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Editorial on the Research Topic

Deep learning in crop diseases and insect pests
Many deep learning methods have been developed and successfully applied in the field of

crop pests and diseases detection. In crop pest identification, deep learning methods can

achieve good feature representation from large datasets based on various linear and nonlinear

deep learning transformations and then discover the relationship in complex data based on

specific supervised and unsupervised learning. However, with the in-depth study of plant

diseases and pest infestations, deep learning technology also has limitations. The current

agricultural infrastructure is the first limitation that is not yet sufficient to fully support the

application of deep learning in the agricultural field. This requires a large number of

computational resources and has a high time complexity caused by too many network

parameters. The second reason is the lack of a large amount of labeled data and the

subjectivity of manually labeled data in the agricultural domain. Moreover, it is difficult to

obtain large-scale images of plant diseases and pests in real fields, and it is impossible to

acquire images of multiple diseases and pests in one area.

At the same time, the detection of plant diseases and pests is limited by the complex

background, illumination conditions, overlapping and occlusion of leaves, and similar color

of foreground and background. In addition, there are other problems in the application of

deep learning methods for plant pest detection, such as gradient disappearance and gradient

explosion in the training process of the network, and overfitting of the network model. The

most important problem is that most current deep learning networks are still considered as

black-box models. Misidentification by a network for crop pest and disease detection can lead

to disastrous results. For example, misidentification of the severity of crop damage can lead to

the overuse of pesticides, which in turn can lead to soil contamination, environmental

damage, and other vicious cycles.

In order to improve the identification and detection of crop pests and diseases, we

propose this Research Topic “Deep Learning in Crop Diseases and Insect Pests” for the

development of novel deep learning-based methods in crop pests and diseases detection.

The Research Topic contains 16 original research articles based on detection of eight plant

diseases, including those on grapes, strawberry, potato, pear, tomato etc., and detection of

eight plant pests, focusing on tomato pest, wheat spike, etc. Eight papers developed
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different deep learning-based methods in this Research Topic for

detection of crop diseases. Here five papers focused on specific crop,

such as potato, grape, tomato, and strawberry. Yuan et al. presented

an improved DeepLab v3+ deep learning network for the

segmentation of grapevine leaf black rot spots to evaluate grape

disease grade. The DeepLab v3+network uses ResNet101 as the

backbone network, a channel attention module inserted into the

residual module, and a feature fusion branch based on a feature

pyramid network to fuse feature maps of different levels. Plant

Village and from an orchard field test sets were used for testing the

segmentation performance of the method. Li et al. proposed an

integrated framework to realize the segmentation and detection of

potato foliage diseases in complex backgrounds, combining instance

segmentation model of Mask R-CNN to segment potato leaves in

complex backgrounds, classification models of VGG16, ResNet50

and InceptionV3 to classify potato leaves, and semantic

segmentation models of UNet, PSPNet, and DeepLabV3+ to

divide potato leaves. It is important to detect the devastating

diseases of potato early blight and late blight that affect potato

planting and production. Albahli and Nawaz presentd a robust

approach, namely the DenseNet-77-based CornerNet model, for the

localization and classification of the tomato plant leaf abnormalities

in the complex incidences of light variation, color, brightness

changes, and the occurrence of blurring and noise on the 10

classes of tomato leaf images. You et al. proposed a strawberry

disease detection scheme with unknown diseases, where the known

strawberry diseases are detected with deep metric learning (DML)-

based classifiers along with the unknown diseases that have certain

symptoms. The DML-based post-filtering stage contains two

different types of classifiers: softmax classifiers that are only for

known diseases and the K-nearest neighbor (K-NN) classifier for

both known and unknown diseases. The proposed scheme can be

applied to identify disease-like symptoms caused by real known and

unknown diseases or disorders for any kind of plant. Jiang et al.

proposed two different but related deep learning techniques for the

detection of unknown plant diseases; Open Set Recognition (OSR)

and Out-of-Distribution (OoD) detection. OSR is premature to be

applied in finegrained recognition tasks without outlier exposure

that a certain part of OoD data (also called known unknowns) are

prepared for training, where OoD detection requires intentionally

prepared outlier data during training.

Moreover, two papers focused on disease detection for public

datasets of crop diseases. Xia et al. devoted to plant disease

identification and subtype discovery through a deep-embedding

image-clustering strategy, Weighted Distance Metric, and the t-

stochastic neighbor embedding algorithm (WDM-tSNE), which has

been tested on public datasets of images, such as MNIST database

(Modified National Institute of Standards and Technology

database), PlantVillage, Aphanomyces Root Rot Image Dataset.

Xu et al. proposed a transfer learning strategy with a vision

transformer (ViT) model for versatile plant disease recognition,

on multiple plant disease datasets. The method is first pre-trained in

ImageNet with a selfsupervised loss function and with a supervised

loss function in PlantCLEF2022, a large-scale dataset related to

plants with 2,885,052 images and 80,000 classes. At last, one paper

focused on appearance quality detection through detecting disease

spots on pear fruits. Zhang et al. proposed an integrated framework
Frontiers in Plant Science 6
combining instance segmentation, semantic segmentation and

grading models, to assess the grading of the quality of the

appearance of ‘Huangguan’ pear in a complex context. First, Mask

R-CNN and Mask R-CNN with the introduction of the

preprocessing module are used to segment ‘Huangguan’ pears

from complex backgrounds; Second, DeepLabV3+, UNet and

PSPNet are used to segment the ‘Huangguan’ pear spots to get the

spots, and the ratio of the spot pixel area to the ‘Huangguan’ pear

pixel area is calculated and classified into three grades; third, the

grades of ‘Huangguan’ pear are obtained using ResNet50, VGG16

and MobileNetV3.

The other eight papers are dedicated to the study of insect pest

detection and identification in this Research Topic. Most of papers

focus on detecting multiple pests from complex background. To

address the issues of pose-variant, serious overlap, dense

distribution, and interclass similarity of agricultural pests, Jiao

et al. proposed an end-to-end pest detection algorithm based on a

deformable residual network to extract pest features and a global

context aware module for obtaining region-of-interests of

agricultural pests. Wang et al. addressed the issue of pest

similarity in texture and scale, presented an ASP-Det to solve the

texture-similarity problem and a Skip-Calibrated Convolution

(SCC) module to balance the scale variation among the pest

objects, and built a task-specific dataset named PestNet-AS that is

collected and reannotated from PestNet dataset. Zhang et al.

constructed a pest rotation detection (PRD21) using pest

detection lamps in different natural environments, and performed

a comparative study of image recognition through different target

detection algorithms. The experimental results proved that rotation

detection has a good effect on the detection and recognition rate of

pests. Teng et al. proposed a robust pest detection network

integrated with multiscale super-resolution (MSR) feature

enhancement module to improve the detection performance of

small-size, multi-scale, and high-similarity pests, and Soft-IoU

(SI) mechanism to emphasize the position-based detection

requirement by distinguishing the performance of different

predictions with the same Intersection over Union (IoU). In

addition, authors constructed a large-scale light-trap pest dataset

(named LLPD-26), containing 26-class pests and 18,585 images with

high-quality pest detection and classification annotations.

Moreover, most methods required large-scale well-labeled pest

datasets for their base-class training and novel-class fine-tuning,

which hindered significantly the further promotion of deep

convolutional neural network approaches in pest detection.

Therefore, Wang et al. introducted a few-shot pest detection

network to detect rarely collected pest species in natural scenarios.

They presented a prior-knowledge-auxiliaried architecture for few-

shot pest detection, built a hierarchical few-shot pest detection

dataset in the wild in China over the past few years, and proposed

a pest ontology relation module to combine insect taxonomy and

inter-image similarity information.

Three papers focus on specific type of insect pests. Zhou et al. aimed

at wheat spike detection and proposed a Transformer-based network

named Multi-Window Swin Transformer (MWSwin Transformer) to

use the ability of feature pyramid network to extract multi-scale features,

integrated with self-attention mechanism by window strategy. They also

proposed a Wheat Intersection over Union loss by incorporating the
frontiersin.org
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Euclidean distance, area overlapping, and aspect ratio. Furthermore, they

constructed a wheat spike detection data set (WSD-2022) to evaluate the

performance of the proposed methods. Liu et al. aimed at tomato pest

detection and proposed a tomato pest identification algorithm based on

an improved YOLOv4 fusing triplet attention mechanism (YOLOv4-

TAM) with a focal loss function to address the issue of imbalances in the

number of positive and negative sample images. They also used the K-

means++ clustering algorithm to obtain a set of anchor boxes that

correspond to the pest data set. Kalfas et al. aimed to detect Drosophila

suzukii infestation in fruit orchards. They trained convolutional neural

network (CNN) classifiers with frequency (power spectral density) and

time-frequency (spectrogram) representations to distinguish D. suzukii

insects from one of their closest relatives, DrosophilaMelanogaster, based

on their wingbeat patterns recorded by the optical sensor.

This Research Topic demonstrates several deep learning-based

methods to address the issues of crop pest and disease detection

occurred in real and complex world, and demonstrates how the use of

deep learning methods can improve the understanding and detection

of crop pests and diseases. Some research can also be used to decrease

the loss of crop yield loss and increase crop production. We welcome

everyone to explore the 16 research papers and improve their works

in the future.
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Plants are often attacked by various pathogens during their growth, which may
cause environmental pollution, food shortages, or economic losses in a certain area.
Integration of high throughput phenomics data and computer vision (CV) provides a
great opportunity to realize plant disease diagnosis in the early stage and uncover the
subtype or stage patterns in the disease progression. In this study, we proposed a
novel computational framework for plant disease identification and subtype discovery
through a deep-embedding image-clustering strategy, Weighted Distance Metric and
the t-stochastic neighbor embedding algorithm (WDM-tSNE). To verify the effectiveness,
we applied our method on four public datasets of images. The results demonstrated
that the newly developed tool is capable of identifying the plant disease and further
uncover the underlying subtypes associated with pathogenic resistance. In summary,
the current framework provides great clustering performance for the root or leave images
of diseased plants with pronounced disease spots or symptoms.

Keywords: plant, disease diagnosis, subtype discovery, deep learning, t-SNE, image clustering

INTRODUCTION

Plants are often attacked by various pathogens (e.g., bacteria, viruses, fungi, etc.) during
their growth and development (Suzuki et al., 2014), resulting in abnormal physiological and
morphological changes in plants. In severe cases, it may disrupt its normal growth and development
and even cause large-scale disasters, such as leaf spot disease (Ozguven and Adem, 2019), powdery
mildew (Lin et al., 2019), brown spot and blast diseases (Phadikar and Goswami, 2016), and gray
mold (Fahrentrapp et al., 2019). The prior symptoms of these diseases include leaf discoloration,
tissue deformation or necrosis, and root atrophy, etc. Plant diseases, especially crop diseases, may
cause social problems such as economic losses or food shortages in a certain area (Wilkinson
et al., 2011). Therefore, early diagnosis of plant diseases, especially the precise prediction of
plant disease severity and drug resistance (Bock et al., 2020), will help formulate effective control
strategies, thereby effectively prevent the spread of diseases and reduce economic losses (Liang
et al., 2019). To solve the above problems, many researchers made great efforts on the diagnosis
of plant diseases by exploring the relationship between pathogen infection and plant disease
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symptoms (Bass et al., 2019; Vishnoi et al., 2021). However,
these studies cannot provide real-time disease diagnosis and
even evolution trajectory inference and will cause delays
or misjudgments in decision-making. In recent years, plant
phenomics (Tardieu et al., 2017; Pasala and Pandey, 2020) was
generated, which can automatically and non-destructively obtain
high-throughput plant phenotyping images (Lee et al., 2018; Li
et al., 2020), which makes computer-aided rapid diagnosis and
real-time monitoring of plant diseases possible.

Computationally, phenomics-based plant disease diagnosis
can be grouped into two categories, one is semantic feature-based
models, and the other is non-sematic feature-based models (e.g.,
deep learning [DL] models). The first category (conventional
image processing) is characterized by the features of color
(Gaikwad and Musande, 2017), texture (Hossain et al., 2019;
Ismail et al., 2020), and shape (Chouhan et al., 2020) extracted
from the lesion area of the phenotypic images to achieve disease
diagnosis and prediction. For example, Zhang et al. (2017)
segmented the lesions from the leaf images and extracted the
shape and color features for disease recognition in cucumber.
Moreover, some researchers realized the automatic diagnosis of
plant diseases through a classifier built with texture features
(Hossain et al., 2019; Ismail et al., 2020). In addition, computer
vision (CV) and machine learning were applied to quantify
root traits in real time for precision plant breeding (Rahaman
et al., 2019; Falk et al., 2020). However, the variation of plant
phenomics and the dependence of prior knowledge always limit
the generalization of this type of method to different plant
diseases. In recent years, DL has been widely used in image
classification and clustering (Hu et al., 2020; Saleem et al., 2020).
The representative characterizations of DL-based models include
powerful capabilities for feature extraction, low dependence on
domain knowledge, and high predictive accuracy (Too et al.,
2019; Lee et al., 2020). In the past few years, DL was used to
analyze the phenomics of plant disease. Various convolutional
neural network (CNN) models were developed as the image
multi-class classifiers to distinguish different plant leaf diseases
from high-throughput phenomics (Brahimi et al., 2018; Zhang
et al., 2019). Furthermore, DL is also very effective for grading
the severity of plants with the same disease (Verma et al., 2020).
Liang et al. (2019) combined ResNet50 (Wen et al., 2020) model
and Shufflenet-V2 (Ghosh et al., 2020) to build a PD2SE-Net
network model, which realized the classification of plant diseases
and the prediction of disease severity. Yu et al. (2006) applied
VGG16 model on diseased leaf images for grading the severity
of apple black rot (Wang et al., 2017). Although DL models are
widely studied for plant disease diagnosis, they still face obvious
challenges, such as poor generalization, unexplainable features,
and high dependence on abundant training samples.

In this study, we proposed a novel image clustering method
for both plant disease classification and subtype discovery. Firstly,
all the original plant images were preprocessed to amplify the
sample size. Secondly, we established a deep CNN to extract the
features of phenotypic images. Finally, we designed a clustering
strategy by integrating a Weighted Distance Metric (WDM) and
the t-stochastic neighbor embedding algorithm, named “WDM-
tSNE.” To validate the effectiveness, we applied the proposed
method on a batch of public plant image datasets, namely,

Modified National Institute of Standards and Technology
(MNIST) (Deng, 2012), Aphanomyces Root Rot (ARR) in lentil
(Marzougui et al., 2019), cherry powdery mildew, strawberry
leaf scorch disease, and three types of tomato disease from
PlantVillage dataset (Mohanty et al., 2016). The experimental
results show that our method obtained high performance on
plant disease classification and subtype discovery. In particular,
the WDM-tSNE strategy provides better clustering accuracy than
the standard tSNE.

RELATED WORK

In this section, we briefly review the related work of plant disease
diagnosis on semantic feature-based models, and non-sematic
feature-based models.

Semantic Feature-Based Models
The general idea of this kind of method includes four steps: (1)
image preprocessing; (2) lesion segmentation; (3) image features
are defined and extracted for describing the pathology signatures
of the lesion regions; and (4) the image samples are classified
by using a machine-learning model (Vishnoi et al., 2021).
Considering the fact that the accuracy of lesion segmentation
directly affects the sample classification, many researchers used
various image-segmentation strategies to achieve the extraction
of the target regions, such as threshold-based segmentation
methods (Tete and Kamlu, 2017), edge detection algorithms
(Wang et al., 2018), and spatial clustering methods (Guan et al.,
2017). After obtaining the lesion regions, researchers often define
the color, texture, or shape features to characterize the disease
state of each sample. Gaikwad and coworkers applied K-means to
segment the lesion regions in the wheat leaf images and extracted
the color features, such as color histogram (Stricker, 1994), color
moments (Poonam and Jadhav, 2015), and the texture features
[e.g., gray-Level co-occurrence matrix [GLCM] (Gadelmawla,
2004)] to construct a support-vector machine (SVM) model
for the classification of wheat diseases (Gaikwad and Musande,
2017). Ali et al. (2017) applied Delta E (1E) segmentation to
process the leave images of diseased potatoes and extract color
and texture features based on red, green, and blue (RGB), hue,
saturation, value (HSV), and local binary patterns (LBP) to
implement the classification of early blight and late blight (Ismail
et al., 2020). Ayyub and Manjramkar (2019) successfully classified
the apple fruit diseases via a multi-class model by integrating
improved sum and difference histogram (ISADH), completed
local binary pattern (CLBP), and other color and texture features.

In general, this kind of method may obtain human-
interpretable features and thus provide good performance on
some plant diseases. However, three drawbacks exist. First, the
calculation procedure of these methods is complicated. Second,
these methods are highly dependent on expert knowledge. Third,
they do not work well for real-time detection.

Non-sematic Feature-Based Models
In recent years, DL has promoted the development of CV,
thereby providing new ideas for image analysis and automatic
diagnosis of plant diseases. In particular, the CNN model has
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FIGURE 1 | The flowchart of the proposed framework. ReLU, Rectified Linear Unit.

FIGURE 2 | CNN-based network for feature extraction. ReLU, Rectified Linear Unit; CNN, convolutional neural network.

been widely studied by researchers because of its powerful image
processing and feature extraction capabilities and without the
prior knowledge of domain experts (Syed-Ab-Rahman et al.,
2021). At present, most of the existing works applied CNN,
combined with transfer learning (Too et al., 2019) to implement
plant disease diagnosis. Zhang et al. (2018) used two improved
CNN models, GoogleNet and Cifar10, to classify nine types of
corn diseases and obtain high accuracy. To reduce the number
of parameters, Rahman et al. (2020) constructed a two-stage
light CNN framework Simple-CNN to identify rice diseases with
high accuracy. Moreover, other researchers made great efforts to
develop novel computational models for predicting the severity
of plant disease. For example, José et al. (2020) used five types
of CNN models (AlexNet, GoogleNet, VGG16, ResNet50, and
MobileNetV2) to estimate the severity of coffee leaf biotic stress.
In addition, deep learning was also widely used to identify the
diseases of fruit, root, and stem. Tan et al. (2016) presented a
CNN model to recognize lesion images of diseased apples, such
as scab skin, black rot, scar skin, and ring spot (Wenxue Tan,
2020). Nikhitha et al. (2019) used the Inception v3 model to
detect the grades of infections in fruits (e.g., apple, banana, and
cherry, etc.) based on color, size, and shape of the fruit (Nikhitha
et al., 2019). Tusubira et al. (2020) achieved the automated
scoring for root necrosis of diseased cassava by using deep
CNN with semantic segmentation, which is done by classifying

the necrotized and non-necrotized pixels of cassava root cross-
sections without any additional feature engineering. Compared
with the first category, DL models achieve higher recognition
accuracy. However, we identify three limitations. First, they
require large amounts of labeled data; second, they are overly
sensitive to changes in the image; and third, the non-semantic
features are hard to be explained.

To address the above limitations, we proposed an efficient
pipeline for both disease diagnosis and severity estimation of
plants with the lesion. A DL model combined with a novel
clustering strategy contributes to higher prediction accuracy and
lower computational cost.

MATERIALS AND METHODS

The proposed computational framework includes three
steps (Figure 1) and will be explained in detail in the
following subsections.

Image Preprocessing
Before extracting features, each image needs to be preprocessed,
such as image enhancement and image segmentation.
Image augmentation is to increase the diversity of samples
(Halevy et al., 2009). we use horizontal flip (Connor Shorten,
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FIGURE 3 | The representative leaf images with diseases from PlantVillage. (A) Leaf scorch of strawberry; (B) cherry powdery mildew; (C) three types of leaf
diseases on tomatoes: a bacterial spot of tomato, tomato leaf mold, and tomato yellow leaf curl virus (TYLCV).

2019) and affine transformation (Shen et al., 2019) on each image
to enhance the size and quality of training datasets so that better
DL models can be built. The purpose of image segmentation
is to obtain areas related to plant tissues (root or leaf) from
the original images. Therefore, the irrelevant region needs to
be removed. In this study, we detected the relevant area by
traversing all the pixels in each image and obtained the smallest
circumscribed rectangle (Yu et al., 2006) of the outer contour
of a plant tissue.

Feature Extraction
We developed a CNN model to extract the features from the plant
images with the disease. The whole CNN model includes three
layers: convolution layers, the spatial pyramid pooling (SPP)
layer, and fully connected layer. The extracted high-dimensional
features were further used to cluster the images with different
severity levels. Figure 2 shows the details of the feature extraction
process using the lentil images as an example.

Creating the Feature Maps
As shown in Figure 2, the first step is to create the feature
maps from each input image by using a series of convolutional,
non-linear, and pooling. The convolutional layers can learn
the low-level features, such as edges and curves, which
provide the CNN with the important property of "translation
invariance" (Kayhan and van Gemert, 2020). That makes it
unnecessary to focus on the location of the disease on the
plant roots or leaves and let alone to divide up the area
of the spot. Convolution is done by applying filters to the
input image data, which decreases its size (Yamashita et al.,

2018). An additional operation called the Rectified Linear
Unit (ReLU) (Atila and Sengür, 2021) was used after every
convolution operation to generate a non-linear relationship
between input and output. Finally, The pooling layer is used
for secondary feature extraction, retaining the main features,
reducing parameters, saving computing resources, preventing
over-fitting, and improving model generalization (Suarez-
Paniagua and Segura-Bedmar, 2018). Here, we define a spatial
neighborhood with a 2 × 2 window and take the largest element
from the rectified feature map within that window. Max pooling
not only reduces the dimensionality of each feature map but
also retains the most important information. Comparing with
the typical VGG16 model (Qassim et al., 2018), the network
structure of our model retains all the convolutional and pooling
layers and the activation method, but removes three fully
connected layers.

Let us say we have a plant image, and its size is 224 × 224.
The representative array of this image will be 224 × 224 × 3
(3 refers to the channels of RGB). After the first operation of
convolution, we obtained the feature maps as an array with
224 × 224 ×64. Passing this array through four convolutional
layers, we finally obtained 512 feature maps with 14 × 14. The
final output feature map (14 × 14 × 512) will be converted into
one-dimensional vector.

Considering the fact that a CNN model may take time to train
on large datasets, transfer learning (Pan and Yang, 2010) was
considered in our study to re-use the model weights from pre-
trained ImageNet (Krizhevsky et al., 2012) tasks. Here, we directly
use the five convolutional layers from the entire architecture of
the pre-trained the VGG16 model on ImageNet datasets.
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FIGURE 4 | Aphanomyces root rot disease severity scale.

Converting the Feature Maps to a Fixed Length
Feature Vector
In this step, we convert all the two-dimensional feature maps to a
single long continuous linear vector because the fully connected

layer expects to receive one-dimensional inputs (Gu et al., 2018).
Here, we introduce SPP (He et al., 2015) layer to remove the
limitation of the fixed size of the images. The SPP layer was placed
after the last convolutional layer and aggregated multi-scale
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FIGURE 5 | The plots for the MNIST dataset based on six dimensionality reduction approaches, including (A) Isomap, (B) LLE, (C) PCA, (D) MDS, (E) t-SNE, and
(F) WDM-tSNE. MNIST, Modified National Institute of Standards and Technology; ISOMAP, Isometric Mapping; PCA, Principal Component Analysis; LLE, Locally
Linear Embedding; MDS, Multidimensional Scaling; t-SNE, t-Distributed Stochastic Neighbor Embedding; WDM-tSNE, Weighted Distance Metric and the
t-stochastic neighbor embedding algorithm.
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FIGURE 6 | The plots for the (A) balanced or (B–C) unbalanced datasets of strawberry leaf scorch based on (i) t-SNE and (ii) WDM-tSNE. WDM-tSNE, Weighted
Distance Metric and the t-stochastic neighbor embedding algorithm.

Frontiers in Plant Science | www.frontiersin.org 7 January 2022 | Volume 12 | Article 78963014

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-789630 December 22, 2021 Time: 12:22 # 8

Xia et al. Machine Learning in Plant Disease

TABLE 1 | The performance of WDM-tSNE on the multiple datasets of strawberry.

Balanced dataset Unbalanced dataset with
more healthy leaves

Unbalanced dataset with
more scorch leaves

t-SNE WDM-tSNE t-SNE WDM-tSNE t-SNE WDM-tSNE

Silhouette coefficient 0.723 0.729 0.755 0.788 0.725 0.799

Calinski-Harabasz 2014.769 2106.024 1026.573 1353.780 734.780 1391.950

Davies-Bouldin Index 0.4070 0.399 0.271 0.233 0.302 0.218

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.

features. As shown in Figure 2, each feature map (14 × 14) is
divided into a lattice of n × n (n = 1,2,4) and each lattice is
pooled, resulting in 21 features. This also means that the 512
feature maps of an original image are finally represented as a one-
dimensional vector with a length of 10,752 (21× 512). The output
of the fully connected layer is 4,096, which means each image
matrix will be converted to a feature vector with length 4,096 for
clustering calculation.

Image Clustering
As mentioned above, each original image was finally represented
as a 4,096 × 1 vector after the feature extraction process. The
clustering of a group of original images is thus equivalent to
a clustering task on a set of data points with a dimension of
4,096. Considering the fact that t-SNE is an efficient algorithm
based on manifold learning for unsupervised clustering (Van
der Maaten and Hinton, 2008), we designed an improved t-SNE
algorithm for image clustering to classify plant diseases and
graded the severity of a disease. The standard t-SNE algorithm
assumes that the samples are distributed on a statistical manifold
and converts the Euclidean distance between the samples into
conditional probabilities to characterize the similarity between
the samples (Talwalkar et al., 2008). However, the variables
in the high-dimensional space often present complex non-
linear relationships, and the Euclidean distance does not well
reflect the real distribution of the samples, thus affecting its
projection to the low-dimensional space. Within a manifold
space, the Euclidean distance metrics can only represent the real
distance between samples in a very small neighborhood subspace
(Zhang et al., 2011).

Taken above together, we think that only the data points in the
local neighborhood are applicable to the Euclidean distance, and
they should be given greater weight in the conditional probability
transformation. In this study, we adopted a WDM strategy to
improve the t-SNE algorithm (WDM-tSNE) so that the similarity
between samples can be better reflected after they are projected
to a low-dimensional space. The details of WDM-tSNE are
described as follows:

Firstly, we construct the distance matrix D of all the samples,
where the element dij represents the distance between any two
points Xi and Xj [Eq. (1)]:

dij =
∑n

k=0
(Xik − Xjk)

2 (1)

All the non-zero elements dij (i 6= j) are sorted in ascending order,
and the distance value that ranks approximately 10% is selected

as the threshold of the neighborhood relationship, denoted asθ.
If dij ≤ θ, Xi and Xj have a neighbor relationship and weighting
their distance will make them closer in the low-dimensional
space. Therefore, we define a WDM strategy to adjust the distance
coefficient l between any pair of samples Xi and Xj:

l =


dij − dmin + c

dmax − dmin
1, otherwise

, if dij ≤ θ (2)

Under the Gaussian distribution centered on the point Xi, the
conditional probability Pj|i is used to measure the similarity
between Xi and Xj. In other words, Pj|imeans the probability
that Xi chooses Xj as its neighbor. We thus construct conditional
probability Pj|i for Xi and Xj, and the probability distribution is
defined as Eq. (3):

Pj|i =
exp(−l ∗ ||Xi − Xj||

2/2σ2
i )∑

k6=i exp(−l ∗ ||Xi − Xk||2/2σ2
i )

(3)

From Eq. (3), we have Pi|i = 0. Assuming that the points Yi and
Yj in the low-dimensional space are projected from Xi andXj, the
similarity between the points Yi and Yj can be defined as:

Qj|i =
exp(−||Yi − Yj||

2)∑
k6=i exp(−||Yi − Yk||2)

(4)

According to the above description, we expect that if two
points are similar in the high-dimensional space, they should
be closer after being projected to the low-dimensional space.
Here, we use Kullback-Leibler divergence (Van der Maaten and
Hinton, 2008) to measure the difference between the above two
conditional probability distributions and define the following
objective function as Eq. (5):

C =
∑

i

KL(P || Qi) =
∑

i

∑
j

Pj|i log
pj|i

Qj|i
(5)

However, the KL divergence (Kullback-Leibler divergence) is
asymmetric [KL(P||Q) 6= KL(Q||P)] (Afgani et al., 2008), which
will cause the gradient calculation to be complicated. To optimize
the KL divergence in SNE, t-SNE adopts symmetric SNE, that is,
assuming Pj|i = Pi|j and Qj|i = Qi|j. The conditional probability

Frontiers in Plant Science | www.frontiersin.org 8 January 2022 | Volume 12 | Article 78963015

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-789630 December 22, 2021 Time: 12:22 # 9

Xia et al. Machine Learning in Plant Disease

FIGURE 7 | The plots for the (A) balanced and (B–C) unbalanced datasets of the cherry leaf with powdery mildew based on (i) t-SNE and (ii) WDM-tSNE.
WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.
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TABLE 2 | The performance of WDM-tSNE on the multiple datasets of cherry.

Balanced dataset Unbalanced dataset with
more healthy leaves

Unbalanced dataset with
more scorch leaves

t-SNE WDM-tSNE t-SNE WDM-tSNE t-SNE WDM-tSNE

Silhouette coefficient 0.496 0.494 0.362 0.369 0.354 0.361

Calinski-Harabasz 511.877 540.454 81.172 103.808 119.424 131.842

Davies-Bouldin Index 0.773 0.764 0.969 0.841 0.836 0.829

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.

FIGURE 8 | The plots for the balanced datasets of three tomato leaf diseases based on (A) t-SNE and (B) WDM-tSNE. WDM-tSNE, Weighted Distance Metric and
the t-stochastic neighbor embedding algorithm.

pj|i can be replaced with the joint probability pij:

pij =
exp(−l ∗ ||Xi − Xj||

2/2σ2)∑
k6=S exp(−l ∗ ||Xk − XS||2/2σ2)

(6)

If Xi is an abnormal point, all the dij will be very large and
may impact the calculation of Pij. Therefore, we define the joint
probability distribution Pij as:

Pij =
pj|i + pi|j

2n
(7)

To make the points in the same cluster in the low-dimensional
space more closer and the points in different clusters are more
distant (Van der Maaten and Hinton, 2008), the long-tailed
t-distribution is used instead of the Gaussian distribution. The
joint probability of two points in the low-dimensional space can
be defined as:

Qij =
(1+ ||yi − yj||

−1)∑
k6=S(1+ ||yk − ys||2)−2 (8)

TABLE 3 | The performance of WDM-tSNE on the dataset of tomato disease.

Balanced dataset

t-SNE WDM-tSNE

Silhouette coefficient 0.263 0.273

Calinski-Harabasz 25.538 40.427

Davies-Bouldin Index 1.615 1.279

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor
embedding algorithm.

Therefore, Eq. (5) can be written as Eq. (9):

C = KL(P||Q) =
∑

i

∑
j
Pij log

pij
Qij

(9)

The formula (9) can be optimized by using the gradient descent
strategy shown in formula (10):

δc
δyi
= 4

∑
j
(Pij − Qij) (Yi − Yj) (1+ ||Yi − Yj||

2)−1 (10)

Finally, all the point pairs of Xi and Xj in the high-dimensional
space are projected to the two-dimensional space as Yi and Yj.
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FIGURE 9 | The plots for the balanced dataset of ARR based on six dimensionality reduction approaches, including (A) Isomap, (B) LLE, (C) PCA, (D) MDS, (E)
t-SNE, and (F) WDM-tSNE. The samples with 11 rates were plotted. ARR, Aphanomyces Root Rot.
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FIGURE 10 | The plots for the (A) balanced and (B–C) unbalanced datasets of ARR are based on (i) t-SNE and (ii) WDM-tSNE. WDM-tSNE, Aphanomyces Root
Rot; Weighted Distance Metric and the t-stochastic neighbor embedding algorithm; ARR, Aphanomyces Root Rot.

Frontiers in Plant Science | www.frontiersin.org 12 January 2022 | Volume 12 | Article 78963019

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-789630 December 22, 2021 Time: 12:22 # 13

Xia et al. Machine Learning in Plant Disease

The visualization of all the points Y can show the clustering effect
of image samples.

Experimental Protocol
In this section, we introduced the experimental protocol
designed for the validation of the proposed approach, such
as data collection, simulation design, evaluation metric, and
parameter optimization.

Data Collection
The MNIST database (Modified National Institute of Standards
and Technology database) (Baldominos et al., 2019), a large
database of handwritten digits, was used for data collection,
which is not only used for training various image processing
systems but also for testing machine-learning algorithms (Pastor-
López et al., 2021). Currently, the MNIST database contains
60,000 training images and 10,000 testing images. In this study,
we selected a data-subset Scikit-learn containing 1,797 8 × 8
digital images to test our proposed approach for image clustering.

PlantVillage (Barbedo, 2019) is a large, open-access image
database. Currently, it stores 54,306 leaf images, associate with
26 plant diseases of 14 species (Albert et al., 2017; Brahimi et al.,
2017; Ferentinos, 2018). This dataset is widely employed to test
the performance of machine-learning models (Wang et al., 2017).
In this study, we mainly focused on the following image sets
from PlantVillage: (1) three types of leaf diseases on tomatoes
(Figure 3C), such as bacterial spot of tomato (Adhikari et al.,
2020), tomato leaf mold (Rivas and Thomas, 2005), and tomato
yellow leaf curl virus (TYLCV) (Prasad et al., 2020); (2) cherry
powdery mildew (Gupta et al., 2017; Figure 3B); (3) leaf scorch
of strawberry (Dhanvantari, 1967; Figure 3A).

Aphanomyces Root Rot Image Dataset (Marzougui et al., 2019)
contains up to 6,460 lentil images with root rot. ARR is a soil-
borne disease that severely reduces lentil production. Based on
the percentage of the brown discoloration area of the root and the
softness of the hypocotyl (McGee et al., 2012), Marzougui et al.
(2019) labeled the relative severity of all the root images using
0–5 disease scoring scale (McGee et al., 2012). For example, A
score of 0 means that there are no obvious symptoms and good
resistance to root rot; 1.5 means that the root has 15–25% of
partial discoloration lesions; 3.5 means that the entire root has
completely turned brown, and the hypocotyl has some symptoms.
Eleven representative images with scores from 0 to 5 are shown
in Figure 4. Furthermore, Marzougui et al. (2020) proposed
three subtypes of ARR based on the visual score to evaluate the
Rot severity: (1) resistant subtype with score 0–1.5; (2) partially
resistant with score 2–3; (3) susceptible subtype with score 3.5–5.
In this study, we selected 950 representative images of ARR for
experimental simulation.

Simulation Design
Firstly, 1,797 digital images from MNIST were used to test
the proposed method. Furthermore, we also compared the
WDM-tSNE with the other five clustering strategies on MNIST.
Secondly, a binary clustering test was further implemented on 400
strawberry and 400 cherry images to identify the diseased samples
from the control. Thirdly, 300 tomato images were selected

to test the clustering performance of our approach on three
different diseases. Finally, we selected 950 ARR images to explore
potential subtypes for the lentil invaded by Aphanomyces. We
manually constructed balanced datasets and unbalanced datasets
to evaluate if our approach is steady. The sample size for each
dataset is presented in Supplementary File 1.

Clustering Performance Evaluation
In this study, we defined three types of metrics to assess
the clustering performance. (1) Silhouette Coefficient (SC)
(Dinh et al., 2019); (2) Calinski-Harabasz Index (CHI)
(Łukasik et al., 2016); (3) Davies-Bouldin Index (DBI)
(Vergani and Binaghi, 2018).

Silhouette Coefficient was firstly proposed by Rousseeuw
(1987), which considered both the degree of cohesion and
separation to measure the clustering performance. The SC value
of sample j can be calculated by Eq. (11):

SCj =
Cj − Sj

max{Cj, Sj}
(11)

where Cj and Sj represent the degree of cohesion and separation,
respectively. We can clearly see that good clustering means
smaller Cj and larger Sj .

Calinski-Harabasz Index is defined as the ratio of the between-
clusters dispersion mean and the within-cluster dispersion.
A larger CHI means that the clusters themselves are tighter and
the cluster-clusters are more dispersed [Eq. (12)]:

CH =

[∑K
k−1 nk||ck − c||2

K − 1

]
/

[∑K
k−1

∑nk
i−1 ||di − ck||

2

N − K

]
(12)

In Eq. (12), N and K are the number of samples and clusters,
respectively. The variables nk and ck are the no. of points and
centroid of the h-th cluster respectively, c is the global centroid.

Davies-Bouldin Index measures the average similarity
between clusters [Eq. (13)].

DB =
1
k

k∑
i=1

max
i6=j

Rij (13)

In Eq. (13), Rij denotes the similarity between each cluster Ci and
its most similar one Cj:

Rij =
si + sj

dij
(14)

si denotes the average distance between each point of cluster i. dij
denotes the distance between cluster centroids i and j.

Parameter Optimization
All the simulations were performed using Python with
TensorFlow on Ubuntu 14.04 platform. The hardware setups are
2.30?GHz CPU and 4.00 GB RAM. CNN model is composed of
13 convolutional layers, and each layer uses a stacked 3× 3 small
convolution kernel to replace the large-size convolution kernel.
After each convolutional layer, a 2 × 2 max pooling is used. In
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TABLE 4 | The performance of WDM-tSNE on the multiple datasets of lentil.

Balanced dataset Unbalanced dataset with
severe discoloration lesions

Unbalanced dataset with
slight discoloration lesions

t-SNE WDM-tSNE t-SNE WDM-tSNE t-SNE WDM-tSNE

Silhouette coefficient 0.214 0.232 0.192 0.207 0.189 0.225

Calinski-Harabasz 130.182 165.652 163.077 182.195 161.421 237.701

Davies-Bouldin Index 1.279 1.147 1.799 1.667 1.402 1.235

WDM-tSNE, Weighted Distance Metric and the t-stochastic neighbor embedding algorithm.

the WDM-tSNE model, the gradient descent strategy is used to
optimize the cost function C [Formula (9)], and the momentum
term α(t) is introduced to reduce the number of iterations (T).
When the value of the cost function reaches 95% of the previous
time, it indicates that the best result has been obtained, and the
iteration is stopped. If T < 250, we set α(t) = 0.5; otherwise,
α(t) = 0.8. The initial learning rate is set to 100, which is updated
by the adaptive learning algorithm after each iteration.

RESULTS

Validation on Modified National Institute
of Standards and Technology Dataset
As a golden-standard image dataset, MNIST was firstly tested by
our method. A total 1,797 digital images were imported to the
CNN module and converted to a 1,797× 64 matrix. Moreover, all
the 1,797 samples in a 64-D space were then projected to 2D space
by six dimensionality reduction approaches, namely, ISOMAP
(Isometric Mapping), PCA (Principal Component Analysis), LLE
(Locally Linear Embedding), MDS (Multidimensional Scaling),
t-SNE (t-Distributed Stochastic Neighbor Embedding), and the
proposed WDM-tSNE (Figure 5). From Figure 5, we found that
LLE and PCA obtained the worst performance of dimensionality
reduction as the 10 types of digital images in 2D space cannot
be separated at all. ISOMAP and MDS work better rather than
the first two, but the boundaries of inter-clusters are still blurred.
In contrast, t-SNE and WDM-tSNE are significantly better than
the previous four methods. Particularly, multiple evaluation
metrics indicates that the WDM-tSNE strategy obtained higher
clustering accuracy on MNIST superior to the standard t-SNE
(Supplementary Table 1). For the geometric distribution of the
samples in 2D space, WDM-tSNE can obtain better partitions of
clusters (Supplementary Table 1).

The Proposed Model Works Well for
Disease Diagnosis
We then applied our method on 400 strawberry images with
leaf scorch. Figure 6 shows that the scorched leaf images can
be easily identified from the healthy samples. Both balanced and
unbalanced datasets revealed that the clustering performance
is steady. Table 1 indicates that WDM-tSNE provides better
clustering performance rather than t-SNE. Similarly, we also
tested our approach on 400 cherry leaf images with powdery
mildew. WCD-tSNE not only makes the samples in the same

cluster more concentrated, but also guarantees the distance
between different clusters is as far away as possible (Figure 7).
Compared with t-SNE, WDM-tSNE has a better clustering effect
(Table 2). In addition to the binary-clustering, we also tested the
multi-clustering situation on the leaf images of diseased tomato.
Figure 8 reveals that three distinct leaf diseases on tomatoes can
be clearly identified (Table 3). Taken above together, we suggest
that the proposed framework is an effective tool for identifying
plant disease with high accuracy.

The Proposed Model Works Well for
Subtype Discovery
Different from the experiments shown above, we further applied
our model on 950 lentil root images infected by Aphanomyces
euteiches to identify the underlying subtypes associate with
Aphanomyces resistance. Firstly, 550 representative images
(balanced dataset) of ARR with 11 rates of severity were projected
to 2D space through six machine-learning approaches (Figure 9).
Figures 9E,F shows that both t-SNE and WDM-tSNE can
uncover the disease trajectory of all the samples from mild to
severe. Secondly, we selected 550 images (50 samples for each
rate) to test if WDM-tSNE has the ability to reveal the underlying
subtypes of the plant samples with the same disease. Figure 10
shows that three clusters are obviously detected from balanced
and unbalanced datasets. The clustering performance of WDM-
tSNE is superior to t-SNE (Table 4). In the balanced dataset with
550 samples, 231 were predicted as a mild subtype with an average
score of 1.93, 205 were predicted as a partially moderate subtype
(average score: 2.45), and 114 were marked as a severe subtype
(average score: 3.74) (Figure 11). Figure 11 also suggests that the
samples with serious symptoms can be easily detected (cluster 3).
However, the visual score based on the percentage of discolored
lesions on the entire root system defined by Marzougui et al. may
cause bias when dividing mild and moderate samples. Therefore,
the data annotations based on expert knowledge are also one of
the factors that affect the accuracy of the algorithm.

DISCUSSION

Plant diseases are not only a threat to food security on a global
scale, but also cause disastrous consequences for smallholder
farmers whose livelihoods depend on healthy crops (Mohanty
et al., 2016). Identifying a disease correctly when it first appears
is a crucial step for efficient disease management. Various efforts
have been developed to prevent the loss of the plant due to
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FIGURE 11 | The predicted three subtypes of ARR: (A) mild; (B) moderate; (C) severe. The numbers denote how many samples are assigned to one of the
subtypes. ARR, Aphanomyces Root Rot.

diseases. For computer-vision-based plant diseases detection,
conventional image processing or manual design of features

plus classifiers are often used (Tsaftaris et al., 2016). This
kind of method usually makes use of the different properties
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of plant disease to design the imaging scheme and chooses
appropriate light sources and shooting angles, which is helpful
to obtain images with uniform illumination. In the real complex
natural environment, plant diseases detection is faced with many
challenges, such as the small differences between the lesion area
and the background, low contrast, large variations in the scale
of the lesion area and various types, and a lot of noise in the
lesion image (Liu and Wang, 2021). In addition, over-depend
on expert knowledge to manually design the features of diseased
plant often limits the generalization. In recent years, DL methods
are widely used in various CV tasks for plant disease diagnosis.
The most challenges of DL-based strategies include small sample
size problem, fine-grained identification of small-size lesions in
the early stage, and the performance under the influence of
illumination and occlusion (Liu and Wang, 2021).

In this study, we proposed a computational framework
for both plant disease identification and severity estimation
(Figure 1). Firstly, we designed a CNN network structure as a
feature extractor to obtain the image features of lesion regions
of a diseased plant. The input original images are not required
with a fixed size, which avoid the impacts of image distortion or
geometric distortion on feature extraction. Secondly, a dimension
reduction strategy, WDM-tSNE, was developed for the imaging
clustering tasks by improving the t-SNE with WDM. WDM-tSNE
successfully realized the efficient clustering of high-dimensional
samples in low-dimensional space.

To validate the effectiveness, we applied the proposed model
on a bunch of plant image datasets. The experimental results
revealed that our method not only identifies multiple distinct
diseases of the same plant but also estimates the severity of
the same disease. Figures 5, 6 indicate that our model is able
to distinguish multiple diseases in a low-dimensional space.
Figures 7, 8 show that the diseased samples can be easily
identified from the health samples. From Figure 9, we concluded
that the proposed method can be used for subtype discovery or
severity estimation from the same disease (ARR). The 10-fold
cross-validation on the ARR dataset revealed that our model is
robust (Supplementary Table 2). Furthermore, we applied our
model on three small-scale datasets for cherry, strawberry, and
tomato. The sample size of each class is only 50. Our analyses
show that our model works well on small-scale image datasets
(Supplementary Figure 1 and Supplementary Table 3).

Considering the fact that the class imbalance may impact
the clustering performance, we constructed multiple balanced
and unbalanced datasets for ARR (lentil), cherry, and strawberry
(Supplementary File 1). Regardless of binary-class or multi-class,
WDM-tSNE shows better clustering performance than t-SNE
(Tables 1–4). It indicates that the sample variation does not affect
the performance of our method.

The proposed WDM-tSNE outperformed other approaches.
After extracting the features from images through the CNN
module, we compared the clustering performance of WDM-tSNE
with the other five dimension-reduction algorithms. Figures 5, 9
proved that WDM-tSNE is not only significantly better than
ISOMAP, LLE, PCA, and MDS, but also prior to tSNE.

Recent advances in genomics technologies have greatly
accelerated the progress in plant science (Varshney et al.,

2021). There are some studies to link phenotypic data
to genomic data for discovering the responsible genes or
mutations that contributed to plant disease progression (Bolger
et al., 2019). Particularly, the systems biology approaches
developed by integrating multi-omics data will allow us to
identify potential targets and predict new therapeutic strategies
(Di Silvestre et al., 2018).

There are several limitations of our current method. Firstly,
the features extracted from the plant images by the CNN
module are non-semantic, thus, it is hard to interpretable
for disease diagnosis and management. Secondly, the current
approach only focused on a single disease for each cluster
of the image but did not pay attention to the images of
plants suffering from multiple diseases. Thirdly, we have not
applied the current model on the high-throughput phenotypic
images obtained from real natural environments. Finally, we
cannot guarantee the clustering performance on the image
samples of diseased plants whose severity is manually labeled by
different experts.

CONCLUSION

This paper proposes a novel computational framework for plant
disease identification and subtype discovery from phenomics
data. Our proposed method has achieved high accuracy and
good generalization ability in all four public datasets than
other deep embedding clustering of images, e.g., t-SNE,
ISOMAP, etc.

Specifically, our method does not depend on prior knowledge.
Moreover, the size of input images is also unlimited. As a novel
embedding strategy, WDM-tSNE provides the perfect clustering
performance rather than other methods. The samples in 2D
space present great distributions after space embedding, which
is significant to reveal the underlying patterns and trajectory
of plant disease.

In the future, we will further explore the association between
the environmental parameters (climate, hydrology, and soil, etc.)
and plant disease evolution.
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The common method for evaluating the extent of grape disease is to classify the disease 
spots according to the area. The prerequisite for this operation is to accurately segment 
the disease spots. This paper presents an improved DeepLab v3+ deep learning network 
for the segmentation of grapevine leaf black rot spots. The ResNet101 network is used 
as the backbone network of DeepLab v3+, and a channel attention module is inserted 
into the residual module. Moreover, a feature fusion branch based on a feature pyramid 
network is added to the DeepLab v3+ encoder, which fuses feature maps of different 
levels. Test set TS1 from Plant Village and test set TS2 from an orchard field were used 
for testing to verify the segmentation performance of the method. In the test set TS1, the 
improved DeepLab v3+ had 0.848, 0.881, and 0.918 on the mean intersection over union 
(mIOU), recall, and F1-score evaluation indicators, respectively, which was 3.0, 2.3, and 
1.7% greater than the original DeepLab v3+. In the test set TS2, the improved DeepLab 
v3+ improved the evaluation indicators mIOU, recall, and F1-score by 3.3, 2.5, and 1.9%, 
respectively. The test results show that the improved DeepLab v3+ has better segmentation 
performance. It is more suitable for the segmentation of grape leaf black rot spots and 
can be used as an effective tool for grape disease grade assessment.

Keywords: grape black rot, semantic segmentation, DeepLab V3+ , channel attention, feature pyramid network

INTRODUCTION

Grapes are one of the most grown economic fruits in the world. Grapes are often used in 
the production of wine, fermented beverages, and raisins (Kole et  al., 2014). In the cultivation 
of grapes, the larger the area planted, the larger the scale of damage when a disease occurs 
as well as the greater the economic losses caused. Black rot, which is a fungal disease, is 
one of the most important grape diseases in the world (Molitor and Berkelmann-Loehnertz, 
2011). Black rot spots are black in color and have a small spot area compared to grape 
leaves. Generally, the assessment of black rot damage on grapes is done by judging the size 
of the spot on the leaves. This operation is currently performed mainly by hand. However, 
the manual assessment of spot size and leaf damage area is highly subjective, difficult to 
quantify, and inefficient. The use of computers and image processing techniques for the 
identification and segmentation of black rot spots on grapevine leaves can facilitate rapid and 
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accurate assessment of damage for targeted treatment, which 
is important for ensuring grapevine yield and growers’ 
economic incomes.

The methods of image segmentation have experienced three 
basic stages from classic segmentation methods, machine learning 
method, and deep learning method with the development of 
image processing and computer technology. These methods 
have been applied in agricultural disease detection. The classical 
image segmentation, such as threshold segmentation (Mehl 
et  al., 2002; Kim et  al., 2005), usually uses color and texture 
features (Samajpati and Degadwala, 2016) to separate the disease 
spots from the background. Chaudhary et al. (2012) transformed 
the RGB image into CIELAB, HIS, and YCbCr color space 
according to the different color features between the disease 
spots and leaf, respectively. Then the disease spots were segmented 
with threshold calculated by the OTSU method based on color 
features. Ma et  al. (2017) achieved segmentation of disease 
spots from the background by fusion features of the super 
red index, the H-component of HSV, and the b-component 
of color space for the greenhouse vegetable images with 97% 
accuracy. Jothiaruna et  al. (2019) proposed a method that 
integrated color features and region growing for the segmentation 
of leaves disease spots with an average segmentation accuracy 
of 87%. Sinha and Shekhawat (2020) segmented peacock disease 
spots on olive leaves according to the different textures of the 
leaves and spots, and the purpose of disease detection was 
realized. The classical image segmentation methods require 
high image quality, and the recognition result will be  poor 
or even invalid if the environmental conditions changed when 
the image acquiring. Therefore, the generality and robustness 
of those methods are unsatisfactory, and the accuracy in practical 
application is not guaranteed.

With the development of machine learning, many researchers 
began to try to apply it to disease spots segmentation to 
improve the accuracy and robustness of segmentation. Zhou 
et  al. (2014) inputted the color histogram of the image into 
the support vector machine (SVM) model to segment the 
Cercospora disease spots for sugar beet, and the average accuracy, 
recall, and F value were more than 0.87. Bai et  al. (2017) 
used a fuzzy C-means algorithm for segmentation of cucumber 
leaves spots disease in complex backgrounds, and the 
experimental results showed that the average error did not 
exceed 0.12%. Pan et  al. (2019) segmented pear blackspot 
disease in hyperspectral images using SVM with an overall 
accuracy of 97.5%. Singh (2019) applied a particle swarm 
optimization algorithm for the segmentation of downy mildew 
spots in sunflower leaves with an average accuracy of 98%. 
Appeltans et  al. (2021) removed soil pixels from hyperspectral 
images by linear discriminant analysis classification and used 
a logistic regression supervised machine learning classifier for 
pixel classification of leek leaves to segment the spots of leek 
white tip disease with an accuracy of 96.74%. Machine learning 
methods can achieve satisfactory segmentation results using 
small sample size, but these methods require multiple steps 
of image preprocessing and are relatively complex to execute. 
In addition, the machine learning-based segmentation methods 
are relatively weakly adapted to unstructured environments 

and need researchers to manually design feature extraction 
and classifiers, which makes the work more difficult.

With the improvement of computer hardware performance, 
deep learning has been developed rapidly (Lecun et  al., 2015). 
Common deep learning algorithms are full convolutional  
neural network algorithm (FCN; Long et  al., 2015), DeepLab 
(Chen et al., 2017), U-Net (Ronneberger et  al., 2015), V-Net 
(Milletari et  al., 2016), USE-Net (Rundo et  al., 2019), SegNet 
(Badrinarayanan et  al., 2017), etc. Lin et  al. (2019) designed 
a semantic segmentation model based on convolutional neural 
network (CNN) for pixel-level segmentation of cucumber leaves 
powdery mildew disease spots, which provided a valuable tool 
for cucumber breeders to assess the severity of powdery mildew. 
Jiang et al. (2020) combined deep learning and SVM to segment 
the leaves disease images of four rice species with an accuracy 
of 96.8%. Wang et  al. (2021) used DeepLab v3+ and U-Net 
methods to segment disease spots from cucumber leaves, and 
calculate their damage levels with an average accuracy of 
92.85%. Lin et  al. (2019) constructed a U-Net-based semantic 
segmentation model for cucumber powdery mildew spots 
segmentation with an average accuracy of 96.08%. Wspanialy 
and Moussa (2020) used U-Net neural network for segmentation 
of tomato leaves and spots in leaves with an average accuracy 
of 98% and then assessed the disease hazard level. Hu et  al. 
(2021) segmented tea leaves and disease spots using a CNN 
and assessed the damage level. Liang et al. (2019) used PD2SE-Net 
neural network to segment plant disease spots areas and assessed 
their damage levels with an overall accuracy of more than 
91%. The deep learning approach has all the work done by 
the CNN, which does not require too much pre-processing 
process or artificial selection of potential features compared 
to classical image processing methods and machine learning 
methods. The deep learning approach not only reduces the 
difficulty of plant leaves spots segmentation but also has higher 
accuracy and robustness.

Our group has developed a method to improve the recognition 
accuracy for grape leaf black rot by combine image enhancement 
technology and a deep learning network (Zhu et  al., 2021). 
It can recognize the disease spots and calculate the number, 
but cannot segment the disease spots from the background. 
To realize the spot segmentation of grape leaf black rot, this 
paper designs a CNN based on an improved DeepLab v3+.

MATERIALS AND METHODS

Dataset and Test Environment Setup
The open dataset Plant Village (Hughes and Salathe, 2016) 
was used to perform experiments in this work, which provides 
symptoms of 26 common diseases on leaves of 14 plant species 
with a total of 54,309 RGB images. We  selected 1,180 images 
of grape leaves infected with black rot as test subjects, and 
all these images were confirmed by researchers studying grape 
diseases. The selected images were taken in an indoor 
environment with a uniform gray background, and each image 
included only one frontal view of a grape leaf with 256 × 256 
pixels. The areas of disease spots were manually labeled by 
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LabelMe (Russell et  al., 2008) software. The average number 
of diseases present in an image was around 15, with more 
than 17,000 segmentation targets present in total. Before the 
experimental training, 1,180 data images were divided into 
training and test sets, and 1,072 images were selected for 
training the network and 108 images were selected as the test 
set for evaluating the network, which was named TS1. 
Furthermore, to increase the credibility of the model, a large 
number of images of grape leaves with disease spots from 
orchard sites were collected via the Internet. A total of 108 
images of grape leaves with black rot spots in natural 
environments were selected by researchers studying grape 
diseases for an extra test set, which was named TS2. During 
the process of network training, the training set was divided 
into two parts in the form of training and validation data. 
The division ratio of training and validation data was 9:1. The 
training data were used for model fitting, and the validation 
data were used to adjust the super parameters of the model 
and to preliminarily evaluate the ability of the model. The 
test set was used to evaluate the generalization ability of the 
final model. In this study, the number of epochs was 120, the 
input batch was four, the learning rate was 0.001, and the 
size of the input image was 512 × 512. The VOC 2007 dataset 
format was used for the dataset. The experiments were conducted 
on Windows 10 with the Pytorch deep learning framework. 
The test computer contained an 8 GB GPU GeForce GTX 
1070Ti and an AMD Ryzen 51600X Six-Core processor. Python 
language was used for programming.

Segmentation Method of Grape Leaf Black 
Rot Spots
To improve the segmentation performance of grapevine leaf 
black rot spots, a deep learning network based on the DeepLab 
v3+ was constructed. It is the third version of DeepLab, with 
high segmentation effectiveness and speed. In the improved 
DeepLab v3+ network constructed in this paper, the residual 
part in the backbone network ResNet101 incorporates a plug-
and-play attention mechanism module. This improves the 
performance of various CNNs without increasing the complexity 
of the model. Moreover, a feature fusion branch based on a 
feature pyramid network (FPN) was added to the DeepLab 
v3+ encoder, which performs feature fusion on high-resolution 
and low-resolution feature maps. Finally, in the improved 
DeepLab v3+, one 4-fold up-sampling is replaced with two 
2-fold up-sampling. Furthermore, the continuity of pixels in 
the obtained images is stronger and the network segmentation 
effect is improved.

Channel Attention Module
The efficient channel attention (ECA; Wang et  al., 2020) module 
is a local cross-channel interaction strategy without dimensionality 
reduction, which can be  efficiently implemented via 
one-dimensional (1D) convolution. The ECA module is obtained 
by improving on Squeeze-and-Excitation (SE; Hu et  al., 2020), 
which is an effective channel attention learning method. It predicts 
a weight to be weighted for each output channel. The SE method 

first uses global average pooling (GAP) for each feature channel 
individually to reduce the two-dimensional feature channel to a 
real number. Then, two fully-connected layers capture the non-linear 
cross-channel interaction. Finally, a Sigmoid function generates 
the channel weights with a value between 0 and 1. This weight 
is added to the feature channel as a weight to generate the next 
level of input data. The characteristic of SE is to use the correlation 
between channels instead of the correlation in the spatial 
distribution. By controlling the magnitude of the weight, the 
important features are enhanced and the unimportant features 
are weakened so that the extracted features are more directional. 
Compared with SE, the improvement of ECA is that the GAP 
operation of feature channels does not reduce the dimensionality. 
Instead, it captures local cross-channel interaction information 
by considering each channel and its K nearest neighbors. The 
ECA module can be  used as a very lightweight plug-and-play 
module to improve the performance of various CNNs (Gao et al., 
2020; Wang et  al., 2020). Its implementation process is shown 
in Figure  1. The blue part uses GAP to aggregate convolutional 
features without performing dimensionality reduction operations. 
The ECA module can be  efficiently implemented via a 1D 
convolution of size k, where the size of the convolution kernel 
k represents the coverage of local cross-channel interaction, that 
is, how many neighbors near the channel participate in the 
attention prediction of this channel. Wang et  al. (2020) studied 
the k value of the CNN network with ResNet-101 as the backbone, 
and the k of the ECA module was set to 3, 5, 7, and 9 for 
training. The accuracy value was used to evaluate the effect of 
k. The experimental results showed that the accuracy was 78.47%, 
78.58%, 78.0%, and 78.57% corresponding to the k value of 3, 
5, 7, and 9, respectively. Therefore, k was set to 5  in this paper. 
The yellow part is the result of implementation via 1D convolution, 
and then the Sigmoid function can be  used to generate the 
channel weights to obtain the normalized weights between 0 
and 1. Finally, the original feature image X, whose matrix size 
is H × W × C, is multiplied by the weight generated by the Sigmoid 
function to obtain a new feature image X′, and the matrix size 
is H × W × C.

In this method, the backbone network of DeepLab v3+ is 
constructed using ResNet101, and an ECA module is inserted 
into the residual (Bottleneck; He et  al., 2016) module of 
ResNet101. This method can realize the adaptive adjustment 
of the convolution kernel size in the channel of each residual 
block. The purpose is to improve the segmentation effect of 
the model. Figure 2 shows a schematic diagram of the insertion 
of ECA in the residual module of ResNet101.

Feature Fusion Branching Based on a FPN
In the process of learning image features by CNNs, the resolution 
of the image is gradually reduced due to the deep convolution 
operation, resulting in low-resolution deep features at the output. 
In this way, there will be  recognition errors for objects with 
a relatively small proportion of pixels in the image. The accuracy 
of multi-scale detection can be  improved if the features at 
different levels of the network training process can be combined. 
An FPN (Lin et  al., 2017) is a method that can fuse the 
feature maps of different layers. Feature maps that can reflect 
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semantic information at different scales can be obtained through 
the fusion of FPNs. The feature fusion process of feature 
pyramids is shown in Figure  3. As shown, the left side is the 
feature maps of three different layers, whose resolutions become 
smaller from the bottom to the top. The middle part is the 
FPN, which can up-sample the deep-level features to convert 
them to the size of the shallow-level feature map and then 
fuses them with the shallow-level features. The right side is 
the feature map obtained after the FPN, which contains not 
only the deep level features but also the features of different 
levels. Here, the feature maps generated by Block3 and Block2 in 
the backbone network ResNet101 of DeepLab v3+ were fused. 
The feature map sizes of Block3 and Block2 were 1/16 and 
1/8, and the number of channels was 1,024 and 512. In the 
FPN, the feature maps in Block3 and Block2 were subjected 
to 1 × 1 convolutional dimension reduction. The number of 
feature map channels in Block3 was changed from 1,024 to 
256, and the number of feature map channels in Block2 was 
changed from 512 to 256. Then, the feature map of Block3 
was up-sampled by a factor of 2 to change the size of the 
feature map from 1/16 to 1/8. Finally, the feature maps of 
Block3 and Block2 were combined to obtain the fused feature 
maps. The fused feature map has richer semantic and spatial 
information because it contains features from both levels, which 
can improve the segmentation effect of DeepLab v3+ network.

Improved DeepLab v3+ Network Structure
The improved DeepLab v3+ network consists of two parts, 
an encoder and decoder (Chen et  al., 2018), which shows 

in Figure 4. The encoder part trains the network, progressively 
obtains the feature maps, and captures higher-level semantic 
information. The decoder part semantically projects the 
features learned by the encoder part into the pixel space 
to achieve pixel segmentation. In the encoder, the backbone 
network is constructed using ResNet101 and the ECA module 
is inserted in its residual module. Moreover, to enhance 
the semantic information of the feature map, the feature 
maps of Block2 and Block3 of the ResNet101 network are 
fused. Atrous Spatial Pyramid Pooling (ASPP; Chen et  al., 
2018) is connected behind the ResNet101 backbone network. 
Dilated convolution with different sampling rates can 
be  sampled in parallel by ASPP, which is equivalent to 
capturing the context of images at multiple scales. Dilated 
convolution (Yu et  al., 2017) adds atrous to the convolution 
map during the convolution operation to expand the reception 
field so that each convolution output can contain a larger 
range of information. In addition to the convolution kernel, 
the dilated convolution also has a hyper-parameter dilation 
rate. It refers to the number of intervals between the 
convolution kernel during convolution mapping, that is, the 
number of atrous inserted. Figure  5 shows the execution 
process of convolution. Here, Figure  5A is the standard 
convolution process and Figure  5B is the process of 
dilated convolution.

The encoder module has three outputs. The first is the 
low-level feature (LF) output by Block1  in the backbone 
network. The second is the fusion feature (FF) of Block2 and 
Block3 output by the FPN. The last one is the high-level 

FIGURE 1 | Efficient channel attention module.
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feature (HF) output by the ASPP module after 1 × 1 convolution. 
High-level feature output concatenates to FF after it has 
undergone 2-fold up-sampling, and then the second 2-fold 
up-sampling is performed. The result of this operation is 
concatenated to the LF, which has been convoluted by 1 × 1 
convolution. A 3 × 3 convolution is performed after the above 
operation, and then a single four-fold up-sampling is performed. 

Then, the dense classification of pixels is obtained, which is 
image segmentation.

Parameters Setting of Improved DeepLab 
v3+ Network
The stochastic gradient descent method was applied to the 
end-to-end training of the deep learning network, and the 

FIGURE 2 | Application of the ECA module in residuals.

FIGURE 3 | Feature pyramid execution process.
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loss function was set to Dice_Loss as shown in Equation (1). 
The weight decay rate was set to 0.001, and the kinetic energy 
factor was set to 0.8. The initial learning rate was set to 0.001, 
the learning rate decay mode was exponential decay, and the 
Batch_size was set to 4. The maximum iteration period (Epochs) 
was set to 120, and the network input size was set to 512 × 512. 
The data set was stored in the format of the VOC 2007 data 
set, and pre-trained model weights were loaded in the experiment 
to speed up the convergence of the model.

 
Dice Loss FP FN

FP TP FN
_ =

+
+ +2   

(1)

where TP represents the true positives, indicating that the 
black rot area of grape leaves automatically segmented by the 

model overlaps with the real disease area; FP represents the 
false positives, indicating that the model misidentified the 
background area as a black rot spot area and segmented it; 
TN represents the true negatives, indicating that the model 
identified the real background area as the background area; 
and FN represents the false negatives, indicating that the 
model misidentified the real black rot area as the 
background area.

Evaluation Indicators
In this study, to evaluate the performance of the improved 
DeepLab v3+ network segmentation, the mean intersection 
over union (mIOU), the dice coefficient (Dice), the pixel 
accuracy (ACC), precision (P), recall (R), and F1-score were 
selected as evaluation metrics.

FIGURE 4 | Improved DeepLab v3+ network structure.

A B

FIGURE 5 | Convolution execution process. (A) Standard convolution work process, (B) The dilated convolution work process.
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The mIOU is a common evaluation metric in semantic 
segmentation methods. In semantic segmentation, the predicted 
and true regions are obtained by pixel operation, and Equation 
(2) is as follows:

 

mIOU
p

p p p

ii=
+ −=

= =
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∑ ∑
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1
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j
ij
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where pij denotes the number of pixels that originally belonged 
to class i but are predicted to be class j, pii denotes the number 
of pixels whose true label is class i predicted to be  class i, 
and pji denotes the number of pixels that originally belonged 
to class j but are predicted to be  class i. In this study, the 
pixels in each image were classified into two classes: black rot 
spots and background.

The Dice value is usually used to calculate the similarity 
of two samples, and the value range is (0,1). A Dice value 
close to 1 indicates a high set similarity, that is, the target is 
better segmented from the background; while a Dice value 
close to 0 indicates that the target cannot be effectively segmented 
from the background. The dice value equation is as follows:

 
Dice TP

FP TP FN
=

+ +
2
2  

(3)

The ACC is the ratio of the number of correctly predicted 
pixels to the total number of pixels in the category, and its 
equation is as follows:

 
ACC TP TN

TP FN FP TN
=

+
+ + +   

(4)

The P, R, and F1-score were calculated by the following  
equation:
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Comparison of the Effects of Different 
Improvements of DeepLab v3+
To verify the effectiveness of the neural network constructed 
in this paper for grape leaf spot segmentation, eight sets of 
comparison experiments with different improvements were 
designed. These eight different improvements were named from 
Imp1 to Imp8, as shown in Table 1. In Imp1, the three dilated 
convolutions of the ASPP model of the original DeepLab v3+ 
network were modified to four dilated convolutions, and their 
dilated rate sizes were 4, 8, 12, and 16, respectively. Theoretically, 
the increase of dilated convolutions and the change of dilated 

rate sizes will improve the fusion effect of semantic features. 
In Imp2, the ResNet 101, backbone of the DeepLab v3+, was 
replaced with Wide ResNet (Zagoruyko and Komodakis, 2016), 
which can improve the network segmentation performance by 
changing the width of the network without changing the network 
depth. The residual module of the backbone ResNet101 was 
inserted into the ECA module in Imp3, and the ECA model 
can adaptively adjust the convolutional kernel size in each 
channel of the residual block, which can improve the segmentation 
effect of the network. The coding side of the DeepLab v3+ 
network was added with a feature fusion branch based on the 
FPN in Imp4. The FPN can fuse different levels of feature 
maps and can obtain feature maps that can reflect semantic 
information at different scales. In imp5, the ASPP part of 
DeepLab v3+ was combined with DenseNet (Yang et al., 2018) 
to form DenseASPP, and the new module had a larger receiver 
field and more densely sampled points. Imp1, Imp3, and Imp4 
were combined as Imp6. Imp3 and Imp5 were combined as 
Imp7. Imp3 and Imp4 were combined as Imp8, which is the 
improvement method used in this paper.

RESULTS

The Segmentation Results of Improved 
DeepLab v3+ for Grape Leaves Black Rot
The training dataset with annotation information was fed into 
the improved DeepLab v3+ network for training. The network 
was trained for 120 epochs, which required around 8.3 h. During 
the training process, the training model was saved once every 
1 epoch, and a total of 120 completed models were saved. 
The convergence of the model can be  reflected by the loss 
values generated during the training process. Figure  6 shows 
the changes in the loss values of the training data and validation 
data in the training set during the training process. The training 
loss and validation loss gradually converged to stability during 
the training process, and the final training loss and validation 
loss values stabilized at 0.132.

TABLE 1 | Different DeepLab v3+ improvement methods.

Improvement methods Improvement content

Imp1 Modify the three dilated convolutions of ASPP in 
the original network to four dilated convolutions 
with a dilated rate size of 4, 8, 12, and 16, 
respectively

Imp2 Replace the ResNet backbone in the original 
network with wider ResNet

Imp3 Insert the ECA module in the residual module of 
the backbone ResNet101

Imp4 A feature fusion branch based on an FPN is added 
to the coding side of the original network

Imp5 Combine the ASPP part of the original network 
with DenseNet to form DenseASPP

Imp6 Imp1 + Imp3 + Imp4
Imp7 Imp3 + Imp5
Imp8 Imp3 + Imp4
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TABLE 2 | Statistics of the segmentation results of the test set TS1 by the before and after improved DeepLab v3+.

Algorithm
Evaluation indicators

mIOU ACC Dice P R F1-score

DeepLab v3+ 0.823 0.984 0.903 0.949 0.861 0.903
DeepLab v3+ 
(improved)

0.848 0.987 0.918 0.957 0.881 0.918

To verify the performance of the model, the optimal model 
at the end of training was selected to be used for segmentation 
trials on test set TS1. The statistical results of the experiment 
before and after improved DeepLab v3+ are shown in Table 2. 
As can be  seen from Table  2, the improved DeepLab v3+ 
outperforms the pre-improvement DeepLab v3+ in all evaluation 
metrics. In particular, it improved 3.0, 2.3, and 1.7% in mIOU, 
R, and F1-score, respectively. The effects of the segmentation 
are shown in Figure  7.

Figure  8 shows the segmentation results of DeepLab v3+ 
before and after improvement applied to black rot spots of 
grape leaves in test set TS1. Figure  8A shows the original 
image, Figure 8B shows the manually labeled and segmented 
image, Figure 8C shows the segmentation results of DeepLab 
v3+ before improvement, and Figure  8D shows the 
segmentation results of DeepLab v3+ after improvement. The 
blue markers in Figure  8 indicate the small spots targeted 
in the original image that were not identified and segmented 
by the original network model but were correctly segmented 
by the improved network model. The yellow markers indicate 
that the semantic segmentation network correctly identified 
and segmented some small spots in the original image even 
though they were not manually labeled and segmented due 

to human oversight. This also demonstrates that the use of 
deep learning methods can reduce subjective errors caused 
by manual segmentation. The red markers indicate that the 
leaf edges were misidentified as spots and segmented by the 
network model due to shadows. This indicates that there is 
a requirement for background conditions for disease spot 
recognition using deep learning. Furthermore, Figure 8 shows 
that although the improved network model could segment 
the spots at the same location, the improved network model 
was more accurate and the segmented spots overlapped more 
with the actual spots.

Experiments with the Plant Village dataset demonstrated 
that the improved DeepLab v3+, which incorporates an 
attention mechanisms and feature pyramids, could improve 
the segmentation of black rot spots on grape leaves. An 
additional dataset, TS2, with 108 images from photos taken 
in different orchard fields was used for testing to verify 
the effectiveness of the method in an orchard field setting. 
The TS2 dataset was tested experimentally using the DeepLab 
v3+ network before and after the improvement. Figure  9 
shows the experimental results of the DeepLab v3+ algorithm 
before and after the improvement on TS2. Figure  9A is 
the original image, Figure  9B is the unimproved DeepLab 

FIGURE 6 | Improved DeepLab v3+ training results.
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v3+ segmentation result, and Figure  9C is the improved 
DeepLab v3+ segmentation result. To show the network 
segmentation effect before and after the improvement, 
different colors are marked in Figures  9B,C. The yellow 
markers show that the improved network was more 
comprehensive in terms of the segmentation effect. The 
red markers show that the improved network was more 
accurate in segmentation. The blue markers show that the 
improved network was less affected by the background 
under the interference of complex background. The 
experimental results show that the improved DeepLab v3+ 
network performed better than the unimproved DeepLab 
v3+ network. Moreover, comparing the experimental 
segmentation effects shows that the improved DeepLab v3+ 
network can be  applied to an actual orchard situation.

The statistical results of DeepLab v3+ before and after 
the improvement are shown in Table  3 for test set TS2. 

Table  3 shows that the improved DeepLab v3+ did not 
segment as well as TS1 for grape leaf black rot spots in a 
natural environment. This is because the images in TS1 
were indoor environments, and the grape leaves were tiled 
with a single and simple background. In contrast, there 
were negative effects, such as overlapping leaves, gaps formed 
by shading, and lighting in the orchard field environment, 
which caused interference for accurate segmentation. 
Moreover, for large and dense spot areas, the network model 
would segment the dense spot areas as a whole; thus 
incorrectly classifying some backgrounds as spot areas. 
However, segmentation using the improved DeepLab v3+ 
still outperformed the one before the improvement, especially 
reaching scores of 0.756, 0.734, and 0.805  in mIOU, R, and 
F1-score, respectively, which were 3.3, 2.5, and 1.9% higher 
than those before improvement. This indicates that the 
proposed method improves the segmentation performance 

FIGURE 7 | Segmentation effects of the improved DeepLab v3+ on the test set TS1 image. The “a” column is the original image, the “b” column is the labeled 
mask, the “c” column is the segmentation result of the model, and the “d” column is the disease spot extraction result.
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of DeepLab v3+, and its ubiquity and adaptability for 
application in a real environment are better compared with 
the unimproved network model.

Comparison of the Effects of Different 
Improvements of DeepLab v3+
For the above eight DeepLab v3+ improvement methods, the 
same training set was used for training, and the performances 
were tested with the test set TS1. To compare the results of 
different improvement methods, the parameters of the network, 
such as the learning rate, epoch, and batch size, were kept 
consistent during the experiments. The test results are shown 
in Table  4, where the four parameters mIOU, ACC, Dice, P, 
R, F1-score, and Pt are used for comparison. The Pt is the 
storage space occupied by the weight file generated after network 
training. Table  4 shows that the performance indicators of 
the unimproved DeepLab v3+ on the test set TS1 were 0.823, 
0.984, and 0.811 for mIOU, ACC, and Dice, respectively. 

Table  5 shows that, compared with the DeepLab v3+ network 
before improvement, the scores of mIOU, ACC, and Dice 
were higher for the other six of the eight improved methods, 
except for Imp1 and Imp2. Compared with the DeepLab v3+ 
before improvement, Imp3 and Imp4 were 1.6% and 1.3% 
higher in mIOU and 0.5% and 1.3% higher in Dice, respectively. 
This indicates that fusing ECA or adding FPN in DeepLab 
v3+ network could improve the segmentation performance of 
the model. Although the improved method of Imp5 had 
improved mIOU and Dice by 1.4% and 1%, respectively. The 
Pt generated by this method required more memory space 
than that of Imp3 and Imp4. Moreover, Imp6 is a fusion of 
Imp1, Imp2, and Imp3, but its mIOU and Dice were lower 
than Imp3 and Imp4. This shows that the additional change 
of the dilated rate of the dilated convolution did not improve 
the performance of the network, which was consistent with 
the test results of Imp1. Besides, Imp7 is a fusion of Imp3 
and Imp5, because fusing ECA in Imp3 alone or modifying 
ASPP to DenseASPP in Imp5 alone could improve network 

A B C D

FIGURE 8 | A comparison of network training results before and after DeepLab v3+ improvement. (A) The original image, (B) the manually labeled and segmented 
image, (C) the DeepLab v3+ segmentation results, (D) the improved DeepLab v3+ segmentation results.
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performance. Thus, Imp7 scored higher in mIOU than Imp3 
and Imp5, and the Dice value was in line with Imp5 and 
higher than Imp3. However, the introduction of DenseASPP 
led to a larger computation within the network and its obtained 
weight file was relatively large, which was consistent with the 
performance of Imp5. The final improved method adopted in 
this paper was Imp8, which fuses Imp3 and Imp4 and adds 
both ECA and FPN in the DeepLab v3+ network. Here, Imp8 
scored 0.848, 0.987, 0.918, 0.957, 0.881, and 0.918 for mIOU, 

ACC, Dice, P, R, and F1-score, respectively, after the same 
test set test, and it received the highest scores among all eight 
methods. Moreover, its weight file occupied 241,553 kb of space, 
which was in the middle level among the eight improved 
methods. This indicates that the Imp8 method used in this 
paper has a better overall performance compared to other 
improvement methods.

A comparison of the training performance of the 
unimproved DeepLab v3+ and the improved network using 

A

B

C

FIGURE 9 | A comparison of segmentation results of test set TS2 images before and after improvement of DeepLab v3+. (A) The original figure, (B) the 
segmentation results of DeepLab v3+ without improvement, (C) the segmentation results of the improved DeepLab v3+.

TABLE 3 | Statistics of the segmentation results of test set TS2 images before and after DeepLab v3+ improvement.

Algorithm
Evaluation indicators

mIOU ACC Dice P R F1-score

DeepLab v3+ 0.732 0.874 0.845 0.916 0.785 0.845
DeepLab v3+ (improved) 0.756 0.889 0.861 0.925 0.805 0.861
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the Imp8 method is shown in Figure  10. The training set 
loss curves are shown in Figure  10A, where the red curve 
is before improvement and the blue curve is after 
improvement. When training until the model converged, 
the value of the red curve was about 0.17 and the value 
of the blue curve is about 0.132, which indicates that the 
improved model fit better on the training set than before 
improvement. Figure  10B shows the validation set loss 
curves, where the red curve is before improvement and 
the blue curve is after improvement. When training until 
the model converged, the value of the red curve was about 
0.16, while the value of the blue curve was about 0.13, 
which indicates that the generalization ability of the model 
after the improvement was better than that before the 
improvement. Therefore, the improved DeepLab v3+ always 
converged faster and had better model fitting ability than 
the pre-improvement one whether on the training set or 
the validation set.

DISCUSSION

Effect Comparison Between Detection and 
Segmentation for Disease Spots
The grape leaf black rot disease spots can be  recognized in 
the previous research of our group, and the spots were 
accurately segmented from the background in this paper. 
The effect of disease spots detection and segmentation for 
test set TS1 is compared in Figure  11. Figure  11A shows 

TABLE 4 | Comparison of the test results of different improvement methods of DeepLab v3+.

Type
Evaluation indicators

mIOU ACC Dice P R F1-score Pt (kb)

Imp1 0.812 0.982 0.896 0.945 0.852 0.896 572,794
Imp2 0.818 0.982 0.900 0.947 0.857 0.900 554,101
Imp3 0.839 0.985 0.912 0.954 0.874 0.912 232,841
Imp4 0.836 0.987 0.911 0.953 0.872 0.911 241,541
Imp5 0.837 0.986 0.911 0.954 0.873 0.911 310,161
Imp6 0.833 0.986 0.909 0.952 0.869 0.909 241,533
Imp7 0.841 0.986 0.914 0.955 0.876 0.914 310,173
Imp8 0.848 0.987 0.918 0.957 0.881 0.918 241,553

TABLE 5 | Detection statistics results of the two methods for the grape leaves in Figure 11.

Leaf

Number of real disease spots Pixels of real disease spots

Actual number
Detected by the 

detection method
Detected by the 

segmentation method
Actual pixels

Segmented by the 
detection method

Segmented by the 
segmentation method

Left 18 16 18 2,301 / 2,237
Middle 17 10 16 2,328 / 2,228
Right 14 12 12 2,132 / 2,066

The disease spots were manually segmented using LabelMe and then the number of pixels was counted by a self-developed python program. All these operations were carried out 
under the guidance and supervision of the grape disease specialist.

A

B

FIGURE 10 | Comparison of the training results of the network before and after 
the improvement of DeepLab v3+. (A) The training set, (B) the validation set.
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the result of detection using the previous recognition method 
(Zhu et  al., 2021), the number and location of the disease 
spots can be  recognized, but cannot be  segmented from the 
background. Figure  11B shows the result of segmentation 
using the method in this paper. The disease spots are not 
only recognized but also segment from the background 
according to their contour shape. Table 5 shows the detection 
statistics results of the two methods for the grape leaves in 
Figure  11. As shown in Table  5, the segmentation method 
not only recognizes the number of disease spots but also 
obtains the number of pixels of spots. In addition, the 
segmentation method also detects and segments some tiny 
spots, which shows that this method is also better than the 
previous methods in recognition performance.

Comparison of Different Segmentation 
Algorithms
In this paper, DeepLab v3+ was chosen as the base algorithm 
to be  improved for the segmentation of grape leaf black 
rot spots. This choice was based on the comparison of 
three common current mainstream deep learning segmentation 
algorithms. Pyramid Scene Parsing Network (PSP Net; Zhao 
et  al., 2017) and U-Net are the other two common deep 
learning segmentation methods besides DeepLab v3+. PSPNet 
consists of a ResNet backbone that imposes a dilated 
convolution and a pyramid pooling module, which can mine 

global contextual information for fast network training. 
U-Net is an FCN with a simple structure, which can obtain 
very accurate segmentation results using few training images 
and is widely used in medical image analysis.

In this study, these three semantic segmentation networks 
were trained using the same dataset, and segmentation 
experiments of black rot spots were conducted on the test 
set TS1. Figure  12 shows the segmentation results of three 
different networks. As shown, PSPNet could segment the 
black rot spots, but the network performed poorly for the 
segmentation of connected spots, and it mistakenly segmented 
the leaf part between two spots. The segmentation effect of 
U-net was better than PSPNet, which could separate the 
lesion area independently, but the segmentation was not fine 
enough. Improved DeepLab v3+ was better than the other 
two methods.

Table  6 shows the experimental statistical results of the 
different segmentation methods. In terms of ACC, there 
was no significant difference between the three methods, 
but in the mIOU metric, improved DeepLab v3+ was 10.6 
and 4.4% higher than PSPNet and U-net, respectively. In 
terms of the R value, improved DeepLab v3+ was 8.2 and 
3.4% higher than PSPNet and U-net, respectively. The 
experimental results showed that the improved DeepLab v3+ 
had better segmentation performance compared with PSPNet 
and U-net, and the improved DeepLab v3+ could further 
improve the segmentation performance of black rot spots 
on grape leaves.

A

B

FIGURE 11 | The effect comparison between detection and segmentation on diseased spot. (A) The results of disease spots detection, (B) the results of disease 
spots segmentation.
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A

B

C

D

FIGURE 12 | Comparison of the segmentation results of different segmentation algorithms on the test set TS1 images. (A) The original image, (B) the PSP Net 
segmentation and extraction results, (C) the U-Net segmentation and extraction results, (D) improved DeepLab v3+ segmentation and extraction results.

TABLE 6 | Statistical segmentation results of different segmentation algorithms on the test set TS1 images.

Algorithm
Evaluation indicators

mIOU ACC Dice P R F1-score

PSP Net 0.767 0.972 0.868 0.929 0.814 0.868
U-Net 0.812 0.98 0.896 0.945 0.852 0.896
DeepLab v3+ 
(improved)

0.848 0.987 0.918 0.957 0.881 0.918
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CONCLUSION

This paper proposes an improved DeepLab v3+ network model 
for the segmentation of black rot spots on grape leaves. This 
method inserts the ECA module into the residual module of 
the original DeepLab v3+ backbone network. Moreover, a feature 
fusion branch based on a FPN is added at the encoder end. 
One 4-fold up-sampling to two 2-fold up-sampling are modified 
in the original network. To verify the performance of the 
improved network model, two test sets based on Plant Village 
and an orchard field environment were constructed for 
experiments. The experimental results showed that the improved 
DeepLab v3+ network model exhibited better performance on 
both test sets than before improvement, and the improved model 
could be  applied to the segmentation of black rot spots on 
grapes in real production environments. This approach can not 
only provide an effective tool for classifying grape disease extent 
classes but also be  applied to the evaluation of other plant leaf 
and fruit diseases. In future work, we  will attempt to combine 
super-resolution image enhancement with this approach to further 
improve the effect of small target recognition and segmentation.
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Pest disaster severely reduces crop yield and recognizing them remains a challenging

research topic. Existing methods have not fully considered the pest disaster

characteristics including object distribution and position requirement, leading to

unsatisfactory performance. To address this issue, we propose a robust pest detection

network by two customized core designs: multi-scale super-resolution (MSR) feature

enhancement module and Soft-IoU (SI) mechanism. The MSR (a plug-and-play module)

is employed to improve the detection performance of small-size, multi-scale, and high-

similarity pests. It enhances the feature expression ability by using a super-resolution

component, a feature fusion mechanism, and a feature weighting mechanism. The

SI aims to emphasize the position-based detection requirement by distinguishing the

performance of different predictions with the same Intersection over Union (IoU). In

addition, to prosper the development of agricultural pest detection, we contribute a

large-scale light-trap pest dataset (named LLPD-26), which contains 26-class pests and

18,585 images with high-quality pest detection and classification annotations. Extensive

experimental results over multi-class pests demonstrate that our proposed method

achieves the best performance by 67.4% of mAP on the LLPD-26 while being 15.0

and 2.7% gain than state-of-the-art pest detection AF-RCNN and HGLA respectively.

Ablation studies verify the effectiveness of the proposed components.

Keywords: agricultural pest detection, convolutional neural network, feature enhancement, Soft-IoU, wisdom

agriculture

1. INTRODUCTION

The pest disaster is considered as the main reason for crop yield reduction, thus recognizing pests
is necessary to guarantee crop yield. Manual pest recognition and location are time-consuming and
laborious work. Traditional pest recognition methods prefer to design feature vectors to identify
specific pest species, which lacks the generalization ability (Qing et al., 2012; Wang et al., 2012;
Yaakob and Jain, 2012; Wen et al., 2015; Deng et al., 2018). Differently, deep learning-based
methods using object detection as a ready-to-use approach cause unsatisfied performance due to
the enormous gap between pest detection and generic object detection, which could be summarized
into the differences in object characters and detection requirements.
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The gaps of object characters include small-size, multi-scale,
and high-similarly. Small size is the most distinguished property
of general object detection. Taking the PASCAL VOC dataset
(Everingham et al., 2010) and the LLPD-26 dataset we build as an
example, the average size of pests (annotated by bounding boxes)
is 1.58% of the general object bounding boxes. Existing methods
fail to pay close attention to the small-size pests, which leads
to insufficient recognition accuracy. The multi-scale property
is another difference between pest detection and general object
detection. The object size distribution is wide in pest detection
tasks (e.g., the size of Gryllotalpa Orientalis Burmeister is 32
times larger than that of Nilaparvata Lugens Stal in our LLPD-
26 dataset). Existing pest detection methods usually use feature
fusion of adjacent layers to solve the multi-scale problem, but
this fusion method is not sufficient to fully integrate information
from different feature layers. The high similarity of interclass
is also a crucial challenge (such as Mythimna Separata and
Helicoverpa Armigera). Due to the low discrimination ability of
high-similarly pests, the performance of the existing methods
makes it unsuitable for practical application and remains to be
improved.

Furthermore, position attention is more crucial for pest
detection than the high-value Intersection over Union (IoU)
compared to general object detection. Different prediction
bounding boxes with the same IoU value have diverse
performance, as shown in Figure 1. All the predicted bounding
boxes (red boxes) in Figure 1 have the same IoU value, but it
is clear that the pest detection results are more accurate than
the general object detection because there are lesser irrelevant
pixels of other categories enclosed (as shown in Figure 1D). The
result of Figure 1A is more accurate than the result of Figure 1B
because Figure 1A contains all of the pest pixels. Therefore,
detection bounding boxes with low IoU hardly cause trouble
for pest detection since it excludes other class pixels. Existing
methods usually adopt the hard IoU threshold to determine
positive and negative samples. By doing so, it could cause some
high-quality bounding boxes to be taken as negative samples.

In summary, this study focuses on reducing the gaps between
general object detection and pest detection in two dimensions
(pest bounding box character and detection target) to improve
the performance of pest detection. In pest bounding box
dimension: (1) Existing pests detection methods and general
object detectors usually utilize FPN (Lin et al., 2017a) to
improve the multi-scale feature extraction ability by top-to-
down adjacent feature fusion method, but the incomplete fusion
limits the performance of detectors. (2) High-similarly objects
are recognized using channel attention (Hu et al., 2018) in the
general detection field, but the single dimension attention is
insufficient for pest detection. (3) The pattern of 5-layer feature
maps is employed to detect objects, in which the top layer
is used to recognize large-size objects and the down layer is
used to recognize small-size objects, but the pest’s size is far
less than general objects (like dog and cat) resulting in the
feature gradually disappearing with the convolution operation.
In the pest detection target dimension, pest detections pay
more attention to position rather than high-value IoU. Existing
methods use a hard IoU threshold to distinguish positive and

negative samples resulting in inadequate detection performance.
To solve the defect of existing pest detectionmethods, we propose
an MSR-RCNN to improve the detection performance of small-
size, multi-scale, and high-similarly pests. The MSR module, the
highlight of MSR-RCNN, is a plug-and-play component and can
improve the performance of familiar detectors. We first use the
super-resolution method to enhance small-size features. Multi-
level features are fused at once by feature full fusion mechanism
to promote the information transition and high-similarly pests
are adequately recognized by feature full weightingmechanism to
enhance feature expression ability. In addition, SI is a new design
to distinguish different predict bounding boxes with the same
IoU value and make networks more suitable for pest detection.
Furthermore, to promote the development of pest detection and
verify the feasibility of our methods, we construct a large-scale
light-trap pest dataset (named LLPD-26) including 18,585 images
and 26 classes. Abundant experiments on the LLPD-26 show that
our methods can effectively detect multi-class pests and attain
start-of-the-art (SOTA) performance.

The main contributions are listed as follows:

• We propose a novel pest detection network (named MSR-
RCNN) to solve the defect that existing methods lack the
targeted improvement of pest objects in three dimensions:
small-size, multi-scale, and high-similarly. The highlight
of our MSR-RCNN is the multi-scale super-resolution
(MSR) feature enhancement module that can improve the
performance of familiar detectors by plug-and-play pattern.
The MSR module consists of the super-resolution component,
the feature full fusion mechanism, and the feature full
weighting mechanism. The three parts focus on improving
the performance of small-size, multi-scale, and high-similarly
pests.

• Since pest detection focus on the position rather than high-
value IoU, we design a SI to differentiate the performance
of different prediction result with the same IoU. The SI
generates high-quality bounding boxes for network training
and employs suitable results to test for pest detection. By using
the Soft-IoU, our MSR-RCNN is more fit for pest detection
tasks. Meanwhile, the performance of the network is improved
without other costs.

• To more accurately monitor and detect multi-class crop pests,
we construct a large-scale light-trap pest dataset (named
LLPD-26) including 18,585 images and 26 classes. The
most-species and largest-number characters of LLPD provide
conditions for accurately detecting pests. In addition, adequate
experiments on the LLPD-26 verify that our MSR-RCNN
outperforms other SOTA methods.

2. RELATED STUDY

2.1. Deep Learning-Based Object
Detection
Pest detection is a specific task of general object detection. In
recent years, Convolutional Neural Network (CNN) is widely
applied in the object detection fields. The deep learning-based
object detection networks divide into one-stage networks and
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FIGURE 1 | The schematic diagram of different prediction bounding boxes with the same Intersection over Union (IoU). (A) The prediction box contains all object

pixels. (B) The prediction box contains almost all object pixels. (C) The prediction box contains pixels of another category (motorbike). (D) Most of the pixels in the

prediction box are other categories (motorcycles).

two-stage networks. As one of the most famous networks in
the one-stage, Redmon et al. (2016) utilized the whole image as
the input and directly obtained the prediction result using 24
convolution layers and 2 full connection layers. Subsequently,
some enhanced versions of YOLO were proposed one after
another (Redmon and Farhadi, 2017, 2018; Bochkovskiy et al.,
2020). Lin designed Retinanet to solve the problem of positive
and negative sample imbalance with the Focal Loss, thus
improving the detection accuracy (Lin et al., 2017b). The
FCOS avoided the anchor mechanism with the pattern of point
regression resulting in reducing the number of hyperparameters.
Meanwhile, low-quality predictions were filtered out through
the proposed Center-ness branch (Tian et al., 2019). Two-stage
networks require the selective search (Uijlings et al., 2013) or
region proposal network (RPN) to generate region proposal
first, and then the R-CNN network (Girshick et al., 2014) is
used to refine the proposal box (Girshick, 2015). Faster R-CNN
(Ren et al., 2017) proposed RPN based on the Fast R-CNN and
established the baseline of the two-stage detector. Pang et al.
designed the Cascade R-CNN network to continuously optimize
the detection results by gradually increasing the IoU threshold
(Cai and Vasconcelos, 2018). Libra R-CNN used concat to merge
feature layers, but the essence of the feature fusion method
was reducing the video memory for the non-local mechanism
(Pang et al., 2019). FPN (Lin et al., 2017a) and PANet (Liu
et al., 2018) used feature fusion of adjacent layers to solve
the multi-scale problem, but the incomplete fusion method
did not meet the requirement of pest detection. TridentNet
used dilated convolution (Yu and Koltun, 2015) to improve the
capability of multi-scale feature extraction (Li et al., 2019). The
ThunderNet used Context Enhancement Module (CEM) module
to integrate multi-scale information and adopted the Spatial
AttentionModule (SAM) to enhance feature representation (Qin
et al., 2019). OHEM (Shrivastava et al., 2016) and Snip/Sniper
(Singh and Davis, 2018; Singh et al., 2018) improved the
performance of the network by using selective backpropagation.
We use the two-stage framework as the baseline because the
two-stage methods are usually more accurate than the one-stage
methods, especially for small-size object detection.

2.2. Pest Detection Method Based on CNN
Due to the rapid development of CNN-based object detection,
many researchers transplant deep learning-based methods to

agricultural applications (Kamilaris and Prenafeta-Boldú, 2018;
Dhaka et al., 2021; Hasan et al., 2021). In the pest recognition
and detection field, Liu et al. (2016) used a global contrast
region-based approach to construct a rice insect classification
dataset named Pest_ID and used a CNN to identify the insects.
Wang et al. (2017) applied LeNet and AlexNet to classify pest
images. Thenmozhi and Reddy (2019) used transfer learning
to explore the results of AlexNet, ResNet, LeNet, and VGG
on three pest datasets. Yue et al. (2018) proposed a super-
resolution method based on deep learning to solve the difficulty
of insect recognition. Ayan et al. (2020) combined different
CNN networks into a unified pest identification network and
automatically selected the combination weight to carry out
pest identification via the genetic algorithm. Shen et al. (2018)
proposed an improved Faster R-CNN network with the inception
structure to identify common grain pests. Liu et al. (2019)
designed a detection network combining Faster R-CNN and
channel-spatial to detect the light-trap pests. Jiao et al. (2020)
proposed an anchor-free network (AF-RCNN) to identify and
locate pests of 24 types. Liu et al. (2020) used global and local
activation features to detect the 16-class pest dataset. The above
methods ignore the gaps between object detection and pest
detection and use insufficient improvement for pest detection,
which led to an unsatisfied performance. Therefore, we design an
MSR-RCNN to improve the performance of pest detection.

3. MATERIALS AND METHODS

3.1. Data Collection
We use the light-trap device to automatically collect the pest
images in different periods. The data collection devices are from
the Intelligent Machines Institute, Chinese Academy of Sciences,
and distributed in the field environment of Anhui Province.
The dataset includes 18,585 JPEG images with the resolution
of 2,592×1,944 and is annotated by agricultural experts. Each
pest object corresponds to a unique category and bounding
box coordinate, and each image has multiple pests. To ensure
effectiveness, we divide the data into 14,868 images of the train
set and 3,717 images of the test set.

3.2. MSR-RCNN Pest Detection Network
To accurately detect 26-class pests, we design an MSR-RCNN
network including a backbone network (ResNet50), MSR feature
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FIGURE 2 | The overall framework of the MSR-RCNN.

FIGURE 3 | The super-resolution feature enhancement component.

enhancement module, RPN, and bounding box regression
and classification networks (RCNN). We use ResNet50 (He
et al., 2016) as the backbone network to extract image
features. The MSR feature enhancement module is utilized
to improve the feature expression ability of the backbone in
three dimensions: small-size, multi-scale, and high-similarly.
With the MSR module, enhanced features are obtained for
pest detection. The RPN (Ren et al., 2017) is used to
obtain the region of interest (ROI) and the ROI Align (He
et al., 2017) is employed to resize the ROI to the unitive
size. Classification branch and bounding box regression are
applied to obtain the final detection results, as shown in
Figure 2.

3.3. MSR Feature Enhancement Module
Since small-size, multi-scale, and high-similarly pest characters
of pests, we design the MSR feature enhancement module to
improve the detection performance using a super-resolution
component, a feature full fusion mechanism, and a feature
full weighting mechanism. The super-resolution component
from the MSR module obtains the six-layer feature map for the
recognition of small size objects. Then, the full feature fusion
mechanism integrates all features at once for the recognition
of multi-scale objects. Since high-similarly pests in the LLPD-
26 dataset are difficult to identify, we design the feature full
weighting mechanism in the MSR module to enhance the
fine-grained expression ability. The red part of
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FIGURE 4 | The feature full fusion mechanism.

FIGURE 5 | The feature full weighting mechanism.

Figure 2 shows the overall framework of the MSR
we devised.

3.3.1. Super-Resolution Feature Enhancement

Component
Feature pyramid network (FPN) (Lin et al., 2017a) uses 5 layer
feature maps to recognize objects, in which the top-level features
include semantic information to detect large-size objects and the
low-level features include texture information to detect small-size
objects. However, the small-size pest features gradually disappear
in the process of convolution operation resulting in misleading
information transfer in the top-to-down feature fusion. Inspired
by zooming in to identify pests in the manual annotation
process, we design the super-resolution feature enhancement
component to improve small-size feature extraction ability by
using deconvolution to obtain fine-grained pest features.

To ensure the full utilization of features, we select the feature
maps after each Resnet50 block (a total of 4) as the input of the
super-resolution component. We use 1 x 1 convolution kernels
for each layer feature to change the number of channels to 256.
Duo to the size of pest objects is small, we deconvolve the feature
map after the first block of the Resnet50 network to enhance
texture information, which refers to the way people zoom in on
images for small-size object recognition. In this way, we have
5-layer feature maps, four layers from the feature extraction

network, and one layer from deconvolution operation. We use
the bilinear interpolation method to add the upper layer features
and apply the lower layer features to carry out adjacent layer
feature fusion. The 3 x 3 convolution kernel is utilized to enhance
the feature representation capability. Max pooling operation is
carried out for top layer feature to enhance semantic information.
After the above process, we have 6-layer feature maps, in which
the top layer feature obtained by max-pooling has sufficient
semantic information, and the bottom layer feature obtained by
deconvolution has rich texture information. Figure 3 shows the
super-resolution feature enhancement component designed in
this study.

3.3.2. Feature Full Fusion
The feature full fusion mechanism is used to improve the
performance of multi-scale pest detection. By fusing the
information of different feature layers, the defects are avoided
in existing methods, which only combine adjacent layers or use
a single feature layer to detect pests (Jiao et al., 2020; Liu et al.,
2020). The inspiration for our design comes from the process
of people looking at images. People often think of an image
as a 2D image because the human eye treats multiple channels
(usually RGB, 3-channel) at once. Similarly, the feature full
fusion mechanism combines the 6-layer features from the super-
resolution component at once. We fuse 6-layer feature maps into
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TABLE 1 | The overall performance comparison.

Method MSR SIoU AP AP50 AP75 mRecall

General object detection

Faster R-CNN (Ren et al., 2017) 35.4 62.3 37.7 50.5

Cascade R-CNN (Cai and Vasconcelos, 2018) 36.0 62.6 38.5 50.2

Libra R-CNN (Pang et al., 2019) 37.4 65.2 40.2 52.8

FCOS (Tian et al., 2019) 33.3 57.4 36.2 55.2

RetinaNet (Lin et al., 2017b) 27.9 48.8 29.4 53.1

Pest detection

AF-RCNN (Jiao et al., 2020) 33.1 58.6 34.6 48.8

HGLA (Liu et al., 2020) 37.0 65.6 38.3 52.0

Ours

MSR-RCNN
√

38.0 66.9 40.0 52.4

MSR-RCNN
√ √

38.4 67.4 40.6 52.0

TABLE 2 | Compare results by category on our LLPD-26 dataset using AP50.

Class number
General object detection Pest detection Ours

Faster R-CNN Cascade R-CNN Libra R-CNN RetinaNet AF-RCNN HGLA MSR MSR+SI

1 16.1 19.2 21.7 4.5 12.8 20.1 21.1 20.4

2 58.7 58.9 63.5 54.4 58.7 63.3 66.1 67.2

3 70.2 67.9 70.1 60.9 65.5 71.7 72.8 74.0

4 69.6 69.4 70.9 58.0 66.0 72.8 72.3 72.8

5 84.9 85.2 85.0 80.7 83.5 86.1 86.2 85.8

6 72.1 71.1 74.4 66.0 70.4 76.2 76.4 77.4

7 72.5 71.9 73.4 62.4 70.9 74.0 74.9 74.5

8 62.0 60.6 66.7 57.5 59.4 66.1 65.5 70.5

9 47.5 47.5 50.9 43.0 47.3 51.9 53.6 53.5

10 70.9 70.5 74.2 59.6 68.5 74.2 77.2 78.8

11 79.3 78.2 80.3 73.2 76.1 81.6 81.0 81.7

12 27.7 26.9 26.7 0.10 25.5 32.7 29.5 32.3

13 55.3 58.3 54.6 41.5 53.4 55.4 56.8 59.7

14 66.7 64.5 66.4 57.3 62.0 67.4 67.5 69.9

15 39.8 45.3 47.3 8.10 33.1 45.2 48.0 51.3

16 40.2 45.2 51.7 7.50 33.0 50.7 49.6 51.5

17 57.9 65.1 66.8 15.0 55.4 70.8 70.9 70.6

18 56.1 58.7 60.5 35.9 55.0 58.0 64.9 63.3

19 56.6 58.4 64.9 54.3 57.7 61.9 65.1 69.4

20 83.0 82.7 82.1 78.1 80.6 83.7 83.3 83.8

21 89.5 89.5 89.5 86.9 87.5 90.0 90.0 90.1

22 93.1 92.4 94.4 93.8 91.7 94.4 94.6 94.4

23 59.9 51.7 63.2 54.1 54.1 61.2 66.0 63.9

24 72.8 73.3 74.9 64.1 71.4 74.8 74.0 75.2

25 53.3 49.7 54.8 1.20 14.8 50.0 59.2 56.4

26 64.8 70.4 65.0 49.6 68.2 70.2 73.0 63.1

Mean 62.3 62.8 65.2 48.8 58.6 65.6 66.9 67.4

The parts in bold represent the best performance.

five layers to improve network efficiency. Specifically, for each
of the 6-layer feature maps, we use the bilinear interpolation
method to resize them to five sizes, in which the resolutions are

200×272, 100×136, 50×68, 25×34, and 13×17, respectively. We
stack features of the same size and use a 1×1 convolution to
unify channels to 256. The stacked feature maps are added to the
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FIGURE 6 | Improved performance of our MSR-RCNN on pest data of different sizes.

C1∼C5 feature maps of the original feature maps. It is important
to note that our feature full fusion is substantially different from
the full connection layer, although it is very similar. This is
because our feature full fusion module preserves the translation
invariance of the pixels. This also leaves enough information
for the next feature full weighting module. Figure 4 shows the
feature full fusion mechanism.

3.3.3. Feature Full Weighting
Due to the high-similarly pests in the LLPD-26 (e.g.,
Cnaphalocrocis medinalis and Pyrausta nubilalis, Mamestra
brassicae Linnaeus and Scotogramma trifolii Rottemberg), fine-
grained identification is required to improve the performance
of detection. We design the feature full weighting for feature
reinforcement learning. This could optimize the detection
performance of similar pests from two dimensions (depth and
location). For the feature map (W, H, and C) of each layer, our
weighting method weights channel C and points (x, y) in the
feature map, where W is the width, H is the height, and C is
the channel number of the feature map. We use Formula (1) to
describe our weighting method.

W(X) = απL(X)g(X)+ (1− α)πC(X)X (1)

Where πL(·) represents the local weighting function, πC(·)
represents the channel weighting function, X represents the
feature map, W(X) represents the weighted feature map, and α

is the scale factor. Formula (2) and Formula (3) give the specific
forms of πL(·) and πC(·), respectively.

πL(xi) =
∑

∀j∈X
θL(xj)

TφL(xi) (2)

πC(X) = ReLu(θC(avg(X)))+ ReLu(φC(max(X))) (3)

Among them, xj represents the point on the feature map
excluding the point Xi, θ(·) and φ(·) represent the learnable
function for feature X, avg(·) andmax(·) represent global average
pooling and global maximum pooling, respectively. To guarantee
the end-to-end pattern, we use a convolution operation to carry
out the feature full weighting, as shown in Figure 5.

3.4. Soft-IoU
In general object detection (such as PASCAL VOC), IoU50 is
used as the threshold to determine positive and negative samples.
However, for pest detection, different bounding boxes with the
same IoU value have different performances. Therefore, we
design a SI with the position suppression method to optimize the
training and test processes. Specifically, the calculation method
of SI is shown in Formula (4):

SI(A,B) = β · ⌈1−
E(Acenter ,Bcenter)

max(Adiagonal,Bdiagonal)
⌉ ·

A ∩ B

A ∪ B
(4)

Where E(·) represents the Euclidean distance, Acenter and Bcenter
represent the center point of bounding box A and B, respectively,
Adiagonal and Bdiagonal represent the diagonal distance of
bounding box A and B, respectively, Max(·) represents the
maximum function, and β is the scaling factor. To ensure the
stability, we adjust the IoU no more than 0.1 times the original
IoU. Due to the high-quality positive samples contributing to
training the network finely, β is selected as 0.9. In the test phase,
β = 1.1 because we expect the bounding box as shown in
Figure 1A to output the results as a positive sample.
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FIGURE 7 | The training loss and mAP50. (A) The comparison of training loss. (B) The comparison of test accuracy.

FIGURE 8 | Ablation of β in the Soft-IoU (SI).

4. EXPERIMENTS

4.1. Experiment Settings
We use the backpropagation and Stochastic Gradient Descent
(SGD) to train our MSR-RCNN (LeCun et al., 1989). For the
training of MSR-RCNN, each SGD mini-batch is constructed
from a single pest image that contains 256 samples. Negative
samples and positive samples are randomly selected in a ratio
of 1 : 1 in each mini-batch. Gaussian distribution with a mean
of 0 and a SD of 0.01 is used to initialize the parameters of
the classification regression layer. In each SGD iteration, we use
RPN to generate 1,000 potential regions to be sent to R-CNN for
learning. We train a total of 12 epochs with a momentum of 0.9,
among which the first 8 epochs have a learning rate of 0.0025,
and the last 4 epochs are 0.00025. Our experiment is deployed on
a Dell 750 server with NVIDIA Titan RTX GPU (24G memory)
using the Mmdetection2.0.0 (Chen et al., 2019) framework and
Python 3.8. Unless otherwise stated, all comparison models in
this study use the default parameters. Since the SmoothL1 Loss
function is differentiable at zero, we use it to train the R-CNN
network for more stable performance. Because the L1 Loss is a

TABLE 3 | MSR-RCNN network performance comparison results using different

backbones.

Resnet50 Resnet101 Resnext50 Resnext101

AP50 66.9 66.1 66.3 66.7

AP75 40.0 39.4 40.3 39.6

AP 38.0 37.4 38.0 37.8

The parts in bold represent the best performance.

non-differentiable function at zero, we apply it in RPN network
training to improve the robustness.

4.2. Experiment Results
4.2.1. Performance on Our LLPD-26
We compare the performance of our method with Faster R-
CNN (Ren et al., 2017), Cascade R-CNN (Cai and Vasconcelos,
2018), Libra R-CNN (Pang et al., 2019), FCOS (Tian et al.,
2019), Retinanet (Lin et al., 2017b), AF-RCNN (Jiao et al., 2020),
and HGLA (Liu et al., 2020), as shown in Table 1. Among
them, AF-RCNN and HGLA are the existing deep learning-
based pest detection methods, MSR represents the MSR feature
enhancement module proposed by us, SI represents the SI, AP50
represents the Average Precision (AP) with the IoU threshold of
50%, AP represents themean APwith the IoU threshold at 50, 75,
and 95%. The FPN (Lin et al., 2017a) is used in all comparison
methods. Our MSR module is slightly inferior to Libra R-
CNN in AP75 performance due to the high-quality training
box provided by the balanced sampling approach of Libra R-
CNN. In addition, since pest detection is more focused on point
location performance than bounding box IoU performance,AP50
is more valuable than AP75. With the SI training method, the
MSR-RCNN outperforms other methods.

To compare the performance of the proposed method in
detail, the AP50 results of each category are given in Table 2. We
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TABLE 4 | The performance of MSR with various detection methods.

Method MSR AP AP50 AP75 mRecall

Faster R-CNN (Ren et al., 2017) 34.8 61.8 36.1 51.5

Faster R-CNN + FPN (Lin et al., 2017a) 35.4 62.3 37.7 50.5

Faster R-CNN + MSR
√

37.6 66.3 39.5 51.9

Cascade R-CNN + FPN (Cai and Vasconcelos,

2018)

36.0 62.6 38.5 50.2

Cascade R-CNN + MSR
√

37.8 65.8 40.2 52.1

FCOS + FPN (Tian et al., 2019) 33.1 57.0 35.9 55.3

FCOS + MSR
√

33.8 58.8 36.0 54.8

RetinaNet + FPN (Lin et al., 2017b) 27.9 48.8 29.4 53.1

RetinaNet + MSR
√

30.8 53.1 33.3 52.7

The parts in bold represent the best performance.

TABLE 5 | Detection performance comparison on general object detection datasets.

Benchmark Method Backbone AP AP50 AP75 APs APm

PASCAL VOC
Faster R-CNN*

Resnet50
- 81.0 - - -

MSR-RCNN - 81.8 - - -

COCO
Faster R-CNN*

Resnet50
37.4 58.1 40.4 21.2 41.0

MSR-RCNN 37.5 59.8 40.0 21.7 41.4

Where * represents the method of reproduction using MMdetection.

FIGURE 9 | The performance comparison between MSR-RCNN and Faster

R-CNN on different datasets.

emphasize the best results for each class with bold to show the
best performance. It can be found that our network outperforms
other methods.

4.2.2. Ablation Experiments

4.2.2.1. Category Performance Improvement Comparison
Figure 6 shows the performance improvement of our MSR-
RCNN compared with Faster R-CNN. Among them, the blue bar
chart represents the size of the pest, and the line chart describes
the performance improvement of the method for Faster R-
CNN. Our methods (MSR and SI) mainly improve the detection
performance of small-size objects. For medium-size pests, the
performance of Soft-IoU is improved significantly.

4.2.2.2. The Training Loss and AP
To explain the improvement of our network in more detail,
we present the training loss diagram of MSR-RCNN, Faster
R-CNN, FCOS, and HGLA, as shown in Figure 7. Faster R-
CNN represents two-stage methods, FCOS represents one-
stage methods, and HGLA represents pest detection methods.
Referring to the parameter setting of MMdetection, the batch size
of FCOS is 4 samples, thus the loss iter only has half the other
methods. It is clear that compared with other networks, ourMSR-
RCNN has more excellent data fitting ability and is capable of
more complex work. In addition, our MSR-RCNN convergence
rate is the fastest.

4.2.2.3. The Beta Value
For the β in Formula (4), an ablation study is performed and
the results are shown in Figure 8. When the β is less than 0.9,
the detector performance is affected because a large number of
positive samples change into negative samples, resulting in the
imbalance between positive and negative samples. When the β is
greater than 0.9, the training performance of the model is misled
due to the addition of too many low-quality detection boxes.

4.2.2.4. The Backbone of Our MSR Pest Detection Network
We choose ResNet50 as the backbone of the MSR-RCNN After a
detailed comparison of the common backbone network. Table 3
shows the performance comparison of our MSR-RCNN in
different backbone networks. Why the result of ResNet50 is
better than ResNet101? This reason is that the object size is
generally small in our dataset. Therefore, with the deepening
of the network layer, the features of small-size objects gradually
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FIGURE 10 | Visualization results.

disappear in the continuous convolution operation. The top-
to-down feature fusion method transmits blurry semantic
information resulting in decreasing performance. To be fair,
ResNet50 is used as the backbone extraction network for all
comparative experiments in this study, unless otherwise stated.

4.2.2.5. MSR Module With Various Networks
We compare the performance of our MSR module with Faster
R-CNN, Cascade R-CNN, FCOS, and RetinaNet, as shown
in Table 4. The Faster R-CNN use the C4 feature map to
detect pest. Due to the design of FPN (Lin et al., 2017a), all
methods after 2017 use the multi-layer features detection pattern.
Without bells and whistles, the MSR module effectively improves
the pest detection performance under various networks. The
experimental results show that the MSR module can improve
the feature extraction capability and replace FPN in the pest
detection field.

4.2.3. Generalization Capacity
We compare the performance on general object detection
datasets (PASCAL VOC and COCO), as shown in Table 5.

Where ∗ represents the results that we reproduced with
MMDetection under the same parameter settings. Due

to the Soft-IoU being designed for pest detection, we
only present the performance of MSR-RCNN with the
MSR module. Since MSR-RCNN is a small-size detection

network for pest detection, we do not evaluate the
performance of APl. The training set of PASCAL VOC
0712 is used to train networks and the test set of PASCAL
VOC 2007 is used to verify the results. The experimental
results show that our method can significantly improve
the performance of IoU50 and small-size objects. This
is highly consistent with the original intention of our
MSR module.

In addition, Figure 9 shows the performance comparison
between our method and Faster R-CNN on different datasets,
where the blue bar chart represents the normalized relative
average size of the objects in several datasets, the yellow bar
chart shows the normalized relative AP improved by our MSR-
RCNN method compared to Faster R-CNN. With the increase
of the object average size, the improvement of the performance
becomes more and more obvious.
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4.3. Qualitative Results
To visually observe the accuracy, we visualize the detection
results of Faster R-CNN, AF-RCNN, HGLA, and MSR-RCNN
(ours), as shown in Figure 10. Among them, the first column
shows the dense distribution pest images, the second and
fourth columns show the sparse distribution pest images, and
the third column shows the image detection results when the
camera has water mist caused by temperature change. The
visualization shows that HGLA has many overlapped bounding
boxes, AF-RCNN and Faster R-CNN mainly exhibit missed
bounding boxes and false results (Figure 10 columns 1 and
2). For columns 3 in Figure 10 (low-quality images caused by
equipment reasons), all of the detection results are degraded, but
ourMSR-RCNN is the least weakened. This is owed to our feature
super-resolution module. Although the MSR-RCNN wrongly
identifies the rice planthopper in the fourth column images
(class 1 is identified as class 14), other methods did not find
the existence of minimum-sized pests (Figure 10 columns 4).
The visualization results show that our MSR-RCNN outperforms
other methods.

5. CONCLUSION

This study aims to bridge the gap between generic object
detection and pest detection, in which the challenges lie in
object characters and IoU adaptation. Therefore, we propose
an MSR-RCNN that is targeted at detecting agricultural pests
of 26 categories. Specifically, we build a large-scale light-trap
pest dataset LLPD-26. For tackling the detection difficulty
on small-size, multi-scale, and high-similarly pests, the MSR-
RCNN adopts a MSR model that includes a super-resolution
component, a feature fusion mechanism, and a feature weighting
mechanism. In addition, motivated by the higher importance
of pest positions, we propose a SI strategy to improve the
adaptability of the network. The experimental results show that
the proposed method can effectively detect multiple classes of

pests. Ablation experiments verify the MSR model can improve

the performance of other detectors in the plug-and-play form.
Future study will focus on few-shot pest detection research and
real-world application deployment.
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An accurate and robust pest detection and recognition scheme is an important step
to enable the high quality and yield of agricultural products according to integrated
pest management (IPM). Due to pose-variant, serious overlap, dense distribution, and
interclass similarity of agricultural pests, the precise detection of multi-classes pest
faces great challenges. In this study, an end-to-end pest detection algorithm has been
proposed on the basis of deep convolutional neural networks. The detection method
adopts a deformable residual network to extract pest features and a global context-
aware module for obtaining region-of-interests of agricultural pests. The detection
results of the proposed method are compared with the detection results of other
state-of-the-art methods, for example, RetinaNet, YOLO, SSD, FPN, and Cascade
RCNN modules. The experimental results show that our method can achieve an
average accuracy of 77.8% on 21 categories of agricultural pests. The proposed
detection algorithm can achieve 20.9 frames per second, which can satisfy real-time
pest detection.

Keywords: deep learning, convolutional neural network, deformable residual network, agricultural pest, target
detection

INTRODUCTION

Automatic insect recognition has attracted more and more attention in the field of agricultural
engineering. Conventional pest management in farmland has relied mainly on periodic spraying
plans based on schedules. With the increasing attention to environmental impact and pest control
cost, integrated pest management (IPM) (Bernardo, 1993) has become one of the most effective and
accurate pest management methods. It abandons the conventional spraying procedure and depends
more on the actual existence or possibility of field insects. The use of insect attractants and traps
is commonly adopted to monitor agricultural pest in the farmland. Growers and IPM consultants
regularly monitor the pest situation of farmland by manually counting harmful insects on traps, and
control agricultural pests according to specific insect distribution. However, it is time-consuming
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and inefficient. Therefore, automatic identification and counting
of pests is the important step of IPM, which makes a major
contribution for producers with large farmland.

As described in the study by Guo et al. (2021), the process
of frequently used automatic recognition and counting methods
can be described as follows: collecting insect pest images using
trapping devices followed by automated counting via computer
vision-based detection methods. Thus, the precise pest detection
will be decided by computer vision-based detection algorithms.
Wen and Guyer (2012) developed image-based orchard insect
identification and classification methods by using the local
features model, global features model, and the combination
model, respectively. The method is more robust and can work on
field insect images considering the messy background, missing
insect features, and varied insect size and pose. Because each
target of the sample case has different colors and distinctive
body shapes, Hassan et al. (2014) proposed an automatic
insect identification framework that can identify grasshoppers
and butterflies by manipulating insects’ color and their shape
feature. Yalcin (2015) used multiple feature descriptors, i.e., Hu
moment, elliptic Fourier descriptors, radial distance function,
and local binary patterns, to identify and classify the insect images
under complex background and illumination conditions. We
know that the insect pest recognition accuracy of traditional
approaches heavily depends on the hand-designed features by
various algorithms. However, precise and proper features need
to be carefully designed and selected for high accuracy, leading
to expensive works and expert knowledge. It will be even worse
when the background is complex.

Convolutional neural networks (CNNs) are effective in the
fields of image recognition and classification due to the powerful
ability of feature extraction. The framework of region-based
CNN was developed to improve the detection accuracy (Girshick
et al., 2014). CNN modules were used to automatically extract
the feature representations from images, ignoring hand-crafted
features. Two-stage object detection methods are the mainstream
detection framework (Lin et al., 2017a; Ren et al., 2017; Cai and
Vasconcelos, 2018). Specifically, the region proposal generation
algorithms, such as Selective Search (Uijlings et al., 2013),
EdgeBox (Zitnick and Dollár, 2014), and RPN (Ren et al., 2017),
AF-RPN (Jiao et al., 2020), are applied to generate a set of region
candidates (region of interests, ROIs) in the first stage, and then,
these region proposals are used for obtaining multi-class labels
and refining the bounding boxes using the R-CNN network.
CNN-based object detection algorithms have been applied to pest
detection in precision agriculture. Gomez Selvaraj et al. (2019)
use Faster R-CNN detector with ResNet50, InceptionV2, and
single-shot detector (SSD) with MobileNetV1 to detect banana
disease and pest, and detection results show that deep CNN is a
robust and easily deployable strategy for banana pest recognition.
He et al. (2020) used a two-stage detection framework, Faster
RCNN, to detect brown rice plant hopper, and compared it with
a one-stage detection method, YOLO V3 (Redmon and Farhadi,
2018). Experimental results demonstrate that the performance
of the two-stage detection algorithm significantly outperforms
the one-stage detector. Wang et al. (2021) proposed a sampling-
balanced region proposal network (S-RPN) and attention-based

deep residual network for detecting multi-classes pests with a
small size, achieving good performance compared with other
state-of-the-art detectors. Jiao et al. (2020) developed a two-stage
end-to-end agricultural detection method named AF-RCNN to
recognize and localize multi-classes pest targets, achieving 56.4%
mAP and 85.1 mRecall on a 24-types pest dataset. However,
there are pose-variant, serious overlap, dense distribution, and
interclass similar pests in our experimental dataset, leading to
poor performance of pest feature extraction. Thus, the accurate
and robust pest detection system still faces great challenges.

The hypothesis of this study is that the features of agricultural
pests can be obtained by machine learning through images
analysis, while they traditionally need professional knowledge of
the expert. However, deep learning-based pest detection methods
still face some challenges according to the aboded description.
For example, there are pose-variant, serious overlap, dense
distribution, and interclass similar pests in our experimental
dataset, leading to poor performance of pest feature extraction.
Thus, the accurate and robust pest detection system still faces
great challenges. It is necessary to propose a new method to
address the precise recognition of pest with pose-variant, serious
overlap, dense distribution, and interclass similar pests. A deep
CNN is applied to automatically extract rich feature information
from pest images with multi-pose, high similarity, and high
overlap. A feature extractor module is used to enhance the
features of region-of-interest of pest by merging the global
information of pest image. The objectives of this work are to (1)
develop a deformable residual block (DRB) network to extract
detailed feature information of multi-class pest with pose-variant,
serious overlap, dense distribution, and interclass similar pests;
(2) propose a global context-aware module to get high-quality
feature of region-of-interests of pests; and (3) introduce an end-
to-end two-stage pest detection algorithm to accomplish the
identification and detection of 21-types of agricultural pest.

MATERIALS AND METHODS

In this part, the whole framework of our agricultural pest
detection network is first demonstrated. Second, the materials
used in this study are presented. Third, the proposed DRB
network (DRB-Net) is described in detail. Finally, the region
proposal generation algorithm and the global context-aware
feature extraction module are introduced, respectively.

Agricultural Pest Detection Framework
In this part, the overview of the whole detection framework
is shown in Figure 1. A pest collection equipment is used to
obtain a large number of pest images and then these pest images
are labeled by professional experts. Pest images are input into
DRB-Net for extracting deformable feature information, and
feature pyramid network (FPN) is applied to extract multi-scale
fusion pest features. These extracted features are input to region
proposal network (RPN) to generate a set of pest proposals,
and then a global context-aware feature (GCF) extractor is
developed to produce region-of-interest (RoI) with global context
information. Following R-CNN (Girshick et al., 2014), two-stage
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FIGURE 1 | Whole framework of agricultural pest detection. FC represents the fully connected layer.

CNNs are used for specific-class classification and localization
of each RoI via an end-to-end way. Finally, the NMS (Non-
Maximum Suppression) algorithm (Rosenfeld and Thurston,
1971) is adopted to filter redundant bounding boxes, and obtain
pest detection results.

Materials
In this study, the experimental images are collected by an
automatic device that uses a multispectral light trap for attracting
crop pests. HD camera above the tray of this device is set to take
images, which were saved in a JPG format with 2, 592× 1, 944
pixels. In this work, the width and height of the pest images
are resized to 800× 600 for high efficiency. The dataset contains
24,412 images and 21 types of pests. Table 1 shows details of
our collected agricultural pest dataset, including the scientific
names, the pest images, the number of pest instances and pest
images, and the average relative scale of each pest instance.

In order to train and evaluate the performance of the CNN-
based objector, all pest images are randomly split into train set
(15,378 images), validation set (6,592 images), and test set (2,442
images), respectively.

To recognize the object of an image using deep CNN, the
class and localization of each pest instance needs to be labeled.
In this study, these pest instances are hand-annotated by several
pest experts using LabelImg software, which is provided by the
Computer Science and Artificial Intelligence Laboratory at MIT.
Generally, rectangular bounding boxes are used to annotate
the location of a pest instance, which can be represented as
(x1, y1, x2, y2), here (x1, y1) is the coordinate of top-left and
(x2, y2) is the coordinate of bottom-right. Figure 2 shows some
examples of agricultural pest images. Pose variations of the same
types of pest will decrease the precise recognition, as presented
in Figure 2A. Besides, the distribution of pest targets is seriously
dense and worse is that the pest targets are overlapped, as shown
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TABLE 1 | Details of 21 types of agricultural pest, including the pest images,
number of pest instances of each category, number of pest images of each
category, and the average relative scale of each pest instance.

Classes Image Number of
instances

Number of
pest

images

Average
relative

scale (%)

Cnaphalocrocis
medinalis (CM)

1,224 932 0.1214

Chilo suppressalis
(CS)

1,285 454 0.1793

Mythimna separate
(MS)

8,374 3,637 0.3978

Helicoverpa armigera
(HA)

26,588 8,740 0.2814

Pyrausta nubilalis
(PN)

15,739 5,294 0.2267

Athetis lepigone
(AL)

28,932 7,200 0.1298

Spodoptera litura
(SL)

1,896 1,543 0.4572

Spodoptera exigua
(SE)

7,116 3,527 0.1377

Sesamia inferen (SI) 1,768 1,335 0.2776

Agrotis ypsilon (AY) 3,890 2,314 0.5703

Mamestra brassicae
Linnaeus (MbL)

2,170 1,632 0.4259

Scotogramma trifolii
Rottemberg (StR)

4,393 3,051 0.2816

Agrotis segetum
(AS)

1,615 1,330 0.4024

Agrotis tokionis Butle
(AtB)

465 351 0.6375

Holotrichia oblita
Faldermann (HoF)

82 70 0.3348

Holotrichia parallela
(HP)

11,325 3,002 0.2518

Anomala corpulenta
(AC)

52,134 5,083 0.2466

Gryllotalpa orientalis
Burmeister (GoB)

6,480 3,589 0.9530

Pleonomus
canaliculatus (PC)

157 109 0.3281

Agriotes subrittatus
Motschulsky (AsM)

6,161 1,729 0.1129

Melanotus caudex
Lewis (McL)

677 224 0.1584

in Figures 2B,C, respectively. The appearance of two different
categories of pest has a high similarity, for example, the class “HA”
and “MS,” as shown in Figure 2D.

Deformable Residual Block Network
As we know, a deep residual network is a common backbone for
extracting features. For ResNet50 (He et al., 2016), it contains 16
residual blocks with 50 convolutional layers. The output feature
map of each residual block in ResNet50 network has different
resolutions. The details of the ResNet50 are reported in Table 2.
For the same class pest instances with different poses and shapes,
the common backbone cannot effectively extract the feature
information of pest, leading to poor recognition of pest with
different shapes and poses.

Inspired by previous work (Dai et al., 2017), it is known that
deformable convolution can enhance the capability of CNNs of
modeling geometric transformation of objects. The difference
between traditional convolution and deformable convolution can
be shown in Figure 3. It shows that the sampling locations of
deformable convolution are irregular compared with the regular
sampling of traditional convolution.

Additionally, from the aspect of mathematical description, the
standard convolution can be defined as following:

y
(
p0
)
=

∑
pn∈R

w
(
pn
)
.x(p0 + pn) (1)

where y
(
p0
)

denotes the output feature map for each location p0;
R represents the sampling space in the input feature map x; w
is the learnable weight; pn enumerates the location of sampling
space R.

However, in deformable convolution, the sampling space
is enlarged by adding the offsets, which can be defined by
Equation (2):

y
(
p0
)
=

∑
pn∈R

w
(
pn
)
.x(p0 + pn +4pn) (2)

where 4pn denotes the offset, which can be obtained by network
learning. However, 4pn is typically fractional. The bilinear
interpolation operation is used for obtaining the final offsets.

Therefore, to detect pose-invariant and shape-invariant pest
instances, a deformable convolution module has been embedded
into the deep residual network, which can extract multi-scale and
deformable pest features. The architecture of DRB is presented
in Figure 4. The deformable module is designed for extracting
shape information of pest. Finally, the DRB is introduced into
the residual blocks of ResNet50 backbone, achieving the effective
extraction of deep deformable pest feature information.

As we know that low-level features usually have large spatial
size and more-grained detail information, while high-level
features tend to contain more semantic knowledge. Generally,
low-level features are beneficial for the detection of small
objects. To identify pest with different sizes, a multi-scale feature
extraction network, i.e., FPN (Lin et al., 2017a) is adopted
to fuse pest feature information from low-level and high-
level feature maps.

Generation of Pest Region Proposal
In Faster RCNN (Ren et al., 2017), Ren et al. (2017) proposed the
RPN to generate a set of region proposals. This region proposal is
the region that contains the object instance. As shown in Figure 5,
RPN model consists of two fully connected layers: classification
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FIGURE 2 | Some examples of agricultural pest images. (A) Different shapes of the same class of pests. (B) Serious overlap. (C) Dense distribution. (D) High
similarity between the classes “HA” and “MS.”

layer and regression layer. The former outputs 2k-dimension
vector encoding the classification confidence (objects or not
objects), and the latter outputs 4k-dimension vector encoding the

TABLE 2 | Description of standard ResNet50.

Layer name Setting of convolutional layers

Conv1 7× 7, 64, stride 2

3× 3 max pool, stride 2

Conv2_x (block 1)

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

Conv3_x (block 2)

 1× 1, 128

3× 3, 128

1× 1, 512

× 4

Conv4_x (block 3)

 1× 1, 256

3× 3, 256

1× 1, 1, 024

× 6

Conv5_x (block 4)

 1× 1, 512

3× 3, 512

1× 1, 2, 048

× 3

Average pooling, 7× 7, stride 1

coordinates of bounding box. In this study, k denotes the number
of anchor boxes in RPN. The parameter k is set to 1, leading to
fewer parameters of RPN and improving the efficiency without
decreasing the quality of pest region proposals. The stochastic
gradient descent (SGD) (LeCun et al., 1989) method was used for
end-to-end training, which allowed the convolutional layers to be
shared between the RPN and the Fast R-CNN components. The
feature maps from deformable FPN are propagated forward to
pest proposal generation network, and then a set of pest proposals
with classification scores and coordinates of bounding boxes is
received as output.

However, these pest proposals may be reductant and of low
quality. Generally, the NMS algorithm is adopted to decrease the
overlapped bounding box candidates and improve the quality.
Given a series of proposals with classification scores in an image,
the IoU ratios between the bounding box with the highest score
and its neighboring bounding boxes are calculated. The scores of
neighboring bounding boxes will be suppressed when their IoU
ratios are lower than the preset values. The process of NMS can
be described mathematically as Equations (3 and 4):

si =
{
si IoU(B, bi) < t
0 IoU(B, bi) ≥ t

(3)
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FIGURE 3 | Illustration of sampling location of traditional and deformable convolutions. (A) Regular sampling of traditional convolution. (B) Irregular sampling
(indicated in deep blue arrows) of deformable convolution.

FIGURE 4 | Architecture of the deformable residual block.

IoU(B, bi) =
area(B

⋂
bi)

area(B
⋃

bi)
(4)

where B is the bounding boxes with the highest score, bi represent
the i-th neighboring boxes of B with confidence score Si. t is
the threshold value of IoU ratio, which is set to 0.7; area(B∩bi)
denotes the intersection of boxes with the highest scores and their
neighboring boxes, and area(B∩bi) is their union.

The low-quality bounding box candidates can be removed
using the NMS algorithm. Notably, a different number of region

proposals are used during training and testing. In our study,
1,000 proposals are selected according to their scores for network
training and testing. Besides, the effect of different numbers of
proposals is explored in the section of experiments.

Global-Context Feature Module
For the challenging scenarios in agricultural pest detection,
such as cluttered background, foreground disturbance, simple
integration of high-level, and low-level features may fail to detect
the pest targets due to lacking the global context. A global
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context-aware feature module is designed in this work to extract
rich information of agricultural pest, as shown in Figure 6. Given
the full-image convolutional feature map in the FPN, the feature
maps are pooled by global pooling, which can be implemented
by an adaptive average pooling using the entire image’s bounding
box as the RoI. The pooled features are input into the post-RoI
layer to get a global context pest feature. And the global feature is
concatenated with the local RoI feature developed by RoI pooling.
Therefore, additional global context information is accessible for
each pest proposal, improving the recognition and localization of
pest under complex scenes.

Unified Pest Detection Network
To detect the multi-categories pest, the RPN (Ren et al., 2017) and
Fast R-CNN (Girshick, 2015) module are combined into a single
network via an end-to-end way, as shown in Figure 1. These
two networks can be separately trained. However, the separate

training will lead to different convolutional layers. Therefore,
according to the training procedure in Ren et al. (2017), joint
training between RPN and R-CNN was performed, which allows
for shared convolutional layers. In each SGD iteration, the
forward pass generates pest proposals, which are then fed into
the Fast R-CNN detector for training. The backward propagation
happens as usual, and for the sharing convolutional layer, the
backward propagated signals come from the combination of RPN
losses and Fast R-CNN losses. Additionally, another advantage of
the end-to-end training method is that it can reduce the training
time compared with the separate training model.

Evaluation Metrics
To verify the performance of our proposed agricultural pest
detection method, the metrics of average precision (AP) and
recall are adopted. A true positive (TP) is when the network
correctly identifies the pest target. A predicted box is viewed as

FIGURE 5 | Network structure of pest region proposal generation module.

FIGURE 6 | Description of global context-aware feature module.
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false positive (FP) when the model falsely identifies a pest target,
for example, calling something an “Agrotis ypsilon” that is not an
“Agrotis ypsilon.” The precision (P) and recall (R) are defined as
follows:

precision =
#TP

#TP + #FP
(5)

recall =
#TP
GT

(6)

In which #TP, #FP present the number of TP and FP,
respectively. Ground Truth (GT) denotes the total number of
ground truth boxes.

The average precision (AP) can be calculated based on the
shape of the precision/recall curve.

AP=
∫ 1

0
PdR (7)

The mean AP (mAP) averaged over all object classes is employed
as the final measure to compare performance over all object
classes, and it is defined as follows:

mAP =
1
C

∑C

j=1
APj (8)

where C is the number of classes, which is 21 in this study.
Additionally, the AP0.75 denotes the AP at IoU 0.75, which

is applied to evaluate the detection accuracy of pest detection.
The strict metrics, for example, mean AP and Average recall (AR)
across IoU thresholds from 0.5 to 0.95 with an interval of 0.05, are
used to further verify the performance of the proposed method.
ARs, Arm, and ARl is the average recall of small, medium, and
large pest target, respectively. In this study, the small, medium,
and large pest target can be defined in Table 3.

EXPERIMENTAL RESULTS AND
ANALYSIS

Experimental Details
The proposed method and other state-of-the-art models are
trained using the back-prorogation algorithm and SGD method,
with momentum 0.9 and initialize learning rate to 0.0025 that
will be dropped by 10 at the 8-th and 11-th epoch followed by
Ren et al. (2017). The batch size is set to 4 during training. The
proposed detection module is trained via an end-to-end way.
These experiments are performed on a dell T3630 computer
workstation with NVIDIA TITANX, 24G graphics card, and Intel
core i9-9900K. Deep CNN was built based on Pytorch framework
under Ubuntu18.02 operating system.

Comparison Results of Each Category of
Agricultural Pest
Table 4 reports the detection results. It presents the AP of 21
pest classes performed by our method and other state-of-the-
art models. Table 4 suggests that that our method can achieve
more precise recognition accuracy on all the categories. It is

TABLE 3 | Definition of the small, medium, and large pests.

Min rectangle area (pixel) Max rectangle area (pixel)

Small pest 0 × 0 32 × 32

Medium pest 32 × 32 96 × 96

Large pest 96 × 96 ∞ × ∞

TABLE 4 | Detection results (AP) compared with other methods on pest
dataset (unit: %).

Method

Class SSD YOLOv3 RetinaNet FPN YOLOF Cascade
RCNN

Our
method

CM 68.7 64.7 68.2 70.0 63.9 69.6 78.1

CS 69.7 73.6 73.1 74.7 71.6 76.5 80.0

MS 79.7 77.3 75.3 82.3 79.6 82.0 85.4

HA 91.1 87.1 88.1 90.5 88.8 90.3 91.6

PN 79.6 77.0 76.7 82.0 79.9 82.7 85.4

AL 72.0 69.3 62.8 74.7 72.7 73.8 78.9

SL 81.4 73.8 78.3 83.2 81.8 84.2 85.9

SE 53.1 47.1 48.1 57.2 53.8 56.2 64.9

SI 77.1 73.0 79.1 82.6 76.9 81.5 85.2

AY 89.2 84.5 83.7 89.2 86.8 89.2 91.4

MbL 66.9 54.3 57.6 67.8 64.5 69.7 77.0

StR 58.2 55.6 52.5 61.4 55.8 59.9 68.8

AS 63.8 53.8 42.5 60.9 46.1 58.8 68.2

AtB 60.0 48.0 44.7 53.1 60.3 53.8 64.0

HoF 3.0 0.0 7.3 4.2 0.0 0.0 16.8

HP 93.0 89.4 87.8 90.8 88.8 90.8 92.1

AC 95.8 89.1 89.3 90.7 88.4 90.7 91.6

GoB 97.3 97.5 98.2 97.5 98.4 97.6 97.6

PC 54.2 44.1 43.4 53.1 42.0 52.7 56.7

AsM 79.0 81.6 75.2 81.9 74.9 82.0 86.5

McL 74.7 83.2 27.6 74.0 73.3 76.8 87.5

Average 71.8 67.8 64.7 72.5 70.0 72.3 77.8

The detection results of our method are shown in bold.

obvious that the proposed method significantly outperforms
one-stage detectors, for example, 6.0% improvements for SSD
(Liu et al., 2016), 10.0% improvements for YOLO (Redmon and
Farhadi, 2018), and 13.1% improvements for RetinaNet (Lin
et al., 2017b), and 7.8% inprovements for YOLOF (Chen et al.,
2021). Additionally, the detection accuracy of our method is also
higher than the multi-stage methods [e.g., FPN (Lin et al., 2017a)
and Cascade RCNN (Cai and Vasconcelos, 2018)]. Specifically,
it improves 5.3 points and 5.5 points compared with FPN and
Faster RCNN, respectively.

However, Table 4 also shows that the detection accuracy
of the pest “HoF” is only 16.3%, which largely falls behind
other categories of pests with adequate samples. This is
because the number of samples of the pest “HoF” is only
70, leading to insufficient learning during network training.
Therefore, the number of pest samples will significantly affect the
detection results.

Table 4 summarizes that the “HoF” seems to be difficult
to recognize on all detection models, while all the models
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could classify the “HA” pest. The proposed method can achieve
16.8% AP, obviously outperforming other methods. Especially,
for the YOLO and Cascade RCNN detectors, the detection
accuracy is 0.0%, which does not recognize this class of
pests. The improvement of our method contributes to the
introduction of the deformable residual network and global
feature extractor, which can extract rich global pest features in
deformed pest images.

Compared Results Evaluated by Strict
Metrics
The stricter standards (e.g., AP0.5:0.9, AP0.75, and AR) are
applied to evaluate the detection results. The AR is used to
evaluate the localization accuracy of pest targets, and ARs,
ARm, and ARl are the AR of small, medium, and large-scale
pest, respectively. Table 5 shows the compared detection results
among SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017b),
YOLO (Redmon and Farhadi, 2018), Cascade RCNN (Cai and
Vasconcelos, 2018), FPN (Lin et al., 2017a), YOLOF(Chen
et al., 2021), and the proposed method. It is observed from
Table 5 that AP @IoU [0.5:0.95] and AP@IoU = 0.75 of our
method can achieve 49.6 and 58.8%, respectively, outperforming
other state-of-the-art detectors. This demonstrates that our
method can not only improve the accuracy of classification but
also localization.

Ablation Experiments
The proposed pest detection method has contributed two
elements, including global-context feature (GCF) module and
deformable residual block network (DRB-Net). To analyze the
contribution of each component, the ablation experiments are
shown in Table 6. In this study, the baseline is Faster R-CNN with
FPN. We first add the GCF module to the baseline, as shown in
the second row of Table 6. The DRB-Net leads to a gain of 2.5%
AP. This is because of the addition of global context information,
which is instrumental in the recognition of crop pest. The third
row of Table 6 demonstrates that the DRB-Net can effectively
boost the performance from 75.0 to 76.6%. The improvements
may be result from the extraction of agricultural pest with various
scales and poses. Finally, we analyze the influence of multi-scale
training. From the fourth row of Table 6, we can observe that
multi-scale training can improve the accuracy of pest detection.
This is because the multi-scale training enhances the diversity of
training samples.

TABLE 5 | Compared results evaluated by strict evaluation criteria.

Method SSD RetinaNet YOLOv3 Cascade
RCNN

YOLOF FPN Proposed
method

AP0.5:0.9 44.2 41.2 39.6 46.4 42.1 45.9 49.6

AP0.75 51.4 48.4 42.3 54.9 47.3 53.7 58.8

AR 61.3 61.5 51.3 58.0 58.3 59.3 62.0

ARs 47.7 51.6 40.2 43.5 48.1 45.3 51.1

ARm 64.0 65.6 53.9 60.1 61.2 63.0 61.9

ARl 45.0 45.0 50.0 30.0 35.0 35.0 50.0

Detection Efficiency
Aside from detection accuracy, the detection speed also needs
to be considered. Table 7 reports the results of the detection
speed of the proposed method and other excellent detection
models. The proposed model can run at a speed of 20.9 FPS,
which outperforms Cascade RCNN (Cai and Vasconcelos, 2018).
However, it underperforms other detection models, such as SSD
(Liu et al., 2016), RetinaNet (Lin et al., 2017b), and YOLOv3
(Redmon and Farhadi, 2018). This is because the proposed pest
detection network is a two-stage framework that uses RPN for
generating pest proposals, leading to consumption of time. But
one-stage detection models are proposal-free, directly regressing
the bounding box of pest and classifying, resulting in higher
efficiency. In summary, the precision of our method is higher
than other methods, and the detection speed could satisfy
the requirement of real-time detection; therefore, our method
balances the pest detection efficiency and accuracy.

Analysis Experiments of Pest Proposals
As we know that the quality of pest proposals will
decide the final detection accuracy of agricultural pest,

TABLE 6 | Ablation study on the major components.

GCF module DRB-Net Multi-scale training mAP (%)

72.5

X 75.0

X X 76.6

X X X 77.8

TABLE 7 | Detection efficiency of agricultural pest using our method and other
state-of-the-art models.

Method Efficiency (FPS) Accuracy

SSD 41.1 71.8

RetinaNet 21.4 64.7

YOLOv3 54.7 67.8

YOLOF 35.7 70.0

Cascade RCNN 17.2 72.3

FPN 22.0 72.5

Proposed method 20.9 77.8

TABLE 8 | Recalls of different number of pest region proposals generated by RPN
with DRB-Net and without DRB-Net.

Number of proposals 10 50 100 1,000

With DRB-Net 55.1 89.0 95.2 95.2

Without DRB-Net 54.4 87.6 93.8 93.8

TABLE 9 | Recalls of pest proposals generated from RPN without DRB-Net and
with under different IoU thresholds.

IoU thresholds 0.5 0.6 0.7 0.8 0.9

Without DRB-Net 93.8 92.5 85.5 58.7 8.4

With DRB-Net 95.2 94.1 87.7 61.7 13.3
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Table 8 lists the recall of different numbers of pest
proposals produced by RPN without and with DRB-Net.
It shows that the quality is higher when using DRB-Net.
For example, when using 50 proposals, the RPN with
DRB-Net can achieve 89.0% recall, which obtains 1.4%
improvements compared with RPN without DRB-Net. Thus,
the introduction of DRB-Net contributes to the improvement of
agricultural pest detection.

From the view of localization of pest, Table 9 shows
the recalls of pest proposal produced from RPN with

and without DRB-Net under different IoU thresholds
while using 100 proposals. It demonstrates that the
performance of RPN with DRB-Net outperforms
that without using DRB-Net. With the increase of
IoU, the recalls of pest proposals will gradually
decrease; however, the recall of RPN with DRB-Net
can achieve 13.3, obtaining 4.9% improvements than
without DRB-Net. This phenomenon suggests that the
DRB-Net is the main factor to promote the quality
of pest proposals.

FIGURE 7 | Selected examples of agricultural pest detection results by using YOLO, RetinaNet, SSD, Cascade R-CNN, and our method.
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Visualization of Agricultural Pest
Detection Results
For visualization purpose, several examples of pest detection
results are given in Figure 7. The row from the top to the bottom
is expressed as the result of Ground truth, YOLO, RetinaNet,
SSD, Cascade R-CNN, and our method. The detection results
are marked by boxes with different colors. The proposed method
could obtain good performance on the pest targets with sparse
and dense distribution. For example, the class “HP” is undetected
by using YOLO version 3 algorithm, as shown in Figure 7
(a1), while the recognition accuracy can achieve 99.0% for the
proposed method, as shown in Figure 7 (d1). Additionally, for
pest targets with dense distribution, our method has a higher
precision of classification than other methods.

CONCLUSION

As we know, insect pests are one of the main factors affecting
agricultural product yield. Precise recognition and localization
of insect pests benefit to timely preventive measures to decrease
economic losses. However, recent pest detection methods cannot
effectively recognize and localize the pest targets. In this study, a
deformable residual network is developed to extract deformable
feature information of crop pest. Furthermore, a global context-
aware extractor is designed to obtain global features of pest
images, which are combined with local features, contributing to
the improvement of the detection of pest targets. Quantitative
experiments were conducted on the constructed large-scale

multi-class pest dataset to evaluate the performance of the
proposed method, demonstrating that the proposed method
outperforms other state-of-the-art detectors in the view of pest
localization and classification.
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The spotted wing Drosophila (SWD), Drosophila suzukii, is a significant invasive pest of 
berries and soft-skinned fruits that causes major economic losses in fruit production 
worldwide. Automatic identification and monitoring strategies would allow to detect the 
emergence of this pest in an early stage and minimize its impact. The small size of 
Drosophila suzukii and similar flying insects makes it difficult to identify them using camera 
systems. Therefore, an optical sensor recording wingbeats was investigated in this study. 
We trained convolutional neural network (CNN) classifiers to distinguish D. suzukii insects 
from one of their closest relatives, Drosophila Melanogaster, based on their wingbeat 
patterns recorded by the optical sensor. Apart from the original wingbeat time signals, 
we modeled their frequency (power spectral density) and time-frequency (spectrogram) 
representations. A strict validation procedure was followed to estimate the models’ 
performance in field-conditions. First, we validated each model on wingbeat data that 
was collected under the same conditions using different insect populations to train and 
test them. Next, we evaluated their robustness on a second independent dataset which 
was acquired under more variable environmental conditions. The best performing model, 
named “InceptionFly,” was trained on wingbeat time signals. It was able to discriminate 
between our two target insects with a balanced accuracy of 92.1% on the test set and 
91.7% on the second independent dataset. This paves the way towards early, automated 
detection of D. suzukii infestation in fruit orchards.

Keywords: insect recognition, convolutional neural network, pest management, automatic monitoring system, 
wingbeat analysis, wingbeat frequencies, optical sensing and sensor, deep learning

INTRODUCTION

Drosophila suzukii (Matsumura), the spotted wing Drosophila (SWD), is a major invasive fruit 
pest which is native to Western Asia, but has spread to many countries around the world. It 
was first spotted in Southern Europe in 2008 (Rasquera, Spain) and in the following years it 
spread to the majority of European countries across a wide range of environmental conditions 
and climates (Mortelmans et  al., 2012; Asplen et  al., 2015). Unlike the majority of other 
Drosophilidae, D. suzukii lays its eggs in healthy ripening fruits rather than damaged or 
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overripe ones, thus creating special problems to growers. The 
host range of SWD includes mainly soft-skinned fruits and it 
is quite broad, having now been documented in cherries, 
peaches, nectarines, plums, persimmons, strawberries, grapes, 
blackberries, blueberries, raspberries, pluots, figs, and several 
other fruit crops, as well as a wide variety of non-crop host 
plants (Walsh et  al., 2011; Kenis et  al., 2016; Tait et  al., 2021). 
Damage in fruit production by SWDs ranges from negligible 
to 80% crop loss (Dreves et  al., 2009; Lee et  al., 2011; Walsh 
et  al., 2011; Asplen et  al., 2015; Potamitis and Rigakis, 2015; 
Klick et  al., 2016; Farnsworth et  al., 2017; Yeh et  al., 2020). 
A study looking into revenue losses due to SWD infestation 
and fruit rejections found that gross revenues decreased by 
37% for raspberries and 20% for strawberries in California, 
United  States (Goodhue et  al., 2011). The spread of D. suzukii 
is quite fast since it is introduced or re-introduced to habitats 
worldwide via global fruit trade and it then moves quickly 
from one region to another by flying (Rota-Stabelli et al., 2013). 
Consequently, knowledge of SWD (or similar) population sizes 
at any given time would be  very useful to growers of host 
crops and parties directly or indirectly affected by the subsequent 
economic losses since it would provide the ability to assess 
new possible infestations or the severity of existing ones.

Most traditional monitoring methods require a frequent 
human intervention to either sample larvae in fruits or identify 
and count trapped insects. These labor-intensive procedures 
are time consuming and can be  inefficient when dealing with 
rapid pest invasions. In the case of SWD, their population 
can double in size in only 4 days (Emiljanowicz et  al., 2014) 
and a single female can produce approximately 3,000 adult 
descendants within a couple of months (Tochen et  al., 2014). 
Moreover, SWD flies are known to utilize a variety of non-crop 
hosts and alternative habitats (Dalton et  al., 2011; Burrack 
et al., 2013; Atallah et al., 2014), which makes manual monitoring 
methods progressively more challenging and inefficient as the 
number of necessary inspection areas and field types increase. 
Besides, the high activity season of the SWD varies and lasts 
quite long, ranging from early July until late December according 
to studies conducted in the eastern part of the United  States 
(Pelton et  al., 2016; Guédot et  al., 2018) as well as Europe 
(Clymans et  al., 2019; Tait et  al., 2021). Hence, a necessity 
for more automated monitoring systems of pest insect 
populations arises.

Automatic monitoring systems of pests can generate timely 
warnings in real-time and prompt farmers to act if needed. 
This could also help control the use of insecticides, which 
create severe negative effects on public health and the environment 
(Wilson and Tisdell, 2001; European Commission, 2019). By 
relying on data-derived metrics of pest population sizes, 
insecticide use could be  applied only under certain infestation 
conditions and not as a precautionary measure. In the past 
years, several automatic insect traps have been developed (Jiang 
et al., 2008, 2013; Shieh et al., 2011; López et al., 2012; Lampson 
et  al., 2013; Potamitis et  al., 2015; Lima et  al., 2020a). The 
two main approaches that prevail in designing insect monitoring 
devices are: (1) imaging of trapped insects; and (2) recording 
a sensor reading of the insect upon entry.

In the first approach, the insects are commonly trapped 
on a sticky surface which is imaged by a camera. Then, the 
trapped insects on that surface are counted and identified by 
using simple computer vision and artificial intelligence (AI) 
algorithms (Espinoza et  al., 2016; Nieuwenhuizen et  al., 2018; 
Lima et al., 2020a). Image-based traps are frequently combined 
with Convolutional Neural Network (CNN) classifiers and object 
detectors (Li et  al., 2021). For example, Roosjen et  al. (2020) 
used images taken from an unmanned aerial vehicle (UAV) 
and fed them to CNNs to detect SWD individuals trapped 
on sticky plates. They demonstrated a rather low area under 
the precision-recall curve (AUC) of 0.086 for female SWDs 
and 0.284 for male. When using static images instead, they 
detected female SWDs with a promising AUC of 0.506 and 
male SWDs with AUC of 0.603. Thus, despite the success of 
CNN models in classifying images or detecting objects, systems 
that employ CNNs still struggle to address challenges that 
arise in the field, such as varying illumination, blurry images 
due to insect movement, orientation or crowding, and 
uncalibrated systems (out of focus cameras, poor color calibration, 
white balancing, etc.). To overcome some of these challenges, 
practitioners often apply data augmentation by creating replicas 
of their original data with visual differences that simulate 
various real conditions. This way, CNN models learn features 
that distinguish their target insects from others in multiple 
different settings. Still, classifying small insects in images remains 
a challenge even for such complex models, especially for insects 
that do not have prominent or unique features.

In sensor-based insect traps, often an infrared or optical 
sensor is placed inside a lure trap to count the number of 
times a target insect enters, or to capture its wingbeat pattern 
or produced vibrations to classify it (van Roy et  al., 2014; 
Potamitis and Rigakis, 2015; Potamitis et  al., 2017; Lima et  al., 
2020b; Kalfas et  al., 2021; Rigakis et  al., 2021). Sensor-based 
traps are paired with lures, and they can either record events 
that likely belong to a target insect or capture more complex 
patterns on which prediction models are built. In two example 
cases, researchers built a detection system for Red Palm Weevil 
infestations in trees using bioacoustics signals produced by 
this insect (Ilyas et  al., 2009; Hussein et  al., 2010). Bioacoustic 
signals like calling or courtship sound signals are also recorded 
using microphones or similar audio recorders to classify insect 
species (Mankin, 1994; Chesmore, 2001; Raman et  al., 2007; 
Zamanian and Pourghassem, 2017), but these devices are 
sensitive to wind noise or ambient sounds when deployed in 
the field. In two different studies, Potamitis et  al. (2014, 2015) 
embedded an optoelectronic sensor in a McPhail-type trap 
and were able to count and classify fruitfly species by measuring 
the insects’ wingbeat. Optoelectronic sensors provide several 
benefits for recording insect biometric data compared to 
microphones and cameras since they are not influenced by 
the environmental conditions or the target’s distance from the 
sensor while recording data (Potamitis et  al., 2018). Wingbeat 
data captured from optical sensors have already been used 
successfully to classify insect species and with the recent 
advances in the field of Machine Learning (ML) it has become 
possible to build high-performing classification systems 
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(van Roy et  al., 2014; Chen et  al., 2014; Potamitis and Rigakis, 
2015; Fanioudakis and Potamitis, 2018). However, strict validation 
procedures are crucial to avoid that over-optimistic results are 
obtained with these powerful machine learning techniques. In 
a previous study involving a rigorous validation strategy, we have 
shown that CNNs are able to classify wingbeat data of mosquitoes 
on the genus level, but were less successful at the species level 
(Kalfas et  al., 2021).

Both the D. melanogaster (DM) and the D. suzukii (SWD) 
occur in similar habitats with presence of soft-skinned fruits 
and overlapping high activity seasons. However, unlike SWD, 
DM poses no considerable threat to fruit crops since it will 
mainly attack overripe fruit that are already unfit for sale. 
Hence, a system that can accurately discriminate between the 
two Drosophila genera will be  very valuable to estimate the 
need for crop protection at any given time. Both insect types 
are very small in size and range between 2 and 4.5 mm in 
body length, and 2 and 3.5 mm in wing length (Walsh et  al., 
2011). On average, DMs are slightly smaller than SWDs, but 
there is substantial overlap between both populations. Using 
optical sensor recordings of the wingbeats, we aim to overcome 
the limitations that an in-field camera system would have, 
dealing with such small insects with similar appearance. As 
no reports were found on the discrimination of these highly 
similar inspect species from the Dropsophila genus based on 
their wingbeat signals, the aim of this study was to train and 
strictly validate CNN classifiers to discriminate wingbeat signals 
of the SWD pest from the DM as a stepstone towards automatic 
in-field pest monitoring.

MATERIALS AND METHODS

Insect Stock Culture
The D. suzukii culture used in the laboratory experiments 
originated from multiple collections of adults in a private 
garden (Gentbrugge, Belgium, 51°1.522′N, 3°46.093′E). The 
D. melanogaster culture was received from the “Expertise Unit 
on Educational Provision” (Faculty of Bioscience Engineering, 
KU Leuven, Belgium). The laboratory colonies were maintained 
in polystyrene Drosophila vials (Greiner Bio-One™ Insect 
Breeding Conical Container, 217,101) on a cornmeal-yeast-agar 
diet (42 g/l fresh yeast, Saccharomyces cerevisiae, Algist 
Bruggeman; 55 g/l white table sugar, Suikerraffinaderij Tienen; 
90 g/l crushed cornmeal, Aveve; 2 g/l Ethyl 4-hydroxybenzoate 
99%, Alfa Aesar; 9 g/l agar powder, VWR chemicals and 910 g/l 
tap water). The vials were stoppered using foam stoppers 
(Greiner Bio-One™ Ceaprenstop, diameter 36 mm, 330,070) 
and kept in a plant-growth chamber at 22 ± 1°C, 60 ± 11% RH, 
and a 16:8 l:D photoperiod.

Sensor Design
The wingbeat sensor consists of two main parts: (a) a sensing 
head and (b) a microelectronic device that handles how the 
signals are stored (Figure  1). The sensing head consists of 
two boards placed opposite to each other, which act as a light 
emitter and receiver, respectively. As an insect flies between 

the two boards, it occludes the emitted light with its body 
and wings. The light receiving board then records a pattern 
of varying light intensity values which constitutes the wingbeat 
signal in the time domain. The microelectronic device measures 
the Root Mean Square (RMS) value of the live signal and 
contains software that defines the sampling frequency, triggering 
and storing of wingbeat events (in an embedded SD card). 
For more details regarding the wingbeat sensor device we refer 
to Potamitis and Rigakis, 2015 and Kalfas et  al., 2021.

Experimental Setup and Data Collection
All wingbeat data were recorded in a laboratory or a climate 
room by placing an optoelectronic sensor inside spacious insectary 
cages where either D. melanogaster or D. suzukii insects were 
free to fly in (Figure  1). The same sensor device was placed in 
each insect cage sequentially for a period of 2–3 weeks (Figure 2) 
until sufficient data were collected for each population, considering 
that the number of valid signals would be  fewer than the total 
number of signals per population after our data cleaning process. 
We  reared two separate populations per Drosophila species (four 
insect populations in total) and tried to limit the number of 
insects in each population to around 200–300 individuals. We did 
not select insects based on their age or sex and new insects 
kept on hatching from larvae in the food media during the 
entire experiment. The vials with the food media were replaced 
once the food was depleted and no new eggs seemed to appear inside.

To collect a dataset of wingbeat signals under controlled 
conditions (Controlled dataset in Table  1), all insect cages 
were placed in a “climate room” to have stable environmental 
conditions. The average temperature in this room was 22 ± 0.6°C 
and the average relative humidity was 64 ± 5%. During this 
controlled experiment 99,154 wingbeat signals were recorded 
across all populations. False triggers and weak signals (with 
a noisy Power Spectral Density) were filtered out by employing 
a data cleaning procedure which is explained in “Selected Data 
Types and Data Cleaning.” The numbers of retained signals 
are summarized in Table  1.

A second set of wingbeat signals was compiled from data 
acquired in a different lab environment 6 months prior to the 
controlled dataset (Table 1). Data collection for this dataset lasted 
from late July until middle of October 2020, starting with the 
SWD class. The collection process of the DM class was initiated 
in August, but it was interrupted due to being provided with 
a non-flying variant of DMs. The process restarted late in September 
with a stock of wild DMs, but it was hindered by the environmental 
and room conditions at that time; hence the low numbers of 
DM wingbeat signals collected. Temperature and humidity were 
not controlled and varied according to the room environmental 
conditions, which were on average 23 ± 1°C and 55 ± 9% RH. After 
applying the higher mentioned filtering procedure, a total of 
22,744 wingbeat signals were retained in this dataset; 21,572 of 
those belong to the SWD class and 1,172 belong to the DM class.

Selected Data Types and Data Cleaning
The time profiles of the wingbeats collected by the optoelectronic 
sensor device were digitized using a sampling frequency of 
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8 kHz. According to the Nyquist-Shannon sampling theorem 
(Shannon, 1949), this value should be  sufficient to cover the 
main wingbeat frequencies of most insects, which were estimated 
to be < 1 kHz (Byrne et al., 1988), and their respective overtones 
in fine detail. The recorded signals consist of 5,000 light intensity 
measurements across 0.625 s. The intra-class variability for the 
two insects’ wingbeat signals is high due to the various flight 

patterns that insects perform while flying through the sensor, 
while the inter-class difference seems small in both time (see 
Figure  3) and frequency domains (see Figure  4).

The three data types that were analyzed and classified in 
this research are: (1) wingbeat time signals, (2) their frequency 
content, and (3) time-frequency content (see Figure  5). The 
frequency content of the wingbeat time signals was calculated 

FIGURE 1 | Photograph of the laboratory setup with two insect cages and the wingbeat sensor. The wingbeat sensor consists of a sensing head, a data transfer 
cable and a microelectronic device with an SD card storage.

FIGURE 2 | Histogram of the signal counts collected on each day for the whole length of the controlled environment experiment. The number of valid signals per 
Drosophila species and the data split (train or test) they belong to are shown in the legend.
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using the Welch power spectral density (PSD) method with 
a “Hanning” window (FFT size of 8,192 samples, segment 
length of 5,000 samples and 2,500 samples overlap). The 
spectrogram of the wingbeat time signals is calculated as the 
frequency-over-time representation (FFT size of 8,192 samples, 
hopping length of 5, window length of 600).

A strict data cleaning procedure was employed to remove 
weak signals or false triggers captured by the sensor. A 
preprocessing bandpass filter was first applied to all signals 
(“low-cutoff ”: 140 Hz, “high-cutoff ”: 1500 Hz). Then, two metrics 
were employed to evaluate the validity of wingbeat signals: 
(a) a “PSD-score” defined as the sum of a wingbeat signal’s 
L2-normalized PSD values and (b) the number of peaks detected 
in its PSD, measured in V2/Hz. The peaks were detected using 
Scipy-library’s “find_peaks” function (McKinney, 2010) with 
the following settings:

 • “prominence” = 0.001,
 • “height” = 0.04,
 • “width” = 1,
 • “distance” = 5.

A wingbeat signal was considered valid if its PSD-score 
was between 3.5 V2/Hz and 12  V2/Hz, and it had more than 
1 but fewer than 15 peaks in its PSD. These threshold choices 
for the two metrics were found to substantially reduce the 
number of weak or noisy signals without discarding too much 
data. In theory, a clean wingbeat signal PSD is expected to 

contain five peaks in total—one peak at the main wingbeat 
frequency (max<300 Hz; see Figure  4) and a single peak for 
each of the occurring harmonics. In practice, however, more 
peaks might occur in a high-resolution PSD (see Figure  6). 
Therefore, a ceiling of maximum 15 peaks is considered to 
be  a safe threshold to keep signals with three times more 
peaks in their PSD than the theoretically “cleanest” signal and 
remove noisier signals. Lowering this threshold did not have 
a significant impact on the resulting signals, so further 
optimization is possible, but its increase is not recommended. 
Examples of a valid D. melanogaster wingbeat signal and one 
that was rejected by the above procedure are shown in Figure 6. 
The bandpass-filtered wingbeat signals were then fed to the 
classification models as waveforms of 5,000 dimensions or as 
PSD and spectrogram transformations. Both the PSD and 
spectrogram data were converted to decibel (dB) scale and 
only the values within the preprocessing filter’s range (i.e., 140 
to 1,500 Hz; 1,360 dimensions) were retained. The spectrogram 
images were downscaled to 295 × 400 pixel dimensions, 
maintaining the same aspect ratio of the original spectrograms, 
while allowing computational efficiency during training.

Data Splitting and Performance Evaluation
The aim of this research was to design an experiment where 
it would be  possible to validate our trained models in a strict 
way and uncover their “true” performance in field conditions. 
To this end, we  used data from two different datasets. The 
“Controlled” dataset, where data was collected under controlled 
environmental conditions and a “Remote-Uncontrolled” dataset 
where environmental variables were not controlled, and the 
data acquisition was 6 months earlier than for the controlled 
dataset (Table  1).

It should be  noted that in our experimental setting a 
single insect can produce multiple similar signals within a 
population, because it can fly through the sensor multiple 
times while in the enclosure. When a random validation 
strategy would be  applied, these highly similar datapoints 
could end up in different data splits and lead to over-optimistic 
estimates for the model performance (Kalfas et  al., 2021). 

TABLE 1 | The number of signals for the two datasets used in this study 
(Controlled and Remote-Uncontrolled) and the data splits we applied.

Controlled dataset
Remote-uncontrolled 

dataset

Train and 
validation

Test Test

DM signals 12,992 12,115 1,172
SWD signals 16,857 13,560 21,572

FIGURE 3 | Illustrations of different wingbeat time signals of Drosophila suzukii and of Drosophila melanogaster.
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Using separate populations for training and testing, we aimed 
to tackle this problem and uncover the models’ “true” 
classification performance which would emerge in field 
conditions. Hence, for the controlled dataset we  created two 
separate insect populations for each of the two fruitfly species 
we  are classifying (Figure  2). For each insect species, the 
population with the higher number of samples was chosen 
for training our models (“A” groups; Figure  2) and the other 
is used for testing (“B” groups; Figure  2). The training set 
was further split into training and validation sets which 
consist of 80 and 20% of its randomly sampled data, respectively. 
This validation set was used for hyper-parameter tuning of 
the models during training and model checkpoint selection. 
The remote uncontrolled dataset, which contains different 
insect populations, was used as an additional, truly external 
test set.

To evaluate the classification performance, we calculated the 
balanced accuracy and F1-score metrics on the test sets. The 
balanced classification accuracy in this binary setting is defined 
as the average of the proportion of correct predictions of each 
class individually, or the average of recall obtained on each 
class (best value equals to 1 and worst value is 0). The recall 
is defined as:

 
recall

TP

TP FN
=

+
,

where TP is the number of true positives and FN the number 
of false negatives. To calculate the F1-score, we  first define 
precision as:

 
precision
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TP FP
=

+
,

where TP is the number of true positives and FP the number 
of false positives. Finally, the F1-score is defined as:

 

precision recall1 score 2
precision recall

∗
− = ∗

+
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which constitutes the harmonic mean between precision and 
recall. Time required to train or perform inference is measured 
and compared across models. For the latter, we take the average 
of five runs given a single batch of size 1. For the model 
with the highest classification performance, we  report its 
confusion matrix for the test sets derived from the Controlled 
and Remote-Uncontrolled datasets.

Model Architectures and Training
Custom and state-of-the-art models from literature were chosen 
to fit 3 different types of wingbeat data, i.e., wingbeat time 
signals, their frequency (PSD) and time-frequency representations 
(spectrograms). For the wingbeat time and frequency signals, 
two models were trained: a custom 8-layer CNN—which 
we  named “DrosophilaNet,” and a variation of the state-of-
the-art model for time-series and 1-dimensional data classification 
known as “InceptionTime”(Fawaz et al., 2019)—which we named 
“InceptionFly.” DrosophilaNet consists of 8 blocks of 
Convolutional (“type”: 1D-Convolution, “activation”: ReLU), 
Batch-Normalization and Max-Pooling layers (“window”: 2) 
that progressively create lower dimensional representations of 
the original data and feed their output to an Average Pooling, 
a Dropout layer (“drop rate”: 0.2) and a Linear classification 
layer (“activation”: Sigmoid) with 1 output unit. The number 
of filters in the convolutional layers increased in powers of 2, 
starting from 16  in the 1st block, to 2,048  in the 8th block, 
while the kernel size was fixed to a value of 3.

InceptionTime consists of residual blocks which in turn 
consist of multiple “inception modules” each. The residual 
blocks’ input is transferred via skip connections to be  added 
as input to the next block. Inception modules in each block 
reduce the input’s dimensionality using a bottleneck layer 
and then extract hierarchical features of multiple resolutions 
by applying convolution filters of various lengths in parallel. 
These features are pooled, convolved, batch-normalized and 
fed to a ReLU activation function. For our InceptionFly, 
we  used two residual blocks composed of three inception 
modules each. All inception modules had a fixed number 
of 32 convolutional filters using kernel sizes of: 6, 12, and 
24. The two residual blocks were followed by an Average 
Pooling layer and a Linear classification layer (“activation”: 
Sigmoid).

The spectrogram images were modeled with DenseNet121 
(Huang et  al., 2017), which is a popular CNN model for 
image classification tasks that was already tested and known 
to perform well in a similar task of classifying mosquito 
spectrogram images (Kalfas et  al., 2021), while ranking first 
among other popular CNN models in a different study 
(Fanioudakis and Potamitis, 2018). We  removed the top layer 
of DenseNet121 to replace it with a Linear fully-connected 
layer with 512 units (“activation”: ReLU), a Dropout layer (“drop 
rate”: 0.2) and a Linear classification layer (“activation”: Sigmoid) 
with 1 output unit. Its input layer dimensions were modified 

FIGURE 4 | Histograms of the main wingbeat frequencies and the first 
harmonics of D. melanogaster and D. suzukii wingbeat signals from the 
controlled dataset.
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to match our spectrogram data dimensions (295  × 400) and 
the rest of the model’s architecture remained intact. A summary 
of our data processing pipeline and an illustration of the model 
architectures used, are presented in Figure  7.

The training procedure for all neural network models was 
designed with the following settings:

 • Training epochs: 100.
 • Batch size: 32.
 • Loss: categorical cross-entropy.
 • Optimizer: Adam.

To help the neural networks to converge faster and reach 
high classification rates we used Cyclical Learning Rates (CLR; 
Smith, 2017) with the following settings for the CLR scheduler:

 • Base learning rate: 0.0001.
 • Max learning rate: 0.01.

 • Cycle momentum: False.
 • Mode: triangular.

The training procedure was allowed to run for 100 epochs 
while saving a model checkpoint (with the model’s parameters) 
in each epoch. In the end, we  selected the model checkpoint 
that showed the maximum validation accuracy. This accuracy 
is different from the balanced accuracy score we  report on 
the model performance and is defined as the set of labels 
predicted by the model for each training datapoint, that exactly 
match the corresponding ground truth labels.

All models output a single probability score, ranging from 
0 to 1, based on the Sigmoid activation of their last Linear 
classification layer. Probability scores below 0.5 are mapped 
to DM predictions, while scores greater or equal to 0.5 indicate 
a SWD prediction. Thus, in this binary classification setting 
the DM is considered the “negative class” and SWD the “positive 
class.” We  fine-tuned the selected models’ decision thresholds 

A

B C

FIGURE 5 | Illustration of the selected datatypes used in this study for a D. suzukii signal: (A) the wingbeat signal, (B) its power spectral density, and (C) its 
spectrogram.
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by choosing the threshold that maximized the respective model’s 
balanced accuracy score on the validation data (Fernández 
et  al., 2018).

While training our models we  experimented with custom 
data-augmentation techniques to increase model robustness 
and guide the neural networks in learning the important 
distinguishing features of the input data. Since all analyses 
begin with the wingbeat time signals—which are either modeled 
directly or transformed into frequency (PSD) or time-frequency 
(spectrogram) representations—we designed data transformations 
that might be  applied on them as an “online” pre-processing 
step. First, a “Random-Roll” operation was applied that shifts 
the raw signal forwards or backwards in time by a number 
(of samples) randomly chosen from a range between 500 
(0.0625 s) and 4,500 (0.5625 s). The part of the time signal 
that goes out of the original length because of shifting forwards 
(or backwards) is attached at the beginning (or the end) of 
the time signal. This augmentation technique helps in producing 
signals for various insect flights. Second, a “Random-Flip” 
operation was applied which mirrors the signal in the time 
dimension and third a “Random-Noise” operation was applied 
which adds Gaussian noise in a randomly selected part of the 
signal, which acts like signal “time masking” (Bouteillon, 2019). 
Each of the above operations had a 50% chance to be  applied 
to any given input signal during training. As these 50% changes 
were applied independently, combinations of these operations 
were also possible.

All experimental scripts to train, evaluate and visualize our 
results were written in Python3, using the Pytorch library 

(version 1.8.1), Scikit-learn (version 0.24.1), and other scientific 
computing libraries (McKinney, 2010; Oliphant, 2010; Pedregosa 
et  al., 2011; Mcfee et  al., 2015). The code was executed on a 
single GPU (Nvidia RTX 5000; 16 GB RAM) laptop computer.

RESULTS AND DISCUSSION

Wingbeat Signals
As illustrated in Figure  4, the main wingbeat frequencies and 
the first harmonics of SWD and DM overlap. This makes it 
difficult to use these features for efficiently classifying between 
SWD and DM (Chen et  al., 2014; Genoud et  al., 2018). There 
is also no clear distinction between the two sexes of either 
insect species in terms of their wingbeat frequencies. This is 
not unexpected since visually, the sexes of both Drosophila 
species are very similar. Having a highly similar wing and 
body shape is expected to result in highly similar wingbeat 
recordings, which is confirmed by the wingbeat time signals 
for SWD and DM in Figure 3. Sex and age have been reported 
to influence the wingbeat recordings (Chen et al., 2014; Genoud 
et  al., 2018). However, such information was not included in 
this study as for each Drosophila species both male and female 
flies of varying age were placed in the cages with the optical 
sensor, as would be  the case in the field.

Our data cleaning procedure retained 55,524 valid wingbeat 
signals in the controlled dataset. Out of those, 29,849 were 
used for training and validation (SWD: n = 16,857; DM: 
n = 12,992), and the remaining 25,675 signals formed the test 

FIGURE 6 | Illustration of a “valid” and “invalid” D. melanogaster wingbeat signal and their respective PSD’s.
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set (SWD: n = 13,560; DM: n = 12,115). For the remote 
uncontrolled dataset, the data cleaning procedure retained 
22,744 valid wingbeat signals. Out of those, 21,572 belonged 
to SWD and 1,172 to the DM class. The low number of DM 
wingbeat signals in the Remote-Uncontrolled dataset can 
be  attributed to unfavorable external conditions during this 
experiment. The experimental setup was in the same room as 
other machinery that raised the temperature and dried up the 
air during the morning hours of the same time period. This 
motivated us to use climate chambers for the collection of 
the Controlled dataset. Notably, the data acquired from the 
DM cages contained a considerably higher number of invalid 
signals compared to the SWD data. This may partly be attributed 
to the higher activity levels of DMs that lead to falsely triggering 
the sensor more often, e.g., by crawling on the sensor head. 
SWD insect population sizes seemed more stable throughout 
the length of the experiment, in contrast to DM populations 
which seemed to fluctuate.

Classifier Performance
The performance of all classifiers is summarized in Table  2. 
Their precision-recall curves for both datasets are shown in 
Figure  8. The best performing model was InceptionFly with 
wingbeat time signals. Trained with the Controlled dataset, it 

classifies wingbeat signals from the Controlled test set with a 
balanced accuracy score of 92.1% and F1-score of 0.93. 
DrosophilaNet performed similarly with a balanced accuracy 
of 91% and F1-score of 0.92. Using either InceptionFly or 
DrosophilaNet with PSD input data provided inferior 
classification results with balanced accuracies of 78.7 and 81.8%, 
and F1-scores of 0.67 and 0.84, respectively. Densenet121 trained 
with spectrograms provided a balanced accuracy of 87% and 
F1-score of 0.80  in the Controlled test set. This is in line with 
our previous work, where “InceptionTime” outperformed all 
other models on either wingbeat time signals, frequency signals 
or time-frequency signals (Fawaz et  al., 2019; Kalfas et  al., 
2021). However, in this study, we  found that DrosophilaNet 
had similar performance while being faster to train and perform 
inference with, compared to InceptionFly. In Table  2 and 
Figure  8, we  note that DrosophilaTime is more capable to 
model PSD data in both datasets, while it trains and performs 
inference on it faster, too. In Figure 9, the training and validation 
accuracy curves are plotted for the top two models in classification 
performance – InceptionFly and DrosophilaNet trained with 
wingbeat time signals. Despite InceptionFly reaching a higher 
validation accuracy, DrosophilaNet converges faster in the 
training set, while showing signs of high validation accuracies 
from the 10th epoch onwards. This makes it a good candidate 
for being deployed in the field where fast training and inference 

FIGURE 7 | Diagram of the data processing and modeling procedures including an illustration of the optical wingbeat sensor and the model architectures used in 
this study. For more information on the “Dense Block” and “Transition Block” layers, see Huang et al. (2017).
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are critical. However, it could be  interesting to investigate 
simpler variants of InceptionFly—fewer filters or smaller kernel 
sizes – that could improve its training and inference 
time performance.

The Remote-Uncontrolled dataset was used as an additional 
test set to evaluate our models’ robustness. In Figure  10, the 
best model’s confusion matrix and classification performance 
using wingbeat time signals on this dataset are illustrated. 
Data belonging to this dataset were collected months in advance, 
in different environmental conditions – which were expected 
to be  closer to in-field conditions, and from different insect 
populations compared to those included in the training set. 
Still, InceptionFly trained on the Controlled dataset was able 
to classify wingbeat time signals in this Remote-Uncontrolled 
dataset with a balanced accuracy score of 91.6% and F1-score 
of 0.96. DrosophilaNet was again a close second with a balanced 
accuracy of 91% and a slightly higher F1-score of 0.97.

The two classification performance metrics used in this 
study—balanced accuracy and F1-score—are both reliable metrics 

for binary classification problems, but they are not equally 
sensitive to how the model performs on both classes. The 
F1-score is more sensitive to a model’s performance in the 
positive class (SWD), while balanced accuracy equally considers 
both classes (SWD and DM) when evaluating model performance. 
This means that a higher F1-score is expected when a model 
accurately classifies many SWD signals regardless of making 
more mistakes in the DM predictions. On the other hand, 
the balanced accuracy metric assigns equal weight to SWD 
and DM mistakes. This explains the high F1-scores for the 
class-imbalanced Remote-Uncontrolled dataset. From a pest 
monitoring perspective, one could argue that it is more important 
to classify SWD correctly, but a robust model should also 
be  sensitive to the DM classification performance for both the 
Controlled and Remote-Uncontrolled dataset. Therefore, 
we  report both metrics.

Models trained on wingbeat time signals outperformed 
models using either PSD or spectrograms as input on both 
datasets. This suggests that important information for classifying 

TABLE 2 | Model performance for selected data types on the two test datasets (controlled and remote-uncontrolled).

Input Model
Decision 
threshold

Total training 
time

Inference time Controlled dataset Remote-uncontrolled dataset

Balanced 
accuracy

F1-score Balanced 
accuracy

F1-score

PSD (1360 × 1) DrosophilaNet 0.694 31 min 4 ms 81.8% 0.84 83% 0.90
InceptionFly 0.674 1.25 h 5.5 ms 78.7% 0.67 79.5% 0.86

Wingbeat signal (5000×1) DrosophilaNet 0.744 53 min 4.8 ms 91% 0.92 91% 0.97
InceptionFly 0.737 3.3 h 7.8 ms 92.1% 0.93 91.6% 0.96

Spectrogram (295×400) DenseNet121 0.646 36.6 h 29.8 ms 87% 0.80 88.1% 0.95

Classification performance is measured using the balanced accuracy and F1-score. The models’ fine-tuned decision thresholds are reported along with the total training time 
(measured in minutes or hours) and the inference time which was estimated for a batch size of 1, by taking the mean inference time of five runs for each model (measured in 
milliseconds). The best score for each performance metric is shown in bold.

FIGURE 8 | Precision-recall curves for all models for the controlled and remote-uncontrolled datasets.
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the wingbeats of these two highly similar insect species is 
present in the time dimension. It is hypothesized that micro-
movements of the insects’ wings are captured by the artificial 
neurons of InceptionFly or DrosophilaNet, which helps them 
classify wingbeats more accurately. This information is likely 
averaged out in the PSD and spectrograms. Higher resolution 
spectrograms could lead to better classification results, but 
that would create higher computational costs with even longer 
training and inference times. Besides, DenseNet121 was already 

the slowest among all models requiring 36.6 h to train and 
29.8 ms to perform inference on a single datapoint, which 
is, respectively, 12 and 4 times longer than for the best 
performing model InceptionFly (see Table  2).

Towards Deployment in the Field
To obtain more insight in the cases were the algorithms resulted 
in misclassifications, we  analyzed the temperature, relative 

FIGURE 9 | Training and Validation accuracy curves for the top two performing models: InceptionFly and DrosophilaTime.

FIGURE 10 | Confusion matrix for InceptionFly trained with wingbeat time signals for our two datasets.
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humidity and timestamp of all misclassified wingbeat recordings. 
However, no clear correlations were found between these 
parameters and the models’ classification performance. To obtain 
a better understanding of where the model fails and in what 
aspects the wingbeat patterns of the two species differ, it is 
recommended to investigate the role of the sampling frequency 
on classification performance of deep CNNs and to focus on 
the models’ explainability.

The results reported here were obtained without applying 
any of the aforementioned data augmentation techniques 
since no significant performance change was noted when 
using these. Similar classification results were reached with 
all different data types used in this research when employing 
one or a combination of all considered data augmentation 
techniques. Data augmentation is expected to have a stronger 
effect when used with much smaller amounts of data since 
it would help to capture all different variations of the input 
data that would remain unseen given less data. An interesting 
follow-up study could help to identify the classification 
performance of wingbeat models and the effect of data 
augmentation starting from few data and increasingly adding 
more. The non-deterministic nature of neural networks would 
need to be  taken into account when performing such 
experiments, since slight performance changes are expected 
after every training procedure.

The confusion matrix for InceptionFly trained with 
wingbeat time signals indicates a strong classification ability 
for this model (Figure  10). InceptionFly seemed to perform 
better for the SWD class compared to the DM class, since 
for the Controlled test set, only 4% of all SWD samples 
were misclassified as DM compared to 13% for the DM 
samples. For the Remote-Uncontrolled test set the 
misclassification rates were more balanced with 7 and 9%, 
respectively. The in-field performance of InceptionFly is 
expected to be  close to its performance on the Remote-
Uncontrolled dataset, but some challenges are expected still 
due to variation in the wingbeat frequencies in response 
to variable environmental conditions (Unwin and Corbet, 
1984). Therefore, special attention needs to be  given to 
performance monitoring and error analysis when the model 
is deployed in the field, especially for signals collected in 
extreme environmental conditions that were not covered in 
our two datasets.

CONCLUSION

Fruit production is increasingly challenged by the D. suzukii 
fruitfly which lays its eggs in healthy ripening fruits rather 
than damaged or overripe ones. Fruit growers demand automatic 
monitoring tools to efficiently protect fruit crops against this 
pest. To this end, we  combined an optical wingbeat sensor 
with convolutional neural networks and evaluate the possibility 
to discriminate the wingbeat signals acquired for Drosophila 
suzukii and D. melanogaster fruitflies. To our knowledge, no 
other studies have previously built classification models for 
these two common pests. All models used in this work were 

validated in a strict way to uncover the “true” classification 
performance that can be  expected in field conditions. A first 
validation involved classification of wingbeat signals collected 
in different enclosures under the same environmental conditions. 
Our best performing model, InceptionFly trained with wingbeat 
time signals was able to discriminate these wingbeat signals 
with an accuracy of 92.1%. Next, the model was also validated 
on wingbeat signals that had been collected independently 
under more variable environmental conditions. This validation 
was also successful with an accuracy of 91.7%. This shows 
that this model is sufficiently robust to be  embedded in an 
automatic insect monitoring system that will operate in field 
conditions to provide accurate estimates of D. suzukii and 
D. melanogaster pest presence.
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There has been substantial research that has achieved significant advancements in plant
disease detection based on deep object detection models. However, with unknown
diseases, it is difficult to find a practical solution for plant disease detection. This study
proposes a simple but effective strawberry disease detection scheme with unknown
diseases that can provide applicable performance in the real field. In the proposed
scheme, the known strawberry diseases are detected with deep metric learning (DML)-
based classifiers along with the unknown diseases that have certain symptoms. The
pipeline of our proposed scheme consists of two stages: the first is object detection
with known disease classes, while the second is a DML-based post-filtering stage. The
second stage has two different types of classifiers: one is softmax classifiers that are
only for known diseases and the K-nearest neighbor (K-NN) classifier for both known
and unknown diseases. In the training of the first stage and the DML-based softmax
classifier, we only use the known samples of the strawberry disease. Then, we include
the known (a priori) and the known unknown training samples to construct the K-NN
classifier. The final decisions regarding known diseases are made from the combined
results of the two classifiers, while unknowns are detected from the K-NN classifier. The
experimental results show that the DML-based post-filter is effective at improving the
performance of known disease detection in terms of mAP. Furthermore, the separate
DML-based K-NN classifier provides high recall and precision for known and unknown
diseases and achieve 97.8% accuracy, meaning it could be exploited as a Region of
Interest (ROI) classifier. For the real field data, the proposed scheme achieves a high
mAP of 93.7% to detect known classes of strawberry disease, and it also achieves
reasonable results for unknowns. This implies that the proposed scheme can be applied
to identify disease-like symptoms caused by real known and unknown diseases or
disorders for any kind of plant.

Keywords: deep metric learning, unknown disease detection, strawberry disease detection, K-nearest neighbor,
open set recognition
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INTRODUCTION

There has been much research into plant disease detection
based on the deep object detection technique, and substantial
advancements have been achieved in this field (Zhao et al.,
2019). The object detection models for plant diseases have been
developed in two directions: One is for better precision (Ren
et al., 2015; Lin et al., 2017b; Tan et al., 2020) while the other
is for faster response (Redmon and Farhadi, 2018; Zhang et al.,
2018; Bochkovskiy et al., 2020). There are now many off-the-
shelf object detection models that can be chosen for plant disease
detection for a specific purpose (Xiao et al., 2021; Dananjayan
et al., 2022).

In constructing a plant disease detector, researchers collect
samples of known diseases and then successfully train a selected
object detection model using these samples. However, there may
be disease-like symptoms in the inference process that are not
actually from the known diseases. One of the confidence levels
for the predefined disease classes might be maximum but with a
low value, which means that it can produce false detection, or just
miss detection according to the detection threshold. To reduce
the false detection rate, the detection threshold can be increased,
but the real disease with obscure symptoms might be missed. This
is an undesirable situation that leads to a large number of either
false or missed detections depending on the detection threshold.

Open-set detection (Bastan et al., 2019; Fehérvári and
Appalaraju, 2019; Mahdavi and Carvalho, 2021) could solve this
problem, as it discerns the unknown diseases as they are in
the inference process, although only known diseases are taken
care of in the training process. Unfortunately, the technology
is not yet mature enough to be practically utilized for fine-
grained plant disease detection. The state-of-the-art performance
is not that good, even for coarse-grained tasks of distinct objects
that look different.

Another alternative method is the post-filtering approach
that effectively reduces the erroneous detections involved in the
detection process. Many post-filtering schemes can be chosen, but
we selected DML-based classifiers (Li and Tian, 2018; Kaya and
Bilge, 2019) to be used for known and known unknown diseases.
DML produces the feature space in which each cluster of the
class becomes compact by reducing the intra-cluster distances
and increasing the inter-cluster distances.

Our proposed scheme is similar to the object detection
of plant disease followed by simple post-filtering, but the
prepared unknown samples are used to classify ambiguous
samples into an unknown category. The post-filtering stage
has two different types of classifiers: softmax classifiers for
only known diseases and the K-NN classifier for known and
unknown diseases. In training the first stage of the object
detection model and the DML-based softmax classifier, we
only used known samples of the strawberry disease. Then, the
known unknown training samples are included to construct
the K-NN classifier. The final decisions for known diseases
are made based on the combined results of the two classifiers,
while unknowns are detected solely from the K-NN classifier.
Table 1 summarizes the data type used to train the building
blocks and their decisions in the inference process of our

proposed scheme. Note that the DML-based post-filter can be
used as a separate ROI classifier if the disease-like symptoms
are manually annotated, as opposed to the automatic detection
in the first stage. Therefore, the technology in our scheme
can be exploited for both the detection and classification
of plant diseases.

In the experiment, we adapt Faster R-CNN with Feature
Pyramidal Network (FPN) for the object detection model
and margin triplet loss for DML. To verify our scheme, we
constructed a strawberry disease dataset and used it for the
experiment. The contributions of this study can be summarized
as follows:

(1) This study proposes a practical solution for detecting
known and partly known unknown plant diseases
that provide good detection performance. It achieves
approximately 93.7% of mAP to known classes of
strawberry disease, and it also achieves reasonable results
for unknowns of real field data.

(2) The proposed scheme consists of two stages: the object
detection stage and the DML-based post-filter stage. The
object detection model can be freely chosen according to
the design requirement because it can be separated from
the following DML-based post-filter. In addition, the DML-
based post-filter can be separated from the first stage, and it
can also be exploited for the ROI-based classifier of known
and unknown diseases. The separate DML-based K-NN
classifier provides high recall and precision for both known
and known unknown diseases.

RELATED WORKS

The proposed scheme consists of two consecutive stages of
an object detection model, followed by add-on post-filtering.
This section reviews the related works to our scheme, which
include object detection for monitoring plant disease, DML
to separate clusters of classes, and K-NN classifier for known
unknown detection.

Object Detection Models for Plant
Disease Monitoring
As mentioned previously, various object detection models are
available for plant disease monitoring. They have been developed
to achieve two objectives: better accuracy and higher speed. Faster
R-CNN (Ren et al., 2015; Lin et al., 2017b) is a 2-stage model
that is relatively slow but accurate. On the other hand, the YOLO
family and SSD (Zhang et al., 2018) start from a single stage with
detection performance that is fast but less accurate. However,
there have been continuous developments aiming for better
accuracy while sacrificing speed. For example, the recent version
of the YOLO family (Redmon et al., 2016; Redmon and Farhadi,
2017, 2018; Bochkovskiy et al., 2020) provides many design
options according to different requirements. Moreover, a recent
transformer model (Carion et al., 2020) for object detection
has been announced, and it is ready to be further developed
to compete with Convolutional Neural Network (CNN)-based
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models. In addition, diverse models have been developed to meet
the needs of various applications, even if there are few application
examples for plant disease detection (Lin et al., 2017a; Tan et al.,
2020).

For plant disease detection, a model with better speed could
be required, such as light YOLO v.5. A mobile robot can capture
plant images in a greenhouse, and the board embedded in the
robot can help automatically identify disease symptoms in the
field. On the other hand, the captured images can be transmitted
to a remote cloud site of a high-performance computing facility to
be precisely scrutinized using an accurate but slow model. In this
situation, Faster R-CNN or its variants, such as cascaded Faster
R-CNN, would be a better choice. Note that the classification
approach for monitoring diseases is hard to automatize (Kim
et al., 2021); this is because the image-containing symptoms of
the disease should be manually located to take pictures and then
fed into the classification-based monitoring system. However, it is
still an important way to identify known and unknown diseases
or disorders. Kim et al. (2021) and Liu and Wang (2021) provide
excellent reviews of deep learning-based disease detection and
classification models.

Post-filtering and Deep Metric Learning
The post-filtering approach is a practical way to improve
detection accuracy, and it can be added to plant disease detection.
Because the additional post-filter can reduce false detections,
the confidence threshold of the detection stage can typically be
lowered to increase the recall, even if that increases the number
of false detections. Fuentes et al. (2020) adapted the idea to
their one-versus-all post-filtering approach in tomato disease
detection, while Kim et al. (2021) shared a similar idea in their
cascaded Faster R-CNN for strawberry disease detection.

In this study, we propose the use of DML to build a
low-dimensional feature space of known disease classes, where
the clusters are well separated, by increasing the inter-cluster
distances while reducing the intra-cluster distance (Kaya and
Bilge, 2019). Furthermore, Ji et al. (2021) proposed a framework
in which the features are learned by a deep learning feature
extractor and WDM-tSNE is applied to accurately cluster the
feature space of plant disease. In general, metric learning is done
to obtain a proper metric for classifying objects, which captures
a mapping function from visual objects to a low-dimensional
embedded feature space with respect to a predefined distance
metric, such as Euclidian or L1 distance. There are two different

metric learning structures with different losses: one is the Siamese
structure that uses contrastive loss (Chopra et al., 2005) and
the other is the triplet structure with triplet loss (Schroff et al.,
2015). Janarthan et al. (2020) have adapted the former structure
to citrus disease classification. In our scheme, we choose the
latter triplet structure. The essence of the DML in our scheme
is to obtain a mapping that will separate clusters of known
classes well in the feature space to make sufficient room for the
known unknown diseases. Better classification performance for
known diseases can be obtained by applying the softmax classifier
to the embedded features from the metric learning. However,
for the unknowns, we used the K-NN classifier based on the
DML-embedded features that could be lost or falsely detected
when only the object detection is applied. Although the object
classifier after the object detection produces better performance,
it is difficult to include the known unknowns, because there could
be a huge set of unknown unknowns that are only experienced in
the inference process. In other words, previous methods could
not well expect the unknown unknowns in the training process.

Open World Setting for Unknown
Disease Recognition
Significant progress has been made with machine intelligence,
which is another technique for continual and life-long learning
for open-world recognition, even if it is premature for practical
applications, especially fine-grained tasks (Schlachter et al.,
2019a,b, 2020; Geng et al., 2020). In the most general problem
settings of the open world, no type of unknown can be
contained in the training dataset, that is, it only appears in the
test environment. Joseph et al. (2021) identify the open-world
detection problem in 3-dimensional space, where one axis is
the direction of increasing problem difficulty, one axis is the
direction of open-set learning, and the last axis is incremental
learning. In terms of the first axis of problem difficulty, open-set
identification is more difficult than classification alone. However,
if there is no prior assumption of unknowns, as is the case in
the traditional open-set recognition problem setting, then the
resulting state-of-the-art classification performance is not that
good. For example, the state-of-the-art performance for easy
MNIST, SVHN, and CIFAR-10 dataset exceeds 90%, but for
difficult CUB and ImageNet dataset does not reach 90% in terms
of AUROC (Vaze et al., 2021). In open object detection, which
is a much harder problem than classification, the technology is
far from being practically applicable for difficult plant disease

TABLE 1 | Proposed data type scheme for known and unknown disease detection.

Type of disease data First object detection stage Second stage DML-based post-filter

Softmax K-NN Combined**

Training Known Used Used Used Not used

Unknown Not used Not used Used Not used

Inference Known Detected Classified Classified Classified

Unknown Possibly detected* Not classified Classified Not classified

*Disease-like symptom can be detected in the first object detection model, but it is determined by the K-NN classifier.**This stands for the final decision of the combined
softmax and K-NN classifiers for known disease.
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detection. Because incremental learning (Parisi et al., 2019) for
continual and life-long learning (Parisi et al., 2019) is beyond the
scope of our work, it is not reviewed in this article, although it is
related to open-set recognition.

In this article, we release the constraints on the rigorous open-
set problem setting. For example, we do not know the name of the
disease for samples, but they certainly exhibit similar disease-like
symptoms that may have originated from diseases or disorders.
Compared to the samples of major diseases, such samples look
diverse and the frequency of similar objects is rare. One point
that we want to emphasize is that the classifier performance
of the closed set data is positively correlated with that of the
open-set data (Parisi et al., 2019). In our scheme, DML tries
to make a better classifier for the closed disease dataset while
simultaneously leaving large empty room to locate unknowns.

METHODS

Figure 1 shows a schema of the proposed scheme. Our scheme
is divided into two stages: the object detection module and the
deep metric learning module. In the training, the object detection
module can be trained with known disease samples to find as
many potential known disease positions with the object classifier
as possible. Then, the feature embedding of the post-filter is
trained by DML to separate the clusters of known classes well.
In the deep metric learning module, we cannot consider the
unknown disease-like samples, so the training of the post-filter
is identical to that of the conventional method of object detection
and its refinement. Note that we enlarged the bounding boxes of
the object detection results and sent for post-filter training; this
is done to allow for dislocation of the object detection results
and to include more context information around disease. Then,
the embedded features of bounding boxes of known diseases are
extracted from the DML-learned network to build the softmax
classifier. Once the DML-learned network and softmax classifier
training is finished, the weight is frozen and DML-embedded
features from known and known unknown samples are used to
build the K-NN classifier.

In the inference process, known and unknown disease samples
are fed into the trained object detector. Then, the extended
bounding box around the symptom is given to extract DML-
trained features to be categorized by the softmax and K-NN
classifiers. In this study, the softmax classifier is only concerned
with known diseases, while the K-NN classifier deals with
both known diseases and unknowns. The overall classification
category of known diseases can be made by the combined
decision of softmax and K-NN classifiers.

Object Detection Model
As described in the previous section, there have been diverse
object detection technologies for plant disease monitoring. In
our scheme, we choose FPN-Based Faster R-CNN for accurate
detection. According to the open-set object detection, it provides
the best accuracy based on standard protocol (Dhamija et al.,
2020). Note that our scheme cannot detect unknown unknowns,
because these are inevitably ignored in the training of the building

blocks of our scheme. The object classifier in the object detection
module distinguishes the known diseases from the background
and produces the classification probability for knowns. Figure 2
shows the conventional FPN-Based Faster R-CNN, which can
detect various sizes of objects due to the exploitation of the
pyramidal feature structure (Lin et al., 2017b). In this study,
we want to emphasize that a low detection threshold would be
better so as not to ignore the disease-like symptoms that are
from unknown diseases or disorders. The size of the input image
was 224 × 224 pixels to fit the CNN backbone. The number
of diseases in the object detection stage was eight, including an
angular leafspot, anthracnose (fruit rot, runner), blossom blight,
gray mold (fruit), leaf spot, and powdery mildew (fruit, leaf).
Note that some diseases show symptoms at different parts, and
these are treated as different categories, because the part images
are quite different.

Deep Metric Learning for Embedded
Features
Our scheme chooses the ResNet50 network with margin triplet
and cross-entropy losses for DML. The embedded features are
used to refine the softmax classifier. In general, there are many
false detections of normal leaf, fruit, flower, and runner as one
of the diseases in the first stage of object detection. In our post-
filter, each one is also treated as a separate class for training DML.
The false detection of normal parts as diseases can be corrected
in the DML-based classifiers. Therefore, we have considered 12
known classes in the DML-learning (eight known diseases and
four normal parts).

There are two losses involved in the DML of margin triplet
loss for embedded features and cross-entropy loss for the softmax
classifier. The margin triplet loss is defined as Schroff et al. (2015):

Ltuplet = max {d(f (xa), f (xp)) −

d(f (xa), f (xn)) + margin}, 0) (1)

where,
d(xi, xj) =

xi · xj
max(||xi||2 ·

∣∣∣∣ xj∣∣∣∣2 , ε)
(2)

In Eq. (1), f (xa), f (xp), and f (xn), respectively, represent the
features of anchor, positive, and negative image samples after
mapping f (), from the network in Figure 3. Here, d() is the
Euclidian distance. The value of the margin was set to 0.01,
and εwas 1e−8, which is a very small value to avoid dividing by
zero. The cross-entropy loss is

Lce =
1
N

N∑
n = 1

log

(
exp

(
f (xn)

)∑C
c= 1 exp(f (xc))

)
(3)

where N spans the size of the batch and C is the
number of classes.

Figure 3 presents the training of the DML with the softmax
classifier in our scheme. The size of the input image is 256 × 256
to meet the requirements of the first CNN layer of the shared
network to obtain a proper mapping in Figure 3. Note that
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FIGURE 1 | Structure of overall scheme for inference.

FIGURE 2 | Feature pyramidal network (FPN)-based Faster R-Convolutional Neural Network (CNN) for potential disease detection.

FIGURE 3 | Triplet network and loss with softmax classifier.

the extended bounding boxes from the object detection step
are normalized to a uniform size. During the training, the
feature extractor tries to minimize the margin triplet loss,

which minimizes the Euclidian distance between a pair of
the anchor and positive image, and maximizes the Euclidean
distance between a pair of anchor and negative image, after
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FIGURE 4 | K-nearest neighbor (K-NN) classifier to categorize the disease classes with unknowns.

trainable mapping in ResNet50. In actuality, the same triplet
networks sharing the weight parameters are simultaneously
learned. Finally, the dimension of the embedded features that are
used for the softmax classifier, and later the K-NN classifier is
256. We followed the method in Schroff et al. (2015) to sample
semi-hard triplets to train the network. The semi-hard samples
are the subset of all triplet samples, in which the distance between
negative and anchor is further from the positive and anchor,
||f (xai ) − f (xpi )||

2
2 < ||f (xai ) − f (xni )||

2
2. This is a crucial step

to speed up training and ensure the network convergence.

K-Nearest Neighbor (K-NN) Classifier for
Categorizing the Diseases With Known
Unknown Samples
In the second stage of our scheme, the K-NN classifier (Schroff
et al., 2015) is built as a lazy learner. Here, the reference data
includes known and known unknown samples with normal
parts for the K-NN classifier. As a result, the number of
classes in the K-NN classifier is 13, consisting of eight known
diseases, four normal parts, and the class for known unknowns.
In the experiment, we set K = 13 and chose a class randomly when
the tie happens on multiple majority classes. Figure 4 shows how
the images are mapped into 256-dimensional embedded features
and how to decide one of the class labels including unknowns in
the K-NN classifier.

Note that there are duplicate classifiers in our scheme; one is
from the softmax classifier and the other is the K-NN classifier.
They both exploit DML-embedded 256-dimensional feature, but
the softmax classifier does not take care of unknowns. As a result,
there are 12 categories for the softmax classifier and one more
unknown category for the K-NN classifier. There is no specific
reason to make a different number of categories except for the fact
that the softmax classifier is solely focused on known diseases to
measure its performance in terms of average precision (AP) and
mean AP (mAP), while the K-NN classifier considers both the
known and unknown diseases.

The final classification of the known diseases and normal
parts can be obtained by combining the two different decisions:
one from the softmax classifier and the other from the
K-NN classifier. There are typically no probabilities from the

TABLE 2 | Number of bounding boxes for the training and testing of
disease objects.

Name First stage Second stage

Bounding boxes Extended bounding boxes

Training Test Training (Aug) Test

Angular leafspot 818 265 6,162 265

Anthracnose (fruit rot) 188 57 1,424 57

Anthracnose (runner) 237 166 30,897 166

Blossom blight 1,906 265 18,182 265

Gray mold (fruit) 1,468 224 13,069 224

Leaf spot 2,353 497 14,627 497

Powdery mildew (fruit) 405 161 2,626 161

Powdery mildew (leaf) 1,764 371 14,313 371

Normal (flower) – 967 92

Normal (fruit) – 1,842 104

Normal (leaf) – 10,984 1,066

Normal (runner) – 31,191 452

Unknowns – 3,830* 862

Total 9,139 2,006 150,114 4,582

*Second stage unknown training data prepared for lazy classifier K-NN to find the
unknown, which is unseen while training the feature extractor (ResNet).

K-NN classifier, but we define the probability of the j-th
class as:

pK−NNj =
the number of nearest neighbors in class j

K
(4)

for j ∈ {1, 2, . . . ,C} (5)

In the experiment, C = 12 without the unknown class. The
probability can be combined with that from the softmax output to
make the final decision. We simply multiply the two probabilities
and take the class that has the maximum value, as in Eq. (5):

class label = arg max
{
pK−NNj × psoftmax

j

}
(6)

where psoftmax
j denotes the output probability of the softmax

classifier. Therefore, the final decision rules for known diseases
and unknowns can be summarized as follows:
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FIGURE 5 | Sample images for training disease detection.

FIGURE 6 | Sample images of normal leaf, fruit, flower, and runner, with unknowns.

Rules

1) If the K-NN classifier decides the image sample is
unknown, it is an unknown disease.
2) Otherwise, refer to Eq. (5) to decide the proper class
and probability among known. classes.

EXPERIMENTAL RESULTS

Dataset for Experiment
For the experiments, an image dataset of strawberry diseases is
constructed from the images taken by cellular phones in many
greenhouses. The total number of images in the dataset is 7,230,

and angular leafspot, anthracnose (fruit rot, runner), blossom
blight, gray mold (fruit), leaf spot, and powdery mildew (fruit,
leaf) disease images are included with normal images of flower,
fruit, leaf, and runner. The disease images were taken by a
cellular phone without any additional treatment to provide a
more realistic appearance.

Training Feature Pyramidal Network
(FPN)-Based Faster R-Convolutional
Neural Network (CNN) Object Detector
for Disease Monitoring
For the training, the diseases and their bounding boxes enclosing
the symptoms were annotated. The number of bounding
boxes for each disease used for training and testing are,
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TABLE 3 | Final results of known disease detection for the test data.

Name AP

Faster
R-CNN

+ Softmax
classifier

+ Comb.
w. K-NN
classifier

Angular leafspot 0.853 0.923 0.922

Anthracnose (fruit rot) 0.977 0.992 0.991

Anthracnose (runner) 0.865 0.885 0.883

Blossom blight 0.985 0.983 0.986

Gray mold (fruit) 0.881 0.905 0.904

Leaf spot 0.932 0.940 0.944

Powdery mildew (fruit) 0.924 0.958 0.956

Powdery mildew (leaf) 0.830 0.822 0.844

mAP 0.906 0.926 0.928

respectively, listed in columns 1 and 2 of Table 2. Note that
we strictly split the set of images into training and testing
sets with a ratio of 4:1 (5423:1807). Table 2 only counts
the number of bounding boxes. There may be more than
one bounding box in an image. During the training, the
online augmentation technique is applied to avoid overfitting
by taking geometric transforms of horizontal/vertical flips and
resizing, color jittering, blurring, and mosaicking. The total
number of disease categories in this disease detection step
was eight, and the results of classification were given one of
the disease classes with proper bounding boxes. The training
started from the weight parameters pretrained on the PlantNet
in LifeCLEF 2017 dataset (Heredia, 2017), with the learning
rate set to 0.002 and training for 180,000 iterations. To avoid

local optimization, the learning rate was reduced by 10% at
30,000/50,000/130,000 iterations. The momentum was set to
0.9, and the stochastic gradient descent optimizer was used
to minimize the difference from the ground truth. For better
understanding, Figure 5 shows several example samples used to
train disease object detection.

Training Deep Metric Learning (DML)
With Softmax and K-Nearest Neighbor
(K-NN) Classifier
For the DML with the softmax classifier, we used the same
training/test dataset that we used for the first object detection
stage. To increase the training data, the same augmentation
techniques were taken as in the first stage. The increased number
of images of the extended bounding box can be seen in column
3 of Table 2, which include additional normal (flower, fruit, leaf,
and runner) objects so that the embedded features can be learned
differently from disease symptoms. In addition, the training of
the CNN backbone started from the weight pretrained by the
ImageNet dataset. We trained the network in 300 epochs with a
batch size of 128. The learning rate was set to 1e−5 and 1e−4 for
the backbone network and the classifier head, respectively. We
used the Adam optimizer and the semi-hard margin sampling
threshold set to 0.01.

After training the DML, we took the 256-dimensional features
for reference images, which include eight known strawberry
diseases with normal leaf, fruit, runner, and flower, and unknown
diseases, and selected samples are shown in Figure 6. The
unknowns are not included in the training by the DML
with the softmax classifier for the second stage, but the

FIGURE 7 | Disease detection results from object detection and post-filter. Objects are annotated by different box colors and prediction labels. Blue bounding boxes
are the ground truth annotation. Detected bounding boxes are labeled by “A| B” with two categories; “A” is the prediction result in the first stage, after which the
detected area is cropped into patches and sent to the DML and given prediction label B. Green boxes mean prediction labels A and B are the same, otherwise they
are red.
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FIGURE 8 | (A) Confusion matrix of DML-based K-NN classifier. (B) TSNE visualization result for test data.

TABLE 4 | Reduced confusion matrix.

Category Diseases Normal Unknowns Recall (%)

Diseases 1,999 3 4 99.7

Normal 3 1,692 19 98.7

Unknowns 20 52 790 91.7

Precision (%) 98.9 96.9 97.2 97.8(Accuracy)

embedded features for unknowns are taken to build the K-NN
classifier after training.

Results of Disease Detection
Table 3 presents the final results that explain the effect of
post-filter. The results of the first stage of FPN-based Faster
R-CNN and the second stage of classifiers are measured by
average precision (AP) for each disease, and overall performance
is obtained in mAP. The detection performance is found to
be better for anthracnose (fruit rot) and blossom blight but
comparatively worse for angular leafspot, anthracnose (runner),
and powdery mildew (leaf). This is why the appearance of
symptoms can be confused with other diseases (e.g., leafspot) or
illumination reflecting on the leaves. In addition, the disease on
the thin and long runner does not have sufficient resolution for
it to be discriminated well, as is the case in the example of the
anthracnose (runner).

When the DML with the softmax classifier was added to the
object detection stage, the mAP increased approximately 2%, as
can be seen in the third column of Table 3, but two diseases
showed a slight degree of performance decrease: blossom blight
and powdery mildew (leaf). In our conjecture, this is caused by
the dislocation of bounding boxes enclosing the disease symptom
in the first object detection stage, even though the enlarged
bounding box is fed into the post-filter. In this case, there could
be an erroneous decision in the second stage because the input
image has never been experienced in the training phase.

However, when the two decisions from the softmax and K-NN
classifiers are combined by Eq. (5), the AP performance for each
disease was increased. As listed in the last column of Table 3,

TABLE 5 | Strawberry images for field testing.

Location Disease # of images

Chugbuk chongju Blossom blight 24

Chungnam non-san Angular leafspot 36

Jeonbuk wanju Blossom blight 167

Gray mold (flower) 54

Anthracnose (runner) 47

Powdery mildew (fruit) 63

Powdery mildew (leaf) 42

Powdery mildew (runner) 24*

Total 457

*Trained system has never experienced disease.

the effect of the combined decision was not significant, but
there was a consistent performance increase for all diseases.
Figure 7 shows the disease detection results from the Fast R-CNN
object detection followed by post-filter. A red box means a
different prediction result in object detection and DML post-
filter, and a green box means the two decisions are the same.
The object detector finds potential objects well if the detected
object is distinct from the background. However, the detector
may give a false prediction label if the background is complex.
For example, for the “powdery mildew leaf” in Figure 7, the
network misdetected a normal leaf as a powdery mildew leaf,
and the difference between these two categories is that the
disease-infected leaves are covered in snow-white fungus, but the
reflection of light on leaves shares similar features. The DML
post-filter focused on the local context and successfully corrected
the false detected object.

For separated DML followed by the K-NN classifier, the
performance has been visualized by a confusion matrix, which
is shown in Figure 8A. Note that the separate stage can be used
for the classifier of ROI of the symptoms. For example, a picture
of disease-like symptoms can be taken and a manual ROI can
be denoted without using an automatic disease detection model
such as Faster R-CNN, after which its class can be obtained
from this separate K-NN-based classifier. The overall accuracy
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TABLE 6 | Field test results of known disease detection.

Disease BBox Performance (AP)

Faster R-CNN Faster R-CNN + softmax classifier Faster R-CNN + K-NN combined decision

Angular leafspot 75 0.934 0.943 0.939

Blossom blight (f)(flower) 195 0.994 0.993 0.996

Anthracnose runner 161 0.853 0.866 0.913

Gray mold (fruit) 63 0.949 0.958 0.951

Powdery mildew fruit 48 0.881 0.915 0.931

Powdery mildew leaf 78 0.848 0.902 0.893

Total 620 0.909 0.930 0.937

FIGURE 9 | Detected unknown diseases.

of the separate K-NN classifier was 97.7% for the test data in
the last column of Table 4, the summarized confusion matrix. In
Table 4, the average recall and average precision were 96.7 and
97.7%, respectively. Again, a few instances of angular leafspot,
gray mold (flower), and powdery mildew (leaf) were misclassified
as unknowns. In addition, several normal (runners) were
misclassified as anthracnose disease. Some unknown symptoms
were confused with disease classes including angular leafspot,
leafspot, gray mold (fruit), powdery mildew (leaf), and normal
parts. Note that it is difficult to discern leafspot and angular
leafspot from disorders on a leaf. For the same reason as in the
object detection, there were several instances of confusion of
disease classes of gray mold (flower), powdery mildew (leaf), and
anthracnose (runner).

Figure 8B shows the t-SNE of the embedded features after
DML. It is evident that almost all the classes of known diseases
and normal parts are well separated, but the classes that confuse
(Figure 8B and Table 4) are slightly overlapping, as shown in
Figure 8B.

Final Field Test With Unseen Data
To validate the proposed scheme, strawberry images were
captured from three greenhouses at different locations, and
we used these images to construct the dataset as in Table 5.
Note that only six known diseases are included, because at
that time, leafspot and anthracnose (fruit rot) were hard to

find. In the table, powdery mildew (runner) can be treated
as unknown, because it was not considered in the training
of any building block of our scheme. Table 6 presents the
mAP results of known diseases. It can be seen that the overall
performances are increasing from the first object detection to the
final combined decision of the softmax and K-NN classifiers. For
unknown powdery mildew (runner), 19 images were detected
with the proper bounding box out of 24 images. As shown in
the left part of Figure 9 (left), all the diseases were detected
as anthracnose (runner) in the first object detection stage but
corrected to unknowns in the K-NN classifier. Moreover, as
shown in the right part of Figure 9, the disorders on the
leaf are corrected to unknowns in the K-NN classifier after
having been wrongly detected in the first stage as one of
the leaf diseases.

CONCLUSION

This study has proposed a simple but effective strawberry
disease detection scheme with unknown diseases that can
produce reasonable performance. In the proposed scheme, the
known strawberry diseases are better detected with DML-
based classifiers, as are the unknown diseases that have certain
symptoms. We have assumed that, in the training process, the
unknowns are partly known. The pipeline of our proposed
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scheme consists of two stages: the first is an object detection
stage with known disease classes, while the second is the DML-
based post-filtering stage. The second stage has two different
types of classifiers: softmax classifiers for only known diseases
and the K-NN classifier for known and unknown diseases. In
training the first stage and DML-based softmax classifier, we
have only used the known samples of strawberry diseases. Then,
we included the known unknown training samples to construct
the K-nearest neighbor classifier. The final decision for known
diseases has been made based on the combined results of the
two classifiers, while unknowns have been detected from the
K-NN classifier.

The experimental results showed that the DML-based post-
filter was effective at improving the performance of known
disease detection in terms of mAP. Furthermore, the separate
DML-based K-NN classifier provided high recall and precision
with respective average values of 96.7 and 97.7%, showing it
could be exploited as an ROI classifier. For the real field data, the
proposed scheme achieved a high mAP of 93.7% to detect seven
classes (six known diseases and one unknown) of strawberry
disease, and it also achieved reasonable detection results for
unknowns. These results imply that the proposed scheme can
be applied to find disease-like symptoms due to real known

and unknown diseases or disorders for any kind of plant,
including strawberry.
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Potato early blight and late blight are devastating diseases that affect potato planting and

production. Thus, precise diagnosis of the diseases is critical in treatment application

and management of potato farm. However, traditional computer vision technology and

pattern recognition methods have certain limitations in the detection of crop diseases.

In recent years, the development of deep learning technology and convolutional neural

networks has provided new solutions for the rapid and accurate detection of crop

diseases. In this study, an integrated framework that combines instance segmentation

model, classification model, and semantic segmentation model was devised to realize

the segmentation and detection of potato foliage diseases in complex backgrounds.

In the first stage, Mask R-CNN was adopted to segment potato leaves in complex

backgrounds. In the second stage, VGG16, ResNet50, and InceptionV3 classification

models were employed to classify potato leaves. In the third stage, UNet, PSPNet,

and DeepLabV3+ semantic segmentation models were applied to divide potato leaves.

Finally, the three-stage models were combined to segment and detect the potato leaf

diseases. According to the experimental results, the average precision (AP) obtained by

the Mask R-CNN network in the first stage was 81.87%, and the precision was 97.13%.

At the same time, the accuracy of the classification model in the second stage was

95.33%. The mean intersection over union (MIoU) of the semantic segmentation model

in the third stage was 89.91%, and the mean pixel accuracy (MPA) was 94.24%. In short,

it not only provides a new model framework for the identification and detection of potato

foliage diseases in natural environment, but also lays a theoretical basis for potato disease

assessment and classification.

Keywords: potato foliage disease, convolutional neural network, image recognition, instance segmentation,

semantic segmentation
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INTRODUCTION

Potato is one of the world’s four important food crops, one of
the 10 most popular nutritious and healthy foods, as well as a
high-yield crop with developmental prospects. Due to its high
yield and stability, wide adaptability, full nutritional content,
and long industrial chain, it has been highly valued in the
world (Qu et al., 2005). The early blight and late blight, as
the most destructive foliage diseases of potato crops (Tsedaley,
2014; Yellareddygari et al., 2018), could cause major losses
in most potato-growing areas in the world. On potato leaves,
late blight appears as light green or olive green areas that
rapidly turn brownish-black, water-soaked, and oily. Likewise,
early blight is round or irregular, which shows dark brown
or black spots. Overall, early blight and late blight can occur
in all stages of potato growth (Da Silva Silveira Duarte et al.,
2019). To control and prevent diseases effectively and timely,
it is of great significance to identify and detect the diseases of
potato leaves.

In general, the traditional diagnosis of crop diseases is
performed by experienced experts, but manual diagnosis
is inefficient, subjective, and unsuitable for large regional
scenarios. Besides, traditional diagnostic techniques of
crop diseases tend to include polymerase chain reaction
(PCR), fluorescence in situ hybridization (FISH), enzyme-
linked immunosorbent assay (ELISA), thermal imaging, and
hyperspectral imaging (Fang and Ramasamy, 2015; Xie et al.,
2015; Madufor et al., 2018). In the real-life production, farmers
need simple, rapid, and accurate ways to identify potato
diseases. Therefore, it is crucial to develop a fast, low-cost,
time-saving, and labor-saving automatic identification system
for potato diseases.

With the advancement in computer vision, artificial
intelligence, and machine learning technology, it has promoted
the development and implementation of automatic disease
recognition technology. For example, Adhikari et al. (2018)
used Fast R-CNN (Ren et al., 2017) and R-FCN (Fuentes et al.,
2017) to detect diseases of fruit trees, vegetable crops, and other
crops, and confirmed good results. In addition, Zhang et al.
(2018) used the PlantVillage dataset combined with transfer
learning to identify nine tomato diseases. Among them, the
models with ResNet as the backbone network have the best
recognition effect, with an accuracy of 97.28%. Furthermore,
Cheng et al. (2017) used ResNet and AlexNet to identify
crop pests, and proved that ResNet101 could achieve the
best results, with an accuracy of 98.67%. Khan et al. (2020)
proposed a classification method of cucumber foliage disease,
which was based on an improved saliency method and deep
feature selection. Compared with the existing single-feature
selection methods, the deep feature selection method has better
performance. To identify cucumber leaf lesions, Wang et al.
(2021) put forward a network model fused with UNet and
DeepLabV3+, and verified that semantic segmentation has
achieved good results for leaf lesions. Apart from that, Fan and
Li (2019) proposed a detection method based on key feature
points, which could quickly detect the disease in regions of
interest by combining with color and texture features. Although

this method recognizes 10 types of potato diseases with high
speed and high accuracy, it does not have good performance for
the recognition in complex environment. Brahimi et al. (2017)
trained a convolutional neural network (CNN) composed of nine
tomato diseases, with the accuracy of the final model reaching
99.1%. Then, Yang et al. (2020) proposed a potato disease leaf
recognition method based on the combination of deep CNN
and composite feature dictionary, adopted Faster R-CNN to
detect the disease areas, and constructed a composite feature
dictionary through extraction of image features. The disease
recognition model was trained by support vector machine,
and its average recognition accuracy could reach 84.16%.
Nevertheless, the image background was relatively simple. To
solve the difficult problem of locating and identifying typical
potato disease regions under natural conditions, Xiao and
Liu (2017) put forward an adaptive feature fusion and rapid
recognition method for typical potato diseases. As proved by
the recognition experiment of three typical potato diseases,
the average recognition rate of the modified adaptive feature
fusion method is at least 1.8 percentage points higher than that
of the traditional adaptive method. Meanwhile, the average
recognition rate of the recognition method is 95.2%, but it is
slower than that of deep learning. Additionally, Krishnaswamy
Rangarajan and Purushothaman (2020) achieved good results
in classifying eggplant diseases, used multiclassification support
vector machine (MSVM), and adopted VGG16 as a feature
extractor in the eighth convolutional layer. Combining visual
object recognition with language generation models, the
detailed information about plant anomaly symptoms and scene
interactions could be generated (Fuentes et al., 2019). In the
task of identifying tomato pests and diseases, the accuracy of the
method achieved 92.5%.

Previous studies have applied deep learning technology to
the detection, segmentation, or classification of different crop
diseases. Beyond that, some studies have proposed to classify
different diseases that are found in leaves, and the accuracy
rate is generally >90%. At present, there are the following
problems in the crop disease recognition and disease spot
detection: (1) The image collection in previous studies was often
a single leaf, and there were few studies on the segmentation
of images containing multiple leaves. (2) Traditional recognition
methods have poor recognition rate for plant foliage disease. (3)
The effect of plant leaf disease identification on small targets
is poor.

Based on the existing research, this study proposed a
method of detecting potato diseases in a complex background,

which combines instance segmentation, classification model, and

semantic segmentation. The main contents of this study are

as follows:

(1) A three-stage potato leaf disease detection model based on
deep learning was proposed. While segmenting the potato
leaves and diseases accurately, this model could provide a
basis for establishing a potato leaf disease detection system.

(2) By adopting the three-stage model of instance segmentation,
classification model, and semantic segmentation, the
advantages of each model were explored. Compared with
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FIGURE 1 | Images of potato leaves.

FIGURE 2 | Leaf-labels and disease-labels. (A) The individual leaf separated from the complex background. (B) The leaf scab was marked.

single model detection, the three-stage model in this study
has good performance.

(3) The detection of potato leaf diseases in complex backgrounds
was achieved, and the percentage of disease area to leaf area
was calculated from the segmented disease area. Overall,
this experiment could provide a technical basis for the
classification and accurate control of plant diseases in
the future.

MATERIALS AND METHODS

Data Collection
In this study, potato leaves were collected at the potato

experimental site of Hebei Agricultural University, which was a

representative planting site in northern China (Weichang and
Fengning, Chengde City, Hebei Province). Besides, Nikon D7100

camera with a resolution of 6,000 × 4,000 pixels was used to
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FIGURE 3 | The identification and classification of potato leaf process. This figure shows the whole experimental progress, from the input to the output.

photograph potato leaves, and it was set to close-up mode with
automatic adjustment of focus, aperture, and white. The distance
between the camera and the potato plant was about 50 cm, and
the images were collected in a vertical manner. The three types of
potato leaves are displayed in Figure 1.

Data Processing
A total of 500 original images had been collected, including
healthy leaves, early blight leaves, and late blight leaves. The size
of the original images was adjusted to 800 × 800 pixels. Then,
the leaves and diseases were marked by the labelme software.
As shown in Figure 2A, the mask images were generated. Apart
from that, the accuracy of the model was evaluated by the mask
image marked manually. Specifically, the experimental method
in this study was divided into three stages. In the first stage, the
400 images were divided into the training set and validation set,
respectively, according to the ratio of 4:1 and test set with 100
images after training. The second stage uses image enhancement
to obtain 1,800 images, which are divided into training set and
validation set according to the ratio of 4:1. The test set consists
of 150 original images, including 50 pieces of each of the three
types of leaves. In the third stage [as shown in Figure 2B], a total
of 632 labeled early blight leaves and late blight leaves images
were divided into training set and validation set of the semantic
segmentation model in a ratio of 4:1. The test set consists of 50
original images.

Data Enhancement
Convolutional neural networks require enough data, and the
training accuracy of the model could be increased by the amount
of data. Therefore, in the second stage of this experiment, the
samples were enhanced by image rotation. In addition, the
original images were rotated according to the probability of 0.8,

with the maximum left-hand angle of 10 and the maximum
right-hand angle of 10. In addition, the left and right images
were swapped according to the probability of 0.5. The images
were zoomed in and out in accordance with the probability of
0.8. In brief, these image enhancement methods simulate the
changes in the actual image acquisition angle, direction and
distance, increase the diversity of training samples, and improve
the robustness and generalization of the model.

Computer Configuration Parameters
Windows 10 operating system was applied in this study.
Specifically, the computer memory is 16 GB, the CPU model
is Intel Core (TM) i5-10400f, and the frequency is 2.90
GHz. Meanwhile, the graphics processor model is NVIDIA
GeForce GTX 1660s, and the video memory is 6 GB.
Software environment used in the experiment is Tensorflow and
Keras (Python 3.6).

Model Evaluation Indicators
To test the performance of the model used in this study (e.g.,
segmentation, classification model, and semantic segmentation),
Precision (%), Mean Intersection over Union (MIoU, %),
Accuracy (%), and average pixel accuracy (MPA, %) were selected
as the indicators. To explain the evaluation index formula
conveniently, it was assumed that the data set had a total of k
+ 1 categories. Moreover, Pij represents the number of pixels

that category i is predicted into category j, Pii represents the
number of pixels that are predicted correctly, while Pij and
Pji represent the number of false-negative and false-positive
pixels, respectively.
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Precision and Accuracy
In the formula mentioned below, TP denotes true positive, FP
denotes false positive, and FN denotes false negative. Precision
represents the proportion of the correct prediction that is positive
to all predictions that are positive. Accuracy represents the
proportion of all data that are correctly predicted.

Precision=
TP

TP + FP

Accuracy=
TP + TN

TP + FN + FP + FN

MIoU and MPA
Pixel-based accuracy (PA, %) calculation is the basic index of
semantic segmentation performance evaluation, and MPA is
the average pixel accuracy. The average intersection ratio is a
commonly used measurement index for semantic segmentation
and target detection, which is often adopted to evaluate the
overlap ratio of the predicted object and the target object.
Compared with the pixel accuracy, the average intersection ratio
will provide more information, such as the completeness of the
predicted target and the coincidence with the actual target.

MPA =
1

k+ 1

k∑

i=0

Pii
∑k

j=0 Pij

MIoU =
1

k+ 1

k∑

i=0

Pii
∑k

j=0 Pij +
∑k

j=0 Pji − Pii

Test Model
Mask R-CNN Model
A series of region-based CNN algorithms (He et al., 2017; Ren
et al., 2017) are the most representative methods in the target
detection. Mask R-CNN, as a relatively novel achievement, can
classify, identify, and segment the targets in images. In this study,
the backbone network that combines ResNet (He et al., 2016) and
FPN (Long et al., 2015) was used to extract features of potato
leaves. Among them, the ResNet could sequentially extract low-
level features (e.g., edges and corners) and high-level features
(e.g., leaves and ground), which could form five layers of feature
maps in different sizes and dimensions. If the last layer of features
in the ResNet network is used as the output of the network, it
is difficult to detect the relatively small leaf features due to its
low resolution. Therefore, the FPN network was used to fuse the
feature maps from the bottom to the high level, and the features
extracted from each layer of the ResNet network were fully used.
Apart from that, the feature map extracted from the backbone
architecture was input to the regional candidate network. The
regional candidate network is a typical binary network, the
function of which is to divide the image into two categories,
namely, the target leaf and the background. Besides, the plant

leaves are boxed out separately in boxes that fit the size of the
leaves as closely as possible. At this time, only the approximate
region containing the target leaves and the background could
be distinguished, and it is impossible to conduct detailed species
classification and leaf segmentation of the target leaves. Through
the region candidate network, one or more regions containing
target blades could be obtained, which are input into ROIAlign
to pool into a feature map with a fixed size, and then input into
two branches, respectively. One of the branch networks performs
target leaf identification by means of a region of interest classifier
and a border regressor, both of which include one fully connected
layer. One fully connected layer acts as the ROI classifier to
classify the ROI into specific plant categories, while the other
fully connected layer is used as the border regressor to adjust
the center point position and aspect ratio of the ROI, to detect
the target leaves more accurately. Another branch network is
a segmentation mask generation network consisting of a fully
convolutional network, which generates a mask of the same size
and shape as the target leaf to segment the target leaf image.
Finally, the recognition and results are combined to obtain an
image that contains the target leaf class and a segmentation mask
that is consistent with the size and shape of the target leaf.

Classification Model
The essence of the VGG16 model is an enhanced version of
the AlexNet structure, which focuses on the depth of the CNN
design. In addition, each convolution layer is followed by a
pooling layer. VGG16 has five convolution layers, each with two
or three convolution layers. To better extract feature information,
this experiment uses three convolutional layers per segment.
Beyond that, a maximum pooling layer is connected at the end
of each segment to reduce the picture size. The number of
convolution kernels in each segment is the same, and the closer
they are to the fully connected layer, the more are the convolution
kernels. At the same time, the number of convolution kernels
in each segment is the same. In general, the closer they are to
the fully connected layer, the more are the convolution kernels,
and the smaller is the corresponding picture size. As for the VGG
network, it uses a smaller convolution kernel, which reduces the
number of parameters and saves computing resources. Due to the
large number of layers, the convolution kernel is relatively small,
so that the entire network has a better feature extraction effect.

The InceptionV3 network is a deep convolutional network
developed by Google. Compared with the traditional Inception
structure, the V3 version used in this study decomposes the large
convolution kernel into small convolution kernels. For example,
two 3 × 3 convolution kernels are used to replace the original 5
× 5 convolution kernel, which reduces the number of operations
of the model. The BN convolutional layer (Batch Normalization)
is added to the classification assistant to improve the accuracy of
the model, and the Batch Normalization method is used to make
the model perform data normalization preprocessing before each
iteration training, which avoids each iteration of the network. All
will adapt to different data distributions, which greatly shortens
the training time of the model.

The ResNet50 model solves the problem that the actual effect
becomes worse due to the increase in network depth and width.
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It is noteworthy that the deep neural network model sacrifices
a large amount of computing resources, while the error rate has
also increased. This phenomenon is mainly attributed to the fact
that as the number of layers of the neural network increases,
the disappearance of the gradient becomes increasingly obvious.
The ResNet50 model adds the residual structure (i.e., an identity
mapping is added), which converts the original transformation
function H(x) into F(x) + x, makes the network no longer
a simple stack structure, and solves the problem of gradient
disappearance. This simple stack does not add extra parameters
and calculations to the network but improves the effect and
efficiency of network training.

Semantic Segmentation Model
UNet (Ronneberger et al., 2015) is a semantic segmentation
network based on FCN (Long et al., 2015), and its network
structure is similar to FCN (fully convolutional networks). The
first half of the UNet network is feature extraction, and the
second half is upsampling. This structure is generally referred
to as an encoder-decoder structure. In addition, the input values
of this network are 512 × 512 single-channel or three-channel
images. The network, as a whole, can be constructed as a codec
architecture or as a systolic path and extended path. On the
one hand, each step of the contraction path consists of two 3 ×
3 convolutions for feature extraction. On the other hand, each
step of the expansion path includes an upsampling process of
the feature map, which matches and fuses with the feature map
starting from the contracted path. The shallower high-resolution
layer in the UNet network is used to solve the pixel localization
problem, while the deeper layer is adopted to solve the problem
of pixel classification.

The main feature of the PSPNet (Zhao et al., 2016) model
is the use of the PSP module. The pyramid pooling module
proposed in this model can aggregate the contextual information
of different regions, so as to improve the ability to obtain
global information. As shown by the results of experiments,
such a priori representation (referring to the structure of PSP)
is effective, and has presented excellent results on multiple data
sets. The function of the PSP structure is to divide the acquired
feature layers into grids of different sizes, and each grid is pooled
on average. It achieves the aggregation of contextual information
from different regions, thus improving the capacity to obtain
global information.

The main body of the Encoder of DeepLabV3+ (Cheng
et al., 2017) is DCNN with hole convolution, which can adopt
the commonly used classification networks, such as ResNet,
followed by Atrous Spatial Pyramid Pooling (ASPP) module
with null convolution (Chen et al., 2014). Compared with the
conventional convolution, the hole convolution increases the
receptive field without changing the feature map, and retains
more spatial detail information. The hole convolution injects
“holes” into the standard convolution kernel to increase the
convolution kernel. Receptive field, hole convolution uses the
hole structure to expand the size of the convolution kernel,
which can increase the receptive field without downsampling,
while retaining the internal structure of the input data. It is
mainly for the introduction of multiscale information. Compared

with DeepLabV3, V3+ introduces the Decoder module, which
further merges the low-level features with the high-level features
to improve the accuracy of the segmentation boundary.

Three-Stage Model Structure
In this study, the potato disease identification consists of four
steps (see Figure 3).

(1) In the first stage, potato leaves were segmented by Mask R-
CNN from complex background, and the individual leaves
were extracted;

(2) The segmented individual leaves were used as the input in
the classification model, which could classify healthy, early
blight, and late blight leaves;

(3) The single leaf extracted from the second stage was used as
the input of the third stage, and the training was carried out
through semantic segmentation model;

(4) The disease identified in the semantic segmentation stage
was adopted as the index of disease recognition in the
classification stage. In addition, the healthy leaves, early
blight leaves, and late blight leaves were marked by the
instance segmentation model and classification model. The
proportion of the disease to the whole leaf was also marked.

RESULTS

Mask R-CNN Models
Two different backbone networks, ResNet50 and ResNet101,
were used in instance segmentation. Apart from that, 100 pictures
were selected to test themodels.Table 1 summarizes the results of
both networks. It can be observed that the ResNet101 backbone
network has a good performance, indicating that a deeper
backbone network for features used inMask R-CNN could obtain
the good performance. To better evaluate the accuracy of the
whole model, the AP was selected when IoU = 0.5 and IoU =
0.7. Meanwhile, the AP obtained by ResNet50 and ResNet101
was 78.21 and 81.87%, respectively. Furthermore, the Precision
obtained by ResNet101 was 97.13%, which was slightly better
than that obtained by ResNet50. As ResNet101 has a deeper
backbone network, its accuracy in the instance segmentation is
higher. For testing 100 images, the two backbone networks need
to take 29 and 32 s, respectively. This is because the ResNet101
structure has a deeper network.

The results of Mask R-CNN are shown in Figure 4. First,
masks of different colors were generated on the leaves. Second, a
prediction framewas generated. Finally, the identified leaves were
divided into single leaves under the black background, which

TABLE 1 | The results of Mask R-CNN model instance segmentation in

potato leaves.

Backbone AP (%) APIoU=0.5

(%)

APIoU=0.7

(%)

Precision

(%)

Time/img

ResNet50 78.21 82.63 84.25 96.73 0.29 s/img

ResNet101 81.87 86.31 85.48 97.13 0.32 s/img
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FIGURE 4 | The potato leaves segmented by Mask R-CNN and the single leaf under the black background extracted in the original image.

TABLE 2 | Accuracy of the classification model validation in the second stage.

Model VGG16 ResNet50 InceptionV3

Accuracy/% 97.30 95.20 95.70

were used as the input of the second-stage classification model.
As displayed in Table 1, the higher precision obtained by the
models confirmed that the leaf features could be successfully
detected by the models. The two backbone network structures
could accurately segment the leaves.

Classification Models
The single leaf image segmented in the first stage was used as
the input in this stage. Beyond that, the leaves were divided
into healthy, early blight, and late blight. Additionally, the
classification model of this stage utilized the cross-entropy loss
function and the Adam optimizer. The batch size was 32, and
the learning rate was 0.0001. If the performance of the model
did not improve after three epochs, the learning rate would be
reduced to continue training, and the iterations would be 150.
Table 2 presents the training accuracy of the validation set of the
three models.

After the completion of the model training, 50 images were
selected as the test set to verify the trained models (see the
results in Table 3). Obviously, the Accuracy of the VGG16

TABLE 4 | Comparison of the results in the semantic segmentation models.

Model MIoU (%) MPA (%)

UNet 89.91 94.24

PSPNet 86.08 93.19

DeepLabV3+ 85.29 88.08

network model was up to 95.33%, and the Accuracy ResNet50
and InceptionV3 were slightly lower than those of VGG16.

Identification and Detection Models of
Early Blight and Late Blight
In the third stage, the single leaf image classified in the
second stage was input into the three semantic segmentation
models, such as UNet, PSPNet, and DeepLabV3+. Table 4

lists the evaluation indices for the three models, which are
obtained after training 150 generations. Obviously, the MIoU
and MPA of UNet were higher than those of PSPNet and
DeepLabV3+. This is mainly because the early blight is
characterized by small area and disease dispersion, which affects
the feature extraction of the models. After the completion of
model training, 50 pictures of potato leaves with early blight
and late blight were selected for testing. Table 4 summarizes
the test results of the three network models. It is obvious

TABLE 3 | Test results of the classification model.

Model Number of targets

(health/early blight/late

blight)

Number of

correct targets

(health)

Number of

correct targets

(early blight)

Number of

correct targets

(late blight)

Accuracy/%

VGG16 50/50/50 48 48 47 95.33

ResNet50 50/50/50 48 46 48 94.67

InceptionV3 50/50/50 47 47 46 93.33
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FIGURE 5 | Comparison of the variations of accuracy.

FIGURE 6 | Comparison of the variations of loss.

that the MIoU and MPA of UNet were 89.91 and 94.24%,
respectively, which were better than PSPNet and DeepLabV3+.
Among them, the MIoU and MPA obtained by DeepLabV3+
were relatively low, which may be due to the addition of
hole convolution to the DeepLabV3+ network. Although the

receptive field of the convolution layer was increased, some
feature information were missed, and the area of some lesions is
small, which affects the performance of DeepLabV3+. Compared
with PSPNet and DeepLabV3+, UNet uses a more concise
network structure and achieves better results. Therefore, UNet
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FIGURE 7 | Semantic segmentation results of early blight under the three models.
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FIGURE 8 | Semantic segmentation results of late blight under the three models.
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FIGURE 9 | The results of detection and recognition of potato leaves under the three-stage model.

provides the feasibility for deployment on resource-constrained
mobile devices.

The accuracy of the three models had a large gap in the
initial stage (see Figure 5). UNet achieved higher accuracy at
the beginning of the training, and gradually stabilized after 10
epochs. Apart from that, DeepLabV3+ and PSPNet had a low
accuracy at the beginning of the training, but DeepLabV3+
reached a relatively high accuracy after 10 epochs, and tended
to be stable. Moreover, the first 40 epochs of the PSPNet model
were set as the frozen epoch, so that its accuracy began to rise
sharply in the 50th epoch. At the same time, PSPNet began to
rise after the 40th epoch and gradually stabilized in the 80th
epoch, which was closer to UNet at last. As shown in Figure 6,
the loss of all models gradually decreased and tended to be
stable with the increase of training epochs. Among them, the
UNet network model converged faster than other networks and
showed lower loss. Besides, the UNet network tended to be stable
after 10 epochs. The DeepLabV3+ model gradually stabilized
after the 50th epoch, while the PSPNet model had a sharp
decline. Apart from that, the loss of PSPNet was stabilized at
the 65th epoch, which was very close to DeepLabV3 + after
80 epochs.

The disease segmentation results are displayed in Figures 7,
8. In the segmentation of late blight, the three models were
relatively accurate and there was not much difference between
them. Notably, the proportion of disease areas identified by
PSPNet model was the largest. Among them, the edges of the
disease area predicted by PSPNet were smoother. These rounded
edges can be a factor for the slightly worse performance of
PSPNet when compared with the UNet, as some pixels can end
up being wrong. The edges predicted by UNet and DeepLabV3+

were more consistent with the actual disease. In the segmentation
of the early blight, the disease areas segmented by UNet and
PSPNet models were closest to the real situation. Meanwhile,
the disease areas predicted by DeepLabV3+ were incomplete. As
shown in Figure 8, the disease in the red box was not marked,
so that the predicted disease proportion was far from the other
two models.

Model Test Results
Figure 9 shows the final performance of the three-stage model
on potato disease recognition. Initially, an instance segmentation
stage processes the input image via Mask R-CNN. The instance
segmentation stage splits the cropped leaves as the input of
the second stage classification model. The classification model
classifies leaves into healthy, early blight, and late blight, and
takes two diseased leaves as input for the third-stage semantic
segmentation. The potato images with complex backgrounds
were input into the combined model for detection. In the
prediction box, the categories of leaf diseases and the proportion
of disease spots were displayed in the upper left corner. In
addition, the disease areas were marked on the leaf by calling the
model in the semantic segmentation stage.

DISCUSSION

In summary, the work of this study mainly consists of three
parts, namely, leaf segmentation, disease area segmentation, and
classification of disease category. Among them, leaf segmentation
and disease area segmentation were completed by instance
segmentation and semantic segmentation models, respectively.
In the first stage, images with complex backgrounds were
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input into the Mask R-CNN networks, and the leaves without
background could be obtained. In the second stage, the leaves
without backgrounds were input into the classification networks
to distinguish healthy or diseased leaves. In addition, to verify
the applicability of the model in real-world scene detection,
we further trained the model using the public Plant Village
dataset. Finally, the results of this dataset are similar to the
data collected in this study, which proves that the classification
model used in this study can effectively identify the types
of leaves under different disease stages and different degrees
of infection. In the third stage, diseased areas based on the
labels corresponded to the categories classified in the second
stage. In the previous literature, a single model was often
used to detect diseases. The experiments in this study have
completed the segmentation, classification, and disease spots
segmentation of leaves under natural conditions. And this
study fuses the three-stage models to realize the detection of
the three models on one image. In the final image detection,
this study fuses the three models into an input end and
an output end, reducing the complex process required for
previous detection.

The combination of multi-stage CNNmodels has been widely
applied in various research fields. For instance, Wang et al.
(2021) segmented cucumber foliage diseases using a two-stage
semantic segmentation model, and the results were better than
the single model segmentation. Beyond that, Tassis et al. (2021)
identified coffee foliage diseases using a three-stage model, and
the AP and MIoU reached 71.90 and 94.25%, respectively. As
indicated by the results, compared with the single model, the
multi-stage model had a greater improvement in the accuracy of
leaf disease detection. Although the three-stagemodel framework
proposed in this study has achieved good results in potato
disease detection, there are still some aspects that need to
be improved. (1) First, potato early blight disease spots are
characterized by small and dense disease area. In this model
framework, some disease areas with small area and unclear color
differentiation could be identified inaccurately. In the future
research, the segmentation accuracy of the little lesions should
be improved. (2) Second, in practical potato production, the
speed of detection should be increased, and the network structure
needs to be improved, so as to shorten the time of model
segmentation and better serve the production. (3) In the actual
working environment, due to factors, such as large planting
area, the efficiency of disease spot detection is high. In this
study, the use of mobile phones or cameras to take pictures to
collect data will affect the efficiency of actual detection. In the
future, we will try to adopt a light-weight CNN structure to
reduce the model calculation time, and carry the camera and
model program on the drone to achieve rapid detection of the
planting area.

CONCLUSION

In the first stage, the Mask R-CNN model used two backbone
networks, ResNet50 and ResNet101, respectively. The

final APs obtained were 78.21 and 81.87%, respectively,
and the Precisions were 96.73 and 97.13%, respectively,
which achieved accurate segmentation of potato leaves in
complex backgrounds.

In the second stage, the classification models were
used. Apart from that, the three main networks of
VGG16, ResNet50, and InceptionV3 were adopted for
experiments. The potato leaves were divided into healthy
leaves, early blight leaves, and late blight leaves. Besides,
the accuracy of the three networks was 95.33, 94.67, and
93.33%, respectively.

In the third stage, semantic segmentation models PSPNet,
UNet, and DeepLabV3+ were used for training of disease
region identification. Furthermore, the identification
and detection of the early blight and late blight areas
were accomplished. The MIoUs were 86.08, 89.91, and
85.29%, respectively, whereas the MPAs were 93.19,
94.24, and 88.08%, respectively, indicating that the
segmentation and recognition of potato disease areas
were achieved.

In short, this model framework could effectively reduce the
impact on potato leaf segmentation in the wild environment,
improve the accuracy of disease spot segmentation, and
provide technical support for potato leaf disease detection and
prevention. The framework presented consisting of three models
of CNN can be applied to other crops with some adjustments.
In the future, the camera and the program of this study
can be mounted on the UAV to realize the application in
real scenes.
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Automatic pest detection and recognition using computer vision techniques are a hot

topic in modern intelligent agriculture but suffer from a serious challenge: difficulty

distinguishing the targets of similar pests in 2D images. The appearance-similarity

problem could be summarized into two aspects: texture similarity and scale similarity.

In this paper, we re-consider the pest similarity problem and state a new task for the

specific agricultural pest detection, namely Appearance Similarity PestDetection (ASPD)

task. Specifically, we propose two novel metrics to define the texture-similarity and

scale-similarity problems quantitatively, namely Multi-Texton Histogram (MTH) and Object

Relative Size (ORS). Following the new definition of ASPD, we build a task-specific

dataset named PestNet-AS that is collected and re-annotated from PestNet dataset

and also present a corresponding method ASP-Det. In detail, our ASP-Det is designed

to solve the texture-similarity by proposing a Pairwise Self-Attention (PSA) mechanism

and Non-Local Modules to construct a domain adaptive balanced feature module that

could provide high-quality feature descriptors for accurate pest classification. We also

present a Skip-Calibrated Convolution (SCC) module that can balance the scale variation

among the pest objects and re-calibrate the feature maps into the sizing equivalent

of pests. Finally, ASP-Det integrates the PSA-Non Local and SCC modules into a

one-stage anchor-free detection framework with a center-ness localization mechanism.

Experiments on PestNet-AS show that our ASP-Det could serve as a strong baseline for

the ASPD task.

Keywords: appearance-similarity pest detection, pairwise self-attention, skip-calibrated convolution, object

relative size, anchor-free

1. INTRODUCTION

Diversity pest control and prevention are always a crucial agricultural issue worldwide (Sivakoff
et al., 2012). To build a cost-effective and efficient pest controlling system, most of the current
methods deal with pest monitoring as a pest detection task (Shen et al., 2018). Specifically, the
applications employing computer vision techniques attempt to exploit vision features extracted
from pre-defined Convolutional Neural Network (CNN) and analyze the visual information to
recognize or detect a targeted pest (Deng et al., 2018) and plant leaf disease (Dhaka et al., 2021).
Generally, these applications are deployed into a mobile camera or other flexible vision sensors
(Liu et al., 2017).
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However, in the practical agricultural environment, the in-
field pest detection systems require high-quality image resolution
and strict image collection standards, e.g., the distance between
the camera and pest targets cannot be larger than 1 m (Wang
et al., 2021). Besides, these approaches might confront troubles in
recognizing lots of pest categories at the same time (Ayan et al.,
2020). These limit the functional performance when employing
these computer vision algorithms in real-world pest monitoring
(Wang et al., 2020). Under this case, several works attempted
to install fixed stationary cameras in light traps to monitor pest
occurrence by recognizing and detecting the trapped pests (Liu
et al., 2019a). But there are two challenges when identifying these
captured pests: (1) a large number of pest categories usually share
similar textures in images that prevent fine-grained classification.
(2) the size of one pest is very close to each other, making it
difficult to distinguish them. These challenges are considered
appearance-similarity problems in computer vision and pest
detection tasks.

In this paper, we pay attention to dealing with the challenges
of pest recognition and detection in light traps, which use
frequency-vibrating insecticidal lamps to capture pests and use
a fixed camera to take pictures of pests that fall into the
trapping tray, and stating a new task for the specific agricultural
pest detection problem, namely Appearance Similarity Pest
Detection (ASPD) task. This task clearly defines and summarizes
the appearance-similarity problems from two aspects: texture-
similarity and scale-similarity. To further describe these two
problems, we define the corresponding metrics: (1) Multi-
Texton Histogram(MTH), a statistical index representing the
distribution of pests’ textures. (2) Object Relative Size (ORS),
measuring the pest sizes in captured RGB images. From
MTH and ORS, we formulate the ASPD to be a novel pest
detection task.

To validate the difficulty of the ASPD task, we build a task-
specific dataset, namely PestNet-AS. This dataset is collected
and re-annotated from the famous pest detection benchmark
PestNet (Liu et al., 2019b). In PestNet-AS, we present a
hierarchical category taxonomy. The sup-classes in PestNet-AS
are Lepidoptera and Coleoptera, the former contains 17 sub-
class categories and the latter contains 7. In total, the PestNet-AS
dataset covers 87,672 images and 554,761 pest annotations. Our
dataset is aligned with the ASPD task.

Accompanying with ASPD task and PestNet-AS dataset, we
propose a deep learning framework ASP-Det to evaluate the
performance of the ASPD task. Specifically, our ASP-Det is
designed to solve the texture-similarity by submitting a Pairwise
Self-Attention (PSA) mechanism and Non-Local Modules to
construct a domain adaptive balanced feature module that could
provide high-quality feature descriptors. On the other hand,
we also present a Skip-Calibrated Convolution (SCC) module
that can balance the scale variation among the pest objects
and re-calibrate the feature maps into the sizing equivalent of
pests. Finally, we constructed a one-stage feature detector for
the ASPD task, using a deep convolutional layer of free-anchor.
We also introduce a center-ness calibration center strategy for
the construction to compensate for the potential localization
inaccuracy caused by the absence of the RPN. Finally, this

model considers meeting the practical application requirements
in agricultural fields.

Our contributions could be summarized as follows:

• We re-consider the light-trap pest recognition and detection
problem and state a new pest detection task ASPD. In
this task, we quantitatively define the texture-similarity and
scale-similarity problems in pest detection using MTH and
ORZ metrics.

• We build a new large-scale dataset PestNet-AS specific to
ASPD tasks. The dataset contains 87,672 images and 556,521
pest annotations.

• We propose a novel ASP-Det network to address the
challenges of the ASPD task. We present PSA mechanism
and Non-Local Modules module for dealing with the texture-
similarity problem and the SCC module for Scale-Similarity.
We believe our ASP-Det could serve as a strong baseline
for ASPD tasks and further promote agricultural pest
monitoring applications.

2. RELATED WORK

2.1. Anchor-Free Object Detection
Convolutional neural network-based Object detectors can be
divided into two types, namely anchor-based and anchor-free,
based on whether anchors are preset. The former can be divided
into one-stage and two-stage detection models, and the latter
can be divided into key-point-based and center-based detection
models. Anchor-free based on keypoint detection algorithms
include CornerNet (Law andDeng, 2020), Grid R-CNN (Lu et al.,
2020), ExtremeNet (Zhou et al., 2019), and CenterNet (Duan
et al., 2019). Anchor-free based on the center point algorithm is
a type of detection method that defines the target center point or
central area as a positive sample and then regresses the distance
from the four sides of the bounding box. YOLO series (Redmon
et al., 2016; Bochkovskiy et al., 2020), DenseBox, RetinaNet (Lin
et al., 2017b), FCOS (Tian et al., 2019), and FoveaBox (Kong
et al., 2020) all belong to this category. Generally, these methods
occupy less computing resources and are faster than anchor-
based methods. They are suitable for high-speed real-time object
detection tasks in applications.

2.2. Pest Detection
At present, scholars have studied more general object detection
methods. However, these methods cannot be directly utilized
in the pest detection tasks, which we confront are relatively
particular. Different from pest recognition methods, pest
detection methods based on the deep learning methods used
deep convolutional networks (Dai et al., 2016) to automatically
identify the category and location of the target according to the
model algorithm. Liu et al. (2019b) put forward an approach for
large-scale multi-class pest detection, which can detect 16 classes
of agricultural pests using an End-to-End deep convolutional
neural network. Jiao et al. (2020) proposed a two-stage anchor-
free convolutional neural network to realize small-scale pests
detection for the multi-categories agricultural pest. Yao and Xu
(2020) proposed an automatic detection model for pest damage
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symptoms on rice canopy based on improved RetinaNet. The
average accuracy of the detection of the two pests in the pest-
like area reached 93.76%. Dan et al. (2021) showed a method
of automatic greenhouse insect pest detection and recognition
based on a cascaded deep learning classification. Tetila, EC.
used five deep learning architectures with a fine-tuning for the
category of soybean pest images, which reached an accuracy of
up to 93.8% (Tetila et al., 2020). Wang. et al. integrated context-
aware information representation in-field. A multi-projection
pest detection model (MDM) was proposed and trained by crop-
related pest images in Wang et al. (2020). Automatic in-trap
pest detection by end-to-end on a GPU workstation with data
augmentation and then deployed on embedded devices with
minimal prepossessing in Sun et al. (2018).

2.3. Similar Object Detection
Similar object detection considers detection methods with more
detailed features. The general approaches adopt fine-grained
strategies to address the challenges. The current research on fine-
grained detection mainly includes the following content: Feng
(2013) proposed a set of training images, which can identify
a sparse number of image patches in the training set which
cover most parts of the target object in the test image. Li et al.
(2016) used fine-grained detection for face-screen distance on
smartphones. However, there are only a few applications of
fine-grained detection related to agriculture and almost few for
similar pest detection. Thus, this paper conducts a detailed study
on the feature extraction of similar pests, builds a model, and
provides an algorithm framework with better accuracy and real-
time performance.

3. PROBLEM STATEMENT

We present the Appearance-Similarity Pest Detection(ASPD)
task in our work. Specifically, we define ASPD task from two
aspects: texture-similarity that describes the gray-level and color-
level appearance of these pest targets (Section 3.1), and scale-
similarity that describes size-level appearance of pests (Section
3.2). For each problem, we propose the corresponding metrics to
define these settings.

3.1. Texture-Similarity
To quantitatively define texture-similarity, we consider it
from the following: (1) gray-level similarity that defines
whether the objects are similar in gray images. (2) color-
level similarity that defines whether the colorized pests
are similar.

For gray-level similarity, a Hash algorithm is a common
method to describe image similarity. In detail, the perceptual
Hash (pHash) algorithm usually achieves better performance
than deference Hash (dHash) as well as average Hash (aHash).
Thus, we propose to use the pHash to analyze and define
the gray-level similarity problem. In this metric, we randomly
select 100 images from one category of pest, calculate 32 × 32
Discrete Cosine Transform (DCT), and select 8 × 8 matrix
in the upper left corner. Next, we apply pHash algorithm to

extract the pest target representation value, as the object gray-
level representation. Finally, we define the object similarity such
that the representation value is larger than 0.6.

On the other hand, we consider color-level pest similarity.
In this problem, we first use MTH to describe the repetition
law and repetition mode of the image pixel-level information,
expressed in texture information in different color spaces.
In terms of texture information, the multi-element histogram
method uses the Sobel operator to detect the edge of the
image and detect the texture direction and then describes the
texture and shape information of the image. The Sobel operator
calculates the three color channels separately in the RGB color
space. The two vectors corresponding to the horizontal and
vertical directions are returned in each channel. a(Rx,Gx,Bx)
and b(Ry,Gy,By) represent the gradient information in the
corresponding direction of the corresponding channel. Further,
we can obtain the texture by calculating formulas 1–4.

| a |=
√
(Rx)2 + (Gx)2 + (Bx)2 (1)

| b |=
√
(Ry)2 + (Gy)2 + (By)2 (2)

a · b = Rx · Ry + Gx · Gy + Bx · By (3)

θ = arccos

[
a · b

| a | · | b |

]
(4)

In terms of color information, the results obtained from the three
channels of R, G, and B are quantified into 64 color images with
four different primitives in C(x, y). Perform texture detection in
the process to obtain the texture primitive image T(x, y). Finally,
according to T(x, y), a multi-element histogram describes texture
features. The definition of theMTH is shown in formulas 5 and 6:

H(T(P1)) = N
{
θ(P1) = v1

∧
θ(P2) = v2‖P1 − P2‖ = D

}
(5)

H(T(P1)) = N
{
θ(P1) = w1

∧
θ(P2) = w2‖P1 − P2‖ = D

}

(6)
where P1 = (x1, y1), P2 = (x2, y2) represent two adjacent pixels
with a distance of D in the original image. Their corresponding
pixels in the primitive image T(x, y) are T(P1) = w1 and
T(P2) = w2, respectively. In the texture direction matrix
θ(x, y), the directions of the points P1 and P2 are θ(P1) = v1,
θ(P2) = v2. N represents the number of times v1 and v2 appear
together, andN represents the number of timesw1 andw2 appear
together.H[T(P1)] represents the number of times that the same
edge direction appears at the same time under a certain color
background; it represents the number of times the same color
appears under a certain edge direction. Therefore, the texture
feature vector fv of the image is expressed as shown in formula 7:

f(v) = H(T(P1)) ◦ H(θ(P1)) (7)
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FIGURE 1 | Comparison of Object Relative Size (ORS) with common object datasets MS COCO and PestNet-AS.

where ◦means connection.
The similarity of images I1 and I2 is defined as shown

in Equation (8):

SI(I1, I2) = ‖fv(I1)− fv(I2)‖−1 (8)

where‖fv‖ denotes Euclidean distance.

3.2. Scale-Similarity
We adopt ORS to measure the problem for scale-similarity.
Specifically, given an RGB image with a shape of H ×W and the
i-th pest bounding box Hi × Wi, the ORSi of this pest object is
defined as follows:

ORSi =
Hi ·Wi

H ·W
(9)

In this way, we can count the ORS for the c-th category in the
entire dataset by

ORS(c) =
∑M

i=1 ORSi · sgn(ci, c)∑M
i=1 sgn(ci, c)

(10)

where M is the number of pest objects and function sgn(·)
indicates whether the category of i-th pest is c-th class, that
belongs to defined as

sgn(ci, c) =

{
1 ci = c

0 ci 6= c
(11)

Finally, we can obtain the ORS distribution map of all the
categories of pest species. Figure 1 illustrates the Relative Size
distribution of our targeted 24 pest categories. All the ORS of
all pest objects are not larger than 1%, which indicates that all
the pests in our work are small in size. Furthermore, most of
the categories hold nearly 0.5% ORS, which is in line with the
difficulty of scale-similarity in the ASPD task.

4. DATASET

To solve the ASPD task, we present a large-scale dataset
named PestNet-AS, which is built from a popular dataset
PestNet (Section 4.1). To meet the ASPD problem setting,
we analyze our PestNet-AS dataset from texture-similarity and
scale-similarity (Section 4.2).

4.1. Data Collection
To the best of our knowledge, there is no dataset suitable for the
similarity pest detection task, so we extract a sub-dataset with a
similar appearance from PestNet, filter, and re-annotate it. We
select part of the categories of PestNet to validate our PestNet-
AS task and method. Specifically, we build a simple category
taxonomy, as shown in Figure 2. The taxonomy contains 2 sup-
classes and 24 sub-classes(categories).

This paper resizes these pest images to 1,333 × 800 from
2,560 × 1,920 and 2,592× 1,944. We chose 87,672 pictures and
divided into two sup-classes and 24 sub-classes. Table 1 shows
two categories of pests’ scientific names, their average relative size
to the whole pest images. The two significant pest portraits are
shown in Figure 1.

Data annotation was done by professionals using Labeling
software under the guidance of entomologists1. The pest location
coordinates and classes are saved as an XML file, then converted
to JSON format, which has the same format as COCO. The
number of annotations corresponds to the number of bounding
boxes labeled in each image. Every image could contain more
than one annotation depending on the number and classes of
pests. To evaluate the effectiveness and practicability of the
model, we randomly selected images from the dataset according
to the proportion of 80% (70,138 images) of the training set and
20% (17,534 images) of the test set.

1The PestNet is a set of light trap datasets jointly annotated by professionals

and agricultural experts from Jiaduo Company, which provides data support for

intelligence agriculture. Artificial Intelligence Agriculture Valley has developed a

special labeling software for agricultural pests and diseases. This dataset is also

selected and organized in this dataset driven by similar pest detection problems.
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FIGURE 2 | Visualization of two sup-class of pests: the figure shows the visualization of similar pests in the 17 sub-classes of the Lepidoptera and 7 sub-classes of

Coleoptera.

4.2. Dataset Analysis
The PestNet-AS dataset is established to solve the ASPD task,
thus it is built to meet the definitions of texture-similarity and
scale-similarity problems. We use the designed metric to validate
the dataset characteristics on texture-similarity. Concerning
gray-level similarity, we apply the pHash algorithm described
above to evaluate the 24 sub-classes in the two sup-classes. The
results are shown in Tables 2, 3. Almost all pest similarities
are more extensive than 0.6, which aligns with the gray-level
pest similarity problem definition, which indicates that the pest
objects in our PestNet-AS are highly similar in texture.

In terms of color-level similarity, we adopt the MTH
algorithm to evaluate PestNet-AS dataset. Specifically, we crop all
the pest targets in our dataset and calculate their MTH features.
Figure 3 shows the t-SNE map on these features. These pests
from various categories lie in very close feature spaces and have
identical characteristics. Therefore, our PestNet-AS meets the
requirement of texture similarity.

For the scale-similarity problem, we calculate ORS for each
pest object, and the results are shown in Figure 1. Due to
the specific attribute of each object class, the ORS of labeled
instances are unevenly distributed among these categories for
MS COCO (Lin et al., 2014). Compared with MS COCO, the
ORS for our dataset PestNet-AS holds a similar scale for almost
all the types, which indicates that our PestNet-AS also meets

the scale-similarity problem. Therefore, we can conclude that
PestNet-AS could be used as a benchmark for ASPD tasks.

5. ASP-DET, A DEEP LEARNING
FRAMEWORK FOR ASPD

5.1. Motivation
In this paper, we aim to solve the problem of pests with similar-
appearance and size equivalent, which is one of the major
challenges in the fine-grained detection task. Specifically, the Pest
classification problem is worse than detection. We pay more
attention to developing practical pest monitoring systems for
appearance-similar pest datasets in light-trap (PestNet-AS). As
shown in Figure 4, PestNet-AS contains many challenging issues
for pest detection approaches, such as pest targets with dense
occlusion, high similarity, including texture similarity and scale
similarity. In addition, the relative size of our similar dataset
is also smaller than that of the COCO dataset, as shown in
Figure 1. Given these thorny problems, we must consider both
the detection accuracy and real-time characteristics. Therefore,
we propose to use a one-stage pyramid feature extraction model
to detect ASPD tasks. The SCCmodule and the non-local module
are added to the model to solve the problem of scale similarity
and texture similarity.
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TABLE 1 | Description of pests of the two sup-classes.

Pest ID Sup-class Sub-class No. of images No. of instances ORS (%)

1

Lepidoptera

Spodoptera frugiperda 226 241 0.189

2 Rice leaf roller 7,430 12,994 0.124

3 Chilo suppressalis 3,323 8,462 0.206

4 Xestia c-nigrum 1,691 2,224 0.397

5 Mythimna separata 12,502 25,526 0.403

6 Helicoverpa armigera 25,364 74,769 0.293

7 Ostrinia furnacalis 19,536 43,316 0.238

8 Proxenus lepigone 24,041 122,509 0.144

9 Agrotis exclamationis 1,082 1,782 0.530

10 Spodoptera litura 8,083 10,936 0.448

11 Spodoptera exigua 14,615 28,133 0.151

12 Stem borer 5,719 8,475 0.306

13 Agrotis ipsilon 9,944 15,397 0.567

14 Land cutworms 1,131 1,805 0.601

15 Cabbage moth 7,108 10,410 0.434

16 Scotogramma trifolii Rottemberg 13,114 23,301 0.346

17 Yellow cutworms 3,825 4,933 0.434

18

Coleoptera

Holotrichia parallela 24,041 122,509 0.286

19 Anomala corpulenta 1,082 1,782 0.240

20 Gryllotalpa orientalis 8,083 10,936 0.904

21 Pleonomus canaliculatus 14,615 28,133 0.323

22 Agriotes fuscicollis miwa 5,719 8,475 0.130

23 Melanotus caudex 9944 15,397 0.101

24 Holotrichia oblita 1,131 1,805 0.320

TABLE 2 | Description of the 17 sub-classes of phash 32× 32 similarity of pests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70.01 – – – – – – – – – – – – – – – –

2 69.74 68.16 – – – – – – – – – – – – – – –

3 68.06 68.46 68.53 – – – – – – – – – – – – – –

4 68.47 65.77 69.26 72.18 – – – – – – – – – – – – –

5 70.84 69.61 71.57 72.36 73.61 – – – – – – – – – – – –

6 70.57 69.66 71.47 70.41 71.85 75.34 – – – – – – – – – – –

7 72.76 71.35 73.17 70.01 72.97 72.97 75.34– – – – – – – – – – –

8 70.62 68.69 70.45 72.26 71.87 72.94 75.34 77.74 – – – – – – – – –

9 69.19 66.68 67.45 70.54 67.98 71.60 72.33 73.96 66.61 – – – – – – – –

10 70.44 67.85 69.91 69.90 69.69 71.58 74.17 75.16 65.17 70.30 – – – – – – –

11 70.43 67.57 69.61 71.20 71.19 72.26 74.82 77.40 66.53 70.75 65.88 – – – – – –

12 71.33 69.33 71.57 69.66 72.34 71.46 76.66 76.11 68.26 69.79 67.92 72.16 – – – – –

13 69.02 66.89 68.93 71.34 70.07 72.97 72.50 75.81 66.40 70.56 65.83 72.11 72.56 – – – –

14 70.82 68.73 69.35 73.30 70.36 74.34 74.43 76.80 68.26 71.61 67.10 72.16 72.81 72.07 – – – –

15 69.54 67.71 69.50 72.28 70.42 73.32 73.22 76.80 67.35 70.36 67.07 72.68 73.28 71.19 74.12– – –

16 71.61 68.92 71.07 72.53 71.96 74.54 76.19 78.33 67.09 71.84 67.80 74.33 73.56 73.19 76.04 74.41 –

17 70.03 68.66 71.03 70.97 71.97 71.25 76.75 76.13 66.21 70.72 67.52 71.68 69.94 70.37 73.86 71.77 68.95

5.1.1. Pest Recognition on Texture-Similarity Problem
In the process of pests in the ASPD task, it is not easy to
accurately classify because the appearance and texture are too

similar. The main reason is that the feature expression is not
strong enough. The current method only considers the low-
level feature maps in the feature pyramid as their local features.
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TABLE 3 | Description of the 7 sub-classes of phash 32× 32 similarity of pests.

18 19 20 21 22 23 24

18 62.23 – – – – – –

19 62.45 60.85 – – – – –

20 63.04 62.14 66.07 – – – –

21 63.10 63.17 67.25 68.18 – –

22 62.45 63.89 66.96 70.05 68.68 – –

23 62.42 63.64 68.64 68.42 66.92 71.41 –

24 61.75 62.23 66.93 67.21 68.02 72.45 70.63

FIGURE 3 | PestNet-AS similarity description in Multi-Texton.

It ignores the high-level semantic information so that the pest
targets have sound positioning effects, but classification accuracy
is not good. On the other hand, simultaneously considering the
simple superposition of low-level and high-level feature map
information will cause confusion on local characteristics of pests.
Lack of pertinence for pests with high similarity will affect
the recognition effect and cause the detection method to be
inaccurate. The classification results are shown in Table 4.

5.1.2. Pest Detection on Scale-Similarity Problem
The pest scales are too close, and a large number of redundant
anchors are not used, which seriously affects the positioning
of the frame, so the detection is not very accurate. First, we
investigate the network performance in the standard feature
pyramid network algorithm. The primary purpose is to express
various dimensional characteristics for objects of different sizes
effectively. However, the relative scale of our dataset changes
little, and the appearance features are incredibly similar. So, the

recall rate is not satisfactory at all stages of the IOU. Especially
when the IOU becomes more prominent, the recall rate decays
more severely. The results are shown in the following Table 5.
Considering the characteristics of the PestNet-AS dataset, we
expect to use the feature extraction of the feature pyramid
network in the model training. To avoid the poor effect caused by
small size changes, we need to reconstruct the feature pyramid.

5.2. ASP-Det Overview
This section describes the proposed scale-calibrated free anchor
CNN detectionmethod for appearance-similar agricultural pests.
The proposed pest detection model ASP-Det consists of pest
features extraction network multi-classes pest detection network.
We construct a non-local feature pyramid network (NFP). We
construct ASP-Det with PSA module,which can fuse the features
with different levels.Then joint skip-calibrated convolution
module (SCC) in the features pyramid network for detecting
similar pest object. Overview of ASP-Det framework shown in
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FIGURE 4 | Some typical challenges in appearance-similar pest detection (A) appearance-similar pest density distributed; (B,C) pests with high similarity on the

ventral and dorsal sides; (D,E) different postures of appearance-similar pests of the Lepidoptera and Coleoptera.

TABLE 4 | Classification results of appearance-similar pests using different

methods.

Methods Top-1 (%) Top-5 (%)

ResNet-50 50.2 71.1

SENet 58.6 75.6

VGG-16 48.6 73.7

Inception 42.3 62.8

Figure 5. Specifically, we first fed a picture entering the CNN
feature extraction network, and we added the PSA channel
module during the feature extraction process. Second, a non-
local operation is performed on the obtained feature map and
then input into the feature pyramid network. Finally, we design
an SCC strategy that takes an interval in the feature pyramid
to form a feature sampling layer, ensuring the integration of
sample features across levels. Third, we introduce center-ness
to suppress the low-quality detected bounding boxes produced
by the locations far from the center of an object. Finally, non-
maximum suppression (NMS) algorithm is employed to remove
redundant boxes for the same object (Symeonidis et al., 2019).

5.3. PSA Module
Because the dataset has large similarity in appearance and
morphology and the number of samples of various classes is

not balanced. This paper designs a new feature pyramid that
joins the non-local and SCC Modules to resolve the above
problems. Different from former approaches (Lin et al., 2017a;
Yu et al., 2021) that integrate multi-level features using lateral
connections, our key idea is to strengthen the multi-level features
using the same deeply integrated balanced semantic features.
Each layer simultaneously realizes two functions in CNN, feature
aggregation and feature transformation. The former incorporates
the characteristics of all positions extracted by the kernels, and
the latter performs conversion through linear mapping and
nonlinear scalar functions. Thus, the integration function is
suitable for phase detection networks, and the transformation
function is ideal for feature pyramid networks. Suppose the
feature transformation is set as an element-level operation
composed of linear mapping and nonlinear scalar functions. In
this paper, we introduce the Pairwise module (Zhao et al., 2020)
to establish feature aggregation. Consistent with global activated
PSA modules, the final result is expressed as a weighted sum of
adaptive weights and features:

yi =
∑

j∈R(i)

α(xi, xj)⊙ β(xj) (12)

Where xi and xj are feature maps with indexes i and j, ⊙ is the
Hadamard product called aggregation with the local footprint
R(i), several parameters in the PSA module will not be affected
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TABLE 5 | Recall performance: FCOS on PestNet-AS with ResNet-50-FPN as a backbone.

IoU 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Recall1 0.356 0.337 0.317 0.278 0.254 0.231 0.171 0.112 0.051 0.001

Recall10 0.472 0.431 0.415 0.356 0.314 0.251 0.192 0.163 0.082 0.003

Recall100 0.614 0.585 0.462 0.382 0.366 0.341 0.275 0.195 0.123 0.007

MRecall 0.588 0.513 0.426 0.365 0.344 0.313 0.254 0.182 0.091 0.005

FIGURE 5 | Overview of ASP-Det framework. (a) Classification branch, (b) regression and center branch. PSA, pairwise self-attention module; SCC, skip-calibrated

convolution module.

by the size of the footprint. After this aggregation, the result yi
can be obtained.

The vectorβ(xj) generated by the function β(·) will be
aggregated with the adaptive vector α(xi, xj) introduced later.
Compared with ordinary weights, adaptive vector α(xi, xj) has
strong content adaptability. It can be decomposed as follows:

α(xi, xj) = γ (δ(xi, xj)) (13)

where δ(·) and γ (·), respectively, represent a relation function
and a hybrid map composed of linear and nonlinear functions.
Based on the relation δ(·), the function γ (·) is used to obtain
a vector result, which can be combined with β(xj) in Equation
(10). In general, matching the output dimension of γ (·) with the
dimension of β(xj) is unnecessary because attention weights can
be shared among a group of channels. We choose the subtraction
as the relation function, which can be formulated:

δ(xi, xj) = ϕ(xi)− φ(xj) (14)

where ϕ(·) and φ(·) are convolution operations matching output
dimensions. δ(·) calculates spatial attention for each channel
instead of sharing between channels. We adopt a non-local refine
the feature as a pyramid network after aggregation.

Non-local mean (Wang et al., 2017) is a classical filtering
algorithm that computes a weighted mean of all pixels in an
image. It allows distant pixels to contribute to the filtered
response at a location based on patch appearance similarity. The
non-local behavior in Equation (15) is because all positions [∀(j)]
are considered in operation. A convolutional process sums up
the weighted input in a local neighborhood as a comparison. A
non-local process is a flexible building block that can be used
with convolutional layers. It can be added into the earlier part of
deep neural networks, unlike fc layers that are often used in the
end, which allows us to build a hierarchical model that combines
non-local and local information.

yi =
1

C(x)

∑

∀(j)

f (Xi,Xj)g(Xj) (15)

The above PSA module uses novel vector attention, which
can generate content adaptation ability while maintaining the
channel adaptation ability. PSA module makes our appearance-
similar target detection model have strong adaptability, which
can effectively enhance the salient differences between different
features. The pipeline is shown in Figure 6. It consists of two
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FIGURE 6 | PSA module and non-local module.

FIGURE 7 | SCC module.

branches and four steps: re-scaling, integrating, refining, and
strengthening.

Also, we observe that the similar pests in the images
are primarily small and size equivalent. Using state-of-the-art
object detection approaches to these images will make similar
pest features prone to lose after high-level convolution. It is
challenging to extract similar pest features in the network. Hence,
the novel Skip-Calibrated Convolution model can combine
the delicate features in a high-level convolutional layer. The
integral structure of pest come from a low-level convolutional
layer. Then, we could fuse the contextual information around
pests from the low-level convolutional layer and address
the issue of features misjudged for the similar object in
the deep convolution layer. In the next section, we will
present the alternative optimization for similar pest detection

from the internal structure of a CNN and give details of
the ASP-Det.

5.4. SCC Module
The structure of deep CNNs is becoming more and more
complicated, which can enhance the network’s learning ability.
The novel module called SCC considers improving the feature
transformation process in convolution since pests with high
similarity may be difficult to judge in adjacent layers. We do not
only use the features of the upper layer to perform up-sampling
directly but also introduce the information of the following high-
level into the sampling so that features have better recognition,
adding a specific architecture in Figure 7.

A given group of filter sets K with the shape (C, C, kxh, kxw) is
divided into two branches, which are responsible for conducting

Frontiers in Plant Science | www.frontiersin.org 10 July 2022 | Volume 13 | Article 864045115

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. ASPD-Det

[K1, K2, K3, K4, K5] different functions, respectively. In SCC, we
perform feature transform at two scales: the original scale and the
smaller scale after down-sampling. For a given X, we adopt max
pooling to reduce the scale:

M1 = MaxPoolr(X1) (16)

T1 = MaxPoolr(M1) (17)

where r is the down-sampling rate and stride of the pooling
process. The receptive field at each spatial location can be
effectively expanded by benefiting from the down-sampling
operation. Next, T1 can be used as an input to the filter K2 and K3
following the up-sample procedure, which restores the feature to
the original scale, resulting in

X′
1 = Up(F2(T1)) = Up(T1 × K2) (18)

X′′
1 = Up(F3(X

′
1)) = Up(X′

1 × K3) (19)

where F2(T1) = T1×K2, F3(X
′
1 = X′

1×K3) is a simplified form of
convolution. Then, the calibrated operation can be formulated as

Y ′
1 = F4(X1)⊙ Sigmod(X′′

1 ) (20)

Where F4(X1) = X1 × K4, Sigmoid(·) is an activation function.
The final result of the skip-calibrated part is calculated:

Y1 = F5(Y
′
1) (21)

Where F5(Y
′
1) = Y ′

1 × K2. The other part can be obtained from
another branch that does not require scale transformation. The
formula is as follows:

Y2 = F(X2)× K1 (22)

Finally, we sum Y1 and Y2 to get the final result Y. Reviewing the
entire SCC enables each spatial position to adaptively encode the
context from a long-range region, which is also a vast difference
between it and the traditional FPN network.

5.5. Optimization
ASP-Det is a fully convolutional one-stage object detector. Unlike
anchor-based sensors, which consider the location on the input
image as the center of anchor boxes and regress the target
bounding box for these anchor boxes, we directly revert the target
bounding box for each location. Let Fi ∈ RH×W×C be the feature
maps at layer i of a backbone CNN. For each location(x, y) on
the feature map Fi, we can map it back onto the input image
as( S2 + xs, S2 + ys), which is near the center of the receptive
field of the location(x, y). Besides the label for classification, we
also have a 4D ground truth vector q = (l, r, t, b) being the
regression target for each sample. Here l, r, t, and b are the
distances from the location to the four sides of the bounding box.
If a location falls into multiple bounding boxes, it is considered
an ambiguous sample.

In addition, we observed that it is due to many low-quality
predicted bounding boxes produced by locations far away from
the center of an object. We propose a simple yet effective strategy
to suppress these low-quality detected bounding boxes without
introducing any hyper-parameters. Specifically, we add a single
layer branch in parallel with the regression branch to predict

FIGURE 8 | ASP-Det works by predicting a 4D vector (l,t,r,b) encoding the location of a bounding box at each foreground pixel.
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the center-ness of a location, as shown in Figure 8. Given the
regression targets l, t, r, and b for a site, the center-ness target
is defined as,

center − ness =

√
min(l, r)

max(l, r)
×

min(t, b)

max(t, b)
(23)

We define our training loss function as follows:

L(px,y, qx,y,Ox,y) =
1

Npos

∑

x,y

Lcls(px,y, c
∗
x,y)

+λ1
1

Npos

∑

x,y

sign(c∗x,y > 0)Lreg(qx,y, q
∗
x,y)

+λ2Lcenterness(Ox,y,O
∗
x,y) (24)

where Lcls is the focal loss as in Lin et al. (2017c), Lreg is
the IOU loss as in UnitBox (Yu et al., 2016), and Lcenterness
is the center-ness loss ranges from 0 to 1 and is thus
trained with binary cross entropy (BCE) loss. Npos denotes the

number of positive samples and the summation is calculated
over all locations on the feature maps Fi. The indicator
function being 1 if c∗x,y > 0 otherwise is 0. The balanced
parameter λ1 and λ2 are set to 1. We employ sqrt here to
slow down the decay of the center-ness. When testing, the
final score Sx,y (used for ranking the detections in NMS)
is the square root of the product of the predicted center-
ness Ox,y and the corresponding classification score Px,y. After
the above center-ness suppression, we can obtain better pest
detection performance.

Sx,y =
√
Px,y × Ox,y (25)

6. EXPERIMENTS

6.1. Experiment Settings
6.1.1. Evaluation Metrics
In this paper, we apply fivemetrics to evaluate the performance of
our similar pest detection method: AP50 (Precision in 0.5), AP75
(Precision in 0.75), mAP (mean Average Precision), Recall and
MR (mean Recall), and BPR (Best Possible Recall).

TABLE 6 | The MR and BPR for Ablation study for different strategies of assigning objects to FPN levels.

Methods PSA NFP CL SCC MR BPR

Faster R-CNN 57.0 87.2

YOLOv3 50.2 88.9

FCOS 58.8 88.7

ATSS 61.4 93.6

Swin-t 61.8 93.7

ASP-Det (ours)
√

62.2 91.9

ASP-Det (ours)
√ √

62.3 93.5

ASP-Det (ours)
√ √ √

62.4 94.3

ASP-Det (ours)
√ √ √ √

62.3 94.5

TABLE 7 | Overall performance comparison.

Method PSA NFP CL SCC AP AP50 AP75

General object detection

Faster R-CNN (Ren et al., 2015) 41.9 70.7 46.2

YOLOv3 (Redmon and Farhadi, 2018) 30.8 63.2 25.1

FCOS (Tian et al., 2019) 44.0 73.0 49.0

ATSS (Zhang et al., 2020) 44.2 73.0 49.0

Swin-t (Liu Z. et al., 2021) 43.6 74.1 47.2

Pest sdetection

AF-RCNN (Jiao et al., 2020) 31.6 50.3 32.6

PestNet (Zhang et al., 2020) 42.1 70.9 36.3

Ours

ASP-Det
√

44.1 73.2 49.2

ASP-Det
√ √

44.3 73.6 49.4

ASP-Det
√ √ √

44.6 74.3 49.9

ASP-Det
√ √ √ √

45.0 74.9 50.2

Boldface represents emphasis.
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6.1.2. Training Details
ResNet-50 is used as our backbone network, and the same hyper-
parameters with FCOS are used. Specifically, our network is
trained with stochastic gradient descent (SGD) for 90 k iterations
with the initial learning rate is 0.0125 and a mini-batch of four
images. We trained the network for 12 epochs, ran SGD for the
first eight epochs, reduced the learning rate to one-tenth in the
11th epoch, and reduced the learning rate to one-tenth in the 11th
epoch.We initialize our backbone networks with the weights pre-
trained on ImageNet (Jia et al., 2009). For the newly added layers,
we initialize them as in Lin et al. (2017c).

6.1.3. Inference Details
We first forward the input image through the network and obtain
the predicted bounding boxes with the predicted class scores. The
next post-processing of ASP-Det strictly follows that of FCOS.
The post-processing hyper-parameters are also the same, except
we use NMS threshold of 0.5 instead of 0.6 in FCOS. Moreover,
we use the exact sizes of input images as in training.

6.2. Pest Detection Performance of
ASP-Det
The section shows that the concern is not particularly important
by comparing the MR of ASP-Det and that of its anchor-based
counterpart on the dataset. The following analyses are based on
the ASP-Det implementation in mmdetection2.

6.2.1. Mean Recall (MR) Performance
Formally, MR is defined as the ratio of the number of ground-
truth boxes that a detector can recall at the average to the number
of all ground-truth boxes. A ground-truth box is recognized if
the box is assigned to at least one training sample (i.e., a location
in ASP-Det or other detectors), and a training sampling can
be associated with at least one ground-truth box. As shown in
Table 6, both with a NFP, a SCC, and Center-ness Loss (CL)
on reg obtain similar MR(58.8vs.62.3%), 12.1 points higher than
YOLOv3, 5.3 points higher than Faster R-CNN, and 3.5% higher
than FCOS.Moreover, because the best recall of current detectors
is much lower than 90%, the small Best Possible Recall gap (<1%)
between ASP-Det(NFP), ASP-Det(NFP+SCC), and ASP-Det will
not affect the performance of a detector. Therefore, the concern
about the low Best Possible Recall may not be necessary for
our method.

6.2.2. Average Precision (AP) Performance
To test the effectiveness of our ASP-Det, we compare the
quality pest bounding box by ASP-Det and other state-of-the-
art detectors. We choose faster R-CNN, FCOS, and YOLOv3 to
compare our proposed ASP-Det on a similar pest dataset. The
pest detection results are shown in Tables 7, 8. We can observe
that our method outperforms faster R-CNN and YOLOv3. The
mAP of our method can achieve 45%, 14.2 higher than YOLOv3,
and 3.1 higher than Faster R-CNN. For extreme special pests

TABLE 8 | AP50 and all classes of pests for different detection methods on the similar pest dataset.

Pest ID YOLOv3 Faster R-CNN FCOS ATSS Swin ASP-Det (ours)

1 55.6 64.7 71.2 73.2 73.6 73.9

2 56.0 65.2 68.5 70.9 70.8 70.9

3 67.9 72.0 75.3 75.6 76.4 76.6

4 64.1 72.3 69.0 72.5 72.6 73.3

5 73.0 79.1 81.4 81.4 81.5 81.6

6 85.8 88.3 90.1 90.2 89.9 90.0

7 75.7 78.7 81.0 81.4 81.5 81.6

8 72.6 76.2 78.7 78.4 78.8 78.8

9 59.0 77.6 77.7 82.1 81.5 81.6

10 65.4 72.6 75.2 76.8 76.9 77.0

11 52.6 57.4 60.0 61.6 61.2 62.3

12 74.3 79.5 82.1 82.9 83.4 82.6

13 75.6 85.6 86.6 87.5 87.6 87.2

14 38.1 62.7 67.8 66.5 69.7 69.8

15 55.5 66.5 67.9 69.8 69.8 69.6

16 65.9 74.2 75.7 76.3 75.7 75.8

17 54.3 59.4 63.4 65.4 64.0 64.1

18 84.2 87.8 89.4 89.3 89.5 89.6

19 88.3 90.1 90.3 91.1 91.1 91.2

20 94.2 95.5 95.7 95.1 95.1 95.9

21 17.5 34.4 46.1 39.7 48.9 49.0

22 79.2 82.2 83.4 85.4 84.8 85.0

23 27.9 29.4 34.4 31.7 35.4 36.0

24 35.6 46.7 50.0 54.1 54.3 54.4

mean 63.2 70.7 73.0 74.5 74.1 74.9

Boldface represents emphasis.

Frontiers in Plant Science | www.frontiersin.org 13 July 2022 | Volume 13 | Article 864045118

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. ASPD-Det

(classes “21” and “23”), the detection accuracy is lower than
other classes of pests. However, our method still performs better
than YOLOv3 and Faster R-CNN, benefiting from our feature
fusion module.

In order to be able to directly observe the advantages of our
proposed pest detection method compared with other methods.
We show some visualized pest detection results of our practices,
YOLOv3 and Faster R-CNN, as shown in Figure 9. It shows that
our method can achieve more accurate results and fewer missing
pests than the other methods. The model also uses the detection
results to graph the classification value and recall rate of IOU in
the interval of 0.5 and 0.95 from the Figure 10; our model has
good convergence and a high recall rate and accuracy rate.

6.3. Ablation Experiments
6.3.1. The Effectiveness of PSA
A PSA mechanism introduces, which prevents background
noises, and refines similar pest features. The self-attention
module uses novel vector attention, generating content

adaptation ability while maintaining the channel adaptation
ability. The self-attention module makes our similar target
detection model have strong adaptability, effectively removing
and enhancing the salient differences between different features.
The PSAmechanism is beneficial for feature extraction of objects
with appearance-similar. We introduce the PSA mechanism to
obtain the weights for each channel and multiply them with the
raw feature map.

6.3.2. The Effectiveness of SCC
Because some pests are highly similar in appearance and almost
the same size, in the training process, we deal with the ambiguity
of the same FPN level by selecting the bounding box with the
smallest area. In the test, if two objects A and B with the same
category overlap, no matter which objects the position in the
overlap prediction is, the forecast is correct. The missing object
can be predicted by the work only belonging to it. If A and B do
not belong to the same category, the overlapping position may
indicate the category of A but will return to the bounding box

FIGURE 9 | Detection results of YOLOv3 (column 1), Faster RCNN (column 2), FCOS(column 3), and our ASP-Det (column 4).

Frontiers in Plant Science | www.frontiersin.org 14 July 2022 | Volume 13 | Article 864045119

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. ASPD-Det

of B, which will cause errors. The SCC module is mainly used
to adjust the size jump problem in FPN. Using the SCC module
can make the pests have a larger field of vision in feature areas of
similar sizes, which helps distinguish the illusion of classification
confusion caused by similar texture problems.

6.3.3. The Effectiveness of Center-Ness
ASP-Det using multi-level FPN prediction can only solve the
target occlusion between different sizes. In the same feature-
level processing, intractable ambiguity will still appear. However,
the size of most of the target data in our dataset is not much
different. Many of these problems that need to be considered are
the occlusion problems of targets of the same scale. Asmentioned
before, we introduce center-ness to suppress the low-quality
detected bounding boxes produced by the locations far from the
center of an object. As shown in Table 7, the center-ness branch
is used in regression and classification. The AP improvement of
the dataset is not very large; AP from 44.3 to 44.6% is not obvious.

6.3.4. The Effectiveness of Different Backbones
To prove that ourmodule plays a vital role in different backbones,
we use several backbone frameworks for experiments, as shown
in the Table 9. Our proposed method has good performance
for our proposed ASPD task, so applications that expect the

same task can refer to and use this algorithm framework. Using
different backbones for ASPD tasks, from the results, the resnet
network structure is more mature and robust, and the accuracy
is higher. Without a better and faster implementation method,
it is relatively safe to use the resnet network architecture at the
current practical stage.

6.4. Real-Time Performance
In the field of real-time image enhancement, image super-
resolution (SR) is a crucial research hotspot (Liu X. et al., 2021).
In real-time applications in agriculture, real-time performance
is also critical. Real-time depth models are prominent in
practical applications as an agricultural image detection method.
Moreover, we also designed a real-time version named ASP-
Det_RT.We reduce the scale of input images from 1,333× 800 to
800× 512, which decreases the inference time per image by 50%.
The effect is shown in Figure 11.

We evaluate the computation efficiency of our multi-
categories similar pest detector from the aspects of training and
testing time and compare it with FCOS, YOLOv3, and Faster
R-CNN. The testing time of our method and FCOS method
takes 0.045 s per pest image in total, which is slightly faster than
Faster R-CNN and 2.5 times slower than the YOLOv3 detector.
However, compared with FCOS and YOLOv3 detectors, the

FIGURE 10 | Classification results of IOU (0.5–0.95).
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training time of our pest detector is faster, and most importantly,
the detection precision of our approach is primarily higher than
YOLOv3. Otherwise, the hyper-parameter of our approach is
less than Faster R-CNN and YOLOv3. Therefore, considering
detection efficiency and accuracy, our method is the best choice
and applicable to detect the 24-category similar pests.

6.5. Qualitative Results
For appearance-similar agricultural pests, even if we use the
attention mechanism, non-local fusion, and skip module for
processing, the target still has some misclassifications and
undetectable situations. As shown in Figure 12, other pests
located around the larger size pests inside the red box are difficult
to identify and may be affected by the size and posture of the

TABLE 9 | The ap value for Pest-as under different backbones.

Backbone AP AP50 AP75

ResNet-50 45.0 74.9 50.2

HRnet 44.6 74.4 49.9

ResNetXt 45.5 75.5 50.9

Res2Net 45.1 74.6 50.2

Swin-t transform 44.6 74.9 48.2

pests in the box. Another part is due to the problem of the time
interval for catching pests, which causes some distortion of the
color of some pests (the pink boxes) and misses inspection. The
model may not recognize some pests because they are too similar
to the background color or neighboring pests (like the sample
in the purple box in the first image). Another part is that the
size of the pests is relatively small compared to the original size
in other pictures, and the posture is also more diverse, which
causes themodel tomiss detection (such as the sample in the cyan
box). Finally, there may be missed detection due to the model’s
limitations, which will be the main focus of follow-up research.

7. CONCLUSION

Our proposed ASP-Det does not employ IoU scores between
anchor and ground-truth boxes to determine the training
labels. Additionally, ASP-Det avoids all computation and
hyper-parameters related to anchor boxes and solves similar
pest detection in a per-pixel prediction fashion, similar to
other dense prediction tasks, such as semantic segmentation.
Fortunately, the accuracy of ASP-Det is also excellent for
pest appearance-similarity. Given the superior performance
and merits of the anchor-free detector (e.g., much more
straightforward and fewer hyper-parameters), we encourage

FIGURE 11 | Comparisons of efficient of different modules proposed in this paper with the-state-of-arts method on similar pest dataset on a single GPU.
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FIGURE 12 | Some problems in the ASPD-Det detection method, misclassification, or omission of detection.

plant protection to rethink the necessity of anchor boxes in object
detection. Additionally, to apply our pest detection method in
practice, we present some real-time models of our detector,
which has excellent performance and inference speed. Given
its effectiveness and efficiency, we hope that ASP-Det can
serve as a solid and straightforward alternative for promoting
agricultural production.
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Tomato plants are infected by diseases and insect pests in the growth process, which
will lead to a reduction in tomato production and economic benefits for growers. At
present, tomato pests are detected mainly through manual collection and classification
of field samples by professionals. This manual classification method is expensive and
time-consuming. The existing automatic pest detection methods based on a computer
require a simple background environment of the pests and cannot locate pests. To
solve these problems, based on the idea of deep learning, a tomato pest identification
algorithm based on an improved YOLOv4 fusing triplet attention mechanism (YOLOv4-
TAM) was proposed, and the problem of imbalances in the number of positive and
negative samples in the image was addressed by introducing a focal loss function.
The K-means + + clustering algorithm is used to obtain a set of anchor boxes
that correspond to the pest dataset. At the same time, a labeled dataset of tomato
pests was established. The proposed algorithm was tested on the established dataset,
and the average recognition accuracy reached 95.2%. The experimental results show
that the proposed method can effectively improve the accuracy of tomato pests, which
is superior to the previous methods. Algorithmic performance on practical images of
healthy and unhealthy objects shows that the proposed method is feasible for the
detection of tomato pests.

Keywords: image processing, pests identification, YOLO, object detection, tomato

INTRODUCTION

Agricultural pests are known to be one of the main factors causing damage to the world’s
agricultural economy. As a kind of insect, they mainly depend on the survival of various plants
and crops, causing different degrees of harm to agriculture, forestry, and animal husbandry. The
economic impacts of agricultural pests spread worldwide. The economic losses of agriculture in
Europe reached 28.2%, in North America reached 31.2%, and in Asia and Africa reached more
than 50%. Since the 1960s, integrated pest control (IPM) (Parsa et al., 2014) has been the main pest
control mode. IPM has formulated the best pesticide recommendations for economic development
and ecological maintenance based on the results of pressure detection of different pests. Therefore,
the accurate identification and location of pests are very important for IPM. At present, most
detection methods are expensive and time-consuming because they require IPM professionals to
collect and classify field samples manually, which prevents the developing countries that lack IPM
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technological support from using these technologies for pest
control. Therefore, in the field of IPM, a fast and low-
cost automatic detection method for agricultural pests is
urgently needed.

In recent years, deep learning has developed rapidly and
has attracted an increasing number of researchers’ attention
because of its superior performance in feature extraction, model
generalization, and fitting. The convolutional neural network
(CNN) in the deep learning method performs well in large-
scale image recognition tasks. The biggest difference between
CNN and traditional pattern recognition methods is that it
automatically extracts features layer by layer from images, which
can contain thousands of parameters.

At present, many pest recognition systems have been proposed
by researchers. Yang et al. (2017) proposed an insect recognition
model based on deep learning and image saliency analysis. On the
test set of tea garden images, the average accuracy was 0.915, the
running time was reduced to 0.7 ms, and the required memory
was 6 MB. Shen et al. (2018) used deep neural network technology
to establish the detection and recognition method of stored grain
pests. Faster R-CNN was used to extract the possible insect areas
in the image and classify the insects in these areas. The average
accuracy was 88%. Mique and Palaoag (2018) used a CNN-based
model to retrieve and compare the collected images with a pile
of rice pest images. The model can achieve 90.9% of the final
training accuracy. Zhong et al. (2018) designed and implemented
a vision-based classification system for flying insect counting.
First, yellow sticky traps were set up in the monitoring area to
trap flying insects, and a camera was set up to capture images in
real-time. Then, a method of object detection and rough counting
based on YOLO was designed, and a support vector machine
based on global features was designed. Finally, six kinds of flying
insects, including bees, flies, mosquitoes, moths, scarabs, and fruit
flies, were selected to evaluate the effectiveness of the system.
Compared with the conventional method, the experimental
results show that the method performs better, and the average
classification accuracy is 90.18%. Barbedo and Castro (2019)
studied the effect of image quality on the identification of psylla
using CNN. A total of 1,276 images were used in the experiment.
Half of them were collected using a flat panel scanner, and
the other half by two different brands of smartphones. The
accuracy was 70 and 90%, respectively, which shows that a more
realistic environment can guarantee the robustness of the trained
network. He et al. (2020) built a brown rice planthopper detection
model based on deep learning and achieved good results through
the improvement of faster RCNN and YOLOv3 models. The
authors compared these two models under equivalent conditions
and showed that the YOLOv3 model performs better and has
a higher detection rate than the faster RCNN. Liu et al. (2020)
fused semantic information (temperature, humidity, longitude
and latitude, etc.) of pest images with CNN models and verified
the advantages of the attention mechanism in solving the problem
of imbalanced data.

In this study, an algorithm that can diagnose tomato
pests quickly and effectively by improving the YOLO model
is proposed. It can solve the problem of low diagnostic
accuracy of pests encountered by tomato producers during

cultivation, and has some implications for future research
on tomato pest prevention, and advance the development of
intelligent agriculture.

RELATED WORKS

Object Detection
Object detection refers to recognizing the corresponding object
category, location, and size from a given image or video, to
carry out the next analysis. Object detection algorithms based
on regression do not need to generate branches from candidate
regions. For a given input image, the candidate boxes and
categories of objects are directly regressed at multiple positions of
the image. Therefore, this research will adopt the object detection
algorithm based on regression.

In 2016, the YOLO network was proposed by Redmon
et al. (2016). Based on YOLO, YOLOv2 (Redmon and Farhadi,
2017), YOLOv3 (Redmon and Farhadi, 2018), and YOLOv4
(Bochkovskiy et al., 2020) were proposed. The YOLO network,
as a new and outstanding object detection technology, has been
widely recommended by scholars. It needs only one neural
network to detect objects. YOLO can read the whole image at a
time and can recognize the local information of the image, which
greatly reduces the false detection rate of the background. It has
a slight decrease in accuracy compared with the most popular
network, but it has a great improvement in speed. Fast YOLO has
a speed of 155 frames per second, which can be well applied in
the scenes with high real-time requirements. At present, YOLO
has different versions, with YOLOv4 being much faster than the
other versions in speed.

With the deepening of research on object detection, scholars
apply the improved YOLO algorithm to the real-time detection
of vehicles (Zhou et al., 2020), pedestrians (Xu et al., 2022),
traffic signs (Zhou et al., 2020), ships (Tang et al., 2021),
fruits (Wang and He, 2021), and so on. In addition, its
application in the field of agricultural pest detection also began
to appear. Zhong et al. (2018) designed a vision-based flying
insect counting and classification system based on YOLO. The
average counting accuracy of raspberry peel was 92.50%, and
the average classification accuracy was 90.18%. He et al. (2020)
proposed a rapid and accurate detection algorithm for brown
rice planthopper, Yolov3. The average recall rate was 49.60%,
and the average accuracy rate was 96.48%. Zha et al. (2021)
proposed the YOLOv4_ MF model to detect forestry pests. The
experimental results showed that compared with the YOLOv4
model, the mAP of the proposed model was 4.24% higher. Xin
and Wang (2021) used YOLOv4 to test and verify images after
quality level classification, and the recognition accuracy was 95%,
which was much higher than the basic 84% of the DCNN model.

Compared with other CNN networks that use sliding
classifiers, YOLO is a unified network that can simultaneously
predict the location, size, and category of objects. It is a real-
time object detection system based on a deep convolution neural
network. As the YOLO network has the characteristics of end-
to-end, the whole training and detection process from data input
to result in output is completed in the network model, so it can
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guarantee accuracy and show a faster detection speed. So, this
study combines the idea of YOLOv4 to detect pests.

Attention Mechanism
Attention mechanisms play an important role in human
perception (Corbetta and Shulman, 2002). An important
property of the human visual system is that the entire scene
cannot be processed simultaneously. Instead, to better capture
the visual structures, humans utilize a range of local saccades and
selectively focus on the salient parts (Zheng et al., 2015).

The introduction of attention mechanisms into CNN
networks has recently been proposed in the field of object
detection to improve performance on large-scale classification
tasks. Wang et al. (2017) proposed a residual attention network
using an encoder attention module. By refining the feature
maps, the network can’t only perform well but also be robust
to noise inputs. Hu et al. (2018) introduced a compact attention
feature extraction library using global average pooling features
to calculate the information weight of channel attention. Woo
et al. (2018) used an efficient architecture that simultaneously
utilizes spatial and channel attention modules to focus on
more information, and excellent results have been achieved.
Ju et al. (2021) introduced the attention mechanism into the
YOLO algorithm, and the detection accuracy has been improved.
Inspired by this, this study combines the YOLO algorithm with
the attention module to do further research.

The Aim of This Study
With the advancement of agricultural intelligence, object
detection has achieved certain development in the agricultural
field. At present, many deep learning methods for object

detection are widely used in crop identification, long-range
potential as well as pests and diseases detection, weed
identification, fruit and vegetable quality detection, and
automatic picking.

The pests that often occur in tomatoes include whiteflies,
aphids, and leafminers. Once they occur, they will cause a
lot of loss. Therefore, it is of great significance to identify
tomato pests in order to control them in time and eliminate
them in germination. The actual environment of tomato pest
identification is very complex. To achieve a more effective and
widely applicable pest detection technology and meet the needs
of using the least and most convenient operation to complete
expert-level pest detection, this study combines deep learning
with tomato pest detection. To achieve the goal of rapid and
highly accurate detection of images of tomato pests, this study
proposed a deep learning model that is fast and can perform
multi-object detection based on YOLOv4 and improved it by
fusing the triplet attention (Song et al., 2018) mechanism.
Experiments showed that the proposed model greatly improved
the comprehensive detection ability of the images of tomato pests.

METHODOLOGY

Principle of YOLO
The YOLO algorithm treats the detection problem of an object
as a regression problem of position coordinate and confidence
score directly. Therefore, the YOLO algorithm can predict the
category and location of multiple objects in real-time at one
time. Unlike traditional object detection algorithms, which select
the sliding window method and the Faster R-CNN algorithm
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FIGURE 1 | Network structure diagram of triplet attention (Song et al., 2018).
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to extract candidate regions, YOLO directly inputs the whole
image into the network model for training and detection.
This idea greatly improves the training and detection speed of
the network model.

YOLOv4 is the fourth version of the YOLO series of
algorithms. The first major improvement of the YOLOv4 model
is to use CSPDarknet53 as its backbone network. CSPDarknet53
is mainly composed of the CBM module and CSP module. The
CBM module is composed of the Conv, batch normalization
(BN), and Mish activation functions. The CSP module contains
two branches; one is the convolution of the main cadres. One
is used to generate a large residual edge, which enhances the
learning ability of CNN by splicing two branches across different
levels and integrating channels. Another major improvement
of YOLOv4 is that in the detection section, a spatial pyramid
pooled layer SPP module is used, which enables any size of
feature map to be converted to a fixed size feature vector,
inherits the YOLOv3 approach in the prediction of the boundary
box, generates a priori box of different scales using K-means
clustering, and predicts on the feature map at different levels.
The difference is that it uses the idea of PANet to fuse features
at different levels.

In addition, YOLOv4 introduces mosaic augmentation. Its
principle is to randomly select four images at a time and
randomly scale, flip horizontally, flip vertically, and change
the color gamut of the images. Then, according to a certain
proportion, the four images are intercepted and stitched into a
new training image. Because many objects in the real natural
environment are not the detection target as the detection
background, they will seriously affect the accuracy of the
algorithm. So a mosaic is used to enrich the background
of the detection object, which is conducive to the weight
distribution of different characteristics of different pests in the
training algorithm.

Triplet Attention Module
The YOLOv4 network treats the characteristics of each channel
equally, which limits the detection performance of the algorithm
to some extent. The tomato pest image background is
complicated, and some pest targets are small in the area occupied
by the image, which can easily cause misdetection. Therefore,
the improvement of YOLOv4 is needed. To further improve
the model accuracy, this study uses triplet attention to improve
the CSPDarknet53 feature extraction network in YOLOv4. The
triplet attention module (Song et al., 2018) is an inexpensive
and effective attention mechanism with few parameters and does
not involve dimensionality reduction. It is an additional neural
network, as shown in Figure 1.

The triplet attention module consists of three parallel
branches, two of which capture cross-dimensional interactions
between channel C and space H or W. The last branch is used
to build spatial attention. The output of the final three branches
is aggregated on average.

This study uses the triplet attention module to improve
the CSPDarknet53 network of YOLOv4, enabling the network
to acquire cross-dimensional interactions through automatic
learning, increasing effective feature channel weights, and thus
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FIGURE 2 | Network structure diagram of the proposed model.

making the network focus on important feature channels. The
backbone network structure of the YOLOv4 model improved
with the triplet attention module (YOLOv4-TAM) is shown in
Figure 2.

The New Loss Function
During the loss value calculation in YOLOv4, the detector divides
the prediction box into positive and negative samples. The
predicted box with the largest IOU value from the annotated
box is divided into positive samples, and predicted boxes with
all annotated boxes having IOU less than 0.5 are classified as
negative samples. The small object occupies far fewer pixels
in the image than the background does, resulting in a large
difference in the number of positive and negative samples
during training.

To this end, this study addresses the problem of imbalances
in the number of positive and negative samples in the image by
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introducing a focal loss function, which is shown in the following
formula:

Loss = Losscoord + Lossobj + Lossclass

= λcoord

S2∑
i = 0

B∑
j = 0

lobjij
(
2− wi × hi

)
(1− CIOU)−

λobj

S2∑
i = 0

B∑
j = 0

lobjij

∣∣∣Ci − Ĉi

∣∣∣β · [αĈilog (Ci) + (1− α)
(

1− Ĉi

)

·log (1− Ci)

]
− λnoobj

S2∑
i = 0

B∑
j = 0

lnoobjij

∣∣∣Ci − Ĉi

∣∣∣β · [αĈilog (Ci)

+ (1− α)
(

1− Ĉi

)
· log (1− Ci)

]
− λobj

S2∑
i = 0

∑
c∈class

lobjij

[
p̂i(c) log(pi(c)) + (1− p̂i(c)) log(1− pi(c))

]
(1)

In the abovementioned formula, λcoord is the weight coefficient
of the coordinate prediction. wi and hi are the width and height
of the annotation box, respectively. Complete intersection over
union (CIOU) is a new IOU that has added the penalty coefficient
of the annotation box and the predicted box. λobj is the weight
coefficient when there is an object. λnoobj is the weight coefficient
when there is no object. α is used to balance positive and negative
sample numbers, and this study takes the value of 0.75. β is
used to moderate the weight of difficult and simple samples,
and this study takes the value of 2. S2 is the number of grids.
B is the number of predicted boxes in each grid. Ĉi and Ci
are the confidence scores of the predicted box vs. true box,
respectively. p̂i(c) and pi(c) are the probability values for the
category of the predicted box vs. true box, respectively. lnoobjij
indicates that the object does not belong to the j bounding box of
the i grid. lobjij indicates that the object belongs to the j bounding
box of the i grid.

The New Anchor Boxes
Since the original YOLOv4 network was experimented on the
VOC dataset, the original anchor box mechanism was set for the
VOC dataset. For pest detection, utilizing the original anchor box
mechanism would affect the IOU value, resulting in the inability
to screen out the optimal prediction box. Therefore, the anchor
box mechanism in the original YOLOv4 network needs to be
improved. The K-means++ clustering algorithm can randomly
generate clustering centers, which ensures a discrete type of initial
cluster center, elevating the effect of anchor box generation. So
the K-means + + clustering method is used to randomly choose
the center of the sample and locate the anchor box for pest
images. The new anchor boxes are obtained, including (13, 15),
(19, 22), (23, 28), (44, 49), (52, 56), (64, 67), (87, 93), (102,
116), and (126, 139).

EXPERIMENTS

The experimental step flow of the study is shown in Figure 3.

Dataset Collection
The main pests harming tomatoes in greenhouses are whiteflies,
aphids, and leafminers. The pest image acquisition apparatus was
installed in the Shouguang tomato greenhouse (36.8N, 118.7E)
for this experiment (Figure 4). The yellow insect induction plate
was utilized to attract the pests according to the principle of pest
chemotaxis, and then the pests were glued by the high viscosity on
the plate to achieve the trapping effect, by timed photographing
the image of the insect induction plate and transmitting the image
to the computer PC end for processing.

The image acquisition time of pests was from 22 October
2019 to 30 December 2020, and the species of pests captured
by the induced insect plate were comprehensive and large in
number. A total of 10 mutagen plates with a length of 35 cm
and a width of 25 cm were suspended in the greenhouse and
replaced every 5 days, and images of the mutagen plates were
captured using an image acquisition device. The acquired image
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FIGURE 3 | The experimental step flow of the study.
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FIGURE 4 | The experimental image acquisition site.

TABLE 1 | Information on tomato pest dataset.

Class Pests class Labeling quantity

1 Whitefly 6327

2 Aphid 5687

3 Leafminer 6912

4 Other 6679

size was 1,960 × 1,080, and the image storage format was jpg.
To make the experiment more closely resemble the real farm
environment, all images were taken under natural conditions,
and the adhered pests on the induced plate were cleaned up
regularly by a dedicated person. A total of 2,893 images of
induced plate pests were acquired for this experiment.

Data Pre-processing
To further enrich the sample data while making up for the size
and distribution limitations of pest targets and allow the model
to achieve a better training effect, this study preprocessed the
sample data. Mosaic, image rotation, multiscale cropping and
magnification, image translation, image mirroring, and image
denoising were used for data enhancement. After data pre-
processing, the position distribution situation of the pest targets
was enriched, and the small-size targets were enlarged to some
extent, thus improving the generalization ability and training
efficiency of the model.

Data Annotation
This experimental label was mainly divided into 4 categories,
which were whiteflies, aphids, leafminers, and other large pests.
The main purpose of classifying other large pests into one

FIGURE 5 | Examples of input images used in this study.

category was to explore the potential pest outbreak because large
pests have a strong migration ability and are prone to large pest
invasions in real-life production, which can increase the stress
resistance of the algorithm when applied in practice. The sample
number of pests in the image of the induced insect plate is huge,
the situation when the occurrence of pests adhesion leads to an
unclear separation is much lower than the situation when the
pests are at an independent stage, and the removal of the number
of the attached pests in the actual production does not affect
the overall induced insect plate pests warning, so this study will
only label the independent pests. The images were annotated
using labeling, and the number of samples of whiteflies, aphids,
potential leaf flies, and other large pests was 6,327, 5,687, 6,912,
and 6679, respectively, as shown in Table 1 and Figure 5. Finally,
70% of images were randomly selected to construct the training
set, 20% of images were used as the verification set, and the
remaining images were used as the test set.

Experimental Operation Environment
To better evaluate the performance of the proposed algorithm,
it was compared with other pest recognition algorithms based
on existing popular object detection methods, including DPM,
R-CNN, Fast R-CNN, Faster R-CNN, and SSD, and the
simulation platform configuration is shown in Table 2.

Evaluating Indicator
In the field of object detection, according to the research
emphasis, the evaluation indexes can be different. The commonly
used evaluation indexes include detection accuracy, efficiency,
speed, positioning accuracy, and so on. This experiment mainly
evaluates the model according to detection accuracy and
detection speed.
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TABLE 2 | Configuration of an experimental platform.

Server CPU Processor: INTEL I7-9800X

GPU: GEFORCE GTX1080Ti

Memory: The Kingston 32G DDR4

Software Operating System: Ubuntu 18.04

Language: Python

GCC 7.3.0

CUDA 10.0.130

OpenCV 3.4.5

Among them, GPU acceleration was used for CUDA programming, and OpenCV
was mainly used to display images during testing.

(1) Detection accuracy
¬ mAP (mean average precision).
Usually, mAP is used as the evaluation criterion for detection

accuracy. First, the average accuracy of each category in the
dataset needs to be calculated as follows:

Paverage =
1
R

n∑
j=1

Ij ·
Rj
j

(2)

In the above formula, R represents the number of objects
related to a category in the dataset (including detected and
undetected), and n represents the number of objects in the
dataset. If object j is relevant, then Ij = 1; if object j is irrelevant,
then Ij = 0.Rj represents the number of related objects in the first
j objects. Then the average of the average precision of multiple
categories is taken as mAP:

mAP =
Paverage
N(class)

(3)

N(class) represents the number of all the categories. The
larger the mAP value, the higher the monitoring accuracy of the
algorithm; conversely, the lower the accuracy of the algorithm.

 Average precision (AP).
First, we need to introduce the precision-recall (PR) curve:

the horizontal axis recall of the PR curve represents the ability
of the classifier to cover the positive samples; the vertical axis
precision represents the accuracy of the classifier to predict

TABLE 3 | Comparison of training results of six models.

Object detection algorithms mAP FPS

Faster R-CNN 68.7 9

SSD 72.3 43

YOLOv3 73.6 71

YOLOv4 87.1 82

The proposed algorithm 93.4 83

TABLE 4 | Proportion of detection errors (%) for the six algorithms.

Algorithms Number of false checks Misdetection rate/%

Faster R-CNN 190 1.27%

SSD 65 0.43%

YOLOv3 71 0.47%

YOLOv4 63 0.42%

The proposed algorithm 54 0.36%

positive samples. Then the PR curve represents the trade-off
between the accuracy of recognition of positive cases and the
coverage ability of positive cases. AP is the area of the image
enclosed by the PR curve and the horizontal axis.

For continuous PR curves:

AP =
∫ 1

0
PRdr (4)

For discrete PR curves:

AP =
n∑

k=1

Pk1rk (5)

(2) Detection speed
Frames per second (FPS) is used to evaluate the detection

speed. The more the FPS, the faster the detection speed of
the algorithm is, otherwise, the slower the detection speed of
the algorithm is.

FIGURE 6 | Process of model training.
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TABLE 5 | Algorithmic performance on practical images of healthy and
unhealthy objects.

Pests class AP (%)

Whitefly 84.7

Aphid 83.9

Leafminer 62.7

Other 89.6

mAP (%) 78.1

EXPERIMENTAL RESULTS AND
ANALYSIS

Model Training
Before training on the model, some initial settings are required.
The values of hyperparameters must first be determined. In this
experiment, the value of the batch is set to 32, and the value of
the subdivisions is set to 16. That is, 2 images are passed into
the network each time, 32 images are processed, and the model

is updated and trained again with parameters. So, one epoch is
for every 32 images. The learning rate is set to 0.0001, the weight
delay is set to 0.0005, and the momentum is set to 0.9. After the
first training, the prediction result of the network is not ideal
enough. Through training with multiple epochs, a satisfactory
training effect is produced. Figure 6 shows the training process.
It can be seen that after training with 200 epochs, the loss of the
network model decreases and stabilizes in a stepwise manner, i.e.,
a relatively satisfactory effect can be achieved after 200 epochs,
and the training is continued in the experiment until the loss
convergence is close to 0.

Performance Comparison of Different
Object Detection Algorithms
The experiment was carried out on the Darknet53
network. Faster R-CNN, SSD, YOLOv3, YOLOv4, and the
proposed algorithm are the comparison algorithm. The
five network model parameters are initialized by using the
pre-training network model.

FIGURE 7 | Detection effect of practical images of healthy and unhealthy objects.
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As shown by comparing the proposed algorithm with the
other five algorithms in Table 3, the detection accuracy of
the proposed algorithm is better than the other algorithms.
Furthermore, in terms of detection speed, the proposed algorithm
has an absolute advantage, which shows that the proposed
algorithm can effectively carry out real-time detection.

Table 4 shows the proportion of detection errors for the
six algorithms, with the proposed algorithm having the lowest
error detection rate, only 0.36%. In consequence, the proposed
algorithm in this study has a low false detection rate.

Algorithmic Performance on Practical
Images of Healthy and Unhealthy
Objects
The algorithmic performance on practical images of healthy and
unhealthy objects is shown in Table 5.

As shown in Table 5, the AP of other pests is the highest
and reaches 89.6%. However, the AP of leafminers is the lowest
and only reaches 62.7%. The main reason for the large difference
in detection accuracy between the two pests is the difference in
pest image samples. The bodies of other pests are relatively large,
and the number of pests in a single image is less, whereas the
bodies of leafminers are relatively small, the number of pests in a
single image is greater, and many are stacked together, resulting in
greater detection difficulty and smaller AP. The mAP of the four
pests reaches 78.1%, which has met the accuracy requirements of
practical application and which shows that the proposed method
is feasible for the detection of pests.

The actual detection effect comparison of pest images is
shown in Figure 7. The detection results of all pest objects in
the figure are marked with color rectangular boxes. It can be
seen intuitively that the proposed algorithm has better detection
results for images with large pests, while for images with dense
small pests, the pest detection results are slightly worse, and some
pests cannot be detected.

CONCLUSION AND FUTURE
DIRECTIONS

Conclusion
In response to the problems of partial miss detection combined
with poor detection accuracy that exists when using the YOLOv4
network to directly detect tomato pest images, this study proposes
an improved YOLOv4 object detection method that employs
a triplet attention mechanism and addresses the problem of
imbalances in the number of positive and negative samples in the
image by introducing a focal loss function. The experiment shows
that the proposed model greatly improves the comprehensive
performance on the image detection task of tomato pests based
on not only increasing the complexity of the model on a small
scale but also guaranteeing the real-time of the model, which is
of great significance to reduce and prevent the incidence chance
of tomato pests. Compared with other methods based on deep
learning, this method can maintain high accuracy and has very
prominent real-time performance, and can effectively identify

the type and location of pests on the images with a small false
detection rate and good robustness.

Future Directions
Although good experimental results have been achieved in this
study for image recognition research of tomato pests, it is of great
significance for tomato pest prediction and control. Because of
the limited time, other things need further research:

(1) Current research focuses on the processing of static images,
and how image recognition techniques can be applied in
videos, integrated with monitoring devices is something to
be investigated next. The application of image recognition
technology in videos requires that the algorithms process
fast, have high accuracy rates, and have requirements
such as automation, continuity, and so on. It is difficult
to meet the requirements only with the computational
quantity of current algorithms. Borrowing from pedestrian
detection methods is a feasible direction and requires
further research.

(2) The sample size of the tomato pest image dataset
established in this study is relatively large or far from
that of standard-scale image datasets frequently used
by the deep learning community, and the dataset size
should be greatly expanded in future studies. It is also
evident that the manual method cannot be adopted for
the annotation of datasets alone, but in combination
with existing detection models to automatically annotate
new pest images, followed by corresponding manual
corrections so that the combination of machine and
manual annotation can greatly reduce the cost and time
of work. Then the optimization and boosting of the object
detection model should be studied in terms of a sufficiently
capacitated dataset.

(3) The study of new algorithms need further research. It
can be found that scientific development must have been
helical. New algorithms can drive innovation of the whole
technology, but there is always a validity period. There are
many other ways to effectively optimize the model that still
need to be attempted. In addition, how to solve the problem
of pest adhesion and reduce the detected repeat box in the
follow-up work will be the next research direction.
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Early recognition of tomato plant leaf diseases is mandatory to improve the

food yield and save agriculturalists from costly spray procedures. The correct

and timely identification of several tomato plant leaf diseases is a complicated

task as the healthy and affected areas of plant leaves are highly similar.

Moreover, the incidence of light variation, color, and brightness changes,

and the occurrence of blurring and noise on the images further increase the

complexity of the detection process. In this article, we have presented a robust

approach for tackling the existing issues of tomato plant leaf disease detection

and classification by using deep learning. We have proposed a novel approach,

namely the DenseNet-77-based CornerNet model, for the localization and

classification of the tomato plant leaf abnormalities. Specifically, we have used

the DenseNet-77 as the backbone network of the CornerNet. This assists

in the computing of the more nominative set of image features from the

suspected samples that are later categorized into 10 classes by the one-stage

detector of the CornerNet model. We have evaluated the proposed solution

on a standard dataset, named PlantVillage, which is challenging in nature

as it contains samples with immense brightness alterations, color variations,

and leaf images with different dimensions and shapes. We have attained an

average accuracy of 99.98% over the employed dataset. We have conducted

several experiments to assure the effectiveness of our approach for the timely

recognition of the tomato plant leaf diseases that can assist the agriculturalist

to replace the manual systems.
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Introduction

In accordance with a report issued by the Food and
Agriculture Organization (FAO) of the United Nations, the
population of humans will undergo a tremendous increase
around the globe to 9.1 billion by 2050. Such an increase in
the number of humans will also raise the demand for food
(Bruinsma, 2009). Meanwhile, the decrease in agricultural land
and the unavailability of clean water will limit the progress
of nutriment amounts. Therefore, there is an urgent demand
for improving food yields by consuming minimum cultivation
space to fulfill the necessities of humans. The occurrence of
several crop abnormalities results in a substantial decline in both
the yield and quality of food. Hence, the timely recognition
of such plant diseases is required as these diseases can affect
the profit of farmers and can increase the purchase cost of
food. Such implications can introduce economic instability in
the markets. Moreover, the plant diseases at their adverse stage
can destroy the crops which can create a starvation scenario
within a region, specifically in low-income countries. Plant
inspections are generally carried out with the help of human
experts. However, this is a cumbersome and time-consuming
activity that relies upon the presence of area experts. These
plant examination procedures are not considered very reliable
and it is practically impossible for humans to inspect every
plant separately (Pantazi et al., 2019). To enhance the quantity
and quality of food, there is a need to timeously and correctly
recognize the various plant diseases which can also force the
farmers into using the costly spray methods. To tackle the
above-mentioned problems of manual processes, the research
community is focusing on the development of automated plant
disease detection and classification systems (Wolfenson, 2013).

The focus of this paper is the recognition of several tomato
plant diseases as tomato has the largest consumption rate,
of 15 kg per capita within a year when compared to other
vegetables such as rice, potato, and cucumber. Moreover, the
tomato crop counts for 15% of the entire vegetable ingestion
globally (Chowdhury et al., 2021). Further, tomatoes have the
highest cultivation rate with an annual growth rate of 170
tons worldwide (Valenzuela and Restović, 2019). The leading
countries for its production are Egypt, India, the United States,
and Turkey (Elnaggar et al., 2018). In a study conducted by the
FAO (Sardogan et al., 2018), the occurrence of several tomato
plant diseases caused a severe reduction in its quantity and most
of the abnormalities originated from the leaves of tomato plants.
It has been observed that such diseases reduce the tomato food
quantity from 8 to 10% annually (Sardogan et al., 2018). Farmers
or agriculturalists can guard against these huge monetary losses
by adopting automated systems which can assist them in the
timely detection of plant diseases and taking proactive measures.
At first, technology experts utilized the methods used in the
field of molecular biology and immunology for locating the
presence of tomato plant leaf diseases (Sankaran et al., 2010;

Dinh et al., 2020). However, these techniques were not fruitful
due to their high processing requirements and dependence
on the expertise of humans. Most agriculturists belong to
poor or under-developed countries where the adaptability
of such an expensive solution is not affordable (Patil and
Chandavale, 2015; Ferentinos, 2018). The rapid progression
in the area of machine learning (ML) has introduced low-
cost solutions for the recognition of tomato plant diseases
(Gebbers and Adamchuk, 2010). Many researchers have tested
the conventional ML methods, such as hand-coded approaches,
in the field of agriculture (Gebbers and Adamchuk, 2010).
The availability of economical image-capturing gadgets has
assisted researchers to take pictures in real-time and then
give intelligent predictions via using ML-based approaches.
Examples of such approaches include K-nearest neighbors
(KNN), decision trees (DT) (Rokach and Maimon, 2005), and
support vector machines (SVM) (Joachims, 1998), which are
heavily evaluated by researchers for plant disease classification.
Such techniques are simple in their architecture and can work
well with a small amount of training data. However, they are
unable to contend with image distortions such as intensity
variations, color changes, and brightness alterations of suspected
samples. Furthermore, the conventional approaches always
impose a trade-off among the classification performance and
processing time (Bello-Cerezo et al., 2019).

The empowerment of DL frameworks has assisted the
researchers in dealing with the problems of conventional
ML approaches (Agarwal et al., 2021d, 2022). Several DL
techniques such as CNN (Roska and Chua, 1993), recurrent
neural networks (RNNs) (Zaremba et al., 2014), and long short-
term memory (LSTM) (Salakhutdinov and Hinton, 2009) have
been found to be reliable in recognizing plant leaf diseases.
The DL approaches are inspired by the human brain and
can learn to discriminate between a set of image features
without relying on the intervention of domain experts. These
frameworks recognize the objects in the same way as humans
by visually examining several samples to accomplish a pattern
recognition task. Because of such properties, the DL approaches
are found to be more suitable in areas of agriculture, including
plant disease classification (Gewali et al., 2018). Several well-
known DL frameworks such as GoogLeNet (Szegedy et al.,
2015), AlexNet (Yuan and Zhang, 2016), VGG (Vedaldi and
Zisserman, 2016), and ResNet (Thenmozhi and Reddy, 2019)
have been thoroughly tested for accomplishing several jobs in
farming, i.e., estimating food yield, crop heads recognition,
fruit totaling, plant leaf disease detection and categorization,
among others. Such approaches show reliable performance by
minimizing the processing complexity as well as by better
analyzing the topological information of the input samples.

Numerous techniques have been evaluated to identify and
classify tomato leaf diseases. However, the reliable and timely
recognition of such abnormality is a complicated job because
of the significant color resemblance between the healthy and
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diseased areas of plant leaves (Paul et al., 2020). Furthermore,
the intense changes in the dimension of plant leaves, lightning
conditions, the incidence of noise, and blurring in the input
samples further problematize the disease recognition procedure.
Hence, there is a need for a more reliable system to accurately
perform the plant disease classification process with minimum
time constraints. To deal with these issues, we have introduced a
DL approach, namely the custom CornerNet model. We have
utilized Dense-77 as the backbone of the CornerNet model
for extracting the image features. These are later classified
by the one-stage detection module of the CornerNet model.
We have conducted extensive evaluation over a challenging
dataset and confirm that our approach is proficient in classifying
the numerous types of tomato plant leaf diseases. The major
contributions of the proposed approach are listed as:

1. Modified an object detection approach named CornerNet
for tomato plant leaf abnormality categorization which
improves the classification performance with an accuracy
value of 99.98%.

2. Exhibits robust performance for 10 classes of the tomato
plant leaf diseases because of the empowerment of
the custom CornerNet model to tackle the over-fitted
model training data.

3. A cost-effective solution is presented for the classification
of tomato plant leaf abnormalities which minimizes the
test time to 0.22 s.

4. Efficient localization of diseased regions from the tomato
plant samples due to the better keypoints calculation power
of the Dense-77-based CornerNet model with the mean
average precision (mAP) value of 0.984.

5. In contrast to several new methods, extensive
experimentation has been carried out on a challenging
database named the PlantVillage dataset to exhibit the
robustness of the proposed work.

6. The presented work is capable of correctly identifying the
abnormal area of the tomato plant leaves even from the
distorted samples and under the influence of size, color,
and light variations.

The article is structured as follows: existing studies are
compared in section “Related work,” the details of the
introduced approach are described in section “Materials and
methods,” section “Results” contains the results, and the
conclusion is drawn in section “Conclusion.”

Related work

In this section, we review existing studies that have
attempted to classify tomato plant leaf diseases. Typically,
the approaches for tomato plant leaf disease detection and
classification are either conventional ML-based techniques or

DL frameworks. Hand-coded features computation approaches
with the ML-based classifiers were explored initially for the plant
leaf disease classification. One such framework was presented
in Le et al. (2020) where the suspected images were initially
processed by applying the morphological opening and closing
techniques to remove the undesired objects. Then, the filtered
local binary pattern method, namely the k-FLBPCM, was
used on the processed images to obtain the desired feature
vector. Finally, the SVM classifier was trained on the computed
features for classification. The technique in Le et al. (2020)
improved classification results for the plant leaf diseases but
was unable to show better results on the distorted samples.
Another work, namely Directional Local Quinary Patterns
(DLQP), was introduced in Ahmad et al. (2020) to extract
the keypoints from the input images. The work also used the
SVM classifier on the computed features for categorizing the
several classes of plant leaf diseases. The solution introduced in
Ahmad et al. (2020) was robust in classifying the affected areas
of plant leaves into their respective groups but classification
performance degraded for noisy images. Sun et al. (2019)
proposed an automated solution to quickly locate the diseased
portion of plant leaves. They used the Simple Linear Iterative
Cluster (SLIC) algorithm for distributing the input images
into numerous chunks. Then, for each block of the divided
image, the GLCM approach was used to extract the features
which were later combined and passed to the SVM classifier
for classification. This approach (Sun et al., 2019) performed
well in recognizing the several categories of plant diseases
but suffered from extensive processing complexity. Another
pattern recognition approach was used in Pantazi et al. (2019)
where the input sample was initially segmented via applying
the GrabCut method to locate the region of interest. Then,
the LBP algorithm was applied for keypoints vector estimation.
Finally, classification was carried out with the help of the SVM
classifier. This technique (Pantazi et al., 2019) was proficient
in locating the abnormal area of the plant leaves. However,
detection performance degraded for the samples with intense
noise attacks. Ramesh et al. (2018) proposed a computer-
aided system for the automated detection and classification of
several abnormalities of plant leaves. For feature estimation,
the HOG filter was used on the input samples, and disease
classification was performed using the Random Forest (RF)
technique. This work, elaborated on in Ramesh et al. (2018),
was found to be a lightweight solution for the recognition
of plant leaf diseases but the classification accuracy required
further improvements. Another technique was discussed in
Kuricheti and Supriya (2019) where an ML-based approach was
presented to classify the several abnormalities of the turmeric
plant. In the first phase, the K-means clustering approach
was used on the input sample to locate the area of interest.
The GLCM algorithm was applied to this area to calculate
the feature vector. Finally, the SVM classifier was adopted for
classification using the computed keypoints. The work discussed
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in Kuricheti and Supriya (2019) showed better plant leaf disease
classification results. However, detection performance degraded
for images with large brightness changes. Another handcrafted
feature estimation approach to recognize and categorize crop
leaf diseases was found in Kaur and Education (2021). Several
pattern-based approaches like the GLCM, LBP, and SIFT were
used for feature vector estimation. Then, several well-known
ML classifiers, named the SVM, RF, and KNN, were trained
on the computed features to execute the classification task.
The best results were reported for the RF classifier but the
classification accuracy needed enhancement. A similar solution
was elaborated on in Shrivastava and Pradhan (2021) where
the fourteen color spaces approach was used to extract the
keypoints from the test images with a length of 172. Then,
the calculated keypoints were passed to the SVM algorithm to
classify the samples into their respective classes based on the
detected abnormal plant leaf areas. This solution (Shrivastava
and Pradhan, 2021) provided superior plant leaf disease
categorization results. However, this performance degraded for
samples with significant color and light changes.

Due to the empowerment of DL frameworks and their ability
to better deal with image transformations, researchers are now
employing them for recognizing plant diseases.

The framework in Argüeso et al. (2020) used the DL
technique named Few-Shot Learning (FSL) for recognizing
the affected portions of crops and determining the related
category. The InceptionV3 model was applied to capture the
keypoints of the input image. The SVM classifier was used
to classify the samples using the keypoints, according to the
detected disease. The approach described in Argüeso et al.
(2020) exhibited robust plant disease classification results but
requires extensive data for the model training. Agarwal et al.
(2020b) proposed a CNN framework containing 3 convolution
layers as the feature extractor module before classification. The
framework presented in Agarwal et al. (2020b) was a lightweight
solution for the plant leaf disease classification but performance
degraded for noisy samples. Another lightweight model was
presented in Richey et al. (2020) to be used with cellphones.
The ResNet50 approach was used as the end-to-end framework
to compute the deep features and perform the classification
task. The approach improved the processing complexity for
plant disease classification. However, it was not supported by
all mobile phones due to the memory requirements. Another
framework was depicted in Batool et al. (2020) to classify the
numerous types of tomato crop abnormalities. The AlexNet
model was employed to extract the deep features of the
plant images which were later passed as input to the KNN
approach for the classification of the images into their respective
category. This work was proficient in recognizing the various
categories of tomato plant leaves. However, the KNN algorithm
was a time-consuming approach. Similarly, an approach for
categorizing the tomato plant leaf abnormalities was described
in Karthik et al. (2020) that employed the residual method

to compute the reliable feature set. A CNN-based classifier
was introduced to categorize the samples based on the learned
features of different classes. The approach (Karthik et al.,
2020) classified the samples in the related categories better.
However, it required a large number of samples for training,
which further complicated the model. Dwivedi et al. (2021)
applied the object detection approach named region-based
CNN (RCNN) to automatically detect and localize the diseased
area of grape plant leaves. The approach used the ResNet18
as the feature extractor unit which calculates the keypoints
set from the plant images. In the next phase, the RCNN
framework applied the region proposals approach to locate
the affected portion and determine the associated class. The
solution depicted in Dwivedi et al. (2021) worked well in
recognizing the various diseases of the grape plant but was
unable to generalize well from unseen training data. Another
approach was discussed in Akshai and Anitha (2021) where
several DL frameworks, namely VGG, DenseNet, and ResNet,
were evaluated for the detection and classification of several
types of plant leaf diseases. This approach (Akshai and Anitha,
2021) showed better results for the DenseNet model. Albattah
et al. (2021) proposed an object detection approach, namely
the CenterNet model, for the automated identification and
classification of numerous types of plant leaf diseases. Initially,
the dense model was used for the extraction of the keypoints
set from the input images. These were then used to recognize
the diseased portion of plant samples. This approach (Albattah
et al., 2021) showed better plant leaf abnormality recognition
ability. However, the model needed assessment on a more
challenging dataset. Another DL approach was evaluated in
Albattah et al. (2022) where the EfficientNetV2 model was tested
for the classification of numerous types of plant diseases, that
results in improving the classification performance. In Agarwal
et al. (2021c), a DL approach, namely the VGG16 model, was
used in the classification of tomato leaf diseases. The approach
introduced the concept of model optimization, but the detection
performance required extensive result improvements. Similarly,
other works discussed the model optimization concept for the
plant leaf diseases categorization (Agarwal et al., 2021a,b) but
the recognition results needed improvement. Zhao et al. (2021)
presented a model to recognize numerous tomato plant leaf
abnormalities in which the CNN approach, merged with an
attention mechanism, was utilized. The methodology attained
classification results of 99.24%. Moreover, in Maeda-Gutiérrez
et al. (2020), different DL networks, i.e., Inception V3, AlexNet,
GoogleNet, ResNet-18, and SE-ResNet50 were tested for tomato
plant disease classification. The GoogleNet approach worked
well with classification results of 99.39%. Bhujel et al. (2022)
also proposed a DL model, namely ResNet18, along with the
CBAM for recognizing the tomato plant abnormalities and
achieved an accuracy of 99.69%. The methods in Maeda-
Gutiérrez et al. (2020), Zhao et al. (2021), and Bhujel et al.
(2022) enhanced the tomato plant leaf diseases categorization
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results. However, these works accomplished classification at the
image level and are incapable of identifying the precise diseased
area.

A critical investigation of existing work is outlined in
Table 1, which depicts that there is a performance gap that
requires a more reliable model. This model must be proficient
enough to recognize the numerous categories of tomato plant
leaf disease and minimize the time complexity. In the presented
work, we have tried to cover this gap by proposing a more
accurate and robust approach for tomato plant leaf disease
classification.

Materials and methods

In this section, an in-depth discussion of the proposed
technique for tomato plant leaf disease localization and
classification is presented. The basic motivation of this
framework is to present an accurate and computationally
efficient approach that is empowered to automatically nominate
a representative feature vector independent from executing
any manual examination. Our work comprises two main
steps to accomplish the automated recognition of plant leaf
diseases. First, the images from the PlantVillage dataset are
employed to develop the annotations to correctly identify
the affected portions and their associated classes. Then,
these annotations are used in training the DenseNet-77-based
CornerNet approach. During the test phase, the images from
the test set are used to validate the model’s performance. More
precisely, we have customized the CornerNet model (Law and
Deng, 2019) by introducing the DenseNet-77 network in its
feature extraction unit. The DenseNet-77 approach as the base
network computes the feature vector which is then passed to
the one-stage detector of the CornerNet model to localize and
classify the affected regions into 10 classes. Several standard
evaluation measures are then used to quantitatively measure the
performance of the introduced framework. The detailed model
formulation of our framework is given in Algorithm 1, while
the pictorial demonstrations showing the detailed steps of our
approach are given in Figure 1.

INPUT:

TS, AI

OUTPUT:

Bbx, CustomCoNet, C-score

TS - total no of samples used

for model training

AI - annotated images showing the

diseased area on the tomato plant

leaves

Bbx - rectangular box showing the

diseased region on the output image

CustomCoNet - CornerNet model with

the DenseNet-77 backbone

C-score - confidence score along

with predicted class

SampleSize ← [x y]

Bbx computation

β ← AnchorsCalculation (TS, AI)

CustomCustomCoNet-Model

CustomCoNet ← CornerNetWithDenseNet-77

(SampleSize, β)

[dr dt] ← Distribution of dataset into

train and test sets

The training module for tomato

plant leaf disease detection and

classfication

Foreach image m in → dr

Calculate DenseNet-77-based-

deepFeatures ← df

End For

Train CustomCoNet on df, and measure

network training time as t_d77

β _dense ← EstimateDiseasedPos(df)

V_dense ← Validate_Model

(DenseNet-77, β_dense)

Foreach images M in → dt

(i) Measure features with trained

model C→V_dense

(ii) [Bbx, C-score, class] ←

Predict (C)

(iii) Present output image with

Bbox, class

(iv) η ← [η bbox]

End For

Ap_C ← Test framework C using η

Output_class ← CustomCoNet (Ap_C).

Algorithm 1. Description of steps followed by the proposed work.

Data preparation for model training

The training of the object detection model was based
on annotations development. This was focused on clearly
localizing the affected region from the training samples and their
associated category. Therefore, in the first step, we have used
the images from the training set of the plant samples from the
PlantVillage dataset and used the LabelImg software (Lin, 2020)
for relevant annotation generation. These annotations assist in
exactly outlining the diseased areas of leaves by developing
the bounding box (bbx) around them. The dimensions of the
annotations are saved as an XML file which is later employed for
model training. A few examples of annotated samples are given
in Figure 2.
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TABLE 1 An analysis of existing methods.

Reference Method Accuracy (%) Limitation

Hand-coded approaches

Le et al., 2020 K-FLBPCM + SVM 98.63 The technique lacks the ability to classify distorted plant images.

Ahmad et al., 2020 DLQP + SVM 97.80 This approach is not efficient for noisy images.

Sun et al., 2019 GLCM + SVM 98.50 The technique entails high computational costs.

Pantazi et al., 2019 LBP + SVM 95 This approach is not efficient for noisy images.

Ramesh et al., 2018 HOGs + RF 70.14 The work requires classification result improvements.

Kuricheti and Supriya,
2019

GLCM + SVM 91 The technique lacks the ability to tackle the intensity and color
variations found in the plant images.

Kaur and Education,
2021

SIFT, LBP, GLCM + SVM, KNN, and RF 82.12 The results need further improvements.

Shrivastava and Pradhan,
2021

Color spaces + SVM 94.65. The approach is not robust for unseen data.

DL approaches

Argüeso et al., 2020 InceptionV3 + SVM 91.40 The technique needs further assessment over a more complex
database.

Agarwal et al., 2020b CNN 91.20 The framework is facing the network over-fitting problem.

Richey et al., 2020 ResNet50 99 The approach requires high processing power.

Batool et al., 2020 AlexNet + KNN 76.10 The approach takes a long time to process samples.

Karthik et al., 2020 CNN 98 The work needs huge samples to train the network.

Dwivedi et al., 2021 RCNN 99.93 The approach does not perform well for unseen examples.

Akshai and Anitha, 2021 VGG, ResNet, and DenseNet 98.27 The approach requires high processing power.

Albattah et al., 2021 CenterNet 99.90 The framework needs to be evaluated on real-world examples.

Albattah et al., 2022 EfficientNetV2 99.93 Performance degrades for distorted samples.

Agarwal et al., 2021c VGG16 98.40 The classification accuracy requires improvements.

FIGURE 1

Pictorial depiction of the DenseNet-77-based CornerNet model for the tomato plant leaf diseases classification.

CornerNet model

The CornerNet (Law and Deng, 2019) is a well-known
one-stage object detection model that recognizes the region
of interest (ROI) (the diseased region of the tomato plants
in this case) from the input samples through keypoint
calculation. The CornerNet model estimates the Top-Left (TL)

and Bottom-Right (BR) corners to draw the bbx with more
accuracy when compared to other object detection models
(Girshick, 2015; Ren et al., 2016). The CornerNet framework is
comprised of two basic units: the feature computation backbone
and the prediction module (Figure 1). At the start, a keypoints
extractor unit is used which extracts the reliable feature vector
that is employed to estimate the heatmaps (Hms), embeddings,
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FIGURE 2

Example of annotated images of the tomato plant from the PlantVillage dataset.

offset, and class (C). The Hms give an approximation of a
location in a sample where a TL/BR corner is associated with
a particular category (Nawaz et al., 2021). The embeddings are
used to discriminate the detected pairs of corners and offsets
to fine-tune the bbx position. The corners with high scored TL

and BR coordinates are used to determine the exact position
of the bbx, whereas the associated category for each detected
diseased region is specified by using the embedding distances
on the computed feature vector.

The CornerNet framework shows robust performance in
detecting and classifying several types of objects (Girshick, 2015;
Raj et al., 2015; Redmon et al., 2016; Zhao et al., 2016). However,
the abnormalities of tomato plant leaves have some distinct
characteristics. These include leaves of different shapes and sizes
and high color resemblance in the affected and healthy regions
of plant leaves which complicates the classification procedure.
Moreover, the existence of several image distortions such as
differences in the light, color, and brightness of the samples
and the incidence of noise and blurring effect further increase
the complexity of the tomato plant leaf disease classification
process. Therefore, to better tackle the complexities of samples,
we have customized the CornerNet model by introducing a
more effective feature extractor, namely the DenseNet-77, as
its base network. The introduced base network is capable of
locating and extracting the more relevant sample attributes
which assist the CornerNet approach and enhance its recall
ability in comparison to the conventional model.

The reason for selecting the CornerNet approach for
classifying the diseases of tomato plants in this study is its
capability for effectively detecting objects by utilizing keypoint

approximation in comparison to earlier approaches (Girshick,
2015; Girshick et al., 2015; Liu et al., 2016; Ren et al., 2016;
Redmon and Farhadi, 2018). The framework utilizes detailed
keypoints and identifies the object by employing a one-stage
detector. This eliminates the need to use large anchor boxes
for diverse target dimensions as used in other one-stage object
recognition models, i.e., single-shot detector (SSD) (Liu et al.,
2016), and You Only Look Once (YOLO) (v2, v3) (Redmon
and Farhadi, 2018). Moreover, the CornerNet model is more
computationally robust than the other anchor-based two-stage
approaches, i.e., RCNN (Girshick et al., 2015), Fast-RCNN
(Girshick, 2015; Nazir et al., 2020), and Faster-RCNN (Ren
et al., 2016; Albahli et al., 2021), as these techniques employ two
phases to accomplish the object localization and categorization.
Consequently, the DenseNet-77-based CornerNet framework
efficiently deals with the issues of existing models by presenting
a more proficient network that extracts more nominative sample
features and reduces the computational cost.

Modified CornerNet framework

The base of a model is responsible for identifying and
computing the reliable feature vector that gives the semantic
information and reliable location of a target in an image. The
affected regions of tomato plant leaves are small, therefore
a robust and representative set of keypoints is mandatory
to recognize the diseased portion from complex backgrounds
such as changing acquisition positions, lightning conditions,
noise, and blurring. The conventional CornerNet approach
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FIGURE 3

The pictorial representation of (A) dense block and (B) transition block.

was introduced along with the Hourglass104 as the base
network (Law and Deng, 2019). The major drawback of
the Hourglass104 network is its huge structural complexity.
The larger number of framework parameters increases the
computational burden on the CornerNet model and slows down
the target identification procedure. Further, the Hourglass104
approach is inefficient when computing reliable keypoints for
all types of image distortions, e.g., extensive changes in the
size, color, and orientation of the affected areas (Zhao et al.,
2019). Therefore, we have changed the feature extractor layer
of the CornerNet model to enhance the identification and
categorization performance for tomato plant leaf diseases. To
this end, we have utilized the DenseNet-77 (Huang et al., 2017)
as the base network of the CornerNet model in our proposed
approach.

DenseNet-100 feature extractor
The DenseNet-77 network is a lightweight model from

the DenseNet family and has two major benefits over the
conventional DenseNet approach: first, the number of model
parameters is smaller than the original DenseNet model
(Masood et al., 2021); secondly, the layers within each dense
block (Db) are also reduced to further simplify its structure.
The employed DenseNet-77 model is a shallower framework
compared to the Hourglass104 approach and comprises four
Dbs in total. A detailed demonstration of the architectural

representation of the DenseNet-77 is given in Figure 3.
The DenseNet-77 approach comprises a smaller number of
model parameters (6.2M) in comparison to the Hourglass104
base network (187M). Such architectural settings give it a
computational advantage over the original base network. In
all Dbs, the convolution layers are directly linked and the
computed feature maps from starting layers are communicated
to the subsequent layers. The DenseNet model encourages the
reemployment of the computed features and facilitates the
communication of the computed data in the entire network
structure. This empowers it to deal with the image distortions
effectively (Huang et al., 2017). Table 2 shows the network
depiction of the DenseNet-77 model.

The network consists of numerous Convolutional Layers
(CnL), Dbs, and Transition Layers (TnL). A pictorial depiction
of the Db is given in Figure 3 and is the fundamental part of
the DenseNet framework. In Figure 3, i0 represents the input
layer and k0 depicts the feature maps. Furthermore, Cn(.) is a
compound function containing 3 consecutive actions: a 3 × 3
CnL filter, Batch Normalization (BtN), and ReLU. Each CN(.)
operation produces keypoint maps (k), that are used as input
iN succeeding layers. The employment of all earlier computed
features to the next layers introduces the k × (t−1)+k0 feature
maps at the t-th layer of Db, which increases the feature space
immensely. Hence, the TnL is used between the Db to lessen the
computed features. The TnL is calculated as BtN and 1 × 1 CnL
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and the average pooling layer is represented as ApL, as depicted
in Figure 3.

Prediction module
The feature computation framework consists of two separate

output units that denote the TL and the BR corners estimation
branches, respectively. Each branch unit comprises a corner
pooling layer (CPL) positioned on the top of the backbone to
pool keypoints and produces three results: Hms, embeddings,
and offsets. The prediction module is an improved residual
block (RB) containing two 3 × 3 CnL and one 1 × 1 residual
network, followed by a CPL. The CPL assists the framework to
identify the potential corners. The reduced keypoints are used
as the input into a 3 × 3 CnL-BtN layer and then the reverse
projection is performed. This improved RB is followed by a
3 × 3 CnL which produces Hms, embeddings, and offsets. The
Hms give the approximation of a location in a sample, as a
TL/BR corner, that is associated with a particular category. The
embeddings are used to discriminate between the detected pairs
of corners and offsets to fine-tune the bbx position. A suspected
image can contain more than one affected region, therefore,
embeddings assist the model to determine if the predicted
corner points belong to a single disease class or different
disease classes.

TABLE 2 Description of the DenseNet-77.

Layer DenseNet-77

Size Stride

CnL1 7× 7 cn 2

PoolL1 3× 3max_pooling 2

Db1

 1× 1 cn

3× 3 cn

× 6 1

TnL

CnL2 1× 1 cn 1

PoolL2 2× 2ApL 2

Db2

 1× 1 cn

3× 3 cn

× 12 1

TnL

CnL3 1× 1 cn 1

PoolL3 2× 2ApL 2

Db3

 1× 1 cn

3× 3 cn

× 12 1

TnL

CnL4 1× 1 cn 1

PoolL4 2× 2ApL 2

Db4

 1× 1 cn

3× 3 cn

× 6 1

Classification_layer 7× 7 ApL

FCL

SoftMax

Detection
The CornerNet model is a deep learning framework that

is independent of the selective search and proposal generation
techniques. The test image and the associated annotated sample
are given as input to the trained model. The improved
CornerNet model extracts the corner points for the diseased
area of the tomato plants and computes the associated offsets
to the x and y coordinates, the measurements of bbx, and the
associated class.

Loss function
The employed framework for the detection and

classification of tomato leaf disease is an end-to-end learning
method that practices multi-task loss during the training to
increase its recognition ability and precisely locate affected
leaf regions. The total training loss, designated by Lt, is the
combination of four different losses, given as:

Lt = Ld + αLpl + βLps + γLoff (1)

Here, the Ld signifies detection loss accountable for corner
identification, while Lpl denotes the group loss of group corners
of the same bbx. Moreover, Lps is the corner separation loss used
to separate the corners of different bbx, and Loff is the smooth
L1 loss designated for offset adjustment. The symbols α, β, and
γ are the constants for our approach, with the values of 0.1, 0.1,
and 1, respectively. The mathematical description of the Ld is
given in Eq. 2.

Ld =
−1
R

c∑
j=1

h∑
u=1

w∑
v=1

{
(1− t)∅ log(t) if

(
g
)
= 1

(1− g)ω t∅ log(1− t) otherwise
(2)

In this equation, R is the total number of detected diseased
areas in a given image. For a given image, c, h, and w designate
its total channels, width, and height. Moreover, tjuv indicates the
estimated score at a given position (u, v) for the diseased area of
class (j) in the suspected sample, and gjuv is the related ground-
truth value. The ∅ and ω indicates the model hyperparameters
that govern the influence of every selected point and have the
values of 2 and 4 for our framework, respectively.

In downsampling, the dimension of the output sample is
reduced than the actual sample size. The position (u, v) of the
diseased portion in the test sample is plotted to the position
( u

N , v
N ) in the Hms, where N indicates the downsampling factor.

The remapping of Hms to the actual sample size introduces
precision loss that eventually degrades the IoU performance for
small bbx. To tackle this problem, the offsets for all locations
are computed to fine-tune the corner dimensions as described
in Eq. 3.

Oi = (
ui

N
−

⌊
ui

N

⌋
,

vi

N
−

⌊
vi

N

⌋
) (3)

Here, Oi shows calculated offset, while for corner i, ui, and
vi represents the coordinators of u and v. Furthermore, the
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Loff , employs the smooth L1 method for adjusting the corner
positions and is represented as:

Loff =
1
M

M∑
i=1

SmoothL1Loss(Oi, 0′i) (4)

There could be several affected regions on a single image.
Therefore, several BR and TL corners are nominated. For all
corners, the model estimates an embedding vector to decide
whether a group of BR and TL corners is associated with
the same disease class or different disease classes. For this
purpose, the CornerNet model uses the “pull and push” losses
for framework training and are given as:

Lpl =
1
M

M∑
x=1

[
(elx − ex)

2
+ (erx − ex)

2 ] (5)

Lps =
1

M (M − 1)

M∑
x=1

M∑
y=1, y 6=x

max[0, 1−
∣∣ex − ey

∣∣ (6)

Here, elx shows the TL while the erx denotes the BR corners
for a diseased region x and ex is the average value of erx and erx.
The distance value to declare two detected corners belonging to
different categories is set as 1, while the value of 1 is also 1 for
all experiments.

Results

In this section, we will outline detailed information about
the dataset employed for the detection and classification
of tomato plant leaf diseases. Moreover, the mathematical
description of the used performance measures is also given.
Finally, the results of the extensive experiments that have been
conducted to show the efficacy of the proposed approach for
tomato plant leaf disease recognition will be discussed.

Dataset

We have used the PlantVillage database (Hughes and
Salathé, 2015), a large repository accessible online, to evaluate
the effectiveness of the model in detecting and classifying tomato
leaf diseases. This dataset is comprised of a total of 54,306 images
for 14 crop types. As this study is focused on the diseases of
the tomato plant, we have utilized the tomato plant samples
belonging to 10 different diseases. The main reason to employ
the PlantVillage dataset for our work is that its images contain
severe alterations in the size, chrominance, and position of the
affected leaf regions. Furthermore, the images contain noise,
brightness changes, blurring, and color alterations. An in-depth
demonstration of the employed dataset is elaborated in Figure 4
while a few samples are shown in Figure 5.

Performance measures

For measuring the performance of the custom CornerNet
model in detecting and classifying tomato plant leaf diseases,
we have selected several standard metrics such as accuracy,
mAP, intersection over union (IOU), precision, and recall. The
mathematical description of accuracy and the mAP measure are
given in Eqs 7, 8, respectively, while a graphical demonstration
of precision, recall, and IOU is given in Figure 6.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

mAP :=
T∑

i=1

AP(ti)/T (8)

Localization results

The distinguishing attribute of a robust plant leaf disease
classification framework is its ability to differentiate among the
different classes of disease. To measure this, we designed an
experiment. To visually elaborate on the detection performance
of the custom CornerNet model, we have depicted the localized
samples from the used dataset in Figure 7. The samples in
Figure 7 clearly show that our technique is quite efficient in
detecting the affected portion of the plant leaves and recognizing
the associated classes even under the incidence of color, size,
light, chrominance, and brightness changes.

The high recall power of the custom CornerNet model
allows it to appropriately identify and categorize the several
classes of tomato plant abnormalities. To numerically show the
robustness of the proposed solution for tomato plant leaf disease
classification, we have used two measures, namely the mAP and
IOU score. These are the standard and most heavily employed
metrics by the research community for object detection models.
The proposed CornerNet model has localized the diseased
portion from the plant samples with mAP and IOU scores of
0.984, and 0.979, respectively, which shows the effectiveness
of our approach.

Classification performance

An efficient plant leaf disease recognition system must be
powerful enough to accurately discriminate among the different
types of diseases. We tested the class-wise performance of the
presented model with the help of several standard metrics
such as precision, recall, accuracy, and F1-score. Initially,
we computed the precision and recall values for the custom
CornerNet model in locating and classifying the 10 categories of
plant leaf abnormalities. We have used the boxplot to show the
obtained results as these plots provide a better understanding of
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FIGURE 4

Details of the tomato plant samples from the PlantVillage dataset.

FIGURE 5

An example of tomato plant leaves samples from the PlantVillage dataset.

FIGURE 6

Visual demonstration of (A) IOU, (B) precision, and (C) recall.

the results by showing the minimum, maximum, and average
values for the employed metrics (Figures 8, 9). The results
reported in Figures 8, 9 show that the introduced approach is
capable of correctly classifying the 10 classes of tomato plant leaf
diseases.

Secondly, we show the calculated F1-score together with the
error rate over the employed dataset and acquired values in
Figure 10. The custom CornerNet model attains the average F1-
score of 99.57% with the maximum and minimum error rates of
0.23 and 0.82%, respectively. The reported values demonstrate
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FIGURE 7

A pictorial depiction of the localized tomato plant leaf diseases samples.

the robustness of the custom CornerNet model in locating and
classifying all classes of tomato leaf disease efficiently.

Additionally, we have measured the class-wise accuracy
values of the proposed technique and the acquired results are
demonstrated in Figure 11. The introduced DenseNet-77-based
CornerNet model attains the accuracy values of % for the
10 disease categories of the tomato plant and confirms the
effectiveness of our approach.

To further validate the class-wise accurateness of the
introduced approach for distinguishing the numerous categories
of plant leaf disease, we have created a confusion matrix
(Figure 12). This plot can show the actual and estimated classes

recognized by a model. The values shown in figure demonstrate
that the custom CornerNet model is proficient at recognizing
all classes of tomato plant leaf diseases due to its higher
recall rate which empowered it to differentiate all categories
reliably.

Comparison with base approaches

In this section, we outline an experiment to compare the
tomato plant leaf disease recognition capability of the improved
CornerNet model against the base networks. We chose

Frontiers in Plant Science 12 frontiersin.org

145

https://doi.org/10.3389/fpls.2022.957961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-957961 September 2, 2022 Time: 14:18 # 13

Albahli and Nawaz 10.3389/fpls.2022.957961

FIGURE 8

A pictorial depiction of the class-wise precision values obtained for the DenseNet-77-based CornerNet model.

FIGURE 9

A pictorial depiction of the class-wise recall values obtained for the DenseNet-77-based CornerNet model.

several well-known DL frameworks, i.e., GoogleNet, ResNet-
101, Xception, VGG-19, and SE-ResNet50. The comparison
is depicted in Table 3. The performance analysis shown in

Table 3 illustrates that our technique is more accurate than
the peer approaches. The DenseNet-77-based CornerNet model
attains the highest results for the precision, recall, F1-score,
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FIGURE 10

A pictorial depiction of the class-wise F1-score values obtained for the DenseNet-77-based CornerNet model.

FIGURE 11

A pictorial depiction of the class-wise accuracy values obtained for the DenseNet-77-based CornerNet model.

and accuracy measures with the numeric count of 0.9962,
0.9953, 0.9957, and 99.98%, respectively. The second-highest
results are reported by the SE-ResNet50 model with 0.9677,
0.9681, 0.9679, and 96.81% for the precision, recall, F1-score,
and accuracy metrics, respectively. Moreover, the GoogleNet
model attains the lowest results in classifying the leaf diseases
of the tomato plant and attains the scores for precision, recall,

F1-score, and accuracy measures of 0.8716, 0.8709, 0.8712, and
87.27%, respectively. The second-lowest values are attained by
the Xception model with the numeric stats of 0.8825, 0.8814,
0.8819, and 88.16%. The comparison illustrates the effectiveness
of our approach. Specifically, for the precision measurement,
the selected methods have an average value of 0.9050, while
the DenseNet-77-based CornerNet model acquires the value of
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FIGURE 12

Confusion matrix results for tomato plant leaf diseases classification obtained using the DenseNet-77-based CornerNet model.

0.9962 and shows a performance gain of 9.12%. For the recall
and F1-score, the selected models have attained the average
numeric score of 0.9053 and 0.9091, while in comparative
analysis the presented solution has shown the average recall
and F1-score of 0.9953 and 0.9957, respectively. Therefore, we
can demonstrate average performance gains for the recall and
F1-score of 9 and 8.66%, respectively. Moreover, in terms of
accuracy, the base models attain an average value of 90.56%.
The proposed model attains 99.98% accuracy, representing a
performance gain of 9.42%. Furthermore, we outline the time
taken for each model. It should be noted that the proposed
approach shows the minimum test time. The values show the
efficacy of our work to better recognize the several classes of
tomato plant leaf abnormalities. The basic cause of this better
classification performance of the proposed improved CornerNet
model is the employment of the DenseNet-77 model as the
keypoints extractor. This uplifts the model to better select the
image information to identify the affected areas of the plant
leaves and better recognize the associated class.

Performance evaluation with object
detection approaches

We have employed an object detection-based model for the
localization and classification of the tomato plant leaf diseases
and compared the performance of the proposed approach
with other object detection techniques. The major reason for
performing this simulation was to verify the reliability of the

proposed DenseNet-77-based CornerNet model against other
competitor techniques while locating the diseased areas from
the tomato plant leaves under the occurrence of noise, light
alteration, color changes, size variations, etc.

To execute this analysis, we have chosen numerous well-
known object detection approaches, namely the Fast-RCNN
(Girshick, 2015), Faster-RCNN (Ren et al., 2016) YOLO
(Redmon and Farhadi, 2018), the SSD (Liu et al., 2016), and
CornerNet (Law and Deng, 2019) models. To measure the
performance of the model, the mAP metric is used as it is
the standard evaluation measure used by the researchers to
assess the classification performance of the object detection
techniques. Furthermore, we have compared the test time
of models as well to evaluate the time complexities of the
comparative approaches as well. The comparison shows the
efficiency and effectiveness of our approach and is illustrated in
Table 4. The results in Table 4 show that the proposed approach
has the highest mAP score and lowest test time with a numeric
score of 0.984 and 0.22 s, respectively. The second highest
mAP score is the Faster-RCNN model with a numeric count
of 0.884. However, it is computationally inefficient and shows
a time complexity of 0.28 s due to its two-stage classification
network architecture. The SSD model has the lowest mAP score
of 0.883 and a test time of 0.27 s. Furthermore, this approach
does not perform well for very small plant leaf sizes. The
conventional CornerNet model also has less promising results
with a mAP score of 0.883 and a test time of 0.25 s. Whereas,
the DenseNet-77-based CornerNet approach better tackles the
issues of existing object detection approaches for identifying and
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TABLE 3 Comparison with other DL frameworks.

Model Precision Recall F1-score Accuracy (%) Time (second)

GoogleNet 0.8716 0.8709 0.8712 87.27 0.65

ResNet-101 0.8995 0.9013 0.9004 90.13 1.21

Xception 0.8825 0.8814 0.8819 88.16 0.77

VGG-19 0.9039 0.9047 0.9243 90.42 1.56

SE-ResNet50 0.9677 0.9681 0.9679 96.81 0.57

Proposed 0.9962 0.9953 0.9957 99.98 0.22

classifying the numerous categories of the tomato plant leaves
and shows the highest results. The comparison object detection
approaches have an average mAP value of 0.859, compared to
0.984 for the proposed algorithm. Therefore, we have attained
an average performance gain of 12.42% for the mAP metric. The
one-stage detection ability of the proposed approach reduces
the network structure complexity which, in turn, gives it a
computational advantage.

Model evaluation with the
state-of-the-art methods

In this section, we have selected several new approaches
(Tm et al., 2018; Kaur and Bhatia, 2019; Agarwal et al.,
2020a) that worked for tomato plant leaf disease classification
and have used analysis to compare the performance of the
improved CornerNet model with them. For this purpose, we
have utilized three standard measures: precision, recall, and
accuracy. Agarwal et al. (2020a) proposed the EfficientNet model
for the automated detection and classification of tomato plant
leaf diseases and attained an average accuracy value of 91.20%.
Tm et al. (2018) proposed a CNN framework for categorizing
the affected area of plant leaves and demonstrated an accuracy
value of 94%. Similarly, Kaur and Bhatia (2019) employed
a deep learning framework for recognizing the 10 types of
plant leaf diseases with an accuracy rate of 98.80%. Hence,
the comparative analysis is depicted in Table 5 and illustrates
that our work has attained the highest results for all selected
performance measures. From Table 5, it can be viewed that the
techniques in Tm et al. (2018), Kaur and Bhatia (2019), and

TABLE 4 Comparison with other object detection methods.

Models mAP Test time

Fast-RCNN 0.860 0.28

Faster-RCNN 0.884 0.28

YOLOv3 0.842 0.26

SSD 0.830 0.27

Hourglass-based-CornerNet 0.883 0.25

Proposed DenseNet-77-based CornerNet 0.984 0.22

Agarwal et al. (2020a) achieve the precision of 0.90, 0.9481,
and 0.9880, respectively, whereas the introduced improved
CornerNet model obtains the precision of 0.9962. This is the
highest of all the reported numeric scores for the selected works.
The improved CornerNet model gains the largest value of 0.9953
for the recall performance measure, while the approaches in Tm
et al. (2018), Kaur and Bhatia (2019), and Agarwal et al. (2020a)
have recall scores of 0.92, 0.9478, and 0.9880, respectively.
Moreover, with regards to accuracy, the proposed approach
gains the numeric score of 99.98% while the approaches in Tm
et al. (2018), Kaur and Bhatia (2019), and Agarwal et al. (2020a)
have accuracy values of 91.20, 94, and 98.80%, respectively. The
peer works (Tm et al., 2018; Kaur and Bhatia, 2019; Agarwal
et al., 2020a) have the average precision, recall, and accuracy
values of 0.9453, 0.9519, and 94.67%, respectively, as opposed to
0.9962, 0.9953, and 99.97%, respectively, for the presented work.
Therefore, the DenseNet-77-based CornerNet model provides
performance gains of 5.08, 4.34, and 5.30% for the precision,
recall, and accuracy evaluation measures.

The reason for the competent classification results of the
improved CornerNet model is that the techniques in Tm et al.
(2018), Kaur and Bhatia (2019), and Agarwal et al. (2020a) are
quite complex in network structure. This creates a framework
over-fitting problem. The proposed solution is quite simple
in structure and the employment of DenseNet-77 as the base
network further empowered the CornerNet model to nominate
a more reliable set of the sample feature vector. Such a model
setting enhances its recognition ability by eliminating redundant
information and reducing the model complexity. Further, the
one-stage detection and classification ability of the CornerNet
model prevents the framework from over-fitting issues and
enables it to robustly deal with several image distortions like
color, size, brightness, light variation, etc.

TABLE 5 Comparison with the latest studies.

Approach Precision Recall Accuracy (%)

Agarwal et al., 2020a 0.90 0.92 91.20

Tm et al., 2018 0.9481 0.9478 94

Kaur and Bhatia, 2019 0.9880 0.9880 98.80

Proposed 0.9962 0. 9953 99.97
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Conclusion

The manual screening of tomato plant leaf diseases relies
highly on domain experts to detect the detailed information
from the samples under observation. AI-based solutions are
trying to fill this gap by automating the manual screening
system. However, excessive changes in the mass, color, and
size of plant leaves, and the incidence of noise, blurring, and
brightness variations in the images complicate the classification
task. In this work, we have attempted to overcome the existing
issues by proposing a deep learning-based approach namely
the DenseNet-77-based CornerNet model. We have carried
out extensive experimentations on a standard dataset, namely
the PlantVillage, and have confirmed through both the visual
and numeric computations that the proposed approach is both
efficient and effective in recognizing tomato plant leaf disease.
Furthermore, the proposed approach is capable of efficiently
detecting the diseased area of the plant leaves from the distorted
samples containing several image transformations. However, the
approach shows small detection degradation for images with
huge angular variations which will be a major focus of our future
work. Moreover, we plan to test the proposed model on other
plant diseases and evaluate other DL-based frameworks.
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For continual learning in the process of plant disease recognition it is

necessary to first distinguish between unknown diseases from those of

known diseases. This paper deals with two different but related deep

learning techniques for the detection of unknown plant diseases; Open

Set Recognition (OSR) and Out-of-Distribution (OoD) detection. Despite

the significant progress in OSR, it is still premature to apply it to fine-

grained recognition tasks without outlier exposure that a certain part of

OoD data (also called known unknowns) are prepared for training. On the

other hand, OoD detection requires intentionally prepared outlier data during

training. This paper analyzes two-head network included in OoD detection

models, and semi-supervised OpenMatch associated with OSR technology,

which explicitly and implicitly assume outlier exposure, respectively. For

the experiment, we built an image dataset of eight strawberry diseases. In

general, a two-head network and OpenMatch cannot be compared due

to different training settings. In our experiment, we changed their training

procedures to make them similar for comparison and show that modified

training procedures resulted in reasonable performance, including more than

90% accuracy for strawberry disease classification as well as detection of

unknown diseases. Accurate detection of unknown diseases is an important

prerequisite for continued learning.

KEYWORDS

continual learning, plant diseases, Open Set Recognition, Out-of-Distribution
detection, two-head network, OpenMatch, strawberry disease classification

Introduction

Plant disease monitoring is a critical means of improving productivity and
enhancing crop quality. The traditional methods for diagnosis of plant diseases–visual
analysis by a professional farmer or inspection of a sample in a laboratory–generally
requires extensive professional knowledge and high costs. For this reason, an automated

Frontiers in Plant Science 01 frontiersin.org

153

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.989086
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.989086&domain=pdf&date_stamp=2022-09-15
https://doi.org/10.3389/fpls.2022.989086
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpls.2022.989086/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-989086 September 10, 2022 Time: 15:41 # 2

Jiang et al. 10.3389/fpls.2022.989086

disease monitoring process will prove to be a valuable
supplement to the labor and skill of farmers (Kim et al., 2021).

A number of research studies have applied deep learning
techniques to automatic plant disease monitoring (Liu and
Wang, 2021). However, most of the studies have been based
on closed set recognition (CSR), which is prone to erroneous
decisions when an unknown disease sample is detected because
it must be classified into one of known classes. Moreover,
discriminating images of plant diseases (or disorders) is a
difficult task for computer vision, categorized into a fine-grained
task involving both easy and hard problems.

In contrast, a human expert can naturally accumulate
knowledge to improve their ability to accurately recognize plant
diseases or disorders in an increasing number of categories. In
order to program a machine to be similar to a human expert,
it is necessary to continuously increase the amount of data and
the number of categories it has access to. Open Set Recognition
(OSR) and Out-of-Distribution (OoD) detection technology are
used for continual machine learning and can be applied to plant
disease recognition in order to differentiate unknown diseases
and disorders from known diseases.

Generally speaking, for continual learning of open world
tasks, both detection of unknown diseases and incremental
active learning with unknowns should be addressed. However,
unknowns need to be correctly identified before commencing
active and incremental learning, so that their detection is
essential to lifelong or continual learning for the performance
of open world tasks.

Figure 1 shows the continual learning process for plant
disease monitoring. The unknowns should be identified in
the inference stage, and then a second round of training is
performed with additional known and unknown disease data,
with (or without) increased number of categories.

Automatic detection of unknowns has been a traditional
field of research (Scheirer et al., 2012) in computer vision
and has recently received attention due to deep learning
technology’s increasing popularity (Cardoso et al., 2015). In
general, however, unknowns are not available in the learning
process. In conventional CSR, the unknowns must be classified
into a known class during the inference process, which degrades
performance. To avoid such degradation, OSR should have a
proper structure and be carefully trained.

There has been a large volume of research on OSR since
it was formalized by Scheirer et al. (2012). Unfortunately,
OSR technology in its current state is unable to be practically
applied to fine-gained plant disease monitoring due to poor
performance without assuming outlier (sometimes called
known unknowns) exposure. OoD detection technology is
closely related to OSR, but outliers can be partly assumed and
prepared for training differently from OSR. In general, OoD
detection encompasses all forms of distributional shift, while
OSR specifically refers to semantic novelty (Vaze et al., 2021).
However, in plant disease recognition based on image analysis,

OSR is similar to the OoD detection when there is no severe
distribution shift in captured image data, and a set of outlier
data is assumed in the training (outlier exposure). Figure 1
assumes outlier exposure from the first round of training
of the prototype model, because unknowns are incorporated
with.

The goal of this paper is finding the practical solutions to
detect unknowns for continual learning as shown in Figure 1,
where a part of outliers is assumed to be prepared for training.
For this purpose, the paper evaluates (Yu and Aizawa, 2019)
a two-head network that uses OoD detection, and Saito et al.
(2021) semi-supervised OpenMatch that uses OSR technology,
both of which show reasonable performance for known plant
disease recognition as well as unknown disease detection.

It is generally it is not appropriate to compare OoD and
OSR because they require different settings for training. In
order to change the semi-supervised OpenMatch into OoD
detection similar to the two-head network, OpenMatch can
be disassembled into two stages; one training stage to learn
the One versus All (OVA) and softmax classifiers with labeled
and OoD data, and another stage to learn the semi-supervised
setting of OpenMatch with unlabeled samples including both
inliers and outliers. Also, the two-head network can be retrained
with FixMatch and fine-tuned after finding high confidence
pseudo inliers and outliers from the inference process. After
these modifications, the two different models can be comparable
in terms of the performance for detecting and classifying both
unknown and known diseases.

As shown in Figure 1, these two different modified models
of OpenMatch and the two-head network are related with
continual learning, because inliers and outliers of unknowns
can be effectively recognized, and the results can be used for
second round training to continuously improve the models’
performance.

The contributions of this paper can be summarized as
follows:

1. The difficulty recognizing unknown plant diseases is
related to continual learning and the progressive evolution
of machine performance. We chose two different types
of techniques, OpenMatch using OSR, and a two-head
network using OoD detection, which are closely related
technologies. To the best of our knowledge, this might be
the first article to examine OSR and OoD detection for
plant disease monitoring. In addition, this paper shows
that OSR outlier exposure is a necessary assumption to
adequately detect unknowns.

2. Open Set Recognition and Out-of-Distribution detection
are difficult to compare. After the proper modifications,
we compared OpenMatch with the two-head network to
classify unknown strawberry diseases and related both
classification models with continual learning. In addition,
our results show that the contrastive regularization in
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FIGURE 1

Unknown detection and continual learning for plant disease monitoring.

FixMatch developed for semi-supervised OpenMatch was
successfully applied to the two-head network to improve
its performance.

3. We constructed an image dataset of strawberry diseases
to validate OSR with assumed outlier exposure. The result
of our experiment shows that both the two-head network
and OpenMatch can provide reasonable performance for
classifying the aforementioned eight strawberry diseases as
well as detecting unknowns.

Related works

In this section we summarize the use of OSR and
OoD detection for continual learning and DNN-based plant
disease monitoring.

Open Set Recognition and
Out-of-Distribution detection for
continual learning

Recently, open world vision has received considerable
attention in the field of computer vision, because it has the
potential to resolve many realistic problems such as open
set recognition, long-tailed distribution, and limited ontology
of labels for life-long or continual learning (Open World
Vision, 2021). Open world vision is also related to active or
incremental learning because unknowns can be grouped to
obtain labels, or should be learned with increased number
of categories without catastrophic forgetting (Parisi et al.,
2019).

An important task in open world vision is properly
differentiating unknowns from known classes. In the inference
phase of CSR, a sample should be classified into known classes
included in the training phase. When using OSR, however, a
classification model must be able to distinguish between the
training classes, and indicate if an image comes from a class it
has not yet encountered (Scheirer et al., 2012). This implies that
unknowns are not exposed to the model during OSR training.

There are several types of deep learning-based OSR models.
OpenMax (Bendale and Boult, 2016) is an extension of SoftMax
that uses probability adapting Meta-Recognition concepts to
activate patterns in the penultimate layer to recognize unknown.
There are many generative models of OSR based on auto-
encoders or GANs (Generalized Adversarial Networks). G
(Generative)-OpenMax is an extension of OpenMax, in which
unknown unknown class samples are artificially generated with
GANs and are used for fine-tuning OpenMax (Ge et al.,
2017). A class-conditioned Auto-Encoder for OSR is another
kind of generative model in which an encoder/decoder model
is used to classify known classes and unknowns (Oza and
Patel, 2019). Outlier exposure is a necessary assumption to
improve OCR performance, but there is a risk of overfitting,
because only a limited amount of the voluminous outlier
data is available for training. OpenGAN is the most recent
generative model in which outlier exposure is assumed, but
additional GANs are applied to supplement outlier data to
prevent overfitting (Kong and Ramanan, 2021). OpenHybrid
framework consists of an encoder to encode the input data
into a joint embedding space, a classifier to classify samples
to inlier classes, and a flow-based density estimator to detect
whether a sample belongs to the unknown category (Zhang
et al., 2020). There are many recent papers continuously
being published with tutorials in OpenSetRecognition_list
(2022).

While OSR is closely related to OoD detection (Hendrycks
and Gimpel, 2016), OoD settings permit the use of additional
data as examples of “OoD” data during training (Chen et al.,
2021). Many deep leaning-based OoD detection methods have
been developed. The maximum softmax probability is the
simplest one to decide if something is an inlier or outlier.
Generalized ODIN (Hsu et al., 2020), an extended version of
ODIN, uses the decomposed confidence model, temperature
scaling, and modified input preprocessing strategies (Liang et al.,
2017). Also, many OoD detection methods were introduced by
Salehi et al. (2021) including the two-head network that we
consider in this paper.

The two-head network in the paper was published by Yu
and Aizawa (2019) to find OoD samples. In plant disease
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monitoring, the set of OoD samples can included unknown
diseases or disorders, as well as other images irrelevant to the
task. When unknowns are included in OoD detection training
data, they are called known unknowns. The set of OoD data
prepared for training is a type of bias (Hsu et al., 2020), and
reasonable OoD data should be chosen in two-head network
training.

The OSR algorithm OpenMatch in the paper was released
in 2021 (Saito et al., 2021), and an advanced modified version
was published which added contrastive loss (Lee et al., 2022).
The networks in OpenMatch are trained in a semi-supervised
setting, which is different from OoD-based detection of the
two-head network. However, semi-supervised learning can be
treated as a method to expose outliers for training, because
unlabeled data can include OoD samples as well as unlabeled
inliers.

Due to (a priori) known unknowns in the training phase, it
is hard to directly compare OoD detection with OSR. However,
in practice, the distinction between OSR and OoD detection is
not important if the outlier images are well prepared.

Related works of deep learning-based
plant disease monitoring

There are two types of deep learning models for plant
disease monitoring: classification and deep object detection. The
classification model can be used to find the name of a disease
after an image is manually taken by a camera (Mohanty et al.,
2016). In contrast, the deep object detection model can place
the diseased area in a bounding box, so that it can be applied
to automatic disease monitoring if the imaging apparatus is
equipped with a mobile robot. There are excellent studies
reported by Kim et al. (2021) and Liu and Wang (2021).

The following discussion focuses on the classification model,
as we tried to apply said model to recognize the diseases with
unknowns. In general, unknown object detection is a much
more complicated task than object identification (Joseph et al.,
2021).

There have been a number of deep neural network
(DNN)-based classification approaches used to identify plant
diseases and disorders. The DNN usually consists of a
multilayer convolutional neural network (CNN)-based feature
representation block (backbone), and a softmax classification
block (head). Table 1 displays several selected applications
of plant disease classification. The backbone network can
be used depending on requirements of the applications. If
fast recognition speed is required to scarify the accuracy,
then a light DNN model like MobileNet may be a prudent
choice (You and Lee, 2020). If the accuracy is more
important than the speed, then a complex DNN backbone
like ResNet might be optimal (He et al., 2016). There
are numerous CNN-based off-the-shelf DNN backbones one
can choose according to specific requirements (Tan and
Le, 2019). A transformer-based backbone is another option
to select as a DNN backbone (Dosovitskiy et al., 2020).
Note that the backbone can be constructed to obtain better
performance by including multiscale methods (Lin et al.,
2017).

The head structure of softmax classifiers is similar to each
other, where the conditional probability distribution of class
labels for given input image. Note that there might be multi-
label classifiers which have more than one head. In this case,
each separate head can be constructed using separate softmax
classifiers to share the DNN backbone during multitasking and
by sigmoid classifiers. In this paper, the K-OVA block in the
OpenMatch structure has K separate softmax classifiers that
share the backbone.

TABLE 1 Deep neural network (DNN)-based classification approaches for identification of plant diseases.

References Network models Dataset for
pre-training

Plants Dataset for
fine-tuning

Disease
classes

Barbedo, 2018 GoogleNet ImageNet 12 spices 12

Ferentinos, 2018 AlexNet, GoogleNet, Overfeat,
VGG16, AlexNetOWTBn

25 species PlantVillage 58

Liu et al., 2017 AlexNet ImageNet apple Collected from fields 4

Mukti and Biswas, 2019 AlexNet, VGG16,19, ResNet50 ImageNet 38 species PlantVillage 38

Saleem et al., 2019 AlexNet, LeNet, VGG, GooLeNet,
ResNet, DenseNet

ImageNet 38 species PlantVillage 38

Kumar et al., 2020 ResNet34 ImageNet 14 species New Plant Diseases
Dataset

38

Rangarajan et al., 2018 AlexNet, VGG 16 ImageNet 7 species Tomato crop 6

Aquil and Ishak, 2021 Vgg16,19, ResNet18,34,50,101,
DenseNet120, SqueezeNet

PlantVillage 44 species tomato leaves 9

Rao et al., 2022 VGG, ResNet based on Bi-CNN 38 species PlantVillage 38

Rehman et al., 2022 MobileNetv2, DenseNet201 ImageNet citrus citrus diseases 6
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Transfer learning is widely used due to the lack of
training data in many application areas, including plant disease
monitoring, where a pre-trained backbone with a huge amount
of data in the general domain is initialized to be fine-tuned
in a specific application domain. For this purpose, a set of
pre-trained parameters for the specific backbone model with
an ImageNet dataset is available for constructing the classifier.
However, the ImageNet dataset is so general that the domain-
specific dataset such as LifeClEF 2017 might be the better choice
for a backbone to be used for a specific application (Joly et al.,
2017).

Many initial DNN-based plant disease monitoring systems
were developed using the PlantVillage dataset which included
a diverse group of crops. However, the success of DNN-
based monitoring has resulted in diverse datasets built
for various crops.

However, it is difficult to find previous research concerning
the detection of unknown diseases, except cassava disease
classification using CropNet (CropNet, 2020), where the
network tried to classify four major cassava diseases on diseased
leaves, normal leaves, and unknown. The detection technology
of CropNet cannot be identified in detail, but presumably it is
not a very complex algorithm.

Meanwhile, there are more than 70 diseases and disorders
introduced in Strawberry Diseases (2022), and it is difficult
to paper sufficient data for all of them at once. Therefore,
the probability of continual learning for detecting diseases and
disorders increases with the increased number of classes and
corresponding data. Figure 2 shows images of the 8 classes
of known diseases and several unknown disorders. Note that
the plant parts including fruit, leaves, runners, and flowers are
easy to differentiate, while diseases of the same plant part are
difficult to discern. As a result, the disease recognition task is
fine-grained, having both easy and hard problems.

Materials and methods

In this section, we introduce the two-head network (Yu
and Aizawa, 2019) and OpenMatch (Saito et al., 2021) which
were used in the experiments. We discuss how the two-head
network can be implemented to recognize unknowns such as
OoD, and how semi-supervised learning can be performed to
better identify unknowns. In addition, we review how to change
the networks so they can be compared, and how we can use them
for continual learning.

Two-head network

The two-head network uses two different randomly
initialized softmax heads, F1 and F2, that provide the same
decision for labeled data, but different probability distribution

for OoD data. Figure 3 shows the structure of a two-head
network that shares a backbone. Originally there are two stages
of training: pre-training with only labeled inlier data (ID), and
fine-tuning with unlabeled OoD data. The training loss for
labeled ID in the first stage is given by the cross-entropy:

Ltwocross(X) = −
1
X

∑
xb∈X

2∑
i = 1

log(pi(yb|xb)) (1)

where {xb, yb} is the labeled ID samples, and index i is
the head number.

In the second fine-tuning stage, the discrepancy loss is as
follows:

Ltwodis (O) = max

{
m−

1
µO

∑
xo∈µO

d(p1
(
y|xo

)
, p2

(
y|xo

)}
(2)

d
(
p1
(
y|xo

)
, p2

(
y|xo

))
=

K∑
i = 1

∣∣p1
(
yi|xo

)
− p2

(
yi|xo

)∣∣ (3)

where d (·) is the L1 loss, and O = {xo}
µO
o = 1 is the

set of unlabeled OoD data. In Eq. 2, m is a margin to
prevent overfitting.

The OoD can be any irrelevant data to ID; it can be healthy
leaves, fruit, runners or other images for strawberry disease
recognition. Note that this OoD data is a type of bias that is
inevitable in the OoD detector. Therefore, it is important to
use them to increase the network’s performance. In Section
“Experimental results of the two-head network,” we discuss the
OoD data in more detail.

For continual learning, as displayed in Figure 1, the model
can be retrained after performing an inference of unlabeled data.
The inference process differentiates ID from OoD data. In the
second-round training for continual learning, ID and OoD data
are augmented by adding ID and OoD data.

Semi-supervised OpenMatch

OpenMatch uses semi-supervised learning to improve OSR,
where labeled and unlabeled data are mixed to create training
data. Figure 4 shows the structure of the OpenMatch model.
The base classifier consists of K one-vs-all (OVA) sub-classifiers
Dj (·) , j ∈ {1, . . . ,K}, that share the feature extractor F(·), each
of which determines whether it is an inlier or not with respect to
the class. There is one more closed set classifier C(·), which gives
the class label ŷ in one of K classes for an input sample. The final
unknown decision of whether it is an inlier or outlier is based on
Dŷ (·). The training of OpenMatch includes several losses and
tries to minimize them. One of the losses is the cross-entropy
loss for a closed set classifier:

Lcross(X) = −
1
B

∑
xb∈X

yblog(p
(
y|xb

)
) (4)
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FIGURE 2

Prototypical images of known diseases and unknown diseases.

FIGURE 3

Two-head network for Out-of-Distribution (OoD) detection.

For a given batch of known data, X =
{(
xb, yb

)}B
b = 1. In Eq. 4,

p(yb|xb) is the probability of softmax output y for xb from closed
set classifier C(·). Another loss for the OVA outlier detection is
defined as:

LOVA(X) =
1
B

B∑
b = 1

−log
(
pyb

(
t = 0|xb

))
−mini6=yb

log
(
pi
(
t = 1|xb

))
(5)

where pi(t = 0|xb) and pi(t = 1|xb) represents the
probabilities of xb being an inlier or outlier for class i. For
unlabeled data U = {(ub)}

µB
b = 1, there is another loss for OVA

called entropy minimization, defined as:

Lem (U) = −
1

µB

µB∑
b = 1

k∑
j = 1

pj
(
t = 0|ub

)
log

(
pj
(
t = 0|ub

))
+ pj

(
t = 1|ub

)
log

(
pj
(
t = 1|ub

))
(6)

Equation 7 is the soft open set consistency regularization
(SOCR) loss for the OVA classifier to encourage the consistency
of the output logits over any augmentation A to enhance the
smoothness:

LOC (U,A) = −
1

µB

µB∑
b = 1

k∑
j = 1

∑
t∈{0,1}

∣∣pj (t|A1(ub)
)

− pj
(
t|A2(ub)

) ∣∣ (7)

which emphasizes the consistency of OVA for differently
augmented A1 and A2 unlabeled data.

During semi-supervised learning, unlabeled samples are
taken as pseudo inliers to supplement the set of labeled data, if
pŷ
(
t = 0|ub

)
= τ, where ŷ = argmaxj C(F(ub))), after the

training is stabilized.
The learning related to these pseudo inliers is called

FixMatch (Sohn et al., 2020), and there is another corresponding
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FIGURE 4

OpenMatch with softmax and One versus All (OVA) classifiers.

loss to be minimized Lfm. FixMatch is a combination of
two approaches to semi-supervised learning: consistency
regularization and pseudo-labeling (Sohn et al., 2020).
Consistency regularization utilizes unlabeled data by relying
on the assumption that the model should output similar
predictions when fed perturbed versions of the same image
(weak augmentation and strong augmentation). Pseudo-
labeling leverages the idea of using the model itself to obtain
artificial labels for unlabeled data. FixMatch progressively
improves the performance of semi-supervised training (so-
called curriculum learning) using pseudo-labeled data, where
strong augmented pseudo inliers follow weak augmented ones.
The FixMatch process can extend the decision boundary of
known classes to allow the strongly augmented inliers to train
models. Here, the corresponding loss can be described as:

Lfm = −
µB∑

b = 1

I
(
pŷ
(
t = 0|ub

)
> τ

)
log p

(
ŷ|A (ub)

)
(8)

where I() is a set indicator function, and A (ub) stands for the
strong augmented data for the pseudo inlier. Note that Lfm is the
same as the cross-entropy losses except that they are calculated
for pseudo inliers labeled by ŷ.

A contrastive loss can also be applied to OpenMatch to
improve the accuracy and speed of the FixMatch training
process (Sohn et al., 2020). FixMatch only considers consistency
regularization between each high confidence pseudo inlier(
pŷ
(
t = 0|ub

)
> τ

)
and its strong augmented version A (ub)

by curriculum learning. On the other hand, contrastive
regularization builds a pool of strong augmented samples
of pseudo inliers where both positive and negative samples
for pseudo-labeled data are included, and then tries to
minimize the contrastive loss. In order to implement contrastive
regularization, a pool of strong augmented unlabeled ID

Am (U) =
{
u′|ub ∈ U, pŷ

(
t = 0|ub

)
> τ, u′i = A (ub) ,

1 ≤ i ≤ m
}

(9)

is first built, in which the average contrastive loss is calculated
using the positive and negative pairs. In Eq. 9, m strong
augmented data for each pseudo inlier is included in Am (U).

The contrastive loss for a sample u
′

in Am (U) can be calculated
by:

r
(
u
′
)
=
−1∣∣∣P̂(u′)

∣∣∣
∑

p′∈P̂(u′ )

log
exp

(〈
zu′ , zp′

〉
/T
)

∑
v′∈Am(U)/u′ exp

(〈
zu′ , zp′

〉
/T
)

(10)
where P̂

(
u
′
)
=

{
p
′

|p
′

∈ Am (U)/u
′

, q̂p′ = q̂u′
}

is a set of p
′

which makes so-called pseudo positive pairs with u
′

, that has the
same pseudo label q̂p′ as q̂u′ . In Eq. 10, T is temperature scaling
parameter, and zu′ is a normalized vector of the projection head.

Figure 5 shows OpenMatch with FixMatch-included
contrastive regularization. In semi-supervised training, the
degree of confidence in ID or OoD data is determined by OVA
classifiers and its pseudo label assigned by the softmax classifier,
as demonstrated in Eq. 8. In Figure 5, FixMatch uses the pairs
of weak and strong augmented pseudo inliers for consistency
regularization of the softmax classifier, and the pool of strong
augmented pairs of pseudo-inliers are utilized for the contrastive
regularization of feature embedding as demonstrated in Eqs
9, 10.

Discussions and comparison models

Outlier exposure
The two-head network explicitly includes OoD data with

ID in its training for fine-tuning. On the contrary, OpenMatch
improves OSR performance using semi-supervised learning,
where the unlabeled data implicitly includes OoD data to better
learn OVA according to the losses in Eqs 6, 7. OpenMatch
assumes outlier exposure implicitly in unlabeled data.

As aforementioned, the set of OoD data prepared in the
training process can be considered as a type of bias and a reason
for overfitting, because it cannot include the large amount
of OoD data; so-called unknown unknown space. Therefore,
preparing an adequate and efficient set of OoD data for a
specific domain is important. This is further discussed with the
experimental results in the Section “Experimental results of the
two-head network.”

Comparison models and continual learning
Two-stage training of the two-head network may be

merged into single stage semi-supervised training, which
starts with labeled and unlabeled data in the same manner
as semi-supervised OpenMatch. In this case of two-head
network, unlabeled ID can be treated as pseudo-labeled
inliers after stabilizing the second stage of the fine-tuning
process. Also, FixMatch with additional loss Lfm may be
applied in the two-head network with contrastive regularization.
However, this semi-supervised alignment of two-head network
and OpenMatch is not intuitive. Therefore, we considered
another modification to make a comparison between the
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FIGURE 5

FixMatch with contrastive regularization in OpenMatch.

two-head network and semi-supervised OpenMatch, as shown
in Algorithm 1.

Step 1: Train two classifiers with ID

and perform fine-tuning with OoD data.

Step 2: Inference unlabeled data

including ID and OoD data.

Step 3: Perform FixMatch with

pseudo-labeled data in Step 2.

Step 4: Perform fine-tuning with OoD

data in Step 1 and Step 2.

Algorithm 1: Modified two-head network.

In Algorithm 1, the two-head network is retrained
using FixMatch similar to OpenMatch in Step 3. FixMatch
can be performed with pseudo-labeled data to improve the
performance of the two-head classifier after the inference
process of unlabeled data in Step 2, in the same manner as in
the semi-supervised OpenMatch. Note that the high confidence
pseudo inlier can be detected by Eq. 3, however, the discrepancy
must be smaller than the threshold for unlabeled ID data. The
set of ID samples with pseudo labels obtained from the softmax
decision can then be used for FixMatch (with contrastive
regularization), as shown in Figure 6. Each softmax classifier
head is separately adjusted for consistency loss in FixMatch, and
the backbone can learn contrastive loss.

Finally, the outliers in the inference process of Step 2
can be used to fine-tune the two classifier heads in Step 4.

Instead of inherent inference and FixMatch in the training
loop of semi-supervised OpenMatch, the two-head network
performs FixMatch and fine-tuning after explicit inferencing
of unlabeled data.

Also, in order to compare semi-supervised OpenMatch
with the two-head network, OpenMatch can be disassembled
into two stages; one training stage to learn the One versus
All (OVA) and softmax classifiers similar to OoD detection,
and a second stage to conduct semi-supervised learning of
OpenMatch with labeled and unlabeled samples. In the second
stage, the same OoD data used in the first stage is included
in the outlier data. OSR does not intentionally include OoD
data in the training phase, but the data was prepared for
the two training stages of the disassembled OpenMatch.
So, OpenMatch can also be treated as an OoD detector.
Algorithm 2 summarizes the disassembled training process of
OpenMatch. Note that the first training stage is prepared only
for comparing the OoD detection capability with the two-head
network.

Step 1: Train softmax classifier

and k-OVA classifiers with labeled

ID and OoD data.

Step 2: Perform semi-supervised

training with labeled ID, unlabeled

data, and OoD data from Step 1.

Algorithm 2: Modified semi-supervised OpenMatch.
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FIGURE 6

FixMatch with contrastive regularization in two-head network.

TABLE 2 Image dataset of strawberry diseases and unknown diseases.

Name of disease Total no. of images Training images Validation images Test images

Angular leafspot (ALS) 818 498 184 136

Anthracnose fruit rot (AFR) 188 137 32 19

Anthracnose runner (AR) 232 129 33 70

Blossom blight (BB) 1,898 1,410 264 224

Gray mold (GM) 1,303 1,003 171 129

Leaf spot (LS) 2,299 1,703 360 236

Powdery mildew fruit (PML) 397 236 77 84

Powdery mildew leaf (PML) 1,738 1,257 232 249

Unknown or OoD diseases or disorders 4,216 1,346 1,435 1,435

Total 13,089 7,719 2,788 2,582

FIGURE 7

Three types of Out-of-Distribution (OoD) data.
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After the modifications, OpenMatch and the two-
head network had approximately the same conditions for
comparison, including the same data for training, inference, and
retraining. Note that Steps 2 through Step 4 in Algorithm 1 are
included in the semi-supervised training loop of OpenMatch,
which closely aligns the two models.

As well, both Algorithm 1, 2 are associated with continual
learning, because they include an inference process of unlabeled
data, and the results are utilized to improve the performance
of OSR or OoD detection. The two-head network explicitly
improves the performance by adding Step 2s through Step 4
in Algorithm 2, while semi-supervised OpenMatch includes
continual learning inherent in Step 2 of Algorithm 2.

The continual learning process that utilizes each of the
two different models as a whole is possible as follows: When
training a two-head network using Algorithm 1, it can be used
to determine inliers and OoD data during the actual inference
performed in Step 2. We can then use the classified unlabeled
data with high confidence as pseudo labeled data for performing
FixMatch in Step 3. The supplemented OoD data can then be

continuously added to fine-tune the model in Step 3 to improve
the performance. If it is necessary to cluster OoD data to obtain
new labels, then the retraining from Step 1 is possible with the
new head structure.

On the contrary, OpenMatch trained by Algorithm 2
can be used to recognize unknowns of OoD data and ID
in the real inference process. As shown in Figure 1, an
increased amount of labeled and unlabeled data, including
confident ID and OoD data, can then be prepared for
Step 2 in Algorithm 2. In this process, the unknowns of
OoD data can be clustered to give new labels and include
them for incremental learning. In this case, retraining from
Step 1 is necessary to adjust the extended structure of the
model.

Complexity of the two models
The complexity of the two-head network and OpenMatch

is comparable, because the two-head network includes
two softmax classifiers, while OpenMatch includes one
softmax classifier and k-OVAs. If the number of class

TABLE 3 Performance of the two-head network with different experimental settings.

1st 2nd Improved 2nd

Irrelevant Normal Unknowns
(diseases/
disorders)

I + N N + D I + N + D Using
pseudo label

Without
contrastive

regularization

With
contrastive

regularization

Accuracy

0.785 0.855 0.865 0.858 0.862 0.861 0.883 0.901 0.924

AUROC

0.828 0.917 0.919 0.912 0.926 0.923 0.940 0.951 0.972

1st: 1st round training followed by fine-tuning. 2nd: 2nd round without FixMatch followed by fine-tuning. Improved 2nd: 2nd round FixMatch-CR followed by fine-tuning. I + N: Fine-
tuning OoD data is a mix of irrelevant and normal data. N + D: Fine-tuning OoD data is a mix of normal and diseases data. I + N + D: Fine-tuning OoD data is a mix of irrelevant, normal,
and diseases data.

FIGURE 8

Two-head network for experiment.
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K is large, then the two-head network is simpler than
OpenMatch; otherwise, OpenMatch is preferable in
term of complexity.

Experimental results

To conduct the experiment, we constructed a small dataset
of strawberry diseases with unknowns that were used for
training, validating the results, and testing. The experiments
analyzed the effect of different types of OoD data, and

the improvements of performance by adding technological
components such as FixMatch with contrastive regularization.

Dataset of strawberry diseases with
unknowns

This paper considers a two-head network and OpenMatch
classifiers for monitoring strawberry diseases. For validation
purposes, we built a strawberry disease dataset which included
eight disease categories: angular leafspot, anthracnose (fruit rot,

FIGURE 9

Comparison of cluster structures using t-SNE.
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runner), blossom blight, gray mold (fruit), leafspot, powdery
mildew (fruit, leaf); as well as unknown diseases and/or
disorders. Reportedly there are more than 70 strawberry diseases
or disorders (Strawberry Diseases, 2022); however, only eight
diseases are considered as known diseases in our work. Other
diseases or disorders we do not consider in the experiment were
treated as unknowns for continual learning. There are 13,089
images including 8,873 known diseases and 4,216 unknown
diseases, as displayed in Table 2. Figure 2 shows prototypical
images of known and unknown diseases. All the images were
captured in more than 6 greenhouses by cellular phone cameras,
because the system pursues a mobile application.

Experimental results of the two-head
network

Training the two-head network for comparison
with OpenMatch

The training of the two-head network consisted of two
stages: the pre-training of each head of softmax classifiers, and
fine-tuning with OoD data. To compare the two-head network
with semi-supervised OpenMatch, and to show the applicability
of continual learning, we added several steps in the training of
the two-head network, as shown in Algorithm 2.

Step 1 trained the two heads of softmax classifiers with
labeled ID and performed fine-tuning using OoD data to
maximize the discrepancy between the decisions in the two
heads. As explained in Section “Materials and methods” Step
2 performed the inferencing of unlabeled data in the same
manner as in semi-supervised training of OpenMatch. After
the inference, the pseudo inliers or outliers were obtained
from the trained two-head network. The high confidence
labeled pseudo inliers were then used by FixMatch with
contrastive regularization, as displayed in Figure 6. Finally,
Step 4 performed fine-tuning with the original OoD data one
additional time.

Algorithm 1 used the same labeled and OoD data for
training, inferencing to find the pseudo inliers, and fine-tuning,
similarly to the disassembled OpenMatch in Algorithm 2, in
order to compare the two different models.

To train model, the original dataset in the second column
of Table 2 was divided into training, validation, and test data.
The training was performed using a random online selection
of (weak) augmented data, visually rotated at 90, 180, and 270
degrees. For the intermediate inference stage, we used 2,659
unlabeled inliers and OoD data.

As previously discussed, in the fine-tuning stage in Step 1
of Algorithm 1, there were several possible ways to build OoD
data, because it could draw from a large unknown data space.
One way was to include only irrelevant data randomly selected
from the ImageNet dataset, such as bugs, food, and trees.
Another method was to include normal (healthy) strawberry
data such as flowers, leaves, runners, and fruit. In addition, we
could include unknown diseases or disorders that were not part
of the known classes. We prepared the same amount of three
types of OoD data: irrelevant data, healthy strawberry data, and
unknown suspected disease data. Figure 7 shows the different
types of OoD data samples used to train the models. The effects
of the three different types of OoD data on the performance
of the models is compared in Table 3 and discussed in Section
“Experimental results and discussion.”

For FixMatch, we required sets of weak and strong
augmentation to gradually improve classification performance.
In the experiment, the geometrically transformed images,
as previously mentioned, were used for weak augmentation.
For strong augmentation, images with color and brightness
changes and different degrees of rotations were included, and
an augmentation was randomly chosen among 36 different
alternatives during FixMatch training.

The precise structure of the two-head network used in the
subject experiment is shown in Figure 8. ImageNet pre-trained
by ResNet34 was selected as a backbone for simplicity, and there
were two eight-way softmax classifiers.

TABLE 4 Confusion matrix of the final two-head network (Fixmatch-CR).

ALS AFR AR BB GM LS PWF PML OoD Recall

Angular leaf spot (ALS) 122 0 0 0 0 0 0 0 14 0.897

Anthracnose fruit rot (AFR) 0 17 0 0 0 0 0 0 2 0.895

Anthracnose runner (AR) 0 0 68 0 0 0 0 0 2 0.971

Blossom blight (BB) 0 0 0 222 0 0 0 0 2 0.991

Gray mold (GM) 0 0 0 0 120 0 0 0 9 0.930

Leaf spot (LS) 0 0 0 0 0 235 0 0 1 0.996

Powdery mildew fruit (PMF) 0 0 0 0 0 0 76 0 8 0.905

Powdery mildew leaf (PML) 1 0 0 0 0 0 0 166 82 0.667

Unknowns (OoD) 8 0 1 0 10 24 0 30 1,362 0.949

Precision 0.931 1.000 0.986 1.000 0.923 0.907 1.000 0.847 0.919
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FIGURE 10

Recognition results of correct and incorrect classification.

To train the two-head softmax classifiers, an SGD optimizer
was selected with a learning rate that decayed from 0.01. For
fine-tuning, the fixed learning rate was set to 2 = 10−4

using the same SGD optimizer. The batch size was 64 and the
number of epochs for pre-training and fine-tuning were 300 and
10, respectively.

Frontiers in Plant Science 13 frontiersin.org

165

https://doi.org/10.3389/fpls.2022.989086
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-989086 September 10, 2022 Time: 15:41 # 14

Jiang et al. 10.3389/fpls.2022.989086

Experimental results and discussion
We used classification accuracy with unknown disease and

AUROC as evaluation metrics. TP, TN, FP, FN are used to denote
true positives, true negatives, false positives, and false negatives,
respectively. Accuracy is the ratio of correctly classified samples
(TP + TN) to the total number of samples. AUROC is the Area
Under the Receiver Operating Characteristic curve and can be
calculated by the area under the FPR (FPR = FP/(FP + TN))
against the TPR (TPR = TP/(TP + FN)) curve. We also used
precision and recall in the confusion matrix. Precision refers
to the proportion of the true positive class (TP) among all
judged positive classes (TP + FP). Recall refers to the proportion
of all true positive classes (TP + FN) that are judged as
positive classes (TP).

Table 3 shows the performance of the pre-training and
fine-tuning of the two-head network. In Table 3 we compare
performance from the different types of OoD data with the
same labeled inlier training data. The combined OoD data, using
normal (healthy) strawberry parts including leaves, flowers,
fruit, and runners, as well as unknown diseases (or disorders),
resulted in satisfactory performance recognizing diseases as well
as unknowns. Note that irrelevant OoD data was not helpful to
train the two-head network, even though it was included in the
mixed OoD data of normal and unknowns, displayed in the sixth
column of Table 3. The results in Table 3 show that OoD data

selected from healthy plant parts can be helpful, which is useful
for practical applications of plant disease monitoring.

Note that the selection of OoD samples is a bias in
OoD detection. Biased will inevitably be introduced if the
successful performance of the model requires outlier exposure.
Generalized ODIN, a similar OoD detector without the bias,
demonstrated 81.9% accuracy and 0.894 of AUROC using the
same strawberry data. The set of OoD samples, composed
of healthy parts and unknowns, might be an inevitable but
reasonable bias to enhance the performance of fine-grained
unknown disease detection in plants.

Figure 9 shows t-SNE images taken after different kinds
of OoD data was trained. Figure 9B shows a more compacted
cluster structure of different classes than Figure 9A, which
correspond to the first and fifth columns of Table 3, respectively.
The t-SNE images demonstrate why irrelevant outliers are not
helpful in judging OoD, even if they are exposed during the
training of an OoD detector. The irrelevant OoD samples cannot
be used as hard negative samples to help the ID class become
compact. Therefore, we built the OoD data using normal healthy
parts and unknown diseases (or disorders) of strawberries for
the rest of experiments.

In the inference stage, we prepare 2,659 images of inliers
and OoD data, and select 1,350 high-confidence inliers with
pseudo-labels. In order to find the required confident ID, we

FIGURE 11

Experimental OpenMatch design.

TABLE 5 Performance of disassembled OpenMatch with different experimental settings.

OpenMatch as OoD detector OpenMatch without FixMatch Semi-supervised training with FixMatch

Using pseudo label Without CR With CR

Accuracy 0.865 0.888 0.900 0.922

AUROC 0.928 0.944 0.951 0.971
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FIGURE 12

Comparison of cluster structures of disassembled OpenMatch using t-SNE.

used two thresholds: the threshold of L1 distance in Eq. 3, and
the maximum class probability of two softmax classifiers. The
former threshold was determined using a grid search on (0,1) to
identify the maximum detection accuracy of OoD in the fine-
tuning stage of Step 1, and the latter was 0.95; the same value as
in Yu and Aizawa (2019).

The pseudo inliers were used to perform FixMatch
with contrastive regularization in order to upgrade the

performance of the two closed-set classifiers. Thereafter, the
two-head network was fine-tuned with supplemented OoD data
determined in the inference stage. The final result of the fine-
tuning is shown in the last two columns of Table 3. Note that
there was approximately a 3.6 (5.9) % gain using FixMatch (with
contrastive regularization) and fine-tuning. When pseudo-ID
obtained from the inference stage was used to train the two-
head classifier without FixMatch of Step 3 in Algorithm 1, the
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performance decreased, as displayed in the seventh column of
Table 3.

The t-SNE in Figure 9 shows that FixMatch with contrast
regularization can make the intra-class distance more compact
and the inter-class distance larger.

Note that this sequence of inferencing unknown data,
using FixMatch with pseudo inliers, and fine-tuning with
outliers, can be repeated to continuously improve the
performance of the network.

Table 4 shows a confusion matrix after FixMatch with
contrastive regularization followed by fine-tuning. Note that
the class label was given only when the decisions from the
two heads were consistent. Otherwise, the input image was
treated as unknown. Leaf diseases like angular leafspots and
powdery mildew (leaf) had reduced recall due to confusion with
unknowns. Furthermore, the leaf diseases of angular leafspots,
leaf spot, and gray mold (fruit) were inaccurately identified due
to confusion with unknowns. The unknown detection results
included 94.9% recall and 91.9% precision.

Figure 10 shows samples of recognition results. In
Figure 10, all the true negatives (TNs) of leaf and fruit diseases
were categorized as unknowns. Note that there were many
false positives (FPs) and TNs due to image quality problems
including bad illumination and blurring. In addition, some
diseases featured small-sized symptoms which were difficult to
discern and hard to differentiate, even by human eyes. There
were no FPs of flower or runner diseases, due to their distinct
shape compared to leaf or fruit diseases.

Experimental results of OpenMatch

Training of OpenMatch for comparison with
the two-head network

We dissembled the end-to-end semi-supervised learning
into Algorithm 2 in order to compare OpenMatch with the
two-head network, as described in Section “Discussions and
comparison models.” In the first stage, OpenMatch was trained

with the same labeled and unlabeled OoD data, similar to
the first stage of the two-head network. The OpenMatch
was initially treated as if it was an OoD detector. We then
performed the semi-supervised OpenMatch training which
included inferencing unlabeled data to find the pseudo inliers,
as well as using FixMatch with contrastive regularization.

To ensure a fair comparison with the two-head network, the
same data and the same weak (strong) augmentation methods
at each training stage were used. The precise structure of
OpenMatch used in the experiment is shown in Figure 11;
ImageNet pre-trained ResNet34 was selected again as a DNN
backbone, and there was an eight-way softmax closed-set
classifier and 8 OVA classifiers, due to the identification of eight
strawberry diseases.

Experimental results and discussion
To train OpenMatch classifiers, an SGD optimizer was

selected with a learning rate that decayed from 0.01. For fine-
tuning, the fixed learning rate was set to 2 = 10−4 using
the same SGD optimizer. The batch size was 64 and the
number of epochs for pre-training and fine-tuning were 300 and
10, respectively.

Table 5 shows the performance of the disassembled
OpenMatch across different experimental settings. As a dataset
of healthy parts and unknown diseases was identified as the most
helpful OoD data, only those samples were used in order to
simplify the experiment.

In the second semi-supervised training stage of OpenMatch,
the same 2,659 images of inlier and OoD data used in the
inference stage of the two-head network were prepared. During
second stage training, the high confidence pseudo inliers were
detected and applied to perform FixMatch with contrastive
regularization, in order to upgrade the performance of the
disassembled OpenMatch classifiers. In the experiment, the
threshold τ in Eq. 8 was 0.95 to detect pseudo inliers. The result
of the training is shown in Table 5.

Using OpenMatch without the semi-supervised method as
the OoD detector yields an accuracy of 86.5%, as shown in

TABLE 6 Confusion matrix of the retrained OpenMatch-CR.

ALS AFR AR BB GM LS PWF PML OoD Recall

Angular leaf spot (ALS) 121 0 0 0 0 0 0 0 15 0.890

Anthracnose fruit rot (AFR) 0 16 0 0 0 0 0 0 3 0.842

Anthracnose runner (AR) 0 0 69 0 0 0 0 0 1 0.986

Blossom blight (BB) 0 0 0 222 0 0 0 0 2 0.991

Gray mold (GM) 0 0 0 0 119 0 0 0 10 0.922

Leaf spot (LS) 0 0 0 0 0 235 0 0 1 0.996

Powdery mildew fruit (PMF) 0 0 0 0 0 0 77 0 7 0.917

Powdery mildew leaf (PML) 5 0 0 0 0 0 0 153 91 0.614

Unknowns (OoD) 3 0 1 0 5 14 0 41 1,371 0.955

Precision 0.831 0.950 0.986 0.991 0.899 0.946 0.974 0.931 0.898
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FIGURE 13

Recognition results of correct and incorrect classification.

the first column of Table 5. Note that only the OoD samples
were fed as unlabeled data, similar to the fine-tuning stage of
the two-head network. The performance of OpenMatch as an
OoD detector was comparable with the 86.2% accuracy of the
two-head network.

Usually, OSR does not make use of unknowns in the
training phase, so that there is no bias regarding the
type of unknowns. While OpenMatch with OoD data
samples was biased due to unknown exposure during
training, it was an inevitable but reasonable bias, similarly
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observed in the two-head network. When we applied
OpenMax, a well-known OSR technique, the accuracy
and AUROC were 70.1% and 0.812, respectively. The
outlier exposure provided a significant 16.4% increase
in accuracy, even though the OpenMax and OpenMatch
structures were different.

By combining the semi-supervised training of OpenMatch
with FixMatch (with contrastive regularization), accuracy
improved as much as 3.5 (5.7) %, as displayed in Table 5,
which was comparable with the accuracy of the retrained
two-head network. The accuracy improvement might have
been a result of semi-supervised learning with unlabeled
inliers and outliers. The semi-supervised setting without
FixMatch, where the high confident pseudo inliers were
included in the semi-supervised OpenMatch, provided a small
2.3% gain in accuracy, as shown in the third column of
Table 5. It can be seen from Table 5 that adding the
contrast regularization technique can effectively improve the
performance of FixMatch.

Figure 12 shows t-SNE images after OpenMatch training.
The more compact cluster structure of classes was a result of
the semi-supervised learning of OpenMatch and contrastive
regularization in Figures 12B,C, respectively.

Table 6 shows the confusion matrix for the best
experimental performance, which featured semi-supervised
OpenMatch with contrastive regularization. The unknown
detection results included 95.5% recall and 91.3% precision,
which was comparable with the two-head network. Similar
to the results of the two-head network, leaf diseases such as
angular leaf spots, powdery mildew, and gray mold fruit were
confused with unknowns.

Figure 13 shows samples of recognition results. In
Figure 13, all the TNs of leaf and fruit diseases were categorized
as unknowns, similar to the results of the two-head network.
Image quality was the primary reason for misclassification of FPs
and TNs, as seen in Figure 13.

Conclusion

For continuous learning in the plant disease identification
process, an unknown disease or condition should first be
distinguished from a known disease. This paper examined
with two different but related deep learning-based techniques
the detection of unknown plant diseases, including OSR
and OoD detection. We chose the two-head network using
OoD detection and semi-supervised OpenMatch using OSR
technology, which explicitly and implicitly assume outlier
exposure, respectively.

We carefully review the two models, and performed
modifications in order to compare their performance classifying
known diseases as well as detection of unknown diseases.

For the experiment, we built an image dataset of eight
strawberry diseases. Experiments on the dataset show that
assuming outlier exposure during training is helpful for
detecting unknown diseases. The experimental results also
demonstrated that a careful selection of OoD samples
for training is important to achieve better performance.
Additionally, we demonstrated that FixMatch in semi-
supervised OpenMatch can be successfully added into
a two-head network, with contrastive regularization, to
improve performance. Both OoD detection and OSR provided
reasonable and comparable performance, as they were
more than 92% accurate classifying the eight strawberry
diseases and detecting unknown diseases. We believe the
methods used in our experiment are general in nature,
allowing them to be effectively applied to any type of plant
disease monitoring.
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The ‘Huangguan’ pear disease spot detection and grading is the key to fruit

processing automation. Due to the variety of individual shapes and disease spot

types of ‘Huangguan’ pear. The traditional computer vision technology and

pattern recognition methods have some limitations in the detection of

‘Huangguan’ pear diseases. In recent years, with the development of deep

learning technology and convolutional neural network provides a new solution

for the fast and accurate detection of ‘Huangguan’ pear diseases. To achieve

automatic grading of ‘Huangguan’ pear appearance quality in a complex

context, this study proposes an integrated framework combining instance

segmentation, semantic segmentation and grading models. In the first stage,

Mask R-CNN and Mask R-CNN with the introduction of the preprocessing

module are used to segment ‘Huangguan’ pears from complex backgrounds. In

the second stage, DeepLabV3+, UNet and PSPNet are used to segment the

‘Huangguan’ pear spots to get the spots, and the ratio of the spot pixel area to

the ‘Huangguan’ pear pixel area is calculated and classified into three grades. In

the third stage, the grades of ‘Huangguan’ pear are obtained using ResNet50,

VGG16 and MobileNetV3. The experimental results show that the model

proposed in this paper can segment the ‘Huangguan’ pear and disease spots

in complex background in steps, and complete the grading of ‘Huangguan’

pear fruit disease severity. According to the experimental results. The Mask R-

CNN that introduced the CLAHE preprocessing module in the first-stage

instance segmentation model is the most accurate. The resulting pixel

accuracy (PA) is 97.38% and the Dice coefficient is 68.08%. DeepLabV3+ is

the most accurate in the second-stage semantic segmentation model. The

pixel accuracy is 94.03% and the Dice coefficient is 67.25%. ResNet50 is the

most accurate among the third-stage classification models. The average

precision (AP) was 97.41% and the F1 (harmonic average assessment) was
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95.43%.In short, it not only provides a new framework for the detection and

identification of ‘Huangguan’ pear fruit diseases in complex backgrounds, but

also lays a theoretical foundation for the assessment and grading of

‘Huangguan’ pear diseases.
KEYWORDS

‘Huangguan’ pear disease, deep convolutional neural networks, instance
segmentation, semantic segmentation, disease severity classification
1 Introduction

Pears are fruits produced and consumed around the world,

growing on a tree and harvested in the Northern Hemisphere in

late summer into October. The pear tree and shrub are a species

of genus Pyrus, in the family Rosaceae, bearing the pomaceous

fruit of the same name (Ikinci et al., 2014). Several species of

pears are valued for their edible fruit and juices, while others are

cultivated as trees. China is the world’s largest producer and

consumer of pears, and its pear cultivation area and output rank

first in the world (Oyom et al., 2022). ‘Huangguan’ pear is a mid-

early mature pear variety cultivated by China. It has the

advantages of large fruit size, high quality, early fruit, and

good yield. It can meet the demand for high-quality pears in

the fruit market. After years of demonstration and promotion,

‘Huangguan’ pear has become one of the main pear tree varieties

in most regions, providing huge economic benefits for

‘Huangguan’ pear producers and exporting countries. It is

worth emphasizing that the economic value of ‘Huangguan’

pear fruit depends to a large extent on the aesthetics of its

appearance. The best-looking fruits are for export, the less

diseased ones are reserved for domestic consumption, and the

worst ones are used for further processing to make canned fruits

or jams. However, the quality grading of ‘Huangguan’ pear is a

time-consuming and laborious process. So far, it has almost

completely relied on human inspection and manual observation

of disease symptoms to judge the grade of ‘Huangguan’ pear.

This method is costly and has highly subjective and low

efficiency and timeliness. However, early automated grading

systems have extensively utilized image processing algorithms

and relied on manually defined image features to build classifiers

(Suykens, 2001; Zeng et al., 2020), limiting the robustness and

generalization (Xu and Mannor, 2012) of detection performance

due to the variance of fruits types, appearances, and

damage defects.

In recent years. With the advancement of agricultural

informatization, deep learning and machine learning are

widely used different areas in agriculture (Dobrota et al., 2021;

Yang et al., 2022a)in particular in crop disease detection (Liu

et al., 2018; Pooja et al., 2018; Yu et al., 2018; Özden, 2021; Tassis
02
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et al., 2021; Wang et al., 2021; Wang et al., 2022; Yang et al.,

2022b), experts and scholars have achieved fruitful results in the

research of plant disease identification. Wu et al. (2020b) used

Mask R-CNN and VGG models to judge whether 6400 mango

images are good or bad, with an accuracy rate of 83.6% and

expressed by PCA. Ren et al. (2020) used the tomato plant

diseases in the Plant Village data set and the improved VGG to

propose a model that can identify tomato leaf diseases, with an

accuracy rate of more than 95%.In the food industry, a model

based on CNN was introduced for identification of soft-shell

shrimp. The proposed model attained an average accuracy of

97% (Liu, 2020). Ireri et al. (2019) introduced a tomato grading

machine vision system. The proposed system performed calyx

and stalk scar detection for both defected and healthy tomatoes

based on regions of interest. The radial basic function support

vector machine classifier achieved 97.09% accuracy rate for

healthy and defected tomatoes. Farooq and Sazonov (2017)

used CNN to classify different food groups. The classification

accuracy for 7 and 61 different classes was 94.01% and 70.13%,

respectively. Liang et al. (2019) proposed a plant disease severity

estimation network PD2SENet, which achieves excellent

comprehensive performances. Lu et al. (2017) developed an

application for diagnosing diseases in wheat leaves using two

steps: a disease location step and a classification step. Wu et al.

(2020a) proposed an automatic and efficient apple defect

identification method based on laser-induced light backscatter

imaging and convolutional neural network algorithm. Sofu et al.

(2016) proposed an automatic apple sorting and quality

inspection system that apples were sorted into different classes

by their color, size and weight. It also detected apples affected by

scab, stain and rot. The average grading accuracy rate is 73–96%.

Wang et al. (2017) applied 5 convolutional neural networks with

different structures to estimate the severity of plant diseases, and

fine-tuned the existing network models using transfer learning

to improve the model accuracy. The above research has used

traditional machine learning or deep learning to identify plant

diseases, but the refinement and generalization capabilities need

to be improved. Although some progress has been made in the

research of fruit disease segmentation under complex

background, the research of ‘Huangguan’ pear has not made
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significant progress. Convolutional neural networks have led to a

series of breakthroughs for image classification (He et al., 2015).

This article uses a convolutional neural network (CNN) to

automatically extract data features by introducing local

connections, pooling and other operations. In the first step,

the strength segmentation model was used to remove the

background of ‘Huangguan’ pear, which ensured the fineness

of the next step of grading (He et al., 2018). Then, the semantic

segmentation model was used to segment the disease of

‘Huangguan’ pear, and the proportion of disease pixels in

‘Huangguan’ pear was calculated (Chen et al., 2018). Finally,

by performing transfer learning on ImageNet data. The over-

fitting problem caused by the small sample data domain was

optimized and the grading model was used to achieve the quality

grading of ‘Huangguan’ pear (Akiba et al., 2017). Experiments

show that this method can not only improve the recognition

accuracy of ‘Huangguan’ pear disease, but also is suitable for

classification of ‘Huangguan ’ pear disease images in

generalized scenarios.

The main contributions of this research are as follows:
Fron
For complex background images, a two-stage segmentation

model of ‘Huangguan’ pear disease based on deep

learning was proposed. The model achieved accurate

segmentation of ‘Huangguan’ pear and disease. It

provided the basis for establishing the classification

model of ‘Huangguan’ pear disease severity.

By adopting a three-stage continuous segmentation and

classification method, the complementary advantages of

Mask R-CNN, DeepLabV3+ and Resnet50 models are

fully utilized. Compared with the single-stage model,

this model has better segmentation and classification

effects.

A method for grading the severity of ‘Huangguan’ pear

disease was proposed. By calculating the ratio of the area

of diseased spots to the area of ‘Huangguan’ pear fruit, it
tiers in Plant Science 03
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provides technical support for the accurate classification

of the appearance quality of ‘Huangguan’ pear in actual

production.

It can effectively solve the problem of inaccurate grading of

‘Huangguan’ pears caused by manual sorting, which is

time-consuming and laborious and easy to distract. It

provides a new idea for the automatic grading of

‘Huangguan’ pear appearance quality.
2 Materials and methods

2.1 Data set production and processing

The data set used in this article has a total of 5562 images of

‘Huangguan’ pear. Taking into account the diversity of lighting

conditions in practical applications, The data was collected in

three different periods from July to December 2021: In the

morning (8:30–10:00), noon (12:30–14:00) and afternoon

(15:30–17:00) in the laboratory with camera. This leads to

problems such as background noise, distance, location, and

lighting conditions of ‘Huangguan’ pear. It is the existence of

these problems that can improve the generalization ability of the

model in different scenarios and improve the robustness of the

model. Part of the ‘Huangguan’ pear image is shown in Figure 1.

According to the ‘Huangguan’ pear samples displayed in the

data set, the identification and segmentation of ‘Huangguan’

pear fruit disease mainly have the following difficulties: 1)

‘Huangguan’ pear background interferes with segmentation,

and the different brightness of ‘Huangguan’ pear imaging

caused by factors such as light can easily be mistaken for

disease; 2) ‘Huangguan’ pear disease are irregular in shape,

some are small, and the initial disease are difficult to detect

with the naked eye, which increases the difficulty of disease

segmentation; 3) ‘Huangguan’ pear have different shooting
FIGURE 1

Some pictures of ‘Huangguan’ pear.
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backgrounds, and the quality of the background processing

directly affects the classification of ‘Huangguan’ pear.
2.2 Image data enhancement

The sample distribution of each type of disease in the data set

is not uniform, and the limited training data is easy to overfit the

deep learning model. In deep learning, the use of data

augmentation methods to expand the data can improve the

generalization ability of the model. The training data of this

study uses the Image Data Generator online enhancement

method under the Keras framework. That is, an enhancement

method is randomly selected for each batch of data during the

training process, without increasing the number of original data

sets. In order to avoid changing the original data characteristics

and better simulate the differences of samples under real

shooting conditions, the training set of this research mainly

adopts the following data enhancement methods: 1) Flip: Flip

the image vertically to simulate the randomness of the shooting

angle when the sample is collected, and will not change the shape

of the diseased spot and the distribution of the diseased spot on

the leaf. 2) Color jitter: Change the brightness of the image to

randomly jitter between 0.8-1.2 times. Change the contrast of the

image to randomly jitter between 0.6-1.6 times. Change the

chromaticity of the image to jitter randomly between 0.7-1.4

times. Simulate lighting differences and ensure that the

parameters conform to the actual shooting conditions to avoid

image distortion. 3) Add noise: Add salt and pepper noise with a

signal-to-noise ratio of 0.95 to the image to simulate the noise
Frontiers in Plant Science 04
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generated during the shooting process and weaken the high-

frequency features to prevent the model from overfitting. The

result of data enhancement is shown in Figure 2.
2.3 Labeling of diseased spots of
‘Huangguan’ pear fruit

To train the disease segmentation model, the disease need to

be marked as shown in Figure 3. The labeling of ‘Huangguan’

pear disease is time-consuming and laborious, with a large

number of small targets. The finer annotations help Mask R-

CNN and DeepLabV3+ to perform finer segmentation of

‘Huangguan’ pears and disease, laying the foundation for the

classification of ‘Huangguan’ pears. The labeling is divided into

three scenes including background, pear and diseased spots, and

labeling is carried out with LabelMe (Russell et al., 2008), an

image semantic segmentation labeling tool.
2.4 Grading method for the severity of
fruit diseases of ‘Huangguan’ pear

The classification of disease severity is the basis for

formulating prevention and control strategies. Three methods

are usually used in practice. The first method is to calculate the

ratio of the number of infected fruits per unit area to the total

number of fruits. The second method is to calculate the ratio of

the number of diseased fruits to the total number of fruits on the

same plant. The third method is to calculate the ratio of the area
B C D E F G HA

B C D
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A

FIGURE 2

The image enhancement of (A) Original image, (B) Vertical flip, (C) 0.8 Brightness, (D) 1.2 Brightness, (E) 0.6 Contrast, (F) 1.6 Contrast,
(G) Change chroma, and (H) Add salt noise.
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of spots on the same fruit to the total area of the fruit. The third

method is the basis for accurately estimating the severity of crop

diseases in a region. Therefore, we used the third method, which

uses the ratio of the spot area to the total area of the same fruit as

the basis for classification of disease severity. This method is

mainly based on the opinions and practical experience of fruit

farmers who have been engaged in fruit grading for many years.

By calculating the ratio of the area of the diseased spot to the

area of the fruit, the severity of the disease of ‘Huangguan’ pear

was classified. Since the ‘Huangguan’ pear fruit to be divided is

located in a complex background, the target ‘Huangguan’ pear

fruit and diseased spots are easily confused with other similar

elements, resulting in over-segmentation or under-

segmentation. Therefore, it is difficult to accurately segment

‘Huangguan’ pear fruit and diseased spots at the same time using

a single-stage network. In order to ensure the accuracy of disease

segmentation, the ‘Huangguan’ pear fruit in the complex

background should be segmented first. Therefore, this study

uses a two-stage segmentation network to classify the severity of

‘Huangguan’ pear diseases, and classifies the ‘Huangguan’ pear

images according to the first, second and third levels. Specific

steps are as follows. In the first stage, the segmentation target is

the ‘Huangguan’ pear fruit and the complex background. The

mask image obtained from the test is used to extract the

‘Huangguan’ pear fruit from the complex background, so as to

obtain the ‘Huangguan’ pear fruit in the simple background. In
Frontiers in Plant Science 05
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the second stage of segmentation, the diseased spots in the

‘Huangguan’ pear fruit are taken as the target, and the

proportion of the diseased spots in the ‘Huangguan’ pear fruit

is obtained. As the basis for the classification of disease severity

of ‘Huangguan’ pear. The formula is shown in formula (1).

P =
SDisease
SPear

(1)

Among them, SPear represents the fruit area of ‘Huangguan’

pear after segmentation; SDisease represents the area of the disease

after segmentation; P represents the proportion of diseased spots

on ‘Huangguan’ pear fruit.

After calculating the area of ‘Huangguan’ pear by the disease,

refer to the ‘Huangguan’ Pear Fruit Grade”DB 13/T 1571—2012

issued by China. According to local standards, the proportion of

fruit diseases can be divided into three grades: good and bad.

Among them, 0% of diseases are first-class fruits, 2% or less are

second-class fruits, and diseases greater than 2% are third-

class fruits.
2.5 Evaluation index

In order to reasonably evaluate the performance of the

model, the first two segmentation stages of this study used 3

commonly used evaluation indicators: Pixel Accuracy (PA), dice
B CA

FIGURE 3

Pixel level labeling of ‘Huangguan’ pear fruit and disease spot. (A) Original images, (B) Pear-disease-labels and (C) Composite diagrams.
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and Intersection over Union (IoU). The pixel accuracy is the

ratio of all correctly classified pixels to the total pixels, as shown

in formula (2):

RPA =
Sk
i=0pii

Sk
i=0Sk

j=0pij
(2)

In the formula, k is the number of categories, pii is the

number of pixels that are correctly predicted, and pij represents

the number of pixels whose category i is predicted to be

category j

The Dice coefficient is a function that measures the similarity

of two sets, and is one of the most commonly used evaluation

indicators in semantic segmentation. As shown in formula (3):

Rdice =
2 X ∩ Yj j
Xj j + Yj j (3)

Where X is the predicted pixel and Y is the ground truth.

The intersection ratio is the ratio of the intersection and

union of a certain type of prediction result and the true value of

the model. The intersection ratio is the most commonly used

evaluation index in semantic segmentation, and the expression is

shown in formula (4):

RIoU =
A ∩ B
A ∪ B

(4)

When the value of IOU is between 0 and 1, it represents the

degree of overlap of the two boxes. The higher the value, the

higher the degree of overlap.

The third grading stage uses 5 evaluation indicators

commonly used in grading models, recall, precision, average

precision (AP), F1 score and speed. Recall is the ratio of the

number of correctly detected targets to all actual targets

(Equation (5)). Precision is the number of correctly detected

targets in all detected targets The ratio of (Equation (6)). F1 is

the harmonic average of precision and recall (Equation (7)).

Re call(R) =
TP

TP + FN
(5)

Pr ecision(P) =
TP

TP + FP
(6)

F1 = 2� Pr e� Re c
Pr e + Re c

(7)
2.6 Model training

The hardware configuration used for training and testing in

this research is as follows: Intel(R) Core(TM) i5-10400F CPU @

2.90GHz, 16G RAM, NVIDIA GeForce GTX 1650SUPER

graphics card, 64-bit Windows 10 operating system, CUDA

version 10.0 and TensorFlow version 1.13.2. In order to avoid
Frontiers in Plant Science 06
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the influence of hyperparameters on the experimental results,

the hyperparameters of each network are uniformly configured.

After trial and error, the following hyperparameters have been

determined: The learning rate is 1e-4, the epochs is 50, and the

batch size is 16. If training for more than 5 generations does not

further improve the accuracy, start early stopping and

stop training.
3 Model construction

3.1 Input layer

The input image is a color 3-channel image of leaf disease,

and the image size is uniformly adjusted to 416x416 pixels. In

order to enhance the generalization ability of the model, a data

enhancement method is randomly selected during the training

process to process the original image, and the normalized and

standardized data is used as the input of Mask R-CNN.
3.2 Model Mask R-CNN

Mask R-CNN is a new convolutional neural network

proposed by Ren et al. (2015) based on Faster R-CNN, which

realizes instance segmentation. This method can not only detect

the target effectively, but also complete high-quality semantic

segmentation of the target. The main idea is to add a branch to

the original Faster R-CNN to achieve semantic segmentation of

the target. Mask R-CNN uses FPN to improve the feature

extraction network, which better solves the problem of serious

loss of semantic information through the feature extraction layer

of FCN and SegNet (Kendall et al., 2015), and greatly improves

the segmentation of small target defects. For Deeplab-v3 defect

contour segmentation is not clear, Mask R-CNN replaces the

interest area pooling layer with the interest area alignment layer.

That is, the spatial information on the feature map is further

utilized through bilinear interpolation, so as to predict a more

accurate defect contour. Mask R-CNN first uses the FPN based

on Resnet50 to extract the feature map of the defect image, and

then uses RPN to generate the target suggestion box, And use the

Soft-NMS algorithm to filter the ROI (Bodla et al., 2017), and

finally perform category prediction, bounding box prediction,

and target binarization mask for each ROI. The structure of

Mask R-CNN is shown in Figure 4.
3.3 Semantic segmentation model

DeepLabV3+ first uses Xception feature extraction network to

perform feature extraction on the original image (Chollet, 2016),

and then introduces several parallel Atos convolutions at different

rates to obtain larger-scale image feature information. Then use
frontiersin.org
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the spatial pyramid pooling module Atrous Spatial Pyramid

Pooling(ASPP) (Chen et al., 2016), respectively use a variety of

different void rates for extraction. Obtain more semantic feature

information, thereby improving segmentation accuracy. The

Encode-Decode structure is the mainstream structure in the

semantic segmentation network (Badrinarayanan et al., 2015).

The so-called encoding process is to extract the features of the

substation equipment through the feature extraction network, and

then reorganize the feature information through decoding. In this

process, the network is based on the image The label information

is constantly modified parameters, and finally the object semantic

segmentation of supervised learning is realized. The depth

separable convolution can be added to the ASPP and decoder

modules to make the overall model more efficient.

The UNet proposed by (Ronneberger et al., 2015) for

semantic segmentation of biomedical images consists of two

stages: a contraction stage and an expansion stage. The shrinking

stage consists of the FCN architecture, including convolution,

ReLU, and pooling operations. This step is responsible for

extracting features from the image. The second step, also

known as the expansion step, is the opposite of the previous

step. It consists of a series of deconvolution operations followed

by convolution and concatenation of the feature maps obtained

in the first step. The last part of the network reconstructs the

segmented image.

PSPNet (Zhao et al., 2016) adopts a spatial pyramid network

architecture, which not only enhances the fusion of multi-scale
Frontiers in Plant Science 07
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information, but also reduces the local and global losses. This

structure is a network architecture that integrates multi-scale

scenarios, including 2 parts of convolutional layer and pyramidal

pooling, which has multiple advantages, not only simple

architecture but also high flexibility. Among them, the

convolutional layer integrates different classical network

architectures to achieve a progressive abstraction from low-

level to high-level features.
3.4 Classification model

He et al. (2015) proposed resnet50 network. The main

contribution is to solve the problem of the decline in

classification accuracy as the depth of CNN deepens. The

proposed residual learning idea accelerates the CNN training

process and effectively avoids the problem of gradient

disappearance and gradient explosion. Using the idea of

residual learning. He et al. (2015) proposed a Shortcut

Connections structure of identity mapping, as shown in

Figure 5. Where X is the input, F(X) is the residual mapping,

Y(X) is the ideal mapping, Y(X) = F(X) + X. By transforming the

fitted residual mapping F(X) into the fitting ideal mapping Y(X),

the output can be changed into the superposition of the input

and the residual mapping, so that the network changes between

the input X and the output More sensitive. It does not add

additional parameters and calculations to the network, but at Y
FIGURE 5

The residual block.
FIGURE 4

The processing flow of ‘Huangguan’ pear by Mask R-CNN network.
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(X) the same time greatly increases the training speed of the

model and improves the training effect. When the number of

layers of the model is deepened, this simple structure can well

solve the degradation problem. In recent years, the ResNet

network has been widely cited in various computer vision

tasks, and has achieved outstanding performance. So this

article chooses ResNet50 as the third stage hierarchical

network model.

The essence of the VGG16 model is an enhanced version of

the AlexNet structure, with an emphasis on the depth of the

CNN design (Simonyan and Zisserman, 2014). Furthermore,

each convolutional layer is followed by a pooling layer. VGG16

has five convolutional layers, each with two or three

convolutional layers. To better extract feature information, this

experiment uses three convolutional layers per segment. In

addition, VGG16 uses 3x3 convolution kernels instead of 7x7

convolution kernels. The 3x3 convolution kernel is the smallest

receptive field size that can feel the focus of up and down, left

and right. And, 2 3x3 convolution kernels are stacked. Their

receptive field is equivalent to a 5x5 convolution kernel. When 3

stacks, their receptive field is equivalent to a 7x7 effect. Since the

receptive field is the same, three 3x3 convolutions use three

nonlinear activation functions to increase the nonlinear

expression ability. Makes the dividing plane more separable.

At the same time, a small convolution kernel is used, which

greatly reduces the amount of parameters. Using the 3x3

convolution kernel stacking form not only increases the

number of network layers but also reduces the amount of

parameters. Due to the large number of layers and the

relatively small convolution kernel, the entire network has

better feature extraction effect.

MobileNetV3 replaces part of the 3×3 depth wise

convolution by introducing a 5×5 depth wise convolution

(Howard et al., 2019). Introduce Squeeze-and-excitation (SE)

module and h-swish (HS) activation function to improve model

accuracy. The last two layers of pointwise convolution do not use

batch normalization. Use the NBN logo in the MobileNetV3

structure diagram. MobileNetV3 combines the following

advantages. The first point is the depth wise separable

convolution of MobileNetV1. The second point is the inverse

residual structure of MobileNetV2 with a linear bottleneck. The

third point is to use h-swish instead of the swish function.
3.5 Three-stage model structure

Different instance segmentation, semantic segmentation and

classification models have different network structures, which

will affect the classification accuracy of ‘Huangguan’ pear and

disease. If the same model is used in the three stages, the feature

extraction ability of the model may be affected due to different

segmentation targets. Therefore, based on the different features

to be extracted at each stage, compare various semantic
Frontiers in Plant Science 08
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segmentation and hierarchical models to determine a better

model for each stage. Then, combined with the actual

environment’s requirements for segmentation speed, by

adjusting the order of the model and changing the feature

extraction network, segmentation accuracy can be improved

and segmentation time can be shortened.

In this research, the fusion instance, semantic segmentation

and classification network were used to segment the fruits and

lesions of the ‘Huangguan’ pear in two stages through multiple

experiments. Because the single-stage segmentation model of

‘Huangguan’ pear in complex background is difficult to

accurately segment the fruit and lesions of ‘Huangguan’ pear

at the same time, its segmentation accuracy is generally low.

Based on the above ideas, through the comparison of multiple

instance segmentation models, semantic segmentation models

and hierarchical models. Finally, it is determined that the Mask

R-CNN network with a preprocessing module is used to segment

the ‘crown’ pear in the complex background in the first stage,

and the image of the ‘crown’ pear in the simple background can

be obtained. Then, the ‘Huangguan’ pear was segmented by

DeepLabV3+, and the disease rate of the ‘Huangguan’ pear was

calculated. Finally, use ResNet50 for training. The overall flow

chart is shown in Figure 6.
4. Test results and analysis

4.1 Accuracy and effect of ‘Huangguan’
pear background segmentation

The models used in the first stage of this article are CLAHE-

MASK R-CNN and Mask R-CNN. By default, the file with the best

training effect will be saved as a weight file and then used for testing.

In the algorithm of this paper, the CLAHE preprocessing module is

added according to the characteristics of the ‘Huangguan’ pear

background, which improves the local contrast of the edge of the

‘Huangguan’ pear and improves the network’s ability to predict the

details of themask boundary. At the same time, fewer convolutional

layers can ensure that the edge of the ‘Huangguan’ pear target will

not be lost after multi-layer convolution. It can be seen from

Figure 7. That CLAHE-Mask R-CNN can segment the

background other than ‘Huangguan’ pear under the same label

picture. Under the same conditions, when the segmented

background color is similar to ‘Huangguan’ pear, Mask R-CNN

gets the wrong result. The red box marks the background that Mask

R-CNN has not segmented completely or the background is

segmented excessively. In this paper, the Mask R-CNN of the

CLAHE module has a better effect on the edge segmentation of

‘Huangguan’ pear. If the accuracy of the first stage segmentation is

not high, it may result in segmentation of the wrong ‘Huangguan’

pear in the second stage, and the final accuracy will be reduced. For

comprehensive comparison, CLAHE-Mask R-CNN is selected as

the first stage segmentation model. It can be seen from Table 1 that
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FIGURE 7

The prediction result of ‘Huangguan’ pear instance segmentation. (A) Original images, (B) CLAHE-Mask R-CNN and (C) Mask R-CNN.
FIGURE 6

Three-stage model network architecture.
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in the first stage, the segmentation accuracy of Mask R-CNN with

the addition of the CLAHE module is significantly higher than that

of Mask R-CNN. The PA of CLAHE-Mask R-CNN reaches

97.38%, which can better provide ‘Huangguan’ pear pictures with

complex background removed for the next stage and increase the

accuracy of the overall model.
4.2 Comparison of segmentation
accuracy and effect of ‘Huangguan’
pear disease

The overall structure of the semantic segmentation

model used in the second stage is shown in Figure 8. Three

models DeepLabV3+, UNet, and PspNet were used to

segment ‘Huangguan’ pear disease. Divide the area of

‘Huangguan ’ pear d i s ea s ed spo t s by the a rea o f

‘Huangguan’ pear to get the proportion of diseased spots,
Frontiers in Plant Science 10
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which provides accurate data support for the third-step

classification model.

In the semantic segmentation stage, 448 images of

‘Huangguan’ pear were used as test samples, and the labels

were only divided into ‘Huangguan’ pear and diseased spots

without considering the disease category. The test result is the

average of the test results of 448 images. Table 2 shows the

comparison results of the segmentation accuracy of each

algorithm. It can be seen from Table 2 that the segmentation

accuracy of DeepLabV3+ is significantly higher than that of

UNet and PspNet. The accuracy of DeepLabV3+ reached

94.03%. Compared with UNet and PspNet, the accuracy has

increased by 2.81% and 0.62%. At the same time, the disease

segmented by DeepLabV3+ obtained higher Dice coefficient

(0.6725) and IoU coefficient (0.7436). Compared with UNet, it

increased by 2.68% and 7.21%, and compared with PspNet by

0.86% and 3.25%. Various segmentation results are shown

in Figure 9.
TABLE 1 Performance of the first stage model on the test set.

Model PA/% Dice/% IoU/%

CLAHE-Mask R-CNN 97.38 68.08 73.25

Mask R-CNN 94.84 67.72 69.92
frontie
FIGURE 8

‘Huangguan’ pear semantic segmentation network structure diagram.
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It shows the segmentation results of ‘Huangguan’ pear

disease on the DeepLabV3+, UNet, and PspNet models. It can

be seen that DeepLabV3+ can segment small disease. The

segmentation result of UNet will lose some details, the

segmentation boundary will be fuzzy, the similar disease area

will be stuck, and the segmentation edge of UNet will appear

jagged and there will be edge loss. This is because UNet cannot

capture features at different levels, and integrates them through

feature superposition. It is easy to lose data due to repeated

downsampling and upsampling of the deep network. The

convolution operation of the encoder-decoder of DeepLabV3+

can smoothly segment the edges of disease. The segmentation

edge of PspNet is relatively smooth, but it is easy to miss some

disease areas and excessive segmentation of disease areas. Which

means that PspNet does not have obvious response to disease

with similar colors to ‘Huangguan’ pear. It can be seen from the
Frontiers in Plant Science 11
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segmentation map that the difficulty of segmentation for

different disease is different. For example, the chicken feet

disease area of ‘Huangguan’ pear is dark yellow and the color

is similar to that of ‘Huangguan’ pear, and the edge of the disease

is not obvious, so the segmentation is more difficult. DeepLabV3

+ can arbitrarily control the resolution of the extracted features

of the encoder, and can effectively and accurately segment the

‘Huangguan’ pear disease by balancing the accuracy and time-

consuming hole convolution. The proportion of diseased spots

in ‘Huangguan’ pears is shown in Figure 10.

The DeepLabV3+ model is used to predict the disease area of

‘Huangguan’ pear, and the predicted disease area and the actual

disease area have a higher IoU. It benefits from the early pixel-

level disease labeling and the introduction of hole convolution in

DeepLabV3+, which has strong semantic segmentation

performance. According to the ratio of the number of pixels of
TABLE 2 Performance of the second stage model on the test set.

Model PA/% Dice/% IoU/%

DeepLabV3+ 94.03 67.25 74.36

UNet 91.22 64.57 67.15

PspNet 93.41 66.39 71.11
frontie
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FIGURE 9

Comparison of the segmentation results of ‘Huangguan’ pear disease. (A) Original Image, (B) DeepLabV3+, (C) UNet and (D) PspNet.
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the diseased spots to the number of pixels of ‘Huangguan’ pear,

the accurate ratio of the diseased spots can be obtained, which

provides an accurate data set for the third stage model.
4.3Analysis of the classification results of
‘Huangguan’ pear

4.3.1 Loss function
The fully connected layer uses the gradient descent

algorithm as the parameter optimizer, and sets the average

cross entropy as the loss function as follows:

L =
1
N
SiLi = −

1
N
SM
i=1yi ln (pi) (8)

(8) Where: N is the total number of samples; M is the

number of categories; yi is the indicator variable (0 or 1), if the
Frontiers in Plant Science 12
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category is i, it is 1, otherwise it is 0; pi is the probability that the

observed sample is i; Li Represents the loss value of category i.

4.3.2 Training process
The data set is classified according to the disease grades

segmented by DeepLabV3+. There are a total of 5114 images in

the training set and the verification set, which are allocated at a

ratio of 9:1. There are 448 images in the test set. When training

the classification model, three test models are designed:

ResNet50, VGG16 and MobileNetV3. Among them, the

classification of ‘Huangguan’ pear image is shown in Table 3.

Taking the ResNet50 model training as an example, first use

a part of the third-class fruits in the image divided into 50 evenly

and use equation (9) to train for one round, which can guide the

network to pay attention to the disease part when extracting

features. Then, after training 30 batches of samples without

disease, use the training set with disease for one round to ensure
FIGURE 10

Proportion of ‘Huangguan’ pear disease.
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continuous supervision of the results of disease. An epoch

training will be completed until all training samples with no

disease are finished. At the end of each epoch training, record the

training accuracy and average loss. Use the model trained in this

round to make a prediction for all test samples, and record the

test accuracy and average loss. After training for 150 epochs, the

weight with the smallest disease recognition loss on the test set is

selected as the final model.

4.3.3 Analysis of training results
Use VGG16 model, ResNet50 and MobileNetV3 respectively

for training, and ensure that the parameter settings are the same.

Because each iteration randomly uses an image enhancement

method, the training recognition accuracy will fluctuate slightly.

In the first 5 rounds of training, the training and recognition

accuracy of ResNet50 increased rapidly, and the recognition

accuracy on the test set reached more than 95% earlier than

other models. ResNet50 has the highest recognition accuracy in

the first round of testing. When the number of iteration rounds

is about 60 rounds, the training recognition accuracy of

ResNet50 first tends to 100%. It can be seen from the change

of recognition accuracy that the ResNet50 model can converge

faster, and its training accuracy and loss rate are shown

in Figure 11.

Accurate and efficient ‘Huangguan’ pear appearance quality

classification model is of great significance. The automatic

scoring method will alleviate the problem of rural labor

shortage. In addition, an accurate grading model will indirectly

affect market segments and ensure the reliable and stable quality
Frontiers in Plant Science 13
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of ‘Huangguan’ Pear agricultural products. As shown in Table 4,

the above experimental results clearly show the effectiveness of

the ResNet50 model on the ‘Huangguan’ pear appearance

quality classification model. The ResNet50 algorithm

maintains a fairly high accuracy. The results show that this

method can be used to realize the automatic grading of the

appearance quality of ‘Huangguan’ pear. In our experiments,

the ResNet50 model takes about 311.2 milliseconds to predict

the appearance quality of each ‘Huangguan’ pear, and there is

not much difference between VGG16 and MobileNetV3. This

speed can fully meet the real-time requirements of classification.

Compared with VGG16 and MobileNetV3, the average

precision of ResNet50 has a higher advantage, which is 11.61%

and 4.94% higher respectively. The prediction result of

‘Huangguan’ pear grade is shown in Figure 12.

It can be seen that the prediction result of ResNet50 on the

appearance quality of ‘Huangguan’ pear is relatively accurate,

and the prediction level and prediction probability are marked

directly above each picture. It can be seen that the ResNet50

model can predict the ‘Huangguan’ pear images with different

light intensity well, and the model has high robustness.
5. Conclusion and future work

In conclusion, this research proposes a three-stage model of

‘Huangguan’ pear disease in complex contexts that combines

instance segmentation, semantic segmentation, and

classification. In the first stage, the complete ‘Huangguan’ pear
TABLE 3 Grade distribution of ‘Huangguan’ pear.

Dataset split A Grade B C

Training set 1264 (27.46%) 1516 (32.95%) 1822 (39.59%)

Validation set 140 (27.35%) 169 (33.00%) 203 (39.65%)

Test set 126 (28.13%) 130 (29.02%) 192 (42.85%)
f

FIGURE 11

The accuracy and loss of the three models for the test set.
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fruit is segmented and extracted using Mask R-CNN with an

preprocessing module. Then in the second stage, DeepLabV3+

was used to segment and extract the diseases of the simple

background ‘Huangguan’ pear fruit extracted in the first stage,

and the proportion was calculated. Through the data obtained in

the second stage, the ‘Huangguan’ pears are divided into three

grades: A, B, and C. In the third stage, the weights are obtained

by training three grades of fruits through ResNet50. In the

prediction stage, after the Mask R-CNN segmentation is

completed, the ResNet50 model is used for prediction, and the

grade of the ‘Huangguan’ pear can be directly obtained. Overall,

the model can improve the accuracy of disease segmentation,

thereby providing a reasonable classification opinion for the
Frontiers in Plant Science 14
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disease severity of ‘Huangguan’ pear fruits. Finally, the pixel

accuracy of the Mask R-CNN model with preprocessing module

is 97.38%. The pixel accuracy of the DeepLabV3+ model is

94.03%. The average precision of the ResNet50 model is 97.41%.

Overall segmentation and classification performance is

significantly improved compared to the one-stage model. This

method based on machine vision and deep learning is harmless

to ‘Huangguan’ pears and provides technical support for follow-

up research. Currently, all diseases are roughly graded.

‘Huangguan’ pears suffer from a wide variety of diseases. The

next step will be to subdivide the disease of the ‘Huangguan’

pear. Detect and identify various types of diseases to assess their

severity. Thereafter, further work in this direction will continue.
TABLE 4 Comparison results of ‘Huangguan’ pear grading data sets.

Model Classes Precision/% Recall/% AP/% F1/% Speed/ms

ResNet50 A 99.58 97.25 97.41 95.43 311.2

B 95.26

C 97.39

VGG16 A 88.21 85.54 85.80 86.10 430.6

B 83.42

C 85.78

MobileNetV3 A 95.97 93.68 92.47 92.88 198.5

B 89.28

C 92.15
fro
B CA

FIGURE 12

Prediction grade results of ‘Huangguan’ pear. (A) grade A, (B) grade B and (C) grade C.
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A wheat spike detection method
based on Transformer
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Liusan Wang1* and Rujing Wang1,2*

1Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of
Sciences, Hefei, China, 2Science Island Branch, University of Science and Technology of China,
Hefei, China, 3College of Information and Computer, Anhui Agricultural University, Hefei, China,
4Department of Information Engineering Southwest, University of Science and Technology,
Mianyang, China, 5School of Internet, Anhui University, Hefei, China
Wheat spike detection has important research significance for production

estimation and crop field management. With the development of deep

learning-based algorithms, researchers tend to solve the detection task by

convolutional neural networks (CNNs). However, traditional CNNs equip with

the inductive bias of locality and scale-invariance, which makes it hard to

extract global and long-range dependency. In this paper, we propose a

Transformer-based network named Multi-Window Swin Transformer (MW-

Swin Transformer). Technically, MW-Swin Transformer introduces the ability of

feature pyramid network to extract multi-scale features and inherits the

characteristic of Swin Transformer that performs self-attention mechanism

by window strategy. Moreover, bounding box regression is a crucial step in

detection. We propose a Wheat Intersection over Union loss by incorporating

the Euclidean distance, area overlapping, and aspect ratio, thereby leading to

better detection accuracy. We merge the proposed network and regression

loss into a popular detection architecture, fully convolutional one-stage object

detection, and name the unified model WheatFormer. Finally, we construct a

wheat spike detection dataset (WSD-2022) to evaluate the performance of the

proposed methods. The experimental results show that the proposed network

outperforms those state-of-the-art algorithms with 0.459 mAP (mean average

precision) and 0.918 AP50. It has been proved that our Transformer-based

method is effective to handle wheat spike detection under complex

field conditions.

KEYWORDS

deep learning, IoU loss function, transformer, wheat spike detection, agriculture
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1 Introduction

Wheat is one of the most important food crops in the world,

with an annual production of 730 million tons in around 215

million ha (Catherine et al., 2014). As the global yield supports

approximately 30% of the world population, wheat production

estimation has become a focus of agricultural research. It could

provide key indicators for agricultural decision-making and field

management. Since wheat spike is a major factor that reflects the

grain number per unit area, it is significant to accurately detect

the wheat spike for estimating crop yield.

Traditional field yield estimation methods are time-

consuming, inefficient, and poorly representative, so they are

not suitable for current large-scale yield forecasting tasks. With

the development of computer vision, many researchers have

conducted research through machine learning techniques. Fang

et al. (2020) proposed to estimate the wheat tiller density based

on terrestrial laser scanning data. Fernandez-Gallego et al.

(2019) used zenithal/nadir thermal images to count the

number of wheat spikes. Jin et al. (2017) adopted unmanned

aerial vehicles (UAVs) to obtain high-resolution imagery for

estimating wheat plant density. In these traditional machine

learning studies, image texture, geometry, and color intensity are

primarily used to discriminate spikes. However, the process is

partly manually designed to define the range and threshold in

the model. They are not robust enough for different situations

with dense distribution, complex structural environments, and

severe occlusion in the field (Zhang et al., 2020a). Convolutional

neural networks (CNNs) have been introduced into the research

of wheat spike detection in recent studies. Khoroshevsky et al.

(2021) suggested that a network incorporates multiple targets in

a single deep model, and the results show that the method is

effective as a yield estimator. Misra et al. (2020) combined digital

image analysis with CNN techniques to identify and count wheat

spikes. CNNs are effective to extract local information, but they

lack the ability to extract long-range features from global

information. Due to the field environment of wheat being

complex, i .e . , dense distribution, complex structural

environment, and severe occlusion, it is hard for CNNs to

perform well.

The evolution of Transformer (Vaswani et al., 2017) in

natural language processing (NLP) provides an alternative

path, and many researchers have subsequently transferred the

NLP models to computer vision models. Compared with

conventional CNN backbones, Transformers always produce

global receptive fields rather than local receptive fields, which

is more suitable for detecting objects in complex backgrounds.

The Transformer architecture avoids repetition and instead

relies entirely on the attention mechanism to map the global

dependencies between inputs and outputs. The significant

success in the natural language processing domain motivates

researchers to investigate the application in classification

(Dosovitskiy et al., 2021) and dense prediction tasks
Frontiers in Plant Science 02
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(Bochkovskiy et al., 2020; Carion et al., 2020; Xizhou et al.,

2020). There are two main challenges in transferring the NLP

Transformer to the visual domain Transformer. Firstly, unlike

the word tokens that are the basic elements of a linguistic

Transformer, the vision elements can be very different from

the NLP in scale. Another is that Transformer has high

computational and memory costs for prediction tasks.

Bounding box regression is a key operation to locate the

target object in detection tasks. The loss function is to calculate

the difference between the regression result and the true value

and finally minimize the regression error. The ln−norm loss

function is widely adopted in bounding box regression, while the

common ln−norm loss (e.g. l1−norm or l2−norm ) is used for

measuring the distance between bounding boxes. However,

according to the research of Yu et al. (Yu et al., 2016;

Rezatofighi et al, 2019), it is not tailored to the Intersection

over Union (IoU) metric. IoU loss (Yu et al., 2016) and

generalized IoU (GIoU) loss (Rezatofighi et al., 2019) have

recently been suggested to improve the IoU metric. IoU loss

can be effective only when the bounding boxes overlap, but it is

useless for non-overlapping cases. GIoU adds a penalty term that

the predicted bounding box will move to the target box without

overlapping. Nevertheless, GIoU empirically has a lower

convergence speed, and it will degrade to IoU loss for

enclosing boxes (Zheng et al., 2020). Therefore, it is important

to design an effective loss function for bounding box regression.

In this work, we aim to explore a Transformer-based

network for wheat spike detection. To the best of our

knowledge, this is the first attempt using Transformer in the

wheat detection field. Inspired by the novel architecture of Swin

Transformer (Liu et al., 2021) and exploring to overcome the

above-mentioned limitations, we propose a Transformer-based

network named MW-Swin Transformer. It has the following

advantages: Firstly, compared with the conventional

Transformer, the proposed Transformer occupies the

hierarchical architecture that is essential for downstream tasks.

Secondly, compared with Swin Transformer, we inherit the

excellent network and design of a multi-window Transformer

block to extract target features with different scales. Thirdly, our

method has three variants according to the number of stacked

layers, which is flexible to fit the actual requirements.

Furthermore, we propose a WIoU loss for bounding box

regression. Specifically, we add a penalty term on IoU loss,

considering the overlap area, Euclidean distance, and aspect

ratio. The three geometric indicators are important, e.g., the

Euclidean distance is used to minimize the distance of central

points in two bounding boxes, and the consistency of aspect

ratios is also bringing about an impact on IoU loss. We

incorporate the proposed methods into the FCOS and name

the new model WheatFormer, as illustrated in Figure 1.

WheatFormer contains two major parts: the multi-window

Swin (MW-Swin) Transformer and the wheat detector. The

input image is split into non-overlapping patches, and each
frontiersin.org
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patch is regarded as a token and fed into the MW-Swin

Transformer backbone to learn long-range features from

global information. Then, the extracted feature maps are fed

into the one-stage detector to locate the wheat spike. Finally, we

construct a wheat spike detection dataset named WSD-2022 to

evaluate the performance of the proposed WheatFormer. The

dataset contains 6,404 images from two data sources, the first

was from the Global Wheat Head Detection (GWHD) dataset

(David et al., 2021) and the second was collected in the field

environment by our collaborators. The major contributions of

our work are as follows:
Fron
● We propose the MW-Swin Transformer with multiple

windows for different scale objects, which inherits from

the shifted windows in Swin Transformer. This strategy

brings a much lower latency than those previous

Transformer models, leading to strong performance

due to the global receptive field.

● A WIoU loss function is proposed for bounding box

regression, considering three important geometric

indicators. WIoU helps the network achieve a better

performance than normal IoU loss and other improved

IoU loss functions.

● We build the WSD-2022 dataset for detecting wheat

spikes. This dataset contains wheat spike images from

different regions and different developmental stages.

Our work provides a richer benchmark dataset for

wheat spike detection tasks.
tiers in Plant Science 03
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2 Related work

2.1 CNN-based methods in wheat
spike detection

CNNs have been widely used in computer vision tasks, such

as image classification (Huang et al., 2017), object detection (Ren

et al., 2017), and semantic segmentation (He et al., 2017), which

have achieved excellent achievements. Differently from

tradi t ional machine learning methods , CNNs can

automatically abstract features without manual intervention.

Sadeghi-Tehran et al. (2019) proposed a low-computational-

cost system to automatically detect the number of wheat spikes,

which used simple linear iterative clustering with CNN. Hasan

et al. (2018) introduced a robust R-CNN model for the accurate

detection, counting, and analysis of wheat ears for yield

estimation. Wang et al. (2019) provided a method based on a

fully convolutional network and Harris corner detection, solving

the problem of counting wheat ears in field conditions. Madec

et al. (2019) used Faster R-CNN to provide accurate ear density

using RGB images taken from the UAV. Pound et al. (2017)

investigated a deep learning method capable of accurately

localizing wheat ears and spikelets. Gong et al. (2020)

proposed a novel object method of wheat head detection based

on dual SPP networks to enhance the speed and accuracy of

detection. Yang et al. (2021) combined the convolutional neural

network and attention mechanism technology to propose a

CBAM-YOLOv4 wheat ear detection and counting method.
FIGURE 1

The main architecture of WheatFormer.
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2.2 Object detection

Object detection methods can be divided into two groups:

with two stages and with one-stage. For two-stage detectors, the

first stage is to produce lots of high-quality region proposals by a

proposal generator, and the second stage is classifying and

refining the proposals by region-wise subnetworks. R-CNN

(Girshick et al., 2014) and Fast R-CNN (Girshick, 2015) are

the typical networks of two-stage detectors, which combined the

region proposals and CNN for object detection. Faster R-CNN

(Ren et al., 2017) was proposed to speed up Fast R-CNN and

promote detection accuracy by using region proposal network.

Other two-stage detectors mainly include Mask R-CNN (He

et al., 2020), Libra R-CNN (Pang et al., 2019), and Cascade R-

CNN (Cai and Vasconcelos, 2018). However, two-stage

detectors show a weakness in detection efficiency (Redmon

et al., 2016). For one-stage detectors, they drop the process of

generation region proposals, treating the object detection task as

a single shot problem, such as the YOLO series networks: YOLO

(Redmon et al., 2016), YOLOv3 (Redmon and Farhadi, 2018),

and YOLOv4 (Bochkovskiy et al., 2020). Tian et al. (2019)

proposed a fully convolutional one-stage object detector. This

method avoided the complex computation by eliminating the

predefined set of region proposals. SSD (Fu et al., 2017)

introduced additional context into the popular general

object detection.
2.3 Vision Transformer

The Transformer is proposed by Vaswani et al. (2017),

which is widely used in NLP tasks. Recently, the pioneering

work of vision Transformer ViT (Dosovitskiy et al., 2021)

demonstrated that the pure Transformer-based model can also

achieve competitive performance in vision tasks. Based on the

success of ViT, many studies have on designing more advanced

Transformer base networks been published, including image

processing (Wan et al., 2021), classification (Wang et al., 2021),

object detection (Carion et al., 2020), and semantic segmentation

(Zheng et al., 2021). However, the normal ViT-based models are

not compatible with many downstream tasks due to the high

computational cost. To alleviate the limitations, an efficient and

effective hierarchical Transformer named Swin Transformer

(Liu et al., 2021) was proposed as a unified vision backbone.

Swin Transformer designed the shifted windows mechanism,

achieving state-of-the-art performance in many downstream

tasks. We introduce Swin Transformer due to its excellent

characteristics, and the hierarchical architecture is designed to

reduce the complex computation by progressively decreasing the

shape of feature maps.
Frontiers in Plant Science 04
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3 Materials and methods

3.1 Dataset

We built a wheat spike detection dataset named WSD-2022,

containing a total of 6,404 images, of which 978 images we

collected ourselves in the field environment. We conducted

wheat image collection in four locations, including Dangtu

County, Ma’anshan; Feidong County, Hefei; Guizhi District,

Chizhou; and Susong County, Anqing. The images were

collected from April 18 to May 10, 2021 from the flowering

stage to the milk stage of maturity. We collected the wheat spikes

of varieties with different colors, shapes, and densities, thus

increasing the diversity of the data. We shot the images using

different types of cameras at different shooting angles and

distances to collect image data under different lighting

conditions to enhance the robustness of the model. About 80%

of the images were captured at a resolution of over 3,000*4000

pixels. The captured images need to label each wheat spike, and we

use LabelImg software to annotate the bounding boxes around the

wheat spikes. Each wheat spike is labeled with a bounding box, the

annotation is represented as a vector (x,y,w,h) where (x,y) are the

coordinates of the upper left and (w,h) are the width/height of the

bounding box. Figure 2 shows some examples of WSD-2022. Due

to the different shooting angles, different lighting conditions,

different wheat growth periods, different wheat distribution

densities, and different wheat spike sizes, we can find the

diversity and complexity of the dataset. We randomly split the

WSD-2022 into training and validation subsets at a ratio of 8:2.

The details of the two subsets are summarized in Table 1.
3.2 MW-Swin Transformer

3.2.1 Overall architecture
This section describes the design of MW-Swin Transformer.

The pyramid structure was introduced based on the Transformer

model to generate hierarchical feature maps for downstream tasks.

The overall architecture of MW-Swin Transformer is similar to

CNN networks. As shown in (Figure 1). For an input image with

size of H*W*3 , we follow Swin Transformer to split the image

into patches at first (we treat each patch as a “token”); the patch

size is 4*4. By such approach, the feature dimension of each patch

becomes 4*4*3 = 48. Then, a linear embedding layer is employed

to project the feature dimension to arbitrary dimension (set as C ).

To produce hierarchical feature representation, the model

architecture consists of four stages; a patch merging layer is

added after each stage for down-sampling (reduce the number

of tokens, which is similar to the pooling layer in CNN).

In the first stage, we divide the input image into HW/42

patches, with a size of 4*4*3 for each of them. Through the linear
frontiersin.org
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embedding layer, we feed the flattened patches to MW-Swin

Transformer blocks (the number of blocks is represented by N ),

and the output is reshaped to a feature map with a size of H/

4*W/4*C1 (represented as F1 ). The patch merging layer down-

sampled each feature map Fi,i={1,2,3,4} with strides [4, 8, 16, 32]

with respect to the size of the input image. The output
Frontiers in Plant Science 05
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dimensions of Fi is set to Ci,i={1,2,3,4} . Therefore, the output

resolution of each stage is H/4*W/4*C1 , H/8*W/8*C2 , H/16*W/

16*C3 , and H/32*W/32*C4 , respectively. With the hierarchical

structure, our model possesses the progressive shrinking strategy

that adjusts the output scale of each stage so that we can easily

apply the model to downstream tasks.
3.2.2 MW-Swin Transformer block
Transformer obtains the powerful ability of long-range

context modeling, but the computation complexity of

conventional Transformer is quadratic to feature map size. For

dense prediction tasks with high-resolution images as input,

using conventional Transformer is expensive. Therefore, Swin

Transformer is proposed to perform self-attention by non-
TABLE 1 Number of images in the WSD-2022 dataset.

WSD-2022 Train Validation Total

Ours 782 196 978

GWHD 4,309 1,117 5,426

Total 5,091 1,313 6,404
FIGURE 2

Samples of the WSD-2022 dataset. The first and second rows of the figure show the images that we acquired, while the third and fourth rows of
the figure come from GWHD.
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overlapping local windows and shifted windows. However, the

window size of Swin Transformer is fixed, which is not

conducive to detecting objects of different sizes. To enlarge the

receptive field and obtain global self-attention more flexibly, we

propose the MW-Swin Transformer; the architecture is similar

to the feature pyramid network, using different-sized windows to

detect objects across a large range of scales.

As shown in Figure 3, two consecutive MW-Swin

Transformer blocks are presented. Each block contains two

LayerNorm (Bosilj et al. 2020) layers, a multi-head self-

attention (MSA), and a multilayer perceptron (MLP). The

multi-window MSA (MW-MSA) and the shifted multi-

window MSA (SMW-MSA) are adopted in the consecutive

Transformer blocks, respectively. With the MW-MSA module

and the SMW-MSA module, consecutive MW-Swin

Transformer blocks can be represented as:

�zl = MW − SMA(LN(zl−1)) + zl−1

�zl = SR(�zl)

zl = MLP(LN(�zl)) + �zl (1)

�zl+1 = SMW − SMA(LN(zl)) + zl

�zl+1 = SR(�zl+1)
Frontiers in Plant Science 06
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zl+1 = MLP(LN(�zl+1)) + �zl+1

where �zl and zl represent the outputs of (S)MW-SMAmodule

and the MLP for the block, respectively. MW-MSA equals Concat

(W−MSA(zl−1)1,W−MSA(zl−1)2,W−MSA(zl−1)3) , where W−MSA

(•)i,i=1,2,3 indicates the ith window with size X , and we set X=

[7,9,11] in experiments. SR(•) denotes the spatial reduction

module to reduce the spatial scale of �zl , which reduces the

memory and computational cost. Similar to the conventional

Transformer (Dosovitskiy et al., 2021; Liu et al., 2021), the

attention operation can be computed as follows:

Attention(Q,K ,V) = Softmax (
QKTffiffiffi

d
p + B)V (2)

where Q,K,V represent the query, key, and value matrices;

the other parameters are in accordance with Swin Transformer.

Compared with the previous MSA in vision Transformers,

the MW-MSA controls the computation area in multi-window

as a unit. It reduces the complexity and computational cost,

enhancing the ability to detect multi-scale features. MW-Swin

Transformer block can serve as a plug-and-play block to replace

the raw Transformer block in Swin Transformer, with only

minor modifications to the vanilla structure.

3.2.3 Architecture variants
We named the base model WheatFormer-B, which is a

trade-off between efficiency and accuracy. Considering higher
FIGURE 3

MW-Swin Transformer block.
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efficiency needs in some cases, we have introduced a small

version named WheatFormer-S. On the other hand, when

accuracy needs to be considered more, we have introduced a

large version named WheatFormer-L. The architectures of our

base model and variants are listed in Table 2.
3.3 Wheat detector

3.3.1 One-stage object detector
FCOS is a one-stage anchor-free object detection algorithm

(Tian et al., 2019) with higher accuracy and faster speed

compared with the representative model Faster R-CNN (Ren

et al., 2017) and other two-stage detectors. FCOS mainly consists

of three parts: a feature extraction backbone, a feature pyramid

network (FPN), and a detection head. The backbone extracts

multi-level features of the input image. Then, low-level spatial

information and high-level semantic information are fed into

FPN, generating multi-scale feature maps. In previous research,

low-level information can obtain more detailed texture

information, which leads to more efficient detection. High-

level information gets more semantic information and is more

suitable for classification. FCOS is a pixel-based detector, which

means that each pixel on the feature map is used for regression.

First, each pixel map back to the original input image, and a pixel

considers a positive sample if its location falls within any

ground-truth box with the correct class label. Otherwise, it is a

negative sample. As for regression, FCOS uses a vector t*=(l*,t*,
r*,b*) , where l*,t*,r*,b* denote the distances from the location

(x,y) to the four sides of the bounding box, as shown in Figure 4.

The target regression process can be formulated as follows:

l* = x − x0
(i)

t* = y − y0
(i)

r* = x1
(i) − x

b* = y1
(i) − y

(3)

where (x0
(i),y0

(i)) and represent coordinates of the left-top

and right-bottom corners of the bounding box.

3.3.2 WIoU loss
The training loss function of the proposed WheatFormer

mainly obtains three branch loss functions:
Frontiers in Plant Science 07
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LWheatFormer =
1

Npos
Lcls +

l1
Npos

Lcenter−ness +
l2
Npos

Lreg (4)

where Lcls and Lcenter−ness represent the classification and

center-ness loss function which are designed in FCOS. Npos

denotes the number of positive pixels. l1 and l2 are balance

weights to adjust the proportions of three branch loss functions.

The parameters follow the settings in Tian et al. (2019). FCOS

uses IoU loss to calculate the regression loss, which can be

formulated as follows:

Lreg =ox,y∈(Rp∪Rn)(1 − IoU( Prx,y ,Gtx,y)) (5)

where Rp represents the positive sample region and Rn

denotes the negative sample region. Gti,j indicates the ground

truth localization of the pixel (x,y) , while Pri,j denotes the

predicted target of (x,y) .

The IoU loss regresses all bound variables as a whole for

joint regression and directly enforces the maximum overlap

between the prediction bounding box and the ground truth. The

IoU loss leads to faster convergence and more accurate

localization compared with the ln−norm loss used in previous

studies. However, the IoU loss cannot provide moving gradients

for non-overlapping cases, i.e., IoU loss is only valid when the

bounding boxes overlap. Based on previous researches and the

IoU loss, we consider three important geometric metrics, which

are the overlap region, Euclidean distance, and aspect ratio of

bounding boxes. In summary, we add a penalty term to the IoU

loss, named WIoU loss. The new loss function directly

minimizes the Euclidean distance between the predicted box

and the ground truth. At the same time, we take into account the

effect of the consistency of aspect ratios. The WIoU loss function

is defined as follows:

Lreg =ox,y∈(Rp∪Rn)(1 − IoU( Prx,y ,Gtx,y) + y ║Prx,y ,Gtx,y ║2 )

y = 4
p2 ( arctan

wGt
x,y

hGtx,y
− arctan wPr

x,y

hPrx,y
)2

(6)

where y measures the consistency of the aspect ratio and

plays the role of regularization for the distance between the

predicted bounding box and the target bounding box. wGt and

hGt represent the width and height of the ground truth. wPr and

hPr represent the width and height of the predicted bounding

box. The optimization of WIoU loss is the same as the IoU loss.
TABLE 2 Detailed settings of WheatFormer variants.

Models C1,C2,C3,C4 N1,N2,N3,N4 #Head #Expansion #Params (MB)

WheatFormer-S [96, 192, 384, 768] [2, 2, 2, 2] 32 a=4 42.4

WheatFormer-B [96, 192, 384, 768] [2, 2, 6, 2] 32 a=4 60.1

WheatFormer-L [96, 192, 384, 768] [2, 2, 18, 2] 32 a=4 100.6
Ci , channel number of the hidden layers in each stage; Ni , layer numbers in each stage; #Head, query dimension of each head; #Expansion, expansion layer of each multilayer perceptron;
#Params, amount of model parameters.
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4 Experiments and discussion AP

4.1 Experimental settings

All the experiments were performed using the Pytorch deep

learning frame, and the operation system was Ubuntu 18.04 with

CUDA10.1. We use a piece of NVIDIA TITAN RTX GPU, Intel

Core i9-9900k CPU with 128GB RAM. Furthermore, we train

our model with the AdamW (Loshchilov and Hutter, 2017)

optimizer for 24 epochs. The initial learning rate is 1e−4 , and
Frontiers in Plant Science 08
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the weight decay is 0.05. The settings of comparison networks

follow the original settings.
4.2 Evaluation metrics

In our experiments, we use the evaluation metrics as the

metric definition of the COCO dataset. Average precision ( AP ) is

the area surrounded by the precision-recall curve. The definition

of AP is defined as Formula 7. AP@50 ( AP50 ) means the value
FIGURE 4

Regression method of FCOS. l*, t*, r*, and b* represent the distances from the pixel to the left, top, right, and bottom, respectively, of the
bounding box.
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when IoU is equal to 0.5, AP@75 ( AP75 ) is the AP value when the

IoU equals 0.75, and the mean AP ( mAP ) is the threshold of the

IoU from 0.5 to 0.95 ( AP@[0.5:0.05:0.95] ) with a step size of 0.05.

precision = TP
TP+FP

recall = TP
TP+FN

AP =
Z 1

0
precision(recall)d(recall)

(7)

where TP (true positive), FP (false positive), and FN (false

negative) represent the number of correctly detected wheat

spikes, false detected wheat spikes, and missing detected wheat

spikes. At the same time, we use APs , APm , APl defined in the

COCO dataset in our experiments, which represent the detection

accuracy for different target sizes. Considering that the wheat

spike in the dataset occupies a larger proportion of the image, we

only apply APm (for medium targets) and APl (for large targets)

as the evaluation metric. In the field of object detection, AP

metric is widely adopted for evaluating the comprehensive

detection performance of the model.
4.3 Model performance

The experiments in this section aim to demonstrate the

effectiveness of the proposed method in terms of detection

performance. We compared seven state-of-the-art algorithms,

including Faster R-CNN (Madec et al., 2019), Mask R-CNN (He

et al., 2020), FCOS (Tian et al., 2019), ATSS (Zhang et al.,

2020b), SSD (Fu et al., 2017), Centernet (Zhou et al., 2019), and

YOLOv3 (Redmon and Farhadi, 2018). Faster R-CNN and Mask

R-CNN are two-stage networks, and the rest are one-stage

networks. The experimental results are listed in Table 3, and
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we can find that the proposed WheatFormer outperforms the

other models. To be specific, compared with the two-stage CNN-

based models, WheatFormer achieves about 10–20% higher in

AP50 and 8–15% improvement in. Compared with the one-stage

CNN models, our model increases the AP50 and mAP by 1.2–

11.5 and 2.2–9.5%, respectively. In terms of Swin Transformer-

based models, the detection performance is generally better than

the CNN-based models. The FCOS-based Swin Transformer

achieves a mAP of 0.452, while our model increases mAP by

0.7% and AP50 by 3.2%. The Mask R-CNN based on Swin

Transformer achieves the AP50 of 0.914, which is comparable to

that of WheatFormer, but our model gets a higher mAP of 3.3%.

Considering the model parameters, our model achieves a larger

size than most CNN models but is similar to Swin Transformer-

based models. We show some comparison examples in Figure 5

and the detection results of WheatFormer in Figure 6. Figure 5

shows that Faster R-CNN has too many overlapping prediction

boxes, and YOLOv3 obtains too many missing boxes. At the

same time, WheatFormer obtains a higher accuracy than the

comparison models in classification. In Figure 6, we can find that

WheatFormer has excellent detection performance at different

shooting angles, different light conditions, different wheat

growth periods, different wheat distribution densities, and

different wheat spikes sizes. WheatFormer can accurately

identify most wheat spikes even at high density and high

occlusion. This intuitively illustrates the excellent performance

of WheatFormer.
4.4 Ablation experiments

As mentioned, the major drawbacks of CNN models are the

consistently produced local receptive fields, which are unsuitable
TABLE 3 Detection results on WSD-2022.

Method Backbone mAP AP50 AP75 APm APl #Params (MB)

Faster R-CNN ResNet50 0.301 0.709 0.215 0.284 0.339 39.4

Mask R-CNN 0.345 0.774 0.237 0.311 0.382 41.9

Faster R-CNN ResNet101 0.304 0.750 0.208 0.306 0.352 57.6

Mask R-CNN 0.366 0.812 0.246 0.331 0.394 60.1

FCOS ResNet50 0.368 0.825 0.250 0.355 0.409 30.6

ATSS 0.364 0.803 0.255 0.357 0.402 30.6

SSD SSDVGG 0.428 0.890 0.362 0.382 0.488 22.7

CenterNet ResNet18 0.414 0.876 0.318 0.345 0.487 13.8

YOLOv3 DarkNet53 0.437 0.906 0.381 0.387 0.497 58.7

Faster R-CNN Swin Transformer 0.397 0.881 0.276 0.352 0.450 65.6

Mask R-CNN 0.426 0.914 0.318 0.379 0.473 68.1

FCOS 0.452 0.886 0.402 0.415 0.523 43.8

WheatFormer MW-Swin Transformer 0.459 0.918 0.384 0.415 0.533 60.1
Faster R-CNN and Mask R-CNN are the representative models of two stages. FCOS, ATSS, SSD, CenterNet, and YOLOv3 are the representative models of one stage.
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for detecting objects in complex backgrounds. There are

relatively few studies on Transformers-based backbone applied

to wheat spike detection. We conduct ablation experiments to

represent the effectiveness of our proposed methods.

4.4.1 Effect of the MW-Swin Transformer
In this part, we describe the effectiveness of the proposed

MW-Swin Transformer. The results are listed in Table 4, which

contains three backbones: the CNN backbone, the Swin

Transformer backbone, and the MW-Swin Transformer

backbone. Obviously, the Swin Transformer backbone-based

models greatly improve the detection performance of the state-

of-the-art algorithms. For a detailed representative comparison

of different backbones, we show the precision–recall curve of

WheatFormer in Figure 7. Specifically, compared with the CNN

backbone and the Swin Transformer backbone, the

WheatFormer boosts the Loc, Sim, Oth, and BG to 0.964,

0.964, 0.964, and 0.990. It obtains 9.1% improvements on

mAP and 9.3% improvements on AP50 after replacing the

backbone with MW-Swin Transformer. This indicates that the
Frontiers in Plant Science 10
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proposed Transformer can effectively increase the detection

ability of the detectors.

4.4.2 Effect of the WIoU loss
The loss function plays an important role in the deep

learning training process. To further validate the performance

of the proposed WioU loss, we conduct experiments comparing

IoU, GioU, and CioU (Zheng et al., 2020). We present the

comparison results in Table 5. We can find that GioU, CioU, and

WioU make further detection improvements than the original

IoU loss for most cases—for instance, the WheatFormer with

WioU loss obtains 0.452 mAP , which is 2.9% higher than the

IoU-based model, 1% higher than the GioU-based model, and

2.4% higher than the CioU-based model. Therefore, we can

conclude that the WheatFormer can obtain better detection

performance when trained with WioU loss.

4.4.3 Performance of the variant models
As mentioned, we constructed three different variants of

WheatFormer, and the detection results are shown in Table 6.
FIGURE 5

Visualization of the comparative models. The left column represents the result of Faster R-CNN, the middle column represents the result of
YOLOv3, and the right column represents the result of WheatFormer.
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WheatFormer-S obtains 42.4 MB parameters, similar to the Swin

Transformer-based FCOS (43.8 MB), while WheatFormer

achieves 0.438 at mAP (1.4% lower than SSD) and 0.908 at

AP50 (2.2% higher than Swin Transformer-based FCOS).

WheatFormer-B obtains 60.1 MB parameters, the same as

Mask R-CNN. Nevertheless, our model achieves 0.459 at mAP

(9.3% higher than Mask R-CNN) and 0.918 at AP50 (10.6%

higher than Mask R-CNN), which significantly surpasses the

detection ability of Mask R-CNN. The large version obtains
Frontiers in Plant Science 11
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parameters of 100.6 MB, showing a better performance than the

previous versions.
4.5 Limitations and future work

In this work, we conduct extensive experiments to evaluate the

effectiveness of the proposed methods. The experimental results

prove that the proposed methods can greatly improve the
FIGURE 6

Visualization of detected results by the WheatFormer. (A) Early maturity, 65 spikes per image, direct sunlight, and wheat ear group with 80°
viewing angle of photographing, (B) filling stage, 75 spikes per image, diffuse light conditions, and wheat ear group with 45° viewing angle of
photographing, (C) filling stage, 45 spikes per image, diffuse light conditions, and wheat ear group with 45° viewing angle of photographing, (D)
early maturity, 25 spikes per image, diffuse light conditions, and wheat ear group with 90° viewing angle of photographing, (E) poplar blossom,
23 spikes per image, direct sunlight, and wheat ear group with 45° viewing angle of photographing, (F) the milk stage of maturity, 30 spikes per
image, direct sunlight, and wheat ear group with 90° viewing angle of photographing, (G) poplar blossom, 27 spikes per image, direct sunlight,
and wheat ear group with 30° viewing angle of photographing, (H) the milk stage of maturity, 22 spikes per image, diffuse light conditions, and
wheat ear group with 90° viewing angle of photographing, and (I) the milk stage of maturity, 30 spikes per image, diffuse light conditions, and
wheat ear group with 90° viewing angle of photographing.
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A B C

FIGURE 7

Precision–recall (PR) curves of WheatFormer with different backbones. (A) WheatFormer with convolutional neural network backbone.
(B) WheatFormer with Swin Transformer backbone. (C) WheatFormer with MW-Swin Transformer backbone. C75: PR at threshold equals 0.75;
C50: PR at threshold equals 0.50; Loc: PR at threshold equals 0.1, and location errors ignored without duplicate detections; Sim: PR after
supercategory false positives are removed; Oth: PR after all class confusions are removed; BG: PR after all background false positive are
removed; FN: PR after all remaining errors are removed.
TABLE 5 Results of WheatFormer with different IoU loss functions.

Method IoU GioU CioU WioU mAP AP50 AP75

WheatFormer ✔ 0.423 0.894 0.322

✔ 0.442 0.896 0.374

✔ 0.428 0.900 0.326

✔ 0.459 0.918 0.384
Frontiers in Plant Science
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Bold values are the results of our experimental method.
The symbols "✔" means the method used in the model.
TABLE 6 Comparison of variant models.

Method mAP AP50 AP75 APm APl #Params (M)

WheatFormer-S 0.438 0.908 0.366 0.402 0.516 42.4

WheatFormer-B 0.459 0.918 0.384 0.415 0.533 60.1

WheatFormer-L 0.466 0.927 0.400 0.422 0.524 100.6
TABLE 4 Comparison of different backbones.

Method CNN backbone Swin Transformer MW-Swin Transformer AP50 AP75

Faster R-CNN ✔ 0.301 0.709 0.215

✔ 0.397 (9.6%↑) 0.881 (17.2%↑) 0.276 (6.1%↑)

✔ 0.417 (2%↑) 0.893 (1.2%↑) 0.315 (1.2%↑)

Mask R-CNN ✔ 0.345 mAP 0.774 0.237

✔ 0.426 (8.1%↑) 0.914 (14%↑) 0.318 (8.1%↑)

✔ 0.433 (0.7%↑) 0.909 (0.5%↓) 0.344 (2.6%↑)

Centernet ✔ 0.414 0.876 0.318

✔ 0.436 (2.2%↑) 0.913 (3.7%↑) 0.372 (5.4%↑)

✔ 0.448 (1.2%↑) 0.912 (0.1%↑) 0.365 (0.7%↓)

WheatFormer ✔ 0. 368 0.825 0. 250

✔ 0. 452 (8.4%↑) 0. 886 (6.1%↑) 0. 402 (15.2↑)

✔ 0. 459 (0.7%↑) 0. 918 (3.2%↑) 0. 384 (1.8%↓)
Bold values are the results of our experimental method.
The symbols “↑”means the increase values compared to the previous method, "↓" means the decrease values compared to the previous method, and "✔" means the method used in the model.
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detection performance of wheat spike detection. Although

WheatFormer has shown to be effective in wheat spike

detection tasks, there are still some limitations. It is worth

noting that the experiment is only perfomed on the WSD-2022

dataset with a limited number of images. Moreover, our method

attempts to improve the detection ability of the spike detector,

while the parameters of our base model are relatively large. In

future research, we will focus on solving the above-mentioned

problems. Firstly, we will collect more wheat spike images

containing more regions and more growth cycles to validate our

methods. Secondly, we will continue to design more lightweight

models to improve the capabilities for practical applications.
5 Conclusions

In this paper, we explore a Transformer-based network for

wheat spike detection within a newly constructed dataset. We are

the first to introduce the Transformer for wheat spike detection.

To extract global and long-range semantic information, we

design the MW-Swin Transformer as the backbone, and we

propose the WioU loss function to improve positioning

accuracy. Finally, we created a wheat spike dataset named

WSD-2022 to verify the effectiveness of our model. The

extensive experiments show that the method proposed in this

study can obtain an encouraging detection performance

compared with those state-of-the-art algorithms. We hope that

this research will provide novel insights into the development of

more advanced detection methods in the agricultural field.
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Deep learning has witnessed a significant improvement in recent years to

recognize plant diseases by observing their corresponding images. To have a

decent performance, current deep learning models tend to require a large-

scale dataset. However, collecting a dataset is expensive and time-consuming.

Hence, the limited data is one of the main challenges to getting the desired

recognition accuracy. Although transfer learning is heavily discussed and

verified as an effective and efficient method to mitigate the challenge, most

proposed methods focus on one or two specific datasets. In this paper, we

propose a novel transfer learning strategy to have a high performance for

versatile plant disease recognition, on multiple plant disease datasets. Our

transfer learning strategy differs from the current popular one due to the

following factors. First, PlantCLEF2022, a large-scale dataset related to plants

with 2,885,052 images and 80,000 classes, is utilized to pre-train a model.

Second, we adopt a vision transformer (ViT) model, instead of a convolution

neural network. Third, the ViT model undergoes transfer learning twice to save

computations. Fourth, the model is first pre-trained in ImageNet with a self-

supervised loss function and with a supervised loss function in PlantCLEF2022.

We apply our method to 12 plant disease datasets and the experimental results

suggest that our method surpasses the popular one by a clear margin for

different dataset settings. Specifically, our proposed method achieves a mean

testing accuracy of 86.29over the 12 datasets in a 20-shot case, 12.76 higher

than the current state-of-the-art method’s accuracy of 73.53. Furthermore, our

method outperforms other methods in one plant growth stage prediction and

the one weed recognition dataset. To encourage the community and related

applications, we have made public our codes and pre-trained model
1.

KEYWORDS

plant disease recognition, transfer learning, vision transformer, self-supervised
learning, few-shot learning, PlantCLEF2022
1 https://github.com/xml94/MAE_plant_disease
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1 Introduction

Keeping plants healthy is one of the essential challenges to

having an expected and high yield. Traditionally, experts have to

go to farms to check if plants are infected with diseases but deep

learning enables the check to take place automatically based on

their images. Because of the decent performance of deep

learning, plant disease recognition has witnessed a significant

improvement in recent years (Abade et al., 2021; Liu et al., 2021;

Ngugi et al., 2021). To obtain a comparable recognition

performance, a large-scale dataset is entailed to train a deep

learning-based model. However, collecting images for plant

disease is expensive and time-consuming. Besides, few images

are normally available at the beginning of a plant disease

recognition project when sanity checking should be executed

before devoting more resources. Therefore, limited dataset, a

situation where a few labeled images are accessible for some

classes in the training process is one of the main issues in the

literature (Fan et al., 2022). To facilitate this issue, many

algorithms and strategies are proposed, such as data

augmentation (Mohanty et al., 2016; Xu et al., 2022b; Olaniyi

et al., 2022), transfer learning (Mohanty et al., 2016; Too et al.,

2019; Chen J. et al., 2020; Xing and Lee, 2022; Zhao et al., 2022),

few-shot learning (Afifi et al., 2020; Egusquiza et al., 2022), and

semi-supervised learning (Li and Chao, 2021).

Although the challenge of a limited dataset is considered in

many works, most of them merely focus on one or few specific

datasets, such as the PlantVillage dataset (Mohanty et al., 2016;

Too et al., 2019; Li and Chao, 2021), AI Challenger dataset (Zhao

et al., 2022), tomato dataset (Xu et al., 2022b), wheat and rice

dataset (Sethy et al., 2020; Rahman et al., 2020), cucumber

(Wang et al., 2022), and apple leaf disease dataset (Fan et al.,

2022). A basic question in this situation is whether a useful

method for one dataset is helpful for other datasets. Further,

there is a fundamental desire to find a robust method for most

plant disease recognition applications. On the other hand,

improving the application performance with a limited dataset

is desired. For example, can we get a comparable result with only

20 training images for each class (20-shot)? To address these two

issues, we propose a novel transfer learning strategy to achieve

high performance for different limited datasets and various types

of plants and diseases.

Via obtaining a good feature space, transfer learning aims

to learn something beneficial for a target task with a target

dataset from a source task with a source dataset (Pan and

Yang, 2009). In plant disease recognition, a deep learning-

based model is generally pre-trained in the source dataset and

then fine-tuned in the labeled target dataset. As shown in

Figure 1, it is understood that three key factors essentially lead

to a positive transfer learning performance, a desired source

dataset, powerful model, and suitable loss function to pre-train

the model (Wu et al., 2018; Kornblith et al., 2019; Kolesnikov

et al., 2020; Tripuraneni et al., 2020; He et al., 2022). However,
Frontiers in Plant Science 02
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the three factors have been undeveloped in plant

disease recognition.

First, it is beneficial to have a plant-related dataset with a

high number of images and classes (large scale), as well as wide

image variation. For example, a plant-related source dataset

could be better than the widely used ImageNet (Deng et al.,

2009) for plant disease recognition, which has been verified (Kim

et al., 2021; Zhao et al., 2022). Hence, finding a suitable source

dataset is essential for plant disease recognition. Following this

idea, PlantCLEF2022, a plant-related dataset with 2,885,052

images and 80,000 classes, was adopted for our paper.

Second, a model with higher performance in ImageNet or a

source dataset may have a better performance in the target

dataset with a transfer learning strategy (Kornblith et al., 2019).

Convolution neural networks (CNN) (Krizhevsky et al., 2012;

He et al., 2016) achieved the best accuracy for the ImageNet

validation dataset. Simultaneously, the attention mechanism has

been leveraged to boost the performance of plant disease

recognition (Yang et al., 2020; Qian et al., 2022; Zhao et al.,

2022). In recent years, Vision Transformer (ViT) (Dosovitskiy

et al., 2020), a general model of attention mechanism, has

become a hot topic in the computer vision community and

outperforms CNN-based models. For example, MAE (He et al.,

2022) scores 85.9 inaccuracy for the ViT-L model which is

higher than Resnet50 and ResNet152 with scores of 79.26 and

80.62, respectively. Therefore, for plant recognition, ViT-based

models with a transfer learning strategy are promising but still

underdeveloped (Wang et al., 2022).

Third, the supervised loss function inevitably pushes the

model to learn source task-related features that may not be

helpful for the target task (Wu et al., 2018). In contrast, the self-
A

B

FIGURE 1

Training from scratch (A) and transfer learning (B). Three key
factors in transfer learning are the source dataset, the model,
and the loss function to pre-train the model. These have all been
undeveloped in plant disease recognition.
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supervised loss function eases the issue by introducing a pretext

task, such as contrast loss (Wu et al., 2018) and reconstruction

loss (He et al., 2022). Thus, a ViT mode pre-trained in the

PlantCLEF2022 dataset with a self-supervised loss function is

assumed to be better than the current popular transfer learning

strategy that is pre-trained on a CNN-based model in the

ImageNet dataset with a supervised loss function (Mohanty

et al., 2016; Yang et al., 2020; Abbas et al., 2021; Fan et al.,

2022; Yadav et al., 2022).

Besides, the transfer learning strategy is slightly problematic

when considering computing devices and the large-scale

PlantCLEF2022 dataset. To be more specific, training a ViT

model 800 epochs in PlantCLEF2022 as MAE (He et al., 2022)

requires more than five months with four RTX 3090 GPUs. To

reduce the computing cost, we utilize a dual transfer learning

strategy, where a public ViT model pre-trained in ImageNet with

a self-supervised loss function is trained in the PlantCLEF2022

dataset with a supervised loss function. In this way, we only

spend about 15 days training the model in PlantCLEF2022. We

emphasize that our dual transfer learning is different from (Azizi

et al., 2021; Zhao et al., 2022) due to the following facts, aiming

to reduce the cost of pre-training a model, large-scale

PlantCLEF2022 dataset, and employing a ViT-based model.

To summarize, our paper will make the following

contributions:
Fron
• We propose a novel transfer learning to achieve versatile

plant disease recognition with a plant-related source

dataset PlantCLEF2022, ViT model, and self-

supervised learning to pre-train the model.

• We utilize dual transfer learning to save computation

costs, considering the large-scale PlantCLEF2022

dataset.

• We validate our method in 12 plant disease datasets and

our method surpasses the current widely used strategy

by a large margin. Specifically, we score an average

testing accuracy of 86.29 in a 20-shot case, 12.76

higher than the widely used strategy.

• Our transfer learning strategy also outperforms other

methods in one plant growth stage prediction and one

plant weed recognition, which suggests that our strategy

contributes beyond plant disease recognition.
2 https://data.mendeley.com/datasets/ngdgg79rzb/1

3 https://github.com/IVADL/tomato-disease-detector

4 https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-

vision-for-crop-disease?resource=download

5 https://github.com/xml94/MAE_plant_disease/blob/main/visualize_

dataset/dataset.md
2 Material and method

2.1 Plant disease datasets

To validate the generalization of transfer learning and deep

learning, we executed our method in fourteen public datasets,

thirteen related to plant disease recognition. To be more specific,

we used PlantVillage (Hughes et al., 2015), PlantDocCls (Singh
tiers in Plant Science 03
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et al., 2020), Cassava (Ramcharan et al., 2017), Apple2020

(Thapa et al., 2020), Apple2021 (Thapa et al., 2021), Rice1426

(Rahman et al., 2020), Rice5932 (Sethy et al., 2020),

TaiwanTomato2, IVADLTomato and IVADLRose3, CitrusLeaf

(Rauf et al., 2019), CGIARWheat4, and PDD271* (Liu et al.,

2021). More details of the datasets are shown in Table 1 while

three random images for each class are displayed here
5.

The datasets are considered from several viewpoints.

Figure 2 gives a glance at some images in the datasets. First is

the number of images and the number of classes. Generally, the

more classes and fewer images, the more difficult the recognition

task. PDD271 covers 271 classes, including fruit trees, vegetables,

and field crops, but unfortunately, it is not public. Only ten

samples for each class are available and therefore, we adopted it

as a few-shot learning task. In contrast, most of the public

datasets only involved one type of plant, such as rice (Rahman

et al., 2020; Sethy et al., 2020) or apple (Thapa et al., 2020; Thapa

et al., 2021). Besides, the number distribution of classes may

cause class-imbalance trouble, in which the trained model may

have higher performance for the class with a dominant number

of images in the training stage. Second, the conditions the images

were taken in matters since controlling the conditions reduces

the variation in the collected images, such as background and

illuminations. A previous work (Barbedo, 2019) proves that

controlling the conditions or masking the background out can

improve recognition performance. Third, the organs of plants in

images are also important. The main organs in the datasets are

leaves, but also include some fruits, stems, and whole plants.

Interestingly, different leaves of plants have heterogeneous

shapes that may result in various performances with the same

model. For example, the leaves of cassava are far different from

their counterparts in apple and tomato plants. Especially, some

images in PDD271 are captured with part of a leaf, not the whole

leaf as in PlantVillage. Fourth, the scale of the images is also

essential to the performance. The scale is related to the distance

between the camera and the plant when taking pictures. For

example, the leaves in PlantVillage and Apple2020 have a similar

scale while the images in Rice1426 are on different scales. Fifth,

image size,i.e. height and width, may incur challenges for

recognition tasks as the disease phenomenon may not be clear

enough in small-size images. To summarize, we emphasize that

image variations (Xu et al., 2022a) in the dataset have an

influence on training models and their corresponding
frontiersin.org
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performance, and thus, recognizing the image variations is

significant to understanding the dataset.
2.2 PlantCLEF2022 dataset

PlantCLEF20226 was originally a challenge to identify the

plant species based on their images. The trusted training dataset,

PlantCLEF2022, annotated by human experts with 2,885,052

images and 80,000 classes, is leveraged and used as the default

PlantCLEF2022 dataset in this paper. Each class in the dataset is

limited to no more than 100 images and has 36.1 images on

average. As shown in Figure 3, the images cover plant habitat

(environment or background) and organs such as the leaf, fruit,

bark, or stem. Essentially, plants can be recognized based on

multiple pieces of visual evidence, instead of only one piece of

evidence (Xu et al., 2022c). Besides, the images belonging to one

class embrace huge variations. As displayed in Figure 4, the

variations include background, illumination, color, scale, and

image size.

Why PlantCLEF2022? We recognize that three

characteristics make PlantCLEF2022 beneficial to plant disease

recognition with transfer learning strategy, i.e., plant-related,

large-scale, and wide variations. First, it is accepted that a large-
6 https://www.aicrowd.com/challenges/lifeclef-2022-plant

Frontiers in Plant Science 04
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scale related source dataset contributes to the target task. As the

PlantCLEF2022 dataset is plant-related and on a large scale, even

when compared to ImageNet (Deng et al., 2009), it can be

beneficial to plant disease recognition and related tasks, such as

growth stage prediction. Second, the PlantCLEF2022 dataset has

wide variations as mentioned before, by which we can learn a

better feature space when using it to pre-train a model. Arguably,

the variations in PlantCLEF2022 are much stronger than all of

the plant disease datasets introduced in Section 2.1. We have

noticed that finding this kind of dataset for plant disease

cognition tasks is one of the main interests in recent years. In

the beginning, ImageNet made a significant contribution as a

source dataset. Recently, the AI Challenger dataset, a little bit

bigger than PlantVillage but with small variations as most of the

images are taken in controlled conditions, is considered as a

source dataset (Zhao et al., 2022). Although it is plant-related,

the AI Challenger dataset is far behind when compared to

PlantCLEF2022 because of its number of images and classes

and poor image variations.
2.3 Dual transfer learning

To achieve versatile plant disease recognition with a limited

dataset, we believe that, under the transfer learning paradigm, a

large-scale related dataset, PlantCLEF2022, and a powerful

model are beneficial. Hence, we designed a dual transfer

learning model, taking the computation load and device into
TABLE 1 Information of the used plant disease recognition datasets.

Dataset Images Classes Highlights

PlantVillage 54,305 38 Covers 14 types of plants. Each image is taken in controlled conditions and only includes one leaf in the center. Some diseases
are spilt into two cases according to their severities, early and late. Each class has more than 273 images. All images are the same
height and width, 256*256.

PlantDocCls 2,576 27 Includes 13 plants. The images are collected from the Internet with diverse heights and widths and most of the images are taken
in real field conditions. The original training and testing dataset include 2,340 and 236 images, respectively.

Cassava 21,397 5 The images are taken in real field conditions and thus have wide variations, such as background, illumination, and leaf scales. All
images have the same height and width, 800*600.

Apple2020 3,642 4 Taken in real field conditions. One leaf may include more than one type of disease and those images are labeled as one class. All
images are the same size, 2048*1365.

Apple2021 18,632 6 An updated version of Apple2020 but with 2 more classes. All images are the same size, 4000*2672.

Rice1426 1,426 9 Images are taken in both real filed and controlled conditions. The images are not just related to leaves, but also other organs,
stems, and grains. Images are in 224*224 resolution.

Rice5932 5,932 4 Only includes rice leaf images with different scales. All images are resized to 300*300.

TaiwanTomato 622 5 One image may include one or multiple leaves taken in either controlled conditions or real field conditions. There are 495 and
127 images in the original training and testing dataset, respectively. All images are resized to 227*227.

IVADLTomato 3,021 9 The original dataset includes more images in an unbalanced way. We limited the number for each class to less than 520. The
original images have a large height and width, and we resized the images to 520*520 to save disk space.

IVADLRose 3,132 6 Similar to IVADLTomato, we limited the number for each class and resized the images.

CitrusLeaf 609 5 Images are taken in controlled conditions and resized to 256*256. We only used the leaf parts from the original Citrus dataset.

CGIARWheat 876 3 Includes leaves, stems, and whole plants. Images are taken from different viewpoints with diverse distances and different image
sizes.

PDD271* 2,710 271 Covers fruit trees, vegetables, and field crops, with huge image variations. Ten images for each class are available as samples.
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consideration. As shown in Figures 5A, C, our transfer learning

consists of three steps with transfer learning occurring twice.

In the first step, a vision transformer (ViT) model is pre-

trained with the ImageNet (Deng et al., 2009) in a self-supervised

manner, reconstruction loss. We emphasize here that we directly

adopted the pre-trained model from masked autoencoder

(MAE) (He et al., 2022), instead of training the model

ourselves. Simultaneously, we argue that superior pre-trained

models are essential for better plant disease recognition, even if

the models have the same architecture. The experiments in the

following section prove that the original pre-trained ViT model

(Dosovitskiy et al., 2020) performs worse than MAE (He et al.,
Frontiers in Plant Science 05
207
2022). As shown in Figure 6, MAE is a composite of an encoder

and a decoder that are optimized by a reconstruction loss,

Lrecon=||input, target||2 where input is the original image and

target denotes the reconstructed image. During the training

process, the original image input is split into several patches

that are randomly blocked. The encoder aims to extract

necessary information from the blocked image and the

decoder is required to fill the blocked patches. As the

optimization does not require labels, it falls under self-

supervised learning.

The decoder in MAE is discarded and the encoder is

utilized in the second step, followed by a linear layer and a
FIGURE 2

Image examples from different datasets. We recognize that there are image variations [40], such as background, the shape of leaves,
illumination, and scale.
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softmax operation to do classification. The encoder and the

added linear layer are fine-tuned in the PlantCLEF2022 dataset,

optimized by the cross entropy loss, Lce=−log(p(yj)) where j is

the ground truth index and p(y) is the output of softmax

operation. Different from the first step, the input is not split

into patches and blocked. The main characteristic of the second

step is the PlantCLEF2022 dataset, related to the plant disease
Frontiers in Plant Science 06
208
recognition dataset. We highlight that the second step is

outlined and trained in our previous paper (Xu et al., 2022c)

for the PlantCLEF2022 challenge and thus is not outlined and

trained in this paper.

In the third step, the added linear layer in the second

step is replaced by a new linear layer. To be clear, the

encoder and the new linear layer in this step are fine-
FIGURE 3

Different interests or organs in PlantCLEF2022 testing dataset.
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tuned in a specific plant disease recognition dataset. The

cross-entropy loss is again utilized to optimize the whole

network. As mentioned before, the first and second steps are

executed in other papers and thus only the third step is

required for this paper. We have termed our strategy dual

transfer learning since the model is trained with two other

datasets and transferred twice.

We believe that the first step is not mandatory for better

performance in versatile plant disease recognition but

contributes to the reduction of the training time for the

whole system. As shown in Figure 5B, we can pre-train a

model in the PlantCLEF2022 dataset and then fine-tune it for

the plant disease dataset. Unfortunately, this setting may entail

a long training epoch in PlantCLEF2022 to have a better

performance, such as 800 epochs in MAE (He et al., 2022).

In contrast, we only train 100 epochs for the second step and

hence can save time. Besides, by training an MAE model in a

self-supervised way, one decoder is trained at the same time
Frontiers in Plant Science 07
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which needs more time for one epoch. Therefore, our dual

transfer learning reduces training time via utilizing the public

model from MAE (He et al., 2022).
3 Experiment

3.1 Experimental settings

Dataset. For each original dataset in Table 1, we split them

into training, validation, and testing datasets. The training

dataset is leveraged to train the models while the validation

one is only used to choose the best-trained model from different

epochs. Then, the best model is evaluated in the testing dataset.

If there is a testing dataset with annotations in the original

dataset, we directly used the original testing dataset. Otherwise,

the whole original dataset is split into training, testing, and

validation datasets in different percentages or an exact number
FIGURE 4

Images of Aralia Nudicaulis L. species from PlantCLEF2022 dataset. The images from the same plant species are heterogeneous in the
background, illumination, color, scale, etc.
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of images. To be more specific, the original testing datasets in

PlantDocCls and TaiwanTomato are directly used while a new

testing dataset is made for other datasets.

For each plant disease dataset, we consider two training cases,

generic and few-shot cases. Different percentages of the training

dataset are utilized in the generic case, such as 20% and 40%, while

only several images for each class are taken to train the model in the

few-shot case. To summarize, we set eight dataset modes, as shown

in Table 2, four percentages as training in generic cases and 4 types

of few-shot cases. Except for ratio80, 20% is taken for the validation

and testing datasets for all experiments. The validation and testing

datasets are the same for the generic and few-shot cases.

Furthermore, the dataset splitting was randomly executed once

only, by which the images of each dataset mode are fixed for all

compared models or strategies. Although the percentage of

validation and testing datasets is the same for most of the dataset

modes, the images are different because of a different

random process.

Comparison methods. To validate our method, we designed

several comparisons with different strategies or models. To

choose the compared methods, we held to the following

features: with transfer learning or without transfer learning,

CNN-based or ViT-based, supervised or self-supervised, and

trained with PlantCLEF2022 or not. Simultaneously, we do not

want to pre-train the models because of our lack of GPUs and

the almost 3 million images in PlantCLEF2022. Based on these

two ideas, the compared methods are described below and

more interesting methods are listed in Table 3 with their

corresponding characteristics.
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• RN50. A ResNet50 model is trained from scratch with

the target datasets shown in Table 1.

• RN50-IN. A ResNet50 model is pre-trained with the

ImageNet (IN) dataset in a supervised way and then

fine-tuned in the target datasets.

• MoCo-v2. A MoCo-v2 model is pre-trained with the

ImageNet dataset in a self-supervised way and then fine-

tuned in the target datasets.

• ViT. A ViT-large (Dosovitskiy et al., 2020) model is

trained from scratch with the target datasets.

• ViT-IN. A ViT-large model is pre-trained with the

Imagenet dataset in a supervised way and then fine-

tuned in the target datasets.

• MAE. A ViT-large model is pre-trained with the

ImageNet dataset in a self-supervised way. Specifically,

MAE (He et al., 2022) uses reconstruction loss to learn

better performance with a high occlusion.

• Our model. We fine-tuned a ViT model from MAE with

the PlantCLEF2022 dataset and then fine-tuned it again

with the target datasets.
We noticed that there were several other possible strategies.

For instance, it is interesting to directly pre-train a ViT model

with only the PlantCLEF2022 dataset in a self-supervised

manner, no ImageNet, shown as Case 8 in Table 3. Further,

pre-training an RN50 model with the PlantCLEF2022 dataset

in a self-supervised manner is also encouraged to distinguish

the impact of convolution neural networks (CNNs) and

vision transformers (ViTs), shown as Case 3 in Table 3.
A

B C

FIGURE 5

Transfer learning strategies for plant disease recognition. Our strategy differs from the current popular transfer learning strategy (A) in the source
dataset, model, and loss function. Furthermore, we adopt dual transfer learning (C) to save computation time by utilizing the public pre-trained
model, compared to (B).
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Simultaneously, fine-tuning a MoCo-v2 model in the

PlantCLEF2022 dataset is also inspired to see the difference

between CNN and ViT, shown as Case 5 in Table 3, even if we

expect a lower performance because MoCo-v2 has a lower

accuracy in ImageNet than MAE. However, training these

models is too expensive. It is estimated that pre-training a

ViT-large model as MAE costs more than five months with

our current computation devices, four RTX 3090 GPUs.

Therefore, these possible strategies are left for future studies.

Implementation details. As mentioned in Section 2.3, we

have used the pre-trained ViT-L model from our previous paper

(Xu et al., 2022c). Hence, we only focus on the last fine-tuning

process in this paper, i.e. fine-tuning the ViT-L model in the plant

disease recognition dataset. The ViT-L model has 24 transformer

blocks with a hidden size of 1024, an MLP size of 4096, and 16

heads for each multi-head attention layer. The ViT-L model has

approximately 307 million trainable parameters in total.

For a fair comparison, all models or transfer learning strategies

were executed with the same settings with most of them following

the fine-tuning schemes in MAE (He et al., 2022). In detail, the

basic learning rate lrb was 0.001, and the actual learning lra = lrb *

batch/256 where batch was the batch size for different training

dataset modes. The model was warmed up in 5 epochs with the

learning rate increasing linearly from the first epoch to the set

learning rate. Furthermore, 0.05 weight decay and 0.65 layer decay

were utilized. Mixup (Zhang et al., 2017) and CutMix (Yun et al.,

2019) were adopted as data augmentation methods.

The main change from MAE experimental setting was the

batch size. Considering the number of images in each dataset, in
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the generic case, the batch size was 64 for CGIARWheat,

Strawberry2021, CitrusLeaf, and TaiwanTomato, while it was

128 for other datasets. In terms of the few-shot case, the number

of classes was one factor to set as the batch size should not be

larger than the number of classes in the 1-shot case. Specifically,

the batch size was 4 for most of the datasets, except for

CGIARWheat with 2, IVADLTomato with 8, PlantDocCls

with 16, PlantVillage with 32, and Rice1426 with 8. Besides,

the generic case was trained with four GPUs while the few-shot

cases were trained with only one GPU. To evaluate during

thetraining process, the models were trained for 50 epochs

and validated after every 5 epochs in the validation dataset,

including the first epoch. The best models were tested in the

testing datasets.

Evaluation metric. Accuracy, a common evaluation metric

for image classification (Dosovitskiy et al., 2020; Xu et al., 2022b;

He et al., 2022) was leveraged to assess different methods in a

specific dataset. Since we aim to achieve versatile plant disease

recognition performance, the mean accuracy, mAcc, over all

datasets was utilized and computed as follows:

mAcc =
1
Mo

M

i=1
Acci, (1)

where Acci is the testing accuracy in the i-th dataset and N is

the total number of datasets. To assess the generality, testing

accuracy and mean testing accuracy was employed, instead of

validation accuracy and mean validation accuracy as used in

MAE (He et al., 2022). In general, high testing accuracy and

mean testing accuracy were desired.
FIGURE 6

The high-level architecture of MAE [13]. With MAE, an image is split into patches that are then randomly blocked. The unblocked patches are fed
to an encoder, followed by a decoder to reconstruct the whole input image. After the unsupervised pre-training, the decoder is discarded and
only the encoder is utilized in the downstream task. The input is not blocked and a specific classifier is added after the encoder when fine-
tuning the model in a target task.
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3.2 Experimental results

3.2.1 Main result
As our main objective was achieving versatile plant disease

recognition with a limited dataset, we first compared our method

to other strategies. Table 4 displays the mean testing accuracy of

different methods over the 12 plant disease datasets mentioned

in Table 1 and Figure 7 illustrates the tendency of mean testing

accuracy of various methods in few-shot case and generic case

respectively. The testing accuracy, the curve of validation loss,
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and the accuracy for each dataset can be found in the

Supplementary Material. As shown in Table 4, the

experimental results suggested that our method surpasses

other methods by a clear margin across all dataset modes.

Specifically, our method achieves 86.29 mAcc in a 20-shot case

where only 20 images per class are utilized to train the models,

compared to the second-best method, RN50-IN. We observed

that the gap between our method and other methods becomes

less when the number of training images increases. For example,

the gap between our method and the second-best method,
frontiersin.org
TABLE 2 The settings in different dataset modes for the original dataset without labeled testing dataset.

Dataset case Dataset mode Training Validation Testing

Generic case Ratio20
Ratio40
Ratio60
Ratio80

20%
40%
60%
80%

20%
20%
20%
10%

20%
20%
20%
10%

Few-shot case 1-shot
5-shot
10-shot
20-shot

1
5
10
20

20%
20%
20%
20%

20%
20%
20%
20%
The splitting was random once only, by which the images of each dataset mode are fixed for all compared models or transfer learning strategies. Although the percentage of validation and
testing dataset was the same for most of the dataset modes, the images are different because of a different random process.
TABLE 3 The characteristics of the compared methods.

Case Name Model ImageNet PlantCLEF2022

1
2
3
4
5
6
7
8
9
10

RN50
RN50-IN

-
MoCo-v2

-
ViT

ViT-IN
-

MAE
Ours

CNN
CNN
CNN
CNN
CNN
ViT
ViT
ViT
ViT
ViT

N/A
Supervised

N/A
Self-supervised
Self-supervised

N/A
Supervised

N/A
Self-supervised
Self-supervised

N/A
N/A

Self-supervised
N/A

Supervised
N/A
N/A

Self-supervised
N/A

Supervised
N/A denotes not available or not used. We evaluated the compared methods from these viewpoints: no pre-training process because of our lack of GPUs, and showing the impacts of the
basic model (CNN orViT), supervised or self-supervised, plant-related dataset (ImageNet or PlantCLEF2022), and dual transfer learning strategy. The named methods are compared in our
paper while the other methods are encouraged and left for future studies considering the availability of GPUs.
FIGURE 7

Curves of average testing accuracy mAcc of different methods in various training dataset modes over the 12 plant disease datasets.
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RN50-IN, in Ratio20 is 14.02 and becomes 2.37 in Ratio80,

which suggests that a limited training dataset is one main

obstacle for current methods.

In terms of the impact of transfer learning, the CNN-based

method, RN50-IN, has the second-best mean testing accuracy,

much higher than its counterpart, RN50 training from scratch,

in the target dataset. However, ViT-IN shows its inferiority for a

limited training dataset while more training images lead to a

minor increase. We postulate that ViT is harder to train than the

original ViT-IN, as suggested in the original paper (Dosovitskiy

et al., 2020). In contrast, CNN has been regularly developed in

the last decade, and thus the optimizing problem has been

largely mitigated. A similar phenomenon exists in the loss

function to train the models. For example, MoCo-v2 (Chen X.

et al., 2020) scores 71.1 top-1 in accuracy in ImageNet while

RN50 (He et al., 2016) obtains 77.15. On the contrary, MAE (He

et al., 2022) achieves a 85.9 top-1 accuracy score. A comparison

between ViT, ViT-IN, andMAE suggests that the self-supervised

loss function contributes to the improvement of the ViT-based

model in all training dataset modes.

Our method is based on MAE and is pre-trained one more

time in the PlantCLEF2022 dataset. Excitingly, our method

obtained 35.42, 36.65, and 37.03 higher accuracy scores than

MAE in 5-shot, 10-shot, and 20-shot, respectively. The soar of

the mean testing accuracy of our method compared to MAE

proves that PlantCLEF2022 is essentially beneficial for achieving

versatile plant disease recognition with a limited dataset. Our

method not only achieved the best performance but also

converged faster than other methods. For example, the

validation loss was minimized to a low value within 5 epochs

for the Ratio40 case. Please refer to Figures S1 and S2 in the

Supplementary Material.

Finally, 10 images for each class are available in PDD271*

(Liu et al., 2021) and we used them as a few-shot learning task.

Our method achieved a testing accuracy of 81.9 with only 1,355

images for both training and testing, compared to the original

accuracy of 85.4 with 154,701 and 21,889 images for training and

testing (Liu et al., 2021).
7 https://aistudio.baidu.com/aistudio/datasetdetail/98233
3.2.2 Beyond plant disease
Beyondachievingversatile plantdisease recognition,we believe

that our transfer learning strategy is alsobeneficial for other types of
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plant-related work. We performed two types of experiments over

two datasets. The Strawberry20217 dataset, designed to predict

plant growth stages, such as the young leaves and flowering stages,

includes 557 images and 4 classes. The CottonWeedID15 (Chen

et al., 2022) dataset requires the model to distinguish 15 types of

weed in a cotton field, with 5,187 images in total.

The mean testing accuracy is displayed in Table 5 while

the details can be found in the Supplementary Material.

It is interesting that our method scored a mean testing accuracy

of 97.60 in a 5-shot case where only 5 images of each label were

utilized to train the network. The current popular strategy obtains

similar results but in the Ratio40 case, with approximately 121

images per class. The experimental results suggest that ourmethod

can also contribute to plant-related applications beyond plant

disease recognition with few training samples.

3.2.3 Discussion
Limited data is one main challenge in achieving high

performance in the computer vision field (Xu et al., 2022a) and

plant disease recognition (Lu et al., 2022; Xu et al., 2022b). Through

our experimental results, we argue that the required amount of

training dataset is partly dependent on the model or pre-trained

model. As shown inTable 4, themean testing accuracy of RN50-IN

was 83.23 in theRatio40 case and gains 12.76 from theRatio20 case,

while our method only had a 1.76 increase. Through this analysis,

we believe that our method mitigates the requirement of a large

dataset for plant disease recognition.

Furthermore, we emphasized that more training data

tends to contribute to high performance but the gains

become lower when a decent performance is obtained. For

example, 20 percent more data only resulted in an increase of

0.11 in mean testing accuracy score in the Ratio60 case with

our strategy. Therefore, recognizing the limitation of

increasing data is also essential for practical applications.

Sometimes, we may have to resort to alternative ways to

have higher performance, instead of just increasing the

training dataset.

Future work. First, we emphasize here that we are not

aiming to achieve the best performance with our method in
TABLE 4 The mean testing accuracy mAcc of different training methods over the 12 datasets for plant disease recognition detailed in Table 1. .

1-shot 5-shot 10-shot 20-shot Ratio20 Ratio40 Ratio60 Ratio80

RN50
RN50-IN
MoCo-v2
ViT
ViT-IN
MAE
Ours

26.33
23.46
23.28
27.56
23.02
27.81
44.28

27.38
52.03
47.27
36.96
30.87
34.11
69.83

31.75
64.28
60.93
40.01
35.94
44.08
80.73

38.13
73.53
72.38
45.14
40.83
49.26
86.29

53.71
76.77
66.58
51.93
51.64
64.90
90.79

65.19
88.78
81.68
59.40
59.42
83.23
92.55

67.91
89.58
83.84
60.71
62.67
86.65
93.23

71.07
90.97
85.28
64.46
65.53
88.76
93.34
frontie
The best average accuracy for each dataset mode is in boldface.
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TABLE 5 The mean testing accuracy of different training methods over Strawberry2021 and CottonWeedID15.

1-shot 5-shot 10-shot 20-shot Ratio20 Ratio40 Ratio60 Ratio80

RN50 20.50 21.75 26.45 35.95 39.90 68.90 66.90 78.25

RN50-IN 45.55 75.95 87.90 87.15 60.85 98.00 98.35 98.55

MoCo-v2 45.65 70.25 84.65 86.05 66.90 96.45 96.20 97.50

ViT 32.70 39.90 44.30 51.45 56.25 65.65 75.40 80.90

ViT-IN 27.20 33.35 43.10 45.25 55.05 68.30 75.50 82.35

MAE 17.45 41.45 59.50 59.20 85.20 97.80 98.35 98.75

Ours 73.90 97.60 97.55 97.85 99.80 99.35 98.80 99.70

The best average accuracy for each dataset mode shows in boldface.
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this paper. Instead, we propose a versatile plant disease

recognition method with a limited training dataset. Therefore,

we encourage our method to be used as a baseline for future

works, although we did obtain superior performance in plant

disease recognition. For example, is the PlantCLEF2022 dataset

beneficial for a CNN-based network? In this way, we can pre-

train the RN50 model and then fine-tune it in the target dataset.

Moreover, it is interesting to analyze the reason why the same

model and strategy behave differently in different datasets. For

example, our method achieved a score of 97.4 in testing accuracy

in the 20-shot case in the PlantVillage dataset as shown in Table

S1 while scoring only 63.8 in the IVADLTomato dataset as

shown in Table S9. Furthermore, we only validated our method

in plant disease recognition, and encourage deploying our

method to perform object detection and segmentation (Xu

et al., 2022b). We also highlight combining our transfer

learning with other unsupervised or self-supervised learning in

the future. For instance, using a few labeled images to train a

model and then leveraging the trained model to generate pseudo

labels for unlabeled images (Li and Chao, 2021) and reduce

annotation cost. Our preliminary results in Strawberry2021 and

CottonWeedID15 suggest that our transfer learning strategy is

not just promising for plant disease but also plant stage

recognition and weed identification. We encourage more

plant-related applications to deploy our method as a baseline.
4 Conclusion

We proposed a simple but nontrivial transfer learning strategy

to achieve versatile plant disease recognitionwith limited data. Our

method strikingly outperforms current strategies, not only on 12

plant disease recognition datasets but also in oneplant growth stage

prediction andoneweed detectiondataset.Onemain characteristic

of our method is the use of PlantCLEF2022, a plant-related dataset

including 2,885,052 images and 80,000 classes with huge image

variations, which enables our transfer learning to be beneficial for

versatile plantdisease recognition tasks.Considering the large-scale

dataset, our method employs a vision transformer (ViT) model

because of its higher performance than thewidely used convolution
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neural network. To reduce the computation cost, dual transfer

learning is leveraged as the ViT model is first pre-trained with

ImageNet in a self-supervised manner because the ImageNet

dataset is different to the plant disease dataset. The model is then

fine-tuned with PlantCLEF2022 in a supervised manner. We

believe that our transfer learning strategy contributes to the field

and to fuel the community, our codes and the pre-trainedmodel are

publicly available.
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As a large agricultural and population country, China’s annual demand for food

is significant. The crop yield will be affected by various natural disasters every

year, and one of the most important factors affecting crops is the impact of

insect pests. The key to solving the problem is to detect, identify and provide

feedback in time at the initial stage of the pest. In this paper, according to the

pest picture data obtained through the pest detection lamp in the complex

natural background and the marking categories of agricultural experts, the pest

data set pest rotation detection (PRD21) in different natural environments is

constructed. A comparative study of image recognition is carried out through

different target detection algorithms. The final experiment proves that the best

algorithm for rotation detection improves mean Average Precision by 18.5%

compared to the best algorithm for horizontal detection, reaching 78.5%.

Regarding Recall, the best rotation detection algorithm runs 94.7%, which is

7.4% higher than horizontal detection. In terms of detection speed, the rotation

detection time of a picture is only 0.163s, and the model size is 66.54MB, which

can be embedded in mobile devices for fast detection. This experiment proves

that rotation detection has a good effect on pests’ detection and recognition

rate, which can bring new application value and ideas, provide new methods

for plant protection, and improve grain yield.

KEYWORDS

image recognition, object detection, rotation detection, pest detection,
plant protection
frontiersin.org01
217

https://www.frontiersin.org/articles/10.3389/fpls.2022.1011499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1011499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1011499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1011499/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1011499/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1011499&domain=pdf&date_stamp=2022-12-13
mailto:zyzhang@iim.ac.cn
mailto:799419036@qq.com
https://doi.org/10.3389/fpls.2022.1011499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1011499
https://www.frontiersin.org/journals/plant-science


Zhang et al. 10.3389/fpls.2022.1011499
1 Introduction

As the most populous country in the world, China’s annual

food demand is the most critical social and livelihood issue. In

recent years, urbanization has been getting faster and faster with

the rapid development of China’s economy. The immediate

problem with it is the reduction of the available agricultural area.

In order to ensure that China’s annual grain output can be

maintained at 650 billion kg above, it is necessary to improve the

efficiency of grain cultivation on limited land. Food production is

related tomany factors, such as climate, temperature, and humidity

(Dayan, 1988). Among them, the most severe threat to food every

year is the impact of pests and diseases (Guru-Pirasanna-Pandi

et al., 2018). According to the Food and Agriculture Organization

of the United Nations statistics, global food production will

decrease by 10-16% annually due to the impact of pests and

diseases. In China, surveys show that about 40 million tons of

food are lost yearly (CCTVNews,). The key to solving the problem

of grain production is promptly predicting the early formation of

pests and scientific control. Therefore, the most critical link is

accurately identifying and detecting different pests.

In recent years, traditional machine learning technology has

undergone revolutionary changes with the improvement of the

computing power of graphics cards and the rapid development

of computer software and hardware resources. More and more

experts and scholars use their computing power in image

recognition. Object detection is a branch of image recognition

based on deep learning-based CNN algorithms. At present,

CNN has made incredible breakthroughs in theoretical and

practical experiments. Current object detection algorithms are

divided into two stages and one stage. The main difference is that

the second stage forms a series of target candidate boxes and

classifies the samples according to the convolutional network;

the first stage converts the regression box prediction into a

regression problem and then performs regression and sample

classification at the same time. The two-stage mainstream target

detection algorithms are represented by RCNN (Girshick et al.,

2014), Fast RCNN (Girshick, 2015), Faster RCNN (Ren et al.,

2017), Cascade RCNN (Cai and Vasconcelos, 2018), and Mask

RCNN (He et al., 2017). The mainstream detection algorithms in

the first stage are represented by YOLO (Redmon et al., 2016;

Redmon and Farhadi, 2017; Redmon and Farhadi, 2018;

Bochkovskiy et al., 2020; Ge et al., 2021) series, SSD (Liu et al.,

2016), and RetinaNet (Lin et al., 2017).

The development of rotating object detection with

horizontal detection has also received more and more

attention from researchers. Rotation detection algorithms are

represented by R3Det (Yang et al., 2021), ReDet (Han et al.,

2021), S2A-Net (Han et al., 2022) and so on. In real

environments, most detection objects often appear irregularly,

such as text scene recognition in real life (Liao et al., 2018) and

ship detection in remote sensing image ports (Fu et al., 2018;

Yang et al., 2018; Li et al., 2018). Under these conditions,
Frontiers in Plant Science 02
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achieving satisfactory results in horizontal detection is difficult.

Based on horizontal detection, rotation detection adds object

Angle prediction, which makes the application of rotation

detection more extensive. This method can adapt to any Angle

and shape transformation of object detection and has good

robustness to object localization and classification detection.

For example, Ma et al. (2022) used R3Det detection and

identification for coastal intensive marine cages. The

experimental results showed that the mean Average Precision

(mAP) in circular and square cages reached 92.65% and 98.06%,

respectively. Peng et al. (2021) applied the rotation detection

algorithm to detect insulators in the power grid. The

experiments show that R3Det can better determine the

position of insulators and reduce economic losses.

Pests live in complex and changeable natural conditions with

many species, and the growth patterns of different pests are

pretty different. At the same time, some pests are tiny in size and

have certain similarities in appearance, color, and other

characteristics, making detection and identification difficult.

Traditional crop pest detection relies on many experts’ on-site

observation, identification, and detection. On the one hand, such

detection is time-consuming and labor-intensive. On the other

hand, the crops have been seriously affected because many pests

can be observed manually, and the best control period is missed.

In recent years, the rapid development of target detection

algorithms and supporting software and hardware in the field

of deep neural network learning has brought the possibility of

quick identification and detection of pests, which has extensively

promoted the application and development of intelligent plant

protection and precision agriculture. Many domestic and foreign

scholars conduct computer vision research by processing pest

images. For example, M.A. Ebrahimi et al. (2017) proposed to

use a machine learning Support Vector Machines(SVM)

classifier to detect crops and use SVM to use differential kernel

functions to classify and detect greenhouse pests. Li et al. (2021)

improved the TPest-RCNN network structure based on the

Faster RCNN network. Its backbone uses the VGG16 network

for feature learning and uses bilinear interpolation on the

candidate coordinates instead of the ROIPool method to

generate more accurate values. Finally, classification and

coordinate regression correction predictions are performed.

Experiments show that whiteflies’ mAP reaches 95% under

greenhouse conditions. Cho et al. (2007) collected three pests

under greenhouse conditions and proposed using Prewitt for

edge detection and counting. Solis-Sánchez et al. (Solis-Sánchez

et al., 2011) an improved loss identification algorithm was used

to detect six pests under greenhouse conditions.

However, most of the above detection methods mainly

classify and identify a single pest image under greenhouse

conditions, which has certain limitations in the actual natural

environment. The current horizontal target detection network

needs more pest training samples to obtain a better recognition

rate when training multi-category pests. For example, Liu et al.
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(2019) An improved convolutional neural network (CNN) and

PestNet algorithm with a modular channel attention mechanism

were proposed to evaluate 16 pests on 80k datasets MPD2018.

The experiment proved that the result of mAP reached 75.46%.

The improved convolution network and YOLOv4 network

proposed by Tang et al. (2017) integrate attention mechanism

and crosses-stage feature fusion to improve feature extraction

and fusion capabilities. Experimental results on 28k data and 24

types of pests show that mAP and Recall achieved 71.6% and

83.5%, respectively. Wang et al. (2020) collected data on field

pests to obtain 25k pictures with 24 categories and used different

level detection algorithms to conduct comparative experiments.

Finally, the mAP of YOLOv3 reached 59.37%. The level

detection method in the above experiments is used for multi-

category experimental research under large-scale data. It can be

seen from the above that the horizontal detection method needs

extensive data when detecting pests, which takes up many

computer resources, and the final detection effect map is only

about 75%, which can not reach the practical application value.

In this paper, a multi-target pest rotation detection method is

proposed. Rotation detection is often used to detect objects with

considerable lengths and widths and dense objects, such as ships

in remote sensing ports (Fu et al., 2018; Li et al., 2018; Yang et al.,

2018). Under the same circumstances, different pests or the same

type of pests in motion obtained by the filming equipment will

also be affected by different angles, and pests easily pile up densely.

Therefore, it is difficult for the horizontal target detection

algorithm to achieve a good recognition effect on small and

dense targets. As shown in Figure 1, the target detection under

shade environment level in training will be part of the other

characteristics of objects of study, the recognition of samples have

larger interference. The rotation detection algorithm can better fit

the pest to the samples under the dense shadow, and the
Frontiers in Plant Science 03
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performance of the pest can achieve the effect of identifying

different poses. This paper will compare the detection

differences between different target detection algorithms and

rotation detection in different situations to provide a reference

for more agricultural pest detection in the future. The main

research work of this paper is as follows: (1) Using a variety of

horizontal and rotation detection algorithms to detect, identify,

compare and analyze field pests. (2) It is concluded that the

rotation detection algorithm is generally better than the horizontal

detection algorithm in pest detection. The best representative

algorithm of rotation detection is selected; (3) In this experiment,

a pest rotation detection dataset (PRD21) of 21 pests under the

horizontal frame and the rotating frame is constructed, and

the difficulty of data detection is classified. It is hoped that the

experiment will provide new ideas for accurately identifying pests

and diseases and intelligent plant protection, which is conducive

to the early and timely detection and prevention of pests and

diseases and minimizes economic losses.
2 Materials and methods

2.1 Introduction to agricultural pests
dataset-PRD21

This experiment ultimately needs to be detected in the

natural environment, so the experiment’s data are obtained

through the detection and insect detection and reporting

trapping equipment to get pest images under natural

conditions. As shown in Figure 2A, the insect situation

monitoring and reporting light device is placed in the actual

natural environment to trap pests for 24 hours and automatically

set to collect and take photos of pests through the camera in the
A B

FIGURE 1

The training samples of horizontal algorithm and rotation detection algorithm are different. (A) is the horizontal frame More disturbed by other
backgrounds, (B) is a rotating frame, which can better fit pest samples.
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machine every once in a while and upload them to the

background database in time. Figure 2B shows the collected

pest data samples for a certain period.

A total of 2398 pieces of valuable data were obtained in this

dataset, and the image format was unified in JPG format with a

resolution of 3840*2160 pixels. According to the pest classification

of the Ministry of Agriculture of China and the number of data

samples collected in the data set, it is divided into 21 types of pests

(Wang et al., 2020). These data are processed into computer-

trainable Pascal VOC (Everingham et al., 2010) type data, wherein

agricultural experts and lableImg label software generate the

training data set for level detection. The rotation detection data

is generated by roLabelImg software. Finally, the datasets are

divided into 1942 training sets, 216 validation sets, and 240 test
Frontiers in Plant Science 04
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sets according to the ratio of 8:1:1.The detected dataset is called

Pest Rotate Detection(PRD21).

This paper aims to verify the generalization of the effect of

rotation detection in different application scenarios. It is

divided by the pest occlusion situation shown in Figure 3

shows the mutual shielding degree of pests in different

environments. Figure 4 is the name of the specific separated

different data sets, namely simple with no occlusion(SNO),

simple with occlusion(SO), interference with no occlusion

(INO), and interference with occlusion(IO). As shown in

Table 1, the collected pest species, the pest area, and the

relative size of the horizontal frame and the rotating frame are

calculated according to Formula (1) and (2). Finally, Formula

(3) calculates the severity of occlusion between pests.
FIGURE 3

This figure shows the collection of different types of data. (A) refers to the occlusion of pests, (B) refers to the partial occlusion among pests,
and (C) refers to the data type with serious occlusion.
FIGURE 2

(A) is the detection and warning light device for collecting pests. (B) shows the collected pest samples.
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HoReScale =
1
Mo

1

M
(Xmax − Xmin)*(Ymax − Ymin)=C*100% (1)

RoReScale =
1
Mo

1

M
(w*h)=C*100% (2)

a = area(GTBoxA ∩ GTBoxB)=area(GTBoxA ∪ GTBoxB) (3)

Formula 1 is the area and relative proportion of the horizontal

frame, and Formula 2 is the area and relative proportion of the

rotating frame. C is the image’s original size, and M is the total

number of instances of a specific class. Xi is the horizontal relative

position value of the corresponding pest, and Yi is the vertical value of

the corresponding pest. w and h are the width and height of

corresponding pest coordinates. The function area() represents the

area of the two pest objects,s A and B, ∩ where the two pest objects

intersect and ∪ where the two pest objects are combined. a is the

scaling factor, and its value is between 0 and 0.2. When a>0.1, it was
considered that the two pests had severe shading; when a<0.1, it was
supposed to be slightly shading. GTBox is the area of a single pest.
2.2 The algorithm model used
is introduced

This experiment uses the horizontal box target detection one-

stage algorithms RetinaNet, YOLOX, YOLOv5, YOLOv6, and two-

stage algorithms Faster RCNN and Cascade RCNN for comparison

experiments. Rotation detection includes ReDet, R3Det, Rotated

Faster RCNN, and S2ANet as comparison algorithm models.

2.2.1 Introduction to algorithm models related
to horizontal object detection
2.2.1.1 Faster RCNN introduction

This algorithm is an improved and optimized classic CNN

convolution network algorithm. First, use the convolution layers
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for feature extraction to obtain feature maps and generate region

proposals through Region Proposal Networks. The region of

interest in Roi Pooling is extracted through feature maps and

proposals, and the accurate location and category of the

detection target are finally determined through the fully

connected layer and bounding box regression.

2.2.1.2 Cascade RCNN introduction

This algorithm further optimizes the threshold setting in

Faster RCNN, cascades multiple regressors and detectors with

different thresholds, and continuously improves the threshold

multi-cascade network structure iteratively. Ultimately, the

accuracy of detecting target locations is maximized.

2.2.1.3 YOLOX introduction

As a single-stage target detection algorithm of the You Only

Look Once(YOLO) series, positioning and classification are

performed simultaneously. The generation method of anchor

free is adopted to reduce the amount of calculation. The network

structure mainly includes four parts, 1) Input: input image and

perform data enhancement . 2) Backbone network

(CSPDarknet53 (Wang et al., 2020)): Mainly used for feature

extraction. 3) Neck: This layer uses Feature Pyramid Network

(FPN) (Lin et al., 2017) and Path Aggregation Network(PAN)

(Liu et al., 2018) as feature fusion. 4) Head: This layer predicts

classification and location results.

2.2.1.4 YOLOv5 introduction

The network structure of the algorithm can be divided into

four parts, the Input layer, the Backbone network, the Neck

network, and the Prediction layer. The backbone network

consists of Focus, CSP, and Spatial Pyramid Pooling module

layers (Zhang et al., 2022). The Neck layer uses the residual

network to improve the feature fusion ability. In the prediction

layer, the loss of the regression box is calculated by GIoU Loss

(Rezatofighi et al., 2019), and three different scale predictions are
A B

FIGURE 4

The number of pest instances and data set division. (A) is the number of instances in the data set, and (B) is the division of the training set.
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obtained, divided into 80×80, 40×40, and 20×20. The

BCELogitsLoss function calculated Objectness-loss and

Classification-loss. Finally, the best prediction results are

selected according to three dimensions.

2.2.1.5 YOLOv6 introduction

As the latest algorithm of the YOLO series, many algorithm

improvements have been made. Initially, the anchor-free

method was used to generate the prediction frame and the

same data enhancement as YOLOv5. The backbone network

uses EfficientRep to replace the previous CSPDarknet for feature

extraction. Neck built Rep-PAN based on Rep and PAN for

feature fusion. The Head layer is decoupled in the same way as

YOLOX, which separates the efficient structure of regression and

category classification. The label assignment selection uses

simOTA (Ge et al., 2021) to equalize the positive and negative

samples. Finally, a new regression loss SIOU (Gevorgyan, 2022)

is introduced to reduce the degree of freedom of regression to

accelerate network convergence and further improve the
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accuracy of regression. From the above, we can be found that

YOLOv6 combines the advantages of YOLOv5 and YOLOX.

2.2.1.6 RetinaNet introduction

As a one-stage target detection algorithm, the network

structure is backbone using (vgg, resnet) for feature extraction,

and then through Feature Pyramid Networks(FPN) to enhance

the feature map of target area information for features of

different scales, and finally predict the target frame in two

FCN layers location and category. The main innovation of this

structure is that Focal Loss is added to the one-stage detector to

optimize the sample category imbalance problem, and anchor

boxes are used to generate prediction boxes.

2.2.2 Introduction to algorithm models related
to rotating target detection
2.2.2.1 ReDet introduction

When the traditional convolution network detects objects in

any direction, it usually enhances the rotation data in the
TABLE 1 The species of pests and the proportion of relevant sizes.

Index Pest name Portrait Ho Relative
scale (%)

Ro Relative
scale (%)

Index Pest name Portrait Ho Relative
scale (%)

Ro Relative
scale (%)

2 Noctuidae 0.206 0.199 98 AnomalaexoletaFald 0.131 0.141

3 Athetis Lepigone 0.194 0.174 115 Diving Beetle 0.133 0.142

7 Spodoptera Litura 0.14 0.141 151 Cricket 0.236 0.219

8 Mole crickets 0.697 0.72 155 Sphaerodema Rustica
Fabricius

0.155 0.157

10 Snout Moths 0.117 0.107 233 Spotted Red Bug 0.132 0.16

17 Helicoverpa
Armigera

0.209 0.2 248 Marumba
Gaschkewitschii

0.998 0.981

20 Oriental
Armyworm

0.196 0.193 291 Carabidae 0.084 0.084

64 Holotrichia
Parallela

0.192 0.194 359 Cockchafer 0.13 0.134

70 Anomala
corpulenta
Motschulsky

0.264 0.284 414 Turtle Shell 0.092 0.084

71 Coleopters 0.099 0.097 445 Metaboluo
Impressifros Fairmaire

0.136 0.161

87 Tiger Beetle 0.085 0.083
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training samples, so the detection effect is poor, and more

inclined models are required. The ReDet algorithm uses the

equivariant rotation network combined with the detector to

obtain the rotation features, uses the rotation invariant RiRoi

Align space and the angle dimension to extract the features, and

finally predicts the output.

2.2.2.2 S2ANet introduction

Due to the rotation detection network ’s rotation

characteristics, sometimes the generated anchor box has a

high degree of confidence, but there is still a significant

dislocation in the instance fitting. To optimize this problem,

S2A-Net adopts RetinaNet (Lin et al., 2017) as the backbone,

plus FPN and component Feature Alignment Module (FAM)

(Wang et al., 2019) and Oriented Detection Module (ODM)

(Xie et al., 2021) modules for region selection and feature

extraction fusion.

2.2.2.3 R3Det introduction

This experiment uses the R3Det rotation detection

algorithm as a research method to compare other horizontal

detection and rotation detection. The network structure is

shown in Figure 5. The algorithm designed a refined one-

stage accurate and a fast detector that combined the anchor

points of the horizontal target detection algorithm and the

anchor points of the rotation detection algorithm. The final

effect significantly improved the adaptability of pest

recognition in different scenes. Firstly, horizontal detection

anchors are used to generate more candidate regions. Secondly,

rotating anchors are used to optimize the dense target scene

further. In the middle, the feature refinement module (FRM)

(Yang et al., 2021) is used to refine and accurately process the
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predicted target locations. In order to achieve feature

alignment, the algorithm uses Range non-maximum

Suppression(RNMS) (Yang et al., 2021) instead of traditional

non-maximum Suppression(NMS) (Neubeck and Van Gool,

2006). This part of the improvement method sets different

filtering thresholds according to the number of samples and

appearance characteristics of different pest categories. In terms

of the loss function, the algorithm uses the approximate

SkewIoU loss function, which can be pushed to calculate the

multi-objective and multi-task rotation box. Further, it

optimizes the problem of difficult identification of small

objects and sample imbalance. The relevant calculation

formulas are shown in the following (4-6).

SkewIoU =
area(c1 ∩ c2)
area(c1 ∪ c2)

(4)

Lloss =
l1
S o

S

s=1
objs

Lreg(v
0
n, vn)

Lreg(v0n, vn)
�� �� f (SkewIoU)j j

+
l2
S o

S

s=1
Lcls(ps, ts) (5)

Lreg(v
0, v) = Lsmooth−l1(v

0
q , vq) − IoU(v0 x,y,w,hf g,v x,y,w,hf g) (6)

Where S is the number of anchor boxes when the parameter

obj is 1, it means the foreground, and when it is 0, it means the

background. v’ and v represent the ground-truth box’s prediction

vector and target vector. pn is the probability distribution of

various types, and tn is the corresponding target label. SkewIoU

is the overlapping area of the predicted and ground-truth boxes. l
is the sum of different weights and is 1. Finally, f(SkewIoU) and

Lreg are combined as the regression gradient function.
FIGURE 5

The network structure diagram of the rotation detection algorithm used in this experiment.
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2.3 Evaluation indicators

The evaluation criteria used in this experiment are single-class

Average Precision (AP), single-class Recall, all-class average

precision mAP, all-class average recall rate mean Average Recall

(mR), model parameters, and detection time comparisons analysis.

The relevant calculation formula is shown in the following (7-10).

P =
TP

TP + FP
� 100% (7)

R =
TP

TP + FN
� 100% (8)

AP =
Z 1

0
P(R)dR (9)

mAP =
1
Mo

M

k=1

AP(k)� 100% (10)

Where TP and FN are the numbers of positive and negative

samples predicted to be positive, FP is the number of negative samples

predicted to be positive, andM is the total number of classes in the data.

P is precision, R recalls, and AP is precision for a single class.
3 Experimental

3.1 Experimental environment

The operating platform of this experiment is the Ubuntu20.04.4

system. The CPU is Intel Core i9-9900K, the frequency is 3.6GHz,

and the running memory is 16G. The graphics card is NVIDIA

TITAN RTX, and the GPU memory is 24G. The CUDA version is

10.2, and the CUDNN accelerated version is 7.6.5. PyCharm

Professional Edition, Python 3.7.11 interpreter, MMCV version

1.4.0, and Pytorch 1.10 deep learning framework are used.
3.2 Experimental procedure

In the experiment, under the same training set, the number

of iterations epoch is 36, the batch size is 4, the learning rate is

0.01, and the value is dynamically optimized during the training

process. Momentum is 0.9, and weight decay is set to 0.0005.

SGD is a parameter optimizer to train and validate different

classification test datasets.

3.2.1 Comprehensive comparison
between rotation detection and
horizontal detection algorithms

In this experiment, the most representative horizontal

detection algorithms and rotation detection algorithms are

selected as comparisons. Some of them have the same
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backbone network structure and are adjusted to Resnet101,

and the input image size is scaled to (1800, 1200) during

training. During the test, experimental verification was carried

out in 5 different scenarios, and the experimental results are

shown in Table 2.

It can be seen from the experimental results that the YOLO

series algorithm is better than other detection algorithms in

mAP. The best level detection algorithm is the YOLOv5 model,

which is 6.4%, 7.7%, 3%, and 13.9% higher than Faster RCNN,

Cascade RCNN, YOLOX, and RetinaNet at mAP0.5. Regarding

recall rate, YOLOv5 and YOLOv6 in the YOLO series are far

lower than other detection algorithms, only YOLOX can reach

more than 82%, and the algorithm with the highest recall rate for

horizontal detection is RetinaNet, which reaches 87.3%. The

experiments show that both the one-stage and two-stage target

detection algorithms have advantages and disadvantages.

Compared with the rotation detection algorithm, the best one-

stage algorithm is far lower than the RoFaster RCNN, R3Det,

and S2ANet algorithms. RoFaster RCNN is 5.7% and 3.5%

higher than Faster RCNN in mAP and Recall under the same

conditions. On the same Backbone, R3Det is 24.9%, 26.2%, and

32.4% higher than Faster, Cascade, and RetinaNet algorithms.

3.2.2 Influence of backbone network and
image input size

As seen above, rotation detection has initially demonstrated

its advantages. In practice, many factors affect the final result of

different algorithms. For example, the backbone network and the

input image size play a crucial role in the feature extraction of

the target object. This paper conducts comparative research

experiments on these two effects in different scenarios. The

same backbone network is still set to Resnet101, the YOLOv5

and YOLOv6 use CSPDarknet and EfficientRep as the backbone

network, respectively, and the image input size during training

and testing is adjusted to (1000, 600). The experimental results

are shown in Table 3.

Through the comparison of experimental results, it is found

that each algorithm has a certain degree of reduction when the

input size is reduced. When the size is reduced, YOLOv5 and

YOLOv6 mAP drop by 4.2% and 1%, respectively, under

Test240. Other horizontal detection Faster RCNN and Cascade

RCNN algorithms reduce mAP by 4.4% and 3.6% and Recall by

9.1% and 13.4%, respectively. The rotation detection algorithm

declines further; the minor reduction is 2.1% of RoFaster RCNN,

and the most significant drop is 7.9% of R3Det. Experimental

results show that the image size change substantially impacts the

final result. Except for the ReDet algorithm, other rotation

detection algorithms are still better than the horizontal

detection algorithm model. To verify the influence of the

backbone network of the algorithm, continue to join the

experiment. Keep the training image input size as (1800,1200)

while setting the backbone adjustment depth to Resnet50. The

experimental results are shown in Table 4 below.
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We can be seen from the results that when the image

training size is (1800, 1200) and the backbone network depth

is reduced to Resnet50, the horizontal detection and rotation

detection algorithms have a slight reduction. Among them, the

algorithm with the most negligible reduction is 0.8% of R3Det,

and the highest is only 1.7%. The highest reduction of the

horizontal detection algorithm above the recall rate is 7.6% of

Cascade RCNN, and the rotation detection algorithm has almost

no change. However, experiments show that when the data size

is large, the network training model has less influence on the

depth of feature extraction.

3.2.3 Analysis of recall and mAP of different
algorithms in different types of datasets

This experiment selects four algorithms with the best

detection effect for comparison. The horizontal one-stage

detection algorithm is YOLOX, the second-stage detection

algorithm is Faster RCNN, and the rotation detection

algorithm is R3Det and S2ANet. Take Test240 data as the test
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set for the model. The comparison of mAP and mean Average

Recall(mRecall) is shown in Figure 6.

Figure 6 shows that at mAP, S2ANet is higher than other

level detection algorithms for various pests under different

environmental conditions, and the mAP is only lower than

1.3% on SNO. The detection effect of R3Det in different test

sets, mAP reached 78.5%, 85.1%, 82.6%, 79%, and 70.3%,

respectively; this shows that R3Det is more efficient and

flexible in the detection of dense target pests through the

refinement module and the feature reconstruction module.

In the mRecall comparison, although the mAP of YOLOX is

higher than that of Faster RCNN, the recall rate is lower than

that of Faster RCNN. The two algorithmic models of rotation

detection outperformed the horizontal detection algorithm.

Rotation detection achieves the highest Recall of more than

95% on the SNO simple data set. The Recall calculated by R3Det

is above 86% on all types of data sets, which shows that the

horizontal anchor frame and the rotation frame used by R3Det

are combined to improve the recall rate. At the same time, the
TABLE 3 Comparison of detection results when the input image is 1000*600.

Algorithm model Backbone Test240% SNO180% SO79% INO104% IO80%

Indicators mAP mR mAP mR mAP mR mAP mR mAP mR

Faster RCNN Resnet101 49.2 76.2 50.7 76.8 55.9 72.1 52.1 78.2 42.5 74.3

Cascade RCNN Resnet101 48.7 69.8 51.0 74.1 54.8 70.0 49.3 65.2 41.2 67.3

YOLOv5 CSPDarknet 55.8 59.7 62.3 61.1 65.4 67.4 59.4 53.5 50.1 57.0

YOLOv6 EfficientRep 57.2 51.9 60.4 58.7 64.8 54.3 58.1 54.1 47.6 54.3

RoFaster RCNN Resnet101 57.2 83.0 55.0 87.1 67.7 82.2 63.9 84.7 49.9 80.8

ReDet Resnet101 44.8 76.0 51.3 85.3 53.6 74.6 46.1 74.4 37.5 66.0

S2ANet Resnet101 56.5 93.6 57.6 95.2 64.9 89.2 60.2 90.2 47.4 90.6

R3Det Resnet101 70.6 91.9 78.6 97.7 74.8 85.8 77.9 91.4 55.1 76.8
frontiersin
The bold numbers in the table indicate the highest values of the experimental results.
TABLE 2 Comprehensive model comparison results.

Algorithm model Backbone Test240% SNO180% SO79% INO104% IO80%

Indicators mAP mR mAP mR mAP mR mAP mR mAP mR

two-stage

Faster RCNN Resnet101 53.6 85.3 56.1 84.1 62.0 82.5 56.8 84.3 44.7 68.2

Cascade RCNN Resnet101 52.3 83.2 54.9 83.4 58.2 77.2 53.6 77.6 45.9 70.2

one-stage

RetinaNet Resnet101 46.1 87.3 50.6 94.3 48.0 80.3 47.6 88.1 34.0 72.3

YOLOX CSPDarknet 57.0 82.0 61.3 82.6 65.5 78.2 53.4 72.2 47.8 75.6

YOLOv5 CSPDarknet 60.0 63.0 62.5 57.3 65.9 67.4 62.2 61.8 53.4 57.0

YOLOv6 EfficientRep 58.2 54.7 60.5 54.3 66.4 51.4 64.6 53.0 50.8 52.3

rotation detection

RoFaster RCNN Resnet101 59.3 88.8 58.6 81.2 69.1 81.4 65.3 86.8 53.6 82.0

ReDet Resnet101 54.4 87.9 54.6 87.2 60.3 77.7 51.6 83.4 43.4 73.5

S2ANet Resnet101 60.2 94.7 60.0 95.7 69.0 92.2 63.8 90.6 54.2 93.4

R3Det Resnet101 78.5 93.6 85.1 99.1 82.6 89.7 79.0 91.9 70.3 85.0
The bold numbers in the table indicate the highest values of he experimental results.
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approximate SkewIoU loss function is used to achieve more

accurate rotation. Finally, the results show that the recall rate can

be significantly improved, which has good results under austere

conditions and overcomes the problem of dense scenes.

In summary, whether a one-stage or two-stage target

detection algorithm, the detection effect is not as good as

rotation detection in various environments. In contrast, other

rotation algorithms, such as S2ANet and RoFaster RCNN, have

an excellent recognition ratio. In particular, the R3Det algorithm

still performs well in environments with severe occlusion and

more complex backgrounds, which shows that the rotation

algorithm has good results in remote sensing data and a

reasonable recognition rate in pest detection in different fields

in the field and generalization rate.

3.2.4 Analysis of a single type of pest
The total categories of the data set in this experiment are 21

categories. The growth shape and other characteristics of

different pest types have specific differences, and some

attributes of some categories are similar. In order to provide a

theoretical reference for identifying more varieties of pests in the

future, this paper analyzes the influence of characteristics of
Frontiers in Plant Science 10
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different pests. Figure 7 shows the aspect ratio and relative size of

a single category of pests. The algorithm model is trained with

horizontal detection and rotation detection. The single-category

AP50 of different algorithms is calculated, and the results are

shown in Table 5.

It can be seen from Table 5 that under the same data

conditions, the aspect ratio of the rotating frame is larger than

the scale of the horizontal structure, and the relative proportion

of the rotating frame is lower than that of the horizontal frame.

In general, the area occupied by pests is small. It shows that the

detection and recognition of tiny pests are complex, and the

training samples of the rotating frame can better fit the target

object. The interference of other environmental factors on the

models during training in different scenarios is also reduced.

Therefore, the rotation detection algorithm can still achieve

good results under more complex or denser conditions.

The table shows the single-class experimental results for the

selected model comparisons. It can be concluded from this table

that when the aspect ratio of pests is greater than 2, only one pest

is the 151st pest, and the mAP of this pest is 90%. When the ratio

is [1.75, 2), the mAP of the 8th class of pests is 89.7%. When the

ratio was [1.65, 1.75], including the 87th, 20th, and 115th types
A B

FIGURE 6

Left panel (A) shows the mAP of the four algorithms on the Test datasets, and correct panel (B) shows the Recall of the corresponding
algorithms and datasets.
TABLE 4 Comparison of detection results when the input picture is 1800*1200.

Algorithm model Backbone Test240% SNO180% SO79% INO104% IO80%

Indicators mAP mR mAP mR mAP mR mAP mR mAP mR

Faster RCNN Resnet50 52.5 82.5 53.8 74.5 59.3 77.9 57.7 67.7 45.2 66.1

Cascade RCNN Resnet50 53.1 75.6 56.2 86.3 58.6 71.4 53.2 84.4 43.3 77.1

RoFaster RCNN Resnet50 58.3 85.6 59.0 87.2 68.1 87.4 64.1 86.3 52.9 83.2

ReDet Resnet50 52.7 87.0 55.0 86.3 59.9 78.6 53.3 85.7 41.6 69.7

S2ANet Resnet50 58.8 95.6 59.2 97.2 68.4 91.6 63.5 92.2 51.7 94.7

R3Det Resnet50 77.7 94.0 76.1 98.2 72.9 87.8 74.0 91.5 59.0 79.1
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of pests, the mAP was 79.7%, 89.6%, and 83%, respectively.

When the ratio was [1.55, 1.65), there were 6 species of pests; the

highest was 86% of class 233, and the lowest was 62.8% of class

291. There are also six classes where the ratio is [1.50, 1.55),

where the best detections are 97.9% for class 445 and 96.3% for

class 359. When the ratio was lower than 1.5, there were four

classes, 2, 248, 3, and 64, with mAP of 76.5%, 81.8%, 55.6%, and

73%, respectively.

After analysis, there were 15 types of detected pests with

aspect ratios between [1.5, 1.75], accounting for 71.4% of the

total detected pest species. The R3det rotation detection

algorithm is generally more effective than other horizontal

detection algorithms in detecting these categories. When it is

lower than 1.5, the rotation detection still performs well.

Experiments show that the rotation algorithm detection not

only has a good effect on detecting pests at a high aspect ratio but

also has a reasonable recognition rate when the ratio is low. For

example, in comparing 21 categories of total pests, R3det is the
Frontiers in Plant Science 11
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highest in 19 pests, second only to Cascade RCNN in the 248th

category of pests, but still achieves an mAP of 81.8%. The

analysis results further demonstrate that the R3det model can

detect most pests.

3.2.5 Comparative analysis of detection speed
and parameter quantity

Regarding recognition rate, the rotation detection algorithm

has shown better results than the horizontal detection. However,

timely detection of changes before and after pests and diseases and

making correct judgments are the key to agricultural control.

Therefore, the detection time is also an important indicator. On

the other hand, different detection algorithm models finally need

to be transplanted to specific hardware devices for mobile

deployment. However, due to the limited resources of various

hardware devices, they cannot carry large capacities; Therefore,

the model’s size is also one of the essential considerations when

choosing a suitable algorithm. Finally, as shown in Table 6, we
A B

FIGURE 7

Left panel (A) shows the aspect ratio data of A single class of pests, and right panel (B) shows the proportion of the relative original size of A
single type of pest.
TABLE 5 AP50 for a single class.

Method 2 3 7 8 10 17 20 64 70 71 87 98 115 151 155 233 248 291 359 414 445

Faster RCNN 32.4 37.3 32.9 74.3 28.8 59.4 61.1 54.8 81.6 60.8 54.7 60.1 47.4 68.0 58.7 26.4 88.1 17.7 53.3 42.4 85.3

Cascade RCNN 30.0 34.0 15.3 77.0 24.8 44.8 61.8 63.1 77.7 61.4 50.2 44.9 40.9 68.1 53.3 55.5 92.7 18.5 68.6 41.1 75.5

RetinaNet 28.2 29.1 6.6 73.4 29.6 48.2 47.8 53.2 76.1 58.2 51.7 47.1 30.4 74.0 54.1 41.2 59.5 14.7 58.0 27.1 59.6

YOLOX 47.5 37.9 56.8 77.2 40.4 49.0 54.5 56.5 76.0 63.7 26.9 63.0 44.8 59.5 57.2 69.1 70.0 23.6 74.8 60.3 87.4

YOLOv5 32.3 26.5 33.0 71.1 35.4 49.2 52.1 52.6 80.7 64.4 50.0 71.6 35.8 63.6 58.1 71.9 81.9 21.4 72.6 55.5 86.3

RoFaster RCNN 27.9 46.3 36.4 80.2 36.7 64.4 56.9 63.6 78.4 66.3 62.5 62.3 52.5 75.4 66.3 46.8 85.5 25.0 74.3 54.4 82.8

ReDet 27.0 43.5 14.1 80.4 28.7 53.2 52.2 55.2 75.4 60.2 53.7 51.7 42.6 68.3 57.1 46.9 85.7 20.5 62.0 50.5 76.7

S2ANet 28.0 35.2 29.8 85.7 39.6 65.1 58.1 61.4 83.8 71.2 58.2 61.6 57.0 76.5 70.9 53.1 90.7 23.4 70.7 62.6 80.6

R3Det 76.5 55.6 14.7 89.7 77.8 86.0 89.6 73.0 87.1 85.7 79.7 88.3 83.0 90.0 90.4 72.7 81.8 62.8 96.3 69.7 97.9
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compared the model parameters and detection time of different

models under different backbone network depth conditions and

when the image input size changes during training.

It can be seen from the experimental results that on the same

backbone network, the rotation detection algorithm is slightly lower

than the horizontal detection algorithm in the detection speed of a

single image. The maximum time of the rotation detection

algorithm for a single image is only 0.163s, which can meet the

requirements of practical detection applications. Similarly, in terms

of the number of algorithm models, the parameters of RoFaster,

ReDet, and S2ANet algorithms are all lower than those of the

horizontal detection algorithm. The performance of R3Det is

slightly higher than that of the horizontal detection algorithm, but

the amount of parameters is only 66.54MB. The practice has proved

that the algorithm can be flexibly applied to the embedded mobile

deployment of pest-monitoring lights.

3.2.6 Pest detection visualization comparison
Through the above comparative studies in different aspects, it

is found that rotation detection algorithms such as R3det have

better detection results. In this experiment, to verify the detection

effect in the actual scene, the Faster RCNN and Cascade RCNN

with the best horizontal detection effect were selected, and the

rotation detection was compared with R3det and S2ANet as the

representative algorithms. The threshold was set to 0.5, and

the test data included small targets, dense and occlusion type 3,

the detection effect is shown in Figure 8, and Figure 9 compares

the decreasing trend of the loss of different algorithms.

It can be seen from the comparison effect that R3det can

detect all pests in small target detection. The detection results

of Faster RCNN and S2ANet are the same. Meanwhile, Cascade

RCNN has the worst detection performance, only detecting a

few pests. In dense scenarios, the horizontal detection

algorithm can only detect a few pests, which is far from

meeting the actual needs. The rotation detection algorithm

shows its superior detection ability in a dense environment.

And the detection capability is much higher than horizontal
Frontiers in Plant Science 12
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detection, and more pests can be detected in this environment.

In practical situations, pests are prone to occlusion when they

appear in piles. The horizontal detection algorithm is prone to

be disturbed by other target features during training and has a

seriously missed detection rate. In this case, rotation detection

can better fit the pest samples under different postures and

accurately identify the blocked pests. Among them, the R3det

algorithm can account for both small targets and occluded

pests in the case of occlusion.
4 Discussion and conclusion

Detecting agricultural pests has always been a complex

problem for many experts and scholars. Insect pests will not

only eventually reduce crop yield but also may impact the

ecological balance of a specific area. Therefore, accurate

identification and detection of pests in complex scenarios is the

key to the environmental protection of crops. Traditional reliance

on agricultural experts for on-site inspection and testing is

inefficient and time-sensitive, often missing the optimal period

of protection. In the current research on deep learning object

detection, it is found that horizontal detection has a certain effect

on the simple background of a single pest. However, the product is

difficult to meet the actual requirements in complex multi-

category environments. In this paper, the rotation detection

algorithm is firstly proposed to be applied to the pest

detection field of the constructed pest datasets PRD21, and

good detection results have been achieved, which provides a

new solution for pest detection in the early stage of agriculture.

Among them, the R3Det algorithm uses its refinement module to

improve the recognition rate and approximate SkewIoU loss to

improve the recall rate. Finally, the detection comparison in the

actual environment proves its superiority and strong adaptability.

The overall experimental conclusions are as follows:

1) This paper uses rotation and horizontal detection

algorithms to research pest detection and identification.
TABLE 6 Comparison of detection speed and parameter amount of the same backbone network algorithm.

Algorithmmodel Backbone Resnet 50 1800*1200
(1800*1200)

Backbone Resnet 101 1000*600
(1000*600)

Backbone Resnet 101 1800*1200
(1800*1200)

FPS Single graph
detection time/s

GFLOPs/
MB

FPS Single graph
detection time/s

GFLOPs/
MB

FPS Single graph
detection time/s

GFLOPs/
MB

Faster RCNN 13.5 0.074 41.23 25.3 0.040 60.22 10.1 0.100 60.22

Cascade RCNN 12.0 0.083 68.99 21.1 0.047 87.98 9.2 0.109 87.98

RoFaster RCNN 12.5 0.08 41.14 22.1 0.045 60.14 9.5 0.105 60.14

ReDet 8.8 0.114 40.23 16.8 0.060 58.22 6.7 0.149 58.22

S2ANet 10.8 0.092 38.63 20.8 0.048 57.62 8.4 0.119 57.62

R3Det 7.2 0.138 47.54 14.0 0.071 66.54 6.1 0.163 66.54
fro
The bold numbers in the table indicate the highest values of the experimental results.
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Under different natural image detection environments,

rotation detect ion reflects the advantages of good

generalization and strong adaptability. The R3det algorithm

can still achieve a recognition rate of more than 70% under

more occlusion and serious background interference, and the

Recall also reaches 86.0%. It achieves 85.1%, 82.6 and 79%

under the other classification test data sets, SNO, SO,

and INO.

2) In single-class detection, the performance of rotation

detection is the highest in 19 of the 21 categories. The highest
Frontiers in Plant Science 13
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category is the 445th category, which reaches 99.7%, and the

other category achieves 81.1%. The detection effect shows that

the rotation algorithm has good robustness to multi-category

targets in addition to the influence of environmental factors.

3)Since pests may increase over time over large areas, it is

necessary to detect and identify pests in the exact location within

a short period. Through experiments, it has been found that the

detection time of a single image of the rotation detection

algorithm is less than 0.17s, which can realize rapid

identification and detection.
FIGURE 8

Comparison between horizontal algorithm and rotation algorithm. The algorithm model for comparison is Faster RCNN, Cascade RCNN,
S2ANet and R3Det. Test figure (A) represents small-target pest detection, (B) represents intensive pest target detection, and (C) represents
interpest occlusion type detection.
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The above experiments prove that rotation detection has

practical application value on pests. However, at the same

time, there are some deficiencies. For example, the detection

effect of category 7 pests is low, and there is still room for

improvement when the environment is the most complex. In

the future, we will further collect samples of various pests in

different environments and add specific pest categories to

expand the training sample database of pests in other regions.

In addition, the algorithm is optimized, improved, and

innovated. Ultimately, it provides a new research method

for intelligent plant protection and detecting crop diseases

and insect pests.
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Prior knowledge auxiliary for few-
shot pest detection in the wild

Xiaodong Wang1,2, Jianming Du1*, Chengjun Xie1, Shilian Wu3,
Xiao Ma4, Kang Liu5*, Shifeng Dong1,2 and Tianjiao Chen1,2

1Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences,
Hefei, China, 2Science Island Branch, Graduate School of University of Science and Technology of
China, Hefei, China, 3Department of Automation, University of Science and Technology of China,
Hefei, China, 4School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing, China, 5Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
One of the main techniques in smart plant protection is pest detection using deep

learning technology, which is convenient, cost-effective, and responsive.

However, existing deep-learning-based methods can detect only over a dozen

common types of bulk agricultural pests in structured environments. Also, such

methods generally require large-scale well-labeled pest data sets for their base-

class training and novel-class fine-tuning, and these significantly hinder the further

promotion of deep convolutional neural network approaches in pest detection for

economic crops, forestry, and emergent invasive pests. In this paper, a few-shot

pest detection network is introduced to detect rarely collected pest species in

natural scenarios. Firstly, a prior-knowledge auxiliary architecture for few-shot

pest detection in the wild is presented. Secondly, a hierarchical few-shot pest

detection data set has been built in the wild in China over the past few years.

Thirdly, a pest ontology relation module is proposed to combine insect taxonomy

and inter-image similarity information. Several experiments are presented

according to a standard few-shot detection protocol, and the presented model

achieves comparable performance to several representative few-shot detection

algorithms in terms of bothmean average precision (mAP) andmean average recall

(mAR). The results show the promising effectiveness of the proposed few-shot

detection architecture.

KEYWORDS

few-shot detection, hierarchical structure, pest recognition, prior knowledge,
cross-relation
1 Introduction

Food issues have long concerned countries around the globe, as they do the Chinese

government at all levels. In particular, preventing crop diseases and insect pests is not only

crucial for increasing food production but also effective for reducing latent agricultural

economic losses and facilitating accurate predictions of future grain yields. Current methods

for preventing crop diseases and insect pests are still heavily reliant on manual observations

by experienced farmers, and they suffer from a long-term shortage of professional agricultural

technicians (He et al., 2012; Parsa et al., 2014). Faced with hundreds of millions of Chinese
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farming households, having only approximately 550,000 Chinese

national agricultural technology extension agencies are far from

sufficient (Zhang et al., 2016). Furthermore, (i) a large age gap

among agricultural technicians, (ii) a lack of pest-recognition staff

in each county-level plant protection station, and (iii) differing field

experiences are causing a low cover density of experts specializing in

pest identification and a lack of unified pest-identification criteria,

thereby leading to the blind application of pesticides and serious

environmental pollution (Yu, 2021).

Automatic pest identification originated from combining insect

morphology with traditional machine-learning algorithms (Watson

et al., 2004; Murakami et al., 2005). However, despite most

researchers still placing heavy emphasis on machine-learning-based

pest classification, automated pest detection based on deep learning

has grown rapidly in recent years. Many researchers have used

portable probes with digital cameras (Wang et al., 2021) and

stationary light traps (Liu et al., 2020; Dong et al., 2021; Du et al.,

2022) to automatically identify over a dozen types of tiny pests by

means of artificial intelligence. Pest detection offers more semantic

information with which to carry out real-world farming tasks, such as

object-detection-based swarm counting (Li et al., 2022) and similar

pest detection (Wang et al., 2022), whereas pest classification fails to

recognize and locate multiple unknown categories of pests in a single

image simultaneously. Therefore, pest detection is much more

practical for precise pesticide application and pest control, and it

helps agricultural plant protection experts deliver accurate treatments

to control and avoid the occurrence of larger-scale pest outbreaks as

early as possible.

However, current deep-learning-based methods require sufficient

data to build a structural minimization model and to support cross-

domain model adaption, while machine-learning-based methods

demand complex hand-crafted feature descriptors and controlled

laboratory backgrounds (Ngugi et al., 2021). To the best of our

knowledge, little attention has been paid to those rarely collected

but still harmful insect pest species whose samples are difficult to

collect because of geography, season, frequency, and pest mobility

(Wang, 2021). Moreover, it is difficult for even many images taken

continuously from a single camera angle to fully reflect the semantic

information of insects because images that are helpful for

distinguishing pest species are often only a few representative

images taken from multiple angles, such as of the fronts, sides,

backs, and abdomens of pests (Huo and Tan, 2020). Therefore, it

would be meaningful to discover a novel class with only a few

instances (i.e., 10, 15, or 20 shots) (Wang et al., 2020a; Parnami

and Lee, 2022). Until high-performance few-shot conceptual models

that can be trained quickly become available, customization to collect

big data for different scenarios is a reality that the artificial-

intelligence community must face (Zhang et al., 2022). To solve this

problem, we may have to start from scratch with data structure, logic

causality, various invariants of vision, and compositional concept

learning, among other topics, and introduce prior knowledge to

auxiliary model training.

On the other hand, introducing few-shot learning technology

would make it possible to detect rarely collected pest categories with

just a few available samples, which would greatly reduce the cost of

manual labeling through a semi-supervised automatic labeling

process in which only a small amount of manual verification and
Frontiers in Plant Science 02233
calibration would have to be done by agricultural technical experts in

the later stages. In addition, it would contribute to establishing a rapid

response mechanism for invasive alien pests.

The contributions of this paper are summarized as follows:
1. We introduce a prior-knowledge auxiliary architecture for

few-shot pest detection in the wild, which allows us to detect

rarely collected pests with extremely few available samples.

2. Based on insect taxonomy, we built a new hierarchical FSIP52

data set for few-shot pest detection in natural scenarios. It

could be a valuable supplementary data set for the Intellectual

Plant Protection and Pest Control Community when

combined with the IP102 data set (Wu et al., 2019).

3. We introduce a pest ontology relationmodule that is composed of

amulti-relation detector and a correlation softmax loss function to

incorporate prior knowledge for feature discrimination and

representation. These blocks allow us to implement multi-task

joint training on our model explicitly and implicitly.
2 Related work

2.1 Pest recognition

For more than a decade now, many researchers have developed

various machine-learning-based pest identification methods. Larios

et al. (2008) proposed a method for identifying stonefly larvae based

on the scale-invariant feature transform, and it achieved a

classification accuracy of 82% on four types of stonefly larvae. Wen

and Guyer (2012) developed an image-based method for the

automated identification and classification of orchard insects using

a model that combined global and local features, and it achieved a

classification performance of 86.6% on eight species of orchard field

insects. Kandalkar et al. (2014) designed a pest identification

procedure based on saliency map segmentation and discrete-

wavelet-transform feature extraction, and utilized it in classifying

pest categories using shallow back-propagation neural networks.

These types of algorithms use close-up images of pest specimens in

a restricted background to recognize common insects and pests, but

they also require a high degree of expertise in hand-crafted feature

design and parameter selection for empirical formulas. Currently,

deep-learning algorithms based on large-scale data have replaced

traditional pest-identification algorithms. By combining low-level and

high-level contextual information of images, they have made amazing

progress in identifying the pain points of detecting tiny pests and have

realized the value of implementing and applying modern pest-

identification algorithms. Liu et al. (2020) implemented an

approach for large-scale multi-class pest detection in a stationary

light trap, which could detect 16 classes with a deep-learning-based

automatic multi-class crop-pest monitoring approach using hybrid

global and local activated features. Wang et al. (2021) used 76,595

annotations containing ambient temperature, shooting time, and

latitude and longitude information to detect Petrobia latens,

Mythimna separata, and Nilaparvata lugens (Stål) with a smart

phone in a complex field scene. However, existing deep-learning

pest-recognition methods are focused mainly on identifying over a
frontiersin.org

https://doi.org/10.3389/fpls.2022.1033544
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1033544
dozen of the most common pest species, for which large-scale samples

of each species are required, thereby failing to meet the need for rarely

collected pests. Meanwhile, pest images in most research (Li and

Yang, 2020; Li and Yang, 2021) have been taken in a structured

environment, such as a stationary light trap, instead of in

sophisticated wild settings that are more suitable for practical

applications. Therefore, being able to identify and detect novel pest

classes using fewer data would make it possible to help agricultural

technicians and amateur entomologists by providing them with a

one-on-one expert insect encyclopedia-style service.
2.2 Few-shot learning

In the real world, conventional deep neural networks have always

suffered from sample scarcity and the high cost of acquiring labeled

data. This challenge indirectly gave rise to few-shot learning, which is

generally regarded as the method of training a model to achieve good

generalization performance in the target task based on very few

training samples. In the fine-tuning stage, there are new classes that

have never been seen before, and only a few labeled samples of each

class are available; then in the testing process, when faced with new

categories, the task can be completed without changing the existing

model. Few-shot learning is divided into transductive learning and

inductive learning, and all the models discussed herein correspond to

inductive learning, in which there are three main methods, namely,

meta-learning, metric learning, and transfer learning. Most few-shot

classification and detection methods are based on fine-tuning (Fan

et al., 2020; Kang et al., 2019; Sun et al., 2021; Wang et al., 2020b; Xiao

and Marlet, 2020), and many experiments have shown that fine-

tuning offers substantially improved prediction accuracy (Chen et al.,

2019; Dhillon et al., 2019; Chen et al., 2020). Dhillon et al. (2019)

found that a five-way one-shot fine-tuning increased accuracy by 2%–

7%, while a five-way five-shot fine-tuning also increased accuracy by

1.5%–4%. Analogous conclusions have also been drawn in another

work (Zhuang et al., 2020). This method is simple but useful, and its

accuracy is comparable to that of other sophisticated state-of-the-art

(SOTA) meta-learning methods (Li and Yang, 2020). In methods

based on fine-tuning, images in the query and support set are mapped

to the feature vectors, then the similarities between the query and

support images in the feature space are calculated, and the final

recognition result is determined by the highest similarity; thus, the

model is fine-tuned efficiently even with a limited sample.
2.3 Few-shot pest detection

Research on identifying insect pests and crop diseases based on

few-shot learning began in 2019. Li and Yang (2020) implemented

metric learning in the few-shot detection of cotton pests and

conducted a terminal realization with a field-programmable gate

array (FPGA). Li and Yang (2021) provided the Intellectual Plant

Protection and Pest Control Community with a task-driven paradigm

for meta-learning in agriculture, but it only includes 10 types of close-

up pests and plants in low resolution with few-shot classification

configuration, which is far from real-world conditions. Yang et al.

(2021) used salient-region detection and center neighbor loss to
Frontiers in Plant Science 03234
detect insects in complex real-world settings, but the approach

focused on only visual features within images and did not introduce

prior information to aid detection even with few samples. Yang et al.

(2021) also used the iNaturalist open-source data set provided by

Google, but this still includes many images whose backgrounds are

not natural, generally simple backgrounds such as desktops, cement

floors, and specimen trays. Moreover, their samples were collected

mainly against strictly controlled laboratory backgrounds or simple

natural backgrounds, and they lacked visual external features. In

summary, this field is still in its infancy, aiming to identify more novel

pests at low data cost.
3 Data preparation

Insecta is the largest class in the animal kingdom, whose number

of known species exceeds 850,000, accounting for four fifths of all

animals. Within Insecta, nine orders are closely related to agricultural

production: Orthoptera, Thysanoptera, Homoptera, Hemiptera,

Neuroptera, Lepidoptera, Coleoptera, Hymenoptera, and Diptera.

In this paper, all pest species are represented by adults.

Conventionally, almost all image-classification and object-

detection tasks are pretrained on the data sets provided by the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) or

the Microsoft Common Objects in Context (COCO) Detection Data

set in order to obtain basic object features and increase the models’

generalization ability. Although these prestigious sponsors try their

best, their baseline data sets still contain very few images of pests or

insects. In this case, we substituted the ImageNet pre-trained data set

with the IP102 and few-shot object detection (FSOD) data sets (Fan

et al., 2020). IP102 (Wu et al., 2019) is an insect baseline data set that

contains 18,974 images with 22,253 annotations for object detection,

making it a fairly good replacement for COCO and ImageNet

(Krizhevsky et al., 2017).

However, IP102 is collected by web crawlers through common

Internet image search engines such as Google, Flickr, and Bing, so it

consistently suffers from poor resolution, rough annotation, improper

size, and copyright watermarks. As a supplement, our FSIP52 data set

contains 1,918 high-quality images that were carefully annotated and

manually reviewed by pest-identification experts at the Anhui

Academy of Agricultural Sciences and the Yun Fei Company,

aiming to improve the signal-to-noise ratio of characteristic

information in real-world pest samples with high consistency. It

comprises 52 rarely collected adult agricultural and forest fruit-tree

pest species with different natural backgrounds in the wild, with only

dozens of samples for each pest category on average. Figure 1 gives an

intuitive visual demonstration of each category in the FSIP52 data set.

The pests in each vignette are in different complex natural settings

and vary in size and pose, indicating that the FSIP52 data set is very

challenging. After removing the categories of IP102 that overlapped

with our FSIP52, we integrated the remaining categories of IP102 as

our pre-trained data set. Thus, we are able to fine-tune our model with

the FSIP52 split to detect the minority pests fairly.

Few-shot object detection is quite different from general object

detection methods. Few-shot learning is the process of method of

training a model to achieve good generalization performance in the

target task based on very few training samples. Cross-domain
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problems are inevitable, but they can be alleviated by constructing a

source data set that is as similar to the target domain as possible. As

noted by Sbai et al. (2020), base data set design is crucial for few-shot

detection, and typically, it is always more important than the small

improvements brought by a complex learning algorithm. Therefore,

we carefully designed the base data set size and similarity to test

classes and trade off between the numbers of classes and images per

class. Furthermore, the degradation of plant–pest cross-domain few-

shot classification performance shows the necessity of a scientifically

designed data set.

Because pest-victimized crops have complex and changing

backgrounds and each pest may harm various crops, it is difficult to

encode crop information as effective auxiliary information to guide

the model learning. On the other hand, because insect taxonomy

reveals inherent connections and provides the respective

characteristics of texture and shape of various insect pests, we

designed the hierarchical FSIP52 data set based on prior human

knowledge and proposed a corresponding hierarchical classifier in

our model. FSIP52 is divided explicitly into four super classes and

further divided into 52 subclasses. The numbers in brackets after the

name of each class of insects indicate the category ID in FSIP52. At

the same time, we also find no intersection between our data set and

27 common stationary-light-trap agricultural pest classes that appear

in Jiao et al. (2022) and belong to the rarer pest species in the data set.

Nevertheless, the FSIP52 data set contains various sizes and poses,

and our pre-trained data set and base class data set include three of

China’s top 10 most harmful, invasive insect species in agro-

ecosystems (Wan and Yang 2016), which indicate that ours is a

non-trivial practical approach to preventing the invasion of foreign

insect pests. For more details, see Figure 2.
4 Proposed methodology

The overall proposed architecture is shown in Figure 3. We

designed our framework based on the classic Faster R-CNN

framework just like other fine-tuning-based few-shot detection

networks. The weight-shared backbone network extracts and shares

the features of the support and query images qs, with Db∩Dn=∅ .
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Normally, we use ResNet-50 as our backbone network and a multi-

input single-output (MISO) feature pyramid network (FPN) (Lin

et al., 2017; Chen et al., 2021) to introduce multiple receptive fields,

aiming at the target scale imbalance problem of custom data sets.

Attention region proposal network (RPN) focuses on a given support

set category and filters out the target candidate frames of the other

categories. Attention RPN is designed to filter out object proposals in

other categories by focusing on the given support category. Support

features are pooled equally into a 1×1×C vector, and a depth-wise

cross-correlation calculation is then performed with the query

features, the output of which is used as the attention features,

which are fed into the RPN to generate recommendations.

For K-shot training, we obtain all the support features through

the weight-shared network and use the average feature across all

the support images belonging to the same category as its support

feature. When testing, when each query image is given, these

support features can be used for classification and positioning

(equivalently, each test sample is a query image, which is shared by

all the support images of the query image). The essence of the

association between the support feature and the query feature is to

use the given support image and label information to find objects

with similar features in the query image and provide their

approximate spatial positions. For N-way training, we add an N-

1 support set branch extension network structure, where each

branch has an independent attention RPN module and a multi-

relation detection module.
4.1 Multi-relation detector

The multi-relation detector has three separate blocks: global

block, local block, and patch block. Global block is used to learn

the depth feature mapping information of global matching. Local

block is aimed at learning the channel-by-channel spatial feature

inter-correlation between the support set and candidate areas of the

query set. Patch block is used to learn the similarity of the deep

nonlinear metric between pixel blocks. These three subblocks

calculate the similarity for each candidate area of the query set and

then compare their fusion with the task threshold.
FIGURE 1

Representative demonstration images of each category in the FSIP52 data set.
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FIGURE 3

Framework of the proposed few-shot pest detection network.
FIGURE 2

The hierarchical taxonomy of FSIP52 is explicitly stratified into four superclasses, namely, Homoptera, Hemiptera, Lepidoptera, and Coleoptera and 52
subclasses that follow the division of the pest class family. The numbers in brackets after the name of each class of insects indicate the category ID in FSIP52.
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4.2 Hierarchical classifier and cross-
correlation matrix

Fan et al. (2020) were unable to make good use of multi-source

category information. Rather than using labels directly, samples were

re-coded and their categories were predicted by fusing multiple

feature similarities and scoring against a preset task threshold. This

is essentially a clustering method by means of a specific distance

measure. It would work between horses and sheep therein were

similar to simple rigid bodies, and the difference between them in

terms of external characteristics would still be quite obvious.

However, insect pests are typically nonrigid, and insects are diverse

and varied, belonging to the arthropod group of invertebrates. This

paper expands the aforementioned approach by incorporating pest

ontology relation module. By fusing internal and external visual

information derived from the image-level pest features and

hierarchical insecta information derived from prior human

knowledge, multi-category information is encode to directly

supervise the model optimization. Therefore, the primary difficulty

in detecting pests with few samples lies in the classification of similar

pest categories rather than in their localization.

Prior knowledge derived from Insecta guides us to build a

hierarchical classifier. With this, we can reduce the range of class

predictions through prior human knowledge and focus more on the

accuracy of classification tasks for similar classes of pests in different

classes of the same order. The method of image similarity calculation

has a great impact. Current few-shot detection methods (Li and Yang,

2021; Sun et al., 2021) use the Euclidean distance and the cosine

similarity as the metric for the feature distance. As the dimensionality

of the data increases, the maximum and minimum Euclidean distance

and the cosine similarity approach zero, which makes distinguishing

impossible. The Euclidean distance function and the cosine similarity

function lose their meanings in a high-dimensional environment.

Alternatively, we use the differential hash algorithm to encode image-

level visual features, which is essentially a gradual perceptual hash

algorithm combining the advantages of an average hash algorithm

and a perceptual hash algorithm. We retain recognizable features at

the image level through cross-correlation matrix. The internal dhash

similarity of Lepidoptera support instances in the FSIP52 data set is

shown in Figure 4. We assume that the similarity value between the

same categories is 1. We find that although the similarity between

different categories within the same superclass varies, their difference

in similarity is not significant. Therefore, the problem of
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distinguishing similar pests remains a big challenge for the

performance of few-shot pest detection.

The calculation phases of the cross-correlation matrix elements

are as follows. First, we calculate the pairwise differential hash image

similarity between each support set image of two random subclasses,

ci and cj, affiliated to the same superclass, cl, to obtain the mean

average dhash image similarity, ckl. In particular, when k and l are

strictly affiliated in prior human knowledge, we have pl = 1; otherwise,

the correlation softmax is degenerated. The purpose of this is to

distinguish pests with high similarity within the same superclass by

increasing the hyperplane distance between different subclasses

belonging to the same superclass through loss function design.

Also, the subclass distance between different superclasses is widened

by having different superclasses. Thus, we fill the cross-correlation

matrix with ckl.
4.3 Total loss function design and
correlation softmax

The total loss function (losstotal) deployed in the training process

is defined in Equation (1).

losstotal = losscls + lossbox reg + lossrpn cls + lossrpn loc

+ losscor cls + losscor super cls,
(1)

where lossboxreg, lossrpncls, and lossrpnloc are typical loss-function

terms in Faster R-CNN; losscor super cls is the label-smooth cross-

entropy function; and losscls is the loss sum of multi-relation detector.

losscor cls with correlation softmax a*k is formulated as Equation

(2).

losscor cls sð Þ = −bo
m

k=1

pk log (a*k ),

a*k = ezk

oC
l=1

(2−pl) 1−cklð Þezl+ezk ,
(2)

where b is a scale variant that balances the numerical magnitude

of the correlation softmax loss-function terms with other original

loss-function terms, but it does not differentiate between easy and

hard examples. Initially, we set b = 0.25, but b would be optimized

after repeated experiments and changes in the data set. Through the

correlation softmax function, the original softmax suppression effects

between confusing pairs are weakened.

pk denotes the label of class k regarding bounding box s.
FIGURE 4

Internal dHash similarity of Lepidoptera support instances in the FSIP52 data set. The redder the heat map color block, the higher the visual similarity.
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ckl is the mean average image similarity between classes k and l.

Conventionally, a simple and intuitive approach would be to

transform multiple binary classification problems and fuse the

results, but that neglects the relationships between labels because

the regular softmax loss function has exclusive semantics between

labels. a*i outputs logits of correlation softmax.

Output: P = (ĉ k, ĉ l , p̂ l),  ck ∈ f0, 1, 2, 3,…, 51g,  cl ∈ f0,
1, 2, 3g,  pl ∈ f0, 1g

If there is a hierarchical relation between subclass i and its

superclass j, then pl is set to 1, otherwise, it is set to 0.

The original Faster R-CNN loss function defined in Girshick

(2015) is shown as Equation (3) and Equation (4).

L pi, tið Þ = 1
Ncls o

i
Lcls pi, p*i

� �
+ l

1
Nreg

o
i
p*i Lreg ti, t*i

� �
, (3)

Where l = 1 and

Lcls pi, p*i
� �

= − log p*i ∗ pi + 1 − p*i
� �

∗ 1 − pið Þ
� �

(4)
5 Evaluation metrics

5.1 Few-shot detection metrics

To better explain and illustrate the performance of our proposed

model, we briefly describe the evaluation metrics for few-shot

detection. We strictly followed the three random concepts in few-

shot learning, namely, random L-fold cross-validation, randomly

selecting N samples, and K images as support sets. The N-way K-

shot definition is as follows: Randomly select N types of samples from

the meta-data set, randomly select K+m instances from each type of

sample, and then randomly select K instances from the K+m instances

of each type of sample as the support set.

To make the obtained accuracy reasonably standardized, we use

the mean average precision (mAP) as the metric of the proposed

model. The calculation of mAP as defined in COCO is shown in

Equation (5).

mAP = 1
10�N o

:95

k=0:5 : :05

(ri − ri−1)� p, (5)

where N denotes the total number of categories. k denotes the IoU

threshold. ri denotes the recall value corresponding to the first

interpolation of the precision interpolation segment in ascending

order. p denotes the regression value of the observation point on the

smoothed Precision-Recall (PR) curve.

AverageRecall = 2
Z 1

0:5
recall xð Þdx

= 2
no

n

i=1
max IoU gtið Þ − 0:5, 0ð Þ

(6)

The definition of AverageRecall (AR) is first proposed by Hosang

et al. (2015), and it can be calculated using Equation (6). The

AverageRecall between 0.5 and 1 can also be computed by

averaging the overlaps of each annotation gti with the closest

matched proposal, that is, integrating over the y axis of the plot
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instead of the x axis. x denotes the IoU overlap. IoU(gti) denotes the

IoU between the annotation gti and the closest detection proposal. AR

is twice the area enclosed by the recall-IoU curve. n is the number of

overlaps between all GroundTruth bboxes and the nearest

DetectionResult bbox in each image, that is, the COCO metric of

maxDets. AR is a measure of the accuracy of the positioning of the

model’s detection boxes. The mean average recall (mAR) can be

obtained by averaging the AR of all categories in each novel split.
6 Experiments

6.1 Implementation details

IP102 contains many web images and specimen images, and its

image resolution ranges from 87×120 to 6034×6053 with different

growth stages. There are many solid-color specimen backgrounds and

single close-up images of insects in the IP102 data set, and there are

many duplicate or extremely similar images of pests. We deleted some

categories with very few samples, and we removed some orders of

insects unrelated to what is discussed herein, specifically

Hymenoptera, Diptera, Coccinellae, Acarina, Thysanoptera,

Acarina, and Orthoptera. For fairness, we removed five duplicate

categories between IP102 and our FSIP52 data set, namely, Protaetia

brevitarsis, Cicadella viridis, Pieris canidia, Papilio xuthus, and

Nilaparvata lugens. Finally, we removed 34 irrelevant categories

from IP102, leaving IP68 to serve as our pre-trained data set.

Figure 5 and Table 1 give more details about the distribution of the

FSIP52 data set and novel class splits settings in this experiment.

Since pest postures are diverse, we performed random rotation

augmentations on pests in advance to compensate for the less-robust

rotation invariance of a traditional convolutional neural network. The

postures of pests were taken from various angles, and it is not scientific

to use only similarity for supervision; the problem of pest posture can be

partly solved by rotation enhancement. To analyze the proposed

softmax loss and model with a hierarchical structure, we conducted

extensive experiments on our well-designed FSIP52 data set. We trained

our model on a computer with an Intel 9900K CPU, 128 GB of RAM,

and a single NVIDIA Titan RTX GPU. In terms of software

experimental conditions, we deployed our algorithm on Ubuntu

18.04.06 LTS equipped with Pycharm 2021.3 Community Edition,

CUDA 11.3.1, CUDNN 8.2.1, GCC 7.5.0, Python 3.8.5, Pytorch 1.4.0,

and Detectron2 0.6. For pest detection, using default anchor box settings

would greatly affect the initial IoU value in the early training stage,

resulting in the inability to screen out the optimal prediction box.

Furthermore, the original IP102 data set was designed in the Visual

object class (VOC) data set style, so its anchor boxes had to be re-

clustered according to our data set. Moreover, the K-means++ clustering

algorithm can randomly generate custom clustering centers, which

ensures a discrete type of initial cluster center, better elevating the

effect of anchor box generation. Therefore, new anchor boxes for FSIP52

were generated, including (65,86), (78,148), (119,232), (144,142),

(179,339), (220,217), (292,326), (328,512), (601,698), and their re-

cluster anchor aspect ratios are [0.51,0.53,0.64,0.76,0.86,0.90,1.01]. Re-

clustering priori boxes helps speed up convergence.

We reported our experimental results with ResNet-50 after

computing the time consumption and training accuracy, although
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we point out that our model would perform better with other more

advanced and complicated backbone networks, for example, ResNet-

101 or ResNeXt. The loss curves for the base-class training stage and

the novel-class fine-tuning stage are shown in Figure 6.

Our proposed network was trained in a class-specific and end-to-

end fashion, and the original input image resolution varied from

640×480 to 3680×2456. We utilized a multi-scale training scheme to

resize the input images to x ϵ {660×440,708×472,756×504,804×

536,852×568,900×600,1000×667}. Then, the training images were

resized to the same aspect ratio as the original input images, and

their width and height were determined by the shorter side of the

images. We trained our model for 100 epochs using the same default

settings for Detectron2 in both the base-class training stage and the

novel-class fine-tuning stage to ensure total complete convergence for

fair comparison. An early-stopping mechanism was set to capture the

best checkpoint with every 5,000 iterations, and the Dropout (Hinton

et al., 2012), SoftPool (Stergiou et al., 2021), and DropBlock (Ghiasi

et al., 2018) techniques were also introduced in the pre-training, base-

class training, and fine-tuning stages.

In the base-class training stage, the learning rate was set to 0.001

with 100 epochs and a batch size of eight. The fraction between

positive and negative samples was 0.5 and was kept the same in both

the training and testing sets in both stages. Weight-shared ResNet-50

was pretrained on the FSOD data set to extract features from the

support and query images, and its output features were the set {res2,

res3,res4,res5}. Deformable convolution was applied in the feature-

extraction and FPN stages, and the non-maximum suppression

threshold in RPN was set to 0.7. The smooth L1 beta was 1/9, the

IoU threshold in Region of Interest (ROI) head was set to 0.3, the
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weight decay applied to the parameters of the normalization layers

was 1×10-5, the momentum was set to 0.937, the warm-up iterations

were set to 2 epochs, the default support ways for contrastive learning

branch were 2, and the ResNet-50 backbone network was frozen at

res3. We decoupled the fully connected layers concerning both the

cross-correlation matrix and the hierarchical matrix with the original

Faster-RNN classifier layer. We applied Kaiming normal weight

initialization (He et al., 2015) to all convolutional and fully

connected layers and inputted the concatenation of the support and

query features. MISO FPN outputted the res4 feature for further

processing, and group normalization was enabled in FPN. FPN and

RPN were jointly optimized in both stages.

In the novel-class fine-tuning stage, the learning rate was set to

0.001 with 100 epochs and a batch size of 12. Most pretrained model

parameters or layers were frozen, while only the last few layers’

parameters were updated during the novel-class training.
6.2 Comparison experiments and discussion

Research on few-shot object detection has emerged in the past 2

years, and we decided to compare our method with several typical

few-shot object detection networks, namely, those by Fan et al. (2020);

Sun et al. (2021); Wu et al. (2020) and Wang et al. (2020b). All

comparison experiments were conducted on the MMFewShot

framework produced by Open MMLab and the Detectron2

framework produced by Facebook, using exactly the same

experimental settings. Our model outperformed most state-of-the-

art (SOTA) methods without much extra calculation.
FIGURE 5

FSIP52 data set distribution is presented in ascending order according to the sample numbers. The horizontal axis represents the category ID of FSIP52
and the vertical axis represents the number of instances. Pest samples are difficult to collect due to geography, season, frequency, and pest mobility.
TABLE 1 Detailed FSIP52 data set split experimental settings.

FSIP52 Novel split 1 Novel split 2 Novel split 3 Novel split 4

Category ID 0–12 13–25 26–38 39–51

Base class Training 1,556 1,529 1,564 1,588

Novel class fine-tuning 362 389 354 330
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Before fully analyzing and discussing the results of the experiments, it

must be pointed out again that our custom data sets were all taken from

real natural scenarios that have been strictly selected by the Yun Fei

Company, Anhui Academy of Agricultural Sciences, and the Hefei Plant

Protection Station pest experts, making the samples rather representative

and complex. Note that insects are nonrigid bodies, and their tentacles

can easily expand the bounding box unnecessarily and cause a reduction

in the signal-to-noise ratio, which then leads to quite large bounding

boxes. On the other hand, due to the migratory nature of some pests,

close-up photography is not possible, so certain tiny pests add difficulty

to the current few-shot pest detection in the wild.

In Table 2, our model achieves the best results on the FSIP52 data set

based on a few-shot protocols of 13-way 10 shots on novel splits 1, 3, and 4

and is ahead of SOTA methods by 4%, 2.8%, and 2.2% on mAP,

respectively. In Table 3, it is ahead of SOTA methods by 5.9%, 2.8%,

and 0.6% on AP50, respectively. In Table 4, our model outperforms SOTA

on novel splits 1, 2, and 3 by 7%, 10.9%, and 7.8% on mAR, respectively.

The reason for this is that our model was especially designed for pest in

wild settings. We availed of multi-task learning to design a logically
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interpretable prior knowledge learning task, and import the knowledge

gained by human experts in the process of pest identification as supervision

information to guide the network to achieve better detection performance

in the case of extremely limited novel class samples. The use of cosine

classifier and contrastive loss coverages very slowly in the set number of

iterations by Sun et al. (2021) may not suitable for pest detection, and its

coefficients are too many to be fine-tuned.

Nonetheless, note that our model trails that of Wu et al. (2020) by

5.3% and 11.4% on mAP on Novel split 2. A comparison of each

category in Novel split 2 shows that the model of Wu et al. (2020)

leads our model in categories 13, 14, 18, 19, 21, and 22 by 20.6%, 6.7%,

1.5%, 10.3%, 13.6%, and 29.7%, respectively. Yet the mAR of our

model prevails over that of Wu et Al. by 13.5%. We attribute this to

the presence of extra-large and tiny targets in these categories; the

predominance of frontal and abdominal photographs of the pests,

which does not capture the most recognisable parts of the pests; and

the fact that our model does not have a re-weighted strategy for these

multi-scale positive samples through especially designed

reinforcement block. Although we slightly underperformed
TABLE 2 FSIP52 novel classes’ mean average precision (mAP) in 13-way 10-shot settings.

Reference Novel split 1 Novel split 2 Novel split 3 Novel split 4

Wu et al. (2020) 6.7 22.3 9.9 10.4

Fan et al. (2020) 12.5 15.4 16.1 11.2

Wang et al. (2020b) 11.6 12.0 12.5 11.7

Sun et al. (2021) 7.2 9.7 9.8 5.3

Ours 16.5 17.0 18.9 13.9
Bold values are to highlight which models achieved the highest accuracy in the different data set splits, in order to provide strong evidence of the advantages of a particular method.
TABLE 3 FSIP52 novel classes’ AP50 in 13-way 10-shot settings.

Reference Novel split 1 Novel split 2 Novel split 3 Novel split 4

Wu et al. (2020) 17.4 44.3 23.9 19.7

Fan et al. (2020) 20.3 25.0 27.4 20.0

Wang et al. (2020b) 24.6 29.4 30.0 22.7

Sun et al. (2021) 16.8 21.7 22.2 13.3

Ours 30.5 32.9 35.9 23.3
Bold values are to highlight which models achieved the highest accuracy in the different data set splits, in order to provide strong evidence of the advantages of a particular method.
A B

FIGURE 6

(A) shows the loss curves of the novel split 3 in the base-class training stage. (B) shows the same in the novel-class fine-tuning stage. The horizontal axis
represents the number of iterations, and the vertical axis represents the loss value.
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compared to Fan et al. by 1.4% in the Novel split 4 mAR comparison,

we achieved comparable performance to SOTA in preventing missed

detections and were 2.7% and 3.3% ahead of that of Fan et al. in mAP

and AP50, respectively, which are often more important in practice

than mAP and AP50. Finally, despite the fact that our performance

improved compared with the SOTAmethods mentioned, we still have

a long way to go to be qualified for real-world agricultural

production missions.
7 Conclusion

In this paper, a few-shot insect pest detection network is introduced

to detect rarely collected pest species. Its novelty lies in combining the

hierarchical semantic relationship between superclasses and subclasses

according to insect taxonomy, guiding our model to better learn novel

concepts through causal intervention, especially when the novel class

samples are extremely limited. A new hierarchical data set FSIP52 for

few-shot pest detection in natural settings is built based on insect

taxonomy. It is emphasized that the presented few-shot pest detection

network achieves comparable performance to several representative

few-shot detection algorithms in FSIP52 data set through incorporating

pest ontology relation module designed specifically for hierarchical

structure matching in the proposed framework, and we point out that it

could be extended to other similar practical scenarios with hierarchical

structures. Last but not the least, apart from the developed fine-tuning-

based object detection algorithms, there are other branches of few-shot

learningmethods (e.g., cross-domain andmeta-learning) that are still at

a relatively preliminary stage and are quite worthy of follow-up

research. The present work highlights a new entry in the field of few-

shot pest detection.
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Sun et al. (2021) 37.3 37.9 40.5 37.3

Ours 64.6 65.9 64.6 55.9
Bold values are to highlight which models achieved the highest accuracy in the different data set splits, in order to provide strong evidence of the advantages of a particular method.
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