

To investigate the correlation between selected the
FCs and the clinical variables, Pearson correlation
analyses were performed, and p < 0.005 was considered
statistically significant.

Results

Demographic and clinical indices

There were no significant differences (two-sample t-tests, all
p > 0.05) between patients with OSA and HCs in age, years of
education, or MMSE (Table 2). As expected, patients with OSA
had a significantly higher score for the body mass index (BMI)

TABLE 2 The demographic and clinical characteristics of patients
with OSA and healthy controls.

OSA patients Healthy controls p-value

Mean SD Mean SD

Age (years) 44.05 7.277 40.62 11.404 0.252

Education (years) 13.48 3.092 14.76 2.914 0.173

BMI (kg/m2) 29.52 4.231 24.95 3.173 <0.001*

MMSE 29.48 0.814 29.86 0.359 0.057

AHI 54.35 19.97 2.52 1.401 <0.001*

%TST < 90% 18.66 21.10 0.979 2.654 0.001*

ESS 14.67 7.262 1.10 1.136 <0.001*

*Significant difference between OSA and HC, p < 0.05. BMI, body mass index; MMSE,
Mini Mental State Examination; AHI, apnea-hypopnea index;%TST < 90%, percentage of
total sleep time spent at oxygen saturations less than 90%; ESS, Epworth sleepiness scale.
The full name of all brain regions were summarized in Supplementary Table 1.

(t = 3.893, p < 0.001), AHI (t = 11.762, p < 0.001), %TST < 90%
(t = 3.792, p = 0.001), and ESS (t = 8.461, p < 0.001).

Univariate comparisons of functional
connectivities between patients with
obstructive sleep apnea and healthy
controls

The univariate analyses showed that there were no
significant changes in FC between patients with OSA and HCs
regardless of the method for multiple comparisons’ correction
(p < 0.05, Bonferroni corrected; p < 0.05, NBS corrected;
q < 0.05, FDR corrected).

Classification between patients with
obstructive sleep apnea and healthy
controls

The MVPA showed successful classifications for 4
out of 10 feature selection percentages (Figure 1A): The
classification accuracies were 83.33% when the top 10% FCs
were selected (p = 0.0001; the corresponding specificity and
sensitivity were 85.71% and 80.95%, respectively), 71.43%
when the top 30%, 80%, and 100% FCs were selected
(p = 0.0076; the corresponding specificity and sensitivity
were 66.67% and 76.19%, respectively), and 69.05% for the
other percentages (p = 0.067; the corresponding specificity
and sensitivity were 71.43% and 66.67%, respectively)
(Figure 1B). The highest classification accuracy of 83.33%
was considered the final accuracy and the selected top 10%
FCs (400 FCs) were further characterized. The receiver
operating characteristic (ROC) curve corresponding
to this highest classification accuracy (83.33%) and the
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FIGURE 1

The classification accuracies of 10 feature selection percentages, the corresponding null distribution, and the receiver operating characteristic
(ROC) curve for the highest classification accuracies. (A) The highest classification accuracy (83.33%) was obtained when the top 10% FCs were
selected and two lower accuracies (71.43% and 69.05%) were obtained when different numbers of FCs were selected; (B) the corresponding null
distribution of the highest chance-level accuracies (the blue histogram), along with the three true classification accuracies (red: 83.33%; orange:
71.43%; yellow: 69.05%); (C) the receiver operating characteristic (ROC) curve and the area under the curve (AUC) (0.87) corresponding to this
highest classification accuracy (83.33%).

corresponding area under the curve (AUC = 0.87) are shown in
Figure 1C.

Characterization of the multivariate
pattern analysis-selected functional
connectivities

The spatial distribution of the selected top 10% FCs (i.e.,
400 FCs) in the brain is shown in Figure 2. Among the 400
selected FCs, 195 FCs showed higher weight value in patients
with OSA (Figure 2A), and 205 FCs showed lower weight value
in patients with OSA (Figure 2B). Moreover, the FCs with
absolute weight values greater than the mean plus twice the
standard deviation (i.e., absolute mean + 2SD) are shown in
Figures 2C,D. To evaluate the importance of the brain regions
for the classification, we also calculated the positive and negative
weighted degrees of each region. A total of 16 brain regions
showed significantly higher positive weighted degrees in patients
with OSA than in HC (> mean + SD), including the left
MFGorb, left CUN, left SMG, right PCUN, right REC, right ITG,
right IOG, left REC, left IOG, left IFGorb, left FFG, right FFG,
right PHG, left INS, left STG, and left CAU (Figures 3A,C), and
14 brain regions showed significantly lower negative weighted
degrees in patients with OSA than in HC, including left TPOsup,
right HIP, left MCG, left TPOmid, right MCG, right PHG, right
REC, left PHG, right ITG, left SFGmed, left SMG, left IFGoper,
right PCG, and left HEC (Figures 3B,D).

Among the 400 selected FCs, 65 FCs were intra-network FCs
and 335 were inter-network FCs. The numbers of intra-network
FCs were 9 in VN, 4 in SMN, 8 in AN, 4 in FPN, 30 in DMN, and
10 in LS, respectively (Figure 4, the diagonal entries; Figure 5),
accounting for 9.89%, 6.06%, 7.62%, 8.89%, 11.86%, and 8.33%
of intra-network FCs in these functional networks, respectively
(the mean percentage of intra-network FC was 9.56% across

these functional networks). The percentages of inter-network
FCs between each pair of functional networks are shown in
Figure 4 (the off-diagonal entries), and the mean percentage was
10.08%. To specifically look at the inter-network FCs associated
with the DMN, we also showed all inter-network FCs between
DMN and the other five networks in Figure 6.

Correlations between the selected
functional connectivities and clinical
variables

We further examined the correlations between the 400
selected FCs and the clinical variables in patients with OSA.
We found that the clinical variable AHI showed negative
correlations with the FC between the left CUN and the left
TPOsup (r = −0.607, p = 0.0035) and with the FC between the
left PHG and the left IFGoper (r = −0.6.26, p = 0.0024) and
showed positive correlations with the FC between left INS and
left MFGorb (r = 0.608, p = 0.0035) (Figure 7A). Moreover, the
clinical variable %TST < 90% showed a positive correlation with
the FCs between the right MCG and the left TPOmid (r = 0.705,
p = 0.00036) and with the FC between the right PUT and ITG
(r = 0.602, p = 0.00386) (Figure 7B).

Discussion

Weak alterations of resting-state
functional connectivities in obstructive
sleep apnea can be detected by
multivariate pattern analysis

We performed both a univariate analysis and an MVPA to
identify the differences in resting-state FCs between patients
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FIGURE 2

The spatial distribution of the selected functional connectivity. (A) The spatial distribution of the selected FCs with higher classification weights
in patients with OSA compared with controls. (B) The spatial distribution of the selected FCs with lower classification weights in patients with
OSA compared with controls. (C) The FCs with higher positive weight values were greater than mean + 2SD in patients with OSA. (D) The FCs
with more negative weight values, which means the absolute weight values were more than mean + 2SD in patients with OSA. The thickness of
lines represents the absolute weight values and the black lines indicated functional connectivity within one functional network.SD, standard
deviation; VN, visual network; SMN, somatomotor network; AN, attention network; FPN, frontoparietal network; DMN, default mode network;
LS, limbic system.

with OSA and HCs. The fact that no significant differences
were identified using univariate two-sample t-tests, even for
relatively liberal thresholds (q < 0.05 corrected by FDR, or
p < 0.05 corrected by NBS), suggests that the alterations of
the resting-state FCs might not be very large. However, such
weak alterations of FCs in OSA can be detected as a pattern
change by MVPA, confirming that the resting-state FCs were
indeed altered in patients with OSA. A classification accuracy
of 83.33% also suggests that the spatial pattern of resting-state
FCs can successfully distinguish patients with OSA from HCs,
demonstrating its potential as a neuroimaging biomarker for
aiding the diagnosis of OSA.

The whole-brain resting-state
functional connectivities were altered
in a dispersed way in obstructive sleep
apnea

Using an SVM classification algorithm combined with a
feature selection procedure, we identified 400 FCs contributing
to the successful classification between patients with OSA and
HCs that yielded the highest classification accuracy (83.33%).
Further examination of the spatial distribution of these 400
MVPA-selected FCs showed that almost all brain regions (88
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FIGURE 3

The weighted degree maps of brain regions. (A,C) The brain regions with positive weighted degrees greater than mean + SD. (B,D) The brain
regions with negative weighted degrees less than mean-SD. The black line, yellow line, and orange line indicate the mean value, mean ± – SD,
and mean ± – 2SD, respectively. SD, standard deviation.

out of 90) were involved in these FCs. This result suggests that
OSA is likely to affect the FCs among widely distributed regions
in the whole brain, rather than some local networks involving
only a few particular brain regions. This is in line with previous
studies investigating the FC changes in OSA. For example,
Park et al. found 27 decreased FCs and 46 increased FCs in
patients with OSA associated with 62 out of 90 brain regions
(Park et al., 2016b). Such widely distributed FC alterations
also support the previous findings that the global topological
properties of the whole-brain resting-state functional network
were disrupted as well in patients with OSA. For example,
although a small-world topology was still preserved, the small-
world property was significantly decreased (Chen et al., 2017),

along with some other global topological properties such as
clustering coefficient, characteristic path length, and global
efficiency (Huang et al., 2019).

The relationship of the multivariate
pattern analysis-selected functional
connectivities with the predefined
resting-state functional networks

We also characterized the relationship of the MVPA-selected
FCs with the predefined resting-state functional networks and
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FIGURE 4

The percentages of intra-network FCs in each functional
network (the diagonal entries) and the percentages of
inter-network FCs (the off-diagonal entries). The values that
exceeded the average percentages were marked with red
rectangular boxes. VN, visual network; SMN, somatomotor
network; AN, attention network; FPN, frontoparietal network;
DMN, default mode network; LS, limbic system.

found that these FCs were associated with all 7 predefined
resting-state functional networks, further corroborating the
finding that OSA involves widely distributed FC alterations
in the whole brain. Furthermore, the quantification of these
MVPA-selected FCs in terms of intra- and inter-network FCs
showed that the DMN had the highest percentage of intra-
network FCs among the 400 MVPA-selected FCs and also had
relatively high percentages of inter-network FCs with the SMN,
the AN, and the LS, suggesting the important role of the DMN-
associated FC changes in OSA. This is consistent with some
previous studies that have reported abnormal intra-network FCs
as well as the global and local topological properties of DMN
in patients with OSA compared with HCs (Zhang et al., 2013;
Peng et al., 2014; Li et al., 2015, 2016a,b; Chen et al., 2018a). It
is known that the DMN, including the posterior cingulate gyrus
(PCG), the medial prefrontal cortex, HIP, medial temporal lobe
(MTG), angular gyrus (ANG), and precuneus (PCUN) as the
core regions (Li et al., 2016b), is more active during resting state
but its activity is inhibited during many cognitive tasks, and the
degree of inhibition even increases with the task load (Buckner
et al., 2008). Our results showed positive classification weights
for the FCs between the bilateral PCUN, the bilateral PCG, the
right SFG, and the medial part of the right superior frontal gyrus
(SFGmed), indicating that these FCs were lower in patients
with OSA compared with HCs. The connectivity between the
right HIP and ipsilateral parahippocampal gyrus (PHG) was
an important member of the classified pattern, while Song’s
study found reduced FC between the right HIP and the bilateral
thalamus and PHG in patients with OSA (Song et al., 2018).
We also found that the intra-network FC in DMN associated
with bilateral PCG was useful in OSA-HC classification. PCG,

PCUN, and HIP were considered the key regions of posterior
DMN (pDMN); the medial prefrontal cortex, anterior cingulate
(ACG), and superior frontal gyrus belong to anterior DMN
(aDMN) (Zhang et al., 2013; Chen et al., 2018a). In a previous
study, Zhang et al. (2013) found that FCs of patients with OSA
in aDMN were significantly decreased than HC’s, while FCs in
OSA were increased in pDMN. We also found that the intra-
network FCs in aDMN showed negative classification weights,
such as the FCs between the bilateral ACG and the bilateral
medial orbital part of the superior frontal gyrus (SFGmorb),
Therefore, the abnormal intra-network FC in DMN explained
the functional heterogeneity of aDMN and pDMN. Chen et al.
(2018a) reported abnormal FCs within the DMN and decreased
network topological properties such as the clustering coefficient
and the local efficiency of the DMN.

Moreover, some previous studies have reported abnormal
FC between DMN and other brain regions. Zhang et al.
(2015) found that the FCs between key nodes of the DMN
(the bilateral ACG, right PCG, bilateral SFG, and bilateral
medial prefrontal cortex) and the AN (the right INS) were
significantly decreased in patients with OSA. Song et al.
(2018) reported that the FCs between the nodes in DMN
(HIP and ANG) and the nodes in LS (THA and CAU) were
significantly abnormal in patients with OSA. As the DMN has
been suggested to play an important role in many cognitive
functions such as regulating emotion, consciousness, memory,
and introspection, our present findings, together with the
previous results, suggest that the disrupted FCs associated with
the DMN in OSA may underlie the cognitive impairments
observed in patients with OSA.

Some papers have also found visual dysfunction in patients
with OSA. Giora et al. (2017) found that the reaction time in
a visual task for patients with OSA was significantly longer
than HCs. Moghimi et al. (2013) detected that the nerve fiber
indicator was significantly reduced in patients with OSA, and
patients with OSA had a higher prevalence rate of glaucoma
and ocular hypertension. The calcarine cortex (CAL) is a core
region of the visual recognition network (Tao et al., 2013) and
was reported to be associated with the shifting of attention
to the intended visual target and the modulation of visual
input through attention. Liu et al. (2017) found the voxel
mirrored homotopic connectivity (VMHC) in bilateral CAL,
and VMHC value in CAL was positively correlated with AHI
(Yamagishi et al., 2005). Zhang et al. (2013) found that the
right cuneus (CUN) exhibited reduced gray matter volume
(GMV) in patients with OSA that imply the visual attention
deficit of OSA. However, there are few studies on functional
disconnection associated with VN in patients with OSA. In
the current OSA-HC classification FC pattern, the percentage
of intra-network FC in VN was higher than the percentage
of intra-network FC in the whole brain, but the percentage
of inter-network FC between VN and the other network was
lower than the percentage of inter-network in the whole brain.
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FIGURE 5

The distributions of intra-network FCs. (A) The spatial distribution of the selected intra-network FCs with higher classification weights in patients
with OSA compared with controls. (B) The spatial distribution of the selected intra-network FCs with lower classification weights in patients with
OSA compared with controls. The thickness of lines represents the absolute weight values and the black lines indicate functional connectivity
within one functional network. VN, visual network; SMN, somatomotor network; AN, attention network; FPN, frontoparietal network; DMN,
default mode network; LS, limbic system.

FIGURE 6

The distribution of inter-network FCs between the DMN and the other five functional networks. (A) The spatial distribution of the selected
inter-network FCs between DMN and the other networks with higher classification weights in patients with OSA compared with controls.
(B) The spatial distribution of the selected inter-network FCs between DMN and the other networks with lower classification weights in patients
with OSA compared with controls. The thickness of lines represents the absolute weight values. VN, visual network; SMN, somatomotor
network; AN, attention network; FPN, frontoparietal network; DMN, default mode network; LS, limbic system.

Furthermore, the FC between left CAL and left IOG, FC
between right CAL and bilateral IOG, and left MOG play
an important role in differentiating patients with OSA and
HCs, and the classification weight of these connectivities was
negative (HC-OSA).

Correlations between the functional
connectivities and the disease severity

We found that some MVPA-selected FCs were significantly
correlated with the AHI and the%TST < 90%. AHI is the main
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FIGURE 7

Scatter plots showing significant correlations between the FCs and the clinical variables in patients with OSA. (A) The correlations between the
FCs and AHI. (B) The correlations between the FCs and % TST < 90%. AHI, apnea-hypopnea index; %TST < 90%, percentage of total sleep time
spent at oxygen saturations less than 90%; CUN.L, left Cuneus; TPOsup.L, left Temporal pole: superior temporal gyrus; PHG.L, left
Parahippocampal gyrus; IFGoper.L, left Inferior frontal gyrus, opercular part; INS.L, left Insula; MFGorb.L, left Middle frontal gyrus, orbital part;
MOG.R, right Middle occipital gyrus; TPOmid.L, left Temporal pole: middle temporal gyrus; PUT.R, right Lenticular nucleus, putamen; ITG.R, right
Inferior temporal gyrus.

indicator of the severity of OSA. In this study, the FCs between
the left PHG (DMN) and left IFGoper (FPN) and between
the left CUN (VN) and left TOPsup (LS) showed negative
correlations with AHI, while the FC between the left INS (AN)
and left MFGorb (FPN) showed a positive correlation of AHI.
Although this has not been reported in previous studies, our
result suggests these FCs might be indicative of the AHI in OSA.

The FCs between the right MCG (AN) and the left TPOmid
(LS), and between the right PUT (AN) and the right ITG (AN)
showed a positive correlation with % TST < 90%. It is noticeable
that both FCs were associated with the functional network
AN (attention network). Attention is a primary cognitive
function, involving selective attention, sustained attention, and
attention distribution, which will further affect other cognitive
functions (Olaithe et al., 2018), and some previous studies
have reported attentional impairments in all three aspects of
attention in patients with OSA (Verstraeten et al., 2004; Vanek
et al., 2020). Even though the treatment of continuous positive
airway pressure (CPAP) could improve alertness and attention
(Verstraeten and Cluydts, 2004), it did not seem to be able to
restore the quality of attention to normal levels in patients with
OSA (Lau et al., 2010). Our results provide evidence for the
neural mechanisms of attention impairment in patients with
OSA, which may be related to the disrupted FCs in the AN

due to hypoxemia during sleep, and such attention deficits in
patients with OSA may be more resistant to treatment.

Limitations

There are several limitations in this study. First, the sample
size in this study was relatively small and only recruited male
subjects. The statistical significance of the correlations between
the FCs and the clinical variables was not corrected for multiple
comparisons also due to the small sample size. Therefore, large
sample dataset and female patients with OSA should be included
in future studies to confirm our results. Second, we only used FC
to distinguish patients with OSA from HCs. Whether merging
different imaging measures could improve the classification
accuracy in distinguishing patients with OSA from HCs needs
to be further studied.

Conclusion

The findings in this study revealed that the resting-state
FCs were altered in OSA and the disrupted FCs were widely
distributed and involved almost all resting-state functional
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networks in the whole brain of patients with OSA. The
successful classification between patients with OSA and HCs
obtained using machine learning techniques also indicates that
the altered resting-state FCs are indicative of the severity of
the disease and have the potential to serve as a neuroimaging
biomarker of OSA.
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Brain functional network (BFN) based on electroencephalography (EEG) has

been widely used to diagnose brain diseases, such as major depressive

disorder (MDD). However, most existing BFNs only consider the correlation

between two channels, ignoring the high-level interaction among multiple

channels that contain more rich information for diagnosing brain diseases.

In such a sense, the BFN is called low-order BFN (LO-BFN). In order to fully

explore the high-level interactive information among multiple channels of the

EEG signals, a scheme for constructing a high-order BFN (HO-BFN) based on

the “correlation’s correlation” strategy is proposed in this paper. Specifically,

the entire EEG time series is firstly divided into multiple epochs by sliding

window. For each epoch, the short-term correlation between channels is

calculated to construct a LO-BFN. The correlation time series of all channel

pairs are formulated by these LO-BFNs obtained from all epochs to describe

the dynamic change of short-term correlation along the time. To construct

HO-BFN, we cluster all correlation time series to avoid the problems caused

by high dimensionality, and the correlation of the average correlation time

series from different clusters is calculated to reflect the high-order correlation

among multiple channels. Experimental results demonstrate the efficiency

of the proposed HO-BFN in MDD identification, and its integration with the

LO-BFN can further improve the recognition rate.

KEYWORDS

electroencephalography, brain functional networks, major depressive disorder, high-
order brain functional network, disease classification
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Introduction

Major depressive disorder (MDD) is a kind of common
brain disease that is characterized by persistent and significant
low mood, slow thinking, and cognitive function impairment
(Holma et al., 2014; LeMoult and Gotlib, 2019; Liu et al.,
2020). In the statistics of the World Health Organization
(WHO), MDD has become the second largest serious
disease in the world (Melchior et al., 2013) and has
brought a heavy burden on patients and their families
(Zhang et al., 2019). According to medical researches, the
accurate early identification of MDD is important, and it
can not only effectively relieve the pain of the patients,
but also directly reduce the tragedy of suicide (Cipriani
et al., 2018; Grunebaum et al., 2018). However, early
neuroimaging-based MDD diagnosis is very challenging,
because the changes of brain functional connectivity (FC)
are considerably complicated. Electroencephalography (EEG)
of high temporal resolution (Babajani and Soltanian-Zadeh,
2006) can well describe the temporal evolution of complex
FC during brain activity and thereby becomes the best choice
for MDD research.

Brain functional network (BFN) constructed based on
EEG has been widely used in the diagnosis of brain diseases
(Wang et al., 2015; Li et al., 2020). Since brain activity
is dynamic in nature, some studies have shown that the
dynamic change of FC over the whole scanning time may
be the intrinsic feature of brain function (Damaraju et al.,
2014; Cohen and D’Esposito, 2016; Kudela et al., 2017). Many
studies try to describe the dynamic changes of FC between
channels by using sliding windows to construct BFN and the
relationship between these dynamic changes and brain diseases
(Wee et al., 2016; Guo et al., 2017; Sun et al., 2019; Zhang
et al., 2021). Sun et al. (2019) constructed BFN based on
EEG signals by sliding windows, confirming that MDD had
abnormal cognitive processing. Zhang et al. (2021) used sliding
windows to construct BFN based on EEG signals, and the
results showed that the brain regions of MDD patients were
significantly altered.

Although the aforementioned EEG-based BFN helps us
to understand the brain activities of the MDD patients,
most of them only reflect the low-order FC (LO-FC)
between two channels (as shown in Figure 1A), ignoring
the fact that high-order FC (HO-FC) among channels
could also be changed for MDD patients (as shown in
Figure 1B). For the ease of description, we call BFN
based on conventional LO-FC as low-order BFN (LO-
BFN). In essence, brain activity is complex, and the HO-
FC usually contains more abstract information than the LO-
FC, and it helps to reveal high-level and more complex
interaction information (Chen et al., 2016). Therefore, it
is of clinical significance to investigate effective methods
of constructing a high-order BFN (HO-BFN) that better

reflects the complex interaction among multiple channels
and simulates the mechanisms of the deep brain, providing
rich discriminative information for the diagnosis of mental
disorders (Plis et al., 2014; Chen et al., 2016; Zhang et al.,
2016).

In this work, we propose a novel method to construct
HO-BFN for MDD classification. Specifically, the entire EEG
signals of a subject are divided into multiple overlapping
time series by sliding windows, and the correlation between
two channels within one window is computed as the LO-
FC. The network constructed by the LO-FC is called the
LO-BFN, reflecting the dynamic change of FC throughout
the whole scanning time. Significantly different from the LO-
BFN, each vertex of the HO-BFN represents one pair of
channels, and each edge represents the correlation between
the channel pairs. In this way, the HO-BFN involves more
channels and can reveal high-level and more interaction
among brain regions.

It is noted that the scale of the HO-BFN is very huge,
and it may suffer from the dilemmas of high dimensionality
and small size samples. The main reason lies in the fact that
the scale of HO-BFN will increase exponentially when the
number of EEG channels increases. To address the issue, we
introduce hierarchical clustering (Yu et al., 2015) to construct
HO-BFN. In other words, similar LO-FC time series are
clustered into one group, and the average LO-FC time series
are computed for each group. After that, the HO-BFN is
constructed based on the correlation between the two groups.
As a result, the HO-BFN constructed by hierarchical clustering
can not only reduce computing time and memory requirements,
but also reflect the HO-FC among multiple channel pairs
(more than four channels) and capture more useful and
complex information.

In summary, the main contributions of the paper line are
twofold: (1) A HO-FC representation strategy is proposed
to capture high-order interactions among multiple channels
of EEG signals. In fact, the HO-BFN is used to characterize
the complex interactions among brain regions, and it has
been applied in fMRI and achieved good results (Zhao
et al., 2018). However, to the best of our knowledge, few
studies have used EEG-based HO-BFN to reveal the complex
interactions among EEG channels. (2) The HO-BFN is
constructed in both time and frequency domains based on
the “correlation’s correlation” strategy. Specifically, we first
compute the correlation between two channels to obtain the
LO-BFN, and then the HO-BFN is subsequently derived by
computing the correlation between each pair of channels
from the LO-BFN. Then, we further apply HO-BFN to
computer-aided diagnosis for MDD. The experimental
results show that HO-BFN provides complementary
identification information to the LO-BFN and that combining
HO-BFN and LO-BFN can further improve the accuracy
of MDD diagnosis.
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FIGURE 1

The intuitive explanation of brain network research based on EEG signals. (A) The low-order FC (LO-FC) between two channels. (B) High-order
FC (HO-FC) among channels. (1) EEG signal acquisition(1) EEG signal acquisition, (2) calculation of correlation between two channels, and (3)
calculation of correlation among multiple channels.

Materials and data preprocessing

The EEG data used in this study came from the publicly
available Multi-modal Open Dataset for Mental-disorder
Analysis (MODMA) dataset (Cai et al., 2020). It included 24
patients with MDD (12 male and 12 female) and 29 normal
controls (NC) (20 male and 9 female). The MDD group was
16–52 years old, and the NC group was 19–51 years old;
all the subjects were right-handed, and their education level
was primary school or above. In addition, MDD patients
had a health Questionnaire 9-item (PHQ-9) (Spitzer et al.,
1999) score greater than or equal to 5 and had not received
psychotropic medication for 2 weeks.Table 1 shows the statistics
of the subjects.

In data acquisition, 128-channel HydroCel Geodesic Sensor
Net and Net Station acquisition software were used to record
EEG signals for five minutes. Taking Cz as the reference, the
sampling rate was 250 Hz. In order to reduce the interference
of EEG data, the subjects were required to close their eyes
and keep awake to avoid any unnecessary eye movement,
saccade, and blink. The collected EEG data were filtered by
0.1–40 Hz and inhibited by 48–52 Hz to eliminate the data
interference caused by baseline drift and electrical interference.

TABLE 1 Demographic information of the subjects.

MDD NC p-value

Gender (M/F) 12/12 20/9 0.1600a

Age (mean± SD) 30.9± 21.1 30.9± 20.1 0.9880b

PHQ-9 (mean± SD) 18.3± 7.3 2.6± 2.6 0.0000b

GAD-7 (mean± SD) 13.4± 11.4 2.1± 4.9 0.0000b

MDD, major depression disorder; NC, normal control; M, male; F, female; PHQ-
9, Patient Health Questionnaire-9item; GAD-7, generalized anxiety disorder-7. pa :
Statistical significance level was calculated by χ2-test; pb : Statistical significance level was
obtained by two-sample, two-tailed t-test.

The processed data was then re-referenced against REST (Yao,
2001). Finally, after the above steps, some high-power content
was contained in the remaining data points and some EEG
epochs were removed by the Artifact Subspace Reconstruction
(ASR) plugin (Chang et al., 2018; Pion-Tonachini et al., 2018).
In this study, theta (4–8 Hz), alpha (8–13 Hz), and beta (13–
40 Hz) bands calculated by fast Fourier transform were selected
in the frequency domain, which had been proved to be much
distinct in the identification of depression (Nyström et al., 1986;
Knott et al., 2001; Jaworska et al., 2012).

Methods

Figure 2 shows the overall pipeline of our method,
which includes six steps: (1) constructing LO-BFN by sliding
window; (2) clustering all low-order correlation time series; (3)
constructing HO-BFN by calculating the correlation between
clusters; (4) selecting and extracting features from each
constructed BFN; (5) constructing support vector machines
(SVMs) based on the selected features in both LO-BFN and HO-
BFN; and (6) fusing the decision scores of multiple SVMs to
predict whether each subject is MDD or NC.

Construction of low-order BFN

In order to construct LO-BFN, we first use the
sliding window to divide the entire EEG signals into
H = [(M −W)/s] + 1 overlapping windows, where M is
the image volume during the entire scan period, and W and s
are the window width and step size of the sliding window,
respectively. Then, we calculate the correlation between xli

(
h
)

and xlj
(
h
)
, where xli

(
h
)

and xlj
(
h
)

denote the i-th and j-th
channels under the h-th window of the l-th subject, respectively.
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FIGURE 2

The flowchart of the proposed BFN classification framework, including six main steps: (1) constructing LO-BFN; (2) clustering the time series; (3)
constructing HO-BFN; (4) feature selection; (5) constructing SVM model; and (6) classification fusion.

In the frequency domain, we use the phase lag index (PLI)
(Stam et al., 2007; Peraza et al., 2012) to calculate the channel
correlation, which is robust to volume conduction artifacts. The
PLI is denoted as:

Cl
ij =

∣∣∣∣∣ 1
N

N∑
n=1

sign
(
ϕl
i (tn)− ϕl

j (tn)
)∣∣∣∣∣ (1)

where N is the sample number, sign is the sign function, and
ϕl
i (tn)− ϕl

j (tn) is the phase synchronization of channels xli and
xlj at time tn . Among them, ϕl (tn) can be obtained by analyzing
the signal based on Hilbert transform (Bruns, 2004).

On the other hand, in the time domain, we calculate the
channel correlation by using the Pearson correlation coefficient
(PCC) (Eslami and Saeed, 2018) as follows:

Cl
ij = corr(xli, x

l
j) (2)

Therefore, for the l-th subject, the h-th subnetwork
of LO-BFN is constructed as Gl

L
(
h
)
=

({
xli
(
h
)}

,
{
Cl
ij
(
h
)})

(as shown in Figure 3A), where
{
xli(h)

}
is vertices and{

Cl
ij(h)

}
is the weights of the edges connecting the i-th

and j-th nodes. Then, we construct H subnetworks to form
LO-BFN Gl

L =
[
Gl
L (1) ,Gl

L (2) , . . . ,Gl
L (H)

]
for each subject,

which describes the change in FC strength of all channel
pairs over time.

FIGURE 3

Schematic diagram of different BFNs. (A) Schematic diagram of
the brain region of LO-BFN. (B) Schematic diagram of brain
regions of HO-BFN before clustering. (C) Schematic diagram of
brain regions of HO-BFN after clustering.

Construction of high-order BFN

In order to capture high-level FCs, we adopt the strategy of
“correlation’s correlation”. That is, based on the LO-BFN, the
PCC is used to calculate the correlation between the LO-FC time
series of the l-th subject, which is called HO-FC, denoted as:

Hl
ij,pq = corr(Cl

ij,C
l
pq) (3)

where Cl
ij is the LO-FC time series between the i-th and the

j-th channels of the l-th subject and Cl
pq is the LO-FC time
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FIGURE 4

Recognition accuracy of HO-BFN with different number of clusters.

TABLE 2 MDD classification using different BFNs.

Network ACC (%) TPR (%) TNR (%) PPV NPV F1 (%)

Alpha-LO 60.67 59.17 60.83 64.81 54.86 61.78

Alpha-HO 79.78 80.83 78.33 82.25 77.08 81.48

Alpha-Fu 83.98 84.34 82.67 85.80 81.39 85.01

Beta-LO 64.52 66.17 62.17 68.17 59.96 67.07

Beta-HO 70.90 71.50 69.83 74.39 66.68 72.71

Beta-Fu 76.63 77.83 74.00 78.82 73.24 78.25

Theta-LO 69.63 71.50 68.50 73.43 66.29 72.23

Theta-HO 65.58 64.50 67.17 70.46 60.68 67.13

Theta-Fu 77.65 80.83 74.00 79.44 76.04 80.08

Frequency domain-Fu 86.62 89.17 82.67 86.48 86.19 87.77

Time domain-LO 59.16 60.50 58.17 63.75 54.56 61.94

Time domain-HO 61.23 62.67 60.33 65.85 56.85 64.11

Time domain-Fu 65.79 69.67 60.33 68.17 61.92 68.78

LO = LO-BFN; HO = HO-BFN; Fu, the fusion of LO-BFN and HO-BFN. For example, alpha-LO means the LO-BFN in the alpha band, and note that frequency domain-Fu means the
fusion of all BFNs of three bands in the frequency domain. Values highlighted in bold indicate the best results.

series between the p-th and the q-th channels of the l-th subject.
Therefore, Hl

ij,pq can represent the HO-FC among the four
channels of the l-th subject at most, that is, the correlation
between the FC between the i-th and j-th channels and the FC
between the p-th and q-th channels. Physiologically, difference
in FC among different channels in MDD patients and healthy
individual subjects can be used to identify MDD.

If we have 128 channels in our study, the dimensionality
of the constructed LO-BFN is 128 × 128. Thus, a large-scale
HO-BFN will be constructed (as shown in Figure 3B) in Eq. 3;
that is, the dimensionality is (128 × 128)2, and the constructed

network contains at least thousands of nodes and millions of
edges. It is a critical problem that the dimensionality is too large,
and it will introduce high computational complexity for the
subsequent feature extraction and selection procedures. Besides,
the generalization performance of the HO-BFN learning system
may also degrade.

To this end, we will reduce the network dimensionality
by clustering the LO-FC time series. Specifically, the LO-FC
time series of the subjects are clustered into different clusters
to find the potential interaction patterns. Then, the HO-FC
between the respective average LO-FC time series in clusters
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TABLE 3 Brain regions corresponding to channels of interest.

Brain area Channels

Frontal (F) E2, E3, E4, E5, E9, E10, E11, E12, E15, E16, E18, E19,
E22, E23, E24, E26, E27, E123, E124

Left temporal (LT) E28, E33, E34, E35, E39, E40, E41, E45, E46, E47, E50,
E51, E52, E58

Central (C) E6, E7, E13, E20, E29, E30, E31, E36, E37, E42, E53,
E54, E55, E79, E80, E86, E87, E93, E104, E105, E106,
E111, E112, E118

Right temporal (RT) E92, E96, E97, E98, E101, E102, E103, E108, E109,
E110, E115, E116, E117, E122

Posterior (P) E59, E60, E61, E62, E65, E66, E67, E70, E71, E72, E75
E76, E77, E78, E83, E84, E85, E90, E91,

The channels in Table 3 are channels of interest, while the other channels are marginal
and do not belong to the brain regions classified above.

is calculated. Compared with the previous large-scale HO-
BFN, the dimensionality of the HO-BFN constructed in this
way is greatly reduced (as shown in Figure 3C). This method
not only preserves important interactive information, but also
avoids the problems of high computational complexity and low
generalization performance.

In order to ensure that the clustering results in different
subjects are consistent, the FC matrices of all subjects are
first accumulated together, so that to connect the time series
of LO-FC in the same channel pairs in all subjects into a
long vector. That is, the long vector connected by the time
series {Cl

ij}1<=l <=R of the LO-FC between the i-th and j-th

channels of all subjects is Cij =
[
C1
ij,C

2
ij, · · · ,C

R
ij

]
, where R is

the number of subjects.
After the Cij is obtained, we divide it into k clusters by

hierarchical clustering. The cluster centers are calculated by
averaging all the FC long vectors in the k-th cluster of the l-th
subject as the following Eq. 4:

C̃l
k =

∑
Cij∈ωk

Cl
ij

|ωk|
(4)

where |ωk| denotes the total number of FC long vectors in
cluster k. Finally, the PCC between the two clusters C̃l

k1 and C̃l
k2

of the l-th subject is calculated as follows:

H̃l
k1,k2 = corr(C̃l

k1, C̃
l
k2) (5)

Finally, we obtain a small-scale HO-BFN
Gl
H̃
=

({
C̃l
k1

}
,
{
H̃l
k1,k2

})
, taking

{
C̃l
k1

}
as vertices and{

H̃l
k1,k2

}
as the weights of edges.

Feature extraction, selection,
classification, and fusion

Both LO-BFN and HO-BFN of the l-th subject, i.e., Gl
L

and Gl
H̃

, are used for the subsequent classification. Due to the

possible phase mismatch of all FC matrices of LO-BFN in each
subject, the dynamic characteristics of different subjects do not
completely correspond. Therefore, to avoid this situation, we
calculate the average FC matrix of each subject’s LO-BFN as the
low-order feature. For the ease of computation, we vectorize
the averaged LO-FC matrix of the l-th subject into f lL , which
is called the low-order feature vector. Similarly, we vectorize
the FC matrix H̃l of HO-BFN of the l-th subject to f l

H̃
as the

high-order feature vector.
Both low-order feature vectors and high-order feature

vectors have a large number of features, introducing irrelevant
or redundant information for subsequent MDD classification.
Therefore, we use t-test and Least Absolute Shrinkage and
Selection Operator (LASSO) (Tibshirani, 2011) methods to
select features for high-order and low-order feature vectors,
which can effectively remove redundant features. Specifically, we
first perform t-test on both the low-order feature vector fL and
the high-order feature vector fH̃ on the training set and select
the features that are significantly different from fL and fH̃ as
preliminary features, denoted f̄L and f̄H̃ , respectively.

Then, we use LASSO to further remove redundant features
and select the features most related to MDD. Let Il be the labels
for the l-th subject. Specifically, if the l-th subject is MDD,
Il = −1; if the l-th subject is NC, Il = +1; and α is set to be
the weight vector for feature selection. The objective of LASSO
is defined as:

min
α

1
2

N∑
l=1

∣∣∣∣∣∣Il 〈−f̄ l, α
〉∣∣∣∣∣∣2

2
+ λ||α||1 (6)

where 〈·, ·〉 is the inner product operator and λ is the
regularization parameter. For simplicity, let f L and f H̃ denote
selected the final feature sets from the feature vectors f L and
f H̃ , respectively.

Finally, the MDD is classified by using SVM with a linear
kernel in this paper. Herein, we train two linear SVM classifiers
by using both f L and f H̃ features, respectively. The final
results are obtained by fusing the decision scores of two SVM
classifiers by linear combination. Among them, we set the weight
β ∈ [0.1, 0.2, . . . , 0.9] for each SVM. The weights of the F
classifiers to be fused are set to be β1, β2, . . . , βF and satisfy
β1 + β2 + . . .+ β F = 1.

Experiments results

To evaluate the effectiveness of our proposed method, we
analyze the impact of clustering parameters on HO-BFN. The
classification ability of LO-BFN, HO-BFN, and their fusion
for MDD is evaluated by six different indicators, i.e., accuracy
(ACC), sensitivity or true positive rate (TPR), specificity or
true negative rate (TNR), precision or positive predictive value
(PPV), negative predictive value (NPV), and F1 score. Finally,
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FIGURE 5

The 10 most frequently selected connection diagrams for different LO-BFNs.

we conduct feature analysis to understand the role of each
channel in MDD diagnosis.

Furthermore, we adopt a nested ten-fold cross-validation
(CV) strategy consisting of two nested loops to evaluate the
effectiveness of our proposed method. In the outer loop, all
data are randomly divided into ten subsets of roughly the same
size, where one subset is selected as the testing set, while the
other nine subsets are selected as the training set. In the inner
loop, the data of the training set are merged and redivided
into ten subsets of similar size, nine of which are used to

adjust the hyper-parameters and one for model evaluation. We
report the average accuracy of classification results across the
ten-fold CV. Then, in order to avoid any possible bias in fold
selection, this procedure is repeated 10 times, with a different
random partitioning of samples each time. Finally, the average
accuracy of 10 repetitions is reported. Since the performance
of our method also depends on hyper-parameters, such as W
and s in sliding window, k in clustering, p in t-test, λ in
LASSO, and c in SVM model. The optimal hyper-parameters
can be determined when the average classification accuracy
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TABLE 4 The brain regions selected from different HO-BFNs.

Cluster Alpha Beta Theta Time
domain

Cluster 1 LT, LC, LP-RP LF-RF, RC, RT LT, LC LC, LP, RT

Cluster 2 LF-RF, LT-RT,
LC-RC, RP

LF, LT, RC, RP LF-RF, LC-RC,
RT

LF-RF, LT-RT,
LC-RC

Cluster 3 LF-RF RC, RT, RP LF-RF, LC LF-RF, LT, LC

Cluster 4 LF-RF, LT,
LP-RP

LF-RF, LT-RT,
LC-RC, LP-RP

LF, LC LF-RF, LT-RT,
LC-RC

reaches its optimum. In our experiment, we fix the size of
the sliding window, i.e., W = 10000, s = 1000, and determine
the optimal values of other parameters within the following
range: k ∈ [100, 200, . . . , 800], p ∈ [0.01, 0.02, . . . , 0.05],
λ ∈ [0.1, 0.2, ..., 0.9], and c ∈ [2−4, 2−3, . . . , 24

].

The clustering effectiveness on
high-order BFN

To reduce the computational complexity of the HO-BFN,
the hierarchical clustering is employed to construct HO-BFNs.
The hyper-parameter k in hierarchical clustering indicates the
cluster number, and it has a crucial influence on the constructed
HO-BFN, and further affects the final classification results.
In the experiment, we optimize HO-BFN by adjusting the
clustering number k. Figure 4 shows the classification results
when k takes different numbers.

As can be seen from Figure 4 that for the clustering
parameter k, when the time domain takes the value of 500,
alpha takes the value of 200, beta takes the value of 100, and
theta takes the value of 600, the HO-BFN generates a relatively
satisfactory classification result. The ACC is greatly affected by
k; i.e., classification performance is very sensitive to clustering
parameters. Different HO-BFNs have different performances,
indicating that different HO-BFNs contain different levels of
MDD diagnosis information. Therefore, we can conclude that
it is necessary to select k carefully toward a better understanding
of dynamics in brains.

Comparison of major depressive
disorder diagnosis using different brain
functional networks

In this subsection, we further study how HO-BFN
contributes to MDD diagnosis. We construct and analyze
HO-BFN from the time domain and alpha, beta, and theta
bands in the frequency domain, respectively. In the experiment,
we train and test the classifiers of LO-BFN and HO-BFN,
respectively, and determine the parameter combination that can
produce the best ACC.

Due to the complex connections in the brain, it is difficult
to fully capture the relationship between different brain regions
through a single type of BFN. In order to further improve
the classification performance, we adopt the linear fusion
of the SVM integrated decision score to combine LO-BFN
and HO-BFN (Zhao et al., 2020) and analyze their fusion
performance. In addition, we also believe that different BFNs
constructed by the three bands in the frequency domain can
reflect FC between channels from different views, which are
complementary. Therefore, we further linearly fuse the decision
scores of BFNs in three bands. Table 2 shows the classification
performance of different BFNs, and the best classification results
are highlighted in bold.

From Table 2, we can draw the following conclusions: (1)
BFNs constructed in different ways have different performance,
implying that each BFN provides meaningful and various
information for MDD identification; (2) fusing LO-BFN and
HO-BFN is better than that of a single network, and the ACC
is relatively increased in 4%, indicating that LO-BFN and HO-
BFN are complementary to each other in classifying MDD; (3)
the performance of each brain network in the frequency domain
is obviously better than that of the BFNs in the time domain,
indicating that it is more effective to extract features in the
frequency domain.

The most discriminative features for
major depressive disorder diagnosis

To identify the most discriminative features in MDD
diagnosis, we select ten frequently selected LO-FC features and
two frequently selected HO-FC features based on the t-test and
LASSO regression ten-fold cross-validations of ten times. The
higher selection frequency of FC indicates stronger reliability
and discriminative ability.

Similar to previous studies (Bian et al., 2014), we divide the
brain into five regions, i.e., frontal (F), left temporal (LT), central
(C), right temporal (RT), and posterior (P). The frontal region
is further divided into left frontal (LF) and right frontal (RF),
the central region is further divided into left central (LC) and
right central (RC), and the posterior is further divided into left
posterior (LP) and right posterior (RP).Table 3 shows the details
of these brain regions.

Figure 5 shows the 10 most discriminative FC feature maps
for the different LO-BFNs. The node color indicates the brain
region the channel belongs to, the connection line represents the
correlation between two channels, and the line width indicates
the frequency. The thicker line represents the higher frequency.
It can be seen that the frequently selected FC features in LO-
BFN often appear in the LF, RC, RT, and LP regions in the alpha
band; left central-right central (LC-RC), RT and left posterior-
right posterior (LP-RP) regions in the beta band; the left frontal-
right frontal (LF-RF), RC, RT, and LP regions in the theta band,
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FIGURE 6

The two most frequently selected connection diagrams for different HO-BFNs. Each brain diagram represents the FC of interest channels
across the brain region in a cluster.

and the LF, RC, left temporal-right temporal (LT-RT) and left
posterior-right posterior (LP-RP) regions in the time domain.

The HO-BFN is constructed based on clustering. Each
cluster is used as the vertex of the network, and the HO-FC is
used as the edge of the network. For HO-BFN, we select the two
most discriminative cluster pairs and describe the FC feature
diagram between these two cluster pairs in Figure 6, where
each brain map represents a cluster, the connection between
brain maps represents the connection between clusters, that
is, HO-FC, and the connections in the brain map represent
the FC between channels belonging to this cluster, that is, LO-
FC. Table 4 shows the brain regions involved in the most

discriminative clusters that are selected from different HO-
BFNs. From Figure 6 and Table 4, we can observe that the most
frequently selected features in HO-BFN are mainly distributed
in LF-RF, LT-RT, and LC-RC regions of the theta band, other
brain regions except RT in the time domain, as well as the whole
brain region of the alpha and beta band.

Discussion

In this paper, we propose a novel method to construct HO-
BFN based on the “correlation’s correlation” strategy, which
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can simultaneously capture low-order features reflecting FC
information between any two channels and high-order features
reflecting FC information among multiple channels, so as
to better simulate the mechanisms of the deep brain and
provide more discriminative information for the diagnosis of
mental disorders. We believe that different BFNs can mine
disease-disturbed BFN variation information from different
aspects, which has better performance in MDD classification
experiments. According to the experimental results, we will
discuss HO-BFNs in more detail.

In the experiment to explore the influence of the clustering
parameter on the classification accuracy of HO-BFN, we find
that the classification result changes with the change of the
clustering parameter. When the clustering parameter is too
small or too large, the accuracy of diagnosis will gradually
decrease. This can be understood from two aspects: (1) when
the clustering parameter is too small, the LO-FC time series with
different dynamic changes may be divided into the same cluster,
which will reduce the similarity of each cluster, so that the HO-
BFN constructed by the mean sequence of each class as the
vertex is unreliable; and (2) when the clustering parameter is too
large, the LO-FC time series with similar dynamic changes may
be divided into different clusters, which will increase the number
of features extracted from HO-BFN, thus resulting in more
redundant features and causing the decrease in accuracy and
generalization ability. Thus, choosing the suitable number of
clusters for HO-BFN is the key to achieving MDD classification
and improving the classification accuracy.

According to the experimental results in Table 2, we find
that the proposed BFNs in the frequency domain are usually
more discriminative than in the time domain, and the alpha and
theta bands in the frequency domain are more discriminative
than the beta band, indicating that the brain functional structure
of MDD patients has undergone significant changes in these
two bands. Therefore, we believe that the BFNs of alpha and
theta play an important role in the pathogenesis of MDD.
Several previous studies have also reported the same or similar
conclusion: abnormal brain function in MDD patients occurs at
certain frequency bands. For example, Fingelkurts et al. (2010)
showed that the FC in the alpha and theta bands of EEG
in MDD was impaired. Hosseinifard et al. (2013) found that
there were differences in alpha bands between the MDD group
and the NC group.

To further prove the effectiveness of BFNs in MDD disease
diagnosis, we trace the BFNs to which the features of the
classifier used for training belong. The experimental results in
Figures 5, 6 show that: (1) the channel pairs selected by LO-
BFN hardly overlap with those of HO-BFN, indicating that
the FC features extracted from LO-BFN and HO-BFN are
complementary to each other. (2) RC and RT are significantly
different in all LO-BFNs, and they are related to the regulation
of attention, long-term memory, and emotion. In previous
studies, Fan et al. (2013) found that abnormal RT superior

gyrus activity could be a potential marker of suicidal tendencies
in MDD patients. Sun et al. (2019) observed differences in
MDD patients in the F, T, and C of the theta band and in
the T and C of the alpha band. Zhang et al. (2021) found
significant modifications in brain synchrony of LF, T, and RT in
MDD patients. Our observations are generally consistent with
these studies (Fan et al., 2013; Sun et al., 2019; Zhang et al.,
2021).

However, this study has some limitations. Firstly, either the
low-order or the high-order FC is based on the correlation
instead of the inherent causality. The relatively small sample
size and unbalanced data may also affect the result of the
analysis. Although most conclusions obtained by our method
are generally consistent with the previous relevant studies,
the experimental results may have a potential bias due to
the heterogeneity of the experiment (Hassler and Thadewald,
2010). In the future work, we will focus on the influence
of nonsensical and biased correlation and investigate more
advanced models to calculate correlation, such as causality
inference, based on larger datasets to obtain more accurate
and sufficient information about the brain changes of MDD
patients. Secondly, the sliding window algorithm should set the
step size and window width, but we fixed the window width
and step length in this study. Further studies will investigate
the influence of different parameter settings. Finally, we linearly
combine the decision scores of the LO-BFN and HO-BFN at
the decision-making level, and this linear combination may not
fully mine the complementary information, thereby affecting the
classification accuracy. Therefore, in our future work, we will
further increase the accuracy of MDD diagnosis by using more
advanced information fusion strategies.

Conclusion

In this paper, we propose a framework for constructing
HO-BFN based on the “correlation’s correlation” strategy and
capture the high-order correlations across different channels
for MDD diagnosis. We use hierarchical clustering to reduce
the computational complexity of the HO-BFN. Experimental
results demonstrate that: (1) the proposed HO-BFN can
provide discriminative information for the MDD identification.
(2) Fusing high-order and low-order BFNs can significantly
improve the recognition rate of MDD patients. (3) The most
discriminative brain regions are associated with the regulation
of attention, and these findings are consistent with the daily
behavior of MDD patients.
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Bipolar disorder (BD) is associated with a high risk of suicide. We used proton

magnetic resonance spectroscopy (1H-MRS) to detect biochemical metabolite

ratios in the bilateral prefrontal white matter (PWM) and hippocampus in 32

BD patients with suicidal ideation (SI) and 18 BD patients without SI, identified

potential brain biochemical di�erences and used abnormalmetabolite ratios to

predict the severity of suicide risk based on the support vector machine (SVM)

algorithm. Furthermore, we analyzed the correlations between biochemical

metabolites and clinical variables in BD patients with SI. There were three main

findings: (1) the highest classification accuracy of 88% and an area under the

curve of 0.9 were achieved in distinguishing BD patients with and without SI,

with N-acetyl aspartate (NAA)/creatine (Cr), myo-inositol (mI)/Cr values in the

bilateral PWM, NAA/Cr and choline (Cho)/Cr values in the left hippocampus,

and Cho/Cr values in the right hippocampus being the features contributing

themost; (2) the above seven features could be used to predict Self-rating Idea

of Suicide Scale scores (r = 0.4261, p = 0.0302); and (3) the level of neuronal

function in the left hippocampus may be related to the duration of illness, the

level of membrane phospholipid catabolism in the left hippocampus may be

related to the severity of depression, and the level of inositol metabolism in

the left PWM may be related to the age of onset in BD patients with SI. Our

results showed that the combination ofmultiple brain biochemical metabolites
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could better predict the risk and severity of suicide in patients with BD and that

there was a significant correlation between biochemical metabolic values and

clinical variables in BD patients with SI.

KEYWORDS

bipolar disorder, suicidal ideation, protonmagnetic resonance spectroscopy,machine

learning, multivariate pattern analysis, support vector machine

Introduction

Bipolar disorder (BD) is a lifelong severe mental disorder

characterized by alternating high and low emotions.

Approximately 2%−3% of individuals in the world are

troubled by bipolar and related disorders. The World Health

Organization (WHO) reported that BD is expected to rise to

sixth place on the list of global burdens of disease by 2030.

Some studies have shown that BD is the disease associated with

the highest risk of suicide among all major mental disorders

(Merikangas et al., 2011), and the associated suicide rate is

20 to 30 times higher than that in the common population

(Plans et al., 2019; Carvalho et al., 2020). In terms of suicide

risk, suicidal ideation (SI) is considered to be one of the

important predictors of future suicidal behavior (Nock et al.,

2008). Therefore, paying close attention to SI can reduce

the risk of early suicide in patients with BD. However, the

current assessment of suicide risk is still mainly based on

many sociodemographic characteristics and clinical risk factors,

which usually have poor predictive accuracy. In addition, due

to the influence of patients’ subjectivity and shame, almost

80% of patients who attempted suicide do not explain their

suicidal thoughts to doctors (Gosnell et al., 2019). Consequently,

strengthening the search for specific neurobiological markers

will help to predict future suicide risk in BD patients with SI.

At present, the neurobiological mechanisms underlying SI

in patients with BD are unknown. Magnetic resonance imaging

(MRI) technology has been widely used to understand the

pathophysiological mechanisms underlyingmental diseases, and

such research has made corresponding progress in revealing

the neurobiological changes in brain regions of suicidal patients

with BD. For example, the graph theory analysis of global

brain functional connectivity in resting-state functional MRI

showed that the distribution of intrinsic connectivity in the

bilateral ventromedial prefrontal cortex of patients with BD

who attempted suicide was significantly lower than that in

patients without attempted suicide and was related to the

severity of SI (Sankar et al., 2022). Relevant studies have

found that in patients with a current or prior diagnosis of

depression or BD, the intensity of SI was associated with weaker

connections of the limbic network with the hippocampus,

default mode network, dorsal attention network, and executive

control network (Chin Fatt et al., 2021). In studies evaluating

low-frequency fluctuations (ALFF) and gray matter volume

in the prefrontal cortex, it was shown that the ALFF values

in the medial prefrontal cortex, ventral prefrontal cortex, and

dorsolateral prefrontal cortex in BD patients with suicide

attempts were significantly higher than those in patients

without suicide attempts (Zhao et al., 2021). In gray matter

and white matter-related studies, bilateral hippocampal gray

matter volume and right ventral frontal white matter fractional

anisotropy were found to decrease in BD patients with suicide

attempts (Fan et al., 2019). From the above research, we can

speculate that the structural and functional abnormalities in the

prefrontal lobe and hippocampusmay be related to SI in patients

with BD.

Proton magnetic resonance spectroscopy (1H-MRS) is a

non-invasive and non-radioactive technique used to study the

levels of biochemical metabolites in the brain, including N-

acetyl aspartate (NAA), choline (Cho), myo-inositol (mI), and

creatine (Cr), which can provide relevant information about

neuronal integrity and neurotransmitter levels. Some studies

have shown that the NAA/Cr values in the left prefrontal white

matter (PWM) in patients with BD II (Zhong et al., 2014) and

bilateral PWM in depressed patients with BD, compared with

healthy controls, were decreased (Lai et al., 2019), furthermore,

NAA/Cr+phosphocreatine and NAA/Cho values in the bilateral

hippocampus were significantly decreased in patients with first-

episode BD I (Atmaca et al., 2006). Glutamic acid and glutamine

complex (Glx) levels and NAA/Glx in the anterior cingulate

cortex could distinguish depression patients with and without SI

(Lewis et al., 2020). However, there are few studies on 1H-MRS

in BD patients with suicide, and the results have either not been

significant or not been very consistent (Rocha et al., 2015; Zhong

et al., 2018).

In recent years, multivariate pattern analysis (MVPA) has

become an effective analysis method that can often detect

differences in neuroimaging data that cannot be detected

by traditional univariate statistical methods by combining

information from many features (Nielsen et al., 2020). Support

vector machine (SVM) has been one of the most widely

used machine learning algorithms to identify neurobiological

markers of various neuropsychiatric disorders, which has

high sensitivity and specificity in distinguishing patients with
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BD from those with other neuropsychiatric disorders or

healthy subjects, as well as predicting clinical outcomes of

neuropsychiatric disorders (Orrù et al., 2012; Liu et al., 2015,

2017a; Librenza-Garcia et al., 2017; Orban et al., 2018; Schwarz

et al., 2019; Yang et al., 2019; Ji et al., 2020; Li et al., 2020).

However, to date, the research on 1H-MRS of BD using the

SVM algorithm is very limited, and only one study described the

potential of 1H-MRS in predicting the first emotional episode of

young BD offspring by using SVM (Zhang et al., 2021). Research

on 1H-MRS in BD patients with SI is nonexistent.

Therefore, in this study, we used 1H-MRS to detect

the biochemical metabolite ratios in the bilateral PWM and

hippocampus in BD patients with and without SI, identified

potential brain biochemical differences in BD patients with

SI, and used these abnormal metabolite ratios to predict the

severity of suicide risk based on the SVM algorithm. In addition,

we examined the relationships between biochemical metabolite

ratios and clinical variables. In short, the purpose of this study

was to explore changes in brain biochemical metabolites in

BD patients with SI, to identify high-accuracy neuroimaging

predictors that may be used to evaluate the risk of suicide, and

then to provide early identification and assessment of the risk or

tendency of suicidal behavior in patients with BD in future.

Methods

Participants and clinical assessments

We recruited 50 patients with BD from the Department of

Clinical Psychology of the People’s Hospital of Xinjiang Uygur

Autonomous Region in China. There was a restriction on the

age of all participants, who ranged from 18 to 55 years. The

diagnosis of BD was confirmed by two experienced psychiatrists

according to the structured clinical interview criteria of the

Diagnostic and Statistical Manual of Mental Disorders, Fourth

Edition, Text Revision (DSM-IV-TR). The evaluation of the

clinical status was conducted utilizing the 17-item Hamilton

Depression Scale (HAMD) (Hamilton, 1960) and the Young

Mania Rating Scale (YMRS) (Young et al., 1978). All patients

had a YMRS total score < 7 and a 17-item HAMD total score

>17. Moreover, an inclusion criterion for all participants was

that they were right-handed. The exclusion criteria included

the following: (1) other mental disorders meeting DSM-IV-TR

criteria; (2) a history of organic brain disorder and serious

physical illness; (3) a history of epilepsy, severe brain injury,

or coma caused by other reasons for more than 5min; (4)

alcohol or drug abuse; (5) pregnancy or lactation; and (6)

contraindications for magnetic resonance scanning, such as

metal implants or claustrophobia.

We used the Self-rating Idea of Suicide Scale (SIOSS)

to assess whether the patients had SI. There were 26 items

on the SIOSS that included four factors: despair factor,

optimism factor, sleep factor, and concealment factor. All items

were scored with a “yes” or “no” answer. The assessment

criteria for SI were the sum of the total scores of the

despair factor, optimism factor, and sleep factor ≥12 and

the concealment score < 4. The higher the score was, the

stronger the SI. The scale is simple and easy for patients

to understand, and it has good validity and reliability (Xia

et al., 2002). According to SIOSS scores, there were 32

patients with SI and 18 patients without SI. In addition,

our study evaluates the severity of anxiety symptoms in all

patients with BD by utilizing the 14-item Hamilton Anxiety

Scale (HAMA).

Image data acquisition

The MRI scanning was conducted on all subjects using

an Ingenia 3.0T MRI scanner (Ingenia, Philips Healthcare,

Netherlands) with a 15-channel phased-array head coil. The

following precautions were taken before scanning: (1) coffee,

tobacco, and alcohol were banned in 24 h before the MRI

scanning, and the body temperature need to be kept at a normal

level to rule out feverish patients; (2) the doctor told the subjects

not to move during the MRI scanning; and (3) the subjects were

required to rest quietly for half an hour before the examination.

In addition, earplugs and headphones were used to reduce noise,

and head movement was reduced by using foam pads.

One 3DT1FSPGR sequence that covered the whole brain

was used for the anatomical localization of MRS. T2-weighted

images (T2WI) [repetition time (TR) = 3,000ms, echo time

(TE) = 95ms], T1-weighted images (T1W-IR) [TR = 2,000ms,

TE = 20ms, inversion time (TI) = 800ms], and T2 fluid-

attenuated inversion recovery (T2FLAIR) (TR = 8,000ms, TE

= 270ms, TI = 2,000ms) were routinely conducted. The voxel

size = 0.8 × 0.8 × 6 mm3, there were 18 slices, with a field

of view (fov)=24 cm. The scanning planes of three sequences

were duplicated by each other. Before 1H-MRS sequence

localization, it was necessary to judge whether there were organic

lesions, and the anatomical positions of the bilateral PWM

and hippocampus were determined by experienced radiologists.

In three dimensions, none of the volume of interest (VOI)

involved sulci or cerebrospinal fluid. The size of a single

voxel was 20 × 20 × 20 mm3. The scanning parameters

were as follows: TE = 35ms; TR = 2,000ms; and average

(superposition) number of signals (NSA) = 96. To prevent the

disturbance of spectral line quality by some disadvantageous

factors surrounding the spectrum voxel, the saturation band

could be manually placed near the VOI, which was essential to

ensure that the air, bone, fat, or blood vessels surrounding the

VOI were adequately suppressed. During scanning, the chemical

shift selective saturation method was used to optimize the water

suppression to ensure that the water suppression rate was >99%

and the full width at half maximum of the water peak was
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<10Hz. The acquisition time of the 1H-MRS sequence was

10min (Chen et al., 2021).

Data processing

The spectral view software of the Philips 3.0T workstation

(ISP 7.0, Philips Healthcare, the Netherlands) was used for 1H-

MRS data postprocessing. The specific data processing steps

were as follows: residual water peak removal, signal attenuation

correction, spectral line interpolation, Fourier transform,

spectral line phase correction, baseline level adjustment, the

selection of peak frequency position, line width setting, and

peak Gaussian fitting. The NAA/Cr, Cho/Cr, and mI/Cr ratios

in the bilateral PWM and hippocampus were used to analyze the

changes in brain biochemical metabolism, and an experienced

radiologist evaluated the quality of the spectrum and analyzed

the data.

Univariate statistical analysis

The univariate data were analyzed by SPSS 24.0 software,

and the significance level of the two tails was set at p <

0.05. When the data were continuous variables that conformed

to a normal distribution, the t-test was conducted, and

the data are expressed as the mean ± standard deviation.

When the continuous variable did not conform to a normal

distribution, the non-parametric test was selected, and the

data are expressed as the median (upper quartile, lower

quartile). The data of discontinuous variables were analyzed

by the chi-square test. Then, the results with statistically

significant differences between the two groups were further

corrected by the Bonferroni correction method for multiple

comparisons. In determining whether the concentration of brain

biochemical metabolites in BD patients with SI was related

to clinical variables, Pearson correlation analysis was used

for the two groups of variables conforming to the normal

distribution, and Spearman correlation analysis was used for

those not conforming to the normal distribution. In addition, we

plotted the receiver operating characteristic (ROC) curves and

calculated corresponding areas under the curve (AUC) for the

abnormal metabolic values of BD patients with and without SI.

MVPA

This analysis was conducted using SVM (i.e., support

vector classification, SVC) from the MVPANI toolbox (Peng

et al., 2020). We first used the leave-one-out cross-validation

(LOOCV) method, leaving only one subject for the test set each

time, and the remaining 49 subjects for the training set, which

resulted in the model being trained 50 times and tested 50 times.

Although the calculation method using LOOCV is complicated,

it has a high utilization rate of samples, which is suitable for small

sample research. Each feature was standardized before cross-

validation: the values in each row (each row represents a sample)

were normalized by transforming all values in each sample to z

scores with a mean of 0 and a standard deviation (SD) of 1 using

the following equation:

zij =
xij −mean (xi.)

SD (xi.)
for the ith row

We adopted the feature selectionmethod of F-score in this study.

The specific process was shown as follows: in the process of each

LOOCV, all features were arranged in order from high to low

according to the size of F-values of an F-test in BD patients

with and without SI in the training dataset. Then, we selected

the number of the feature with the highest F-values of 10% (the

number of the feature was one) to train a new classifier in the

training dataset and the performance of the classifier was tested

using the reserved test dataset, so the classification accuracy of

this LOOCV was generated. According to the LOOCV process,

50 models and 50 feature sets were generated, and the features

contained in each feature set in the 50 feature sets were not

all the same. In addition, the features in each feature set have

corresponding weight values. Finally, we could calculate the

average classification accuracy, the average weight values of the

features, and the frequency of each feature of 50 models. Next,

increase the number of feature by 10% each time, and repeat the

above feature selection process until all features were selected,

and the number of features was 2, 3, 4, 6, 7, 8, 9, 10, 12.

Therefore, 10 feature sets with different feature numbers and

10 average classification accuracies were finally obtained. The

statistical significance of classification accuracy was determined

by the permutation test, and the significance threshold was p <

0.05. In this study, we conducted 10,000 random permutation

tests, obtained 10,000 random classification accuracies, and then

used these 10,000 random classification accuracies to construct

the null distribution. The p-value was the percentage greater

than or equal to the actual classification accuracy (p = 0.0001,

i.e., 1/10,000). In the training set of feature selection with the

F-score, because we performed 10 independent MVPA analyses,

the above p-values calculated from the permutation tests needed

to be further corrected by the Bonferroni correction method

for multiple comparisons. In addition to obtaining classification

accuracy, we calculated the receiver operating characteristic

(ROC) curves and the corresponding areas under the curve

(AUCs) for each classification.

Furthermore, SVM (i.e., support vector regression, SVR) was

applied to predict SIOSS scores in patients with BD. We used

the biochemical metabolic values corresponding to the highest

classification accuracy from the above feature selection process

as the feature and SIOSS scores in patients with BD as the

regression target of the regression analysis. We also made use

of the LOOCVmethod to divide all subjects into the training set
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and test set, and each feature was standardized in the process of

cross-validation (themethod was the same as before). Finally, we

calculated the Pearson correlation coefficient between predicted

SIOSS scores and observed SIOSS scores. Similarly, we used

the permutation test to determine the statistical significance of

the Pearson correlation coefficient using the followed specific

methods. The predicted SIOSS scores of patients with BD

were randomly disrupted. With the disrupted SIOSS scores, we

recalculated the Pearson correlation coefficients between the

predicted SIOSS scores and the observed SIOSS scores. We

repeated the above process 10,000 times and compared the

actual Pearson correlation coefficient with the null distribution

based on the null distribution composed of 10,000 Pearson

correlation coefficients. The p-value was the proportion of the

Pearson correlation coefficient obtained by random permutation

tests greater than or equal to the actual value in 10,000

random permutation tests. The level of statistical significance

was p < 0.05.

Results

Demographics

Thirty-two BD patients with SI (11 men, 21 women; 34.69

± 10.51 years old; age range: 18–54 years) and 18 BD patients

TABLE 1 Demographic and clinical data of BD patients with and without SI.

BD with SI (n = 32) BD without SI (n = 18) z/t/χ2 p

Gender (male/female) 11/21 9/9 1.172 0.279

Positive family history (yes/no) 8/24 1/17 1.781 0.182

Education (years) 16 (15, 16) 16 (15, 16) −0.494 0.621b

Duration of illness (month) 48 (24, 81) 60 (20.5, 63) −0.457 0.647b

Age (years) 34.69± 10.51 32.89± 10.97 0.572 0.570a

Age of onset (years) 29.88± 10.11 28.61± 9.64 0.432 0.668a

17-item HAMD score 18.5 (18, 21) 19 (18, 19.25) −0.492 0.623b

14-item HAMA score 13.97± 4.04 14.67± 3.80 −0.598 0.553a

SIOSS score 18 (15, 20) 10.5 (6, 11) −5.856 0.000b,*

BD, bipolar disorder; SI, suicidal ideation; HAMD, Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale; SIOSS, Self-rating Idea of Suicide Scale; aIndependent samples t-test;
bMann–Whitney U test; *p < 0.05 significant.

TABLE 2 Comparisons of proton magnetic resonance spectroscopy in the bilateral PWM and hippocampus of BD patients with and without SI.

BD with SI (n = 32) BD without SI (n = 18) z/t p pc

Left PWM

NAA/Cr 2.02 (1.78, 2.07) 1.78 (1.37, 2.06) −1.598 0.110b

Cho/Cr 0.95± 0.33 0.98± 0.39 −0.247 0.806a

mI/Cr 0.52 (0.41, 0.61) 0.53 (0.45, 1.11) −1.275 0.202b

Right PWM

NAA/Cr 1.79 (1.54, 1.91) 1.63 (1.27, 1.71) −2.024 0.043b,* 0.516

Cho/Cr 1.11 (0.77, 1.17) 0.98 (0.69, 1.15) −0.689 0.491b

mI/Cr 0.97 (0.55, 2.06) 0.5 (0.35, 0.68) −2.615 0.009b,* 0.108

Left hippocampus

NAA/Cr 1.80 (1.52, 1.88) 2.09 (1.67, 2.31) −1.827 0.068b

Cho/Cr 0.90 (0.74, 0.90) 1.33 (1.04, 1.44) −3.369 0.001b,* 0.012*

mI/Cr 0.75 (0.61, 0.86) 0.78 (0.47, 0.86) −0.214 0.830b

Right hippocampus

NAA/Cr 1.86 (1.55, 1.86) 1.78 (1.40, 1.96) −0.898 0.369b

Cho/Cr 1.06 (0.78, 1.06) 1.12 (0.78, 1.18) −1.204 0.229b

mI/Cr 0.71 (0.44, 0.71) 0.65 (0.57, 0.70) −0.857 0.391b

BD, bipolar disorder; SI, suicidal ideation; PWM, prefrontal whiter matter; NAA, N-acetylaspartate.

Cho, choline; mI, myo-inositol; Cr, creatine; aIndependent samples t-test; bMann–Whitney U test.
cBonferroni correction; *p < 0.05 significant.
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without SI (nine men, nine women; 32.89 ± 10.97 years old; the

age range: 18–54 years) underwent demographics and clinical

evaluation in this study. Table 1 shows the demographic and

clinical variables of all participants in the study. There were no

FIGURE 1

Receiver operating characteristic (ROC) curves and

corresponding areas under the curve (AUCs) for the brain

biochemical metabolites that showed significant di�erences in

the univariate statistical analysis.

significant differences in age, gender, educational level, family

history, duration of illness, and age of onset between BD patients

with and without SI (all p> 0.05). In terms of clinical symptoms,

the SIOSS score in BD patients with SI was higher than that in

BD patients without SI (p < 0.05). No significant differences

were found in the 17-item HAMD and 14-item HAMA scores

between the groups (all p > 0.05).

Comparisons of 1H-MRS in the bilateral
PWM and hippocampus of BD patients
with and without SI

Table 2 presents the comparative results of the NAA/Cr,

Cho/Cr, and mI/Cr ratios in the bilateral PWM and

hippocampus of BD patients with and without SI. After

using the Bonferroni correction method, the Cho/Cr ratios in

the left hippocampus were significantly lower in BD patients

with SI than in BD patients without SI (p < 0.05). However,

there were no significant differences in the Cho/Cr ratios

in the right hippocampus, NAA/Cr and mI/Cr ratios in the

bilateral hippocampus, and NAA/Cr, Cho/Cr, and mI/Cr

ratios in the bilateral PWM between the two groups (all p >

0.05). Furthermore, the AUC of the Cho/Cr values in the left

hippocampus was 0.79 (Figure 1).

FIGURE 2

Feature numbers and classification accuracy for each classifier when using feature selection.
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FIGURE 3

Receiver operating characteristic (ROC) curves and areas under the curves (AUCs) for each classifier when using feature selection.

MVPA of biochemical metabolite ratios in
BD patients with and without SI

Figures 2, 3, and Table 3 show the number of features,

classification accuracy, sensitivity, specificity, AUC, and p-value

obtained by the permutation test when the F-score was used

for feature selection in each classifier. When the classification

accuracy was 78%, the AUC was 0.77 and the number of the

feature was one, the corresponding features were Cho/Cr ratios

in the left hippocampus. When the classification accuracy was

72%, the AUC was 0.73 and the number of the feature was

two, the corresponding features were mI/Cr ratios in the right

PWM and Cho/Cr ratios in the left hippocampus. When the

classification accuracy was 82%, the AUC was 0.88 and the

number of the feature was three, the corresponding features

were mI/Cr ratios in the bilateral PWM and Cho/Cr ratios

in the left hippocampus. When the classification accuracy was

76%, the AUC was 0.85 and the number of the feature was

four, the corresponding features were NAA/Cr ratios in the

right PWM, mI/Cr ratios in the bilateral PWM, and Cho/Cr

ratios in the left hippocampus. When the classification accuracy

was 84%, the AUC was 0.90 and the number of the feature

was six, the corresponding features were NAA/Cr ratios in the

bilateral PWM, mI/Cr ratios in the bilateral PWM, and NAA/Cr

ratios and Cho/Cr ratios in the left hippocampus. When the

classification accuracy was 88%, the AUC was 0.90 and the

number of the feature was seven, the corresponding features

were NAA/Cr and mI/Cr ratios in the bilateral PWM, NAA/Cr

and Cho/Cr ratios in the left hippocampus, and Cho/Cr ratios

in the right hippocampus. When the classification accuracy

was 84%, the AUC was 0.88 and the number of the feature

was eight, the corresponding features were NAA/Cr and mI/Cr

ratios in the bilateral PWM, Cho/Cr ratios in the left PWM,

NAA/Cr ratios in the left hippocampus, and Cho/Cr ratios in

the bilateral hippocampus. When the classification accuracy was

84%, the AUC was 0.85 and the number of the feature was nine,

the corresponding features were NAA/Cr and mI/Cr ratios in

the bilateral PWM, NAA/Cr and Cho/Cr ratios in the bilateral

hippocampus, and Cho/Cr ratios in the left PWM. When the

classification accuracy was 80%, the AUC was 0.85 and the

number of the feature was 10, the corresponding features were

NAA/Cr and mI/Cr ratios in the bilateral PWM, Cho/Cr ratios
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TABLE 3 Results for each classifier corresponding to feature selection.

Feature set Feature numbers Sensitivity Specificity Accuracy (%) AUC pa value

Feature set 1 1 0.91 0.56 78 0.77 <0.001*

Feature set 2 2 0.88 0.44 72 0.73 0.277

Feature set 3 3 0.88 0.72 82 0.88 0.008*

Feature set 4 4 0.88 0.56 76 0.85 0.117

Feature set 5 6 0.94 0.67 84 0.90 0.002*

Feature set 6 7 0.94 0.78 88 0.90 <0.001*

Feature set 7 8 0.91 0.72 84 0.88 0.002*

Feature set 8 9 0.91 0.72 84 0.85 0.002*

Feature set 9 10 0.84 0.72 80 0.85 0.021*

Feature set 10 12 0.84 0.72 80 0.83 0.016*

AUC, areas under the curve; aBonferroni correction; *p < 0.05 significant.

FIGURE 4

The frequency of each feature corresponding to the highest classification accuracy (LH, left hippocampus; RH, right hippocampus; LP, left

prefrontal whiter matter; RP, right prefrontal whiter matter; NAA, N-acetylaspartate; Cho, choline; mI, myo-inositol; Cr, creatine).

in the left PWM, NAA/Cr and Cho/Cr ratios in the bilateral

hippocampus, and mI/Cr ratios in the left hippocampus. When

the classification accuracy was 80%, the AUC was 0.83 and the

number of the feature was 12, the corresponding features were

NAA/Cr, Cho/Cr, and mI/Cr ratios in the bilateral PWM and

hippocampus. According to the above results, we found that

the sixth feature set (the number of the feature was seven) had

the highest classification accuracy of 88% and the AUC was 0.9.

Figures 4, 5 show the frequency and average weight values of

each feature corresponding to the highest classification accuracy

in the above feature selection process. We concluded that the

NAA/Cr ratios in the bilateral PWM, the mI/Cr ratios in the

right PWM, and the Cho/Cr ratios in the right hippocampus

were higher and the NAA/Cr and Cho/Cr ratios in the left
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FIGURE 5

Weight value of each feature corresponding to the highest classification accuracy (LH, left hippocampus; RH, right hippocampus; LP, left

prefrontal whiter matter; RP, right prefrontal whiter matter; NAA, N-acetylaspartate; Cho, choline; mI, myo-inositol; Cr, creatine).

hippocampus and the mI/Cr ratios in the left PWM were lower

in BD patients with SI than in BD patients without SI. Moreover,

we found that the above seven features could be used to predict

the severity of suicide risk (r= 0.4261, p= 0.0302) (Figure 6).

Correlations between biochemical
metabolite ratios and clinical variables in
BD patients with SI

Table 4 summarizes the correlations between biochemical

metabolite ratios and age of onset, duration of illness, 14-item

HAMA score, and 17-item HAMD score in BD patients with

SI. Notably, the NAA/Cr ratios in BD patients with SI were

positively correlated with the duration of illness (r = 0.354, p

< 0.05), and the Cho/Cr ratios in BD patients with SI were

positively correlated with 17-item HAMD scores in the left

hippocampus (r = 0.372, p < 0.05). In addition, the mI/Cr

ratios in the left PWM showed a positive correlation with age of

onset (r= 0.372, p < 0.05). However, there were no correlations

between the other biochemical metabolite ratios and clinical

variables in BD patients with SI (all p > 0.05).

Discussion

In the univariate statistical analysis, we found that the

Cho/Cr values in the left hippocampus of BD patients with

SI were decreased, suggesting that BD patients with SI had

a decrease in membrane phospholipid metabolism in the

hippocampus. In addition, the AUC of Cho/Cr values in the

left hippocampus was relatively high (0.79), indicating that it

has good diagnostic accuracy for BD patients with SI. To the

best of our knowledge, there have been no studies on 1H-MRS

in the hippocampus of BD patients with SI. Previous studies

have suggested that functional disorders of the frontal limbic

network play an essential role in the mechanisms associated

with suicide among patients with BD (Giakoumatos et al., 2013).

The frontal limbic network is composed of the frontal lobes,

cingulate gyrus, and subcortical brain structures, such as the

hippocampus, amygdala, and other brain regions (Phillips et al.,

2003, 2008). Among them, the hippocampus has excellent effects

on encoding and recalling the emotional meaning of events,

which may affect the emotional response and regulation process

(Richard-Devantoy et al., 2015). Studies have indicated that

the gray matter volume in the hippocampus and orbitofrontal

cortex of BD patients with suicide attempts, compared with BD
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FIGURE 6

Biochemical metabolic values corresponding to the highest classification accuracy in the feature selection predict Self-rating Idea of Suicide

Scale (SIOSS) scores.

patients without suicide attempts, was significantly decreased

(Johnston et al., 2017), and the amplitude of ALFF values in the

right hippocampus was increased in severely depressed patients

with a history of suicide attempts (Lan et al., 2019). Thus,

the hippocampus also plays a major role in the mechanism of

suicide in patients with BD. Cho is one of the components of

membrane phospholipid metabolism that is closely related to

membrane phospholipid decomposition and synthesis, reflects

the metabolic level of membrane phospholipids, and is a marker

of membrane integrity (Strakowski et al., 2005). In addition,

Cho is more abundant in astrocytes and oligodendrocytes, which

reflects changes in glial metabolism and function (Atmaca and

Yildirim, 2012). A recent study found that cerebral vimentin-

immunoreactive astrocytes showed a widespread reduction in

depressive disorder patients who died of suicide, suggesting

that dysfunction in astrocytes was associated with suicide and

depression (O’Leary et al., 2021), and the results of our study

provide new evidence for this.

In theMVPA, our results found that the highest classification

accuracy obtained by putting all features into the classifier

was 88% and the AUC was 0.90, which was higher than the

diagnostic prediction ability of the Cho/Cr values in the left

hippocampus in univariate statistical analysis (AUC = 0.79).

This suggested that the use of multiple biochemical metabolic

values more effectively identified SI in patients with BD. Based

on the number of features, the frequency of feature occurrence,

and the weight values obtained by feature selection, our results

suggested that in addition to the metabolic values identified

in the univariate statistical analysis, we further found that the

NAA/Cr values in the bilateral PWM, the mI/Cr values in the

right PWM, and the Cho/Cr values in the right hippocampus

were higher in BD patients with SI than in those without SI

and the NAA/Cr values in the left hippocampus and the mI/Cr

values in the left PWMwere lower in those with SI than in those

without SI by using theMVPA.Many neuroimaging studies have

reported that the dysfunction of some neural circuits is related to

SI and behavior (Ding et al., 2017; Johnston et al., 2017; Brown

et al., 2020). The abnormal function of the frontal lobes could

lead to disorders of emotional executive control and emotional

pain processing (van Heeringen et al., 2010). The results of

some studies have shown that dysfunction in the PWM regions

was most common in BD patients with a history of suicide

attempts (Hozer andHouenou, 2016). BD patients with a history

of suicide attempts had decreased white matter in the caudal

frontal lobe and the left orbitofrontal cortex (Mahon et al., 2012;

Johnston et al., 2017). Therefore, abnormal white matter in the

prefrontal lobes may be related to the pathogenesis of suicide in

patients with BD. NAA reflects the vitality of neurons and can
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TABLE 4 Correlations between biochemical metabolite ratios and clinical variables in BD patients with SI.

Age of onset Duration of illness 14-item HAMA 17-item HAMD

r p r p r p r p

Left PWM

NAA/Cr

Cho/Cr

mI/Cr

−0.050

−0.173

0.372

0.787

0.343

0.036*

0.084

−0.235

0.111

0.646

0.195

0.544

−0.206

0.171

−0.180

0.258

0.349

0.323

−0.335

0.042

0.037

0.061

0.819

0.841

Right PWM

NAA/Cr

Cho/Cr

mI/Cr

0.024

−0.329

−0.188

0.895

0.066

0.303

0.247

−0.216

0.066

0.173

0.236

0.719

0.002

0.142

0.248

0.991

0.438

0.171

0.094

0.190

0.179

0.610

0.299

0.328

Left Hippocampus

NAA/Cr

Cho/Cr

mI/Cr

−0.030

0.008

0.060

0.871

0.964

0.744

0.354

−0.318

−0.260

0.047*

0.076

0.151

0.128

0.072

0.092

0.486

0.695

0.616

0.116

0.372

0.195

0.528

0.036*

0.286

Right hippocampus

NAA/Cr 0.108 0.555 0.050 0.787 0.126 0.492 −0.097 0.597

Cho/Cr 0.309 0.086 0.191 0.296 −0.053 0.774 −0.020 0.916

mI/Cr 0.048 0.792 −0.085 0.642 −0.146 0.424 −0.215 0.238

BD, bipolar disorder; SI, suicidal ideation; PWM, prefrontal whiter matter; NAA, N-acetyl aspartate; Cho, choline; mI, myo-inositol; Cr, creatine; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; *p < 0.05 significant.
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maintain the osmotic pressure of neurons cell (Baslow, 2003).

NAA content is closely related to the function of neurons and

is a marker of neuron density and survival. Simultaneously,

NAA is related to the function of mitochondria and myelin

formation and is an energy marker of neuronal mitochondria.

The results of our study suggested that BD patients with SI

had enhanced prefrontal neuronal function or mitochondrial

dysfunction. At present, there are many controversies about

the study of NAA in the prefrontal lobes of patients with BD.

Some studies suggested that the NAA values in the prefrontal

lobes were decreased, while others thought that the NAA values

were increased or at a normal level (Zhong et al., 2014, 2018;

Moon et al., 2015; Liu et al., 2017b; Patel et al., 2018). The

reasons for the inconsistent results may be related to magnetic

resonance technical parameters, disease status, the influence of

drugs, and other factors. For example, studies have reported

that NAA values were increased in the prefrontal cortex after

lithium treatment (Hajek et al., 2012). A follow-up study of

BD patients treated with lithium for 4 weeks also confirmed

that lithium could induce an increase in NAA levels (Moore

et al., 2000). More high-quality samples need to be evaluated for

further discussion in future.

Myo-inositol exists in glial cells and is a marker of glial

cells. It is involved in the circulation of inositol phosphate,

the regulation of neuronal permeability, and the catabolism of

phospholipids in the cell membrane. It has a nutritional and

protective effect on neurons (Dager et al., 2008). In the MVPA,

our study found that the mI/Cr values in the right PWM were

increased and the mI/Cr values in the left prefrontal matter were

decreased in BD patients with SI. According to previous studies,

we learned that when the synthesis of inositol phosphate is

blocked, mI content will increase, and the excitatory transmitter

induced by inositol phosphate will decrease, thus resulting in

depression (Wu et al., 2001). In addition, a plasma metabolomic

study found that the peak of inositol was higher in depressive

disorder patients with suicide attempts than in depressive

disorder patients without suicide attempts (Zhou, 2013). Based

on the above results, it could be concluded that the increase

in inositol in depressed patients with BD might be related to

suicide. However, there were also inconsistent findings. Shimon

et al. (1997) measured the content of the inositol and its

synthetic enzyme, inositol monophosphatase in postmortem

brain samples of suicide victims, patients with BD, and normal

controls. The results showed that the levels of inositol in the

frontal cortex of the suicide victims and patients with BD

were significantly lower than those of the normal controls.

We found that the changes in inositol levels in the left and

right PWM were inconsistent in BD patients with SI, which

might be related to the asymmetry of frontal lobe function.

Therefore, our results indicated that the abnormal level of

inositol metabolism or the disorder of glial cell function in

the PWM might be the pathophysiological mechanism in BD

patients with SI.

The above research results showed that, first, the metabolic

values with differences in univariate statistical analysis coincided

with the results of the MVPA, and the frequency of the

occurrence of the feature included in the highest classification

accuracy of 88% was consistent with the size of features

average weight values, indicating that our model has good

stability and high feature sensitivity. Second, the results of

this study also fully confirmed the advantage of MVPA,

i.e., it could find brain biochemical metabolic differences

that could not be detected by univariate statistical analyses.

Through the MVPA results, we found that the neuron

function in the PWM and hippocampus, inositol metabolism

level in the PWM, and membrane phospholipid catabolism

level in the hippocampus were functionally disrupted. These

differences in brain biochemical metabolism values might also

be neurobiological mechanisms associated with BD with SI.

Moreover, we further found that the biochemical metabolic

values corresponding to the highest classification accuracy in

the feature selection could predict SIOSS scores in patients

with BD. At present, many studies have focused on univariate

statistical analyses to explore the correlations between imaging

characteristics and clinical variables in BD patients with SI. A

few studies have recently used the multiple regression model

and LOOCV method to predict suicide scale scores with

dynamic ALFF values in BD and depression patients with SI

(Li et al., 2019; Gong et al., 2020). However, we are not aware

of any study that has reported using biochemical metabolic

values to predict the severity of SI based on MVPA. In the

current study, we found that biochemical metabolic values could

successfully predict the severity of SI in patients with BD, which

further suggested that biochemical metabolic values may be a

more powerful predictive neural marker for SI among patients

with BD. In summary, according to our research results, we

firmly believe that the combination of multiple biochemical

metabolites can help to identify BD patients with SI and predict

the severity of SI, thereby reducing suicide mortality, and

the model had sufficiently high enough accuracy, sensitivity,

and specificity.

In the correlation analysis between brain biochemical

metabolites and clinical variables in BD patients with SI, we

found that the NAA/Cr values in the left hippocampus were

positively correlated with the duration of illness, suggesting

that the longer the duration of illness was, the more active

the neuronal function in the left hippocampus among BD

patients with SI. Some studies have shown that suicide attempts

by patients with BD are related to longer duration of illness

(Lijffijt et al., 2014). The NAA/Cr values in the hippocampus of

patients with BD I were positively correlated with the duration

of illness (Cui et al., 2009), which was consistent with the

results of our study. However, some studies have found that the

hippocampal NAA/Cr values in first-episode patients with BD

are not associated with the duration of illness (Atmaca et al.,

2006). The inconsistencies in the results of the above studies
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might be related to the selected samples and the influence of

medications. In future, first-episode patients with BD need to

be selected for further evaluation. Moreover, our study also

found that the mI/Cr values in the left PWM were positively

correlated with the age of onset. Some studies have suggested

that there was a significant correlation between suicidal behavior

and age of onset in patients with BD (Song et al., 2012). Singh

et al. (2013) showed that mI/Cr values were related to age and

increased with age. Therefore, our results suggested that the level

of inositol metabolism in the left PWM of BD patients with

SI may increase with the age of onset. In addition, our results

showed that the Cho/Cr values in the left hippocampus were

positively correlated with HAMD scores, suggesting that the

more severe the degree of depression in BD patients with SI was,

the stronger the level of membrane phospholipid catabolism in

the left hippocampus.

To the best of our knowledge, this study is the first to explore

the differences in brain biochemical metabolites in BD patients

with SI and use abnormalmetabolite ratios to predict the severity

of suicide risk based on the SVM algorithm. However, our

research also has some limitations. First, our sample size was

limited, and there were no data from multiple centers to verify

each other, so the generalization ability of the model needs to be

further confirmed. Second, the samples were unbalanced, which

may affect the robustness of the model. In future, we need to

expand the sample size and maintain the sample balance for

further research and discussion. In addition, this study focused

only on 1H-MRS, which could be combined with other imaging

techniques to find high-accuracy suicide predictors for patients

with BD at multiple levels. Finally, this study was a cross-

sectional study, which was unable to predict whether BD patients

with SI will commit suicide, and therefore, longitudinal research

will be needed to further elaborate on the future suicide risk of

patients with BD.

Conclusion

In conclusion, our study showed that the combination of

multiple brain biochemical metabolites could better predict the

risk and severity of suicide in patients with BD. Moreover,

the abnormal levels of inositol metabolism in the PWM,

neuron function in the PWM and hippocampus, and membrane

phospholipid catabolism level in the hippocampus may be

neuropathophysiological mechanisms underlying SI among

patients with BD. In addition, in BD patients with SI, the level

of neuronal function in the left hippocampus may be related

to the duration of illness, the level of membrane phospholipid

catabolism in the left hippocampusmay be related to the severity

of depression, and the level of inositol metabolism in the left

PWM may be related to the age of onset. In future, we can

expand the sample size and conduct multicenter prospective

research combined with multimodal data, including genetics,

electroencephalography, and different imaging methods, to

further elucidate suicide prediction indicators in patients with

BD to provide a basis for the early detection of suicide behavior

in patients with BD.
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Modern tractography algorithms such as anatomically-constrained

tractography (ACT) are based on segmentation maps of white matter (WM),

gray matter (GM), and cerebrospinal fluid (CSF). These maps are generally

estimated from a T1-weighted (T1w) image and then registered in di�usion

weighted images (DWI) space. Registration of T1w to di�usion space and partial

volume estimation are challenging and rarely voxel-perfect. Di�usion-based

segmentation would, thus, potentially allow not to have higher quality

anatomical priors injected in the tractography process. On the other hand,

even if FA-based tractography is possible without T1 registration, the literature

shows that this technique su�ers from multiple issues such as holes in the

tracking mask and a high proportion of generated broken and anatomically

implausible streamlines. Therefore, there is an important need for a tissue

segmentation algorithm that works directly in the native di�usion space. We

propose DORIS, a DWI-based deep learning segmentation algorithm. DORIS

outputs 10 di�erent tissue classes including WM, GM, CSF, ventricles, and

6 other subcortical structures (putamen, pallidum, hippocampus, caudate,

amygdala, and thalamus). DORIS was trained and validated on a wide range

of subjects, including 1,000 individuals from 22 to 90 years old from clinical

and research DWI acquisitions, from 5 public databases. In the absence of a

“true” ground truth in di�usion space, DORIS used a silver standard strategy

from Freesurfer output registered onto the DWI. This strategy is extensively

evaluated and discussed in the current study. Segmentation maps provided by
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DORIS are quantitatively compared to Freesurfer and FSL-fast and the impacts

on tractography are evaluated. Overall, we show that DORIS is fast, accurate,

and reproducible and that DORIS-based tractograms produce bundles with a

longer mean length and fewer anatomically implausible streamlines.

KEYWORDS

di�usion magnetic resonance imaging, tractography, anatomical constraints, image

segmentation, machine learning

1. Introduction

Diffusion MRI is often used to explore structural brain

connectivity using tractography. Tractography algorithms use

orientation fields (Pierpaoli and Basser, 1996; Kreher et al.,

2005; Peled et al., 2006; Tournier et al., 2007; Descoteaux, 2008;

Jeurissen et al., 2014) to reconstruct the main white matter

pathways of the brain. Moreover, tractography algorithms are

mostly based on tracking masks to guide the algorithm where

it is allowed to go and where it should stop. The easiest way

to obtain a tracking mask is by thresholding the DTI fractional

anisotropy (FA) map (Côté et al., 2013; Farquharson et al., 2013;

Chamberland et al., 2014; Jeurissen et al., 2019; Vanderweyen

et al., 2020), and this is usually recommended for pathological

brains (Theaud et al., 2019; Vanderweyen et al., 2020). However,

this thresholding does not support 3-way crossing areas resulting

in holes in the tracking mask and can introduce biases in further

analyses such as along tract-profiling and tractometry (Bells

et al., 2011; Cousineau et al., 2017). In addition, since FA-based

tracking cannot enforce anatomical constraints, it is known to

suffer from broken streamlines that terminate prematurely in

the white matter (WM). FA-based tracking also suffers from

anatomically implausible streamlines that wrongly go through

gray matter (GM) and cerebrospinal fluid (CSF) voxels (Girard

et al., 2014). This is why nowadays, it is often recommended

to use anatomical constraints to ensure streamlines reach GM,

subcortical structures, or exit the brainstem, and not terminate

in CSF voxels (Smith et al., 2012; Girard et al., 2014). This gave

birth to the family of “anatomically-constrained tractography

(ACT)” algorithms based on more precise masks of WM, GM,

and CSF (Smith et al., 2012; Girard et al., 2014; Aydogan and

Shi, 2020). More recently, surface-enhanced tractography (SET)

(St-Onge et al., 2018, 2021) was proposed to further improve

ACT. SET is also based on the same paradigm as ACT but adds

another constraint using the cortical surface mesh to initialize

tracking and enforce the ending streamline segment orthogonal

to the cortex.

Adding a layer of anatomical prior has obvious benefits but

also comes with its computational challenges, as an error in

this prior often leads to inadequate or suboptimal tractography.

Hence, in principle, all algorithms based on ACT or SET require

voxel-perfect tissue segmentation in diffusion space to work

optimally. Currently, tissue segmentation algorithms such as

FSL-fast (Zhang et al., 2001), Atropos (Avants et al., 2009),

or Freesurfer (Fischl, 2012) are based on T1- or T2-weighted

images and thus, always require a registration step to bring the

segmented tissue maps into diffusion space. This registration

step is not perfect and is sensitive to preprocessing steps such

as brain extraction (Chen et al., 2019). It is also a step that can

take multiple hours (from 1 to 10 h), depending on the tool

used. Additionally, just like registration algorithms, structural

segmentation algorithms, despite spectacular improvements

over the past couple of years, are not voxel-perfect wither

everywhere in the brain. Segmentation errors often occur in

partial volume voxels between tissues (e.g., WM-GM partial

volume) and in nuclei extraction. Partial volume effects, nuclei

not segmented, or registration errors can thus have a negative

impact on tractography algorithms. For example, tractography

can be incorrectly allowed to end streamlines in partial

volume near the ventricles due to segmentation errors and/or

registration inaccuracies in that area. Moreover, the absence of

nuclei boundaries allows tracking to go through them without

meeting a stopping criterion. Furthermore, the registration

issues impact endpoints of streamlines and forbid streamlines

to traverse narrow WM corridors such as around the insula,

external capsule, and other deep structures. As a result, further

analysis such as tractometry can be biased and accumulate

undesired errors along streamlines.

Diffusion MRI segmentation Diffusion-based

segmentation algorithms address registration issues that

are not voxel-perfect, which can have a negative impact on

tractography results. Moreover, segmenting in diffusion MRI

space permits to obtain tissue maps faster in the whole pipeline

removing the dependency on T1w preprocessing and T1w

registration. For these reasons, diffusion-based segmentation

algorithms have started to appear as promising tools in the

literature. Recently, Zhang et al. (2021) developed a deep

learning algorithm to segment dMRI intoWM/GM/CSF classes.

The model was trained, validated, and tested on 190 young

subjects (under 40 years old) from 5 databases (Glasser et al.,

2013; Casey et al., 2018; Tong et al., 2020; Garza-Villarreal

et al., 2021). In addition, it required a multi-shell dMRI
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acquisition to extract kurtosis features (Jensen and Helpern,

2010; Steven et al., 2014), which could be considered a limitation

as such a technique cannot work on single-shell clinical

dMRI acquisitions. On the other hand, Little and Beaulieu

(2021) created an algorithm to segment the GM ribbon based

on a combination of fractional anisotropy from DTI and the

powdered average DWI from a single-shell diffusion acquisition.

Their method was designed to quantify DTI measures under

the cortex in a young and healthy cohort of 15 adults. Hence,

these two segmentation algorithms were not meant to enhance

tractography. Moreover, these two algorithms were developed

only on subjects under 40 years of age and could, thus, be

misadapted for elderly subjects with larger ventricles, brain

atrophy, and white matter hyperintensities. Furthermore, both

the Little and Beaulieu (2021) and Zhang et al. (2021) methods

did not fully manage deep nuclei, which are very important

in tractography to retrieve bundles that connect cortical GM

to nuclei such as the optic radiations, among others. Other

DWI-based segmentation algorithms permit to extract a 3-class

WM/GM/CSF segmentation (Li et al., 2006; Liu et al., 2007;

Saygin et al., 2011; Ye et al., 2012; Yap et al., 2015; Zhang et al.,

2015; Visser et al., 2016; Battistella et al., 2017; Ciritsis et al.,

2018; Nie et al., 2018; Cheng et al., 2020; Wang et al., 2020) but,

as the two methods previously presented, they are not adapted

to enhance the tractography.

Contributions of our study To address the aforementioned

issues, we present DORIS: a novel diffusion MRI-based 10 tissue

class deep learning segmentation algorithm tailored to improve

anatomically-constrained tractography. DORIS is based on a

DenseUnet model (Kaku et al., 2019), a convolutional neural

network composed of dense blocks in the encoder and decoder

path. DORIS is trained and validated on 1,000 subjects from

22 to 90 years old with single and multi-shell acquisitions

from 5 databases. In the absence of a “true” ground truth in

diffusion space, DORIS uses a silver standard strategy from

Freesurfer (Fischl, 2012) output registered onto the DWI. Even

if not a perfect ground truth or gold standard, this strategy

will be extensively evaluated and discussed later. To train

our model, we test several different potential diffusion-based

features as input. We test 5 DTI- and HARDI-derived measures

as input channels and also test 3 other input channel variants

including rotation invariant features (Zucchelli et al., 2020),

DTI, and spherical harmonic measures. These 4 input channel

variants highlight the possibility of using single and/or multi-

shell acquisitions and easily adding DORIS in a dMRI processing

pipeline. DORIS predicts a total of 10 tissue class labels: the

WM, the GM, the ventricles, the CSF around the brain, and 6

subcortical regions (putamen, pallidum, hippocampus, caudate,

amygdala, and thalamus). The goal of DORIS is to segment

WM, GM, ventricles, and nuclei voxel maps from diffusion MRI

data only so that they can be used to perform anatomically-

constraint tractography. In summary, this study presents: (i) a

large training and validation set covering a wide range of DWI

acquisitions and ages, (ii) extensive testing of optimal diffusion

measures that drive the DenseUnet algorithm, (iii) a quantitative

evaluation of DORIS against Freesurfer and FSL-fast, (iv) speed

acceleration compared to well-known segmentation algorithms,

and (v) qualitative and quantitative anatomically-constrained

tractography benefits.

2. Methods

2.1. Datasets

Training and validation datasets come from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), the Parkinson’s

ProgressionMarkers Initiative (PPMI), theHumanConnectome

Project (HCP-1200), and the UK Biobank databases.

Alzheimer’s Disease Neuroimaging Initiative was launched

in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial magnetic resonance

imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of

mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). Data were also obtained from the Parkinson’s Progression

Markers Initiative (PPMI) database (www.ppmi-info.org/

access-data-specimens/download-data). HCP-1200 data is

described in Glasser et al. (2013) and information about the

UK Biobank database can be found at www.ukbiobank.ac.uk.

As seen in Table 1, these databases cover a wide range of ages

(22–90 years old). A total number of 1,000 subjects were used

for training and validation sets, 750 subjects for training and

250 for validation.

Testing data comes from the Penthera3T (Paquette et al.,

2019) database. Penthera3T is a test-retest database containing

scans of 12 subjects from 24 to 30 years old. Each subject

was scanned 6 times (two sessions of three scans per session)

for a total of 72 acquisitions. We used the 72 acquisition to

evaluate DORIS (testing dataset) and be able to evaluate the

reproducibility of the segmentation in test-retest. Moreover,

some subjects from ADNI and HCP will be used to gauge

the performance of DORIS and the impact it has on

the tractography.

2.2. Data processing

Data processing was mostly done using Nextflow pipelines

(Di Tommaso et al., 2017; Kurtzer et al., 2017). Train, validation,

and test sets were preprocessed using the TractoFlow pipeline

(Theaud et al., 2020) with its default parameters. B-values below

1,200 s/mm2 were used for DTI metrics while fiber orientation
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TABLE 1 Datasets (training, validation, or testing set), age distribution, number of subjects, b-value, number of directions and resolution in mm3

isotropic (excepted ADNI) for ADNI, PPMI, HCP, UKBiobank (UKB), and Penthera3T (P3T).

Database Usage Age range Nb subjects used b-value(s) Nb dirs Resolution

ADNI Train/valid/testing* 60–90 250 1,000 41 1.3 x 1.3 x 2.7

PPMI Train/valid 35–80 250 1,000 64 2

HCP Train/valid/testing* 22–35 250 1,000, 2,000, 3,000 90, 90, 90 1.25

UKB Train/valid 40–69 250 1,000, 2,000 50, 50 2

P3T Testing 24–30 72** 300, 1,000, 2,000 8, 32, 60 2

* For illustration and example purpose.

** 12 subjects were scanned six times (two sessions with three scans per session).

distribution function (fODF) metrics were computed with b-

values above 700 s/mm2. The fODF was generated using a

spherical harmonics order of 8, the same fiber response function

(Descoteaux, 2008) for all the subjects (15, 4, 4) x 10−4 mm2/s

and with all the shells that required the previously presented

requirement. Freesurfer (Fischl, 2012) was used on the raw T1

weighted images. Further details on Freesurfer are provided in

Section 2.5.

The data processing pipeline is illustrated in Figure 1A. Data

generated by TractoFlow (Theaud et al., 2020) and Freesurfer

(Fischl, 2012) were manually verified using a quality control

(QC) step with dmriqc flow https://github.com/scilus/dmriqc_

flow. Full data processing took 15,000 CPU h, 2,000 GPU h, and

4 Tb of storage. Manual quality control took the authors 50 h

of work.

2.3. Model

DenseUNet is the deep neural network upon which DORIS

is built. This model’s architecture was presented by Kaku et al.

(2019) and had a similar objective to our study by proposing a

segmentation algorithm of brain tissues in several labels based

on T1w. Moreover, in this study, they compared the DenseUNet

with a classical U-Net that was, in their specific case, less accurate

than the DenseUNet. Due to excellent segmentation capabilities

and the similarity of Kaku et al. (2019) with our segmentation

objective, the DenseUNet was selected to segment diffusionMRI

due to its. This model selection choice will be further discussed

in the Section 4.

For DORIS, we replaced ReLU with LeakyReLU and, due

to memory constraints, image patches were used instead of the

full image. In addition, we used exponential logarithmic loss

(Wong et al., 2018) developed for unbalanced labels and small

structures. This loss is defined as:

LExp = wDiceLDice + wCELCE, (1)

with wDice and wCE being weights for the Dice loss LDice

and the cross entropy loss LCE. The learning rate was

chosen to be 0.0001. Moreover, we used data augmentation

(rotation, scaling, shearing, and axis flip) on the training set

(value ranges for rotation, scaling and shearing are available

in Supplementary Materials). Training of the Dense-UNet

went on for 163 epochs before it was stopped by an early

stopping criterion.

2.4. Hyperparameter optimization

We optimized 5 hyperparameters listed in Figure 1B. This

includes four different input channels i.e.,:

1. DWI (b= 1,000 s/mm2) fitted with spherical harmonics (SH)

of order 4 with b0 concatenated (to add the non-diffusion

T2w contrast). This image is a simplified representation of

the DWI.

2. The 6 eigenvalues of the tensor matrix from DTI fit. The

eigenvalues are the rotation invariant features of the diffusion

tensor.

3. The rotation invariant features (from b= 1,000 s/mm2 DWI)

(Zucchelli et al., 2020) of the spherical harmonics. These are

the 4th-order HARDI shape representation equivalent of the

DTI eigenvalues.

4. Four DTI- and HARDI-derived measures include maximum

and total apparent fiber density (AFD max and AFD Total),

the DTI axial diffusivity (AD), mean diffusivity (MD), and

radial diffusivity (RD). As pointed out by Chamberland et al.

(2019), these 4 diffusion measures are good representative

features that maximize the variance of the dMRI data using

principal component analyses (PCA).

These images were selected because of the straightforwardness of

computing them with public open-access software and because

they can be extracted from any single-shell DWI acquisition,

which makes themmore suitable for future translation to a wide

range of applications.

We also optimized the number of feature maps in the first

layer (30, 35, and 40), the patch size (32 x 32 x 32, 64 x 64 x

64, and 128 x 128 x 128), the number of convolution layers (2, 3,

and 4), and the batch size (1, 2, 3, and 4). These hyperparameters
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FIGURE 1

Overview of the DORIS processing pipeline. (A) Represents the preprocessing pipeline used for training, validation, and test datasets. (B)

Illustrates the hyperparameter optimization and input channel selection. (C) Describes the training process. (D) Illustrates the 5 images used as

an input channel.

were optimized with data of 200 subjects from the dataset

previously described.

The hyperparameter search revealed that the best input

channel to use is the 4D image made of AFD max, AFD

Total, AD, MD, and RD images (Chamberland et al., 2019).

A representative illustration of these 5 images is shown in

Figure 1D. The best number of feature maps in the first layer is

30, the best patch size is 128, the best number of convolution

layers is 4 and the best batch size is 1. The summary of this

optimization is shown in Figure 1C.

2.5. Silver standard

Since the notion of “true” ground truth (or gold standard)

is unavailable in diffusion space, we used Freesurfer (Fischl,

2012) to create our “reference maps” in diffusion space, or

what we prefer to call our silver standard. As illustrated in

Figure 2A, the native T1-weighted images were first processed

by Freesurfer 6.0 to generate wmparc and aparc+aseg images,

which were then registered in diffusion space using an ANTs

registration operation (the exact command is available in the
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FIGURE 2

In (A), the process of generating the silver standard in DWI space from Freesurfer computed in the native T1 space. In (B), an example of CSF

(row 1) and WM (row 2) incorrectly classified as GM (in red), in the last column.

Supplementary Materials) (Avants et al., 2009). The registration

used the nearest neighbor interpolation and an affine +

non-linear SyN warping transformations from the Tractoflow

output. Next, we concatenated Freesurfer labels from these

registered wmparc and aparc+aseg images to create our silver

standard reference maps with the following 10 labels: (1)

white matter, (2) gray matter, (3) ventricles, (4) putamen,

(5) pallidum, (6) hippocampus, (7) caudate, (8) amygdala,

(9) thalamus, and (10) CSF around the brain, as seen in

Figure 2.
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FIGURE 3

Binary and probability segmentation maps obtained from DORIS on ADNI and HCP subject. (A) DORIS binary segmentation on a ADNI and HCP

subject. T1 image illustrate di�erences between an aging and young brain. (B) DORIS probability segmentation. of WM, GM and CSF (combining

ventricules and CSF around the brain) on a ADNI and HCP subject. The mosaic containing the nuclei is available in Supplementary Materials.

2.5.1. Incorrectly classified voxels

Due to the registration step, our silver standard suffers

from issues that we previously described, i.e., some voxels are

wrongly aligned with the dMRI data, which leads to incorrectly

classified voxels. This is expected considering the nature of

our silver standard construction methodology. Some of these

incorrectly classified voxels can be automatically detected using

measures in diffusion space such as MD and FA from DTI maps.

Based on a theoretical CSF mean diffusivity of 3 × 10−3mm2/s

reported in the literature (Koo et al., 2009; Pasternak et al.,

2009; Zhang et al., 2012), a “safe” CSF mask (Dumont et al.,

2019) containing the ventricles and the part of the constrained

CSF between the skull and the brain is extracted. To extract

this “safe” CSF mask, MD voxels higher than 2 × 10−3mm2/s

(Groen et al., 2011) were selected. To quantify the number

of CSF voxels classified as GM voxels, we intersect the “safe”

CSF mask with the GM region of DORIS as well as that of

the silver standard. As shown in Figure 2B, the number of

voxels in the two intersections corresponds to the number of

CSF voxels incorrectly classified as GM. For the “safe” WM

mask (Dumont et al., 2019), we considered voxels with a FA

value above 0.3 as WM (Chamberland et al., 2014). Then,

we intersect the GM label with the “safe” WM mask. The

number of voxels in the two intersections corresponds to the

number of WM voxels incorrectly classified as GM. Finally,

note that the CSF around the brain label will only be used to

compute the incorrectly classified voxels and not used in the

other analysis. Indeed, CSF around the brain is not useful for

tractography purposes.

Incorrectly classified voxels will permit us to address the

limitation of our silver standard and explore solutions, with

DORIS in native diffusion space, that could potentially have

fewer incorrectly classified voxels than in the silver standard

itself. The goal of DORIS is to generate fewer incorrectly

classified voxels than the silver standard due to the large number

of subjects in the training set and to diffusion measures inputted

into the model. This issue will be extensively discussed in

the Section 4.
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FIGURE 4

Silver standard and DORIS segmentation near the insula overlaid on the T1 and AFD max map. Yellow circles show where DORIS has a better

segmentation than the silver standard.

2.6. Evaluation

The DORIS evaluation consists of 7 steps:

1. Qualitative results of DORIS on ADNI and HCP subjects,

2. A computation time comparison between DORIS and state-

of-the-art algorithms (Fastsurfer; Henschel et al., 2020, FSL-

fast; Zhang et al., 2001, and Freesurfer; Fischl, 2012),

3. A comparison between a manual segmentation, DORIS, and

the silver standard in a small region-of-interest (ROI),

4. The number of incorrectly classified voxels

generated by DORIS compared to the silver

standard,

5. A comparison between the volume of labels from DORIS and

the silver standard to ensure the reproducibility in test-retest,

6. A Dice score (Dice, 1945) between DORIS and the silver

standard,

7. Quantitative and qualitative analyses about the impact of

DORIS on tractography.
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FIGURE 5

Red circles show WM-CSF partial volume incorrectly classified as GM in FSL-Fast. However, DORIS does not classify these partial volume voxels

as GM.

2.6.1. Evaluation using a manual segmentation

As introduced previously, our silver standard is imperfect.

Thus, to compare DORIS with the silver standard, an ROI

located near the insula (illustrated in Figure 6) was manually

segmented by an expert. We targeted that region due to its

complexity of being segmented. Indeed, this area is composed of

small white matter corridors between the insula, the putamen,

the thalamus, and the caudate nuclei. To facilitate the manual

segmentation process, nuclei were not separated from the GM

cortex, i.e., they are both considered the same label for this

evaluation experiment. To have a better analysis of DORIS, the

manual segmentation will be used as a reference. For DORIS and

the silver standard, the same labels were extracted from the ROI

to make a qualitative analysis. Finally, quantitative analysis will

be done by computing the Dice score between DORIS and the

manual segmentation; and between the silver standard and the

manual segmentation.

2.6.2. Evaluation using Penthera3T

Incorrectly classified voxel To determine if one of the

segmentation generates significantly more outliers than the

other, a two-sided t-test was also performed between incorrectly

classified voxels generated by DORIS and the silver standard. As

for the volume test, the significance level was fixed at p < 0.001.

Volume For DORIS and the silver standard, we compute the

volume inmm3 of each of the 9 labels (excluding the CSF around

the brain). To validate if the volume is significantly different,

a related two-sided t-test is performed between sessions for

DORIS and the silver standard. The volume is determined as

significantly different in the case where p < 0.001 (using scipy).

Moreover, the volume for each label is averaged across the full

dataset to obtain a global mean volume for each label.

Dice For each label and each acquisition, we compute the

Dice score (Dice, 1945) between DORIS and our silver standard.

Then, we average the Dice scores of each subject to obtain one

average Dice score per label across all the testing datasets. We

also compute 2 additionalWMmap DWI based as a comparison

based on classical FA threshold higher than 0.15 and WM signal

fraction from multi-shell multi-tissue (MSMT) fODF (Jeurissen

et al., 2014) higher than 0.1.

2.6.3. Impact of DORIS on tractography

To evaluate the impact of DORIS on tractography, we

performed a particle filtering tractography (PFT) (Girard et al.,

2014), which is part of the ACT family of algorithms (Smith
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et al., 2012). The PFT algorithm is known to be more

restricted by probabilistic tissue maps. Acquisitions used for

this qualitative analysis come from ADNI and Penthera3T

database to cover a large age range of dMRI quality and

anatomical difficulty (less WM in ADNI, enlarged ventricles,

thinner cortex, presence of white matter hyperintensities). To

compare our DORIS-based tractograms, we also compute a

standard tractogram using FSL-fast maps, as done in Tractoflow

(Theaud et al., 2020). Tracking parameters were the same for

both techniques: a probabilistic tractography using a step size

of 0.5mm and a maximal angle between two steps of 20 degrees.

The fODF used in both tracking was computed using a spherical

harmonic order of 8. We launched 5 seeds per voxel from the

WMmask (obtained from DORIS or FSL-fast).

To extract white matter bundles, we ran RecobundleX

(RBx) (Garyfallidis et al., 2015; Rheault, 2020) on both DORIS

and FSL-Fast Tractoflow tractograms. From RBx, 6 bundles

were used for quantitative and qualitative analyses: (i) Superior

longitudinal fasciculus (SLF), (ii) whole corpus callosum (CC),

(iii) Inferior fronto-occipital fasciculus (IFOF), (iv) fornix (FX),

(v) anterior, and (vi) posterior commissure (AC/PC). Based on

Maier-Hein et al. (2017), we considered the SLF and CC as “easy

to track” bundles, the IFOF as “hard to track” bundles, and the

FX and AC/PC as “very hard to track” bundles. For these 6

bundles, the number of streamlines and the mean bundle length

are reported. Finally, the number of streamlines per bundle is

divided by the total number of streamlines and expressed as

a percentage (ratio = (number of streamlines in the bundle /

number of streamlines in the tractogram)× 100).

3. Results

3.1. DORIS segmentation on ADNI and
HCP

Figure 3A shows a qualitative example of DORIS (bottom

row) performance on ADNI and HCP subjects. Figure 3B

shows, for the same subjects, the probabilistic maps obtained

by DORIS. For the ADNI subject, DORIS correctly classified

the WM even with the presence of aging lesions (white matter

hyperintensities). Moreover, DORIS separates the GM cortex

from the nuclei (see Supplementary Materials for nuclei figure).

As shown in Figure 4, DORIS is better than the silver standard

to segment the nuclei and tiny white matter corridors.

Then, as illustrated in Figure 5 with an ADNI subject,

DORIS does not classify WM-CSF partial volume (around

the ventricles) as GM. This misclassification of WM-CSF

partial volume is visible in FSL-Fast segmentation. To easily

compare DORIS to FSL-Fast and the silver standard, figures

with probabilistic maps obtained by FSL-Fast and silver

standard segmentation on these two subjects are available in

Supplementary Materials.

TABLE 2 Computation time per subject for DORIS, FastSurfer,

FSL-Fast, and FreeSurfer.

Algorithm Computation time SyN registration time

DORIS 48 s N/A

FastSurfer 42 s 45 m

FSL-Fast 2 m: 12 s 45 m

Freesurfer 10 h 45 m

In the last column, SyN registration computation time are reported to bring the T1 image

into DWI space is described.

3.2. Computation time

We evaluated the computation time of DORIS compared

to three well-known segmentation algorithms based on T1.

Table 2 shows the computation time for each algorithm. DORIS

has a similar computation time to FastSurfer (48 and 42 s,

respectively), it is faster than FSL-fast (approximately 2 min)

and orders of magnitude faster than the recon-all command

from Freesurfer (10 h). It is important to note that even if some

algorithms (FastSurfer or FSL-Fast) have a computation time

comparable to DORIS, they need an extra 45 min to bring their

segmentation map into the diffusion space.

3.3. Manual segmentation

Figure 6B shows the manual outline of the silver standard

(A) and DORIS (B) overlaid on top of the manual segmentation

maps. The outlines of DORIS are in better agreement with the

manual segmentation than the silver standard, especially along

the GM and CSF edges. The mean Dice score of DORIS with

respect to the manual segmentation is 0.82, which reveals a good

agreement. For the WM, GM, and CSF, DORIS Dice scores

are respectively 0.87, 0.70, and 0.89. As for the silver standard,

its Dice scores are lower with 0.71 for the mean Dice score

and 0.78, 0.64, and 0.72 for the WM, GM, and CSF. Overall,

this experience shows a Dice score increase, between the silver

standard and DORIS, of 11.5% for the WM, 9.4% for the GM,

and 23.6% for the CSF.

3.4. Penthera3T

3.4.1. Incorrectly classified voxels

CSF voxels classified as GM First, we present the number of

CSF voxels incorrectly classified as GM. As shown in Figure 7A,

while DORIS generates 11,459 incorrectly classified voxels, the

silver standard generates 3 times as many incorrectly classified

voxels: 30,999. This corresponds to a 171% significant increase

of incorrectly classified voxels for the silver standard compared

to DORIS (related t-tests p = 1.13× 10−31).
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FIGURE 6

Manual segmentation qualitative and quantitative analyses. Based on the Dice score and segmentation alignment, DORIS is more in agreement

with the manual segmentation than the silver standard. (A) Region of interest outlined in red square for qualitative and quantitative analyses of

the three segmentation results (Manual, Silver Standard (SS) and DORIS). (B) Comparison between manual segmentation and silver standard (A),

and DORIS (B). Tissue edges of the silver standard (orange) and DORIS (white) are overlaid on the manual segmentation for qualitative

assessment of the segmentation quality.
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FIGURE 7

The number of incorrectly classified WM and CSF voxels. DORIS predicts significantly fewer CSF and WM voxels incorrectly classified as GM than

the silver standard. (A) CSF voxels incorrectly classified as GM. Significance level of p < 0.001 is reached and indicates significantly more

incorrectly classified voxels in the silver standard than DORIS. (B) WM voxels incorrectly classified as GM. Significance level of p < 0.001 is

reached and indicates significantly more incorrectly classified voxels in the silver standard than DORIS.

WM voxels classified as GM Figure 7B shows the number

of WM voxels incorrectly classified as GM. DORIS gets 8,422

incorrectly classified voxels against twice as many for the silver

standard. This corresponds to a significant increase of 98%

(related t-tests p = 2.12× 10−37).

3.4.2. Volume

At first, we compare the volume of each region between

DORIS and the silver standard using the testing dataset, ignoring

the test-retest for now. For the WM and GM regions, Figure 8A

shows a certain volume difference between DORIS and the silver

standard. The average WM volume for DORIS is 5,49,175 mm3

(std: 65,178 mm3) against 5,09,096 mm3 (std: 55,475 mm3) for

the silver standard; an increase of 7.9%. As for the GM, DORIS

gets and average volume of 6,36,705 mm3 (std: 53,742 mm3)

against 6,50,521 mm3 (std: 50,136 mm3) for the silver standard

volume an increase of 2.2%. The WM and GM volume are

significantly different between DORIS and the silver standard.

Related t-test results for WM and GM volumes between DORIS

and the silver standard are available in Supplementary Materials.

Figure 8B shows volumes for the smallest regions (ventricles,

putamen, pallidum, hippocampus, caudate amygdala, and

thalamus labels) produced by DORIS and the silver standard.

The percentage of volume differences varied from 0.5% for

the hippocampus to 33.5% for the pallidum (a volume table

is available in the Supplementary Materials). Except for the

hippocampus and amygdala, related t-tests revealed significantly

different volumes in all the smallest labels between DORIS

and the silver standard. Related t-test scores are available in

Supplementary Materials.

DORIS and Silver Standard in test-retest dataset As seen

in Figures 9A,B, there is no statistically significant variation

in the DORIS computed volumes in test-retest between the

two sessions across all subjects (smallest p-value across labels:

p = 0.107). As seen in Figures 9C,D, similarly to DORIS, no

statistically significant differences are observed for the silver

standard volumes (smallest p-value across labels: p = 0.06). Full

related t-test results for DORIS and the silver standard are

available in Supplementary Materials.

3.4.3. Dice

Dice scores for each region are illustrated in Figure 10. The

mean Dice score across all the regions is 0.72. The lower Dice

score is 0.63 for the caudate nuclei and the highest is 0.81 for

the WM. FA-based WM had a Dice score of 0.55 compared

to the silver standard WM mask, whereas multi-shell multi-

tissue based WM had a better Dice score (0.58) than the silver

standard. These two methods serve as a reference for the DORIS

WM Dice performance. Overall, FA-based thresholding and

multi-shell multi-tissue spherical deconvolution from MRtrix

(Supplementary Materials) give a generally lower Dice score

than DORIS with the silver standard in the whole WM.

3.5. Impact of DORIS on tractography

Figure 11 shows qualitative results of PFT tracking using

DORIS-based segmentation maps. These qualitative results

underline that the DORIS-based tractogram does not go through

the nuclei and enables the exploration of the WM under the

gyri, a well-documented hard-to-track region (Maier-Hein et al.,
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FIGURE 8

Label volumes in mm3 for DORIS and the silver standard. DORIS and silver standard have label volumes significantly di�erent except for the

hippocampus and the amygdala. (A) WM and GM volumes in mm3 (*p < 0.001) for DORIS and the silver standard. (B) Small label volumes in

mm3 (*p < 0.001) for DORIS and the silver standard.
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FIGURE 9

Label volumes in mm3 for DORIS and the silver standard (SS) in test-retest for session 1 and session 2. Label volumes in test-retest are not

significantly di�erent for DORIS and the silver standard segmentation. (A)WM and GM volumes in mm3 for DORIS in test-retest for session 1 and

session 2. (B) Small label volumes in mm3 for DORIS in test-retest for session 1 and session 2. (C) WM and GM volumes in mm3 for the SS in

test-retest for session 1 and session 2. (D) Small label volumes in mm3 for the SS in test-retest for session 1 and session 2.

2017; Mandonnet et al., 2018; St-Onge et al., 2018, 2021).

Figure 12 also shows the 6 bundles (SLF, whole CC, IFOF, FX,

and AC/PC) extracted from Penthera and ADNI subjects. The

6 bundles were retrieved in the Penthera3T subject. However,

the FX and the AC/PC were not retrieved in the ADNI subject,

which is not surprising due to the brain atrophy and thinning of

WMcorridors. For the Penthera3T subject (Figures 12A, 13), the

FSL-Fast-based tractogram has no streamline in the FX and got

only a fraction of the AC/PC. On the other hand, the DORIS-

based tractogram contains all 6 bundles. As for the number

of streamlines, while the FSL-fast Tractoflow tractogram has

slightly more streamlines in the SLF and IFOF, the DORIS-based

CC, FX, and AD/PC are in much better shape. For the ratio

and the mean length, DORIS outperforms FSL-Fast for the 6

bundles. As for the ADNI subject (Figure 12B), the number of

streamlines, the ratio, and the mean bundle length are higher

for the 3 bundles (SLF, whole CC, and IFOF) with the DORIS

segmentation map. Figure 13 shows, in the ADNI subject, that

parts of the whole CC are not extracted due to the presence of

WM aging lesions.

4. Discussion

DORIS presents a good computation time and outperforms

some of the state-of-the-art algorithms doing the segmentation

at the same time as FastSurfer, in less than 1 min per

subject. Moreover, DORIS has a good accuracy compared

to a manual segmentation and exhibits good reproducibility

performances in test-retest experiments. DORIS also has

fewer incorrectly classified voxels than our silver standard

extracted from Freesurfer registered into diffusion space.
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FIGURE 10

Dice score between DORIS and the silver standard. The Dice score between DORIS and the silver standard varied between 0.63 and 0.81.

Finally, empirical results show that DORIS is a good

candidate to improve anatomically constrained tractography.

With preliminary tractography results, DORIS seems to produce

improved anatomically constrained tractograms and, thus,

permits the extraction of hard-to-track bundles in tiny corridors

like the fornix and the anterior and posterior commissures.

4.1. DORIS and the silver standard

Dice scores from the Results section show that DORIS

performs well and is more accurate than the silver standard

compared to the manual segmentation. In addition, manual

segmentation analyses show a good overall performance of

DORIS, with Dice scores between 0.70 and 0.89. This confirms

that the registration step introduces errors that affect the silver

standard (as shown in Section 3.2).

With DORIS, the number of incorrectly classified voxels

is significantly less than the silver standard. In addition,

region volumes across the full testing dataset varied between

DORIS and the silver standard. DORIS produces a larger

WM volume than Freesurfer. This volume difference is an

advantage for tractography algorithms that have access to

more voxels to traverse in hard-to-track regions. Even if

volumes of tissue labels are different between the silver standard

and DORIS, DORIS can be considered more accurate than

the silver standard due to its fewer incorrectly classified

voxels. Moreover, as shown in Figure 4, the nuclei shapes

were better with DORIS than with our silver standard. This

better definition helped the tractography reconstruction of

some WM bundles, such as the IFOF, that go near these

nuclei.

Overall, results suggest that DORIS outperforms the silver

standard. This can be explained by the location of silver standard

errors that are different between subjects. Silver standard errors

are not the same among the subjects even if it is the same region

in the brain (illustrated in Supplementary Materials). Hence,

given our large training set of 750 subjects, we hypothesize
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FIGURE 11

2D view of a particle filtering tractography (PFT) performed using DORIS segmentation on a Penthera3T subject. PFT DORIS-based enables to

not go through the nuclei with a good gyrus coverage.

that DORIS was, therefore, able to generalize and make fewer

segmentation errors than the silver standard.

4.2. Computation time

As shown in Table 2, the registration step adds 45 min of

processing time for the state-of-the-art algorithms, a burden that

DORIS does not suffer from.However, in a tractography context,

the T1 weighted imagemust also be preprocessed (e.g., denoised,

resampled) and then registered in diffusion space (Theaud et al.,

2020). Adding other T1 preprocessing steps adds another 1

or 2 h of computation time, depending on the software used.

Using DORIS, these 1–2 h of the processing could be optional

if the goal is to obtain a whole brain tractogram. However,

T1 processing and registration in DWI space remain useful for

qualitative or volume analyses.

4.3. Limitations

One major limitation of DORIS is the silver standard used

for training and validation. As mentioned in the introduction,

a proper ground truth in diffusion space does not exist in the

community. Even if manual segmentation has proven useful

to validate the DORIS segmentation, it is impossible to do

this on an entire brain and multiple subjects. This would

require countless hours of one or more neuroanatomists who

would have to work on 2 mm resolution images switching

between b = 0 or FA or T1 images (or others) to perform the

manual segmentation. Such a gold standard is, thus, unlikely

to ever exist. On the other hand, DWI-based segmentation

algorithms do exist but none of them have been developed

to enhance tractography and all of them produce a maximum

of 3 tissue classes (WM, GM, and CSF) (Li et al., 2006;

Liu et al., 2007; Yap et al., 2015; Zhang et al., 2015, 2021;

Visser et al., 2016; Ciritsis et al., 2018; Nie et al., 2018;

Cheng et al., 2020; Wang et al., 2020; Little and Beaulieu,

2021). In the MRtrix3 software (Tournier et al., 2019), WM,

GM, and CSF masks can be extracted from signal fractions

obtained from multi-shell multi-tissue fODF (Jeurissen et al.,

2014). However, as demonstrated in the results, this method

is limited and has not been evaluated on tractography yet.

Also, WM, GM, and CSF masks can be extracted with a

single-shell 3-tissue fODF version developed by Dhollander

and Connelly (2016) called the SS3T-CSD method. However,

SS3T-CSD signal fraction maps have not been confronted

with ACT. Jeurissen and Szczepankiewicz (2021) and Karan

et al. (2021) recently showed that having a tensor-value DWI

using linear and spherical encoding helps WM, GM, and CSF

signal fraction estimation. This method requires a very specific

multi-dimensional b-tensor encoding acquisition scheme and

is not easily applicable to actual well-known databases such as

HCP, ADNI, and UKBiobank. For all the above reasons, we

chose to use our silver standard, based on T1 segmentation

registered in DWI space, to develop DORIS. Another limitation

is the input channel selection that was only based on the

Dice score. As we showed in the results, the Dice score

did not fully reflect the segmentation quality and a visual

human-based segmentation could be worth investigating in the

future. However, as mentioned before, this human-based visual

inspection, on a large number of subjects and parameters tested
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FIGURE 12

Bundles extracted from (A) Penthera3T and (B) ADNI subjects. For each bundle, we reported the number of streamlines, the ratio, and the mean

length of the bundle. For both Penthera3T and ADNI subjects, DORIS based bundles have a better ratio and mean length. For Penthera 3T,

DORIS based tractogram reconstructe the Fornux and the commisures correctly. For the ADNI subject, DORIS based tractogram was not

impacted by the presence of aging lesions. (A) Superior longitudinal fasciculus (SLF), whole corpus callosum (CC), inferior longitudinal occipital

fasciculus (IFOF), Fornix (FX), anterior and posterior commissure (AC/PC) extracted from a Penthera3T subject tractogram based on FSL-Fast

(top row) and DORIS (bottom row). (B) Superior longitudinal fasciculus (SLF), whole corpus callosum (CC), inferior longitudinal occipital

fasciculus (IFOF), Fornix (FX), anterior and posterior commissure (AC/PC) extracted from an ADNI subject tractogram based on FSL-Fast (top

row) and DORIS (bottom row).

during the hyperparameter optimization, would most likely be

infeasible in practice.

4.4. Impact on tractography

We showed that tractograms based on the DORIS

segmentation had longer streamlines than the FSL-Fast

Tractoflow equivalent. This difference can be explained by

the larger WM volume predicted by DORIS and fewer broken

streamlines caused by errors in the tissue classes. Indeed, due

to partial volume between the CSF and the WM classified as

GM by FSL-Fast, PFT tracking can terminate streamlines in

this partial volume, even if this ending point is anatomically

incorrect. This advantage of less broken fiber generated by

DORIS is also highlighted by the percentage of streamlines in

the bundle. This percentage is always higher using DORIS than

the FSL-Fast Tractoflow equivalence.

DORIS also seems to be robust to aging white matter

hyperintensities, as shown in the corpus callosum example of the
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FIGURE 13

ADNI subject’s tractogram and Penthera 3T subject’s IFOF and FX are intersected on the T1 map. Orange circles show where DORIS is better

than FSL-Fast. In the ADNI subject, the FSL-Fast based tractogram is impacted by the presence of WM lesions whereas the DORIS based

tractogram is not impacted. For the Penthera3T subject, DORIS based IFOF do not go in the nuclei and the Fornix bundle is reconstructed.

ADNI subject. Indeed, the ADNI subject clearly shows a hole in

the whole CC based on FSL-Fast. However, using DORIS, the

whole CC is not cut and is biased by aging lesions. This result is

possible due to the large age range of the training set of DORIS.

4.5. Future study

Preliminary results of DORIS-based segmentation used in

conjunction with tractography highlight the potential of a

native diffusion space segmentation algorithm embedded in the

tractography process. More analyses will be made in the near

future to quantify the impact of DORIS on connectomics and

tractometry.

Another improvement that is possible is to explore different

models beyond the denseUnet. Indeed, in this study, we

showed that the denseUnet model performs well to do the 10-

class segmentation task, which can then improve the bundle

reconstruction from tractography using the segmentation

output. However, a follow-up study is needed to find the best

model to do this task. Due to the big training set we presented,

the smallest model architecture as an Unet (Ronneberger et al.,

Frontiers inNeuroimaging 18 frontiersin.org

156

https://doi.org/10.3389/fnimg.2022.917806
https://www.frontiersin.org/journals/neuroimaging
https://www.frontiersin.org


Theaud et al. 10.3389/fnimg.2022.917806

2015) or a fully convolutional network (Long et al., 2015)

could work as well as the denseUnet. This study could consist

of doing hyperparameter optimizations for each model and

then, a quantitative evaluation specifically on the impact of

the segmentation on anatomically-constrained tractography

reconstructions.

Finally, a new class could be added to segment white matter

lesions from aging subjects or subjects with anomalies. This

lesion class could permit to do tractometry (Cousineau et al.,

2017) analyses directly under the lesion, around it, and in the

normal appearing white matter.

5. Conclusion

DORIS is the first algorithm to precisely segment voxels of

10 brain tissue classes purely based on diffusion MRI measures.

DORIS can work on both single- and multi-shell diffusion MRI

acquisition. This study shows the importance of using a big

learning set (750 subjects), with a wide age range (from 22 to

90 years old) and variable image quality, to generalize and not

bias the learned model. DORIS is fast, accurate, reproducible,

and enhances anatomically-constrained tractography producing

longer and less anatomically implausible streamlines.
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Naturalistic stimuli, including movie, music, and speech, have been

increasingly applied in the research of neuroimaging. Relative to a resting-

state or single-task state, naturalistic stimuli can evoke more intense brain

activities and have been proved to possess higher test–retest reliability,

suggesting greater potential to study adaptive human brain function. In the

current research, naturalistic functional magnetic resonance imaging (N-fMRI)

has been a powerful tool to record brain states under naturalistic stimuli, and

many efforts have been devoted to study the high-level semantic features

from spatial or temporal representations via N-fMRI. However, integrating

both spatial and temporal characteristics of brain activities for better

interpreting the patterns under naturalistic stimuli is still underexplored. In this

work, a novel hybrid learning framework that comprehensively investigates

both the spatial (via Predictive Model) and the temporal [via convolutional

neural network (CNN) model] characteristics of the brain is proposed.

Specifically, to focus on certain relevant regions from the whole brain, regions

of significance (ROS), which contain common spatial activation characteristics

across individuals, are selected via the Predictive Model. Further, voxels of

significance (VOS), whose signals contain significant temporal characteristics

under naturalistic stimuli, are interpreted via one-dimensional CNN (1D-CNN)

model. In this article, our proposed framework is applied onto the N-fMRI

data during naturalistic classical/pop/speech audios stimuli. The promising

performance is achieved via the Predictive Model to differentiate the different

audio categories. Especially for distinguishing the classic and speech audios,

the accuracy of classification is up to 92%. Moreover, spatial ROS and VOS

are effectively obtained. Besides, temporal characteristics of the high-level

semantic features are investigated on the frequency domain via convolution

kernels of 1D-CNN model, and we effectively bridge the “semantic gap”
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between high-level semantic features of N-fMRI and low-level acoustic

features of naturalistic audios in the frequency domain. Our results provide

novel insights on characterizing spatiotemporal patterns of brain activities

via N-fMRI and effectively explore the high-level semantic features under

naturalistic stimuli, which will further benefit the understanding of the brain

working mechanism and the advance of naturalistic stimuli clinical application.

KEYWORDS

naturalistic stimuli, spatiotemporal, fMRI, convolutional neural network, Predictive
Model

Introduction

Naturalistic stimuli, including movie, music, and speech,
are close to real-life experience for human and have been
increasingly applied in the research field of neuroimaging
(Vanderwal et al., 2019; Wang et al., 2020; Saarimäki, 2021).
Relative to a resting-state or single-task state, naturalistic
stimuli can evoke more intense brain activities and have
been proved to possess higher test–retest reliability, suggesting
greater potential to study adaptive human brain function
(Martinez-Garcia et al., 2012; Sonkusare et al., 2019; Simony and
Chang, 2020). Especially, naturalistic audios, containing rich
dynamic auditory stimuli, have been widely adopted as stimulus
materials in brain function analysis. To study the functional
characteristics of brain activities under naturalistic auditory
stimuli, brain imaging, e.g., naturalistic functional magnetic
resonance imaging (N-fMRI), has shown great potential to
record the brain states and bring more explanations for the brain
working mechanism (Saarimäki, 2021).

In recent years, researchers have presented many interesting
findings with N-fMRI, including brain function and data
reliability. For example, Lahnakoski et al. (2012) explored
the detailed relationship between superior temporal sulcus
(STS) and social features during watching movie clips with
preselected social signals. Wang et al. (2017) proved that the
reliability of connectivity and graph theoretical measures of
brain networks is significantly improved during naturalistic
stimuli over resting-state. Shain et al. (2020) found that human
mechanisms generate predictions about upcoming words of a
naturalistic sentence mainly by cognitive processes. Although
these researches brought a lot of new views, they had a limited
contribution to bridge the “semantic gap” (Ozcelik et al., 2022;
Raposo et al., 2022). To be specific, “semantic gap” between
high-level semantic features and low-level acoustic features is
still large, where the former is features contained in N-fMRI with
the high-level perception of human, and the latter is features
merely extracted from the audios according to dynamics,
rhythm, timber, pitch, and tonal (Jiang et al., 2012; Zhao et al.,
2014; Lad and Patel, 2021).

In order to interpret the brain conditions and obtain the
significant high-level semantic features from fMRI, researchers
have made great efforts in terms of spatial and temporal analysis
of brain activities. For the spatial analysis, Jiang et al. (2012)
developed a computational framework to model the brain
imaging space (BIS) high-level features from fMRI and achieved
well classification accuracy to differentiate music/speech audios.
Zhao et al. (2014) adopted brain network components to
decode biologically plausible auditory saliency and effectively
decoded the auditory saliency features. Hu et al. (2015)
explored the brain regions and functional interactions during
semantics categorization based on sparse multinomial logistic
regression (SMLR) algorithm. Çelik et al. (2019) proposed a
spatially informed voxel-wise modeling (SPIN-VM) technique
and achieved well sensitivity in the assessment of fine-
grained cortical representations. Zhang et al. (2021) developed
a voxel-based state space modeling method and achieved
a better understanding of high-dimensional brain activity
elicited by complex, open-ended naturalistic tasks. For the
temporal analysis, Chen and Hu (2018) applied recurrent
neural network (RNN) model based on GRU to capture the
sequential information in fMRI data, which can extract GRU
patterns and identify subjects. Yan et al. (2019) proposed a
multiscale RNN model, using time courses of fMRI independent
components directly and achieving promising performance
on classification task. Wang et al. (2020) explored functional
brain networks underlying auditory saliency via a multivariate
brain decoding approach. Moreover, much evidence has been
proposed that integration of both brain spatial and temporal
representations can benefit interpreting the brain state and
improve the characterization of the patterns of different brain
states. Zhang Y. et al. (2019) proposed a two-stage deep
belief network (DBN)–based blind source separation (BSS)
method and used it to explore functional brain networks in
naturalistic fMRI data. Ren et al. (2021) proposed a volumetric
neural architecture search and deep belief network (NAS-DBN)
framework to model the N-fMRI volume images, which uncover
the hierarchical temporal responses and spatial distributions at
multiple scales under naturalistic stimuli. These works extracted
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both spatial and temporal features from fMRI by various
frameworks and achieved satisfying performance, especially
for the deep learning–based framework. However, due to the
limited size and considerable individual difference of N-fMRI,
an efficient and effective framework, which can overcome the
issue of the small dataset and retain reasonable classification and
prediction performance, is largely needed. Therefore, we aim
to study the fine-grained interpretation of brain spatiotemporal
patterns on the voxel level, which can benefit to bridge the
“semantic gap.”

To design a suitable framework, choosing appropriate
learning algorithms is the key issue for differentiating the brain
states and identifying meaningful biomarkers. With the rapid
development of deep learning and prediction approaches, they
have shown the great power of explanation and generalization
in human neuroscience (Rosenberg et al., 2018; Wen et al.,
2018). Traditionally, studies on fMRI mainly focused on
finding correlations between brain and stimulus. The generated
models can work well on trained individual data, but they
are difficult to be effective on brand-new individuals. To solve
this problem, in recent years, Predictive Models have been
proposed to build a generalized neuroimaging model, which is
designed to predict individual observation and generalize to new
individual data (Scheinost et al., 2019). Besides, convolutional
neural network (CNN) has been widely used in neuroimaging,
especially for the fMRI, for it can extract the local features
which contribute to classification, prediction, and identification
(Anwar et al., 2018). Therefore, in this work, we propose a
novel hybrid learning framework that comprehensively studies
both brain spatial (by Predictive Model) and temporal (by
CNN model) characteristics via N-fMRI. Specifically, the whole
brain functional spatial patterns under stimuli of three different
audio categories (classic/pop/speech) are obtained via N-fMRI
and serve as input to Predictive Model to achieve audio
classification and significant spatial feature identification. Then,
regions of significance (ROS) were generated based on the
widely used AAL90 atlas (Rolls et al., 2020), and the significant
spatial features identified by Predictive Model. Next, voxel-
level signals in the ROS were extracted and fed to the one-
dimensional CNN (1D-CNN) model to explore the voxels that
consistently contribute to audio classification from the temporal
perspective and investigate the characteristics of their temporal
representations.

Our experimental results show that the proposed framework
can achieve promising performance in naturalistic audio
classification. Especially for distinguishing the classic and speech
audios, the accuracy of classification is up to 92%. Based
on the proposed framework, we can effectively characterize
the spatiotemporal features of brain functional activity under
N-fMRI. Brain regions in the temporary lobe and other regions
related to audio are successfully identified, and signals of voxels
in these regions are interpreted on spatiotemporal features.
In addition, through qualitative temporal analysis of brain

high-level semantic features and low-level acoustic features, we
alleviate the semantic gaps from the view of frequency domain.

The key characteristics of this work can be summarized
as three perspectives. First, an effective and hybrid learning
computational framework, which integrates both brain spatial
and temporal analysis, is proposed to study the brain states
and high-level semantic features from N-fMRI. Second, ROS
with spatial activation features across individuals and voxels of
significance (VOS) with temporal characteristics were identified
at a finer spatiotemporal scale. Third, “semantic gap” between
high-level semantic features and low-level acoustic features is
attempted to alleviate via our proposed framework.

The remainder of this article is organized as follows: Section
“Materials and methods” briefly introduces the overall methods,
including data acquisition, high-level feature extraction,
Predictive Model, and 1D-CNN model. Section “Results”
provides the experimental results, and section “Conclusion”
concludes this article.

Materials and methods

Overview

Aiming at the fine-grained interpretation of spatiotemporal
patterns of brain activities, workflow of the proposed framework
is shown in Figure 1, which mainly includes two stages. At Stage
1, significant spatial features of brain activities corresponding
to different naturalistic audio categories are identified via
machine learning (ML) based Predictive Model, with the input
of brain activation patterns extracted from N-fMRI data. Then,
ROS are selected based on the AAL atlas (Rolls et al., 2020)
and significant spatial features identified by Predictive Model,
thus we focus on certain relevant regions instead of the
whole brain. At Stage 2, voxel-level signals in the ROS are
extracted and fed to 1D-CNN model to explore the voxels
that consistently contribute to audio classification from the
temporal perspective and investigate the characteristics of
their temporal representations. Furthermore, the relationship
between high-level semantic features and low-level acoustic
features is explored.

Data preprocessing and pattern
extraction

Naturalistic audio data description
Three typical categories of music/speech: classical music

(CLA), pop music (POP), and speech (SPE) are adopted as
the stimulus materials in the dataset. For each category, 7
representative excerpts are selected for fMRI scanning. The
excerpts are taken from legal copies of MP3 compressed audio
files to ensure a variety of different recording qualities. Each
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FIGURE 1

Workflow of the proposed framework. (A) The overview of the whole framework; (B) spatial analysis at Stage 1; and (C) temporal analysis at
Stage 2.

excerpt is 90 s, totally making 3 s × 7 s × 90 s = 31.5 min
of audio data for each subject. Before the N-fMRI collection, we
randomly compose the audio excerpts into two parts, each of
which is about 15 min long. Between the two parts, participants
could have a break with flexible duration.

Naturalistic functional magnetic resonance
imaging data description

Collection of N-fMRI was conducted at the University of
Georgia (UGA) under UGA Institutional Review Board (IRB)
approval. Since fMRI scanning is costly and time-consuming,
seven young healthy college students were recruited for this
study and scanned in a GE 3T Sigma MRI system (GE
Healthcare, Milwaukee, WI, USA) using an 8-channel head coil.
The TR of this scan is set to be 1.5 s, and each excerpt collects
60 volumes of fMRI. Other parameters are as follows: 64 × 64
matrix size, 4 mm slice thickness, 220 mm Field of View (FOV),
30 axis slices, TE = 25 ms, and ASSET = 2. Note that for each
subject and each excerpt, we obtained the 4D N-fMRI data with
the size of (60, 91, 109, 91), where 60 is the number of volumes,
and (91, 109, 91) is the size of one volume image.

Naturalistic functional magnetic resonance
imaging data preprocessing

The preprocessing pipeline included motion correction,
slice-timing correction, smoothing, registration, and

normalization (Churchill et al., 2017) using FMRIB Software
Library (FSL) (Jenkinson et al., 2012). To perform group-wise
analysis on participants with a biological difference, all N-fMRI
data are registered from individual space into the standard
Montreal Neurological Institute (MNI) 152 standard space
(Evans et al., 2012) by the FMRIB’s Linear Image Registration
Tool (FLIRT) (Jenkinson and Smith, 2001).

Activation pattern extraction
To extract brain activation patterns, we adopted fMRI

Expert Analysis Tool (FEAT) to conduct first-level General
Linear Modeling (GLM) analysis by modeling task design
corresponding to each 90 s naturalistic stimuli of each excerpt
of an audio category (Woolrich et al., 2001). The preprocessed
4D N-fMRI data are adopted as input, and the 3D activation
pattern with a size of (91, 109, 91) is obtained by GLM analysis.
In total, there are 49 brain patterns (7 subjects × 7 excerpts)
for one category of audios, which would serve as input to the
Predictive Model.

Spatial analysis with Predictive Model

To perform spatial analysis across individuals, Predictive
Model, which is designed to predict individual observation
and generalize to new individual data, is needed. Recently,
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Kohoutová et al. (2020) proposed an ML-based framework that
consists of model-, feature-, and biology-level assessments to
provide complementary results that support the interpretability
of Predictive Model. Motivated by this framework, we adopt
Predictive Model to analyze the N-fMRI data from a spatial
perspective, striving to obtain the common significant spatial
features across individuals. To focus on certain relevant regions
from the whole brain, we select ROS based on AAL90 atlas
(Rolls et al., 2020) and the significant spatial features identified
by Predictive Model, so that we can better interpret those
significant spatial features in the further analysis.

Procedure of Predictive Model
The major procedure of the Predictive Model for N-fMRI

analysis includes extraction of brain activation patterns
(input features of Predictive Model), selection of appropriate
learning algorithms, training and classification, verification of
classification performance, and identification of features related
to classification. To establish an effective Predictive model for
brain state differentiation during naturalistic stimuli, three key
points are necessary to be determined: (1) Input Features; (2)
Learning Algorithm; and (3) Training Strategy.

Input features

Activation patterns of the whole brain are adopted as the key
features of input to the Predictive Model. In order to reduce the
size of fMRI activation patterns, we adopted the commonly used
MNI 152 T1 brain mask to extract the voxels within brain space
in this work. MNI 152 T1 brain mask contains voxels with values
of either “1” or “0.” Voxels with value “1” are located inside
the brain, and voxels with value “0” are outside the brain. Since
the fMRI data we adopted have been registered to the MNI 152
standard space, targeted voxels could be located and extracted
by the mask. As a result, we reduced the voxel number of an
activation pattern from about 910 thousand (91 × 109 × 91,
whole space of fMRI image) to about 220 thousand (whole space
of brain areas).

Learning algorithm

For the learning algorithms, multiple regression, LASSO
regression, support vector machine (SVM), and support vector
regression (SVR) are potential algorithms for classification
and prediction (Ray, 2019). Among them, SVM is one of
the most popular machine learning algorithms in current
neuroimaging literature and has been proven to show promising
performances on a small dataset (Scheinost et al., 2019).
Considering the relatively small N-fMRI data in this work,
SVM has a great advantage over other algorithms to obtain
promising performance. Therefore, we adopted SVM to build
the computing kernel in the Predictive Model. To fit the
requirements of SVM, each sample with 220 thousand voxels
was flattened into a one-dimensional vector. In this model,
we selected the widely used linear kernel, which maps low-
dimensional non-linear data to higher-dimensional space.

Training strategy

For the training strategy, we evaluated the performance
of the Predictive Model on N-fMRI data by measuring the
prediction accuracy. Here, we adopted Leave-One-Out-Cross-
Validation (LOOCV), a commonly used method in machine
learning, as the training strategy. For each binary classification
task, the total number of available patterns is 98, corresponding
to the 98 music excerpts (7 subjects× 7 excerpts× 2 categories).
Depending on the LOOCV strategy, we treated each of the
patterns as a sample, and samples of each participant, in turn,
served as a testing set and samples of the rest participants as
the training set. This process was totally repeated 7 (number
of participants) times to reduce the size of the features with
different combinations of training and testing data.

Moreover, to quantitatively illustrate the classification
performance of the Predictive Model, we adopt the widely
used statistical tool, receiver operating characteristic (ROC)
curve (Obuchowski and Bullen, 2018), to describe the accuracy
of the Predictive Model. As shown in Eq. 1, Sensitivity (SN)

and Specificity (SP) are a conditional probability of correctly
identifying the true samples and false samples, respectively. The
learned classifier with a low false positive rate and a high true
positive rate suggests promising classification performance:{

SN = TP
TP+FN

SP = TN
TN+FP

(1)

where TP, FN, FP, and TN are the true positive samples,
false negative samples, false positive samples, and true negative
samples in predicted outcomes, respectively.

Comparison with baseline technologies

To adequately compare the classification performance, we
set the comparison experiments from two perspectives: learning
algorithms and feature extraction methods. For different
learning algorithms, we chose methods of Support Vector
Regression (SVR) and Principal Components Regression (PCR)
as the baseline comparison. For different feature extraction
methods, we chose the acoustic features (according to dynamics,
rhythm, timber, pitch, and tonal) of the naturalistic audios and
brain connectivity of N-fMRI as the baseline comparison, which
was presented by Jiang et al. (2012).

Spatial features identification
To identify the significant spatial features from the

classifier, we choose two commonly used methods: bootstrap
tests (Erlikhman and Caplovitz, 2017) and recursive feature
elimination (RFE) (Craddock et al., 2009), to identify features
that are most related to the pattern classification. Bootstrap tests
identify features that make stable contributions to prediction
across participants. Features with stable weights in the classifier
will be identified as significant features. RFE fits a model and
removes the weakest features until the specified number of
features is reached. During the iterative training procedure of
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Predictive Model, features corresponding to its lowest weights
are eliminated from the training dataset until the optimal
number of features is left. Theoretically, both bootstrap tests
and RFE can identify significant spatial features in the Predictive
Model.

Regions of significance selection
Considering that the significant spatial features identified by

Predictive Model are distributed over multiple brain regions,
in this section, we selected regions with the most significant
spatial features as ROS for future temporal analysis based on
AAL atlas (Rolls et al., 2020). Specifically, for each AAL region,
we calculated the ratio of the voxel number of spatial features to
the voxel number of all voxels, which are defined as ri in Eq. 2,
and then we selected ROS with a larger ri from the whole brain:

ri =
n
m

(2)

where i is the index of AAL brain region, r is the feature
voxel proportion of a region, n is the voxel number of the
significant spatial features in a region, and m is the total voxel
number of a region.

Temporal analysis with
one-dimensional convolutional neural
network

Although Predictive Model can conduct audio classification
and provide related significant spatial features, the full
representations of brain patterns are still to be explored. Based
on the selected ROS, we further analyzed the temporal features
of N-fMRI in this section. Considering the advantage of the
CNN model to automatically extract the local features from
the input samples, we further introduced 1D-CNN model for
temporal analysis into the framework. In the 1D-CNN model,
N-fMRI signals of voxels in ROS are extracted as the input with
label of audio categorizes, the local temporal features that related
to audio categorizes are effectively characterized.

One-dimensional convolutional neural
network model architecture and experiment
design
Architecture of one-dimensional convolutional neural
network

In the previous research on resting state fMRI (rs-fMRI),
four convolutional layers were adopted in 1D-CNN model and
achieved promising classification performance (Zhang S. et al.,
2019). Considering that signals in N-fMRI have richer features
than those in rs-fMRI and single-task fMRI (Saarimäki, 2021),
we set up five convolutional layers to train the model and
extract hidden features from the input signals with a length of
60, as shown in Figure 2. Each of the last four convolutional
layers is followed by a max-pooling layer, by which the output

feature maps will be reduced to half the size of the input after
passing through. At the end of 1D-CNN model is the dense
layer (Softmax), whose input is the feature maps of input signals
and output is the predictive result. In addition, architecture
parameters are empirically set as follows: the number of the
convolution filters is 40, 32, 24, 16, and 8 in each convolutional
layer, respectively. The size of all kernels is 7, which is suitable for
analyzing the features of signals with a length of 60. To keep the
size of output feature maps the same as the input feature maps
in each convolutional layer, we set the same padding and stride
equal to 1. Moreover, the optimizer is SGD, activation function
is Relu, batchsize is 64, and learning rate is 1 × 10−4. The loss
function is selected as “binary cross entropy.”

Experiment design

In this section, we conducted experiments using N-fMRI
data from CLA and SPE tasks as examples and used 98 excerpts
(7 subjects × 7 excerpts × 2 categories) of available N-fMRI
data. We applied each ROS as a mask to extract voxel temporal
signals from all the 98 excerpts of the preprocessed N-fMRI data
and thus we possessed 98 excerpts of signals for each voxel in the
studied ROS. Further, we adopted LOOCV training strategy in
the 1D-CNN model. Specifically, for voxels of the studied ROS,
we successively selected the signals of one excerpt as test samples
and signals of other 97 excerpts as training samples. In this stage,
we conducted the experiment on each of ROS separately, i.e., the
number of separate parallel experiment is equal to the number
of ROS. We finally obtain 98 sets of predicted results for voxels
in each of the ROS.

Voxels of significance identification
In the 1D-CNN model, voxel signals with significant

temporal characteristics could be classified with a higher
classification accuracy, which can contribute to audio
classification. Based on the LOOCV strategy described in
section “One-dimensional convolutional neural network model
architecture and experiment design,” there will be 98 runs
for each voxel in each of the ROS. Here, we counted the true
positive predicted results among the 98 sets of results for each
voxel. If the ratio of number of true positive results to the 98
sets of results reaches a certain proportion (60% was chosen
empirically) for a voxel, we consider that signals within this
voxel are significantly related to the audio category and defined
the voxel as VOS. Thus, VOS are identified in this stage. By
studying the area that consists of VOS, we can explore how
brain function works under naturalistic auditory stimuli at a
finer spatial scale.

Exploration of relationship between high-level
semantic features and low-level acoustic
features via one-dimensional convolutional
neural network model

“Semantic gap” between high-level semantic features
(obtained from N-fMRI data) and low-level acoustic features
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FIGURE 2

Architecture of 1D-CNN model in our framework.

(obtained from the audios) is a key problem in the N-fMRI
study. Researchers have discovered more and more frequency-
specific biological interpretations from fMRI (Yuen et al., 2019).
In this section, the proposed framework may bring new insights
into alleviating the “semantic gap” by analyzing frequency
domain features of N-fMRI and audios.

In the 1D-CNN model, the convolution kernels are
constantly trained and optimized in the process of convolution
with input signals. The significant features of voxel signals that
contribute to the classification of audio categories are embedded
in those kernels (Huang et al., 2018). In this article, we selected
the convolution kernels in the last convolutional layer to explore
which category they are related to. To be specific, feature maps
generated by convolution kernels in the last convolutional layer
connect to the dense layer, thus each of these convolution
kernels can be mapped to a pair of weights, which are related
to the prediction result of audio categories (Lin et al., 2013).
Therefore, we extracted the values of convolution kernels in the
last convolutional layer and the weights in the dense layer, and
then established a one-to-one relationship between kernels and
categories (Liu et al., 2019; Zhang S. et al., 2019). By the analysis
of convolution kernels, we can generate the temporal features
of N-fMRI related to different audio categories in each region
separately.

To identify and interpret the difference in temporal
features of fMRI, the learned convolution kernels could be
transferred into the frequency domain to explore the frequency
characteristics of fMRI (Liu et al., 2019; Zhang S. et al., 2019;
Jiang et al., 2020). Since the size of the convolution kernels at
the temporal domain is 7, the frequency domain includes three

points, i.e., about half size of the kernel, as shown in Figure 3. To
efficiently and comprehensively study the shape of the features
from the frequency domain, six typical types are observed and
defined as L, L′, V , V ′, 0, and 0′, which are shown in Figure 3.
Moreover, the six shapes are mathematically defined in Eq. 3:



L : X (1) > mean (X) ,X (2) < mean (X) ,X (3) < mean (X)

L′ : X (1) > mean (X) ,X (2) < mean (X) ,X (3) < mean (X)

V : X (1) > mean (X) ,X (2) < mean (X) ,X (3) < mean (X)

V ′ : X (1) > mean (X) ,X (2) < mean (X) ,X (3) < mean (X)

0 : X (1) > mean (X) ,X (2) < mean (X) ,X (3) < mean (X)

0′ : X (1) > mean (X) ,X (2) < mean (X) ,X (3) < mean (X)

(3)
where X(n) represents the nth value in the X-shape
frequency domain array.

For the low-level acoustic features, we calculated two typical
acoustic features: mel frequency cepstral coefficients (MFCCs)
(Grama and Rusu, 2017) and Spectral Centroid (Prasetio et al.,
2021).

Mel frequency cepstral coefficients are coefficients that
collectively make up a Mel-Frequency Cepstrum (MFC), which
have been widely used in automatic speech and speaker
recognition. Specifically, the human ears in listening act like
filters, which are better at identifying small changes in audio
at lower frequencies (blow 1000 Hz) but not good at higher
frequencies (higher than 1000 Hz). Mel-scale is a scale that
relates the human perceived frequency to the actually measured
frequency f . The formula to convert frequency f to Mel-scale
Mel(f ) is illustrated in Eq. 4 (Gupta et al., 2013). MFCCs are
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FIGURE 3

The six typical shapes of frequency domain features of convolution kernels.

commonly derived as follows: (1) Take the Fourier transform of
the audio signal; (2) Map the powers of the spectrum obtained
above onto the Mel-scale; (3) Take the logs of the powers at each
of the Mel frequencies; (4) Take the discrete cosine transform
of the list of Mel log powers; and (5) The MFCCs are the
amplitudes of the resulting spectrum:

Mel(f ) = 2595 × lg(1+
f

700
) (4)

where f is the actual measured frequency, Mel(f ) is the Mel-
scale, 2,595 and 700 are the commonly used constants in
Mel-scale formula.

Spectral Centroid is one of the important physical
parameters describing the properties of timber, which indicates
where the centroid of the spectrum is located (Prasetio et al.,
2021). Generally, the audios with dark and deep quality tend
to have more low-frequency components and relatively low
Spectral Centroid, while the audios with bright and cheerful
quality mostly concentrate on high frequency and relatively high
Spectral Centroid. It is calculated from the Fourier transform
frequency and amplitude information, as defined in Eq. 5:

Centroid =
∑N−1

n = 0 f (n) x (n)∑N−1
n = 0 x (n)

(5)

Where x (n) represents the weighted frequency value
or magnitude of bin n, and f (n) represents the center
frequency of n.

Results

In our experiment, the Predictive Model is configured based
on CanlabCore toolbox, which is available at https://github.com/
canlab/CanlabCore. The 1D-CNN model is built based on Keras
(a deep learning application programming interface), which
runs on top of the machine learning platform TensorFlow 2.6.0
(Géron, 2019). The computing environment is a server with
NVIDIA Geforce GTX 3090 with 24 GB GPU.

Characterizing spatial patterns via
Predictive Model

Visualization of input features for Predictive
Model

As the key features fed into the Predictive Model, activation
patterns obtained by GLM analysis are visualized in Figure 4.
As shown in Figure 4, the activation regions of POP and SPE are
relatively similar, especially in the Temporal lobe which contains
significant activations. However, the activation patterns of CLA
are significantly different from that of POP and SPE, which
include parts of the Frontal lobe and Parietal lobe. In terms of
audio components, CLA audios only have instrumental sounds
without vocals, whereas POP and SPE both have vocals. It may
reveal the attention mechanism of Temporal lobe, which focuses
more on the vocals than other sounds.

Classification performance of Predictive Model
We visualized the ROC curves for the classification results of

the Predictive Model for classification performance assessment.
Figure 5 shows the ROC curve of three binary classification
tasks, in which the accuracy of CLA/POP, POP/SPE, and
CLA/SPE is 81, 62, and 92%, respectively. The results support

FIGURE 4

Brain activation patterns under stimuli of different audio
categories.
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FIGURE 5

ROC curve of three binary classification tasks.

TABLE 1 Comparison of different learning algorithms and feature extraction methods.

Comparison Algorithm/method Accuracy

CLA/POP POP/SPE CLA/SPE

This article Whole brain activation/SVM 83± 3.8% 65± 4.8% 91± 2.9%

Different learning algorithms Whole brain activation/SVR 73± 4.5% 56± 5.0% 96± 2.0%

Whole brain activation/PCR 71± 4.6% 55± 5.0% 94± 2.4%

Different feature extraction methods Functional connectivity matrix/SVM 70.5% 63.5% 75%

Jiang et al., 2012 Acoustic features/SVM 52.5% 49.5% 63.5%

our justification in section “Visualization of input features for
Predictive Model” that activation patterns of POP and SPE are
relatively tough to be distinguished and activation patterns of
CLA are easier to be identified. Besides, the sensitivity and
specificity are 80 and 82% for CLA/POP task, 73 and 51% for
POP/SPE task, and 96 and 88% for CLA/SPE task, respectively.
In POP/SPE task, the specificity of 51% indicates that the
probability of misjudging negative samples is high, which is the
main reason for low classification accuracy. Moreover, in order
to further explore the difference among three audio categories,
we provide the results of three classifications, for details please
refer to the Supplementary material.

Besides, the results of the baseline comparison are
provided in Table 1. When comparing with different learning
algorithms, SVM performs best in CLA/POP and POP/SPE
classification task and generates well performance in CLA/SPE
classification task. When comparing with different feature
extraction methods, features of whole brain activation perform
better than both functional connectivity and acoustic features.
Overall, SVM performs the most robustness classification
performance and features of whole brain activation generate the
best classification performance among these feature extraction
methods.

Exploration of the significant spatial features
Significant spatial features identified from the bootstrap

tests and RFE procedure were visualized in Figure 6 via the

BrainNet Viewer (Xia et al., 2013). As shown in Figure 6,
the positive activation (color “red”) represents the meaningful
features of the former category, the negative activation (color
“blue”) represents the meaningful features of the latter category.
It is worth noting that both the positive and negative features
contribute to the classification.

Figure 6 demonstrates that the spatial maps of bootstrap
tests and RFE results are similar, consistently demonstrating
the effectiveness of the Predictive Model for spatial feature
identification. Although the results of bootstrap tests cover more
brain areas, the activation features from RFE provide a stronger
contrast between two categories with less area. Moreover, for
the classification of CLA/POP and CLA/SPE, activation features
are more concentrated on specific locations, while positive and
negative activation areas stay away from each other. However, it
is quite clear that positive and negative activation areas overlap
for the classification of POP/SPE, indicating that even at the
semantic level, POP and SPE are still hard to be distinguished.

Identification of regions of significance
Based on the obtained bootstrap tests and RFE results,

brain regions with the most positive and negative activation
features are counted and then visualized in Figure 7 via the
BrainNet Viewer (Xia et al., 2013). From Figure 7, we found that
some brain areas are related to certain classical categories, like
“superior frontal gyrus medial,” as shown in red circle. We also
found that some areas are related to more than one category.

Frontiers in Human Neuroscience 09 frontiersin.org

169

https://doi.org/10.3389/fnhum.2022.944543
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-944543 September 30, 2022 Time: 6:42 # 10

Yu et al. 10.3389/fnhum.2022.944543

FIGURE 6

Bootstrap tests and RFE results of significant spatial features. (A) Significant features learned by Bootstrap tests, and (B) significant features
learned by RFE.

FIGURE 7

Regions of brain where activation is significant. (A) ROS selected by Bootstrap test results; (B) ROS selected by RFE results. (Red represents areas
with positive activation, blue represents areas with negative activation, and yellow represents areas with both positive and negative activation).

For example, both pop and speech categories are related to the
“superior temporal gyrus,” which is the yellow region shown
in POP/SPE result in Figure 7. Both classical and speech
categories cause “middle temporal gyrus” to activate, which is
the yellow region shown in CLA/POP result in Figure 7. These
results reveal an interesting phenomenon that some certain
brain regions are consistently related to the specific category of

audios, while some are merely activated by a certain category
of audios.

In order to further study the spatial and temporal
characteristics of ROS, CLA/SPE categories, which provide the
best classification performance in Predictive Model, are selected
as the test bed for further analysis. For each audio category
and each significant feature identification method, we selected
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TABLE 2 Regions with most spatial features identified by
Bootstrap tests and RFE.

Audio category Positive (CLA) Negative (SPE)

Methods Bootstrap RFE Bootstrap RFE

Division SFGmed.L
IFGtriang.L

PreCG.L
PHG.R

PreCG.R
FFG.R

SFGmed.L
SMA.L

PCUN.L
SFGdor.L

PHG.R
FFG.R

MTG.L
STG.R
MTG.R
STG.L

TPOsup.R
ITG.L

MTG.L
STG.R
MTG.R
STG.L
ITG.L
CAU.R

Intersection SFGmed.L
PHG.R
FFG.R

MTG.L
STG.R
MTG.R
STG.L
ITG.L

the top 6 regions with the most significant features (total 24
regions). Table 2 shows the regions with the most significant
features selected by Bootstrap tests and RFE in Predictive Model.
From Table 2 we can see that regions selected by Bootstrap

tests and RFE both have difference and intersection. To identify
significant spatial features as much as possible and further
select comprehensive brain regions for the temporal analysis
in the following section, we combined the regions (total 16
regions) learned by the two methods and visualized the 16 ROS
associated with CLA/SPE, as shown in Figure 8. To simplify
the expression, we refer to each region in the format of the
abbreviations in the following sections. For the full name and
abbreviations of regions involved in this article, please refer to
the Supplementary material.

Characterizing spatiotemporal patterns
via one-dimensional convolutional
neural network

Effectiveness of one-dimensional
convolutional neural network model via model
evaluation experiment

To verify the validity of 1D-CNN model, MTG. L
brain region was randomly chosen to perform the validation

FIGURE 8

Visualization of top 16 brain regions containing the most significant spatial features.

FIGURE 9

Performance of 1D-CNN model via model evaluation experiment.
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FIGURE 10

The proportion of VOS in each ROS.

FIGURE 11

Visualization of VOS in each ROS (blue represents each single brain region, and red represents the collection of VOS in each region).

experiment. N-FMRI signals from MTG. L brain region of all
participants during CLA and SPE tasks were extracted as the
dataset, which was then divided into the training set and testing
set followed by the ratio of 4:1. Both the training and testing
classification performances are shown in Figure 9. It can be seen
that with the increase in epoch, the accuracy of training and
testing both increased up to about 97%, and the corresponding

loss value decreased and converged from 1.5 to less than 0.1.
The performance indicates that the proposed 1D-CNN model
has satisfying performance in classifying CLA and SPE signals.

Interpreting the voxels of significance
For the 16 selected ROS, we calculated the proportion of

VOS number to the total voxel number in both CLA and SPE
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FIGURE 12

The ratio of higher frequency kernels to lower frequency kernels. (A) The ratio of the ratio of nL′ (higher) to nL (lower). (B) The ratio of n0

(higher) to n0′ (lower).

tasks. As shown in Figure 10, the proportion of VOS is more
than 50% in almost all brain regions. Especially, the proportions
of VOS exceed 55% on MTG. L, MTG. R, STG. L, STG. R, and
CAU. R in both CLA and SPE audio tasks. The brain regions
with a higher proportion of VOS, which mostly spread over the
temporal lobe, such as MTG.L, MTG.R, STG. L, and STG. R, are
consistent with common perception and research (Whitehead
and Armony, 2018). Besides, the proportions of VOS on MTG.L,
STG.L, FFG.R, TPOsup. R, IFGtriang. L, and SFGdor. L in CLA
task are 4% greater than that in SPE task, indicating that CLA
signals have more unique and significant characteristics than
SPE signals in these regions. In addition, the proportions of VOS
brain regions outside the temporal lobe, such as FFG. R and
CAU. R, are more than 55% in CLA task, which may help reveal
the non-auditory function of these brain regions.

To achieve a more intuitive understanding and interpreting
of the significant voxels, we selected and visualized the VOS in
each brain area in Figure 11, where the blue represents each
region, and the red represents the collection of VOS in each
region. We can see that most of the red areas spread over

the temporal lobe, such as MTG. L, MTG. R, STG. L, and
STG. R. We can also see that red area of MTG. L is about
5% larger than that of MTG. R for CLA signals, indicating
the activation characteristics of MTG. L region (on left brain)
were more consistent and dominant than MTG. R region (on
right brain), as shown in Figures 10, 11. This further supports
the phenomenon that the auditory function of the left brain
is greater than that of the right brain. Besides, FFG. R also
has distinct activation characteristics. Although existing studies
could not conclusively prove the exact auditory-related function
of FFG. R, its performance obtained by our framework may help
reveal it.

Relationship between high-level semantic
features and low-level acoustic features

In order to analyze the high-level semantic features in
N-fMRI, we calculated the frequency domain features of voxel
signals. As introduced in section “Exploration of relationship
between high-level semantic features and low-level acoustic
features via one-dimensional convolutional neural network
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FIGURE 13

Low-level acoustic features of naturalistic audio.

model,” the convolution kernels containing key features are
divided into six types according to the frequency domain
distribution. Since kernels of V and V’ shape contain both
low- and high-frequency domains, the analysis of V and V’
shape would be more complex than that of other four types
with a single frequency state (higher or lower). Therefore, we
only focus on the four shapes except for V and V’ shape
in this section.

Firstly, the number of convolution kernels with higher and
lower frequency domains was counted, respectively, represented
as n0 (higher), nL′ (higher), nL (lower), and n0′ (lower). Then,
we calculated the ratio of n0 (higher) to n0′ (lower), the ratio
of nL′ (higher) to nL (lower), which represents the ratio of
higher frequency kernels to lower frequency kernels, as shown
in Figure 12. From Figure 12A, we find that the ratios in all
regions except ITG. L are greater than 1, indicating the number
of high-frequency convolution kernels is more than that of
low-frequency convolution kernels in almost all ROS. From
Figure 12B, we can see that ratios in all regions are greater than
1.6, even than 2 in the region of IFGtriang. L in both CLA and
SPE. These results indicate that the high-frequency features of
voxel signals are richer than the low-frequency features.

Furthermore, the ratio of nL′ (higher) to nL (lower) in SPE
is 4.1% higher than that in CLA in Figure 12A. The ratio of
n0 (higher) to n0′ (lower) in SPE is 2.8% higher than that in
CLA in Figure 12B, indicating that signals of ROS in SPE have
more high-frequency characteristics than that in CLA in total.
Besides, in regions of PCUN. L, PreCG. L, PreCG. R, STG. L,
and STG. R, the ratios in Figures 12A,B of SPE are both higher
than that of CLA, where the values of difference are between 0.04
and 0.4. This result further discloses that voxel signals of SPE
have consistently richer high-frequency characteristics than that
of CLA in these regions.

Figure 13 shows two typical acoustic features extracted
from naturalistic audios. As can be seen from Figure 13, the
average Spectral Centroid of the SPE and CLA audios is about
900–1100 Hz and 400–500 Hz, respectively. For the MFCCs
features, frequency of CLA audios is concentrated in several
frequency bands with a range of no more than 10 Hz. Although
the frequency of SPE audios is also concentrated in several
frequency bands, the band oscillates a lot with a maximum
range over 20 Hz. These two typical acoustic features indicate
that the frequency domain of the SPE is not only higher than
that of the CLA but also more volatile. By comparing low-level
acoustic features with high-level semantic features, we find that
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the difference between SPE and CLA audio is consistent. We
hypothesize that the audio with the larger Spectral Centroid
leads to more intense brain activity. In terms of MFCCs features,
the change in a frequency band may lead to more high-
frequency characteristics in voxel signals.

Conclusion

In this work, we propose a novel hybrid learning framework
that comprehensively studies the brain spatial (via Predictive
Model) and temporal (via CNN model) characteristics during
N-fMRI. By integrating spatial and temporal characteristics,
ROS are obtained via the Predictive Model, and VOS are
further interpreted via 1D-CNN model. Experiment results
show that the proposed framework can achieve promising
classification performance of audio categories and identify
meaningful characteristics of the high-level semantic features.
Especially for the classic and speech audios, the accuracy
of classification is up to 92%. Furthermore, the relationship
between high-level semantic features and low-level acoustic
features is proved to be consistent in the frequency domain.
In conclusion, the proposed framework provides novel insights
on characterizing spatiotemporal patterns from the N-fMRI
and effectively studying the high-level semantic features under
naturalistic stimuli, which will further benefit the understanding
of the brain working mechanism and the advance of naturalistic
stimuli clinical application.
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Objective: Accurate localization of a seizure onset zone (SOZ) from

independent components (IC) of resting-state functional magnetic resonance

imaging (rs-fMRI) improves surgical outcomes in children with drug-resistant

epilepsy (DRE). Automated IC sorting has limited success in identifying SOZ

localizing ICs in adult normal rs-fMRI or uncategorized epilepsy. Children face

unique challenges due to the developing brain and its associated surgical risks.

This study proposes a novel SOZ localization algorithm (EPIK) for children

with DRE.

Methods: EPIK is developed in a phased approach, where fMRI noise-related

biomarkers are used through high-fidelity image processing techniques to

eliminate noise ICs. Then, the SOZ markers are used through a maximum

likelihood-based classifier to determine SOZ localizing ICs. The performance

of EPIK was evaluated on a unique pediatric DRE dataset (n = 52). A total of

24 children underwent surgical resection or ablation of an rs-fMRI identified

SOZ, concurrently evaluatedwith an EEG and anatomical MRI. Two state-of-art

techniques were used for comparison: (a) least squares support-vector

machine and (b) convolutional neural networks. The performance was

benchmarked against expert IC sorting and Engel outcomes for surgical SOZ

resection or ablation. The analysis was stratified across age and sex.

Results: EPIK outperformed state-of-art techniques for SOZ localizing

IC identification with a mean accuracy of 84.7% (4% higher), a

precision of 74.1% (22% higher), a specificity of 81.9% (3.2% higher),

and a sensitivity of 88.6% (16.5% higher). EPIK showed consistent

performance across age and sex with the best performance in those

< 5 years of age. It helped achieve a ∼5-fold reduction in the

number of ICs to be potentially analyzed during pre-surgical screening.
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Significance: Automated SOZ localization from rs-fMRI, validated against

surgical outcomes, indicates the potential for clinical feasibility. It eliminates

the need for expert sorting, outperforms prior automated methods, and is

consistent across age and sex.

KEYWORDS

resting state fMRI, seizure onset zone, resting state network, drug resistant epilepsy,

expert knowledge driven classification

Introduction

Epilepsy is devastating, affecting 50 million people

worldwide (WHO). One in 150 children have epilepsy (Aaberg

et al., 2017; Epilepsy Foundation, 2018), with 30% having

drug-resistant epilepsy (DRE; Wieser et al., 2001; Kwan and

Sander, 2004; Kwan and Brodie, 2010), which causes significant

morbidity and mortality (Sillanpää and Shinnar, 2010; Laxer

et al., 2014; Engel, 2016). A consensus proposal by the ad-hoc

Task Force of the International League Against Epilepsy

(ILAE) proposed the following definition for DRE: “a failure of

adequate trials of two tolerated, appropriately chosen, and used

antiepileptic drug schedules (whether as monotherapies or in

combination) to achieve sustained seizure freedom (considered

as freedom from all seizures, including auras) for at least 12

months” (Kwan et al., 2010).

Early diagnosis and treatment of DRE can potentially

deflect complications such as evolution into status epilepticus

(Prisco et al., 2020) and Sudden Unexplained Death in Epilepsy

(SUDEP), wherein the individual dies due to cardio-respiratory

failure from presumed nocturnal seizure activity (Sillanpää

and Shinnar, 2010). Moreover, in children, timely diagnosis,

intensive management, and treatment are pivotal in minimizing

neurological damage (Prisco et al., 2020). Further, the earliest

onset of severe epilepsy in the neonatal population can lead

to nearly constant life-threatening seizures requiring an urgent

need for surgical evaluation early in life (Russ et al., 2021).

Surgery for DRE

The most effective treatment for DRE is surgery (Luders

et al., 2006; Luckett et al., 2022). Early surgery is key:

“minimally invasive surgical treatment can be a life-changing

option for DRE patients; hence management of the SOZ

requiring disconnecting techniques (Young et al., 2020), or

deep sited lesions requiring excision should be considered

earlier rather than later (Chibbaro et al., 2017).” Notably, recent

findings showed that ultra-early (before 3 months old) surgical

intervention in children evaluated to have DRE after trials of an

average of four anti-seizure drugs, although seldom performed,

has excellent epilepsy outcomes and leads to a decrease in usage

of anti-seizure drugs, without any increased risk of surgery-

related permanent morbidity (Roth et al., 2021).

Brain imaging for pre-surgical screening

Surgical intervention in DRE requires accurate localization

of the seizure onset zone (SOZ) for success. We make

a distinction between the epileptic network (EN) and the

SOZ. The EN denotes regions where seizure propagates and

may be more extensive than the SOZ. As such, it may be

difficult as well as unnecessary to surgically eliminate the

EN since it can incorporate sensitive areas of the brain.

Several brain imaging techniques have been explored to

identify the ictal seizure onset zone, propagation zone (i.e.,

EN), and interictal activity (Table 1). This can be done with

nuclear medicine-based imaging techniques such as positron

emission tomography (PET) or ictal single-photon emission

computerized tomography (SPECT; Desai et al., 2013). Recent

studies suggest some SOZ identification capabilities for PET and

SPECT in both adults and children; however, their accuracy

heavily depends on the timing of the scan. Delay in drug infusion

can result in the detection of the EN instead of the SOZ. Invasive

modalities such as intracranial EEG (iEEG) are considered

the gold standard for SOZ identification and have shown

excellent accuracy for both adults and pediatric DRE. Stereo-

electroencephalography (SEEG) is minimally invasive, uses a

three-dimensional configuration of depth electrodes to localize

epileptiform activity, and has shown some SOZ identification

capability recently (Satzer et al., 2022).

However, traditional analysis of PET, SPECT, or SEEG

is relatively, temporally, and spatially restricted, whereas

functional interpolation of brain activity might allow for a

non-invasive three-dimensional representation of epileptiform

activity and avoid pitfalls inherent of other modalities (Table 1).

Recently, magnetoencephalography (MEG) and functional

magnetic resonance imaging (fMRI)-based non-invasive

techniques have been analyzed for DRE in both adults and

children and show decent SOZ identification capability. A

combination of MEG and fMRI imaging has also been proposed
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for accurate SOZ identification (Berger et al., 2021). However, a

major drawback of such brain imaging-based SOZ identification

techniques is the heavy reliance on manual sorting of images

and their components, which not only increases cost but also

reduces accessibility and repeatability.

Unfortunately, <1% of patients with DRE are evaluated for

surgery and only 25% of those undergo surgery (Engel, 2016),

partly due to the high cost of diagnostic and surgical treatment

(>$200,000/patient) and the risk of debilitating impairment

(Murray et al., 1996; Begley et al., 2000). Of the 1% evaluated,

surgical failure rates are 30–70% despite the use of non-invasive

SOZ-localization biomarkers such as anatomical MRI, scalp

EEG, simultaneous EEG-fMRI, and magnetoencephalography,

which are then often confirmed by invasive iEEG (McIntosh

et al., 2004; Luders et al., 2006; Sillanpää and Shinnar, 2010;

Bulacio et al., 2012; Laxer et al., 2014; Engel, 2016; Epilepsy

Foundation, 2018). Hence, for surgery to be safe and efficient

for wide acceptance (England et al., 2012), accessible, minimally

invasive, and accurate SOZ localization is essential.

One of the newer methods showing promise, to this

end, is resting-state functional MRI (rs-fMRI). Rs-fMRI has

been shown to have an accurate SOZ-localization capacity

through various analysis approaches (Bandt et al., 2014; van

Houdt et al., 2015; Malmgren and Edelvik, 2017; Boerwinkle

et al., 2018), but only independent component analysis

(ICA; Gonzalez-Martinez et al., 2007) has provided Level 1

evidence and has led to improvement in surgical outcomes

(Malmgren and Edelvik, 2017; Chakraborty et al., 2020) and

candidacy (Boerwinkle et al., 2019) in DRE. However, expert

interpretation of independent components (IC) into sources

of noise, normal resting state networks (RSN), and SOZs

(Hunyadi et al., 2014; Boerwinkle et al., 2017, 2020) limits

reproducibility and availability. An automated whole-brain

data-driven SOZ-localizing IC identification technique that

is rigorously validated against surgical destruction outcomes,

reproducible, equally effective across age and sex, and applicable

to all epilepsy subtypes may greatly improve epilepsy care

feasibility, morbidity, and mortality.

fMRI-based screening

Functional MRI (fMRI) is a popular imaging technique

originally used to identify brain activity in terms of blood

oxygenation level change in different parts of the brain for a

given mental task (Figure 1). However, for SOZ detection, it is

required to identify blood oxygenation changes due to the onset

of seizure. Hence, an important step is to remove other sources

of brain activity such as mental tasks, fMRI noise, and head

motion. Rs-fMRI requires the subject to be in a resting state,

which is achieved in a majority of children through sedation.

Even if any mental task is eliminated, there is still the presence

of resting-state brain activity in subjects, whichmanifests as RSN
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FIGURE 1

The standard task-based fMRI protocol (top panel), resting state fMRI and data processing pipeline (middle panel), standard rs-fMRI-based

pre-surgical evaluation of SOZ location (lower left panel), automation objective of EPIK (lower right panel), and advantages of EPIK in terms of

reduction in manual processing requirements.

brain activity. Head motion is a significant source of noise. Even

if head motion is limited to <1mm, it still can pose a significant

amount of noise in the rs-fMRImeasurement. Automated image

registration is used to reduce head motion artifacts in rs-fMRI

(Figure 1 middle panel). The resulting rs-fMRI captures brain

activity due to several sources including (a) noise (fMRImachine

noise and head motion), (b) RSN (resting-state activity of the

brain), and (c) SOZ (change in blood oxygenation due to seizure

onset). To decouple the effects of noise, RSN, and SOZ in rs-

fMRI signals, ICA is used to recover mutually independent fMRI

signal components (ICs) that potentially only capture brain

activity from one of the three sources.

Rs-fMRI ICA results in ∼100 ICs. Each IC is a spatial-

temporal distribution of regions of synchronous activity. In

ICA of those with DRE, there are three IC categories: (1)

RSNs which are well-described and validated in the literature;

(2) SOZ which is, currently, highly dependent on expert

sorting; and (3) noise, which is also well-understood, resulting

from cardiovascular, cerebral-spinal-fluid-pulsation, or scanner

artifacts [see Boerwinkle et al. (2017) for details and examples].
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In standard rs-fMRI-based pre-surgical screening for children

with DRE, the entire set of ICs is analyzed by a neurosurgeon or

neurologist to determine which ICs capture blood oxygenation

changes due to seizure onset. Such ICs are referred to as SOZ

localizing IC. The neurosurgeon then determines the location

of seizure onset in the brain using the SOZ localizing IC and a

recommendation for a surgical procedure such as resection or

ablation or neurostimulation is made.

Given that ICA results in > 100 ICs and only < 10% are

SOZ localizing ICs, manual sorting of rs-fMRI ICs to search

for SOZ localizing IC is a significant time commitment by the

neurosurgeon, resulting in increased cost, reduced availability,

and a higher chance of false positives (Figure 1). This study

focuses on automating the task of IC sorting and reducing

the number of ICs to be analyzed by the neurosurgeon for

pre-surgical evaluation for children with DRE.

Automation of fMRI-based screening

Artificial Intelligence (AI) has been employed on rs-fMRI

to automatically identify several brain disorders including

Attention Deficit Hyperactivity Disorder (ADHD), Alzheimer’s

disease, White Matter Hyperintensity (WMH; Bharath et al.,

2019), and major depressive disorder (Nguyen et al., 2021).

Recent studies considered two automation objectives in epilepsy

with rs-fMRI (Table 2): (a) classification of subjects with or

without epilepsy by identifying epilepsy networks using rs-

fMRI blood oxygen level-dependent (BOLD) signal z-score

latency maps (Lopes et al., 2012; Bharath et al., 2019;

Nguyen et al., 2021), and (b) localization of the seizure

onset zone using rs-fMRI ICs (Hunyadi et al., 2014, 2015;

Shah et al., 2019). Epilepsy networks indicate the areas of

the brain that are affected by the propagation of a seizure.

As such, they may not indicate the origin of the seizure,

which is encapsulated by the SOZ. Our research focus

in this study tackles the second automation objective of

SOZ localization.

Automated classification of rs-fMRI ICs as SOZ or RSN has

been explored using supervised shallow machine learning (ML;

Nozais et al., 2021) and using deep learning (DL) in healthy

adults to identify the typical RSNs and is yet to be tested in

epilepsy (Zhang et al., 2019; Table 2). Supervised ML indicates

that the DRE population has to be divided into two parts: (a)

a training set, which is used to configure the ML, and (b) a

testing set, which is used to test the performance of the ML.

Some supervised ML can also choose to utilize a validation set

as mentioned in a previous study (Nguyen et al., 2021). The

performance of the ML technique on the validation set is used

to update the training process and improve the performance

in the validation set. Hence, the performance on the validation

set is excluded from the analysis in Table 2 and only the test

set performance is reported. Recent automated (Luckett et al.,

2022) methods to classify adult rs-fMRI into RSN, SOZ, and

noise ICs are of three types: (1) voxel-based network measures

quantifying the number of connections to each voxel in an IC,

called voxel degree connectivity (VDC), as indicators for SOZ

(Hunyadi et al., 2014; Lee et al., 2014). Such approaches have

a small sample size (n ≈ 20) and show a maximum reported

sensitivity of 77% and a specificity of 57% (Table 2); (2) ML-

based classification, with a sensitivity of 40% and a specificity

of 77% (Hunyadi et al., 2014); and (3) DL approaches for only

identifying RSN and noise, but not SOZs, for normal and non-

DRE patients with epilepsy [accuracy 92% (Nozais et al., 2021)

in Table 2].

To date, automated approaches have not been successful

in the classification of RSN, noise, and SOZ, in rs-fMRI for

pediatric patients with DRE due to the following challenges: (1)

Lack of normalized pathological rs-fMRI RSN data for children

(Zhang et al., 2019); (2) databases with balanced instances

of RSN, SOZ, and noise, large enough for DL techniques

to effectively recognize the three IC categories that are not

available; (3) the potentially inadequate performance of SOZ

identification in children with DRE can indicate a high risk of

developmental disorders post-surgery. Given that each patient

only has 5% ICs as SOZ, a 40% sensitivity (Hunyadi et al.,

2014) indicates that only two out of five SOZ ICs are correctly

identified but 14 of them are wrongly identified as SOZ;

and (4) fMRI-based pre-surgical mapping is more complicated

for children with DRE due to developmental changes during

cognitive maturation (Jiang et al., 2018; Bouyssi-Kobar et al.,

2019), the impairment experienced due to DRE, and the

normal representation of memory function during development

(Michels et al., 2012; Darki and Klingberg, 2015; Cui et al., 2018;

Kasradze et al., 2021), which may differ from adults (Faghiri

et al., 2017; Lee et al., 2019; DeGeorge et al., 2021; Moncrief et al.,

2021). Hence, the efficacy of fMRI classification techniques on

adults needs to be reexamined for children with DRE.

Most current studies (Table 2) focused on adult epilepsy

with an unknown effect of the degree of hypothesized network

disruption effect on localization. Currently available automated

IC sorting techniques either only identify SOZ or RSN localizing

ICs. Hunyadi et al. (2015), the first major work to attempt SOZ

localizing ICs identification, used supervised ML but could only

achieve a specificity of 77% and a sensitivity of 40% on a subset

of the adult patient population. A more recent technique by

Nozais et al. (2021) used DL to identify only RSN in healthy

adults and reports an accuracy of 92%. The major drawback of

DL techniques is the requirement for labeled data on all three

IC categories. Table 2 shows that such labeled data is rarely

available, even if we combine datasets from different authors,

IC data labeled as RSN and SOZ are only available from 212

children with DRE. For DL to successfully recognize SOZ, it

will need at least a balanced distribution of RSN and SOZ. The

DL works in this domain utilize RSN data from 2,000 healthy

subjects for appropriate training (Table 2; Nozais et al., 2021;
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TABLE 2 Comparison of related research highlighting innovative aspects of the proposed research.

Problem References Epilepsy
type

Epileptic
zone
indicators

Task objective Validation
modality

Machine
learning
method

Supervised
(sup)/
unsupervised
(U)

Performance N A adult
C child

N of epilepsy
Subjects (N
with DRE)

N of test
epilepsy
subjects

N of subjects
with surgical
outcomes

Detection of

epilepsy

Nguyen et al., 2021 DRE Epilepsy Network

(EN)

Epilepsy classification

using fMRI z score

latency

Seizures CNN Sup Accuracy in Epilepsy

identification= 74%

Sensitivity= 85%

Specificity= 71%

322 C 63 (63) 13 0

Lopes et al., 2012 Focal Not Specified (NS) Epilepsy classification

using BOLD time series

Seizures Time series

analysis

U Accuracy= 87.5% 15 A 15 (0) 15 subjects with 40

events

0

Bharath et al., 2019 Focal

Temporal

Lobe

Hand classification

EN

Epilepsy classification

using ICA

Seizures SVM Sup Accuracy= 97.5%

Sensitivity= 100%

Specificity= 94.4%

132 A 42 (0) 0 (No test data, cross

validation accuracy)

0

Pre-surgical

screening to

determine

seizure onset

zone (SOZ)

Boerwinkle et al.,

2017

DRE RSN and SOZ Manual SOZ

localization

iEEG and post-op

seizure

No automation Sup 89% accuracy 40 C 40 (40) 33 40

Shah et al., 2018 DRE NS Finding correlation

between fMRI z score

latency and seizure

freedom

Post-op seizure Statistical

correlation

measures

U 25 out of 26 subjects have

temporal lobe signal latency

26 C 26 (26) 26 26 (21 seizure free)

Shah et al., 2019 DRE NS fMRI z score

latency-based seizure

foci lateralization

Manual

lateralization

Statistical

correlation

measures

U Mean accuracy 70%

Mean sensitivity 85%

Mean Specificity 65%

38 C 38 (38) 38 38 (14 seizure free)

Hunyadi et al., 2015 DRE SOZ Automated SOZ

identification (ID)

EEG-fMRI LS-SVM Sup 40% sensitivity

77% specificity

18 A 18 (18) 10 Not Specified (NS)

Zhang et al., 2015 DRE SOZ SOZ localization with

the manual

determination of brain

boundary

Concordance with

surgery resection

Statistical methods

using thresholds

U 77.7% sensitivity*

57% specificity**

9 A 9 (9) 9 NS

Lee et al., 2014 Intractable

partial

SOZ VDC-based SOZ

localization

iEEG. Statistical methods

on time series

U 72.4% sensitivity*** 29 A 29 (29) 21 29 (2 seizure free)

Nozais et al., 2021 Healthy RSN DL-based RSN ID Manual IC Sorting MLP Sup 92% accuracy 2000 A 0 (0) 0 0

Luckett et al., 2022 Focal

Temporal

Lobe

RSN and SOZ DL-based SOZ

hemisphere ID

Hemisphere

lateralization of

SOZ, and RSNs

CNN Sup 90.6% accuracy***** 2164 A 32 (0) 32 15 (11 seizure free)

EPIK (current

study)

DRE RSN and SOZ Fully automated

unsupervised method

(EPIK)

Manual IC sorting

Comparison of

Hunyadi et al. and

Nozais et al. on the

same dataset; and

post-op seizures

Rule guided noise

elimination,

maximum

likelihood based

classification

U RSN success:

Specificity: 73.7%

Sensitivity: 72%

SOZ success:

Specificity: 81.9%

Sensitivity: 88.6%

52 C 52 (52) 52 24 (18 seizure free)

DL, deep learning; DRE, drug-resistant or intractable epilepsy; EEG-fMRI, simultaneous EEG and functional MRI; IC, independent component; ID, identification; iEEG, intracranial EEG; ML, machine learning; LS-SVM, least squares support vector

machine; VDC, voxel degree connectivity; CNN, convolutional neural network.
*Zhang et al. (2015) only mentions concordance with surgical resection. Concordance is assumed to be true positive, and failure is assumed to be false negative. Hence percentage concordance is assumed to be sensitivity.
**Zhang et al. (2015) mentions success in rejecting non-epilepsy related IC. Rejection of non-epilepsy IC is assumed to be true negative and failure to reject is assumed to be false positive. Hence success rate is specificity.
***Lee et al. (2014) defines accordance with IC EEG. Accordance is assumed to be true positive, and failure is assumed to be false negative. Hence, percentage accordance is assumed to be sensitivity.
*****Sensitivity and specificity not mentioned. The high accuracy could also be due to the presence of a large number of true negatives.

T epileptic networks were those found to be altered compared to healthy controls, however, were not identified as being causative of epilepsy or a seizure onset zone.
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FIGURE 2

Innovations in EPIK. Compared to prior ML techniques, EPIK first purges ICs with noise markers by employing rules compiled from experts. The

ICs that pass the initial purge, are then classified into RSN and SOZ based on the maximum likelihood-based clustering mechanism. The

italicized text marks the innovations in this work.

Luckett et al., 2022). Hence, to achieve balanced data, we would

need SOZ from at least 2,000 subjects, a sample size that is

currently not available.

There has been one prior unsupervised approach by Zhang

et al. (2015); however, it was applied to DRE adults and achieved

a sensitivity of 78% and a specificity of 57%. We cannot replicate

that study for this paper, because specific information about

parameter settings was not discussed in Zhang et al. (2015).

The di�erence between EPIK and
supervised ML

In this study, we present a novel, unsupervised technique

to identify SOZ localizing ICs that require no prior dataset for

training and classify ICs by encoding expert knowledge. The

unsupervised nature of our algorithm implies that the entire

dataset is used as a test set and no training dataset is required.

Our algorithm is tested on the largest number of children with

DRE among the recent studies on automated SOZ identification

mechanisms with rs-fMRI listed in Table 2. Figure 2 illustrates

differences from Figure 1. ML techniques (Figure 2) utilize

examples of SOZ and RSN ICs to learn a model in the training

phase, which is subsequently used for the identification of SOZ

on previously unseen rs-fMRI signals. Such techniques have

not been successful, possibly for the following reasons: (1) SOZ

biomarkers are not precise and exhibit significant individual

variances (Hunyadi et al., 2015; Boerwinkle et al., 2017) and (2)

patients have low numbers of SOZ localizing ICs as compared

to noise and RSN, leading to an imbalance in data and potential

overfitting of ML models.

In the current study, EPIK (ExPert Knowledge-based IC

categorization; Figure 2) is used with an alternative approach.

Instead of directly learning SOZ-related features from training

data, EPIK first used expert rules in a waterfall technique to

purge noise ICs. Noise markers used by EPIK such as clusters

outside brain boundaries or overlapping white matter or arteries

are well-established, evidenced by consistency across several

publications (Kelly et al., 2010; Griffanti et al., 2014, 2017).

It then used SOZ-specific spatial and temporal markers in a

maximum likelihood-based clustering to further classify the ICs

into RSN and SOZ. Clustering was unsupervised and did not

implement training with prior data to tune its parameters.

To illustrate differences compared to prior, we replicated

the shallow learning strategy of Hunyadi et al. (2014) and

implemented a Convolution Neural Network (CNN) based DL

technique (Krizhevsky et al., 2012; Cui et al., 2018; Nozais

et al., 2021) for the identification of SOZ localizing ICs from

rs-fMRI, thereby providing a preliminary comparative study of

all three approaches on the same dataset of children with DRE
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FIGURE 3

Study procedure for extracting noise, RSN, and SOZ localizing ICs. Subjects underwent video EEG and anatomical MRI as a part of the normal

pre-surgical evaluation. In addition, the study protocol was also administered where rs-fMRI was collected.

using the standard metrics of accuracy, precision, specificity,

and sensitivity. We hypothesize that EPIK will perform at least

equally well as prior methods and consistently across age and

sex, due to being informed by developmental- and sex-informed

expert sorting in the pediatric DRE population.

Materials and methods

Inclusion criteria

Patients who were determined to have DRE by a treating

epileptologist and received surgery evaluation were included.

Most of the patients had focal epilepsy; however, rapid

generalization of epileptiform activity from an epileptogenic

focus may appear to be generalized epilepsy when evaluated

using surface EEG. Hence, generalized epilepsy was not an

exclusion criterion.

Data collection method

The rs-fMRI data from 52 children with DRE aged 3

months−18 years old, who were under the care of a treating

epileptologist at Phoenix Children’s Hospital (PCH), were
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selected in descending alphabetical order from the PCH clinical

database (Age and sex distribution provided in Table 3). The

diagnosis of DRE was according to the treating epileptologist’s

documented medical record notes. The children received rs-

fMRI, video EEG, and anatomical MRI as part of standard

clinical MRI SOZ localization for epilepsy surgery evaluation

(Figure 3). For rs-fMRI, patients who were determined to

require conscious sedation, received a propofol infusion as a

part of standard care determined by the institution’s policies.

Of the 52 children, 39 required conscious sedation. The dataset

included patients who had<1mm head motion in any direction

during scanning. For children who received sedation, propofol

administered at levels to produce conscious sedation (80–110

micrograms/kilogram/minute), avoiding higher dosages typical

of general anesthesia, was utilized. Propofol administered at

levels producing conscious sedation reduces the BOLD signal

strength by∼10%, still allowing for complete network detection

(Vanderby et al., 2010; Schrouff et al., 2011). General anesthesia

causes gross loss of ability to detect the large-scale cortical

networks and, was, therefore avoided.

As part of the standard of care, the children also received

inpatient video EEG and anatomical MRI. This data also aided

the manual identification of SOZ localizing ICs in rs-fMRI

(Figure 3).

The MRI images were acquired using a 3T MRI unit

from Ingenuity Philips Medical systems. It has a 32-channel

head coil. The resting state fMRI parameters were set at TR

2,000ms, TE 30ms, matrix size 80 × 80, flip angle 80, number

of slices 46, slice thickness 3.4mm with no gap, in-plane

resolution 3 × 3mm, interleaved acquisition, and number of

total volumes 600, in two 10-min runs, with a total time

of 20 mins.

rs-fMRI pre-processing

Oxford Centre FMRIB (Functional MRI of the Brain)

Software Library tool MELODIC (Beckmann and Smith, 2004)

was used to analyze the rs-fMRI and extract ICs as detailed

in a previous study (Boerwinkle et al., 2019). Pre-processing

included deletion of the first five volumes to remove T1

saturation effects, passing through a high-pass filter at 100 s, slice

time correction, spatial smoothing of 1-mm full-width at half

maximum, andmotion corrected byMCFLIRT (Jenkinson et al.,

2002), with non-brain structures removed.

Linear registration was performed between the individual

functional scans and patients’ high-resolution anatomical scans

(Jenkinson and Smith, 2001), which was further optimized

using boundary-based registration (Greve and Fischl, 2009).

Individual rs-fMRI data sets then underwent independent

component analysis (ICA) as previously reported (Boerwinkle

et al., 2017).

Expert rs-fMRI evaluation methodology

The SOZ was evaluated by the expert epilepsy surgery

conference team and deemed to be consistent with the

other acquired data (video EEG and anatomical MRI) with

high enough evidence to surgically target the SOZ. Further,

the confirmation that the SOZ was deemed true by the

treatment team was evidenced by the Engel I and II scores 1

year post-operatively.

The ICA results were viewed by two blinded reviewers

(one neurologist and one neurosurgeon) who sorted the

ICs into three categories—noise, resting-state network,

and rs-fMRI SOZ—by the criteria below. In case of

disagreement between the first two reviewers, the opinion

of a third reviewer (a neurologist) was used to make

the final determination. In this study, there was no

disagreement between the blinded reviewers for the

selected subjects.

Rs-fMRI was categorized into noise, resting state network

(RSN), and SOZ using the following criteria.

Noise category

Consistent noise markers in rs-fMRI are reported in the

literature (Hunyadi et al., 2015; Boerwinkle et al., 2019). The

noise markers reported in different manuscripts are summarized

in Table 4.

RSN category

These are activations in the MRI images that are spatially

located in established anatomical regions. Such regions are

highlighted in literature (Boerwinkle et al., 2019) and include

“primary sensory motor networks located in the bilateral face

area, the bilateral leg area, and the unilateral right- and left-

hand regions; language networks primarily located within the

left and right inferior frontal gyrus, posterior–superior temporal

gyrus, posterior–superior temporal sulcus, posterior–middle

temporal gyrus, and the supramarginal gyrus; parietal networks

primarily located within the bilateral homologous parietal

gyri; frontal networks primarily located within the bilateral

premotor, and homologous bilateral frontal gyri; temporal

networks primarily located within the bilateral homologous

anterior and posterior temporal regions; visual networks located

within the bilateral homologous primary and secondary visual

association cortices; the default mode network located primarily

within the bilateral posterior cingulate gyrus, precuneus, inferior

parietal lobules, and medial prefrontal cortex; and the deep

gray networks located with the bilateral putamen and bilateral

mesial thalami.”
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TABLE 3 Patient distribution and information about the data set.

Number of subjects 52

Age ≤ 5 years 20

Age > 5 and ≤ 13 18

Age > 13 and ≤ 18 14

Men/Women 23/29

Prior surgery 2

Surgery post resting-state fMRI 24 (ablation 15, resection 7,

disconnection 2)

Seizure free post-surgery, and rs-fMRI SOZ is

the same location as the region destroyed

determined by expert review of pre-operative

rs-fMRI SOZ and post-operative imaging

16 (ablation 10, resection 6,

disconnection 1)

SOZ category

SOZ characteristics consist of two types of features: (a)

spatial features and (b) temporal features.

Spatial features

The activation must be located within the gray matter while

not overlapping with the RSN spatial patterns. It must have

a bullseye pattern, where two or more overlapping abnormal

neuronal IC can be identified, may have an alternating activation

and deactivation pattern that does not overlap noise zones,

(noise IC characteristics 2, 3, and 4 in Table 4), may extend to

ventricles through white matter, and may have irregular borders.

Temporal features

The SOZ BOLD signal power spectra must contain

dominant frequencies >0.073Hz, the rs-fMRI SOZ must have

power spectra at higher frequencies than RSN, and the BOLD

time series may have irregular patterns.

The rs-fMRI IC were sorted by an expert and

reported to the clinical epilepsy surgery evaluation team.

The data includes ICs extracted using the MELODIC

module in FSL (Beckmann and Smith, 2004). Table 3

provides the age and sex distribution and surgical

outcome statistics.

Ethics statement

Institutional IRB for retrospective analysis for this

project was approved by the PCH Institutional Review Board

(20–358), who determined that, since the retrospective

rs-fMRI for these subjects was collected as part of a

standard-preoperative MRI, no additional consent procedures

were required.

Data/code availability statement

The data were deidentified according to the National

Institutes of Health (NIH) Privacy Rule permits and made

available for research application. Further, in accordance with

the open science policy, we will provide interested researchers

access to EPIK to enable them to reproduce our results.

EPIK method

EPIK (Figure 4) considers noise markers for ICs in an rs-

fMRI, as documented in several studies including Griffanti et al.

(2014, 2017). The method applies rules in a waterfall technique

to classify an IC as noise (Figure 4). If an IC is not noisy, then

it classifies the IC as either an RSN or a SOZ. In detail, there

are six expert-derived rules for IC noise markers, combined

from Boerwinkle and Hunyadi’s works (Table 4). Automated

application of such rules necessitates the development of the

following key components:

a) Voxel cluster detection algorithm: A density-based scanning

approach is undertaken to derive voxel clusters (upper

panel Figure 4). The algorithm takes two configurable inputs:

neighborhood, which includes a distance metric and a value

ǫ, and the minimum number of nearby voxels vmin. If a voxel

has more than vmin voxels in the ǫ neighborhood, then it

is marked as a core point of a cluster. If a voxel is not a

core point but is in ǫ neighborhood of a core point, then it

is identified as a border point. All other points are ignored

from clusters. Core points, that are in ǫ neighborhood of each

other, are combined into one cluster, and border points are

assigned to the cluster of the nearest core point. The output

of this step is the set of clusters in each IC slice.

b) Brain boundary/periphery detection: Contours in the brain

are derived using a Sobel filter-based edge detection

technique (Figure 4; Chakraborty et al., 2020). The lowest

intensity contour is most likely the outer contour of the

brain. However, the cerebrospinal fluid and blood vessels also

present as low-intensity contours. The method searches for

the contour that encompasses all other contours, which gives

us the brain periphery.

c) White matter detection: The white matter manifests as

the brightest contour in the brain. The blood vessels and

cerebrospinal fluid in the white matter contour are discarded.

d) Blood vessel detection: The major basal-region blood vessels

present themselves as low-intensity contours encompassed in

the brain periphery contour.

e) Noise IC classification: Utilizing the a, b, c, and d steps, an IC

can be classified as noise (Figure 5). From each slice of an IC,

the clusters and the contours are extracted. An overlapping

cluster can cause the contour detection algorithm to fail
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in extracting the peripheral, the white matter, and the blood

vessel contours. In the initial pass through the ICs, EPIK

obtains a version of each slice devoid of clusters, which is

subsequently used to identify contours. The algorithm then

reruns through each slice of an IC and performs cluster

detection. It then evaluates the overlap of the largest cluster

with the brain boundary (first row in Figure 5) and the

intersection of the largest cluster with the white matter and

blood vessels (third row in Figure 5). The output of the first

stage classifier (upper panel in Figure 4) is a statistic for each

slice on the cluster size, the percentage (%) overlap with the

brain boundary, the blood vessels, and the white matter for

each cluster in a slice.

Each IC has multiple slices (around 55 for PCH dataset).

The second stage classifier sorts the slices in decreasing order of

cluster size (lower panel of Figure 2). It selects the top 10 slices

TABLE 4 Noise markers in fMRI IC.

Noise independent component (IC) characteristics

1. A large number of small voxel clusters

2. Cluster peaks in the white matter

3. High overlap with the white matter, the cerebrospinal fluid, or the

blood vessels

4. Crescent shape aligning with the brain boundary

5. Sudden changes in the oscillation pattern in the BOLD signal

6. Located within area of signal loss

and checks the percentage overlap to determine noise slices. If

the majority of the top 10 slices are noise, the IC is classified

as a noise IC. If the IC passes through the majority evaluation,

it is passed to the second-level classifier, which determines if it

is a normal RSN or an SOZ (Figure 4). The SOZ classification

is based on expert guidance on the SOZ markers in ICs, as

documented in Hunyadi et al. (2013; 2015; Table 4).

f) BOLD signal feature extraction: The BOLD signal was first

divided into windows of length 256 samples. Four levels of

activelet transformation coefficients using “à trous” algorithm

with exponential-spline wavelets were extracted from each

window. Sparsity in the activelet coefficients was evaluated

using the Gini Index metric (Lerman and Yitzhaki, 1984).

A Gini Index of >0.75 is sparse. If an IC is classified as

white matter noise, then it can be classified as an SOZ if

the Gini Index in the BOLD signal is >0.75. In addition,

sparsity in matching pursuit using a sine dictionary limited to

frequencies between 0.01 and 0.1Hz was also evaluated using

the Gini index. If an IC was classified as white noise, then it

can be classified as SOZ if the BOLD signal Gini Index in the

sine dictionary matching pursuit is >1.72.

DL strategy for SOZ localization

Nozais et al. (2021) recently proposed a DL-based technique

where a multi-layer perceptron (MLP) is trained on 12,690

RSNs from 282 participants. As such, it does not incorporate

FIGURE 4

EPIK: Unsupervised approach for SOZ classification. The EPIK method is applied on individual IC to classify it as SOZ or RSN or noise.
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FIGURE 5

Demonstration of unsupervised IC sorting mechanism.

any expert knowledge but instead attempts to build its own

hypothesis from examples. The technique has not been used

to classify SOZ and can currently only identify RSNs. We

implemented CNN-based DL for SOZ localization.

For the CNN technique, hyperparameter tuning

is one of the most important steps. A KerasTuner

was implemented to get the optimal values of the

hyperparameters. We used a hyperband algorithm

with the objective of least validation loss to

select the best model of CNN by optimizing the

following hyperparameters:

• Number of layers: [3; 4; 5]

• Number of units/filters per layer: min_value = 32,

max_value= 512, default= 128.

• Learning rate: [10−2; 10−3; 10 −4]

• Dropout rate: [0; 0.2; 0.33; 0.4; 0.5; 0.66].

We used 4,212 ICs for training and 1,404 ICs for validation

in the hyperparameter tuning process. The input shape of the IC

image was downsampled from 1,006 × 709 × 3 to 270 × 400

× 3 during preprocessing. Binary cross-entropy was used as a

loss function, and Adam was used as an optimizer. To avoid the
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overfitting problem, “dropout” and “early stopping” strategies

were implemented. “ReLU” (rectified linear unit), being more

computationally efficient, was used as an activation function

for the input and hidden layers, and the “Sigmoid” activation

function was used for the output layer. For CNN, weights were

initialized using the “He uniform” initializer.

Shallow learning strategy

The technique proposed by Hunyadi et al. (2013, 2014, 2015)

was replicated. The rs-fMRI image and BOLD signal features

were extracted from the IC images. From the entire pool of ICs,

60% of the data were randomly sampled to be used as training

data. The remaining 40% were used for testing. The features

extracted from the rs-fMRI image and BOLD signal were used

to train a Least Squares Support Vector Machine (LS-SVM), as

described by Hunyadi et al. (2013, 2014, 2015).

The following features were extracted from each IC

following the study of Griffanti et al. (2014): (a) number of

clusters greater than a pixel size of 135; (b) asymmetry of an

IC using the difference in the z-scored value of the voxels in

the left hemisphere and their contralateral voxels in the right

hemisphere; (c) sparsity in activelet basis using the Gini index

metric; (d) sparsity in sine basis using the Gini index metric.

The SVM was then trained for the two-class classification task

[(either RSN vs. noise) or (SOZ vs. non-SOZ)]. We utilized

two kernels: radial basis function (RBF) and linear kernel. The

performance for the linear and RBF kernels was similar and,

hence, followed Occam’s Razor theory; in this manuscript, we

only report the performance for the linear kernel.

Metrics and statistical analysis method

We evaluated the performance of each approach for two

objectives: (a) noise IC removal and (b) SOZ localizing IC

identification. For the first objective, we defined true positives

(TP) as ICs that are classified as RSN or SOZ by both expert

and the automated approach, true negatives (TN) as ICs that

are classified as noise by both the expert and the automated

approach, false positives (FP) as ICs classified as noise by the

expert but RSN or SOZ by the automated approach, and false

negatives (FN) as ICs classified as RSN or SOZ by the expert but

noise by the automated approach. For the second objective, we

define TP as ICs classified by both the expert and the automated

approach as SOZ or RSN, TN as ICs classified by both the expert

and the automated approach as not SOZ, FP as ICs classified as

non-SOZ by the expert but SOZ by the automated approach,

and FN as ICs classified as SOZ by the expert but non-SOZ

by the automated approach. From these, we derived accuracy,

precision, sensitivity, and specificity.

We evaluated the statistical significance of a difference in

performance metrics between the two approaches by utilizing

a one-sided paired t-test. The alternate hypothesis was that

there is a positive non-zero difference between EPIK and any

other approach (LS-SVMor CNN). The alternate hypothesis was

rejected if the p-value for the paired t-test was <0.05.

We also evaluated the effect of age and gender on each

approach using a mixed-effects model with each parameter as

the observation variable and age or gender as the predictor

variable. A random effect on the patient ID was also introduced.

For each algorithm, a separate mixed-effects model was

generated for each metric and for each predictor variable,

i.e., age/gender.

Results

Overall identification results

We compared the performance of EPIK with two competing

ML-based approaches: shallow learning (LS-SVM) and deep

learning (CNN). For the ML-based approach, training data

was used from every subject. This is also known as the

user-dependent (Bhakta et al., 2020) supervised classification

approach and gave us the best performance metrics. For EPIK,

no such training set is needed. The results in Table 5 show

that EPIK outperforms both LS-SVM and CNN approaches for

SOZ localizing IC identification tasks. The CNN approach is

more accurate in noise removal but performs poorly in the SOZ

identification task.

EPIK has high sensitivity in the SOZ identification task

with a low number of FNs. This implies that EPIK rarely

misses any SOZ localizing IC. The LS-SVM approach is poor

in noise removal, but its performance improves for the SOZ

identification task. The confidence interval is specified as [a,b]

for metrics with a p-value < 0.5.

Performance variation with age and
gender

Table 6 shows the variation of the performance metrics for

EPIK, LS-SVM, and CNN with respect to age and gender. The

accuracy, precision, and sensitivity of EPIK for noise removal

do not have a statistically stable dependence on age or gender.

The specificity of EPIK for noise removal decreases with age,

resulting in more FPs, where noise is categorized as RSN or SOZ.

For the SOZ identification task, there is a statistically significant

trend for sensitivity to increase and specificity to decrease

with age. This implies that, as age progresses, EPIK tends to

classify more RSN or noise as SOZs; however, fewer SOZs are

ignored as noise. Consequently, EPIK is observed to have an
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TABLE 5 Overall RSN or SOZ identification results for the three approaches.

Approach RSN or SOZ vs. noise SOZ vs. non-SOZ (RSN or noise) Key observations

Accuracy Precision Sensitivity Specificity Accuracy Precision Sensitivity Specificity

EPIK

(this paper)

71.7% 73.1% 72% 73.7% 84.7% 74.1% 88.6% 81.9% Best performance for SOZ

identification

LS-SVM

(Hunyadi et al., 2014)

61.8% 52.2% 43% 73.6% 80.7% 52.2% 72.1% 78.7% High false positives and false

negatives

Significant variance

across patients

One sided t-test for+ve

difference between EPIK and

LS-SVM

p-value=∼0

[5, 15.2]

p-value=∼0

[18.7, 27.4]

p-value=∼0

[27.4, 45.9]

Rejected

p-value= 0.9

p-value=∼0

[2, 6.5]

p-value=∼0

[20.7, 29.1]

p-value=∼0

[14.1 25.3]

Rejected

p-value= 0.06

CNN (Nozais et al., 2021) 82.45% 82.7% 82.1% 81.5% 73.5% 28.5% 97.7% 42.85% Best RSN identification

performance.

Poor SOZ performance due to

lack of hand sorted SOZ

IC examples.

One sided t-test for+ve

difference between EPIK and

CNN

Negative

change

P-value∼ 0

[−5.1,−13.2]

Rejected

P-value= 0.6

Negative

change

P-value∼0

[−7,−12.1]

Negative

change

P-value= 0.02

[−4.1,−9]

P-value∼0

[8.3, 15.7]

P-value∼ 0

[51.2, 60]

Negative

change P-value

∼ 0

[−4.2,−11.3]

P-value= 0.001

[31.6, 45.2]
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TABLE 6 Age- and sex-segregated metrics for the unsupervised IC classification algorithm, the LS-SVM approach by Hunyadi et al., and the CNN deep learning approach.

Metric Algorithm 0 <Age ≤5

(N = 20)

5 < Age ≤13

(N = 18)

13 < Age ≤18

(N = 14)

P-value fixed

effects on age

Men

(N = 23)

Women

(N = 29)

P-value fixed

effects on sex

Key observations

Noise vs. network/SOZ performance metrics

Accuracy EPIK 69.4% (±9%) 74% (±8.2%) 71.7% (±5.8%) 0.32 73.8% (±5.3%) 70% (±9.4%) 0.04† CNN gives the best RSN

identification accuracy for all age

categories. followed closely by

EPIK

LS-SVM 55.8% (±11.5%) 63.7% (±7.7%) 65.3% (±8.4%) 0.004† 63.6% (±9.5%) 59.1% (±10.6%) 0.06 LS-SVM is poorest in identifying

RSN since it only considers SOZ

markers in ICs.

CNN 73.2% (±4.5%) 76.1% (±0.6%) 80.2% (±5.8%) ∼0 72.8% (±8.2%) 77.4% (±4.7%) 0.09 Success of CNN can be attributed

to availability of a significant

number of normal RSN ICs (n

= 2,427)

Precision EPIK 74.9% (±16.2%) 73.6% (±13.7%) 66.5% (±10%) 0.048 73.5% (±11.5%) 71.1% (±16%) 0.27

LS-SVM 55.6% (±32.4%) 52.8% (±15.9%) 46.5% (±18%) 0.3 54.8% (±22.2%) 50.1% (±25.4%) 0.24

CNN 68.2% (±11.7%) 75.2% (±1.5%) 75.4% (±7.3%) ∼0 69.2% (±13%) 75.91% (±15.1%) 0.3

Sensitivity EPIK 63% (±18%) 76.6% (±9.3%) 76.8% (±9.7%) 0.001† 75.2% (±10.7%) 68.43% (±16.9%) 0.047

LS-SVM 27.5% (±25.9%) 50.8% (±26.9%) 55.1% (±22%) 0.001† 52.6% (±28.9%) 35.4% (±24.9%) 0.012†

CNN 86.09% 81.5% 85.96% 78% 79.5%

Specificity EPIK 79% (±13.8%) 72.7% (±17.1%) 68.2% (±8.4%) 0.01† 73.4% (±13.5%) 74.2% (±15.2%) 0.41

LS-SVM 80.5% (±17.4%) 68.8% (±23%) 70% (±10%) 0.035† 71.3% (±17%) 75.5% (±19.9%) 0.2

CNN 60.5% 70.8% 75% 67.9% 75.31%

SOZ identification metrics

Accuracy EPIK 87.5% (±7.6%) 83.5% (±9.6%) 82.2% (±6.1%) 0.025† 84.6% (±6.7%) 84.7% (±9.3%) 0.48 EPIK has the best performance for

SOZ localizing IC identification

LS-SVM 85.3% (±6.6%) 77.2% (±9.4%) 78.6% (5.7%) 0.008† 79.5% (±8.8%) 81.6% (±7.7%) 0.17 EPIK has consistent performance

across age.

CNN 75.5% (±27.7%) 75.3% (±26.6%) 76.5% (±21%) 0.8 71% (±28.2%) 73% (±30.2%) 0.44 EPIC has the best performance for

children of age <5 years. This is a

key benefit because it is known

that earlier surgery for epilepsy

yields better surgical and

developmental outcomes.

Precision EPIK 76.7% (±16.3%) 75.2% (±14.4%) 69.2% (±9.9%) 0.07 76.3% (±10.7%) 72.5% (±16.5%) 0.17

(Continued)
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accuracy >85% at ages below 5, which is higher than those

previously reported.

The LS-SVM approach had consistently better performance

for the SOZ identification task than noise removal. It also

had the same pattern of increasing sensitivity and decreasing

specificity with age. The LS-SVMapproach had a higher variance

in performance across subjects. This indicates that the hand-

crafted features chosen by Hunyadi et al. may be less applicable

to specific scenarios of DRE in children.

The CNN approach outperformed EPIK and LS-SVM for

all age groups for noise removal. However, it had a lower

performance for SOZ identification. In the training data,

there were only 318 SOZ localizing ICs as opposed to 2427

RSN IC. This may have led to an underfitting of the CNN

technique for SOZ identification. For the CNN technique in

noise removal, both sensitivity and specificity increased with

age. This potentially indicates that the CNN technique is finding

novel hidden features from the ICs that are characteristic of RSN

but not SOZ.

Overall, EPIK provided a consistent performance across the

three age categories considered in this study compared to prior

reportedmethods.Whereas, theML techniques of Hunyadi et al.

(2015) and CNN have significantly higher variance, possibly

indicating inconsistent performance.

Performance on subjects undergoing
surgery

Out of the 52 subjects considered in this study, 24

underwent surgery. The surgical outcomes were varied with

16 subjects becoming seizure-free (Engel I) after surgically

destroying an expert-identified SOZ using rs-fMRI and seven

having reduced post-operative seizure frequency (Engel II;

Table 7). We focused on EPIK and LS-SVM for the SOZ

identification task on the 24 subjects that underwent surgery

because CNN had significantly poorer performance than the

other two.

Table 7 shows that, for subjects whose post-operative

outcomes are either seizure-free or have significantly reduced

frequency, the agreement between EPIK and expert-hand

classification is significantly high (88.9% sensitivity and 79%

specificity). Although the LS-SVM approach has nearly similar

accuracy as EPIK, the sensitivity is far lower in LS-SVM,

with significant individual variance. To better understand the

difference between EPIK and the LS-SVM approach, Figure 6

shows the receiver operating characteristics (ROC) curve for

both EPIK and LS-SVM. EPIK exhibits higher sensitivity and

specificity than LS-SVM, which appears to possibly sacrifice one

for the other.

For patients undergoing ablation surgery, the specificity

for EPIK was 82.9%, while the sensitivity was 88%. This
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TABLE 7 Performance of EPIK and LS-SVM approaches for subjects undergoing surgery.

Age, years

(months)

Sex Pre-surgery

frequency (per

month)

Post-surgery

frequency (per

month)

Procedure Method Accuracy Precision Sensitivity Specificity

18 (0) W 1 0 A* EPIK 82.8% 71.7% 82.5% 82.9%

LS-SVM 78.7% 58.8% 76.9% 79.4%

14 (8) M 1 0 A EPIK 85.2% 75.5% 90.2% 82.1%

LS-SVM 68.2% 48% 92.3% 58.1%

14 (7) W 3 1 (66% reduced) A EPIK 86.5% 78.2% 95.6% 79.7%

LS-SVM 71.4% 52% 100% 58.6%

14 (10) M 1 0 A EPIK 86.3% 77.1% 86.1% 86.4%

LS-SVM 82% 35.7% 100% 80%

16 (3) W 210 0 A EPIK 86.5% 67.9% 97.4% 82.4%

LS-SVM 91.3% 37.5% 100% 63.5%

10 (1) W 240 0 A EPIK 74.2% 60.5% 95.8% 60.5%

LS-SVM 76% 60% 100% 62.5%

8 (2) M 4 2 (50% reduced) A EPIK 83.3% 77% 94.1% 73.1%

LS-SVM 85.4% 71.4% 83.3% 86.2%

15 (6) W 12 0 A EPIK 86% 62.9% 78.6% 88%

LS-SVM 87.3% 0 0 97.9%

10 (5) W 60 8 (87% reduced) A EPIK 85.5% 69.6% 91.4% 82.9%

LS-SVM 83% 40% 66.7% 85.4%

3 (2) W 60 1 (98% reduced) A EPIK 87.4% 78% 86.5% 87.8%

LS-SVM 88.9% 81.8% 75% 94%

17 (9) M 2 0 A EPIK 74.3% 50% 88.9% 69.2%

LS-SVM 75% 25% 66.7% 76%

11 (8) M 1 0 R* EPIK 80.6% 62.5% 65.8% 85.8%

LS-SVM 82.8% 16.7% 16.7% 90.4%

4 (9) W 2 0 R EPIK 84.1% 72.7% 84.2% 84%

LS-SVM 80.4% 14.3% 25% 85.7%

18 (1) W 5 0 R EPIK 72% 55.6% 87% 64.4%

LS-SVM 71.4% 50% 75% 70%

10 (5) W 8 0 R EPIK 57.5% 44.1% 93.8% 38.7%

LS-SVM 63.1% 58.8% 100% 22%

13 (8) M 120 1 (99% reduced) R EPIK 82.9% 72.9% 93.5% 75.4%

LS-SVM 77.8% 43.7% 87.5% 75.7%

2 (7) W 2 0 D* EPIK 84.5% 53.2% 100% 81.3%

LS-SVM 81.8% 38.5% 100% 79.5%

2 (7) M 720 0 A EPIK 89.1% 81.3% 88.6% 89.3%

LS-SVM 90.4% 50% 60% 93.6%

0 (3) W 90 30 (66% reduced) A EPIK 98.8% 100% 92.9% 100%

LS-SVM 97.1% 100% 50% 100%

2 (10) W 300 0 R EPIK 84.8% 74.5% 97.4% 75.5%

LS-SVM 89.2% 71.4% 100% 85.2%

2 (11) M 4 0 D EPIK 69.1% 61% 96.2% 44.8%

LS-SVM 81.8% 78.9% 100% 42.8%

2 (1) W 3,000 0 A EPIK 88.4% 45% 60% 91.6%

LS-SVM 88.1% 25% 20% 94.4%

3 (6) M 30 0 A EPIK 88.6% 78.6% 91.7% 87%

LS-SVM 78.6% 68.4% 100% 60%

1 (4) F 180 0 R EPIK 94.1% 94.3% 84.6% 98%

LS-SVM 88.9% 50% 16.7% 98%

(Continued)
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TABLE 7 (Continued)

Approach Mean accuracy (SD) Mean precision (SD) Mean sensitivity (SD) Mean specificity (SD)

Agreement with expert hand classification for seizure-free/reduced post-operative outcome

EPIK 83.3% (8.43%) 69.45% (13.6%) 88.9% (9.6%) 79% (14.4%)

LS-SVM 80.45% (9.8%) 47.6% (23.9%) 72.5% (32.6%) 75.5% (19.5%)

Agreement with expert hand classification for ablation procedures

EPIK 85.5% (5.8%) 71.6% (13.4%) 88% (9.3%) 82.9% (9.6%)

LS-SVM 82.8% (8.1%) 50.2% (24.9%) 72.7% (30.5%) 79.3% (15.3%)

Agreement with expert hand classification for resection procedures

EPIK 79.4% (11.6%) 68.1% (16%) 86.6% (10.5%) 74.5% (18.9%)

LS-SVM 79.1% (9.4%) 43.6% (21.1%) 60.1% (39.1%) 75.3% (25.2%)

The table also shows the difference in agreement between the automated approach and the expert hand classification for subjects with seizure-free/reduced frequency post-operative

outcomes and without any change in seizure frequency.
*A, Ablation; R, Resection; D, Disconnection.

FIGURE 6

Receiver operating characteristics (ROC) curve for EPIK and the LS-SVM approach for patients undergoing surgery. A curve close to the top

left-hand corner of the graph is favorable and shows a balance between sensitivity and specificity.

is preliminarily an encouraging result, given that ablation is

minimally invasive and thus largely accepted as less risky than

resection. The specificity and sensitivity in EPIK for patients

undergoing resection reduce to 79.5 and 86.6%, respectively.

Of the 15 subjects who underwent the ablation procedure, 10

were seizure-free (Engel 1 outcome), which is slightly better than

recently reported statistics [66% in this study vs. 60.4% reported

in Kanner et al. (2022)]. Supplementary Table 1 gives the SOZ

location and fMRI evidence of SOZ for all subjects in the study.

Reduction in IC sorting e�ort for the
neurosurgeon/neurologist

The ICs marked as SOZ by the EPIKmethod can be supplied

to the neurosurgeon or neurologist for localization of SOZs in

the brain. The number of SOZ classifications in EPIK per subject

is 22 (±4). Out of 22, 16 are true positive SOZ ICs, two are noise

ICs, and four are RSN ICs. These ICs are then evaluated by the

neurosurgeon or neurologist for determining SOZ in the brain.
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This implies that there is ∼5 times reduction in the number

of ICs to be analyzed by the neurosurgeon or neurologist.

This can significantly aid in presurgical screening by reducing

the cognitive burden of the neurosurgeon or neurologist and

improving the accuracy of the SOZ identification.

Discussion

A strength of EPIK, which may increase its utility, is that

it does not require any prior training data and hence it uses

a plug-n-play IC sorting method. EPIK combines spatial and

temporal markers specific for RSN and SOZ, which results in

possibly equivalent or better performance than prior methods.

The waterfall technique removes the number of noise ICs using

well-established expert rules; hence, it may reduce false positives

and increase true positives of SOZ localizing ICs.

For subjects with good postoperative outcomes, there was

excellent agreement between expert hand sorting and EPIK-

based SOZ localizing IC identification. Also, EPIK appeared to

perform well in those <5 years of age, in whom surgery yields

improved developmental outcomes (Pindrik et al., 2019; Perry

and Shandley, 2021).

The LS-SVM approach did not perform as well for the

noise identification task but did show a drastic improvement

in performance for the SOZ identification task. This was

expected because the hand-selected features proposed by

Hunyadi et al. (2013, 2015) are specifically geared toward

the SOZ identification task. However, LS-SVM exhibits

significant variance in performance across subjects, resulting in

inconsistent accuracy in this study. EPIK had a higher and more

consistent balance in the identification of all three categories of

IC compared to LS-SVM herein.

The CNN approach had a lower performance for SOZ

identification. However, there was a significant improvement in

the performance of the noise identification task. This can be

explained by the difference in data availability for the two tasks.

This gives confidence that CNN can perform better if given an

adequate number of training-SOZ-localizing ICs; this could be

an avenue for future research.

The general assumption in supervised machine learning is

that elements from each class come from a unique distribution

specific to the class. The ML technique then attempts to learn

the differences in the distribution of each class and evaluate the

best fit distribution for the test data. The fundamental limitation

of the LS-SVM approach is that SVM is inherently a two-class

classifier. Although there are multi-class versions of SVM, the

multi-class classification is performed in stages, where each stage

is a two-class classifier. For rs-fMRI sorting, this would mean

that the RSN and noise class will have to be combined into one

composite class, while the SOZ ICs are labeled as the class of

interest. In rs-fMRI, noise ICs are composed of several different

categories of noise such as peripheral noise, white matter noise,

and artery noise. Each such noise characteristic has different

feature distributions; however, they are considered to be the

same class by the supervised ML technique. Moreover, the noise

class is combined with the RSN class to make a non-SOZ

composite class. Hence, the non-SOZ composite class for rs-

fMRI ICs has a composite distribution. As such, it is very difficult

for the supervised ML classifier to learn the unique distribution

of the non-SOZ IC class. A way around this is to learn each kind

of noise and RSN separately. However, that requires data for

each kind of noise from each patient. This cannot be guaranteed

in a practical real-life setting.

The performance of the CNN-based DL strategy suffered

because of the differences in the size of the three classes. RSN

and noise classes had a nearly balanced data size, and the CNN

strategy had good performance in distinguishing between them.

However, since there are very limited SOZ IC examples, the

CNN strategy could not reliably identify them.

The unsupervised technique utilizes expert knowledge and

image processing algorithms to detect each kind of noise without

the need for training a machine. Hence, it learns the noise

characteristics without utilizing noise data from each patient.

This capability of the unsupervised technique to employ specific

algorithms for each type of noise and RSN is one of the major

reasons for its success in separating noise, RSN, and SOZ ICs.

Limitations and future directions

This study (n = 52) evaluated a small group of data, and

prior automated methods perform well on small samples but

have reduced performance on larger datasets; hence, EPIK needs

large set validation, which is a future direction. Larger datasets

for focused performance evaluation within each age bracket,

including young and separately older adults, and the very

young vs. middle childhood are needed. Subtypes of epilepsy—

acquired, congenital/genetic—and surgical approaches’ success

metrics should be statistically evaluated with acceptable power.

Last, repeat studies in the same individuals over time would

increase knowledge of the validity and reproducibility of

the tool.

The majority of the subjects in this study received propofol

infusion for sedation as part of a standard of clinical care

for epilepsy surgery evaluation. Head motion maximum was

<1mm of frame wise displacement in any direction. Although

propofol use has minimal effect on the overall rs-fMRI BOLD

signal, it puts small but additional risks on the child (Pizoli

et al., 2011). Several research studies proposed alternate methods

of reducing head motion by engaging the child with videos

and post-processing by measuring and accounting for head

movements through computational methods (Dosenbach et al.,

2017; Greene et al., 2018; D’Andrea et al., 2022). An area

of future study is to evaluate the effect of sedation on the

EPIK SOZ identification accuracy and integration of live

motion monitoring and reduction-based approaches toward the

elimination of head movement artifacts.
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Conclusion

1. EPIK identified seizure onset zone (SOZ) localizing resting-

state fMRI-independent components in children with drug-

resistant epilepsy with an accuracy of 84.7% in this

preliminary study.

2. EPIK can reduce the number of potential ICs to be analyzed

by the neurosurgeon by∼5-fold, hence significantly reducing

the time commitment for pre-surgical evaluation.

3. EPIK is unsupervised and does not need any prior example

of SOZ and works by codifying expert knowledge about fMRI

noise and SOZ markers.

4. EPIK had consistent performance across age and gender and

has been validated with surgical outcomes.

5. EPIK appeared to perform best for those under 5 years of age

and thus may enable successful surgeries early in their life,

potentially improving long-term postoperative outcomes.

6. EPIK preliminarily performed as well or better than shallow

and deep learning systems for the identification of SOZ

localizing ICs in a resting-state fMRI.
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