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The recent discovery of small and long non-coding RNAs (ncRNAs) has represented a major 
breakthrough in the life sciences. These molecules add a new layer of complexity to biological 
processes and pathways by revealing a sophisticated and dynamic interconnected system whose 
structure is just beginning to be uncovered. Genetic and epigenetic aberrations affecting 
ncRNA gene sequences and their expression have been linked to a variety of pathological 
conditions, including cancer, cardiovascular and neurological diseases. Latest advances in the 
development of high throughput analysis techniques may help to shed light on the complex 
regulatory mechanisms in which ncRNA molecules are involved. Bioinformatics tools 
constitute a unique and essential resource for non-coding RNA studies, providing a powerful 
technology to organize, integrate and analyze the huge amount of data produced daily by wet 
biology experiments in order to discover patterns, identify relationships among heterogeneous 
biological elements and formulate functional hypotheses. 

This Research Topic reviews current knowledge, introduces novel methods, and discusses 
open challenges of this exciting and innovative field in connection with the most important 
biomedical applications. It consists of four reviews and six original research and methods 
articles, spanning the full scope of the Research Topic.
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The recent advances in the functional characterization of non-protein-coding RNAs (ncRNAs)
have represented a major breakthrough in the life sciences. Large-scale projects, such as ENCODE,
have shown that the human genome is pervasively transcribed and that a large proportion of the
mammalian transcriptome consists of ncRNA transcripts. ncRNA genes can be roughly classified
into short ncRNAs (<200 nt) and long ncRNAs (>200 nt).

The first class includes well characterized, infrastructural molecules, such as rRNA, tRNA, and
snoRNA, which have a housekeeping role in essential processes like splicing and translation, and
regulatory ncRNA such asmiRNA and piRNA, which are involved in post-transcriptional regulation
of gene expression and in the silencing of transposable elements during germ line development,
respectively.

The second class of ncRNA consists of longer transcripts that are still poorly characterized
mostly due to their heterogeneity in size, structure, and biogenesis. LncRNA genes outnumber short
ncRNAs and are probably more abundant than protein coding genes. Such RNAs exhibit various
degrees of conservation and are often polyadenylated and tissue-specific. Accumulating evidence
indicates that they likely have a broad range of functions, including chromatin remodeling, gene
regulation, and protein transport and trafficking.

Genetic and epigenetic aberrations affecting ncRNA gene sequences and their expression have
been linked to a variety of pathological conditions, including cancer, cardiovascular, and neurolog-
ical diseases.

Recently, high-throughput sequencing techniques have enabled the study of entire transcriptomes
at single nucleotide resolution, providing unprecedented details of their organization, expression,
modifications, and structure. Bioinformatics tools constitute an essential resource for ncRNA
research, providing a powerful means to organize, integrate, and analyze the huge amount of data
generated by such technologies.

The aim of this Research Topic is to review current knowledge, introduce novel methods, and
discuss open challenges of this exciting and innovative field in connection with the most important
biomedical applications. We have collected five original research and methods articles and four
reviews, spanning the full scope of the Research Topic.

Two excellent reviews focus on the discovery of ncRNA from NGS data. Kang and Friedländer
(2015) surveyed computational tools to predict animal miRNAs from short RNA sequencing
data (RNAseq). The authors covered the basics of miRNA prediction, reviewed several methods,
described the algorithms, and discussed their strengths. They also described algorithms for specific
cases, such as prediction from massively pooled data or in species without reference genomes, and
discussed challenges and future directions of the field. Veneziano et al. (2015), instead, provided
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a more general state-of-the-art coverage of the computational
approaches for the discovery and analysis of small and long
ncRNA through NGS techniques.

The detection of miRNAs from NGS data becomes an even
more challenging task when sequence variants, termed isomiRs,
are taken into account. IsomiRs were initially considered sequenc-
ing artifacts, but evidence showed that they are functional variants
with a specific biological role. Muller et al. (2014) introduced
IsomiRage, a streamlined pipeline to identify and analyze isomiRs
from next generation sequencing data. The tool is able to dis-
tinguish canonical miRNAs from templated and non-templated
isomiRs, including 5′- and 3′-extended and trimmed variants.

Two articles of this collection concern RNA editing, a dynamic,
widespread process that alters the sequence of RNA transcripts.
In particular, A-to-I editing is the most common RNA post-
transcriptional modification in human and involves the deam-
ination of adenosine (A) to inosine (I), which is recognized
as guanosine (G) by all cellular machineries. Editing may alter
both coding and non-coding sequences, with important func-
tional consequences. Nigita et al. (2015) presented a compre-
hensive state-of-the-art review of databases and computational
approaches for the discovery and the analysis of RNA editing,
with particular emphasis on ncRNA. They summarized current
knowledge and discussed potential consequences of RNA editing
on ncRNA, pointing out the lack of tools specifically designed
for the detection of editing alterations in lncRNA sequences.
This gap was actually addressed by a methods article in our
collection by Picardi et al. (2014). They described a novel com-
putational approach to reliably detect A-to-I editing events in
human lncRNAs through NGS, based on their previously pub-
lished package called REDItools. In the presented article, the
authors showed the potential of their tools in recovering A-to-I

candidates fromRNAseq data and provided guidelines to improve
RNA editing detection in non-coding RNAs, with specific focus
on lncRNAs.

This collection also includes three articles concerning data
integration and functional analysis. In the first one, Bonnici et al.
(2014) introduced ncRNA–DB, a novel database of ncRNA inter-
action in human. The database integrates associations among
ncRNA, protein coding genes and diseases. It can be searched
by a web-based or a command line interface and is also acces-
sible through a Cytoscape app called ncINetView. The second
paper, by Alaimo et al. (2014), described ncPred, a novel tool that
predicts ncRNA-disease association through tripartite network-
based inference. The results of the experimental analysis show
that the tool is able to predict more biologically significant asso-
ciations than its competitors. In the third paper, Li et al. (2015)
performed a large-scale integration of publicly available RNA
binding protein (RBP) binding sites generated by high-throughput
CLIP-Seq technology and identified thousands of RBP–lncRNA
interactions. The authors reported combinatorial effects among
RBPs and discovered hundreds of disease-related SNPs in RBP
binding sites in lncRNA.

The collection also includes a review of design principles and
computational tools for the design of synthetic RNAs for gene
regulation (Lagana et al., 2014). The article provided guidelines
for the design of siRNA, artificial miRNA, antagomiRs, miRNA
sponges, and small guide RNA for CRISPRi, and presented
strengths and limitations of the different technologies.

Bioinformatics of ncRNA is a vast and rich field and the papers
that we selected for this Research Topic address some of its most
exciting and pressing challenges. We believe that this volume
represents a valuable and useful resource and hope it will be of
interest to the many researchers involved in ncRNA research.
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The majority of the human transcriptome is defined as non-coding RNA (ncRNA), since
only a small fraction of human DNA encodes for proteins, as reported by the ENCODE
project. Several distinct classes of ncRNAs, such as transfer RNA, microRNA, and long
non-coding RNA, have been classified, each with its own three-dimensional folding and
specific function. As ncRNAs are highly abundant in living organisms and have been
discovered to play important roles in many biological processes, there has been an ever
increasing need to investigate the entire ncRNAome in further unbiased detail. Recently,
the advent of next-generation sequencing (NGS) technologies has substantially increased
the throughput of transcriptome studies, allowing an unprecedented investigation of
ncRNAs, as regulatory pathways and novel functions involving ncRNAs are now also
emerging. The huge amount of transcript data produced by NGS has progressively
required the development and implementation of suitable bioinformatics workflows,
complemented by knowledge-based approaches, to identify, classify, and evaluate the
expression of hundreds of ncRNAs in normal and pathological conditions, such as
cancer. In this mini-review, we present and discuss current bioinformatics advances in
the development of such computational approaches to analyze and classify the ncRNA
component of human transcriptome sequence data obtained from NGS technologies.

Keywords: RNA-seq, miRNA, lncRNA, circRNA, bioinformatics

Introduction

For over five decades, the central dogma of molecular biology has represented the basis of genetics
(Crick, 1970), essentially describing the genetic information flow of life in which DNA and protein,
as respectively repository and functional incarnation of that information, have been viewed as the
two main actors in the life of the cell, confining RNA simply to the role of template for protein
synthesis. Nevertheless, this view of the biological role of RNA, initially apparently exhaustive, has
been over time subjected to challenges, as firstly suggested by Gilbert in 1986 (Gilbert, 1986).

As interest on the hypothesized “RNA world” grew, subsequent studies allowed to explore
the potential of such new vision (Lee et al., 1993; Fire et al., 1998), eventually leading to
one of the most significant biological discoveries of the past decade: the existence of several
types of RNAs, each with their specific functions in eukaryotic cells (Eddy, 2001; Todd and
Karbstein, 2007). As the ENCODE project has confirmed, most of the human genome is in
fact transcribed, but only a very small fraction of it encodes for proteins (Birney et al., 2007;
Elgar and Vavouri, 2008). Indeed, the larger remaining portion of the transcribed genomic
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output is represented by a diverse family of untranslated tran-
scripts that play crucial roles in many biochemical cellular pro-
cesses (Mattick, 2001).

These non-coding RNAs (ncRNAs) are divided into two major
categoriesmost commonly according to their nucleotide sequence
length: small (<200 bp) and long (200 bp or more). Within each
category, there are several distinct classes, each one with its own
three-dimensional folding and specific function.

From the more popular classes of small structural ncRNAs,
such as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs),
focus has shifted in the last 10 years to a set of small RNA
classes involved in post-transcriptional regulation: microRNAs
(miRNAs) whose precursors (pre-miRNAs) form a peculiar hair-
pin structure; small interfering RNAs (siRNAs); piwi-interacting
RNAs (piRNAs).

Growing interest has more recently emerged also toward long
ncRNAs (lncRNAs) which constitute the majority of the non-
protein-coding transcripts (Ponting et al., 2009). Having length
>200 nt, lncRNAs, already thought of potentially regulating tran-
scription via chromatinmodulation, may be also involved in post-
transcriptional regulation, organization of protein complexes, and
cell–cell signaling (Meldrum et al., 2011).

Finally, an additional class of ncRNAs is represented by circular
RNAs (circRNAs) which have been proven to be untranslated,
very stable, abundant, and conserved RNA molecules in animals
(Jeck et al., 2013).

Yet, despite having been more than a decade since the human
genome was sequenced, most transcribed regions are still of
unknown molecular function and biological significance.

A potential approach to solving this problem is provided by
the ever increasing application of high throughput sequencing
technology (HTS), also known as next-generation sequencing
(NGS). In fact, numerous transcriptomic sequencing projects are
accumulating with increasing rapidity, generating data which are
enabling the identification of different types of ncRNAs, and
the quantification of their expression levels in different tissues,
conditions, and developmental stages.

Why NGS?

Deep sequencing provides a very promising tool. NGS can pro-
duce millions of sequences at lower cost in shorter time than
before (Meldrum et al., 2011) delivering greater sensitivity and
accuracy than previous technologies. Its sensitivity and specificity
are above microarray techniques (‘t Hoen et al., 2008; Wang et al.,
2009); it does not rely on target probe hybridization, permitting
the sequencing of the exact transcript on a single nucleotide
resolution (Zhou et al., 2011), thus allowing the identification of
variations in length or composition (Jung et al., 2010); it requires
no previous transcript information (Isakov et al., 2012), utilizing
any relevant database to compare and characterize the sequence
population (Ronen et al., 2010); it provides high depth of coverage
for any library of nucleic acids and it can bemodified to study spe-
cific properties, e.g., small RNA-seq (sRNA-seq) (Landgraf et al.,
2007); it can be used on species for which a full-genome sequence
is not yet available; RNA editing events can be detected, and
knowledge of polymorphisms can provide direct measurement of
allele-specific expression (Malone and Oliver, 2011).

Several HTS platforms are commercially available, each char-
acterized by specific data throughput, read length, error rate, and
price (Zhou et al., 2011), providing a wide choice of options.

Current Computational Approaches for
ncRNA Analysis from NGS Output

Earlier attempts at whole genome identification of ncRNAs gener-
ally had already focused on distinct expression patterns and novel
RNA structural families to better characterize the properties of
ncRNAs. An example of this is the incRNA pipeline employed by
Lu et al. (2011) who have developed a comprehensive machine-
learned model integrating sequence, structure, and large-scale
expression data, both deep sequencing and array. This proves how
the complementary nature of combined features can clearly sepa-
rate ncRNAs from other genomic elements and potentially differ-
entiate between distinct ncRNA types, representing an important
advantage of integrative approaches.

Such characterization studies have provided methods that can
be adapted to different organisms to identify novel ncRNAs from
unannotated genomic regions, paving the way for the develop-
ment of integrated tools.

Moreover, the large amount of data generated by HTS exper-
iments has made it absolutely necessary to dispose of bioinfor-
matics methods in order to properly store, analyze, and visualize
such data.

Generally, a ncRNA bioinformatics analysis system can be
comprised of three essential components: a post-sequencing data
analysis pipeline for ncRNA detection, classification and expres-
sion analysis representing the core of the system; a data module
to provide annotation information and storage for the analysis
results; a visualization/query system for viewing and functionally
analyzing raw data and elaborated results.

As proven by Cordero et al. (2012), statistical detection of
differential expression of NGS data gives efficient results when
computational strategies employ statistical models based on NB
distribution [i.e., baySeq (Hardcastle and Kelly, 2010)] or on vari-
ance [i.e., DESeq (Anders and Huber, 2010), DESeq2 (Love et al.,
2014)], as opposed to non-parametric methods which are fre-
quently used for microarray-generated data but are very sensitive
to background composition when applied to NGS data.

In order to satisfy the urgent demand for intuitive and efficient
data exploration and relieve the growing pressure on handling
massive quantities of short-read sequences, several NGS-based
RNA transcriptome bioinformatics analysis tools/pipelines have
been developed (Tables 1 and 2), and below we give an overview
of the current most popular ones.

Small ncRNA Transcription Investigation
Approaches
Throughout the last decade, the study of the small RNA tran-
scriptome has been gradually recognized to be essential to fully
comprehend the complex scenario of transcriptional regula-
tion. For this reason, most currently available tools/pipelines
for transcriptome investigation through NGS concentrate on
detection/prediction/expression quantification of small RNAs,
especially miRNAs.
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TABLE 1 | Small non-coding RNA Tool comparison.

miRDeep miRDeep* miRSpring DARIO CPSS ncPRO-seq CoRAL RNA-CODE

Package Online server
√ √ √

Stand-alone
√ √ √ √ √ √

Applicable to Raw data
√ √ √ √ √

Mapped data
√ √ √ √ √

Input format FASTQ/FASTA
√ √ √ √ √

BAM/SAM
√ √ √ √ √

BED
√

GFF/GTF
√

Assembly De novo
√

Reference genome sequence
√ √ √ √ √ √ √

Known miRNA detection
√ √ √ √ √ √ √ √

Known other ncRNA detection
√ √ √ √ √

Novel ncRNA prediction
√ √ √ √ √

Expression analysis
√ √ √ √ √ √ √ √

miRNA target prediction
√ √

miRNA target functional enrichment
√

TABLE 2 | Long non-coding RNA Tool comparison.

CoRAL RNA-CODE lncRScan iSeeRNA CIRI Annocript LncRNA2Function

Package Online server
√ √

Stand-alone
√ √ √ √ √ √

Applicable to Raw data
√ √ √

Mapped data
√ √ √ √

Input format FASTQ/FASTA
√ √ √ √

BAM/SAM
√ √

BED
√

GFF/GTF
√ √ √ √

Assembly De novo
√ √

Reference genome sequence
√ √ √ √ √

Known miRNA detection
√ √

Known other ncRNA detection
√ √

Novel ncRNA prediction
√ √ √ √ √ √

Expression analysis
√ √ √ √ √

miRDeep (Friedländer et al., 2008) is believed to be the first
stand-alone tool used to analyze large-scale sRNA-seq data in
order to detect both known andnovelmiRNAs.miRDeep employs
Bayesian probability controls along the steps ofmiRNAbiogenesis
to estimate the false-positive rate and the sensitivity of predictions.
The algorithm assumes that if a read is truly related to a pre-
miRNA, then it must be a portion either of the loop sequence or
of one of the potential two mature sequences in the hairpin. Thus,
given the higher abundance of the dominant mature sequence in
the cell compared to any other sequence of a pre-miRNA, the
higher number of reads in the datawill likely correspond tomature
sequences, while less frequent reads maymap to other parts of the
hairpins. Algorithms for mapping and evaluation of free energy,
previously under user control, are carried out by Bowtie and
Randfold inmiRDeep2 (Bonnet et al., 2004; Langmead et al., 2009;
Friedländer et al., 2012) in which species conservation has been a
key addition as well (Mackowiak, 2011).

Modeled off miRDeep, mirDeep* (An et al., 2013) employs
a miRNA precursor prediction strategy which the authors have
proved to outperform both versions of miRDeep as it adopts a

different strategy to excise the potential precursor locus range,
resulting in a lower number of false negatives. Users can also
apply the original miRDeep prediction algorithm, as well as the
TargetScan (Lewis et al., 2005) algorithm in order to predict
targets for identified known and novel miRNAs.

Great innovation in terms of portability and the elaboration
of miRNA processing information is provided by the miRspring
software (Humphreys and Suter, 2013). The tool generates a small
portable interactivemiRNASequence Profiling document capable
of completely reproducing all the information from a significantly
larger mapped sequencing data file in bam format (i.e., from a
miRNA-Seq experiment), along with providing miRNA process-
ing statistics. In fact, it is the first software that allows to visualize
the processing features, seed distribution and relative expression
levels of genomic clusteredmiRNAs fromawholemiRNAdata set.

Aside miRNA-specific approaches, other software focuses on
small RNAs in general.

The first integrated tool ever developed for the analysis and
prediction of several classes of small ncRNAs on RNA-seq data
originating from arbitrary sequencing platforms is the web service
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DARIO (Fasold et al., 2011). The software provides a straigh-
forward interface which allows users to quantify ncRNAs in a
completely platform independent way. DARIO annotates reads
with information provided by several ncRNA public databases,
and excludes mapping loci overlapping with exonic regions, while
setting apart those that overlapwith introns and intergenic regions
for non-annotated ncRNAprediction. An extension of this system
to plants has recently been published (Patra et al., 2014).

The web server CPSS (Zhang et al., 2012) takes things a step
further. The tool can analyze small RNA deep sequencing data
coming from single or two paired samples, with special empha-
sis on miRNAs. Data are classified into several categories of
small ncRNAs according to several referred annotations. Matched
mapped reads are then quantified for expression analysis (differ-
ential in case of two samples), while unmatched ones are employed
to predict novel miRNAs also through miRDeep (Friedländer
et al., 2008). CPSS also provides users with the possibility to
predict target genes for differentially expressed novel/knownmiR-
NAs but, like no precedent approach, it also performs functional
enrichment analysis of those targets for further experimental or
computational studies.

Differently, ncPRO-seq (Chen et al., 2012), a stand-alone, com-
prehensive and flexible ncRNA analysis pipeline, systematically
investigates all small ncRNA species in a given annotation family
in an unbiased way, providing the user with detailed descriptions
of read distribution. Furthermore, the tool defines novel small
ncRNA families by identifying regions significantly enriched with
short reads not classified under any known ncRNA species, allow-
ing the discovery of previously unknown ncRNA- or siRNA-
coding regions.

To address the limitations of RNA function prediction meth-
ods in classifying ncRNA classes, the machine learning package
CoRAL (Leung et al., 2013) classifies RNA transcripts from sRNA-
seq data into functional categories by relying on biologically inter-
pretable features more informative than sequence or alignment
information, like certain aspects of small RNA biogenesis. Lever-
aging on the assumption that such biological properties should be
consistent within classes of ncRNAs sharing the same molecular
function (i.e., across different tissues or organisms), CoRAL was
trained in order to identify themost informative features in regard
to the molecular mechanisms and metabolic processes of each
functional ncRNAclass. Based on fragment length, cleavage speci-
ficity, and antisense transcription, CoRAL can effectively clas-
sify six distinct ncRNA classes among miRNAs and transposon-
derived RNAs. Outperforming previous tools such as DARIO and
miRDeep2, CoRAL provides the opportunity to annotate ncRNAs
in other less well-characterized organisms.

Another tool for ncRNA annotation in NGS data lacking refer-
ence genomes is the software RNA-CODE (Yuan and Sun, 2013).
As ncRNA homology search takes advantage of both sequence
and secondary structure similarity, optimization for NGS data is
still widely absent, especially when a reference genome is miss-
ing. To compensate for this, RNA-CODE combines secondary
structure based homology search with de novo assembly, adjust-
ing the assembly parameters in a family specific fashion. The
sofware assumes that true ncRNA reads sequenced from the
same gene can be assembled into contigs with significantly high

alignment scores against their native families, while reads aligned
by chance tend to share poor overlaps and thus are not likely to be
assembled. Sensitivity and accuracy of short reads classification is
thus greatly improved. Biogenesis-based properties and homology
search results are instead employed for ncRNAs, such as miRNAs,
which could not as easily be assembled into contigs. The classifi-
cation results can then be used to quantify the expression levels of
different types of ncRNAs, both small and long, in RNA-seq data
of non-model organisms.

Circular RNA Detection Algorithms
The works done by the Brown (Salzman et al., 2012) and Sharpless
(Jeck et al., 2013) groups are forerunners of a series of algo-
rithmic approaches to effectively identify circRNA, attempting to
compensate the non-uniformity of RNA-seq data sets.

Most algorithms have focused on junction read detection
whether leveraging on annotated exon boundaries (Salzman et al.,
2012), adopting a two-segment alignment for split reads (Mem-
czak et al., 2013) or relying on RNAase-treated sequencing (Jeck
et al., 2013). Nevertheless, all these methods are annotation-
dependent and unable to detect certain types of circRNAs having
complex alignments and/or subject to experimental bias.

A very recent computational tool proven to outperform any
precedent approach in the detection of circRNAs from NGS
is CIRI (Gao et al., 2015). CIRI is an unbiased, annotation-
independent approach employing a de novo algorithm able to
accurately detect novel circRNAs based on paired chiastic clipping
(PCC) signals combined with a filtering system able to remove
false positives. CIRI has been able to specifically identify for the
first time the prevalence of intronic/intergenic circRNAs as well as
fragments specific to them in the human transcriptome, providing
novel targets for further functional studies.

Long ncRNA Transcription Investigation
Approaches
Long ncRNA investigation is a challenging task, as many more
NGS reads are required to achieve adequate coverage compared to
mRNAs or other types of ncRNAs. Here below, we describe a few
recent computational tools which very well represent the general
approach employed by several studies so far (Guttman et al., 2010;
Cabili et al., 2011; Pauli et al., 2012).

The pipeline employed by Sun et al. (Sun et al., 2012) makes
use of a software they have specifically developed to detect novel
lncRNA, called lncRScan. The pipeline aims at tackling three of
the major technical problems encountered in studying lncRNAs
through RNA-seq: eliminating partial transcripts and artifacts
in the assembled transcriptome due to RNA-seq-specific issues;
identifying lncRNA from the complexity of assemblies; distin-
guishing lncRNAs from protein-coding mRNAs. After mapping
and assembly, the data obtained are compared to a set of combined
gene annotations in order to maximize detection and facilitate
category labeling of novel transcripts, retaining only multi-exon
ones not possessing any annotation for downstream process-
ing. After quality control, the remaining assemblies are given as
input to lncRScan for novel lncRNA detection. The tool iden-
tifies the candidate lncRNAs through a five-step filtering pro-
cess: first it organizes input transcripts into five broad categories
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according to their genomic location in relation to annotated gene
transcripts; transcripts longer than 200 nt are selected, filtering
out those with open reading frame (ORF) >300 nt; in the last two
steps, phylogenetic analysis and potential aminoacidic sequences
of the remaining transcripts are performed in order to exclude any
protein-coding potential. Performance evaluation of the pipeline
has shown its great ability to filter out mRNAs from the candidate
set, while revealing a stringent prediction of true lncRNAs from a
test set.

iSeeRNA (Sun et al., 2013) is an SVM-based classifier which
can accurately and quickly identify lincRNAs from large datasets,
employing conservation, ORF- and nucleotide sequences-based
features in order to appropriately distinguish lincRNAs from
protein-coding transcripts (PCTs). The best classification results
on test sets were produced leveraging on 10 features from the three
categories mentioned above: sequence conservation score, being
lincRNA less conserved than PCTs in general; ORF length and
ORF proportion compared to transcript total length; frequencies
of seven di- or tri-nucleotide sequences. Homolog search-based
features were instead not included due to lack of annotation for
novel PCTs which could foster misclassification. Trained in a
species-dependent manner, iSeeRNA allows the user, however, to
build additional customized SVMs for other species of interest.
Supporting file formats widely used by the RNA-Seq assemblers,
iSeeRNA can be easily integrated into transcriptome data analysis
pipelines.

More recently, Soreq et al. (Soreq et al., 2014) have integrated
full profile characterization of lncRNAs into their comprehen-
sive RNA-seq analysis workflow. The pipeline, based on sample
specific database construction, is able to analyze count infor-
mation from RNA-seq data originating from several platforms
and mapping analysis methods. After sequence reads have been
mapped, their genome coordinates are intersected with those of
the largest available database of reconstructed transcript mod-
els for lncRNAs, GENECODE (Derrien et al., 2012). Follow-
ing appropriate filtering, differential expression of the detected
lncRNA candidates is performed using the Bioconductor edge-
R package (Robinson et al., 2010) which accounts for biological

and technical variability as well as moderating the degree of over-
dispersion across transcripts, thus improving the reliability of the
results.

Musacchia et al. (2015) provide instead a pipeline combining
the identification of both coding and long non-coding RNAs in
de novo generated transcriptomes, without the support of com-
parative data.Annocript identifies putative lncRNAs by leveraging
on public annotation databases and sequence analysis software to
verify lack of protein/domain similarity, lack of long ORFs, and
high non-coding potential.

Finally, an innovative approach in the functional annotation
of lncRNAs is provided by Jiang et al. (2015). LncRNA2Function
provides the first ontology-driven user-friendly web system based
on the idea that similar expression patterns across multiple
conditions may share similar functions and biological path-
ways. The tool functionally annotates a single or a set of lncR-
NAs with the functional terms significantly associated to the
set of protein-coding genes significantly co-expressed with the
lncRNAs. Standard mapping and assembly are thus followed
by the computation of Pearson Correlation Coefficients for all
lncRNA–mRNA gene pairs, assigning to each lncRNA a set of
significantly co-expressed protein-coding genes which provides
the lncRNA with functional and pathway annotations signifi-
cantly enriched in such set. The tool thus allows to browse the
results obtained from an RNA-seq dataset of 19 human normal
tissues in order to retrieve the set of lncRNAs associated to a
specific functional term, the set of functional terms associated
to a lncRNA or assign functional terms to a set of lncRNAs,
thus providing a precious resource for lncRNA function investi-
gation.
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Next-generation sequencing now for the first time allows researchers to gage the depth
and variation of entire transcriptomes. However, now as rare transcripts can be detected
that are present in cells at single copies, more advanced computational tools are needed to
accurately annotate and profile them. microRNAs (miRNAs) are 22 nucleotide small RNAs
(sRNAs) that post-transcriptionally reduce the output of protein coding genes. They have
established roles in numerous biological processes, including cancers and other diseases.
During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules
that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes
that are discovered are mined from small RNA sequencing (sRNA-seq), which can detect
more than a billion RNAs in a single run. However, given that many of the detected RNAs
are degradation products from all types of transcripts, the accurate identification of miR-
NAs remain a non-trivial computational problem. Here, we review the tools available to
predict animal miRNAs from sRNA sequencing data. We present tools for generalist and
specialist use cases, including prediction from massively pooled data or in species without
reference genome. We also present wet-lab methods used to validate predicted miRNAs,
and approaches to computationally benchmark prediction accuracy. For each tool, we ref-
erence validation experiments and benchmarking efforts. Last, we discuss the future of
the field.

Keywords: miRNA, microRNA, gene prediction, next-generation sequencing data

miRNA BIOLOGY
microRNAs (miRNAs) are a class of small RNAs (sRNAs) around
22 nucleotides in length. They are never translated, but post-
transcriptionally reduce the output of protein coding genes
(Kloosterman and Plasterk, 2006; Bushati and Cohen, 2007; Farazi
et al., 2008; Ghildiyal and Zamore, 2009). They have been found
in all animals studied, in numbers that appear to correlate with
organismal complexity, for instance, nematodes have around 200
miRNA genes while humans have more than 3000 (Kozomara and
Griffiths-Jones, 2011; Friedländer et al., 2014). Mutant animals
that are void of miRNAs either die at early embryonic stages or
have severe developmental defects, showing the importance of the
regulation they infer (Bernstein et al., 2003; Giraldez et al., 2005;
Morita et al., 2007; Wang et al., 2007). More than half of all protein
coding transcripts are estimated to be under regulation of miRNAs
in one or more cellular contexts (Friedman et al., 2009). Thus, it is
not surprising that miRNAs are involved in numerous biological
contexts, ranging from formation of cell identify to development
(Stefani and Slack, 2008).

miRNA BIOGENESIS
The majority of miRNAs are transcribed by Polymerase II and
have features similar to protein coding transcripts: a 5′ cap, exons,
and a poly(A)-tail (Figure 1). Each of the primary transcripts har-
bors one or more characteristic RNA hairpin structures around 60
nucleotides in length. While in the nucleus, these structures can be
recognized by the Microprocessor complex, consisting of Drosha

and DGCR8 proteins, which cleave the hairpin out of the primary
transcript (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004;
Landthaler et al., 2004). The hairpin is then exported to the cytosol,
where it undergoes a second cleavage by Dicer, a canonical com-
ponent of the RNA interference pathway (Bernstein et al., 2001;
Hutvagner et al., 2001; Ketting et al., 2001; Knight and Bass, 2001).
The cleavage releases three products: the mature miRNA guide
strand, the miRNA passenger strand, and the loop. These three
products fall in determined positions: the guide and the passen-
ger form an RNA duplex with two nucleotides 3′ overhangs, while
the loop consists of the terminal end of the hairpin, positioned
between the guide and the passenger strands (Ha and Kim, 2014).
While the loop and the passenger strands are generally degraded
as bi-products of the biogenesis, the guide miRNA remains bound
to an Argonaute protein, which is part of the miRNP complex.
It is not always the same strand that is fated to be bound to the
Argonaute protein, in the case of many miRNA hairpins either
strand can be incorporated and repress targets (Okamura et al.,
2008; Guo and Lu, 2010; Yang et al., 2011). The mature miRNA
can guide the effector complex to target sites, typically located in
3′ UTRs of mRNAs, through partial base complementarity (Lai,
2002; Bartel, 2009). Once bound, the complex reduces protein out-
put of the transcript, either by destabilizing it through shortening
of the poly-A tail, inhibiting its translation or by re-localizing it
to subcellular ribo-protein particles, where it is inaccessible to the
translation machinery (Filipowicz et al., 2008; Huntzinger and
Izaurralde, 2011). Some miRNAs follow non-canonical biogenesis
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Kang and Friedländer miRNA prediction from sRNA-seq data

FIGURE 1 | miRNA biogenesis and function. miRNAs are transcribed
as primary transcripts or are sometimes derived from exons or introns
of hosts transcripts. Characteristic hairpin RNA structures are
recognized by Drosha and DGCR8 and cleaved out. The hairpin is
exported to the cytosol and cleaved by Dicer, which is a part of the
canonical RNA interference pathway, releasing three products: the two
miRNA strands (the “mature” or “guide” strand and the “star” or

“passenger” strand) and the terminal loop. The guide strand is then
bound by an Argonaute protein, which is part of the miRNP effector
complex. Once thus bound, the miRNA can bind to target sites, often
located in the 3′ UTR of protein coding transcripts, and guide the
effector complex to inhibit translation of the target, cause its
degradation, or relocate it to subcellular foci, where they are no longer
accessible to the translation machinery.

pathways, but are believed to function like the canonical sequences
(Ha and Kim, 2014). Altogether, it is estimated that around 60%
of all human protein coding transcripts are regulated by miRNAs
in one or more cellular conditions (Friedman et al., 2009).

miRNAs IN HUMAN DISEASE
Given the prevalence of miRNA regulation, it is not surprising
that miRNAs have been involved in numerous human diseases.
These regulators appear to play particularly critical roles in can-
cers, where they can function as onco-genes or tumor suppressors.
For instance, the miR-17–92 cluster is found to be up-regulated
in several cancers (He et al., 2005), and miR-15 and miR-16 are
often deleted in leukemias (Cimmino et al., 2005). Although some
miRNAs can function as onco-genes, they are in most cases down-
regulated individually or collectively in cancers (Medina and Slack,
2008). miRNAs are important in cell differentiation and formation
of cell identity, and often cancer cells revert to more undifferen-
tiated states. In addition to cancers, miRNAs have been involved
in many types of diseases including: cardiovascular, immunolog-
ical, neurodegenerative, and psychiatric (Taft et al., 2010; Esteller,
2011). In disease, miRNA function can be perturbed in several
ways: by down-regulation of the biogenesis factors (Hill et al.,
2009), by mutation in the miRNA locus (Mencia et al., 2009), by
loss or gains of the miRNA genes (Zhang et al., 2006b), or by epi-
genetic changes such as hypermethylation (Davalos et al., 2012).
There are also cases where disease is caused by mutations that
destroy (Christensen et al., 2009) or create (Abelson et al., 2005)
target sites in the 3′ UTR of protein coding transcripts.

Before the role of a miRNA in a given disease can be investi-
gated, it must be discovered and annotated. Many miRNAs have
specific expression patterns and may not be highly expressed out-
side the particular tissue that is studied, and may not yet have
been discovered. Therefore, miRNA prediction is an important
first analysis step of sRNA-seq analysis in clinical context. miRNA
prediction can also be used for basic research, when annotating
the complement of regulatory RNAs in emerging model systems.
The purpose of this review is to present the methods used to dis-
cover new animal or human miRNA genes from sRNA-seq data.
We will focus on published methods that can be downloaded and

run, without the user needing to implement algorithms as soft-
ware by him/herself. We will discuss the strengths of the distinct
methods, and will reference the studies in which the methods have
been benchmarked computationally. Thus, this review can serve as
a platform for the reader to decide which method is ideally suited
for his miRNA prediction use case. Finally, we will present low
and high-throughput methods to validate the discovered miRNA
candidates.

miRNA PREDICTION
PREDICTION FROM GENOME SEQUENCE
The biogenesis of miRNAs is key to their discovery. When the field
was still young and little data were available, researchers would
search the genome sequences for loci that would give rise to RNA
hairpin structure if transcribed. These methods have combined
structure prediction with either scoring (Lai et al., 2003; Lim et al.,
2003; Ohler et al., 2004; Wang et al., 2005) or rules-based (Dezulian
et al., 2006; Zhang et al., 2006a) or machine-learning classification
(Nam et al., 2005; Jiang et al., 2007; Sheng et al., 2007) of the hair-
pin features. Some of the methods have incorporated conservation
information into the prediction; in fact, one approach has used
phylogenetic shadowing to detect the characteristic conservation
profile of miRNAs, where the miRNA strands are more conserved
in sequence than the terminal loop (Berezikov et al., 2005). How-
ever, it is impossible to know from the genome DNA sequence if a
locus is really transcribed and gives rise to mature miRNAs. Thus,
considering the size of most animal genomes, these methods yield
many false positive hairpins that are either not transcribed or do
not interact with the biogenesis factors. For instance, in the human
genome, around 11 million loci would give rise to hairpin struc-
tures if transcribed (Bentwich, 2005), but only a few thousands
of them are actually cleaved to mature miRNAs (Kozomara and
Griffiths-Jones, 2011; Friedländer et al., 2014).

SANGER SEQUENCING
For an unbiased detection of miRNAs, methods were developed
to directly sequence sRNAs. This was done by separating them
from other transcripts on high-resolution gels, and sequencing
by Sanger sequencing (Lagos-Quintana et al., 2001; Lau et al.,
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2001; Lee and Ambros, 2001). Because of the limited throughput
of this technology, typically just a few hundreds of sRNAs were
detected, and many of these would be degradation products of
longer transcripts such as mRNAs, rRNAs, and tRNAs, or even
from un-annotated transcripts. To ensure that the predicted miR-
NAs were genuine, researchers would filter out sequences mapping
to known non-miRNA transcript annotations, and would require
that the predicted miRNA was located in a loci that could give
rise to a hairpin transcript (Ambros et al., 2003). More specifically
and in accordance with miRNA biogenesis, the predicted sequence
should be located on a hairpin arm. Further, if two sequences
should locate to the same hairpin, it was required that they should
form a duplex with two nucleotide 3′ overhangs, as expected from
Dicer processing.

NEXT-GENERATION SEQUENCING
In 2006, the first next-generation sequencing instruments became
commercially available, allowing orders of magnitude increase in
data generation. For instance, the current Illumina HiSeq 2500
instruments can sequence around one billion sRNAs in <2 days.
This sequencing power can be distributed between several experi-
ments, but still sRNA-seq studies detect millions of transcripts per
sample. Since a mammalian cell typically contains on the order of
100,000 miRNA transcripts (Calabrese et al., 2007), this means that
sequences that are present in less than one molecule per cell can still
be detected. This also holds for other clades, for instance, the lsy-6
miRNA, which is expressed in only a single neuron in the entire
nematode body (Johnston and Hobert, 2003), is now routinely
detected in sRNA-seq experiments (unpublished results).

The sensitivity of these sequencing methods means that very
lowly expressed sRNAs other than miRNAs are also detected.
These can include short interfering RNAs (siRNAs) and piwi-
interacting RNAs (piRNAs) but can also be rare degradation prod-
ucts of longer transcripts like rRNAs, tRNAs, and mRNAs or un-
annotated transcripts. In addition to this, there is now emerging
evidence that transcripts like tRNAs can undergo endonucleolytic
cleavage at specific positions to produce functional sRNAs (Chen
and Heard, 2013). Altogether, this means that sRNAs sequenced in
a single experiment can originate from millions of distinct loci in
the human genome (Friedländer et al., 2008). The methods that
were developed to predict miRNAs from Sanger sequencing should
only handle a few thousand loci. Therefore, they are not specific
enough to be applied to next-generation sequencing data, and
produce numerous false positives. These false positives are tran-
scribed and form hairpins, but the sRNAs generated from them are
degradation products resulting from normal RNA turnover. Thus,
accurately identifying the miRNAs in this complex landscape of
sRNAs is a daunting task.

To reduce false positives, methods to predict miRNAs from
sRNA-seq employ post-filtering steps beyond what is used
for Sanger sequencing. The next-generation discovery methods
almost all require the presence of a hairpin structure, and the
formation of a duplex if both miRNA strands are detected. In
addition, many methods require that the candidate precursors
do not overlap known non-miRNA annotations (Berninger et al.,
2008). Hairpins that pass these requirements are then exposed to
a further filter step. These steps can be rule-based or can involve

probabilistic scoring or machine learning (see below). The fea-
tures that are evaluated can be divided into structure features and
signature features (Friedländer et al., 2008). The first reflect how
well the hairpin structure conforms to known miRNA precur-
sors. For instance, most of the nucleotides in the putative duplex
should be base paired, and the hairpin should not contain large
bulges besides the terminal loop. Some methods also require that
the structure should be energetically stable, as this is a hallmark of
genuine miRNA hairpins. The signature is a measure of how well
the distribution of sequenced RNAs fit in the hairpin structure. For
instance, every sequenced RNA should correspond to either guide
or passenger strand, or to the terminal loop. The guide and passen-
ger RNAs should form a duplex with two nucleotide 3′ overhangs,
as is typical of Dicer processing. Further, it is expected that the
candidate miRNA guide strand is detected several times, given the
sensitivity of next-generation sequencing. Last, since it is known
that processing of Drosha and Dicer produces clearly defined 5′

ends, the sequenced RNAs should align neatly in this end (Ruby
et al., 2006).

Besides the core prediction methods, source for predicting
miRNAs differ in other respects. This includes the mapping tool,
whether read pre-processing is provided, whether the tool has a
graphic user interface or must be operated on the command line
and whether additional analyses like expression analyses and target
predictions are supported. Also, some methods are not just applic-
able for animal miRNAs, but also for plant sequences. Finally, some
methods have been tested by computational benchmarking in sev-
eral studies and their predictions validated in the wet-lab. In the
following section, we describe the tools of the field in alphabetical
order (Table 1).

SPECIFIC ALGORITHMS
deepBlockAlign
deepBlockAlign is innovative in that it provides advanced scoring
of the read signature, but does not evaluate the RNA struc-
ture (Langenberger et al., 2012; Pundhir and Gorodkin, 2013).
deepBlockAlign uses a variant of Needleman–Wunsch to iden-
tify blocks of mapped reads that have similar features, including
read begin positions and block height. In a second step, similar
groups of blocks are identified using a variant of the Sankoff algo-
rithm. These groups of blocks correspond to gene loci. To predict
novel miRNAs, the method finds loci that have block features sim-
ilar to known miRNAs. While the profiles might be different for
plants and animals, or specific to particular tissues or pathological
conditions, the method can compare to all known profiles from
the entire miRBase database of miRNAs, giving it good coverage.
Since this method does not evaluate the RNA structure, it can
predict miRNAs that do not have canonical structure, or whose
conformation is not easily predicted by computational methods.
Alternatively, it can be combined with down-stream structure
analysis, to further improve specificity1.

miRanalyzer
miRanalyzer first removes reads that map to known miRNAs or
other transcripts (Hackenberg et al., 2009). The remaining reads

1http://rth.dk/resources/dba/
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Table 1 |Tools for predicting animal miRNAs from sRNA-seq data.

Tool Algorithm Mapping

tool

Tested in

plants

Performance comparison Validated in wet-lab Pre-process

data

Quantifies

expression

Target

prediction

User

interface

GENERALTOOLS

deepBlockAlign Read block

alignment

Not included Yes Langenberger et al. (2012), and

Pundhir and Gorodkin (2013)

No No No No Graphics,

webserver

miRanalyzer Random forest Prefix tree No Hackenberg et al. (2009) See below Partial Differential

expression

MiRanda and

TargetScan

Graphics,

webserver

miRanalyzer

(update)

Random forest Bowtie Yes An et al. (2013), Friedländer et al.

(2012), Hackenberg et al. (2011)

Hansen et al. (2014), Pundhir and

Gorodkin (2013), and Williamson

et al. (2013)

RT-PCR (Smith et al., 2013),

Northern blot (Mayoral et al.,

2014)

Yes Differential

expression

TargetSpy Graphics,

webserver,

and

standalone

miRCat Rules-based PatMaN Yes Moxon et al. (2008) RT-PCR (Kohli et al., 2014, and

Pandey et al., 2014), Northern

blot (Donaszi-Ivanov et al.,

2013)

Yes Yes (mirprof),

differential

expression

(colide)

PAREsnip Graphics,

webserver,

and

standalone

miRDeep Bayesian Megablast No An et al. (2013), Friedländer et al.

(2008, 2012), Hendrix et al. (2010),

and Williamson et al. (2013)

Northern blot (Friedländer

et al., 2008, 2009), RT-PCR

(Friedländer et al., 2012)

No Yes No No graphics,

standalone

miRDeep2 Bayesian Bowtie No An et al. (2013), Friedländer et al.

(2012), Hansen et al. (2014), and

Williamson et al. (2013)

Knock-down (Friedländer

et al., 2012), RT-PCR (Metpally

et al., 2013)

Yes Yes No Graphics,

standalone

miRDeep* Bayesian Bowtie (java

version)

No An et al. (2013), and Hansen et al.

(2014)

RT-PCR, knock-down (An

et al., 2013)

Yes Yes TargetScan Graphics,

standalone

(java software)

MIReNA Rules-based Megablast Yes An et al. (2013), Friedländer et al.

(2012), and Mathelier and Carbone

(2010)

Knock-down (Friedländer

et al., 2012)

No No No No graphics

miREvo Bayesian Bowtie No No No Yes Yes No Graphics,

standalone

miRExpress Sequence

homology

Custom

mapping tools

No No No Yes Yes No No graphics,

standalone

miRTRAP Rules-based Not included No An et al. (2013), Friedländer et al.

(2012), and Hendrix et al. (2010)

Knock-down (Friedländer

et al., 2012), Northern blot

(Hendrix et al., 2010)

No No No No graphics
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are considered as potential new miRNAs. They are evaluated as
miRNAs using a random forest machine learning approach. The
classifier is initially trained on a set of known miRNAs from
human, rat, or nematode and dozens of features are consid-
ered, including energetics, structure, bulges, and the number of
reads mapping. The tool has fitted parameters for each species
analyzed and on publication provided packages for seven com-
monly used species. miRanalyzer is available through a webserver,
making it easily accessible for biologists with little computational
experience2.

miRanalyzer (UPDATE)
miRanalyzer (update) is an improved version with several new fea-
tures. It uses bowtie (Langmead et al., 2009) for much faster and
less memory-intensive mapping, and it includes parameter pack-
ages for 31 species, including 6 plants (Hackenberg et al., 2011). In
addition, it can perform differential expression analysis of the pro-
filed miRNAs and can predict targets using the TargetSpy tool. In
addition to the web server version, it has a stand-alone version that
can be downloaded and run on local machines. miRanalyzer pre-
dictions have been validated with several wet-lab methods (Smith
et al., 2013; Mayoral et al., 2014). Since miRanalyzer often predicts
more new miRNAs than do other tools, it is well suited for studies
where the predictions will be filtered by additional computational
tools or by high-throughput wet-lab validations2.

miRCat
miRCat has been used successfully to predict miRNAs in several
plants (Szittya et al., 2008; Pantaleo et al., 2010; Mohorianu et al.,
2011) and has recently been adapted to animal sequences, includ-
ing butterflies (Surridge et al., 2011). miRCat uses a rules-based
approach that eliminates candidates with features that are not con-
sistent with miRNA biogenesis (Moxon et al., 2008; Stocks et al.,
2012). Numerous features are investigated, including the number
of read stacks in the locus, the number of reads mapping anti-sense
to the locus, the size of bulges in the candidate miRNA duplex, the
number/fraction of paired nucleotides in the duplex and in the
hairpin, and the energetic stability of the hairpin. miRCat is part
of a suite, the UEA workbench, which includes numerous com-
putational tools, some which can be applied to the analysis of
non-miRNA small RNA sequences. miRCat predictions have been
validated in several systems (Donaszi-Ivanov et al., 2013; Kohli
et al., 2014; Pandey et al., 2014). Since it was developed for plant
miRNAs that are more variable in structure, it could be well suited
for detecting animal miRNA hairpins that are not typical for this
clade3.

miRDeep
miRDeep first filters all candidates whose structure and read sig-
nature are inconsistent with Drosha/Dicer processing (Friedländer
et al., 2008). In the next step, the fit of the structure and signature
to an explicit model of miRNA biogenesis is scored using Bayesian
statistics. Specifically, miRDeep scores the number of reads sup-
porting biogenesis, the presence of a miRNA passenger strand, the

2http://bioinfo2.ugr.es/miRanalyzer/standalone.html
3http://srna-workbench.cmp.uea.ac.uk/tools/analysis-tools/mircat/)
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Kang and Friedländer miRNA prediction from sRNA-seq data

presence of a conserved miRNA seed and the absolute and relative
energetic stability of the hairpin. While miRDeep can be run on
data filtered for known non-miRNA annotations, it can perform
robust prediction without this filtering. This means that miRNAs
derived from non-canonical host transcripts, such as snoRNAs,
can be identified (Ender et al., 2008). Further, it does not require
parameters fitted to specific species, meaning that it is not at a
disadvantage when mining emerging model systems. The tool
has been extensively benchmarked and validated by experimen-
tal methods (Friedländer et al., 2008, 2009; Metpally et al., 2013),
and has been adapted by several other research groups (Yang and
Li, 2011; Yang and Qu, 2012; Wu et al., 2013)4.

miRDeep2
miRDeep2 improves the previous version, primarily by making
more robust predictions when faced with very deep sequencing
data (Mackowiak, 2011; Friedländer et al., 2012). This includes
improved excision of candidate hairpins from the genome, allow-
ing for anti-sense miRNAs and moRs (see miRTRAP below). In
addition, the tool has been improved in terms of computational
efficiency, implementing better tools like bowtie (Langmead et al.,
2009), and it features graphics output. Last, it has been tested in
seven species, using the exact same parameters, and introduces
knock-down of key proteins necessary for miRNA maturation to
validate that novel candidates depend on the miRNA biogenesis
pathways for their expression4.

miRDeep*
miRDeep* is an extension of the first miRDeep algorithm, and
incorporates many improvements similar to miRDeep2, although
it was developed by a separate research group (An et al., 2013).
It features pre-processing, bowtie mapping, improved precursor
excision, and target prediction for known and novel miRNAs.
The tool has an extensive graphical user interface and is imple-
mented entirely in java without requiring any pre-dependent
computational tools, making it portable and easy to install. The
computational efficiency makes it run on a home computer5.

MIReNA
MIReNA is a flexible tool to predict novel miRNAs from known
miRNA sequences, next-generation sequencing data, long tran-
scripts, or hairpin precursors (Mathelier and Carbone, 2010). It
uses a rules-based scheme with sharp cut-offs to classify miRNAs
based on five criteria: the lack of base pairing in the mature miRNA,
the difference in length between the two candidate miRNA strands,
the fraction of base-paired nucleotides in the hairpin, and two
measures of energetic stability. As a second filtering step, it con-
siders only hairpins where the sequenced RNAs map in consis-
tence with Drosha/Dicer processing. MIReNA can consider several
potential miRNA duplexes within one precursor structure, e.g.,
within multiple stem precursors, giving it the potential to predict
non-canonical miRNAs6.

4https://www.mdc-berlin.de/8551903/en/research/research_teams/systems_
biology_of_gene_regulatory_elements/projects/miRDeep
5http://www.australianprostatecentre.org/research/software/mirdeep-star
6http://www.lgm.upmc.fr/mirena/index.html

miREvo
miREvo build on the miRDeep2 predictor (above) but extends
it for evolutionary analyses (Wen et al., 2012). Specifically, it uses
whole-genome alignments to identify miRNA homologs in related
species. It also includes tools to compare expression of miRNA
homologs across species, if sRNA-seq data are available for both
species. It uses modified prediction parameters for plant analyses7.

miRExpress
miRExpress is a tool for profiling miRNA expression from sRNA-
seq data (Wang et al., 2009). However, it includes a function to
predict miRNAs based on sequence homology. It maps each read
that does not correspond to a known reference miRNA against
miRBase sequences, keeping only perfect matches. These reads
are then mapped against the reference genome, and the structure
evaluated with the mfold structure prediction software (Zuker,
2003)8.

miRTRAP
miRTRAP uses a rules-based approach with two filtering steps
(Hendrix et al., 2010). In the first one, all candidate miRNAs whose
structure and read signatures do not conform to Drosha/Dicer
processing are eliminated. In the second step, all candidates that
are not located in sRNA deserts are removed. This second step
builds on the observation that miRNAs typically generates blocks
of sRNAs with few or no sequenced RNA mapping to the anti-sense
strand or in the general vicinity. In addition to this innovative fil-
tering step, miRTRAP has high accuracy when predicting miRNAs
with moRs, which are sRNAs generated from the flanks of the pre-
cursor hairpin. This development was necessary, as the tool was
initially developed for identifying miRNAs in sea squirt, a species
unusually rich in moRs (Shi et al., 2009)9.

SPECIAL APPLICATIONS
MASSIVELY POOLED DATA
Many researchers who apply miRNA prediction tools to sequenc-
ing data want to mine their own in-house data. These could be
sequences from an emerging model organism, or from a human
tissue of interest. The tools described above are all optimized for
analyzing a limited number of data sets, ranging from maybe 1 to
20 sets. However, some studies compile all the available sRNA-seq
data for a given species to give the best possible miRNA annota-
tion. There are numerous advantages to pooling tens or hundreds
of datasets (Friedländer et al., 2014). First, if the guide and pas-
senger strands are detected in two distinct data sets, combining
the information can allow analysis of the duplex features. Sec-
ond, lowly expressed miRNAs might not be well profiled in single
datasets, where it is difficult to evaluate the read signature. Third,
since sRNA-seq library preparation involves a PCR amplification
step, there is no guarantee that 10 sequencing reads in 1 dataset
do not correspond to a single over-amplified sRNA. In contrast,
if the same sequence is detected in data from 10 distinct tissues,
this provides independent evidence that the biogenesis is common.

7http://omictools.com/mirevo-s962.html
8http://mirexpress.mbc.nctu.edu.tw
9http://flybuzz.berkeley.edu/miRTRAP.html
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Kang and Friedländer miRNA prediction from sRNA-seq data

Massively pooled sRNA-seq data have previously been used to pre-
dict miRNAs in general (Friedländer et al., 2014), or of the specific
mirtron class (Ladewig et al., 2012). These are hairpins, which are
released by intronic splicing rather than Drosha cleavage. Some
mirtrons are short and their hairpin ends are defined by the splice
signals, while others are longer, and one end is trimmed to define
the hairpin end (Berezikov et al., 2007; Okamura et al., 2007; Ruby
et al., 2007). In addition, the miRBase database employs mas-
sively pooled data to refine the miRNA annotations and define a
high-confidence set of sequences (Kozomara and Griffiths-Jones,
2014). The software used in these studies has, however, not been
published, so the methods are not described in detail here.

miRdentify
miRdentify has recently been released to the public to analyze
massive pooled data (Hansen et al., 2014). It requires that both
guide and passenger miRNA strands are detected and evaluates 10
features of the structure and signature, including precision of 5′

end processing, two nucleotide 3′ overhangs, and several aspect of
stability. For each feature, the cut-off is set so that 1% of known
miRNAs is excluded. Together, the requirement for detection of
both strands and the 10 features constitute stringent criteria that
produce miRNA candidates with features similar to known hair-
pins (Hansen et al., 2014). The method thus, to some extent, trades
off sensitivity to report high-quality candidates10.

PREDICTION WITHOUT A REFERENCE GENOME
The majority of miRNA prediction tools require a reference
genome as input to enable the excision of miRNA hairpin
sequences, whose RNA structures and signatures are considered
as key features for miRNA prediction. However, even though the
price of next-generation sequencing technologies decreases, only
a handful of model species have fully assembled high-quality ref-
erence genomes. Thus, many researchers rely on emerging model
species without reference genomes, and novel methods are needed
to discover new miRNAs in order to further study their func-
tion. One way to address this problem is to use a closely related
species genome as proxy reference sequence to identify conserved
miRNA. Such a study has been undertaken to discover mosquito
miRNAs by mapping the sRNA-seq against the genomes of three
related insect species (Etebari and Asgari, 2014). For this purpose,
the miRanalyzer tool was used, and it was found that the predic-
tion accuracy is affected by the evolutionary distance between the
species of interest and the proxy species. Overall, the most abun-
dant and conserved miRNAs were identified in this study, but the
approach might be less successful for species that do not have
closely related species with genome sequences.

MirPlex
MirPlex is a tool that requires only sRNA datasets as input with
no genome sequences needed (Mapleson et al., 2013). It uses a
multi-stage process to identify genuine miRNA duplexes. First,
all overlapping sequences are assembled into contigs, and contigs
that are too long to be miRNAs are discarded (> 30 nucleotides).

10http://www.ncrnalab.dk/#mirdentify/mirdentify.php

Second, the remaining sequences are copied into two duplicate
datasets followed with separate filter pathways to obtain candidate
miRNA guide and miRNA passenger sequences. Last, the can-
didate miRNA guide and miRNA passenger sequences are then
paired into duplexes for the classification. The core algorithm of
MirPlex uses a support vector machine to classify genuine miRNA
duplexes based on 20 features that divided into three categories: the
size of sequences in the duplex, the stability of the duplex, and the
nucleotide composition of the duplex. However, MirPlex depends
on the presence of both strands in a miRNA duplex for prediction,
and so cannot discover miRNAs unless the less abundant passenger
strand is also detected by the sequencing11.

MIRPIPE
MIRPIPE identifies miRNAs through sequence homology
(Kuenne et al., 2014). It collapses duplicate reads and removes
those that have only been sequenced few times. It then further
collapses sequences that only differ in the 3′ end and last maps the
remaining sequences against known miRBase mature sequences,
using the flexible BLAST mapping (Altschul et al., 1990). Since the
method relies completely on the presence of known homologs, the
prediction accuracy will improve as more miRNAs are deposited to
miRBase. However, it cannot identify species-specific miRNAs12.

miRNA VALIDATION
NORTHERN BLOT ANALYSIS
To resolve if a predicted miRNA is genuine, it is often necessary
to validate it with methods other than next-generation sequenc-
ing. In this respect, Northern blot analysis can be considered as
the gold standard (Lee et al., 1993; Ambros et al., 2003). First, the
RNA from the cells or tissues of interest is extracted and run on
a high-resolution gel. Then, the gel is treated with probes that are
complementary in sequence to the predicted miRNA strand. If the
strand is expressed in the cells of interest, a band corresponding to
22 nucleotides will show, and in some cases the precursor, which is
around 60 nucleotides, will also show. Although this double-band
constitutes compelling evidence of miRNA biogenesis, Northern
blot analysis has low sensitivity, so many miRNAs that can be reli-
ably profiled by sequencing is below Northern blot detection limit
(Table 2).

PCR-BASED METHODS
In contrast, real-time polymerase chain reaction (RT-PCR) meth-
ods can profile and thus validate miRNAs of very low abundance.
These methods use sequence-specific primers to bind to the miR-
NAs and amplify them through reverse transcription and poly-
merase reaction (Lu et al., 2005). The abundances of amplified
sequences are measured by fluorescence, and can be used to esti-
mate the expression of the profiled miRNA. Some systems use
stem-loop primers that fold around the 3′ end of the miRNA and
can only amplify sequences with that particular end, increasing
the specificity of the measurements (Chen et al., 2005). Although
RT-PCR methods are considered reliable, the custom primers and
probes for newly predicted miRNAs can be costly and the methods
are rarely used to validate large sets of sequences.

11http://www.uea.ac.uk/computing/mirplex
12https://bioinformatics.mpi-bn.mpg.de
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Kang and Friedländer miRNA prediction from sRNA-seq data

Table 2 | Methods for miRNA validation.

Method Throughput Pros Cons

Northern blot analysis Low Length of transcripts observed, possibility of

“double-band”

Work-intensive, lack of sensitivity

PCR-based methods Low Specific to transcript 3′ end, sensitive Costly for large-scale validation

Ectopic RNA hairpin expression Low miRNA biogenesis is directly tested Work-intensive, impractical for large-scale

validation

Association with Argonaute

proteins

Low/high Directly shows interaction with effector proteins Method is not always specific for miRNAs

Inhibition of miRNA biogenesis

pathways

Low/high Directly shows dependence on biogenesis proteins Knock-downs are transient and sometimes

weak, generating knock-outs is time-consuming

Experimentally identified target

sites

Low/high Directly demonstrates target interaction or

repression

Reporter assays are work-intensive

Conservation and population

selection pressure

Sequence

analysis

No wet-lab experiments required Non-conserved miRNAs can be functional

ECTOPIC RNA HAIRPIN EXPRESSION
In some cases, an miRNA is very lowly expressed, but researchers
want to know if the miRNA biogenesis machinery would process
it, were it highly expressed. It is possible to synthesize the DNA
sequence of the candidate hairpin and clone it into a bacterial
or viral vector (Chiang et al., 2010). The vector is then trans-
fected into a cell culture, and the hairpin sequence is expressed.
If the hairpin is recognized and cleaved by the miRNA biogen-
esis machinery, the predicted miRNA strand will accumulate in
cells, and can then be detected by less sensitive methods, such as
Northern blot analysis. A disadvantage of this method is that it
is time-consuming, in that just a few miRNAs can be tested in
parallel in one experiment.

ASSOCIATION WITH ARGONAUTE PROTEINS
Since miRNAs associate with Argonaute proteins, showing that a
predicted miRNA interacts with these proteins constitutes strong
evidence of its function. There are now anti-bodies for Arg-
onaute proteins in mammals (Ender et al., 2008), meaning that
these proteins can be isolated in immuno-precipitation and their
associated sRNAs studied. This profiling was previously done by
Northern blot analysis or RT-PCR, but is now often done by next-
generation sequencing, allowing transcriptome-wide validation.
In some cases, the interaction between protein and RNA is stabi-
lized by crosslinking (Licatalosi et al., 2008; Hafner et al., 2010),
and some studies also investigate interaction with other proteins
known to interact with miRNAs, such as DGCR8 (Macias et al.,
2012). However, immuno-precipitation studies also have caveats as
they are often performed in cell lines, which may not have the same
complements of miRNAs as the tissues from which the sequences
are sometimes predicted. Further, sRNAs other than miRNAs are
sometimes immune-precipitated with Argonaute proteins (Ender
et al., 2008), and it is not understood if these reflect genuine bio-
logical realities, or rare artifacts introduced during the experiment.
Thus, the presence of an miRNA candidate in such an experiment
does not constitute final evidence that it is genuine.

INHIBITION OF miRNA BIOGENESIS PATHWAYS
It is a hallmark of canonical miRNAs that they depend on the
presence of Drosha, Dicer, and DGCR8 for their expression. Thus,
if an miRNA candidate is depleted in cells that are void of one or
more of these proteins, it constitutes strong evidence that the can-
didate is genuine. The expression of the proteins can be knocked
down through RNA interference, where artificial sRNAs comple-
mentary in sequence to the Drosha, Dicer, or DGCR8 mRNAs are
introduced into cells (Friedländer et al., 2012, 2014). The sRNAs
can bind to the mRNAs and reduce protein output transiently.
The genes can also be conditionally knocked out using genetic
methods (Babiarz et al., 2008). In this case, Drosha, Dicer, or
DGCR8 genes are deleted, leading to a collapse of the miRNA
populations. Both with RNA interference and genetic methods, it
is possible to use next-generation sequencing to profile miRNA
expression transcriptome-wide before and after the loss of the
biogenesis pathways. A limitation of the knock-down approach
is that effects on the sRNA expression level are often subtle and
transient (Friedländer et al., 2012). The genetic knock-outs give
much clearer results, but require generation of mutant animals or
cells, which is not trivial, even with the advances made with the
CRISPR/Cas9 system (Cong et al., 2013; Mali et al., 2013).

EXPERIMENTALLY IDENTIFIED TARGET SITES
Arguably, demonstrating the function of a miRNA constitutes
stronger evidence than demonstrating its biogenesis or associa-
tion with proteins. For this purpose, reporter constructs can be
designed that are fusions of a target 3′ UTR and a reporter gene
that express a marker such as luciferase (Zeng and Cullen, 2003).
If the fluorescence is specifically reduced in the presence of the
guide miRNA, this indicates an miRNA–target interaction. These
reporter assays can be designed to simulate natural cell conditions,
with endogenous miRNA and target levels and a natural number
of target sites. While this method is time-consuming and only tests
a single miRNA in one experiment, new genomics data can pro-
file miRNA–target interaction transcriptome-wide (Helwak et al.,
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2013; Grosswendt et al., 2014). These methods use exogenous or
endogenous ligases to crosslink miRNAs and their targets, and
subsequently sequence these chimeric sequences, yielding infor-
mation on miRNA–target pairs. These data have been found to
contain novel miRNA candidates linked to mRNA sites that have
typical target features (Friedländer et al., 2014).

CONSERVATION AND POPULATION SELECTION PRESSURE
Some miRNAs, like let-7, are deeply conserved and retain almost
the exact same sequence in all animals with bilateral body types,
ranging from nematode to fruit fly to human (Pasquinelli et al.,
2000). Thus miRNA validation is transitive: if a validated miRNA
is conserved in a new species, it is likely to be genuine. There are
numerous criteria for defining if an miRNA is conserved, but some
parts are more likely to be under negative selection. Often homol-
ogous genome sequences from numerous species are aligned and
the conservation studied to see which parts are most conserved.
The nucleotides 2–8 in the 5′ end of the miRNA (the “seed”) are
important for target specificity and are often conserved in evolu-
tion (Lai, 2002). In fact, miRNAs are grouping into functional gene
families based on their seed sequence. The remaining part of the
miRNA guide strand also confers binding specificity (Bartel, 2009)
and the passenger strand is important for forming duplex with the
guide. Last, the sequences flanking the two miRNA strands often
exhibit some conservation, as these regions are important for the
hairpin structure, and for recruiting proteins during biogenesis
(Han et al., 2006). There are examples of miRNAs that are species-
specific, yet have well-defined and important functions (Hu et al.,
2012). In these cases, cross-species conservation patterns cannot
be used, but intra-species population studies can reveal selection
pressures (Friedländer et al., 2014). However, since these selection
pressures can be very subtle, large numbers of novel miRNA genes
are needed to detect trends, so the population approaches are not
applicable to most studies. Further, sequences can to some extent
be conserved by chance, so it often does not constitute definite
evidence of function.

COMPUTATIONAL BENCHMARKING
Wet-lab experiments include gold standards for demonstrating
that a given miRNA candidate is genuine. But computational
benchmarking can give some estimates to the performance of
methods to predict miRNAs, and can compare strengths and weak-
nesses of distinct algorithms. An advantage of benchmarking is
further that it is easily undertaken by computational research
groups, while performing Northern blot analyses, for instance,
may require substantial investment of time and funds.

Some of the most widely used measures of prediction perfor-
mance are sensitivity, specificity, and accuracy (Table 3). Sen-
sitivity is the fraction of known distinct miRNAs in the data
that are recovered by the method. Specificity is the fraction of
(assumed) non-miRNA sequences that are correctly discarded by
the algorithm. The false positive rate is the fraction of non-miRNA
sequences that are incorrectly reported as miRNAs, or 1 – sensitiv-
ity. Accuracy is the fraction of distinct sequences that are correctly
classified by the method, summing over all miRNAs and non-
miRNAs. Another common measure of prediction performance
is the area under curve (AUC) of receiver operating characteristic

Table 3 | Sensitivity, specificity, and accuracy.

miRNA state

Genuine miRNA Not genuine miRNA

miRNA

prediction

Positive True positives (TP) False positives (FP)

Negative False negatives (FN) True negatives (TN)

Formulas Sensitivity or true positive rate TP/(TP + FN)

Specificity or true negative rate TN/(FP +TN)

Accuracy (TP +TN)/(TP + FP + FN +TN)

(ROC) Curve. The sensitivity is plotted as a function of the false
positive rate, showing the trade-off between sensitivity and speci-
ficity. The area under the curve indicates performance, with the full
area (100%) corresponding to perfect prediction, while half area
(50%) corresponding to prediction that is no better than random.

However, the problem of predicting miRNAs from sRNA-seq
data is often a skewed one. That is, if tens of thousands of candidate
hairpins are being investigated, the number of genuine miRNA
precursors is typically in the hundreds. In other words, the num-
ber of negatives often vastly outnumbers the positives. Therefore,
a modest reduction in sensitivity can often be tolerated, while a
modest reduction in specificity can result in an unmanageable
number of false positives. For instance, a reduction in sensitiv-
ity from 99 to 90% will mean a 9% loss of genuine miRNAs,
while a corresponding reduction in specificity will cause a 10-fold
increase in false positives, potentially rendering the resulting pre-
dictions useless. To address this, true positives and false positives
are often reported as absolute numbers, to give a concrete idea of
the number of sequences a user of the methods will encounter.
Some methods, like miRDeep and miRDeep2, include computa-
tional controls to give the user an idea of the number of false
positives generated by each run.

Most studies presenting tools to predict miRNA genes include
benchmarking of their own method, often comparing it to com-
petitor methods. A summary of these comparisons would be
too comprehensive for this review; however, we have listed all
the benchmarking in Table 1. However, two independent stud-
ies have been undertaken to compare the prediction performance
of miRNA discovery tools. One study found miRExpress to be the
most sensitive method and the mirTools suite (which uses miRD-
eep for prediction) to be the most accurate method (Li et al., 2012).
However, we caution against relying too much on the findings of
this study, as the inferred performance of the distinct tools dif-
fers widely from other performance comparisons (as referenced
in Table 1). Another independent study has been undertaken to
compare the prediction performance of miRDeep, miRDeep2, and
miRanalyzer (updated version), which are some of the most widely
used methods in the field (Williamson et al., 2013). One tool,
DSAP, which quantifies miRNAs in sRNA-seq was also included
in the study, but is not described here as it does not predict new
miRNAs. The tools were tested against six biological datasets from
cell lines and one simulated negative control data set. miRDeep2
was overall found to have the highest sensitivity, while miRan-
alyzer reported the most novel miRNA candidates. However, it
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also reported miRNAs from the simulated data, suggesting that
some of the ones reported from the biological data are false pos-
itives. miRDeep had the best overall trade-off between sensitivity
and specificity, as measured by AUC, followed by miRDeep2. It
should be mentioned that this benchmarking just represents per-
formance in a few use cases, and more independent studies should
be undertaken to evaluate the strengths and weaknesses of the
existing methods.

VISUAL INSPECTION OF STRUCTURE AND READ SIGNATURE
Many tools for miRNA prediction generate graphics of the novel
candidates, showing the RNA structure and the positions of the
sequenced RNAs relative to the hairpin. With experience, it is pos-
sible to make estimates which of the novel candidate miRNAs can
be validated in wet-lab experiments, and which will turn out to be
false positive predictions. The human eye is a sensitive tool that can
discriminate subtle features that are difficult to score computation-
ally without loss of sensitivity. For instance, the miRNA hairpin
structure will rarely contain large bulges, but will also rarely form
a tight stem. Also, the processing of miRNA 5′ ends tends to be
more precise than processing of the 3′ end (Ruby et al., 2006).
Spending some time looking at gold standard known miRNAs can
teach a researcher to identify these and more features. Of course,
visual inspection of structure and read signature is no substitute
for validation, but it can give the trained miRNA researcher an
estimate of the quality of his predictions.

FUTURE DIRECTIONS OF THE FIELD
RESOLVING AMBIGUOUS SEQUENCES
Any miRNA prediction depends on read mappings that trace the
sequenced RNAs to the genome loci from which they were tran-
scribed. sRNA-seq presents difficulties that are rarely encountered
in mRNA sequencing. We know from biology that each deep
sequenced RNA has been transcribed from exactly one genome
locus. However, when sequenced sRNAs are mapped to the ref-
erence genome, many map to more than one locus. This is in
some cases because the RNA is transcribed from a gene with many
copies in the genome, like a transposable element. In some cases,
it will be “spurious” mappings, meaning that a short sequence
can have chance matches to biologically unrelated positions in the
genome, especially when the reference genome is large. A solution
to the problem could be to assume that most deep sequencing
reads have originated from a relatively small number of genome
loci, and attempt to map the reads such that most of them locate
to the fewest possible number of loci. In some concrete cases,
this appears reasonable. For instance, imagine a read that maps
equally well to two genome loci. One locus is a “read desert” with
no other reads mapping nearby. The other locus is an rRNA gene
that has thousands of reads mapping. In this case, it would seem
reasonable to assume that the read should be mapped to the highly
expressed rRNA locus. Some work has already been made toward
overcoming these challenges. The tool SeqCluster first fuses reads
that overlap in sequence in a tiled way, and subsequently maps
the fused sequences to the genome (Pantano et al., 2011). These
methods can resolve many, although not all, ambiguous mappings.

CROSS-MAPPING EVENTS
Even though next-generation sequencing quality has improved
the last years, some nucleotides are inevitably called incorrectly.
Similarly, sRNAs can undergo biological editing events or have
untemplated nucleotides added to their 3′ ends. In these cases, an
sRNA will no longer map perfectly to the genome position; it was
originally transcribed from, but it may map perfectly to a distinct
genome position (de Hoon et al., 2010). These wrongly mapped
sRNAs will often be considered by miRNA prediction algorithms
and may cause false positives. In one study, an explicit statisti-
cal model to correct these errors was developed, and numerous
wrong mappings were corrected (de Hoon et al., 2010). However,
this model has to our knowledge never been implemented as a
user-friendly mapping tool. Ideally, such a model could be com-
bined with a method to unambiguously trace sequenced RNAs to
a single genome position (above). This would provide the sRNA
community with a custom tool to handle some of the difficul-
ties inherent in studying short sequences, and would provide an
excellent platform for miRNA prediction.

REPEAT-DERIVED miRNAs
The most commonly used tools for miRNA prediction discards
mature sequences that map to many genome loci. This is a practical
step to reduce the number of genome loci investigated and thus
the number of false positives. However, it is well established that
miRNA hairpins can arise from repetitive sequences such as trans-
posable elements (Smalheiser and Torvik, 2005; Berezikov, 2011),
and these cannot be detected by current prediction methods,
unless the hairpins have diverged in sequence from the consen-
sus repeats. Since repeat-derived sRNAs have been shown to have
important functions in, for instance, the mammalian germ line
(Aravin et al., 2006; Girard et al., 2006; Grivna et al., 2006; Lau
et al., 2006; Watanabe et al., 2006, 2008; Tam et al., 2008), it would
be interesting to investigate the prevalence and function of repeat-
derived miRNAs. However, such a study could be complicated by
multi-mapping problems (above) and would be much facilitated
by the development of custom mapping and sequence analysis
tools. Overall, the field of mapping sRNAs is understudied, and
advances in this field could benefit the community.

REDUCING sRNA-seq BIASES
It is well established that library preparation introduces strong
biases in sRNA-seq. One study has shown that artificial miRNAs
introduced to a buffer in carefully controlled equal abundance give
rise to numbers of reads that differ by orders of magnitude (Linsen
et al., 2009). This means that some miRNAs give rise to dispro-
portionate large numbers of reads, while others are difficult to
detect and thus also more difficult to discover using sequencing.
A recent study has traced these biases back to the ligase protein
that joins the miRNA with sequencing adapters (Sorefan et al.,
2012). miRNAs and adapters together form structures, some of
which are easily ligated and some of which are difficult to ligate.
In fact, since most sRNA-seq studies use the same ligase and the
same adapters (from the Illumina small RNA TruSeq protocol),
the miRBase database has been biased toward miRNAs that are
easily ligated with this protocol. The researchers of this study has
developed an alternative “high definition” protocol using pools of
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adapters that even out the biases, giving a more even representa-
tion of miRNAs and facilitating identification of novel sequences
(Sorefan et al., 2012). As this protocol becomes more widely used
in miRNAs discovery efforts, the skew in the miRBase database
will, for sure, be corrected.

UNDERSTANDING THE FEATURES THAT DETERMINE HAIRPIN
BIOGENESIS
The human transcriptome contains more than 100,000 hairpin
structures that resemble miRNA precursors (unpublished results).
More than half of these are located in protein coding transcripts.
Thus, while many mRNAs and miRNA primary transcripts resem-
ble each other in being capped, poly-adenylated, and containing
hairpin structures, the mRNAs are transported to the cytosol
and translated, while the pri-miRNAs are cleaved into regulatory
sRNAs. This mystery underlines our incomplete understanding of
miRNA biogenesis: which features determine if a given hairpin
is cleaved into miRNAs or left untouched? Does the presence of
protein factors protect the hairpin or make it available for Drosha
processing? Or does protein competition determine the hairpin
fate? And which structural and sequence features of the hairpin
determine which proteins are bound? Studies are unraveling these
interactions (Auyeung et al., 2013) but it is clear that our under-
standing is still incomplete. If we would understand what hairpin
features license biogenesis, we would be able to computation-
ally predict from genome sequence, which hairpins are cleaved
to miRNAs and which are left untouched.
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RNA editing is a dynamic mechanism for gene regulation attained through the alteration of
the sequence of primary RNA transcripts. A-to-I (adenosine-to-inosine) RNA editing, which
is catalyzed by members of the adenosine deaminase acting on RNA (ADAR) family of
enzymes, is the most common post-transcriptional modification in humans. The ADARs
bind double-stranded regions and deaminate adenosine (A) into inosine (I), which in turn is
interpreted by the translation and splicing machineries as guanosine (G). In recent years,
this modification has been discovered to occur not only in coding RNAs but also in non-
coding RNAs (ncRNA), such as microRNAs, small interfering RNAs, transfer RNAs, and
long non-coding RNAs. This may have several consequences, such as the creation or dis-
ruption of microRNA/mRNA binding sites, and thus affect the biogenesis, stability, and
target recognition properties of ncRNAs. The malfunction of the editing machinery is not
surprisingly associated with various human diseases, such as neurodegenerative, cardio-
vascular, and carcinogenic diseases. Despite the enormous efforts made so far, the real
biological function of this phenomenon, as well as the features of the ADAR substrate, in
particular in non-coding RNAs, has still not been fully understood. In this work, we focus on
the current knowledge of RNA editing on ncRNA molecules and provide a few examples
of computational approaches to elucidate its biological function.

Keywords: A-to-I RNA editing, ncRNA, microRNA, RNA-seq, ADARs, HTS

BACKGROUND
While in the past researchers mainly focused on DNA mutations in
order to further elucidate molecular pathways involved in numer-
ous cancers, in the last decade focus has shifted to the analysis
of post-transcriptional modification events, such as RNA editing.
Concurrently, it has been estimated that only 1% of mammalian
genome codes for protein, while the vast majority of the tran-
scriptome is composed of non-coding RNAs crucially involved in
gene expression pathways, such as transcription, translation, and
gene regulation (Cech and Steitz, 2014). The editing machinery,
occurring both in coding and non-coding RNAs, has been impli-
cated in various human diseases (Galeano et al., 2012; Tomaselli
et al., 2014). Strong interest is thus growing toward understand-
ing how and why RNA editing can influence non-coding RNA
function.

RNA editing is a type of post-transcriptional modification that
takes place in eukaryotes. Several forms of RNA editing have been
discovered, but nowadays A-to-I RNA editing is considered the
predominant one in mammals (Nishikura, 2010). Adenosine (A)
deamination produces its conversion into inosine (I), which in
turn is interpreted as guanosine (G) by both the translation and
splicing machineries (Rueter et al., 1999). Enzymes members of
the adenosine deaminase acting on RNA (ADAR) family catalyze
this biological phenomenon which occurs only on dsRNA struc-
tures (Bass, 2002; Jepson and Reenan, 2008; Nishikura, 2010).

Double-stranded RNAs are imperfect duplexes formed by base-
pairing between residues in the region proximate to the editing
site (usually overlapping a neighboring intron) and the exonic
sequence containing the A. Such proximate region is termed editing
complementary sequence (ECS), potentially located several hun-
dred to several thousand nucleotides upstream or downstream of
the edited A. This requires experimental validation and represents
one critical issue with the detection of editing sites.

Three members of the ADAR gene family can be distinguished
in humans, in particular, two isoforms of ADAR1 (ADAR1p150
and ADAR1p110) (Kim et al., 1994), ADAR2 (Lai et al., 1997), and
ADAR3 (Chen et al., 2000). While ADAR1 and ADAR2 are widely
expressed in tissues, ADAR3 is limited to brain tissues (Melcher
et al., 1996). Interestingly, unlike ADAR1 and ADAR2, ADAR3
possesses a catalytically inactive (Chen et al., 2000) arginine-rich R
domain, which allows the enzyme to bind single strand structures.

An RNA edited site neighborhood profiling was established
for ADAR1-2. While for ADAR1, no 3′ neighbor preference has
been identified, a 5′ nearest neighboring preference consisting
of U=A > C > G (Polson and Bass, 1994) can be observed. Like
ADAR1, ADAR2 has a similar 5′ nearest neighboring preference
(U≈A > C=G) but, furthermore, it has a 3′ nearest neighboring
preference (U=G > C=A) as well, creating a particular trinu-
cleotide sequence with the adenosine at the center (UAU, AAG,
UAG, AAU) (Lehmann and Bass, 2000). In addition, the ADARs
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show selectivity based on both dsRNA length and the presence
of mismatches, loops, and bulges that interrupt the base-pairing
(Bass, 1997).

There are two kinds of A-to-I RNA editing: specific A-to-I
editing occurs in short duplex regions interrupted by bulges and
mismatches (Wahlstedt and Ohman, 2011); the promiscuous one
occurs within longer stable duplexes of hundreds of nucleotides,
mostly formed by repetitive elements, such as Alus, in which up
to 50% of adenosines could be targeted by ADARs (Carmi et al.,
2011; Bazak et al., 2014b).

Adenosine-to-inosine RNA editing has been discovered both
in intronic and exonic regions, 5′ and 3′-UTRs as well. RNA edit-
ing events can take place in several cellular contexts: in the gene
expression pathway (Bazak et al., 2014b), such as in translation
(Nishikura, 2010) or in the creation and/or destruction of splicing
sites (Rueter et al., 1999); during gene regulation through editing
events in microRNA/mRNA binding regions (Nishikura, 2006;
Borchert et al., 2009). Recent reports affirmed that RNA edit-
ing may occur in non-coding RNA molecules, particularly within
precursor-tRNA (Su and Randau, 2011), pri-miRNA (Kawahara
et al., 2008; Kawahara, 2012), and lncRNA (Mitra et al., 2012).
It was estimated that 10–20% of miRNAs undergo A-to-I edit-
ing (Blow et al., 2006; Kawahara et al., 2008) at the pri-miRNA
level (Yang et al., 2006). Editing can influence both the maturation
process (Yang et al., 2006) and the recognition of binding sites on
target mRNAs (Kawahara et al., 2007; Wu et al., 2011). Indeed, a
single editing site in a miRNA seed region could drastically change
its set of targets (Alon et al., 2012).

In the past decade, surprising results have been obtained in
RNA editing site discovery, thanks initially to the application of
bioinformatic approaches, subsequently fully replaced by RNAseq-
based methods in recent years. The large amount of editing sites
discovered by these methodologies has led to the creation of
public databases (Kiran and Baranov, 2010; Kiran et al., 2013;
Ramaswami and Li, 2014). As described below, all these resources
containing very important information, such as editing level and
genomic annotations, can help to functionally elucidate the RNA
editing phenomenon.

This mini review summarizes both the current knowledge on
RNA editing, as well as past and present approaches for discov-
ery and analysis of editing sites, particularly emphasizing on RNA
editing in non-coding RNA (ncRNA) molecules.

COMPUTATIONAL APPROACHES TO DISCOVER AND
ANALYZE RNA EDITING EVENTS
THE ORIGINS OF THE ANALYSIS AND DETECTION OF RNA EDITING
SITES – COMPUTATIONAL AND BIOCHEMICAL METHODS
In the early 2000s, the ADAR enzyme family was observed to play
an important role during embryonic development (Higuchi et al.,
2000; Wang et al., 2000), while also associating the alteration of
the editing machinery to neurological diseases (Maas et al., 2001;
Kawahara et al., 2004). At that time, only few RNA editing sites
were discovered (Morse and Bass, 1999). Hoopengardner et al.
(2003) using comparative genomics identified and experimentally
validated 16 novel editing sites in fruit fly and one in human. Inter-
estingly, they discovered that these editing sites are surrounded by
highly conserved exonic regions which form a dsRNA structure as

required for ADARs. Despite these efforts, most editing sites were
detected by chance.

In 2004, unprecedented computational methods were designed
in order to discover clustered A-to-I RNA editing sites in Alu
repeats of the human transcriptome (Athanasiadis et al., 2004;
Kim et al., 2004; Levanon et al., 2004), going from dozens to
tens of thousands of editing sites. By aligning millions of pub-
licly expressed sequence tags (EST) (Boguski et al., 1993) against
a reference genome, it is indeed possible to identify A-to-G mis-
matches as putative candidates of A-to-I editing events. Unfortu-
nately, without considering RNA editing, related features such as
nearest neighbor preference sequence, this naïve approach pro-
duces a large amount of false positives due to sequencing errors
originating from poor sequencing quality, somatic mutations, or
single nucleotide polymorphisms (SNP). All of the above methods
avoided this issue by taking into account cDNA-genome align-
ments along with clusters of mismatches in long and stable dsRNA
structures and, finally, filtered known SNPs from the obtained
candidates, reaching good accuracy.

A more quantitative and accurate analysis was later provided
by Eggington et al. (2011)1, who predicted editing sites in dsRNAs
by assuming a multiplicative relationship between the coefficients
(estimated by a non-linear regression model and dependent on
the bases neighboring each site) used to determine the percentage
of editing sites.

The bioinformatics methods for RNA editing detection com-
paring a cDNA sequence with a reference genome nevertheless
present a significant problem: they are not able to distinguish a
guanosine originating from an I-to-G replacement, from a guano-
sine as a product of noise, sequencing errors, or SNP. To overcome
this limit, Sakurai et al. (2010) designed a biochemical method,
called inosine chemical erasing (ICE), for the identification of
inosine sites on RNA molecules by employing inosine-specific cya-
noethylation with reverse transcription, PCR amplification, and
direct sequencing. Without requiring changing profiles of cellular
gene expression nor genomic DNA for reference, this method accu-
rately and consistently identifies inosines in RNA strands. Recently,
Sakurai et al. (2014) combined the ICE method with deep sequenc-
ing technology (ICE-seq) for an unbiased genome wide screening
of novel A-to-I editing sites.

NEW ERA OF RNA EDITING DISCOVERY – HIGH-THROUGHPUT
SEQUENCING APPROACHES
Despite the substantial results achieved with the approaches
described above, some restrictions due to sequencing limitations
remained. Before 2009, in fact, only a few dozen editing sites had
been detected outside repetitive regions in humans due to the
impossibility of designing a systematic method to discover editing
events in ncRNA genes.

With the advent of high-throughput sequencing technology
(HTS), things radically improved. In 2009, Li et al. (2009) devel-
oped the first HTS-based application which, through massively
parallel target capture and DNA sequencing, identified 36,000
non-repetetive putative A-to-I editing events. Recently, several

1http://www.biochem.utah.edu/bass/index.html
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HTS-based approaches for editing discovery have been developed
(see Table 1). It was latterly hypothesized that there are more than
100 million editing sites in human Alu repeats, located mainly in
genic regions (Bazak et al., 2014a). Despite the increased accu-
racy, these methods have limitations in terms of false positives
produced (Kleinman and Majewski, 2012; Lin et al., 2012; Pickrell
et al., 2012).

Table 1 depicts some of the most important studies on RNA
editing detection by HTS. The majority was designed to iden-
tify RNA editing events in protein-coding RNA, while a few also
focus on lncRNAs as well. In 2010, de Hoon et al. developed a
strategy to correct cross-mapping of small RNA deep-sequencing
libraries, applying it to analyze RNA editing in human mature
miRNAs. They concluded that miRNA editing is rare in animals

Table 1 | Deep sequencing based approaches.

Focus Year # Editing sites (ES) discovered Description Reference

mRNAs 2009 239 A-to-I ES Parallel target capturing and DNA sequencing Li et al. (2009)

miRNAs 2010 10 (three A-to-I and two C-to-U) Strategy to correct for cross-mapping in short RNA

sequencing libraries

de Hoon et al. (2010)

mRNAs 2011 1,809 (1,096 A-to-I and 11

C-to-U)

Massively parallel DNA and RNA sequencing of 18

Korean individuals

Ju et al. (2011)

mRNAs 2012 9,636 (5,965 A-to-I) Accurate mapping approach to distinguish single-

nucleotide differences in one set of RNA-seq data

Bahn et al. (2012)

Coding, non-coding

and small RNA genes

2012 22,588 (21,113 A-to-I) Computational pipeline to identify RNA editing sites

from genome and whole-transcriptome data of the

same individual

Peng et al. (2012)

Alu and non-Alu

regions

2012 150,865 (144,406 A-to-I) from

GM12878

Framework to robustly identify RNA editing sites

using transcriptome and genome deep-sequencing

data from the same individual

Ramaswami et al. (2013)

457,078 (423,377 A-to-I) from

(Peng et al., 2012) data

mRNAs 2012 61 A-to-I ES Computational strategy based on two-step mapping

procedure with only RNA-seq and without a priori

RNA editing information

Picardi et al. (2012)

mRNAs 2012 5695 (5349 A-to-I) A rigorous computational pipeline to identify RNA

editing site in human polyA+ ENCODE RNA-seq data

from 14 cell types.

Park et al. (2012)

miRNAs 2012–

2013

19 A-to-I ES Protocol for the identification of RNA editing sites in

mature miRNAs using deep sequencing data.

Alon et al. (2012) and Alon

and Eisenberg (2013)

mRNAs 2013 >1 million of A-to-I ES in other

human LCL and several tissues

Two methods (separate and pooled sample methods)

to accurately identify RNA editing events by using

RNA-seq data from multiple samples in a single

species

Ramaswami et al. (2013)

mRNAs 2013 2,245 A-to-I ES A strategy to accurately predict consecutive RNA

editing events from human RNA-seq data in the

absence of relevant genomic sequences

Zhu et al. (2013)

mRNAs 2013 223,490 A-to-I ES from

(Ramaswami et al., 2013) data

Suite of python scripts to investigate RNA editing by

using RNA-seq data

Picardi and Pesole (2013)

Alu elements 2014 1,586,270 A-to-I ES Detection approach to analysis Alu editing by using

large-scale RNA-seq data

Bazak et al. (2014a)

mRNAs 2014 29,843 A-to-I ES Unbiased genome-wide screening of A-to-I editing

events using the ICE-method combined with deep

sequencing (ICE-seq)

Sakurai et al. (2014)

mRNAs 2014 455,014 A-to-I ES Computational method to detect hyper-edited reads in

RNA-seq data

Porath et al. (2014)

Some of the most important deep sequencing based approaches, developed in the last 5 years, to identify RNA editing sites in humans.
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and addressed methodological problems in its analysis through
RNAseq. Subsequently, Alon et al. (2012) systematically identified
known editing events in mature miRNAs of human brain, in addi-
tion to 17 novel ones, 12 of which occur in the seed region (Alon
and Eisenberg, 2013). They moreover identified sequence prefer-
ence in the residues, both flanking and opposing the A-to-I editing
site. As the authors suggested, this pipeline could identify editing
sites in miRNAs from NGS data of different experimental set-ups.
Currently, Alon’s method is the only one able to accurately detect
and quantify A-to-I RNA editing events in mature miRNAs by
NGS. Together with the latest pipeline published by Picardi et al.
(2014) for RNA editing detection in human lncRNAs from deep
sequencing experiments.

CURRENT KNOWLEDGE OF RNA EDITING ON ncRNA
MOLECULES
BIOLOGICAL DATABASES: DARNED AND RADAR
The birth of the first computational methods for the identifica-
tion of RNA editing events (Athanasiadis et al., 2004; Kim et al.,
2004; Levanon et al., 2004) caused a growing interest in the sci-
entific community for RNA editing, as there was a strong need
to collect in a centralized repository the tens of thousands of
editing events discovered up to that point. For this reason, Kiran
and Baranov designed DARNED2 (DAtabase of RNa EDiting),
the first public database of known editing sites in human (Kiran
and Baranov, 2010). The first release of DARNED contained more
than 40,000 predicted human editing sites, of which a few were
experimentally validated (Ramaswami et al., 2013). The useful-
ness of the repository rests in the ability to retrieve information
on RNA regions where editing events can occur, such as genome
coordinates, cell/tissue/organ sources, and the number of ESTs
supporting referenced and edited bases. According to the first
release of DARNED, Laganà et al. (2012) built miR-EdiTar3, a
database of predicted miRNA binding sites that could be affected
by A-to-I editing sites occurring in 3′UTRs.

In subsequent years, the advent of high-throughput RNA
sequencing (RNAseq) and biochemically-based (Sakurai et al.,
2010) techniques progressively led to the development of
increasingly accurate transcriptome-wide methods for RNA edit-
ing detection. Furthermore, deep sequencing based approaches
allowed to identify a large number of editing sites, up to two
orders of magnitude higher than before. Two years later, a new
release of DARNED recorded more than 330,000 editing sites in
human (Kiran et al., 2013). This led to the design of tools to both
visualize and annotate RNA-Seq data with known editing sites
(Picardi et al., 2011; Distefano et al., 2013).

Although DARNED contains precious information regarding
known editing sites, only a small portion of this have been later
manually annotated, not providing any information about the spa-
tiotemporal regulation of editing events through their editing level
(Wahlstedt et al., 2009; Solomon et al., 2014). To improve this
aspect, Ramaswami and Li built RADAR4, a rigorously annotated
database of A-to-I editing sites. Particularly, they have enriched

2http://darned.ucc.ie
3http://microrna.osumc.edu/mireditar
4http://RNAedit.com

RNA editing knowledge by including detailed manually curated
information for each editing site, such as genomic coordinates,
type of genomic region (intergenic region, 3′-or-5′ UTR, intron,
or coding sequence if the editing site occurs in genic region),
type of repetitive element (when the editing event occurs in Alu
or not-Alu element), the conservation in other species (chim-
panzee, rhesus, mouse), and the tissue-specific editing level when
known. Currently, RADAR contains about 1.4 million editing
sites as detected in Homo Sapiens (Ramaswami and Li, 2014).
Among them, the editing sites that occur in human ncRNAs are
only a small fraction, consisting of about 21,000 events, with only
1,219 editing sites in microRNAs. Despite being a relatively small
percentage, amounting to about 1.6% of the total number of
human editing sites, these miRNA editing events may very well
posses significant importance as far as the editing phenomenon is
concerned.

Without a doubt, continuous updating of the RADAR database
gradually will become a precious resource for researchers in this
field, leading to a better understanding of the editing phenomenon
in coming years.

EFFECT OF RNA EDITING IN NON-CODING RNA MOLECULES
In the last decade, editing events have been discovered in ncRNA
molecules, such as miRNAs, siRNAs, tRNAs, and lncRNAs.
Although not fully demonstrated yet, these editing sites could alter
the stability, the biogenesis, and target recognition of ncRNAs, as
shown in Figure 1.

RNA editing in miRNAs and siRNAs
As seen above, many A-to-I editing sites in miRNAs have been
discovered (Luciano et al., 2004; Kawahara et al., 2007; Alon et al.,
2012), and these could influence miRNA-mediated gene regula-
tion in several ways (Nishikura, 2010), although in some cases
low percentage editing of mature miRNAs could be a low level of
genomewide editing noise rather than possessing biological rel-
evance (de Hoon et al., 2010). First, editing sites occurring in
pri-miRNAs can suppress cleavage processing by Drosha and/or
Dicer due to the presence of inosines, while in addition, highly
edited dsRNAs could be rapidly degraded by Tudor-SN (TSN)
(Yang et al., 2006). Second, some editing events in pri-miRNAs
can produce edited pre-miRNAs, for which different scenarios can
occur based on the location of the editing site. In particular, studies
have demonstrated that A-to-I editing sites in miRNA seed regions
can drastically change their target set (Kawahara et al., 2008; Alon
et al., 2012), causing a functional transformation, but also affect
the mRNA target selection and silencing processes (Kume et al.,
2014).

Small interfereing RNAs, differently from miRNAs, originate
from long double-strand RNAs exported to the cytoplasm, where
they are cleaved by the Dicer-TRBP complex and successively
loaded inside the RISC complex. It has been observed that ADAR1-
p150, which acts in the cytoplasm, can bind to siRNAs preventing
and thus overall reducing the cleavage process of the Dicer-TRBP
complex (Yang et al., 2005; Kawahara et al., 2007).

Lately, a new role for ADAR1-p150 not associated to RNA
editing was discovered, in which the enzyme forms an het-
erodimer complex with Dicer by protein–protein interaction

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology                                      March 2015 | Volume 3 | Article 37 | 29

http://darned.ucc.ie
http://microrna.osumc.edu/mireditar
http://RNAedit.com
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Nigita et al. RNA editing of non-coding molecules

A-to-I RNA editing

in ncRNA molecules

Mainly Hypothetical 

Biological consequences

miRNA

siRNA lncRNA

tRNA

Mainly Hypothetical

Biological consequences

Prevent Drosha 

cleavage

Alteration of 

its set of target

NA

lncRNA

tR

Nucleus

Cytoplasm

Degradation

Prevent Dicer 

cleavage

Alteration of

its set of targ

NARNA

Alteration

RNRN

Deegra

siRiRsiRiR

D

AA

ett

DeegraD ra

Pr

Alteration of 

its set of target
Nuclear retentionlear

Influence on the

targeting and 

silencing  efficiency

ence on the

cer

NANA

r retentionr r

NA

Alteratition

NA

etention
c

Prev

Al

its 

cle

ven rosha

avage

nt Dr

revennt Diof

a

of 

adationationaaadatadat

Pr

NNuc

lncRlncR

uclationat NNuc

FIGURE 1 | Mainly hypothetical biological consequences. In this figure, we show some of the main biological consequences of A-to-I RNA editing in ncRNA
molecules, both in nucleus and cytoplasm.

(PPI), increasing the rate of siRNA and miRNA processing and
facilitating RISC loading and RNA silencing, instead of an antag-
onistic role in RNAi by an ADAR1–ADAR1 homodimer complex
(Nishikura et al., 2013; Ota et al., 2013).

RNA editing in lncRNAs
Another category of ncRNAs is represented by long non-coding
RNAs (lncRNAs). In recent years, HTS analyses have led to the
identification of thousands of lncRNAs, many of which have
revealed to be transcripts deriving from the antisense strand of
protein coding genes. lncRNAs, due to their stable long double-
strand regions, often originating from the presence of repetitive
elements, such as Alus, can be affected by A-to-I RNA editing (Peng
et al., 2012). The biological functions of A-to-I editing occurring
in lncRNAs can be several.

Long non-coding RNAs can be retained in the nucleus as a
consequence of the editing phenomenon until cleavage of the
hyper-edited region takes place and the remaining lncRNA portion
is exported to the cytoplasm (Prasanth et al., 2005). Nevertheless,
as for miRNAs (Yang et al., 2006), edited lncRNAs could though be
degraded through Tudor-SN. Considering the property lncRNAs
possess to bind with RNA and DNA (Rinn and Chang, 2012; Mer-
cer and Mattick, 2013), as well as RNA binding proteins (Hellwig
and Bass, 2008), cases of editing sites in lncRNAs could clearly
change their target set and RNP structures respectively, thus alter-
ing their intrinsic biological function (Geisler and Coller, 2013).
Finally, a far more rare RNA editing phenomenon compared to the
one caused by inverted repeat structures in mRNAs could occur for

those transcripts which associate to antisense lncRNAs, providing
a double strand RNA structure suitable for ADAR as suggested in
(Geisler and Coller, 2013).

RNA editing in tRNAs
Differently from mRNAs and several categories of ncRNA mole-
cules which undergo A-to-I editing primarily by ADARs, A-to-I
editing events in mature transfer RNAs (tRNAs) in eukaryotes,
can possibly be a result of adenosine deaminases acting on tRNA
enzyme family (ADATs) (Su and Randau, 2011). A-to-I editing in
these small ncRNAs is conserved in various species and occurs
principally at positions 34, 37, and 57 of certain tRNAs (Torres
et al., 2014). Despite this phenomenon being ubiquitously present
in human tissues, the role of A-to-I tRNA editing remains still
unknown.

CONCLUSION
As seen above, currently Alon’s pipeline is the only HTS-based
method to systematically identify A-to-I editing sites in pre- and
mature microRNAs. There is a current and urgent necessity for
new HTS-based methodologies to emerge in order to not only
accurately identify and analyze editing events in other categories of
ncRNA molecules, such as tRNAs, lncRNAs, and so on, but also to
investigate through functional enrichment analysis, the biological
outcomes that a single editing event can generate. Concurrently,
it could be interesting to analyze how the editing phenomenon
can influence a biological pathway within a temporally changing
cellular condition, such as starvation or hypoxia, considering that
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a single editing site in a ncRNA molecule could drastically modify
its function.
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The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression
has not only become a standard laboratory tool for gene functional studies but it has also
opened up new perspectives in the design of new and potentially promising therapeutic
strategies. Bioinformatics has provided researchers with a variety of tools for the design,
the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA),
short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More
recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 sys-
tem (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the
potential to also regulate gene expression at both transcriptional and post-transcriptional
level in a more specific way. In this mini review, we present RNAi and CRISPRi design
principles and discuss the advantages and limitations of the current design approaches.

Keywords: RNAi, siRNA, miRNA, a-miR, AntagomiR, Sponge, CRISPRi

INTRODUCTION
Natural regulatory RNAs are a heterogenous group of endogenous
non-coding RNAs that modulate biological processes at many lev-
els through different mechanisms. They have inspired the design
of synthetic RNA molecules, such as riboswitches, sensors, and
controllers, as key elements for programing cellular behaviors, as
well as antisense-based approaches for specific gene expression
regulation, which is the focus of this mini-review (Sharma et al.,
2008; Culler et al., 2010; Liang et al., 2011).

RNA interference (RNAi) was discovered in 1998, when Andrew
Fire and Craig C. Mello reported the capability of exogenous
double-stranded RNAs (dsRNA) to silence genes in a specific man-
ner in C. elegans (Fire et al., 1998). Central molecules in RNAi are
microRNA (miRNA) and small-interfering RNA (siRNA).

miRNAs are small endogenous non-coding RNAs, typically 18–
22 bp long, which derive from longer hairpin-shaped precursors
called pre-miRNA (Bartel, 2004). A pre-miRNA can encode one
or two different mature miRNAs, one from each arm (-5p and
-3p). Pre-miRNAs come, in turn, from primary transcripts, called
pri-miRNA, which are transcribed from miRNA genes. Mature
miRNAs are incorporated into effector protein complexes called
RISCs (RNA-induced silencing complex) and exert their regula-
tory function by binding specific target mRNAs through perfect
or, more often, partial sequence complementarity, leading to the
inhibition of their translation or promoting their degradation.

siRNAs are mostly exogenous dsRNA molecules derived from
viral RNAs or artificially introduced into the cell (Chu and Rana,
2007).

The use of artificially designed siRNA has become a common
and powerful strategy for the knock-down of gene expression

yielding functional including therapeutic phenotypes (Gunsalus
and Piano, 2005; Kim and Rossi, 2007). Several optimizations have
been proposed in order to improve their efficacy and specificity
(Liu et al., 2012b). Although research is focused on the develop-
ment of selective delivery systems, a crucial factor is the presence
of undesired off-target effects. siRNAs are designed to be perfectly
complementary to their target sequences, ideally with few or no
off-target genes. However, several studies have shown that a siRNA
can bind mRNAs through partial complementarity, in a miRNA-
like way, thus leading to undesirable and not easily predictable
side effects (Birmingham et al., 2006; Jackson et al., 2006). In fact,
despite the advances made in the recent past years, miRNA-target
recognition has revealed itself to be a very dynamic mechanism
influenced by many factors, which are only partially understood
(Bartel, 2009; Thomas et al., 2010).

Along with specific gene silencing, the artificial repression of
miRNAs can also provide a valuable tool for functional studies
and have important therapeutic applications (Esquela-Kerscher
and Slack, 2006; Garofalo et al., 2008; Croce, 2009). Two different
strategies have been developed for the specific inhibition of miR-
NAs: antagomiRs and miRNA sponges (Krützfeldt et al., 2005;
Ebert et al., 2007). The former consist of small RNAs exhibit-
ing anti-complementarity to the miRNA to repress. The latter
are longer RNA transcripts that act as attractors for miRNAs by
distracting them from their original targets.

Finally, a novel methodology for artificial gene expression and
miRNA regulation based on Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) has been recently proposed (Qi
et al., 2013). CRISPR interference (CRISPRi) employs an engi-
neered CRISPR/Cas system to control gene expression at the
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Laganà et al. Synthetic RNAs for gene regulation

transcriptional level through a catalytically inactive Cas9 protein.
Recent studies have shown that the CRISPR/Cas system can also
target RNA (Hale et al., 2009).

In this mini-review, we summarize RNAi and CRISPRi design
principles and discuss the advantages and limitations of the
current approaches.

siRNA DESIGN PRINCIPLES
siRNA are usually synthesized as double-stranded RNA duplexes
or as hairpin-shaped molecules called shRNA. The siRNA design
process consists of the identification of a functional binding site
on a target mRNA sequence, which will correspond to the sense
strand of the siRNA. The anti-sense sequence is obtained as the
complement to the sense strand.

Many studies have been conducted to determine the features
associated to functional siRNAs and have allowed to establish
siRNA design rules. Elbashir et al. (2001b) suggest to choose
the 23-nt sequence motif AA(N19)TT as binding site, where N19
means any combination of 19 nucleotides (nt) and corresponds
to the sense strand of the siRNA. The complement to AA(N19)
corresponds to the anti-sense strand (Figures 1A–C).

Symmetric 3′ dTdT overhangs are added to the siRNA duplex
to improve its stability and facilitate RISC loading. Although other
combinations of nucleotides are acceptable, dGdG overhangs
should be avoided, as they appear to be associated to decreased
siRNA activity (Elbashir et al., 2001a,b; Strapps et al., 2010). siRNA
duplexes often have asymmetric loading of the anti-sense versus
sense strands. The strand whose 5′ end is thermodynamically less
stable is preferentially incorporated into the RISC (Khvorova et al.,
2003).

siRNA design rules can be classified into sequence and struc-
ture rules (See Table S1 in Supplementary Material). Sequence
rules concern the position of the binding site in the target
transcript and its nucleotide composition. The target region
should be chosen preferably 50-100 nt downstream of the start
codon and should avoid the middle of the coding sequence
(Elbashir et al., 2001a; Hsieh et al., 2004). The G/C content of
the binding site, and consequently of the siRNA, is relevant to
the silencing activity and should be in the range of 30–55%,
although values as low as 25% or as high as 79% are still asso-
ciated to functional siRNAs (Reynolds et al., 2004; Liu et al.,
2012a).

FIGURE 1 | Artificial RNA constructs for miRNA and gene regulation.
(A) Standard double strand siRNA; the anti-sense strand is the active
agent which binds the target site. (B) shRNA construct; it is produced
inside the target cell from a DNA construct that has been delivered to the
nucleus and it expresses the anti-sense active strand. (C) The siRNA
anti-sense strand binds the target mRNA with perfect complementarity.
(D) Example of an a-miR sequence targeting two different sites with
partial complementarity. The seed sequence of the a-miR, highlighted in
bold characters, matches perfectly the target sites. (E) The antagomiR

sequence (orange) perfectly matches the sequence of the target miRNA
(black). (F) The Tiny LNA sequence (orange) perfectly matches the seed
sequence of the target miRNA (black). (G) miRNA sponge construct with
four miRNA binding sites separated by spacers. (H) Synthetic TUD
construct with two exposed miRNA binding sites. (I) Model of a CRISPR
sgRNA sequence binding the target DNA region. The PAM sequence
(blue) is a short DNA motif juxtaposed to the DNA complementary region.
The base-pairing nucleotides of the sgRNA are shown in red, while the
dCas9-binding hairpin is in green.
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Table 1 | Computational tools for siRNA, a-miR and CRISPR design.

Tool URL Reference

siRNA DesignTools

OptiRNAi 2.0 http://rnai.nci.nih.gov Cui et al. (2004)

siDirect 2 http://sidirect2.rnai.jp Naito et al. (2009)

siRNA Scales http://gesteland.genetics.utah.edu/siRNA_scales Matveeva et al. (2007)

siExplorer http://rna.chem.t.u-tokyo.ac.jp/cgi/siexplorer.htm Katoh and Suzuki (2007)

RFRCDB-siRNA http://www.bioinf.seu.edu.cn/siRNA/index.htm Jiang et al. (2007)

OligoWalk http://rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk/oligowalk_form.cgi Lu and Mathews (2008)

Sfold http://sfold.wadsworth.org Ding et al. (2004)

siMAX http://www.operon.com/products/siRNA/sirna-overview.aspx Schramm and Ramey (2005)

DSIR http://biodev.cea.fr/DSIR/ Vert et al. (2006)

siRNA Scan http://bioinfo2.noble.org/RNAiScan.htm Xu et al. (2006)

RNAxs http://rna.tbi.univie.ac.at/cgi-bin/RNAxs Tafer et al. (2008)

i-Score http://www.med.nagoya-u.ac.jp/neurogenetics/i_Score/i_score.html Ichihara et al. (2007)

siVirus http://sivirus.rnai.jp Naito et al. (2006)

a-miR DesignTools

miR-Synth http://microrna.osumc.edu/mir-synth/ Lagana et al. (2014)

CRISPR DesignTools

Cas9 Design http://cas9.cbi.pku.edu.cn Ma et al. (2013)

CRISPR Design http://crispr.mit.edu Hsu et al. (2013)

Broad Inst. sgRNA Designer http://www.broadinstitute.org/rnai/public/analysis-tools/sgrna-design Doench et al. (2014)

sgRNAcas9 http://www.biootools.com Xie et al. (2014)

CRISPR Genome Analyzer http://crispr-ga.net Guell et al. (2014)

CasOT http://eendb.zfgenetics.org/casot Xiao et al. (2014)

DNA 2.0 gRNA Design Tool https://www.dna20.com/eCommerce/cas9/input Cong et al. (2013); Ran et al. (2013)

E-CRISP http://www.e-crisp.org/E-CRISP/ Heigwer et al. (2014)

ZiFiT http://zifit.partners.org/ZiFiT/ Hwang et al. (2013)

CHOPCHOP https://chopchop.rc.fas.harvard.edu Montague et al. (2014)

CRISPRseek http://www.bioconductor.org/packages/release/bioc/html/CRISPRseek.html Zhu et al. (2014)

SSFinder https://code.google.com/p/ssfinder/ Upadhyay and Sharma (2014)

URLs and references are given for each tool.

Numerous sequence rules regard the selection of nucleotides
to prefer or avoid in specific positions of either the sense or the
anti-sense strand of the duplex. For example, a higher content of
A/U nucleotides in the 5′ end of the anti-sense strand of the siRNA
yields higher silencing efficacy (Ui-Tei et al., 2004; Shabalina et al.,
2006). Also, the 5′ half of the anti-sense strand dictates compe-
tition potency of siRNAs, which is a consequence of the RNAi
machinery saturation followed by transfection of multiple siRNAs
(Yoo et al., 2008).

Other relevant sequence features include the absence of inter-
nal repeats and the presence/absence of specific motifs (Reynolds
et al., 2004).

Structure rules refer to the thermodynamics features of the
siRNA/target duplex and are mostly expressed in terms of the
nucleotide composition of the duplex itself or of the area sur-
rounding the binding site (Chalk et al., 2004; Shabalina et al.,
2006). Structure rules specify functional levels of binding energy
at different positions of the duplex, and optimal energy difference
between different positions of the duplex itself. Another impor-
tant thermodynamic feature associated to siRNA efficacy is the
structural accessibility of the target site. It has been demonstrated,

in fact, that an mRNA stretch, which is not involved in a strict sec-
ondary structure exhibits a stronger binding affinity to a siRNA (or
miRNA) molecule than one with a highly structured conformation
(Tafer et al., 2008).

Several optimizations have been proposed to improve the activ-
ity of siRNA molecules, such as a more accurate prediction of the
active strand of the duplex, design rules to avoid competition with
endogenous miRNAs and vectors expressing multiple siRNAs at
once (Cheng et al., 2009; Ma et al., 2014; Malefyt et al., 2014).

Many tools are available online for the design of siRNA and
shRNA molecules (see Table 1).

OFF-TARGETS, MULTIPLE TARGETS, AND THE a-miR
APPROACH
Although siRNAs and shRNAs are designed to specifically tar-
get a single gene through perfect complementarity to the binding
site, several studies show that they can partially bind to many
other transcripts in a way reminiscent of the endogenous miRNAs
(Birmingham et al., 2006; Jackson et al., 2006). A single miRNA can
potentially regulate hundreds of different mRNAs through partial
sequence complementarity. In particular, perfect base pairing of
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the 5′ end region of the miRNA, termed “seed,” to a binding site
located in the 3′ UTR of a mRNA, is usually sufficient to yield a
significant repression of the target, while other recent studies also
report functional centered site-mediated interactions (Shin et al.,
2010; Helwak et al., 2013; Martin et al., 2014).

This represents a relevant drawback of single-target siRNAs,
especially when pools of four or five siRNA duplexes per target
gene are used to achieve stronger repression but also leading to
widespread off-target effects.

One approach to the off-targeting problem consists of employ-
ing pools of siRNAs, at low concentrations, that target a single
gene in multiple sites (Straka and Boese, 2010). The advantage of
this approach lies in the fact that such pools are both effective on
that one target, while the effects of a low concentrations siRNA
on other potential targets should be negligible (Arvey et al., 2010;
Larsson et al., 2010). Another study showed that siRNAs with a
bulge at position 2 of the anti-sense strand were able to discrim-
inate better between perfectly matched and mismatched targets
(Dua et al., 2009; Li et al., 2010).

Targeting multiple genes can also be an intended choice, as
there are many biological and biomedical applications in which
it is important to regulate multiple genes at once while suffering
as few side effects as possible. One way to achieve this goal is to
exploit the multi-targeting properties of endogenous miRNAs by
employing artificially designed miRNAs, or a-miRs. Two recent
papers have shown that a-miRs can successfully repress at least
two targets simultaneously by binding to one or more sites in their
3′ UTRs (Figure 1D) (Arroyo et al., 2014; Lagana et al., 2014). The
employment of a single multi-target a-miR in place of a pair or a
pool of single-target siRNAs is likely to yield significant repression
of targets with few off-target effects.

SILENCING THE SILENCERS: ANTAGOMIRS AND miRNA
SPONGES
While the inhibition of over-expressed genes has been the main
goal of RNAi research for years, the de-repression of down-
regulated miRNA targets has increasingly gained importance
over time. The inhibition of endogenous miRNAs was first
introduced in 2005 by Krützfeldt et al. (2005). They employed
cholesterol-conjugated oligo-ribonucleotides, which they termed
“antagomiRs,” reproducing the anti-sense strand of the endoge-
nous miRNA they inhibit. Their design is thus straightforward, as
there is not much space for sequence variations (Figure 1E). Since
then, a variety of chemical modifications have been proposed in
order to increase binding affinity, improve nuclease resistance and
facilitate in vivo delivery. They include locked nucleic acid (LNA),
which possesses the highest affinity toward complementary RNA,
Bifunctional oligodeoxynucleotide/antagomiR constructs, which
ensure high transfection efficiency and prevention of unintended
immune stimulation, and morpholino oligomers, which have been
shown to be efficient inhibitors of both pri-miRNA and mature
miRNA activity in zebrafish and Xenopus laevis (Summerton and
Weller, 1997; Braasch and Corey, 2001; Petersen and Wengel, 2003;
Ziegler et al., 2013). A further variant of antagomiRs is represented
by short seed-targeting LNA oligonucleotides, called tiny LNAs.
These molecules allow simultaneous inhibition of miRNAs within
families sharing the same seed (Figure 1F) (Obad et al., 2011).

AntagomiRs represent one well-established tool for miRNA
functional studies, and several works have also shown successful
employment of antagomiRs as therapeutic agents able to restore
disease-associated pathways altered by miRNA up-regulation. Like
siRNAs, AntagomiRs can also have significant off-target effects,
as they act like endogenous miRNAs and may hit complemen-
tary mRNA transcripts. However, experiments have showed no
detectable effect on mRNAs with perfect tiny LNA complementary
sites, not even at the proteomic level (Obad et al., 2011).

miRNA sponges are an alternative to antagomiRs. They act
as competitive inhibitors that distract endogenous miRNAs from
their natural targets. Many sponge variants have been described,
such as miRNA-target mimics, miRNA decoys, and miRNA
erasers, and they all consist of RNA constructs containing multi-
ple binding sites for the miRNA to be sponged (Figure 1G) (Carè
et al., 2007; Ebert et al., 2007; Franco-Zorrilla et al., 2007; Sayed
et al., 2008).

A basic sponge consists of an RNA sequence exhibiting 4–10
miRNA binding sites separated by short spacers, usually 2–4 nt
long. These sites can be either bulged or perfectly complementary
to the miRNAs. In the first case, a bulge at positions 9–12 of the
binding site is introduced in order to prevent cleavage and degra-
dation of the sponge. Sponges with bulged binding sites produce
stronger de-repressive effects than sponges with perfect binding
sites (Ebert et al., 2007). Kluiver et al. (2012) developed a method-
ology for the rapid generation of miRNA sponges by making use of
simple constructs with up to 20 perfect or bulged miRNA binding
sites.

Structural optimizations have also been proposed. TuD RNAs
(tough decoy RNAs) are efficient sponges with structurally accessi-
ble and indigestible miRNA binding sites (Figure 1H) (Haraguchi
et al., 2009, 2012). The optimal TuD RNA consists of a bulged
stem-loop structure where both sides of the bulge are miRNA
binding sites which are perfectly complementary to the miRNA
sequence and which do not form any base-pairing regions longer
than 9nt.

CRISPRi: THE GENE SILENCING REVOLUTION
An exciting and promising advance in the field of artificial gene
regulation comes from Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR). CRISPR is a natural adaptive
immune system used by archaea and bacteria against phage and
plasmids (Jinek et al., 2012). This system is genomically encoded
by the prokaryotic chromosome and consists of a series of short
repeats separated by spacer sequences that match previously
encountered foreign DNA. Thus, CRISPR arrays are transcribed
and processed in order to produce mature crRNAs, which are
loaded onto effector protein complexes and function as a guide
to target recognition and degradation.

The CRISPR/Cas system has been engineered to function with
synthetic small guide RNA (sgRNA) in order to perform genome
editing in eukaryotes (Mali et al., 2013) (See Table S2 in Supple-
mentary Material). The sgRNA consists of a 20 nt crRNA sequence
complementary to the target region followed by a 42 nt Cas9-
binding hairpin and a 40 nt transcription terminator. The target
region must be of the form N20NGG that is any 21 nucleotides
followed by GG. NGG is the 3′ protospacer-adjacent motif (PAM)
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and is required for Cas9 binding. This particular PAM sequence is
derived from Streptococcus pyogenes, but other functional PAM
sequences have been characterized from other bacteria (Esvelt
et al., 2013). In addition, if a U6 snRNA or T7 promoters are used
to express the sgRNA, this must start with G or GG, respectively,
in order to maintain transcript initiation. Thus, the target region
must be of the form GN19NGG or GGN18NGG. Ultimately, the
beginning of the sgRNA and the PAM sequence will depend on
the specific promoters and Cas9 used (Figure 1I).

DNA breaks caused by Cas9 are repaired through either homol-
ogous recombination or non-homologous end joining (NHEJ)
mechanisms, thus this system can be used to either disrupt or edit
a gene (i.e., insertions and deletions). Many tools are currently
available online for the design of sgRNAs (Table 1).

Besides genome-editing applications, the CRISPR/Cas9 sys-
tem can be employed for gene expression regulation. The sys-
tem, known as CRISPR interference (CRISPRi), is based on a
catalytically dead Cas9 (dCas9) lacking endonuclease activity co-
expressed with a sgRNA (Gilbert et al., 2013; Qi et al., 2013).
Instead of generating DNA breaks, the recognition complex inter-
feres with transcriptional elongation, RNA polymerase binding, or
transcription factor binding, leading to efficient inhibition of gene
expression. CRISPRi gene silencing is inducible and reversible and
recognition of the targets depends solely on the sgRNA sequence
(Qi et al., 2013).

A “seed” region has been identified as the 12nt region adjacent
to the PAM site. Mismatches in the seed region can dramatically
reduce the repression, while mismatches in the non-seed area can
cause a mild effect. Design guidelines recommend using a length
of 20–25 nt as the base-pairing region of the sgRNA (Larson et al.,
2013) and provide specific design rules based on nucleotide pref-
erence for active sgRNA (Doench et al., 2014). A recent study
aimed at the identification of features of effective sgRNA specific
to CRISPRi, suggests that the target site should be chosen from
−50 to +300 bp relative to the Transcription Start Site (TSS) of a
gene (Gilbert et al., 2014). The authors observed that nucleotide
homopolymers have a strongly negative effect on sgRNA activity
and that the GC content of the sgRNA or the binding site is not
correlated with sgRNA activity, although another study reports a
decreased activity of sgRNA with low or high GC content (Doench
et al., 2014). Moreover, CRISPRi activity seems to be highly sen-
sitive to mismatches between the sgRNA and DNA sequence, thus
the authors conclude that properly designed sgRNA will have mini-
mal off-target effects. However, previous studies reported silencing
activity with sgRNAs exhibiting mismatches to the target in the
seed area (Cradick et al., 2013) and that off-targets might be cell
type dependent and determined by various complicated factors
in addition to primary DNA sequences (Duan et al., 2014). Thus,
side effects still constitute a challenge, which needs to be properly
addressed by further focused research.

Gilbert et al. also introduced the sunCas9 CRISPRa system,
in which expression of a single sgRNA with one binding site
is sufficient to turn on genes that are poorly expressed or that
increase the expression of well-expressed genes (Gilbert et al., 2014;
Tanenbaum et al., 2014).

CRISPRi can also be successfully employed to knock out miR-
NAs, by using a sgRNA/Cas9 complex targeting the pre-miRNA

sequence (Zhao et al., 2014),and to study functional miRNA-target
interactions in vivo by site-specific genome engineering (Bassett
et al., 2014).

Finally, although current tools for CRISPRi are based on the
DNA targeting approach described above, the discovery of other
Cas proteins targeting RNA molecules, such as Cmr, suggests
an alternative post-transcriptional methodology similar to RNAi
(Hale et al., 2009; Zebec et al., 2014).

CONCLUSION
Both RNAi and CRISPRi represent valid approaches for artifi-
cial gene regulation and both can suffer from significant side
effects which may result from factors beyond sequence match.
One clear advantage of CRISPRi over RNAi is that being an exoge-
nous system it does not compete with the endogenous machinery
of miRNA processing. Nevertheless, both techniques require more
work in terms of enhancing targeting efficiency and reducing side
effects.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00065/
abstract
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As more small RNA sequencing libraries are becoming available, it clearly emerges that
microRNAs (miRNAs) are highly heterogeneous both in length and sequence. In compari-
son to canonical miRNAs, miRNA isoforms (termed as “isomiRs”) might exhibit different
biological properties, such as a different target repertoire, or enhanced/reduced stabil-
ity. Nonetheless, this layer of information has remained largely unexplored due to the
scarcity of small RNA NGS-datasets and the absence of proper analytical tools. Here,
we present a workflow for the characterization and analysis of miRNAs and their variants
in next-generation sequencing datasets. IsomiRs can originate from an alternative dic-
ing event (“templated” forms) or from the addition of nucleotides through an enzymatic
activity or target-dependent mechanisms (“non-templated” forms). Our pipeline allows dis-
tinguishing canonical miRNAs from templated and non-templated isomiRs by alignment
to a custom database, which comprises all possible 3′-, 5′-, and trimmed variants. Func-
tionally equivalent isomiRs can be grouped together according to the type of modification
(e.g., uridylation, adenylation, trimming . . .) to assess which miRNAs are more intensively
modified in a given biological context. When applied to the analysis of primary epithelial
breast cancer cells, our methodology provided a 40% increase in the number of detected
miRNA species and allowed to easily identify and classify more than 1000 variants. Most
modifications were compatible with templated IsomiRs, as a consequence of imprecise
Drosha or Dicer cleavage. However, some non-templated variants were consistently found
either in the normal or in the cancer cells, with the 3′-end adenylation and uridylation as the
most frequent events, suggesting that miRNA post-transcriptional modification frequently
occurs. In conclusion, our analytical tool permits the deconvolution of miRNA heterogeneity
and could be used to explore the functional role of miRNA isoforms.

Keywords: miRNA, isomiRs, next-generation sequencing, pipeline, alignment, cancer

INTRODUCTION
microRNAs (miRNAs), a small (18–25 nt long), evolutionarily
conserved class of non-coding RNAs, are important regulators of
transcriptional programs by silencing the expression of a multi-
tude of target mRNAs at a post-transcriptional level (Bartel, 2009).
The biogenesis of miRNAs typically requires a nuclear cleavage
of the primary transcript by the Drosha/DGCR8 complex and a
cytoplasmic cleavage of the hairpin-folded precursor miRNA (pre-
miRNA) by Dicer [reviewed in Krol et al. (2010)]. The product of
this cleavage is usually a mature 21/22 bp miRNA duplex, which is
loaded onto the RNA-induced silencing complex (RISC) to func-
tion in the miRNA silencing mechanism (Gregory et al., 2005).
Only one strand is retained in the RISC, usually the one with
unstable base-pairing at its 5′-end, and it mediates target repres-
sion through base complementarity between the miRNA “seed
region” (nucleotides 2–7) and the miRNA responsive elements
(MRE), mostly located at the 3′ untranslated region (3′UTR) of
target genes (Bartel, 2009).

Generally, each mature miRNA is annotated as a unique mature
sequence (the reference or canonical miRNA sequence) and could
derive from either the 5′ or 3′ arm of the same pre-miRNA hairpin

(termed as -5p or -3p, respectively). However, the recent advent of
next-generation sequencing has clearly shown that mature miR-
NAs can be present in several sequence variants or isoforms,
named “isomiRs” [reviewed in Neilsen et al. (2012)]. Initially,
isomiRs were considered as sequencing artifacts, but a growing
body of evidence revealed that isomiRs are actual miRNA vari-
ants that can exert a biological activity. For instance, isomiRs are
found associated with Argonaute proteins in the RISC complex as
canonical miRNAs and could exert silencing of a specific target in
in vitro luciferase assays (Lee et al., 2010; Cloonan et al., 2011).
The generation of isomiRs is heterogeneous. In fact, they can orig-
inate from imprecise cleavage by Drosha or Dicer (the so-called
“templated isomiRs”), which generates variants that show per-
fect sequence complementarity to their pre-miRNA. Alternatively,
isomiRs could be generated by post-transcriptional modifications
due to enzymatic activity, which could either add or remove spe-
cific nucleotides to miRNA ends. These miRNA variants are known
as “non-templated isomiRs,” with sequence imperfectly matching
their pre-miRNA. Typically, non-templated modifications occur
at the 3′end, while 5′end isomiRs are rare (Newman et al., 2011;
Wyman et al., 2011). This is likely due to fact that a 5′-end
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modification (templated or non-templated) actually modifies the
target repertoire of the miRNA, which is dictated by the “seed”
region [nucleotide 2–7 (Bartel, 2009)]. The expression profiles of
miRNA variants are dynamic, with differences across tissues or cell
lines (Landgraf et al., 2007). Nonetheless, the functional signifi-
cance of isomiRs has remained elusive due to the limited number
of tools available to specifically monitor their levels in sequencing
experiments [e.g., isomiRex (Sablok et al., 2013), miRNA-MATE
(Cloonan et al., 2011), miRAnalyzer (Hackenberg et al., 2009)].
In sporadic cases, it was shown that isomiRs could alter the target
specificity (Azuma-Mukai et al., 2008), the efficiency of Ago load-
ing (Burroughs et al., 2010), or the half-life (Katoh et al., 2009) of
the cognate miRNA. Regardless of their biological activity, many
isomiRs are highly expressed, even more than the corresponding
canonical miRNAs. Thus, their annotation is particularly relevant
in order to properly analyze expression profiles and eventually
identify contexts where miRNA isoforms could be functional.

Here, we describe a pipeline that allows the identification and
analysis of all miRNA variants (canonical miRNAs and “tem-
plated” or “non-templated” isomiRs) from small RNA sequencing
experiments (Illumina). These variants could be grouped accord-
ing to the site (5′-end or 3′-end) or the type of modification
(trimming, adenylation, uridylation . . .) to assess the extent of
miRNA modifications in a given biological context. As a proof-
of-principle analysis, we applied our methodology to analyze
miRNAs and isomiRs expression in human samples (i.e., primary
normal and breast cancer cells), revealing that miRNA modifica-
tions frequently occur and may significantly affect global miRNA
expression and regulation.

MATERIALS AND METHODS
SMALL RNA SAMPLES: CELL CULTURE, RNA ISOLATION, AND SMALL
RNA SEQUENCING
The samples described in this work were prepared from a triple-
negative breast cancer primary culture and its normal counter-
part as described in Pece et al. (2004). The epithelial origin
of the cultures was confirmed by immunofluorescence with an
anti-Pan cytokeratin antibody (Sigma-Aldrich). All tissues were
collected at the European Institute of Oncology via standard-
ized operative procedures approved by the Institutional Ethical
Board, and informed consent was obtained for all tissue speci-
mens. Total RNA, including small species, was isolated through
the miRNeasy mini kit (Qiagen). One microgram of total RNA
was used to prepare Small RNA libraries following the Illumina
TruSeq™ Small RNA Sample Preparation Guide, as by man-
ufacturers’ instructions. The libraries were sequenced at 50 bp
single-read mode and 80 million read depth on an Illumina HiSeq
2000 platform. All the relevant steps of the IsomiRage analysis
workflow are fully described in the text. Sequencing results are
listed in Table S1 in Supplementary Material. Raw data together
with detailed description of the procedures are available in GEO
database (GSE21090).

QUANTITATIVE REAL TIME PCR
RT-qPCR reactions were performed in triplicate using the miScript
RT system in conjunction with miScript primer assays (Qiagen),
as by manufacturers’ protocol. One microgram of total RNA was
used to prepare cDNA. U6b was used as housekeeping.

STATISTICAL ANALYSIS
Microsoft Excel was used to generate bar graphs. Bivariate analy-
ses, pie-chart, and statistics (Fisher’s test, Student’s t -test) were
performed using JMP 10 (SAS) software.

IsomiRage JAVA TOOL
IsomiRage is a standalone desktop application written in the Java
programing language. It was developed using NetBeans 7.3.1 Inte-
grated Development Environment software. IsomiRage requires
Java 1.6 to run and has been tested on Window 7 and MacOS 10
operating systems. The IsoMirRagetool (updated to the latest miR-
base release, miRbase 21) is available at http://cru.genomics.iit.it/
Isomirage/.

RESULTS
We present a pipeline, named as“IsomiRage,” for profiling the miR-
NAs/isomiRs and corresponding differential expression patterns
using Illumina next-generation sequencing datasets of small RNA.
We discuss the application of IsomiRage to the analysis of small
RNA sequencing data obtained by matched normal and tumor pri-
mary breast cell culture with the Illumina Hiseq 2000 sequencing
system. The IsomiRage workflow has three main steps summarized
in Figure 1: filtering of reads, alignment on a custom genome, and
quantification and normalization of IsomiRs.

STEP 1 – FILTERING OF READS
Small RNA libraries are routinely prepared following the Illu-
mina TruSeq™ Small RNA Sample Preparation guide, shown
in Figure 2. Different biological samples are marked with spe-
cific 6 bp sequencing indices to allow multiplexing. According
to our experience, up to 12 different small RNA libraries can
be pooled in a single sequencing lane to obtain up to 18 mil-
lion filtered reads from each library. Sequencing is performed in
single-read mode with read length of 50 bp. De-multiplexing is
carried out using CASAVA software to produce reads in FastQ
format for each biological sample. Adapters used during library
preparation are removed using The Flexible Adapter Remover
software1 (FAR version 2.15). As shown in Figure 2, adapter
sequence may be found only at the 3′-end of the reads and cor-
responds to adapters RA3 and RPI, which have identical 5′-ends.
FAR typically produces collections of reads whose lengths are dis-
tributed in a multi-modal distribution as shown in Figure 3. The
largest mode is located at length 22, which corresponds to miR-
NAs. Minor modes can be observed at length 10, 34, 0, and 51.
The first (length 10) marks the peak of range of read-lengths
between 6 and 17 bases, which likely represent break-down prod-
ucts. The reads of the 34-bases mode show homology to tRNAs.
The two last modes are at length 0 and length 51. The former corre-
sponds to PCR fragments not containing any successfully cloned
RNA molecules while the latter represents PCR fragments with
RNA molecules longer than 50 bases or where adapter removal
has failed for other reasons. Adapter removal may fail when the
fraction of the adapter represented in the read is too short for
being recognized as an adapter-derived sequence or when the
adapter sequence contains errors. It is worth noting that adapter

1https://wiki.gacrc.uga.edu/wiki/FAR
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FIGURE 1 | IsomiRage pipeline. A schematic representation of the
miRNA analysis workflow is shown, distinguishing the three main
steps described in the text. Alignment of trimmed FastQ reads (Step 2)
is carried out either using a reference genome for the production of
browser viewable tracks or to custom sequence libraries for

quantitative analyses of miRNA and their isoforms. The quantification of
mapped reads in this latter case is performed through an ad hoc java
application called IsomiRage, which also performs the read-per-million
normalization and provides, for each miRNA, the different kinds of
modifications found.

removal is essential for successful alignment of small RNA reads
to a reference genome.

STEP 2 – ALIGNMENT
Filtered reads are aligned to a custom genome that includes the
sequences of all canonical mature miRNAs2 (2578 human and
1975 mouse miRNAs, according to the release 20 of miRBASE) and
their related isomiRs (5′-end, 3′-end and trimmed variants, shown
in Table S1 in Supplementary Material). The variant sequences
were generated including all the possible combinations of one, two,

2http://www.mirbase.org

or three bases extending the 5′- or the 3′-end of known miRNA
sequences plus the sequences obtained by trimming canonical
miRNA from their 3′-end down to a length of 18 bp (reads below
18 bp were not considered since the alignment would be unreli-
able). Each isomiR is associated to a series of feature, including
the corresponding canonical miRNA, the site of modification (5′-
end or 3′-end), the type of modification (trimming; addition
of one, two, or three nucleotides; type of nucleotide/s added),
and the origin of the isomiR (“templated” or “non-templated”).
The latter definition was based on the alignment of each isomiR
to the sequence of the pre-miRNA. A perfect pairing with the
pre-miRNA sequence is associated to “templated” variants, while
non-perfect pairing is associated to “non-templated” variants. It is
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FIGURE 2 | Generation of small RNA sequencing libraries. The major steps
from sample preparation to sequencing for small RNA molecules according to
the Illumina protocol (Illumina TruSeq™ Small RNA Sample Preparation) are
shown. The steps include adapter ligation, first strand cDNA synthesis,
PCR-amplification, and sequencing. The regions of homology of the adapters

involved are shown. The sequence of miR-99b-3p was chosen as an example.
Read 1 indicates the sequencing cycles producing miRNA related sequence
data. Read 2 indicates the production of index reads used for de-multiplexing
of samples. Note that the miRNA related reads may contain adapter sequence
at their 3′ end, which needs to be removed prior to downstream analyses.

FIGURE 3 | Distribution of filtered reads. The distribution of read-lengths after adapter removal is shown. The distribution is multi-modal with peaks at 0, 10,
22, 34, and 51 bases. Mode 22 represents the miRNA related reads that are considered in this study.

worth mentioning that there is still a probability that a“templated”
base variation might be a de novo modification, rather than an
imprecise cleavage by Drosha or Dicer. Alignment is performed

with the Bowtie ultrafast short-read aligner in the -v 0 alignment
mode, which specifies that no mismatches are allowed (Figure 1).
Only the best alignment is reported for each read. The Bowtie
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output is stored in .map textual format and supplied as input to
a custom software (i.e., IsomiRage) for downstream analyses. Fil-
tered reads could also be aligned to the reference genome. In this
case, the Bowtie output is stored in SAM format (Li et al., 2009)
and contains data only for canonical miRNAs. The Bowtie output
is processed further to produce browser viewable bam and bigwig
files. These files can be used for qualitative analyses.

STEP 3 – QUANTIFICATION AND NORMALIZATION
To estimate the expression level of a given miRNA or IsomiR, the
number of perfectly aligned Illumina reads are counted by Isomi-
Rage JAVA tool (available at http://cru.genomics.iit.it/Isomirage/).
The software reads the .map Bowtie output file and ensures that
the read aligns perfectly to the chosen reference. Of note, this
approach works only if the Bowtie output contains one and only
one reported alignment for each Illumina read. This is achieved
using the Bowtie -v 0 switch together with the best switch. The
output is a table that lists the number of reads for each isoform in
each biological condition (see Figure 1). We routinely obtain three
to five million reads for each biological condition. To enable quan-
titative comparisons between samples, the read numbers must be
normalized for sequencing depth. This step is carried out by stan-
dard read-per-million (RPM) normalization, providing a table of
RPM-normalized read counts that can be used for comparisons of
fold changes and other downstream analyses.

APPLICATION OF THE PIPELINE: SMALL RNA SEQUENCING OF NORMAL
AND CANCER BREAST CELLS
Alignment and sequencing output
As a proof-of principle analysis, we applied our methodology
to analyze miRNAs and isomiRs expression in real samples. We
sequenced small RNAs from 1 µg of total RNA obtained from a
matched normal/tumor primary culture pair of breast epithelium.
We obtained about 18 million filtered reads for each sample, of
which about 7 million were aligned to the custom genome (Table
S1 in Supplementary Material; Figure 4). Of note, approximately
4 million reads could be mapped to canonical miRNAs, claiming
that with our pipeline the sequencing output could be improved
almost twofold (Figure 4). The improvement in the sequencing
output has been similarly observed across multiple experiments
and samples (not shown), regardless of the number of multiplexed
samples (from 2 to 12). Considering the data from the normal and
the tumor sample as a whole, we obtained at least 1 read for 1228
different miRNA species, of which 318 present with >100 counts
in at least 1 sample (Table S1 in Supplementary Material). Of note,
without considering IsomiRs, we would have identified only 876
miRNAs, 219 having >100 reads. Thus, our pipeline considerably
expands the number of detected species and increases the number
of mapped reads almost twofold.

Differential expression analysis
Having obtained the aligned data, we moved on to analyze the dif-
ferential expression of canonical miRNAs in the tumor compared
to the normal sample (Figure 5). To calculate fold changes, data
where normalized to total read counts (RPM). We selected those
miRNA robustly expressed (>100 reads) and identified 66 miR-
NAs differentially regulated (|x | > 1 log2 fold, Figure 5A). Among

FIGURE 4 | Alignment of filtered reads. The cumulative amount of reads,
after adapter removal, is shown for the two samples analyzed. “Filtered”
reads refer to the sum of all the species reported in Figure 3. Of note, the
alignment on the custom genome required a read to be at least 18
nucleotides in length. “Total” is the sum of canonical miRNAs and all their
isoforms.

these, we selected randomly four upregulated and four downreg-
ulated miRNAs and measured their expression level by RT-qPCR
(Figure 5B). For one miRNA, namely, miR-432-5p, RT-qPCR was
not sensitive enough to detect the miRNA either in the normal
or in the tumor sample (N.D., no data). Nonetheless, as shown in
Figure 5B, 6/7 miRNAs were found concordantly regulated by the
two methodologies (RNA-seq vs. RT-qPCR), both in qualitative
and quantitative terms. Thus, our pipeline produces precise mea-
surements of mature miRNA levels, with an 86% validation rate
by an independent method.

Expression of isomiRs: the case of miR-92a
We next analyzed the expression of canonical miRNAs together
with their isomiRs. Figure 6 shows the locus of human pre-
miR-92a-1 with the 5p- and 3p-arms and their related mature
miRNA species found in the small RNA sequencing experi-
ments. As expected, most of the variants (shown those with >10
counts) come from the 3p-arm, which is the usual processed
arm (see miRbase 20 as reference), including 5′-end, 3′-end vari-
ants, and trimmed forms. For this miRNA, the canonical form
is the prevalent one (>80% of all reads are the canonical hsa-
miR-92a-3p; see Figure 6), followed by the trimmed and the
3′-end templated modifications. The 5′-end variants are poorly
represented. There are a huge number of 3′end non-templated
modifications, some with a robust level of expression (hundreds
or even thousands of read counts, Figure 6). This very hetero-
geneous class could be grouped based on the type of the first
nucleotide added to the mature miRNA, which should corre-
spond to a different enzymatic activity (termed as A-, G-, C-,
U-forms). To this regard, it is possible to distinguish “pure”
forms (the same nucleotide added one, two, or three times;
marked with a triangle in Figure 6) from “mixed” forms (with
different nucleotides; marked with a circle in Figure 6). The
nucleotide distribution appears very uneven, with the A-forms
extremely abundant (pure and mixed equally distributed) fol-
lowed by the U-forms. Modifications with the C or G bases are
extremely rare.
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FIGURE 5 | Differential expression analysis. (A) A scatter plot shows the
expression level of canonical miRNAs in the normal and tumor samples. Data
have been normalized in reads-per-million (RPM) and shown in log10 scale.
Blue and red dots identify those miRNAs with >1 log2 fold regulation

between the two samples. (B) Comparison of the fold change as measured
by RNA-seq or by RT-qPCR (miScript assay, Qiagen) for eight randomly
selected miRNAs (four upregulated and four downregulated). Three asterisks
mark non-concordant results. N.D., no PCR data.

Expression of isomiRs at genome-wide level
If we consider the expression of isomiRs at a global scale, we
observed that about one-third of all detected species (>1 read
count) are composed of canonical miRNAs, while the others come
from miRNA variants, mostly at the 3′-end (Figure 7A). This
uneven distribution is much more evident when considering read
counts, with canonical miRNAs accounting for around 60% of
all reads, followed by 3′-end modifications (30%) and 3′trimmed
forms (10%) (Figure 7B). The 5′-end modifications only repre-
sented 0.4–0.5% of reads. Overall, templated modifications were
roughly two-times more expressed than non-templated modifi-
cations. We observed little or no differences between the normal
and the tumor sample, suggesting that, if any, the dynamic reg-
ulation of miRNA modifications is limited to specific isoforms
(Figure 7B). Next, we analyzed the impact of variants on the
total expression level of each miRNA (Table S1 in Supplementary
Material; Figure 7C). Only miRNAs with >100 counts (canon-
ical plus isomiRs) were considered. As expected, the canonical
miRNA was the prevalent form (>50% of reads) in more than
half of cases. Trimmed forms are well represented and consti-
tute more than 20% of total reads for approximately 100 miRNAs
(Figure 7C). Their distribution is similar to the one of 3′-end
templated modifications. Indeed, trimmed variants can originate
equally from active 3′ shortening (exonucleolytic cleavage) or
alternative dicing during miRNA biogenesis. Conversely, 5′-end
modifications (templated or non-templated) encompass a minor-
ity fraction for each and every miRNA (Figure 7C). Surprisingly,
3′-end non-templated variants, which are unambiguously a prod-
uct of a post-biogenetic activity, constitute more than 10% of total
reads for approximately 100 miRNAs (more than 20% for about
50 miRNAs; Figure 7C). No major differences were observed at a
global level in the tumor sample compared to the normal. In fact,
only 16 of the 258 (6.2%) miRNAs commonly expressed in the 2
samples showed a variation >10% in 3′ non-templated isomiRs,
and 37/258 (14.3%) a variation >5% (Table S1 in Supplementary
Material). These data, although coming from just two samples,

confirm that the dynamicity of regulation of isomiRs is limited to
selected species rather than a global effect.

Non-templated 3 ′ end modifications
Non-templated 3′-end isomiRs could originate from the activity
of nucleotidyl-transferases (Neilsen et al., 2012). These enzymes
usually catalyze the addition of uridyl and adenyl nucleotides at the
3′-end of miRNAs. Thus, we expect that uridylation and adenyla-
tion should be the prevalent modifications. As shown previously
for miR-92a (see Figure 6), we classified 3′-end non-templated
(3′-NT) isomiRs into “Iso-groups” (A-forms, C-forms, G-forms,
U-forms) according to the nucleotide added at the 3′ end. To be rig-
orous in our definition, we focused only on the“pure”forms (those
with the same nucleotide, e.g., A-forms include only -A, -AA,
and -AAA modifications). As shown in Figure 8, adenylation was
the most common modification (approximately 50% of the 3′NT
modifications are A-forms, Figure 8A) and encompassed most of
the reads (Figure 8B) followed by uridylation (50% of the 3′NT
modifications and 20% of the reads; Figures 8A,B). Conversely,
C- and G-forms accounted only for <5% of the 3′ non-templated
modifications (Figures 8A,B). The frequency of adenylation was
much higher than expected (p < 0.0001 Fisher’s test), even when
compared to the frequency of the last nucleotide of the 3′-end
templated forms. A very similar trend has been observed in the
tumor and in the normal sample (Figures 8A,B).

DISCUSSION
In the last few years, it became clear that the miRNome is far more
complex than previously thought (Lee et al., 2010). The reference
sequences reported in miRBase (canonical miRNAs) are usually
the prevalent ones, but contemplating the alternative variants,
called isomiRs, is crucial to completely understand the complex-
ity of miRNA transcriptome. Here, we described a streamlined
pipeline (termed IsomiRage) to identify and analyze miRNA iso-
forms from next-generation sequencing data. The pipeline has
been developed for the analysis of data coming from Illumina
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FIGURE 6 | IsomiRs from miR-92a-1 locus. Figure summarizes all the
isoforms identified (>10 read counts) for the hsa-miR-92a-1 locus according
to the IsomiRage pipeline. Isoforms are aligned over the precursor miRNA,
shown at the bottom. Regions corresponding to the canonical
hsa-mir-92a-5p and hsa-miR-92a-3p are highlighted in blue. Isoforms are
grouped according to their type of modification (5′-end, 3′-end, trimmed
forms, and canonical sequences). Isoforms perfectly pairing with the
precursor miRNA (shown at the bottom) are designated as “templated”

(templ.), otherwise we refer to them as “non-templated” (nt).
Non-templated modifications at the 3′-end are further grouped according to
the first non-templated nucleotide (A-forms, C-forms, G-forms, U-forms). As
explained in the text, we could distinguish “mixed” forms (identified by
circles), with different type of added nucleotides from “pure” forms
(identified by triangles), which bears the same kind of nucleotide, likely as
consequence of the same enzymatic activity. A bar graph summarizing the
quantification of miR-92a isoforms is shown in the insert.

sequencing, but could be adapted to all the other sequencing
methodologies. When applied to real samples (i.e., primary breast
normal and cancer cells) IsomiRage almost doubled the number of
aligned reads and considerably increased the number of detected
miRNA species (approximately 40% more species), thus, revealing
additional information “hidden” in sequencing datasets.

The identification of isomiRs is based on the alignment to a
custom genome, which includes all the possible 3′- end, 5′-end,
and trimmed variants for all annotated miRNAs (according to
the latest miRBase release). By this approach, the pipeline is able
to identify also the non-templated modifications, which are not
completely matching with the pre-miRNA molecules and, there-
fore, missed by standard alignment procedures (that are based on

perfect sequence complementarity of miRNAs to the genome or
to the pre-miRNA sequence). In line with previous reports (Bur-
roughs et al., 2010; Newman et al., 2011), a huge number of 3′-end
non-templated modifications could be detected (>1 read count),
several with robust expression (>100 read counts) and contribut-
ing to approximately 10–20% of the total reads of a given miRNAs.
In extreme cases (11 miRNAs), the 3′-end non-templated isoform
was the prevalent one. For instance, miRNAs such as miR-148b-3p,
miR-152-3p, or miR-23b-3p displayed highly expressed (>1000
reads) 3′-end non-templated variants. If non-templated forms
were not considered, these miRNAs might have been classified
as poorly or not expressed. Given the high potential of miRNAs
as molecular markers, useful in clinical studies [e.g., circulating
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FIGURE 7 | IsomiRs distribution at genome-wide level. (A) The bar
graph shows the percentage of detected IsomiRs (>1 read counts) in
the normal and tumor samples, divided in classes, as in Figure 6
(T, templated; NT, non-templated). The absolute number of species is
also reported within the bar. (B) Bar graph shows the expression levels

(total reads) of the each class. (C) Those miRNAs robustly detected
(total read count for all isoforms >100 reads) were selected. Within
each miRNA species, we calculated whether the selected isoform type
contributes for at least a given percentage over the total reads of each
miRNA.

miRNA and tumor diagnosis, reviewed in Kosaka et al. (2010)],
it will be extremely relevant to consider the expression of both
canonical and miRNA variants in these studies, thus, selecting the
most expressed (or the most informative) variants as molecular
markers.

One possible disadvantage of our approach is that we miss
isomiRs that present simultaneously 5′- and 3′-end modifica-
tions or polymorphic isomiRs, which harbor substitutions in the
internal nucleotide sequence due to genetic differences or epi-
genetic variations (i.e., editing). Since 5′-end modifications are
rarely found, we could speculate that the frequency of concomi-
tant 5′- and 3′-modifications is likely negligible. Similarly, internal
variations are very sporadic, with A–I editing being the prevalent
type of event and usually limited to specific miRNAs (Kawahara
et al., 2007). Indeed, it is worth mentioning that it is always pos-
sible to update the custom genome, adding any other classes of
modification to extend the coverage of the IsomiRage pipeline.

microRNA modifications are extremely heterogeneous and
even a single miRNA can display a great number of similar
variants (such as has-miR-92a-1, which expressed 43 different

non-templated 3′-end isomiRs). Therefore, we propose group-
ing together functionally equivalent forms to analyze the dis-
tribution of non-templated variations at a global scale or at a
miRNA-specific level. In the IsomiRage workflow, isomiRs are
classified according to the site (5′-, 3′-end, or trimming), the
origin of modification (templated or non-templated), and the
nucleotide of modification (A, G, C, U). Since non-templated
modification are believed to occur enzymatically through the
activity of nucleotidyl-transferases (Neilsen et al., 2012), we pre-
ferred to distinguish those isoforms that bear the same type
of added nucleotide (“pure” forms, likely derived from the
same enzymatic activity) from those with different nucleotides
(“mixed” forms, grouped on the basis of the first non-templated
nucleotide).

At a global level, we found that adenylation was by far the most
abundant and frequent non-templated modification, followed by
uridylation (uridine is also the most frequent last nucleotide of any
miRNA), in agreement with previous reports (Burroughs et al.,
2010; Newman et al., 2011; Westholm et al., 2012). In plants and
lower organisms, these modifications are linked to stabilization
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FIGURE 8 | Nucleotide distribution of 3′-end non-templated modifications. (A) Pie charts show the frequency of 3′ modifications, distinguished according
the nucleotide type (A, G, C, U) subdivided in templated or non-templated 3′-end isomiRs. (B) The bar graphs show the expression levels (total read counts) of
the same species as in (A).

or destabilization of miRNAs, respectively (Ramachandran and
Chen, 2008; Lu et al., 2009). In mammals, the functions of miRNA
post-transcriptional modifications are largely unexplored, likely
due to the lack of specific analytical tools. However, they could
similarly have important regulatory functions, as shown for the
adenylation-mediated stabilization of the liver specific miR-122
(Katoh et al., 2009). In our analysis, which was limited to just
one matched tumor vs. normal sample, we did not score a global
difference in the extent and the type of non-templated modifi-
cation. However, when focusing on individual miRNAs, a few of
them showed >5% fluctuation in the frequency of adenylated or
uridylated forms in the comparison.

One relevant question is why cells have so many miRNA iso-
forms? As previously mentioned, most of isomiRs are templated
variants, originated from imprecise processing of precursor mole-
cules either at 5′- or at 3′-end by the processing enzymes, DGRC8
and Dicer1 (Ameres and Zamore, 2013). These variants are effec-
tively loaded on AGO complexes and, thus, could function as
canonical miRNAs (Ebhardt et al., 2009; Cloonan et al., 2011).
We can just speculate on the potential usefulness of this “impre-
cise” machinery. One possibility is that the presence of multiple
slightly different variants on the miRISC could improve miRNA
functions by increasing the “on-target” to “off-target” ratio (Cloo-
nan et al., 2011). Alternatively, variants could provide opportunity
for the evolution of new miRNAs, with similar (3′-end) or different
(5′-end) set of targets. For example, a change in 5′ usage might be
subsequently fixed by gene duplication and by changes in the pre-
cursors miRNA transcript that affects the processing, favoring the
so-called“IsomiR switching”(Wheeler et al., 2009; Tan et al., 2014).

In conclusion, using our methodology, it is possible to extend
the analysis of small RNA sequencing datasets to reveal a large
amount of information that lies unexplored and investigate
miRNA post-transcriptional modifications. If applied to large
sequencing datasets this approach could uncover the role of
isomiRs in the regulation of miRNA expression and function in
specific physiological and pathological contexts.
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RNA editing is an important co/post-transcriptional molecular process able to modify RNAs
by nucleotide insertions/deletions or substitutions. In human, the most common RNA edit-
ing event involves the deamination of adenosine (A) into inosine (I) through the adenosine
deaminase acting on RNA proteins. Although A-to-I editing can occur in both coding and
non-coding RNAs, recent findings, based on RNA-seq experiments, have clearly demon-
strated that a large fraction of RNA editing events alter non-coding RNAs sequences
including untranslated regions of mRNAs, introns, long non-coding RNAs (lncRNAs), and
low molecular weight RNAs (tRNA, miRNAs, and others). An accurate detection of A-to-
I events occurring in non-coding RNAs is of utmost importance to clarify yet unknown
functional roles of RNA editing in the context of gene expression regulation and mainte-
nance of cell homeostasis. In the last few years, massive transcriptome sequencing has
been employed to identify putative RNA editing changes at genome scale. Despite several
efforts, the computational prediction of A-to-I sites in complete eukaryotic genomes is yet
a challenging task. We have recently developed a software package, called REDItools, in
order to simplify the detection of RNA editing events from deep sequencing data. In the
present work, we show the potential of our tools in recovering A-to-I candidates from RNA-
Seq experiments as well as guidelines to improve the RNA editing detection in non-coding
RNAs, with specific attention to the lncRNAs.
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INTRODUCTION
Massive transcriptome sequencing through high-throughput plat-
forms has defiantly revealed that in mammals the vast major-
ity of transcripts have little protein-coding potential (Djebali
et al., 2012). Despite previous thoughts, large-scale projects like
ENCODE have clearly demonstrated that more than 80% of mam-
malian genomes is transcribed and comprises numerous genes
for non-coding RNAs (Consortium, 2012). These studies have
shown that RNA is not only an essential intermediate in the flux
of genetic information from DNA to proteins, but rather is a mol-
ecule involved in a plethora of fundamental cellular processes.
Transfer RNAs (tRNAs) and ribosomal RNAs (rRNA), for instance,
are essential components of translational machinery and highly
abundant in all living cells. Small non-coding RNAs (sncRNAs)
as small nuclear RNAs (snRNAs) or small nucleolar RNAs (snoR-
NAs) play relevant roles in alternative splicing and in guiding RNA
chemical modifications (Jacquier, 2009). Additional sncRNAs as
microRNAs (miRNAs), small interfering RNAs (siRNAs), and
piwi-interacting RNAs (piRNAs) are highly conserved and associ-
ated with transcriptional and post-transcriptional gene silencing
through specific base pairing with their target genes (Jacquier,
2009; Luteijn and Ketting, 2013).

Besides the different families of sncRNAs, a large proportion
of the mammalian transcriptome includes RNA transcripts not
coding for proteins, longer than 200 nucleotides, and defined as
long non-coding RNAs (lncRNAs) (Fatica and Bozzoni, 2014).

Such RNAs are poorly conserved, often polyadenylated, unstable,
present in few copies and with biological roles not yet fully under-
stood (Fatica and Bozzoni, 2014). Recent functional investigations,
however, are shedding light on their functional activities and data
on well-characterized lncRNAs have recently shown that such mol-
ecules have the ability to control the gene expression program at
multiple levels (Wapinski and Chang, 2011). Of note, lncRNAs
seem to be implicated in post-transcriptional gene regulation or
in transcriptional gene silencing at epigenetic level through chro-
matin remodeling (Bernstein and Allis, 2005; Whitehead et al.,
2009).

Virtually the entire collection of primary RNA transcripts,
including the ncRNA fraction, can undergo post-transcriptional
modifications as alternative splicing or RNA editing. In particu-
lar, RNA editing is widespread in the human transcriptome and
involves mainly the deamination of adenosine (A) to inosine (I),
recognized as guanosine (G) by all cell molecular machineries
(Levanon et al., 2004). The family of adenosine deaminase act-
ing on RNA (ADAR) proteins, characterized by the presence of
double-stranded RNA binding domains (RBDs), is responsible for
the deamination of specific or multiple adenosines depending on
dsRNA secondary structures (Nishikura, 2010).

In human as well as in other mammals, RNA editing con-
tributes to increase the transcriptome complexity expanding the
repertoire of coding and non-coding RNAs with profound func-
tional consequences. Indeed, RNA editing modifications may
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alter codons and generate or destroy splice sites so modulating
alternative splicing events and influence the dynamics of con-
stitutive splice sites (Nishikura, 2010) with a final tuning of
gene expression (Nishikura, 2010; Pullirsch and Jantsch, 2010).
RNA editing is indispensable to preserve cell homeostasis and its
deregulation in human has been linked to a variety of neurolog-
ical/neurodegenerative disorders and cancer (Gallo and Locatelli,
2011).

In recent years, massive sequencing of RNA (RNA-Seq) has
enabled the study of entire transcriptomes at single nucleotide
resolution offering the unique opportunity to explore and inves-
tigate at large scale post/co-transcriptional modifications due
to RNA editing (Picardi et al., 2010). Genome wide screen-
ings in human have revealed that hundred thousands editing
sites exist. Indeed the current specialized RADAR database (a
comprehensive A-to-I RNA editing database) annotates over 1.4
million A-to-I changes (Ramaswami et al., 2012; Ramaswami
and Li, 2014). Of these, the vast majority (~96%) is located
in repetitive Alu elements (Ramaswami and Li, 2014) that
comprise 11% of the human genome (having a copy number
exceeding 1 million copies) and are transcribed and particularly
abundant within introns and untranslated regions of mRNAs
(UTRs) of RNA molecules. When located in opposite orienta-
tion, two Alu elements can fold into stable secondary struc-
tures which are a suitable target for ADAR activity (Savva et al.,
2012).

Also lncRNAs are potential substrates for ADARs because of
their ability to fold into specific secondary structures endowed of
numerous functional properties as a consequence of their inter-
action with proteins or other RNAs. Indeed, lncRNAs secondary
structures are quite versatile even though hard to predict by con-
ventional computational tools. Consequently, the pattern of RNA
editing could be largely dynamic making difficult investigations
aimed to elucidate the final functional effects of A-to-I changes on
lncRNAs.

The bioinformatic prediction of RNA editing changes by RNA-
Seq data is tricky with several challenges as the discrimination of
true RNA editing sites from genome-encoded SNPs and technical
artifacts caused by reverse-transcription, sequencing, or read-
mapping errors (Ramaswami et al., 2012). Indeed, reliable RNA
editing candidates require DNA-Seq support from the same sam-
ple/individual from which RNA has been sequenced and the use
of several stringent filters.

Recently, we have developed and released REDItools, a special-
ized bioinformatics package conceived to work with NGS data
(RNA-Seq for deep RNA sequencing and DNA-Seq for massive
genomic DNA sequencing) and implementing a variety of filters
to provide reliable sets of RNA editing sites overcoming main
sequencing biases (Picardi and Pesole, 2013). REDItools run on
main unix/linux operating systems and can handle pre-aligned
reads from whatever sequencing platform in the standard BAM
format (they do not employ information from optional SAM/BAM
fields).

In the present work, we describe a computational strategy to
reliably detect A-to-I alterations in human lncRNAs through deep
sequencing experiments. We apply our method to high-coverage
public DNA-Seq and RNA-Seq dataset from human cell line
GM12878 making use of REDItools and lncRNA transcript

annotations from NON-CODEv4.1, one the most updated and
comprehensive databases for lncRNAs (Xie et al., 2014).

MATERIALS AND METHODS
DATA SETS
Our workflow was tested on lymphoblastoid cell line GM12878
whose genome and RNA have been deeply sequenced. Pre-aligned
DNA-Seq reads in BAM format were downloaded from the 1000
Genomes Project web page1 and re-headed using the Picard
ReplaceSamHeader.jar tool.

RNA-Seq reads, instead, were downloaded as FASTQ files from
UCSC genome browser.2 They consist of 499.4 million reads in
two replicates.

QUALITY CHECK AND GENOME MAPPING OF RNA-Seq DATA
RNA-Seq quality was checked by FASTQC3 and trimming of low
quality read ends was performed by trim_galore4 (phred cut-off
was fixed to 20) excluding reads with a final length lower than 50
bases. A custom python script was used to remove reads contain-
ing low complexity regions or long stretches of unknown bases
(Ns). STAR (Dobin et al., 2013) program with default parameters
was used to identify reads mapping onto known rRNA annota-
tions obtained from UCSC genome browser. Ribosomal reads were
removed from next analysis step using an in house script (available
upon request).

Cleaned RNA-Seq reads were aligned onto the human reference
genome (hg19 assembly) using GSNAP program (main parame-
ters were -s known-splicesites -E 1000 -n1 -Q -O --nofails -A
sam --split-output= outputGsnap) providing a set of known
splice sites from UCSC, RefSeq, Ensembl, and Gencode (Wu
and Nacu, 2011). Unique and concordant paired-end align-
ments were converted to BAM format and used for down-
stream analyses. Duplicated reads were marked using the Picard
MarkDuplicates.jar tool.

The REDItoolBlatCorrection.py script, included in the REDI-
tools release, was applied to generate a list of reads mapping on
multiple genome locations (default parameters were used).

RNA EDITING CALLING
RNA editing candidates in lncRNAs were detected using the RED-
ItoolDnaRna.py script that is part of REDItools package (Picardi
and Pesole, 2013). LncRNA transcript annotations were down-
loaded from NON-CODEv4 database (v4.1 including 145,331
entries) (Xie et al., 2014).

RESULTS
RNA-Seq is the de facto standard approach to investigate com-
plex eukaryotic transcriptomes as well as co/post-transcriptional
modifications occurring right inside. It is particularly helpful
for comprehensively identifying RNA editing sites in combina-
tion with whole genome dataset to avoid false candidates due to
single nucleotide polymorphisms (SNPs). Pre-aligned reads from

1http://www.1000genomes.org
2http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeCshlLongRnaSeq/
3http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
4http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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DNA-Seq and RNA-Seq experiments constitute the input for our
REDItools that implement extensive filters to mitigate sequenc-
ing biases, thus providing reliable lists of A-to-I RNA editing
candidates.

WORKFLOW FOR RNA EDITING DETECTION
The main critical issue in the detection of RNA editing sites by NGS
data is the mapping of RNA-Seq and DNA-Seq reads onto the ref-
erence genome that, in turn, relies on the type and quality of input
data. Indeed, low quality reads lead to numerous non-canonical
RNA editing sites while very short reads (<50 nucleotides) are
prone to misalignments (Oshlack and Wakefield, 2009).

Before the alignment onto the reference genome, RNA-Seq
reads are checked using the FASTQC program3 that provides
basic statistics about the global quality of the experiment and
allows the discovery of sequencing anomalies. For example, stan-
dard RNA-Seq libraries show altered nucleotide composition (the
first 6–10 read positions) due to the use of random hexamers in
the library preparation. Also, RNA-Seq reads could include over-
represented sequences due to adaptors, contaminants, or rRNAs
not completely depleted. In addition, RNA-Seq experiments from
degraded RNA may lead to high read duplication rates (Adiconis
et al., 2013).

As depicted in Figure 1, our workflow starts with a FASTQC
run to carefully check the quality of input experiments and design
the next trimming step through the trim_galore utility4. Inde-
pendently of FASTQC results, we removed low quality regions at
3′ ends of reads using a phred cut-off value of at least 20 and we
excluded reads containing low complexity regions or long stretches
of unknown nucleotides (Ns). Optionally, we add a quick step to
eliminate reads showing high similarity to rRNAs by means of
STAR program (Dobin et al., 2013) and custom scripts (available
upon request).

After the quality assessment and an accurate data prepro-
cessing, RNA-Seq reads are aligned onto the reference genome
using GSNAP (Wu and Nacu, 2011), providing a non-redundant
collection of known splice sites extracted from well-established
databases as UCSC, RefSeq, Ensembl, and Gencode (Harrow et al.,
2012). Although a plethora of mapping tools have been released,

we preferred to use GSNAP since resulted one of the best perform-
ing aligners in a recent systematic evaluation of spliced alignment
programs for RNA-Seq data (Engstrom et al., 2013). In addition,
we demonstrated that realignment of RNA-Seq reads by GSNAP
increased the detectability of RNA editing sites (Picardi and Pesole,
2013).

Following the mapping, GSNAP generates nine separate out-
put files in the standard SAM format, one for each alignment
type (concordant, halfmapping, paired and unpaired, etc.). Only
unique and concordant alignments (in case of paired-end reads)
are retained and used for downstream RNA editing calling.

An accurate detection of A-to-I editing events relies also on the
type of input RNA-Seq reads. Optimal results are expected from
experiments generating ultra-deep paired and stranded reads of
at least 75 nucleotides. The type of RNA-Seq reads is particularly
important for lncRNAs since many of them are natural antisense
transcripts or produced from intronic regions of protein coding
genes either in the sense or antisense direction. In addition, RNA-
Seq libraries should be sequenced at high coverage since lncRNAs
are generally expressed at low levels.

Although GSNAP works accurately, misalignment errors may
occur. The mismapping effect can be mitigated realigning reads
carrying mismatches by the classical Blat algorithm through an
ad hoc script included in REDItools (REDItoolBlatCorrection.py).
Such script identifies reads prone to mismapping and collects them
in specific lists, ready to be inspected by main REDItools programs.

RNA EDITING CALLING BY REDItools
Uncovering RNA editing in lncRNAs is based on the REDI-
toolDnaRNA.py script in which single RNA editing modifications
are identified by comparing pre-aligned RNA-Seq and DNA-Seq
reads from the same sample/individual. Briefly, the script explores
genomic positions site by site and applies several filters taking into
account the coverage depth, the base quality score, the mapping
quality, the bases supporting the variation, the type of substitu-
tion and its frequency, and changes in homopolymeric regions (≥5
bases) or in intronic sequences surrounding known splice sites. If
stranded RNA-Seq data are provided, the script can infer the strand
for each position mitigating biases due to antisense transcription

FIGURE 1 | Graphical overview of our computational methodology. In this figure, we show all steps that should be followed to predict potential RNA
editing sites in human lncRNA transcripts. Details are discussed in the main text.
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or mapping errors and can facilitate the A-to-I detection in lncR-
NAs. In the meantime, REDItoolDnaRNA.py interrogates also
DNA-Seq alignments to exclude potential genomic SNPs. In addi-
tion, the script can work on specific genomic regions providing a
valid set of coordinates in the GTF format.

RNA EDITING IN HUMAN lncRNAs
The above-described workflow has been applied to publicly avail-
able DNA-Seq and RNA-Seq data from human lymphoblastoid
cell line GM12878. RNA-Seq data (polyA+) were obtained from
the ENCODE project. Libraries were strand-specific and deeply
sequenced with Illumina HiSeq2000 in two biological replicates,
resulting in 235.8 and 263.7 million paired-end 76-base sequenc-
ing reads, respectively2. DNA-Seq data, instead, were provided as
pre-aligned reads by the 1000 Genomes Project in BAM format1.
The genomic DNA of GM12878 was sequenced at 44× coverage,
allowing accurate genotype calls.

All transcriptomic reads were mapped onto the complete
human genome using GSNAP in combination with a large reper-
toire of known splice sites. Resulting unique and concordant
paired-end alignments were submitted to REDItoolDnaRNA.py
as well as lncRNA transcript annotations from NON-CODE (v4.1,
145,331 entries), an integrated knowledge database dedicated to
non-coding RNAs (excluding tRNAs and rRNAs) (Xie et al., 2014).

On the whole,we identified 11,726 potential RNA editing events
supported by at least 10 DNA-Seq reads in the NON-CODE
lncRNA transcript collection. Of these, we discarded only 227
positions annotated as genomic SNPs in dbSNP (release 138).
The remaining 11,499 sites were annotated using the RepeatMask
table from UCSC and NON-CODE transcripts (the complete list
is available as Supplementary Material).

Our screen for RNA editing in lncRNAs achieved high speci-
ficity (Figure 2). Indeed, 97.45% of all detected changes were

A-to-G mismatches while the second most frequent nucleotide
substitution was T-to-C, with only 0.92% of the total number of
editing sites (106/11,499). However, in 91 out of 106 T-to-C modi-
fications the REDItoolDnaRNA.py script was not able to correctly
infer the strand, most likely due to sequencing errors or concomi-
tant expression of both strands at comparable levels. We think
that several of these T-to-C changes may be genuine RNA editing
events.

The majority of A-to-I modifications (86% – 9,682/11,206
unique A-to-G changes) were identified in Alu repeat regions while
1,140 resided in repetitive non-Alu regions (mostly long and short
interspersed elements and long terminal repeats) and only 384 in
non-repetitive regions. These findings are in accordance with other
genome-wide computational screens in which a large fraction of
RNA editing sites (> 90%) is located in Alu repetitive elements
(Ramaswami et al., 2012; Bazak et al., 2014). The observed RNA
editing pattern suggests that also in lncRNAs, Alu base pairing is
predominant even though its functional role is yet elusive.

The distribution of RNA editing levels is shown in Figure 3.
Like other previous studies, the vast majority of detected A-to-I
changes showed low RNA editing levels (<0.5).

Almost all edited Alus were in intronic regions of lncRNAs
while only 1913 A-to-I changes were located in exons. Exclud-
ing Alu elements, very few positions (104 sites) were found in
non-repetitive regions of lncRNAs. In this reduced pool of sites,
we observed several RNA editing clusters that may indicate the
presence of secondary RNA structures. Such RNA editing sites may
have important functional roles altering the secondary structure
of lncRNAs preventing or promoting interactions with proteins or
other RNAs.

The 11,206 unique A-to-G changes fell in 1649 lncRNA gene
loci (3374 lncRNA transcripts) and, of these, a substantial number
occurred in intervening sequences. According to the NON-CODE

FIGURE 2 | Base substitutions observed in human lncRNAs. The
specificity of our methodology has been valuated looking at base
substitutions in the set of predicted RNA editing events. Since A-to-I is the
most frequent RNA editing event in human and I is commonly interpreted as

G by cellular molecular machineries, the A-to-G change is expected to be the
prominent substitution. As shown in figure, 97% of base changes in the
predicted set of RNA editing events are A-to-G substitutions. All other
changes have substitution frequencies lower than 1%.
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FIGURE 3 | RNA editing levels. In this figure, we depict the distribution of RNA editing levels. The vast majority of detected sites show low editing levels
(<0.5), in accordance with previous large-scale studies.

database in which lncRNA genes are classified into four categories
depending on their genomic location in relation to protein-coding
genes (antisense, intergenic, sense exonic, and sense non-exonic),
we valuated the distribution of edited lncRNA genes among these
four categories. A consistent amount (62%) of lncRNA genes was
predominantly in the sense exonic category and only 51 (3%)
belonged to sense non-exonic grouping. The number of lncRNA
genes cataloged as antisense and intergenic was roughly equivalent,
being 267 and 289, respectively.

We finally compared our list of RNA editing changes with that
identified in a previous study based on the same NGS dataset by
using a slighting different methodology (Ramaswami et al., 2012).
We found overlap for 10,898 sites (97%) indicating high specificity
of our computational strategy and improved sensitivity over past
bioinformatic methods.

DISCUSSION
Large-scale projects, such as the ENCODE (Encyclopedia of DNA
Elements), have markedly revealed the pervasiveness of genome
transcription (Consortium, 2012). Nearly 60% of human genome
encodes transcripts that lack protein-coding capacity but with
a potential role in multiple biological processes (Djebali et al.,
2012). Among them, a particular attention has focused on a
class of transcripts indicated as lncRNAs, generally defined as
RNAs longer than 200 nucleotides (Fatica and Bozzoni, 2014).
Although lncRNAs are poorly conserved, unstable, and present in
few copies, they have been implicated in transcriptional regulation
of protein-coding gene (Fatica and Bozzoni, 2014).

In addition to transcriptional complexity of eukaryotic
genomes, the transcriptome landscape is further complicated by
co/post-transcriptional mechanisms as alternative splicing and
RNA editing (Djebali et al., 2012; Bazak et al., 2014). In partic-
ular, RNA editing may play relevant biological roles also at level of

lncRNAs (Mallela and Nishikura, 2012). In human, the majority
of RNA editing modifications is constituted by A-to-I conversions
carried out by the ADAR enzymes (Ramaswami and Li, 2014).
These proteins have the ability to target secondary RNA struc-
tures and deaminate specific adenosines located inside (Nishikura,
2010). Due to their secondary structures, lncRNAs are expected
to be potential targets of ADARs with specific functional effects
such as preventing or promoting interactions with proteins or
other RNAs. The importance of studying RNA editing modifica-
tions in lncRNAs is mainly justified in pathological conditions in
which editing events may be connected with alteration of lncRNA
expression/function.

Nowadays lncRNAs and RNA editing can be profiled at single
nucleotide resolution through NGS technologies (Picardi et al.,
2010; Ramaswami et al., 2012; Ding et al., 2014). The massive
transcriptome sequencing, indeed, facilitates the identification of
lncRNAs as well as the detection of putative RNA editing events
(Picardi et al., 2010). However, the computational prediction of
RNA editing changes by RNA-Seq is not trivial due to technical
artifacts (sequencing or read-mapping errors) and genomic infor-
mation from same samples/individuals is required to discriminate
true RNA editing sites from SNPs (Ramaswami et al., 2012).

To uncover the RNA editing landscape using NGS data, we
have recently developed the package REDItools that includes spe-
cific scripts to investigate RNA editing starting from matched
RNA-Seq and DNA-Seq data or RNA-Seq data alone (Picardi and
Pesole, 2013). In the present work, we introduce a computational
methodology devoted to the detection of RNA editing events in
human lncRNAs, demonstrating in the meantime the suitability
of our REDItools as a versatile package for screening RNA editing
candidates in NGS data.

We tested our pipeline on DNA-Seq and RNA-Seq data
from human lymphoblastoid cell line GM12878 using 145,331
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lncRNA transcripts from NON-CODE database (Xie et al., 2014).
Compared with previous computational pipelines (Ramaswami
et al., 2012), our methodology achieved high specificity and
improved sensitivity, as already shown in Picardi and Pesole
(2013). Indeed, more than 97% of detected RNA editing changes
were A-to-G mismatches mainly distributed in Alu repeated
regions.

The majority of edited lncRNA genes were in the sense exonic
category meaning that RNA editing target lncRNA genes were
in overlap with known protein coding genes and in the same
orientation. In such cases, since lncRNAs and overlapping pro-
tein coding transcripts share the same strand, the assessment of
RNA editing membership, lncRNA or coding transcript, is very
hard. Further checks taking into account the expression levels
of involved genes and transcripts are extremely needed before
claiming novel discoveries.

Although the computational detection of RNA editing events
in NGS data is not yet completely optimized, our REDItools are
the only available software to explore the RNA editing landscape in
complete transcriptomes. Given the explosion of NGS technolo-
gies in genomic research, REDItools and derived methodologies,
as the one described in this work, will be indispensable to charac-
terize RNA editing in novel experimental conditions as well as in
human disorders.
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Research attention has been powered to understand the functional roles of non-coding
RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other
human disorders. ncRNAs are also present in extracellular human body fluids such as
serum and plasma, giving them a great potential as non-invasive biomarkers. However,
non-coding RNAs have been relatively recently discovered and a comprehensive data-
base including all of them is still missing. Reconstructing and visualizing the network
of ncRNAs interactions are important steps to understand their regulatory mechanism
in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates
ncRNAs data interactions from a large number of well established on-line repositories.
The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at
http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based,
command-line, and a Cytoscape app called ncINetView. By accessing only one resource,
users can search for ncRNAs and their interactions, build a network annotated with all
known ncRNAs and associated diseases, and use all visual and mining features available
in Cytoscape.

Keywords: microRNAs, lncRNAs, non-coding RNAs, networks, cytoscape, gene expression

1. INTRODUCTION
After the sequencing of the human genome, it became evident that
only 20,000 genes are protein-coding, while over 98% of all genes
are untranslated non-protein-coding RNAs (ncRNAs) (ENCODE
Project Consortium, 2012). During the last years, thousands of
ncRNAs have been identified in the eukaryotic transcriptome
(Khalil et al., 2009; Bu et al., 2011). Usually, ncRNAs are divided
into two groups according to their length: short ncRNAs, consist-
ing of <200 nucleotides, and long non-coding RNAs (lncRNAs),
whose size ranges from 200 nucleotides up to 100 kb (Mattick,
2001).

The microRNAs (miRNAs) family is the best known class
of short ncRNAs. They regulate gene expression and contribute
to development, differentiation and are responsible of carcino-
genesis. The aberrant expression or alteration of miRNAs also
contributes to many of human pathologies, including cancer (Lu
et al., 2005). Moreover, a significant amount of miRNAs has been
found in extracellular human body fluids (Mitchell et al., 2008;
Hanke et al., 2010) and some circulating miRNAs in the blood
have been successfully revealed as biomarkers for several diseases
including cardiovascular malfunctions (Gupta et al., 2010b) and
cancer (Mitchell et al., 2008).

An emerging class of ncRNAs consists of lncRNAs (Fatica
and Bozzoni, 2014) They are both nuclear and cytoplasmic.
Nuclear lncRNAs function by guiding chromatin modifiers to spe-
cific genomic loci (Rinn and Chang, 2012; Batista and Chang,
2013; Guttman and Rinn, 2012; Khalil et al., 2009; Tay et al.,

2011) while many others have been identified in the cytoplasm
(Batista and Chang, 2013). These lncRNAs are involved in gene
regulation and often show sequence complementarity with tran-
scripts that originate from either the same chromosomal locus or
independent loci.

One of the most recently discovered and not yet functionally
characterized class is the circular RNA (circRNAs) (Memczak et al.,
2013) Numerous circRNAs form by head-to-tail splicing of exons,
suggesting previously unrecognized regulatory potential of coding
sequences. Recent results (Memczak et al., 2013) have shown that
thousands of well-expressed stable circRNAs have both tissue and
developmental-stage specific expression. Moreover, human circR-
NAs are bound by miRNAs such as the miR-7 showing a potential
role of circRNAs as post-transcriptional regulators.

Understanding the complex system derived from the interac-
tions of regulators and possible targets gives a clue on the dynamics
and causes of disorders (Couzin, 2007). In this direction, platforms
to visualize networks such as Cytoscape (Shannon et al., 2003)
together with tools to visualize and analyze them are becoming
crucial in systems biology studies.

miRScape (Ferro et al., 2009) is one of the first Cytoscape plug-
in visualizing protein–protein interaction networks annotated
with miRNAs. It uses a web knowledge base (Laganà et al., 2009)
to infer associations between genes and phenotypes though miR-
NAs. CyTargetLinker (Kutmon et al., 2013) is a recent Cytoscape
app that builds biological networks annotated with miRNAs,
transcription factors, and drugs.
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Several methodologies are designed to analyze the regulatory
effect of miRNAs and transcription factors in protein-coding genes
(Liu et al., 2009, 2014; Sales et al., 2010; Huang et al., 2011; Laczny
et al., 2012; Le et al., 2013; Guo et al., 2014). Some of them export
the results also in a Cytoscape network format. For example, Magia
(Sales et al., 2010) allows to perform statistical analysis on miRNAs
and gene expressions. TSmir (Guo et al., 2014) browses regulatory
network of tissue-specific miRNAs with transcriptor factors. mir-
ConnX (Huang et al., 2011), given a network of genes, transcriptor
factors, and miRNAs, extends it with further TF and miRNA–gene
intersections inferred by user expression data. miRTrail (Laczny
et al., 2012) analyzes the role of miRNAs and genes deregulated in
a disease by using a miRNA-gene networks and expression data.

In this work, we have imported and integrated associations
among non-coding RNAs (miRNAs, circulating miRNAs, lncR-
NAs, and other non-coding), genes, RNAs, and associated diseases
from 10 on-line databases. The database, named non-coding RNA
Human Interaction Data Base (ncRNA-DB), is built on top of
the NoSQL platform OrientDB. It is kept updated by common
semi-automated procedures. The interaction data of ncRNA-
DB can be simply searched and visualized by a web based or
a command-line interface. The database is accessible through a
Cytoscape app, called ncINetView, which allows to: (i) build a
network annotated with all known ncRNAs and associated dis-
eases by accessing to only one database, and (ii) use all visual
and mining features available in Cytoscape app store to analyze
it. At http://ncrnadb.scienze.univr.it/ncrnadb/, users can search
in ncRNA-DB, export the results in text format, download the
command-line interface, Java API, the app ncINetView, and use
ncRNA-DB as server for third party client applications.

2. CONSTRUCTION AND CONTENT
2.1. DATA SOURCE
Non-coding RNA human interaction data base integrates data
from several state of the art non-coding databases. We selected
sources that cover the majority of non-coding RNAs informa-
tion with high quality and updated data. Moreover, this first
version of ncRNA-DB focuses on databases of known interactions
between non-coding RNAs and mRNAs. We discarded non-coding
RNAs with unknown interactions such as piRNAs (RNA Piwi-
interacting). In the following subsections, we give an overview of
data sources in ncRNA-DB. Table 1 summarizes the numbers of
integrated data and how many are shared among datasources.

2.1.1. Nomenclature of non-coding RNAs
In ncRNA-DB, we used The HUGO Gene Nomenclature Com-
mittee (HGNC) as official database of approved names and aliases.
HGNC is responsible for approving unique symbols and names for
human loci, including protein-coding genes, ncRNA genes, and
pseudogenes, to allow unambiguous scientific communication
(Gray et al., 2012)1.

2.1.2. Long non-coding RNAs databases
In this work, we selected several lncRNAs databases that provide a
central repository of known lncRNAs, their aliases, and published

1http://genenames.org

Table 1 |The number of imported elements from external resources

and how many among them are present at least in another

datasource.

DataSource Number of entities Shared

CIRC2TRAITS 83,432 326

HMDD.2 8,040 282

LNCRNADISEASE 1,505 244

MIRANDOLA.1.6 2246 98

NPINTER.2.0 138,328 440

MIRTARBASE 40,532 218

STARBASE.V2.0 31,463 8

This representation of shared notation is dictated by the fact that the number of

elements shared in three or more datasources is approximately close to 0.

characteristics. lncRNAdb (Amaral et al., 2011) is one of them and
it is available online at http://www.lncrnadb.org.

Another database is The LncRNADisease (Chen et al., 2013)2.
It is a resource for the experimentally supported LncRNA-disease
association data. The platform integrates also tools for predicting
novel LncRNA-disease associations. Moreover, LncRNADisease
contains lncRNA interactions at various levels, including proteins,
RNAs, miRNAs, and DNA.

We also included general non-coding databases such as NON-
CODE3, which is a database of all kinds of non-coding RNAs
(except tRNAs and rRNAs) containing 210,831 lncRNAs of several
species (Bu et al., 2011).

2.1.3. Circular RNAs database
Circ2Traits4 is a comprehensive database for circRNA potentially
associated with diseases and traits (Ghosal et al., 2013) circRNAs,
formed by covalent linkage of the ends of a single RNA mole-
cule, are newly discovered RNAs that sponge miRNAs to block
their function (Memczak et al., 2013). Circ2Traits uses the cir-
cRNA dataset from Memczak et al. (2013). This dataset consists
of 1,953 predicted human circRNAs along with their genomic
coordinates, annotation, and predicted miRNA seed matches. The
disease related miRNA data are taken from miR2disease (Jiang
et al., 2009). The authors collect the miRNA–mRNA interaction
data predicted by miRanda (Betel et al., 2008), TargetScan (Lewis
et al., 2005), PiTA (Kertesz et al., 2007), PicTar (Krek et al., 2005),
and RNA22 (Loher and Rigoutsos, 2012). Moreover, a dataset of
predicted miRNA and lncRNA interaction pairs is collected from
the miRCode database (Jeggari et al., 2012).

2.1.4. microRNA databases
Non-coding RNA human interaction data base includes The
Human microRNA Disease Database (HMDD) (Li et al., 2013),
a database of curated experiment-supported evidence for human
miRNAs and disease associations5. The database contains detailed

2http://210.73.221.6/lncrnadisease
3http://www.noncode.org/
4http://gyanxet-beta.com/circdb/
5http://www.cuilab.cn/hmdd
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and comprehensive annotations of human miRNA-disease associ-
ations, including those from the evidence of genetics, epigenetics,
circulating miRNAs, and miRNA-target interactions.

Another important resource is the miRandola database (Russo
et al., 2012, 2014)6. It is a manually curated database of extracellu-
lar circulating miRNAs. It is a comprehensive classification of dif-
ferent extracellular miRNA types and a collection of non-invasive
biomarkers for several diseases (e.g., cancer and cardiovascular
diseases).

2.1.5. Interaction databases
We included several sources for non-coding RNAs interactions.
The miRTarBase database (Hsu et al., 2014)7 provides experimen-
tally validated miRNA-target interactions.

NPInter (Wu et al., 2006)8 reports functional interactions
between non-coding RNAs (except tRNAs and rRNAs) and bio-
molecules (proteins, RNAs, and DNA), which are experimentally
verified. The authors collected primarily physical interactions,
although several interactions of other forms are also included.
Interactions are manually collected from publications, followed by
an annotation process that uses known databases including NON-
CODE (Bu et al., 2011), miRBase (the miRNA registry) (Kozomara
and Griffiths-Jones, 2013), and UniProt (the database of proteins)
(UniProt Consortium, 2013).

starBase (Li et al., 2014)9 reports RNARNA and proteinRNA
interactions from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP,
and CLASH) about 37 independent studies. The database con-
tains about 9,000 miRNA–circRNA, 16,000 miRNA–pseudogene,
and 285,000 protein–RNA relations. It also contains predicted
miRNA–mRNA and miRNA–lncRNA interactions.

2.2. DATA SCHEMA
2.2.1. ncRNA-DB identifier
Public databases catalog biological entities (e.g., ncRNAs) via
nomenclatures. They can be human readable names or alphanu-
meric identifiers. For example, genes are classified by their names,
their symbols, or database-specific identifiers. For example, the
breast cancer 1 gene can be identified by its assigned sym-
bols BRCA1, BRCC1, and PPP1R53, or by its specific data-
base identifiers like HGNG:1100, Entrez Gene 672, and UCSC
uc002ict.3.

Non-coding RNAs have been relatively recently discovered and
a comprehensive database including all of them is still missing. The
non-coding RNAs knowledge is spread among several databases
and ambiguity on the identifiers exists. Moreover, new discov-
ered entities are named with internal identifiers and they are not
reported in any other databases. This is the case for example of
NONCODE v4, the largest collection of ncRNAs available on-
line, where most of the reported ncRNAs can be only mapped to
NONCODE.

In ncRNA-DB, we use a generic resource identifier system
(named RID) together with a unique system-scope identifier
assigned by OrientDB (called ORID).

6http://atlas.dmi.unict.it/mirandola/
7http://mirtarbase.mbc.nctu.edu.tw/
8http://www.bioinfo.org/NPInter/
9http://starbase.sysu.edu.cn/

The RID is composed by three parts (or levels) EntityType:
DataSource: Alias.name. The EntityType indicates the biological
classification of the element such as ncRNA, RNA (not including
ncRNA), Gene, Disease, and Others for all other cases including
entities with unspecified type in the original data source. The Data-
Source reports the name of the external data source from where
we got the data together with its version (e.g., HMDD_2). The
Alias.name represents the nomenclature used in the data source.

2.2.2. Graph database schema for ncRNA-DB
A set of biological entities (genes, ncRNAs, RNAs, and diseases)
and their relations (physical interactions, functional relations, and
so on) can be modeled as a graph, a mathematical object composed
by nodes (entities) and edges (relations).

Relational database management systems (RDMS) are widely
used to store biological data. However, new rising models, grouped
under the name of NoSQL (Not only SQL) databases (Stonebraker,
2010; Han et al., 2011), are becoming quite popular for web and
biological applications. They can provide schema-less represen-
tation for non-structured data and can be easily implemented
in a distributed fashion resulting effective for Big Data problems
(Cattell, 2011).

NoSQL system can be classified into four classes, even if some
of them belongs to more than one class: (i) column model, where
data are represented by tuples, (ii) document-oriented databases
for storing, retrieving, and managing document-oriented infor-
mation, also known as semi-structured data, (iii) key-value store,
where data are stored as a collection of key-value pairs stored using
associative arrays, maps, symbol tables, or dictionaries, and (iv)
graph databases, where data are modeled using a graph structure.
These often implement the object-oriented model by modeling
concepts like classes, instances, inheritance, and polymorphism.

Non-coding RNA human interaction data base is implemented
in OrientDB (Tesoriero, 2013) OrientDB is both a graph model
and an object-oriented model, on top of a document model. We
chose OrientDB since it is a graph database and its object-oriented
concepts are suitable to model the ncRNA-DB data. Further-
more, the use of OrientDB allows to give public accesses to our
server, effective management of user privileges, use graph traver-
sal procedures, and language bindings among a large choice. It
offers a SQL-like interface in addition to several language spe-
cific interfaces. It is developed in Java and provides native Java
API (Application Programing Interface) for accessing the database,
which is suitable for developing Cytoscape applications.

Figure 1 depicts the schema of ncRNA-DB. The abstract class
BioEntity represents biological entities and it is specialized in the
five sub-classes: ncRNA, RNA, Gene, Disease, and Others. Aliases
are represented by the abstract class Alias, which is specialized in
five different sub-classes related to the five entity types. DataSource
is a class containing the external resource name and version from
where the data are got or equivalently the official repository of the
entity (e.g., NONCODE v4). An instance of a class is a particu-
lar value (e.g., realization, element, and data). In a graph model,
instances of classes and sub-classes are nodes.

Class inheritance happens when a class is a specialization of
the other one (Figure 1 mark 1). The naming of a biological
entity by an alias is represented by adding an edge between the
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Bonnici et al. Non-coding regulatory networks

FIGURE 1 |The database schema. The picture reports all the stored information together with their associations.

corresponding graph nodes. Due to the ambiguity of nomencla-
tures, these edges are n:n cardinality (Figure 1 mark 2). This means
that, for example, an ncRNA can have different aliases and the same
alias can refer to different ncRNAs.

Interactions among entities are modeled through a class called
Relation associated to the class BioEntity (Figure 1 mark 3). The
cardinality of the association is n:2, since an entity participates at
more than one relation and a relation involves exactly two entities.

The attributes of Relation are the PubMed ID containing the
reference of article reporting such relation, the description with
the support sentences and level to store the interaction level. The
interaction level indicates the molecular strata where the inter-
action is realized. This is represented by a pair of strings (a − b)
with a and b belonging to (RNA, DNA, Protein, TF). For example,
RNA–TF specifies that the ncRNA is interacting with the transcrip-
tion factor of the gene; (RNA–DNA) indicates that the ncRNA is
interacting with the coding genomic region of the gene; (RNA–
Protein) describes that the ncRNA is interacting with the protein
structure; and (RNA–RNA) tells that ncRNA is interacting with
the transcript RNA. If the same relation is stored in two (or more)
distinct data sources, two (or more) interaction edges are stored
into our system. This choice is motivated by reporting for each
interaction specific information such as the support sentence. The
level is the string NA when this detail in the resource is not given.

When a class contains as field values of another class we indicate
that a composition relation exists (Figure 1 mark 4). For example,
a data source name and version is part of a RID, which repre-
sents an Alias. The Relation has a composition association with
DataSource to external databases reporting it. The cardinality of
composition relation is n:1 since an alias or a relation is reported
in a data source and a data source contains more than one relation
or alias.

Table 2 |The total number of aliases associated with the imported

elements from external resources and how many among them are

present at least in another datasource.

DataSource Number of aliases Shared

HGNC 436,361 19,368

NONCODE.V4 327,099 5,671

LNCRNADB 218 115

CIRC2TRAITS 16,730 1,076

HMDD.2 1,376 1,376

LNCRNADISEASE 1,366 285

MIRANDOLA.1.6 1,231 1,231

NPINTER.2.0 7,678 4,857

MIRTARBASE 62,207 12,998

STARBASE.V2.0 5,298 3,747

Aliases act as access points to the data and they are indexed
(Figure 1 mark 5). The abstract class Alias is indexed by a single
field not-unique map on the element nomenclature (the third
field of the RID, Alias.name). This is used when the search is
performed by giving only the nomenclature. The Alias.type sub-
classes are indexed by a composite key dictionary working on the
second and third field of the RID, DataSource, and Alias.name.
This index works when both the EntityType and the nomenclature
are specified.

2.2.3. Data import
Here, we give details on the imported data from each resource.
ncRNA-DB integrates data concerning only Homo sapiens.
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Bonnici et al. Non-coding regulatory networks

• HGNC: we imported a list of non-coding RNAs and their
approved aliases used by other datasources, protein-coding
genes, pseudogenes, and phenotypes (considered as diseases).

• lncRNAdb: we imported a list of non-coding RNAs and their
aliases.

• circ2traits: we imported a set of interacting lncRNAs, circRNAs,
and messenger RNAs together with the associated diseases and
the PubMed IDs of articles where the interactions are reported.

• HMDD: we imported a list of diseases, the set of genes that
interact with ncRNAs, PubMed IDs of articles together with

Table 3 | For each biological entity type we report the number of

entries present in ncRNA-DB.

Entity Total In relation

ncRNA 193,440 25,463

RNA 4,962 4,962

Gene 19,271 12,265

Disease 1,330 735

Others 6,700 5,517

We report also the number of entities having relations with some other entities

(details are given inTable 4).

Table 4 |The number of ncRNAs interacting with other ncRNA-DB

biological entities.

Relation Total

ncRNA-ncRNA 77,982

ncRNA-RNA 36,369

ncRNA-gene 52,611

ncRNA-disease 16,662

ncRNA-others 132,663

the support sentences. Here, interactions are listed as ncRNA-
disease or ncRNA-gene-disease. We split the multi-relation
ncRNA-gene-disease into two distinct relations ncRNA-gene
and ncRNA-disease.

• LncRNAdisease: we imported a list of lncRNAs, their aliases,
associated diseases, interaction levels, PubMed IDs of articles
supporting the interactions, and sentences describing details
such as the type of dysfunction.

• Mirandola: we imported a set of miRNAs, their aliases, PubMed
IDs of articles together with the support sentences.

• miRTarBase: we imported a set of miRNAs, their validated tar-
gets, and their aliases, PubMed IDs of articles together with the
support sentences.

• NONCODE: we imported a list of non-coding RNAs, their
aliases and a mapping of NONCODE into external identifiers.

• NPInter: we imported a set of ncRNAs, their interactions, inter-
action levels, PubMed IDs of referencing articles, and supporting
sentences.

From the integrated data source files, we extracted the follow-
ing fields: source, target, and interaction details such as interaction
levels, reference papers, and support sentences. The main issues
about importing data from several resources are aliases disam-
biguation and the missing of entity type classification. In a first
phase, we extracted and combined from HGNC, NONCODE, and
LNCRNADB the sets of aliases for each bioentity. At the end of
this step, each bioentity will have some aliases uniquely assigned to
it, and some others shared with other entities. In a second phase,
for each entity we merge its aliases with those taken from all other
datasets integrated in ncRNA-DB. Table 2 summarizes the num-
ber of aliases taken from the integrated datasources and how many
are shared among them.

When the entity type of interaction actors are not provided,
but only the entity levels (i.e., RNA-protein), we first searched
the elements in the ncRNA-DB. If they were not present in any

FIGURE 2 | We report the main architecture of our system. The
resource is integrated through an import procedure and stored into
OrientDB. All the data are exposed using three different user
interfaces: (i) the ncINetView; Cytoscape app; (ii) the web app; and (iii)

the command-line interface. All the data can be also queried using
languages APIs and third party applications. ncRNA-DB is designed to
be a server for client applications, thanks to the features offered by
OrientDB.
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Bonnici et al. Non-coding regulatory networks

FIGURE 3 | (A) The picture reports the retrieved Biogrid network (with the
E2F6 query) with four nodes (E2F6, EZH1, EZH2, and ARAF) selected by
the user; (B) the first panel of ncINetView allows the annotation of
selected nodes with all ncRNA neighbors and all their interactions with
actors of the network present in ncRNA-DB; (C) the resulted annotated

network; (D) an extracted circuit by the user involving the long non-coding
RNA HOTAIR, the selected genes and the hsa-mir-148p-3b. The presence
of more than one edge connecting nodes is motivated by reporting in the
table panel for each interaction specific information such as the support
sentence.

sub-classes (ncRNA, ncRNA, RNA, Gene, or Disease), we labeled
them as Others.

At the end of the described ETL (Extract, Transform, and Load)
procedure, we had: 853,543 alias, a total of 222,970 biological enti-
ties, 889,675 edges connecting Alias and BioEntity classes, and
238,524 entity relations.

Table 3 gives the total number of imported biological entities,
grouped by type, and how many of them are actually involved in
relations. Table 4 reports the number of ncRNAs interacting with
other ncRNA-DB biological entities.

3. UTILITY
OrientDB is supported by several language connectors, beside the
native Java API. The user can query the system through program-
ing language binding, or by using the OrientDB SQL-like console.

It also implements technology standard like HTTP REST/JSON,
TinkerPop Blueprints (for graph computing), and JDO (Java Data
Object for object persistence). The user can develop software as
client connected to the ncRNA-DB database.

Non-coding RNA human interaction data base is equipped
with three alternative interfaces: (i) a CytoScape (version 3) app
for importing data in a network visualization environment; (ii) a
web interface; and (iii) a command-line interface for raw resource
queries. Entities are specified by using their alias, through full or
partial ncRNA-DB identifiers (RID or ORID).

The CytoScape plug-in and the command-line applications can
be downloaded from the ncRNA-DB website at http://ncrnadb.
scienze.univr.it/ncrnadb/. The documentation is also provided.

Figure 2 shows a complete schema of the proposed system,
from the import phase to the user interfaces.
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Bonnici et al. Non-coding regulatory networks

3.1. CYTOSCAPE INTERFACE
The CytoScape app interface, ncINetView, allows users to: (i)
annotate an existing network with the ncRNA-DB relations; and
(ii) search ncRNA-DB relations of specific elements and to add
them to a user network or to create a new network. The source
code of the Cytoscape interface, ncINetView, is available at https:
//code.google.com/p/ncrnadb/.

3.1.1. Add edges
The Add Edges takes an user network as input and annotates it
with ncRNA-DB relations among its nodes.

The user selects the name of a network to be annotated by click-
ing on Network. The network needs to be already imported into
the Network View of Cytoscape. In order to expand a subset of
such a network, the user selects the relative nodes in the Network
View Section and checks the Selected only option. The net-
work table may have two columns specifying the biological entity
type of each node together with the set of known aliases. The user
assigns such columns to Type column and Alias column.
The app maps each node of the network with the entities of the
ncRNA-DB having the associated aliases.

The type column is optional. If missing, ncINetView cre-
ates one and associates the types in ncRNA-DB of the matched
entities. The type of a vertex may be ncRNA, RNA, Gene, Dis-
ease, and Others. When it is labeled as Others, the user may
assign a miscellaneous of entity types to the corresponding table
entries or may leave it empty. Even in this case, the app tries to
map all the matching aliases entities to the node. This behav-
ior allows the user to specify nodes representing entities groups
and to do disambiguation at a network data representation
level.

The user can decide whenever some of the above entity types
have to be excluded from the mapping. This can be done by
unflagging the corresponding entity type check-boxes.

Once the user clicks on Import, the application retrieves from
ncRNA-DB the matching biological entities and their relations.
Then the user maps them into the network nodes and adds all
found relations among them.

If the Include neighbors check-box is flagged, then the
application retrieves all the ncRNA-DB neighbors of the matching
entities and adds them to the mapped nodes, as well as relations
among them and the other retrieved entities.

FIGURE 4 |The add nodes panel of ncINetView. (A) The user
performs a query specifying: diabetes mellitus, hypertension, and
myocardial infarction. All elements found in ncRNA-DB are reported in
the text area with the associated aliases. A check box is used to include
the elements in the network generated by clicking in Import. User

selects in Network among those present in the cytoscape network
panel, which network must be annotated; together with the name of
table columns containing the aliases and the type of each node (the
last is optional).

(Continued)
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Bonnici et al. Non-coding regulatory networks

FIGURE 4 | Continued
(B) The corresponding network view is generated.

As an example, we can retrieve a protein–protein interaction
network from Biogrid using the proper Cytoscape option. We
searched for the protein E2F6 and we retrieved all the known
experimental validated interactions stored in Biogrid. To uncover
potential novel important interactions, we focused on a subnet-
work by selecting some protein-coding genes: E2F6, EZH1, EZH2,
and ARAF (see Figure 3A). Next, we used our app to extend the
network with non-coding RNAs (e.g., lncRNAs and miRNAs). This
yielded a new network (see Figures 3B,C).

From all retrieved interactions, we analyzed those involving one
lncRNA (HOTAIR, Gupta et al., 2010a) and one miRNA (miR-
148b-3p) (see Figure 3D). The hypothesis for this kind of interac-
tions could be the following: (1) the regulation of cell cycle and (2)
the role of this circuit in the chromatin remodeling. In fact, it is well
known that EZH1 and EZH2 (also called ENX1) are involved in the
chromatin remodeling (Margueron et al., 2008). Moreover, these
genes are up-regulated in several cancers and in particular EZH2

interacts with E2F6 contributing to cellular proliferation and cell
cycle progression (Attwooll et al., 2005). Interestingly, the long
non-coding HOTAIR is also involved in the chromatin remodel-
ing, carcinogenesis and metastasis (Gupta et al., 2010a). HOTAIR
over-expression is associated with the reprograming of the Poly-
comb complex PRC2 function in breast cancer (Gupta et al.,
2010a) and colorectal cancer (Kogo et al., 2011). Furthermore, its
up-regulation may be a critical element in metastatic progression.
In this context, the miR-148b-3p is considered a tumor suppres-
sor miRNA, and it is down-regulated in several cancers such as
the colorectal cancer (Song et al., 2012). Moreover, it has been
reported that the over-expression of miR-148b could inhibit cell
proliferation in vitro and suppress tumorigenicity in vivo (Song
et al., 2012). A possible mechanism of the tumorigenesis in col-
orectal cancer and other cancers, could act through the above
molecules in a circuit, which involves the up-regulation of the
cited proteins and the down-regulation of miR-148b-3p mediated
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Bonnici et al. Non-coding regulatory networks

FIGURE 5 |The search section of the web interface of ncRNA-DB.

by the lncRNA HOTAIR. In this case, HOTAIR may function as
competing endogenous RNAs (ceRNAs) to sponge miR-148b-3p,
thereby modulating the de-repression of its targets (e.g., ARAF, a
proto-oncogene may involved in cell proliferation).

3.1.2. Add nodes
Add Nodes allows users to search for biological entities by
specifying their aliases.

In Search, the user specifies the entity nomenclatures to be
searched separated by space (see Figure 4A). The app creates a
node for each retrieved element. Aliases can be loaded also from
file (File). The file has one or more aliases per row and each row
corresponds to a node. If a row contains more elements than the
node is a group node (i.e., a miscellaneous of entity types).

The app retrieves the matching entities and shows them in
the Results panel (see Figure 4B). For each entity, the list
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of corresponding aliases and their biological types are shown.
Users can select the entities to be imported in the network
(Import).

In Network, the user selects the name of the network to be
annotated among those available in the Cytoscape Network View.
Furthermore, the user specifies which column of the network table
should be assigned to Type column and Alias column that
contains the entity type of the nodes and their aliases. The network
can be also empty.

If the Include neighbors check-box is flagged, then the
application retrieves all the ncRNA-DB neighbors of the match-
ing entities and adds them to the mapped nodes. The user can
decide whenever some neighbor types have to be excluded from
the mapping. This can be done by unflagging the corresponding
entity type check-boxes.

For example, let’s search for the diabetes mellitus, hypertension,
myocardial infarction, and let’s get all non-coding RNAs associ-
ated with them (see Figures 4A,B). Several ncRNAs are associated
to one, two, or all three diseases.

3.2. WEB INTERFACE
We developed a web app for querying our database10 . Users can
search through a text area by putting a list of elements. The system
will show the matching ncRNA-db entities and their neighbors
(see Figure 5). Results can be saved in text format.

3.3. COMMAND-LINE INTERFACE
We developed a command-line interface to ncRNA-DB for entity
searching and relation retrieval. It is released as a Java pack-
age to be platform independent and it does not require any
external dependency. It provides two commands for accessing
data. The search command takes a list of aliases as input
and returns the matching biological entities stored in ncRNA-
DB. This command is also useful to verify whether an identi-
fier is included in the database and to retrieve all its alternative
nomenclatures. The second command, relations, receives a
list of entities as input, and returns the relations between them
stored in ncRNA-DB and their support information. The released
package also provides Java API implementing the functionality
described above. The documentation is provided as JavaDoc at
ncRNA-DB web site. Alternately, users may adopt the GraphAPI
of OrientDB. The source code of CLI interface is available at
https://code.google.com/p/ncrnadb/.

4. CONCLUSION
In this paper, we have presented ncRNA-DB, an integrated data-
base storing knowledge concerning ncRNAs, genes, and associated
diseases. The system has been implemented within the NoSQL
database OrientDB. It stores data coming from several leading
resources such as HGNC, lncRNAdb, circ2Traits, HMDD, lncR-
NADiseases, miRandola, miRTarBase, NON-CODE, and NPInter.
ncRNA-DB can be queried trough three interfaces. A Cytoscape
App, named ncINetView, allows to annotate biological networks
with ncRNA knowledge. A web app and a command-line inter-
face, which allows users to query the ncRNA-DB and to extract

10http://ncrnadb.scienze.univr.it/ncrnadb/

information in a text format. The aim of the proposed system
is to give a comprehensive access to all the knowledge avail-
able in the literature concerning ncRNAs and associated diseases.
As a key characteristics, the integrated data aim to reduce the
problem of different nomenclatures used by different sources.
The ncRNA-DB is available at http://ncrnadb.scienze.univr.it/
ncrnadb/.
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Motivation: Over the past few years, experimental evidence has highlighted the role of
microRNAs to human diseases. miRNAs are critical for the regulation of cellular processes,
and, therefore, their aberration can be among the triggering causes of pathological phe-
nomena. They are just one member of the large class of non-coding RNAs, which include
transcribed ultra-conserved regions (T-UCRs), small nucleolar RNAs (snoRNAs), PIWI-
interacting RNAs (piRNAs), large intergenic non-coding RNAs (lincRNAs) and, the heteroge-
neous group of long non-coding RNAs (lncRNAs).Their associations with diseases are few
in number, and their reliability is questionable. In literature, there is only one recent method
proposed by Yang et al. (2014) to predict lncRNA-disease associations. This technique,
however, lacks in prediction quality. All these elements entail the need to investigate new
bioinformatics tools for the prediction of high quality ncRNA-disease associations. Here,
we propose a method called ncPred for the inference of novel ncRNA-disease association
based on recommendation technique. We represent our knowledge through a tripartite
network, whose nodes are ncRNAs, targets, or diseases. Interactions in such a network
associate each ncRNA with a disease through its targets. Our algorithm, starting from
such a network, computes weights between each ncRNA-disease pair using a multi-level
resource transfer technique that at each step takes into account the resource transferred
in the previous one.

Results: The results of our experimental analysis show that our approach is able to pre-
dict more biologically significant associations with respect to those obtained byYang et al.
(2014), yielding an improvement in terms of the average area under the ROC curve (AUC).
These results prove the ability of our approach to predict biologically significant associa-
tions, which could lead to a better understanding of the molecular processes involved in
complex diseases.

Availability: All the ncPred predictions together with the datasets used for the analysis
are available at the following url: http://alpha.dmi.unict.it/ncPred/

Keywords: ncRNAs-diseases association predictions, lncRNAs functional characterization, network-based
inference, tripartite networks, resource transfer algorithm

1. INTRODUCTION
In recent years, great efforts have been employed in the study
of non-coding RNAs (ncRNAs), a class of genes involved in a
wide variety of biological functions. Small ncRNAs, such as siRNA,
miRNA, and piRNA, are highly conserved in different species and
have a key role in transcriptional and post-transcriptional silenc-
ing of genes. Long ncRNA (transcribed RNA molecules whose
length is greater than 200 nucleotides) instead are poorly pre-
served and have the task of regulating gene expression through
mechanisms still largely unknown (Mercer et al., 2009; Ponting
et al., 2009; Wilusz et al., 2009). It has been shown that these mol-
ecules are involved in the regulation of gene expression by acting
as controllers of processes such as RNA maturation or transporta-
tion, or altering chromatin structure. ncRNAs have great variety
in structure and in gene regulation outcomes, however, several

similarities can be identified in the way they act (Wang and Chang,
2011).

The connection between diseases and de-regulation of small
ncRNAs has been established for years. However, recent studies
show that mutations and de-regulations of lncRNAs are heav-
ily involved in the development or progression of several diseases
(Wapinski and Chang, 2011). Alterations in the structure (primary
or secondary), or in the expression levels are the main underly-
ing causes of diseases, from cancer to neurodegenerative disorders
(Wapinski and Chang, 2011).

Pasmant et al. (2011) highlight how the expression of the
lncRNA ANRIL, antisense transcript to INK4b gene, is correlated
with the epigenetic silencing of INK4a, or p16 protein, which is
involved in the regulation of cell cycle. High levels of ANRIL
were found in prostate cancer tissues (Yap et al., 2010). Yap
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et al. (2010), also, hypothesizes that this transcript is an initi-
ating factor in tumor formation due to its silencing action on
the INK4b/ARF/INK4a locus. Other experimental evidence link
ANRIL de-regulation to a number of pathologies, including coro-
nary disease, intracranial aneurysm, and type II diabetes (Pasmant
et al., 2011).

Another example of correlation between lncRNAs and diseases
is the HOTAIR transcript, which is involved in the progression
of breast cancer by chromatin landscape remodeling (Burd et al.,
2010). In particular, increased expression of tHOTAIR is an index
of poor prognosis and tumor metastasis. Gupta et al. (2010) show
that HOTAIR is also responsible for invasiveness and metastasis in
epithelial cancer cells and its inhibition may lead to a reduction of
invasiveness in cells where PRC2 complex is highly activated.

Further evidence of lncRNAs-diseases correlation is the tran-
script called MALAT-1, an RNA of more than 8000nt present in
chromosome 11q13, whose over-expression is related to bad prog-
nosis in patients with non-small cell lung cancer (Ji et al., 2003). In
addition, the antisense transcript of β-secretase-1 (BACE1-AS) has
been identified in high concentrations in subjects with Alzheimer’s
disease and in amyloid precursor protein transgenic mice (Faghihi
et al., 2008).

Therefore, despite the enormous importance that ncRNAs
show in connection with several diseases, the number of enti-
ties, which somehow has been functionally characterized and
associated to diseases, is extremely small (Wapinski and Chang,
2011). For this purpose, the developing a methodology that is
able to predict ncRNA-disease interactions is crucial in order to
formulate new hypotheses on the molecular mechanisms under-
lying complex diseases, and to identify potential new biomark-
ers for their diagnosis, treatment and prevention. Despite the
use of such a methodology could be very helpful by making
the search for new associations more focused and less costly,
it must be emphasized that the task of determining, which
are beneficial remains a responsibility of bio-physicians. They,
indeed by identifying appropriate patient groups and properly
documenting such cases, can establish the actual relationship,
while also allowing a broader understanding of the underlying
phenomena.

In this direction, Yang et al. (2014) developed a method, which
exploits a bipartite network and a propagation algorithm to predict
new associations that can be evaluated through appropriate in vitro
experiments. Yang et al. (2014) based their method on the database
assembled by Chen et al. (2013): a collection of approximately 1028
experimentally validated interactions among 322 lncRNAs and 221
diseases. The database has been further extended, through deep lit-
erature mining, to include additional interactions. The database
includes also 478 experimentally validated interactions among 126
lncRNAs and 236 protein coding genes. For such genes a modu-
lation in expression values is known to be carried out by such
ncRNAs.

In this paper we present ncPred, a resource propagation
methodology, which uses a tripartite network to guide the infer-
ence process of novel ncRNA-disease associations. The tripartite
network allows the introduction of two levels of interaction:
ncRNA-target and target-disease. Here, we call targets a group
of biomolecules (i.e., genes, microRNAs, proteins) whose activity

is modulated by a ncRNA (e.g., regulation of expression, binding
to improve the efficiency of its activity, or binding to help the
formation of complexes). In this way, we can exploit the greater
quantity of known interactions between targets (i.e., proteins and
miRNAs) and diseases to build a wider knowledge base and obtain
a greater number of high quality predictions.

To perform a proper evaluation of our method, we applied
a k-fold Cross-Validation procedure to the (Chen et al., 2013)
database, remodeled to include information on targets. A fur-
ther analysis uses a database of experimentally verified inter-
actions between ncRNAs and miRNAs shown in Helwak et al.
(2013).

2. MATERIALS AND METHODS
2.1. ALGORITHM
Let O= {o1, o2, . . ., on} be a set of non-coding RNAs (ncRNAs), let
T= {t 1, t 2, . . ., tm} be a set of targets (i.e., genes, microRNA), and
let D= {d1, d2, . . ., dp} be a set of diseases. The ncRNA-target and
target-disease interactions can be represented in a tripartite graph
G(O, T, D, E), where E is the set of interactions (edges) between
nodes in O and T and nodes in T and D. Such a graph, can be rep-

resented by using a pair of adjacency matrices AOT
=

{
aOT

ij

}
n×m

and ATD
=
{

aTD
rs

}
m×p where aOD

ij = 1 if oi is connected to tj in

G, and aTD
rs = 1 if tr is connected to ds in G.

Our technique is based on the concept of resources transfer
within the network. We refer to Alaimo et al. (2013) for details
of resources transfer (drug-targeting) in bipartite networks. The
bipartite network carries a prior knowledge which can be used to
infer novel interactions. Starting from such a network, it computes
weights between each pair of target. Those weights can be seen as
the likelihood by which we can affirm that if a drug is associ-
ated with a target then it may be associated with another one. For
each prediction, the algorithm also associates a score indicating
the degree of certainty of the interaction.

In this paper, due to the tripartite network, we developed a
multi-level transfer approach that at each step takes into account
the resource transferred in the previous one (see Figure 1 for
an example). In the first level of the transfer, the resource is
moved from the nodes in T (targets) to nodes in O (ncRNAs)
and vice versa. In the second level, the resource is moved from D
nodes to T nodes and it is combined with the resource of the pre-
vious step. Then, the resources are moved back to the D nodes. In
this way, we define a methodology for the computation of a com-

bined weight matrix W C
=

{
wc

ij

}
m×p

, where wc
ij corresponds to

the likelihood allowing us to claim that if a ncRNA interacts with
a target ti then it may be associated with the pathology dj.

To compute such a matrix, we start by defining two partial
weight matrices corresponding to the intermediate levels of trans-
fer. These two matrices are then used to obtain the combined
weight matrix and, therefore, compute the recommendations.

Let k ′(x) be the degree of node x in the ncRNA-target sub-
network and k ′′(y) the degree of node y in the target-disease
sub-network.

The matrix W T
=

{
wT

ij

}
m×m

, associated with the first level of

transfer, can be defined as:
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FIGURE 1 | Operating principle of ncPred in a tripartite network. Here, we
represent ncRNAs in blue, targets in orange, and diseases in red. Without loss
of generality, and in order to simplify the reading of the image, we decided to
put λ1 and λ2 to 1, so as to obtain a uniform distribution of resources in the
network. In the first step, a resource is assigned to each target and disease

node (1). Thereafter, two separate transfer process are launched to compute
the resource in target nodes (2a, 2b) and disease nodes (3a, 3b). Finally,
resources are combined to obtain the total quantity in each disease node (4).
In (4), the literals are used only for example purposes due to lack of space.
They are to be replaced with the values computed in steps (2b) and (3b).

wT
ij =

1

k ′ (ti)
(1−λ1) k ′

(
tj
)λ1

n∑
l=1

aOT
li aOT

lj

k ′ (ol)
, (1)

where wT
ij corresponds to the likelihood that given a ncRNA inter-

acting with target ti, then it may also interact with target tj. By
using such an equation, we assign higher weights to the pairs of
targets that share many ncRNAs, rather than those who share only
a few.

The same applies to W D
=

{
wD

ij

}
p×p

, matrix associated with

the second level of the transfer, where:

wD
ij =

1

k ′′ (di)
(1−λ2) k ′′

(
dj
)λ2

m∑
l=1

aTD
li aTD

lj

k ′′ (tl)
. (2)

In equation 2, wD
ij indicates whether we can assert that given a tar-

get associated with the disease di, it may also be linked to the disease

dj. wD
ij is higher for the disease pairs, which are associated to many

common targets with respect to those with fewer common targets.
In equations 1 and 2, the λ1 ∈ [0, 1] and λ2 ∈ [0, 1] parameters

are used to tune the quality of the predictions. Parameter values
close to zero indicate that the resource of a node is computed as
the average of those in its neighborhood, while values close to
one indicate that the resource is uniformly distributed among the
nodes of its neighborhood. In terms of predictions, lambda values
close to zero correspond to conservative predictions, while values
close to one correspond to a larger number of predictions.

Therefore, the combined weight matrix W C
=

{
wc

ij

}
m×p

can

be obtained as:

wC
ij =

m∑
t=1

[
wT

it

p∑
r=1

(
aTD

tr · w
D
rj

)]
. (3)

In equation 3, the weight of a target-disease pair is computed by
taking into account both the targets with a similar neighborhood
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and the diseases with a similar neighborhood. In this way, a larger
weight is assigned to those pairs for which more frequently there
is a path, which passes through them.

Given the above weights, it is now possible to compute the
recommendation matrix R= {rij}n×p as:

R = AOT
·W C . (4)

We call each rij prediction score for the pair (i, j). For each ncRNA
oi, its list of predictions Ri can be obtained by selecting those

Table 1 | Description of the datasets: number of ncRNAs, targets and

diseases together with the count of interactions, average degree,

density, modularity, number of connected components, and average

path length.

Metrics Chen et al. (2013) Helwak et al. (2013)

ncRNAs 119 338

Targets 110 179

Diseases 514 134

ncRNAs–targets interactions 247 1699

Targets–diseases interactions 1005 1572

Average degree 1.572 5.025

Density 0.002 0.008

Modularity 0.609 0.274

Number of connected

components

24 1

Average path length 1.572 1.734

disease-prediction score pairs for which there is no path with oi

in the tripartite network. Such a list is sorted in descending order
with respect to the value of rij, as the higher the score, the greater
the belief that the ncRNA will have some connection with that
particular disease.

2.2. DATASETS AND BENCHMARKS
We evaluated our method using two datasets containing experi-
mentally verified interactions between ncRNAs, targets, and dis-
eases. The first data set (Figure S1 in Supplementary Material)
was built by collecting from (Chen et al., 2013) 478 interactions
between lncRNAs and genes. These interactions were mapped by
converting each target identifier to its Entrez Id. This allowed
us to remove about 230 duplicates or superseded interactions.
From the remaining targets, we then extracted 1005 experimen-
tally validated gene-disease associations by searching in DisGeNET
(Bauer-Mehren et al., 2010).

The second data set (Figure S2 in Supplementary Material) was
obtained by collecting about 4000 lncRNA-miRNA interactions
found by Helwak et al. (2013) by applying the CLASH methodol-
ogy (Kudla et al., 2011). Each association indicates that a lncRNA
contains one or more binding sites for miRNAs. From such a list,
we removed all targets not present in miR2Disease database (Jiang
et al., 2009), obtaining 1699 lncRNA-miRNA associations. Finally,
using Jiang et al. (2009), we recovered 1572 miRNA-disease asso-
ciations. Table 1 provides a summary of the two datasets together
with some metrics that can further elucidate their characteristics.
Moreover, in Figure 2, we calculated the degree distribution of the
two networks. These show that they can be considered scale-free
networks.

FIGURE 2 | Degree distribution of the two networks used as datasets: (A) Chen et al. (2013), (B) Helwak et al. (2013). The two plots are in log-log scale. As
can be seen the degree distribution for the two networks can be approximated to an exponential one. We can therefore assume that the two networks are
scale-free.
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For the evaluation of our method, we applied a 10-fold cross-
validation procedure repeated 30 times to obtain more reliable
results. Each fold is built in the following way. Given the tri-
partite graph, we selected all possible pairs of ncRNA-disease
interactions. Then, we randomly partitioned them into each
fold. We make sure that the tripartite network generated from
each fold is not disconnected. ncPred makes predictions only on
connected networks. We considered the following four metrics
(Alaimo et al., 2013) to assess the performance of our method:
precision and recall enhancement, recovery, personalization, and
Surprizal. The first two establish the ability of the method to
recover the interactions of the test set, therefore, obtaining bio-
logically relevant predictions. The other two measure the ability
of the method to propose unexpected interactions, which may
lead to novel insights onto ncRNA functions. Special care should
be given to the precision and recall enhancement metrics. They
measure the reliability of the prediction algorithm by compar-
ing the standard precision and recall with a null model. Such
a model is defined as a methodology that randomly assigns
ncRNA-disease pairs. This implies that values greater than one
are to be considered synonymous of higher quality and, therefore,
reliability.

3. RESULTS
As stated earlier, to evaluate the power of our method, we applied a
10-fold cross-validation procedure repeated 30 times and averaged
results to obtain more reliable estimates. In Table 2, we illustrate
the behavior of ncPred, comparing it with Yang et al. (2014), in
terms of precision and recall enhancement. The results demon-
strate that ncPred clearly outperforms its competitor. In particular,
we can see that while Yang et al. (2014) obtains a recall close to the
null model, ncPred has much better results. This is crucial since
the recall measures the ability of the algorithm to recover exist-
ing interactions in the network, and is therefore a sign of their
reliability, namely their biological relevance.

In Figure 3, we report the receiver operating characteristic
(ROC) curves computed on both datasets. The simulations were
repeated 30 times and their results were averaged to obtain a more
accurate evaluation. Both methods show a high true positive rate
against low false positive rate, although ncPred is clearly able to
achieve better results. This is also shown in Table 2, where we can
see a significant increase in the average area under the ROC curve
(AUC). Such a significance is further proved by the results shown
in Table 3. By applying the Friedman rank sum test, we determined
that the performance improvement achieved by our algorithm is

Table 2 | Comparison of ncPred andYang et al. (2014) through the precision and recall enhancement metric, and the average area under ROC

curve (AUC) calculated for each of the two datasets listed inTable 1.

Dataset eP(20) eR(20) AUC (20)

Yang et al. (2014) ncPred Yang et al. (2014) ncPred Yang et al. (2014) ncPred

Chen et al. (2013) 5.5113 12.3290 0.7297 1.6636 0.6217±0.0178 0.7566±0.0218

Helwak et al. (2013) 1.8654 5.8197 1.6509 5.6572 0.7069±0.0084 0.7669±0.0093

The results were obtained using the optimal values for λ1 and λ2 parameters as shown inTable 3.

FIGURE 3 | Comparison between ncPred andYang et al. (2014) by means
of receiver operating characteristic (ROC) curves, computed for the
recommendation lists built on our two datasets. Such curves measure the
quality of the algorithms in terms of false positives rate against true positives

rate. (A,B) are independent since computed on two separate datasets. The
significance of the difference highlighted between ncPred and Yang et al.
(2014) was measured by applying the Friedman rank sum test as assessed in
Table 4.
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statistically significant (i.e., the p-value is close to zero on both
datasets).

Regarding the parameters λ1 and λ2, we performed a compre-
hensive analysis to establish the relationship between them and
the prediction quality. In the supporting materials, we report the
results of such analysis. The results indicate that there is no specific
law, which governs their behavior. The peculiar characteristics of
each dataset greatly affect the performances and, consequently, the
parameters. It is, therefore, necessary to perform an a priori analy-
sis in order to determine, which values give the best results. In our
experiments, we used such an analysis to determine the best para-
meters in terms of precision and recall enhancement (see Table 4
for details on their values). By looking at the characteristics of our
data sets, the values obtained from such an analysis allowed us to
suppose that the two parameters are close to zero in Helwak et al.
(2013) dataset because of the greater density. This implies that to
maintain high quality predictions it is necessary to reduce their
number to avoid the introduction of noise. On the other hand, the
Chen et al. (2013) dataset has a lower density. This allows us to
produce a higher number of predictions before they start losing
quality. Therefore, this explains the lambda values closer to one. It
is important to point out that in order to determine the best para-
meters an analysis was performed considering only precision and
recall enhancement, since they are closely related to the biological
significance of the predictions. In this context, we report in Table 2
only precision and recall enhancement and the AUC, ignoring the
other metrics, which are available in the supporting materials.

Finally, assuming that the number of targets dominates the
ncRNA one, we can state that the computational complexity of
our method is O(m2p). However, it is quite straightforward to
implement parallelization and optimization techniques to make
the computation faster.

3.1. CASE STUDIES
The analysis of the predictions for each non-coding showed that
ncPred is able to find exactly the same predictions provided by Yang
et al. (2014). The main difference between the two algorithms lies
in the different scores given to each prediction. As highlighted
in the previous section, ncPred is clearly able to provide more
substantially accurate predictions.

Table 3 | Friedman rank sum test applied to establish the statistical

significance in the performance improvement of ncPred compared to

Yang et al. (2014).

Dataset Friedman χ2 p-Value

Chen et al. (2013) 1026.315 <2.2×10−16

Helwak et al. (2013) 6537.915 <2.2×10−16

Table 4 | Optimal values of λ1 and λ2 parameters for the datasets

used in our experiments.

Dataset λ1 λ2

Chen et al. (2013) 0.5 1

Helwak et al. (2013) 0.2 0.2

To further demonstrate the ability of our method, we reviewed
in detail the results of five diseases (i.e., Alzheimer’s Disease,
Myocardial Infarction, Pancreatic Cancer, Parkinson’s disease, and
Gastric Cancer) as case studies. The top 10 predicted genes for each
case are listed in Table 5. Table 5 also shows the rank obtained by
applying on our dataset, the Yang et al. (2014) method. In this con-
text, the two datasets were taken together in order to start from a
wider knowledge base.

3.1.1. Alzheimer’s disease
Alzheimer’s disease (AD) is one of the most common forms of
dementia (Hebert et al., 2003). Recent studies indicate that it
affects approximately 0.40% of the world population (Brook-
meyer et al., 2007). The disease is, at present, untreatable, and
it is characterized by a progressive loss of mnemonic, cognitive,
and intellectual capacity, which ultimately leads to the death of
the patient. Among the first 10 ncRNAs, we find PVT1 a lncRNA,

Table 5 | List of top 10 predictions computed by ncPred and their rank

obtained withYang et al. (2014) for five case studies (Alzheimer’s

Disease, Myocardial Infarction, Pancreatic Cancer, Parkinson’s

Disease, and Gastric Cancer).

ncRNA ncPred

rank

Yang

et al.

(2014)

rank

ncRNA ncPred

rank

Yang

et al.

(2014)

rank

ALZHEIMER’S DISEASE

PVT1 1 3 B2 SINE RNA 6 28

MEG3 2 19 TP53TG1 7 22

TUG1 3 32 WRAP53 8 23

lincRNA-p21 4 21 Kcnq1ot1 9 48

CDKN2B-AS1 5 20 Evf2 10 35

MYOCARDIAL INFARCTION

H19 1 43 Kcnq1ot1 6 23

SRA1 2 24 PVT1 7 47

TUG1 3 26 CDKN2B-AS1 8 25

7SL 4 29 B2 SINE RNA 9 17

BDNF-AS1 5 34 Airn 10 18

PANCREATIC CANCER

HOTAIR 1 16 PCAT1 6 40

LINC00312 2 15 ncRNACCND1 7 9

Kcnq1ot1 3 25 Six3OS 8 45

Xist 4 43 Airn 9 14

TERRA 5 10 RepA 10 47

PARKINSON’S DISEASE

PVT1 1 11 LINC00312 6 24

MEG3 2 16 TP53TG1 7 20

TUG1 3 26 WRAP53 8 21

BACE1-AS 4 23 CDKN2B-AS1 9 27

lincRNA-p21 5 19 B2 SINE RNA 10 40

GASTRIC CANCER

PTENP1 1 38 Evf2 6 60

LINC00312 2 15 Airn 7 13

Xist 3 1 TERRA 8 18

PCAT1 4 29 B2 SINE RNA 9 40

Six3OS 5 39 RepA 10 37
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which regulates the transcription of MYC on the long distance
(Carramusa et al., 2007). In Jiang et al. (2013), MYC has been char-
acterized as the source of the main pathway substantially active in
AD, thus having an important role in disease progression. Such a
discovery confirms that PVT1 could play a key role in the progress
of AD. We have also identified the lncRNA MEG3 that activates
TP53 and improves its binding affinity to target gene promoter
(Liao et al., 2011). TP53 was identified in Tan et al. (2012) as
potential biomarker for AD. Therefore, further analysis to confirm
MEG3 role in AD are needed.

3.1.2. Myocardial Infarction
Myocardial infarction (MI) is a heart condition that occurs when
the proper flow of blood to a part of the heart stops, and the heart
muscle is damaged due to lack of sufficient oxygen. Genome-wide
association studies have identified 27 epigenetic factors that are
associated with an increased risk of MI (Feero et al., 2011). For
example, the genomic locus 9p21 has one of the strongest asso-
ciations with the pathology (Feero et al., 2011). The majority of
such factors have been identified in regions implicated in other
heart diseases (Feero et al., 2011). Among our predictions, we
identified the lncRNA SRA1 that Friedrichs et al. (2009) found
crucial in cardiomyopathies. This leads us to assume a possible
link with MI. In the top 10 predictions we also found the lncRNA
7SL, which, by hybridizing to the reverse-Alu-element-containing
3′UTR of MnSOD gene, represses its expression (Lipovich et al.,
2010). Overexpression of MnSOD has been identified as a possible
protection against MI in transgenic mice (Chen et al., 1998). This
could be a cue for further investigations to understand the role
such a lncRNA.

3.1.3. Pancreatic cancer
Pancreatic cancer is an aggressive disease whose 5-year survival
rate is extremely low (Amundadottir et al., 2009). The analysis
of the predictions obtained by our algorithm has provided the
association with lncRNA HOTAIR, whose overexpression has been
associated with a poor prognosis in pancreatic cancer, as well as
show a pro-oncogenic activity (Kim et al., 2012). A further lncRNA
is Airn. The deletion of its promoter in paternal allele results in
aberrant activation of IGF2R (Nagano and Fraser, 2009), whose
polymorphisms are associated with an increased risk of pancreatic
cancer (Dong et al., 2012).

3.1.4. Parkinson’s disease
Parkinson’s disease (PD) is a degenerative disorder of the cen-
tral nervous system. The main cause of the disease is the death
of dopamine-generating cells in the substantia nigra. The cause
of this death is still unknown, nevertheless, the process of aging
and metabolic stress are its common triggers (Parlato and Liss,
2014). It is interesting to note that the response to stress con-
ditions and mechanisms for quality control are compromised in
patients with PD. The reduction in the transcription of rRNA
(ribosomal ribonucleic acid) is an important strategy to maintain
cellular homeostasis under stress. An altered transcription is asso-
ciated with neurodegenerative disorders. There are many triggers
for nucleolar stress, but they seem to depend on the extitp53 pro-
tein (Parlato and Liss, 2014). Our algorithm is able to identify
two probable lncRNA associated with this function: PVT1, also

associated with AD, whose gene locus is a target of p53 (Barsotti
et al., 2012), and MEG3 that promotes the expression of Tp53 and
increases the binding affinity to the promoters of its target (Liao
et al., 2011).

3.1.5. Gastric cancer
Gastric cancer is a disease typically characterized by an overall
5 years survival rate lower than 10%, mainly due to the plurality
of common symptoms that lead to treatments only in advanced
disease stages (Orditura et al., 2014). Among our predictions, we
find the lncRNA Xist. In Weakley et al. (2011), it was identified
as differentially expressed in stomach preneoplastic cells, which
could be a symptom of gastric cancer. Another factor could be the
lncRNA Evf2, which is a direct putative positive regulator of tran-
scription factor Dlx-2 (Lipovich et al., 2010). Increased expression
of Dlx-2 was correlated with more advanced stages of the disease
(Tang et al., 2013).

4. DISCUSSION
In this paper, we propose ncPred to predict novel associations
between ncRNAs and diseases. The aim is to compute ncRNA-
disease association’s prediction starting from a tripartite network.
Such a network integrates information on ncRNAs, targeting (i.e.,
those genes, microRNAs, proteins whose activity is affected by
non-coding RNA), and their associations with diseases in order to
improve prediction quality and accuracy.

Our experimental analysis shows that our approach predicts
more biologically significant associations with respect to Yang et al.
(2014). This assertion is confirmed by the results obtained in terms
of recall, which as described above measures biological quality of
results. The use of Friedman rank sum test also showed that the dif-
ference between our predictions and those of Yang et al. (2014) is
not random but due to a better interpretation of available informa-
tion. The results showed that our method could provide interesting
suggestions in the study of the implications between ncRNA and
pathologies. However, as stated in the introduction, the method
can only help to make such a search more targeted and less expen-
sive, offering a ranking of associations from more probable to less
probable. Determine whether those associations are useful still
remains within the competence area of bio-physicians that can
provide conclusive evidence by identifying suitable patients and
documenting such cases.

Despite what stated earlier, our method still has some limi-
tations that should be taken into account. Firstly, ncRNA-target
associations are still too small in number. It may be necessary to
resort to additional targeting prediction techniques so as to expand
original knowledge base. Secondly, the methodology does not use
the biological information accompanying each association (e.g.,
type of ncRNA-target interaction, conditions in which the target-
disease association was detected, tissues in which associations have
significance). For this reason, it may be useful to further expand
the methodology by using such additional information, which
could make the methodology more reliable in terms of significant
predictions.

SUPPLEMENTARY MATERIAL
In the Supplementary Material (Data Sheet 1.pdf) we report the
ncPred parameter tuning further details concerning the compari-
son with Yang et al. (2014). The Supplementary Material for this
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article can be found online at http://www.frontiersin.org/Journal/
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Long non-coding RNAs (lncRNAs) are emerging as important regulatory molecules in devel-
opmental, physiological, and pathological processes. However, the precise mechanism and
functions of most of lncRNAs remain largely unknown. Recent advances in high-throughput
sequencing of immunoprecipitated RNAs after cross-linking (CLIP-Seq) provide powerful
ways to identify biologically relevant protein–lncRNA interactions. In this study, by analyzing
millions of RNA-binding protein (RBP) binding sites from 117 CLIP-Seq datasets generated
by 50 independent studies, we identified 22,735 RBP–lncRNA regulatory relationships.
We found that one single lncRNA will generally be bound and regulated by one or multi-
ple RBPs, the combination of which may coordinately regulate gene expression. We also
revealed the expression correlation of these interaction networks by mining expression
profiles of over 6000 normal and tumor samples from 14 cancer types. Our combined
analysis of CLIP-Seq data and genome-wide association studies data discovered hundreds
of disease-related single nucleotide polymorphisms resided in the RBP binding sites of
lncRNAs. Finally, we developed interactive web implementations to provide visualization,
analysis, and downloading of the aforementioned large-scale datasets. Our study repre-
sented an important step in identification and analysis of RBP–lncRNA interactions and
showed that these interactions may play crucial roles in cancer and genetic diseases.

Keywords: long non-coding RNA, RNA-binding protein, GWAS, CLIP-Seq, RNA-Seq

INTRODUCTION
Mammalian genomes encode thousands of long non-coding RNAs
(lncRNAs) (Wang and Chang, 2011; Guttman and Rinn, 2012).
lncRNAs play important roles in a variety of biological processes
that have been implicated in regulating tumorigenesis through
interaction with RNA-binding proteins (RBPs) (Konig et al., 2011;
Wang and Chang, 2011; Guttman and Rinn, 2012; Ulitsky and
Bartel, 2013). However, for the majority of lncRNAs, the mech-
anism underlying their interaction with RBPs remains unknown
(Konig et al., 2011; Wang and Chang, 2011; Guttman and Rinn,
2012; Ulitsky and Bartel, 2013).

The control and function of lncRNA are governed by the speci-
ficity of RBPs (Wang and Chang, 2011; Guttman and Rinn, 2012).
Increasing evidence suggests that many RBP–lncRNA interactions
play important roles in correct transcriptional regulation (Konig
et al., 2011; Wang and Chang, 2011; Guttman and Rinn, 2012;
Ulitsky and Bartel, 2013). One emerging theme that many lncR-
NAs regulate gene expression by directing chromatin modificators
to specific target regions (Ulitsky and Bartel, 2013). Significant
fractions (20% in human) of lincRNAs are interacted with PRC2
and other chromatin-modifying complexes (Khalil et al., 2009;
Guttman et al., 2011). The functional outcomes of some binding
events have been revealed. For example, HOTAIR, which is tran-
scribed from human HOX locus, guides repressor PRC2 to specific
mammalian loci to silence gene expression and to promote cancer

metastasis (Rinn et al., 2007; Wang et al., 2011). Besides, many
lncRNAs have been shown to interact with other types of RBPs,
including DNA methyltransferases (Schmitz et al., 2010; Di Ruscio
et al., 2013), transcription factors (Wang et al., 2014), and splicing
factors (Tripathi et al., 2010; Gong and Maquat, 2011; Yin et al.,
2012). However, deciphering the interactions between hundreds
of RBPs and thousands of lncRNAs remains a daunting challenge.

Genome-wide association studies (GWAS) have identified
thousands of common genetic variants related to specific traits
or disease phenotypes, and many of these variants (about 88%)
lie in non-coding regions, which could potentially influence pro-
cessing and expression of ncRNAs (Sethupathy and Collins, 2008;
Hindorff et al., 2009; Ryan et al., 2010; Cabili et al., 2011; Kumar
et al., 2013; Ning et al., 2014). For example, single nucleotide poly-
morphism (SNP) within miR-125a gene alters the processing of
pri-miRNA by DGCR8 and causes recurrent pregnancy loss in
a Han-Chinese population (Duan et al., 2007; Hu et al., 2011).
Another study found that a papillary thyroid carcinoma-associated
SNP, rs944289 affects the expression of lncRNA PTCSC3 by chang-
ing the binding activity of C/EBPα transcription factor (Cabili
et al., 2011; Jendrzejewski et al., 2012). Although the genetic vari-
ants in interaction sites of RBP–lncRNA may interfere lncRNA
functions and affected the susceptibility to human diseases, the
relationships between genetic variants and interaction sites were
yet unexplored.
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Recent advances in high-throughput sequencing of RNA iso-
lated by cross-linking immunoprecipitation (HITS-CLIP, CLIP-
Seq, PAR-CLIP, CLASH, iCLIP) have provided powerful ways to
identify RBP-associated RNAs and map such interactions in the
genome (Chi et al., 2009; Hafner et al., 2010; Konig et al., 2011; Hel-
wak et al., 2013; Fu, 2014; Fu and Ares, 2014). The application of
CLIP-Seq methods has reliably identified Argonaute (Ago) bind-
ing sites and miRNA-target interactome (Chi et al., 2009; Hafner
et al., 2010; Helwak et al., 2013). In fact, many more studies to date
have been focused on understanding the function of RBPs in RNA
metabolism (Konig et al., 2011; Fu, 2014), such as pre-mRNA splic-
ing (Fu and Ares, 2014). While an increasing number of RBPs have
been explored using CLIP technologies, binding peaks mapped to
non-protein-coding genes have been routinely discarded and not
further analyzed. However, this data will be a rich trove well worthy
of mining RBP–lncRNA relationships.

In this study, we performed a large-scale integration of pub-
lic RBP binding sites generated by high-throughput CLIP-Seq
technology and identified thousands of RBP–lncRNA interac-
tions. Furthermore, by combining GWAS and RNA-Seq data, we
explored clinically relevant RPB–lncRNA interactions that may
facilitate the translation of genetic studies of complex diseases
into therapeutics.

MATERIALS AND METHODS
INTEGRATION OF RBP BINDING SITES FROM PUBLISHED CLIP DATA
HITS-CLIP,PAR-CLIP,and iCLIP binding clusters/peaks data were
retrieved from the gene expression omnibus and sequence read
archive (SRA) (Barrett et al., 2013), the supplementary data of
original references or directly from authors upon request. All bind-
ing sites coordinates were converted to hg19 and mm10 assemblies
using the UCSC LiftOver Tool (Meyer et al., 2013).

RBP TARGET SITES SCANNING IN ANNOTATED lncRNA TRANSCRIPTS
Human gene annotations were acquired from GENCODE Version
17 (Harrow et al., 2012). Mouse gene annotations were extracted
from Ensembl Gene Release 72 (Hubbard et al., 2009) and LiftOver
to mm10 assembly. lncRNAs were further filtered to remove the
transcripts overlapping with protein-coding genes. The afore-
mentioned RBP CLIP clusters were used to intersect with the
coordinates of all annotated transcripts to find their RBP bind-
ing sites, which were fed to Circos (Krzywinski et al., 2009) for
visualization.

TCGA TUMOR EXPRESSION DATA AND EXPRESSION CORRELATION OF
RBPs AND lncRNAs
The Cancer Genome Atlas (TCGA) RNA-Seq expression datasets
(level 3, IlluminaHiSeq_RNASeqV2) for 14 cancer types and
gene annotation file (TCGA.hg19.June2011.gaf) were downloaded
from TCGA Data Portal (Cancer Genome Atlas Research Net-
work, 2008). Expression of 397 known lncRNAs can be measured
in TCGA level 3 RNA-Seq data. Expression correlation (Pearson
correlation coefficient) between lncRNAs and RBPs was estimated
using co-expression program (the program is available from the
authors upon request), which was written in C language and
ALGLIB library, and p-value was adjusted with the false discovery
rate (FDR) correction (Benjamini and Hochberg, 1995).

IDENTIFICATION OF DISEASE-RELATED SNPs IN RBP BINDING SITES
ASSOCIATED WITH lncRNAs
Disease/phenotype associated SNPs were curated from published
GWAS data provided by the NHGRI GWAS Catalog (Welter et al.,
2014), Johnson and O’Donnell (2009), dbGAP (Mailman et al.,
2007), and GAD (Becker et al., 2004). Additional SNPs in link-
age disequilibrium (LD) with reported disease-related loci were
selected with the criteria requiring an r2 value over 0.5 in at least
one of the four populations (CEU, CHB, JPT, and YRI) genotype
data of the HapMap project (release 28) (International HapMap 3
Consortium et al., 2010). For each SNP, rs ID were lifted to dbSNP
build 141 based on the “RsMergeArch.bcp” and “SNPHistory.bcp”
table from dbSNP, and genomic coordinates were lifted to the hg19
assembly using the UCSC LiftOver tool. All these disease-related
SNPs or LD SNPs were mapped to exons and splicing sites (2 nt
in the intron that is close to an exon) of the annotated lncRNA
transcripts and further examined whether they were located in
any RBP binding clusters.

DATA VISUALIZATIONS
RNA-binding protein–lncRNA interactions were deposited in our
starBase V2.0 (Li et al., 2014) under the “Protein–RNA” section1.
For each interaction, we provided links to our enhanced deepView
genome browser2, which was written using a GD graphics library
for PHP, to visualize RBP binding sites, lncRNAs, and other anno-
tation tracks in an integrated display style similar to that of UCSC
genome browser.

RESULTS
THE GENOME-WIDE BINDING MAP OF RNA-BINDING PROTEINS AND
THE ANNOTATION OF RBP–lncRNA INTERACTIONS
We curated 117 published CLIP-Seq datasets to profile the
genome-wide binding maps of 65 RBP. Unique binding sites of
distinct RBPs varied from thousands to millions, and the genomic
context distributions of binding sites for different RBPs distin-
guished from each other (Figure 1; Table S1 in Supplementary
Material). For example, PUM2, a translational repressor during
embryonic development and cell differentiation (Huang et al.,
2011), predominately bound to 3′UTR regions of protein genes,
while another translation inhibitor FMRP (Napoli et al., 2008)
tended to interact with CDS. The discrepancy in binding con-
text preferences for RBPs could root from different amounts of
available datasets, usages of various variants of CLIP-Seq, varying
sequencing depth, and/or genuine distinctions in the underlying
recognition mechanism of RBPs.

Despite that the majority of RBP binding sites were mapped
to protein-coding genes, on average 1.1% of RBP binding sites
lay within exons of human lncRNAs. In total, 21,073 and 1,662
RBP–lncRNA interactions were identified in human and mouse,
respectively (Table 1). It is noteworthy that most well-studied
lncRNAs interacted with chromatin modificators, acting as tethers
or scaffolds (Khalil et al., 2009; Kung et al., 2013). Thus, we consid-
ered the binding features of Ezh2, a subunit of PRC2 complexes,
by analyzing the CLIP-Seq data from mouse embryonic stem cells

1http://starbase.sysu.edu.cn/rbpLncRNA.php
2http://starbase.sysu.edu.cn/browser.php
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Li et al. Identification of protein–lncRNA interactions

FIGURE 1 |The genomic context distributions of binding sites for 47 human RBPs. Binding sites are mapped to genomic features in the following priority
order: CDS, 3′UTR, 5′UTR, lncRNA, pseudogene, sncRNA, intron, intergenic.

Table 1 |The summary of CLIP-Seq datasets used in this study and the

resulting RBP–lncRNA interactions.

Species Experiments RBPs Cell

lines/

tissues

RBP binding

sites mapped

to lncRNAs

RBP–lncRNA

interactions

Human 90 47 13 84,356 21,073

Mouse 27 18 20 5,330 1,662

(Kaneko et al., 2013). Our results demonstrated that Ezh2 inter-
acted with 35 lncRNAs including many imprinted RNAs, such as
Tsix, Meg3, Rian, and Pvt1 (Figure 2), which was consistent with
the epigenetic features of PRC2 (Zhao et al., 2010).

EXPLORING COMBINATORIAL EFFECTS AMONG RBPs
For the 12,255 human lncRNAs, 56.8% were found bound to at
least 1 RBP. Surprisingly, 16 lncRNAs, including GAS5 and NEAT1,
harbored binding sites of over 30 RBPs (Figure 3; Table S2 in
Supplementary Material), indicating their diverse roles in biolog-
ical processes when accompanied with different RBPs. Since one
lncRNA could interact with multiple RBPs, it could be expected
that some RBP binding sites were overlapped with each other.
Therefore, we explored combinatorial effects among RBPs by
employing integrated CLIP-Seq datasets. For example, we utilized
PAR-CLIP data generated in HEK293 and intersect binding sites
of three RNA destabilizer HuR, Ago2, and MOV10. The results
showed that tens of lncRNAs, including cancer-related lncRNAs
TUG1, DLEU2, and GAS5, were bound by at least two of the
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Li et al. Identification of protein–lncRNA interactions

FIGURE 2 |The genome-wide binding map of Ezh2 in mouse. The outer track is mouse chromosomes labeled with lncRNAs bound by Ezh2. The red tiles of
the inner track represent the genomic coordinates of corresponding binding sites.

three RBPs at identical binding sites (Figure 4). This phenomenon
suggested that the stabilities of these lncRNAs were likely under
joint control of these three RBPs, which could be explained by
their confirmed interplays in HEK293 (Chendrimada et al., 2007)
and Hela cells (Kim et al., 2009).

EXPRESSION ASSOCIATION OF RBP–lncRNA INTERACTIONS
To realize the roles of RBP–lncRNA interactions in cancer, we
preformed co-expression analysis between RBPs and lncRNAs

by virtue of 90 human CLIP-Seq datasets and expression
data from more than 6,000 tumor samples in 14 types of
cancer. Up to 583 pairs concerning 47 RBPs and 49 lncR-
NAs showed strong correlation at expression levels in at least
1 cancer type (Figure 5A). Marvelously, PUM2 and TUG1
involved with cell cycle regulation (Khalil et al., 2009; Huang
et al., 2011) showed significant positive expression correlation
(p < 0.05) in all 14 cancer types (Figure 5B). Two potential
PUM2 binding sites on TUG1 have the consensus recognition
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Li et al. Identification of protein–lncRNA interactions

FIGURE 3 |The distribution of lncRNAs bound by different numbers of RBPs. Histograms showing counts of lncRNAs bound by over 10 RBPs are zoomed
in at the subpanel. SNHG1, GAS5, NEAT1, and SHNG16 are marked, which are bound by 42, 40, 39, and 39 RBPs, respectively.

motif UGURUAUA, which was highly conserved in mammals
(Figure 5C).

PREDICTING GWAS-ASSOCIATED RBP BINDING SITES IN lncRNAs
Although GWAS over the years have revealed a significant number
of genetic variants related to diseases or phenotypes, a consider-
able portion of these identified loci are not within protein-coding
genes and therefore not functionally explained to date (Hindorff
et al., 2009). Here, we tried to fill this gap by connecting RBP
binding sites in lncRNAs and potential disease-related SNPs.

Altogether, 87,677 unique disease-related SNPs were collected
from four public GWAS data source (Table S3 in Supplementary
Material, detailed in Section “Materials and Methods”). Consid-
ering that additional SNPs in LD with reported disease-related
loci may also map to RBP binding sites in lncRNAs, we perform
LD analysis to extracted SNPs that had high LD relationship with
disease-related SNPs using a threshold of r2 > 0.5 in at least one
population from the HapMap CEU, CHB, JPT, and YRI genotype
data, which yielded a total of 895,968 disease-related or LD SNPs.

We found that 2431 of these SNPs were mapped to the exons of
2089 transcripts of 1489 lncRNA genes, among which 162 SNPs
were also located in at least 1 binding sites of 29 RBPs (Table S4
in Supplementary Material). For example, three disease-related
SNPs, namely, rs16902485, rs10283090, and rs2720659, resided
in the exons of lncRNA PVT1. According to the GWAS annota-
tions of Johnson and O’Donnell (2009), the latter two of the three
SNPs were associated with “type II diabetes mellitus,” which was in
good accordance with the recent reports showing that PVT1 may
contribute to diabetic nephropathy (Hanson et al., 2007; Alvarez
and DiStefano, 2011; Alwohhaib et al., 2014). These SNPs were

also overlapped with binding sites of U2AF65, HuR, and eIF4AIII,
respectively (Figure 6), suggesting variants in these sites might
result in impaired binding of these RBPs to PVT1, which thereby
might lead to the development of corresponding diseases.

Next, we checked whether disease-related SNPs might be
located in the splicing sites of lncRNAs and affect the alterna-
tive splicing of lncRNAs. We defined a splicing site as the 2 nt
within an intron close to the exon–intron junction. As a result,
we found that only 24 SNPs lay within lncRNA splicing sites
(Table S4 in Supplementary Material), among which only 1 SNP,
rs17207481, was overlapped with binding sites of FUS and HuR.
These results suggested that SNPs exerted limited effects on dis-
ease occurrence through the mechanism of disturbing alternative
splicing of lncRNAs.

COMPARATIVE ANALYSIS OF RBP TARGETS USING THE deepView
GENOME BROWSER
To facilitate comparative analysis of the CLIP-Seq datasets and
exploration of RBP–lncRNA interactions, we developed the
improved deepView Genome Browser2 in starBase V2.0 (Li et al.,
2014). In the query page of the browser, users can input one
interested genomic region in the “search term” and select corre-
sponding genome assembly to gain an integrated view of various
genomic features. Information on binding sites of RBPs, predicted
miRNA-target sites overlapped with CLIP-Seq data, as well as gene
annotations from RefSeq and Ensembl were provided in toggleable
tracks. The image of the browser will be updated immediately
by clicking the “refresh tracks” button when users change track
options. Figure 7 illustrated the visualization of FUS–MEG3 inter-
actions with deepView. Users can click the“zoom in”or“zoom out”
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Li et al. Identification of protein–lncRNA interactions

FIGURE 4 |The genome-wide binding map of HuR, Ago2, and MOV10 in
human. The outermost track represents ideograms of chr1, chr13, and chr22
in human genome. lncRNAs bound by these RBPs are labeled on the

periphery, and those bound by at least two of the three RBPs at identical
binding sites are colored red. The blue, green, and purple tracks indicate the
binding positions of HuR, Ago2, and MOV10, respectively.

button at the top to shrink or extend on the center of the anno-
tation tracks window by 1.5-, 3-, or 10-folds. Clicking the “View
region at UCSC” button will redirect users to the UCSC page
and exhibit the current region on the UCSC genome browser. To
explore RBP binding sites on a particular gene, users can type its
gene symbol in the position textbox and then click the “GO” but-
ton to update the display image to determine, which RBPs might
participate in regulating the gene. Our visualization method allows

a direct comparison of binding patterns of different RBPs, binding
preferences of one particular RBP in different cell lines and tissues,
and genomic contexts of RBP binding sites.

DISCUSSION
Although a few dozen lncRNAs have been characterized to
some extent and reported to function in important cellu-
lar processes, the functions of most annotated lncRNAs are
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Li et al. Identification of protein–lncRNA interactions

FIGURE 5 | RBP–lncRNA interactions are supported by
co-expression analysis in 14 types of cancers. (A) Histograms show
RBP–lncRNA interactions with expression association (Pearson
correlation, p < 0.05) in at least one cancer type. (B) The expression

levels of PUM2 and TUG1 are positively correlated (p < 0.05) in all 14
cancers. (C) The PUM2 binding sites on TUG1 are inferred from
PAR-CLIP data, and the consensus recognition motif UGURUAUA are
conserved in mammals.

unknown (Guttman and Rinn, 2012; Ulitsky and Bartel, 2013).
Several bioinformatics resources and tools have made efforts to
functionally annotate lncRNAs (Da Sacco et al., 2012), such as
fRNAdb (Kin et al., 2007) and ncFANs (Liao et al., 2011). These
tools mainly inferred lncRNA function by their differential expres-
sion in distinct biological states or their co-expression patterns
with protein-coding genes, but little attention was paid to the rela-
tionship of lncRNAs and their bounded proteins. In this study, by
analyzing a large set of RBP binding sites derived from all available
CLIP-Seq experimental techniques (PAR-CLIP, HITS-CLIP, iCLIP,
CLASH), we have shown extensive and complex RBP–lncRNA
interaction networks (Figure 1).

Recent studies have revealed that many lncRNAs function
through specific interactions with RBPs, but whether these interac-
tions are direct and specific remains controversial. RBP–lncRNA
interactions identified by low stringent immunoprecipitation of
non-cross-linked RNA–protein complexes, such as RIP-Chip and
RIP-Seq, may contain indirect binding relationships (Konig et al.,
2011). In comparison to previously reported significant frac-
tions (10% in mouse) of PRC2-associated lncRNAs (Zhao et al.,
2008), we found that a relatively small fraction (~1%) of lncR-
NAs were bound by Ezh2 in mouse (Figure 2). Therefore, we
provide enhanced resolution to determine lncRNA functional
networks based on RBP–lncRNA interactions supported by high-
throughput CLIP-Seq data. More than 80,000 binding clusters
identified from 65 different RBPs represent a valuable resource

for resolving some obstacles that have arisen in efforts to under-
stand lncRNA action. Nevertheless, although CLIP-Seq is designed
to detect direct binding events of proteins and RNAs, the result-
ing data might still contain false positives and false negatives,
which may root from every cumbersome step of this technique.
To minimize the impact of such false discoveries, we filtered the
origin results by the reported FDR and provided evidences such
as number of CLIP reads and number of supporting experi-
ments, which may help users to gain RBP–lncRNA interactions
of high-confidence.

By cross analysis of binding maps for multiple RBPs, this study
offers a new resource to understanding joint control of target
lncRNA expression. While only 65 RBPs were analyzed, we found
that many of the RBPs bound to the same lncRNA (Figure 3).
This is consistent with the compelling idea that lncRNAs can serve
as scaffolds that assemble many relevant RBPs to regulate gene
expression (Wang and Chang, 2011; Ulitsky and Bartel, 2013).
At the same time, we also identified hundreds of identical binding
sites that bound by multiple different RBPs in lncRNAs (Figure 4),
probably reflecting competition among RBPs that binding on a
given lncRNA.

Our combined analysis of CLIP-Seq data and GWAS data
revealed hundreds of disease-related SNPs resided in the RBP
binding sites of lncRNAs (Table S4 in Supplementary Material).
Unlike the sporadic attempts on simply finding genetic vari-
ants associated with disease susceptibility within lncRNA genes
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FIGURE 6 |The GWAS-associated SNPs and binding sites of three
RBPs in the locus of PVT1. Gene annotations from UCSC, lncRNAs from
GENCODE, GWAS, and LD SNPs, binding sites of eIF4AIII/HuR/U2AF65

and LD plot from HapMap are shown accordingly. The SNP rs10283090
overlapped with binding sites of HuR and U2AF65 are zoomed in at the
bottom panel.

(Bochenek et al., 2013; Mirza et al., 2014), our approaches focused
on SNPs that might impact on the binding events between RBPs
and lncRNAs. Since most lncRNAs fulfill their roles through by
forming complex with their protein partners, our results provide
insights on the functions of lncRNAs from the perspective of RBP
binding malfunction in diseases, which in turn may contribute to
disease etiology.

Overall, our studies and the accompanying datasets demon-
strated that one single lncRNA will generally be bound and
regulated by one or multiple RBPs, the combination of which
may coordinately determine the final regulatory outcome.
We have also shown that an exhaustive and high-resolution

RBP–lncRNA interaction map will help to discover genetic vari-
ations that contribute to complex genetic diseases by affecting
post-transcriptional gene regulation.
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FIGURE 7 | An instance for displaying RBPs target sites in the
deepView Browser of starBase V2.0. The predictive FUS binding sites
on MEG3 are visible in the RBP binding sites track. In this track, the

binding sites of other RBPs such as TDP-43 and PTB on MEG3 are also
showed, which facilitates comparative analysis of binding events of
multiple RBPs.
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Discovering mirna regulatory 
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Mara D’Onofrio5, Ivan Arisi5, Giuseppe Rainaldi1, Letizia Pitto3* and Marco Pellegrini1*
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MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in the 
post-transcriptional regulation of gene expression. miRNAs are involved in the regulation 
of many biological processes such as differentiation, apoptosis, and cell proliferation. 
miRNAs are expressed in embryonic, postnatal, and adult hearts, and they have a key 
role in the regulation of gene expression during cardiovascular development and disease. 
Aberrant expression of miRNAs is associated with abnormal cardiac cell differentiation 
and dysfunction. Tbx5 is a member of the T-box gene family, which acts as transcription 
factor involved in the vertebrate heart development. Alteration of Tbx5 level affects the 
expression of hundreds of genes. Haploinsufficiency and gene duplication of Tbx5 are 
at the basis of the cardiac abnormalities associated with Holt–Oram syndrome (HOS). 
Recent data indicate that miRNAs might be an important part of the regulatory circuit 
through which Tbx5 controls heart development. Using high-throughput technologies, 
we characterized genome-widely the miRNA and mRNA expression profiles in WT- and 
Tbx5-depleted zebrafish embryos at two crucial developmental time points, 24 and 48 h 
post fertilization (hpf). We found that several miRNAs, which are potential effectors of 
Tbx5, are differentially expressed; some of them are already known to be involved in 
cardiac development and functions, such as miR-30, miR-34, miR-190, and miR-21. 
We performed an integrated analysis of miRNA expression data with gene expression 
profiles to refine computational target prediction approaches by means of the inversely 
correlation of miRNA–mRNA expressions, and we highlighted targets, which have roles 
in cardiac contractility, cardiomyocyte proliferation/apoptosis, and morphogenesis, cru-
cial functions regulated by Tbx5. This approach allowed to discover complex regulatory 
circuits involving novel miRNAs and protein coding genes not considered before in the 
HOS such as miR-34a and miR-30 and their targets.

Keywords: zebrafish, heart, microrna, ngs, microarray, holt–Oram, data integration
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1. inTrODUcTiOn

MicroRNAs (miRNAs) are small non-coding RNAs of about 
20–23 nucleotides that play an essential role in a variety of 
biological important pathways from development and physiol-
ogy to diseases such as cancer (Chen and Rajewsky, 2007; Small 
and Olson, 2011). miRNAs are mostly known to function by 
targeting complementary sequences in mRNA transcripts, 
usually in the 3′ untranslated region (3′ UTR) and so inhibit-
ing the translation and altering the stability of mRNA (Bartel, 
2004; Yates et  al., 2013). The identification and validation of 
miRNA–mRNA interactions is fundamental for discerning the 
role of miRNAs in the complex context of regulatory networks. 
However, since the miRNA binding is mostly not a perfect one-
to-one match with the complementary target sites, it is difficult 
to predict miRNA targets. Consequently, several computational 
methods and tools have been developed in the last years (Yue 
et  al., 2009; Peterson et  al., 2014). They encompass a range of 
different computational approaches, from the modeling of physi-
cal interactions, exploiting common features like seed match, 
conservation, free energy, and site accessibility to the incor-
poration of less common features extracted through machine 
learning techniques. Computational methods predict hundreds 
of thousands target mRNAs per miRNA, instead the number 
of experimentally validated targets is very low. One possibility 
to reduce the false positive rate is to combine high-throughput 
experimental data with sequence-based predictions (Huang 
et  al., 2007; Muniategui et  al., 2013). Although, this approach 
does not allow to identify miRNA targets that are repressed 
exclusively at the translational level. Since many miRNAs cause 
degradation of their targets (Baek et al., 2008; Hendrickson et al., 
2009; Guo et al., 2010; Subtelny et al., 2014), the integration of 
expression profiles has been proposed to be an effective strategy 
to discover true miRNA–target interactions (Gennarino et  al., 
2009; Nazarov et al., 2013; Albert et al., 2014).

In this work, we used expression values of miRNAs and 
mRNAs obtained with high-throughput technologies to 
study complex regulatory networks altered in the Holt–Oram 
syndrome (HOS). HOS is a rare autosomal congenital disease 
characterized by cardiac and upper limb malformations (Basson 
et al., 1997). Mutations in the T-box gene Tbx5, which encodes 
a key transcription factor for vertebrate heart development, are 
responsible for HOS (Horb and Thomsen, 1999; Goetz et  al., 
2006). Family members with identical Tbx5 mutations can 
display large variations in malformation severity and HOS pen-
etrance. This peculiar characteristic of HOS can be explained by 
the observation that Tbx5 is part of an extremely complex regula-
tory network. Due to the high number of messenger RNAs that 
are targeted by one miRNA, miRNAs are the best candidates to 
orchestrate the downstream regulation of Tbx5 gene expression 
in embryonic heart development. We have recently shown that 
miRNAs are crucial components of this network (Chiavacci et al., 
2012, 2015). In fact, we proved that in mouse cardiac cells and 
zebrafish embryos, Tbx5 is able to regulate several miRNAs and, 
in particular, miR-218 and miR-19 (Chiavacci et al., 2012, 2015). 
The dysregulation of both miRNAs has a severe impact on heart 
development, affecting early heart morphogenesis.

As a model system, zebrafish has been extensively used for 
studying early vertebrate development (Kimmel et  al., 1995; 
Yao et  al., 2014) over the last 20  years. In particular, the HOS 
model called heartstring (hts) mutant has been well established 
in zebrafish, and it recapitulates almost completely the HOS char-
acteristics. Furthermore, the zebrafish hts mutant can be easily 
replicated with the injection in zebrafish eggs of a specific Tbx5 
morpholino (small antisense ribo-oligonucleotides, which blocks 
target translation) (Garrity et al., 2002).

Here, we propose an integrative approach, which uses 
experimental data from zebrafish HOS model system and com-
putational methods for investigating in vivo complex regulatory 
networks perturbed in this pathology across two different stages 
of zebrafish development, 24 and 48 hpf. Those two stages were 
chosen since they mark fundamental steps in heart development. 
By 24 hpf, the migration phase is concluded, and the heart tube 
lies along the anteroposterior axis of the embryo with the atrial 
end to the left of the midline. By 48 hpf, the heart development 
is substantially completed: the heart terminated the looping 
phase and functional valves are formed (Kimmel et al., 1995; Yao 
et al., 2014). We show that it is possible to use data integration 
methods for studying rare diseases, providing significant insight 
into biological processes, and identifying new potential markers 
and drug targets of clinical interest.

2. MaTerials anD MeThODs

2.1. embryos injection
The zebrafish line used in this study is the wild-type AB strain, 
the animals were raised and maintained under standard labora-
tory conditions (Westerfield, 1993). To silence the zebrafish gene, 
Tbx5a we used the antisense morpholino oligonucleotide 
MO-Tbx5a against the translational start site of the gene, the 
sequence of MO-Tbx5a was 5′-GAA AGG TGT CTT CAC 
TGT CCG CCA T-3′ (Garrity et al., 2002). The sequence of the 
control morpholino, MO-Ct, was 5′-CCT CTT ACC TCA GTT 
ACA ATT TAT A-3′. All morpholinos were supplied by Gene 
Tools LLC. Zebrafish morpholinos were injected into the yolk 
of 1-cell stage embryos with a constant injection volume, ~1 nl, 
using a microinjector (Tritech Research, Los Angeles, CA, USA). 
Zebrafish eggs were injected with 1.5 ng of MO-Tbx5a or 1.5 ng 
of MO-Ct, and embryos were collected at 24 and 48 hpf.

2.2. rna extraction, library Preparation, 
sequencing, and Microarray
For high-throughput DNA sequencing, total RNA was extracted 
from batch of n = 50 zebrafish embryos. The library preparation 
was done as described in (Baumgart et  al., 2012). In detail, 
500  ng of total RNA was used as input material. Library 
preparation was done using the TruSeq Small RNA Sample 
Prep (Illumina). The purified libraries were quantified on the 
Agilent DNA 1000 chip, diluted to 10  nM and subjected to 
sequencing-by-synthesis on Illumina HiSeq 2000 producing 
single-end 51  bp read length. Two independent batches of 
embryos were used for MO-Tbx5a and MO-Ct at 24 hpf, one 
for both condition at 48 hpf.
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FigUre 1 | Overview of the analytical workflow used in the study to 
identify inversely correlated putative target genes and to build altered 
regulatory networks in hOs.
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To measure mRNA expression, the Agilent Low Input Quick 
Amp labeling kit was used to retrotranscribe into the cDNA (from 
200 ng total RNA), amplify, and incorporate the cyanine 3-labeled 
CTP (cRNA). The method uses the T7 RNA polymerase, which 
simultaneously amplifies and incorporates cyanine 3-labeled 
CTP. The fluorescent cRNA was purified and hybridized to the 
Agilent Zebrafish V3 Gene Expression Microarray 4 × 44, accord-
ing to the manufacturer protocol. Three independent batches of 
embryos were assessed for MO-Tbx5a, while two for MO-Ct both 
at 24 and 48 hpf stages. Resulting images were quantified and text 
files containing raw values were analyzed.

2.3. analysis of sequencing  
and Microarray Data
Raw sequences were obtained and de-multiplexed using the 
Illumina pipeline CASAVA v1.8.2 FastQC v0.10.11, which was 
used for quality check, and primary reads were initially trimmed 
off to remove adapters sequence using Cutadapt v.1.2.1 (Martin, 
2011). Employing FASTX_Toolkit (0.0.13.1), the reads with N 
calls were discarded. Remaining high quality reads, with a mini-
mum length of 17 bp and a maximum 38 bp after clipping, were 
clustered for unique hits and mapped to zebrafish pre-miRNA 
sequences present into the mirBase (release 20) employing 
miRExpress (v2.1.3; Wang et  al., 2009). We allowed 95% of 
sequence identity between read and reference sequence and a 
length tolerance range of 4 bp for mapping. miRNAs expression 
profiles were built by calculating the sum of read counts for 
each miRNA according to the alignment criteria. Differential 
expression analysis of miRNAs identified by miRExpress was 
performed using Bioconductor’s package DESeq (Anders and 
Huber, 2010). The reads count, used as measure of miRNAs 
quantification, was first normalized by library size factors to a 
common scale. The analysis was then performed and p-values 
were estimated using a negative binomial distribution model and 
local regression to estimate the relationship between the disper-
sion and the mean of each miRNAs. Raw p-values were finally 
adjusted for multiple testing using the Benjamini and Hochberg 
(1995) procedure controlling the false discovery rate (FDR). 
miRNAs with an adjusted p-value <0.05 were considered to be 
differentially expressed.

For microarrays, pre-processing of the data included back-
ground correction using a normal-exponential convolution 
model (offset  =  16) (Ritchie et  al., 2007) and cyclic loess 
normalization (Ballman et  al., 2004) implemented in Limma 
package v.3.14.4 (Smyth, 2004). Low-expressed probes were 
filtered out keeping probes that are at least 10% brighter than 
the 95th percentile of the negative controls on at least 2 arrays. 
The Agilent Single channel Expression Microarray 4 × 44K for 
Zebrafish contains 39344 probes, 39162 are unique. For 35073 of 
them, we were able to retrieve gene accession ids corresponding 
to 21956 unique gene IDs. The linear modeling approach and 
empirical Bayes statistics implemented by Limma were used for 
assessing differentially expression. Finally, p-values were adjusted 
for multiple testing by means of the Benjamini and Hochberg 

1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

method to control the false discovery rate. Genes with FDR less 
than 0.05 and fold change (FC) higher than 1.3 were selected for 
downstream analysis.

All statistical analyses were conducted using R and available 
Bioconductor packages.2

2.4. integrated analyses of Zebrafish 
mirna and mrna expression Profiles
In order to discover miRNA-target pairs involved in HOS, we 
combined inverse correlations between miRNA and mRNA 
expression for improving in silico microRNA target predictions 
(see Figure 1). We selected the significant differential expressed 
miRNAs and mRNAs and performed target prediction analysis. 
Since miRNAs act at the post-transcriptional level downregulat-
ing their targets binding on the 3′-UTR of mRNAs, in this study, 
we focused our attention on these sequences that we retrieved 
from the UCSC Table Browser.3 We predicted miRNA target sites 
in the 3′-UTR using TargetScan Fish 6.2 (Lewis et al., 2005) and 
Pita (Kertesz et al., 2007) algorithms and then selected the con-
sensus. Finally, we extracted the inversely correlated interactions 
(to reflect the typical miRNA–mRNA relationship) obtaining the 
final miRNA-target list.

3. resUlTs

In the following sections, we detail the expression profiles of both 
miRNAs and annotated genes, which resulted altered by Tbx5a 
depletion during early zebrafish developmental stages (24 and 
48 hpf). Small RNAseq and microarray analysis were performed 
to generate, respectively, miRNA and mRNA profiles. Moreover, 
we describe the main results obtained by integrating experimental 
data with computational methods to investigate in vivo regulatory 
networks modified by Tbx5 dosage alteration.

2 http://www.bioconductor.com
3 http://genome.ucsc.edu/
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TaBle 1 | selected differentially expressed mirnas at 24 and 48 hpf.

Devel. stage mirna Fc p-val adj p-val 

24 hpf dre-miR-34a 2.82 1.03e−12 2.99e−10
dre-miR-10d-5p 0.55 11.24e−07 6.77e−06
dre-miR-30a 0.41 9.40e−12 1.02e−09
dre-miR-210-3p 0.33 8.29e−12 1.02e−09
dre-miR-210-5p 0.26 1.68e−10 1.22e−08

48 hpf dre-miR-34a 6.62 7.43e−16 2.70e−14
dre-miR-462 5.6 5.95e−10 7.63e−09
dre-miR-146a 4.51 1.05e−09 1e27e−08
dre-miR-21 2.84 1.65e−10 2.25e−09
dre-miR-19a-3pa 0.68 8.52e−02 4.91e−02
dre-miR-7b 0.10 1.83e−07 1.66e−06
dre-miR-190b 0.01 1.21e−18 5.29e−17

aData for miR-19a-3p comes from our previous published data in (Chiavacci et al., 2015).
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3.1. sequencing and annotation of mirnas 
Modulated by Tbx5a at 24 and 48 hpf
In order to assess miRNAs expression modulation in zebrafish 
embryos after Tbx5a depletion, we conducted massive parallel 
sequencing experiments producing between 12.7 and 25.1 
million total sequencing reads were obtained for each given 
library (16.8 mean) and this ranged from 10.5 to 20.2 million 
reads of 17–38 length after adapter trimming. On average, 
around 760 thousands of reads mapped to zebrafish miRNAs, 
annotated in miRBase v20 identifying 367 mature miRNAs on 
average per sample (see Table S2 in Supplementary Material). 
Among them, 19 miRNAs resulted to be significantly modulated 
at 24 hpf and 33 at 48 hpf (Table S3 and S4 in Supplementary 
Material respectively). We selected the most variable  miRNAs, 
in terms of expression fold-change between Tbx5 and Ct mor-
phants for downstream analysis: miR-34a, miR-10d-5p, miR-30a, 
 miR-210-3p, and miR-5p at 24 hpf, miR-34a, miR-462, miR-146a, 
miR-21, miR-7b, and miR-190b at 48 hpf (Table 1). Differently 
from experiments reported in our previous work (Chiavacci 
et al., 2015), the downregulation of miR-19a at 48 hpf was not 
significant. However, this miRNA was included in the list of 
miRNAs modulated by Tbx5 because: (1) Q-RT PCR analysis 
performed in four different sets of experiments confirmed 
 miR-19a downregulation (Figure  2B), (2) this downregula-
tion was clearly supported by physiological data and by in  situ 
hybridization experiments already presented (Chiavacci et  al., 
2015). Besides miR-19a-3p, other seven differentially modulated 
miRNAs were measured by quantitative RT-PCR and fold-changes 
were compared in Figures 2A,B for 24 and 48 hpf, respectively. 
All modulation was confirmed except for miR-210-5p, which 
resulted not significative.

3.2. Tbx5 sensitive genes in early 
Developmental stages of Zebrafish
To characterize the gene expression profiles at 24 and 48  hpf 
of zebrafish development and evaluate how altered Tbx5 dos-
age influences the genome-wide transcription, we measured 
mRNAs using expression microarray technology (see Materials 
and Methods for details). mRNAs were extracted from zebrafish 
embryos injected with MO-Tbx5a or MO-Ct and collected at 

24 and 48 hpf. Using an absolute FC cut-off of 1.3 and an adjusted 
p-value of 0.05, we identified 7100 differentially modulated genes 
after TBx5a silencing at 24hpf, while 2276 genes at 48 hpf. The 
magnitude of differential expression was formally tested to be 
biologically significant using the t-test relative to a threshold 
(TREAT) method (McCarthy and Smyth, 2009) implemented 
in Limma. The complete lists are available as Supplementary 
Material. Validation by relative Q-RT PCR was performed for 
some of the genes taking into consideration the relevance for the 
cardiac context. Q-RT PCR analysis confirmed the microarray 
data (Figure 2A for 24 hpf and Figure 2B for 48 hpf).

To highlight most relevant functional categories among iden-
tified modulated genes, we performed a Functional Annotation 
Clustering using The Database for Annotation, Visualization and 
Integrated Discovery (DAVID) tool (Da Wei Huang and Lempicki, 
2008). The Functional Annotation Clustering integrates the 
Kappa statistics to measure common genes between two annota-
tions (e.g., ontological terms), and the fuzzy heuristic clustering 
to classify the groups of similar annotations according to kappa 
values. The resulting groups have similar biological meaning due 
to share similar gene members. We considered KEGG pathways 
and Gene Ontology terms performing the enrichment analysis 
of downregulated and upregulated genes (separately) at 24 and 
48 hpf. Clusters that resulted significant (p < 0.05) are reported 
in Table 2. Interestingly, at 24 hpf, the top scoring functional cat-
egories contained genes that are involved in cell adhesion and ion 
binding. It is well known that morphogenesis requires specific cell 
adhesion molecules that are expressed in a precise developmental 
time, and the altered gene expression leads to heart defects (Buck 
et al., 1993; Kwee et al., 1995). In accordance with this observation 
and with our results, genes annotated with the term homophilic 
cell adhesion were also identified as significantly upregulated 
following inhibition of Tbx5a in a microarray-based expression 
profile performed in 56 hpf Tbx5 morphant zebrafish embryos 
(Mosimann et al., 2015). Furthermore, we found that the major-
ity of modulated genes consisted of the cation and ion binding 
categories. In this context, the cation calcium has an important 
role in heart development, functions, and diseases (Arnolds et al., 
2012; Crocini et al., 2014). The Calcium Binding Proteins (CaBPs) 
share a very similar domain organization with Calmodulin 
(CaM) and have been shown to have coevolved in vertebrate 
animals (McCue et al., 2010). The CaBPs have an important role 
during the development and in several diseases, such as Diastolic 
dysfunction that is characterized by slow or incomplete relaxa-
tion of the ventricles during diastole and is an important player 
in heart failure pathophysiology (Asp et al., 2013).

3.3. changes in mirna expression and 
integration with mrna Profile identify 
Potential mirna–mrna Target Pairs 
involved in hOs
In this study, we integrated two target prediction algorithms, 
TargetScan and Pita, with miRNA and gene expression data to 
refine in silico predictions and reduce the number of false posi-
tive interactions. The resulted miRNA-target pairs consisted of 
122 potential targets at 24 hpf for upregulated miRNAs and 372 
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FigUre 2 | Validation of small rna seq profiling and array-based gene expression profiles by Quantitative rT-Pcr. (a) Sequencing and corresponding 
Q-RT PCR expressions of eight of the miRNAs reported in Table 1 and identified as differentially modulated in MO-Tbx5 vs. MO-Ct embryos at 24 hpf and at 48 hpf 
are reported. Values are expressed as fold change of MO-Tbx5 relative to MO-Ct. For Q-RT PCR, values are normalized on U6 expression. As pointed out in the 
results, miR-19a RNA-seq value is from Chiavacci et al. (2015). miR-210 is the 5p isoform. (B) Microarray and corresponding qRT-PCR expressions of eight genes 
showing differential expression in MO-Tbx5 compared to MO-Ct embryos at 24 and 48 hpf are reported. Values are expressed as fold change of MO-Tbx5 relative 
to MO-Ct. For Q-RT PCR, values are normalized on EF1, beta actin, and 18S expression. The values reported in the Q-RT PCR analysis are the mean of at least 
three independent microinjection experiments, t-test was used for statistical analysis: *p < 0.05, **p < 0.01, and ***p < 0.001.
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potential targets for downregulated miRNAs (complete lists are in 
Table S5 and S6 in Supplementary Material). At 48 hpf, we discov-
ered 142 potential targets for upregulated miRNAs and 162 for 
downregulated miRNAs (see Table S7 and S8 in Supplementary 
Material). Among them, several miRNA–mRNA interactions 
involved genes that are known to be connected to heart develop-
ment or cardiac functions published in previous works (Table S9 
and S10 in Supplementary Material). We summarized these find-
ing in Figures 3 and 4 and explore most interesting functional 
relations in the next section.

4. DiscUssiOn

Tbx5 is a crucial transcription factor in heart development. In 
HOS murine model, it has been shown that even small alterations 
of this gene cause modulation of hundreds of genes (Mori et al., 
2006). It has been suggested that the strong impact that Tbx5 has 
on gene expression is mainly the result of its ability to modulate 

other regulators, such as different transcription factors, in a 
very complex regulatory network. Our previous studies suggest 
that Tbx5 affects the embryo development by modulating also 
miRNAs (Chiavacci et al., 2012). Moreover, the fact that miR-19a 
replacement is able to partially rescue fins and cardiac defects in 
a zebrafish model of HOS, strongly supports the importance of 
miRNAs in Tbx5 regulatory circuits (Chiavacci et al., 2015).

In this study, we analyzed miRNA and mRNA expression pro-
files at two fundamental time points (24 and 48 hpf) of zebrafish 
embryos development after depletion of Tbx5 and compared them 
to the wild-type ones. We employed expression data to improve 
miRNA-target predictions of computational sequence-based 
methods by means of anticorrelation analysis of miRNA–mRNA 
expression levels. Repression by animal miRNAs, differently from 
plant miRNAs, leads to decreased translational efficiency and/or 
decreased mRNA levels. Although, the relative contributions of 
these two outcomes is still unknown and increasing experimental 
evidences show that changes in mRNA levels closely reflects the 
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TaBle 2 | Most significant categories from functional annotation clustering analysis of the deregulated transcripts were reported.

Time-regulation cluster Term Benjamini p value Fold-enrich. 

24 hpf, up genes c1 GO:0007155 cell adhesion 6.97e−03 2.11
c1 GO:0022610 biological adhesion 6.97e−03 2.11
c1 GO:0007156 homophilic cell adhesion 8.87e−03 3.27
c1 GO:0016337 cell–cell adhesion 1.28e−02 2.89
c2 GO:0008270 zinc ion binding 5.71e−03 1.33
c2 GO:0046914 transition metal ion binding 4.12e−03 1.28
c3 GO:0006468 protein amino acid phosphorylation 1.24e−02 1.67
c3 GO:0016310 phosphorylation 2.51e−02 1.57

24 hpf, down genes c1 GO:0044429 mitochondrial part 2.56e−03 1.81
c1 GO:0005739 mitochondrion 3.97e−03 1.62
c1 GO:0031975 envelope 2.07e−02 1.59
c1 GO:0031967 organelle envelope 2.10e−02 1.60
c1 GO:0019866 organelle inner membrane 2.33e−02 1.88
c1 GO:0005743 mitochondrial inner membrane 2.40e−02 1.88
c1 GO:0005740 mitochondrial envelope 2.55e−02 1.74
c1 GO:0031966 mitochondrial membrane 2.97e−02 1.71
c2 GO:0046872 metal ion binding 4.10e−02 1.19
c3 GO:0004672 protein kinase activity 4.90e−02 1.56

48 hpf, down genes c1 GO:0043565 sequence-specific DNA binding 1.02e−08 2.25
c1 GO:0003700 transcription factor activity 1.24e−06 1.94
c1 GO:0030528 transcription regulator activity 2.57e−06 1.76
c1 GO:0051252 regulation of RNA metabolic process 7.00e−05 1.71
c1 GO:0006355 regulation of transcription. DNA-dependent 1.07e−04 1.72
c1 GO:0003677 DNA binding 3.12e−03 1.44
c1 GO:0045449 regulation of transcription 7.05e−03 1.46
c2 GO:0019825 oxygen binding 1.07e−04 9.26
c2 GO:0005344 oxygen transporter activity 1.07e−04 9.26
c2 GO:0005833 hemoglobin complex 2.57e−04 10.68
c2 GO:0015669 gas transport 4.79e−04 8.92
c2 GO:0015671 oxygen transport 4.79e−04 8.92
c3 dre00010: glycolysis/gluconeogenesis 2.85e−03 3.99
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impact of miRNAs on gene expression suggesting that destabiliza-
tion of target mRNAs by exonucleolytic activity is the main mech-
anism to decrease protein output (Baek et al., 2008; Hendrickson 
et al., 2009; Guo et al., 2010; Subtelny et al., 2014). Therefore, the 
anticorrelation analysis of miRNA–mRNA expression levels may 
contribute to elucidate large portion of miRNA–mRNA regula-
tory networks affected by pathological conditions. This approach 
allowed us to identify putative miRNA–target interactions, and 
cardiac transcription factors that are particularly interesting in 
the context of HOS.

One of the most interesting miRNA identified as upregulated 
both at 24 and 48 hpf was miR-34a. MiR-34 family members (miR-
34a, -34b, and -34c) are upregulated in the heart in response to 
stress and the silencing of the entire miR-34 family could protect 
the heart against pathological cardiac remodeling and improve 
cardiac functions (Bernardo et  al., 2012). Moreover, miR-34a 
is induced in the aging heart and in  vivo silencing of miR-34a 
reduces age-associated cardiomyocyte cell death. The inhibition 
of miR-34a reduces cell death and fibrosis following acute myo-
cardial infarction and improves recovery of myocardial function 
(Boon et al., 2013). These recent studies show an emerging role of 
miR-34a (and the miR-34 family) as potential regulator of heart 
remodeling. Therapies that inhibit miR-34a could be useful for 
cardiac pathologies and HOS.

We discovered several potential miR-34a targets with a pos-
sible connection with heart development and HOS (Figure 2). 

The ATPase Na+/K+ transporting, alpha 2a polypeptide (ATP1a2a) 
transcript is downregulated in 24  hpf Tbx5a morphants. Since 
the ATP1a2a contributes to the Ca homeostasis by pumping 
sodium ions (Na+) out of cells and potassium ions (K+) into cells, 
a downregulation of this enzyme might have a negative impact in 
cardiac contractility and control of arrhythmias. This observation 
is consistent with the crucial role of Tbx5 in the regulation of 
cardiac contraction in embryos and in adults. Interestingly, HOS 
patients show diastolic filling abnormalities and downregulation 
of ATP2a2, which regulates Ca fluxes in the SR (Zhu et al., 2008).

Furthermore, our data suggest that miR-34a might impact 
cardiac contraction by regulating a member of the ras homolog 
gene family, rhoad. RhoA, controlling the Rho-kinase pathway, 
plays an important role in various fundamental cellular functions, 
including contraction and motility (Satoh et al., 2011). Moreover, 
in line with the pro apoptotic role exerted by miR-34a (Raver-
Shapira et al., 2007), we observed upregulation of dual-specificity 
tyrosine-(Y)-phospho-regulated kinase 2 (dyrk2), putative miR-
30a target, which negatively regulates the cardiomyocyte growth 
by mediating repressor function of GSK-3 beta on eIF2B (Weiss 
et al., 2013) and upregulation of caspase 8, putative target of miR-
219-5p downregulated at 48 hpf (Figure 3).

As expected, several genes affecting cardiac morphogenesis 
were identified in our analysis (Figures  2 and 3). Specifically 
Roundabout Guidance Receptor 1 (Robo1), which is involved in 
heart tube formation in zebrafish (Fish et al., 2011) and tmem2, 
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FigUre 4 | regulatory network altered in zebrafish hOs model at 48 hpf. Potential interactions involving Tbx5, miRNAs, and their targets are shown together 
with the functional impact in heart development.

FigUre 3 | regulatory network altered in zebrafish hOs model at 24 hpf. Potential interactions involving Tbx5, transcriptional factors, miRNAs, and their 
targets are shown together with the functional impact in heart development.
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whose expression in myocardial and endocardial tissues in 
zebrafish and mouse is required for regionally restrict atrioven-
tricular canal boundary and endocardial cushion development. 
Both genes are putative miR-30a targets at 24 hpf.

Recently, a role for Tbx5 in the establishment of correct 
heart  asymmetry in zebrafish embryos has been highlighted 
(Pi-Roig et  al., 2014). Our data suggest that miR-30a and 
miR-10d might be contribute to this specific Tbx5 function 

by controlling respectively bmpr2a (Monteiro et al., 2008) and 
camk2d1 (Francescatto et al., 2010).

Another interesting miRNA that we found upregulated at 
48 hpf is miR-21 whose deregulation in heart has been reported 
to contribute to cardiovascular disease (Jazbutyte and Thum, 
2010). More recently, a crucial role of this miRNA in heart 
valve formation has been also shown in zebrafish (Banjo et al., 
2013), and the alteration of cardiac valve morphology is one 
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of the hallmark of zebrafish HOS phenotype (Camarata et  al., 
2010; Chiavacci et  al., 2012). Two predicted targets of miR-21 
are NDRG1B and NDRG4, members of the N-myc downstream 
regulated gene (NDRG) family, which are downregulated in Tbx5 
morphants at 48 hpf. Alterations of NDRG4 cause several of the 
cardiac defects that characterize the heartstring mutants and are 
significantly decreased in hearts with reduced Tbx5 activities (Qu 
et al., 2008). Therefore, we hypothesized that Tbx5 might affect 
NDRG4 expression through miR-21 modulation.

Although in this study, we used whole embryos for our 
analysis, we discovered important alterations on transcription 
factors with crucial roles in heart development. In particular, 
we observed downregulation both at 24and 48 hpf of the bHLH 
transcription factor Hand2 (Yelon et al., 2000). Mutations in the 
hands off locus, which encodes for this transcription factor, cause 
defects in myocardial development in an early stage, produce a 
reduced number of myocardial precursors, and show delayed 
differentiation of the pectoral fin mesenchyme (Schindler et al., 
2014). All these phenotypic characteristics are in line with the 
observed Tbx5 morphant phenotype. In HOS mouse hearts, a 
strong downregulation of Hand1 was observed (Mori et al., 2006). 
In mouse, Hand1 and Hand2 are members of the Hand subfam-
ily and have partially redundant functions (Yelon et  al., 2000; 
Tamura et  al., 2014). However, in zebrafish, only one member 
of the hand family has been identified, the Hand2 transcription 
factor, which is able to perform several of the functions that in 
mammals are Hand1 specific (Togi et al., 2006; Reichenbach et al., 
2008). Therefore, modulation of Hand1 in mouse or Hand2 in 
zebrafish might have similar functional consequences. Indeed, it 
has been shown that Hand2 is able to downregulate Nppa, a direct 
target of Tbx5 and Irx4 an other important cardiac transcription 
factor strongly downregulated in HOS mouse heart (Bruneau 
et al., 2001; Mori et al., 2006). In our analysis, we were not able to 
detect a significant modulation of Nppa gene whose expression 
is restricted to the cardiac tissue. On the contrary, at 48 hpf, we 
detected a downregulation of Irx4. This gene is not only expressed 
in the heart tissues but also present in the eye, a district which 
is relatively large at this time of development and where Tbx5 is 
functionally active.

Differently from Hand2, MEF2AA, MEF2CA, SRFB, and 
SRFA resulted upregulated in 24 hpf embryos depleted for Tbx5a. 
Among them, MEF2CA is a putative target of miR-10d, both 
miRNAs already mentioned as downregulated at 24 hpf. All of 
them codify for transcription factors largely expressed in meso-
dermal tissues and involved in cardiac developmental patterns 
highly active at 24 hpf. Consequently, alterations in the expression 
of these factors have important effects on cardiac development. 
However, it is hard to predict whether dysregulation of these 
genes might have positive or negative regulatory effects on their 
targets. For Tbx5 direct interactors, such as MEF2CA, the ratio 
between interactors seems more important than the absolute 
level of the specific factor (Takeuchi et al., 2011). For SRFs, it has 
been shown that a mild increase may pose either positive and/
or negative modulatory effects on their target activation depend-
ing on the cofactor recruited (Miano, 2003; Zhang et al., 2003). 
Interestingly, a negative functional cooperator of SRF is SRFBP1 
that we identified as upregulated in 24  hpf Tbx5a morphants. 

SRFBP1 is highly expressed in fetal and adult mouse heart and 
functionally interacts with SRF and myocardin in repressing the 
atrial natriuretic factor promoter activity (Zhang et  al., 2004). 
The data suggest that the observed mild increase of SRF and 
SRFBP1 in zebrafish Tbx5a morphants might contribute in the 
downregulation of Nppa, which characterizes the HOS disease.

In conclusion, in this study, we proposed an integrative analy-
sis of miRNA and mRNA expression profiles in a zebrafish model 
to study the impact of the downregulation of Tbx5 responsible 
of the HOS. We found several deregulated transcripts includ-
ing important transcription factors for heart development and 
diseases, and several deregulated miRNAs with a potential role 
in the pathology. This model uncovered novel miRNAs and 
protein coding genes not considered before in the HOS such 
as miR-34a and miR-30 and their targets. Further dissection of 
these regulatory circuits will shed light on fundamental pathways 
in heart development that can contribute to the pathogenesis of 
human heart diseases. Identification of new TBX5 targets might 
not only help understand the complexity of HOS phenotype but 
also contribute in finding novel therapeutic strategies to treat 
congenital disease. Future experiments are needed to test the role 
of the identified miRNAs regulated by Tbx5 and the effects on 
their downstream targets.

4.1. Data accession codes
The data discussed in this publication have been deposited in 
NCBI’s Gene Expression Omnibus and are accessible through 
GEO Super Series accession number GSE64466.4
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