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Editorial on the Research Topic

Microbiome and microbial informatics

The advancement of genome sequencing technologies and metagenomic analysis has

allowed researchers to study microorganisms, as well as their functions and microbial-

based interactions in natural and industrial environments. Nevertheless, the large

amounts of information resulting from these studies must be stored, structured, indexed,

analyzed, and correlated with existing experimental data. The requirement has led to the

exploitation of bioinformatics solutions at the cross-over point of information science

and microbiology.

In this context, we are pleased to note that theMicrobiome andMicrobial Informatics

Research Topic has drawn the contributions of lots of well-respected researchers in the

field all over the world, including those from China, India, Germany, the Netherlands,

Saudi Arabia and Australia. We received 28 submissions, 17 of which were accepted

for publication after peer review. These publications focused on new insights, novel

developments, current challenges, and future perspectives in the field of microbiome and

microbial informatics. We sincerely thank all researchers who have agreed to contribute

to our Research Topic.

Profiting from the current rapid progress of artificial intelligence techniques, the

aggregation of statistical analysis methodologies and predictions for large-scale data has

evolved for a variety of fields associated with data science. Jiang et al. summarized the

application and advancement on machine learning and deep learning in microbiology.

They illustrated and contrasted the benefits and drawbacks of distinct algorithmic

tools in four dimensions: microbiome and taxonomy, microbial ecology, pathogen

and epidemiology, and drug discovery, demonstrating the development prospects of

computational microbiology from the perspective of machine learning. As an example,

by combining data augmentation techniques, López et al. utilized machine learning

methods to investigate the predictability of smoking habits from class imbalanced saliva
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microbiome data to account for class imbalance. In doing

so, they successfully addressed the class imbalance problem

in microbiome data, resulting in a reliable prediction of

smoking habits.

The rapid development of high-throughput, culture-

independent analytical techniques has brought a wealth

of experimental data that have significantly facilitated the

human microbiome study. To study the explicit microbial

variance in the human face, Wei et al. reassessed data from 822

shotgun-metagenomic sequencing of Han Chinese individuals

in conjunction with 97 North American samples from the NIH

Human Microbiome Project (HMP). This study explores the

fine-scale facial location-related variations of skin microbiomes

to provide an in-depth understanding of ecological processes

that underlie facial microbial changes. Wang et al. analyzed

404 datasets from human oral saliva samples and made

comparisons with other human part samples to reveal the

diversity and biogeography of human oral saliva microbial

communities. Using high-throughput sequencing of 16S rRNA

V3-V4 hypervariable regions, Huang, Deng et al. assessed the

fecal microbiota profiles of healthy individuals from three

representative Han populations in Guangdong Province,

China. On the basis of genus-level OTU abundance, the

random forest prediction model indicated that there may be

potential to distinguish individuals according to their fecal

microbial community. Li et al. analyzed the evolution of the

gut microbiome in Tibetan populations in the Minjiang River

Basin. This study demonstrates that altitude of habitation is a

vital factor influencing the enterotype of the Tibetan population

microbiome. Sindi et al. concluded that short-term maternal

dietary interventions during lactation could significantly alter

the functional potential of the gut microbiome of breastfed

infants. Another study by Peng et al. showed that esterases from

Bifidobacteria undertake albiflorin conversion in the gut and

play an important role in the metabolism of natural compounds

including ester bonds. Bifidobacteria-mediated metabolism

of ester bonds has the potential to facilitate the exploitation

of novel enzymes and probiotic adjuvant compounds for

therapeutic use.

The development of omics technologies has greatly

increased our understanding of the interaction between

microbes and agricultural animals and plants. Na et al. evaluated

the effects of adding six common commercial lactic acid

bacterial additives in the microbial communities and condition

of fermentation of alfalfa silage. The study demonstrated

that lactic acid bacterial additives enhanced the quality of

fermentation and changed the microbial communities of

alfalfa silage. Zhang et al. investigated the reaction in fungal

subcommunities in a corn-wheat rotation plow land managed

by long-term conservation tillage. Their findings indicated

that the use of no-tillage and straw mulching practices

had a negative impact on the complicacy of plentiful and

medium fungal networks, but did not prominently affect rare

fungal networks. Their study informs our learning on the

reaction in fungal subcommunities to preservation tillage

management technologies, and provides a new view on how

fungal subcommunity assemble. Wen et al. reported the

discovery of a new NAD(P)-dependent alcohol dehydrogenase

from Gluconobacter frateurii NBRC 3264, which displayed great

potentiality for application in processes involving high-yield

bioconversion of D-allulose and could therefore be used for the

manufacturing production of D-allulose.

Molecular diagnostics are extensively applied in clinical

microbiology studies, such as routine detection and

epidemiological analysis of infectious microbes. Liao et al.

presented a concise multilocus sequence typing protocol for

Staphylococcus aureus and demonstrated the effectiveness of

portable sequencing technology for accurate, rapid, and routine

molecular typing.

Molecular taxonomy and environmental adaptation

have been deeply studied due to the increased genomic

information of some microbial species. For example, Du

et al. isolated a novel pathogenic bacterium, Haemobacillus

shengwangii, from a blood sample of a critically ill patient. They

classified H. shengwangii as a member of the Thermicanaceae

family, for which they report the first high-quality genome,

by utilizing single-molecule real-time sequencing and

next-generation sequencing technologies. Mahata et al.

combined morphological descriptions, phylogenetics and

single-nucleotide polymorphism analysis to characterize the

distribution and relative abundance of Aspergillus species from

Foeniculum vulgare. The integration of morphological features

with molecular systematics is regarded as an essential element of

taxonomic studies. Huang, Peng et al. isolated and identified 22

fungal strains from the Beibu Gulf coral using serial dilution and

internal transcribed spacer sequence analysis. The isolates were

further divided into three branches by phylogenetic analysis.

Their study provided eight fungal isolates with potential

activity against Vibrio species, and two alkaloid-type antibiotics

with anti-Vibrio effects were characterized from the bioactive

strain Fusarium equiseti BBG10. Liu et al. characterized the

diversity and function of laccase family genes in the fungus

Schizophyllum commune 20R-7-F01 genome, which was

isolated from deep sea sediment. Their findings contribute

to further our understanding of laccase genes in white-rot

fungi and pave the way for further exploring the relationship

between the laccase gene family and anaerobic degradation

of lignin by Schizophyllum commune. Yuan et al. conducted

comparative genomic and functional analyses of Paenibacillus

peoriae ZBSF16, a species with potential for biocontrol against

grapevine diseases. Their analysis provided insight into the

plant growth-promoting and biocontrol mechanisms of this

bacterium, identifying conserved genes involved in both

plant-growth promotion and antibiotic production.

Modern microbiology studies lead to increased adoption

of high-throughput techniques and big data methods to
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provide faster, unbiased and more reproducible results than

traditional studies with insufficient data or time-consuming

pure experimental techniques. We created this Research Topic

with the hope that the contributions submitted to it would prove

useful for a wide audience, but in particular to microbiologists,

computational biologists and bioinformaticians. We believe that

the high-quality contributions published within this Research

Topic, together with the diversity of microorganisms and

environments studied and the broad array of experimental and

computational techniques used, have amply achieved our goal.
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Ascomycetous fungi are found associated with a wide variety of substrates which range
from fresh water to marine ecosystems, tropical to temperate forest soils and deserts,
throughout the world over. These demystifying fungi exist as endophytes, pathogens
and saprobes. They have been studied due to their ability to contaminate foods and
feedstuffs, causing an elaboration of mycotoxins. The objectives of the study included
extensive analyses of the morphological features of fungi, especially Aspergilli, which
have been presented while studying them on specific mycological media. It is also an
elaborate compilation of substantive macro- and micro-morphological characterization
of different Aspergilli isolated from the spice Foeniculum vulgare used in India and other
countries in the world. Further, a first of its kind attempt has been made to study their
relative abundance and frequency of occurrence, molecular phylogeny and genetic
relatedness to characterize the Aspergilli into specific sections, groups and clades.
Single nucleotide polymorphism (SNP) analysis was carried out to evaluate the functional
consequences of nucleotide variations, synonymous and non-synonymous mutations
in the protein structure. The study resulted in a total of 3,506 Aspergillus isolates,
which were obtained from seventy (70) fennel samples, representing 14 Aspergillus
species. The two most frequently found species were A. niger and A. flavus with
a relative abundance of 32.24 and 11.63%, respectively. The taxonomy and current
placements have been reappraised with suggestions and prospects for future research
from six sections namely Terrei, Flavi, Fumigati, Nidulantes, Nigri, and Versicolores. In
addition, a total number of 27 isolates were studied and deposited at the National
Centre for Biotechnology Information (NCBI) and five Aspergillus species have been
identified and are being reported for the first time from the fennel seeds, based on
partial sequence analysis of the official fungal barcode namely, Internal Transcribed
Spacer (ITS) and a functional gene, beta tubulin gene locus, coupled with phenotypic
characterization. SNPs for specific DNA regions have been used to identify variants in
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Aspergilli obtained from Indian fennel seeds for the first time. The need for a polyphasic
approach of morphological identification and genetic characterization of Aspergilli from
Foeniculum vulgare is addressed and presented here in adequate detail. Our current
work makes extensive use of partial beta-tubulin gene sequences analyses to evaluate
the association between SNPs in five Aspergillus species sections.

Keywords: fungal genomics, Aspergillus, polyphasic, phylogenetic analysis, single nucleotide polymorphisms
(SNPs), single nucleotide variations (SNVs), non-synonymous and synonymous mutation

INTRODUCTION

Foeniculum vulgare Mill, commonly known as fennel in English
and saunf in Hindi, belongs to the Umbelliferae (Apiaceae)
family, is a flowering plant species, and is accredited by the
International Code of Botanical Nomenclature (ICBN) (Badgujar
et al., 2014). It is a perennial type of herb and is available in
many regions like the United States, Northern Europe, southern
Canada, Asia and Australia. This spice is flavorful, aromatic
with culinary and medicinal uses. Fennel seeds are considered
as a rich source of protein (2%), dietary fiber (10%), vitamin A
(4.5%), thiamin (1%), vitamin C (14%) and dietary minerals like
calcium (4%), iron (4%), magnesium (4%), and manganese (7%)
with essential fatty acids. They are known to possess properties
like antioxidant, antitumor, cryoprotective, hyper protective,
hyperglycemic, and estrogenic activities (Javidnia et al., 2003;
Samadi-Noshahr et al., 2021). It has a memory enhancing
effect and can reduce stress (Koppula and Kumar, 2013). More
importantly, F. vulgare has been used in the control of infectious
diseases of bacterial, viral, fungal, mycobacterial and protozoan
origin (Rather et al., 2016).

Statistics reveal that fennel production in India has doubled
(58,265 tons) ever since the year 2000–2001 (27,332 tons),
indicating the consumption trend in the sub-continent. Fennel
is not just produced and processed in India, but it also exported.
India exported around 23,562,460, and 20,295,380 million metric
tons in the years 2018 and 2020–2021, respectively (Anonymous,
2020). The Ministry of Food Processing has estimated a loss
of nearly 93 crores INR, due to harvest and post-harvest
losses of India’s agricultural products (Moloney, 2019), fennel
being one of them.

F. vulgare, like most cereals and grains can be infected by
range of mycoflora, some of which may significantly damage the
economic value of the crop. Aspergillus spp. infection and several
other genera have been of specific concern in the recent years,
because these fungal phytopathogens produce toxic metabolites
(mycotoxins) which represent significant contaminants of food
(Ahmad et al., 2014), feed (Streit et al., 2012), and agricultural
commodities, spices being one of them (Makhlouf et al., 2019).
The genus Aspergillus consists of a few over one hundred mold
species, ever since its first characterization nearly 300 years
ago. It is mitosporic and conidial group of fungi, where in
some species exhibit teleomorphic stages and hence are classified
under the division Ascomycota (Bennett, 2010). Apart from
their wide use in the industry for benefits (Casas López et al.,
2004), Aspergillus species are prolific producers of secondary
metabolites known as mycotoxins (Goto et al., 1996). Some

species of Aspergillus cause diseases in humans (Alshehri and
Palanisamy, 2020; Kashyap, 2020), animals and birds (Arné
et al., 2021). More than sixty Aspergillus sp. are pathogens
which pose a major health concern (Pal et al., 2014). Aspergilli
are the common contaminants of food and feedstuffs. Spices
(for example, fennel seeds) occupy a prominent role in the
day-to-day culinary preparations in India (Siruguri and Bhat,
2015) and are not free from being contaminated by a variety
of mycotoxins. Post-harvest contamination and spoilage during
storage deteriorates the nutritive value, make them unfit for
consumption because of the production and elaboration of
toxic secondary metabolites. The genus Aspergillus comprising
of A. flavus, Aspergillus section Nigri, A. oryzae, A. parasiticus,
A. terreus, and A. versicolor are frequent contaminants in
agricultural commodities like paddy, milled rice, peanuts, maize,
millets, and wheat. These Aspergilli produce several mycotoxins
at different relative humidities and storage periods, namely
aflatoxin B1, B2, G1, G2, ochratoxin A, and fumonisin B1 (Amadi
and Adeniyi, 2009). Aflatoxins are toxigenic, carcinogenic,
mutagenic, teratogenic, immunosuppressive, and are produced
by Aspergilli as by-products which can also contaminate crops
like peanut and cotton (Bhatnagar-Mathur et al., 2015; Soni et al.,
2020) in addition to spices. Of the multitude of mycotoxins
produced by Aspergillus species, aflatoxins B1 (Nurtjahja et al.,
2019), fumonisin B2 (Han et al., 2017), and ochratoxin A
(Magnoli et al., 2007), seem to be quite stable during storage
of seeds and spices. Despite extensive toxicological studies
with aflatoxins and other mycotoxins, the significance to
human health, in case of several mycotoxins remains unclear.
Synergistic interactions due to the co-occurrence of toxins is yet
to be established.

Aspergillus species have medical and commercial importance.
The genus Aspergillus has economic importance in different
aspects like fermentation industry and enzyme production
(Malathi and Chakraborty, 1991). Members of the genus produce
a wide range of secondary metabolites, including lovastatin,
a cholesterol-lowering drug, antitumor metabolites, etc. (Casas
López et al., 2004). Few members of the genus are also the source
of natural products which can be used to treat human diseases
(Hiort et al., 2004).

Challenges in Identification of
Aspergillus Species by Morphological
Characterization
Mycologists have traditionally used phenotypic characteristics
as a sole means for fungal identification. Classification of
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Aspergilli, which comprise highly speciose lineages, requires
techniques such as fungal barcoding for accurate species
identification. Aspergilli have been recognized since ancient
times by the formation of a common morphological structure
referred to as the “Aspergillum” which consists of an asexual
reproductive and distinctive entity, with a characteristic stalk-like
“conidiophore” bearing a bulbous vesicle, which in turn bears
the phialides and metulae, on which chains of microconidia are
arranged (Bennett, 2010) in basipetal succession. Morphological
identification of Aspergillus spp. by using macro-morphological
characters like colony diameter, color, obverse, and reverse
colony characters, etc., and microscopic features like conidial
heads, vesicles shape, length of vesicles, stipes, seriation, metula,
conidia color, size shape and ornamentations, asci, ascospore
size, shape, color, etc., would only help in the preliminary
assignment of generic names, leading to an inadequacy in
identification to assign species. The limitations posed by
morphological identification are many. These tests are extremely
time consuming, cumbersome, requiring skilled personnel and
expertise in carrying out the whole process. Hence, fungal
phylogeny which uses genetic and molecular tools, are being
used alongside the conventional techniques to address the gap of
misidentification (Raja et al., 2017).

To overcome this constraint, a set of adoptable standard
procedures like the use of nuclear ribosomal genes (ITS) most
commonly used in fungal identification, considered as the
official barcoding marker and methods used for construction
of phylogenetic tree, which facilitates species identification has
been carried out (Raja et al., 2017). The ITS and beta-tubulin
genes have not been systematically used in Aspergillus taxonomy
from F. vulgare till date, and have thus been appropriately
evaluated in this study. In addition, our purpose was to
examine protein-coding functional sequences as a major genetic
marker for assessing intraspecies diversity. Therefore, the beta-
tubulin gene is being considered in the current study since
researchers (Cleveland and Sullivan, 1985) have reported that
multiple tubulin genes are required in all but the simplest
eukaryotic organisms (Edgcomb et al., 2001), for the formation,
maintenance and preservation of the essential microtubules.
The beta-tubulin gene appears to occur as a single-copy (α1,
α2, β1, γ tubulins) in Aspergillus niger, single-copy (α1, γ

tubulins), two-copy (β1) or three-copy sequences (α2 tubulins)
in Aspergillus nidulans (Zhao et al., 2014). Among the various
genes with basic functionality of coding for proteins in all
eukaryotes (Mages et al., 1995; Schütze et al., 1999), the beta-
tubulin gene (Keeling et al., 2000; Ayliffe et al., 2001; Mukherjee
et al., 2003; Juuti et al., 2005), is also essential for sexual
development in A. nidulans (Kirk and Morris, 1991) and has
received enormous attention due to its highly conserved nature.
This is especially important while phylogenetic constructions
are undertaken with a broad range of organisms or for
a specific genus.

Single nucleotide polymorphisms (SNPs) are single-
nucleotide substitutions of one base for another and are definitely
the most prevalent set of genetic variety. There are two sorts
of techniques to examine SNPs: genomic and functional. SNPs
have a variety of consequences, for instance, drug resistance,

effects on mRNA splicing, nucleocytoplasmic export, etc. There
is no information available on SNPs in Aspergilli isolated
from spices. The current analysis has made efforts to identify
synonymous and non-synonymous mutations, to examine them
evolutionarily, and to reclassify Aspergilli into their respective
Sections for appropriate taxonomic identification.

With this background, the predominant objectives of this
study constituted, the elaborate and detailed macro- and
micro-morphological studies of Aspergillus species, molecular
characterization of Aspergillus isolates obtained from Foeniculum
vulgare samples using universal fungal bar-coding of the Internal
Transcribed Spacer (ITS) and a functional genetic marker
namely, beta–tubulin (β) gene sequences. This analysis was
also performed with the primary objective of molecular fungal
barcoding to substantiate our morphological analysis. Further,
phylogenetic and single nucleotide polymorphism analyses have
also been performed, for the first time from Aspergilli isolated
from Indian fennel seed samples.

MATERIALS AND METHODS

Collection of Samples
A total number of seventy (70) samples of the Indian spice
Foeniculum vulgare were collected from different retail markets
from several regions, namely New Delhi, Lucknow, Pinjore,
West Midnapore, and Puducherry from India. These samples
were from urban, semi-urban and rural zones from different
geographical regions of India. The samples were purchased
in portions of 100 g and stored in sterile polyethylene zip-
lock pouches. All samples were adequately labeled with suitable
codes. The pouches were then transported to the laboratory and
analyzed sequentially at the earliest. Representative spice samples
were stored at 4◦C for further analysis.

Macro-Morphological Cultural Studies of
Aspergilli
Standard methods of agar plating technique as described by the
International Seed Testing Association (ISTA) were chosen for
the mycofloral analyses of the Indian fennel samples. Briefly,
25 g of the spice samples was weighed, washed thrice with
distilled water and then rinsed with 1% sodium hypochlorite
(NaOCl) solution for one min to inactivate surface contaminants.
Subsequently, the seeds were rinsed in distilled water to remove
any adhering sodium hypochlorite. The seeds were briefly
allowed to stand for about 5–10 min after they had been placed
in sterile petriplates lined with sterile tissue paper and plated
using standard procedures. The petri plates containing the seeds
were incubated in upright position at 25–27◦C for 7 days.
The results were expressed as percentage of infection and the
frequency of occurrence was calculated (Reddy et al., 2009;
dos Santos-Ciscon et al., 2019).

Aspergillus isolates were obtained after plating Foeniculum
vulgare spice samples on mycological/fungi-specific media
namely fungal agar (FA) and potato dextrose agar (PDA) media
(HiMedia, Mumbai, India) by following standard agar plating
procedures (Xie et al., 2007; Hamzah et al., 2018). All media
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were prepared with the mandatory addition of a thermostable,
antibacterial antibiotic namely chloramphenicol (Sigma-Aldrich,
Steinhein, Germany) at the rate of 20 mg/1,000 mL of the fungi-
specific media proposed. Briefly, representative samples were
washed thrice with distilled water, dried for about 15 min and
then plated @ 25 seeds per petri plate (100 × 15 mm, S-line,
Borosil R©, Mumbai, India), using aseptic techniques. The plates
were then incubated at 25◦C± 2◦C for 5–7 days with alternating
periods of 12 h light and 12 h darkness. On the 7th day,
Aspergillus colonies (green, greenish yellow, ochre/yellow, black,
brownish-black, dark-brown, biscuit-brown, blue) were observed
and isolated from the spice samples onto PDA medium. Spore
suspensions of the Aspergilli were prepared and about 20 µL
was transferred onto fresh PDA media. Colonies arising from
single germinating spores were checked using Stereo Binocular
Microscope (Magnus MSZ-Bi, Model: 13M1009), chosen for
further studies and identified based on descriptions made in
Fungal keys and Manuals (Thom and Raper, 1945; Varga and
Samson, 2008) and Monographs (Refai et al., 2014).

Macro-Morphological Microscopic
Studies of Aspergilli
Stereo binocular microscopic observations were carried out to
detect presence of different species of Aspergilli and distinguish
them from other fungal genera like Alternaria, Curvularia,
Fusaria, Penicillia, Mucor, Mycelia sterilia, Trichothecium, etc.,
encountered during the analysis. Fungal flora were isolated from
the fennel samples on potato dextrose agar (PDA) and czapek dox
agar (CDA) media and identified using fungal manuals and keys
(Thom and Raper, 1945; Refai et al., 2014). While mycoflora were
being studied, emphasis was laid to the observation and isolation
of Aspergilli. Macromorphological studies were carried out on
aforesaid agar media. The isolates were inoculated either by
single point or three-point inoculation method in glass petriplates
(100 × 15 mm, S-line, Borosil R©, Mumbai, India). After 7 days of
incubation colony diameters, color, texture, sporulation pattern,
obverse and reverse colony colors/characters and presence or
absence ascomata (in older cultures incubated for 15–25 days)
were determined.

Micro-Morphological Microscopic
Studies of Aspergilli
The microscopic features of the isolated Aspergilli were
sequentially studied using Light Microscopy (Olympus CH20i),
Scanning Electron (SE; Hitachi, Model E-1010) and Differential
Interference Contrast (DIC) microscopic analysis. Prominence
was given to study characteristics like hyphal nature, septa,
conidiophores, vesicle shape, sterigmata arrangement, and
conidia formation. Standard protocols were followed while
studying the microscopic features as outlined in identification
Keys and Manuals (Thom and Raper, 1945; Varga and Samson,
2008). The light and scanning electron micrographs were
taken at the Fungal Genetics and Mycotoxicology Laboratory,
Department of Microbiology, Pondicherry University, while the
DIC microscopic images (Nikon Upright Motorised Microscope,
ECLIPSE Ni series, Nikon Corporation, Tokyo) were taken at the

Fungal Biotechnology Laboratory, Department of Biotechnology,
School of Life Sciences, Pondicherry University.

Preparation of Fungal Cultures for
Genomic DNA Isolation
As and when microscopic analyses were being performed pure
cultures of Aspergilli were inoculated onto PDA medium and
incubated at 28◦C for 7 days. Fungal mycelium from each
petriplate was scraped off the medium using disposable sterile
blades (Carbon steel Scalpel Blade No. 11, Olrada, India)
and transferred to sterile pestle and mortar. The mycelial
biomass (approximately close to 100 mg was collected) was used
for DNA isolation.

Isolation of Fungal Genomic DNA
DNA was isolated from fungal isolates grown on synthetic PDA
plates and DNA isolation was carried out using a Standard
Kit (Gene JET plant Genomic DNA Purification Kit- K0791,
Thermo Fisher Scientific, Vilnius, Lithuania). 100 mg of the
fungal mycelial biomass was transferred to a sterile pestle and
mortar. To this liquid nitrogen (200 mL) was carefully added
along the walls of the mortar and crushed adequately in clockwise
fashion for 5 min. The crushed mycelial biomass was immediately
transferred to a new, sterile microcentrifuge tube (1.5 mL;
Tarsons, Kolkata, India). Soon after, Lysis Buffer A (350 µL) and
Lysis Buffer B (50 µL) were added in succession. A tiny quantity
of RNase A (20 µL) was transferred to the microcentrifuge tubes
containing the lysis buffers and crushed mycelial biomass. The
specimen was then subjected to heat treatment for 10 min at
65◦C using a sterile water bath with occasional stirring. After the
heat treatment, the precipitation solution (130 µL) was added
as per manufacturer’s instructions. The microcentrifuge tubes
were adequately mixed and kept on frost for 5 min. The tubes
were then spun at ≥ 20,000 g (≥ 14,000 rpm) for 5 min. The
tubes were removed, the supernatant (precisely 450–550 µL)
was collected and transferred to a clean microcentrifuge tube,
and an equal volume of plant gDNA binding solution and 96%
ethanol (400 µL) was added and vigorously mixed. Thereafter,
600–700 µL of the prepared solution was transferred, isolate-
wise, to the new spin columns. The supernatant thus collected
was centrifuged at 6,000 g (∼8,000 rpm) for about a min.
Using the same column, the supernatant solution was removed
and the remaining mixture was centrifuged for 1 min. The
wash buffer I (500 µL) was added into the spin-columns and
centrifuged at 8,000 g (∼10,000 rpm) for 1 min, followed by
the addition of wash buffer II (500 µL) in the spin columns
again. This time the spin columns were centrifuged at high speed
of ≥ 20,000 g (≥ 14,000 rpm) for 3 min. The contents of the
collection tube within the spin columns were discarded, and the
column contents were transferred to fresh, new microcentrifuge
tubes. For genomic DNA elution, the elution buffer (30 µL) was
placed mid-point of the spin column layer, incubated at room
temperature for 5 min. The microcentrifuge tubes were spun at
a speed of 8,000 g (∼10,000 rpm) for 1 min. A second elution
step was carried out using the elution buffer (20 µL). The purified
DNA was stored at−20◦C for further use.
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Polymerase Chain Reaction of the
Internal Transcribed Spacer and
β-Tubulin Genes
A total number of 27 isolates were selected for a
phylogenetic analysis of the ITS and β-tubulin gene
using (Tam et al., 2014) as one of the references. Partial
amplification of the Internal Transcribed Spacer (ITS)
region and functional gene β-tubulin was performed using
the primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) for ITS
(Op De Beeck et al., 2014; Tam et al., 2014), bT2a (5′-
GGTAACCAAATCGGTGCTGCTTTC-3′) and bT2b (5′-
ACCCTCAGTGTAGTGACCCTTGGC-3′) for β-tubulin (Tam
et al., 2014) respectively. Polymerase Chain Reaction (PCR)
reactions were performed in a 25 µL volume, containing 12.5 µL
(Taq DNA Polymerase 2x Master Mix RED, Ampliqon PCR
Enzymes and Reagents, Stenhuggervej, Denmark), Forward
primer (10 pmoL) 2.0 µL, Reverse primer (10 pmoL) 2.0 µL,
Template DNA X µL (genomic DNA: 10–500 ng), Molecular
biology grade water X µL (HiMedia R©, Mumbai, India) for ITS
gene, 12.5 µL (Taq DNA Polymerase 2x Master Mix RED,
Ampliqon PCR Enzymes and Reagents), Forward primer (10
µM) 1.0 µL, Reverse primer (10 µM) 1.0 µL, Template DNA X
µL (genomic DNA: 10–500 ng), Molecular biology grade water X
µL (HiMedia R©, Mumbai, India) for β-tubulin gene amplification.
The cycling protocol consisted of an initial denaturation step of
94◦C for 1 min 30 s, 32 cycles of denaturation at 95◦C for 35 s,
annealing for 55 s at 55◦C for ITS and an initial denaturation
step of 95◦C for 3 min, 32 cycles of denaturation at 94◦C for 30 s,
annealing for 45 s at 65.5◦C for β-tubulin and extension at 72◦C
for 1 min followed by a final extension of 10 min for ITS and
13 min for β-tubulin at 72◦C. PCR products were sent to (Biokart
India Pvt. Ltd., Bangalore, India) for purification and sequencing.

Phylogenetic Analyses
A consensus sequence for each locus of ITS and partial
β-tubulin gene was generated using the forward and reverse
sequence with CAP3 programme1 (Huang and Madan, 1999).
Newly generated sequences have been deposited in GenBank2

(Table 1). A similarity search was performed for the newly
generated sequences using BLASTn of the National Centre for
Biotechnology Information.3 The homologous sequences for each
isolate belonging to the corresponding species were retrieved
from the GenBank database. The retrieved sequences were
aligned using MAFTT v 74 (Katoh and Standley, 2013) with
default parameters and alignments were edited with BioEdit
v7.2.5.0 (Hall, 1999) and were manually adjusted as and when
required. The low-quality bases at the start and end positions of
the sequences were removed.

The retrieved homologous sequences for each genetic
marker were aligned separately with ClustalX2 v2.1

1http://doua.prabi.fr/software/cap3
2https://www.ncbi.nlm.nih.gov/genbank/
3https://blast.ncbi.nlm.nih.gov/Blast.cgi
4https://mafft.cbrc.jp/alignment/server/

(Thompson et al., 1997) using default parameters. Phylogenetic
analyses of individual loci were performed by maximum
parsimony (MP) method using PAUP v 4.0 beta win (Swofford
and Sullivan, 2003) (heuristic search option with 1,000 random
taxon additions and tree bisection and reconnection (TBR) as
the branch swapping algorithm). The efficacy and the robustness

TABLE 1 | Section-wise details of Aspergillus isolates used in the current study,
GenBank accession numbers of ITS and β-tubulin gene sequences.

Sl. No.FGM lab
isolate
code

Section Anamorph/
Teleomorph

Accession
number (ITS)

Accession
number

(β-tubulin)

1 51 Terrei Aspergillus
aureoterreus

− MN791093

2 18 Aspergillus
aureoterreus*

− MN791096

3 1 Aspergillus
aureoterreus

− MN791109

4 16 Aspergillus terreus* MN392907 MN791095

5 52 Aspergillus terreus MN264636 −

6 61 Flavi Aspergillus flavus* − MN791106

7 22 Aspergillus tamarii* MN326529 MN791098

8 75 Aspergillus tamarii MN317364 MN791108

9 S44 Aspergillus tamarii − MN791115

10 63 Aspergillus tamarii MN263247 −

11 24 Fumigati Aspergillus
fumigatus

− MN791099

12 37 Aspergillus
fumigatus

MN317367 MN791100

13 31 Aspergillus
fumigatus*

MN264637 MN791103

14 17 Nidulantes Aspergillus
nidulans

− MN791097

15 45 Aspergillus
nidulans*

MN309877 MN791101

16 9 Aspergillus nidulans − MN791102

17 71 Aspergillus nidulans MN317365 MN791107

18 2 Aspergillus
nidulans/Emericella

nidulans

− MN791116

19 49 Aspergillus
quadrilineatus/

Emericella
quadrilineata

− MN791104

20 58 Aspergillus
quadrilineatus*/

Emericella
quadrilineata

− MN791105

21 4 Aspergillus latus* − MN791110

22 11 Aspergillus latus − MN791111

23 12 Aspergillus latus − MN791112

24 S8 Nigri Aspergillus
awamori

− MN791113

25 S24 Aspergillus
awamori*

− MN791114

26 83 Versicolores Aspergillus sydowii* MN298848 −

27 29 Unassigned Aspergillus species MN294688 −

*Isolates subjected to macro- and micro-morphological analyses.
ITS, Internal Transcribed Spacer gene; FGM Laboratory, Fungal Genetics and
Mycotoxicology Laboratory; All fungal isolates were isolated, cultured and studied
by Pranab Kumar Mahata and Regina Sharmila Dass.
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of the parsimonious trees were evaluated with 1,000 bootstrap
replications (Hillis and Bull, 1993). Further, the maximum
likelihood (ML) method was used for the analysis of individual
loci via the CIPRES Science Gateway.5 Analysis was carried
out using RAxML v. 7.4.2 (Stamatakis et al., 2012). A general
time-reversible model (GTR) was applied, including estimation
of invariable sites and a discrete gamma distribution with four
rate classes (GTRG+ I). The reproducibility of the branches was
evaluated by bootstrap analysis with 1,000 replicates.

The trees that were being generated were envisaged with
FigTree v1.4.0 (Rambaut and Drummond, 2009). Bootstrap (bs)
percentages of analysis were labeled at the nodes. Values less
than 70% bs were removed. Branches with values 95% and above
bs were thickened.

Single Nucleotide Polymorphisms
Each of the sequences of the fungal isolates listed in Table 1
were aligned with the reference genomes of respective species
that are available on the NCBI using BLAST algorithm. Variants
observed in these sequences were fetched manually and the
corresponding variants on the protein sequences were annotated
manually from the protein annotations of β-tubulin genes of the
respective species.

Statistical Analysis
To learn more about the Aspergillus fungal isolates, we employed
descriptive statistics on the data. The statistical studies were
carried out using Origin 8.6 (Northampton, United States).

RESULTS

Relative Abundance in Foeniculum
vulgare
As shown in Figure 1 among all the isolates collected from
F. vulgare (n = 70), we were able to identify fourteen (14) different
species of the Aspergillus. Aspergillus niger (32.24%) ranked first,
followed by A. flavus (11.63%), A. terreus (2.6%), A. nidulans
(1.65%), A. tamarii (0.97%), A. species (0.96%), Emericella
quadrilineata (0.45%), A. fumigatus (0.43%), A. latus (0.4%),
A. aureoterreus (0.37%), A. awamori (0.37%), A. brasiliensis
(0.29%), A. ochraceous (0.06%), and A. sydowii (0.03%).

Aspergillus Diversity
The cultivation of fungi from seventy (70) fennel samples yielded
a total of 3,506 Aspergillus isolates. Apart from Aspergilli, genera
like Alternaria species, Curvularia species, Drechslera species,
Fusarium species, Mucor species, Mycelia sterilia, Neurospora
crassa, Penicillium species, Trichothecium species and Yeasts were
also isolated based purely on morphological and microscopical
analyses. The detailed cultural morphology and microscopic
analyses of the Aspergilli has been carried out and has been
presented with descriptions (Figures 2–5). A. niger (Relative
abundance: 32.24%) followed by A. flavus (Relative abundance:

5https://www.phylo.org

11.63%) were found to be the two most frequently occurring
species. The fourteen (14) Aspergillus species were isolated from
Indian fennel seeds, collected from different geographical zones
of India, and studied in detail using morphological and genetic
methods for molecular phylogeny. The Internal Transcribed
Spacer gene of the ribosomal DNA (rDNA-ITS) sequencing
identified 20 isolates under five Aspergillus Sections namely
Terrei, Versicolores, Flavi, Fumigati and Nidulantes (Sub-genus
II) and corresponding to the family Trichocomaceae. The isolates
included A. nidulans, A. quadrilineatus, A. miyajii, A. rugulosus,
A. terreus, A. tamarii, A. fumigatus, A. sydowii and Aspergillus
species (Section Unassigned). Isolates sequenced for β-tubulin
gene sequences revealed the identity of 23 Aspergilli with species
namely A. nidulans, A. quadrilineatus, A. latus, A. terreus, A.
aureoterreus, A. flavus, A. tamarii, A. fumigatus and A. awamori
from five sections namely Nidulantes, Terrei, Flavi, Fumigati, and
Nigri (Sub-genus I) with no known teleomorphs. The Aspergilli
namely A. quadrilineatus, A. latus, A. aureoterreus, A. awamori
and Aspergillus species are being reported for the very first time
from fennel seeds. The details of the GenBank depositions are
also shown (Table 1).

Phylogenetic Analyses
The PCR products of the ITS (Amplicon size: 600-bp) and
β-tubulin (Amplicon size: 400-bp) genetic markers were analyzed
(Figures 6A,B). Based on sequence analysis of ITS 1, ITS
4 and β-tubulin genes, eleven (11) monophyletic groups of
Aspergilli have been well resolved into six Sections: Terrei,
Flavi, Fumigati, Nidulantes, Nigri and Versicolores. The ITS
marker, which is the most suitable, profoundly recommended
and widely accepted fungal barcode (Schoch et al., 2012)
served handy in the recognition, identification, and classification
of species in their respective clades. Both ITS regions and
β-tubulin gene phylogenetic trees are depicted in the phylograms.
Data creation and post-sequencing of Aspergillus genes were
examined, with results showing that the β-tubulin-based
phylogenetic trees had a greater level of precision than those
generated by the ITS regions. Analysis of β-tubulin-based
phylogenetic trees for our isolates namely Aspergillus aureoterreus
(Figure 7), Emericella quadrilineata (Figure 8), Aspergillus
latus (Figure 9), and Aspergillus awamori (Figure 10) showed
higher resolution. In addition, ITS-based phylogenetic trees for
Aspergillus terreus, Aspergillus nidulans, Aspergillus sydowii, and
Aspergillus sp., as well as β-tubulin-based phylogenetic trees for
isolates of Aspergillus flavus, Aspergillus tamarii, and Aspergillus
fumigatus, were created.

Isolates studied in the present analysis, namely, A.
aureoterreus FOEVPRB18 (Figure 7) was closely associated
with the type strain A. aureoterreus CMV010F6 (MK451161),
which has been deposited very recently at NCBI by researchers,
while conducting studies to update the taxonomical status of
Aspergillus species from South Africa (Visagie and Houbraken,
2020). The type strain A. terreus CVS503 65 (EU147717), was
the most closely related species with our isolate (Figure 7),
known to be a notorious fungus, playing a key role in human
opportunistic pathogenesis, unpublished (Balajee et al., 2009).
While A. aureoterreus CMV010F6 displayed 99.37% identity
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FIGURE 1 | An assessment of the relative abundances of several Aspergillus species in the F. vulgare samples.

with our isolate A. aureoterreus FOEVPRB18, A. terreus CVS503
65 showed 96.32% identity.

Similarly, the clades A. flavus and A. tamarii were placed
under the Flavi Section. A. flavus FOEVPRB61 occurred as
a separate taxon although it was closely related to previously
described clades of the same species (Figure 11). Partial ITS
and β-tubulin gene sequences were used to arrive at species
identity of the 27 Aspergillus isolates. Sequences from both the
genetic markers gave almost the same identification. However, a
doubtful analysis was experienced with Aspergillus isolate (ITS
Barcode: MN294688; Section Unassigned), in determining a
species name (Figure 12). Nevertheless, a detailed macro- and
micro-morphological analysis of the unassigned fungal isolate
is available. Although it emerged as a separate taxon during
phylogenetic analysis, it showed 100% bs value (ML method)
with Aspergillus sp. SS 30 1 studied by another research team
from India, Direct Submission, Genetics, Agharkar Research
Institute, Maharashtra, India (Chavan, 2020). This species was
studied with Penicillium species clone 1 4 TSS as an outgroup.
In most instances, our isolates were closely related to type strains
which have been previously studied and described by providing
appreciable support values.

In the Section Fumigati our isolate namely A. fumigatus
FOEVPRB31 (Figure 13) was found to be a close relative of
A. fumigatus 3, Direct Submission, Department of Dermatology,

Nanjing University, China (Chen et al., 2018) and A. fumigatus
CMXY2075, Direct Submission, Ecology of Clinical Fungi,
Fungal Biodiversity Institute, Netherlands (Chen and Xu, 2018).

A. nidulans, A. quadrilineatus and A. latus were conveniently
assigned in their clades under the Nidulantes Section. A. nidulans
is phenotypically very similar to A. quadrilineatus except for
differences in ascospore morphology (Chen et al., 2016). With
respect to their phylogeny too they were situated in closely
related clades, emerging from that of E. nidulans which is the
sexual morph of A. nidulans (Figure 14). The sexual stages
were appreciably documented in our isolate also, as realized
by micro-morphological analyses. However, the concept of
naming Aspergillus species with their sexual morphs is gradually
becoming obsolete, due to major decisions taken at the meeting
of the International Commission for Penicillium and Aspergillus
(ICPA) in 2012.6 A. quadrilineatus and A. latus, which shared
99.76% identity with the type strain Emericella quadrilineata IFM
42006 (AB248335.1) and 99.55% identity with the type strain
DTO 047 H2 (KU866810.1) respectively, were classified into well-
defined clades with A. quadrilineatus, which formed discrete
and conspicuous sexual stages and therefore is referred to as
Emericella quadrilineata (Teleomorph). This was also in support
of data generated through phylogenetic analysis of β-tubulin gene

6http://www.aspergilluspenicillium.org/
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FIGURE 2 | Photographs illustrating the macromorphology of strains of Aspergillus aureoterrus (A,B) (Acc. No. MN791096); Aspergillus terreus (C,D) (Acc. No.
MN791095); Aspergillus flavus (E,F) (Acc. No. MN791106); Aspergillus tamarii (G,H) (Acc. No. MN791098); Aspergillus fumigatus (I,J) (Acc. No. MN791103);
Aspergillus fumigatus (K,L) (Acc. No. MN791100); Aspergillus nidulans (M–P) (Acc. No. MN791101); Aspergillus quadrilineatus/Emericella quadrilineata (Q,R) (Acc.
No. MN791105); Aspergillus latus (S,T) (Acc. No. MN791110); Aspergillus awamori (U,V) (Acc. No. MN791114); Aspergillus sydowii (W,X) (Acc. No. MN298848),
and Aspergillus species (Y,Z) (Acc. No. MN294688) are shown. Images (O,P) of Aspergillus nidulans were incubated in CDA for 7 days, whereas all other isolates
were kept in PDA.
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FIGURE 3 | Compound Light Microscope (CLM) images of the hyphae, conidiophores, and Hülle cells, (A,B) hyphae and elongated conidiophores of
A. aureoterreus; (C,D) enlarged conidiophores of A. terreus; (E,F) stained and unstained conidiophores of A. flavus; (G) enlarged conidial head of A. tamarii; (H–J)
conidiophores with bottle-shaped vesicles, uniseriate sterigmata, and conidia of A. fumigatus; (K) enlarged conidiophores of A. nidulans; (L) conidiophores of
E. quadrilineata; (M) conidiophores of A. latus; (N,O) A. awamori conidiophores; (P,Q) A. sydowii conidiophores; (R,S) Aspergillus species conidiophores, and (T–V)
A. nidulans, E. quadrilineata, and A. latus Hülle cells, respectively.

(Figure 8) being closely related to Emericella quadrilineata IFM
42006 (AB248335.1) studied previously (Matsuzawa et al., 2006).
A. latus was found to emerge as a separate taxon (Figure 9)

from A. quadrilineatus DTO 048 A8, Direct Submission, CBS-
KNAW Fungal Biodiversity Centre (Chen et al., 2016) and
displayed 100% bs value with Emericella foveolata IFM 54285
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FIGURE 4 | Conidiophores, vesicles, metulae, phialides, conidia, and Hülle cells of the strains are shown in Scanning Electron Microscope (SEM) images.
(A) Conidiophores of A. aureoterreus; (B) conidiophores of A. terreus; (C,D) conidial head with chains of conidia of A. tamarii; (E) conidiophores of A. nidulans; (F)
conidiophores of A. latus; (G) globose conidial heads, with metulae, phialides, chains of conidia and smooth conidiophores in A. awamori; (H,I) mycelium and Hülle
cell development and Hülle cells of A. nidulans (J) Hülle cells formation in E. quadrilineata.

and E. foveolata IFM 42015 (Matsuzawa et al., 2006), which has
also been studied under the Section Nidulantes while discerning
evolutionary relatedness.

Aspergillus awamori S24 BD02 isolated from the fennel
samples diverged as a clade closely related to A. awamori Mal02,
Direct Submission, Department of Biotechnology, University of
Verona, Italy (Andreolli et al., 2018), which in turn were related
to A. niger studied collectively as black Aspergilli. Only one

isolate namely A. sydowii FOEV83 was studied under the Section
Versicolores. Studies inferred by phylogenetic analyses showed its
close relatedness to A. sydowii DUCC5715, Direct Submission,
Department of Microbiology, Dankook University, South Korea
(Ahn et al., 2020), and a 100% bs value with A. versicolor
M4 C4, Direct Submission, Postgraduate in Biological Sciences,
University of Nayarit, Mexico (Bobadilla-Carrillo et al., 2020).
This was especially true with cultural and morphological studies,
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FIGURE 5 | Conidiophores, conidia, asci, ascospores, cleistothecia, and Hülle
cells Differential Interference Contrast (DIC) images of Aspergilli (A) A.
aureoterreus smooth, long, colourless conidiophores and columnar, biseriate
conidial heads with hemispherical vesicles, metulae phialides, and conidia;
(B,C) A. tamarii conidiophores containing globose, radiating and rough
conidia, globose vesicles with uniseriate sterigmata; (D) A. nidulans
smooth-walled, sinuate conidiophores and columnar conidial heads with small

(Continued)

FIGURE 5 | hemispherical vesicles, metulae, phialides, and conidia; (E) E.
quadrilineata smooth, sinuate conidiophores and short, columnar conidial
heads with hemispherical vesicles, metulae, phialides, and conidia; (F) A. latus
smooth-walled, sinuate conidiophores and columnar conidial heads with small
hemispherical vesicles, metulae, phialides, and conidia; (G) A. sydowii
smooth, sinuous conidiophores and hemispherical conidial heads with
globose to elliptical vesicles, metulae, phialides, and conidia; (H,I) Aspergillus
species conidiophores with rough, pitted surfaces, globose conidial heads
with globose, thinner vesicles, metulae, phialides, and conidia; (J–L) globose
conidia of A. nidulans, E. quadrilineata, and A. latus, respectively; (M,N) asci
of A. nidulans and A. latus; (O) lenticular ascospores of A. latus; (P) lenticular,
smooth walled (unstained) ascospores of E. quadrilineata; (Q,R) Hülle cells of
A. nidulans; (S–U) ruptured cleistothecium and Hülle cells of E. quadrilineata,
and (V) in A. latus, ruptured cleistothecium showing asci, surrounded by Hülle
cells, (W,X) Hülle cells separated from A. latus.

where A. sydowii FOEV83 appeared very similar to A. versicolor
by the characteristic pigmentation.

Single Nucleotide Polymorphisms
In order to study the variants in the β-tubulin genes, the
sequences obtained from Sanger sequencing were aligned to
the reference genome sequences of respective species. The
alignment was carried out using BLASTn algorithm. The variants
such as single nucleotide variants, substitutions, insertions, and
deletions were identified manually. Based on the regions of
coding sequence (CDS) of β-tubulin gene provided at the
protein feature annotations, the effect of these mutations at
protein level were manually evaluated. The site of variations
at the genome and protein level are tabulated (Table 2). Once
these sequences for each species had been aligned, we observed
that they all share a high degree of identity and displayed
few variants with the exceptions of MN791095, MN791096,
MN791109, and MN791093 sequences. We found that five
species MN791107: A. nidulans 4, MN791105: E. quadrilineata 2,
MN791112: A. latus 3, MN791108: A. tamarii 2, and MN791099:
A. fumigatus 1 did not exhibit variations with regard to the
reference genome in their respective sections. Hence, these
five species have been excluded (Table 2). Our SNP analysis
showed a high number of intronic variances and protein
coding synonymous variants (changes without coding sequences)
that result in synonymous mutations. On the contrary, four
non-synonymous (substituting amino acids with new ones)
variants were identified- MN791102: A. nidulans 3, MN791116:
E. nidulans 5, MN791104: E. quadrilineata 1, and MN791110:
A. latus 1, all contain single nucleotide variations (SNVs)
that alter protein sequences whose functional consequences has
not been studied.

The SNP profiling analyses revealed five mis-sense mutations
in the CDS (coding DNA sequence) regions of beta-tubulin gene
in four Aspergillus isolates. Histidine was replaced by tyrosine at
the 105th position in A. nidulans MN791102, leucine to proline
and threonine to serine at positions 30 and 107, respectively, in
E. nidulans MN791116. In E. quadrilineata MN791104 leucine
was replaced to proline at the 10th position. Furthermore,
analysis of A. latus MN791110 indicated that the amino acid
asparagine was substituted with isoleucine at the 87th position.
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FIGURE 6 | (A) The electrophoretogram shows the positive PCR amplification of Aspergillus ITS genes with species-specific amplicons. Here, L, 100-bp MBT049
HIMEDIA DNA ladder; C, PCR with a negative control; 1, 49-Aspergillus nidulans; 2, 58-Aspergillus nidulans; 3, 63-Aspergillus tamarii; 4, 31-Aspergillus fumigatus;
5, 37-Aspergillus fumigatus; 6, 45-Aspergillus nidulans; 7, 51-Aspergillus terreus; 8, 52-Aspergillus terreus; 9, 71-Aspergillus nidulans; 10, 75-Aspergillus tamarii; 11,
83-Aspergillus sydowii; 12, 17-Aspergillus miyajii; 13, 16-Aspergillus terreus; 14, 22-Aspergillus tamarii; 15, 29-Aspergillus sp.; 16, 4-Aspergillus quadrilineatus; 17,
2-Aspergillus rugulosus; 18, 1-Aspergillus terreus; 19, 11-Aspergillus nidulans; 20, 12-Aspergillus nidulans. (B) The electrophoretogram shows the positive PCR
amplification of Aspergillus β-tubulin genes with species-specific amplicons. Here, L, 100-bp MBT049 HIMEDIA DNA ladder; C, PCR with a negative control; 1,
49-Emericella quadrilineata; 2, 58-Emericella quadrilineata; 3, 61-Aspergillus flavus; 4, 31-Aspergillus fumigatus; 5, 37-Aspergillus fumigatus; 6, 45-Aspergillus
nidulans; 7, 51-Aspergillus aureoterreus; 8, 71-Aspergillus nidulans; 9, 75-Aspergillus tamarii; 10, 18-Aspergillus aureoterreus; 11, 17-Aspergillus nidulans; 12,
16-Aspergillus terreus; 13, 9-Aspergillus nidulans; 14, 24-Aspergillus fumigatus; 15, 22- Aspergillus tamarii; 16, 4-Aspergillus latus; 17, 2-Emericella nidulans; 18,
1-Aspergillus aureoterreus; 19, 11- Aspergillus latus; 20, 12-Aspergillus latus; 21, S8-Aspergillus awamori; 22, S24-Aspergillus awamori; 23, S44-Aspergillus tamarii.

DISCUSSION

Spices occupy a very prominent role in the culinary preparations
in India (Siruguri and Bhat, 2015). Based on the limited
information and scientific evidence available through
literature, fennel continues to be the most widely used herb
in traditional medicine. F. vulgare is known to exhibit an array
of pharmacological properties such as antimicrobial, antiviral,
anti-inflammatory, anti-mutagenic, antipyretic, anti-spasmodic,
anti-thrombotic, apoptotic, cardiovascular, chemomodulatory,
anti-tumor, hepatoprotective, and hypoglycemic. Also, they’ve
been linked to memory enhancement (Badgujar et al., 2014),
which implies that they could be useful in the field of
pharmaceutical biology for the development of new drugs
to treat a wide range of ailments.

The use of spices in food has been practiced since time
immemorial. Black pepper, cardamom, clove, coriander, cumin,
ginger and other spices have been explored for their intrinsic
antibacterial effects when used in foods, in addition to the flavors
and aromas that they produce. In spite of the antibacterial
compounds that they harbor, they are vulnerable to mycological
deterioration, constantly being colonized by mycoflora like the
Aspergilli, Penicillia, and Fusaria during pre- and post-harvest
operations at the field.

Accurate identification of Aspergillus isolates up to the
species level has become ecologically, epidemiologically, and
pathologically significant because of the extensive damage that
they cause in food crops (Battilani et al., 2016; Alshannaq and
Yu, 2017), feed crops (Ráduly et al., 2020), and spices (Ali

et al., 2015; Ssepuuya et al., 2018). Specific studies focused on
mycological analyses have been conducted by research groups
on spices like cumin, clove, black pepper, ginger, cardamom,
coriander and cinnamon with dominancy of Aspergillus flavus
and A. niger, with cumin being the most contaminated sample
(Elshafie et al., 2002). Notable contamination by A. flavus,
A. fumigatus, A. alutaceus, A. niger, and A. sulphureus has been
observed in yet another study conducted using aniseed, rosemary
and spice products (Ahene et al., 2011). Another research
group (Hammami et al., 2014) examined fourteen distinct
spice samples and reported the highest fungal contamination
by Aspergillus flavus, A. nomius, and A. niger. The studies
conducted using fennel seeds from India (Kulshrestha et al., 2014)
have been sparse, with reports on Aspergillus contamination
being investigated from fennel seeds, cumin and coriander
seeds which are extensively used in culinary preparations in
India. Two other research studies (Azzoune et al., 2015; Garcia
et al., 2018) have been conducted in order to evaluate the
mycotoxigenic potential of select Aspergilli, from nearly about
two hundred spice samples of rosemary, fennel, cinnamon,
clove, pepperoni, black and white pepper and oregano. Our
study is the first of its kind to reveal a significant degree
of Aspergillus contamination in the Indian subcontinent, with
A. niger being the most frequently isolated species, followed by
Mycelia sterilia, A. flavus, Mucor species, Penicillium species, and
Yeasts, among others.

The Aspergilli are an all-pervasive and species substantial
genus, containing more than three hundred thread-like filiform
fungi (Anonymous, 2021). By far, the majority of Aspergilli
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FIGURE 7 | A phylogenetic tree (taxon branching diagram) presents the genetic analysis of the Aspergillus aureoterreus FOEVPRB18 clade belonging to the Section
Terrei, exhibiting a maximum parsimony analysis of partial β-tubulin concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at the nodes for
maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was mentioned as a suffix
to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which is marked in purple,
was rooted using Rhizopus oryzae FSU757.
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FIGURE 8 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Emericella quadrilineata FOEVPRB58 clade belonging to the
Section Nidulantes, exhibiting a maximum parsimony analysis of partial β-tubulin concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at
the nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was
mentioned as a suffix to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which
is marked in purple, was rooted using Trichothecium roseum LCP 47 624.
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FIGURE 9 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Aspergillus latus FOEVPRB4 clade belonging to the Section
Nidulantes, exhibiting a maximum parsimony analysis of partial β-tubulin concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at the
nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was mentioned
as a suffix to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which is marked in
purple, was rooted using Rhizopus oryzae FSU757.
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FIGURE 10 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Aspergillus awamori S 24 B D02 clade belonging to the
Section Nigri, exhibiting a maximum parsimony analysis of partial β-tubulin concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at the
nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was mentioned
as a suffix to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which is marked in
purple, was rooted using Trichothecium roseum LCP 47 624.
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FIGURE 11 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Aspergillus flavus FOEVPRB61 clade belonging to the Section
Flavi, exhibiting a maximum parsimony analysis of partial β-tubulin concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at the nodes for
maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was mentioned as a suffix
to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which is marked in purple,
was rooted using Trichothecium roseum LCP 47 624.
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FIGURE 12 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Aspergillus sp. FOEV9 clade belonging to the family
Trichocomaceae, exhibiting a maximum parsimony analysis of partial ITS 1 and ITS 4 concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are
designated at the nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate
code was mentioned as a suffix to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our
isolate, which is marked in purple, was rooted using Penicillium species clone 1 4 TSS.
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FIGURE 13 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Aspergillus fumigatus FOEVPRB31 clade belonging to the
Section Fumigati exhibiting a maximum parsimony analysis of partial β-tubulin concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at
the nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was
mentioned as a suffix to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which
is marked in purple, was rooted using Trichothecium roseum LCP 47 624.
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FIGURE 14 | A phylogenetic tree (taxon branching diagram) which presents the genetic analysis of the Aspergillus nidulans FOEV45 clade belonging to the Section
Nidulantes, exhibiting a maximum parsimony analysis of partial ITS 1 and ITS 4 concatenated sequences, acquired. Bootstrap (bs) values ≥ 70% are designated at
the nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold black. A specific isolate code was
mentioned as a suffix to the species name. Hyphen (-) represents the range of support values for parsimony and RAxML analyses of below 70%. Our isolate, which
is marked in purple, was rooted using Trichothecium roseum GL0800.

Frontiers in Microbiology | www.frontiersin.org 20 February 2022 | Volume 13 | Article 83232027

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-832320 February 15, 2022 Time: 8:42 # 21

Mahata et al. Aspergillus Morphology, Phylogeny, and SNPs

from F. vulgare were found in the Nigri section in this study,
which was collected from distinct geographical locations across
India, including Delhi, Pondicherry, Rajasthan, Uttar Pradesh,
and West Bengal. Isolates studied here, are predominantly
predisposed with a toxigenic potential, known to cause a wide
range of human and animal diseases, in addition to being
plant pathogens.

Two Aspergilli, namely Aspergillus aureoterreus and A. terreus,
were isolated from fennel samples classified under the Terrei
Section. A. aureoterreus differs from Aspergillus terreus by
the sequence analyses of the regions of the beta-tubulin
genes (Samson et al., 2011). In the phylogenetic studies, the
A. aureoterreus species formed a distinct lineage different from
the A. terreus clade (Samson et al., 2011). The type-strain
was isolated from Foeniculum vulgare (Sample No.18, place-
Midnapore, West Bengal) and has been deposited in the National
Center for Biotechnology Information (NCBI) GenBank with
Accession No. MN791096.

A. sydowii has also been recognized as Emericella sydowii,
a soil fungus, that could adulterate foodstuffs. It is also a
pathogen known to cause human diseases like aspergillosis,
onychomycosis, and keratomycosis (de Hoog et al., 2000). Apart
from its disease-causing and toxigenic potential, A. sydowii
has been the source of anticancer alkaloids. This species
generates alkaloids, namely, 6-methoxyspirotryprostatin B, 18-
oxotryprostatin A and 14-hydroxyterezine D (Zhang et al.,
2008) and have potential cytotoxic activity against a549 cells
(Nadumane et al., 2016).

Aspergillus flavus has received continual attention ever since
its aflatoxigenic potential was discovered. The mold placed under
the Flavi section, is known to be air-borne, thermotolerant and
popularly as a saprophytic soil fungus. The fungus has been found
all over the world (Ramírez-Camejo et al., 2012) and is abundant
in temperate soil (Thom and Raper, 1945). A. flavus was found
to be the most frequently occurring species in the fennel samples
analyzed in the present study after A. niger and Mycelia sterilia,
is known to be highly infectious with a broad range of infectivity
and is able to contaminate agricultural crops during pre-harvest
and post-harvest procedures (Bignell, 2010). In certain regions
in Africa and Asia, AFs are appraised to be a major cause of
severe acute sickness and loss of several lives per year (Wood,
1992; Alshannaq and Yu, 2017). The fungus is the most common
source of aflatoxins in contaminated agricultural crops, can
grow well in order to release aflatoxins frequently in almost
any crop seed. The aflatoxins (AFs) are highly carcinogenic and
immunosuppressive in nature, that has threatened global food
safety, and has proven to be hazardous to animals, insects, and
humans. It is an opportunistic fungal pathogen to humans as well
as animals causing aspergillosis in immune-compromised hosts.
In mammals, the pathogen can induce cancer of the liver (Amaike
and Keller, 2011). Globally, over 4.5 billion people have been
exposed to unmonitored levels of AFs (Alshannaq et al., 2018).
Aflatoxin B1 (AFB1) is a highly toxic and the most potent natural
compound to cause hepatocellular carcinoma in the universe.
AFs are severely toxic, mutagenic, carcinogenic, teratogenic,
immunosuppressants and are classified as Group1 carcinogens
in human beings (Ostry et al., 2017) and hence are of special

concern to human, animal and poultry health. A. tamarii is an
epidemiological agent of human mycotic keratitis in India (Homa
et al., 2019). Although it does not produce aflatoxins, it can
induce elaboration of other toxic compounds like cyclopiazonic
acid (Dorner et al., 1983; Ito, 1998), hence, posing a threat
to human health.

Aspergillus fumigatus was studied under the Fumigati section
and was isolated from fennel samples. With regard to the
formation of sexual structures, sclerotia were not produced in
the isolates studied by us. A. fumigatus has long been thought
of reproduce only by asexual means until a detailed study
was published by two researchers (Dyer and Paoletti, 2005).
They elaborated on the possibility of the occurrence of sexual
reproduction in A. fumigatus. Also, the detailed investigations
and opinions of several mycologists have led to the findings,
that point toward evidence that sexual reproduction may occur
within populations of A. fumigatus. Teleomorphs of A. fumigatus
are yet to be detected. However, it would be very significant
to note that, the presence of sexual cycles would lead to an
impending understanding of their biology and life cycles (Dyer
and Paoletti, 2005). Other perspectives to understanding this
species is its role as a human pathogen. A. fumigatus has been
the highest prevailing aerial fungal parasite in immunodeficient
hosts and is known to be associated with lethal systemic
septicemia in multiple organs. It causes incursive infection in the
lungs or long-term infection affecting the lungs, hypersensitive
bronchopneumonia aspergillosis or allergic disorders in immune
deficiencies (Hohl and Feldmesser, 2007; Segal, 2009). The
disease can spread especially in individuals suffering from
certain types of leukemia (Parahym et al., 2014) and those
who are at the advanced stages of AIDS (Kaur et al., 2017),
ailing with bronchial asthma (Kosmidis and Denning, 2015),
fibrocystic disease of the pancreas (Düesberg et al., 2020), and
in patients who have recovered from an influenza infection
(Van De Veerdonk et al., 2017).

A. nidulans is a deuteromycetous member, which falls under
the category of polyphyletic group of fungi whose sexual stages
(teleomorph) are rare or unknown. In spite of this, mutants of
A. nidulans are known to produce copious amounts of Hülle
cells in the absence of sexual stages (Dyer and O’Gorman,
2012). A large number of species in the section Nidulantes
have a sexual state whose name is Emericella, in the dual
nomenclature system of fungi. If sexual stages are known and
observed, the teleomorph has taxonomic precedence over the
asexual stage, generally referred to as anamorph. Therefore,
this species is most properly known as Emericella nidulans.
Nevertheless, this fungal species will continue to be known
in literature and the scientific or commercial industry for its
inclusiveness as A. nidulans, which may be used here for both
the anamorph and teleomorph interconvertibly. Asci contained
eight-spored cells ascospores which were reddish/cherry-brown
and lens-shaped and correlated with the original description
by Thom and Raper (1945). A detailed microscopic description
is available (Chen et al., 2016) for ascospore morphology
of Aspergilli of the Nidulantes section. The ascospore color,
ornamentation, shape and size are of particular value for
differentiating species.
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TABLE 2 | Sanger’s sequencing data to provide a list of protein-altering mutations.

Sl.
No.

Species Our sequence
ID

Genome references Reference
genome position

Mutation
variant

Nucleotide
substitution

Protein ID Protein
alteration

Mutation site

1 Aspergillus nidulans MN791097.1 AACD01000016.1 426,219 Insertion 17insT EAA66300.1 Nil Intronic

2 Aspergillus nidulans MN791097.1 AACD01000016.1 426,091 SNV 146C > A EAA66300.1 − Intronic

3 Aspergillus nidulans MN791097.1 AACD01000016.1 426,075 SNV 162T > A EAA66300.1 − Intronic

4 Aspergillus nidulans MN791097.1 AACD01000016.1 426,027 SNV 210A > G EAA66300.1 p.43Q > Q Protein coding:
Synonymous

5 Aspergillus nidulans MN791097.1 AACD01000016.1 425,990 SNV 138T > G EAA66300.1 − Intronic

6 Aspergillus nidulans MN791097.1 AACD01000016.1 425,839 Double
substitution

290AC > TG EAA66300.1 p.89N > M Protein coding:
Non-synonymous

7 Aspergillus nidulans MN791101.1 AACD01000016.1 425,867 SNV 261T > C EAA66300.1 p.79G > G Protein coding:
Synonymous

8 Aspergillus nidulans MN791102.1 AACD01000016.1 426,218 Insertion 19insT EAA66300.1 − Intronic

9 Aspergillus nidulans MN791102.1 AACD01000016.1 426,075 SNV 174T > A EAA66300.1 − Intronic

10 Aspergillus nidulans MN791102.1 AACD01000016.1 426,091 SNV 148C > A EAA66300.1 − Intronic

11 Aspergillus nidulans MN791102.1 AACD01000016.1 426,028 SNV 212A > G EAA66300.1 p.38G > G Protein coding:
Synonymous

12 Aspergillus nidulans MN791102.1 AACD01000016.1 425,792 SNV 447C > T EAA66300.1 p.105H > Y Protein coding:
Non-synonymous

13 Aspergillus nidulans MN791116.1 AACD01000016.1 426,238 Double
substitution

109TT > AC EAA66300.1 p.16I > N Protein coding:
Non-synonymous

14 Aspergillus nidulans MN791116.1 AACD01000016.1 425,859 SNV 489C > T EAA66300.1 p.82G > G Protein coding:
Synonymous

15 Aspergillus nidulans MN791116.1 AACD01000016.1 426,218 Insertion 20insT EAA66300.1 − Intronic

16 Aspergillus nidulans MN791116.1 AACD01000016.1 426,132 SNV 107T > C EAA66300.1 p.30L > P Protein coding:
Non-synonymous

17 Aspergillus nidulans MN791116.1 AACD01000016.1 426,075 SNV 164T > A EAA66300.1 − Intronic

18 Aspergillus nidulans MN791116.1 AACD01000016.1 426,091 SNV 148C > A EAA66300.1 − Intronic

19 Aspergillus nidulans MN791116.1 AACD01000016.1 426,021 SNV 218G > A EAA66300.1 p,45E > E Protein coding:
Synonymous

20 Aspergillus nidulans MN791116.1 AACD01000016.1 426,027 SNV 212A > C EAA66300.1 p.43Q > Q Protein coding:
Synonymous

21 Aspergillus nidulans MN791116.1 AACD01000016.1 425,970 SNV 269G > A EAA66300.1 − Intronic

22 Aspergillus nidulans MN791116.1 AACD01000016.1 425,786 SNV 453A > T EAA66300.1 p.107T > S Protein coding:
Non-synonymous

23 Aspergillus quadrilineatus MN791104.1 JAAXYA010000001.1 628,223 SNV 107T > C ABW72458.1 p.10L > P Protein coding:
Non-synonymous

24 Aspergillus quadrilineatus MN791104.1 JAAXYA010000001.1 628,112 SNV 218G > A ABW72458.1 − Intronic

25 Aspergillus quadrilineatus MN791104.1 JAAXYA010000001.1 628,061 SNV 269G > A ABW72458.1 − Intronic

26 Aspergillus quadrilineatus MN791104.1 JAAXYA010000001.1 627,877 SNV 453A > T − − −

27 Aspergillus latus MN791110.1 VCRL01000022.1 334,420 SNV 422T > A QJS39736.1 p.83G > G Protein coding:
Synonymous

28 Aspergillus latus MN791110.1 VCRL01000022.1 334,409 SNV 433A > T QJS39736.1 p.87N > I Protein coding:
Non-synonymous

29 Aspergillus latus MN791111.1 VCRL01000022.1 334,764 SNV 78C > G QJS39736.1 − Intronic

30 Aspergillus tamarii MN791098.1 ML738700.1 20,713 SNV 10C > T KAE8158230.1 p.21W > W Protein coding:
Synonymous

31 Aspergillus tamarii MN791115.1 ML738700.1 20,700 Double
substitution

12TA > AC KAE8158230.1 p.16I > N Protein-coding:
Non-synonymous

32 Aspergillus fumigatus MN791100.1 NC_007194.1 2,849,872 SNV 6T > C XP_752456.1 − Non-protein coding

33 Aspergillus fumigatus MN791103.1 NC_007194.1 2,849,872 SNV 6T > C XP_752456.1 − Non-protein coding

34 Aspergillus fumigatus MN791103.1 NC_007194.1 2,849,337 SNV 541C > T XP_752456.1 − Intronic

35 Aspergillus awamori MN791113.1 BDHI01000014.1 2,536,570 SNV 13T > C GCB22540.1 − Intronic

36 Aspergillus awamori MN791113.1 BDHI01000014.1 2,536,901 SNV 344T > G GCB22540.1 − Intronic

37 Aspergillus awamori MN791113.1 BDHI01000014.1 2,536,908 SNV 351A > T GCB22540.1 − Intronic

38 Aspergillus awamori MN791114.1 BDHI01000014.1 2,536,570 SNV 13T > C GCB22540.1 − Intronic

39 Aspergillus awamori MN791114.1 BDHI01000014.1 2,536,901 SNV 344T > G GCB22540.1 − Intronic

40 Aspergillus awamori MN791114.1 BDHI01000014.1 2,536,908 SNV 351A > T GCB22540.1 − Intronic

41 Aspergillus awamori MN791114.1 BDHI01000014.1 2,536,658 SNV 108T > A GCB22540.1 − Intronic

Bold values refers to non-synonymous SNV mutations that we found. Such mutations may have an effect on the protein coding functional outcomes if any.
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A. latus and A. quadrilineatus are being reported from F.
vulgare for the very first time. Also, A. latus has been found to
be phylogenetically similar to A. sublatus and A. montenegroi,
thus considered synonymous. Ascospore morphology, which is
a major and distinguishing feature while studying the sexual
stages of different Aspergilli, were also documented in the
current micromorphological analyses and were found to be
orange/reddish brown with two pleated equatorial crests as
studied recently and reported by Chen et al. (2016). The
ascospores usually have two equatorial crests, whereas four
crests can be seen in A. quadrilineatus by the aid of Scanning
Electron Microscopy (SEM) and can sometimes be low or
inconspicuous (Hubka et al., 2016). It has also been opined by
Chen et al. (2016) that A. nidulans resembles A. quadrilineatus
and is distinguishable in terms of its ascospore morphology.
Phylogenetically A. miyajii has been found to be identical with
A. quadrilineatus, A. parvathecius A. acristatus, and A. floriformis
(Chen et al., 2016). A. awamori is being reported for the first
and foremost time in fennel samples and is regarded as a
domesticated form of A. niger (Samson et al., 2006) and its
economic importance in Koji fermentation has found to be
noteworthy (Kitamoto, 2002).

Nevertheless, the fungal phylogeny of Aspergillus species has
undergone radical modifications over the course of over a
hundred years. Phylogenetic analysis was especially useful when
it was used to authenticate our morphological identification. In
most instances, morphological identification and phylogenetic
analyses were in agreement and helped in ascertaining species
identity in A. awamori from the Nigri Section because of
the striking phenotypic similarities to A. niger exhibited by
our isolates. Phylogenetic studies were particularly useful while
studying A. aureoterreus, A. latus and Emericella quadrilineata
from Sections Terrei, and Nidulantes, respectively, along with A.
awamori, which are being distinctly reported for the first time in
F. vulgare. As a result, we were able to successfully distinguish
them from closely related species and identify their Sections using
the two genetic markers, which was precisely what we set out to
do when this research was conceived.

Through phylogenetic analysis and tree construction, we
were able to study twenty-two (22) Aspergillus species for the
SNP analysis (Figure 15), classifying them into the Sections
Nidulantes, Flavi, Nigri, Terrei, and Fumigati. Under the
Nidulantes section, we could classify two A. latus (Isolate
Nos. 1 and 2), five A. nidulans (Isolate Nos. 1, 2, 3, 4
and 5) and two E. quadrilineata (E. quadrilineata Isolate No.
1 and E. quadrilineata Isolate No. 2). Thus, the species of
E. quadrilineata (Isolate No. 1) is rather closely connected to
A. latus (Isolate No. 1) on one end, and A. nidulans (Isolate No. 3)
is closely related to E. quadrilineata (Isolate No. 2) on the other
end. F. vulgare samples from Pondicherry showed the presence
of E. quadrilineata (Isolate No. 1) and A. latus (Isolate No. 1),
and A. nidulans (Isolate No. 3) and E. quadrilineata (Isolate
No. 2) were obtained from Rajasthan. While speaking about
the diversity of fungi in the F. vulgare samples, three isolates
of A. latus were studied: A. latus (Isolate Nos. 1 and 2) were
obtained from Pondicherry, while A. latus (Isolate No. 3) was
isolated from Jhargram, West Bengal, India. In the case of the

occurrence of A. nidulans species, A. nidulans (Isolate Nos. 1, 2,
4, and 5) were from Pondicherry, whereas A. nidulans (Isolate
No. 3) had been obtained from Rajasthan. This phylogenetic tree
(Figure 15) of Aspergilli from F. vulgare samples from several
regions demonstrate how closely related strains are distributed
geographically. Additionally, in the section Flavi, three A. tamarii
species appear, two of which, specifically (A. tamarii Isolate
Nos. 1 and 2) were found to be more closely related and
were isolated from Pondicherry spice samples. The A. tamarii
(Isolate No. 3) from New Delhi emerged as a separate clade.
Under the Nigri section, A. awamori species has been studied:
A. awamori (FOEVPS8 1) was isolated from Pondicherry, while
A. awamori (GLPL) was isolated from West Bengal. Three
A. aureoterreus species and one A. terreus were grouped in the
Terrei section. A. aureoterreus (Isolate No. 1) and A. terreus
(Isolate No. 1) was recovered from a F. vulgare sample collected
from New Delhi, A. aureoterreus (Isolate Nos. 2 and 3) were
isolated from Pondicherry fennel seeds. A. fumigatus (Isolate
Nos. 1 and 2) from Section Fumigati, were isolated from a
Pondicherry fennel sample, whereas A. fumigatus (Isolate No. 3)
which emerged as a separate branch was obtained from Lucknow.
Strains are likely to represent a diverse set of features within the
section under investigation because of the divergence between
strains within clades.

The SNV analysis reveals that several mutations were
identified exclusively in the Nidulantes section. Strain E. nidulans
5 displayed most SNPs (Figure 15) suggesting that the Aspergilli
identified under this section may contain an isolate that is
distinct. This further divulges information that, there was
considerable genetic heterogeneity between A. nidulans,
E. quadrilineata and A. latus species. Additionally, the genetic
divergence between distant isolates supports distribution
of Aspergilli across geographic regions. Furthermore, as
demonstrated in the Flavi, Fumigati, and Nigri sections, there
is no variance since the genetic sequences employed as markers
in this study are highly conserved in terms of SNV mutations,
showing that most SNPs have a small effect on the protein
structure. The non-synonymous SNPs that were identified in our
study, may have significant favorable or negative outcomes and
needs to be investigated. The variants may be unique and could be
used as biological markers to study specific species. However, the
presence of SNPs in Aspergillus species may help us understand
the rationale behind genetic diversity with implications of
functional consequences if any, through further explorations on
their mycotoxigenic potential and related prospective studies.
According to the present study, the highlights include Aspergillus
diversity from fennel seeds, a polyphasic approach to reappraise
Aspergilli into six sections using the official fungal barcode
and functional genetic markers which have been performed
in adequate detail, with β-tubulin coding sequences being the
focus for SNP analysis. Substitutions, insertions and SNV-kind
of mutations have been identified among the Aspergillus isolates
considered in this study. The data represented is the first report
to the best of our knowledge. The occurrence of Aspergilli may
help us determine the health status of the spices or cereals as
indicator organisms, to adopt suitable strategies for avoidance of
contamination at the field and during storage.
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FIGURE 15 | This phylogram depicts the beta-tubulin phylogenetic tree of 22 Aspergillus species in sections, and subsequent analysis of their single nucleotide
polymorphisms is discussed below. Maximum parsimony analysis was used to create this tree, which incorporates partial β-tubulin concatenated sequences. Boot
strap (bs) values ≥ 70% are designated at the nodes for maximum parsimony (MP) and maximum likelihood (ML) methods; branches with values ≥ 95% bs are bold
black. Hyphen (-) indicates support values below 70% for both parsimony and RAxML analyses. Trichothecium roseum Uo S09 and Trichothecium roseum LCP 47
624 were used to root the isolates. The Fungal Genetics and Mycotoxicology (FGM) laboratory codes for the isolates are listed here. 49: E. quadrilineata 1, 4: A. latus
1, 11: A. latus 2, 12: A. latus 3: 17: A. nidulans 1, 9: A. nidulans 3, 58: E. quadrilineata 2, 45: A. nidulans 2, 71: A. nidulans 4, 2: E. quadrilineata, 22: A. tamarii 1, 75:
A. tamarii 2, S44: A. tamarii 3, S8: A. awamori S8, S24: A. awamori GLPL, 51: A. aureoterreus 3, 18: A. aureoterreus 1, 1: A. aureoterreus 2, 16: A. terreus 1, 24:
A. fumigatus 1, 37: A. fumigatus 2 and 31: A. fumigatus 3.
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CONCLUSION

The study was an elaborate investigation on the isolation and
phenotypic characterization of Aspergilli from an Indian spice
namely F. vulgare. While nearly 27 isolates have been adequately
described with substantive morphological descriptions, attempts
have been made to characterize these Aspergilli phylogenetically
as well. A key strength of this endeavor is the number of fennel
samples analyzed and Aspergilli being reported in a “first of
it’ s kind” investigation. The research study constitutes a key
milestone in analyses of evolutionary relationships of fungi,
detection of single nucleotide polymorphisms in the target fungal
isolates. This validates genetic information, which serves as an
essentiality for existing and further research. Although, the study
may have its limitations, we propose to expand on the number
of isolates to be studied for SNPs and their possible impacts
on protein structure and functional consequences. Studies on
their mycotoxigenic potentials is currently underway. Clearly,
with respect to the diversity of Aspergillus species F. vulgare,
the study is the largest till date. The extensive use of partial
beta-tubulin gene analyses to evaluate the association between
SNPs in five Aspergillus species sections is one of the highlights.
Our research outcomes suggest that the presence of Aspergilli
in food stuffs may pose a considerable hazard and threat to
human consumption. Hence, identification and characterization
may serve as a key factor in designing strategies to control
post-harvest contamination and elaboration of mycotoxins.
Fungal genomics serves as a useful molecular tool for inquiries
into fungal evolution, by detecting gene differences and gene
structure, to deduce the genetic basis of fungal evolution.
However, blending morphological characteristics with molecular
phylogeny is considered equally important for taxonomic studies
and is the norm today.
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Rapid and Routine Molecular Typing 
Using Multiplex Polymerase Chain 
Reaction and MinION Sequencer
Yu-Chieh Liao 1*†, Han-Chieh Wu 2†, Ci-Hong Liou 2, Tsai-Ling Yang Lauderdale 2,3, 
I-Wen Huang 2, Jui-Fen Lai 2 and Feng-Jui Chen 2,3*

1 Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, 2 National 
Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, 
3 Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Molecular typing is an essential tool that has been extensively applied in laboratories as 
well as in clinical settings. Next-generation sequencing technologies promise high-
throughput and cost-effective molecular applications; however, the accessibility of these 
technologies is limited due to the high capital cost. Oxford Nanopore Technologies (ONT) 
offers a MinION device with the advantages of real-time data analysis, rapid library 
preparation, and low cost per test. However, the advantages of the MinION device are 
often overshadowed by its lower raw accuracy. Herein, we present a concise multilocus 
sequence typing protocol of Staphylococcus aureus using multiplex polymerase chain 
reaction and Rapid Barcoding Kit for barcoding and MinION device for sequencing. 
Moreover, to clarify the effects of carryover DNA on tasks that require high sequence 
accuracy, we used the MinION flow cell in successive runs of washing and reusing. Our 
results revealed that the MinION flow cell could achieve accurate typing of a total of 467 
samples with 3,269 kilobase-long genes within a total of 5 runs. This thus demonstrates 
the effectiveness of a portable nanopore MinION sequencer in providing accurate, rapid, 
and routine molecular typing.

Keywords: nanopore sequencing, molecular typing, multiplex polymerase chain reaction, multilocus sequence 
typing, MinION

INTRODUCTION

Molecular diagnostics is widely used in clinical microbiology for routine detection and 
epidemiological analysis of infectious microorganisms (Chen et  al., 2018). The invention of 
polymerase chain reaction (PCR) has led to remarkable developments in clinical molecular 
diagnostics because the use of PCR-based technologies requires relatively simple instrumentation 
and only small amounts of biological material (Maheaswari et  al., 2016). PCR-based molecular 
diagnostic methods are important in studies of infectious diseases. For examples, 16S rRNA 
gene/internal transcribed spacer region sequencing is a well-established method for bacterial 
and fungal identification (Raja et  al., 2017; Peker et  al., 2019), and multilocus sequence typing 
(MLST) has become a commonly applied technique in molecular evolution studies of numerous 
microbial species (Jolley et  al., 2018). Sanger sequencing is commonly used to obtain sequences 
of interest; however, the cost of hundreds of samples is prohibitive (Kircher and Kelso, 2010). 
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Next-generation sequencing (NGS) technologies (e.g., PacBio 
and Illumina) have been used to achieve high-throughput and 
cost-effective molecular diagnostics (Chen et  al., 2015, 2018; 
Perez-Losada et al., 2018; Zhang et al., 2018; Peker et al., 2019), 
which has greatly affected clinical microbiology. However, the 
large costs associated with installing NGS instrumentation limit 
the accessibility of rapid and routine molecular typing in small- 
to medium-sized laboratories.

Oxford Nanopore Technologies (ONT) currently offer an 
inexpensive, pocket-sized MinION device that produces long 
sequences; however, the raw reads from this device are of lower 
accuracy in comparison with Illumina platform (Lin et al., 2021). 
In conjunction with consensus sequence generation and 
homopolymer correction, accurate molecular sequences can 
be  obtained through nanopore sequencing (Liou et  al., 2020). 
MinION sequencer provides the advantages of real-time data 
analysis, low capital cost, and highly accurate consensus sequence 
generation, all of which are adequately suited to the constraints 
of clinical settings (Sheka et  al., 2021). Therefore, MinION 
sequencer has been used in numerous applications of clinical 
microbiology and infectious diagnostics (Ma et al., 2013; Benitez-
Paez et  al., 2016; Liou et  al., 2020; Baldan et  al., 2021; Ben 
et  al., 2021; Ferreira et  al., 2021; Sheka et  al., 2021; Snell et  al., 
2021; Urban et al., 2021). However, the sample size for a MinION 
flow cell cannot exceed 96 due to the limitations of the barcoding 
kits. Although several studies have used tailored primers (Currin 
et  al., 2019) or proposed dual-barcode systems (Liou et  al., 
2020) to address the problem of sample size, a requirement of 
additional efforts or costs remains inevitable. Furthermore, 
although ONT provides a Flow Cell Wash Kit, the influence 
of repeated washing and use of a MinION flow cell on the 
accuracy of a consensus sequence has yet to be comprehensively 
studied. With the recent release of the Rapid Barcoding Kit 96 
(SQK-RBK110.96, released on March 2021) and the increasing 
demand for routine molecular diagnostics, evaluating the 
capabilities of a single MinION flow cell for accurate, timely, 
and routine molecular typing has become imperative.

Accordingly, in this study, we  proposed a rapid protocol 
entailing the use of multiplex PCR of seven housekeeping genes 
and rapid barcoding of 392 Staphylococcus aureus isolates in 
conjunction with a MinION flow cell for sequencing to obtain 
a total of 3,269 kilobase-long consensus sequences. In addition 
to using Krocus (Page and Keane, 2018) for rapid MLST of 
S. aureus, we  implemented nanoMLST2, which was modified 
from our previously proposed nanoMLST (Liou et  al., 2020), 
for consensus sequence generation. Sixteen new alleles were 
identified by nanoMLST2 and validated with Sanger sequencing. 
The study results suggest that MinION nanopore sequencing 
of multiplex PCR amplicons could be  a cost-effective method 
for rapid and routine molecular typing.

MATERIALS AND METHODS

Bacterial Isolates and DNA Extraction
A total of 392 S. aureus isolates were used in this study (designated 
as Sau 1–392). The isolates were collected from the Taiwan 

Surveillance of Antimicrobial Resistance program, a national 
surveillance program in Taiwan (Ho et al., 1999). Bacterial DNA 
templates from pure cultures were prepared using DNAzol Direct 
(Molecular Research Center, Inc. Cincinnati, OH, United States), 
according to the manufacturer’s instructions. Of the 392 S. aureus 
isolates, 88 had been subjected to MinION nanopore sequencing 
to determine sequencing types (STs) in a previous study of 96 
isolates (Liou et  al., 2020) and were used in the second and 
the fourth runs as references to validate the accuracy of the 
workflow. Furthermore, 50 of these 88 isolates had DNA templates 
(i.e., 350 alleles), and two alleles, namely pta_664 and glpF_732, 
had been subjected to Sanger sequencing (Liou et  al., 2020).

Multiplex PCR
Seven housekeeping genes were subjected to multiplex PCR 
using the Thermo Scientific Phusion High-fidelity DNA 
Polymerase kit (Thermo Fisher Scientific, Waltham, MA, 
United  States) in a total volume of 25 μl (5 μl of 5× HF buffer, 
2 μl of 2.5 mM dNTP, 10 μl of primer mix, 0.25 μl of Phusion 
enzyme, 1 μl of DNA template, and 6.75 μl of nuclease-free 
water). The primer sequences are listed in Supplementary Table. 
The primer mix included 10 μM each of forward and reverse 
primers of carbamate kinase (arcC), shikimate dehydrogenase 
(aroE), glycerol kinase (glpF), guanylate kinase (gmk), phosphate 
acetyltransferase (pta), triosephosphate isomerase (tpi), and 
acetyl coenzyme A acetyltransferase (yqiL) in a balanced ratio. 
The PCR program was set as follows: initial denaturation at 
98°C for 30 s followed by 35 cycles of denaturation at 98°C 
for 10 s, annealing at 65°C for 30 s, and extension at 72°C for 
1 min; and then a single final extension at 72°C for 10 min.

Library Preparation and Sequencing
The newly released Rapid Barcoding Kit 96 (SQK-RBK110.96) 
was used for the rapid barcoding of the 96 samples. Each 
sample was mixed with 5 μl of multiplexing PCR product, 2.5 μl 
of nuclease-free water, and 2.5 μl of one rapid barcode. The 
mixture was incubated at 30°C for 2 min, followed by incubation 
at 80°C for 2 min. All 96 barcoded DNA samples were pooled, 
and 120 μl of the pooled DNA was sampled and mixed with 
an equal volume of solid phase reversible immobilization beads 
(SPRI). After 5 min of incubation on a hula mixer, the barcoded 
DNA was cleaned twice with 240 μl of 80% ethanol and eluted 
with 30 μl of elution buffer (EB). An aliquot of 800 ng of 
barcoded DNA was used to make up a total volume of 11 μl 
with EB. One microliter of rapid adaptor F was added to the 
barcoded DNA, and the mixture was incubated at room 
temperature for 10 min. A pre-sequencing mix (PSM) was 
prepared by adding 37.5 μl of Sequencing Buffer II and 25.5 μl 
of loading beads to a 12 μl DNA library. The PSM was loaded 
via the SpotON port into a primed Flow cell (FLO-106MIN) 
for sequencing. Basecalling and de-multiplexing were performed 
in real time through MinKNOW GUI (v4.3.4) implemented 
with GPU Guppy (v5.0.11) on a desktop PC with an NVIDIA 
RTX 3090 graphics card with 24-GB RAM to produce high-
accuracy reads in FASTQ format. The default output set for 
MinKNOW was a FASTQ file containing 4,000 reads.
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Data Analysis
A sequencing run was stopped when individual FASTQ output 
files were obtained for each barcoded sample; this is because the 
derivation of such output files suggested more than 4,000 reads 
had been obtained for the sample. The FASTQ files obtained for 
each sample were collected and analyzed using Krocus 1.0.1 (Page 
and Keane, 2018) with a prepared directory named “Staphylococcus_
aureus” which contained S. aureus MLST alleles and allelic profiles 
downloaded from PubMLST (Jolley et al., 2018). For each sample, 
consensus sequences were generated using Medaka v1.4.31 along 
with the FASTQ file and the reference sequences of seven 
housekeeping genes of S. aureus NCTC8325 (Liou et  al., 2020). 
Samples with gene reads fewer than 40 were identified and labeled 
as “LSD (low sequencing depth)” by aligning the sequencing reads 
against the reference sequences using Minimap2 (v2.20; Li, 2018). 
Homopolymer errors registered for the consensus sequences were 
corrected, if necessary, to assign MLST alleles and to profile sequence 
types using a modified script, namely runtyping.py, in nanoMLST 
(Liou et al., 2020); this updated workflow was denoted as nanoMLST2, 
and it is available at https://github.com/jade-nhri/nanoMLST2.

Flow Cell Wash and Reuse
When 4,000 reads had been collected for each of the 96 samples, 
the sequencing experiment was stopped. The flow cell was left 
in the device. A flow cell wash mix was prepared by mixing 
398 μl of wash diluent (DIL) and 2 μl of wash mix (WMX) from 
the Flow Cell Wash Kit (EXP-WSH004); this mixture was then 
loaded into the flow cell through the priming port. After 1 h of 
incubation at room temperature, 500 μl of storage buffer (S) was 
added through the priming port. The priming port was then 
closed to allow for the removal of all fluid from the waste channel 
through the waste port. The washed flow cell was stored at 4°C 
for reuse. The same cell was used five times on a total of 480 
samples (96 samples per run, a total of 392 isolates). Notably, 
88 PCR amplicons in the fourth run were aliquots from the 
second run but were barcoded with different barcodes. Another 
flow cell was used to ensure the reproducibility of this study.

Sanger Sequencing
Allele types, determined through Krocus and nanoMLST2 were 
compared to identify inconsistencies. The inconsistent alleles 
were further subjected to Sanger sequencing with conventional 
S. aureus MLST primers (Jolley et  al., 2018).

RESULTS AND DISCUSSION

Rapid Library Preparation and Real-Time 
MinION Sequencing
In a previous study, a dual-barcoding system was established to 
multiplex 96 S. aureus isolates for seven housekeeping genes using 
12 native barcodes in combination with 8 × 7 pairs of primers 
(Liou et al., 2020). The throughput of MinION nanopore sequencing, 
with careful electrophoresis and quantification processes, was 

1 https://github.com/nanoporetech/medaka

estimated to be  sufficient for 1,000 samples (Liou et  al., 2020). 
However, the study used a labor-intensive and time-consuming 
process (Figure 1A); furthermore, ordering 96 × 7 pairs of primers 
solely for S. aureus MLST is impractical and cost prohibitive. 
Accordingly, we  devised a new process involving multiplex PCR 
and the rapid barcoding of 96 isolates based on the newly released 
Rapid Barcoding Kit 96 (SQK-RBK110.96, released in March 2021) 
in 3 h (Figure  1B), as a preparation for MinION nanopore 
sequencing. A sequencing run was conducted with the objective 
of achieving 4,000 reads per sample; the five successive runs 
required 3.6, 3.9, 5, 9.8, and over 48 h (Table  1). A reduced pass 
rate was observed, which might have been engendered by the 
impairment of the integrity of the reused pores; the reduced pass 
rate along with the decrease in available pores may have increased 
unclassified rates and run times. Nevertheless, sufficient reads 
were available for the molecular typing of the samples in all five 
runs. As illustrated in Figure  1B, to simplify the process, the 
quantification steps were omitted before the pooling of the 96 
samples. This rapid protocol requires minimal effort for 
quantification. To execute PCR, a DNA template (1 μl) was applied 
through a single-tube multiplex PCR assay (a total volume of 
25 μl containing seven pairs of primers for S. aureus MLST). To 
achieve rapid barcoding, a 5 μl multiplex PCR product was mixed 
with a barcode. After the pooled DNA was sampled, only cleanup 
and quantification were required prior to the preparation of a 
PSM. Despite this simplification, among the 392 multiplex PCR 
products from the five runs, an extremely high (380/392 = 97%) 
success rate was observed for the amplification process in our 
protocol, with only 12 samples being labeled as low sequencing 
depth (LSD; exclusive of 88 samples—barcode01-barcode72 and 
barcode81-barcode96—in Run4 of Figure 2A); this can be attributed 
to the presence of samples with gene reads fewer than 40. Notably, 
88 PCR products in Run4 (highlighted with background colors 
in Figure  2A) were aliquots of amplicons in Run2 but were 
barcoded with different barcodes. Among the 88 PCR products, 
50 had been previously Sanger sequenced (Liou et  al., 2020). 
They were used as references to evaluate whether carryover reads 
influence typing accuracy. Besides, the rapid protocol provided 
stable read counts for nearly every gene, except for those with 
high amounts of yqi (Figure  3). Although 88 PCR products in 
Run4 were aliquots of amplicons in Run2 but with different 
barcodes, the read counts of the 88 counterparts in Run2 and 
Run4 were not correlated (R2 = 0.017); conversely, the read counts 
of the barcoded samples between runs were moderately correlated 
(R2 for the correlation between R1 and Run2–Run5: from 0.289 
to 0.555 and from 0.355 to 0.460 for the two flow cells, respectively). 
This suggests that some barcodes tend to have high or low read 
counts; for example, barcode30 and barcode56 had high read 
counts, but barcode42 and barcode89 had low read counts. This 
may be  useful for executing ratio adjustment in order to obtain 
even distributions. Future research should focus on the refinement 
of multiplex primers to provide a narrow distribution of read 
counts among all genes. Our rapid protocol successfully amplified 
380 out of 392  S. aureus isolates and required less than 3 h of 
library preparation per 96 samples, indicating that this protocol 
can facilitate rapid and routine molecular typing and can be easily 
adapted to different applications.
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Rapid Sequence Typing Using Krocus
Through real-time basecalling and de-multiplexing in MinKnow, 
FASTQ files of the 96 barcoded amplicons were produced 
in only 4 h in the first two runs. Through parallel processing, 
Krocus was able to directly identify STs using uncorrected 
long reads within 10 min for all of the 96 barcoded samples 
simultaneously. This thus indicates that our proposed protocol 

can execute molecular typing for 96 multiplexed PCR amplicons 
within 8 h. Table 2 presents the results obtained after executing 
Krocus on 4,000 reads per sample (as detailed in 
Supplementary Table). Among the 480 sequencing samples, 
Krocus predicted 454 STs with >99% coverage and labeled 
only 26 samples as “ND,” indicating that they were untypable 
due to (1) low sequencing depth of genes, (2) novel combinations 

A B

FIGURE 1 | Schematic workflows of (A) dual-barcode system (Liou et al., 2020) and (B) rapid multiplex polymerase chain reaction (PCR) and barcoding protocol.

TABLE 1 | Summary of MinION nanopore sequencing results.

Run
Available 

pores
Run time Read counts Passed reads Passed (%)

Barcoded 
reads

Unclassified 
(%)

Average 
barcoded reads

Run1 830 3 h 39 m 9 s 934,114 829,160 88.8 786,375 5.2 8191.4 ± 1963.2
Run2 572 3 h 56 m 24 s 983,673 849,178 86.3 803,037 5.4 8365.0 ± 1911.2
Run3 510 5 h 3 m 47 s 1,021,596 843,838 82.6 795,398 5.7 8285.4 ± 1932.1
Run4 379 9 h 47 m 53 s 998,293 765,018 76.6 716,831 6.3 7467.0 ± 1552.1
Run5 325 48 h 2 m 24 s 1,092,802 764,021 69.9 707,887 7.3 7373.8 ± 1828.7
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of alleles, or (3) new alleles. Of the 26 samples labeled as 
ND, 13 with <99% coverage had previously been labeled as 
LSD. Because a total of 352 alleles had been previously Sanger 
sequenced (Liou et  al., 2020), and these alleles (50 × 7 + 2) 
were conducted separately in Run2 and Run4. Among the 
704 alleles (352 × 2) subjected to Sanger sequencing, all were 
correctly predicted by Krocus, except one allele in barcode46 in 
Run2 was wrongly predicted to be  tpi_58 rather than tpi_26. 
Krocus incorrectly predicted this sample (barcode46, ST398) 
to be ND with 100% coverage. Nevertheless, MinION nanopore 
sequencing coupled with Krocus provided a 98.86% accuracy 
(703/704 = 99.86%) in allele typing. In addition, Krocus predicted 
two other samples to be  ND with 100% coverage in Run2 
and in Run4 (Table 2); this could be attributed to a submission 
of new alleles (pta_664 and glpF_732; Liou et  al., 2020) 
without corresponding ST information to PubMLST (Jolley 
et  al., 2018). Finally, of the 26 samples labeled as ND, the 
other 13 were predicted by Krocus to be  ND with ≧99% 
coverage; these samples were further evaluated to identify 

the presence of either a novel combination of alleles or new 
alleles (Table  3).

New Allele Types Identified by NanoMLST2
The sequencing reads of 467 samples, excluding those labeled 
LSD, were analyzed for consensus sequence generation and 
MLST typing using nanoMLST2. The results obtained through 
nanoMLST2 were similar to those obtained using Krocus, and 
100% accuracy was observed in the 704 Sanger-sequenced 
alleles in Run2 and Run4 (Supplementary Table). This perfect 
value not only suggests the accuracy of nanoMLST2, but also 
means no effects of the carryover reads on the MLST typing 
of the following runs. Through a comparison of the results 
obtained using Krocus and nanoMLST2, 29 samples containing 
24 alleles were identified to be inconsistent between the methods 
(Table  3). Nevertheless, nanoMLST2 had exceptionally good 
agreement with Krocus (3,245/3,269 = 99.27%). The inconsistent 
alleles were later sequenced using Sanger. As indicated in 
Table  3, the 16 new alleles identified through nanoMLST2 

A

B

FIGURE 2 | Distributions of sequencing reads on the first flow cell (A) and the second flow cell (B). Arrows indicate samples labeled as low sequencing depth 
(LSD). In (A), 88 polymerase chain reaction (PCR) products in Run4 highlighted with background colors to indicate aliquots of amplicons in Run2 that were rapid 
barcoded with different barcodes; the other 8 PCR products in Run4 were from 8 isolates (Sau 289–296). Run1–Run5 in (B) containing identical PCR products in 
Run2, Run3, Run5, Run1, and Run3 in (A), respectively.
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were all validated using Sanger sequencing to ensure accuracy. 
In addition, the consensus sequences generated by nanoMLST2 
were full-length genes ranging from 1,067 to 1,489 bp.

Krocus was used to predict S. aureus STs directly from 
uncorrected reads (Page and Keane, 2018). However, in addition 
to the expected predictive failures in 22 samples (Table  3) 
with 16 new alleles and 6 new STs, Krocus wrongly classified 
eight alleles (indicated by strikethroughs) in seven samples. 
As listed in Table  3, Krocus frequently predicted glpF_344 to 
glpF_19 and tpi_26 to tpi_58, while these two pairs differ by 
one nucleotide. In contrast to Krocus, nanoMLST2 could 

generate consensus sequences for new alleles, and all of the 
sequences were later validated through Sanger. Therefore, the 
findings of this study indicate that the benefits gained through 
consensus sequence generation of MinION nanopore sequencing 
may address the needs of a wide range of kilobase-long 
molecular typing.

Capacity of MinION for Routine Molecular 
Typing
In this study, more than 3,000 kilobase-long consensus sequences 
conducted in five batches (Run1 to Run5) were obtained using 
a single MinION flow cell. Although the flow cell was washed 
and reused for the successive runs (Run2 to Run5), the variation 
between the STs in the different batches indicates that the effects 
of the cell reuse were marginal. For example, the STs of 
barcode10  in Run1, Run2, Run3, Run4, and Run5 were 15, 6, 
188, 254, and 59, respectively. However, consistent STs were 
obtained through Sanger (STs of 6 and 254 in Run2 and Run4), 
demonstrating that the STs were not influenced by the preceding 
runs. Regarding rapid and routine molecular typing, the results 
of the first three runs of the 96 samples (Run1 to Run3) were 
obtained 4–6 h after the initiation of the sequencing process 
(3.6–5 h run time plus 0.5 h data analysis; Table 1). The remaining 
two runs (Run4 and Run5) required a longer sequencing period 
because of the reduced number of available pores (<400) in 

FIGURE 3 | Boxplot of sequencing reads across genes and runs.

TABLE 2 | Krocus sequence type (ST) prediction for Staphylococcus aureus.

Krocus result Number of samples2

Coverage Prediction1 Run1 Run2 Run3 Run4 Run5

100 ST 83 91 89 91 85
≧99 ST 8 1 2 2 2
100 ND 2 3 3 2 1
≧99 ND 0 0 0 0 2
<99 ND 3 1 2 1 6

1ST: sequence type predicted by Krocus; ND: sequence type not determined by 
Krocus.
2Boldface indicates the number of samples labeled as low sequencing depth (LSD).
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the used MinION; nevertheless, the generated consensus sequences 
remained accurate for routine molecular typing. Another flow 
cell containing more than 1,500 available pores in the beginning 
was also used in this study, shorter sequencing periods (1.6–3.5 h) 
were required for the five runs. As shown in Figure  2, the 
aliquots of amplicons from the first flow cell Run2, Run3, Run5, 
Run1, and Run3 were used in the second flow cell Run1–Run5, 
respectively. Although the sequencing components in the 
preceding run varied, all the STs obtained from the second 
flow cell were identical to that of the corresponding samples 
in the first flow cell (Supplementary Table), which again reveals 
that the effects of the cell reuse were marginal and the STs 
were not influenced by the preceding runs.

Compared with the approach used in our previous study 
(Liou et  al., 2020), the proposed protocol in this study not only 
reduced the primer cost significantly but also reduced the PCR 
reagents and amounts of manual effort by seven times. Library 
preparation in this protocol cost US$110 for a total of 96 samples; 
by contrast, the cost incurred by ligation-based procedures (Liou 
et  al., 2020) for such a run is US$148, regardless of whether 
third-party consumables such as AmpureXP beads and NEB 
End Repair/dA-Tailing enzymes are required (Liou et  al., 2020). 
The MinION flow cell used in our protocol could produce 

accurate typing results for a total of 3,269 kilobase-long genes, 
in addition to affording less expensive and more rapid multiplexing 
PCR and library preparation. This protocol allows for a more 
efficient and cost-effective method for routine molecular typing 
at an estimated cost of US$4 per sample (Supplementary Table). 
Specifically, through the protocol, the cost of a kilobase-long 
gene would be  less than US$1, which is substantially less than 
that in Sanger sequencing. Overall, our results demonstrate the 
effectiveness of the portable MinION sequencer in providing 
accurate, rapid, and routine molecular typing.

CONCLUSION

The features of friendly access (USD$1,000 for a starter pack), 
portability and the ability to monitor real-time output and reuse 
of a flow cell of the ONT MinION sequencer remove the 
barriers of accessing accurate, rapid, and routine molecular 
typing in small- to medium-sized laboratories. To the best of 
our knowledge, our study is the first to investigate the reusability 
of a MinION flow cell and to provide the evidence of the 
sequencing accuracy of a reused flow cell. In this study, a 
workflow was designed entailing the use of one universal primer 

TABLE 3 | Alleles prediction inconsistencies between Krocus and nanoMLST2.

Run BC
Krocus

nanoMLST22 Sanger3

ST Cov Allele1

1 03 15 99.68 arcC(13)* New allele arcC_826
1 16 623 99.65 pta(4)* New allele pta_842
1 32 7 99.71 tpi(6)* New allele tpi_786
1 36 59 100 arcC(19) New allele arcC_834
1 43 ND 100 glpF(19), tpi(58) glpF_344, tpi_26 glpF_344, tpi_26
1 59 1 99.71 tpi(1)* New allele tpi_787
1 65 25 99.71 glpF(4)* New allele glpF_890
1 70 22 99.77 aroE(6)* New allele aroE_1016
1 72 239 99.77 arcC(2)* New allele arcC_820
1 93 ND 100 New ST
1 94 5,535 99.87 gmk(438)* New allele gmk_554
2 46 ND 100 tpi(58) tpi_26 tpi_26#

2 77 ND 100 pta(664) New ST pta_664#

2 89 ND 100 glpF(732) New ST glpF_732#

3 13 59 100 tpi(20) New allele tpi_781
3 29 188 100 tpi(1) New allele tpi_790
3 39 398 100 glpF(19) glpF_344 glpF_344
3 41 ND 100 New ST
3 42 ND 100 tpi(58) tpi_26 tpi_26
3 48 291 100 tpi(26) New allele tpi_791
3 51 ND 100 tpi(58) tpi_26 tpi_26
3 80 4,567 99.65 aroE(35)* New allele aroE_1022
4 01 ND 100 glpF(732) New ST glpF_732#

4 85 ND 100 pta(664) New ST pta_664#

5 04 188 99.68 pta(1)* New allele pta_844
5 35 ND 99.94 tpi(58)* tpi_26 tpi_26
5 36 ND 100 tpi(58) tpi_26 tpi_26
5 37 ND 99.74 glpF(213)* New allele glpF_891
5 59 7 100 arcC(5) New allele arcC_830

1Asterisks represent alleles partially covered using Krocus (Page and Keane, 2018), strikethroughs represent wrong predictions, and boldface represents allele prediction consistency 
between Krocus and Sanger sequencing.
2Boldface represents consistency in consensus sequences between nanoMLST2 and Sanger sequencing.
3Underlines represent new Sanger-sequenced alleles identified in this study, and # represents alleles that were Sanger sequenced previously (Liou et al., 2020).
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set with seven primer pairs of housekeeping genes to amplify 
full-length target genes simultaneously for S. aureus MLST and 
rapid barcoding in conjunction with ONT nanopore sequencing 
on a portable MinION platform followed by the nanoMLST2 
analysis. Our results indicate that the benefits gained through 
consensus sequence generation using this workflow may address 
the needs of a wide range of kilobase-long molecular typing.
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Conservation tillage is an advanced agricultural technology that seeks to minimize
soil disturbance by reducing, or even eliminating tillage. Straw or stubble mulching
in conservation tillage systems help to increase crop yield, maintain biodiversity and
increase levels of exogenous nutrients, all of which may influence the structure of fungal
communities in the soil. Currently, however, the assembly processes and co-occurrence
patterns of fungal sub-communities remain unknown. In this paper, we investigated the
effects of no-tillage and straw mulching on the composition, assembly process, and
co-occurrence patterns of soil fungal sub-communities in a long-term experimental plot
(15 years). The results revealed that combine straw mulching with no-tillage significantly
increased the richness of fungi but not their diversity. Differential abundance analysis and
principal component analysis (PCA) indicated that tillage management had a greater
effect on the fungal communities of abundant and intermediate taxa than on the rare
taxa. Available phosphorus (AP) and total nitrogen (TN) were the major determinants of
fungal sub-communities in NT treatment. The abundant fungal sub-communities were
assembled by deterministic processes under medium strength selection, while strong
conservation tillage strength shifts the abundant sub-community assembly process
from deterministic to stochastic. Overall, the investigation of the ecological network
indicated that no-tillage and straw mulching practices decreased the complexity of
the abundant and intermediate fungal networks, while not significantly influencing rare
fungal networks. These findings refine our knowledge of the response of fungal sub-
communities to conservation tillage management techniques and provide new insights
into understanding fungal sub-community assembly.

Keywords: conservation tillage, fungal sub-communities, assembly process, community structure, co-
occurrence pattern
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INTRODUCTION

Conservation tillage management, such as no-tillage (NT) or
reduced tillage (RT) and straw retention, has been a widely-used
practice in agriculture systems. Indeed, it is estimated that an
area of 155 million hectares is subject to no-tillage management,
accounting for 11% of all arable farmland worldwide (Kassam
et al., 2014). Conservation tillage can conserve plant-available
water and reduce soil erosion caused by rain, wind, and feed
soil biota by increasing soil nutrient (Balesdent et al., 2000;
Hobbs et al., 2008). On the other hand, soil microbes are crucial
for nitrogen cycling and soil fertility enhancement, and are
influenced by NT and straw mulching practices (Levy-Booth
et al., 2014; Joergensen and Wichern, 2018).

Conservation tillage (e.g., straw mulching and NT)
accumulates more C and N sources in the soil, and has
the potential to minimize soil disturbance and enhance soil
aggregation, thus creating a favorable soil nutrition condition
for soil microbial communities (Guo et al., 2015; Wang et al.,
2019). Long-term straw mulching and NT have been shown to
significantly increase soil pH, total carbon and the C:N ratio
(Wang et al., 2020a; Zhou et al., 2021); these environmental
factors, in turn, can significantly influence microbial diversity.
For example, soil pH is a strong predictor of microbial
community diversity and structure (Hartmann et al., 2015).
Whereas conservation tillage effects on soil properties have
been well studied, however, there are still lack of effects of
environmental factors on fungal community. In this study, we
investigated the key regulatory factors of fungal sub-communities
under different conservation tillage strategies.

In addition, the assembly process of the soil microbial
community is crucial for understanding the response of
ecosystems to environmental changes. In that regard, both
stochastic processes and deterministic processes influence
community assembly (Vellend, 2010; Tripathi et al., 2018).
On the one hand, changes in the environmental conditions
influence biotic and abiotic filtering and the structure of the
microbial community deterministically (Chesson, 2000; Vellend,
2010). On the other hand, community assembly patterns arising
from processes dispersal and ecological drift occur stochastically
(Chave, 2004). The fungal communities in agricultural soils
were strongly affected by stochastic processes (Jiao et al.,
2021). In different tillage managements, assembly processes
have been investigated in rhizosphere microorganism, including
diazotrophic community (Li et al., 2021), arbuscular mycorrhizal
fungi (Wang et al., 2020b), bacterial community (Wang et al.,
2020c). However, stochastic and deterministic processes of
fungal sub-communities under long-term conservation tillage
management have not yet been clarified. Therefore, we sought to
identify the assembly processes of fungal sub-communities across
four different treatments.

Co-occurrence network analysis has been recently used to
elucidate the potential complex interaction among different
taxonomic group associated with patterns of assembly process
(Li et al., 2021). Recent study has found that agricultural
intensification decreased the complexity of fungal network,
and the abundance of mycorrhizal fungi was highest under

organic farming rather than no-tillage and conventional practices
(Banerjee et al., 2019). Straw mulching has also been shown
to reduce the complexity of fungal network, and increased the
risk of root rot by increasing the abundance of the soil-borne
pathogens F. graminearum and F. moniliforme (Wang et al.,
2020a). Previous study reported that NT practices had higher
densities of fungal mycelia than CT treatment (Beare et al., 1997).
NT practices, meanwhile, may result in soil compaction, and plow
tillage strengthens the fungal-fungal interactions and reduced
tillage (RT) induces a more stable network structure than NT
(Hu et al., 2021). The soil fungal sub-community co-occurrence
patterns in long-term conservation tillage field remain unknown.
In this paper, we compared the changes in the co-occurrence
patterns of rare, intermediate and abundant sub-communities
under different tillage and straw mulching practices.

Overall, while the effects of conservation tillage on fungal
community diversity and functional group have been well
documented (Degrune et al., 2016; Schmidt et al., 2019),
there is still limited knowledge about fungal sub-communities.
Furthermore, the research needs to pay more attention to the
fact that microbial communities tend to consist of a few highly
abundant taxa and numerous intermediate and rare taxa. It is
therefore incomplete to analyze the microbial community in
broad groups (e.g., at a domain or kingdom level); both abundant
and rare groups should be considered if the community dynamics
are to be fully understood (Jiang et al., 2019).

In this research, therefore, a field experiment applying
fungal ITS region sequencing was conducted in a long-term
conservation trial field at the Fengqiu National agro-ecological
experiment station. We hypotheses that (i) conservation tillage
managements create different environments for fungi, which
increase the correlation between environment factors and fungal
sub-communities, and deeply change fungi community structure
and composition, (ii) the different ecological environments
significantly alter the assembly processes of fungal sub-
communities along with conservation tillage strength, (iii)
different tillage and straw managements change the network
structure for fungi sub-communities. The findings may provide
a theoretical and practical foundation for sustainable agriculture
development from a microbial ecology perspective.

MATERIALS AND METHODS

Site Description and Soil Sampling
The study site is situated in Fengqiu National Agro-Ecological
Experimental Station (35◦00′N, 114◦24′E), Chinese Academy of
Sciences, Henan province, Central China. This area has a typical
temperate continental monsoon climate, with an average annual
temperature of 13.9◦C and an average annual rainfall of 615 mm.
The test soil is classified as Aquic Inceptisol, which is developed
from the alluvial sediments of the Yellow River.

The long-term conservation field was commenced in 2006
and based on a completely randomized block design with three
replications. The current experiment was set up in a maize-wheat
crop rotation with four treatments: (1) tillage for wheat and no-
tillage for corn (conventional tillage, CT), (2) tillage for wheat and
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no-tillage for corn plus straw mulching (CTS), (3) no-tillage for
wheat and corn (NT), (4) no-tillage for wheat and corn coupling
straw mulching (NTS). Regarding tillage practice, soils were
plowed to 20–22 cm depth with a moldboard plow. Regarding
straw mulching, residues were crushed into 2–3 cm pieces for
maize and 6–7 cm pieces for wheat, and then were spread evenly
on the soil surface as mulch. The amount of straw was related
to the yield of the plot. As for no-straw mulching treatments, all
residues were removed from the plots. Each experimental plot
was 14 m × 6.5 m in size. Three soil samples were randomly
collected from each plot from the surface layer of soil (0–20 cm)
using a sterile soil driller. The three samples were immediately
mixed to form a composite soil sample. The composite samples
were sieved through a 2 mm sieve so as to homogenize them and
remove plant roots and stones, before being transferred to the
laboratory for storage at 4◦C for measuring soil physicochemical
properties, and at−80◦C for DNA extraction.

Analysis of Soil Physical and Chemical
Properties
The physicochemical properties of all twelve soil samples were
determined. Soil pH was determined using a pH meter (FE20-
Five Easy PlusTM, Switzerland) with a 1:2.5 soil/water mixture.
In addition, we measured the total organic carbon (TOC), total
phosphorus (TP), alkaline nitrogen (AN), total nitrogen (TN),
total potassium (TK), available phosphorus (AP), and available
potassium (AK), following the method in Bao (2000).

DNA Extraction and ITS Sequencing
Genomic DNA was extracted from approximately 0.5 g of
fresh soil using a Fast DNATM Spin Kit (MP Biomedicals,
United States), following the manufacturer’s instructions. The
quality of the extracted DNA was determined using a NanoDrop
2000 Spectrophotometer (Thermo Scientific, Wilmington, DE,
United States). The fungal-specific ITS1 region was amplified
with the ITS1F (CTTGGTCATTTAGGAAGTAA) and ITS2
(GCTGCGTTCTTCATCGATGC) primer sets (Mueller et al.,
2014). The following PCR conditions were used: initial
denaturation at 94◦C for 30 s, 35 cycles consisting of 15 s
of denaturation at 98◦C, 30 s of annealing at 55◦C, followed
by 45 s at 72◦C, and a final extension for 10 min at 72◦C
(Schmidt et al., 2019). Pooled PCR products were purified
using the GeneJETTM Gel Extraction Kit (Thermo Scientific,
United States). Finally, Personalbio Biotechnology Institute
(Shanghai, China) sequenced the purified products using an
Illumina Miseq platform (Illumina, United States).

Processing of Sequence Analysis
The microbiome sequences was processed using QIIME pipeline
(Version 1.9.0) (Caporaso et al., 2012), and low-quality
sequencing reads with a length shorter than 150 bp, and
with an average base quality score < 20 were discarded from
further analysis. Operational taxonomic units (OTUs) were
clustered at a ≥ 97% similarity level using the UCLUST feature
in QIIME 1 (Edgar et al., 2011). Taxonomic identification
of representative sequences was performed using the BLAST

database. Genomic sequencing data has been deposited in the
NCBI Sequence Read Archive (BioProject ID PRJNA764374,
submission ID SUB10399701).

Statistical and Bioinformatics Analysis
We defined rare, intermediate and abundant fungal sub-
communities to support the understanding of fungal community
variation. OTUs with relative abundance above 0.5% were defined
as “abundant,” while those below 0.01% were defined as “rare.”
Those taxa with relative abundance between 0.5 and 0.01%
OTUs were defined as “intermediate.” We calculated the relative
abundance of these sub-communities across all samples. This
definition was based on previous research (Liu et al., 2015;
Jiang et al., 2019).

Alpha-diversity indices (Shannon and Chao1) were calculated
using MOTHUR. Significant differences in α- diversity and in soil
properties were analyzed by ANOVA using SPSS (Version 21.0,
SPSS, Chicago, IL, United States). Fungal sub-community alpha-
diversity indices were calculated using the R package “vegan,” and
analyzed by one-way ANOVA in SPSS.

Volcano plots were used to show the differential abundance
of OTUs. We selected the false discovery rate (FDR) to adjust
p-values (Love et al., 2014). The log2 Fold Change (log2FC) and
adjusted p-values were calculated using the R package “DESeq2.”
The OTUs’ differential abundance plots were constructed using
the R package “ggplot2.” PCA was performed using the
“Principal Component analysis” application in the OriginPro
2021 (Version 9.80).

Linear discriminant analysis (LDA), combined with effect
size (LEfSe) measurements, were performed in order to find
statistical biomarkers between treatments (Segata et al., 2011).
This analysis was conducted on the Hutlab Galaxy website
application1. Spearman correlations in R (Version 4.1.1) were
used to evaluate the relationship between various environmental
factors. The correlation between fungal sub-communities and
environmental factors were normalized by using the Mantel test
(Diniz-Filho et al., 2013).

The assembly processes of fungal sub-communities were
constructed using the “ses.comdistnt” function in the “MicEco”
package (Stegen et al., 2012), with the beta mean nearest
taxon distance (βMNTD) metric used to determine turnover
in the phylogenetic structure of community. Meanwhile, the
stochastic and deterministic ecological processes of fungal sub-
communities were evaluated through null model analysis (Stegen
et al., 2012). This method uses randomizations to estimate
the standard deviation of the observed βMNTD compared
to a null distribution (999 randomizations) for each βMNTD
estimate. The β-nearest taxon index (βNTI) was used to evaluate
the deviation between the mean of the null βMNTD and
observed βMNTD, expressed in units of standard deviations
(Stegen et al., 2013).

In order to analyze the fungal assembly processes
quantitatively, we determined the proportion of dispersal
limitation and undominated for stochastic processes, and
variable selection and homogeneous selection for deterministic

1http://huttenhower.sph.harvard.edu/galaxy/
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processes. This was done in the “iCAMP” R package (Ning et al.,
2020). Variations were investigated by comparing β-diversity
metrics (βNTI values and RCbray). Meanwhile, the influences
of the variable selection and homogeneous selection fractions
were determined according to thresholds of βNTI values > 2
and < −2, respectively. The relative influence of dispersal
limitation was quantified as a pairwise comparison between
|βNTI| < 2 and RCbray > 0.95, whereas |βNTI| < 2 and
RCbray < 0.95 was used to estimate the influence of undominated
process (Stegen et al., 2013, 2015).

Microbial networks were created to construct the interaction
networks for tillage (CT and CTS) treatments and no-tillage
(NT and NTS) treatments, straw mulching (CTS and NTS)
and no-straw mulching (CT and NT). In our study, abundant,
intermediate and rare OTUs were used for network construction.
The Spearman’s rank correlation coefficients were calculated
using the R package “psych.” The correlation coefficients
(P< 0.05 and r > 0.6) were corrected for analysis of network. The
network graphs were visualized and the topological properties
of the network were calculated using Gephi software (Version
0.9.22). OTUs in the networks were identified as potential plant
pathogens using FUNGuild tool (Nguyen et al., 2016).

RESULTS

Richness and Diversity Indices of Fungal
Communities
The Shannon estimator for fungal diversity was found to be
significantly greater in conventional tillage (CT) than in no-tillage
and straw mulching treatments (CTS, NT, and NTS). While the
Chao1 richness index was markedly lower in the conventional

2https://gephi.org/

treatment (CT) than in the conservation tillage groups (CTS, NT,
and NTS) (Figure 1). We discovered that the richness indices had
significantly higher values in the plots subject to straw retention
practices (CTS and NTS) than in those subject to other tillage
practices (CT and NT).

Depleted and Enriched Operational
Taxonomic Units Response to Different
Tillage Systems, and Variations of Fungal
Community Structure
We conducted groups comparison analysis to identify OTUs
where abundance was strongly influenced by straw mulching
(CTS vs. CT and NTS vs. NT) and tillage (CT vs. NT and
CTS vs. NTS). OTUs where relative abundance significantly
increased or decreased were referred to as “Enriched OTUs”
and “Depleted OTUs,” respectively. These enriched and depleted
OTUs were found to occur only in abundant and intermediate
taxa (Figure 2). There were, respectively, 12 and 46 enriched
OTUs in the “CTS vs. CT” group, and 8 and 27 enriched OTUs
were in the “NTS vs. NT” group (Figures 2A,B). Thus, there
were more enriched than depleted OTUs under straw mulching
practice. Furthermore, both abundant and intermediate fungal
taxa exhibited more enriched than depleted OTUs in the tillage
comparison groups (Figures 2C,D).

Principle component analysis (PCA) of the fungal sub-
communities among the four treatments showed that the
structure of abundant and intermediate taxa communities
were obviously distinct (Supplementary Figure 1). Our results
indicated that conservation tillage significantly affected the
abundant and intermediate taxa communities. In respect to the
abundant taxa, the two principal components account for 54.4%
of the total variance. In contrast, in rare taxa, the two principle
components account just 33.2% of the total variance.

FIGURE 1 | Fungal alpha diversity associated with different soil treatments. The indices of diversity and richness are shown as Shannon (A) and Chao1 (B),
respectively. Statistically significant differences between different treatments were determined by T-test ANOVA (p < 0.05). The symbols *, ** are used to show
statistical significance at the 0.05, 0.01 level, respectively.
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FIGURE 2 | Volcano plots illustrating OTUs significantly enriched (red) and depleted (blue) by straw mulching (A,B) and tillage (C,D) managements for fungal
sub-communities. Each point indicates an individual OTU.
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Fungal Communities With Statistically
Significant Differences
The Cladogram in Figure 3 shows the phylogenetic distribution
of fungal lineages that were markedly associated (LDA
value > 3) with samples from different tillage management
fields (Figures 3A,B). LEfSe was applied to find statistically
different biomarkers among four treatments. In the CTS
treatment, three groups were significantly enriched, namely
Eurotiales (from order to genus), Cordycipitaceae (from family
to genus) and Stachybotrys (genus). In the NTS treatment, the
enriched fungi was Agaricomycetes (from class to genus). In the
CT treatment, the fungal taxa were mostly enriched at the family
level, including Myxotrichaceae, Erysiphaceae, Chaetomiaceae,
Incertaesedis, and Lasiosphaeriaceae. In the NT treatment,

six groups were found to be significantly enriched, namely
Onygenales (from order to genus), Oidiodendron and Podospora
(genus), Microascales (from order to genus), Gloeophyllales
(from order to genus), Chaetomiaceae (its genus Humicola and
Mycothermus) (Figure 3A).

Correlation of Fungal Sub-Communities
With Environmental Factors
As illustrated in Supplementary Table 1, TOC, TN, AN, AP, and
AK were increased in straw mulching treatments (CTS and NTS)
compared to no-straw treatments (NT and CT), indicating that
straw mulching probably helps to accumulate nutrition in the soil
layer. No-tillage (NT and NTS), meanwhile, increased the content
of TP compared to tillage (CT and CTS) treatments.

FIGURE 3 | Cladogram showing the phylogenetic distribution of the fungal lineages associated with soil from the four treatments (A). Indicator fungi with LDA
scores > 3 (B). Different colors represent different treatments (red, CTS; green, NTS; blue, CT; purple, NT). The circle from inside to outside represents phylogenetic
levels from domain to genus, with its diameter reflecting the relative abundance of fungi.
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FIGURE 4 | Pairwise comparisons of soil properties and their effects on fungal sub-communities composition in four treatments, with a color gradient denoting
Spearman’s correlation coefficients. Edges represent Mantel’s r for correlations, and the color corresponding to the significance. (A) CT. (B) CTS. (C) NT. (D) NTS.

In the CT treatment, most of the soil properties were
negatively correlated with fungal sub-communities (Figure 4A).
The results showed that AP has a positive correlation with
abundant, intermediate and rare taxa, TN and pH significantly
influence the composition of intermediate and rare taxa in the
CTS treatment (Figure 4B). In the NT treatment, three fungal
sub-communities were simultaneously influenced by multiple
factors including TN, AN, AP and TK (Figure 4C). As for NTS
treatment, environmental factors (TOC, TN, AN, TP, AP and TK)
mainly had a positive influence on intermediate and rare taxa
(Figure 4D). Overall, AP and TN were the strongest correlates of
fungal sub-communities in the conservation tillage treatments.

Assembly Processes in Abundant,
Intermediate and Rare Fungal
Sub-Communities
Briefly, |βNTI| > 2 and |βNTI| < 2 represent the deterministic
and stochastic processes, respectively. With respect to abundant
fungal taxa, deterministic processes comprised more than
62.5% of the assembly processes in CTS and NT treatments,
while stochastic processes comprised more than 55.5% of the
processes shaping abundant sub-communities in CT and NTS
treatments (Figure 5A). The distribution of βNTI values across
all treatments showed that stochastic processes comprised more

than 84.8% of the assembly processes shaping intermediate and
rare taxa (Figures 5B,C).

We also used quantitative analyses to explain the assembly
processes of fungal sub-communities more fully. Dispersal
limitation contributed the largest fraction to the assembly
of both rare (>84.8%) (Figure 5C) and intermediate sub-
communities (>93.9%) (Figure 5B). Homogeneous selection
(> 62%) contributed a large fraction to the assembly of abundant
sub-communities in CTS and NT treatments, followed by
dispersal limitation. By contrast, in NTS and CT treatments,
dispersal limitation (> 55%) contributed a lager fraction to
the assembly of abundant sub-communities than homogeneous
selection (Figure 5A). The undominated process (6.06%),
variable selection (< 9%) contributed smaller fractions to the
fungal assembly processes (Figures 5B,C).

Tillage and Straw Mulching Practices
Changed the Fungal Co-occurrence
Patterns
We used co-occurrence network analysis to reveal the complexity
of fungal sub-community networks (Figure 6). The fungal
empirical co-occurrence patterns differed significantly with the
application of the different tillage practices. As revealed by the
network parameters (Supplementary Table 2), both abundant
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FIGURE 5 | Scatter plot of βNTI values and quantitative analysis of the assembly processes that govern the turnover of abundant (A), intermediate (B) and rare (C)
taxa communities in four treatments. The blue line represents the median values of each treatment.

and intermediate fungal taxa had less complexity in no-tillage
treatments than in tillage treatments. The tillage treatments
increased the number of nodes and edges compared to no-
tillage treatments for abundant and intermediate taxa. The
number of edges increased by 2.5-fold (the sum of abundant
and intermediate taxa) in tillage treatments, indicating the
strong interaction in the abundant and intermediate fungal
sub-communities. In respect to rare taxa, however, there were
no significant changes in the number of nodes and edges
in tillage treatments compared to no-tillage treatments. Straw
mulching, meanwhile, reduced the complexity of the abundant
and intermediate taxa network, as reflected by the lower number
of nodes and edges (Supplementary Table 2).

Tillage management was also shown to have different effects
on the topological properties of fungal sub-communities. The
average clustering coefficient and average degree decreased, but
the average path length increased in the no-tillage treatment
for abundant and intermediate taxa, while the changes in these
topological properties were not significant for the rare taxa.
These results showed that the tillage practice notably increased
the proportions of positive links in the abundant taxa (61.1%

in tillage and 45.3% in no-tillage). The proportions of positive
links in abundant taxa were also increased in no-straw mulching
(57.7%) compared to straw mulching (43.8%). Our result showed
that no-tillage practices had more abundances of potential plant
pathogens than tillage practices. Straw mulching had the highest
abundance of potential plant pathogens among four practices,
and these pathogens mainly have positive correlation with other
fungi in the networks (Supplementary Table 3).

DISCUSSION

Effects of Conservation Tillage on Fungal
Alpha Diversity
Our finding indicated that conservation tillage practices
significantly increased fungal richness, but no significant effect
on fungal diversity, which is consistent with previous research
(Wang et al., 2020a). In this study, we found that conservation
tillage (CTS, NTS, and NT) has higher organic carbon content
than CT (Supplementary Table 1), previous study indicated that
fungal richness was significantly correlated to soil organic carbon
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FIGURE 6 | Network co-occurrence analysis (Spearman’s ρ > 0.6 and significant p < 0.05) of fungal sub-communities in the tillage (CT and CTS) and no-tillage (NT
and NTS) treatments, no-straw mulching (CT and NT) and straw mulching (CTS and NTS). The size of each node is proportional to the relative abundance; red lines
and blue lines represent positive and negative correlations, respectively; nodes of the same color belongs to the same phylum. (A) Tillage (CT and CTS).
(B) No-tillage (NT and NTS). (C) No straw mulching (CT and NT). (D) Straw mulching (CTS and NTS).
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(SOC) content, thereby contributing to soil fungal richness (Yang
et al., 2012). Additionally, a previous study demonstrated that
conservation tillage practices have no favorable effect on fungal
community diversity (Degrune et al., 2016). A study noted that
conservation tillage management can lead to greater fungal
diversity by changing soil microenvironment (Wang et al., 2017).
This disparate understanding of the effect of conservation tillage
on the soil fungal community may be due to the complexity
of the environmental conditions. For example, soil with high
clay and sand fractions can lead to modification in fungal
community (Bach et al., 2010). Soil management histories (forest
to cultivated land vs. longstanding cultivation) are also key
factors (Degrune et al., 2016).

Straw Mulching and Conventional Tillage
Affected the Fungal Community
Structure
We picked out enriched and depleted OTUs to analyze the
differences in the fungal sub-communities using differential
abundance analysis. We observed that abundant and
intermediate taxa had enriched and depleted OTUs except
rare taxa. Compared to CT treatment, CTS increased the
proportion of enriched OTUs more than depleted OTUs in
abundant and intermediate taxa. NTS, meanwhile, increased
the proportion of enriched OTUs more than depleted OTUs.
These results indicate that straw mulching helps fungi to grow.
Organic farming practice has positive effect on fungi biomass,
probably because carbon content is the key factor that governing
microbial growth (Birkhofer et al., 2008; Wang et al., 2017).
Although NT can provide more favorable conditions (a cooler
and moist environment) than CT (Helgason et al., 2009), our
results showed that CT enriched more OTUs than NT. Soil
disturbance can improve the distribution of plant residues and
substrate availability, distributing soil aggregates and releasing
particulate organic matter, and thus supporting the growth of
micro-biota (Chaer et al., 2009).

Conservation tillage can affect residue decomposition and
alter gas and water movement, leading to changes in fungal
community patterns (Holland, 2004; Wang et al., 2016, 2017).
The PCA results showed that conservation practices significantly
influence on abundant and intermediate taxa, but do not have
a significant influence on rare taxa community structure. In our
study, the total variance explained by PCA was much higher
for the abundant sub-community (54.4%) than for the rare sub-
community (33.2%). Rare microbes have a large proportion of
unexplained variation because rare taxa are more subject to biotic
interaction (e.g., competition) and have discrepant ecological
niches (Liu et al., 2015; Lopes and Fernandes, 2020).

We used LEfSe analysis to understand the variation in fungal
communities in long-term conservation fields more fully. This
method can analyze the microbial community at any clade. We
retained the taxa with significant differences and filtered out those
without significant differences. Statistical analysis was performed
from phylum to genus.

According to the LEfSe results, Eurotiales were enriched in
CTS treatment. A recent study has demonstrated that organic

matter can promote the growth of fungal taxa, and Eurotiales
is important for the SOC decomposition process (Wang et al.,
2021). One of the other fungi found to be enriched in the plots
subject to NTS treatment was Agaricomycetes, which can degrade
various substrates, such as cellulose and lignin (Zhang et al.,
2021). Decomposition of crop residues on the soil surface could
therefore be enhanced by this fungal growth. In addition, a recent
study has shown that Scedosporium, which is considered to have
pathogenic potentials, is enriched in NT treatment (Kitisin et al.,
2021). On the other hand, Wang et al. (2020a) found that NT may
increase the risk of stubble-borne diseases.

Environmental Drivers of Fungal
Sub-Communities Under Conservation
Practice
No-tillage and straw mulching have been found to have a
significant effect on soil nutrient parameters (Wang et al., 2020a).
Our results showed that NT significantly increased the soil TP
content, probably on the basis that it increases the residual
P concentration in the soil surface layer (Jansa et al., 2003).
Furthermore, crop residual acts as a carbon source as well as
increasing the organic matter content of soil (Bu et al., 2020). We
also observed that TOC, TN, and AN contents increased under
straw mulching treatments, which is in line with a previous study
reporting that the use of cover crops accounted for most of the
N increase associated with crop rotation effects (McDaniel et al.,
2014). Overall, conservation tillage treatment improves nutrition
conditions for soil microbial communities.

Previous studies have revealed that pH and nutrient levels are
key predictors of fungal composition (Lauber et al., 2008; Rousk
et al., 2010). Our findings support this by showing that AP, TN
and AN simultaneously influenced the fungal sub-communities
in NT treatment. In the conservation tillage treatments (CTS,
NT and NTS), soil properties were closely related to fungal
sub-communities. In contrast, there was a mainly negative
relationship between fungal sub-communities and soil properties
in CT treatment.

Different Assembly Processes
Experienced by Abundant, Intermediate
and Rare Fungal Sub-Communities
Uncovering the underlying microbial assembly processes is a
key subject for microbial ecology (Nemergut et al., 2013).
It is generally recognized that spatial heterogeneity and
environmental filtering contribute to the microbial assembly and
community structure (Xue et al., 2021). Our results showed that,
in CTS and NT treatments, the assembly of abundant fungal
taxa was governed by deterministic processes, whereas in CT
treatment sub-community assembly was governed by stochastic
processes. A significant correlation between environment factors
and fungal sub-communities was found in NT and CTS.
Specifically, it was revealed that no-tillage and straw mulching
positively influenced the soil properties and this shaped the
abundant sub-community.

The assembly of abundant taxa in plots subject to NTS
treatment, however, was governed by stochastic processes, and
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the abundant taxa diversity indices (Shannon) were higher
in NTS plots than those subject to CTS or NT treatments
(Supplementary Table 4). NTS can therefore serve to increase
the diversity of the fungal community, probably by increasing
the total C and bioavailable C (Navarro-Noya et al., 2013). High-
diversity communities are dominated by stochastic processes,
while low diversity ones depended on deterministic processes
which constrained the community function (Xun et al., 2019),
which in line with our findings. Similarly, intermediate and
rare fungal taxa were dominated by stochastic processes, while
abundant taxa exhibited a remarkably wide response to the
ecological preferences in agriculture fields (Jiao and Lu, 2020a).

Previous studies have indicated that the assembly processes
of different sub-communities rely on different environmental
factors in the agro-ecosystem (Jiao et al., 2017; Jiao and
Lu, 2020b). Homogeneous selection significantly affected the
abundant sub-communities in NT and CTS treatments, whereas
rare and intermediate sub-communities were more subject to
dispersal limitations. This contrasts with previous research
appearing to show that rare sub-communities are governed
mainly by homogeneous selection (Jiao and Lu, 2020a). These
discrepancies may be caused by straw retention and no-tillage
practices and by geography (Shi et al., 2018). The dominant
status of homogeneous selection in CTS and NT plots suggests
that abundant taxa are more sensitive to conservation practice,
while the fact that dispersal limitation dominated the rare and
intermediate taxa implied a weak link with no-tillage and straw
retention practices.

To understand the assembly processes of fungal sub-
communities more fully, we established a conceptual model
(Figure 7). This presents that ecological processes can emerge
in the following forms: (i) under weak strength selection

(conventional tillage conditions), the establishment of fungal
sub-communities is dominated by stochastic processes, (ii)
under medium strength selection (straw mulching or no-tillage
practices), changes in environment conditions enhance the
selection leading to deterministic processes dominating in the
abundant sub-community, (iii) strong strength selection (straw
mulching combined with no-tillage) increase the diversity of the
abundant fungal sub-community and thus induced stochastic
processes. Notably, intermediate and rare sub-communities are
consistently dominated by stochasticity. These microbial taxa
are characterized by high levels of organismal dispersal, and
influenced by stochastic birth or death rather than environmental
filters (Dini-Andreote et al., 2015).

No-Tillage and Straw Mulching Practices
Changed the Co-occurrence Patterns of
Abundant and Intermediate Taxa
In the present study, we observed that no-tillage and straw
mulching reduced the complexity of the abundant and
intermediate fungal taxa network, while conservation tillage
practices had no significant influence on the rare taxa network.
Previous studies showed that agricultural intensification reduced
the complexity of the microbial network, and tillage practice
was considered to be harmful to the extension of fungal mycelia
(Caesar-TonThat et al., 2010; Banerjee et al., 2019). Our results,
however, showed that conventional tillage increased the fungal
interaction and the proportion of positive link in abundant taxa
compared to conservation tillage treatments.

Our results might be explained by recognizing that microbial
ecology is affected by nutrient availability, aeration, moisture
and pH (Fierer and Jackson, 2006). It may be that the

FIGURE 7 | Conceptual model showing how ecological selection dominates the structure of fungal sub-communities through conservation tillage strength. Weak
conservation tillage strength, CT; Medium conservation tillage strength, CTS and NT; Strong conservation tillage strength, NTS.
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full soil inversion created by tillage practice can promote
soil nutrients used by fungi and strengthen the links in
the microbial network (Six et al., 2000; Le Guillou et al.,
2012). Furthermore, another recent study has found that the
abundance of arbuscular mycorrhizal fungi (AMF) was higher
in conventional than in conservation tillage, which the authors
explained by the dilution of P in the surface soil layer in
tillage practice (Lopes and Fernandes, 2020). Wang et al. (2020a)
found that straw mulching decreased both fungal and bacterial
network complexity, possibly due to straw mulching created
favorable nutrient conditions for fungi, decreasing microbial
inhibition and competition, and thus weakening interaction and
negative relevance (Bronstein, 1994; Cao et al., 2018). These
results indicated that conventional tillage practice can deliver
a more stable fungal network in corn-wheat rotation systems.
In our study, compared to tillage practices, NT practices had
more abundances of potential plant pathogens. Straw mulching
practices had more abundances of plant pathogens than no-straw
mulching practices. Conservation tillage can enhance the growth
of plant pathogens by concentrating plant debris, and tillage
practices might alleviate the ecological risks of the pathogens
(Sturz et al., 1997; Hu et al., 2021). We observed that potential
plant pathogens mainly have positive correlation with other fungi
in the networks, might due to the cooperation of fungi in the
decomposition of straw residues (Hu et al., 2021).
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1 State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese 
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Bifidobacteria is an important microbe that inhabits the human gut. It is capable of 
metabolizing complex compounds in the human diet. Albiflorin, an antidepressant natural 
product from Radix Paeoniae Alba in China, is difficult to absorb after oral administration, 
and its metabolism has been proven to be closely related to the gut microbiota. In this 
study, we demonstrated in vitro that several Bifidobacteria species were able to convert 
albiflorin to benzoic acid, and four esterases (B2, B3, B4, and BL) from Bifidobacterium 
breve and Bifidobacterium longum were found through genome mining and modeled by 
SWISS-MODEL. B2 and B3 presented the strongest albiflorin metabolism ability. The 
optimal conditions, including temperature, buffer, and pH, for the conversion of albiflorin 
by the four esterases were investigated. Furthermore, the effect of esterase on the 
metabolism of albiflorin in vivo was confirmed by transplanting bacteria containing esterase 
B2. This study demonstrated the vital role of esterases from Bifidobacteria in the metabolism 
of natural compounds containing ester bonds, which could contribute to the development 
of new enzymes, microbial evolution, and probiotic adjuvant compounds for treatment.

Keywords: gut microbiota, genome mining, esterase structure, metabolism, Bifidobacteria, albiflorin, benzoic 
acid

INTRODUCTION

The human gut microbiota is mainly composed of anaerobic bacteria, and the number of cells 
per gram of intestinal contents exceeds 1011 (Sender et  al., 2016). The dense gut microbiota 
greatly affects the host’s metabolic capacity, nutritional status, and immune system development 
(Nicholson et  al., 2012). In adults, intestinal bacteria mainly comprise species from Firmicutes, 
Bacteroides, Actinobacteria, and Proteobacteria. Actinomycetes are mainly represented by species 
of the genus Bifidobacterium, accounting for 2–10% of adult intestinal bacteria (Turroni et  al., 
2008; Arumugam et  al., 2011). Nowadays, gut microbiota deviations are linked with many 
diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs), 
and several types of cancer (de Vos et  al., 2022). The gut microbiota has both direct and 
indirect effects on drug and xenobiotic metabolisms, and this can have consequences for both 
efficacy and toxicity (Wilson and Nicholson, 2016). Bifidobacteria are some of the most important 
probiotics in gut microbiota (Rossi and Amaretti, 2010). They play a beneficial role via multiple 
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mechanisms, such as immune stimulation, anticancer activity, 
inhibition of pathogen growth, production of vitamins and 
amino acids, reduction of cholesterol, alleviation of the symptoms 
of irritable bowel syndrome, treatment of mood disorders, and 
bioconversion of a variety of natural compounds into bioactive 
compounds (Whorwell et al., 2006; Fanning et al., 2012; Ventura 
et  al., 2014; Zanotti et  al., 2015). Therefore, research on the 
relationship between humans and Bifidobacteria, including its 
beneficial effects on human health and its symbiosis mechanism, 
has received extensive attention. As important probiotics, 
Bifidobacteria species possess abundant enzymes that are of 
great significance. Recent studies have shown that the esterase 
of Bifidobacterium longum can metabolize hydroxycinnamic 
acid from food (Kelly et  al., 2018), and the sialidase of 
Bifidobacterium bifidum can catalyze the removal of terminal 
sialic acids from various complex carbohydrates (Ashida et  al., 
2018). The esterases in Bifidobacteria can metabolize chlorogenic 
acid in food (Raimondi et  al., 2015). However, little is known 
about the esterases of Bifidobacteria and drug metabolism.

As the main component of Xiaoyao Wan, a common Chinese 
patent medicine prescribed for the treatment of depression-like 
disorders, albiflorin has poor bioavailability (5.4%) and can 
hardly cross the blood–brain barrier. The level of albiflorin in 
the blood and brain is considerably low after oral administration 
(Huang et  al., 2014). Previous research by our group found 
that Bifidobacteria in intestinal bacteria are closely related to 
the metabolism of albiflorin. The characteristic metabolite is 
benzoic acid (BA). The esterase in Bifidobacteria may be  one 
of the key metabolic enzymes in the metabolic process (Zhao 
et al., 2018). Similarly, the esterase of Bifidobacteria is involved 
in the conversion of albiflorin, which is also the main component 
of Xiaoyao Wan (Yu et  al., 2019). Esterases and lipases are 
two major hydrolases that can cleave ester bonds. Both of 
them have an α/β-hydrolase fold and contain a consensus 
sequence (Gly-X-Ser-X-Gly) adjacent to the catalytic triad 
Ser-Asp-His (Kroon et al., 2000; Bornscheuer, 2002). In contrast 
to lipases, esterases generally obey classical Michaelis-Menten 
kinetics and hydrolyze compounds that have less than six 
carbons (Arpigny and Jaeger, 1999; Bornscheuer, 2002).

This study aimed to explore the ability of probiotic 
Bifidobacteria species to hydrolyze albiflorin into benzoic acid 
and to identify the enzymes involved in this reaction. Hydrolysis 
seems to be  a characteristic phenomenon of Bifidobacteria. 
Four Bifidobacteria strains found in the human intestine were 
chosen for the conversion of albiflorin. We detected the activity 
of esterases in Bifidobacterium breve and B. longum, which 
can hydrolyze albiflorin. By genome mining and modeling with 
SWISS-MODEL, four esterases were found, and they all have 
the core domain of esterase, but the surrounding regions are 
very different. The functional characterization of the four 
esterases, which were expressed in Escherichia coli, was performed 
and compared under different conditions. Further, we  proved 
the important role of esterase B2  in affecting the metabolism 
of albiflorin and improving the concentration of benzoic acid 
in plasma by pharmacokinetic study in vivo with bacteria 
transplantation. This demonstrated the possible role of 
Bifidobacteria in albiflorin metabolism, which revealed new 

prospects for the development of novel enzyme preparations 
and probiotics specifically designed for the enhancement of 
the bioconversion of traditional Chinese medicinal (TCM) 
chemicals into biologically active compounds.

MATERIALS AND METHODS

Chemicals, Bacterial Strains, and Culture 
Conditions
Albiflorin, benzoic acid, propranolol, anaerobic medium, and 
MRS broth medium were all purchased from Solarbio (Beijing, 
China). The purity of the compounds was higher than 98% 
(HPLC). Albiflorin and benzoic acid were dissolved to prepare 
a 0.5 mmol/L stock solution in water. HPLC-grade ammonia, 
acetonitrile, and methanol were obtained from Fisher Scientific 
(Fair Lawn, NJ, United  States).

The bacterial strains and plasmids employed in this study 
are listed in Supplementary Table S1. Four Bifidobacteria 
strains (B. breve ATCC15700, B. longum ATCC15697, 
Bifidobacterium animalis ATCC27673, and Bifidobacterium 
adolescentis ATCC15703) were provided by the ATCC Biological 
Resource Center. The Bifidobacteria strains were cultured in 
MRS medium at 37°C under anaerobic conditions in N2 gas. 
The E. coli strains DH5α and BL21 (DE3) were used to clone 
the pET-28a plasmid and express the esterase protein, respectively. 
The E. coli strain was grown in Luria-Broth (LB) medium 
(10 g/L trypsin, 5 g/L yeast extract, and 5 g/L NaCl, pH 7.2) 
at 37°C. If necessary, 10–15 μg/ml kanamycin (km) was added 
to the medium.

The concentrations of albiflorin and benzoic acid were 
determined using an HPLC-MS/MS 8050 system from Shimadzu 
Corporation (Kyoto, Japan). The substance to be  tested was 
separated in liquid phase with an Alltima C18 column 
(100 mm × 2.1 mm × 5 μm, Grace, England). The gradient elution 
started with 80% mobile phase A (water) and decreased to 
50% mobile phase A over 5 min at a flow rate of 0.4 ml/min. 
Then, it was maintained at 50% for 2 min and returned to 
80% mobile phase A over 1 min, where it was maintained for 
10 min. Mobile phase B consisted of methanol. The column 
temperature and autosampler temperature were set at 30°C 
and 4°C, respectively. The mass spectrometer was run in multiple 
reaction monitoring (MRM) mode: 503.00 → 341.05 (m/z) for 
albiflorin (+), 121.10 → 77.10 (m/z) for benzoic acid (−), and 
260.20 → 116.10 (m/z) for propranolol (−). The sample processing 
method was as follows: 100 μl of sample was added to 300 μl 
of methanol containing 50 ng/ml of internal standard 
(propranolol). Then, the mixture was vortexed for 30 s and 
centrifuged at 12,000 rpm for 10 min. The supernatant was 
prepared for quantitative analysis by LC-MS/MS, and the 
injection volume was 1 μl.

Animals
Sprague-Dawley (SD) male rats weighing 200 ± 20 g and ICR 
mice weighting 18 ± 22 g were provided by the Institute of 
Laboratory Animal Science, Chinese Academy of Medical 
Sciences (Beijing, China). The animals were placed in a cage 
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with free access to chow and water. The temperature of the 
cage was kept at approximately 22°C with 50% humidity and 
a 12-h  day/night cycle. Rats were fasted for 12 h before the 
experiment but had free access to water. This study was 
conducted in accordance with institutional and ethics guidelines 
approved by the Laboratory Institutional Animal Care and 
Use Committee of the Chinese Academy of Medical Sciences 
and Peking Union Medical College.

Bioconversion of Albiflorin With Rat 
Intestinal Bacteria and Bifidobacteria 
Strains
We obtained the colon contents from six SD rats and transferred 
5 g of the collected sample into 100 ml anaerobic medium. 
Then, the mixture was preincubated under anaerobic conditions 
(N2 atmosphere) at 37°C for 1 h. After preincubation, 10 μl of 
albiflorin was transferred into 990 μl of the culture. The cultures 
were inactivated by high temperature and high pressure at 
121°C as a negative control. The final concentrations of albiflorin 
in the incubation system were 0.05 mM and 0.5 mM. The 
cultures were incubated at 37°C for 0, 12, or 24 h. The method 
was performed in accordance with the previously described 
procedure (He et  al., 2017).

Albiflorin and its metabolite were analyzed by an Alltima 
C18 column (100 mm × 2.1 mm × 5 μm, Grace, England) with an 
LC/MSn-IT-TOF system (Shimadzu Corporation, Kyoto, Japan) 
in both positive and negative modes. Mass spectra were acquired 
in the range of m/z 100–1,000 for MS1. The MSn data were 
collected in automatic mode. An elution gradient was employed 
at a flow rate of 0.4 ml/min, with water as mobile phase A 
and methanol as mobile phase B, by using the following 
program: 0.10 min (90% A and 10% B), 3.00 min (60% A and 
40% B), 7.00 min (40% A and 60% B), 9.00 min (10% A and 
90% B), 9.01 min (90% A and 10% B), and 12.00 min 
(controller stop).

Four strains of Bifidobacteria, B. breve ATCC15700, B. longum 
ATCC15697, B. animalis ATCC27673, and B. adolescentis 
ATCC15703 were cultured to convert albiflorin in vitro. After 
resuscitation, the strains were cultured overnight in MRS 
medium at 37°C under anaerobic conditions (N2 atmosphere), 
and the bacterial concentration was uniformly maintained at 
3 × 106 cells/ml. The cultures were incubated at 37°C for 0, 
12, and 24 h, and the final concentration of albiflorin in the 
incubation system was 0.05 mM. The contents of albiflorin and 
its metabolite benzoic acid were determined and analyzed by 
LC-MS/MS.

Bioinformatics Analyses
The NCBI database1 was used to search the genomes of B. breve 
and B. longum for genes labeled “carboxylesterase” and “esterase.” 
By searching for genes annotated as “carboxylesterase” in the 
genome of B. breve ATCC15700 (NZ_AP012324.1), we found 
three carboxylesterase genes, NZ_AP012324.1: 1013236–1014057, 
NZ_AP012324.1: 506173–507018, and NZ_AP012324.1:  
506173–507018. The amino acid sequences can be  accessed as 
WP_003829196.1 (B2, 273 aa), WP_003828396.1 (B3, 281 aa), 
and WP_003828023.1 (B4, 319 aa). By searching for the gene 
annotated as “esterase” in the genome of B. longum ATCC15697 
(NC_011593.1), we  found an esterase gene, NC_011593.1: 
c2783438-2782680, and its protein sequence can be  found in 
KAB6720564.1 (BL, 252 aa). Detailed information on each 
protein was obtained from the NCBI database, as shown in 
Table  1.

3-D structural modeling of the esterase was conducted with 
SWISS-MODEL,2 which was the first fully automated protein 
homology modeling server (Guex and Peitsch, 1997; Schwede 
et al., 2003; Bordoli et al., 2009). The SWISS-MODEL workspace 
can be freely accessed at http://swissmodel.expasy.org/workspace/. 
We used the automatic modeling mode and applied the protein 
sequences of four esterases, which were available in GenBank. 
The data obtained from the homology model were visualized 
using DeepView ver. 4.0.1 (The Swiss Institute of Bioinformatics).

Plasmids Construction for Heterologous 
Expression of the Esterases From 
Bifidobacterium breve and 
Bifidobacterium longum
To obtain the genomic DNA of B. breve and B. longum, 
extraction was carried out according to the instructions of 
the bacterial genome extraction kit (Tiangen, China). Using 
the genomic DNA of B. breve and B. longum as templates, 
Primer Premier 5.0 was used to design primers based on the 
four esterase genes (b2, b3, b4, and bl) and the vector pET-28a. 
All of the primers (b2-F, b2-R, b3-F, b3-R, b4-F, b4-R, bl-F, 
bl-R, pET28a-F, and pET28a-R) are listed in 
Supplementary Table S2. By using the genomic DNA of B. breve 
and B. longum as templates, the four esterase genes were 
amplified by PCR and then purified along with the PCR-amplified 
vector DNA using the Gel Recovery Purification Kit (Tiangen, 
China). A Gibson Assembly Kit (NEB, United States) was used 

1 http://www.ncbi.nlm.nih.gov
2 https://swissmodel.expasy.org

TABLE 1 | The information of esterases in Bifidobacteria strains.

Name
NCBI reference 

sequence
Source

Number of 
amino 
acids

Molecular 
weight

Theoretical 
pI

Superfamily Accession Definition

B2 WP_003829196.1 Bifidobacterium breve ATCC 15700 273 30,219.38 5.19 MhpC cl33968 Alpha/beta hydrolase
B3 WP_003828396.1 Bifidobacterium breve ATCC 15700 281 30,261.08 4.50 protocat_pcaD cl31213 Alpha/beta hydrolase
B4 WP_003828023.1 Bifidobacterium breve ATCC 15700 319 35,264.78 5.22 MhpC cl33968 Alpha/beta hydrolase
BL KAB6720564.1 Bifidobacterium longum ATCC 15697 252 27,695.84 4.79 Abhydrolase cl21494 Esterase
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to insert the four esterase DNA fragments into the vector 
pET-28a to construct the recombinant vectors. Escherichia coli 
DH5α cells were transformed by the heat shock method and 
used for plasmid propagation to obtain the recombinant plasmids 
pET-28a-b2, pET-28a-b3, pET-28a-b4, and pET-28a-bl. All 
fragments were validated by Sanger 3730 sequencing.

Expression of b2, b3, b4, and bl in 
Escherichia coli and Functional 
Verification
The recombinant plasmids pET-28a-b2, pET-28a-b3, pET-28a-b4, 
and pET-28a-bl were transformed into E. coli BL21 (DE3) 
cells. Cells were grown in liquid LB media supplemented with 
kanamycin (40 μg/ml). Cultures were maintained at 37°C until 
the OD600 nm reached 0.6. Then, the temperature was lowered 
to 16°C, and protein expression was induced with 0.1 mM 
isopropyl β-D-1-thiogalactopyranoside (IPTG) for 20 h. The 
bacterial cells were harvested by centrifugation (12,000 × g, 
30 min, 4°C), concentrated 10-fold, and suspended in 
approximately 10 ml of lysis buffer (10 mM PBS buffer or 25 mM 
Tris-HCl buffer). After ultrasonic lysis, the supernatant and 
precipitate were prepared for SDS-PAGE analysis, with the 
empty pET-28a plasmid in E. coli BL21 cells as a control. The 
B2 and B3 proteins were purified using the PrepEase His-tag 
protein purification kit (Takara, Japan).

Escherichia coli cells with B2, B3, B4, and BL and the cell 
extract supernatant were used for the bioconversion of albiflorin 
to characterize B2, B3, B4, and BL. Escherichia coli BL21 (DE3) 
transformed with the empty pET-28a vector was used as a 
negative control. The final concentration of albiflorin in the 
incubation system was 0.05 mM. The cultures were incubated 
at 37°C for 0, 12, and 24 h. Albiflorin and its metabolite benzoic 
acid were detected by LC-MS/MS. The enzymatic reaction 
conditions were as follows: temperatures, 30°C and 37°C; buffers, 
PBS buffer and Tris-HCl buffer; and pH, 6.0, 7.0, and 8.0. 
The LC-MS/MS conditions refer to the above 
experimental methods.

Microbiota Transplantation and 
Pharmacokinetic Study in vivo
Three groups of ICR mice (n = 6/group) were orally administered 
E. coli (1 × 1010 CFU), the E. coli with esterase B2 (1 × 1010 CFU), 
and B. breve (1 × 1010 CFU) once a day for 3 days, respectively. 
Another six ICR mice were orally administered an equivalent 
volume of saline. Pharmacokinetic evaluations were performed 
3 days after the final administration.

Before the oral administration of a single dose of albiflorin 
(7 mg/kg), the four groups of mice were fasted overnight with 
free access to water. Blood samples were collected before and 
at 5, 10, 20, 30, 45, 60, 90, 120, 180, 240, 360, and 480 min 
after drug treatment.

Statistical Analysis
Statistical analyses were performed with GraphPad Prism Version 
5 (GraphPad Software, CA, United  States) using two-way 

ANOVA and Student’s t-test. Data are expressed as the 
mean ± standard deviation, and p values less than 0.05 were 
considered statistically significant.

RESULTS

Conversion of Albiflorin Into Benzoic Acid 
in Gut Microbiota
Intestinal bacteria from SD rats were collected for anaerobic 
incubation in the presence of albiflorin, and the concentrations 
of albiflorin in the culture solution were 0.05 and 0.5 mM, 
respectively, with the inactivated intestinal bacteria culture 
functioning as a negative control. The structure of albiflorin 
(Figure 1A) includes a benzoyl group, which might be hydrolyzed 
by esterases present in gut microbiota. LC/MSn-IT-TOF was 
used for identifying albiflorin and BA. The mass spectrum of 
albiflorin is shown in Figure  1B. The m/z of the [M + Na]+ 
peak was 503, the m/z of the secondary fragments were 201, 
307, and 341, and the tertiary ion fragment had an m/z of 
175. The mass spectrum of benzoic acid is shown in Figure 1C, 
and the [M + H]+ peak of benzoic acid had an m/z of 122. 
Moreover, different concentrations of albiflorin (0.05 and 0.5 mM) 
were cultured with the intestinal bacterial culture and inactivated 
intestinal bacterial culture at 37°C for 12 and 24 h, and the 
concentrations of albiflorin and benzoic acid were determined 
after incubation. As shown in Figures  1D,E, regardless of the 
concentration, the albiflorin cultured with the intestinal bacteria 
solution was completely converted after 12 h, and the metabolite 
benzoic acid was produced. However, albiflorin cultured with 
the inactivated intestinal bacteria solution was not converted 
into benzoic acid. The results indicated that the intestinal 
bacteria of SD rats were able to metabolize albiflorin and 
convert it into benzoic acid.

Bioconversion of Albiflorin by Four 
Bifidobacteria Strains
The capability of four common Bifidobacteria strains (B. breve, 
B. longum, B. animalis, and B. adolescentis) found among 
gut microbes to metabolize albiflorin under anaerobic conditions 
over a period of 24 h was examined. The cells were maintained 
at a consistent concentration with 3 × 106 cells/ml in the 
presence of 0.05 mM albiflorin. Samples were removed at 0, 
12, and 24 h for LC-MS/MS detection. As shown in 
Figures 1F,G, B. breve, B. longum, and B. adolescentis showed 
significant metabolism of albiflorin at 12 and 24 h, while 
B. longum had the strongest ability to metabolize albiflorin 
and resulted in a high conversion rate at 24 h of 18.1%, 
followed by the rates of B. breve (16.8%) and B. adolescentis 
(1.5%). Accordingly, benzoic acid was produced differently 
by the tested Bifidobacteria strains, resulting in 7.14 μg/ml 
for B. breve, 5.29 μg/ml for B. longum, and 4.96 μg/ml for 
B. adolescentis. According to the above results, B. breve and 
B. longum have a strong albiflorin metabolism ability, and 
we  propose that both play an important role in albiflorin 
metabolism in the gut microbiota.
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In silico Search of Bifidobacterium 
Esterases
By searching for genes annotated as “carboxylesterase” in the 
genome of B. breve ATCC15700 (NZ_AP012324.1), three 
carboxylesterase genes were found, including NZ_AP012324.1: 
1013236–1014057, NZ_AP012324.1: 506173–507018, and NZ_
AP012324.1: 506173–507018. The corresponding amino acid 
sequences are WP_003829196.1 (B2, 273 aa), WP_003828396.1 
(B3, 281 aa), and WP_003828023.1 (B4, 319 aa). By searching 
for the genes annotated as “esterase” in the genome of B. longum 
ATCC15697 (NC_011593.1), an esterase gene was found, which 
was named NC_011593.1:c2783438-2,782,680, and its protein 
identifier is KAB6720564.1 (BL, 252 aa). Detailed information 
on each protein was obtained from the NCBI database, and 
the ProtParam tool by ExPASy3 was used to predict the size 

3 https://web.expasy.org/protparam/

and isoelectric point of each protein. As shown in Table  1, 
the predicted molecular weight of B2 was 30,219.38 Da, and 
the isoelectric point was 5.19. The values of the molecular 
weight and isoelectric point of the other proteins were as 
follows: B3: 30,261.08 Da, 4.50; B4: 35,264.78 Da, 5.22.; and 
BL: 27,695.84 Da, 4.79.

We found that the four enzymes, B2, B3, B4, and BL, 
belong to three superfamilies. As shown in Table  1, B2 and 
B4 belong to the MhpC superfamily, which is annotated as 
“Pimeloyl-ACP methyl ester carboxylesterase.” B3 belongs to 
the protocat_pcaD superfamily, which is annotated as 
“3-oxoadipate enol-lactonase. Note that the substrates are 
3-oxoadipate enol-lactone, 2-oxo-2,3-dihydrofuran-5-acetate, 
4,5-dihydro-5-oxofuran-2-acetate, and 5-oxo-4,5-dihydrofuran-
2-acetate.” BL belongs to the abhydrolase superfamily, which 
is annotated as “alpha/beta hydrolases. A functionally diverse 
superfamily containing proteases, lipases, peroxidases, esterases, 
epoxide hydrolases and dehalogenases.”

A

C

D E

F G

B

FIGURE 1 | The intestinal microbes of rats converted albiflorin into benzoic acid. (A) Schematic diagram of the structure of albiflorin and benzoic acid. (B) High-
resolution mass spectrum of albiflorin. (C) High-resolution mass spectrum of benzoic acid. (D) Conversion of albiflorin by the intestinal microbes of rats. (E) Benzoic 
acid (BA) generated by the intestinal microbes of rats. (F) Conversion of albiflorin in the four Bifidobacteria strains. (G) Benzoic acid (BA) generated by the four 
Bifidobacteria strains. (Student’s t-test, *p < 0.05, **p < 0.01, and ***p < 0.001, data are expressed as the mean ± SD).
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We modeled the four esterases, B2, B3, B4, and BL, by 
using SWISS-MODEL. As shown in Figure  2A, they all have 
the core domain of an esterase, but the surrounding regions 
are very different. The modeled structure showed that their 
core structures are similar and that they may all be  esterases. 
These enzymes are composed of highly similar α/β-hydrolase 
folds and different helix domains which suggested that they 
have different cleavage patterns. They are esterases rather than 
lipases as they elicit a preference for smaller carbon backbone 
substrates less than six carbons. It has previously been reported 
that the bifidobacterial esterase from B. animalis subsp. lactis 
WC 0432 exhibits hydrolytic activity against chlorogenic acid 
(Raimondi et  al., 2015).

Expression of Bifidobacterium Esterases 
in Escherichia coli
To investigate the suitability of E. coli BL21 (DE3) for 
Bifidobacterium esterase expression, we first verified the absence 
of homologous genes in its genome by analyzing its genome, 
and the E. coli cells with the empty vector pET-28a were 
incapable of metabolizing any albiflorin (data not shown). 
Several primer pairs designed based on the B2, B3, B4, and 
BL coding sequences of B. breve ATCC15700 and B. longum 
ATCC15697 were used to clone the four genes (the primer 
sequences are shown in Supplementary Table S1). The four 

PCR-amplified esterase DNA fragments (as shown in Figure 2B) 
were recombined into the vector pET-28a by Gibson assembly. 
DH5α E. coli were used to clone the esterase coding sequences 
of B. breve and B. longum, and four plasmids, pET-28a-b2, 
pET-28a-b3, pET-28a-b4, and pET-28a-bl, were obtained. 
Escherichia coli BL21 (DE3) was transformed with the above 
expression vectors bearing four esterase genes. SDS-PAGE 
showed that the expression of the four esterases occurred at 
high levels in IPTG-induced recombinant cells (Figures 2C,D).

Esterase Activity Characterization in vitro
Based on the above results, four E. coli strains (EB2, EB3, 
EB4, and EBL) expressing the four esterases were obtained. 
After being cultured overnight with IPTG, the four E. coli 
strains were individually used to investigate albiflorin 
metabolism at 37°C for 24 h. The cells of each strain were 
controlled at a consistent concentration of OD600 nm = 2.0  in 
the presence of 0.05 mM albiflorin. Samples were removed 
at 0, 12, and 24 h for LC-MS/MS analysis. As shown in 
Figures 3A,B, E. coli EB2 had a significant effect on albiflorin 
metabolism, the level of which was reduced by 31.9% at 24 h 
compared with that at 0 h. Moreover, the production of benzoic 
acid at 24 h was increased by 5.37-fold compared with that 
at 0 h. The concentration of benzoic acid reached 23.9 μg/ml. 
However, EB3, EB4, and EBL had no effect on albiflorin 

A
B

C D

FIGURE 2 | Homology model and expression of four Bifidobacterium esterases. (A) Homology model of the four esterases, B2, B3, B4, and BL, generated by 
SWISS-MODEL. (B) Agarose gel electrophoresis image showing the PCR-amplified products of four esterase genes from Bifidobacterium breve and Bifidobacterium 
longum. Lane 1, bb2; lane 2, bb3; lane 3, bb4; lane 4, bl; lane 5, pET-28a; and lane 6, supercoiled DNA marker. (C) SDS-PAGE analysis of two proteins, B2 and B3, 
from B. breve after being expressed in Escherichia coli BL21. Lane 1, total protein from the lysate of E. coli transformed with pET-28a; lane 2, total protein of E. coli 
lysate containing esterase B2; lane 3, total protein of E. coli lysate containing esterase B3; lane 4, esterase B2 after purification; lane 5, esterase B3 after purification; 
and lane 6, prestained protein molecular weight marker. (D) SDS-PAGE analysis of two esterases, B4 and BL, from B. breve and B. longum in E. coli BL21. Lane 1, 
total protein of E. coli lysate containing esterase B4; lane 2, total protein of E. coli lysate containing esterase BL; lane 3, total protein of E. coli lysate transformed 
with pET-28a; and lane 4, prestained protein molecular weight marker.
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metabolism, and no significant increase was detected in the 
production of benzoic acid. This result showed the metabolic 
ability of the four esterases expressed by E. coli cells in 
suspension culture, and the E. coli strain expressing esterase 
B2 showed the greatest potential for albiflorin metabolism.

Furthermore, the E. coli cells expressing the four esterases 
were collected and resuspended in PBS buffer (pH = 7) and 
sonicated to obtain the B2, B3, B4, and BL proteins. The 
supernatants were mixed with 0.05 mM albiflorin and incubated 
at 37°C. Samples were taken at 0, 12, and 24 h for the detection 
of albiflorin and its metabolite benzoic acid. As shown in 
Figure  3C, after 24 h of reaction, 98.9% of albiflorin was 
converted by B2, 35.2% by B3, and 20.6% by B4, but the 
conversion by BL was not significant. The production of 
benzoic acid is shown in Figure  3D. The concentrations of 

benzoic acid produced by B2 and B3 were 70.8 and  
3.7 μg/ml, respectively, but the concentrations produced by 
B4 and BL were not obvious compared with those at 0 h. 
The results indicated that the B2 and B3 proteins have a 
strong ability to metabolize albiflorin, and B2 has the strongest 
conversion effect, followed by B3 and B4. Similarly, the B2 
reaction system produced the most benzoic acid, followed 
by the B3 and B4 reaction systems, which was consistent 
with the above results.

Effects of Esterases on Albiflorin 
Metabolism Under Different Conditions
Furthermore, the effects of different temperatures, buffers, and 
pH on the ability of the four enzymes to convert albiflorin 

A B

C

D

E F

G H

FIGURE 3 | Albiflorin metabolism by four esterases (B2, B3, B4, and BL). (A) Conversion of albiflorin in Escherichia coli stains (EB2, EB3, EB4, and EBL). 
(B) Benzoic acid (BA) generated by the E. coli strains (EB2, EB3, EB4, and EBL). (C) Conversion of albiflorin by four esterases. (D) Benzoic acid (BA) generated by 
four esterases. (E) Conversion of albiflorin by B2 and B3 at 30°C or 37°C. (F) Benzoic acid (BA) generated by B2 and B3 at 30°C or 37°C. (G) Conversion of 
albiflorin by B4 and BL at 30°C or 37°C. (H) Benzoic acid (BA) generated by B4 and BL at 30°C or 37°C (Student’s t-test, **p < 0.01 and ***p < 0.001, data are 
expressed as the mean ± SD).
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FIGURE 4 | Albiflorin metabolism by four esterases (B2, B3, B4, and BL) under different conditions. (A) Conversion of albiflorin by B2 and B3 in PBS and Tris-HCl 
buffer. (B) Benzoic acid (BA) generated by B2 and B3 in PBS and Tris-HCl buffer. (C) Conversion of albiflorin by B4 and BL in PBS and Tris-HCl buffer. (D) Benzoic 
acid (BA) generated by B4 and BL in PBS and Tris-HCl buffer. (E) Conversion of albiflorin by B2 and B3 at pH 7.0, 8.0, and 9.0. (F) Benzoic acid (BA) generated by 
B2 and B3 at pH 7.0, 8.0, and 9.0. (G) Conversion of albiflorin by B4 and BL at pH 7.0, 8.0, and 9.0. (H) Benzoic acid (BA) generated by B4 and BL at pH 7.0, 8.0, 
and 9.0 (Student’s t-test, *p < 0.05, **p < 0.01, and ***p < 0.001, data are expressed as the mean ± SD).

were investigated. First, as shown in Figures  3E,F, after 24 h 
of reaction at 37°C, B2 and B3 converted 98.9 and 35.2% of 
albiflorin, respectively, which was greater than that observed 
at 30°C (79.3 and 31.1%). The production of benzoic acid at 
37°C was also greater than that at 30°C. The conversion 
capability of B4 and BL are shown in Figures  3G,H. B4 
converted 30.5% albiflorin at 30°C in 24 h, and the percentage 
at 37°C was 20.6%. However, there was no significant difference 
for BL between 30°C and 37°C in terms of albiflorin metabolism. 
Both temperatures led to the production of very little benzoic 
acid under the reaction conditions.

Then, the effect of the reaction conditions of the PBS buffer 
and Tris-HCl buffer on the conversion of albiflorin by the 
four enzymes was investigated. As shown in Figures  4A,B, 

under the reaction conditions of the PBS buffer solution, after 
24 h of reaction, B2 converted 98.9% of albiflorin, which was 
better than the 24.5% conversion observed under the reaction 
conditions of the Tris-HCl buffer solution, and produced 57.6 μg/
ml of benzoic acid in PBS buffer, which was better than the 
13.6 μg/ml produced in Tris-HCl buffer. B3 converted 35.2% 
of the albiflorin in PBS buffer, which is slightly lower than 
the 36.1% converted in Tris-HCl buffer, and the production 
of benzoic acid in PBS buffer was also slightly lower than 
that in Tris-HCl buffer. As shown in Figures 4C,D, the amount 
of albiflorin converted by B4 was reduced by 46.7% in Tris-HCl 
buffer, which was better than the 20.6% conversion rate in 
PBS buffer. The amount of albiflorin converted by BL was 
reduced by 54.5% in Tris-HCl buffer, which was better than 
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20.6% conversion rate in PBS buffer. However, under the two 
buffer conditions, B4 and BL produced very little benzoic acid.

Finally, the effect of different pH buffer reaction conditions 
on the conversion of albiflorin by the four enzymes was 
investigated. As shown in Figure  4E, under the conditions of 
pH 6.0, pH 7.0, and pH 8.0, after 24 h of reaction, B2 converted 
98.4, 96.6, and 97.8% albiflorin, respectively, and B3 converted 
23.7, 44.0, and 0% albiflorin, respectively. As shown in Figure 4F, 
under the conditions of pH 6.0, pH 7.0, and pH 8.0, after 
24 h of reaction, B2 produced 91.2, 88.8, and 93.8 μg/ml benzoic 
acid, respectively, and B3 produced 24.6, 21.2, and 1.6 μg/ml 
benzoic acid, respectively. As shown in Figure  4G, at pH 6.0 
and pH 7.0, after 24 h of reaction, B4 converted 21.1 and 
20.6% albiflorin, respectively, but the conversion at pH 8.0 
was not obvious. The conversion rate of albiflorin by BL was 
15.4 and 11.5% at pH 6.0 and pH 8.0, respectively, and little 
conversion occurred at pH 7.0. As shown in Figure  4H, after 
24 h at pH 6.0, pH 7.0, and pH 8.0, B4 and BL produced 
very little benzoic acid.

Bacterial Transplantation Affects Drug 
Metabolism of Albiflorin in vivo
After 3 days of oral administration of different bacteria (Normal 
saline, NS, E. coli 1 × 1010 CFU/day, E. coli with Esterase B2 
1 × 1010 CFU/day, B. breve 1 × 1010 CFU/day), ICR mice were 
given a single dose of albiflorin (7 mg/kg) to investigate the 

differences in albiflorin and benzoic acid concentrations over 
time in the four groups (Figures  5A,B). Pharmacokinetic 
parameters were shown in Supplementary Table S3. The  
AUC(0– t) of the four groups were 5,965.590 ± 2,004.089, 
5,452.317 ± 1,045.409, 4,254.94 ± 1,591.654, and 
4,355.606 ± 934.475 μg/L h, respectively. The Cmax of the four 
groups were 44.064 ± 24.12, 45 ± 10.607, 21.61 ± 5.363, and 
26.528 ± 11.105 μg/L, respectively. Similar pharmacokinetic 
parameters were observed in the NS group and the E. coli 
group. The transplantation of E. coli had little effect on the 
drug metabolism of albiflorin. The administration of E. coli 
containing esterase B2 obviously affected the absorption and 
metabolism of albiflorin in vivo, while the administration of 
B. brevis containing esterase B2 also affected the metabolism 
of albiflorin in vivo to a certain extent. At the same time, the 
plasma concentration-time profiles of albiflorin metabolites 
benzoic acid were determined, the results showed that the 
benzoic acid concentration of B2 group obviously greater than 
the NS group, the B. breve group could also increase the 
benzoic acid concentration in plasma, and the benzoic acid 
concentration in plasma of E. coli group and NS group is 
similar. In vivo experiments showed that supplement of esterase 
B2 could affect the metabolism of albiflorin in mice and 
significantly increased the concentration of benzoic acid, the 
metabolite of albiflorin in plasma. Esterase B2 is an important 
enzyme for the conversion of albiflorin to benzoic acid.

DISCUSSION

As a result of the in-depth study of gut microbiota, increasing 
evidence shows that gut microbiota is involved in drug 
metabolism, which plays a key role in determining the therapeutic 
effect and host metabolism (Sousa et al., 2009; Spanogiannopoulos 
et  al., 2016; Koppel et  al., 2017; Wu and Tan, 2018). Different 
bacteria produce different metabolic enzymes, such as 
β-glucuronidase, β-galactosidase, β-glucosidase, nitroreductase, 
azo reductase, protease, 7-αhydroxylase, and various carbohydrate 
enzymes, which are responsible for metabolizing different drugs 
(Schackmann, 1992; Lavrijsen et  al., 1995; Ionescu and Caira, 
2005; Pollet et  al., 2017). Many natural compounds have low 
bioavailability, and their metabolism depends on the gut 
microbiota. Among them, natural compounds containing ester 
bonds are very abundant, including chlorogenic acid, geniposide, 
asiaticoside, ferulic acid, caffeic acid, and motherwort. Our 
previous laboratory research showed that albiflorin can 
be  metabolized by intestinal bacteria (Zhao et  al., 2018). By 
comparing the ability of 18 intestinal bacterial strains, we found 
that four bacteria had a significant ability to metabolize albiflorin, 
including B. breve. Bifidobacteria is an important constituent 
of human intestinal bacteria (accounting for 2–10%), and it 
contains abundant enzyme resources, such as α-glucosidase, 
β-glucosidase, hydrolase, and esterase (Kim and Lee, 2010; 
Kim et  al., 2017; Florindo et  al., 2018).

Several taxa at the family and genus levels, specifically 
family Prevotellaceae, genus Corprococcus, and 
Faecalibacterium, were decreased in major depressive disorder 

A

B

FIGURE 5 | Pharmacokinetic study of albiflorin in vivo. (A) Plasma 
concentration-time profiles of albiflorin (Alb) in four groups of mice (oral 
3 days, NS, Bifidobacterium breve 1 × 1010 CFU/day, Escherichia coli with B2 
1 × 1010 CFU/day, and E. coli 1 × 1010 CFU/day) after oral administration  
(7 mg/kg). (B) Plasma concentration-time profiles of Benzoic acid (BA) in four 
groups of mice (oral 3 days, NS, B. breve 1 × 1010 CFU/day, E. coli with B2 
1 × 1010 CFU/day, and E. coli 1 × 1010 CFU/day) after oral administration of 
albiflorin (7 mg/kg).
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(MDD) compared to non-depressed controls in observational 
studies, and depressive symptoms were improved compared 
to controls in interventional studies with probiotics (Sanada 
et al., 2020). Studies have shown that B. longum and B. breve 
strains reduce stress-, anxiety-, and depression-related 
behaviors in male BALB/c mice with congenital anxiety. This 
beneficial effect is related to its influence on enteric neurons 
and vagus nerve signals (Savignac et  al., 2014). Preclinical 
and clinical studies have shown that Bifidobacteria may have 
therapeutic effects on mood disorders (Desbonnet et  al., 
2010). In addition to its beneficial effect on human health, 
Bifidobacteria was also shown to affect TCM efficacy. For 
example, daidzin, a glycosidic isoflavone that mainly exists 
in soy products, can be  metabolized into equol by 
Bifidobacterium via glycosidic cleavage and reduction of an 
α, β-unsaturated ketone (Setchell and Clerici, 2010). For Bif. 
animalis subsp. lactis, the metabolism of caffeic acid and 
chlorogenic acid was described (Couteau et al., 2001; Raimondi 
et  al., 2015; Fritsch et  al., 2016a).

In this study, we  used four common Bifidobacteria strains 
from the intestinal flora to examine the metabolic effect of 
Bifidobacteria on albiflorin. Albiflorin can be  converted into 
benzoic acid, which is the main metabolite, by intestinal bacteria 
in large amounts. This is similar to the antidepressant mechanism 
of albiflorin speculated previously. According to the comparison 
of the conversion abilities of the four Bifidobacteria strains 
and genome mining results, we selected B. breve and B. longum, 
which have a strong albiflorin metabolism ability. Previous 
studies have shown that esterases from B. animalis subsp. lactis 
DSM 10140 and B. animalis subsp. lactis WC 0432 were able 
to hydrolyze HCA-containing substrates and chlorogenic acid 
(Raimondi et  al., 2015; Fritsch et  al., 2016b). In this study, 
three esterases, B2, B3, and B4, from B. breve and one esterase, 
BL, from B. longum, which belong to three superfamilies, were 
identified and characterized. Esterase (EC 3.1.1.1), which is 
generally known as carboxylesterase, belongs to the class of 
hydrolytic enzymes, the function of which is to hydrolyze 
carboxylic acid esters (Porro et  al., 2019). It can catalyze ester 
bond cleavage and form the corresponding alcohols and acids 
in the presence of H2O molecules. By using SWISS-MODEL, 
it was found that all four esterases have the core domain of 
esterase, but the surrounding regions are very different. These 
enzymes are composed of highly similar α/β-hydrolase folds 
and different helix domains. The catalytic apparatus of alpha/
beta hydrolases typically involves three residues (catalytic triad): 
a serine, a glutamate/aspartate, and a histidine. The catalytic 
mechanism often involves a nucleophilic attack on a carbonyl 
carbon atom (Jochens et  al., 2011; Bauer et  al., 2020).

Then, the albiflorin metabolism function of the four esterases 
was verified. It was demonstrated that at 37°C, B2 and B3 
showed stronger hydrolysis function and produced more benzoic 
acid. B4 had a weaker metabolic capacity, and BL could not 
convert albiflorin. To explore the influence of the enzyme 
reaction conditions, different temperatures, buffers, and pH 
conditions were investigated to explore the most suitable reaction 
conditions for the four enzymes. It is revealed that at 37°C, 
PBS buffer and pH 7.0 are the optimal conditions for B2, 

which has the strongest ability to convert albiflorin. This result 
indicated that B2 might be  the most important esterase and 
play a crucial role in hydrolysis by B. breve to convert albiflorin. 
Furthermore, by pharmacokinetic analysis of albiflorin in animals, 
we  verified that transplantation of E. coli containing esterase 
B2 affected the drug metabolism of albiflorin, and the effect 
was more obvious than that of B. brevis containing B2. Recent 
studies by Zimmermann et  al. (2019a,b) have revealed that 
the contributions of the microbiome to the metabolism of 
some drugs are much more than 50%, it provided insight into 
the important roles of the gut microbiota in the metabolism 
of many pharmaceuticals. For instance, some phenolic compounds 
with low bioavailability, such as rosmarinic acid and eriodictyol, 
are fermented into absorbable and bioactive phenolic acids by 
the gut microbiota, e.g., hydroxyphenylpropionic acids and 
phenylpropionic acids (Jochens et al., 2011; Zimmermann et al., 
2019a). These bioactive microbial metabolites may be absorbed 
and transported by the circulatory system to tissues and organs 
or exert their effects in the intestinal lumen (Aura, 2008; Hanske 
et  al., 2009; Mosele et  al., 2014). Gut bacteria produce a range 
of enzymes that might chemically alter drugs as varied as 
psychotropics and cancer treatments, rendering them less useful 
or leading to more side effects (Paolo et  al., 2018; 
Spanogiannopoulos and Turnbaugh, 2018).

In summary, this study examined the metabolism of albiflorin, 
a compound with antidepressant activity, by the enzymes 
contained in intestinal bacteria and confirmed that benzoic 
acid is the main metabolite. The conversion of albiflorin to 
benzoic acid through an in vitro reaction by rat intestinal 
bacteria was verified, and the four esterases in B. breve and 
B. longum that play an important role in the metabolism of 
natural compounds were identified through a bioinformatics 
search. Furthermore, their albiflorin metabolism functions were 
compared, and the best enzyme reaction conditions were verified. 
This study revealed the mechanism by which Bifidobacteria 
convert natural compounds containing ester bonds and 
characterized their specific functional enzymes. TCM herbs 
closely interact with gut microbiota and affect their composition 
(Peng et  al., 2020). Reciprocally, the gut microbiota also plays 
essential roles in the conversion of carbohydrates, proteins, 
lipids, and non-nutritive small chemical compounds from TCM 
herbs into chemical metabolites that may show beneficial or 
adverse effects on human health (Feng et  al., 2019; Yue et  al., 
2019). This discovery presents new prospects for the development 
of new enzymes and probiotics that can be  used to enhance 
the bioconversion of TCM chemicals into bioactive compounds 
and reveals a new way for Bifidobacteria to assist in the 
treatment of depression and other mental diseases. However, 
the discovery, development, and functional characterization of 
Bifidobacteria esterases still need more research. A deeper 
understanding of the mechanism of the drug-gut microbiota 
interaction is required to guide the research and development 
of diet or drug interventions targeting the microbiome, which 
may have the potential to enhance drug efficacy or reduce 
adverse drug reactions. Understanding the interplay between 
microbes and medicine could lead to new therapies, or to 
changes in how existing drugs are prescribed.
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Tibetans are one of the oldest ethnic groups in China and South Asia. Based on the
analysis of 1,059 Tibetans in the Minjiang River basin at an altitude of 500–4,001 m,
we found that the dominant phyla of the Tibetan population were Bacteroidota and
Firmicutes, and the main genera were Prevotella and Bacteroides, which were mostly in
consistent with other nationalities. We further evaluated in total 115 parameters of seven
categories, and results showed that altitude was the most important factor affecting the
variation in the microbial community. In the process of emigration from high altitudes to
the plain, the gut microbial composition of late emigrants was similar to that of plateau
aborigines. In addition, regarding immigration from low altitude to high altitude, the
microbial community became more similar to that of high altitude population with the
increase of immigration time. Changes in these microbes are related to the metabolism,
disease incidence and cell functions of the Tibetan population. The results of other two
cohorts (AGP and Z208) also showed the impact of altitude on the microbial community.
Our study demonstrated that altitude of habitation is an important factor affecting the
enterotype of the microflora in the Tibetan population and the study also provided a
basis to explore the interaction of impact parameters with gut microbiome for host health
and diseases.

Keywords: gut microbiome, Tibet, Minjiang River basin, altitude, migration

INTRODUCTION

Gut microflora is the largest and most complex micro-ecosystem in the human body (Qin et al.,
2010; Charbonneau et al., 2016). The microorganisms play important roles in digestion, vitamin
synthesis, and immune system functioning. The functions of the intestinal microbiota depend
largely on their composition in addition to intestinal factors (Flint et al., 2012; Wang et al., 2014).

Abbreviations: NMDS, non-metric multi-dimensional scaling; AGP, American Gut Project Database; LLD, LifeLines-DEEP
Database; PCoA, principal coordinate analysis; CH index, Calinski-Harabasz index; PDW, platelet distribution width; ALT,
alanine aminotransferase; KEGG, Kyoto Encyclopedia of Genes and Genomes; CTLA-4, cytotoxic T lymphocyte antigen-4;
PD-1, death receptor 1.
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Microbial taxa and abundances are in a dynamic balance
and are influenced by environmental conditions, host diet,
and genetic and epigenetic factors (De Filippo et al., 2010;
Gopalakrishnan et al., 2018). Features of ethnicity, including
particular ethnic groups, cultural heritage, ancestry, origin
myth, history, homeland, language, religion, ritual, cuisine,
dressing style, art, and physical appearance, impact the nature
of gut microbiome. For instance, in a comparative study
involving 173 Caucasian infants and 182 South Asian infants,
ethnicity was identified as an independent predictor for
intestinal microbial composition of infants, and for example,
Bacillus and Lactobacillus were abundant in South Asian
infants, while Fusobacterium was abundant in Caucasian infants
(Stearns et al., 2017).

Although Human Microbiome Project has produced massive
information about intestinal microbes, little is known about
the intestinal microbes of the Tibetan population with unique
ethnicity. The Tibetan population, one of 56 ethnic minorities
in China, mainly resides in the Tibetan autonomous region
in Qinghai Province and the western Sichuan Province. The
Minjiang River basin, with the largest concentration of Tibetan
people in Sichuan, has an average altitude of more than
3,000 m. The genetic background, together with its high
altitude, low oxygen concentration, low atmospheric pressure,
and high radiation of habitation plus the unique cultural, lifestyle
and dietary habits, all contribute to the diverse microbiome
of the Tibetan ethnicity. In a similar way, different gut
microbiome was examined for the populations in Italy (De
Filippo et al., 2017), Africa (Smits et al., 2017), China (Zhang
et al., 2015) in association with their unique ethnicities. Likewise,
migration from non-Western countries to the United States is
associated with a reduction in gut microbiome diversity and
function and an increased predisposition to metabolic diseases
(Vangay et al., 2018).

With a history of over 25,000 years in the area, indigenous
Tibetans have adapted to the plateau inhabitation (Aldenderfer,
2011), which serve as a good model for exploring the effects of the
environment on the gut microbiota in the ethnicity conditions.
The Tibetan population in the area of Minjiang River and
tributaries had emigrated to the Chengdu Plain in recent decades,
and this unique feature of changing environmental condition,
together with other factors, may impact the gut microbiome,
which is the subject of this study. To this end, we collected
fecal samples from native Tibetan individuals living at altitudes
of 500–4,001 m and examined the ethnicity factors such as
environmental conditions, dietary habits, disease statuses, drug
use, biochemical indexes, exercise and basic information on
metabolic tests. We further assessed the effects of migration from
the plateau to the plain and vice versa on the intestinal flora.

MATERIALS AND METHODS

Ethics Committee Approval
This experiment was approved by the Ethics Committee of
Chengdu Medical College (No. 2017009). Informed consent was
obtained from all participants.

Subject Selection and Sampling
Human subjects of Tibetan ethnicity in Sichuan Province
were recruited from the high altitude of 3,300–5,100 m in
Ngawa Tibetan Autonomous Region and the low altitude
at about 500 m in Chengdu Basin. The residual locations
are illustrated in Figure 1A, showing Minjiang River and
tributaries, including Hongyuan, Barkam, Jinchuan, Heishui,
Songpan, Wenchuan, Dujiangyan, and Chengdu, ranging from
altitudes of 500–4,001 m. A total of 1251 participants were
enrolled (anthropometric information is listed in Supplementary
Table 1), and fecal samples from 1,059 native Tibetan individuals
were collected for analysis. To study the impact of migration, a
total of 776 Tibetan individuals were divided into three groups
(Figure 2A): plateau-born (born and living on the plateau of
high altitude, n = 586), basin-born (born and living in the basin
at low altitude, n = 20), and plateau-Trans (born in the basin
or the ancestors were born in the basin and moved to the
plateau, n = 170). Among the 170 immigrant participants, some
of them returned to and from high-altitude and low-altitude
areas for various reasons such as work and study. Therefore,
36 immigrants were included finally for our study to analysis
the microbiome succession of reverting immigration from the
basin to the plateau. They were further classified as (1) born in
the basin but immigrated to the plateau (labeled as Immigrant
1, n = 9), (2) born on the plateau while their parents were
from the basin (Immigrant 2, n = 20), and (3) born on the
plateau while their grandparents or ancestors were from the basin
(Immigrant 3, n = 7). A questionnaire survey was completed by
the human subjects regarding basic demographic information
(age, sex, birthplace, place of residence, ethnicity, etc.), health
status (digestive tract diseases, type 2 diabetes, mental health,
genetic diseases, etc.), diet (staple food, dietary intake, drinking
habit, consumption of coffee, tea, yogurt, etc.), and exercise
(daily physical activity, exercise frequency, etc.). The height,
weight, and blood pressure of all participants were recorded.
Fecal samples were freshly collected into a stool collection cup
without any reagent and transferred within 6 h to a −80◦C
freezer until further use. Peripheral fasting venous blood was
collected for routine blood tests (hemoglobin, erythrocyte, white
blood cell, and blood platelet counts) and biochemical tests
(liver and kidney functions, blood glucose, and lipid levels).
Standardized procedures were applied at all collection sites by the
trained personnel. Staff and procedures were regularly checked
for quality control throughout the data collection period. This
experiment was approved by the Ethics Committee of Chengdu
Medical College (No. 2017009). Informed consent was obtained
from all participants.

Metadata Collection
Based on questionnaire surveys and blood tests, metadata
were obtained, including sociodemographic characteristics,
anthropometric characteristics, and information about lifestyle,
diet, drug use, diseases, and biochemical parameters. In total, 115
factors were screened and further divided into the following seven
categories: basic, environment, drug use, disease, diet, exercise,
and biochemical parameters (Supplementary Table 2).
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FIGURE 1 | Altitude affects the microbiome of Tibetan ethnicity. (A) Overview of sampling regions in Sichuan province of China. Red dots indicated sampling sites at
different regions, blue lines represented Dadu River (left) and Min River (right). Effect size of seven categories (B) and top 50 factors (C) found to significantly
influence Tibetan gut microbiota were displayed. Factors were sorted by effect size and colored by seven categories (Basic, Environment, Disease, Diet,
Biochemical, Exercise, and Drug). (D) Taxonomic tree of 38 genera with significant correlations (adjusted P < 0.1) with altitude, as determined using MaAsLin.

Sequencing and Taxonomic Profiling
Microbiota DNA was extracted using the genomic DNA
extraction kit (TIANGEN, China). DNA samples were quantified
using a Qubit 2.0 Fluorometer. The specific primers 341F
(5′-CCTACACGACGCTCTTCCGATCTN-3′) with Barcode and
805R (5′-GACTGGAGTTCCTTGGCACCCGAGAATTCCA-3′)
were used to perform PCR amplification of the 16S V3-V4
region (Li et al., 2022). Sequencing was performed with a
2 × 250 paired-end (PE) configuration using the Illumina
HiSeq platform. The raw PE reads were merged using FLASH
(Version 1.2.7) (Magoč and Salzberg, 2011), and low-quality
and polyclonal sequences were filtered using QIIME (Version
1.9.1) (Caporaso et al., 2010). By further comparison with the
gold database, chimeric reads were removed using Usearch
(Version 8.1.1861) (Edgar et al., 2011). The resulting reads for
each sample were clustered into operational taxonomic units
(OTUs) at the level of 97% similarity using QIIME (Version
1.9.1). A representative sequence for each OTU was selected,

and annotation was performed using QIIME (Version 1.9.1)
based on the Greengenes database (Version 13.8) (DeSantis
et al., 2006). After random rarefaction of sequences to the
minimal number of reads in all samples, microbial composition
at each taxonomic level was evaluated using QIIME (Version
1.9.1). The microbial metagenomes were imputed from the 16S
rRNA data with Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) based on KEGG
Orthology genes and pathways (Langille et al., 2013). The dataset
supporting the results of this article has been deposited in the
EMBL European Nucleotide Archive (ENA) under BioProject
accession code: PRJEB13870.

Multivariate Association
Missing values from the metadata were imputed using the
mice package in R (Version 3.3.3) (Zhang, 2015), and collinear
variables were detected by a Pearson correlation analysis (Pearson
|r| > 0.8). Correlations between clinical parameters (categorical
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FIGURE 2 | Altitude migration leads to gut microbiome succession in the Tibetan population. (A) Plateau-born (n = 586), plain-born (n = 20), and emigrants (Plateau
to Plain, n = 170) are marked on the graphics. (B) Left: NMDS plot based on the genus profile from 170 plateau to Plain individuals; each dot represents one
individual and the color associated with the year of migration. Linear fitting is based on the first NMDS dimension (t = 4.94, P = 1.85e-06). Right: Plateau
(plateau-born) and Plains (plain-born) individuals were analyzed by NMDS, and the difference between groups in the first dimension is also visualized by a boxplot
(P = 1.589e-11), the NMDS1 values for Plateau-born individuals were the averages of 50 samples by random sampling (100 times). (C) Alpha diversity (observed
OTUs, Chao1 index, Shannon index, and Simpson index) between Plateau-born, plain-born, and Plateau to Plain individuals, P-values are from the Kruskal–Wallis
test. The standard deviation (SD) in different groups revealed convergence in variance from the plateau to the plain, *P < 0.05. (D) Distribution of the log-normalized
Bacteroides-to-Prevotella (B/P) ratio between different groups, P-values are based on Kruskal–Wallis test. (E) Relative abundance of genera correlated with the year
of migration (Spearman’s correlation, adjusted P < 0.05); the abundance profiles are transformed into Z-scores, where negative a Z-score means a lower
abundance than the mean and a positive Z-score represents a higher abundance than the mean. The red arrows indicates the direction of migration.

or numerical) and microbiota community ordination generated
by non-metric multidimensional scaling (NMDS) based on Bray–
Curtis distances were calculated, as previously described (Falony
et al., 2016). For collinear pairs, variables that were weakly
correlated with the microbial community were filtered. Envfit was
used in the vegan R package to conduct the MANOVA and to

estimate linear correlations of categorical and numerical variables
of the microbiota. Fifty factors were selected as significant
determinants (10,000 permutations; P < 0.05; adjusted P < 0.05)
of the microbial community, and the effect size (r-value) for
each factor was determined. The combined effect sizes for the
seven categories (basic, environment, disease, diet, biochemical,
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exercise, and drug use) were also generated. After Bray–Curtis
distance matrixes of sub-metadata and microbiota community
data were generated, the correlation between the two distance
matrixes was calculated (|r|, combined effect size) by the Mantel
test in the vegan R package. In addition, clinical variables
with significant contributions to core- and unique genus-level
community ordination were analyzed. Genera observed in more
than 90% of samples were defined as the core microbiota, and

genera detected in less than 10% of subjects were defined as
unique. The taxonomic tree was visualized using GraPhlAn
(Version 1.1.3) (Asnicar et al., 2015). The Kyoto Encyclopedia
of Genes and Genomes (KEGG)1 database was also used. Based
on the KEGG pathway analyses, the differential gut microbiomes
were annotated and their functions determined.

1http://www.genome.jp/kegg

FIGURE 3 | The reverting immigration from the basin to the plateau also promotes microbiome succession. (A) Immigrant 1 (born in the plains and moved to the
plateau), Immigrant 2 (born in plateau and whose parents born in plain), Immigrant 3 (born in plateau and whose grandparents born in plain), plateau-born (born and
living in plateau), plains-born (born and living in plain) and plateau-Trans (born in the basin or the ancestors were born in the basin and moved to the plateau) are
marked on the graphics. (B) NMDS analysis based on the genera profile from plateau-born (n = 586), plain-born (n = 20), and plain to plateau (n = 36) individuals,
difference between nations was shown at the bottom (P = 0.009822) and difference between immigrate generations was displayed at the top (P = 0.04825),
P-values are from Kruskal–Wallis test, and the NMDS1 values for Plateau-born individuals were the averages of 50 samples at random sampling (20 times).
(C) Relative abundance of genera significantly correlated with immigrate generation (Spearman’s correlation, adjusted P < 0.05). (D) Alpha diversity between
plateau-born, plain-born, and 36 plain to plateau individuals, the standard deviation (SD) in different groups revealed convergence variant from plateau to plain,
*P < 0.05. The red arrows indicates the direction of migration.
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Datasets
Gut microbiota data available in public databases and the
literature, including the American Gut Project Database (>),
the LifeLines-DEEP Database (LLD), and the flora resources
published by Lan et al. (2017) (referred to as S208) and Zang (10)
(referred to as S314), were compared with our data set (referred to
as Zang). Data were divided according to ethnic groups or regions
to analyze the differences in the composition of the intestinal
flora and specific characteristics of populations. To validate the
impact of altitude on the gut microbial community, two databases
including altitude information (AGP and S208) were used to
obtain information for 1,244 subjects and 208 Tibetans from
six locations in China: Gannan, Gangcha, Tianzhu, Hongyuan,
Lhasa, and Nagqu.

Statistics and Reproducibility
Alpha diversity indices (i.e., the observed OTUs, Chao1 index,
Shannon index, and Simpson index) were measured using QIIME
(Version 1.9.1). To quantify differences (beta diversity) between
samples, the phylogeny-based weighted and unweighted UniFrac
distances between all pairs of samples were calculated using
QIIME. Principal coordinate analysis (PCoA) and NMDS were
used to visualize the differences between samples with the ade4
R package. Enterotyping was performed as described previously
(Arumugam et al., 2011). Briefly, all samples were analyzed
by the partitioning around medoids clustering method based
on the Jensen–Shannon distances for genera abundances. The
optimal number of clusters was estimated using the Calinski-
Harabasz (CH) index (where higher values are better). Only
genera detected in at least 10% of samples were included in the
analysis. To determine significant associations between clinical
variables (categorical or numerical) and genera, a multivariate
association analysis was performed using MaAsLin (Morgan
et al., 2012). Spearman’s correlation coefficients for relationships
between continuous variables and microbiota were determined.
The differences in alpha diversity indices, genera, and variables
between groups were tested by the Wilcoxon rank-sum test
or the Kruskal–Wallis test, and P-values were calibrated by
the Benjamin method. Significance was defined as an adjusted
P-value of <0.05.

RESULTS

Altitude Affects the Microbiome of
Tibetan Ethnicity
Ethnic Tibetan of the main Minjiang River and tributaries at
altitudes of 500–4,001 m were recruited and their locations were
illustrated in Figure 1A. PCoA analysis for the similarity of the
groups indicated that Bacteroidota and Firmicutes were the two
most abundant phyla (Supplementary Figure 1A). Five core
genera were present in Tibetan individuals, Prevotella (22.06%),
Bacteroides (9.08%), Faecalibacterium (3.54%), Lachnospira
(1.43%), and Ruminococcus (1.13%), accounting for 32.75% of
the total sequences (Supplementary Figure 1B). Within the
phylum of Bacteroidota, the core species mainly belonged to

the order Bacteroidales and class Bacteroidia. The community
richness and community diversity of the microbiome in the
Tibetan population in the region were mostly consistent with
previous reports (Supplementary Figure 1C). Based on the
CH index, the Tibetan samples were assigned to enterotype 1
(richen in Prevotella) and enterotype 2 (richen in Bacteroides)
(Supplementary Figure 1D). To assess whether the flora of
the Tibetan population is unique, we compared our dataset
Zang with the datasets of LLD (1010 samples), AGP (1,313
samples), S314 (314 samples) and S208 (208 samples). The
3D map of the flora distribution (Supplementary Figure 2)
indicated that our dataset and S208 of the Tibetan population
showed high similarity and were distinguished from the other
three datasets, reflecting the specificity of the microflora of the
Tibetan population.

To further study the factors affecting the composition of the
gut microbes in the Tibetan population, 115 total parameters in
seven broad categories were evaluated. Among these categories,
drug use (antibiotics, painkillers, etc.) was the main factors
affecting the overall flora composition, and basic population
parameters took the second place (Figure 1B). With respect
to the overall flora and the core flora, altitude exerted the
strongest effect, followed by age, antibiotic use (within 3 months),
fried food, and platelet distribution width (PDW) (Figure 1C
and Supplementary Figure 3A). The unique microbiota was
greatly related to liver function determined as plasma levels of
alanine aminotransferase (ALT) (Supplementary Figure 3C).
In terms of the seven categories, drug use was the most
important determinant for the core flora, being consistent with
previous findings (Supplementary Figure 3B; Maier et al.,
2018). For unique microbiota, the environment category had
the greatest impact (Supplementary Figure 3D). Furthermore,
38 genera significantly correlated with altitude were screened
using MaAsLin (P < 0.01) and we found that Firmicutes and
Proteobacteria were the dominant phyla related to altitude
(Figure 1D). Taken together, these results indicated that altitude
was the most important factor affecting the gut microbiome in
Tibetan populations, and our result also uncovered uniqueness
of the microflora in individuals living in Tibetan areas.

Altitude Migration Leads to gut
Microbiome Succession in the Tibetan
Population
As shown, the overall composition of the Tibetan microflora
varied across altitudes based on NMDS2 analysis, as indicated
by changing abundances of Megamonas, Bacteroides, Prevotella,
Fusobacterium, and Lachnospira with increased altitude
(Supplementary Figure 4A). In contrast, the abundances
of Coprococcus, Dialister, Succinivibrio, Megasphaera, and
Prevotella were enhanced together with the decreased scale
of altitude (Supplementary Figure 4A). Eight genera were
further analyzed for their association with altitude adaptability
(Supplementary Figure 4B). Klebsiella was decreased along
with the increased altitude, while Lachnospira and Megamonas
showed good adaptability to high altitudes and maintained
relatively high abundances (Supplementary Figure 4B). It
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should be pointed out that the abundance of Lachnospira
was increased significantly (p < 0.05) at altitudes of 1,000–
2,000 m and then decreased with the increased altitude.
Megamonas showed a higher abundance at 1,000–3,000 m,
with a significant (p < 0.05) decrease in abundance at
altitudes above 3,000 m. A steady increase in the abundance of
Oscillospira was detected with increased altitude, indicating good
adaptability to high altitudes. Clostridium, Lachnobacterium,
and Akkermansia all showed relatively stable abundances,
except at altitudes exceeding 3,000 m (Supplementary
Figure 4B). Taken together, these results show that alpha
diversity was positively associated with altitude above 1,000 m
(Supplementary Figure 4C). Spearman’s correlation analyses
were used to evaluate relationships between genera and
altitude (Supplementary Figure 5A). Clostridium, Oscillospira,
WAL_1855D, Succinivibrio, and CF231 were positively correlated
with altitude, while Bacteroides, Trabulsiella, Serratia, Erwinia,
and Citrobacter were negatively correlated with altitude. To
eliminate bias due to the uneven distribution of samples at
different altitudes, the relative abundances of these genera were
acquired from random sampling and transformed into Z-scores
(Supplementary Figure 5B).

Next, a total of 776 Tibetan individuals were divided into
three groups (Figure 2A): plateau-born, basin-born, and plateau-
Trans. An NMDS2 plot was generated based on the genera
profile and the time of emigration to the basin, which was then
used for a linear fitting analysis. As shown in Figure 2B, the
gut microbiome composition differed with respect to emigration
time. In particular, late emigrants had gut microbial communities
that were similar to those of the indigenous population on
the plateau, while early emigrants had microbial communities
that were similar to those of the native population in the
basin. In terms of alpha diversity (Figure 2C), earlier emigrants
exhibited lower levels of microbial diversity, in line with that
of samples from the plain. Standard deviations in prevalence in
different groups revealed convergent losses in diversity from the
emigration from plateau to the basin, indicating that the time
of emigration was correlated with the loss of alpha diversity.
The ratio of Bacteroides to Prevotella (B/P) is an important
indicator of the status of bacteria related to weight control
and metabolic status (Hjorth et al., 2018). Accordingly, we
analyzed the distribution of the log-normalized B/P in different
groups (Figure 2D). The longer the time since emigration,
the higher the B/P ratio and the closer the ratio was to that
of the indigenous population on the plains, indicating that
the gut microbiome metabolism of the migrating population
gradually converges to that of the plain population. Furthermore,
Spearman’s correlation analysis of the overall distribution of
genera showed that the genus type was associated with the time
of migration.

Based on abundance profiles transformed into Z-scores
(Figure 2E), species with significantly higher abundances in the
earlier emigrants were also more abundant in the population in
the basin. In brief, these results showed that changing altitude
drives gut microbiome succession in the Tibetan population, and
Tibetan migration is further associated with the loss of diversity
in the gut microbiome.

The Reverting Immigration From the
Basin to the Plateau Also Promotes
Microbiome Succession
Based on the subpopulations described in Figure 3A we
examined the genera profile used to determine the overall
microflora structure in each generation of immigrants that
reverted migration from the basin to plateau with respect to
ethnicity (Figure 3B). We focused on six genera in which their
abundances were significantly correlated with immigration by the
MaAsLin method. As shown, Lachnospira had a high abundance
in samples from the basin but decreased across generations.
Conversely, Klebsiella had a high abundance only in the basin
group (Figure 3C). The alpha diversity among the plateau-
born, basin-born, and basin-to-plateau immigrant individuals
was determined (Figure 3D), and the SD in the different groups
revealed convergence in variation from the basin to the plateau
immigration. In general, the shorter the time since immigration,
the smaller the difference in sample diversity, and conversely, the
longer the immigration time, the greater the difference in sample
diversity (Figure 3D).

Altitude Migration Affects the Diversity of
the Tibetan Gut Microbiome
To further explore the influence of altitude migration on
the gut microbiome of the Tibetan population, we analyzed
the change in core flora in different periods from high
altitude to low altitude (years of migration), and the core
flora changed in different generations from low altitude to
high altitude (inverting immigration). Through correlation
analysis, the correlation network showed that 15 bacterial
communities changed in the process of altitude migration.
Among them, Lachnospira, Bacteroides, and Clostridium 2 were
negatively correlated with altitude migration, while the changes
in Lactobacillus, [Prevotella], Dialister, Prevotella, Succinivibrio,
Catenibacterium, Collinsella, [Eubacterium], CF231, Slackia,
Oxalobacter, and Dehalobacterium were positively correlated
with altitude migration (Figure 4A).

We further analyzed the influence of 115 parameters of
ethnicity on the evolution of the gut microbiome in the process
of altitude migration. For people migrating from the plateau to
the basin, altitude and fried food significantly contributed to
the diversification of the Chao1 index (Figure 4B), and alcohol
drinking significantly contributed to the taxonomic composition
of the gut microbiome (Figure 4C). For people migrating from
the basin to the plateau, altitude had the greatest impact on the
Chao1 index (Figure 4B), and altitude significantly contributed
to taxonomic composition (Figure 4C).

Altitude Migration Affects the
Physiological Function and Disease
Incidence in the Tibetan Population
To study the influence of altitude migration on the host,
we conducted Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis. Predicted pathways based on structural data
revealed that metabolism, signal transduction, and transcription
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FIGURE 4 | Altitude migration affects the diversity of the Tibetan gut microbiome. (A) Correlation network of genera significantly correlated with the year of migration
or the generation of immigration (adjusted P < 0.05). Factors significantly contributed to diversification of Chao1 index (B) and taxonomic composition (C) were also
displayed.

were positively correlated with the year of migration from
the plateau to the plain (Figure 5A). Cancer, immune, and
digestive systems were negatively correlated with the year of
migration from the plateau to the plain (Figure 5A). We
further analyzed the influence of gut microbial changes on the
Tibetan population from the plain to the plateau. KEGG analysis
showed that metabolism, signal transduction, transcription,
and signaling pathways were negatively correlated with the
generations that immigrated from the plain to the plateau
(Figure 5B and Supplementary Figure 6), while cell growth and
death, replication and repair and digestive system pathways were
positively correlated with the generations that immigrated from
the plain to the plateau (Figure 5B and Supplementary Figure 6).
The above analysis showed that with the migration between
altitudes, the changes in microorganisms mainly affected the
metabolism, signal transduction, transcription, cancer, digestive
system, cell growth and death and replication and repair
pathways of the Tibetan population.

Construction of the Network of Impact
Parameters, Gut Microbiome, and
Functions
Gram staining of bacteria is one of the important methods used to
distinguish bacterial species, which could guide the diagnosis and
treatment of diseases (Boyanova, 2018). Therefore, we analyzed
the changes in the abundance of the predicted gram-positive
and gram-negative bacteria in the process of altitude migration.
Among the people who emigrated from the plateau to the
basin, with a shorter emigration time, there were more gram-
negative bacteria and less gram-positive bacteria, the pathogenic
potential of the bacteria was stronger, and the content of mobile
elements was lower (Figure 6A). Because the change in altitude

mainly leads to a change in environmental oxygen content, we
further analyzed the changes in the abundance of aerobic and
anaerobic bacteria in the process of altitude migration. A shorter
emigration time led to less anaerobic bacteria, more facultative
anaerobic bacteria, and better oxygen tolerance (Supplementary
Figure 7). In addition, for people who immigrated from the plain
to the plateau, a longer immigration time led to a lower content
of mobile elements, an increased abundance of gram-negative
bacteria, and a decreased abundance of gram-positive bacteria
(Supplementary Figure 8).

Finally, we constructed a network of impact parameter-gut
microbiome functions based on altitude and dietary factors, 11
bacterial communities that changed in abundance in the process
of altitude migration and changes in the physiological functions
associated with the gut microbiome. Prevotella was the most
closely related to the relevant KEGG pathways, and the factors
most related to the genus and metabolic pathways were altitude,
along with the consumption of milk, tea, vegetables, fried food,
and sweets (Figure 6B).

Altitude Determines the Composition of
the Gut Microbiome in Other Ethnic
Groups
To analyze the effect of altitude on other populations, we
compared our data with AGP and S208. We used PCoA plots
based on Bray–Curtis dissimilarity at the genus level to depict
the overall distribution of the intestinal flora at different altitudes.
As shown, altitude clearly distinguished the samples (Figure 7A).
Similarly, when we analyzed AGP and S208 separately, the
high-altitude samples in AGP and S208 could be differentiated
in the PCoA plots (Supplementary Figures 9A,B). Based on
Spearman’s correlation coefficients, we identified correlations
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FIGURE 5 | Altitude migration affects the physiological function and disease incidence in the Tibetan population. (A) Abundance of predicted KEGG pathways
significantly correlated with the year of emigration from plateau to plain (Spearman’s correlation, adjusted P < 0.05); colors of heatmap mean lower abundance or
higher abundance in different groups. (B) Relative abundance of 20 predicted KEGG pathways which were significantly correlated with immigration generations from
plain to plateau (MaAsLin q-value < 0.1).

FIGURE 6 | Construction of the network of impact parameters, gut microbiome, and functions. (A) Microbiome phenotypes significantly correlated with the year of
emigration from plateau to plain (Spearman’s correlation, adjusted P < 0.05) and immigration generations from plain to plateau (Kendall’s correlation, adjusted
P < 0.05). (B) Correlation network between 15 common significantly genera and 20 common predicted KEGG pathways. Their correlations with factors were also
displayed (Spearman’s correlation, adjusted P < 0.05, |r| > 0.3).
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between the relative abundances of genera and altitude in
the S208 (top) and Zang (bottom) datasets (Figure 7B). In
our dataset (Zang), Bacteroides was more abundant in low-
altitude samples; however, in the S208 dataset, this taxon
was more abundant at high altitudes. In addition, other taxa
that were positively correlated with altitude in our dataset
were also found in S208. All samples from the S208 dataset
were clustered into enterotype 1 (Prevotella) and enterotype
2 (Bacteroides) by PCoA based on Jensen–Shannon distances
(Supplementary Figure 9C), consistent with the results for our
dataset. In S208, the core genera belonging to Bacteroidota were
Prevotella and Bacteroides, and in Firmicutes, the core genus was
Faecalibacterium (Supplementary Figure 9D). The core genera
identified in S208 were also identified in our dataset, illustrating
the similarity in the intestinal flora of Tibetan populations from
different regions.

DISCUSSION

This is the first large-scale study of the gut microflora of the
Tibetan population in Ngawa. Our results showed that the
gut microbiota of the Tibetan population was dominated by
phyla of Bacteroidota and Firmicutes. The flora distribution
of the Tibetan population was distinguished from LLD, AGP,
and S314 datasets. Bacterial diversity increased with altitude, in
agreement with previous results (Kumar et al., 2019). Zhang
et al. (2015) studied the gut microbiome of 314 healthy young
people from seven ethnic groups in nine provinces of China
and identified nine core genera with Phascolarctobacterium,
Roseburia, Bacteroides, Blautia, Faecalibacterium, Clostridium,
Subdoligranulum, Ruminococcus, and Coprococcus. In this study,
we found unique core genera in the Tibetan population located
in Ngawa area as Prevotella and Lachnospira. It is known that
Prevotella mainly participates in the metabolism of carbohydrates
and plant proteins as well as short-chain fatty acid production
(De Filippis et al., 2016). Many Lachnospira strains produce
butyrate, which plays a crucial role in the maintenance of human
gut health (Paggi et al., 2005). These bacteria produce short-
chain fatty acids, which can act as anti-inflammatory agents
in addition to the source of calories of the body (Paggi et al.,
2005). This may explain how Tibetans with a low dietary fiber
intake maintain gut health. These bacteria may be related to
adaptation to the low-oxygen environment and may be beneficial
for Tibetans in the high-altitude areas. The Tibetan microflora
can be divided into two enterotypes, as observed in both our
dataset (Zang) and dataset S208. A previous study reported that
the human gut microbiota can be divided into three enterotypes,
Prevotella, Bacteroides, and Ruminococcus (Roager et al., 2014).
The gut microbiota of the Tibetan population mainly consisted
of Prevotella and Bacteroides, while Ruminococcus accounted for
only a small portion of the sequence reads (˜1%). We speculate
that this can be explained through the unique diet of Tibetans.
Ruminococcus is mainly related to the digestion of carbohydrates,
such as sugar, starch, and potato (Crost et al., 2018). Tibetans
prefer high-protein, high-fat, and low-fiber foods, while their
carbohydrate consumption is relatively low.

One study of individuals from six different plateau regions
found that location and altitude affected gut microbial
composition (Wang et al., 2020). However, the main determinant
of the flora was not established in particular small sample size.
Based on more than 2,000 individuals from different ethnicities
in the same city, one study showed that ethnicity contributes
significantly to individual differences in the gut microbiome,
independent of metabolic health (Deschasaux et al., 2020).
Likewise, based on 7,000 individuals in 14 districts of Guangdong
Province, one found that regional factors have a significant
impact on the flora (He et al., 2018). Our study also confirmed
that altitude among other factors had the greatest effect on the
microbial composition. This is also reflected in the analysis of
reverse immigrants from the Qinghai-Tibetan Plateau and Han
immigrants from the basin to the plateau (Hauenschild et al.,
2017). The important influence of altitude on flora was further
indicated by two other datasets, AGP and S208. We confirmed
that altitude is an important factor affecting the succession of
the gut microbiome. We aimed to determine the effects of these
changes on the metabolic functions in the Tibetan population.
Based on the KEGG pathway analyses, our study found that
in the migration process of the Tibetan population, changes in
the gut microbiome were most related to metabolism, cancer,
the immune system, and the digestive system. Alessia Visconti
et al. showed that the gut microbiome was closely related to host
systemic metabolism. The metabolic pathway was significantly
correlated with 95% of the fecal metabolites, while the microbial
species were related to 82% of the fecal metabolites. The
carcinogenesis of colorectal cancer was significantly correlated
with the gut microbiome. There is some evidence to indicate
the association between that pathogenesis of Fusobacterium
nucleatum and colorectal cancer (Shang and Liu, 2018; Hashemi
Goradel et al., 2019). At the same time, the intestinal microflora
plays a very important role in the treatment of tumors. In 2015,
a landmark paper was published in Science, which showed that
the composition of intestinal microbiota can affect the immune
checkpoint for cytotoxic T lymphocyte antigen-4 (CTLA-4)
inhibitor response and death receptor 1 (PD-1) (Sivan et al.,
2015; Vétizou et al., 2015). Recent studies have shown that the
gut microbiota is associated with immune system diseases, for
example, P. gingivalis impacts the development of autoimmune
diseases (Ohtsu et al., 2019). Kim et al. (2019) found that the
ratio of intestinal P/B decreased in patients with systemic lupus
erythematosus, indicating that mucosal immune dysfunction in
patients with systemic lupus erythematosus affects the intestinal
microbiota. Bacteroides found in fragile substances in the
human gut play an active regulatory role in the human immune
system (Thaiss et al., 2014). These studies highlight the complex
interaction between the gut microbiome and host function.

Gram staining of bacteria is one of the important methods
used to distinguish bacterial species and can guide the diagnosis
and treatment of diseases (Boyanova, 2018). Our research found
that a shorter migration time led to an increased abundance
of gram-negative bacteria and a decreased abundance of gram-
positive bacteria among people migrating from the plateau to the
plain. This finding has good clinical guiding significance for the
infection of Tibetan people and the choice of antibiotic.
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FIGURE 7 | Altitude determines the composition of the gut microbiome in other ethnic groups. (A) PCoA plot based on Bray-Curtis dissimilarity at the genus level
from three datasets (Zang, n = 1059; AGP, n = 1244; S208, n = 208), the color and size of dots represent different datasets and altitudes. (B) Relative abundance of
genera significantly correlated with altitude at the dataset of S208 (top) and Zang (bottom) by Spearman’s correlation (adjusted P < 0.05). The abundance profiles
are transformed into Z-score, negative Z-score represents lower abundance than mean and a positive Z-score represents higher abundance than mean.

CONCLUSION

Tibetan ethnicity with its unique lifestyle and customs and
high altitude of living environment creates a particular niche
for the gut microbiome. Understanding the composition of
the gut microbiota of the Tibetan population can provide
insight into differences in microbial colonization among regions
and ethnic groups as well as the contributions of the unique
adaptive lifestyle, customs, and dietary habits to intestinal
microecology. We found that altitude was the most important
factor affecting the gut microbiome in Tibetan populations and
further supported the uniqueness of the microflora in Tibetan
areas. The change in altitude promoted the succession of the
gut microbial community. AGP and Z208 also showed the
impact of altitude on the microbial community. Furthermore,
our study provided abundant and unique data to explore the
interaction of impact parameter-gut microbiome-host function
and disease incidence.
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The aim of this study was to determine the effects of six common commercial lactic acid
bacteria (LAB) additives [A1, Lactobacillus plantarum, L. buchneri, and Enterococcus
faecalis; A2, L. plantarum and L. casei; A3, L. plantarum and L. buchneri; A4,
L. plantarum, L. buchneri, L. casei, and Pediococcus acidilactici; A5, L. plantarum
(producing feruloyl esterase); and A6, L. buchneri, P. acidilactici, β-glucanase, and
xylanase] on the bacterial community and fermentation quality of alfalfa silage. Alfalfa
was harvested at the squaring stage, wilted in the field for 24 h, and ensiled without
any additives (Control) or with A1, A2, A3, A4, A5, or A6. Microbial counts, bacterial
community, fermentation parameters, and nutritional composition were determined
after ensiling for 90 days. The total abundance of LAB genera on alfalfa pre-ensiling
was 0.38% in bacterial community. The abundances of Lactobacillus, Enterococcus,
and Pediococcus in the Control silage were 42.18, 40.18, and 8.09% of abundance,
respectively. The abundances of Lactobacillus in A1-, A2-, A3-, A4-, and A5-treatments
were 89.32, 92.93, 92.87, 81.12, and 80.44%, respectively. The abundances of
Pediococcus and Lactobacillus in A6-treatment were 70.14 and 24.86%, respectively.
Compared with Control silage, LAB-treated silage had lower pH and less ammonia
nitrogen and water-soluble carbohydrates concentrations (p < 0.05). Further, the A5-
and A6-treatments contained lower neutral detergent fiber, acid detergent fiber, and
hemicellulose than other treatments (p < 0.05). Overall, LAB genera were presented
as minor taxa in alfalfa pre-ensiling and as dominant taxa in alfalfa silage. Adding LAB
additives improved the fermentation quality and altered the bacterial community of alfalfa
silage. The main bacterial genera in Control silage were Lactobacillus, Enterococcus,
and Pediococcus. Lactobacillus dominated the bacterial communities of A1-, A2-, A3-,
A4-, and A5-treatments, while Pediococcus and Lactobacillus were dominant bacterial
genera in A6-treatment. Inoculating A5 and A6 degraded the fiber in alfalfa silage. It is
necessary to ensile alfalfa with LAB inoculants.

Keywords: alfalfa silage, bacterial community, fermentation quality, lactic acid bacterial additives, microbial
counts, nutrition composition
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INTRODUCTION

Ensiling has become a common and effective method for
the long-term preservation of forage for livestock (Sun et al.,
2021a). Silage enables anaerobic microbial fermentation to
be dominated by lactic acid bacteria (LAB), which utilize
water-soluble carbohydrates (WSC) to produce lactic acid
(LA), reduce pH, and inhibit harmful microorganisms during
ensilage process (Yang et al., 2020). Alfalfa (Medicago sativa
L.) is a preferred perennial legume forage for livestock
producers owing to its high nutritional value, especially its
high crude protein (CP) concentration (Hartinger et al., 2019;
Besharati et al., 2021; Netthisinghe et al., 2021). However,
the second and third cuts of alfalfa in northern China
are generally harvested during July and August, a period
with an unreliable weather for alfalfa hay processing as
it is in the rainy season. As a result, ensiling is the
preferable method for conserving alfalfa during this period.
Nevertheless, ensiling alfalfa with satisfactory fermentation
quality is difficult because of the low dry matter (DM) and
WSC concentrations and high buffering capacity (BC) (Sun
et al., 2021b). Thus, wilting and applying additives to ensiled
alfalfa are necessary to improve the fermentation quality and
optimize microbial communities (Gao et al., 2021; Zhang et al.,
2021).

Microbial composition, particularly LAB populations, plays
a crucial role in the ensiling fermentation quality of silage (Bai
et al., 2021). The development of next-generation sequencing
technologies has helped to understand the differences in
microbial communities and fermentation quality among
silages (Wang C. et al., 2021). Previous studies revealed that
inoculating LAB additives at ensiling alfalfa promotes bacterial
community dynamics (especially Lactobacillus dynamics) during
the fermentation process (Guo et al., 2018, 2020; Hu et al.,
2020; Zhao S. et al., 2021). Other studies have also reported that
Lactobacillus dominates the bacterial community in terminal
alfalfa silage and in the mixing silage of alfalfa and whole-plant
corn (Wang et al., 2020; Luo et al., 2021; Wang M. et al., 2021;
Yang et al., 2021).

Inoculating LAB at ensiling optimizes the bacterial
community and improves the fermentation quality of the
terminal silage (Schmidt et al., 2009; Silva et al., 2016; Zhang
et al., 2021; Zhao S. et al., 2021). Previous studies reported that
the inoculation of ensiling alfalfa with self-screened LAB can
promote the succession of Lactobacillus during the fermentation
process and increase the abundance of Lactobacillus in terminal
silage with good fermentation quality (Guo et al., 2018; Hu et al.,
2020; Yang et al., 2021). Fermentation quality is improved in
alfalfa silage treated with functional LAB screened to produce 3-
phenyllactic acid (Wu et al., 2020), ferulic acid esterase (Su et al.,
2019; Xie et al., 2021), and class IIa bacteriocin (Li et al., 2020).
Sun et al. (2021b) revealed that alfalfa silage inoculated with LAB
from ensiling material had greater fermentation quality than that
inoculated with LAB from other forage sources. However, LAB
screening has a low degree of commercialization, and the effect of
common commercial LAB additives on fermentation quality and
microbial communities of alfalfa silage has rarely been reported.

In the present study, six commercial LAB additives commonly
used for ensiling alfalfa silage in northern China were
collected. We hypothesized that the application of these
additives at ensiling would improve the fermentation quality
and optimize the bacterial community of alfalfa silage. The
objective of this study was to determine the fermentation
quality and bacterial community in alfalfa silage treated with
commercial LAB additives.

MATERIALS AND METHODS

Silage Preparation
Alfalfa was grown for 3 years on an experimental farm
(40◦46.265 N, 111◦39.851E) at the Inner Mongolia Academy of
Agricultural and Animal Husbandry Science, Hohhot, China, and
harvested from four fields as replicates. The second-cut alfalfa
was harvested at the squaring stage at 1 p.m. on June 1, 2019,
and wilted in the fields for 24 h. The wilted forages from the
four fields were separately chopped to 10–20 mm lengths using a
chaffcutter (Hongguang Industry and Trade Co., Ltd., Zhejiang,
China), thoroughly mixed, and then randomly divided into seven
batches for seven treatments. After each additive (5 g) was mixed
with distilled water (2,000 ml), the resulting mixture was allowed
to rest for 2 h. The seven treatments were as follows: CK (control):
2 ml/kg fresh weight (FW) of distilled water; A1: 2 ml/kg FW
of distilled water and 2 g/t FW (recommended amount, RA)
of the first additive [L. plantarum LP28 (≥1.0 × 1011 CFU/g),
L. buchneri LBC136 (≥1.0 × 109 CFU/g), and Enterococcus
faecalis EF08 (≥1.0 × 109 CFU/g); Xinlaiwang I-HL for ensiling
straw; Xinlaiwang Biotechnology Co., Ltd., Yangzhou, China];
A2, 2 ml/kg FW of distilled water and 2 g/t FW (RA) of
the second additive [L. plantarum (≥6.0 × 1010 CFU/g) and
Lactobacillus casei (≥4.0× 1010 CFU/g); Xinlaiwang I for ensiling
alfalfa. Xinlaiwang Biotechnology Co., Ltd., Yangzhou, China];
A3, 2 ml/kg FW of distilled water and 5 g/t FW (RA) of the
third additive [L. plantarum 550 and 360 (≥1.3 × 1010 CFU/g)
and L. buchneri 225 (≥7.0 × 109 CFU/g); Zhuanglemei;
Sichuan Gaofuji Biotechnology Co., Ltd., Chengdu, China];
A4, 2 ml/kg FW of distilled water and 1 g/t FW (RA) of
the fourth additive [L. plantarum, L. buchneri, L. casei, and
Pediococcus acidilactici (≥1.0 × 1011 CFU/g); BONSILAGE;
Schaumann Agricultural Trading Co., Ltd., Shanghai, China];
A5, 2 ml/kg FW of distilled water and 1 g/t FW (RA) of
the fifth additive [L. plantarum MF0932189 (producing feruloyl
esterase, ≥ 1.0 × 1011 CFU/g); QXMG; Gansu Aopujintai
Biological Engineering Co., Ltd., Lanzhou, China]; and A6,
2 ml/kg FW of distilled water and 1 g/t FW (RA) of the sixth
additive [L. buchneri NCIMB 40788 (≥7.5 × 1010 CFU/g),
P. acidilactici CNCM MA 18/5 M (≥5.0 × 1010 CFU/g),
β-glucanase de Aspergillus niger MUCL 39199 (≥5,750 IU/g),
and xylanase de Trichoderma longibrachiatum MUCL 39203
(≥30,000 IU/g), ≥ 1.25 × 1011 CFU/g; LaLSiL Dry; Lallemand
Biotechnology Co., Ltd., Beijing, China]. After spraying distilled
water with or without additives on chopped alfalfa and
performing uniform mixing, approximately 500 g of forage was
packed into a plastic bag (food grade, 300 mm × 400 mm;
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Qingye, Beijing, China) and sealed using a vacuum sealer (DZ-
300; Qingye, Beijing, China). The bags were stored in a dark room
for 90 days and then sampled for analysis. After sampling, the
alfalfa pre-ensiling and silages were dried in a forced-air oven
(BPG-9240A, Shanghai Yiheng Scientific Instrument Co., Ltd.,
Shanghai, China) at 65◦C for 48 h, ground using a mill (FS-6D;
Fichi Machinery Equipment Co., Ltd., Shandong, China) with a
1-mm screen, and dried in the same forced-air oven at 105◦C
until a constant mass was achieved. The dry matter (DM) content
of the silages was corrected for the loss of volatiles during drying
according to Weissbach and Strubelt (2008).

Microbial Counts and Bacterial
Community
The counts of LAB, coliforms, aerobic bacteria, and yeast were
determined via culture on Man, Rogosa, Sharpe agar, violet red
bile agar, nutrient agar, and potato dextrose agar, respectively,
in an incubator (LRH-70, Shanghai Yiheng Science Instruments
Co., Ltd., Shanghai, China) at 30◦C for 72 h (Cai, 1999).

The bacterial communities of alfalfa pre-ensiling and silages
were analyzed by Hangzhou Lianchuan Biotechnology Co.,
Ltd., Hangzhou, China, according to the method described
by Sun et al. (2021a). The E.Z.N.A. R© Stool DNA Kit (D4015,
Omega Inc., Norcross, GA, United States) was used to extract
DNA from the bacteria according to the manufacturer’s
instructions. Polymerase chain reaction (PCR) was carried out
to amplify the V3–V4 region of the bacterial rRNA gene with
primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) (Logue et al., 2016), and
the following cycling conditions: 98◦C for 30 s, followed by 32
cycles of denaturation at 98◦C for 10 s, annealing at 54◦C for 30 s,
and extension at 72◦C for 45 s, and a final extension at 72◦C for
10 min. The PCR products were purified using AMPure XT beads
(Beckman Coulter Genomics, Danvers, MA, United States),
quantified using Qubit (Invitrogen, Carlsbad, CA, United States),
and then sequenced on an Illumina NovaSeq PE250 platform
according to the manufacturer’s recommendations. High-quality
clean tags were obtained from raw reads via quality filtering
according to fqtrim (v0.94), and then filtered using Vsearch
software (v2.3.4). Bacterial community diversity was calculated
using QIIME2. Further, the sequence alignment of species
annotation was performed using BLAST; the alignment databases
were SILVA and NT-16S. Principal component analysis (PCA)
of the bacterial community (at the genus level) of silages
and bubble plot of the bacterial community (genus level) of
silages were derived using R (version 3.2.1).1 Sequencing data
were submitted to the NCBI Sequence Read Archive database
(accession number: PRJNA744283).

Fermentation Quality and Nutrition
Composition
Fresh silage (25 g) was homogenized with sterile water (225 ml)
using a flap-type sterile homogenizer (JX-05, Shanghai Jingxin
Industrial Development Co., Ltd., Shanghai, China) for 100 s

1https://www.omicstudio.cn/tool

and filtered through four layers of cheesecloth to obtain the
silage extract (Sun et al., 2021a). The pH of the silage extract
was measured using a pH meter (PB-10; Sartorius, Gottingen,
Germany). The organic acids [lactic acid (LA), acetic acid (AA),
propionic acid, and butyric acid] were assessed using high-
performance liquid chromatography (DAD, 210 nm, SPD-20A,
Shimadzu Co., Ltd., Kyoto, Japan) and the following conditions:
detector, SPD-20A diode array detector (210 nm); column,
Shodex RS Pak KC-811 (50◦C, Showa Denko K.K., Kawasaki,
Japan); and mobile phase, 3 mM HClO4 (1.0 ml/min) (Bai et al.,
2021). The concentrations of ammonia nitrogen (NH3-N) and
total nitrogen (TN) were determined using the Kjeldahl method
with a Kjeltec autoanalyzer (8400; Foss Co., Ltd., Hillerød,
Denmark) (AOAC, 2005). Water-soluble carbohydrates (WSC)
were assessed using anthrone-sulfuric acid colorimetry with
a spectrophotometer (UV1102II, Shanghai Tianmei Scientific
Instrument Co., Ltd., Shanghai, China), according to the
method described by McDonald and Henderson (1964). The
buffering capacity (BC) was assessed using acid-base titration, as
described by Playne and McDonald (1966).

Crude protein (CP) concentration was calculated by
multiplying the TN concentration by 6.25. Neutral detergent
fiber (NDF) and acid detergent fiber (ADF) were assessed
using an Ankom 2000 fiber analyzer (Ankom, Macedon, NY,
United States) according to the method described by Van Soest
et al. (1991). Hemicellulose concentration was calculated by
the NDF concentration minus the ADF concentration. Crude
ash was assessed using a muffle roaster (SX-4-10N, Shanghai
Jingqi Instrument Co., Ltd., Shanghai, China) at 550◦C for 5 h
after carbonization.

Statistical Analysis
The differences in microbial counts, sequencing data, alpha
diversity, fermentation quality, and nutrition composition
among treatments were analyzed with seven treatments and
four repetitions using one-factor analysis of variance via the
general linear model (GLM) procedure of SAS (version 9.1.3;
SAS Institute Inc., Cary, NC, United States). The differences
were compared using the least significant difference test, and
significance was determined at p ≤ 0.05.

RESULTS

Fermentation Quality and Nutrition
Composition
The silage had lower pH and WSC concentration and higher
BC content than fresh materials (p < 0.05; Table 1). The LAB-
treatments had lower pH, NH3-N, and WSC than Control
silage. Further, A2- and A6-treatments contained higher NH3-
N than other LAB-treatments (p < 0.05). Compared with
the Control silage and A1-treatment, the A4-, A5-, and A6-
treatments contained lower AA (p < 0.05); A4- and A6-
treatments had higher LA/AA (p < 0.05). The BC was the lowest
in A4-treatment and the highest in A5-treatment among LAB-
treatments (p < 0.05). No propionic and butyric acids were
detected in alfalfa silages.
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The fresh material had a lower DM content than silages
(p < 0.05; Table 2). The A4-treatment contained higher DM
content than other treatments, with Control silage displaying a
lower content than A3-treatment (p < 0.05). The NDF, ADF,
and hemicellulose concentrations in A5- and A6-treatments
were lower than those in other treatments and fresh materials
(p < 0.05). The A3-tretment had higher NDF than Control
silage and A1-treatment, with A1-treatment having a lower NDF
than Control silage (p < 0.05). The A4-treatment contained the
highest ADF, and A3-treatment had the greatest hemicellulose
(p < 0.05). The crude ash concentration in A1-treatment was
lower than that in A2- and A3-treatmetns (p < 0.05).

Microbial Counts and Bacterial
Community
The Control silage and A2-treatment had greater LAB count than
other treatments and fresh materials (p < 0.05). Further, A1- and
A3-treatments contained higher LAB count than A4-, A5-, and
A6-treatments (p < 0.05), and the A4-treatment displayed the
lowest LAB count (p < 0.05; Table 3). The aerobic bacterial count
in fresh materials was higher than that in the silages (p < 0.05),
and the aerobic bacterial count in Control silage was higher than
that in LAB-treatments (p < 0.05). Moreover, the A4- and A6-
treatments had lower yeast count than other treatments and fresh
materials (p < 0.05). Coliforms were detected in fresh materials
but not in silages.

A total of 2,672,280 raw reads and 2,453,088 clean reads of
the 16S rRNA gene were obtained from the 32 samples (Table 3).
There were no differences in the number of raw reads among all
silages and fresh materials (p > 0.05), and the fresh materials had
lower clean reads than A1-, A3-, and A5-treatments (p < 0.05).
More than 83,000 raw reads and 76,000 clean reads were derived
for each sample.

The A5-treatment had higher observed species and Chao1
index than A6-treatment (p < 0.05; Table 3). Fresh materials had
a higher Shannon index than silages (p < 0.05), and Shannon
index in Control silage and A4-treatment were higher than those
in the other treatments (p < 0.05). The Simpson index for the

A3-, A5-, and A6-treatments was higher than that for the A1-
and A2-treatments and lower than that for the fresh materials,
Control silage, and A4-treatment (p < 0.05).

According to PCA, the bacterial communities of Control silage
and A6-treatment were cleanly separated from each other and
from other treatments (Figure 1). However, the A1-, A2-, A3-,
A4-, and A5-treatments had aggregated bacterial community.
In addition, the fresh materials contained a separate bacterial
community from that of the silages.

The most predominant bacterial genus in the A1-, A2-, A3-,
A4-, and A5-treatments was Lactobacillus, with abundances of
89.32, 92.93, 92.87, 81.12, and 80.44%, respectively (Figure 2).
The other main genera (>1%) were Enterococcus, Cedecea,
and Devosia in A1-treatment; Enterococcus in A2- and A3-
treatments; Pediococcus, Paracoccus, Devosia, and Allorhizobium-
Neorhizobium-Pararhizobium-Rhizobium in A4-treatment; and
Pediococcus, Enterococcus, Paracoccus, Devosia, Allorhizobium-
Neorhizobium-Pararhizobium-Rhizobium, and Falsirhodobacter
in A5-treatment. The main bacterial genera in Control silage
and A6-treatment were Lactobacillus (42.18 and 24.86%,
respectively), Pediococcus (8.09 and 70.14%, respectively), and
Enterococcus (40.18 and 1.40%, respectively), followed by
Pantoea, Paracoccus, and Weissella in Control silage (>1%).
Further, Pantoea, Enterobacter, and Pseudomonas were the
dominant bacterial genera in fresh materials, with abundances of
37.59, 21.20, and 15.74%, respectively (Figure 2).

Difference in Bacterial Community
Among Silages and Fresh Materials
Compared with fresh materials, silages had higher Lactobacillus,
Pediococcus, and Enterococcus (p < 0.05) and lower Pantoea,
Enterobacter, Pseudomonas, Cedecea, and Rahnella (p < 0.05)
(Figure 3). Control silage and A6-treatment contained less
Lactobacillus than other treatments, with Control silage having
higher than the A6-treatments (p < 0.05). The A6-treatment had
higher Pediococcus than other treatments, with A1-, A2-, and A3-
treatments displaying a lower than A4- and A5-treatments and

TABLE 1 | Fermentation quality, water-soluble carbohydrates (WSC), and buffering capacity (BC) of alfalfa silages (n = 4).

Items FM CK A1 A2 A3 A4 A5 A6 SEM p-value

Ph 6.09a 4.70b 4.32c 4.36c 4.39c 4.36c 4.33c 4.38c 0.020 <0.001

LA (g/kg DM) − 72.2 94.8 90.5 84.8 67.7 63.3 63.3 7.06 0.055

AA (g/kg DM) − 51.1a 50.4a 40.0ab 30.6ab 20.2b 23.8b 19.8b 6.04 0.002

PA (g/kg DM) − ND ND ND ND ND ND ND − −

BA (g/kg DM) − ND ND ND ND ND ND ND − −

LA/AA − 1.42c 2.07bc 2.52ab 2.78ab 3.38a 2.75ab 3.21a 0.222 <0.001

NH3-N (g/kg TN) − 41.3a 23.2c 29.0b 19.2c 21.5c 23.5c 27.4b 1.1 <0.001

WSC (g/kg DM) 46.5a 15.1b 6.85c 6.54c 7.11c 5.79c 2.68c 4.50c 1.18 <0.001

BC (mEq/kg DM) 575d 858ab 842b 835b 838b 813c 867a 838b 5.87 <0.001

Values with different letters indicate significant differences among fresh materials and silages. SEM, standard error of the mean; LA, lactic acid; AA, acetic acid; PA,
propionic acid; BA, butyric acid; NH3-N, ammonia nitrogen; TN, total nitrogen; ND, not detected. FM, fresh materials; CK (Control), 2.00 ml/kg fresh weight (FW) of
distilled water; A1, 2 g/t FW of the first additive and 2.00 ml/kg FW of distilled water; A2, 2 g/t FW of the second additive and 2.00 ml/kg FW of distilled water; A3, 5 g/t
FW of the third additive and 2.00 ml/kg FW of distilled water; A4, 1 g/t FW of the fourth additive and 2.00 ml/kg FW of distilled water; A5, 1 g/t FW of the fifth additive and
2.00 ml/kg FW of distilled water; A6, 1 g/t FW of the sixth additive and 2.00 ml/kg FW of distilled water.

Frontiers in Microbiology | www.frontiersin.org 4 April 2022 | Volume 13 | Article 83689987

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-836899 April 15, 2022 Time: 9:38 # 5

Na et al. Bacterial Community of Alfalfa Silage

TABLE 2 | Dry matter (DM, g/kg) and nutrition composition (g/kg DM) of alfalfa silages (n = 4).

Items FM CK A1 A2 A3 A4 A5 A6 SEM p-value

DM 485d 496c 503bc 506bc 512b 525a 507bc 504bc 2.69 <0.001

Crude protein 196 194 195 193 194 192 194 193 2.33 0.931

Neutral detergent fiber 375ab 359b 340c 373ab 384a 366ab 293d 294d 5.65 <0.001

Acid detergent fiber 230ab 236ab 220b 237ab 220b 245a 198c 201c 5.44 <0.001

Hemicellulose 145b 122c 119c 136bc 164a 121c 94.6d 93.3d 5.01 <0.001

Crude ash 98.2ab 97.0ab 94.5b 99.7a 99.5a 98.3ab 98.3ab 98.3ab 1.06 0.048

Values with different letters indicate significant differences among fresh materials and silages. SEM, standard error of the mean. FM, fresh materials; CK (Control),
2.00 ml/kg fresh weight (FW) of distilled water; A1, 2 g/t FW of the first additive and 2.00 ml/kg FW of distilled water; A2, 2 g/t FW of the second additive and 2.00 ml/kg
FW of distilled water; A3, 5 g/t FW of the third additive and 2.00 ml/kg FW of distilled water; A4, 1 g/t FW of the fourth additive and 2.00 ml/kg FW of distilled water; A5,
1 g/t FW of the fifth additive and 2.00 ml/kg FW of distilled water; A6, 1 g/t FW of the sixth additive and 2.00 ml/kg FW of distilled water.

TABLE 3 | Microbial counts, sequencing data, and alpha diversity of bacteria in alfalfa silages (n = 4).

Items FM CK A1 A2 A3 A4 A5 A6 SEM p-value

Microbial counts (log CFU/g FW) Lactic acid bacteria 5.59cd 7.29a 6.45b 7.09a 6.00bc 4.45f 5.36de 4.96e 0.157 <0.001

Coliforms 5.31a − − − − − − − 0.074 <0.001

Aerobic bacteria 6.47a 5.55b 4.70c 4.55c 4.82c 4.24c 4.43c 4.77c 0.143 <0.001

Yeasts 7.40a 7.25a 6.90a 7.49a 7.06a 4.91b 7.00a 5.19b 0.179 <0.001

Sequencing data Raw reads 85,257 82,306 83,868 82,358 84,706 83,348 83,852 82,378 884 0.181

Clean reads 71,561b 739,95ab 79,610a 766,55ab 78,702a 76,947ab 78,683a 77,120ab 1,384 0.007

Alpha diversity Observed species 250ab 179ab 190ab 159ab 160ab 245ab 257a 147b 23.2 0.007

Chao1 250ab 179ab 191ab 159ab 161ab 246ab 257a 147b 23.3 0.007

Shannon 4.97a 3.34b 1.32ef 1.13f 1.86de 3.51b 2.56c 2.31cd 0.196 <0.001

Simpson 0.904a 0.791a 0.291c 0.249c 0.534b 0.846a 0.559b 0.629b 0.035 <0.001

Goods coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 − −

Values with different letters indicate significant differences among fresh materials and silages. SEM, standard error of the mean. FM, fresh materials; CK (Control),
2.00 ml/kg fresh weight (FW) of distilled water; A1, 2 g/t FW of the first additive and 2.00 ml/kg FW of distilled water; A2, 2 g/t FW of the second additive and 2.00 ml/kg
FW of distilled water; A3, 5 g/t FW of the third additive and 2.00 ml/kg FW of distilled water; A4, 1 g/t FW of the fourth additive and 2.00 ml/kg FW of distilled water; A5,
1 g/t FW of the fifth additive and 2.00 ml/kg FW of distilled water; A6, 1 g/t FW of the sixth additive and 2.00 ml/kg FW of distilled water.

Control silage (p < 0.05). Control silage had higher Enterococcus
than other treatments (p < 0.05).

DISCUSSION

Characteristics of Alfalfa Pre-ensiling
A previous study reported that ensiling alfalfa with satisfactory
fermentation quality is difficult because of low LAB count, less
WSC concentration, and higher BC in fresh forage (Sun et al.,
2021b). In the present study, the epiphytic LAB count (5.59 log
CFU/g FW, Table 3) in alfalfa pre-ensiling met the criteria (105

log CFU/g FW) required for adequate fermentation (McDonald
et al., 1991). However, the alfalfa pre-ensiling contained less WSC
and moisture contents (46.5 g/kg DM and 515 g/kg) and higher
BC (575 mEq/kg DM) (Tables 1, 2), resulting in higher pH (4.70),
more NH3-N (41.3 g/kg), and lower LA/AA (1.42) in Control
silage than those in LAB-treatments (Table 1). These suggest
that it is necessary to ensile alfalfa with LAB additive for good
fermentation quality. The LAB genera (Weissella, Lactobacillus,
Enterococcus, and Pediococcus) were detected in alfalfa pre-
ensiling with total abundance of 0.38% (Figure 2). Other studies
found that the LAB genera have total abundance of less than
1.0% in alfalfa pre-ensiling (Hu et al., 2020; Zhao S. et al., 2021)

and fresh whole-plant corn (Xu et al., 2019; Guan et al.,
2020). The LAB genera were demonstrated to be generally
presented as minor taxa in forage pre-ensiling. The main bacterial
genera in alfalfa pre-ensiling were Pantoea (37.59%), Enterobacter
(21.20%), and Pseudomonas (15.74%) (Figure 2). The findings
agreed with those reported by Zhao S. et al. (2021) for high-
moisture alfalfa [Enterobacter (33.93%), Pseudomonas (16.67%),
and Pantoea (7.09%)]. However, other studies reported that
the main bacterial genera (>10% of abundance) in alfalfa pre-
ensiling were Pseudomonas, Exiguobacterium, and Massilla (Yang
et al., 2020), Sphingobium (Hu et al., 2020), Xanthomonas and
Cyanobacteria (Guo et al., 2020), and Exiguobacterium (Wang
et al., 2019). The different bacterial communities in alfalfa pre-
ensiling among those studies might be due to the differences in
geographical locations (Wang C. et al., 2021).

Fermentation Quality and Nutrition
Composition of Silage
Ensiling alfalfa with LAB inoculants improves fermentation
quality, as demonstrated by the increased LA content and
decreased pH and NH3-N (Guo et al., 2020; Hu et al., 2020). In
the present study, LAB inoculation at ensiling decreased pH and
NH3-N in alfalfa silage. However, no difference in LA content was
detected among all treatments, and the AA content in the Control

Frontiers in Microbiology | www.frontiersin.org 5 April 2022 | Volume 13 | Article 83689988

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-836899 April 15, 2022 Time: 9:38 # 6

Na et al. Bacterial Community of Alfalfa Silage

FIGURE 1 | Principal component analysis (PCA) of the bacterial communities in silage and fresh materials (n = 4). FM, fresh materials; CK (Control), 2.00 ml/kg fresh
weight (FW) of distilled water; A1, 2 g/t FW of the first additive and 2.00 ml/kg FW of distilled water; A2, 2 g/t FW of the second additive and 2.00 ml/kg FW of
distilled water; A3, 5 g/t FW of the third additive and 2.00 ml/kg FW of distilled water; A4, 1 g/t FW of the fourth additive and 2.00 ml/kg FW of distilled water; A5,
1 g/t FW of the fifth additive and 2.00 ml/kg FW of distilled water; A6, 1 g/t FW of the sixth additive and 2.00 ml/kg FW of distilled water.

FIGURE 2 | Relative abundance of the bacterial community (genus level) in silages and fresh materials (FM) (n = 4). FM, fresh materials; CK (Control), 2.00 ml/kg
fresh weight (FW) of distilled water; A1, 2 g/t FW of the first additive and 2.00 ml/kg FW of distilled water; A2, 2 g/t FW of the second additive and 2.00 ml/kg FW of
distilled water; A3, 5 g/t FW of the third additive and 2.00 ml/kg FW of distilled water; A4, 1 g/t FW of the fourth additive and 2.00 ml/kg FW of distilled water; A5,
1 g/t FW of the fifth additive and 2.00 ml/kg FW of distilled water; A6, 1 g/t FW of the sixth additive and 2.00 ml/kg FW of distilled water.
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FIGURE 3 | Bubble plot of the bacterial community (genus level) among silages and fresh material (n = 4, p < 0.05). FM, fresh materials; CK (Control), 2.00 ml/kg
fresh weight (FW) of distilled water; A1, 2 g/t FW of the first additive and 2.00 ml/kg FW of distilled water; A2, 2 g/t FW of the second additive and 2.00 ml/kg FW of
distilled water; A3, 5 g/t FW of the third additive and 2.00 ml/kg FW of distilled water; A4, 1 g/t FW of the fourth additive and 2.00 ml/kg FW of distilled water; A5,
1 g/t FW of the fifth additive and 2.00 ml/kg FW of distilled water; A6, 1 g/t FW of the sixth additive and 2.00 ml/kg FW of distilled water.

silage and A1-treatment were higher than that in A4-, A5-, and
A6-treatments. In addition, Control silage contained more WSC
than LAB-treatments (15.1 vs. 2.86–7.11 g/kg DM); however, BC
did not differ between Control silage and LAB-treatments (except
A4) (Table 1). Lactobacillus, as the principal component of the
additives used in the present study, was negatively correlated
with WSC content in alfalfa silage (Supplementary Figure 1).
The results suggest that other fermentation products (valeric
acid, caproic acid, succinic acid, citric acid, ethanol, propanol,
and 1,2-propandiol) might be generated during the ensiling
process in LAB-treatments, and inoculating LAB at ensiling
increased the utilization of WSC in silage during the fermentation
process. This phenomenon was also observed in alfalfa silage
(Xie et al., 2021), whole-plant corn silage (Jiang et al., 2020),
and whole-plant sweet sorghum silage (Diepersloot et al., 2021).
Inoculating heterofermentative LAB at ensiling reduces LA/AA
in terminal silage by decreasing LA and increasing AA (Kung
et al., 2018). The additives (except A5) used in the present
study contained heterofermentative LAB (A1, L. buchneri; A2,
L. casei; A3, L. buchneri; A4, L. buchneri, L. casei; A6, L. buchneri).
However, A5-treatment had no difference in LA relative to other
treatments; AA relative to A2-, A3-, A4-, and A6-treatments;
and LA/AA relative to other LAB-treatments (Table 1). The
finding might be due to homofermentative LAB dominating

the fermentation process, as reflected by the total abundance
of L. plantarum, E. mundtii, E. faecium, and P. acidilactici in
Control silage and LAB-treatments (58.50, 85.50, 88.76, 73.21,
64.16, 74.42, and 77.28%, respectively) (Supplementary Table 1).
Moreover, Guo et al. (2020) reported the undifferenced LA and
AA concentrations between alfalfa silages treated with homo- and
hetero-fermentative LAB.

During fermentation, proteolysis in silage is inevitable, owing
to the presence of plant and microbial proteases (Thomas et al.,
1980; Hassanat et al., 2007). The NH3-N, as part of the non-
protein, shows the extent of silage preservation during the
ensiling process, owing to its low utilization in the rumen (Xue
et al., 2017; Yin et al., 2017). In the present study, NH3-N
(41.3 g/kg TN) in Control silage was lower than the suggested
concentrations in legume silage (< 120 g/kg TN) (Kung et al.,
2018), indicating that the Control silage was well preserved. This
finding might be because the higher DM content (480 g/kg)
and the ideal anaerobic environment during the ensilage process
cause a decrease in the activity of undesired microorganisms
during ensiling. Propionic acid, butyric acid, coliforms, and
Clostridia were not detected in any of the silages (Table 1 and
Figure 2). Furthermore, compared with Control silage, the LAB-
treatments displayed lower pH (4.70 vs. 4.32– to 4.39), NH3-N
(41.3 vs. 19.2– to 29 g/kg TN), Enterobacteriaceae (2.43% vs.
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0.1–% to 0.43%), and potentially pathogenic bacteria (6.50%
vs. 1.05–% to 1.86%, expect A1) (Table 1 and Supplementary
Figures 2, 3). This finding indicated that the fermentation
products of the LAB additives used in the present study
contributed more to the preservation of silage and the inhibition
of undesired microorganisms during fermentation under low pH,
low moisture, and ideal anaerobic conditions. Previous studies
reported that LAB inoculation at ensiling decreased NH3-N
content in alfalfa silage (Hu et al., 2020; Sun et al., 2021b).

In the present study, compared with Control silage, LAB-
treatments had higher DM content, although the difference did
not reach a significant level among Control silage and the A1-,
A2-, A3-, and A6-treatments. Moreover, there were no differences
in CP concentration among the silages (Table 2). Previous
studies revealed that inoculating LAB at ensiling alfalfa increases
the contents of DM and CP and improves the fermentation
quality of terminal silage (Li et al., 2020; Wu et al., 2020). The
results suggest that satisfactory fermentation quality contributes
to increasing the DM content and preserving the CP of alfalfa
silage. The concentrations of NDF, ADF, and hemicellulose in
the A5- and A6-treatments were lower than those in the other
treatments (Table 2), which might be related to the function
of L. plantarum (producing feruloyl esterase) in A5 and the
composition of A6 (β-glucanase and xylanase). Feruloyl esterase
can promote cell wall degradation, especially in collaboration
with cellulase and hemicellulose, by cleaving the ester or ether
linkages between ferulic acid and sugars (Dilokpimol et al., 2016;
Duan et al., 2021). Su et al. (2019) reported that inoculating
feruloyl esterase-producing Lactobacillus fermentum at ensiling
alfalfa decreased the NDF and ADF concentrations in terminal
silage. β-glucanase, as one type of cellulase, can cleave glycosidic
bonds in the amorphous regions of cellulose polymers (Takizawa
et al., 2020). Moreover, xylanase contributes to the degradation of
hemicellulose (Paës et al., 2012; Vucinic et al., 2021). Collectively,
these findings indicate that A5 and A6, as additives, can degrade
the cell wall during fermentation in alfalfa silage.

Microbial Counts and Bacterial
Community of Silage
Inoculating LAB at ensiling can increase LAB count in the
terminal silage (Hu et al., 2020; Zhang et al., 2020). However, in
the present study, the Control silage and A2-treatment displayed
more LAB counts than the other treatments (Table 3). Moreover,
the Control silage had the highest pH and aerobic bacterial
count (Tables 1, 3). These results suggest that the LAB in the
A2-treatment might have better resistance to less moisture and
a low pH environment (494 g/kg and 4.26, respectively), and
the microorganisms in the Control silage had greater activity
under less moisture and weakly acidic conditions (504 g/kg and
4.70, respectively). The A4- and A6-treatments contained lower
yeast counts than the other treatments (Table 3), which might
be related to the presence of P. acidilactici in A4 and A6 as
additives used in the present study. Previous studies reported
that P. acidilactici inhibits effects on other microorganisms by
producing antimicrobial bacteriocins (Kaya and Simsek, 2020;
Surachat et al., 2021).

In the present study, most bacteria were detected in all
samples the goods’ coverages reached approximately 1 (Table 3).
The bacterial diversity of the silages was lower than that of
the alfalfa pre-ensiling (Table 3). Furthermore, the material
had a clearly separated bacterial community from the silages
(Figure 1); similar results were reported by Zheng et al. (2017)
and Zhao S. et al. (2021). This finding might be due to
the large increasing abundance of LAB genera as the main
bacterial taxa in silages (87.90%–95.30%) (Figures 2, 3). The
Shannon and Simpson indexes for A4-treatment were higher
than those for other LAB-treatments and did not differ from
those of Control silage. Moreover, A1- and A2-treatments
had lower Shannon and Simpson indexes than the other
treatments (Table 3). These results suggest that the bacterial
diversity was higher in the Control silage and A4-treatment,
but lower in the A1- and A2-treatments. Interestingly, the
same trend was detected in the number of main bacterial
species, with > 10% abundance (Supplementary Figure 4). The
bacterial communities in the Control silage and A6-treatment
separated clearly from those of other treatments (Figure 1)
due to the less abundance of Lactobacillus detected in the
former (Figures 2, 3). Moreover, Control silage contained more
Lactobacillus and Enterococcus and less Pediococcus than A6-
treatment (Figures 2, 3), resulting in the separation of the
bacterial communities between them (Figure 1).

Inoculation of LAB at ensiling optimizes the bacterial
community and improves the fermentation quality of the
terminal silage (Zhang et al., 2021; Zhao S. et al., 2021). In
general, Lactobacillus dominates the bacterial community in
well-preserved silage owing to its great capacity to produce
acid and reduce pH during ensiling (Zi et al., 2021). In the
present study, compared with Control silage, the LAB-treatments
contained different bacterial communities (Figure 1) and had
lower pH and NH3-N/TN (Table 1). Moreover, Lactobacillus
dominated the bacterial communities in the A1-, A2-, A3-,
A4-, and A5-treatments (89.32, 92.93, 92.87, 81.12, and 80.44%,
respectively) (Figure 2). Nevertheless, the most dominant genus
in A6-treatment was Pediococcus (70.14%) (Figure 2), which
also caused lower pH, AA, and NH3-N/TN, and higher LA/AA
than those for Control silage (Table 1). Such finding indicates
that alfalfa silage is also well-preserved, with Pediococcus being
the dominant genus. The difference in the most dominant
bacterial genus among LAB-treatments might be related to the
composition of the commercial additives used in the present
study. Lactobacillus plantarum had the highest composition in
A1, A2, A3, A4, and A5. Additionally, previous studies revealed
that silage treated with L. plantarum had a greater abundance
of Lactobacillus than Control silage (Zhang et al., 2020; Zhao C.
et al., 2021). These results demonstrate that ensiling forage
with L. plantarum increases the abundance of Lactobacillus in
the terminal silage. Inoculating P. acidilactici, as one of the
two components of A6 (L. buchneri, ≥ 7.5 × 1010 CFU/g;
P. acidilactici, ≥ 5.0 × 1010 CFU/g), increased the abundance
of Pediococcus in A6-treatment compared with other LAB-
treatments (70.14% vs. 0.11–6.81%) (Figure 2). Moreover, the
A4-treatment contained higher Pediococcus than A1-, A2-, A3-,
and A5-treatments (6.81% vs. 0.11–4.07%), and P. acidilactici is
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one of the four components of A4. These results indicate that
ensiling alfalfa with P. acidilactici increases the abundance of
Pediococcus in the terminal silage. Lactobacillus buchneri, as one
of the components of A1, A3, A4, and A6, was only detected in
A6-treatment, with 0.17% abundance (Supplementary Table 1).
Previous studies reported that L. buchneri, as an inoculant
at ensiling, was detected as a minor taxon in alfalfa silage
(Guo et al., 2020) and whole-plant corn silage (Xu et al.,
2020; Netthisinghe et al., 2021). Moreover, E. faecalis (one of
compositions of A1) was only detected in A1- and A2-treatments,
with 0.025 and 0.001% abundances, respectively, and L. casei
(one of compositions of A2 and A4) was only present in A6-
treatment (0.011%) (Supplementary Table 1). These results
indicate that L. buchneri, L. casei, and E. faecalis might have
weaker competitiveness than L. plantarum and P. acidilactici
in alfalfa silage with less moisture and low pH environments
(475–497 g/kg and 4.33–4.39, respectively). The role of these
LAB as the main components of LAB additives during the
fermentation process in silage requires further study. The main
bacterial genera in Control silage were Lactobacillus (42.18%),
Enterococcus (40.18%), and Pediococcus (8.09%), indicating that
the LAB genera dominated the bacterial community in Control
silage (DM = 496 g/kg). Previous studies reported that the LAB
population dominates the bacterial community in low-moisture
alfalfa silage (DM > 400 g/kg) without any treatment (Guo et al.,
2018, 2020) and presents as minor taxa in high-moisture alfalfa
silage (DM < 270 g/kg) without any inoculants (Yang et al., 2020;
Zhao S. et al., 2021). These results suggest that wilting alfalfa pre-
ensiling may increase the total abundance of LAB genera in the
bacterial community of alfalfa silage.

CONCLUSION

The LAB genera are present as minor taxa in fresh alfalfa.
Inoculating commercial LAB additives at ensiling alfalfa
improved the fermentation quality, contributed to the
preservation, and altered the bacterial community of the terminal
silage. Lactobacillus, Enterococcus, and Pediococcus dominated
the bacterial community in the Control silage. Lactobacillus was
the most dominant bacterial genus in the A1-, A2-, A3-, A4-,
and A5-treatments, and Pediococcus was the most dominant
in A6-treatment. Further, addition of A5 and A6 decreased
the concentrations of NDF, ADF, and hemicellulose in silage.
Overall, the commercial lactic acid bacterial additives used in

the present study can be employed to inoculate ensiling alfalfa
in Northern China.
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Essential oil and apple pomace affect fermentation and aerobic stability of alfalfa
silage. S. Afr. J. Anim. Sci. 51, 371–377. doi: 10.4314/sajas.v51i3.11

Cai, Y. (1999). Identification and characterization of Enterococcus
species isolated from forage crops and their influence on silage
fermentation. J. Dairy Sci. 82, 2466–2471. doi: 10.3168/jds.S0022-0302(99)
75498-6

Diepersloot, E. C., Pupo, M. R., Ghizzi, L. G., Gusmão, J. O., Heinzen, C. Jr.,
McCary, C. L., et al. (2021). Effects of microbial inoculation and storage length
on fermentation profile and nutrient composition of whole-plant sorghum
silage of different varieties. Front. Microbiol. 12:660567. doi: 10.3389/fmicb.
2021.660567

Dilokpimol, A., Makela, M. R., Aguilar-Pontes, M. V., Benoit-Gelber, I., Hilden,
K. S., and de Vries, R. P. (2016). Diversity of fungal feruloyl esterases: updated

Frontiers in Microbiology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 83689992

https://www.frontiersin.org/articles/10.3389/fmicb.2022.836899/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2022.836899/full#supplementary-material
https://doi.org/10.3389/fmicb.2021.663895
https://doi.org/10.4314/sajas.v51i3.11
https://doi.org/10.3168/jds.S0022-0302(99)75498-6
https://doi.org/10.3168/jds.S0022-0302(99)75498-6
https://doi.org/10.3389/fmicb.2021.660567
https://doi.org/10.3389/fmicb.2021.660567
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-836899 April 15, 2022 Time: 9:38 # 10

Na et al. Bacterial Community of Alfalfa Silage

phylogenetic classification, properties, and industrial applications. Biotechnol.
Biofuels 9:231. doi: 10.1186/s13068-016-0651-6

Duan, X., Dai, Y., and Zhang, T. (2021). Characterization of feruloyl esterase from
Bacillus pumilus SK52.001 and its application in ferulic acid production from
de-starched wheat bran. Foods 10:1229. doi: 10.3390/foods10061229

Gao, R., Wang, B., Jia, T., Luo, Y., and Yu, Z. (2021). Effects of different
carbohydrate sources on alfalfa silage quality at different ensiling days.
Agriculture 11:58. doi: 10.3390/agriculture11010058

Guan, H., Shuai, Y., Yan, Y., Ran, Q., Wang, X., Li, D., et al. (2020). Microbial
community and fermentation dynamics of corn silage prepared with heat-
resistant lactic acid bacteria in a hot environment. Microorganisms 8:719. doi:
10.3390/microorganisms8050719

Guo, L., Yao, D., Li, D., Lin, Y., Bureenok, S., Ni, K., et al. (2020). Effects of lactic
acid microbial community, and in vitro digestibility of alfalfa silage. Front.
Microbiol. 10:2998. doi: 10.3389/fmicb.2019.02998

Guo, X. S., Ke, W. C., Ding, W. R., Ding, L. M., Xu, D. M., Wang, W. W.,
et al. (2018). Profiling of metabolome and bacterial community dynamics in
ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or
Lactobacillus buchneri. Sci. Rep. 8:357. doi: 10.1038/s41598-017-18348-0

Hartinger, T., Gresner, N., and Südekum, K. (2019). Effect of wilting intensity,
dry matter content and sugar addition on nitrogen fractions in lucerne silages.
Agriculture 9:11. doi: 10.3390/agriculture9010011

Hassanat, F., Mustafa, A. F., and Seguin, P. (2007). Effects of inoculation on
ensiling characteristics, chemical composition and aerobic stability of regular
and brown midrib millet silages. Anim. Feed Sci. Technol. 139, 125–140. doi:
10.1016/j.anifeedsci.2007.01.005

Hu, Z., Niu, H., Tong, Q., Chang, J., Yu, J., Li, S., et al. (2020). The microbiota
dynamics of alfalfa silage during ensiling and after air exposure, and the
metabolomics after air exposure are affected by Lactobacillus casei and cellulase
addition. Front. Microbiol. 11:519121. doi: 10.3389/fmicb.2020.519121

Jiang, F., Cheng, H., Liu, D., Wei, C., An, W., Wang, Y., et al. (2020). Treatment
of whole-plant corn silage with lactic acid bacteria and organic acid enhances
quality by elevating acid content, reducing pH, and inhibiting undesirable
microorganisms. Front. Microbiol. 11:593088. doi: 10.3389/fmicb.2020.593088

Kaya, H. I., and Simsek, O. (2020). Characterization of Pediococcus acidilactici
PFC69 and Lactococcus lactis PFC77 bacteriocins and their antimicrobial
activities in tarhana fermentation. Microorganisms 8:1083. doi: 10.3390/
microorganisms8071083

Kung, L. Jr., Shaver, R. D., Grant, R. J., and Schmidt, R. J. (2018). Silage review:
Interpretation of chemical, microbial, and organoleptic components of silages.
J. Dairy Sci. 101, 4020–4033. doi: 10.3168/jds.2017-13909

Li, F., Ding, Z., Adesogan, A. T., Ke, W., Jiang, Y., Bai, J., et al. (2020). Effects of class
IIa bacteriocin-producing Lactobacillus species on fermentation quality and
aerobic stability of alfalfa silage. Animals 10, 1575. doi: 10.3390/ani10091575

Logue, J. B., Stedmon, C. A., Kellerman, A. M., Nielsen, N. J., and Andersson,
A. F. (2016). Experimental insights into the importance of aquatic bacterial
community composition to the degradation of dissolved organic matter. ISME
J. 10, 533–545. doi: 10.1038/ismej.2015.131

Luo, R., Zhang, Y., Wang, F., Liu, K., Huang, G., Zheng, N., et al. (2021).
Effects of sugar cane molasses addition on the fermentation quality, microbial
community, and tastes of alfalfa silage. Animals 11:355. doi: 10.3390/
ani11020355

McDonald, P., and Henderson, A. R. (1964). Determination of water-soluble
carbohydrates in grass. J. Sci. Food Agr. 15, 395–398. doi: 10.1002/jsfa.
2740150609

McDonald, P., Henderson, A. R., and Heron, S. J. E. (1991). The Biochemistry of
Silage, 2nd Edn. Wales: Cambrian Printers, Ltd.

Netthisinghe, A., Woosley, P., Rowland, N., Willian, T., Gilfillen, B., and
Sistani, K. (2021). Alfalfa forage production and nutritive value, fermentation
characteristics and hygienic quality of ensilage, and soil properties after broiler
litter amendment. Agronomy 11:701. doi: 10.3390/agronomy11040701

Paës, G., Berrin, J. G., and Beaugrand, J. (2012). GH11 xylanases:
structure/function/properties relationships and applications. Biotechnol.
Adv. 30, 564–592. doi: 10.1016/j.biotechadv.2011.10.003

Playne, M. J., and McDonald, P. (1966). The buffering constituents of herbage and
silage. J. Sci. Food Agr. 17, 264–268. doi: 10.1002/jsfa.2740170609

Schmidt, R. J., Hu, W., Mills, J. A., and Kung, L. Jr. (2009). The development
of lactic acid bacteria and Lactobacillus buchneri and their effects on the

fermentation of alfalfa silage. J. Dairy Sci. 92, 5005–5010. doi: 10.3168/jds.2008-
1701

Silva, V. P., Pereira, O. G., Leandro, E. S., Da Silva, T. C., Ribeiro, K. G., Mantovani,
H. C., et al. (2016). Effects of lactic acid bacteria with bacteriocinogenic potential
on the fermentation profile and chemical composition of alfalfa silage in tropical
conditions. J. Dairy Sci. 99, 1895–1902. doi: 10.3168/jds.2015-9792

Su, R., Ni, K., Wang, T., Yang, X., Zhang, J., Liu, Y., et al. (2019). Effects of ferulic
acid esterase-producing Lactobacillus fermentum and cellulase additives on the
fermentation quality and microbial community of alfalfa silage. PeerJ 7:e7712.
doi: 10.7717/peerj.7712

Sun, L., Bai, C., Xu, H., Na, N., Jiang, Y., Yin, G., et al. (2021a). Succession of
bacterial community during the initial aerobic, intense fermentation, and stable
phases of whole-plant corn silages treated with lactic acid bacteria suspensions
prepared from other silages. Front. Microbiol. 12:655095. doi: 10.3389/fmicb.
2021.655095

Sun, L., Jiang, Y., Ling, Q., Na, N., Xu, H., Vyas, D., et al. (2021b). Effects of adding
pre-fermented fluid prepared from lucerne or red clover on fermentation
quality and in vitro digestibility of the ensiled wilting-forages. Agriculture
11:454. doi: 10.3390/agriculture11050454

Surachat, K., Kantachote, D., Deachamag, P., and Wonglapsuwan, M. (2021).
Genomic insight into Pediococcus acidilactici HN9, a potential probiotic strain
isolated from the traditional Thai-Style fermented beef nhang. Microorganisms
9:50. doi: 10.3390/microorganisms9010050

Takizawa, S., Asano, R., Fukuda, Y., Feng, M., Baba, Y., Abe, K., et al.
(2020). Change of endoglucanase activity and rumen microbial community
during biodegradation of cellulose using rumen microbiota. Front. Microbiol.
11:603818. doi: 10.3389/fmicb.2020.603818

Thomas, P. C., Chamberlain, D. G., Kelly, N. C., and Wait, M. K. (1980).
The nutritive value of silages digestion of nitrogenous constituents in sheep
receiving diets of grass-silage and grass silage and barley. Br. J. Nutr. 43,
469–479. doi: 10.1079/BJN19800114

Van Soest, P. J., Roberts, J., and Lewis, B. A. (1991). Methods for dietary fibre
neutral detergent fibre and nonstarch polysaccharides in relation to animal
nutrition. J. Dairy Sci. 74, 3583–3594. doi: 10.3168/jds.S0022-0302(91)78551-2

Vucinic, J., Novikov, G., Montanier, C. Y., Dumon, C., Schiex, T., and Barbe,
S. (2021). A comparative study to decipher the structural and dynamics
determinants underlying the activity and thermal stability of GH-11 xylanases.
Int. J. Mol. Sci. 22:5961. doi: 10.3390/ijms22115961

Wang, B., Sun, Z., and Yu, Z. (2020). Pectin degradation is an important
determinant for alfalfa silage fermentation through the rescheduling
of the bacterial community. Microorganisms 8:488. doi: 10.3390/
microorganisms8040488

Wang, C., Han, H., Sun, L., Na, N., Xu, H., Chang, S., et al. (2021). Bacterial
succession pattern during the fermentation process in whole-plant corn silage
processed in different geographical areas of Northern China. Processes 9:900.
doi: 10.3390/pr9050900

Wang, C., He, L., Xing, Y., Zhou, W., Yang, F., Chen, X., et al. (2019). Effects
of mixing Neolamarckia cadamba leaves on fermentation quality, microbial
community of high moisture alfalfa and stylo silage. Microb. Biotechnol. 12,
869–878. doi: 10.3390/10.1111/1751-7915.13429

Wang, M., Gao, R., Franco, M., Hannaway, D. B., Ke, W., Ding, Z., et al. (2021).
Effect of mixing alfalfa with whole-plant corn in different proportions on
fermentation characteristics and bacterial community of silage. Agriculture
11:174. doi: 10.3390/agriculture11020174

Weissbach, F., and Strubelt, C. (2008). Correcting the dry matter content of grass
silages as a substrate for biogas production. J. Agric. Eng. 63:210.

Wu, Z., Xu, S., Yun, Y., Jia, T., and Yu, Z. (2020). Effect of 3-phenyllactic
acid and 3-phenyllactic acid-producing lactic acid bacteria on the
characteristics of alfalfa silage. Agriculture 10:10. doi: 10.3390/agriculture100
10010

Xie, Y., Bao, J., Li, W., Sun, Z., Gao, R., Wu, Z., et al. (2021). Effects of applying
lactic acid bacteria and molasses on the fermentation quality, protein fractions
and in vitro digestibility of baled alfalfa silage. Agronomy 11:91. doi: 10.3390/
agronomy11010091

Xu, D., Ding, W., Ke, W., Li, F., Zhang, P., and Guo, X. (2019). Modulation
of metabolome and bacterial community in whole crop corn silage by
inoculating homofermentative Lactobacillus plantarum and heterofermentative
Lactobacillus buchneri. Front. Microbiol. 9:3299. doi: 10.3389/fmicb.2018.03299

Frontiers in Microbiology | www.frontiersin.org 10 April 2022 | Volume 13 | Article 83689993

https://doi.org/10.1186/s13068-016-0651-6
https://doi.org/10.3390/foods10061229
https://doi.org/10.3390/agriculture11010058
https://doi.org/10.3390/microorganisms8050719
https://doi.org/10.3390/microorganisms8050719
https://doi.org/10.3389/fmicb.2019.02998
https://doi.org/10.1038/s41598-017-18348-0
https://doi.org/10.3390/agriculture9010011
https://doi.org/10.1016/j.anifeedsci.2007.01.005
https://doi.org/10.1016/j.anifeedsci.2007.01.005
https://doi.org/10.3389/fmicb.2020.519121
https://doi.org/10.3389/fmicb.2020.593088
https://doi.org/10.3390/microorganisms8071083
https://doi.org/10.3390/microorganisms8071083
https://doi.org/10.3168/jds.2017-13909
https://doi.org/10.3390/ani10091575
https://doi.org/10.1038/ismej.2015.131
https://doi.org/10.3390/ani11020355
https://doi.org/10.3390/ani11020355
https://doi.org/10.1002/jsfa.2740150609
https://doi.org/10.1002/jsfa.2740150609
https://doi.org/10.3390/agronomy11040701
https://doi.org/10.1016/j.biotechadv.2011.10.003
https://doi.org/10.1002/jsfa.2740170609
https://doi.org/10.3168/jds.2008-1701
https://doi.org/10.3168/jds.2008-1701
https://doi.org/10.3168/jds.2015-9792
https://doi.org/10.7717/peerj.7712
https://doi.org/10.3389/fmicb.2021.655095
https://doi.org/10.3389/fmicb.2021.655095
https://doi.org/10.3390/agriculture11050454
https://doi.org/10.3390/microorganisms9010050
https://doi.org/10.3389/fmicb.2020.603818
https://doi.org/10.1079/BJN19800114
https://doi.org/10.3168/jds.S0022-0302(91)78551-2
https://doi.org/10.3390/ijms22115961
https://doi.org/10.3390/microorganisms8040488
https://doi.org/10.3390/microorganisms8040488
https://doi.org/10.3390/pr9050900
https://doi.org/10.3390/10.1111/1751-7915.13429
https://doi.org/10.3390/agriculture11020174
https://doi.org/10.3390/agriculture10010010
https://doi.org/10.3390/agriculture10010010
https://doi.org/10.3390/agronomy11010091
https://doi.org/10.3390/agronomy11010091
https://doi.org/10.3389/fmicb.2018.03299
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-836899 April 15, 2022 Time: 9:38 # 11

Na et al. Bacterial Community of Alfalfa Silage

Xu, D., Ding, Z., Wang, M., Bai, J., Ke, W., Zhang, Y., et al. (2020). Characterization
of the microbial community, metabolome and biotransformation of phenolic
compounds of sainfoin (Onobrychis viciifolia) silage ensiled with or without
inoculation of Lactobacillus plantarum. Bioresour. Technol. 316:123910. doi:
10.1016/j.biortech.2020.123910

Xue, Y., Bai, C., Sun, J., Sun, L., Chang, S., Sun, Q., et al. (2017). Effects of
locations and growth stages on nutritive value and silage fermentation quality of
Leymus chinensis in Eurasian steppe of northern China. Grassl. Sci. 64, 40–50.
doi: 10.1111/grs.12177

Yang, F., Wang, Y., Zhao, S., and Wang, Y. (2020). Lactobacillus plantarum
Inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial
community composition. Front. Microbiol. 11:1989. doi: 10.3389/fmicb.2020.
01989

Yang, F., Zhao, S., Wang, Y., Fan, X., Wang, Y., and Feng, C. (2021). Assessment
of bacterial community composition and dynamics in alfalfa silages with
and without Lactobacillus plantarum inoculation using absolute quantification
16S rRNA sequencing. Front. Microbiol. 11:629894. doi: 10.3389/fmicb.2020.
629894

Yin, G., Bai, C., Sun, J., Sun, L., Xue, Y., Zhang, Y., et al. (2017). Fermentation
quality and nutritive value of total mixed ration silages based on desert
wormwood (Artemisia desertorum Spreng.) combining with early stage corn.
Anim. Sci. J. 88, 1963–1969. doi: 10.1111/asj.12862

Zhang, G., Fang, X., Feng, G., Li, Y., and Zhang, Y. (2020). Silage fermentation,
bacterial community, and aerobic stability of total mixed ration containing wet
corn gluten feed and corn stover prepared with different additives. Animals
10:1775. doi: 10.3390/ani10101775

Zhang, M., Wang, L., Wu, G., Wang, X., Lv, H., Chen, J., et al. (2021). Effects
of Lactobacillus plantarum on the fermentation profile and microbiological
composition of wheat fermented silage under the freezing and thawing
low temperatures. Front. Microbiol. 12:671287. doi: 10.3389/fmicb.2021.67
1287

Zhao, C., Wang, L., Ma, G., Jiang, X., Yang, J., Lv, J., et al. (2021).
Cellulase interacts with lactic acid bacteria to affect fermentation quality,
microbial community, and ruminal degradability in mixed silage of

soybean residue and corn stover. Animals 11:334. doi: 10.3390/ani1102
0334

Zhao, S., Yang, F., Wang, Y., Fan, X., Feng, C., and Wang, Y. (2021). Dynamics
of fermentation parameters and bacterial community in high-moisture alfalfa
silage with or without lactic acid bacteria. Microorganisms 9:1225. doi: 10.3390/
microorganisms9061225

Zheng, M. L., Niu, D. Z., Jiang, D., Zuo, S. S., and Xu, C. C. (2017). Dynamics of
microbial community during ensiling direct-cut alfalfa with and without LAB
inoculant and sugar. J. Appl. Microbiol. 122, 1456–1470. doi: 10.1111/jam.13456

Zi, X., Li, M., Chen, Y., Lv, R., Zhou, H., and Tang, J. (2021). Effects of citric
acid and lactobacillus plantarum on silage quality and bacterial diversity
of king grass silage. Front. Microbiol. 12:631096. doi: 10.3389/fmicb.2021.63
1096

Conflict of Interest: XW and YT were employed by Inner Mongolia Youran
Animal Husbandry Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Na, Qili, Wu, Sun, Xu, Zhao, Wei, Xue and Tao. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Microbiology | www.frontiersin.org 11 April 2022 | Volume 13 | Article 83689994

https://doi.org/10.1016/j.biortech.2020.123910
https://doi.org/10.1016/j.biortech.2020.123910
https://doi.org/10.1111/grs.12177
https://doi.org/10.3389/fmicb.2020.01989
https://doi.org/10.3389/fmicb.2020.01989
https://doi.org/10.3389/fmicb.2020.629894
https://doi.org/10.3389/fmicb.2020.629894
https://doi.org/10.1111/asj.12862
https://doi.org/10.3390/ani10101775
https://doi.org/10.3389/fmicb.2021.671287
https://doi.org/10.3389/fmicb.2021.671287
https://doi.org/10.3390/ani11020334
https://doi.org/10.3390/ani11020334
https://doi.org/10.3390/microorganisms9061225
https://doi.org/10.3390/microorganisms9061225
https://doi.org/10.1111/jam.13456
https://doi.org/10.3389/fmicb.2021.631096
https://doi.org/10.3389/fmicb.2021.631096
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-870168 April 15, 2022 Time: 13:14 # 1

ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fmicb.2022.870168

Edited by:
Zhenhua Ming,

Guangxi University, China

Reviewed by:
Jianmin Xing,

Institute of Process Engineering
(CAS), China
Xiuzhen Gao,

Shandong University of Technology,
China

*Correspondence:
Jianqun Lin

jianqunlin@sdu.edu.cn
Xin Song

songx@sdu.edu.cn

Specialty section:
This article was submitted to

Evolutionary and Genomic
Microbiology,

a section of the journal
Frontiers in Microbiology

Received: 06 February 2022
Accepted: 17 March 2022

Published: 25 April 2022

Citation:
Wen X, Lin H, Ning Y, Liu G,

Ren Y, Li C, Zhang C, Lin J, Song X
and Lin J (2022) D-Allulose

(D-Psicose) Biotransformation From
Allitol by a Newly Found

NAD(P)-Dependent Alcohol
Dehydrogenase From Gluconobacter
frateurii NBRC 3264 and the Enzyme

Characterization.
Front. Microbiol. 13:870168.

doi: 10.3389/fmicb.2022.870168

D-Allulose (D-Psicose)
Biotransformation From Allitol by a
Newly Found NAD(P)-Dependent
Alcohol Dehydrogenase From
Gluconobacter frateurii NBRC 3264
and the Enzyme Characterization
Xin Wen1, Huibin Lin2, Yuhang Ning1, Guangwen Liu1, Yilin Ren3, Can Li4,
Chengjia Zhang1, Jianqun Lin1* , Xin Song1* and Jianqiang Lin1

1 State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China, 2 Shandong Academy of Chinese
Medicine, Jinan, China, 3 Qingdao Longding Biotech Limited Company, Qingdao, China, 4 School of Biological Engineering,
Qilu University of Technology, Jinan, China

The NAD(P)-dependent alcohol dehydrogenase (ADH) gene was cloned from
Gluconobacter frateurii NBRC 3264 and expressed in Escherichia coli BL21 star (DE3).
The expressed enzyme was purified and the characteristics were investigated. The
results showed that this ADH can convert allitol into D-allulose (D-psicose), which is
the first reported enzyme with this catalytic ability. The optimum temperature and pH of
this enzyme were 50◦C and pH 7.0, respectively, and the enzyme showed a maximal
activity in the presence of Co2+. At 1 mM Co2+ and allitol concentrations of 50, 150,
and 250 mM, the D-allulose yields of 97, 56, and 38%, respectively, were obtained after
reaction for 4 h under optimal conditions, which were much higher than that obtained
by using the epimerase method of about 30%.

Keywords: D-allulose, allitol, NAD(P)-dependent alcohol dehydrogenase, Gluconobacter frateurii NBRC 3264,
biotransformation

INTRODUCTION

D-Allulose (D-psicose), an epimer of D-fructose at the C3 position, is a kind of rare sugar according
to the definition by the International Society of Rare Sugars (ISRS). D-Allulose is a low-energy sweet
and is regarded as a potential substitute for sucrose as it has 70% of the relative sweetness but only
0.3% of the energy of sucrose (Zhang et al., 2015). More importantly, D-allulose has many important
physiological functions, for example, blood glucose suppressive effect (EdyLiani et al., 2020), body
fat accumulation inhibitive effect (Kim et al., 2017), reactive oxygen species scavenging effect (Li
et al., 2018), and neuroprotective effect (Zhao et al., 2021). In addition, it has good properties
for food industry applications, such as improving the gelling behavior and producing good flavor
(Zhang et al., 2013). Importantly, it has been approved as “generally regarded as safe” (GRAS) by
the Food and Drug Administration (FDA) of the United States, and has been allowed to be used as
an ingredient in dietary supplements in the United States and some other countries.

In nature, D-allulose is found in very small amounts in the wheat and Itea plants. So, it is
impractical to extract it from natural resources for mass production of D-allulose. The chemical
synthetic method is one choice, but it may produce toxic by-products and is not suitable for
food production. Biotransformation is an ideal method and is widely accepted in D-allulose mass
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production due to the advantages of easy operation, mild
reaction conditions, no toxic by-products, and environmental
friendliness. At present, D-allulose was namely biotransformed
from D-fructose by using D-psicose 3-epimerase or D-tagatose
3-epimerase (Zhu et al., 2012, 2019c; Li et al., 2018; Figure 1).
However, the reaction catalyzed by epimerase is limited
by thermodynamic equilibrium unfavorable to the D-allulose
direction, and the conversion yield of D-allulose is about 30%,
which greatly decreases the production efficiency and increases
the difficulty in product separation. To overcome the limitation
of thermodynamic equilibrium, Kim et al. added boronic acid
to the reaction system to form a complex with sugar to increase
the D-allulose conversion yield (Kim et al., 2008). As the binding
affinity of boric acid to D-allulose is much higher than that of D-
fructose, the reaction equilibrium is shifted toward the formation
of D-allulose, and that increases the conversion yield of D-allulose
(Kim et al., 2008). However, boric acid is toxic and used in large
quantities, and the removal of boric acid is difficult. For the above
reasons, this method is difficult to be applied in real applications.
Alternatively, the thermodynamic equilibrium limitation can also
be overcome by combining the D-allulose biocatalytic process
with continuous D-allulose separation (Wagner et al., 2015; Li
et al., 2021). However, this method is complex and cumbersome
and is also difficult to be applied in real applications.

Fortunately, D-allulose can also be biotransformed from allitol
by using dehydrogenation reaction using dehydrogenase as the
catalyst according to the Izumoring strategy (Izumori, 2006),
which can overcome the above limitation of the thermodynamic
equilibrium and improve the conversion rate of D-allulose.
Moreover, allitol can be prepared easily from low-cost substrates
of D-glucose or D-fructose by the biotransformation method
(Zhu et al., 2015; Hassanin et al., 2016; Wen et al., 2020a,b).
Poonperm et al. (2007) biotransformed allitol into D-allulose by
using the resting cells of Bacillus pallidus Y25 for the first time.
Gullapalli et al. (2007). biotransformed allitol into D-allulose by
using Enterobacter aerogenes IK7. However, the exact enzyme
that catalyzed allitol into D-allulose was unknown.

In this study, the gene encoding NAD(P)-dependent alcohol
dehydrogenase (ADH) with protein ID WP_099183078.1
from Gluconobacter frateurii NBRC 3264 was cloned and
overexpressed in E. coli. The ADH was confirmed to convert
allitol into D-allulose (D-psicose), which is the first reported
enzyme with this catalytic ability. The enzymatic properties,
such as optimal pH, temperature, and metal ion, of this
ADH were investigated. The activation effect of Co2+ on the
ADH to increase the enzyme activity and the D-allulose yield
was determined, and the kinetics of this enzyme were also
investigated. The highest D-allulose conversion yield of 97%
was obtained, which was more than twofold higher than the
epimerase method. The method developed in this study is
expected to be applied to the industrial production of D-allulose.

MATERIALS AND METHODS

Materials and Reagents
The restriction enzymes were obtained from TaKaRa (Beijing,
China). The DNA polymerase was obtained from Vazyme

(Nanjing, China). T4 DNA ligase was purchased from Thermo
Fisher (United States). Ampicillin and isopropyl-β-D-1-
thiogalactopyranoside (IPTG) were purchased from Sangon
Biotech (Shanghai, China). Allitol was prepared in our lab as
described previously (Wen et al., 2020a,b, 2022).

Construction of Recombinant E. coli
Expressing Alcohol Dehydrogenase
According to NCBI, the whole genome of Gluconobacter
frateurii NBRC 3264 was sequenced by Hosoyama et al.
and was released into the GenBank National Center for
Biotechnology Information (NCBI)1. The adh gene locus_tag
was GFR01_RS14945 and the ADH protein ID number was
WP_099183078.1. The optimization and synthesis of the gene
encoding NAD(P)-dependent alcohol dehydrogenase (ADH)
were made by a company named Boshang (Jinan, China). The
adh region was initially amplified from the plasmid pETDuet−1-
adh (no 6 × His-tag) using primers adh-pET22b-Nde I-U and
adh-pET22b-Xho I-D (Table 1). A 6 × His-tag sequence was
present in the vector to aid protein purification. Then, the adh
region was inserted into the plasmid pET22b at the Nde I and
Xho I restriction sites to create the recombinant plasmid pET22b-
adh. The recombinant plasmid pET22b-adh was transformed
into E. coli DH5α and verified correctly by electrophoresis and
sequencing. And then, the recombinant plasmid pET22b-adhwas
transformed into E. coli BL21 star (DE3) for the expression of
ADH. The strains, plasmids, and primers used in this study are
listed in Table 1.

Media and Cultivation Conditions
The seed culture used in this study was the LB medium
containing 10 g/L tryptone, 5 g/L yeast extract, and 10 g/L
NaCl. The LB medium supplied with 5 g/L glucose (named LBG
medium) was used for the expression of ADH. The cultivation
broth of recombinant E. coli expressing ADH was inoculated with
1% dose into the LBG medium containing 100 µg/ml ampicillin,
and cultivated at 37◦C and 200 rpm. After 3 h of cultivation,
IPTG was added to the final concentration of 0.2 mM and
the cultivation was continued for a further 12 h at 20◦C and
100 rpm. The cells of the recombinant E. coli expressing ADH
were harvested by centrifugation at 4◦C and 10,000× g for 5 min.

Crude Alcohol Dehydrogenase
Preparation, Alcohol Dehydrogenase
Purification, and Enzyme Assay
The harvested cells were washed three times by using 20 mM
Na2HPO4-NaH2PO4 buffer (pH 7.0). The washed cells were
collected by centrifugation, resuspended in 20 mM Na2HPO4-
NaH2PO4 buffer (pH 7.0), and disrupted by sonication at 4◦C
until the mixture solution became transparent. The supernatant
was obtained by centrifugation at 4◦C and 10,000 × g for
15 min and was used for crude ADH. The crude ADH
was checked by Sodium Dodecyl Sulfate PolyAcrylamide Gel
Electrophoresis (SDS–PAGE).

1https://www.ncbi.nlm.nih.gov/nuccore/1271388588
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FIGURE 1 | D-Allulose biotransformation from allitol or D-fructose (ADH, NAD(P)-dependent alcohol dehydrogenase; DPE, D-psicose 3-epimerase; DTE, D-tagatose
3-epimerase).

The preparation of crude ADH used for ADH purification is
the same as the above except the washing buffer and resuspending
buffer were changed to the binding buffer (20 mM NaH2PO4,
500 mM NaCl, 30 mM imidazole, pH 7.4). HisTrapTM HP
(5 mL) column was used for the purification of the recombinant
ADH. The column was washed using double-distilled water
and equilibrated with a binding buffer. And then, the collected
supernatant was loaded onto the column, and the unbound
proteins were washed with the binding buffer, and the ADH
was then washed with the elution buffer (20 mM NaH2PO4,
500 mM NaCl, 200 mM imidazole, pH 7.4). Finally, the purified
ADH was checked by SDS–PAGE and was concentrated by the
ultrafiltration tube with the membrane of the cutoff molecular
weight of 10 kDa at 4◦C and 3,700 × g. All purification steps of
ADH were handled at 4◦C.

The 1 ml reaction mixture for ADH assay consisted of each
of the following reagents unless otherwise specified: 20 mM
Na2HPO4-NaH2PO4 buffer (pH 7.0), 2 mM NAD+, enzyme
solution, and 50 mM allitol, and then incubated at 50◦C and
200 rpm shaker for 30 min. One unit of enzyme activity was
defined as the amount of D-allulose produced from allitol per
minute. The amount of allitol and D-allulose were measured by
HPLC using a Carbomix Pb-NP column (7.8 mm × 300 mm,
10 µm, Sepax Technologies) at 78◦C and eluted with double-
distilled water at a flow rate of 0.5 ml/min.

Effects of pH, Temperature, and Metal
Ions on Recombinant Alcohol
Dehydrogenase and Kinetic Modeling
Four buffer systems of sodium acetate–acetic acid (20 mM,
pH 5.0–6.0), disodium hydrogen phosphate–sodium dihydrogen
phosphate (20 mM, pH 6.0–8.0), tris–HCl (20 mM, pH 8.0–9.0),
and glycine–NaOH (20 mM, pH 9.0–11.0) were, respectively,
used in determining the optimum pH of the recombinant ADH
expressed by E. coli.

The optimum temperature for the enzyme activity was
measured by assaying the enzyme solution over the temperature
range of 30–60◦C. The thermal stability of the recombinant ADH
was investigated by maintaining the enzyme solution in disodium
hydrogen phosphate–sodium dihydrogen phosphate (20 mM, pH
7.0) at various temperatures for 3 h and measuring the residual
enzyme activities at 0.5-h intervals.

The residual activity of the enzyme was determined as
described in the above method in the “Crude ADH preparation,
ADH purification, and enzyme assay.” The enzyme solution was
incubated with the metal ions Co2+, Zn2+, Ni2+, Ca2+, Mg2+,

Ba2+, Fe3+, Mn2+, Fe2+, and Cu2+ at a final concentration of
1 mM. The measured activities were compared with the activity
of the enzyme without the metal ion addition (control) under the
same conditions.

Kinetic modeling can help to understand the reaction
characteristics of this enzyme and predict the reaction results.
The reaction rate is normally affected by the substrate
concentration, while it is also strongly affected by Co2+ for
the ADH under investigation. Here, the D-allulose production
kinetics under various substrate concentrations of 50, 150, and
250 mM allitol, respectively, with or without the activator of
Co2+ addition, were investigated.

D-Allulose Identification
The product was identified by using the HPLC analysis, specific
optical rotations, and mass spectrometry. The high performance
liquid chromatography (HPLC) analysis method was referred
to in “Crude ADH preparation, ADH purification, and enzyme
assay.” Specific optical rotations were determined by using the
polarimeter (INESA WZZ-3, China). Mass spectrum (BRUKER
impactHD, Germany) was performed in the negative ion
detection mode with the ESI ion source.

TABLE 1 | Plasmids, strains and primers used in this study.

Plasmids, strains
and primers

Relevant characteristics, sources and sequences

Plasmids and
strains

Relevant characteristics Sources

pETDuet−1-
MCSIIadh

adh (no His·Tag), Ampr Boshang (Jinan, China)

E. coli DH5α For gene cloning Weidi (Shanghai, China)

E. coli BL21 star
(DE3)

For gene expression Weidi (Shanghai, China)

pET22b-adh adh (His·Tag), Ampr This study

E. coli
DH5α-pET22b-adh

For plasmid cloning This study

E. coli BL21 star
(DE3)-pET22b

Empty plasmid pET22b This study

E. coli BL21 star
(DE3)-pET22b-adh

ADH protein This study

Primers Sequences (5′–3′)

adh-pET22b-Nde
I-U

GGGAATTCCATATG*GCCCAGGCCCTGGTGCTGGAAAAG

adh-pET22b-Xho
I-D

CCGCTCGAGCAGAACAATCTGCAGTTTAACATC

*Underlines refer to enzyme restriction sites.
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FIGURE 2 | The amino acid sequence and optimized gene sequence of ADH.

RESULTS AND DISCUSSION

Cloning, Expression, Purification, and
Application of Recombinant
Gluconobacter frateurii NBRC 3264
Alcohol Dehydrogenase
The adh gene was optimized and synthesized and cloned into
pET22b to obtain the recombinant plasmid pET22b-adh, which

was transformed into E. coli BL21 star (DE3). The amino acid
sequence (345aa) and the optimized gene sequence of ADH
are shown in Figure 2. The recombinant ADH expression was
induced by IPTG. The SDS–PAGE analysis showed a strong extra
protein band with a molecular mass of∼36.5 kDa compared with
that of the control E. coli BL21 star (DE3)-pET22b and confirmed
the soluble property of ADH (Figure 3A). The purification of
recombinant ADH was carried out by using the HisTrapTM

HP (5 mL) column. The result of the ADH purification was
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FIGURE 3 | Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis
(SDS-PAGE) analysis of the expressed ADH (A) and the purified ADH (B).
Lane M, protein marker; lane 1, the total proteins of E. coli BL21 star
(DE3)-pET22b; lane 2, the total proteins of E. coli BL21 star
(DE3)-pET22b-adh; lane 3, the soluble supernatant of E. coli BL21 star
(DE3)-pET22b-adh; lane 4, the inclusion body of E. coli BL21 star
(DE3)-pET22b-adh; lane 5, ADH crude enzyme solution; lane 6, ADH purified
enzyme solution.

analyzed by the SDS–PAGE (Figure 3B), and the purified ADH
was concentrated ten times by ultrafiltration.

The ADHs catalyze interconversions between alcohols and
aldehydes or ketones (Maria-Solano et al., 2017; Zheng et al.,
2017; Bartsch et al., 2020). For example, alcohol dehydrogenase
from Pyrococcus furiosus can catalyze 2, 5-hexanedione to 2,
5-hexanediol (Machielsen et al., 2008). In addition, a sorbitol
dehydrogenase (340aa), a homologous enzyme to the alcohol
dehydrogenase, which had the same amino acid sequence of ADH
from 4 to 343aa, catalyzed the conversion of D-sorbitol to D-
fructose in the presence of NAD+ (El-Kabbani et al., 2004). The
purified and concentrated ADH was inoculated into the reaction
solution containing 20 mM Na2HPO4-NaH2PO4 buffer (pH 7.0),
2 mM NAD+, and 50 mM allitol, and reacted at 50◦C shaken
at 200 rpm. As shown in Figure 4, the ADH was preliminary
confirmed to catalyze allitol into allulose. Next, specific optical
rotations of authentic L-allulose, authentic D-allulose, and
the purified product were measured. The specific rotation of
authentic L-allulose was negative, while the specific rotation
of authentic D-allulose and the purified product was positive
which agreed with the reports (Gullapalli et al., 2007; Poonperm
et al., 2007). Further, the purified product was analyzed by
mass spectrometry with a measured mass of 180.1, which was
identical to the molar mass of D-allulose. In conclusion, ADH
from G. frateurii NBRC 3264 can convert allitol into D-allulose,
which is the first reported enzyme with this catalytic ability.

Effect of pH on D-Allulose
Biotransformation by Recombinant
Alcohol Dehydrogenase
Figure 5A shows that the optimum pH is 7.0, and the
relative enzyme activities are above 80% between pH 7.0 and
pH 10.0, which indicates that the ADH has a broad pH

range. The optimum pH for D-allulose biotransformation from
allitol by Bacillus pallidus Y25 resting cells was also pH 7.0
(Poonperm et al., 2007). However, the optimum pH for D-allulose
biotransformation from allitol by Enterobacter aerogenes IK7 was
pH 11.0 which was much higher than that of the recombinant
ADH (Gullapalli et al., 2007). But, the optimum pH of the enzyme
could be different from that of the resting cells in catalyzing the
same reaction.

Effect of Temperature on D-Allulose
Biotransformation and Enzyme Stability
of the Recombinant Alcohol
Dehydrogenase
Figure 5B shows that the optimum temperature is 50◦C,
and the relative enzyme activities are 63.8, 79.3, 83, and
52% at 40, 45, 55, and 60◦C, respectively, compared with
that at the optimum temperature. The optimum temperature
of Enterobacter aerogenes IK7 resting cells for D-allulose
biotransformation from allitol was 37◦C (Gullapalli et al.,
2007), which was lower than that of the recombinant ADH.
Nevertheless, the optimum temperature of Bacillus pallidus Y25
resting cells for D-allulose biotransformation from allitol was
55◦C (Poonperm et al., 2007), which was higher than that of the
recombinant ADH.

As seen in Figure 5C, the enzyme has similar thermal stability
at 20, 30, and 40◦C, and retains 74.7, 74.4, and 73.2% of its
initial activity, respectively, after incubation for 3 h at the above
temperatures while the enzyme retained 71.5, 42.4, and 25.6% of
its initial activity after incubation at 50◦C (Figure 5C) for 1, 2,
and 3 h, respectively. The results indicated that the ADH had
lower thermal stability at a temperature higher than 40◦C. Protein
engineering is a way to increase the thermal stability of ADH
(Magnusson et al., 2019; Zhu et al., 2019b).

Effect of Metal Ions on D-Allulose
Biotransformation by the Recombinant
Alcohol Dehydrogenase
As shown in Figure 6, the addition of Co2+, Zn2+, or
Ni2+ increases the enzyme activity by 225, 54.1, and 19.1 %,
respectively. It was speculated that Co2+ or Ni2+ was an activator
that can bind to the enzyme and change the enzyme configuration
to increase the enzyme activity. It was reported that Zn2+ plays
an important role in the structure and function of alcohol
dehydrogenase and sorbitol dehydrogenase (El-Kabbani et al.,
2004). The enzyme activity was slightly decreased by 2.6 and
3.3% when the enzyme was incubated with Ca2+ and Mg2+,
respectively, while the enzyme activity was decreased to 83.1,
69.4, 52.4, 50.3, and 30.3% when the enzyme was incubated
with Ba2+, Fe3+, Mn2+, Fe2+, and Cu2+, respectively. About
the activity of NAD-dependent sorbitol dehydrogenase from
cold-adapted Pseudomonas mandelii, the metal ions of Zn2+,
Mn2+, and Ca2+ had slight activation effects while Ni2+ had an
inhibition effect (DangThu et al., 2021). Ni2+, Mn2+, Mg2+, and
Ca2+ can increase the ADH activity which was from Bartonella
apis, while Zn2+, Li+, and Mo2+ decrease the ADH activity
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FIGURE 4 | Authentic allitol (A), authentic D-allulose (B), and a sample of reaction solution for the biotransformation of allitol into D-allulose catalyzed by purified
ADH (C).
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FIGURE 5 | Effects of pH (A) and temperature (B) on the ADH activities, and
the thermal stability of the ADH (C). The conditions for obtaining the highest
enzyme activity were set to 100%.

(Zhu et al., 2019a). It indicated that the metal-ion-dependence
of ADHs derived from different microorganisms was different.

Effects of Co2+ on D-Allulose
Biotransformation by the Recombinant
Alcohol Dehydrogenase and Kinetic
Modeling
The time courses of D-allulose and allitol concentrations in the
presence or absence of Co2+ at different allitol concentrations are

FIGURE 6 | Effects of metal ions on the ADH activity. The conditions for
obtaining the highest enzyme activity were set to 100%.

shown by the dots in Figure 7. The D-allulose conversion yields
of 97, 56, and 38%, from the initial allitol concentrations of 50,
150, and 250 mM, respectively, were obtained at 4 h of reaction
with 1 mM Co2+ added, which was about 1. 6-, 1. 7-, and 1.7-fold
higher, respectively, than that without the Co2+ addition.

Then, kinetic modeling was made for D-allulose
biotransformation catalyzed by ADH with or without the
Co2+ addition. Without the Co2+ addition, the kinetic equation
is shown by Equation (1) and the mass balances are shown by
Equations (2) and (3):

V =
Vmax S(

ks + S
)

(1+ (P/ki)α)
(1)

dS
dt
= −V (2)

dP
dt
= V (3)

Where, Vmax, the maximum reaction rate without Co2+,
mmol/L/h; ks, the substrate affinity constant without Co2+, mM;
ki, the product inhibition constant, mM; α, constant, (-); S, allitol
concentration, mM; P, D-allulose concentration, mM. With Co2+

addition, the kinetic and mass balance equations are as follows:

V
′

=
Vmax S(

k′s + S
)

(1+ (P/ki)α)
(4)

dS
dt
= −V

′

(5)

dP
dt
= V

′

(6)

Where, k
′

s is the substrate affinity constant with Co2+,
mM. The differential equations were solved by using the
Runge–Kutta method. The model parameters were obtained by
optimization using a genetic algorithm (GA) in minimizing
the errors between the model predictions and the measured
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FIGURE 7 | The time courses of allitol and D-allulose concentrations during the biotransformation in the presence or absence of Co2+ under various initial allitol
concentrations. (A) 50 mM allitol, no Co2+; (B) 50 mM allitol, Co2+; (C) 150 mM allitol, no Co2+; (D) 150 mM allitol, Co2+; (E) 250 mM allitol, no Co2+; and (F)
250 mM allitol, Co2+.

data, and the optimization diagram is shown in Figure 8.
GA is the optimization algorithm that imitates the biological
evolutionary processes, which is efficient in solving sophisticated
and nonlinear problems. In optimization of the parameter
values using GA, one chromosome codes for five genes,
and one gene codes for one parameter value as shown in
Figure 8. After repeated rounds of biological operations of
selection, hybridization (crossover), and mutation until reaching

the default termination criteria, the most-fitted chromosome
coding for the parameters was obtained to get the optimized
parameter values (Figure 8). MatLab 2020b (MathWorks,
Inc., United States) running on Windows-compatible personal
computer was used in the simulation and model parameter
optimization. The optimized model parameter values are shown
in Table 2. By using Equations (1)–(6) and the parameter
values listed in Table 2 as well as the initial values of allitol
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FIGURE 8 | Diagram of the genetic algorithm in parameter value optimization.

TABLE 2 | Model parameter values.

Parameter Value

Vmax 3.602 mmol/L/h

ks 321.809 mM

ki 10.740 mM

α 1.326 (−)

k
′

s 21.782 mM

concentrations of 50, 150, and 250 mM, respectively, and the
initial value of the D-allulose concentration of 0 mM, computer
simulation of the biotransformation processes was made and
the results are shown by the lines in Figure 7. It showed
that the model predictions fitted the experimental data well. It
also indicated that the substrate affinity coefficient was much
decreased after Co2+ addition. Bulut et al. (2020) studied the
effect of metal ions on the activity of 10 NAD-dependent formate
dehydrogenases and found that there was a clear trend that
many metal ions decreased the Km values of some FDHs using
formate as the substrate, and they estimated that the metal ions
could change the protein structure, and the interaction between
the substrate or NAD(H) cofactor and the enzyme active site.
Therefore, we speculated that the decrease of substrate affinity
coefficient after Co2+ addition could be the result of the changes
of the ADH enzyme structure or the interaction between the
substrate of allitol and the active sites of the ADH enzyme. The
modeling and simulation results showed that there was product
inhibition so that the substrate was hardly completely consumed
except in the case at the lowest substrate concentration of 50 mM
and at a high enzyme activity with Co2+ addition, in which
case, the allitol was nearly completely consumed (Figure 7). The
modeling and simulation work provided numerical results for
the reaction process, which are useful in process analyses and
optimizations.

In the conventional method of kinetic modeling, the
parameter values of the kinetic equation, like the Michaelis–
Menten equation, are first obtained by using double-reciprocal
linear plotting. And then, the differential equations are solved
for the prediction of the reaction progress. In many cases,
the predictions are quite different from the experimental
measurements, which indicate that the parameter values obtained
this way were not accurate. Therefore, a different method by

optimization utilized GA was used in this work, which ensures
the accurate prediction of the reaction process. The method using
GA was ever successfully applied by us (Lin et al., 2004) and other
researchers (Dutta et al., 2005; Yarsky, 2021) in the parameter
optimization of the biological models.

CONCLUSION

In this study, the gene of NAD(P)-dependent ADH from
G. frateurii NBRC 3264 was cloned and expressed in E. coli BL21
star. The expressed enzyme was purified and was identified for
the first time to transform D-allulose from allitol. The effects of
pH, temperature, and metal ions on the enzyme activity were
determined, and Co2+ was found to have a high activation effect
on the ADH. A high conversion yield of D-allulose of 97% was
obtained at 50 mM allitol with Co2+ addition. The kinetics
were investigated by modeling and simulation, and product
inhibition was found. The enzyme showed enormous potential
for application in the high-yield bioconversion of D-allulose
and was expected to be applied to the industrial production of
D-allulose.
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Microorganisms play an important role in natural material and elemental cycles. Many 
common and general biology research techniques rely on microorganisms. Machine 
learning has been gradually integrated with multiple fields of study. Machine learning, 
including deep learning, aims to use mathematical insights to optimize variational functions 
to aid microbiology using various types of available data to help humans organize and 
apply collective knowledge of various research objects in a systematic and scaled manner. 
Classification and prediction have become the main achievements in the development of 
microbial community research in the direction of computational biology. This review 
summarizes the application and development of machine learning and deep learning in 
the field of microbiology and shows and compares the advantages and disadvantages 
of different algorithm tools in four fields: microbiome and taxonomy, microbial ecology, 
pathogen and epidemiology, and drug discovery.

Keywords: microorganisms, machine learning, deep learning, prediction, classification

INTRODUCTION

Microbiology focuses on studying the activity law of microorganisms, exploring the characteristics, 
culture conditions, and detection methods of microflora, taking its essence (discovering, utilizing, 
improving, and protecting beneficial microorganisms), and removing its dross (preventing, 
controlling, or transforming harmful microorganisms). Thus, it is available for science and 
benefits mankind (Dworkin, 2012; Hanage, 2014; Ha and Devkota, 2020).

Recently, the main research hotspots in microbiology include community classification and 
its environmental role (Bulgarelli et  al., 2013; Zhang et  al., 2021), regulation of gut microbiome 
and host interactions (Turnbaugh et  al., 2007; Jones et  al., 2014; Malla et  al., 2018; Ruff et  al., 
2020), development of pathogenic microorganisms and drug vaccines (Shahbaaz et  al., 2016; 
Moos et  al., 2017; Zhu et  al., 2020), and trying to dilute the boundaries between microbiome 
and genome editing, molecular modification, ecology and resource utilization, biocatalysis, and 
synthesis (Stres and Kronegger, 2019; Galloway-Pena and Hanson, 2020). In addition, microbiology 
and multiomics (including genomics, epigenomics, transcriptomics, proteomics, and metabolomics) 
have combined and developed a variety of multiscale emerging fields (Beck et  al., 2021; Liang 
et  al., 2021).

The understanding of microorganisms started from microbial cell morphology and physiological 
and biochemical characteristics to microbial genotype identification at the nucleic acid and 
protein levels, and chemical analysis methods based on cell chemical composition analysis and 
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numerical classification methods relying on the level of 
computational biology have also been established successively. 
The rapid progress in the discipline of microbiology is inseparable 
from the update of observation methods or techniques in the 
same period (Galloway-Pena and Hanson, 2020). With the 
advent of the Big Data era, the pressing questions for researchers 
have gradually evolved into how to quickly and efficiently filter/
condense this exponential growth of information to obtain 
generalized quality data and how to transform the massive 
data of microbiota into easily understood and visualized 
knowledge. Compared to traditional research with insufficient 
data or purely experimental techniques that cause trouble, such 
as cognitive bias, low reproducibility, and long-time span, the 
modern microbiology research process is more likely to 
incorporate new technologies and big data methods to do this 
better and right.

Artificial intelligence (AI), first proposed by John McCarthy 
at the Dartmouth Conference in the summer of 1956, concentrates 
on the simulation of human intelligence extensions and the 
research and development of theoretical methods, techniques, 
and applied systems. The entry of AI drives the progress of 
microbiology and achieves a new paradigm breakthrough 
(Barredo Arrieta et  al., 2020). Combined with the advantages 
of big data, automation, modeling, and AI, microbiology has 
evolved toward a multiscale and multidimensional direction, 
gradually applying to systems biomedicine, systems ecology, etc.

Machine learning (ML), first proposed by Arthur Samuel 
(Bell Labs, IBM, Stanford) in 1959, is a special branch/subfield 
of AI that aims to find features from large-scale heterogeneous 
data. The most basic thing is to use algorithms to parse the 
data, analyze the patterns in the data automatically, and then 
utilize these patterns to make predictions and decisions on 
real-world events (Jordan and Mitchell, 2015). Unlike traditional 
software programs that are hard-coded to solve specific tasks, 
ML takes large amounts of data and trains them using algorithms 
to learn how to accomplish tasks from the data (Domingos, 
2012). With the integration of cross-scale and complex microbial 
communities and multiomics integration, ML can be  used to 
systematically present interactions between microflora or with 
hosts. The workflow of dimensionality reduction and then 
extraction of spatial features from high-dimensional datasets 
generated from large data collections is supportive of exploring 
the functional potential of microorganisms and expanding the 
study of microbial technology applications.

Deep learning (DL) is a breakthrough ML approach that 
models high-level abstractions of data through a deep network 
with multiple layers of processing units, which are parametric 
models trained by gradient descent (Lecun et  al., 2015). ML 
is a way to implement AI, and DL is a technology to implement 
ML (Figure  1). Remarkably, there is no obvious boundary 
separating DL from traditional ML and traditional statistical 
analysis. To handle complex, high-dimensional microbiome 
data, ML algorithms have been applied to the frontiers of 
combining microbiome and computational science, more 
commonly for classification and prediction (Schmidhuber, 2015).

This paper first briefly introduces the ML methods, data 
processing steps, and algorithms commonly used in microbial 

research, summarizes the research on ML-based microbial 
prediction and application, and discusses the advantages and 
limitations of the methods and tools, demonstrating the 
development prospects of computational microbiology from 
the perspective of ML.

MACHINE LEARNING

An AI system is supposed to be  equipped to learn knowledge 
from raw data, which is known as ML. Effective features are 
extracted from raw data by designing targeted pattern recognition 
algorithms and then using these features with ML algorithms, 
i.e., distance functions to represent pairwise relationships between 
objects. The earliest ML algorithms can be  traced back to the 
early 20th century, and a large number of classical methods 
have been developed within these 100 years (Figure  2). This 
section summarizes the classical algorithms that have appeared 
in history in four directions: supervised learning, unsupervised 
learning, DL, and reinforcement learning (RL). Then, we elaborate 
on the criteria for evaluating the merits of the model and 
algorithmic workflows.

Supervised Learning
Supervised learning, including regression analysis and statistical 
classification, refers to a class of methods that use samples 
from known categories as training sets to train models. Before 
the concept of ML was introduced, Fisher (1936) invented a 
supervised data dimensionality reduction algorithm, linear 
discriminant analysis (LDA). In the 1950s, based on the core 
idea of Bayes decision theory, which is to select the decision 
with the highest probability, the Bayes classifier was born and 
divides the sample into the class with the highest posterior 
probability. The naive Bayes (NB) model has a simple algorithm 
with stable classification efficiency, performs well for small-
scale data, can handle multiple classification tasks and is suitable 
for incremental training (Zhang et  al., 2009); however, it is 
required to decide the probability of the posterior by virtue 
of the prior and data before classification determination. Thus, 
there is a certain error rate in the classification decision-making, 

FIGURE 1 | The relationship among artificial intelligence, machine learning, 
and deep learning.
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and it is sensitive to the expression of the input data. Logistic 
regression (LR) directly predicts the probability of a sample 
belonging to a positive sample, with a clear model, strong 
parameter interpretability, and simple and efficient for big data 
scenarios; however, its performance is easily affected by the 
correlation between features and the size of the feature space, 
and it is prone to underfitting problems, resulting in low 
accuracy (Cox, 1958). The k-nearest neighbor (kNN) algorithm 
is considered an algorithm based on the idea of template 
matching that is simple and efficient and can solve both 
classification and regression problems with high accuracy and 
insensitivity to outliers; however, its prediction speed is slower 
than that of LR, especially for dealing with high-dimensional 
data, which is computationally intensive (Cover and Hart, 1967).

The year 1980 serves as a transition point in the history 
of ML algorithms, which gradually developed from fragmented 
and unsystematic enlightenment algorithms into an independent 
and systematic direction. Various machine learning algorithms 
have exploded and developed rapidly. In the 1980s and early 
1990s, three typical implementations of decision trees (DT): 
ID3 (Quinlan, 1986), CART (Yeh, 1991), and C4.5 (Quinlan, 
1996), had fast computation, high accuracy, and high 
interpretability, which make DT still used in some problems 
today, but their characteristic of easy-overfitting leads to easy 
neglect of the relevance of attributes in the dataset. Two classical 
algorithms, support vector machine (SVM) based on statistical 
learning theory (Cortes and Vapnik, 1995) and AdaBoost 
(Freund, 1990), were developed in the 1990s. The former (SVM) 
uses kernel functions that can be mapped to a high-dimensional 
space to solve nonlinear classification problems with 
uncomplicated classification ideas (maximizing the interval 
between samples and decision surfaces) and presents better 
classification performance; however, the method is difficult to 

solve the multiclassification problem, sensitive to missing data, 
and thus challenging to achieve large-scale training samples. 
The latter (AdaBoost) can integrate the use of simple weak 
classifiers, which does not require either a priori knowledge 
of weak classifiers or filtering of features, and can significantly 
improve learning accuracy regardless of whether the data are 
artificial or real; nevertheless, it is susceptible to noise interference 
and has a long training time.

The random forest (RF) and AdaBoost algorithms belong 
to integrated learning, with high accuracy, and can effectively 
run on large datasets and strong resistance to noise (Breiman, 
2001); however, the number of decision trees will lead to a 
very long training time, and overfitting occurs in noisy 
classification or regression problems. Up until the rise of DL 
in 2012, supervised learning was rapidly developed, and various 
ideas and methods emerged one after another, yet no one ML 
algorithm achieved an overwhelming advantage.

Unsupervised Learning
Unsupervised learning is a method to learn the commonality 
in the input data to determine whether such commonality 
exists in the new data, and the research thinking can be divided 
into two categories: clustering and data dimensionality reduction. 
The hierarchical clustering algorithm emerged early (Ward, 
1963), and some of its implementations are still in use today, 
including SLINK (Sibson, 1973) and CLINK (Defays, 1977). 
The K-means clustering algorithm was then born, and the 
algorithm is simple and easy to implement (Macqueen, 1965), 
whereas there are the following drawbacks: (1) the number 
of class clusters needs to be  specified by the user in advance; 
(2) the clustering results are more sensitive to the selection 
of the initial class cluster centers; (3) it is easy to fall into a 
local optimum; and (4) only spherical class clusters can be found; 

FIGURE 2 | Development history of classical machine learning algorithms since the 1930s.
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since then, it has been continuously improved and grows into 
the clustering algorithm with the most variants and 
improvements. The expectation-maximum (EM) algorithm 
(Dempster et al., 1977) has been used to solve various extreme 
likelihood estimation problems in ML with missing data and 
is commonly used to learn the variational inference of LDA 
topic models, parameters of the Gaussian mixture model (GMM), 
and hidden Markov model (HMM). Other density-based 
clustering algorithms in the 1990s include mean shift (Cheng, 
1995), density-based spatial clustering of applications with noise 
(DBSCAN) algorithm (Ester et  al., 1996), and ordering points 
to identify the clustering structure (OPTICS) algorithm (Ankerst 
et  al., 1999). They are not based on various distances but 
on density.

A new idea of clustering was born in the early 21st century: 
transforming the clustering problem into the graph cutting 
problem, and the representative algorithm covering this new 
idea is spectral clustering. The data dimension reduction 
algorithm originated very early, and the advantages of the 
classic principal component analysis (PCA) algorithm are the 
complete absence of parameter restrictions, the removal of 
data redundancy and noise, the compression and preprocessing 
of the data to make the dataset easier to use, and the results 
easier to understand (Pearson, 1901). PCA can eliminate the 
correlation between variables, but the nonlinear dependence 
between samples may be  lost if linear dimensionality reduction 
is performed via PCA. The heavyweight result innovation, 
kernel PCA (Scholkopf et  al., 1998), was based on the kernel 
technique, combined with PCA and transforming PCA into a 
nonlinear dimensionality reduction algorithm. Since then, a 
wave of nonlinear methods has been set in motion, e.g., locally 
linear embedding (LLE), Laplacian eigenmaps, locality preserving 
projections, and isometric mapping (Roweis and Saul, 2000; 
Tenenbaum et  al., 2000; Belkin and Niyogi, 2003; He and 
Niyogi, 2003). Then, t-distributed stochastic neighbor embedding 
(t-SNE) was developed (Van Der Maaten and Hinton, 2008), 
mainly for visualizing and exploring high-dimensional data, 
which follows nonlinearity and has the best visualization effect 
compared with other dimensionality reduction algorithms. The 
relative similarity of the original data at the time of dimensionality 
reduction is excellent; however, the results of each run will 
change slightly for each run due to its random nature. 
Unsupervised learning, although relatively slow in development 
and with few breakthroughs, has occupied a dominant role 
in human and animal learning and is a necessary path to 
explore strong artificial intelligence.

Deep Learning
Deep learning, compared to traditional ML, is more highly 
dimensional and targeted to capture as many/complete 
relationships as possible in the raw data. DL can be classified 
into supervised, unsupervised and hybrid DL models according 
to whether labeled data are required or not, where hybrid 
models usually refer to the use of unsupervised model results 
as input data or important auxiliary to supervised models. 
The predecessor and technical essence of DL is artificial 
neural networks (ANNs). In 1958, the predecessor of ANN, 

the Perceptron model, was launched (Rosenblatt, 1958), but 
it was not of practical value because it was too simple and 
could only handle linear classification problems, not even 
solving the XOR problem. Therefore, it does not have practical 
value but mainly lays the ideological foundation for the 
later algorithms. Research on neural networks entered a 
bottleneck until the 1980s, for instance, the back propagation 
(BP) algorithm for training multilayer neural networks/
multilayer perceptrons using sigmoid functions for nonlinear 
mapping (Rumelhart et  al., 1986). Based on the forward 
propagation of traditional neural networks, the BP algorithm 
adds a backward propagation process of errors, continuously 
adjusting the weights and thresholds between neurons until 
the output error reaches a reduction to within the allowed 
range or reaches a predetermined number of training times. 
It effectively solves the problem of nonlinear classification 
and learning and is the basis for improving and applying 
neural networks.

However, as the scale of the neural network increases, the 
BP algorithm suffers from the problem of “gradient 
disappearance.” Meanwhile, the limited hardware level of 
computers led to poor computing power, which could not 
help the further development of BP algorithm, plus the effect 
of classification and regression application of shallow ML such 
as SVM in the same period was continuously proved, and DL 
thus entered the second winter period. Even during the winter 
period, algorithms such as convolutional neural networks (CNN) 
and long short-term memory (LSTM) were developed and are 
still adopted today to process vision tasks (Lecun et  al., 1989). 
Among them, LeNet-5 was proposed by Lecun et  al. (1998) 
and has become the prototype of most deep convolutional 
neural networks (DCNNs).

Until Hinton and Salakhutdinov (2006) proposed the concept 
of DL, the problem of “gradient disappearance” was solved, 
i.e., the algorithm was trained layer by layer by unsupervised 
learning and then tuned using a supervised back-propagation 
algorithm. Hinton and his student Alex Krizhevsky used 
AlexNet to win the ImageNet competition (Smirnov et  al., 
2013), which became the pioneer of the current wave of deep 
learning. Its top  5 accuracy rate of 84.6% has an error rate 
of only 15.3%, and the network is characterized by (1) the 
use of the ReLU method to speed up training; (2) the use 
of dropout to prevent overfitting; and (3) GPU parallel 
computing technology to solve the problem of long optimization 
time for deep networks with many parameters. Moreover, 
some neural network architectures, such as variational 
autoencoders (VAEs) and generative adversarial networks 
(GANs), have recently attracted much attention in the DL 
community. The bidirectional encoder representation from 
transformers (BERT) model proposed by Devlin et  al. (2019) 
has built a transformer network structure with a self-attention 
mechanism as the core. Excellent performance is presented 
in many tasks in natural language processing (NLP) due to 
its versatility. Essentially, DL is a statistical technique with 
advantages and limitations that are maturing in the areas of 
computer vision, natural language processing, and speech  
recognition.
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Reinforcement Learning
Reinforcement learning is a special class of ML algorithms, 
the most important feature of which is learning from interaction 
(Keerthi and Ravindran, 1994; Kaelbling et  al., 1996). On the 
basis of interaction, we  constantly judge whether the action 
is related to the goal, corresponding to the generation of rewards 
or penalties, and repeatedly execute it to finally maximize the 
expected benefits, an “automatic scoring and escalation” process. 
Deep reinforcement learning (DRL), a new research hotspot, 
combines the perceptual capability of deep learning with the 
decision-making capability of reinforcement learning to achieve 
direct control from raw input to output through end-to-end 
learning for applications in robot control, computer vision, 
natural language processing, and medical care (Erev and Roth, 
1998; Frank et  al., 2004; Kober et  al., 2013; Mnih et  al., 2015).

Evaluation Criteria and Algorithmic 
Workflows
Different algorithms have their own advantages and disadvantages, 
and there is no superiority or inferiority. What needs to be done 
is to fully interpret the input data based on different demand 
scenarios and then build suitable models to continuously adjust 
to achieve the best performance. Moreover, the belief that “as 
long as the most advanced and complex model is used, the 
scientific problem will be  solved” is not objective. In essence, 
computer technology only assists people in making decisions 
or automates the human decision-making process and improves 
efficiency. Therefore, the choice of model should be  the most 
suitable one, rather than pursuing the most complex one. There 
are four criteria used to judge the merits of machine learning 
algorithms (Greener et  al., 2022). (1) Correctness, the most 
important criterion for judging the merits of an algorithm. 
(2) Robustness, i.e., fault tolerance, representing the algorithm’s 
ability to respond to and address illegal data input. (3) Readability, 
easy-to-understand algorithms means a less time-consuming 
process of debugging, modification, and expansion. (4) 
Temporality, i.e., time complexity and space complexity, represent 
the computational effort and memory space required to execute 
the algorithm, respectively.

The use of ML as a technical tool to solve scientific problems 
can generally comply with the following five steps in Figure  3 
(Greener et  al., 2022). (1) Define the problem, prepare and 
process the data, and determine the assessment method. The 
data were split into three groups: training set, validation set, 
and test set. The training set is given to build the model, the 
validation set and the test set both refer to the data samples 
retained when training the model, and the ability of the model 
to use the training data should be  evaluated successively. The 
data also undergo targeted preprocessing before use, such as 
vectorization, value normalization, and feature engineering 
needed for non-DL. Then, we  select the most representative 
evaluation metrics and validate the evaluation method for the 
problem. Commonly used performance metrics are confusion 
matrix, precision, recall, specificity, F1 score, precision-recall 
curve, ROC, AUC, etc. Common evaluation methods include 
simple leave-out validation, k-fold cross-validation, repeated 

k-fold validation with disrupted data, and bootstrapping. (2) 
Build the model. Develop models that are more optimized 
than the benchmark, with the ultimate goal of balancing the 
dichotomy between optimization and generalization: find the 
line between underfitting and overfitting and maximize 
generalization capabilities. (3) Validating the model. Models 
with statistical efficacy tend to require scaling up the model 
first, and a threshold of overfitting for monitoring training 
losses and validation losses will be  required. (4) Testing the 
model. The goal is to evaluate the predictive capability of the 
model in completely new data, as opposed to validating the 
data. It is essential to evaluate all aspects of the model, for 
instance, to check whether the output of the program meets 
the expected correct values and whether the model results 
meet the expected evaluation requirements (accuracy or error). 
(5) Tuning the model. Boosting the performance of the algorithm 
with more data, different features, or tuned parameters. The 
previous steps are repeated continuously, with model 
regularization and tuning of hyperparameters (parameters to 
control the behavior of the algorithm when building the model) 
depending on the performance of the model on the validation 
set until the desired performance is achieved.

Machine learning methods tend to require a combination 
of mathematical knowledge concerning statistical probability 
theory, linear algebra, and algorithmic complexity theory, 
combined with the diversity of microbial data, which makes 
it intractable for researchers in the field of microbiology to 
construct and utilize complex ML models independently. In 
response to the nature and volume of experimental data specific 
to various research directions, experts in big data science 
propose ideas and technical support on approaches to leveraging 
existing data for effective ML, facilitating the emergence of 
new cross-cutting areas. With the widespread adoption of ML 
and DL algorithms, humans have been presented with a whole 
new world of microorganisms, especially in the fields of 
classification and prediction.

CLASSIFICATION AND PREDICTION

Next, we will characterize the impact of ML on the microbiology 
field and specific application cases. The application of ML in 
microbial species and community classification and prediction 
mainly includes microbiome and taxonomy, microbial ecology, 
pathogen and epidemiology, and drug discovery (with a particular 
focus on antibiotics/antimicrobial peptides).

Microbiome and Taxonomy
The microbiome refers to an ecological community of 
microorganisms with different characteristics and functions that 
coexist in a given environment, including the genomes and 
environmental/habitat conditions of the members (Lederberg 
and McCray, 2001; Berg et  al., 2020). The application usually 
combines one or more of the multiomics techniques, which 
to some extent is more accurate and precise in classification 
than single-omics data studies and facilitates the exploration 
of the influential factors in microbiomics network mechanisms. 
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The strategy of microbial taxonomy is to distribute target 
sequences to microbial communities at different taxonomic 
levels utilizing various tools (Marchesi and Ravel, 2015). ML, 
especially classification and clustering algorithms, allows 
classification based on data representing the characteristics/
functionality of the target community, reflecting similar 
relationships. With upgrades in sequencing technology, hundreds 
of millions of short sequencing reads have been generated 
from merely a single sample, which consequently generates 
high-dimensional microbiome data (Luz Calle, 2019). Therefore, 
linear or nonlinear dimensionality reduction algorithms are 
advantageous in handling complex and multivariate sparse 
microbiome data to achieve dimensionality reduction (Kostic 
et al., 2015) and visualization (Song et al., 2019) of the data space.

Common supervised classification algorithms are particularly 
valuable in identifying highly complex datasets, as in the case 
of human microbiota surveys (Knights et  al., 2011). ML and 
statistical techniques are in place to build predictive models 
of taxonomic units (Knights et  al., 2011) or functions (White 
et  al., 2009) to distinguish between distinct sample groups. 
The selection of classification techniques requires considering 
the characteristics of different microbial communities and 
extracting the data with different features, encoding the extracted 
data with labels, and rendering them available for model training 
(Knights et  al., 2011). A study as early as 2012 demonstrated 
that random forests enable effective and accurate classification 
of human microbial community samples and allow the 
identification of key components (OTUs or species) that 
differentiate between groups (Knights et  al., 2011; Yatsunenko 
et  al., 2012). A series of base classifiers are trained separately 
and independently, and the results of each base classifier training 
are integrated by adopting a certain rule. This is the idea of 
ensemble learning, which will obtain better classification results 

than a single classifier (Wang et  al., 2007; Wu and Zhang, 
2008). Subsequent studies have targeted the oral microbiota 
in saliva and classified them with the algorithm of SVM, ANN, 
and DT (Nakano et  al., 2014). Xu et  al. (2020) constructed 
classifiers and classified new samples using LR, SVM and DT 
based on the dimensionality reduction space generated by 
t-SNE with Aitchison distance, compared the classification 
performance of the same classifiers in the original dimension 
and the dimensionality reduction space, and demonstrated that 
compared with the t-SNE dimensionality reduction technique 
using Euclidean distance, Aitchison distance increases the 
classification accuracy (ACC) of the classifier in general.

Unsupervised learning relies on the strategy of sequencing 
depth information or OTU clustering of sample data instead 
of known information (Sangwan et al., 2016). MetaBAT quantifies 
the similarity of sequences using sequence similarity and 
information about the sequencing depth of the sample data, 
using the calculation of the distance between overlapping 
clusters, and then clustering (Kang et  al., 2015). COmposition, 
read CoverAge, CO-alignment, and paired-end read LinkAge 
(COCACOLA) calculates the distance with L distance instead 
of the traditional Euclidean distance (Lu et al., 2017). Strategies 
for OTU-based clustering inevitably take into account the 
setting of thresholds, feature extraction, and the choice of 
specific clustering methods. Cai and Sun (2011) proposed a 
hierarchical clustering method, i.e., first filtering a large number 
of unnecessary sequence comparisons with k-mers and then 
launching the hcluster algorithm in the clustering process to 
achieve similar accuracy as the standard hierarchical 
clustering algorithm.

The design of sequence classification methods based on deep 
learning is not rare. A study proposed a sequence classification 
technique based on k-mer and two DL architectures—CNN 

FIGURE 3 | Machine learning workflow.
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to discriminate and deep belief network (DBN) to generate—for 
the bacterial taxonomy of macrogenomic data (Fiannaca et  al., 
2018). The ANN classifier can optimize the classification 
effectiveness and confidence of the target community after 
feature analysis. A study developed a pipeline (cell type 
recognition and CellCognize) based on multidimensional flow 
cytometry (FCM) data via ANN to enable quantification of 
cell type diversity and subsequent differentiation and classification 
of microbiota of known composition (Duygan et  al., 2020). 
Composed of a feed-forward back-propagation algorithm, an 
input layer, a hidden layer, and an output layer, ANNs have 
been trained to classify either five or 32 standard multiparameter 
FCM datasets and forecast cell type attribution of FCM data 
from poorly trained microbial samples of known or 
unknown composition.

Given the characteristics of high dimensionality, multinoise, 
data sparsity, and heterogeneity of histological data, as well 
as the problem of unbalanced datasets in experiments, the 
integration of complex and large-scale histological data imposes 
high demands on the analysis capability of algorithmic models 
and computing platforms. Currently, the main methods are 
dimensionality reduction and noise reduction through PCA 
or autoencoder and transformation of sparse and heterogeneous 
data through regression methods. However, all of these methods 
have their drawbacks, and a substantial amount of research 
on these issues will be  necessary in the future.

Microbial Ecology
Microbial ecology, with its origins in environmental microbiome 
studies, takes as its starting point the study of target microbiota, 
with the long-term goal of capturing the diversity of multiple 
species interactions (competition, predation, facilitation, and 
symbiosis), as well as uncovering their distribution patterns/
networks and maintenance mechanisms. Mechanisms of 
microbiota–microbiota and host–microbiota interactions are 
critical to our understanding of microbial network structure 
and function of homeostasis in a given habitat (Broberg et  al., 
2018; Hassani et al., 2018; Van De Guchte et al., 2018). Advances 
and applications of new experimental and computational methods 
will drive the integration of microbial ecology research with 
leading technologies in integrated multiomics, computational 
biology, and other fields.

The purpose of constructing ecological networks is to 
model all interactions between species and their environment. 
Faisal et  al. (2010) used four widely used statistical/ML 
methods, graphical Gaussian models (GGMs), L1-regularized 
regression with the least absolute shrinkage and selection 
operator (LASSO), sparse Bayesian regression (SBR), and 
Bayesian networks (BNs), to validate their usefulness in 
identifying community interactions in microecological networks. 
These methods enable simulated restoration of food web 
structure and contribute to modeling and predicting the effects 
of bioclimatic variables. However, since the complete ecological 
knowledge of the true interaction network between species 
is hardly visible, assessing the success of the modeling solely 
relies on known or possible relationships. Although pairwise 
interactions are the basis for the study of complex ecological 

networks, higher-order interactions involving three or more 
taxonomic units increase the variability and stochasticity in 
the study of community composition, on which the prediction 
of microbiota-associated biological phenotypes is based (De'ath 
and Fabricius, 2000).

It is necessary to simplify scientific problems by switching 
predictive strategies based on species characteristics when 
predicting relationships (natural diversity, life cycles, interactions, 
and coevolution) across species or with their environment. 
Leite et al. (2018) explored several machine learning techniques 
(kNN, RF, SVM, and ANN) to predict/identify the presence 
of a given phage–bacterial pair interaction after 10-fold cross-
validation based on accuracy, F-score, specificity, and sensitivity 
criteria to filter the most predictive algorithms and their 
parameter values. The theoretical basis of its prediction lays 
in the interaction between a given phage–bacterial pair of 
encoded proteins, allowing the work to be  converted into 
protein–protein interaction (PPI) prediction (Cusick et  al., 
2009). Accordingly, two features, the domain–domain interaction 
score and protein-level structural information, were selected 
in the feature extraction phase.

The intersection of genetics and ecology is established on 
the basis of the population concept. Stupp et al. (2021) proposed 
supervised ML-based phylogenetic profiling (MLPP) to predict 
functional interactions between human genes and the interaction 
environment in which they occur (i.e., biological functions) 
and established a web server containing functional interaction 
predictions for all human genes. They predicted the probability 
of all possible gene pairs in each tag using the lightGBM 
model, which is related to RF after comparing it with the DT, 
LR, and NB algorithms. Based on simulations and real data, 
Pichler et al. (2020) compared generalized linear models (GLM) 
with ML models (RF, boosted regression trees, deep neural 
networks, CNN, SVM, NB, and kNN) to measure their capability 
to predict species interactions based on traits and to extrapolate 
trait combinations that are causally relevant to species interactions. 
In a global crop–pollination database, they found that RF had 
the best predictive performance, predicting species interactions 
in plant-pollinator networks remarkably well.

However, the reality that most microbial species within 
communities are not culturable makes the prediction of 
interspecies interactions in natural microbial communities 
challenging. This comes from the fact that the accuracy of 
deep learning (especially deep neural networks) depends on 
the reliability of the training database. Moreover, there is still 
space for investigators to design joint experimental and modeling 
studies to uncover interaction mechanisms that have not yet 
been fully investigated (Lee et  al., 2020).

Pathogen and Epidemiology
Epidemics have the characteristics of being contagious, epidemic, 
and recurrent. Infestations of previously unknown pathogenic 
microorganisms pose a continuous threat to food security and 
human health. To address the medical challenges of epidemiology, 
the identification, and characterization of pathogens, and the 
screening and prediction of diseases have emerged as major 
concerns for professional biomedical scientists. ML, as well as 
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DL, which dominates in batch image classification, has led to 
a significant reduction in the time and computational cost 
spent on dataset analysis due to its extremely efficient, cost-
effective, accurate and high-throughput advantages (Ghosh 
et  al., 2022).

Disease epidemiology studies examine the patterns of 
temporal and spatial dynamics of diseases at the population 
level under different environmental conditions. Research on 
issues such as diseases caused by plant and animal viruses 
provides a large dataset on gene expression, chromosome 
conformation, genetic variation, traits, and diseases. The 
relevance of the viral genome allows for screening with the 
help of macrogenomics. The application of ML enables the 
integration of multiomics data and significantly improves 
macrogenomic data analysis. ML assists in classifying these 
viral sequences and thus deepens our understanding of virus 
evolution. VirFinder is a k-mer-based platform to identify 
prokaryotic virus sequences from mixed macrogenomic data, 
accelerating the screening of pathogens at the genetic level 
in plant and animal virome studies (Ren et  al., 2017). The 
synergistic application of ML and hyperspectral imaging (HSI) 
provides a new methodological idea for image detection of 
viral diseases. While the high-dimensional data generated by 
HSI contain redundant information, ML reduces the 
dimensionality of HSI data by determining the effective specific 
wavelength range through data preprocessing. For instance, 
multilayer perceptrons (MLPs), ANNs, and CNNs enable the 
detection and classification of color images by hidden image 
features with high accuracy of >96.00% (Lowe et  al., 2017). 
Compared to traditional ML, which requires feature extraction 
techniques tailored to the nature of the data and model, DL 
supports automatic feature extraction, reducing computational 
time, and the burden of reliance on professional expertise. 
Training a model (classifier) with live images is a case in 
point (Ferentinos, 2018). This implies that determining the 
reliability of the classification relies to some extent on the 
abundance of available images based on the scene. For example, 
VGGNet, obtained by Chen et al. (2020), achieved an average 
accuracy of 92.00% for predicting rice plant image categories 
based on ImageNet and Inception module pre-training.

Phages are the most abundant organisms on Earth and 
have been considered as natural enemies of bacteria. Several 
ML algorithm models aiming to improve the automatic 
recovery and prediction of phages already exist. For instance, 
VirSorter searches the database of expected proteins up front 
using probabilistic similarity and reference homology to 
identify viral signals, but the disadvantage is that it does 
not fully distinguish between virus and nonvirus Pfam 
annotations (Roux et al., 2015). Kaelin et al. (2022) employed 
VirSorter v.1.0.5 to identify circular contigs of candidate 
viruses. Another tool, Meta-genomic Analysis and Retrieval 
of Viral Elements (MARVEL), which aggregates annotation 
and sequence signature information of previously identified 
phages, was developed to identify and predict double-stranded 
DNA phage sequences in macrogenomic boxes. Given the 
excellent recall, Braga et al. (2020) used MARVEL to identify 
phage bins for prediction. According to the authors’ statement, 

comparing the performance of MARVEL, VirFinder, and 
VirSorter, all three performed comparably in terms of 
specificity, with MARVEL outperforming in terms of sensitivity 
(Amgarten et  al., 2018). VIBRANT, the first computational 
tool to utilize neural networks and protein similarity methods, 
had a particularly strong performance score (94%) in the 
automatic recovery of microbial viruses, which was stronger 
than the first three (Kieft et  al., 2020). Luo et  al. (2022) 
filtered ≥ 1 kb contigs to identify viral contigs and related 
reads via VIBRANT. We  summarize the available data and 
materials, which are shown in Table  1.

To date, most of the results generated from the intersection 
of pathogen research and machine learning in epidemiology 
have been prospective and feasible. Comparing different stages 
of classifier innovation, we  found that feature extraction and 
ranking that include multiple layers of information enhance 
the prediction accuracy of the model. The embedding of DL 
refreshes our knowledge of pathogen features.

Drug Discovery (With a Particular Focus 
on Antibiotics/Antimicrobial Peptides)
The abuse of antibiotics has led to a worsening problem of 
drug resistance in pathogenic bacteria, which has been an 
enormous threat to human health. Screening for secondary 
metabolites in soil microorganisms that inhibit the growth of 
pathogenic bacteria is regarded as the traditional primary means 
of antibiotic discovery (Wright, 2017). The current dilemma 
of decreasing the rate of discovery of new antibiotics urgently 
needs to be  addressed. In addition, the administrative costs 
of screening approaches based on large synthetic chemical 
libraries and the high rate of antibiotic design attrition have 
increased the necessity for new antibiotic discovery methods 
to improve the rate of new antibiotic discovery. Modern drug 
discovery has entered the era of big data. AI modeling of the 
dynamic, heterogeneous, and large-scale nature of drug datasets 
continues to drive paradigm innovation in drug discovery 
(Zhu, 2020).

Techniques to identify and predict new antibiotic structural 
classes with the help of ML are largely mature and widely 
adopted (Camacho et al., 2018). DL accelerates the screening 
process of compounds with antibiotic properties from existing 
chemical libraries (Dimasi et al., 2016). Antimicrobial peptides 

TABLE 1 | The available data and materials for prediction of pathogens and 
epidemiology.

Tools Availability of data and materials References

VirSorter https://github.com/simroux/VirSorter Roux et al., 2015
VirSorter2 https://bitbucket.org/MAVERICLab/

VirSorter2
Guo et al., 2021

VirFinder https://github.com/jessieren/VirFinder Ren et al., 2017
DeepVirFinder https://github.com/jessieren/

DeepVirFinder
Ren et al., 2020

MARVEL https://github.com/
LaboratorioBioinformatica/MARVEL

Amgarten et al., 
2018

VIBRANT https://github.com/AnantharamanLab/
VIBRANT/

Kieft et al., 2020
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(AMPs) are candidates for coping with antibiotic resistance. 
Researchers have successively established several antimicrobial 
peptide databases containing data on various types of AMPs 
from various sources, such as APD, CAMP, and AVPDB, 
which greatly facilitate mining and forecasting of AMPs. 
Fu et  al. (2020) designed a DL model for high-throughput 
antibacterial peptide recognition (ACEP), which is innovative 
in that it introduces an amino acid embedding tensor to 
capture the similarity between amino acids, constructed a 
“convolution and concatenation” (CVCA) layer using the 
attention mechanism of natural language processing (NLP) 
to fuse various heterogeneous information or features, and 
quantified the contribution of different components of the 
model to the final prediction using the attention scores of 
different parts of the peptide sequence. Capecchi et al. (2021) 
trained recurrent neural networks (RNNs) using sequence 
information from DBAASP v.2 (Database of Antimicrobial 
Activity and Structure of Peptides, now updated to DBAASP 
v.3; Pirtskhalava et al., 2021), including AMP and non-AMP 
datasets, and hemolytic and non-hemolytic data, mixing the 
use of supervised and unsupervised learning for the first 
time, maximizing the utilization of highly selected posterior 
data. The study also synthesized and tested 28 sequences 
generated and selected, yielding 12 new active AMPs, eight 
of which were also non-hemolytic. Das et al. (2021) designed 
a fully automated computational framework for molecular 
targeting and screening, in which conditional latent (attribute) 
space sampling (CLaSS) was designed for target generation, 
which is more efficient and easily reusable than other ML 
methods. The framework generates a potential space of 
molecular information via deep generative autoencoder 
modeling, utilizes a classifier for training guidance, and 
filters the generated molecules through deep learning classifiers 
based on the physicochemical features obtained in high-
throughput molecular dynamics simulations. This study 
reported 20 CLaSS-generated AMP sequences and 11 non-AMP 
sequences obtained via the above screening method, which 
was shown to be  less prone to false negatives. Wang (2022) 
combined various NLP neural network models (NNMs), 
built a pipeline containing LSTM, attention, and BERT, and 
established a DL method that adapts to learn AMP sequence 
features to mine and identify novel AMPs. Among a total 
of 2,349 sequences identified as candidate AMPs, 216 were 
chemically synthesized, including 181 indicative of 
antibacterial activity (>83% positivity). The code availability 
is shown in Table  2.

Overall, the time is ripe for modern ML/DL applications 
for antibiotic discovery (Cardoso et  al., 2020). Their effective 
contribution to the bulk filtering and prediction of antimicrobial 
peptides is alleviating concerns about the high risks and low 
returns associated with antibiotic development. Notably, the 
high success rate of deep neural network model-guided antibiotic 
development is heavily dependent on the combination of model 
prediction and appropriate experimental design, and this wet-dry 
combination strategy is a scientific idea that has started to 
be popularized after the discovery of complementary information 
and experimental practices.

CONCLUSION

Research in machine learning and deep learning is evolving 
rapidly, with architectures, algorithm combinations, and 
computational strategies changing rapidly. The ultimate goal 
is not only to predict the accuracy of the task but also 
to uncover the underlying biological processes in the 
scientific problem. The perception that “deep learning may 
eventually eliminate all other machine learning algorithms” 
is limited and one-sided. Deep learning modeling requires 
a large amount of training data to demonstrate fantastic 
performance, but realistic colony research frequently 
encounters problems with small sample datasets. At this 
point, deep learning methods fail to attack them, but 
traditional machine learning methods are capable of handling 
them. The development of effective analytical tools, including 
software for data mining and machine learning, ensures 
data validity, proper annotation, and open sharing, allowing 
most studies arising from the intersection of microbiology 
and machine learning to show promising findings. After 
bioinformatics and multiomics integration, ML and DL will 
lead the next wave of technologies to uncover biological  
regularity.
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TABLE 2 | The code availability for prediction of antimicrobial peptide (AMP) 
discovery.

Tools Code availability References

ACEP https://github.com/Fuhaoyi/
ACEP

Fu et al., 2020

RNN https://github.com/reymond-
group/MLpeptide

Capecchi et al., 2021

CLaSS https://github.com/IBM/
controlled-peptide-generation

Das et al., 2021

AMP prediction 
pipeline with NNMs

https://github.com/
mayuefine/c_AMPs-prediction

Wang, 2022
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The Beibu Gulf harbors abundant underexplored marine microbial resources, which are 
rich in diversified secondary metabolites. The genera Vibrio is a well-known pathogenic 
bacterium of aquatic animals. In this study, 22 fungal strains were isolated and identified 
from the Beibu Gulf coral via the serial dilution method and internal transcribed spacer 
(ITS) sequence analysis, which were further divided into three branches by phylogenetic 
tree analysis. The crude extracts of them via small-scale fermentation were selected for 
the screening of inhibitory activity against Vibrio alginalyticus, Vibrio coralliilyticus, Vibrio 
harveyi, Vibrio parahaemolyticus, Vibrio owensii, and Vibrio shilonii. The results showed 
that eight fungal extracts displayed anti-Vibrio activity via the filter paper disk assay. Several 
of them showed strong inhibitory effects. Then, two tetramic acid alkaloids, equisetin (1) 
and 5′-epiequisetin (2), were identified from Fusarium equiseti BBG10 by bioassay-guided 
isolation, both of which inhibited the growth of Vibrio spp. with the MIC values of 86–132 μg/
ml. The scanning electron microscope results showed that cell membranes of Vibrio 
became corrugated, distorted or ruptured after treatment with 1 and 2. Taken together, 
this study provided eight fungal isolates with anti-Vibrio potentials, and two alkaloid-type 
antibiotics were found with anti-Vibrio effects from the bioactive strain F. equiseti BBG10. 
Our findings highlight the importance of exploring promising microbes from the Beibu Gulf 
for the identification of anti-Vibrio for future antibiotic development.

Keywords: the Beibu Gulf, coral-derived fungi, anti-Vibrio, phylogenetic tree, equisetin

INTRODUCTION

As an important biocenosis in marine ecosystems, a coral reef ecosystem represents an 
extraordinarily diverse biota in tropical environments, among which corals often constitute a 
dominant part of the reef biomass. Scleractinian corals harbor diverse and abundant microbial 
symbionts with different types of interactions, which function as the primary reef ecosystem 
engineers, constructing the framework and shaping the resource availability for other coral 
reef-associated organisms (Tang et  al., 2020). Manipulation of the coral-associated microbiome 
was postulated as a key strategy to improve the resilience of reef-building corals. The genera 
Vibrio, known as Vibrio coralliilyticus and Vibrio mediterranei, are important coral pathogens 
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capable of inducing serious coral damage, which has seriously 
impacted reef-building corals throughout the oceans as well 
as global warming (Esther et  al., 2020). Recently, coral and 
its associated microorganisms have been evidenced as promising 
producers of structurally diverse compounds with a wide range 
of potent bioactivities, such as anti-inflammatory, cytotoxic, 
antimicrobial, antivirus, and antifouling activities (Hou et  al., 
2015; Sang et  al., 2019).

The Beibu Gulf, located in the north of the South China 
Sea, harbors abundant biodiversity in both marine organisms 
and microorganisms and is regarded as a potential source of 
new species, new genes, new drugs, and new biological materials 
(Xu et  al., 2020). However, there are relatively few reports 
about marine natural products from the Beibu Gulf (Carroll 
et al., 2019, 2020, 2021, 2022; Wang et al., 2019). In continuation 
of our research program aiming at the discovery of bioactive 
metabolites from the Beibu Gulf-derived marine fungi, a series 
of new bioactive compounds with diversified structures have 
been obtained recently (Luo et al., 2021; Lu et al., 2022; Zhang 
et  al., 2022). Therefore, the main objective of this study was 
to investigate the anti-Vibrio potential of fungi isolated from 
scleractinian corals collected from the Weizhou Islands coral 
reef in the Beibu Gulf and to obtain and evaluate the potential 
exploitable anti-Vibrio alkaloids, equisetin and 5′-epiequisetin, 
from Fusarium equiseti BBG10.

MATERIALS AND METHODS

Sampling and Isolation of Fungi
The corals Porites lutea were collected from the Weizhou Islands 
coral reef in Guangxi Zhuang Autonomous Region, China, in 
July 2019. The samples were stored in sterilized polythene 
bags, transported to the laboratory, and processed immediately 
for the isolation and cultivation of fungi. The fungi were isolated 
by the serial dilution method (1:10, 1:100, and 1:1,000) using 
potato dextrose agar (PDA) medium supplemented with sea 
salt (20 g/L) and chloramphenicol (20 mg/L). The inoculated 
plates were cultured at 25°C for 1–3 weeks and observed the 
growth of fungi intermittently. Fungal isolates were chosen 
and transferred into another blank agar plates based on their 
morphological traits. The isolated strains were deposited at 
the Institute of Marine Drugs, Guangxi University of Chinese 
Medicine, Nanning, China.

Identification of Fungi
The fungal strains were cultured in PDA medium at 28°C for 
5 days. The genomic DNA of the fungal strains was isolated 
by using the protocol described previously (Shen et  al., 2020). 
The internal transcribed spacer (ITS) sequences were checked 
and amplified using ITS1-(5′-TCCGTAGGTGAACCTGCGG-3′) 
and ITS4-(5′-TCCTCCGCTTATTGATATGC-3′) primers. The 
fungi were identified mainly by analysis of the ITS sequences 
(as shown in Supplementary Material) in the NCBI BLAST 
program. The phylogenetic tree was created based on the ITS 
sequences by MEGA7.

Screening of Fungi Fermentation and 
Extracts
The small-scale fermentations of 22 fungal isolates (BBG1–
BBG22) were carried out in rice solid medium (50 g rice, 1.2 g 
artificial sea salt, and 60 mL H2O) employing with 1-L Erlenmeyer 
flasks at room temperature for 30 days. The fermented cultures 
were overlaid and extracted three times with EtOAc. All the 
fungal extracts (10 mg/mL dissolved in methanol) were analyzed 
by high-performance liquid chromatography (HPLC; Shimadzu 
Prominence-i LC-2030) using a PDA detector and an ODS 
column (YMC-pack ODS-A, 4.6 mm × 250 mm, 5 μm). In addition, 
the organic extracts were combined and evaporated in vacuo 
as a total crude extract for further anti-Vibrio assays.

Anti-Vibrio Assay
All the fungal extracts, along with two isolated tetramic acid 
alkaloids, equisetin (1) and 5′-epiequisetin (2), were screened for 
antibacterial activity against Vibrio alginalyticus, Vibrio coralliilyticus, 
Vibrio harveyi, Vibrio parahaemolyticus, Vibrio owensii, and Vibrio 
shilonii, by using a K–B disk agar diffusion method (Zhang et al., 
2022). The strain Vibrio parahaemolyticus was kindly provided 
by Prof. Nan Li (Nanning Normal University, Nanning, China), 
while other Vibrio strains were kindly provided by Prof. Chang 
Chen (South China Sea Institute of Oceanology, Chinese Academy 
of Sciences, Guangzhou,  China). Each fungal extract was dissolved 
in dimethyl sulfoxide (DMSO) at a final concentration of 25 mg/
ml, and the two compounds (1–2) were prepared at a concentration 
of 10 mg/ml. The positive control chloramphenicol was prepared 
at a concentration of 150 μg/mL in DMSO. The Vibrio strains 
were cultivated in Luria Bertani (LB) broth medium (10 g/L 
peptone, 5 g/L yeast extract, and 20 g/L NaCl, pH adjusted to 
7.0) and were incubated at 28°C, and the cultures were incubated 
to logarithmic phase with the optical density at 600 nm (OD600) 
reaching 0.8. The exponential-phase cells were added to LB agar 
medium (40°C–45°C) at a final concentration of 5 × 104 cfu/
mL. After solidification for 20 min, sterile filter paper impregnated 
with 3 μL of sample solution was placed on the plates and incubated 
at 28°C for 12 h. The anti-Vibrio effects were checked and recorded.

The minimal inhibitory concentration (MIC) assay of equisetin 
(1) and 5′-epiequisetin (2) toward these Vibrio strains was further 
determined with minor modification as described previously (Zhang 
et al., 2022). The Vibrio strains were cultivated in LB broth medium 
at 28°C, and the culture was incubated to exponential phase with 
the optical density at 600 nm (OD600) reaching 0.8. Briefly, the 
OD600 of exponential-phase cells of Vibrio was adjusted to 0.01 
with LB broth medium. Thereafter, 150 μL of the Vibrio cells 
suspension was transferred into the wells of a 96-well microplate 
with different concentrations of 1 or 2. DMSO (1%, v/v) was 
served as the negative control. The microplate was incubated at 
28°C for 16 h and checked after incubation (Wiegand et al., 2008). 
The MIC values were defined as the lowest concentrations of 1 
or 2 that inhibited the growth of Vibrio spp. (OD600 < 0.05).

Scanning electron microscopy (SEM) was further performed 
to investigate the morphological changes of Vibrio treated with 
compounds 1 and 2. The strain V. parahaemolyticus was incubated 
on the LB as described above. Thereafter, compounds 1 and 2 
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(10 mg/mL) were added to the Vibrio cells suspension at a final 
concentration of 1.0 × MIC and incubated at 28°C for 12 h. The 
treated cells were collected for the SEM assay. The treated cells 
were washed three times by PBS, and fixed in 2.5% glutaraldehyde 
for 2 h. Then, the treated cells dehydrated successively in an 
ethanol series of 30%, 50%, 70%, 80%, 90%, and 100% tert-butyl 
alcohol for 10 min at each stage. The freeze-dried samples were 
analyzed with an SEM (Zeiss, Sigma 300) operated at 3 kV.

Isolation and Structure Characterization of 
Equisetin (1) and 5′-Epiequisetin (2)
The fungal strain F. equiseti BBG10 was cultured on Müller 
Hinton broth (MB) agar plates (malt extract 15 g, artificial sea 
salt 15 g, and agar 20 g) at 25°C for 7 days. Then, it was inoculated 
in the seed medium (malt extract 15 g and artificial sea salt 15 g 
in 1.0-L tap distilled H2O, pH 7.4–7.8) at 25°C on a rotary 
platform shaker at 180 rpm for 48 h. Subsequently, a large-scale 
fermentation of F. equiseti BBG10 was carried out in modified 
rice solid medium (150 g rice, 3.0 g artificial sea salt, and 180 mL 
H2O) employing with 1 L × 20 Erlenmeyer flasks at room 
temperature for 30 days. The whole fermented cultures were 
extracted with EtOAc three times to provide a brown extract 
(50 g). The EtOAc crude extract was fractionated by medium 
pressure liquid chromatography (MPLC) using a step gradient 
elution with petroleum ether/CH2Cl2/MeOH (petroleum ether/
CH2Cl2, 1:0–0:1; CH2Cl2/methanol, 1:0–1:1, v/v), which afforded 
10 fractions (Frs.1 ~ 10) based on thin-layer chromatography (TLC) 
analysis. Fr.6 was further separated by semipreparative high 
performance liquid chromatography (HPLC) with MeCN/H2O 
(80:20, v/v, 5.0 mL/min) to yield compounds 1 (tR = 38 min, 300 mg) 
and 2 (tR = 43 min, 350 mg). Their structures were confirmed by 
high resolution-electron spray ionization mass spectrometry 
(HR-ESIMS) and high-performance liquid chromatography-diode 
array detection (HPLC-DAD) data analysis as well as comparison 
with the standard reference substances. HR-ESIMS spectra were 
collected on a Waters Xevo G2-S TOF mass spectrometer (Waters 
Corporation, United  States).

RESULTS

Identification and Phylogenetic Tree 
Analysis of Fungal Strains Derived From 
the Weizhou Islands Coral
Twenty-two candidate fungal strains were identified on the basis 
of the molecular protocol by amplification and sequencing of the 
DNA sequences of the ITS region of the rDNA gene. A classification 
of 22 strains based on the species name of the closely related 
species is shown in Figure  1. The predominant genera were 
Aspergillus and Trichoderma. Based on the ITS sequences, a 
phylogenetic tree was created using the neighbor-joining method 
to analyze the genetic relationship between 22 strains. The results 
showed that these strains could be  divided into three major 
branches, while Annulohypoxylon stygium BBG22 is the most 
distant from other strains and belongs to a relatively independent 
branch. Moreover, the morphological property of the potential 

strain BBG10 was further collected to confirm the identification 
by using scanning electron microscopy (Supplementary Figure 1).

Anti-Vibrio Activity of the Fungal Extracts
Cultivation of fungi from the Weizhou Islands coral yielded 
a total of 30 isolates. Reduplicate isolates were excluded under 
the guidance of observation of morphological differences, 
including the visible examination of growth characteristics, 
mycelia, and diffusible pigment. As a result, 22 independent 
strains (BBG1–BBG22) were selected for the screening of 
anti-bacterial activity against 6 strains of Vibrio spp. As shown 
in Table  1 and Supplementary Figure  2, the fungal extracts 
of 8 isolates (36.3%) displayed potential growth inhibition 
against Vibrio in the filter paper disk assay (75 μg extracts/
per piece). It is worth noting that the fungal extracts of two 
isolates, Trichoderma virens BBG4 and Trichoderma harzianum 
BBG6, exhibited strong anti-Vibrio activity, and the sizes of 
the inhibition zone were larger than that of the positive 
control, chloramphenicol (150 μg/ml). A previous study reported 
that T. virens could produce gliotoxin with strong antimicrobial 
activity (Vargas et  al., 2014). Besides, T. harzianum was 
reported to be  a biocontrol bacterium for plant diseases 
(Altomare et  al., 1999). The results also showed that different 
Vibrio species have divergent susceptibilities to extracts. 
Additionally, 22 fungal extracts were further analyzed by 
HPLC for the diversity of secondary metabolites. Therefore, 
F. equiseti BBG10 with interesting HPLC-DAD profiles 
(Supplementary Figure  3) of its crude extract was selected 
as the bioactive target strain to identify the active constituents.

Production of Bioactive Metabolites
To investigate the bioactive constituents of F. equiseti BBG10, 
a large-scale fermentation was performed in 3 kg of rice solid 
medium. After harvest, its organic extract was further separated 
by MPLC and HPLC. Their structures were confirmed by 
HR-ESIMS and HPLC-DAD data analysis as well as comparison 
with the standard reference substances, which were identified 
as equisetin (1) and 5′-epiequisetin (2), respectively (Figure 2).

Anti-Vibrio Activities of Compounds 1 and 2
Equisetin has been reported to have various biological actions, 
including antibacterial (Vesonder et al., 1979), anti-HIV (Hazuda 
et al., 1999; Clercq, 2000), antiobesity, and selective cytotoxicity 
to mammalian cells (Yin et  al., 2013). However, this is the 
first report on the anti-Vibrio activity of equisetin (1) and 
5′-epiequisetin (2) against V. alginalyticus, V. coralliilyticus, 
V. harveyi, V. parahaemolyticus, V. owensii, and V. shilonii. 
The filter paper disk assay showed that equisetin and 
5′-epiequisetin exhibited weak bacteriostatic activity against 
V. alginalyticus, V. parahaemolyticus, V. owensii, and V. shilonii 
(Figure  3; Supplementary Table  1).

In addition, the MIC assay was further used to test the 
bacteriostatic ability of equisetin and 5′-epiequisetin. Both 
equisetin and 5′-epiequisetin showed inhibitory effects on six 
strains of Vibrio with the MIC values ranging from 86 to 132 μg/
ml (Table 2). In order to clearly reflect the effect of compounds 
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on the growth of tested bacteria, one of the Vibrio strain, 
V. parahaemolyticus, was selected to further investigate the 
growth curves of 1 and 2 at different concentrations (0.5 × MIC, 
1.0 × MIC, and 2.0 × MIC), while the OD600 values were recorded 
within 16 h. As shown in Supplementary Figure  4, the growth 
of V. parahaemolyticus in the negative control and 0.5 × MIC 
(1 and 2) treatment groups entered the logarithmic growth 

period after 2 h, and the number of bacterial colonies kept 
growing within 16 h. Notably, the growth of V. parahaemolyticus 
was almost completely stagnant at the treatments of 1.0 × MIC 
and 2.0 × MIC, which suggested the bacteria were completely 
inhibited or even killed after treatment of compounds 1 and 
2. The above results indicated that anti-Vibrio effect of compounds 
1 and 2 was in a dose-dependent manner.

FIGURE 1 | Phylogenetic tree analysis of 22 marine fungal strains.

TABLE 1 | The anti-Vibrio activity of fungal extracts (diameter of inhibition zone, mm).

Vibrio 
alginalyticus

Vibrio 
coralliilyticus

Vibrio harveyi
Vibrio 

parahaemolyticus
Vibrio shilonii Vibrio owensii

Chl 1.69 ± 0.10 2.15 ± 0.22 2.00 ± 0.04 1.53 ± 0.07 2.01 ± 0.20 1.66 ± 0.20
Aspergillus oryzae BBG2 0.78 ± 0.06 0.93 ± 0.08 0 0.87 ± 0.19 0.90 ± 0.10 0.89 ± 0.09
Aspergillus flavipes BBG3 0 1.23 ± 0.21 0 0.75 ± 0.02 0.84 ± 0.07 0.72 ± 0.05
T. virens BBG4 1.73 ± 0.27 2.58 ± 0.03 1.96 ± 0.10 2.28 ± 0.07 2.62 ± 0.04 2.26 ± 0.36
T. harzianum BBG6 2.10 ± 0.25 2.20 ± 0.10 1.73 ± 0.15 2.36 ± 0.07 2.32 ± 0.12 1.19 ± 0.01
Chaetomium globosum BBG9 0.80 ± 0.04 1.64 ± 0.05 0.75 ± 0.03 0.81 ± 0.06 1.26 ± 0.07 1.33 ± 0.02
F. equiseti BBG10 0.80 ± 0.04 1.13 ± 0.08 0.71 ± 0.03 0.77 ± 0.03 0.94 ± 0.03 0.78 ± 0.10
Nigrospora oryzae BBG11 0.88 ± 0.07 1.02 ± 0.18 0.82 ± 0.12 0.85 ± 0.02 1.31 ± 0.06 1.28 ± 0.32
A. stygium BBG22 0 0 0.75 ± 0.06 0.85 ± 0.17 0.83 ± 0.06 0.92 ± 0.13

Chl, chloramphenicol.
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Thereafter, SEM was performed to investigate the morphological 
changes of V. parahaemolyticus treated with equisetin and 
5′-epiequisetin. The results showed that the cell surfaces of the 
control group were smooth and that the Vibrio cells were plump 
and round. In contrast, the cell membranes became corrugated, 

distorted or ruptured after treatment with equisetin or 5′-epiequisetin. 
Interestingly, the destructive ability of equisetin and 5′-epiequisetin 
toward Vibrio cells were stronger than that of chloramphenicol. 
These results indicated that equisetin and 5′-epiequisetin can destroy 
the structure of Vibrio cell membranes (Figure  4).

FIGURE 2 | The isolation and structures of equisetin (1) and 5′-epiequisetin (2).

FIGURE 3 | Inhibitory activities of 1 and 2 against Vibrio. Each plate contains four pieces of paper disk, positive control marks as “+,” negative control marks as “–,” 
and the other two pieces of paper disk contains compound.
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DISCUSSION

The marine environment harbors a vast number of underexplored 
microbial resources. From a natural products perspective, marine 
microbes are better resources for novel anti-Vibrio lead 
compounds. Marine natural products represent a rich source 
of diverse molecules for drug development (Altmann, 2017). 
According to the Marinlit database, more than 36,000 compounds 
with diverse structures have been hitherto isolated from marine 
organisms, while over 1,000 new compounds have been isolated 
per year in the last decades. Notably, the proportion of novel 
compounds derived from marine microorganisms is gradually 
increasing (Carroll et  al., 2022). To our knowledge, 15 marine 
drugs have been approved for marketing, including well-known 
cephalosporin and rifamycin from marine microorganisms. The 

Beibu Gulf is located in the tropics and subtropics, which is 
one of the regions with the most abundant microbial diversity 
in China. However, the research on microbial resources from 
the Beibu Gulf is relatively sparse. Therefore, it is promising 
to isolate and screen microbial resources and their bioactive 
metabolites from the Beibu Gulf.

Vibrio is a Gram-negative bacterium that is one of the main 
pathogenic bacteria of fish, shrimp, shellfish, and other marine 
animals (Letchumanan et al., 2015). Humans can also be infected 
by eating contaminated seafood, contact with seawater, etc. 
Vibrio pathogenicity mainly includes V. parahaemolyticus, 
V. alginolyticus, V. vulnificus, and V. anguillarum (Yu et  al., 
2012). The application of antibiotics is an effective method of 
vibrio control. There is an urgent need to find novel antibiotics 
against Vibrio (Preetha et  al., 2015). In this work, we  tried to 

TABLE 2 | Anti-Vibrio activity of compounds 1 and 2 (MIC, μg/ml).

Vibrio alginalyticus Vibrio coralliilyticus Vibrio harveyi Vibrio parahaemolyticus Vibrio shilonii Vibrio owensii

1 119 119 132 119 119 119
2 86 106 106 106 106 86
Chl 1 1 1.2 1.2 1 1.2

Chl, chloramphenicol.

FIGURE 4 | Electron microscopic observation of morphological changes in Vibrio parahaemolyticus cells following treatment with 1 and 2. (Chl, chloramphenicol).
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screen new anti-Vibrio natural products from the fungal resources 
from the Beibu Gulf. We  screened 22 fungal crude extracts, 
and eight fungal crude extracts showed different degrees of 
anti-Vibrio activity. Among them, the crude extracts of T. virens 
BBG4 and T. harzianum BBG6 exhibited particularly anti-Vibrio 
activity, and the size of the inhibition zone was larger than 
that of chloramphenicol. Two active components, equisetin and 
5′-epiequisetin, were further identified from one of the bioactive 
strain, F. equiseti BBG10.

Equisetin and related derivatives have long been recognized 
for their wide biological activity against eukaryotic and bacterial 
cells, including antibacterial (Vesonder et  al., 1979), anti-HIV 
(Hazuda et  al., 1999; Clercq, 2000), anti-obesity, and selective 
cytotoxicity effects on mammalian cells (Yin et  al., 2013). 
Previous reports indicate that equisetin functions in eukaryotic 
cells by affecting mitochondrial metabolism (Freiberg et  al., 
2004; Quek et  al., 2013). Equisetin could affect malonyl-CoA 
synthesis as an acetyl-CoA carboxylase inhibitor (Freiberg et al., 
2004; Larson et al., 2020). HIV integrase is inhibited by equisetin 
based upon its metal-binding property (Hazuda et  al., 1999; 
Clercq, 2000).

In this work, equisetin and 5′-epiequisetin were identified 
from F. equiseti BBG10, and the crude extracts exhibited anti-
Vibrio activity. The filter paper disk assay and MIC assay 
showed that equisetin and 5′-epiequisetin exhibited slight anti-
Vibrio activity. Interestingly, the SEM results showed that the 
cell membranes became corrugated, distorted or ruptured after 
treatment with equisetin or 5′-epiequisetin. In contrast, the 
number of cells destroyed by chloramphenicol was less than 
those of equisetin and 5′-epiequisetin. These results indicated 
that equisetin and 5′-epiequisetin can more significantly damage 
the structure of Vibrio cell membranes than chloramphenicol, 
suggesting that the mechanism by which equisetin inhibits 
cell growth and kills cells is distinct from that of chloramphenicol. 
Moreover, T. virens BBG4 and T. harzianum BBG6 are potential 
strains for finding more potent anti-Vibrio compounds. This 
will be  the focus of our future research.

CONCLUSION

In summary, 22 fungal strains were isolated and identified 
from the Beibu Gulf coral via the serial dilution method and 
ITS sequence analysis, which were further divided into three 
branches by phylogenetic tree analysis, while eight fungal 
extracts were screened with potential anti-Vibrio activity via 
the filter paper disk assay. Further chemical investigation of 
the extracts of the target strain F. equiseti BBG10 via 

bioassay-guided isolation led to the characterization of two 
alkaloid-type antibiotics, equisetin and 5′-epiequisetin, which 
displayed anti-Vibrio activities against V. alginalyticus, 
V. coralliilyticus, V. harveyi, V. parahaemolyticus, V. owensii, 
and V. shilonii. Our research highlights the coral-derived 
microorganisms may be  a large reservoir of bioactive natural 
products for future agrochemical development, and equisetin 
and 5′-epiequisetin could be  promising lead compounds for 
the further development of novel anti-Vibrio agents.
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The oral cavity is an important window for microbial communication between the
environment and the human body. The oral microbiome plays an important role in human
health. However, compared to the gut microbiome, the oral microbiome has been poorly
explored. Here, we analyzed 404 datasets from human oral saliva samples published
by the Earth Microbiome Project (EMP) and compared them with 815 samples from
the human gut, nose/pharynx, and skin. The diversity of the human saliva microbiome
varied significantly among individuals, and the community compositions were complex
and diverse. The saliva microbiome showed the lowest species diversity among the
four environment types. Human oral habitats shared a small core bacterial community
containing only 14 operational taxonomic units (OTUs) under 5 phyla, which occupied
over 75% of the sequence abundance. For the four habitats, the core taxa of the saliva
microbiome had the greatest impact on saliva habitats than other habitats and were
mostly unique. In addition, the saliva microbiome showed significant differences in the
populations of different regions, which may be determined by the living environment and
lifestyle/dietary habits. Finally, the correlation analysis showed high similarity between
the saliva microbiome and the microbiomes of Aerosol (non-saline) and Surface (non-
saline), i.e., two environment types closely related to human, suggesting that contact
and shared environment being the driving factors of microbial transmission. Together,
these findings expand our understanding of human oral diversity and biogeography.

Keywords: oral cavity, saliva, microbiome, earth microbiome project, microbial diversity, environmental
microbiome

INTRODUCTION

The oral cavity is an important place for the delivery and exchange of substances inside and
outside the human body and is also a gateway for pathogens and toxic substances to invade
the body. The microbes found in the human oral cavity are collectively referred to as the oral
microbiome (Gao et al., 2018; Mark Welch et al., 2019, 2020). The oral cavity connects the external
environment with the digestive tract and respiratory tract, and the complex and variable interaction
of oral microbes helps the body fight against undesirable external stimuli. Imbalances in the
microbial community can lead to oral diseases such as dental caries, periodontitis, oral mucosal
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diseases, and even some other diseases, such as autoimmune
diseases, cardiovascular diseases, diabetes, cancers and
neurodegenerative disorders (Jorth et al., 2014; Atarashi
et al., 2017; Peters et al., 2017; Blod et al., 2018; Gao et al., 2018;
Lira-Junior and Bostrom, 2018; Philip et al., 2018; Plaza-Diaz
et al., 2018; Reddy et al., 2018; Saikaly et al., 2018; Wasfi et al.,
2018; Bacali et al., 2022). Therefore, the oral microbiome plays
an important role in maintaining the balance between human
microbial communities and human health, and also in the
onset and progression of several localized and systemic diseases
including those of bacterial, viral and fungal origin (Zarco et al.,
2012; He et al., 2015; Soffritti et al., 2021). However, compared
to the gut microbiome, the oral microbiome has received
little attention.

There are multiple microenvironments in the oral cavity that
communicate with each other through saliva. The composition
of the oral microbiome is complex, and the expanded Human
Oral Microbiome Database (eHOMD) includes 770 microbial
species of 230 genera in 16 bacterial and archaeal phyla (Escapa
et al., 2018). Of all the species in this database, 57% are officially
named, 13% are unnamed but cultivated and 30% are known
only as uncultivated phylotypes. There is no difference among
the oral, gut, and skin microbiomes of newborn babies, but the
composition of their oral microbiomes will change significantly
as age increases and dentition changes (Dominguez-Bello et al.,
2010). The differences in the oral microbiomes at different time
points for the same individual are significantly lower than those
in the gut, skin and other body parts (Costello et al., 2009).
The effects of the early living environment on shaping oral
microbes are much greater than those of genetic factors (Shaw
et al., 2017). In addition, lifestyle habits, social factors, and oral
pH value also affect the composition of the oral microbiome
(Willis et al., 2018).

The Earth Microbiome Project (EMP) aims to collect as
many of the Earth’s microbial communities as possible to
promote our understanding of the relationship between microbes
and the environment, including plants, animals and humans
(Gilbert et al., 2010, 2014). The first data published by
EMP contained 27,751 samples from 97 independent studies
representing different environmental types, geographic locations,
and chemical reactions (Thompson et al., 2017). All samples were
subjected to DNA extraction and sequencing, and the bacterial
and archaeal parts of the entire database were analyzed. Here,
using sequencing data from 404 human oral saliva samples
published by EMP, we explored the characteristics, core taxa
of human oral microbiome and their association with the
environmental microbiome, comparative analysis among them
with human gut, nose/pharynx and skin microbes.

RESULTS AND DISCUSSION

Prokaryotic Composition in the Human
Oral Saliva Habitat
We analyzed the sequenced data of 404 human oral saliva
samples from 5 independent studies (Supplementary Data). For
further calculation, 5000 observed sequences were randomly

extracted from each sample. All samples were subjected to
the Deblur algorithm to remove erroneous sequences and
to calculate operational taxonomic units (OTUs) at single
nucleotide precision.

The results showed that the average number of observed
bacterial and archaeal OTUs was 71.25 ± 26.40 in human oral
samples, with a maximum of 216 OTUs and a minimum of 25
OTUs in a single sample. The Chao1 index is relatively sensitive to
low-abundance species. The average Chao1 index for human oral
samples was 85.83 ± 34.12, ranging from 28.75 to 258.00. The
Shannon index can simultaneously reflect species diversity and
community uniformity. The average Shannon index for human
oral samples was 3.61 ± 0.76, varying from 0.97 to 5.34. Faith’s
PD value (Faith’s phylogenetic diversity) is a good measure of
phylogenetic diversity, and the average of Faith’s PD value for
human oral samples was 11.87 ± 2.90, varying between 6.03 and
29.84. These results indicated that the diversity of the human oral
microbiome was significantly different among individuals.

The predominant phyla of the human oral saliva microbiome
were Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, and
Actinobacteria, with average relative abundances of 36.38, 31.00,
17.97, 9.11, and 4.88%, respectively (Figure 1A). The total
relative abundance of the 10 predominant genera (>1%) was
83.88%, and Streptococcus (22.62%), Neisseria (13.86%), and
Haemophilus (13.76%) were the top three genera in terms
of average relative abundance (Figure 1B). These 10 high-
abundance genera in human oral samples were distributed in
multiple bacterial phyla, of which Firmicutes, Proteobacteria,
Bacteroidetes, Fusobacterium, and Actinomycetes each contained
two genera. Therefore, the human oral microbial communities
show high complexity in community composition.

The human oral microbial samples were obtained from 3
regions, including 56 in Italy, 79 in Puerto Rico, and 269 in
the United States. We found that the diversity of the oral
microbiome was significantly different (Analysis of Variance,
ANOVA, p < 0.01) among the populations of these four
regions, and there were also obvious differences in community
composition. A principal coordinate analysis (PCoA) based on
Bray-Curtis distance showed that oral samples from the three
regions were clearly distinguishable (Figure 1C). Therefore,
although the individual differences in human oral microbiota
were obvious, significant regional differences could still be
observed, which might be related to the differences in living
environment, dietary habits and other factors of populations in
different regions.

Comparative Analyses of Prokaryotic
Biodiversity Among Four Human
Habitats
In addition to the oral cavity, the gut, nose/pharynx and skin are
also important habitats for human microbial colonization. Using
the data published by EMP, we compared the differences between
the human oral microbiome and the gut, nasal/pharyngeal, and
skin microbiomes. Among them, gut microbial data were from
216 samples, nasal/pharyngeal data were from 253 samples, and
skin data were from 346 samples.

Frontiers in Microbiology | www.frontiersin.org 2 June 2022 | Volume 13 | Article 931065126

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-931065 June 7, 2022 Time: 13:35 # 3

Wang et al. Diversity of Human Saliva Microbiome

FIGURE 1 | Community composition of the human oral saliva microbiome. (A) Community composition of the human saliva microbiome at the phylum level. (B) Ten
human saliva microbial genera with abundances over 1%. (C) PCoA analysis of the oral microbes from populations in different regions. The results were computed
based on 404 EMP saliva samples from 3 regions, including 56 in Italy, 79 in Puerto Rico, and 269 in the United States.

The results showed that the human oral microbiome diversity
was significantly (ANOVA, p < 0.01) lower than that of the
gut, nasal/pharyngeal, and skin microbiomes (Figure 2A). The
average number of observed bacterial and archaeal OTUs was
117 ± 40 in human gut samples, 289 ± 285 in human
nasal/pharyngeal samples, and 297 ± 177 in human skin
samples, each of which was significantly higher than the
average value observed in human oral samples. The average
values of the Chao1 index for human gut, nasal/pharyngeal
and skin samples were 140.29 ± 49.75, 449.81 ± 469.85,

and 422.42 ± 271.39, respectively, which were significantly
higher than 85.83 ± 34.12 for oral samples. The average
Shannon indexes for human gut, nasal/pharyngeal and skin
samples were 4.45 ± 0.81, 4.27 ± 2.00, and 4.85 ± 1.60,
respectively, which were significantly higher than 3.61 ± 0.76
for the oral sample. In addition, the average Faith’s PD
values for human gut, nasal/pharyngeal and skin samples were
15.30 ± 4.35, 30.26 ± 21.22, and 31.30 ± 14.53, respectively,
which were also significantly higher than 11.87 ± 2.90
for oral samples.

Frontiers in Microbiology | www.frontiersin.org 3 June 2022 | Volume 13 | Article 931065127

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-931065 June 7, 2022 Time: 13:35 # 4

Wang et al. Diversity of Human Saliva Microbiome

FIGURE 2 | Comparisons of the diversity of human oral saliva, gut, nasal/pharyngeal and skin microbiomes. (A) Comparison of alpha diversity, with diversity
calculated sequentially as observed OTU, Shannon index, Chao1 index, and Faith’s PD value. (B) Number of unique and cross-habitat distributed OTUs. Analysis
was performed based on 216 gut, 253 nasal/pharyngeal and 346 skin samples from the EMP.

Although the oral saliva habitat contained the most samples,
only 1274 OTUs were detected in all 404 samples, which
was much lower than 2409 OTUs in gut samples, 13,463

OTUs in nasal/pharyngeal samples and 16,586 OTUs in skin
samples, indicating that the low diversity of the human oral
saliva microbiome once again (Figure 2B). Moreover, for
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FIGURE 3 | Composition comparisons of human oral saliva, gut, nasal/pharyngeal and skin microbiomes. Distributions of six microbial phyla with the highest
abundance (A) and 10 genera with the highest abundance (B) of the oral microbiome in other body parts. PCoA analysis (C) of microbial composition from four
different parts of the human oral saliva, gut, nose/pharynx and skin.

these four habitats, only 25.67% of the OTUs in oral saliva
habitats were unique to it and did not exist in the other three
types of habitats, while the corresponding values of human
gut, nasal/pharyngeal and skin habitats were 42.05, 48.98, and
56.50%, respectively. Notably, 278 OTUs could be detected in
all four types of habitats, accounting for 21.82% of all OTUs in
the oral cavity.

Prokaryotic Composition Differences
Among Four Human Habitats
Firmicutes was not only the most abundant microbe at the
phylum level in the oral microbiome but also had more than
30% abundance in other body locations, and its abundance
in the gut microbiome was as high as 45.06% (Figure 3A).
Proteobacteria had an abundance of more than 25% in the
oral, nasal/pharyngeal and skin microbiomes but only 3.98%
in the gut microbiome. Bacteroidetes accounted for 17.97%
in the oral microbiome and 37.33% in the gut microbiome
but only 4.64% and 6.22% in the nasal/pharyngeal and skin
microbiomes, respectively. The abundance of Fusobacteria in
the oral (9.11%) microbiome was significantly higher than
that in the gut (0.84%), nasal/pharyngeal (0.52%) and skin
(2.58%) microbiomes. The abundance of Actinobacteria in
the oral (4.88%) microbiome was close to that of the gut
(5.06%) microbiome but significantly lower than that of the
nasal/pharyngeal (16.47%) and skin (18.38%) microbiomes. The

abundance of Cyanobacteria in the oral (0.24%) microbiome
was higher than that in the gut (0.02%) microbiome but
lower than that in the nasal/pharyngeal (2.49%) and skin
(4.17%) microbiomes. For the 10 genera with more than 1%
abundance in the oral microbiome, their abundances in the gut,
nasal/pharyngeal and skin microbiomes were significantly lower
than those in the oral cavity (Figure 3B). For example, the
abundance of Neisseria in the oral cavity was 13.86%, while the
abundances in the gut, nasal/pharyngeal and skin microbiomes
were only 0.003, 1.20, and 1.94%, respectively.

Furthermore, we performed a PCoA analysis based on
the Bray-Curtis distance for 1,219 samples from the human
oral cavity, gut, nose/pharynx, and skin, and displayed them
in a scatter plot (Figure 3C). The results showed that the
microbiome of oral samples could be well distinguished from
the microbiomes of other body part samples, indicating that
the oral microbiome was significantly different from other
parts in community composition. Similarly, the microbiome
for gut samples could also be well distinguished from the
microbiomes of other body part samples. However, there
was considerable overlap for the microbiomes between the
nasal/pharyngeal and skin samples. The lowest dispersion
of the oral microbiome among the four microbiomes
suggested the lowest diversity, which was consistent with
the alpha diversity index. The clustering analysis indicated
that the nasal/pharyngeal and skin microbiomes were
most similar, while the oral microbiome was more similar
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FIGURE 4 | Comparison of the dominant taxa and core taxa in the four habitats of human oral saliva, gut, nose/pharynx, and skin. (A) Co-occurrence network
analysis of the dominant bacterial OTUs (top 500) of the different habitats. Each node represents an OTU, and the line indicates a significant correlation between the
two OTUs (Pearson test, r > 0.5, p < 0.05). (B) Proportions of OTU number and abundance of core taxa in the four habitats of human oral saliva, gut, nose/pharynx,
and skin.

to the nasal/pharyngeal and skin microbiomes relative to
the gut microbiome.

Core Operational Taxonomic Units of the
Human Oral Saliva Microbial
Communities
Most microorganisms do not live in isolation; they thrive in
communities with large numbers and develop close interactions
that generate increased benefits for the group. Network inference
techniques have frequently been applied to microbial interactions
(Faust and Raes, 2012). To analyze the degree of interactions
among dominant microbial taxa in different habitats, OTUs with
the top 500 abundance were selected from gut, nasal/pharyngeal,
oral saliva and skin samples to construct a co-occurrence
network, respectively. The total relative abundance of these OTUs
reached 97.42, 91.96, 99.74, and 90.52% in gut, nasal/pharyngeal,
oral and skin samples, respectively, suggesting that they occupy
the majority of the microbial community. The results showed

that the aggregation of the microbial community network was
significantly different among different habitats, indicating that
there were significant differences in the interaction degree
of dominant microbial taxa (Figure 4A). Specifically, oral
showed the highest degree of network aggregation among
the four habitats, followed by nose/pharynx, gut and skin.
The parameters representing the correlation-based network
topological structures were calculated; these parameters also
showed that the edge and average degree were highest in the oral
cavity, followed by the nose/pharynx, gut and skin.

We identified core taxa of prokaryotes in the habitat based on
the criteria that they were present in at least 80% of the samples
and had a total abundance of not less than 1% in all samples.
The results showed that the core taxa of the human oral habitat
contained only 14 OTUs, accounting for 1.10% of all oral OTUs,
but with a total sequence abundance of 75.58% (Figure 4B). The
origins of these core taxa members were extensive, with 6 OTUs
classified as Firmicutes, 4 in Bacteroidetes, 2 in Proteobacteria, 1 in
Fusobacteria, and 1 in Actinobacteria. Similarly, we also analyzed
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FIGURE 5 | Clustering analysis of microbial composition for human oral saliva,
gut, nose/pharynx and skin samples and EMPO environmental labels. The
tree was built by using the UPGMA method and Bray-Curtis similarity
distance. Bootstrapping with 1,000 re-samplings was performed to determine
the robustness of the clustering. The saliva, nose/pharynx, skin and gut are
highlighted by gray, light green, orange-red and purple solid spheres,
respectively.

gut, nasal/pharyngeal, and skin habitats, but only identified 4, 2,
and 8 core OTUs, respectively. These core taxa also had a very
low proportion of OTUs (0.17% in gut, 0.01% in nose/pharynx,
and 0.05% in skin) but occupied a high sequence abundance
(19.84% in gut, 21.50% in nose/pharynx, and 33.65% in skin).
Core taxa had the greatest impact on the oral habitat among the
four habitats, and most of these core taxa were unique to the
oral habitat. The core taxa of the gut habitat were completely
different from those of the other three habitats. Only one core
taxon from Streptococcus was shared by oral, nasal/pharyngeal
and skin habitats.

Association of Human Oral Saliva
Microbes With Environmental Microbes
A number of microbes are exchanged with the external
environment through the human oral cavity. Therefore, we
tried to further analyze the association between oral microbes
and environmental microbes. EMP classified the samples in
different environments into the corresponding environmental
labels. These environmental labels were first divided into
two categories: Free-living and Host-associated, and further
subdivided into 17 subcategories denominated as EMP Ontology
(EMPO) level 3. We performed a cluster analysis to display
the association of microbe compositions between human oral
saliva, gut, nasal/pharyngeal and skin samples and EMPO
environmental labels (Figure 5). The results showed that the
closest EMPO environmental label to human oral samples was
Animal secretion, the closest one to human nasal/pharyngeal
and skin samples was the Animal surface, and the closest one

to human gut samples was the Animal distal gut. Furthermore,
the EMPO environmental labels that were close to human
oral samples mostly belonged to the host-associated type but
also included the two free-living environments of non-saline
Aerosol and Surface. Aerosol and surface are the two types
of environments where humans are most in close contact.
Specifically, Aerosol is aerosolized dust or liquid. Surface is
the biofilm from wet (<5 psu) or dry surface, wood, dust,
and microbial mat.

For the 10 genera with more than 1% abundance in the oral
microbiome, their abundances in all the EMPO environmental
labels were obviously lower than those in the oral cavity. For
example, the abundance of Streptococcus was 22.62% in the oral
cavity, 5.07% in Aerosol (non-saline), 4.22% in Animal surface,
3.02% in Surface (non-saline), 1.35% in Animal proximal gut,
and 0.58% in Animal distal gut. Interestingly, all 10 genera had
the highest abundance in the Aerosol (non-saline) of the nine
free-living environments, as well as the second highest abundance
in the Surface (non-saline). Furthermore, we found that the
abundance of these 10 genera in various environments had an
obviously positive correlation. Therefore, the composition of the
oral microbes represented by these 10 genera was specific and
had a certain similarity with the microbial composition in the
free-living Aerosol and Surface environments.

Aerosol (non-saline) and Surface (non-saline) are the two
most closely related types of environments with humans, and the
microorganisms in them can be expected to be the most easily
transferred to the human body. For different parts of human
body, the skin and nasal/pharyngeal microbiomes had the highest
similarity with Aerosol (non-saline) and Surface (non-saline)
in the microbiome compositions, followed by the oral cavity,
and finally the gut. The microbiome compositions of the skin,
nose/pharynx, oral cavity, and gut not only overlapped to a large
extent but also had a clear gradient from in vitro to in vivo. On
the one hand, the oral cavity communicates microorganisms with
the environment in close contact, and on the other hand, oral
microorganisms also have a great chance to enter and colonize
the intestinal tract along with a large amount of swallowed saliva.
These results point toward contact and shared environments
being the driving factors of microbial transmission, which is
consistent with previous research (Mukherjee et al., 2021). In
conclusion, these results emphasize that the oral microbiome is
an important link between the environmental microbiome and
the human microbiome.

MATERIALS AND METHODS

Human Oral Sample Data Acquisition
Based on Earth Microbiome Project Data
The EMP developed a unified standard workflow that leveraged
existing sample and data reporting standards to allow biomass
and metadata collection across diverse environments on
Earth (Thompson et al., 2017). The samples submitted by
the global community of microbial ecologists were used
to perform the microbiome analysis. DNA extraction and
16S rRNA amplicon sequencing were performed using EMP

Frontiers in Microbiology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 931065131

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-931065 June 7, 2022 Time: 13:35 # 8

Wang et al. Diversity of Human Saliva Microbiome

standard protocols (Caporaso et al., 2011b). The sequence data
were error-filtered and trimmed to the length of the shortest
sequencing run (90 bp) using Deblur software (Amir et al., 2017).

The EMP data contain a total of 97 studies and 27,742 samples,
which are available at http://ftp.microbio.me/emp/release1. We
acquired 404 human oral saliva samples from the EMP study to
analyze their microbial diversity (Supplementary Data). These
oral samples are from 5 independent studies and include the
populations from Italy, Puerto Rico, and United States (Caporaso
et al., 2011a,b; Piombino et al., 2014). We also selected 216 gut,
253 nasal/pharyngeal and 346 skin samples from the EMP study
to proceed with the compared analysis (Caporaso et al., 2011a,b;
Lax et al., 2014; Vitaglione et al., 2015).

Earth Microbiome Project Ontology
Classification
The EMP classified the samples in different environments into
the corresponding environmental labels (Thompson et al., 2017).
The EMPO classified the microbial environments (level 3) as
free-living or host-associated (level 1) and saline or non-saline
(if free-living) or animal or plant (if host-associated) (level 2).
A subset containing 10,000 samples was then generated that gave
equal (as possible) representation across environments (EMPO
level 3) and across studies within those environments. In this
subset, each sample must have ≥5000 observations in the Deblur
90 bp observation table.

Comparison Against Reference
Databases and Core Diversity Analyses
The representative sequences of OTUs were analyzed by
the Ribosomal Database Project Classifier algorithm using a
confidence threshold of 50% against the Silva 16S rRNA gene
database (Quast et al., 2013; Cole et al., 2014).

The alpha diversity was computed with the input Deblur 90 bp
BIOM table rarefied to 5000 observations for each sample. The
alpha diversity included observed OTUs (number of unique tag
sequences), Shannon index (Shannon diversity index), Chao1
index, and Faith’s PD value (Shannon, 1948; Chao, 1984; Faith,
1992).

The clustering of samples was conducted due to storage
conditions by PCoA based on Bray-Curtis similarity distance.
The Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) clustering was based on Bray-Curtis similarity
distance. Bootstrapping with 1,000 resamplings was performed
to determine the robustness of the clustering. All these
analyses were performed with the statistical software PAST
(Hammer et al., 2001).

Significant differences in all analyses were evaluated using
ANOVA by the software package IBM SPSS Statistics.

Co-occurrence Network
We selected the 500 most abundant OTUs of the environment
types and performed pairwise calculations of the Pearson’s
r and p-values associated with relative abundance using the
‘psych’ package in R. Values of |Pearson’s r|>0.5 and p<0.05
were considered to indicate valid relationship. The network
topological features were calculated using Gephi.
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Since the first strain related to Thermicanaceae was reported in 1999, almost no
literature on Thermicanaceae is available, particularly its genomics. We recently isolated
a novel pathogenic bacterium, the M strain DYY3, from the blood sample of a critically ill
patient. The morphological, physiological, and biochemical characteristics of M strain
DYY3 were presented in this study, and the virulence factor genes and antibiotic
resistance of DYY3 were also determined. Interestingly, the average nucleotide identity
(ANI) and core-genes average amino acid identity (cAAI) analysis indicated that M strain
DYY3 was genus novel and species novel. Moreover, phylogenetic analysis based on
both 16S rRNA gene and whole genomic core gene sequences suggested that M strain
DYY3 belonged to the family Thermicanaceae, and this novel taxon was thus named
Haemobacillus shengwangii gen. nov., sp. nov. Besides, both the whole genome-based
phylogenetic tree and amino acid identity analysis indicated that Thermicanus aegyptius,
Hydrogenibacillus schlegelii, Brockia lithotrophica, and the newly discovered species
H. shengwangii should belong to Thermicanaceae at the family level, and T. aegyptius
was the closest species to H. shengwangii. We also constructed the first high-quality
genome in the family Thermicanaceae using the next-generation sequencing (NGS) and
single-molecule real-time (SMRT) sequencing technologies, which certainly contributed
to further genomics studies and metagenomic-based pathogenic detection in the future.

Keywords: catheter-associated bloodstream infection, pathogenic bacterium, novel species identification,
Thermicanaceae, genome de novo assembly, single-molecule real-time sequencing, comparative genomics

INTRODUCTION

Catheter-related bloodstream infection (CRBSI) is a frequent and life-threatening condition in the
intensive care unit (ICU), which is associated with increased morbidity, mortality, and healthcare
costs (Schwab et al., 2018; Gerver et al., 2020; Zeng et al., 2021). For example, according to a
prospective multi-center study in China, the average incidence of CRBSI and the mortality due to
CRBSI in ICU were 1.5/1,000 catheter days and 18.09%, respectively (Zeng et al., 2021). A similar
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incidence of CRBSI was reported in studies from European
countries (Schwab et al., 2018; Gerver et al., 2020), and even
higher rates were found in developing countries, up to 5.3/1,000
catheter days with 28–30% of mortality (Rosenthal et al., 2021).

To improve the clinical outcomes of patients with CRBSI,
a rapid and accurate diagnosis of the causative pathogen is
a critical step (Zhong et al., 2021). The current guideline
recommends diagnosing CRBSI by hemoculture in suspected
patients (Mermel et al., 2009), but this approach takes 48–96 h
to isolate, identify, and perform antibiotic susceptibility tests
(Tabak et al., 2018). Furthermore, it is often challenging to
culture many fastidious or uncultivatable pathogens in standard
automated systems (Murray and Masur, 2012). Therefore,
emerging technologies, especially high-throughput sequencing,
were attempted to replace conventional culture-based methods
and initiate timely targeted anti-infection therapy (Li et al.,
2021). However, few clinical studies thus far identified and
classified unknown species with extraordinary genetic distances
from known species.

The only reported bacteria that might belong to the family
Thermicanaceae were Thermicanus aegyptius, Hydrogenibacillus
schlegelii, Brockia lithotrophica, and Carbobacillus altaicus.
T. aegyptius was first identified from soil and described as a
fermentative microaerophile in 1999 (Gossner et al., 1999), and
the reference genome was T. aegyptius DSM 12793, available
online in 2013. H. schlegelii was originally named Bacillus
schlegelii in 1979 (Schenk and Aragno, 1979) and was transferred
to be a novel genus due to its massive divergence from
other species in the genus Bacillus in 2013 (Kampfer et al.,
2013). H. schlegelii was known for its ability of hydrogen-
oxidizing (Barbosa et al., 2020) and was classified into order
Bacillales and family Bacillaceae with NCBI taxonomy ID of
1484. B. lithotrophica was isolated from a hot spring in Russia
and reported as a new taxon in 2013 (Perevalova et al., 2013).
Finally, C. altaicus was still a candidate taxon classified into
order Bacillales and family Bacillales incertae sedis with NCBI
taxonomy ID 2163959. However, whether the classification
method of the above bacteria is correct needs to be verified by
genomic analysis, as this approach is increasingly being accepted
as reliable data for bacterial taxonomy and species identification
(Hayashi Sant’Anna et al., 2019).

In this study, the M strain DYY3, isolated from the blood
sample of a critically ill patient diagnosed with CRBSI, cannot
be identified by VITEK-MS automatic microbiological analyzer
and the 16S rRNA sequence analysis. Thus, the high-quality
genome of M strain DYY3 was constructed by the next-
generation sequencing (NGS) and single-molecule real-time
(SMRT) sequencing technologies, and multiple comparative
genomics analyses were applied to identify this new strain.

MATERIALS AND METHODS

Case Report
In January 2021, a 68-year-old female patient was admitted to the
Shanghai Tenth People’s Hospital ICU due to acute respiratory
failure, aspiration pneumonia, and cerebral infarction. Invasive

mechanical ventilation, femoral vein catheterization, and urinary
catheterization were performed during the treatment, and
pulmonary infection was verified by fever, cough, and chest
CT scanning. The patient’s infection was effectively controlled
initially by the empirical use of ceftazidime. However, the
patient’s body temperature, leukocyte count, and C-reactive
protein were raised again after 9 days of anti-infection treatment.
Considering the possibility of CRBSI, the femoral vein catheter
was removed immediately, blood samples and the terminal of the
central venous catheter were collected for bacterial culture, and
vancomycin hydrochloride was added empirically to strengthen
the anti-infection treatment. Three days later, both blood culture
and catheter culture suggested unrecognized Gram-positive
bacterial infection, and the drug sensitivity test showed that
vancomycin was sensitive. Thus, vancomycin continued to be
used, and the patient’s bloodstream infection was cured in
2 weeks. The strain designated DYY3 was isolated from the blood
sample and preserved in a -80◦C refrigerator to identify the
unknown pathogenic bacterium further.

Strain Isolation
The M strain DYY3 was isolated from a critically ill patient’s blood
sample with a catheter-associated bloodstream infection. Briefly,
the blood specimen was inoculated in a blood culture bottle (BD
BACTEC Plus aerobic/F Culture Vials, Becton, Dickinson and
Company, United States) at 35◦C until it showed a positive result.
For the isolation of M strain DYY3, blood agar plates (bioMérieux,
Marcy l’Etoile, France) were used, and the plates were incubated

FIGURE 1 | The morphology of strain DYY3. (A) The cultured bacterial colonial
morphology on blood agar plate of M strain DYY3; (B) the Gram staining result
shows that M strain DYY3 is Gram weak positive; (C) the electron microscope
photograph of the dividing cells of M strain DYY3 after 24 h culture; (D) the
electron microscope photograph shows the flagellum of M strain DYY3.
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TABLE 1 | Characteristics of Haemobacillus shengwangii and close species.

Characteristics Haemobacillus
shengwangii

DYY3

Thermicanus
aegyptius DSMZ

12793T

Brockia lithotrophica
Kam1851T

Hydrogenibacillus
schlegelii

DSM 2000T

Cell shape Rod Rod Rod Rod

Gram reaction Week positive Week positive Positive Positive

Motility + + + +

Spores + - + +

Flagellum + + + +

Colony color Grayish white Geige NA* Cream

Temperature for growth

Range 20–45◦C 37–65◦C 46–78◦C 37–80◦C

Optimum 30–37◦C 55–60◦C 60–65◦C 70–75◦C

pH for growth

Range 6–8 5.5–7.7 5.5–8.5 4.2–7.5

Optimum 7 6.5–7 6.5 6–7

NaCl concentration for growth (%, w/v)

Range 0–2 NA NA 3–5

Optimum 0 NA NA 3

Oxygen requirement Facultative anaerobic Facultative anaerobic Strictly aerobic Strictly aerobic

DNA G + C content (mol%) 40.62 50.3 63 67–68

Major fatty acids C15:0 iso, C15:0
anteiso, C17:0 iso,

C16:0 iso

NA C16:0, C16:iso, C18:0,
C17:0

C16:0 iso

Polar lipids# DPG, PG, PE NA NA DPG, PG

Quinone MK7 NA NA MK7

#DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine.
*NA, not available.

in a CO2 incubator for 48 h. Later, dozens of single colonies
were picked up from the blood agar plates. VITEK-MS automatic
microbiological analyzer (bioMérieux, Marcy l’Etoile, France)
was used to identify the taxonomic classification of the M strain
DYY3 according to the standard operation process using the
VITEK MS IVD KB V3.2 database as the reference. The total
length of the 16S rRNA sequence was amplified by PCR using
the primers of 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) and
1492R (5′-GGTTACCTTGTTACGACTT-3′), and the amplified
fragments were sequenced using a 3730XL sequencer (Applied
Biosystems, United States).

Morphology, Physiology, and
Chemotaxonomy Analysis
Gram staining of M strain DYY3 was performed, referring to
the procedures described by Wagner et al. (2018). The fresh
biomass of DYY3 was stained with 1% (w/v) uranyl acetate, and
the electron micrograph was taken by a transmission electron
microscopy system JEM-1010 (JEOL, Japan). The growth tests
were performed at various temperatures, NaCl concentrations,
and pH levels using R2A agar plates (Difco, United States)
as the culture medium. The tested temperatures were 4, 10,
15, 20, 30, 37, 40, 45, 50, and 55◦C. The tested pH ranged
from 5.0 to 11.0 with a gradient value of 1, K2HPO4/KH2PO4
buffer was used for pH 5–8, and NaHCO3/NaOH buffer was
used for pH 9–11. The tested NaCl concentration ranged from
0 to 10% w/v using the interval of 1%. Acid production

tests, enzyme activity tests, and additional phenotypic tests
were performed using API 50CHB, API ZYM, and API 20NE
galleries (bioMérieux, Marcy l’Etoile, France), respectively. The
utilization of carbon sources was tested using Biolog GPIII
Microplates (Biolog, United States), and quinones were extracted
and identified using the HPLP LC-20AT system (Shimadzu,
Japan). The fresh biomass of M strain DYY3 was hydrolyzed
at 120◦C for about 12 h to determine the composition of
saccharides on its cell wall using ribose, arabinose, glucose,
rhamnose, xylose, mannose, and galactose as references. The Cell
Fatty Acid-Fatty Acid Methyl Ester (CFA-FAME) components
were assayed by Agilent 6890 gas chromatograph (Agilent,
United States), and the data were collected by the Sherlock
Microbial Identification System (version 6.0, MIDI). The polar
lipid analysis of M strain DYY3 (1 g of freeze-dried cells) was
performed and examined by thin-layer chromatography (TCL)
on cellulose sheets. The spots for polar lipids were identified by
spraying with 10% phosphomolybdic acid in ethanol, a-naphthol,
and ninhydrin, respectively.

Antibiotic Susceptibility Test
The minimum inhibitory concentrations (MICs) of the M strain
DYY3 to penicillin, ampicillin, vancomycin, gentamicin,
erythromycin, ciprofloxacin, levofloxacin, clindamycin,
trimethoprim/sulfisoxazole, rifampicin, and imipenem were
determined by MicroScan Pos Combo Panel Type 33 (MicroScan,
United States), with the interpretation of drug sensitivity results

Frontiers in Microbiology | www.frontiersin.org 3 June 2022 | Volume 13 | Article 919169136

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-919169 June 8, 2022 Time: 12:41 # 4

Du et al. Genomic Analysis of Haemobacillus shengwangii

FIGURE 2 | 16S rRNA gene tree of strain DYY3. The rooted 16S rRNA gene ML tree was constructed by RAxML utilizing the typical species of Bacilli and also the
matched species on NCBI with a bootstrap value of 1,000. Acidaminococcaceae, Acidaminococcus, Limnochordaceae, and Limnochorda were set as the
out-group, and the other species were Bacilli in class.

referred to the Clinical and Laboratory Standards Institute
(CLSI) M45 guidelines.

Genome Sequencing, Assembly, and
Annotations
A 350-bp paired-end library was constructed and sequenced
using the Illumina NovaSeq 6,000 sequencing platform (Illumina
Inc., San Diego, CA, United States) with a PE150 layout. A 10-
kb SMRT library was constructed and sequenced by the PacBio
Sequel system (Pacific Biosciences, United States). The data
were assembled by using Unicycler (version 0.4.7), and the
genome was annotated by using Prokka (version 1.14.6) with
default parameters. Prophages were annotated using phiSpy

(version 4.2.12), and genomic islands were identified by using
Islanpath-DIMOB (version 1.0.6). The BUSCO database (version
5.2.2) was used to evaluate the completeness of the genome
sequence (Manni et al., 2021). BLASTp (version 2.10.1) was
used to query the non-redundant (nr) protein sequence database
and hit with the highest score, and the identity higher than
60 was recognized as a match for each gene. Eggnog-mapper
(version 2.0.1) with the parameter of “seed_ortholog_evalue
1e-5-m diamond” was used to query the eggNOG database.
HMMER (version 3.3.2) with the parameter of “-E 1e-5” was
used for Pfam (version 33.1) database annotation, and Diamond
(version 0.9.24.125) with the parameter of “-e 1e-5” was used
for the Swiss-Port annotation. The genome atlas was plotted
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FIGURE 3 | Genome atlas of strain DYY3. The outer black circle shows the genome coordinates, and the next two circles represent forward and reverse strand
CDSs with colors representing the functional classification of COG. The last two circles are GC content and GC skew using a 5-kb window overlapping at 1,000 bp.
The COG functional classifications and colors are shown at the bottom of the figure. The green and orange colors of the fourth circle mean the GC content is higher
and lower than the average GC content of the genome, respectively. The inner circle’s purple and light blue colors show the GC-skew values lower and higher than
0, respectively.

using CIRCOS.1 The virulence factor genes were predicted
by querying VFDB using a web-based VFanalyzer. Antibiotic
resistance genes were annotated by the CARD (version 3.1.4)
database with BLASTp parameter of “-qcov_hsp_perc 80,” and
hits with an identity less than 80 were filtered. The pathogen–
host interaction associated genes were identified by the PHI
database (version 4.12) with Diamond (version 0.9.24.125)

1http://circos.ca/

parameter of “-e 1e-5” and hits with an identity less than
50 were filtered.

Phylogenetic Relationship Analysis
The 16S rRNA maximum likelihood (ML) phylogenetic tree
was constructed by RAxML2 using the GTR substitution
matrix model. The whole genomic tree was constructed

2https://raxml-ng.vital-it.ch/#/
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by IQ-TREE (version 1.6.12) with a bootstrap value of
1,000, referring to the core genes of the Genome Taxonomy
Database (GTDB) (release202) (Rinke et al., 2021). One
genome was selected as a representative for each genus
of the principal families in class Bacilli. Two species from
the family Acidaminococcaceae (phylum Firmicutes and class
Negativicutes) and family Limnochordaceae (phylum Firmicutes
and class Limnochordia) were set as out-group. The phylogenetic
trees were plotted using iTOL.3 The average nucleotide identity
(ANI) values and the values of the pairwise core-genes
average amino acid identity (cAAI) were calculated using
fastANI (Jain et al., 2018) and CompareM (version 0.1.2)4 with
default parameters, respectively. Genes presented over 90% of
genomes were used for cAAI calculation. The digital DNA-DNA
hybridization (dDDH) values were calculated using a genome-to-
genome distance calculator (GGDC)5.

RESULTS

Morphology, Physiology, and
Chemotaxonomy
After 48 h of cultivation at 30◦C, the colonies of M strain DYY3 on
blood agar were 1–2 mm in size, grayish-white, round, smooth,
and moist. The cells were weakly Gram-positive, rod-shaped,
about 1.4–2.2 µm in length, and 0.4–0.5 µm in width, with
flagellum and spore, motile, and facultative anaerobic (Figure 1).
The M strain DYY3 grew well on R2A blood agar plates with a
temperature range of 20–45◦C (preferred 30–37◦C). The strain
can grow in NaCl concentration ranging from 0 to 2% w/v but
not in NaCl concentration over 2%. In addition, the strain can
also grow at a pH of 6–8 with an optimum of 7.

API galleries tests revealed inactive biochemical reactions of
M strain DYY3 (Supplementary Table 1). The API ZYM assay
indicated that alkaline phosphatase, esterase (C4), lipid esterase
(C8), leucine aromatase, pancreatic rennet, acid phosphatase,
and naphthol-AS-Bl-phosphate hydrolase tests were positive. The
API 20NE assay suggested a positive assimilation test for glucose,
arabinose, mannitol, mannose, N-acetyl glucosamine, maltose,
gluconate, capric acid, adipic acid, malic acid, citric acid, and
phenylacetic acid. However, the M strain DYY3 was only positive
with 5-keto-gluconate in the API 50CHB assay.

Diphosphatidylglycerol (DPG), phosphatidylethanolamine
(PE), and phosphatidylglycerol (PG) were identified to be
the main polar lipids of M strain DYY3, and the two-
dimensional TCL of the polar lipids photographs was
shown in Supplementary Figure 1. The M strain DYY3
had no typical saccharides in the whole-cell hydrolysate
experiment (Supplementary Figure 2). MK7 was the main
methylanthraquinone in M strain DYY3. The fatty acid analysis
revealed that DYY3 synthesized mainly iso- and anteiso-
branched saturated fatty acids, mainly including C15:0 iso
(61.75%), C15:0 anteiso (13.29%), C17:0 iso (3.56%), and C16:0

3https://itol.embl.de/
4http://github.com/dparks1134/CompareM
5http://ggdc.dsmz.de/

iso (3.31%), and a spot of unsaturated fatty acids C17:1 iso w10c
(3.54%). According to the RTSBA6 (version 6.21) database,
Bacillus was the closest genus, but the similarities were not high
(26.70%; refer to Supplementary Tables 2A,B). Carbon source
utilization assays showed that M strain DYY3 only used D-serine
and glucuronamide as carbon sources (Supplementary Table 3).
The VITEK-MS typing results cannot assign M strain DYY3 to
any species in the database, but later genetic analysis (see below)
suggested that DYY3 belonged to the family Thermicanaceae.
Hence, the morphological, physiological, and biochemical
characteristics of the four species in the family Thermicanaceae
are summarized in Table 1.

16S rRNA Phylogenetic Tree
To identify the phylogenetic relationship of M strain DYY3, we
first amplified and sequenced its full-length region of 16S rRNA
genes. Then, we queried the 16S rRNA sequence at NCBI using
online BLASTn. The result showed that the taxon of M strain
DYY3 was close to Bacillus at the genus level, and belonged to
Bacillus at class level, and the best matching degree was 94.49%,
and all the hit taxon belonged to Bacilli in class. Later, we
extracted the entire length of the 16S rRNA gene sequence to
construct a phylogenetic tree, utilizing the typical Bacilli species
and the matched species on NCBI (Figure 2). The sequence
information, blast results, and sequence similarity are shown in
Supplementary Table 4. The phylogenetic tree showed that M

strain DYY3 was close to Thermicanus at the genus level and
might belong to Thermicanaceae at the family level. However,
this new taxon had six copies of the 16S rRNA gene, which were

TABLE 2 | Genome features of strain DYY3.

Genome features Values

Chromosome 1 (circular)

Genome size 3,294,569

Genome coverage (NGS) 577

Genome coverage (TGS) 256

G + C content (%) 40.62%

BUSCO 100%

rRNAs (5, 16, 23S) 18 (6, 6, 6)

tRNAs 72 (35 families)

CDS genes 3,347

Genomic Island 13

TABLE 3 | Gene functional annotation of strain DYY3.

Database Annotated gene number Percentage

Nr 1,834 54.80%

Pfam 2,685 80.22%

Swiss-Prot 2,034 60.77%

EggNOG 2,935 87.69%

GO 697 20.82%

KEGG 1,990 59.46%

COG 2,741 81.89%

Total 3,003 89.72%
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FIGURE 4 | Whole genome-based phylogenetic relationship of strain DYY3. The unrooted whole genomic maximum likelihood tree was constructed by IQ-TREE
using GTDB-based 120 conserved core genes with a bootstrap value of 1,000. Acidaminococcaceae, Acidaminococcus, Limnochordaceae, and Limnochorda were
set as the out-group, and the other species were Bacilli in class. The 14 families of the Bacilli class were differently colored, and the bootstrap values for each node
were shown by the size of a light blue circle.

100% identical. Therefore, contradictory conclusions were drawn
by the online NCBI blast results and sequence information of
the 16S rRNA phylogenetic tree; thus, M strain DYY3 cannot be
assigned to any existing species or genus.

Genome Features
We combined NGS and SMRT technologies to construct the
genome of M strain DYY3 (Supplementary Tables 5A,B),
and a circular genome with a total length of 3,294,569 bp
and Guanine and Cytosine content of 40.62% was obtained
(Figure 3 and Table 2). All conserved BUSCO genes (100%)
were identified within the genome (Supplementary Table 6),
indicating the high quality of this constructed genome. A total
of 3,264 CDSs with an average length of 861 bp, 18 rRNAs,
and 72 tRNAs were predicted. Besides, thirteen genomic islands

(Supplementary Table 7) and two partial prophage regions
(Supplementary Table 8) were identified in the genome. A
total of 3,003 (89.72%) coding seuqence could be assigned with
annotations, and 366 (10.94%) CDSs, including 22 database-
based annotations, were annotated as hypothetical proteins
(Table 3 and Supplementary Tables 9A–D).

Phylogenetic Relationship
As shown in Figure 4, the whole genome-based phylogenetic
tree was constructed, employing the protein sequence of the
120 conserved genes from the GTDB database, and 165
strains, including all the possible and available genomes of the
Thermicanaceae family, were selected. The genomes’ source,
information, and dDDH are listed in Supplementary Table 10.
This whole genome-based phylogenetic tree showed high
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FIGURE 5 | Heatmap depicting the cAAI values of the 165 pairwise comparisons in class Bacilli. The left phylogenetic tree shows the phylogenetic relationships of
different families, and the right heatmap shows the cross matrix of the core-genes average amino acid identity values between each genus. The order of each
branch is identical to that of Figure 4. The black dash line shows Mstrain DYY3.

accordance with the 16S rRNA phylogenetic tree, demonstrating
that DYY3 was close to the genus Thermicanus and belonged
to the same taxon at the family level. Moreover, the sequences
of majority groups were significantly distinct from calculating
reliable values as the collinear regions were mainly less than
1% of the whole genomes. We then calculated cAAI to show
the divergence between each genus, considering that the amino
acid sequence is more conserved than the nucleotide sequence
of gene coding regions. The plotted heatmap of the cAAI values
agreed well with the core genes-based phylogenetic tree (Figure 5
and Supplementary Table 11), suggesting that M strain DYY3
belonged to Thermicanaceae at the family level. The average cAAI
value between DYY3 and species from other families was 55.68,
and the average cAAI value of each genus within the same existing
family was 70.22 (Table 4). The cAAI value between T. aegyptius
and DYY3 was 67.21, close to the average cAAI value for a single
family, further demonstrating that M strain DYY3 belonged to
Thermicanaceae at the family level.

Finally, we compared the whole genomic similarity within
the possible and available genomes of the Thermicanaceae
family using BLAST-based ANI (ANIb) (Table 5). The ANIb
between DYY3 and T. aegyptius was calculated to be 69.51%,
indicating that they did not belong to the same species, as
generally 95% ANI was found to recapitulate the majority

species (Jain et al., 2018; Olm et al., 2020; Parks et al., 2020).
More importantly, T. aegyptius, B. lithotrophica, and H. schlegelii
represented three different genera, and the ANIbs within
the four species (e.g., DYY3) ranged from 68.86 to 75.40%,
suggesting that M strain DYY3 did not belong to any existing
genus. Therefore, M strain DYY3, the novel taxon, was named
Haemobacillus shengwangii gen. nov., sp. nov. Haemobacillus
referred to the strain isolated from the blood and was spore-
forming and rod-shaped, and Shengwangii was named for
appreciating the outstanding effort of Doctor Wang to save
patients’ lives.

Virulence Factors
A total of 30 genes of 16 virulence factor classes were predicted to
encode putative virulence factors in M strain DYY3′s genome by
the virulence factor database (VFDB). DYY3 owned eight unique
predicted virulence factor genes associated with adherence,
anti-phagocytosis, immune evasion, intracellular survival, iron
uptake, and motility (Supplementary Table 12). In addition,
twenty genes were predicted associated with hypervirulence in
DYY3′s genome using the Pathogen Host Interactions database
(PHI-base), with the highest number of the four species in the
Thermicanaceae family (Supplementary Tables 13A,B).
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TABLE 4 | Statistical result of cAAI values between different families in Bacilli class.

Family name Average cAAI
values between
DYY3 and each

family

Average cAAI
values between
each genus in a

single family

Genomes
in each
family

Thermoactinomycetaceae 59.59 68.25 19

Paenibacillaceae 60.47 70.38 33

Sporolactobacillaceae 58.73 70.23 5

Anoxybacillaceae 60.67 83.38 7

Bacillaceae 59.76 72.48 4

Staphylococcaceae 54.64 73.17 3

Listeriaceae 56.11 70.51 3

Aerococcaceae 51.74 61.95 12

Carnobacteriaceae 53.04 66.4 12

Streptococcaceae 50.91 66.75 6

Vagococcaceae 53.64 72.11 6

Enterococcaceae 53.65 75.34 10

Lactobacillaceae 50.91 61.86 31

Average 55.68 70.22 12

Min 50.91 61.86 3

Max 60.67 83.38 33

T. aegyptius vs. strain DYY3 67.21

Antibiotic Resistance
Two genes, shared by M strain DYY3 and T. aegyptius DSMZ
12793T, were predicted to be associated with antibiotic
resistance (Supplementary Table 14). Of the two genes,
one gene was related to ARO:3003438, annotated as AMR
Gene Family associated with elfamycin. Another gene was
related to ARO:3002838, annotated as LNU lincosamide
nucleotidyltransferase associated with lincosamide. Besides, the
MIC test revealed that M strain DYY3 was sensitive to the most
commonly used antibiotics, including penicillin, ampicillin,
vancomycin, gentamicin, erythromycin, ciprofloxacin,
levofloxacin, clindamycin, rifampicin, imipenem, and
trimethoprim/sulfamethoxazole (Supplementary Table 15).

DISCUSSION

Traditional morphological, physiological, and biochemical
studies and comparative genomic analysis demonstrated that
the M strain DYY3 was a novel bacterial pathogen belonging to
class Bacilli, order Thermicanales, family Thermicanaceae, and
genus Haemobacillus. We thus proposed H. shengwangii gen.

nov., sp. nov. to be the name of the novel taxon. In addition, our
data supported that T. aegyptius, H. schlegelii, B. lithotrophica,
and H. shengwangii should belong to Thermicanaceae at a
family level. Among the genome published in the family
Thermicanaceae, H. shengwangii was the first genome
constructed with high quality, which undoubtedly contributed to
the future research of this family.

Based on 16S rRNA gene sequencing, querying, and
phylogenetic tree analysis, M strain DYY3 was identified as
a species belonging to class Bacilli, and T. aegyptius was
the most adjacent taxon. However, when we investigated the
taxonomy background of the genus Thermicanus, the taxonomic
status of this genus was inconsistent at the family level in
different authoritative taxonomic databases, including the NCBI
taxonomy database, GTDB, SILVA, and GBIF database. We
then constructed the core genes-based phylogenetic tree using
165 representative species, including the typical genus of the
representative families in class Bacilli and the genus associated
with the family Thermicanaceae. The phylogenetic tree indicated
that T. aegyptius, H. schlegelii, B. lithotrophica, and M strain DYY3
were in the same tree clade, and the cAAI heatmap further
verified their close genetic relationships. Hence, these four species
should be classified into the same family. T. aegyptius was the
closest species to M strain DYY3, supported by the 16S rRNA gene
tree and the whole genomic phylogenetic tree. The calculated
ANIb (69.51%) between M strain DYY3 and T. aegyptius str. DSM
12793 was far from the standard (95%) belonging to the same
species, which indicated that M strain DYY3 was a novel species.
Since three of the four species in the family Thermicanaceae were
known as different genera, the narrow range of the ANIb values
(68.86–75.40%) suggested that DYY3 also did not belong to any
existing genus. Therefore, M strain DYY3 was verified belonging
to a genus novel and species novel taxon in Thermicanaceae. This
new taxon was proposed to be named Haemobacillus shengwangii
gen. nov., sp. nov.

The MIC test showed that M strain DYY3 was sensitive to
all commonly used antibiotics. Ceftazidime was initially used
in the patient’s antibiotic treatment, which turned ineffective.
Subsequently, vancomycin was empirically added to the anti-
infection therapy, and the symptoms of infection were improved
rapidly. Since H. shengwangii is a Gram-positive, penicillins,
glycopeptides, and cephalosporins should be recommended. In
addition, the MIC test also indicated that M strain DYY3 did not
have antibiotic resistance, although the CARD database predicted
two antibiotic resistance genes associated with elfamycin and

TABLE 5 | The ANIb values and alignment length of strain DYY3 and species in family Thermicanaceae.

Species Alignment length

H. shengwangii
DYY3

T. aegyptius
DSM 12793

B. lithotrophica a
DSM 22653

H. schlegelii
MA48

ANIb DYY3 304,571 36,373 65,834

T. aegyptius 69.51% 77,647 176,981

B. lithotrophica 69.27% 68.86% 301,196

H. schlegelii 68.82% 69.75% 75.40%
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lincosamide, respectively. To further clarify the virulence of M

strain DYY3, its virulence factor genes were predicted based
on sequence similarity comparison against the VFDB. The M

strain DYY3 owned eight unique predicted virulence factor genes
associated with adherence, anti-phagocytosis, immune evasion,
intracellular survival, iron uptake, and motility. Besides, twenty
genes were predicted to be associated with hypervirulence in the
M strain DYY3 genome using PHI-base, with the highest number
of the four species in the Thermicanaceae family. Given that
Bacillus was the closest genus that can be queried in the database,
the phylogenetic relationships of M strain DYY3 and species in
genus Bacillus were quite distant, and the sequence similarities of
M strain DYY3 and species in genus Bacillus were relatively low;
we cannot exclude the possibility of M strain DYY3 owning more
genes associated with virulence factors.

Although blood culture is the golden standard for pathogenic
diagnosis, it cannot fully support that M strain DYY3 was the only
pathogenetic bacterium responsible for this patient’s infection,
as only a tiny proportion of pathogens are identifiable by the
culture-based methods (Li et al., 2021). mNGS was more suitable
for pathogenic detection when the pathogen was unculturable,
novel, or variant species, such as DYY3, as all the nucleic acids
can be sequenced and analyzed indiscriminately (Wilson et al.,
2019; Price et al., 2021), and NGS has been widely used to
perform comprehensive and precise diagnosis of pathogens with
various sample types (Miller et al., 2019; Chen et al., 2021; Gu
et al., 2021). Nonetheless, without a reference genome, even if the
genome of a pathogen was sequenced, the species information
cannot be disclosed by mNGS. Therefore, the availability of
the H. shengwangii genome sequence could provide a valuable
source for further comparative genomics analysis in the family
Thermicanaceae and facilitate the family’s detection rate when
conducting an mNGS-based pathogenic detection or study.

According to the conventional taxonomic features,
T. aegyptius, H. schlegelii, B. lithotrophica, and H. shengwangii
shared the identical phenotypes of rod-shaped, Gram-positive,
spore-forming, and motor ability, indicating that these were
the standard features of family Thermicanaceae. However, a
clear description of the Thermicanaceae needs further studies,
as few reference species and literature on Thermicanaceae are
currently available. In addition, we did not trace the source of
M strain DYY3, such as the patient’s skin, living environment,
and so on, and only one strain of this novel species was isolated
so far. Finally, the pathogenic mechanism was not thoroughly
investigated, although virulence factor genes and antibiotic
resistance genes were predicted in this study.

CONCLUSION

This study identified a novel pathogenic bacterium,
H. shengwangii gen. nov., sp. nov., isolated from a critically
ill patient with CRBSI. In addition to the traditional methods of
species identification, we used multiple comparative genomics
analyses to prove that M strain DYY3 was genus novel and
species novel in the family of Thermicanaceae. Moreover, the
constructed high-quality H. shengwangii genome will contribute

to further genomics research and NGS-based pathogenic
detection or study in the family Thermicanaceae.
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Human microbiome research is moving from characterization and association studies

to translational applications in medical research, clinical diagnostics, and others.

One of these applications is the prediction of human traits, where machine learning

(ML) methods are often employed, but face practical challenges. Class imbalance

in available microbiome data is one of the major problems, which, if unaccounted

for, leads to spurious prediction accuracies and limits the classifier’s generalization.

Here, we investigated the predictability of smoking habits from class-imbalanced saliva

microbiome data by combining data augmentation techniques to account for class

imbalance with ML methods for prediction. We collected publicly available saliva 16S

rRNA gene sequencing data and smoking habit metadata demonstrating a serious

class imbalance problem, i.e., 175 current vs. 1,070 non-current smokers. Three

data augmentation techniques (synthetic minority over-sampling technique, adaptive

synthetic, and tree-based associative data augmentation) were applied together with

seven ML methods: logistic regression, k-nearest neighbors, support vector machine

with linear and radial kernels, decision trees, random forest, and extreme gradient

boosting. K-fold nested cross-validation was used with the different augmented data

types and baseline non-augmented data to validate the prediction outcome. Combining

data augmentation with ML generally outperformed baseline methods in our dataset. The

final prediction model combined tree-based associative data augmentation and support

vector machine with linear kernel, and achieved a classification performance expressed

as Matthews correlation coefficient of 0.36 and AUC of 0.81. Our method successfully

addresses the problem of class imbalance in microbiome data for reliable prediction of

smoking habits.

Keywords: human microbiome, trait prediction, smoking status, prediction modeling, class imbalance, data

augmentation, machine learning, saliva microbiome

INTRODUCTION

In recent years, human microbiome research has elucidated the importance of microbes in the
host’s wellbeing and their interplay with different phenotypes (Cho and Blaser, 2012; Gilbert et al.,
2018). Human microbiome research is currently moving from characterization and association
studies toward translational applications. These include diagnosis of metabolic diseases, such as
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type 2 diabetes (Duvallet et al., 2017; He et al., 2018; Reitmeier
et al., 2020), chronic inflammation disorders (Duvallet et al.,
2017; Zhou et al., 2018; Su et al., 2020), and cancer (Duvallet
et al., 2017; Poore et al., 2020; Su et al., 2020; Zheng et al.,
2020) among others, as well as the prediction of the likely
outcomes in personalized interventions, such as therapeutic
response (Ananthakrishnan et al., 2017; Zhou et al., 2018) and
nutrition (Zeevi et al., 2015; Asnicar et al., 2021). In more
specialized applications, such as forensics, novel uses of the
human microbiome have been reported to help in reconstructing
the crime scene (Díez López et al., 2019, 2020), estimating
the post-mortem interval of corpses (PMI) (Belk et al., 2018),
or identifying the potential perpetrator(s) of crime (Woerner
et al., 2019; Yang et al., 2019a). This current trend is possible
due to advances in high-throughput sequencing technologies
and bioinformatics analysis methods, together with the large
amount of microbiome data that has become available from
public repositories. Often, machine learning (ML) methods
are preferred for data analysis, with the random forest model
standing out as the most often used method so far.

Despite the great promises of ML methods in microbiome
research and their application in trait prediction (Reitmeier et al.,
2020; Su et al., 2020; Zheng et al., 2020), they also face practical
challenges. Heterogeneity in methods, such as nucleic acid
isolation or target region of themarker gene, is often encountered
in cumulative microbiome datasets and is an obstacle for cross-
study applications due to introduced study-specific technical
variation (Debelius et al., 2016). Avoiding the pooling of data
from different studies can bypass the study-specific effect issue,
though greatly reduces the statistical power with negative effects
on the reliability of the outcome. Additionally, microbiome data
commonly suffer from imbalanced sample distribution (Khan
and Kelly, 2020; Poore et al., 2020; Anyaso-Samuel et al., 2021).
Particularly in (binary) classification applications, it is commonly
the case that one class is overrepresented (majority class)
while the other is underrepresented (minority class). This class
imbalance leads to spurious high classification accuracy favoring
the majority class, while research often focuses on the minority
class, and limits the classifier’s generalization (Japkowicz and
Stephen, 2002; Abd Elrahman andAbraham, 2013; Ali et al., 2013;
Thabtah et al., 2020). Some microbiome studies have reported
problems in their classifiers due to the class imbalance issue in
their datasets. These problems include the different classification
performances over different datasets (Wang and Liu, 2020),
the inability to perform accurate classifications (Bokulich et al.,
2022), or even the classification of every sample to the same class
(LaPierre et al., 2019). Therefore, the class imbalance should be
considered in the data analysis approach. However, collecting
data from more samples is often not viable, and therefore many
public datasets come with serious class imbalance problems.
Thus, researchers must explore novel methods for solving the
class imbalance at the data and/or algorithm level (Japkowicz
and Stephen, 2002; Abd Elrahman and Abraham, 2013; Ali et al.,
2013).

At the data level, synthetic sampling methods have been
suggested for microbiome research (Knights et al., 2011), though
studies applying them are scarce. With these methods, to balance

the classes, new samples are synthesized in silico based on
existing minority class samples and added to the training set,
an approach referred to as data augmentation. For example, the
synthetic minority over-sampling technique (SMOTE) (Chawla
et al., 2002) is one of the most widely used methods to deal
with the class imbalance problem in real-life applications, and
has been employed in some microbiome studies (Brooks et al.,
2018;Wingfield et al., 2018; Chen et al., 2020; Gomez-Alvarez and
Revetta, 2020; Mehta et al., 2020). An alternative is the adaptive
synthetic sampling approach for imbalanced learning (ADASYN)
(He et al., 2008). More recently, the tree-based associative data
augmentation (TADA) method (Sayyari et al., 2019) has been
proposed as a microbiome-specific data augmentation method,
since it takes into account the phylogenetic relationship between
the microbial taxa, but has not been widely applied by the
microbiome community as of yet.

In this study, we investigated the predictability of individuals’
smoking habits from saliva using publicly available microbiome
data that unavoidably are class-imbalanced. Smoking is prevalent
in the general population; therefore, smoking prediction from
human biological materials, such as saliva, is useful in
epidemiology and public health research, can be relevant for
medical interventions, and may be of interest to other applied
fields, such as forensics. Typically, in epidemiology, public
health, and medical studies, smoking habit phenotypes are
collected via self-reported questionnaires, which, however, are
known to be unreliable (Rebagliato, 2002). Alternatively, they
are collected via laboratory tests, such as cotinine measurements,
a metabolite of nicotine, in biological samples like the serum,
saliva, or urine. However, cotinine levels are not always
available, or collecting them is not always affordable in clinical
settings, and smoking classification heavily depends on a suitable
threshold. More recently, approaches based on host epigenetics
have been introduced via the detection of smoking-associated
DNA methylation signatures, but issues arise regarding tissue
specificity of epigenetic models, as well as model accuracy and
suitable laboratory test development, given the large number of
epigenetic biomarkers required for accurate predictions (Maas
et al., 2019). Hence, microbiome-based prediction of smoking
habits from saliva may provide a suitable alternative solution.

Previous studies have established the association between
some saliva microbes and the host’s tobacco smoking habit (Kato
et al., 2016; Takeshita et al., 2016; Wu et al., 2016; Rodriguez-
Rabassa et al., 2018; Beghini et al., 2019; Sato et al., 2020). More
specifically, these association studies found that the abundance of
some bacteria, such as those from the Proteobacteria phylum, is
decreased in the saliva of smokers, while that of other bacteria,
such as from the Actinobacteria phylum, is increased. However,
at the lower taxonomic levels, there are some discrepancies
between studies and study-specific associations. Notably, the
largest available studies suffer from class imbalance with a ratio
of about 1:5 between the minority class of current smokers and
the majority class of non-smokers (Takeshita et al., 2016; Wu
et al., 2016). Such class imbalance in the available microbiome
data causes a typical and serious problem that needs to be solved
by developing and applying suitable data augmentation methods
to avoid a negative impact on the final prediction outcome.
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In the present study, we deal with class-imbalanced saliva
microbiome data for the purpose of predicting individuals’
smoking habits. Our strategy consists of (i) optimization and
validation of different data augmentation techniques and ML
methods using nested cross-validation, (ii) identifying the best-
performing approach for predicting smoking habits by taking
class imbalance in the underlying microbiome data into account,
and (iii) applying the best-performing approach for prediction
modeling of human smoking habits from saliva microbiome data
despite the underlying class-imbalanced data. The data and the
code used are made publicly available.

METHODS

Datasets
Publicly available 16S rRNA gene amplicon sequencing data and
associated metadata from two different studies were obtained
from the European Bioinformatics Institute (EMBL-EBI). The
first study (Wu et al., 2016) (referred to as dataset S1 in
this study) included two cohorts: the American Cancer Society
(ACS) Cancer Prevention Study II (CPS-II) Nutrition cohort
(N = 543) (Wu et al., 2016) and the National Cancer Institute
(NCI) Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer
Screening Trial cohort (N = 661) (Wu et al., 2016). The
second study (Beghini et al., 2019) (referred to as dataset S2
in this study) included a single cohort from the New York
City Health and Nutrition Examination Survey (NYC HANES)
(N = 297) (Beghini et al., 2019). Dataset S1 comprised 454
pyrosequencing data, whereas dataset S2 comprised Illumina
MiSeq data. We discarded samples based on the following
criteria: (i) samples lacking metadata information for age,
sex, and/or ethnicity, (ii) samples from donors <15 years
old based on microbial community differences between youth
and adults (Burcham et al., 2020), (iii) duplicate samples
from dataset S1 to avoid data redundancy, and (iv) samples
from non-smokers with second-hand exposure and “alternative”
smokers from the dataset S2. The selected characteristics of
the two analyzed datasets are described in Table 1. The setup
of the experimental studies is described in further detail in
Supplementary Table 1.

Processing of 16S rRNA Gene Amplicon
Sequencing Data
The data from the two selected studies were processed separately.
Primer sequences were obtained from the original studies and
were removed from the raw sequencing reads using cutadapt
(v.1.15) (Martin, 2011) by setting the minimum length to >100
bp. The resulting FASTQ files were quality-filtered and de-
noised using DADA2 (v.1.12.1) (Callahan et al., 2016). We
used recommended parameters that we only modified when
needed for our own data. Briefly, in both studies, parameters
maxNN and maxEE were set to 0 to avoid unambiguous
nucleotides and “expected errors” in the sequencing reads,
respectively. Additionally, in dataset S1 (single-end), parameter
maxLen was set to 500, and in dataset S2 (paired-end),
parameter truncLen was set to 200–150 based on the read quality
profiles, making sure to maintain overlap between forward and

TABLE 1 | Characteristics of the two saliva microbiome datasets used in this

study.

Dataset S1

(N = 1,088)

Dataset S2

(N = 157)

Smoking status, N (%)

Never smoker 473 (43.5) 39 (24.8)

Former smoker 519 (47.7) 39 (24.8)

Current smoker 96 (8.8) 79 (50.4)

Sex, N (%)

Female 429 (39.4) 88 (56.1)

Male 659 (60.6) 69 (43.9)

Age group, N (%)

20–29 – 20 (12.7)

30–39 – 31 (19.8)

40–49 – 40 (25.5)

50–59 147 (13.5) 29 (18.5)

60–69 505 (46.4) 21 (13.4)

70–79 377 (34.7) 9 (5.7)

80–89 59 (5.4) 6 (3.8)

≥90 – 1 (0.6)

Ethnicity, N (%)

European 1,028 (94.5) 59 (37.6)

Non-European 60 (5.5) 98 (62.4)

reverse reads to merge them later. After sample inference of
true sequence variants, an amplicon sequence variants (ASV)
table was constructed for each study, and chimeric sequences
were removed using the command removeBimeraDenovo() with
default parameters. Subsequently, the naïve Bayesian classifier
method was employed for taxonomy assignation using the
expanded HumanOral Microbiome Database (eHOMD) (v.15.2)
(Escapa et al., 2018) as reference. At this point, only high-
coverage samples (>1,000 reads) were kept for downstream
analysis, and species with mean relative abundance < 1E−04
across samples were discarded. Taxa counts were normalized
using total-sum scaling (TSS) for relative abundance (Paulson
et al., 2013) (dataset S1 vs. dataset S2; PERMANOVA Bray-
Curtis R2 = 0.20, q < 0.05; PERMANOVA Jaccard R2 = 0.13,
q < 0.05). Moreover, microbiome datasets are normally sparse
and characterized by a zero-inflated distribution, where most
taxa are not shared among the majority of the samples. This is
magnified in cross-study applications with study-specific taxa,
which can limit the generalizability of the applications. Based
on this finding, we merged the two ASV tables from the two
analyzed studies and filtered out study-specific taxa, keeping
124 species from 30 families that were common between the
two datasets for downstream analyses (Supplementary Table 2)
(dataset S1 vs. dataset S2; PERMANOVA Bray-Curtis R2

= 0.14, q < 0.05; PERMANOVA Jaccard R2 = 0.09, q
< 0.05).

Statistical Analyses
The overall differences in the saliva microbial communities
between the smoking classes were calculated in QIIME
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2 (v.2019.10) (Bolyen et al., 2019): current vs. never vs.
former, and current vs. non-current (combined never and
former). For this, the weighted UniFrac distance matrix was
analyzed by analysis of similarities (ANOSIM) and permutation
multivariate analysis of variance (PERMANOVA) where q
values (q < 0.05 for significance) were obtained with default
999 permutations.

Data Augmentation Techniques
For the prediction of an individual’s current smoking habit
(smoker vs. non-smoker), we aimed to employ a binary
machine learning (ML) classifier. For that, data imbalance
was a marked issue in our dataset with a ratio of about
1:6 between the minority class (N = 175 smokers) and the
majority class (N = 1,070 non-smokers) (Table 1). The problem
stems from the ML algorithms that assume an equal number
of samples for each class, which would lead to spurious
high classification accuracy, favoring the majority class and
limiting the classifier’s generalization. Therefore, we applied
different data augmentation techniques to overcome the data
imbalance issue at the data level in our dataset. We used two
techniques commonly employed in different fields to handle
data imbalance, namely, the synthetic minority over-sampling
technique (SMOTE) (Chawla et al., 2002) and the adaptive
synthetic sampling approach (ADASYN) (He et al., 2008), as
well as a recently introduced technique specific for microbiome
data named tree-based associative data augmentation (TADA)
(Sayyari et al., 2019).

The general approaches to deal with data imbalance are over-
sampling (increase the minority class), under-sampling (decrease
the majority class), or a combination of the two. Particularly,
SMOTE and ADASYN techniques differ in the generation of
synthetic samples in the minority class (over-sampling). For
that, SMOTE over-sampling pinpoints the samples belonging
to the minority class in a Euclidean space, and a random
sample is first chosen for which k of its nearest neighbors are
found. A line is drawn between the original sample and one
randomly chosen neighbor, where a new synthetic sample is
generated at a random point along the line (linear combination
of samples). The process is repeated generating the same number
of synthetic samples for each original minority sample until
a specific ratio between the minority and majority classes is
reached or to equal the majority class. On the other hand,
ADASYN adds random small values to the neighbor samples;
hence, they are not linearly correlated to the original sample.
By this, ADASYN considers a density distribution between
the original sample and its neighborhood, which acts as the
criterion to set the number of synthetic samples to be generated
from each original sample. On another point, with the under-
sampling approach, random majority class samples are dropped
out until a specific ratio between the classes is reached. Both
SMOTE and ADASYN techniques were implemented using
the imbalanced-learn Python toolbox (v.0.6.1) (Lemaître et al.,
2017) with default parameters. We employed a combination
of over- and under-sampling methods, indicated as SMOTE-
1 and ADASYN-1 in this study. In order to set the final
ratio between the minority and majority classes, we used the

following equation:

t = |Cmin − Cmax| , over − sampling =
|t − Cmin|

Cmax
,

under − sampling =
Cmax − t

Cmin

where Cmin is the number of the minority class samples,
Cmax is the number of the majority class samples, and
t is the absolute value of the difference between Cmin

and Cmax.
We also used the over-sampling approach alone, indicated

as SMOTE-2 and ADASYN-2 in this study, by which the
number of the samples in the minority class was equaled to the
majority class.

The microbiome-specific TADA technique generates minority
class synthetic samples based on a statistical generative model
that takes into account the phylogenetic relationships between
microbial taxa. We implemented TADA with default parameters,
which equals the number of samples in the minority class with
the majority class. For the rooted phylogenetic tree required as
input, we used the merged ASV table of the two studies to obtain
a single consensus sequence for all those sequences assigned
to the same taxa at the species level. For that, we used the
ConsensusSequence function in DECIPHER (v.2.12.0) (Wright,
2016) and subsequently performed multiple sequence alignment
of the consensus sequences using MAFFT with auto parameter
(v.7.310) (Katoh et al., 2002). A rooted phylogenetic tree was
obtained using FastTree (v.2.1.11) (Price et al., 2010) with a
generalized time-reversible (GTR) model.

Machine Learning Methods
We evaluated seven different ML methods for binary
classification (0: smoker, 1: non-smoker) included in the
scikit-learn (v.0.23.2) Python package (Pedregosa et al., 2011):
logistic regression (LR), k-nearest neighbors (KNN), support
vector machine with linear (SVML) and radial (SVMR) kernels,
decision trees (DT), random forest (RF), and extreme gradient
boosting (XGBoost). LR is a parametric ML model that assumes
a linear dependency between the input features (taxa) and
the categorical outcome. The output of the logistic regression
linear function is a probability x between 0 and 1, where if x
< 0.5, the categorical outcome is 0 (smoker), otherwise it is 1
(non-smoker). KNN is a non-parametric model and as such
supports non-linear solutions. It finds the Euclidean distances
between a query sample and a k number of its closest samples
(nearest neighbors) in the feature space and identifies their
most frequent class label. SVM models take the data points and
find a separating hyperplane between the two classes. SVML
is a linear method that looks for linear dependencies among
the input features to separate classes. SVMR is a non-linear
method that adds an extra dimension to the data (kernel), so they
become linearly separable and then project back the decision
boundary to the original dimension using the dot product of two
vectors in the feature space known as the kernel function. DT
is a tree-based ML algorithm that mimics a decision diagram.
Each input feature constitutes a node in the tree, where based
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upon a certain condition or rule splits into sub-nodes and
extends until the leaf node that represents the classification
decision (0 for smoker or 1 for non-smoker). Finally, RF and
XGBoost are tree-based ensemble models that combine several
models to improve their outcome predictions. RF generates
a large number of decision trees on different subsamples and
combines their outputs using averages at the end of the learning
process. On the contrary, XGBoost combines the decision trees
during the learning process for which it uses a gradient descent
algorithm. By this, the mistakes done in a previous model are
learned and improved in the subsequent model until no further
improvement can be achieved. Hyperparameter optimization
for all the ML models was performed using nested k-fold
cross-validation (Figure 1E).

Nested K-Fold Cross-Validation
Nested cross-validation (nCV) is a resampling procedure that
enables both model optimization and evaluation (Krstajic et al.,
2014). The difference between non-nested and nested CV
approaches is that the former use the same cross-validation set
for hyperparameter optimization and model evaluation, which
biases the model to the dataset and leads to optimistically biased
classifier’s performance; in other words, non-nested approach
leads to over-fitting in model selection. The nCV approach
overcomes this by evaluating the ML algorithm and the model
hyperparameters separately in multiple randomized partitions
of the data (Cawley and Talbot, 2010), though it requires more
computational time. In nCV, apart from splitting the original
training set into k-folds of training and test sets (outer folds)
(Figure 1D), each k training fold is at the same time split into
n-folds of training and validation sets (inner folds) for model
hyperparameter tuning (Figure 1E). The optimized model is
then validated in the corresponding k test fold (Figure 1F).
We employed a 5 × 2 (k × n) nCV where each of the first
splits is named outer-fold (k) and each of the inside splits
for hyperparameter tuning as inner-fold (n). Hyperparameter
optimization for the seven ML models was performed using the
RandomizedSearchCV() function in scikit-learn.

Validation of Data Types With Machine
Learning Methods
Since most ML algorithms operate trying to maximize the
classification accuracy, spurious high classification occurs in
imbalanced datasets by correctly classifying all or almost all the
samples from themajority class at the cost of misclassifying many
samples from the minority class. Hence, performance metrics,
such as accuracy, or F1 score alone can lead to misleading results
in imbalanced datasets (Chicco and Jurman, 2020). In contrast,
the Matthews correlation coefficient (MCC) offers a balanced
metric by considering the four confusion matrix categories: true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN), according to the following equation:

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN)× (TN + FP)× (TN + FN)

For a high MCC score, the classifier has to correctly predict a
high percentage of the samples in both the majority and the
minority classes, independent of their ratios in the overall dataset,
and hence is independent of data imbalance. MCC gives a score
ranging from [−1 to +1], where 1 means perfect prediction, 0
random prediction, and −1 perfect inverse prediction. Based on
this finding, in order to compare all the possible combinations
of input data types, including original non-augmented data
(Figure 1, d= 6) and the ML method (Figure 1,m= 7), we used
the MCC metric. However, we also reported the AUC metric to
show potential misleading results in those models with baseline
non-augmented data (highly imbalanced). Comparisons among
the different data types with a given ML method were performed
in the R environment (v.3.6.1) using the Kruskal–Wallis and
Wilcoxon tests. Significant p-values were determined with a cut-
off value of 0.05 following Benjamini-Hochberg (BH) correction.

Approach Setup
The original dataset (N = 175 smokers and N = 1,070 non-
smokers) was split into a training set (80%) and a holdout
test set (20%) maintaining the sample ratio between the classes
(Figures 1A–C). Data augmentation techniques were applied
to the training split: ADASYN-1 (over- and under-sampling),
ADASYN-2 (over-sampling alone), SMOTE-1 (over- and under-
sampling), SMOTE-2 (over-sampling alone), and TADA. We
evaluated a total of six training data types (d = 6), including
the original non-augmented and the five augmented data types
(Figure 1B). Considering each data type separately, we optimized
and evaluated seven ML methods (LR, KNN, SVML, SVMR, DT,
RF, and XGBoost) (m = 7) using an nCV approach as explained
before (Figures 1D–F). This entire process was repeated 10 times
(i = 10) (Figure 1H), aiming to avoid introduced variation by
the original data partitions. The performance metrics (MCC and
AUC) resulted from the validation of each optimized model in
the five outer test folds (k) over 10 times (i = 10) (total of 50
(5 ∗ 10) resulting values for each metric) (Figure 1G). The best-
performing data type with the ML method was based on the
highest resulting MCC value (Figure 1I), and the final classifier
trained in the final 80% training set (Figure 1I) was validated in
the final 20% holdout test set (Figure 1J).

RESULTS

Saliva Microbiome Data
The data comprised saliva 16S rRNA gene amplicon sequencing
data and associated metadata from two different studies referred
to here as dataset S1 (Wu et al., 2016) and dataset S2 (Beghini
et al., 2019) (see the Datasets in the METHODS section for
more details). Filtering samples for quality-controlled metadata,
de-noising of sequencing reads, and sequencing depth filtering
resulted in a total of 1,245 samples (N = 1,088 from dataset
S1 and N = 157 from dataset S2). In the whole dataset, class
imbalance in smoking habits was large with 512 (44.1%) never
smokers, 558 (44.8%) former smokers, and only 175 (14.1%)
current smokers. Female samples accounted for 41.5% of the
total sample, and the average age (±standard deviation) was
65.2 (±11.0) years. European ancestry of the saliva sample
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FIGURE 1 | Overview of the study’s analytical strategy. (A–C) The original dataset was split into a training set (80%) (purple box in B) and a holdout test set (20%) (red

box in C) by maintaining the original ratio between classes in the partitions. Data augmentation techniques were applied to the training set, making a total of six

different input data types (d = 6), including baseline non-augmented and differently augmented data types. (D) For the nested cross-validation (nCV) approach, the

(Continued)
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FIGURE 1 | training set was split into five outer k-folds of training (80%) (orange box in D) and test (20%) (blue box in D) sets each. (E) Each outer k-fold was split into

two inner n-folds of training (50%) and validation (50%) sets (orange box in E) in which seven different machine learning (ML) models (m = 7) were optimized and

validated (inner models). (F) The best-performing n-fold inner model (green box in F) was applied to the corresponding k-fold test set (green arrow to blue box in F).

(G) For each k-fold test set, two performance metrics were obtained: Matthews correlation coefficient (MCC) and area under the receiver operating characteristic

curve (AUC). Repetition of steps (D) to (G) for all the input data types (d = 6) with ML method (m = 7) (total of 42 different approaches). (H) Repetition of steps (A) to

(G) 10 times (i = 10) to control for introduced variation by data partitions. (I) Selection of the best-performing data type with ML method based on MCC metric and

training on full final 80% training set to create the final prediction model. (J) Validation of final prediction model on final 20% holdout test set.

donors was overrepresented (87.3%), as typically encountered in
human microbiome data publicly available thus far. The selected
characteristics of the two datasets are described in further detail
in Table 1.

Microbial taxonomy assignment using the expanded Human
Oral Microbiome Database (eHOMD) (v.15.2) (Escapa et al.,
2018) as reference (see Processing of 16S rRNA gene amplicon
sequencing data in the Methods section for more details) and
abundance filtering resulted in 200 species from 33 families
in dataset S1 and 168 species from 35 families in dataset S2.
Both datasets were dominated by a few species that comprised
more than 75% of the total microbial composition (21 species
in S1 and 15 species in S2). These species belonged to different
genera, including Streptococcus, Rothia, Haemophilus, Prevotella,
Veillonella, and Actinomyces. Dataset S1 was dominated by
Streptococcus oralis (0.26 of total relative abundance), followed by
S. salivarius (0.09), Rothia mucilaginosa (0.06), S. parasanguinis
(0.05), and Haemophilus parainfluenzae (0.05). Dataset S2 was
also dominated by S. oralis (0.24), followed by S. parasanguinis
(0.06), S. salivarius (0.06), Prevotella melaninogenica (0.06), and
R. mucilaginosa (0.06) (Supplementary Figure 1). These top
abundant species were prevalent in both datasets, appearing in
more than 87% of individuals. Our observations are consistent
with the reported composition of the saliva microbiome
(Segata et al., 2012). For downstream analyses, we selected
124 species from 30 families that were common between
the two datasets, to ensure that our proposed strategy was
generalizable for the prediction of samples from both datasets
(Supplementary Table 2). These common species accounted
for 86% of the sequencing reads in dataset S1 and 61% in
dataset S2.

Classification of Smoking Habits
The overall saliva microbial communities differed with statistical
significance between current and never smokers (ANOSIM R =

0.04, q = 0.03; PERMANOVA pseudo-F = 11.37, q = 0.002),
and current and former smokers (ANOSIM R = 0.04, q =

0.03; PERMANOVA pseudo-F = 11.91, q = 0.002), but not
between never and former smokers (ANOSIM R = 0, q =

0.51; PERMANOVA pseudo-F = 0.64, q = 0.63). Therefore,
we grouped the never and former smokers into a single
category of non-current smokers, which when compared with the
current smokers showed statistically significant differences in the
overall microbial communities (ANOSIM R = 0.04, q = 0.02;
PERMANOVA pseudo-F = 13.26, q = 0.001). Based on these
results, we used two classes of non-current and current smokers
in all downstream analyses.

Validation of Data Types and Machine
Learning Models for Smoking Habit
Prediction
A step-by-step overview of our analytical setup can be found in
Figure 1. For each input data type (d = 6), including augmented
data and baseline non-augmented data, and each ML model (m
= 7), the resulting classifiers’ performance metrics are expressed
as Matthews correlation coefficient (MCC) and area under
the receiver operating characteristic curve (AUC), which are
summarized in Figure 2 and Supplementary Table 3. Overall,
data augmentation techniques combined with ML methods
outperformed baseline methods based on the MCC values,
except for the KNN method. Briefly, the MCC values resulting
from the baseline non-augmented methods increased on average
when applying data augmentation techniques with percentages
of increase as follows: XGBoost (99.8%), SVMR (92.7%), DT
(48.9%), RF (30.6%), and LR (8.8%). The highest increase
was observed with SVML where the baseline non-augmented
method resulted in random prediction (MCC equal or close
to zero), which was highly improved with data augmentation
techniques (MCC values 0.31–0.33). Notably, the AUC baseline
values did not change so drastically when applying data
augmentation techniques [percentage increase or decrease (–)]:
XGBoost (15.8%), SVML (8%), SVMR (null increase/decrease),
RF (−1.0%), KNN (−4.6%), DT (−6.1%), and LR (−10.4%).

The SVML method performed the best in predicting smoking
habits from microbiome data based on the MCC metric.
As the reference metric for comparison purposes, we chose
the MCC, since it is independent of data imbalance, which
is not the case for the AUC metric. MCC values were
significantly higher with each of the five augmented data
types compared to non-augmented data (Wilcoxon test, BH-
adjusted p = 9.93E−20) (Supplementary Table 4). However,
there were no statistically significant differences in the MCC
metric between the augmented data pair comparisons (Wilcoxon
test, BH-adjusted p-values between p = 0.392 and p = 0.882)
(Supplementary Table 4). From these results, we concluded
that SVML with augmented data performed better than with
imbalanced non-augmented data.

For the training (Figure 1I) and the validation in the holdout
test set (Figure 1J) of the final smoking prediction model, we
chose SVML combined with TADA. We based our decision
on the following: (i) the SVML method performed the best
in predicting smoking habits from microbiome data based on
the MCC metric (no statistical difference), and (ii) we selected
TADA as the preferred data augmentation technique since
it takes into account the phylogenetic relationship between
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FIGURE 2 | Validation of data types with machine learning (ML) methods for microbiome-based prediction of smoking habits based on the S1 and S2 datasets

together. For each ML method, we evaluated six types of input data: baseline non-augmented and five augmented datasets based on different methods (ADASYN-1,

ADASYN-2, SMOTE-1, SMOTE-2, and TADA). (A) Matthews correlation coefficient (MCC) and (B) area under the receiver operating characteristic curve (AUC) values

from the 5-fold nested crossed-validation were repeated for 10 times (5 * 10). For MCC, +1 represents a perfect prediction, 0 random prediction, and −1 perfect

inverse prediction. For AUC, 1 indicates perfectly accurate prediction and 0.5 indicates random prediction. ML method abbreviations: DT, decision trees; KNN,

k-nearest neighbors; LR, logistic regression; RF, random forest; SVML, support vector machine with linear kernel; SVMR, support vector machine with radial kernel;

XGBoost, extreme gradient boosting.

the microbial taxa. The average model performance (standard
deviation) metrics were MCC of 0.32 (0.07) and AUC of 0.74
(0.05) in the training set, and MCC of 0.36 (0.06) and AUC of
0.81 (0.04) in the holdout test set.

DISCUSSION

In this study, coming with the available 16S rRNA gene amplicon
microbiome sequencing data, we deal with the common issue

of data imbalance in human microbiome binary classification,
with the aim of unlocking the prediction of human host’s traits
from saliva microbiome. As a data source, we focused on studies
targeting the saliva microbiome and did not use data from studies
targeting other niches in the oral cavity due to known diverse
microbial assemblies on different oral sites (Aas et al., 2005;
Zaura et al., 2009; Segata et al., 2012). We selected publicly
available saliva microbiome data from two studies that might
differ in their experimental setup (Supplementary Table 1) but
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both have large sample sizes, while discarding other studies
with very small sample sizes that could be a source of variation
rather than useful information for the prediction. The lack of
widespread consensus onmicrobiome analysis methods, together
with the variation introduced at each step of the microbiome
pipeline, constitutes hurdles for cross-study applications. This
lack can sometimes outweigh the factor(s) of interest and
limit the statistical power and generalization of the application
(Brooks et al., 2015; Sinha et al., 2015, 2017; Wang and LêCao,
2019). Though we could not control for any potential variation
introduced during the experimental analysis, we aimed to apply
the same or the most similar bioinformatics analysis to the raw
sequencing data to avoid study-specific computational variation,
from which quality control choices are amongst the largest
sources of variation (Sinha et al., 2015, 2017). Moreover, we
only selected the species common between the datasets from the
two studies for downstream analyses. On the one hand, we are
aware that this might have reduced the power of our prediction
analysis by discarding informative species in each of the two
datasets separately. On the other hand, this procedure ensured
that the approach is suitable for the prediction of samples from
both datasets.

Our observations in the overall microbial composition of
saliva were in agreement with the two original studies (Wu et al.,
2016; Beghini et al., 2019), where microbiome variation did not
significantly differ between never and former smokers (ANOSIM
R = 0, q = 0.51; PERMANOVA pseudo-F = 0.64, q = 0.63), but
significantly differed between never and current (ANOSIM R =

0.04, q= 0.03; PERMANOVA pseudo-F = 11.37, q= 0.002), and
between former and current smokers (ANOSIM R = 0.04, q =

0.03; PERMANOVA pseudo-F = 11.91, q = 0.002). One of the
two studies (Wu et al., 2016) also reported significant differences
between current smokers and non-current smokers (combined
never and former) as we observed in this study (ANOSIM R =

0.04, q= 0.02; PERMANOVA pseudo-F = 13.26, q= 0.001).
The available saliva microbiome dataset presents the

problem of data imbalance, which is commonly encountered in
microbiome datasets and in many other real-life applications,
with a ratio of about 1:6 between the minority class of current
smokers and the majority class of non-smokers (Table 1).
Using class-imbalanced data in prediction modeling can lead
to spurious high accuracy based on the correct classification
of most of the samples from the majority class at the cost of
misclassifying many or even most of the samples from the
minority class (Japkowicz and Stephen, 2002; Abd Elrahman
and Abraham, 2013; Ali et al., 2013; Thabtah et al., 2020).
Regarding our study purpose, this would translate in the
classifier’s inability to correctly predict the positive observations
for current smoking habits (minority class). This was seen in the
baseline non-augmented data with the SVML method (Figure 2
and Supplementary Table 3), where we obtained a low MCC of
zero but a medium AUC of 0.7. Besides needing to address the
class imbalance, this also highlights the necessity of not relying
only on a single prediction accuracy score for model validation
when dealing with imbalanced data (Chicco and Jurman, 2020).

TheMCC performancemetric allowed us for fair comparisons
of the validated ML methods for both non-augmented and

augmented data, since MCC is independent of data imbalance
(Boughorbel et al., 2017; Ballabio et al., 2018). For the great
majority of the ML methods, augmented data resulted in
higher MCC scores compared to imbalanced non-augmented
data, thus facilitating improved classification performance. This
demonstrates that microbiome-based classification problems can
benefit from data augmentation techniques, in line with previous
suggestions (Knights et al., 2011). In our dataset, the combined
over- and under-sampling approaches generally performed
slightly better (though not statistically significantly) than the
over-sampling approach alone (Supplementary Tables 2, 3).

The variation in the performance metric values for each input
data type and ML method (Figure 2) highlights the variation
introduced in the optimization and validation procedures
(Figure 1). This underlines the necessity for an nCV approach for
overall model validation and selection that is independent of the
different data partitions (Cawley and Talbot, 2010; Krstajic et al.,
2014). We avoided over-fitting in model validation and classifier
selection as demonstrated by the very similar performance
metrics between the final training (MCC: 0.32 ± 0.07, AUC:
0.74 ± 0.05) and test (MCC: 0.36 ± 0.06, AUC: 0.81 ± 0.04)
datasets, which were very similar to those of the folds in the
nCV (MCC: 0.31 ± 0.06, AUC: 0.75 ± 0.05). As it has been
suggested before (Topçuoglu et al., 2020), with our strategy,
we report the variation in the predictive performance on the
different folds of nCV, as well as on both the final training and
test sets, which unfortunately is not a very common practice in
microbiome-based trait prediction.

With the best data augmentation andML approach chosen, we
predicted individuals’ smoking habits from saliva 16S rRNA gene
microbiome data in the final holdout test set with MCC of 0.36
and AUC of 0.81. Previously, Sato et al. (2020) predicted smoking
habits from class-imbalanced tongue metagenomics data (N =

234 never, N = 52 current smokers) using an RF approach and
conventional non-nested k-fold CV and obtained an AUC of 0.75
from the test set. This prediction was improved to AUC = 0.80–
0.93 when using single-nucleotide variants of single species as
input data instead of relative abundances of all species. More
recently, Carrieri et al. (2021) predicted smoking habits from leg
skin 16S rRNA gene amplicon sequencing data based on a less
class-imbalanced but very small dataset (N = 43 never, N = 19
current smokers) using the XGboost method and conventional
non-nested k-fold CV and reported the F1 performance metric in
the CV folds (F1= 0.72± 0.12), training set (F1= 0.98), and test
set (F1= 0.85). The noted differences in the F1 scoresmight be an
indication of introduced variation by the different data partitions
and bias toward model selection, which can be overcome using
an nCV approach as proposed by us and others. Notably, the
methods applied in both of these previous studies did not take the
class imbalance problem in the used data into account. Therefore,
and because of the small sample size in one of these studies
at least, the previously reported prediction accuracies are not
expected to be reliable, in contrast to the results from our study.

However, in our dataset, we acknowledge some metadata-
related characteristics that might limit the prediction of
microbiome-based smoking habits, even when the data
imbalance issue was accounted for by our approach. Precise
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phenotype descriptions were available in only one of the
two studies (Supplementary Table 1), which is a commonly
encountered problem in cross-study applications and can limit
the interpretation of results (Huttenhower et al., 2014). Also, the
dataset is overrepresented by the age range of 50–79 years old and
European ancestry of the sample donors (Table 1), which might
result in different prediction performances in other age groups
(Lira-Junior et al., 2018; Liu et al., 2020) and ethnicities (Mason
et al., 2013; Yang et al., 2019b). To add, one limitation of the data
augmentation techniques is that synthesized metadata associated
with the synthetically produced data is not reliable. This limits
the possibility of statistically adjusting for covariates (i.e., age, sex,
and ethnicity) in the ML methods, which can ultimately improve
the prediction performance. Hence, the ideal scenario would be
to start from a sample that is a good representation of the general
population, though this is challenging in real-life applications.

To conclude, by testing different data augmentation
techniques and ML methods on class-imbalanced microbiome
data, we established a best-practice approach for reliable
prediction of individuals’ smoking habits from the saliva
microbiome that takes the underlying data imbalance into
account. We found that combining data augmentation with ML
generally outperformed baseline methods in our dataset for our
purpose, as other researchers have also suggested before (Knights
et al., 2011). The prediction accuracies, expressed as MCC of
0.36 and AUC of 0.81, we achieved for our best model in the
final test set implies that predicting human smoking habits from
microbiome data needs further improvement before it can be
considered for practical applications.
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Biogeography (body site) is known to be one of the main factors

influencing the composition of the skin microbial community. However,

site-associated microbial variability at a fine-scale level was not well-

characterized since there was a lack of high-resolution recognition of

facial microbiota across kingdoms by shotgun metagenomic sequencing.

To investigate the explicit microbial variance in the human face, 822

shotgun metagenomic sequencing data from Han Chinese recently published

by our group, in combination with 97 North American samples from

NIH Human Microbiome Project (HMP), were reassessed. Metagenomic

profiling of bacteria, fungi, and bacteriophages, as well as enriched function

modules from three facial sites (forehead, cheek, and the back of the

nose), was analyzed. The results revealed that skin microbial features

were more alike in the forehead and cheek while varied from the back

of the nose in terms of taxonomy and functionality. Analysis based on

biogeographic theories suggested that neutral drift with niche selection from

the host could possibly give rise to the variations. Of note, the abundance

of porphyrin-producing species, i.e., Cutibacterium acnes, Cutibacterium

avidum, Cutibacterium granulosum, and Cutibacterium namnetense, was all

the highest in the back of the nose compared with the forehead/cheek, which

was consistent with the highest porphyrin level on the nose in our population.

Sequentially, the site-associated microbiome variance was confirmed in

American populations; however, it was not entirely consistent. Furthermore,

our data revealed correlation patterns between Propionibacterium acnes

bacteriophages with genus Cutibacterium at different facial sites in both

populations; however, C. acnes exhibited a distinct correlation with P. acnes

bacteriophages in Americans/Chinese. Taken together, in this study, we
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explored the fine-scale facial site-associated changes in the skin microbiome

and provided insight into the ecological processes underlying facial

microbial variations.

KEYWORDS

shotgun metagenomic sequencing, facial skin microbiome, Chinese, Cutibacterium
acnes (C. acnes), Propionibacterium acnes bacteriophage, fine-scale, biogeography

Introduction

The human skin is considered a complex ecosystem
colonized with various microorganisms, including bacteria,
fungi, and viruses, collectively termed “skin microbiota”
(Grice and Segre, 2011). Balanced microbial community
composition is essential for maintaining skin health (Byrd
et al., 2018). However, this ecosystem turned out to be highly
variable between individuals (Schommer and Gallo, 2013) and
the factors responsible for the unique variability included
endogenous host factors (host genetics, gender, and age) and
exogenous environmental factors (lifestyle, hygiene routine,
cosmetics, climate, and seasonality) (Grice and Segre, 2011;
Boxberger et al., 2021).

Biogeography (body site) has been suggested as a major
factor influencing the composition of the skin microbial
community (Grice et al., 2009; Perez Perez et al., 2016; Wang
et al., 2021). Characterization of spatiotemporal patterns in
species distribution is a key task in biogeography and is
also fundamental to explore the ecological and evolutionary
processes shaping communities (Bahram et al., 2015). For
skin microbiome, many studies favored to divide skin into
four microenvironments (i.e., sebaceous, moist, dry, and foot)
according to the physical and chemical properties of the
anatomical sites (Oh et al., 2014). Although this classification
was not delicate enough, some prominent features of microbial
distribution pattern were well-characterized, for example, genus
Cutibacterium and Malassezia favored oily (sebaceous) areas;
genus Staphylococcus and Corynebacterium were predominant
in moist areas while Gram-negative microorganisms favored
dry areas (Grice et al., 2009; Chen and Tsao, 2013; Oh et al.,
2014, 2016). However, microbial variance from anatomic sites
at a more fine-scale level, for example, different sites from
one’s face, was only partially understood (Lee et al., 2021).
This is not trivial. Many facial conditions, exerting substantial
adverse psychological and social influences, exhibited a clear
and consistent site preference on the face, such as acne vulgaris
and seborrheic dermatitis, prone to occur in oily areas with
a rich supply of sebaceous glands (Williams et al., 2012; Tan
and Bhate, 2015; Sparber et al., 2019), and rosacea often occurs
in the central face such as the nose (Van Zuuren et al., 2011;
Yigider et al., 2016). Therefore, it is valuable to learn about the
microbial variance caused by this delicate body location, which
may underlie the predisposition of skin dysbiosis conditions
with site preference (Flowers and Grice, 2020).

Due to low microbial biomass from the skin (Chen et al.,
2018), most studies deployed 16S rRNA sequencing and assessed
only the bacterial community, leaving the fungal and viral
communities largely unknown, particularly in the facial sites.
To address this issue, we leveraged our shotgun metagenomic
sequencing dataset generated from 822 Chinese samples (Li
et al., 2021) and reassessed the data intensively, which allowed
for more precise recognition of facial skin microbiota (forehead,
cheek, and the back of the nose) across all kingdoms (bacteria,
fungi, and viruses), in terms of microbial taxonomy and
functionality. Sequentially, we reassessed 97 North-American
metagenomic sequencing data from the Human Microbiome
Project (HMP) (Oh et al., 2014) and compared the main
features of the two populations. In particular, a series of
Propionibacterium acnes bacteriophages, viral members which
were considered important in regulating the balance of the
microbiome, were assessed and highlighted.

Materials and methods

Study population

Ninety-seven North American samples from HMP (Oh
et al., 2014) and 822 Han Chinese samples (Li et al., 2021) were
selected. The datasets were downloaded from the integrated
Human Skin Microbial Gene Catalog (iHSMGC). Detailed
information about sampling, DNA preparation, and shotgun
metagenomic sequencing can be obtained according to our
previous study (Li et al., 2021).

Statistical analysis

The Shannon index was used to represent the alpha diversity
of the microbiome. Kruskal-Wallis test and Wilcoxon rank-sum
test were used to assess the significance of the difference in three
anatomical sites. Probability (P) values < 0.05 were considered
to indicate statistically significant differences. P-values were
adjusted using the false discovery rate (FDR) correction.

Beta diversity (principal coordinate analysis (PCoA) based
on Bray-Curtis distances) was to characterize the microbial
profile in different sites. The permutational multivariate analysis
of variance (PERMANOVA) was used to assess the effect of
different anatomical sites. We performed the analysis using the
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method implemented in the R package (vegan) and 1,000 times
permutations to obtain the permuted P-value.

Linear discriminant analysis (LDA) effect size (LEfSe)
was used to identify taxonomic differences between different
anatomical sites. The threshold on the LDA score was set to 3.0.

Spearman correlation was carried out to investigate the
existence of a correlation between P. acnes bacteriophages and
four species that belong to the genus Cutibacterium, and the
significance levels are ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
P-values were adjusted using the FDR correction.

The LEfSe was completed using the Wekemo Bioincloud1.
Another analysis was conducted using R (version 4.1.2).

Neutral community model analysis was used to explore
ecological processes underlying microbial variations. Bray-
Curtis distance of each site (FH forehead, CK cheek, NS nose)
from the center was assessed using a classic model inferring
genetic distance in molecular evolution (Li, 1997). Specifically,
the distance to FH = [Distance (FH-NS) + Distance (FH-
CK) – Distance (CK-NS)]/2; the distance to CK = [Distance
(CK-NS) + Distance (FH-CK) – Distance (FH-NS)]/2; and the
distance to NS = [Distance (FH-NS) + Distance (CK-NS) –
Distance (FH-CK)]/2).

dFH =
DNS−FH + DCK−FH − DCK−NS

2

dCK =
DCK−NS + DFH−CK − DFH−NS

2

dNS =
DFH−NS + DCK−NS − DFH−CK

2

Results

The back of the nose exhibited distinct
microbial community composition
from the forehead and cheek in the
Chinese

We first investigated skin microbiome in three facial sites
(forehead, cheek, and the back of the nose) from our population,
in terms of the alpha diversity, microbial composition, and
potential functionality.

The overall alpha diversity, indicated by the Shannon index,
was higher in the forehead and the cheek than in the nose,
while the difference was not significant between the forehead
and the cheek (Figure 1A). Furthermore, the Shannon index
of each kingdom (bacteria, fungi, and viruses) from the three
sites was also assessed. The results demonstrated that the back
of the nose presented different microbial diversities from the
other two sites, in regard to all kingdoms. However, in contrast
to lower diversity in the bacterial community, the nose exhibited

1 https://www.bioincloud.tech

higher diversity in the fungal and viral community than that of
the forehead and the cheek (Figure 1B). PCoA based on Bray-
Curtis distance also confirmed a shift of nose microbiome from
the other two sites, while the microbiome from the forehead
and the cheek was more similar (PERMANOVA test, R2 = 0.04,
P < 0.001) (Figure 1C).

To specify the differential species, LEfSe analysis was further
carried out. The result revealed 17 site-associated dominant
species across kingdoms in different facial sites: Cutibacterium
acnes, Cutibacterium granulosum, Staphylococcus epidermidis,
and Propionibacterium phage PHL132N00 were more abundant
in the back of the nose; Mycobacterium sp. QIA-37, Ralstonia
solanacearum, Mycobacteroides chelonae, Propionibacterium sp.
oral taxon 193, Malassezia globosa, Komagataella phaffii, and
Acinetobacter junii were more enriched in the forehead; and
Moraxella osloensis, Streptococcus pneumoniae, Acinetobacter
guillouiae, Streptococcus oralis, Neisseria sicca, and Acinetobacter
haemolyticus were more abundant in the cheek (Figure 1D).
The relative abundance of these 17 differential species varied
significantly, especially between the nose and the other two sites
(Figure 1D). Of note, the nose harbored clear higher amount of
C. acnes and lower amount of M. osloensis. These two species
were proven to be distinctive in nutrient demand: whereas
C. acnes was high nutrient demanding and prone to the sebum-
rich area, and M. osloensis was a non-fastidious bacterium that
was able to grow in a mineral medium supplemented with a
single organic carbon source (Juni, 1974, 2015). Correlation
analysis further confirms this negative association between the
two species. In addition, we found that a series of site-differential
species were internally positive-correlated, whereas mostly
negatively correlated with other site-prone species (Figure 1E).
To further explore the possible mechanisms shaping the
microbial biogeography, we conducted an analysis based on
a neutral community model (Li, 1997), which is commonly
applied to predict the assembly pattern of the communities
and is favorable for the relative simplicity. By measuring the
Bray-Curtis distance from the center of three sites, we found
that the nose is much further from the center than the other
two sites, whereas the distances for the other two are only
marginally different (Figure 1F). A strict neutral drift would
predict similar distances among all three lineages, indicating
that selective forces (e.g., host selection) may exist in shaping
the microbial variability, especially in the nose area.

Shotgun metagenomic sequencing
revealed that certain functionality
underlies the site-associated
microbiome variance in the Chinese
population

As shotgun metagenomic sequencing provided gene
abundance information, we further assessed the functionality
potentials of the microbiota located in these three anatomical
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FIGURE 1

Comparative characterization of the skin microbiome present in three anatomical sites in Chinese samples. Boxplots comparing Shannon index
of (A) overall skin microbiome and (B) bacteria, fungi, and virus microbiome of three anatomical sites in Chinese samples. (C) Principal
coordinate analysis (PCoA) plot illustrating the comparison of the overall composition of skin microbiome between three sites in the Chinese
population. The PERMANOVA test is used to determine significance. Boxplots indicate the distribution of samples along the PC1 and PC2. (D)
Stack plot of the 17 differential species ranked by relative abundance. Linear discriminant analysis (LDA) effect size (LEfSe) histograms on the
right showed the microbial comparisons of three anatomical sites, with an LDA threshold of 3.0. (E) Heat map of the Spearman’s correlation
between differential species. (F) The distance distribution lines on the left showed the Bray-Curtis distance from the center of three facial sites
to the forehead, to the cheek, and to the back of the nose, respectively. The boxplot on the right quantified and compared the difference. FH,
the forehead; CK, the cheek; NS, the back of the nose. P-values were adjusted using the false discovery rate (FDR) correction. The significance
levels are: ns, not significant, P > 0.05; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.
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FIGURE 2

Comparative characterization of the skin microbiome present in
three anatomical sites in American samples. (A) PCoA plot
illustrating the comparison of the overall composition of skin
microbiome between three sites in the Chinese population. The
PERMANOVA test is used to determine significance. (B)
Functional differences of the skin microbiome in three sites of
Chinese samples. The heat map represents the relative
abundance of function in three sites. (C) The heat map
represents the relative abundance of 554 differential genes in
three sites in Chinese samples. (D) Different categories that 554
differential genes belong to. (E) Boxplots comparing seven
differential genes related to the porphyrin metabolism pathway
in three anatomical sites (K02230: cobN, cobaltochelatase
CobN; K00231: PPOX, protoporphyrinogen/
coproporphyrinogen III oxidase; K02259: COX15, heme a
synthase; K02224: cobB-cbiA; cobyrinic acid a,c-diamide
synthase; K01698: hemB, porphobilinogen synthase; K13542:
cobA-hemD, uroporphyrinogen III methyltransferase/synthase;
K01885: EARS, glutamyl-tRNA synthetase). The relative
abundance of facial porphyrin (F) and Cutibacterium acnes,
Cutibacterium avidum, Cutibacterium granulosum, and
Cutibacterium namnetense (G) in three sites. FH, the forehead;
CK, the cheek; NS, the back of the nose. The significance levels
are: ns, not significant, P > 0.05; ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

sites. Overall, PCoA confirmed the variance in terms of gene
features at the three sites (PERMANOVA test, R2 = 0.02,
P < 0.001) (Figure 2A). The PC1 indicator of the PCoA
showed a minor but significant difference between the back
of the nose and the forehead/cheek. Furthermore, the heat
map showed the relative abundance of 24 functional modules
(Kyoto Encyclopedia of Genes and Genomes (KEGG) level
C) enriched in the forehead and cheek while different from
the back of the nose (Kruskal Wallis test, P-adjust < 0.05)
(Figure 2B and Supplementary Table 1). Specifically, seven
microbial functions of high gene abundance were all enriched
in the nose, i.e., cofactor and vitamin metabolism, central
carbohydrate metabolism, other carbohydrate metabolism,
ATP synthesis, branched-chain amino acid metabolism,
purine metabolism, and histidine metabolism. Other
functions, many of which also related to metabolism, were
more enriched in the forehead/cheek, such as serine and
threonine metabolism, aromatic amino acid metabolism,
lipopolysaccharide metabolism, and drug resistance.

More intensively, we identified 641 differential genes (out of
863 genes with relative abundance > 0.1%) (Kruskal Wallis test,
P-adjust < 0.05). Notably, 554 of them (86.4%, Supplementary
Table 2) showed a clear difference between the back of
the nose and the forehead/cheek (Figure 2C), including 331
enzymes, 95 transporters, and other genes (Figure 2D and
Supplementary Table 3). While 219 genes were more enriched
in the forehead/cheek, 335 genes were more enriched in the
nose. Interestingly, we found that there were seven differential
genes, essential for the porphyrin metabolism, and six genes
were more enriched in the back of the nose (Figure 2E). In
fact, we observed that porphyrin levels, assessed with VISIA-
CR pictures (Canfield Scientific Inc., Fairfield, NJ, USA), were
the highest in the back of nose compared with the other two
sites in our cohort (Figure 2F). Furthermore, it is known
that several skin commensals were able to produce porphyrin,
and while predominant from C. acnes (Shu et al., 2013;
Spittaels et al., 2021), other Propionibacterium strains, such
as C. granulosum, Cutibacterium avidum, and Cutibacterium
modestum (previously, “Propionibacterium humerusii”) were
also able to produce certain levels of porphyrin (Barnard
et al., 2020). In consistent, our data revealed that the relative
abundance of these porphyrin-producing species, i.e., C. acnes,
C. avidum, C. granulosum, and Cutibacterium namnetense, were
all the highest in the back of the nose compared with the
forehead/cheek (Figure 2G).

Facial site-associated microbiome
variation is different between the
Chinese and North American
populations

Sequentially, we assessed the site-associated microbiome
variance in the North American population. Overall, the
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FIGURE 3

Comparative characterization of the skin microbiome present in three anatomical sites in American samples. (A) PCoA plot illustrating the
comparison of the overall composition of skin microbiome between three sites in the American population. The PERMANOVA test is used to
determine significance. Boxplots indicate the distribution of samples along the PC1 and PC2. (B) LEfSe histograms for the microbial
comparisons of three anatomical sites, with an LDA threshold of 3.0. (C) PCoA plot illustrating the gene composition of skin microbiome
between three sites in the American population. The PERMANOVA test is used to determine significance. (D) Functional differences of the skin
microbiome in three sites of American samples. The heat map represents the relative abundance of function in three sites. (E) The heat map
represents the relative abundance of 131 differential genes in three sites. FH, the forehead; CK, the cheek; NS, the back of the nose. P-values
were adjusted using the FDR correction. The significance levels are: ns, not significant, P > 0.05; ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

Frontiers in Microbiology frontiersin.org

162

https://doi.org/10.3389/fmicb.2022.933189
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-933189 July 20, 2022 Time: 17:55 # 7

Wei et al. 10.3389/fmicb.2022.933189

FIGURE 4

The correlation between Cutibacterium and Propionibacterium acnes bacteriophages in Chinese and American samples. Heat map of the
results of the Spearman correlation between four species in genus Cutibacterium and P. acnes bacteriophages in three sites and in Chinese (A)
and American (B) samples. FH, the forehead; CK, the cheek; NS, the back of the nose. P-values were adjusted using the FDR correction. The
significance levels in the Spearman correlation are: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗∗P < 0.001.
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PCoA suggested a microbiome variance existed among three
facial sites (PERMANOVA test, R2 = 0.13, P < 0.001) and
the back of the nose was different from the forehead/cheek
(Figure 3A), consistent with the conclusion drawn from the
Chinese population. Furthermore, LEfSe analysis revealed site-
associated dominant species across the kingdoms.

In consistent, M. osloensis, S. pneumoniae, S. oralis,
Propionibacterium sp. oral taxon 193, and M. globosa were more
enriched in the forehead/cheek, whereas C. granulosum and a
large series of P. acnes bacteriophages were enriched in the
back of the nose in both populations (Figure 3B). Of note,
C. acnes was more enriched in the forehead in Americans, which
contrasted with the highest abundance in the back of the nose in
Chinese. S. epidermidis showed more enrichment in the back of
the nose in Chinese, but no site difference in Americans.

Based on the gene abundance, the PCoA also showed
that the forehead and the cheek were much more similar but
both different from the back of the nose (PERMANOVA test,
R2 = 0.06, P < 0.001) (Figure 3C). Of note, 19 microbial
functions (KEGG level C) were found to be significantly
different in three sites (Kruskal Wallis test, P-adjust < 0.05)
(Figure 3D and Supplementary Table 4). The heat map showed
the relative abundance of differential functions from the three
facial sites. Specifically, several microbial functions, such as
cysteine and methionine metabolism, aromatic amino acid
metabolism, lipopolysaccharide metabolism, drug resistance,
sulfur metabolism, polyamine biosynthesis, and polyketide
sugar unit biosynthesis were also higher in the forehead/cheek
in the Chinese samples.

In Americans, there were 145 site-associated differential
genes (Kruskal Wallis test, P-adjust < 0.05), and 131 of
them (90.3%) showed similar abundance between the forehead
and cheek but significantly different from the back of the
nose. Among these 131 genes, only K17316 (glucose/mannose
transport system permease protein) was more enriched in the
back of the nose, while the rests were more enriched in the
forehead/cheek (Figure 3E and Supplementary Table 5).

A distinct correlation between
Propionibacterium acnes
bacteriophages and Cutibacterium
acnes was observed in the two
populations

Propionibacterium acnes bacteriophages, members of the
viral community, are dominant bacteriophages that existed
in the skin microbiota, especially in the pilosebaceous unit
(Liu et al., 2015). These bacteriophages were able to play an
important role in maintaining the balance of the microbial
community (Liu et al., 2015). However, the association
between these bacteriophages with other skin microbiota
was rarely studied.

In this study, we assessed the correlation between P. acnes
bacteriophages and all detectable species from the genus
Cutibacterium (Dekio et al., 2021), in three sites of two
populations. In general, the Chinese showed more correlations
in three sites compared with the Americans (Figure 4).
For Chinese populations, the forehead and the cheek
presented mostly consistent positive correlation between
genus Cutibacterium, particular C. acnes, C. granulosum, and
C. avidum with most detected P. acnes bacteriophages;
while in the back of the nose, C. acnes and P. acnes
bacteriophages showed no significant correlation, but the
correlations between C. namnetense and bacteriophages were
significant (Figure 4A). In contrast, most correlations in the
forehead/cheek showed similar trends but not significant in
Americans. In particular, P. acnes bacteriophages exhibited
a consistent positive correlation with C. granulosum, but a
significant negative correlation with C. acnes in the back of the
nose in Americans (Figure 4B).

Discussion

In this study, we centered on addressing site-associated
microbiome variance in Chinese facial skin, by intensively
reassessing our shotgun metagenomic dataset generated from
822 Chinese samples (Li et al., 2021). Overall, our data revealed
that microbial features in the back of the nose were distinctive
from the forehead and cheek in Chinese. Furthermore, we
confirmed a similar site-associated microbial pattern in the
North American population, although varied in detail.

It is long known that biogeography (body site) is a
major factor influencing the composition of the skin microbial
community (Grice et al., 2009; Perez Perez et al., 2016; Wang
et al., 2021). However, there was very limited understanding
of the mechanisms shaping microbial biogeography as it is
often rather difficult to determine the relative importance of
drift, dispersal, speciation, and selection, the four processes
(mechanisms) determining the patterns of biogeography and
community dynamics (Ma, 2021). Nevertheless, there were
several studies worked on the relative significance of stochastic
neutral forces and deterministic niche selection and brought us
new insights into the mechanisms, shaping the biogeography
of the human microbiome (Ma et al., 2018; Tong et al.,
2019; Ma, 2021). For example, an analysis of a multi-site
microbiome, covering five major habitats (i.e., airway, oral,
gut, skin, and urogenital) suggested the relative significance of
stochastic neutral forces and deterministic niche selection in
shaping the biogeography of the human microbiome (Ma et al.,
2018). Another study also suggested that while skin mycobiome
assembly is a predominantly neutral process, taxa that could be
under the influence of selective forces (e.g., host selection) are
potentially key to the structure of a community network (Tong
et al., 2019). In this study, we observed a similar pattern that
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fit to a “nutrient-drive” model by explaining the site-associated
microbial disparity.

In contrast, addressing site-associated microbial variation at
a fine-scale level is important for digging the niche selection
pressure for the skin microbiome. Multiple variables, such as
hygiene routine, cosmetics, climate, and seasonality, which were
known to impact microbial niche conditions (Grice and Segre,
2011; Harris-Tryon and Grice, 2022), were well-controlled in
this adjacent subsite area and thereby substantially facilitate
decoding the microbial variation. Learned from classical
ecology, the selection pressures for the ecosystem include
resource availability (presence of nutrients), environmental
conditions (temperature, geographical access), and biological
factors (predators and pathogens) (Williams, 1996). In this
study, we revealed a series of site-prone species, many of which
were previously proven to be distinct in nutrient requirements,
i.e., C. acnes as high nutrient-demand, and M. osloensis as low
nutrient-demand species able to grow in a mineral medium
supplemented with a single organic carbon source (Juni, 1974;
Juni and Bøvre, 2015). Furthermore, we revealed that site-
associated species correlated with each in pattern, suggesting
that specific interactions between species underlie the formation
of networks to compete in the niche occupation. In turn, the
colonization of microbiota in different sites may also reflect
niche conditions. In consistent, C. acnes tends to colonize in
oily areas, and the abundance increases with the sebum level
(Mukherjee et al., 2016). A study in Korean women revealed
higher sebum secretion in the nose than in the forehead and
cheek (Youn et al., 2005), consistent with the higher abundance
of C. acnes in the nose than in the forehead/cheek in our study.
However, the relative abundance of C. acnes was demonstrated
the highest in the forehead in Americans, which may be due to
the ethnical differences in regard to delicate anatomic structures,
such as the count and size of sebaceous glands and physiological
phenotypes (Rawlings, 2006; Voegeli et al., 2019).

In addition, our data revealed site-associated microbial
features not only in taxonomical composition but also in
functionality. In Chinese, the carbohydrate metabolism of
microbiota was more enriched in the back of the nose, which
is consistent with the fact that C. acnes utilized carbohydrates as
the main carbon source (Li et al., 2021). In contrast, M. osloensis
was incapable of utilizing any carbohydrates or possessing
any saccharolytic activity but strictly depend on other carbon
sources such as acetic or lactic acid (Baumann et al., 1968; Juni,
1974; Moss et al., 1988; Juni and Bøvre, 2015).

In our study, M. osloensis was the most abundant
differential species in the cheek, which exhibited the lowest
hydration level (Lee et al., 2013; Machkova et al., 2018)
as well as the sebum level (Youn et al., 2005). In both
populations, some function modules were more enriched in
the forehead/cheek compared with the back of the nose,
including sulfur metabolism, cysteine and methionine
metabolism, aromatic amino acid metabolism, polyketide

sugar unit biosynthesis, and drug resistance, which may
imply a more challenged or competitive environment for
microbes to adapt in the forehead/cheek than the nose.
For example, sulfur is an essential nutrient and can be
metabolized into the sulfur-containing amino acids (cysteine
and methionine) in microorganisms, protecting against
oxidative and environmental stresses such as dryness (Ernst,
1998; Yi et al., 2010; Chan et al., 2019).

In this study, some microbial composition-associated skin
feature was validated, i.e., the enrichment of genes in porphyrin
metabolism in the nose was demonstrated to link to the
abundance of porphyrin-producing species, which were further
proven to be positively associated with high porphyrin level on
the nose. It is known that bacterial porphyrins are considered to
be pro-inflammatory and linked to inflammatory skin diseases
(Schaller et al., 2005). Our findings may underlie this site
preference for specific inflammatory skin conditions, such as
acne vulgaris or rosacea.

Furthermore, one of the highlights of this study was
that we were able to explore the composition of other
communities, in addition to bacteria, in these facial sites.
Bacteriophages, viruses that infect corresponding host bacteria,
may play an important regulatory role in human skin
health (Liu et al., 2015). However, the interaction between
bacteriophage with other skin microbiota is rarely known.
In this study, we found that C. granulosum and various
P. acnes bacteriophages were enriched in the nose in
both populations. Furthermore, there was an intriguing
correlation pattern between P. acnes bacteriophages with genus
Cutibacterium at different facial sites in both populations.
Of note, C. acnes demonstrated a distinct correlation with
P. acnes bacteriophages in American/Chinese. It is known
that the distribution of P. acnes bacteriophages depends on
their specific host species (Jonczyk-Matysiak et al., 2017) and
recent studies revealed the complexity of different lineages
of C. acnes on the skin (Dekio et al., 2021; Conwill
et al., 2022). These all implied that the significance of
more deep sequencing was needed in the future to address
complicated correlations.
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20R-7-F01, isolated from deep
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Laccases are ligninolytic enzymes that play a crucial role in various biological

processes of filamentous fungi, including fruiting-body formation and lignin

degradation. Lignin degradation is a complex process and its degradation

in Schizophyllum commune is greatly affected by the availability of oxygen.

Here, a total of six putative laccase genes (ScLAC) were identified from

the S. commune 20R-7-F01 genome. These genes, which include three

typical Cu-oxidase domains, can be classified into three groups based on

phylogenetic analysis. ScLAC showed distinct intron-exon structures and

conserved motifs, suggesting the conservation and diversity of ScLAC in gene

structures. Additionally, the number and type of cis-acting elements, such as

substrate utilization-, stress-, cell division- and transcription activation-related

cis-elements, varied between ScLAC genes, suggesting that the transcription

of laccase genes in S. commune 20R-7-F01 could be induced by different

substrates, stresses, or other factors. The SNP analysis of resequencing data

demonstrated that the ScLAC of S. commune inhabiting deep subseafloor

sediments were significantly different from those of S. commune inhabiting

terrestrial environments. Similarly, the large variation of conserved motifs

number and arrangement of laccase between subseafloor and terrestrial

strains indicated that ScLAC had a diverse structure. The expression of ScLAC5

and ScLAC6 genes was significantly up-regulated in lignin/lignite medium,

suggesting that these two laccase genes might be involved in fungal utilization

and degradation of lignite and lignin under anaerobic conditions. These

findings might help in understanding the function of laccase in white-rot

fungi and could provide a scientific basis for further exploring the relationship

between the LAC family and anaerobic degradation of lignin by S. commune.
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Introduction

Laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2)
is a metalloprotein belonging to the group of polyphenol
oxidases containing copper atoms in the catalytic site and
therefore also called blue multicopper oxidases (Baldrian, 2006).
Laccase proteins have three conserved domains (Cu-oxidase,
Cu-oxidase_2, and Cu-oxidase_3) that are utilized to identify
canonical laccases (Bento et al., 2006; Kudanga et al., 2011). Such
an arrangement of copper atoms distributed in three domains is
present in most of the bacterial and fungal laccases. The catalytic
capacity of laccases is actually non-specific but, in most cases,
laccases oxidize a range of aromatic compounds, including
phenolic moieties typically found in lignin, aromatic amines,
benzenothiols, and hydroxyindols as well as non-aromatic
compounds, using molecular oxygen as an electron acceptor
(Shiba et al., 2000; Claus, 2004; Rodríguez and Toca Herrera,
2006; Chirivì et al., 2012). Laccases have been implicated in a
variety of physiological functions in living organisms due to
their non-specific catalytic abilities.

Laccase was initially discovered in the Japanese lacquer tree
by Yoshida (1883), and since then, it has been found in all
domains of life: higher plants, some insects, a few bacteria,
and fungi (Solomon et al., 1996; Alexandre and Zhulin, 2000;
Claus, 2003). Basic characteristics and functions of laccases
are diverse both within and across biological kingdoms. In
plants, laccases participate in the radical-based mechanisms
of lignin polymer formation (Berthet et al., 2011; Hu et al.,
2018), while in fungi, laccases are hypothesized to play a
variety of physiological roles, such as stress defense, melanin
synthesis (Hua et al., 2018), fruiting-body formation (Lettera
et al., 2010; Zhang et al., 2015), and lignin degradation (Singh
and Sharma, 2010; Coconi et al., 2018). Lignin degradation is
the most important function of fungal laccase. Laccases can
directly depolymerize the lignin macromolecule, either alone
or in combination with other enzymes. Laccases catalyze the
removal of an electron from natural lignin’s phenolic hydroxyl
groups, resulting in free phenoxy radicals, and further oxidizes
to quinones. Additionally, laccases decarboxylate phenolic and
methoxyphenolic acid structures of lignin and cause their
demethylation or demethoxylation (Leonowicz et al., 2001).
Laccases also are useful biocatalysts for a wide range of
biotechnological applications due to their high non-specific
oxidation capacity and the use of readily available molecular
oxygen as an electron acceptor (Mayer and Staples, 2002).
In addition, laccases have important application values in
various industrial processes, including textile refining, dye
decolorization, bioremediation, lignocellulose delignification,
organic synthesis, and food processing (Bilal et al., 2017; Mtibaà
et al., 2018; Zhang et al., 2018).

Schizophyllum commune belongs to the white rot fungi
and is one of the most widely distributed mushrooms on
Earth. It is an effective wood-degrading basidiomycete that can

produce a large number of hydrolases such as xylanase (Gautam
et al., 2018), pectinase (Mehmood et al., 2019), cellulase
(Kumar B. et al., 2018), endoglucanase, glycoside hydrolase,
and oxidoreductase (Tovar-Herrera et al., 2018). Genome
sequencing of a terrestrial strain H4-8 revealed two laccase genes
and four genes encoding a distant relative of laccase (Ohm
et al., 2010). Our previous study indicated that S. commune
was the predominant fungal species in deep subseafloor coal-
bearing sediments ranging from ∼1.5 to ∼2.0 km below the
seafloor (kmbsf), and could grow under both anaerobic and
aerobic culture conditions (Liu et al., 2017; Zain Ul Arifeen
et al., 2020). Compared with other environmental isolates, strain
20R-7-F01 of S. commune isolated from ∼20-million-year-old
coal-bearing sediment at 1,966.3 kmbsf has a stronger ability
to adapt to in situ environmental conditions, including carbon
(energy) source, temperature, oxygen, and nitrogen source
(Zain Ul Arifeen et al., 2020).

Although laccases were identified and classified in various
S. commune strains (Kumar et al., 2015, Kumar V. P. et al., 2018;
Zhao et al., 2018; Kirtzel et al., 2019), an investigation of the
laccase gene family in S. commune at the whole-genome level
is yet to be conducted. In this study, we identified all possible
laccase-coding genes from the S. commune reference genome
(20R-7-F01). We then analyzed the physical and chemical
properties, gene structure, amino acid sequence, systematic
evolution, and expression patterns of the gene family in media
with or without lignin/lignite. The results could facilitate the
understanding of the laccase function in white-rot fungi and
provide a scientific basis for further exploring the relationship
between the LAC family and the anaerobic degradation of lignin
by S. commune.

Materials and methods

Strains and culture conditions

The fungal strains were isolated from subseafloor
sediment, which was collected by drilling vessel at Site
C0020 (41◦10.5983′N, 142◦12.0328′E) in the Pacific Plate off
the Shimokita Peninsula, Japan, during the IODP Expedition
337, at a water depth of 1,180 m (Inagaki et al., 2015; Liu et al.,
2017). Briefly, the sediment samples were ground into powder
in an anaerobic chamber with a flame-sterilized hammer,
placed evenly on three petri dishes containing specific media
that simulated to the in situ environmental conditions, and
incubated at 30◦C for 7∼14 days (Liu et al., 2017). S. commune
strains 6R-2-F01, 15R-5-F01, 20R-7-F01, and 24R-3-F01 were
obtained from the sediment samples at to 1,496; 1,924; 1,966,
and 1,993 mbsf, respectively. Two terrestrial strains CFCC_7252
and CFCC_86625 were purchased from China Forestry Culture
Collection Center, which were isolated from Populus wood in
Songshan, Beijing and Jurong, Jiangsu of China, respectively.

Frontiers in Microbiology frontiersin.org

169

https://doi.org/10.3389/fmicb.2022.923451
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-923451 August 2, 2022 Time: 15:18 # 3

Liu et al. 10.3389/fmicb.2022.923451

Strain MCCC_3A00233 collected from marine sediment of
the Atlantic Ocean was purchased from Third Institute of
Oceanography, State Oceanic Administration, People’s Republic
of China. and the other five terrestrial strains (225DK, 227DK,
MF, Hom2-8, and 207) were obtained from NCBI and JGI
database. Details of the habitat and culture conditions of
S. commune strains have been described previously (Liu et al.,
2022). All the fungal strains were maintained on potato dextrose
agar (PDA) at 30◦C. For DNA and RNA isolations, the fresh
mycelia of S. commune were inoculated into a 250-ml conical
flask containing 150 ml PD (200 g/L potato, 20 g/L glucose) and
incubated in a shaking chamber at 30◦C, 200 rpm for 7 days.

Identification of laccase gene family
members in Schizophyllum commune
20R-7-F01

The S. commune 20R-7-F01 genome was assembled using
SMRT Analysis and deposited in GenBank under the accession
number VCHW00000000. Laccase members contain Cu-
oxidase, Cu-oxidase_2, and Cu-oxidase_3 (PF00394, PF07731
and PF07732) domains. The three domains were searched in
the S. commune 20R-7-F01 genome using HAMMER software
(Finn et al., 2011), and protein sequences with three Cu-oxidase
domains in the LAC domain were recognized as members of the
LAC family. The laccase gene was named using the prefix Sc for
S. commune followed by the LAC gene family abbreviation and
numbered sequentially according to their position on unitigs.

Physical map of Schizophyllum
commune 20R-7-F01 laccase genes
and properties of laccase proteins

Using the S. commune 20R-7-F01 genome, the unitig length
and the starting position of genes on unitigs were obtained. After
statistical analysis, the physical distribution map of their unitigs
was visualized using Mapchart 2.32 software (Voorrips, 2002).
The theoretical isoelectric point (pI) and molecular weight
(MW) of ScLAC proteins were analyzed using the Compute
pI/MW tool on the ExPASy server1 (Wilkins et al., 1999).
Subcellular locations of the ScLAC members were determined
using the online software CELLO2 (Yu et al., 2006). Signal
peptides of each laccase were predicted using SignalP algorithm3

(Nielsen et al., 1997). Prediction of transmembrane regions was
performed with TMHMM Server4 (Krogh et al., 2001). The

1 http://web.expasy.org/

2 http://cello.life.nctu.edu.tw/

3 https://services.healthtech.dtu.dk/service.php?SignalP-5.0

4 https://services.healthtech.dtu.dk/service.php?TMHMM-2.0

glycosylation sites of the ScLAC members were predicted by
NetNGlyc 1.05 (Gupta and Brunak, 2002).

Analysis of gene structure and motif
composition

The sequence of laccase genes and their coding region
were first transformed into FASTA format then matched, and
intron/exon structure was determined by comparing the coding
sequence of each ScLAC gene with its genomic sequence using
the Gene Structure Display Server 2.06 (Hu B. et al., 2015).
In addition, the upstream regions (1.5 kb) of the ScLAC gene
sequences were extracted and used for the search of cis-elements
using YEASTRACT7 (Monteiro et al., 2020). Conserved motifs
of laccase proteins were identified statistically using MEME8

(Bailey et al., 2009), and the maximum number of motifs to find
was set at 10. Visualization of motif compositions was executed
with TBtools V1.09 (Chen et al., 2020).

Sequence alignment and phylogenetic
analysis

The identified ScLAC amino acid sequences were aligned
separately against each other using ClustalW in MEGA7.0
(Kumar et al., 2016). The conserved regions of ScLAC
were used to build the phylogenetic tree. The unrooted
phylogenetic tree was created using MEGA7.0 by a neighbor-
joining algorithm with bootstrap replication of 100 times. The
final phylogenetic tree was visualized and edited in iTOL9

(Letunic and Bork, 2016).

Genome resequencing and variant
calling

The genome resequencing and variant detection for
S. commune strains were carried out according to our previous
methods (Liu et al., 2022). Briefly, the genome DNA of
S. commune strains was extracted and fragmented to generate
an approximately 300 bp library insert size and sequenced on
an Illumina HiSeq 2500 platform at BGI Genomic (Shenzhen,
China). The filtered resequencing reads were mapped to the
reference genome of S. commune 20R-7-F01 for SNP and
variant detection.

5 https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0

6 http://gsds.gao-lab.org/index.php

7 http://www.yeastract.com/index.php

8 http://meme-suite.org/tools/meme

9 http://itol.embl.de/
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Transcriptome analysis

Total RNA was extracted from mycelia of strain 20R-
7-F01 that were cultured in bottles containing lignin and
lignite medium, and incubated under anaerobic (i.e., LigWO1-
3 and CoalWO1-3) and aerobic (i.e., LigO1-3 and CoalO1-3)
condition for seven days (30◦C), respectively. Each treatment
included three replicates. Lignite was collected from coal mine
in Xinjiang. It contains N 1.15%, C 68.7%, H 4.123%, S 1.642%,
organic component 98.17%, and inorganic component 1.83%,
and vitrinite reflectance was 0.49%. Lignin alkali was purchased
from Sigma (CAS# 8068-05-1), which contains 5% moisture.
After sampling, all mycelia were immediately frozen in a liquid
nitrogen tank and delivered to the Personal Biotechnology
Company (Shanghai, China) for mRNA extraction, cDNA
library construction, and sequencing. After trimming of low-
quality reads (Q < 20) and adapter contamination, the clean
reads were mapped to the assembled genome of strain 20R-7-
F01 using TopHat (Trapnell et al., 2009). Gene prediction was
performed using Cufflinks (Roberts et al., 2011). To compare
the gene expression level in different libraries, the transcript
level of each expressed gene was calculated and normalized
to the reads per kilobase of exon model per million mapped
reads (RPKM). We used DESeq software for differential analysis
of gene expression (Anders and Huber, 2010). Genes with
an adjusted p-value ≤0.01 and an absolute value of log2
(expression-fold change) ≥1 were deemed to be differentially
expressed (Hu L. et al., 2015). The Pheatmap software package in
R language was used to perform bidirectional cluster analysis of
differential genes and samples. Distances were calculated using
the Euclidean method and clustered by complete linkage.

Results

Laccase gene family of Schizophyllum
commune 20R-7-F01

To identify the laccase genes in S. commune 20R-7-F01,
we searched the genome with HAMMER software for Cu-
oxidase, Cu-oxidase_2, and Cu-oxidase_3 domains (PF00394,
PF07731, and PF07732). Six putative laccase genes (ScLAC1 to
ScLAC6) were identified (Table 1) and mapped to six of the
162 S. commune 20R-7-F01 unitigs (Figure 1), indicating that
the ScLAC gene family did not have the characteristics of tandem
replication or clustering.

ScLAC proteins

Basic information on all S. commune 20R-7-F01 laccases,
including gene name, physical location, amino acid length,
molecular weight, pI value, subcellular localization, signal

peptide and transmembrane topology, were presented in
Table 1. The length of laccase proteins ranged from 374 aa
(ScLAC6) to 1,137 aa (ScLAC3) residues, and the predicted
molecular weights were between 41.08 kDa (ScLAC6) and
125.25 kDa (ScLAC3). The predicted pI-values of the laccase
proteins were found to be in the range of 4.62 (ScLAC2)
to 6.56 (ScLAC6), indicating that they belonged to acidic
proteins. The predicted subcellular locations revealed that the
six laccase proteins were located in cytoplasm, nucleus, and
mitochondria, and were also found extracellularly. ScLAC1,
ScLAC4, and ScLAC6 were predicted to be localized only in
the extracellular space, whereas ScLAC3 was located either
in the nucleus or mitochondria, ScLAC2 was located in the
cytoplasm, and ScLAC5 was located in either the cytoplasm or
extracellular. ScLAC4–ScLAC6 were probably signal proteins,
while ScLAC1–ScLAC3 may not contain any signal regions.
ScLAC6 had transmembrane topology, while the other five
laccases did not contain transmembrane domains. Additionally,
variable N-glycosylation sites were predicted to be present in
all ScLAC proteins (Table 1), indicating that ScLAC family
exhibited potential post-translational modifications.

Gene structure, motif compositions,
and phylogeny of ScLAC

To reveal the structural diversity of S. commune 20R-7-F01
laccase genes, we constructed the exon/intron organization and
searched for conservative motifs based on the phylogenetic tree
of all S. commune 20R-7-F01 laccase alignments (Figure 2).
Phylogenomic analysis showed that the S. commune 20R-7-F01
laccase gene family was clustered into three branches, of which
ScLAC1 and ScLAC2 were one clade, ScLAC4 and ScLAC6 were
another clade, and ScLAC5 and ScLAC3 were the last clade
(Figure 2). In addition, to evaluate the number of laccase genes
in the genome of S. commune 20R-7-F01, the total number
of laccase genes was determined in other Agaricales. The total
number of laccase genes varied significantly among species,
ranging from 4 in Hebeloma cylindrosporum and Postia placenta
to 55 in Dendrothele bispora (Supplementary Figure 1). The
amount of laccase in Schizophyllaceae was relatively small
compared to other species. In addition, the total number of
laccases and protein-coding genes were normalized by genome
assembly (in Mb) to avoid potentially misleading comparisons
due to differences in genome size and total number of genes
among the investigated species. No positive correlation was
found between genome size or total number of predicted
genes and the number of laccase genes in the corresponding
genome (Supplementary Figure 1). For instance, D. bispora
showed the highest number of laccases (55), but Moniliophthora
perniciosa had the highest proportion of laccases per total
number of genes (0.22%).
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TABLE 1 Basic information of Schizophyllum commune laccases.

Gene name Gene ID Physical location AAL (aa) MW (D) pI SL SP TR N-Glyc

ScLAC1 unitig_8.g1172 3898655–3900801 565 62,635.26 4.81 Extracellular N N 7

ScLAC2 unitig_405.g35 137770–140761 511 56,942.17 4.62 Cytoplasmic N N 4

ScLAC3 unitig_432.g31 101263–107421 1,137 125,249.48 6.55 Nuclear, mitochondrial N N 6

ScLAC4 unitig_430.g21 92411–94931 564 61,367.09 5.62 Extracellular Y N 5

ScLAC5 unitig_21.g21 70020–72642 651 71,418.18 4.89 Cytoplasmic, extracellular Y N 10

ScLAC6 unitig_35.g69 325705–328463 374 41,084.33 6.56 Extracellular Y Y 4

FIGURE 1

Physical map of the Schizophyllum commune 20R-7-F01 laccase genes.

FIGURE 2

Phylogenetic relationships, gene structure, and motif compositions of the Schizophyllum commune 20R-7-F01 laccase gene family. (A) A
neighbor-joining tree of six ScLAC protein sequences constructed using MEGA v7.0. (B) The structure of the six ScLAC genes. Red squares
correspond to exons and shrinked green lines indicate introns. (C) Schematic motif composition of six ScLAC genes. The colored boxes
represent the different motifs, indicated in the top right-hand corner. The scales at the bottom of the image indicate the estimated exon/intron
and motif length in kb.

The number of introns of ScLAC family members varied
from 8 to 15. Surprisingly, nearly all of the closest genes on the
phylogenetic tree showed remarkably different gene structures.
For instance, the introns and exons of ScLAC5 were most
closely arranged, whereas its nearby paralogous gene ScLAC3
had the longest intron, although their evolutionary relationship
reached a 100% bootstrap value. Additionally, ScLAC6 had
the most introns; its coding sequences were divided into 15

parts by introns. In short, ScLAC3, ScLAC5, and ScLAC6 were
more complicated than the other laccase genes with respect to
their structure.

To further reveal the conserved motifs of the ScLAC
proteins, we analyzed six ScLAC proteins and identified 10
motifs using the MEME program (Figure 2). As expected,
the motif compositions of peer groups had different structures
and organizations, which indicated the possibility of functional

Frontiers in Microbiology frontiersin.org

172

https://doi.org/10.3389/fmicb.2022.923451
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-923451 August 2, 2022 Time: 15:18 # 6

Liu et al. 10.3389/fmicb.2022.923451

divergence among those proteins. Although 10 motifs were
found in every ScLAC protein, there were some differences
in the number of occurrences. For instance, motif-4 was
repeated three and six times in ScLAC5 and ScLAC3,
respectively. This difference in motif number across ScLAC
proteins indicated that different ScLAC proteins may have
different functions.

Cis-regulatory elements predicted in
the ScLAC promoters

To obtain further insights into the possible regulatory
patterns of ScLAC, we analyzed the cis-acting elements of the
1.5 kb regulatory sequence upstream of the six ScLAC gene
sequences using the Yeastract database. The promoter regions

of ScLAC1–ScLAC6 included various functional cis-acting
elements (Figure 3 and Supplementary Table 1) associated
with substrate utilization, stress, cell division, and transcription
activation. Among them, ScLAC6 had the most cis-elements,
including 16 stress-related, 15 substrate utilization-related,
nine cell division-related, and eight amino acid transcription-
related cis-elements. In addition, these laccases also contained
specific cis-elements; for example, ScLAC2 contained one
specific cis-element, named Nrg2p, which mediated glucose
repression and negatively regulated filamentous growth, while
ScLAC3 contained four specific cis-elements, which negatively
regulated nitrogen catabolic gene expression and were involved
in induction of CLN3 transcription in response to glucose
(Supplementary Figure 2 and Supplementary Table 1). The
differences in the number and types of cis-acting elements
in S. commune 20R-7-F01 suggested that the transcription

FIGURE 3

Phylogenetic and motif compositions of the Schizophyllum commune population laccase gene family. (A–F) Represent neighbor-joining tree of
ScLAC1-ScLAC6 protein sequences in S. commune population constructed using MEGA v7.0, and schematic motif composition of
ScLAC1-ScLAC6 genes in S. commune population. The colored boxes represent the different motifs, indicated in the top right-hand corner. The
scales at the bottom of the image indicate the motif length in kb.
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of laccase genes may be regulated by substrates, stresses,
or other factors.

Laccase differences between
subseafloor and terrestrial
environments

To understand the evolutionary relationships between
subseafloor and terrestrial laccase genes, five subseafloor and
eight terrestrial strains were re-sequenced. Phylogenetic analysis
based on SNP mutation sites showed that the ScLAC of
S. commune strains inhabiting deep subseafloor sediments
differed significantly from that of S. commune strains inhabiting
terrestrial environments (Figure 3). The average number of
SNP mutation sites of the five ScLAC in the terrestrial
strains was greater than those in subseafloor strains, with the
exception of ScLAC3, although it contained the most SNP
mutation sites (Supplementary Tables 2, 3). In addition, the
number and arrangement of conserved motifs in laccases
between subseafloor and terrestrial strains also showed various
differences, suggesting that ScLAC possessed a diverse structure.
Among them, the conserved domains of ScLAC2–ScLAC4 were
different in both subseafloor and terrestrial strains, indicating
that the evolution of these three laccase genes was not only
related to habitat but also related to strains (Figure 3).

Transcriptome analysis of six putative
laccase in lignite/lignin degradation

RNA-seq analysis of strain 20R-7-F01 cultured in
lignin/lignite-containing medium under aerobic and anaerobic
conditions at 30◦C for 7 days showed that the six laccase genes
could be classified into three groups (I, II, and III) (Figure 4).
The relative expression levels of ScLAC1 and ScLAC4 were lower
under anaerobic conditions than under aerobic conditions. In
contrast, the laccase genes of group II (ScLAC2 and ScLAC3)
and group III (ScLAC5 and ScLAC6) tended to be induced
by anaerobic conditions (Figure 4). Additionally, compared
with aerobic condition, the expression of ScLAC5 and ScLAC6
genes was upregulated by 2.48- and 2.10-fold in the anaerobic
conditions (Supplementary Table 4), suggesting that these
two laccase genes may be involved in anaerobic utilization and
degradation of lignite and lignin by fungi.

Discussion

Laccases as ligninolytic enzymes play important roles
in various biological processes of fungi, including lignin
degradation and fruiting-body formation, are typically
encoded by gene families (Vasina et al., 2015). Through

FIGURE 4

Heatmap of the expression profiles of laccase genes from
Schizophyllum commune 20R-7-F01 in various carbon sources
with or without oxygen. The heatmaps with hierarchical
clustering were visualized using the software heatmap2 and the
values were log2-transformed with normalization. The blue and
red elements indicate low and high relative expression levels,
respectively.

genome-sequencing analysis, we identified six laccase genes
in subseafloor S. commune 20R-7-F01, all of which contained
three conserved Cu-oxidase domains. However, significant
differences were found among these six genes; for instance,
very few amino acid sequence similarities were found, and their
exon-intron structures were diversified. This suggests that the
laccase genes of subseafloor S. commune have vast evolutional
and functional diversity.

The subcellular localization of proteins is invaluable
for understanding their functions and interactions with
other proteins (Peng and Gao, 2014). Based on subcellular
localization analysis, we found that the ScLAC were located
in extracellular, cytoplasmic and nuclear, and mitochondrial.
The wide distribution of ScLAC in S. commune indicated that
these enzymes might have distinct roles in response to various
environments (Yang et al., 2021).

The amino acid sequence of fungal laccase generally
contains a signal peptide sequence at the N-terminus to
guide transmembrane transfer (Jiao et al., 2018). However,
some fungal strains have no signal peptide sequence in
the laccase gene. For instance, LeLAC3 of Lentinula edodes
contained a signal peptide sequence in strain D703PP-9, but
was absent in strain W1-26 (Sakamoto et al., 2015; Yan
et al., 2019). The deficiency of signal peptide sequence was
also reported in Flammulina velutipes and Setosphaeria turcica
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(Wang et al., 2015; Liu et al., 2019), as well as in plants (Xu
et al., 2019). Our study also proved that ScLAC4–ScLAC6
in subseafloor S. commune 20R-7-F01 possessed the signal
peptide, while ScLAC1–ScLAC3 did not. These data suggest
that the laccase genes differ not only between species but
also within species.

In fungi, laccase genes differentiate into many paralogous
genes and perform various functions throughout the fungal life
cycle (Kumar et al., 2003). They are usually clustered in the
form of scaffolds; for instance, the 12 laccase genes in Pleurotus
ostreatus and 13 laccase genes in L. edodes were mapped into
six and seven scaffolds, respectively (Sakamoto et al., 2015; Jiao
et al., 2018). Here, we identified six laccase genes scattered in six
unitigs, which were thought to be only specific to S. commune
20R-7-F01 genome; similarly, six laccase genes were distributed
on five scaffolds of S. commune strain H4-8 genome. Therefore,
we inferred that this difference might be related to species and
strain differences.

Gene structure and protein motif analyses can provide a
theoretical basis for the function and classification of laccase
family genes (Wang et al., 2019). In general, genes in the
same group and subgroup should have a similar conserved
domain and motif distribution with closely related members
in the phylogenetic tree, revealing the functional similarity
between proteins in the same subgroup proteins (Yang et al.,
2021). Inconsistent with the results of previous studies, we
found that the most closely related members of laccase genes
in the phylogenetic tree of S. commune had highly diverse
motif compositions, and that the conserved motifs of laccases
between subseafloor and terrestrial strains were highly diverse.
The number and length of introns and exons in ScLAC genes
were significantly different. In general, groups B and C had
more exons and introns than group A (Figure 2). A small
number of introns in a gene usually are the result of genetic
evolution, which can rapidly regulate genes in response to stress
(Stival Sena et al., 2014). Introns are another source of sequence
variation (Jacob and Smith, 2017; Naro and Sette, 2017), and
intron retention may increase the diversity of proteins and the
complexity of genes expression (Zhang et al., 2004).

Cis-elements play significant roles in the regulatory process
to respond to multiple abiotic stresses (Feng et al., 2016).
The various cis-elements found in the promoter regions
of ScLAC genes were classified into four major groups:
substrate utilization-related, stress-related, cell division-related,
and amino acid transcription-related cis-elements. These cis-
elements may be recognized by some transcription factors
and were thus involved in the regulation and expression of
ScLAC genes. The presence of multiple cis-elements suggests
that ScLAC genes could be involved in fungal response to
multiple stresses. Laccases are thought to play an important role
in fruiting-body formation (Lettera et al., 2010; Zhang et al.,
2015) and our recent investigation found that the biosynthesis
of amino acids also helps in the formation of fruiting bodies

(Zain Ul Arifeen et al., 2021). Thus, the activation of amino acid
transcription-related cis-elements in ScLAC genes could explain
the possible role of ScLAC genes in fruiting-body formation.

Lignocellulose degradation by S. commune is an important
but complex process, which needs to be thoroughly understood.
S. commune utilizes more than 150 genera of woody plants
and can also colonize softwood and grass silage (Ohm
et al., 2010). As a model mushroom, S. commune H4-8 has
complete genome sequence and annotation, and possesses the
most extensive polysaccharide decomposition mechanism. The
genome of strain H4-8 is rich in the glycoside hydrolase family
(hemicellulose and pectin degradation) and polysaccharide lyase
family (pectin degradation), which enables it to degrade all
plant cell wall components, including lignin (Ohm et al.,
2010; Sornlake et al., 2017). Fungi are known to possess
a variety of lignin degrading enzymes including lignin
peroxidase, manganese peroxidase, dye decolorizing peroxidase,
multifunctional peroxidase, and laccase (Floudas et al., 2012).
Among these enzymes, laccases are the primary tool lignin
degradation in most basidiomycetes (white-rot fungi) and litter-
decomposing saprotrophic fungi (Janusz et al., 2020). Laccase
catalyzes the one-electron oxidation of substituted phenols,
aniline, and aromatic thiols to corresponding free radicals,
and reduces molecular oxygen to water (Qi et al., 2015). The
broad substrate specificities of laccases, coupled with their
use of molecular oxygen as the final electron acceptor rather
than the hydrogen peroxide used by ligninolytic peroxidases,
makes these enzymes suitable for lignin degradation. However,
laccase can only directly degrade phenolic compounds with
low-redox-potential, but cannot oxidize the most recalcitrant
aromatic hydrocarbons. Nevertheless, some low-molecular-
weight compounds produced by fungal degradation of lignin
can act as redox mediators to promote the oxidation of
refractory substrates (e.g., the non-phenolic lignin moiety) by
laccases (Eggert et al., 1996; Camarero et al., 2005).

Basically, laccase use molecular oxygen as the final electron
acceptor, and its activity is driven by the concentration of
available oxygen (Qi et al., 2015). However, it has been
proved that laccase can also oxidize catechol, o-aminophenol,
p-aminophenol, o-phenylenediamine, and p-phenylenediamine
under anaerobic conditions, with activities of 0.978, 0.707,
0.437, 3.603, and 1.039 mg µmol−1 min−1, respectively (Xie
et al., 1999). Shleev et al. (2005) observed direct electron
transfer (DET) between the gold electrode and the laccase of
Trametes hirsuta under anaerobic conditions. Our previous
study also proved that laccase may be involved in the anaerobic
degradation of phenanthrene by S. commune 20R-7-F01 (Zain
Ul Arifeen et al., 2022). Based on the transcriptome analysis
of S. commune 20R-7-F01 during lignin/lignite degradation,
we found for the first time that the expression of ScLAC1
was significantly downregulated under anaerobic conditions,
while the expression of ScLAC5 and ScLAC6 was significantly
up-regulated, compared with that under aerobic conditions
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(Figure 4 and Supplementary Table 4). These data suggested
that ScLAC5 and ScLAC6 may play an important role in the
utilization of lignite/lignin and other carbon sources by fungi
in anaerobic environment. However, the anaerobic catalytic
mechanism of laccase and its effect on fungi to obtain nutrition
and energy in the anaerobic subseafloor environments need to
be further studied.

Conclusion

A total of six putative laccase genes (ScLAC) with three
typical Cu-oxidase domains were identified in S. commune
20R-7-F01 genome. The physical locations of these genes were
mapped in six of 162 unitigs of S. commune 20R-7-F01. The
theoretical pI of deduced ScLAC proteins widely ranged from
4.62 to 6.56. The MW of the ScLAC proteins ranged from
41.08 to 125.25 kDa and the length varied between 374 and
1,137 amino acids. Based on phylogenetic analysis, the six
ScLAC genes were classified into three groups with distinct
intron-exon structures and conserved motif. All of the ScLAC
had cis-elements related to substrate utilization, stress, cell
division, and activates transcription of amino acid in the
promoter regions, while the number and type of cis-elements
had difference between each other. The phylogenetic tree of
resequencing data shows that there are many differences in
the number and arrangement of conserved motifs between
the ScLAC gene of S. commune strains inhabiting deep
subseafloor sediments and the ScLAC gene of strains inhabiting
terrestrial environments. The expressions of ScLAC5 and
ScLAC6 genes were significantly upregulation under anaerobic
conditions, implying that these two laccase genes might be
involved in anaerobic utilization and degradation of lignite and
lignin by fungi.

In summary, we identified all possible laccase-coding genes
from the S. commune reference genome (20R-7-F01) and
analyzed the physical and chemical properties, gene structure,
amino acid sequence, and systematic evolution, also studied
the expression patterns of the gene family under anaerobic
and aerobic by growing in lignin/lignite medium. Our data
and analysis could facilitate the understanding of the laccase
function of white-rot fungi and provide a scientific basis
for further exploring the relationship between the ScLAC
genes family and the anaerobic degradation of lignin by
S. commune.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found below: https://www.

ncbi.nlm.nih.gov/, PRJNA858196; https://www.ncbi.nlm.nih.
gov/, PRJNA738972.

Author contributions

XL performed data analysis and wrote the first draft of
the manuscript. MZ helped with data analysis and edited
the manuscript. YX cultivated strains of S. commune and
edited the manuscript. CL conceived the study and edited the
manuscript. All authors contributed to the article and approved
the submitted version.

Funding

This study was supported by the National Natural Science
Foundation of China (nos. 91951121, 41973073, and 41773083).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2022.923451/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Comparative analysis of the total number of laccases genes and their
distribution across the different subclades in the genome of Agaricales.
Percentage of laccases in total number of genes was calculated as
following: (total number of laccases/total number of predicted genes in
the genome) ×100. Genome size and number of predicted genes were
retrieved from NCBI or JGI and refer to the current version of the
assembled genome of each species.

SUPPLEMENTARY FIGURE 2

Venn analysis of predicted cis-elements in the promoter regions of
laccase genes from Schizophyllum commune 20R-7-F01.
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Fecal microbial signatures of
healthy Han individuals from
three bio-geographical zones in
Guangdong

Litao Huang1†, Liting Deng2†, Changhui Liu3†, Enping Huang1,

Xiaolong Han3, Cheng Xiao1, Xiaomin Liang1, Huilin Sun2*,

Chao Liu3* and Ling Chen1*

1Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic

Medicine, Southern Medical University, Guangzhou, China, 2The First A�liated Hospital of

Guangdong Pharmaceutical University, Guangzhou, China, 3Guangzhou Forensic Science Institute,

Guangzhou, China

Important forensic evidence traced from crime scenes, such as fecal materials,

can help in the forensic investigation of criminal cases. Intestines are the

largest microbial pool in the human body whose microbial community

is considered to be the human “second fingerprint”. The present study

explored the potential for community characteristics of gut microbes in

forensic medicine. Fecal microbiota profiles of healthy individuals from

three representative Han populations (Guangzhou, Shantou and Meizhou)

in Guangdong Province, China were evaluated using High-throughput

sequencing of V3-V4 hypervariable regions of the 16SrRNA gene. Results

of the present study showed that at the genus level, Shantou, Guangzhou,

and Meizhou behaved as Enterotype1, Enterotype2, and Enterotype3, which

were mainly composed of Bacteroides, Prevotella, and Blautia, respectively.

Based on OTU abundance at the genus level, using the random forest

prediction model, it was found that there might be potential for distinguishing

individuals of Guangzhou, Meizhou, and Shantou according to their fecal

microbial community. Moreover, the findings of the microbial community of

fecal samples in the present study were significantly di�erent from that of

saliva samples reported in our previous study, and thus it is evident that the

saliva and feces can be distinguished. In conclusion, this study reported the

fecal microbial signature of three Han populations, which may provide basic

data for the potential application in forensic practice, containing body fluid

identification, and geographical inference.

KEYWORDS

forensic medicine, feces, gut microbiome, 16S rRNA gene sequencing, Guangdong

Han individuals

Introduction

Human beings live in a world full of microbes, and co-evolution, co-adaptation

as well as co-dependence are the relationships between them and indigenous

microbiota (Turnbaugh et al., 2007; Blaser and Falkow, 2009). Microorganisms

exist in many sites of the human body mainly in the intestines. They also have
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a profound influence on human physiological metabolism and

nutrition regulation (Hooper and Gordon, 2001). The human

intestinal tract, a nutrient-rich microenvironment, carries 100

trillion (1014) bacteria which are about 10 times more than

the number of human cells (Hooper et al., 2002; Bäckhed

et al., 2005). The colon is the main contributor to the total

number of bacteria in the entire intestine with a density close

to 1011-1012cells/ml (Ley et al., 2006; Sender et al., 2016). Non-

invasive fecal samples (the part in the middle of feces that

is not in contact with the air and the ground) are usually

considered representative of colonic microorganisms for they

are easy to obtain and do not harm the subject (Davenport

et al., 2017). Next-generation sequencing (NGS) using 16SrRNA

gene sequence analysis overcomes the shortcomings that most

traditional microorganisms cannot be cultivated and performed

much deeper microbial community analysis at a low cost

(Weinstock, 2012).

Feces have been specified as the important evidence for

specific crimes, including burglary, robbery, and sexual cases.

Particularly, in anal sexual assault cases, fecal traces of the victim

may be left on a condom at the crime scene (Johnson et al., 2005).

When analyzed, the microbial community in feces may help in

individual identification and tracing the source of tissues and

body fluids. Quaak et al. distinguished individuals by researching

the microbial profiles generated in fecal samples from 35 healthy

volunteers of different ages. It was then proposed that individual

identification can be carried out by applying the fecal microbial

profile to the increase evidence value of the trace when there

was no or only part of human STR in fecal samples (Quaak

et al., 2017). Microarray was also performed to analyze 175

samples from healthy individuals, successfully distinguishing

and identifying the oral cavity, feces, and skin samples. The

study noted that it might be beneficial for presenting important

corroborating evidence for the scene left by the victim and/or

suspect, aiding in the reconstruction of a case process (Quaak

et al., 2018).

Recent studies have shown that the human intestinal

microbial community is not only affected by the host’s own

factors, but also by external factors (Wen and Duffy, 2017).

In general, geography and environment have shown the main

influence on intestinal microbes (He et al., 2018; Rothschild

et al., 2018). Guangdong Province is located in the southernmost

part of mainland China and is an important heritage site

of Lingnan culture. Lingnan Han groups, consisting of the

Guangfu, Hakka, and Chaoshan, account for a majority of

Han people in Guangdong. They have a unique culture in

terms of language, customs, and living habits. For instance,

Guangfu people speak Cantonese, cook Cantonese cuisine, and

live mainly in the Pearl River Delta area of Guangdong. Further,

Hakkas people are concentrated in northern Guangdong, mainly

Hakka dialect and Hakka cuisine, together with Chaoshan

people living in eastern Guangdong have their own Chaoshan

dialects and Chaoshan cuisine (Wang et al., 2010; Du et al.,

2019). Guangdong’s three Han characteristic population was

recognized as a branch of Han Chinese, and the gut microbiome

characterization and forensic potential of these three groups

are poorly defined or still need to be explored. The current

study aimed to reveal the differences in fecal microbiota between

the groups. Indigenous Han individuals from Guangzhou,

Meizhou, and Shantou were selected as the representative of

Guangfu, Hakka, and Chaoshan individuals, respectively. The

fecal samples were collected and characterized through high-

throughput sequencing of the samples in the V3-V4 region of

the 16SrRNA gene. The prospect of forensic application of fecal

microbiota was valued.

Materials and methods

Sample collection

This study was approved by the Biomedical Ethics

Committee of Southern Medical University, Guangzhou, China.

After obtaining informed consent, a total of 59 fecal samples

were collected from healthy Han individuals (aged between 16

and 62) who had lived in Guangzhou, Meizhou, and Shantou

for more than three generations in Guangdong Province, China.

A total of 19, 20, and 20 samples from people in Guangzhou,

Meizhou, and Shantou, respectively were collected. Participants

were balanced by age and sex, divided into age1 (16–32 years

old) and age2 (33–62 years old) groups, male and female groups.

The participants received adequate training and guidance on the

sample collection process before fecal collection and one sample

was then collected per participant. The exclusion criteria were

(1) participants who reported antibiotic use/other treatments

within 3 months. (2) participants were diagnosed with any

inflammation-related bowel disease or gastrointestinal disease

within 3 months. (3) participants who lived <1 year or left the

province within 1 month. According to the above criteria, a total

of 59 healthy individuals from the three regions were included,

and all fecal samples collected were named “F” (Guangzhou

sample numbered from 1 to 19, Shantou sample numbers were

from 20 to 39, Meizhou sample numbers were from 40 to 59).

The participants used a sterile spoon to dig out a fallen scoop

(about 3–5g) of fecal samples, collected them in a sterile plastic

container, and immediately stored them in a refrigerator at-

80◦C in the laboratory awaiting extraction of the fecal bacterial

genomic DNA.

DNA extraction, PCR amplification, and
sequencing

Bacterial genomic DNA in the samples was extracted

using QIAamp DNA Stool Mini Kit (QIAGEN, Hilden,

Germany), according to the manufacturer’s instructions.
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The concentration and purity of DNA were quantified by

using an ultraviolet spectrophotometer and DNA extraction

quality is checked by 1% agarose gel electrophoresis. Qualified

DNA samples were amplified using bacterial 16S rRNA

corresponding DNA sequence V3-V4 region universal primers

338F (5′- ACTCCTACGGGAGGCAGCA−3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT−3′) which contained a

unique sequence tag to barcode each sample. PCR enrichment

was performed in a 25µl reaction containing 12.5µl of 2×Q5

Master Mix, 0.2µM of each primer,120ng of the extracted

DNA, and Nuclease-free water. PCR reaction amplification

conditions were: initial denaturation at 98◦C for 5 mins;

followed by 15-21 cycles of denaturation at 98◦C for 10 s,

primer annealing at 57◦C for 30 s, extension at 72◦C for 30 s;

and a final extension step at 72◦C for 5min. The PCR products

were purified with AmpureXP beads and eluted in the Elution

buffer. Libraries were built with NEB Next UltraTM DNA

Library Prep Kit for Illumina ( New England Biolabs Inc,

Ipswich, USA). And then the validated libraries were used

for sequencing on the Illumina MiSeq platform (Illumina

Corporation, San Diego, USA). The sequencing data have

been deposited in NCBI BioProject PRJNA824624 with the

Biosample accessions SAMN27409411-SAMN27409469.

Bioinformatics analysis

The raw reads obtained by sequencing are filtered to obtain

high-quality data (clean reads) for downstream analysis. Using

the software FLASH (Magoč and Salzberg, 2011) (Fast Length

Adjustment of Short reads,v1.2.11), the paired reads obtained by

double terminal sequencing are assembled into a sequence, that

is, a tag, by using the overlapping relationship. Use CUTADAPT

(Martin, 2011) to remove tags containing primers, refer to

the gold database (v20110519) chimera database, and use the

UCHIME method in the VSEARCH (v2.3.4) (Rognes et al.,

2016) software to remove the tags containing the chimera. Use

VSEARCH (v2.3.4) software to cluster Tags with a similarity>

97% into an OTU, and get the OTU representative sequence. Use

RDP classifier (v2.2) (Wang et al., 2007) software to compare

OTU representative sequence with Silva(v128) database for

species annotation. Alpha diversity is used to analyze the species

diversity in the sample, using mothur (v1.39.5) (Schloss et al.,

2009) software to calculate 5 indicators, including Chao, Ace,

Shannon, and Simpson. Beta diversity is used to measure

the diversity between samples, calculated using QIIME (v1.80)

(Caporaso et al., 2010) software. The rest of the graphics are

implemented using R package (v3.0.3). Use LEfSe (LDA Effect

Size) (v1.0) (Segata et al., 2011) to calculate the LDA score value.

The significant flora must meet the threshold p < 0.05 and the

LDA score value ≥2.0 (or ≤-2.0). Through the use of QIIME

(v1.80) (Schloss et al., 2009) software, the use of similarity

analysis (ANOSIM) for group comparison analysis, to find out

the different components in the group.

Machine learning process

Random forest analysis was used to perform classification.

This method constructed multiple decision trees by using the

information contained in input features and predicted the

classification of three regions by combining multiple weak

classifiers (Breiman, 2001). According to the random forest

method in the R package RandomForest (v4.6-14), the OTUdata

of intestinal microorganisms in the three regions was used to

build a model for predicting the sample distribution in the areas.

The RF classification method was divided into two steps: one

was to build a decision tree based on randomly selected samples

(the training set) which include 70% of the original data set (42

samples). The other one was to use the test set which was the

remaining samples (17 samples) in the original data set to verify

the decision tree (Svetnik et al., 2003). In addition, the receiver

operating characteristic (ROC) curve was used to evaluate the

constructed model, and the area under the ROC curve (AUC)

was used to designate the ROC effect to evaluate the potential of

intestinal microbial markers to predict different regions.

Results

Correlation with age and sex of the
subjects

The present study explored the relationship between the

composition of the gut microbial community and age as well as

sex in the entire population. The results of ANOSIM analysis

of the present study based on Bray–Curtis distance showed

that there was no significant difference in the gut microbial

community between age 1 and age 2 group (p = 0.49), and the

male and female group (p= 0.30).

Whole sequencing data

Fecal samples of 59 healthy individuals from Guangzhou,

Meizhou, and Shantou, Guangdong Province were subjected to

high-throughput sequencing of 16SrRNA gene. After filtering,

a data set consisting of 4256.44Mbp of effective and high-

quality 16SrRNA gene sequences were generated, including

16,740,484 reads (median=221,912 reads, ranging from 79,892

to 599,496 reads; Supplementary Table 1). A cluster analysis of

97% similarity was performed to determine a total of 3,419

OTUs. All the valid sequences were annotated with species at

different taxonomic levels, which yielded a total of 3,419 OTUs,

belonging to 13 phyla, 15 classes, 21 orders, 35 families, 119
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FIGURE 1

Venn diagrams of bacterial OTUs in all fecal samples from people in Guangzhou, Meizhou and Shantou.

genera, and 22 species. The Venn diagram showed that the

number of unique OTUs in Guangzhou, Meizhou, and Shantou

was 414, 163, and 177, respectively, with 1667 OTUs shared by

all the samples in the present study (Figure 1).

Richness and diversity of microbial
communities

Microbial complexity in the feces was estimated based on

alpha-diversity indices (Chao, Ace, Simpson, and Shannon), and

the results showed that there was no significant difference in the

diversity among all individuals in each group (Figures 2E–H).

Pairwise diversity of the three groups in the present study,

the indices of Chao and Ace represented the species richness.

The results of the present study showed that individuals from

Guangzhou and Shantou had significantly higher index values

as compared with those from Meizhou (Figures 2A,B). Results

of the Simpson diversity index in the current study revealed that

the three regions had similar statistical index values, indicating

no significant difference in species diversity (Figure 2C; p >

0.05). In addition, the sparse curve of the Shannon index showed

a trend toward saturation as presented in Figure 2D which

illustrated sufficient sequencing depth.

Overview of bacterial community
composition

The average relative abundance of the three groups at

the phylum and genus level was also evaluated to further

intuitively uncover the microbial composition characteristics

in the three regional groups as presented in Figure 3. It was

found that phylum Firmicutes was the most predominant

phyla in Guangzhou, Meizhou, and Shantou, with relative

abundances of 46.7, 43.4, and 62.5%, respectively. This was

followed by phylum Bacteroidetes, which contributed 43.1,

38.2, and 16.1% of the total sequences. Further, it was noted

that Bacteroides had the highest abundance in the bacterial

communities of fecal samples at the genus level, accounting

for 28.7, 31.7, and 12.7% in Guangzhou, Meizhou, and

Shantou, respectively. On the other hand, Faecalibacterium
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FIGURE 2

Di�erences in bacterial alpha diversity among the three regions: (A,E) Chao. (B,F) Ace. (C,G) Simpson diversity. (D,H) Shannon index.

accounted for 7.4, 7.9, and 8.9% in Guangzhou, Meizhou, and

Shantou, respectively. The remaining top 10 bacterial genera

were Blautia, Eubacterium_rectale_group, Bifidobacterium,

Roseburia, Prevotella_9, Megamonas, Escherichia-Shigella, and

Fusobacterium. Besides, it was found that the relative abundance

of Bifidobacterium was 1.54%, 1.04%, and 5.09% in Guangzhou,

Meizhou, and Shantou, respectively.

Genus-level core intestinal flora and
comparison of feces and saliva

The intestinal core microbiome was determined at the

genus level and defined as bacteria with >0.1% abundance in

≥80% of the respective samples (Dehingia et al., 2015). It was

found that there were six main genera in the fecal samples of all

individuals, which constituted a genera-level phylogenetic core,

including Bacteroides, Blautia, Eubacterium_hallii_group,

Faecalibacterium, Lachnoclostridium, and Roseburia

(Supplementary Table 2). Further, these fecal samples were

used to compare with saliva samples we previously published

(Yao et al., 2021) and the results of the comparisons were as

shown in Supplementary Figure 1. The data of the present study

on principal coordinate analysis (PCoA) based on genus-level

abundance revealed that there was a clear distinction between

fecal samples and saliva samples. Further, the linear discriminant

analysis (LDA) histogram reflected that at the genus level, the

relative abundance of Bacteroides, Faecalibacterium, Blautia,

and Bifidobacteriumwas higher in the fecal samples, whereas the

relative abundance of Streptococcus, Gemella, Porphyromonas,

and Haemophilus was higher in the saliva samples.

Beta diversity of bacterial communities

Beta diversity was assessed by PCoA and ANOSIM

analysis using the Bray–Curtis distance method at the

operational classification unit (OTU) level to further indicate

the similarity between microbial communities. Although

there were some slight overlaps in individual samples, the

samples of Guangzhou and Meizhou groups, Shantou and

Meizhou groups were roughly clustered. The similar structure

of the intestinal microbiota community was found in the

fecal samples between Guangzhou and Shantou, indicating
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FIGURE 3

Distribution of intestinal microbes at di�erent taxonomic levels in Guangzhou, Meizhou and Shantou populations. Two levels of dominant taxa

are shown (Others: <0.5% relative abundance). (A) Distribution at the phylum level. (B) Distribution at the genus level.

an overlap in community structure (Figures 4A–C). The

samples of the Meizhou population formed an “out-group,”

which was generally not confounding with the samples of

the Guangzhou or Shantou populations (Figure 4D). The

ANOSIM analysis was performed on the three geographical

groups (Supplementary Figure 2), and the results of this

study demonstrated that the differences between the groups

were greater than the differences within the groups, and

the groupings were statistically significant (R = 0.3254, p

= 0.0010).

Frontiers inMicrobiology frontiersin.org

184

https://doi.org/10.3389/fmicb.2022.920780
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2022.920780

FIGURE 4

Taxonomic diversity of microbiomes from samples from Guangzhou, Meizhou, and Shantou. The principal coordinate analysis (PCoA) graph

analysis is based on the Bray-Curtis distance at the operational classification unit (OTU) level, and each sample is represented by a point. (A)

Guangzhou vs. Meizhou. (B) Shantou vs. Meizhou. (C) Guangzhou vs. Shantou. (D) Guangzhou vs. Shantou vs. Meizhou.

Comparison of di�erences among three
regions

The linear discriminant analysis effect size (LEfSe) test

for biomarkers was used to find the taxa with the strongest

effect on region differentiation. The Cladogram chart showed

that there were at least two significant differences in the

phylum, class, order, family, genus, and species level in the

fecal samples from Guangzhou and Meizhou (Figure 5A).

The composition of the microbial community of the fecal

samples from Shantou at the phylum level was not significantly

different from that of Guangzhou and Meizhou. In addition, at

least three significantly different microorganisms were found

at the level of class, order, family, genus, and species levels.

Further, a total of 96 differentially abundant taxa were found

in the three regions shown in the histogram of LDA value

distribution (Figure 5B). At the phylum level, the significant

differences in the samples of the Guangzhou and Meizhou

populations were mainly Bacteroidetes, and Firmicutes,

respectively. The top five microorganisms with significant

differences at the genus level in the three regions included

Prevotella-9, Megamonas, Fusobacterium, Lachnospira,

and Prevotella_2 in Guangzhou, Bacteroides, Actinomyces,

Paraprevotella, Bulleidia, Bilophila in Shantou, and Blautia,

Bifidobacterium, Erysipelotrichaceae_UCG_003, Klebsiella,

Citrobacter in Meizhou.

Random forest

During the construction of a random forest model based on

the composition of gut microbes, top 230 OTUs markers were

set as the best set. The markers performed well and were on

the training set (n = 42, 14 samples in Guangzhou, Shantou

and Meizhou). The validation set of the random forest model

(n = 17, 5 Guangzhou samples, 6 Meizhou samples, and 6

Shantou samples) showed that 12 of the 17 validation samples

were correctly classified, and 100% of the Meizhou samples were

Frontiers inMicrobiology frontiersin.org

185

https://doi.org/10.3389/fmicb.2022.920780
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2022.920780

FIGURE 5

Di�erentially abundant taxa between the three regions. These di�erent genera from phylum to genus were identified by linear discriminant

analysis (LDA) using LEfSe. (A) Cladogram result graph. (B) Linear discriminant analysis (LDA) value distribution histogram. Red: Guangzhou;

green: Meizhou; blue: Shantou.

correctly predicted, whereas 2 Guangzhou samples (F7 and F8)

were identified as Shantou samples and 3 Shantou samples (F23,

F25, and F34) were identified as Guangzhou samples, with an

overall accuracy of 70.59%. The performance of the model was

evaluated using ROC analysis. The AUC of the area under the

curve in Guangzhou, Shantou, andMeizhou were 0.88, 0.73, and

1.00, respectively (Figure 6).

Discussions

The present study explored the correlation between the

gut microbiota of the entire population and age as well

as sex. Further, the ANOSIM analysis showed that there

were no statistical difference between the intestinal microbial

community structures between 16 and 32 as well as between

33 and 62 years of age. Previous studies had shown

that Bifidobacterium was dominant in infants and a larger

proportion of Bacteroides was dominant in elderly individuals

(Claesson et al., 2011; Yatsunenko et al., 2012). On the other

hand, Firmicutes and Bacteroidetes as the dominant bacteria

were mainly dominant in adults. The established microbiota

composition remained unchanged when there was no change in

long-term eating habits and pathophysiology (Adak and Khan,

2019). In the current study, the small difference between the two

age groups could be associated with most young individuals in

the current study (45 cases, 76.27% between 25–45 years old),

with only one individual who was over 60 years old. In addition,

it was evident from the results of this study that there were

no statistical differences in fecal microbiota between males and

females. The finding of the present study was consistent with the

results of a study carried out by Arumugam et al. that found

that sex had no effect on the structure of the gut microbes

of individuals from six different countries (Arumugam et al.,

2011). Moreover, several other studies have also shown that sex

factors have less influence on the gut microbial community than
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FIGURE 6

Receiver operating characteristic (ROC) curves trained on the

OTU abundance demonstrate the performance of distinguishing

fecal samples from Guangzhou, Shantou, and Meizhou. Yellow

line: Guangzhou; blue line: Shantou; and green line: Meizhou.

other factors (Kovacs et al., 2011; Human Microbiome Project

Consortium, 2012).

The analyses performed at the phylum level in the present

study showed that the intestinal microbiota of this research

was made up of the four most important phyla, including

Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria.

It was evident that phylum Firmicutes and Bacteroides were

the most abundant. This was similar to the results of previous

studies (Jandhyala et al., 2015). Although the diversity of gut

microbes at the phylum level was low, it was noted that they

had significantly high diversity at the genus level. From the

results of the current experiments, the predominant genera in

all individuals was Bacteroides, followed by Faecalibacterium. A

previous study reported that China had the highest abundance

of Bacteroides at the genus level as compared with four other

countries. This was consistent with the findings of the present

study. Furthermore, the study reported that Japan had higher

levels of Bifidobacterium whereas the abundance of Prevotella

and Faecalibacterium was relatively higher in Korea (Nam et al.,

2011). Previous studies had also indicated that Faecalibacterium

was more dominant in the populations of Hadza, Italy, and the

United States. Furthermore, Prevotella was a significant genus

found among the Indian tribes, Mongolians, American Indians,

and Malawi tribes (Dehingia et al., 2015). This difference in

dominant genus originates from the variations in the intestinal

microbiome, whereas the changes in the intestinal microbiome

may be caused by geography and ethnicity among other factors

(Dwiyanto et al., 2021).

One of the main interests of human gut microbial

research was toward the core microbiota. The bacterial

genera of Faecalibacterium, Eubacterium, Clostridium,

Blautia, Ruminococcus, and Roseburia were found to be

the core gut microbiota in the representative populations of

the world (Dehingia et al., 2015). In the current study, six

genera-level core intestinal bacteria of the gut microbiota,

ubiquitously in unrelated individuals from Guangdong,

which were Bacteroides, Blautia, Eubacterium_hallii_group,

Faecalibacterium, Lachnoclostridium, and Roseburia. A

microbial analysis report from nine provinces in China

revealed a total of nine core bacteria (Balutia, Clostridium,

Ruminocossus, Faecalibacterium, Subdoligranulum, Roseburia,

Coproccus, Bacteroides, and Phascolarctobacterium) (Zhang

et al., 2015). In healthy western individuals, Bifidobacterium,

Bacteroides, Faecalibacterium, Ruminococcus, Blautia, Dorea,

Eubacterium, and Coprococcus were the core intestinal bacteria

genus (Martínez et al., 2013). Further, the intestinal core

flora shared by these people were Bacteroides, Blautia, and

Faecalibacterium. In addition, more than 45% of the common

bacterial genera could be detected in both feces and oral

cavities (Segata et al., 2012). It is worth mentioning that the

establishment of the intestinal saliva microbial communities

was similar. According to a study by Schmidt et al., transmission

to, and subsequent colonization of the large intestine by oral

microbes commonly occurred in healthy individuals. Although

it has been previously reported that Streptococcus salivarius and

S. mutans were particularly found in saliva (Tagg and Ragland,

1991). A study conducted by Kai-NanZou et al. showed that

the bacteria in the intestines overlapped with those in feces

(Zou et al., 2016). These results indicated that the identification

of sample types using a single microbial marker may be

misjudged. The findings of fecal samples in the present study

were compared with those of saliva samples in our previously

published study (Yao et al., 2021). In addition, the results

showed that fecal and saliva samples can be distinguished,

which could avoid the defect of single microbial markers to

identify both saliva and feces samples.

The PCoA displayed regional differences in intestinal

microorganisms between Meizhou and the other two regions.

Different geographic origins of humans may result in diverse

compositions of the gut microbiome, due to distinctive genetic

backgrounds or life environments (Li and Zhao, 2015). Guangfu

and Chaoshan populations occupied the two rich areas of

the Pearl River delta plain and Chaoshan plain, respectively.

The barren and backward mountainous areas of northern

and eastern Guangdong were the basic distribution areas of

the Hakka people. Several studies have demonstrated that

geographic location plays an important role in shaping the

intestinal microbial community, and dietary habits could also

affect the composition and distribution of intestinal microbes

(De Filippo et al., 2010; Zhang et al., 2013; Singh et al.,

2017). Through a return visit to the volunteers in the three

regions, they simply recorded their eating habits. The Meizhou

area was dominated by greasy food, whereas the Guangzhou

and Shantou areas were dominated by intake of a light diet

(Song et al., 2005; Zhong et al., 2017; Wang et al., 2019).
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A high-fat diet had been shown to reduce the diversity and

richness of human gut microbial communities, which was

negatively correlated with the abundance of Bifidobacterium.

Furthermore, Caesar et al. reported that Bacteroides increased

in mice fed with lard (De Filippo et al., 2010; Caesar et al.,

2015; Khine et al., 2019). The results of the present study

suggested that the intestinal microbes in Meizhou had the

lowest abundance of Bifidobacterium and microbial alpha

diversity, whereas Bacteroides showed the highest abundance

among the three regions. This might be related to the

fact that Hakka ancestors lived in mountainous areas with

inconvenient transportation, expended much physical strength

on their daily labor, and needed to supplement foods with

rich fat sources such as lard, developing a diet that preferred

greasy foods. Therefore, diet may also be an important factor

affecting the microbial differences in fecal samples from the

three geographical regions. The dietary associations seen here

paralleled a recent study comparing European and African,

Europeans consuming high-fat foods formed a typical taxonomy

dominated by Bacteroidetes, while Africans consuming low-fat

diets had higher microbial diversity (De Filippo et al., 2010). At

the same time, a study of American populations showed that the

gut flora of individuals with a typical western diet high in animal

fat and protein was dominated by Bacteroides (Wu et al., 2011).

There are, of course, many differences between the three regions

that might influence the gut microbiome, but dietary differences

provide an attractive potential explanation.

According to the results of the ANOSIM analysis,

there were significant differences in the intestinal bacterial

community composition in samples from the three regions.

A previous study identified three intestinal types: Bacteroides

(Enterotype 1), Prevotella (Enterotype 2), and Ruminococcus

(Enterotype 3) (Arumugam et al., 2011), which could afford a

strong discriminatory classification ability among European

individuals, although other studies had reported that Enterotype

3 was an uncertain bacterial composition (Liang et al., 2017).

Hyun Seok et al. showed that structure of gut microbiota

variations across the geographical location. The characterization

of population distribution according to the three enterotype

classifications showed that the distributions of Enterotype 2

and Enterotype 1 differed by region. Samples from the U.S.

and Japan had large numbers of Enterotype 1, while samples

from Amazon natives in Venezuela, as well as from Malawi and

Tanzania in Africa had large numbers of Enterotype 2 (Oh et al.,

2022). In the present study, linear discriminant analysis (LDA)

using LEfSe showed that Shantou, Guangzhou, and Meizhou

belonged to Enterotype 1, Enterotype 2, and Enterotype 3,

which were mainly composed of Bacteroides, Prevotella, and

Blautia, respectively.

The present study attempted to construct a prediction

model on the basis of OTU abundance of a genus of

intestinal microbes for biogeographic inference. According to

the parameter importance ranking of random forest, the most

important characteristic differences in classification were mainly

Bacteroides, Lactobacillus, and Prevotella-9. Similar to LEfSe

analysis, it might be inferred that the main flora of intestinal

microbes could be used as a factor in predicting geographic

location. Likewise, a study conducted by De Filippo et al. found

that Firmicutes and Bacteroides could distinguish children in

rural Europe and Africa has significantly demonstrated that

Prevotella was a powerful tool for discriminatory classification

(De Filippo et al., 2010). The present study found that through

verification, the accuracy of the predictions in the three regions

was very high, especially in the Meizhou area, where the AUC

was 1. All the samples from Meizhou in the verification set were

correctly classified, whereas the performance of Guangzhou and

Shantou was not satisfactory (the Guangzhou sample and the

Shantou sample misjudged each other). Further, the finding of

this study was similar to the results of PCoA. It might be possible

that a combination of geography, dietary, and other factors play

an important role (Yatsunenko et al., 2012). This needs to be

understood by further research.

This study provides the first insight into the gut microbiome

data of the three characteristic Han populations in Guangdong,

which can enrich gut flora information of Chinese ethnic

groups. And joint analysis of geography and diet might

be helpful to provide enlightening information for forensic

science. In addition, due to the complexity of the population

composition and living environment of Guangdong Province,

so the representativeness of researching samples from the

selected three regions is limited. In our current study, individual

differences need to be analyzed with large sample size, and the

research is still limited to the relative abundance at the genus

level. In the future, the sample size will be expanded, sample

table information will be recorded in detail (recording used

water sources, Food Frequency Questionnaire (FFQ), and other

factors), and fecal microbiome analysis will be performed in

depth based on microbial species level and sequence. In order to

observe the flora differences in different regions of Guangdong

Province, follow-up studies will further explore the gut flora of

multi-ethnic and multiregional populations.

Conclusion

In conclusion, the current study used high-throughput

sequencing methods to study the characteristics of the fecal

microbial community of healthy Han individuals living in three

regions of Guangdong Province. The results of the current study

showed that the composition of intestinal microbes was mainly

composed of Bacteroides, Faecalibacterium, and Blautia at the

genus level. The feces could be significantly distinguished from

saliva samples according to microbial differences at the genus

level of both. Further, the populations in the three regions

exhibited different enterotype classifications and the prediction

model based on the random forest algorithm evidently showed
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a significant effect in distinguishing individuals, which might be

due to regional differences. In conclusion, microbial community

information in feces may have the potential for forensic analysis

of body fluid traceability and regionally specific.
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Objective: A growing body of literature has shown that maternal diet during 

pregnancy is associated with infant gut bacterial composition. However, 

whether maternal diet during lactation affects the exclusively breastfed infant 

gut microbiome remains understudied. This study sets out to determine 

whether a two-week of a reduced fat and sugar maternal dietary intervention 

during lactation is associated with changes in the infant gut microbiome 

composition and function.

Design: Stool samples were collected from four female and six male (n = 10) 

infants immediately before and after the intervention. Maternal baseline diet 

from healthy mothers aged 22–37 was assessed using 24-h dietary recall. 

During the 2-week dietary intervention, mothers were provided with meals 

and their dietary intake was calculated using FoodWorks 10 Software. Shotgun 

metagenomic sequencing was used to characterize the infant gut microbiome 

composition and function.

Results: In all but one participant, maternal fat and sugar intake during the 

intervention were significantly lower than at baseline. The functional capacity 

of the infant gut microbiome was significantly altered by the intervention, with 

increased levels of genes associated with 28 bacterial metabolic pathways 

involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), 

carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the 

dietary intervention did not affect the bacterial composition of the infant 

gut microbiome, relative difference in maternal fiber intake was positively 

associated with increased abundance of genes involved in biosynthesis of 

storage compounds (p = 0.016), such as cyanophycin. Relative difference in 

maternal protein intake was negatively associated with Veillonella parvula 
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(p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). 

Relative difference in maternal sugar intake was positively associated with 

Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake 

was positively associated with genes involved in the biosynthesis of storage 

compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator 

(p = 0.038) metabolic pathways.

Conclusion: This pilot study demonstrates that a short-term maternal dietary 

intervention during lactation can significantly alter the functional potential, 

but not bacterial taxonomy, of the breastfed infant gut microbiome. While the 

overall diet itself was not able to change the composition of the infant gut 

microbiome, changes in intakes of maternal protein and sugar during lactation 

were correlated with changes in the relative abundances of certain bacterial 

species.

Clinical trial registration: Australian New Zealand Clinical Trials Registry 

(ACTRN12619000606189).
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Introduction

The early postnatal period is a critical window for the 
development of the infant gut microbiome (Derrien et al., 2019), 
which has been associated with the programming of lifelong health 
and disease risk (Arrieta et al., 2015, 2018; Walker, 2017). The infant 
gut microbiome has a role in immune system development and 
protection against colonization with pathogens (Olin et al., 2018). 
Perturbations to the infant gut microbiota have been associated with 
the development of chronic diseases, including allergic disorders and 
obesity (Prescott, 2013). Early life gut microbiome establishment is 
a relatively dynamic process that is influenced by a range of 
environmental and host factors, including maternal diet (Chu et al., 
2016; Lundgren et al., 2018; Savage et al., 2018; Ponzo et al., 2019; 
Babakobi et al., 2020; García-Mantrana et al., 2020), mode of delivery 
(Bäckhed et  al., 2015; Bokulich et  al., 2016), feeding practices 
(breastfeeding, formula, and the introduction of solid food; 
Thompson et al., 2015; Timmerman et al., 2017; Ho et al., 2018; 
Stewart et al., 2018), antibiotic use (Bokulich et al., 2016), gestational 
age at delivery (Hill et al., 2017), host genetics (Benson et al., 2010), 
and geography (De Filippo et al., 2010; Lin et al., 2013). However, 
breastfeeding has been reported to be the single most important 
factor associated with infant gut microbiome composition and 
function (Stewart et al., 2018).

Several studies have investigated maternal contributions to 
infant health. Maternal diet during pregnancy has been associated 
with infant health outcomes, including allergic diseases (Chatzi et al., 
2008, 2013); diet-associated alterations to the infant gut microbiome 
may be implicated in such cases. To date, there have been several 
observational studies investigating the effect of maternal diet during 
gestation on the infant gut microbiome (Chu et al., 2016; Lundgren 

et al., 2018; Savage et al., 2018; Ponzo et al., 2019; Babakobi et al., 
2020; García-Mantrana et al., 2020). However, only one study has 
examined the effect of maternal diet during lactation on the infant 
gut microbiome. Unfortunately, the results of this study are limited 
by the fact that maternal dietary intake during lactation was 
combined with maternal dietary intake during pregnancy, so that the 
effect of the diet during the lactation period alone could not 
be analyzed (Babakobi et al., 2020). All previous studies examining 
the relationship between maternal diet and the infant gut 
microbiome suffer from a number of flaws related to the methods 
used to assess maternal dietary intake, time of maternal dietary 
assessment in relation to infant stool sample collection and 
underreporting of confounders such as antibiotics, vitamin 
supplements, and probiotics, all of which may impact results. The use 
of short amplicon sequencing by these studies also generally limits 
taxonomical resolution of bacterial communities to the genus level 
(Walsh et al., 2018) and provides no accurate information on their 
functional potential (Langille et al., 2013). As such, well-designed 
dietary intervention studies are required to better understand the 
effect of maternal diet during lactation on the infant gut microbiome.

The most likely mechanisms by which maternal diet affects the 
infant gut microbiome and for which the most robust evidence 
exists is the entero-mammary pathway (Jiménez et al., 2008; Jost 
et al., 2014; Rodríguez, 2014; Milani et al., 2015; Fernández et al., 
2016; Asnicar et al., 2017; Duranti et al., 2017; Murphy et al., 2017; 
Kordy et al., 2020), wherein gut bacteria are transported to the 
lactating mammary gland and thereby contribute to the human 
milk (HM) microbiome. It is well established that diet is a key factor 
that shapes the gut microbiome (De Filippo et al., 2010; Wu et al., 
2011; Fava et al., 2012; Yatsunenko et al., 2012; Lin et al., 2013; 
David et al., 2014; Graf et al., 2015; Kovatcheva-Datchary et al., 
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2015; De Filippis et al., 2016; Mandal et al., 2016; Röytiö et al., 
2017). In addition, several studies have also shown that maternal 
diet is associated with the HM microbiome (Williams et al., 2017; 
Padilha et al., 2019; Babakobi et al., 2020; Cortes-Macías et al., 2020; 
LeMay-Nedjelski et al., 2020). Since the maternal gut is considered 
one of the sources of microbes for HM, we  hypothesized that 
maternal diet during lactation can influence the infant gut 
microbiome. Understanding the effect of the maternal diet during 
lactation on the early life gut microbiome may allow optimization 
of dietary recommendations for lactating women to better support 
infant health and development.

The aim of this study was to determine the effect of a 2-week 
of a reduced fat and sugar maternal dietary intervention on infant 
gut microbiome composition and function using shotgun 
metagenomic sequencing in 10 healthy infants.

Materials and methods

Participants

Healthy, Caucasian, primiparous mothers with ages ranging from 
22 to 37 years were invited to participate in the study (n = 10). All 
infants included in our study were healthy, exclusively breastfed, and 
aged 1.8–4.9 months. Six of the infants were born vaginally, two by 
emergency caesarean section, two by elective caesarean section, and 
four were female. During the study period, there was no consumption 
of antibiotic by infants and mothers. Exclusion criteria were 
pre-existing maternal diabetes, maternal diseases known to affect 
gastric absorption (such as gastric ulcers), dietary restrictions (such 
as vegan, vegetarian, gluten-free, milk-free, or dairy-free diets), 
pregnancy complications (including gestational diabetes, 
preeclampsia, preterm delivery, and foetal growth restriction), 
multiple pregnancies, known congenital abnormalities or health 
issues in the infant that could significantly affect feeding behavior, and 
solid food introduction before the first study session. The study was 

approved by The University of Western Australia Human Research 
Ethics Committee (RA/4/20/4953) and registered on the Australian 
New Zealand Clinical Trials Registry (ACTRN12619000606189). All 
mothers provided informed consent and answered a background 
health and lifestyle questionnaire on enrolment.

Study design

During the first week of the study, mothers followed their 
normal diet (Figure 1). After assessment of baseline habitual diet, 
mothers commenced a 2-week dietary intervention. Diets during 
this period aimed to reduce intakes of discretionary foods, saturated 
fats and added sugars in comparison with the women’s habitual diet. 
To increase participant compliance, all meals and snacks were 
provided to mothers via a home delivery service from Lite n’ Easy, 
Queensland, Australia. All meals were designed to contain healthy 
amounts of fat and sugar according to Food Standards Australia 
New Zealand, and to meet the energy and nutritional requirements 
for lactating women (Food Standards Australia New Zealand, 2019). 
Home visits were conducted weekly during the dietary intervention 
phase to collect infant stool samples, inquire about any issues, and 
to undertake anthropometric measures on mothers and their infants.

This study was part of a larger study (Leghi et al., 2021), which 
aimed to determine the effect of a reduced fat and sugar maternal 
dietary intervention on HM production, and the associated 
macronutrient (lactose, protein, and fat) and metabolic hormone 
(insulin, leptin, and adiponectin) profiles.

Maternal and infant anthropometric 
measures

Maternal and infant anthropometric data were collected at 
enrolment, immediately prior to the dietary intervention, and at 
the conclusion of the dietary intervention. Maternal weight was 

FIGURE 1

A schematic representation of the study design. A 2-week of a reduced fat and sugar maternal dietary intervention during lactation was performed 
to evaluate the effect of maternal diet on the infant gut microbiome. Before the intervention, mothers consumed their habitual diet, which was 
assessed using 24 h dietary recalls. During the intervention maternal dietary intake was analyzed using FoodWorks 10; Xyris Software. Infant stool 
samples were collected immediately prior to the intervention (baseline) and at the end of the intervention.
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measured using calibrated electronic scales (accurate to 0.1 kg). 
Maternal height was measured using a Stadiometer (accurate to 
0.01 m). Maternal body composition was measured using 
bioimpedance spectroscopy (Impedimed SFB-7). Infant weight was 
measured using calibrated electronic scales (Medela Baby Scales, 
accurate to 2 g). Infant length was measured using a Stadiometer 
(accurate to 0.01 m). Head circumference was measured using 
flexible, non-stretchable measuring tape with increments of 0.1 cm 
and checked against a static measure. Infant body composition was 
measured using bioimpedance spectroscopy (Impedimed SFB-7).

Maternal dietary assessment

Baseline dietary intake (for 1 week prior to the dietary 
intervention) was assessed using the Automated Self-Administered 
24-Hour Dietary Recall (ASA24) system (Subar et  al., 2012). 
Mothers completed three online 24-h dietary recalls: two on 
weekdays and one on a weekend day. During the intervention 
period, mothers were asked to keep a food diary and to record any 
foods or drinks that they consumed other than those provided, as 
well as any food that they did not consume from the provided meals 
and snacks. Maternal energy and macronutrient intakes during the 
dietary intervention phase were analysed using FoodWorks 10; Xyris 
Software (Table 1). Baseline dietary intake data were missing for one 
mother-infant dyad. The relative difference of individual dietary 
factors between pre-and post-diet was calculated using the following 
formula: week 3 intake (g)–week 1 intake (g)/week 3 intake (g) × 100.

Infant stool sample collection

Participants serve as their own controls. Infant stool samples 
were collected immediately before and after the intervention. Due 
to variations in infant bowel habits, some samples were collected 
before or after the intended sampling day. Pre-diet samples were 
collected up to 3 days before, while for post-diet samples, all were 
collected within 2 days prior to 5 days after the intended sampling 
day, with the exception of one infant stool sample that was 
collected 11 days after (Table 2).

Participants self-collected infant stool samples by taking 
E-swabs of diapers. Stool swabs in 1 ml liquid Amies media were 
stored in the participant’s home freezer (-20°C) before being 
collected at the next home visit and transferred to the laboratory 
where they were defrosted and vortexed for 5 s to release the 
sample from the swab into the liquid transport medium. Samples 
were then aliquoted and stored at −800°C until analysis.

DNA extraction and metagenomic 
analysis

DNA was extracted from pre-and post-diet stool samples 
using the QIAamp 96 PowerFecal QIAcube HT Kit (Qiagen) on 

the QIAcube HT system (Qiagen). The resulting DNA was 
quantitated using a high sensitivity dsDNA fluorometric assay 
(QuantIT, ThermoFisher, Q33120). Samples needed to reach a 
minimum of 0.2 ng/μl to pass quality control requirements. 
Libraries were prepared using a modified protocol, using the 
Illumina® DNA Prep, (M) Tagmentation (96 Samples) kit 
(Illumina #20018705), to allow for reduced reaction volumes. 
Libraries were indexed with IDT® for Illumina Nextera DNA 
Unique Dual Indexes Set A-D (Illumina #20027213–16). Pooled 
libraries were prepared for sequencing on the NovaSeq6000 
(Illumina) with 2 × 150 bp paired-end chemistry. Sequencing was 
performed to a target depth of 3 Gbp (2 Gbp minimum, 
approximately 7–16 M paired-end reads) raw read generation 
before quality filtering. Data quality was guaranteed at 75% and 
above for reads >Q30 at the completion of the sequencing run. All 
sample preparation and sequencing was performed at Microba 
Life Sciences Limited.1

Metagenomic data processing

Metagenomic sequencing data quality control
Shotgun metagenomic sequencing data quality control was 

performed at Microba Life Sciences Limited (see footnote 1). 
Paired-end DNA sequencing data were demultiplexed and adaptor 
trimmed using Illumina BaseSpace Bcl2fastq2 (v2.20) accepting one 
mismatch in index sequences. Reads were then quality trimmed and 
residual adaptors removed using the software Trimmomatic v0.39 
(Bolger et  al., 2014) with the following parameters: -phred33 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 CROP:100000 
HEADCROP:0 MINLEN:100. Human DNA was identified and 
removed by aligning reads to the human genome reference assembly 
38 (GRCh38.p12, GCF_000001405) using bwa-mem v0.7.17 (Li, 
2013) with default parameters except minimum seed length set to 
31 (−k 31). Human genome alignments were filtered using 
SAMtools v1.7 (Li et al., 2009), with flags-ubh -f1-F2304. Any read 
pairs where at least one read mapped to the human genome with 
>95% identity over >90% of the read length were flagged as human 
DNA and removed. All samples were then randomly sub-sampled 
to a standard depth of 14 M reads, which was then rarefied to 
11 M reads.

Quantification of microbial species, gene and 
pathway abundances

Species profiles were obtained with the Microba Community 
Profiler v2.0.2 (Parks et al., 2021) using the Microba Genome 
Database (MGDB) v2.0.0 as the reference. Reads were assigned to 
genomes within MGDB, and the relative cellular abundance of 
species clusters was estimated and reported. Quantification of 
gene and pathway abundance in the metagenomic samples was 
performed using the Microba Gene and Pathway Profiler (MGPP) 

1 www.microba.com/research
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v0.1.0 against the Microba Genes (MGENES) database v2.0.0. 
MGPP is a two-step process. In step 1, all open reading frames 
(ORFs) from all genomes in MGDB were clustered against 
UniRef90 (Suzek et al., 2015) release 2019/09 using 90% identity 
over 80% of the read length with MMSeqs2 Release 10-6d92c 
(Steinegger and Söding, 2018). Gene clusters were then annotated 
with the UniRef90 identifiers and linked to the Enzyme 
Commission (accessed via UniProt 2019/09) and Transporter 
Classification Database (Saier et al., 2016) annotations via the 
UniProt ID mapping service.2 Enzyme Commission annotations 
were used to determine the encoding of MetaCyc (Caspi et al., 
2020) pathways in each genome using enrichM3 and pathways that 
were complete or near complete (completeness >80%), were 
classified as encoded. In step 2, all DNA sequencing read pairs that 
aligned with one or more bases to the gene sequence from any 
protein within an MGENES protein cluster were summed. DNA 
sequence reads were aligned directly to genome sequences. The 
genome sequences were annotated using full length ORFs, and the 
coordinates of these ORFs/genes recorded. The genes were 
annotated using the entire protein and clustered into protein 
clusters. When a DNA sequence read aligned to a genome, 
we required a minimum of one base overlap of the read to its’ 
proximal annotated ORF, in order to count the read toward that 
protein sequence. These counts were then aggregated for each 
gene cluster. In essence, we  relied on the specificity of the 
DNA. Read alignments were resolved to a single alignment for 
each read when possible. We  typically were able to assign on 
average 85% of all reads in a sample. Any unresolved (multi 
mapped reads) were discarded. In this way, reads were counted 
only once. Abundances of encoded pathways of species reported 
as detected by MCP were calculated by averaging the read counts 
of all genes for each enzyme in that pathway. There was no 
taxonomy associated with the gene clusters.

Antibiotic resistance genes
Assembled reads were aligned against sequences from known 

antibiotic resistance genes (ARGs) using ABRicate4 and starAMR.5 
To ensure accuracy, the Resfinder database and comprehensive 
antibiotic resistance database (CARD) were utilized in the search.

Statistical analyses

Univariate statistical tests were applied to a filtered set of 
features. In general, different criteria were applied for taxonomic 
data and functional data. For pre- vs post-diet comparison 
analyses, paired t-tests were used for comparisons of paired 
measurements of square root-transformed microbial and gene 

2 www.uniprot.org/uploadlists/

3 https://github.com/geronimp/enrichM

4 https://github.com/tseemann/abricate

5  https://github.com/phac-nml/staramrT
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abundance data. Rare taxonomic reads present in less than three 
samples and low abundance reads with a mean relative abundance 
within infants positive for that taxa of less than 0.5% were 
excluded. Rare functional reads present in less than three samples 
and low abundance reads with a maximum sample count less than 
2 were excluded. Pearson correlation tests were used to compare 
continuous variables for analyses of associations between the 
difference in individual maternal dietary factors and square root-
transformed microbial and gene abundance data. Square root 
transformation was used to normalize data distribution. Rare 
taxonomic features (species) where read counts were 0  in all 
samples and low abundance features with a maximum sample 
count of less than 100 reads were excluded. Rare functional 

features where read counts were 0  in all samples and low 
abundance features with a maximum sample count of less than 
two reads were excluded. p values were corrected for multiple 
hypothesis testing using the Benjamini and Hochberg false 
discovery rate correction. Corrected values of p  < 0.05 are 
considered statistically significant. No confounders were included 
in the analysis due to the within individual design and the 
homogeneity of the group. Redundancy Analysis (RDA) was used 
to visualize relationships between samples in two-dimensions for 
identifying sample clusters based on the maternal fiber, protein, 
sugar, and fat intake.

Results

Participants

Maternal and infant characteristics of the study participants 
are shown in Table 3.

Effect of the dietary intervention on 
maternal dietary factor intake and body 
composition

During the intervention, compared to baseline values, 
maternal fat, saturated fat, and sugar intake decreased significantly 
by 59.6, 67.5, and 32.9%, respectively. However, for one participant 
sugar intake increased during the intervention (Figure 2). There 
were, however, no significant differences detected for maternal 
protein and fiber intake. Several changes in maternal body 
composition were also identified post-intervention (Figure 2), 
with significant reductions in maternal weight (p = 0.049), 
maternal fat mass (p = 0.005), fat mass index (p = 0.004), 
percentage of fat mass (p = 0.036), and maternal fat mass to fat-free 
mass ratio (p = 0.022).

Pre- vs post-diet infant gut microbiome 
composition

Number of reads that passed QC as well as the number of 
reads that mapped for each of the protocols for all samples are 
reported in (Supplementary Table 1). The most abundant bacterial 
genera identified in stool samples were Bifidobacterium spp. 
(24.3%), Bacteroides spp. (17.5%), and Clostridium spp. (11.5%; 
Figure 3). At the species level, these were Clostridium neonatale 
(11%), Bifidobacterium longum (10.4%), and Bifidobacterium 
infantis (8.04%; Figure  4). Seven Bifidobacterium spp. were 
identified, with high inter-individual variability in their 
abundance. The highest mean abundances were for B. longum 
(10.4%), B. infantis (8.04%), and Bifidobacterium breve (4.5%). 
Bifidobacterium infantis was present in only one infant stool 
sample (at 80.3% relative abundance) and its’ relative abundance 

TABLE 2 Infant stool sample collection times across the study.

Infant ID Pre-diet collection 
time

Post-diet collection 
time

1 Day 7 Day 20

2 Day 7 Day 20

3 Day 5 Day 20

4 NA Day 20

5 Day 5 Day 20

6 Day 4 Day 23

7 Day 7 Day 32

8 Day 5 Day 22

9 Day 4 Day 26

10 Day 6 Day 26

TABLE 3 Participant characteristics (n = 10).

Variable N% or Mean 
(Range)
Pre-diet 
intervention

N% or Mean 
(Range)
Post-diet 
intervention

Maternal age (years) 31.5 [22–37] 31.6 [22–38]

Infant age (months) 3.2 months [1.8–4.9] 4 months [2.5–5.8]

Maternal BMI, kg/m2 24.9 [17–32.9] 24.5 [16.9–32.77]

BMI category:

  Normal (18.5–24.9) 3 (30%) 4 (40%)

  Overweight (25–29.9) 4 (40%) 3 (30%)

  Obesity class I (30–34.9) 1 (10%) 1 (10%)

  Underweight (<18.5) 2 (20%) 2 (20%)

Maternal probiotic usea 1 (10%) 1 (10%)

Infant solid use 0 (0%) 0 (0%)

Mode of delivery:

  Vaginal 6 (60%)

  Emergency Caesarean 

section

2 (20%)

  Elective Caesarean 

section

2 (20%)

Gestational age (weeks) 39.4 [38–41]

Male infants 6 (60%)

aone or two doses (not often).
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did not change after the dietary intervention (80.4%). Other 
identified Bifidobacterium spp. were Bifidobacterium bifidum, 
Bifidobacterium dentium, Bifidobacterium adolescentis, and 
Bifidobacterium animalis, with relative abundances ranging from 

0.05 to 10.6% and being present in both pre- and post-diet samples 
of at least one infant.

Pre- and post-diet samples were statistically compared using 
paired t-tests to identify any differences in infant gut microbial 

A B

C D

E

G

F

FIGURE 2

Effect of a 2-week maternal dietary intervention on maternal dietary intakes and body composition. Total maternal fat intake (A) and total maternal 
sugar intake (B) were significantly reduced by the dietary intervention. Maternal weight (C), fat mass (D), fat mass index (E), percentage of fat (F), 
and fat mass to fat-free mass ratio (G) were also significantly decreased after the dietary intervention. X represents the mean value, while the solid 
line represents the median.
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composition within each infant. No statistically significant 
differences were identified in the relative abundance of any 
bacterial species between pre-vs post-diet samples, potentially due 
to the low participant numbers and high level of inter-individual 
variation. However, some microbial compositional changes were 

identified within each infant. For example, B. breve was present in 
three pre-diet samples (0.35, 24, and 8.9%), and its relative 
abundance increased in post-diet samples (0.82, 43.1, and 12.9%). 
It is also worth noting that one infant, whose mother had an 
increased sugar intake during the intervention, showed the 

FIGURE 3

The relative abundance of bacterial genera in the infant gut microbiome pre- and post-dietary intervention. Only the top 30 most abundant 
genera are shown.

FIGURE 4

The relative abundance of bacterial species in the infant gut microbiome pre- and post-dietary intervention. Only the top most abundant species 
are shown.
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greatest difference in gut microbiome composition between  
pre- and post-diet, with decreased relative abundance of Klebsiella 
grimontii (32.2 vs. 0%), Escherichia flexneri (34.4 vs. 7.6%), and 
Clostridium neonatale (12.3 vs. 4.3%), and increased relative 
abundance of Klebsiella pneumoniae (0.3 vs. 74.3%; Figure 4). 
There was no difference in infant gut microbiome alpha-diversity 
in pre-vs post-diet samples (Figures  5A,B; richness p = 0.08; 
Shannon index p = 0.63). Nor was there any difference in Bray–
Curtis distances between pre-vs post-diet samples (Figure 5C; 
Adonis, p = 0.99).

Pre- vs post-diet infant gut microbiome 
functional potential

While post-diet samples did not differ statistically from 
pre-diet samples in terms of microbial composition, alterations 

were identified in the functional potential of these microbial 
communities, with significant differences in multiple bacterial 
metabolic pathways detected. Overall, 808 gene clusters were 
significantly different between pre- and post-diet samples 
(Supplementary Table  2). Significant increases in the 
abundances of genes involved in 28 bacterial metabolic 
pathways were detected (Table  4). For instance, post-diet 
samples showed a significant increase in the potential for 
biosynthesis of co-factor prosthetic group electron carriers and 
vitamins (p = 0.003), metabolic regulators (p = 0.003), amino 
acids (p = 0.005), aromatic compounds (p = 0.008), 
carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). 
However, while all gene clusters and metabolic pathways that 
were significantly different post-intervention were rendered 
insignificant after adjustment for FDR. p-values ranged from 
0.06 to 0.078, indicating a strong trend toward significance 
(Table  4). The infant whose mother had an increased sugar 

A

C

B

FIGURE 5

No significant differences in infant gut alpha-diversity [Shannon diversity index (A) or richness (B)] were detected between pre- and post-diet 
samples (blue and yellow, respectively). Principal coordinates analysis (PCoA) (C) of Bray–Curtis distances showed no significant differences 
between pre-diet and post-diet samples.
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intake during the dietary intervention showed the most 
substantial difference in gut microbiome functional potential 
between pre-and post-diet samples, with a general increase in 
the relative abundance of genes involved in most functional 
metabolic pathways (Figure 6).

The detected changes in functional potential may possibly 
be explained by changes in the taxonomical composition of infant 
stool samples between pre- and post-diet. The dietary intervention 
resulted in an increase in the mean abundances of Bacteroides 
dorei (0.4 vs. 4%), B. breve (3.3 vs. 5.7%), B. longum (7.8% vs. 
13%), and Klebsiella variicola (0.24 vs. 2.4%), and a decrease in the 
mean abundances of Bacteroides vulgatus (6.8 vs. 3.7%), 
B. adolescentis (1.1 vs. 0.28%), C. neonatale (13 vs. 9.1%), 
E. flexneri (4.1 vs. 1.8%), and K. grimontii (3.5 vs. 1.1%). The 
functional potential of these organisms are shown in (Table 5).

Maternal dietary factors and infant gut 
microbiome composition and function

Although infant gut microbiome composition did not differ 
significantly in pre-vs post-diet samples, correlations were 
identified between changes in individual dietary factors 
throughout the dietary intervention, the abundance of certain 
bacterial taxa, and the functional potential of the associated infant 
gut microbiome. We calculated the difference in individual dietary 
factors between pre-and post-diet as relative difference (delta). 
One mother-infant dyad was excluded from this analysis due to a 
lack of baseline dietary intake data.

Fiber
No significant correlations were identified between relative 

difference in dietary fiber intake and infant gut microbiome 
composition. At a functional level, relative difference in dietary 
fiber intake was correlated with significant changes in 28 gene 
clusters in the infant gut microbiome (Supplementary Table 3). An 
increased abundance of genes involved in the storage compound 
biosynthesis metabolic pathway were observed (p = 0.018; 
Figure 7). Interestingly, the abundance of the gene for the enzyme 
responsible for cyanophycin synthesis (cyanophycin synthase) was 
positively correlated with the relative difference in dietary fiber 
(p = 0.025). Cyanophycin acts as a temporary nitrogen reserve and 
accumulates in the form of granules in the cytoplasm during 
phosphate or sulfur starvation (Ziegler et al., 2002).

Protein
Relative difference in dietary protein content was negatively 

correlated with the relative abundance of Veillonella parvula (mean 
relative abundance 2.16%, p = 0.006), while positively correlated 
with the relative abundance of Klebsiella michiganensis (mean 
relative abundance 3.58%, p = 0.047; Figure 8). Functionally, relative 
difference in dietary protein was correlated with significant changes 
in 51 gene clusters (Supplementary Table 3). However, no significant 
correlations were identified with any bacterial metabolic pathways.

Sugar
Relative difference in dietary sugar was positively correlated 

with the relative abundance of Lactobacillus paracasei (mean 
relative abundance 0.83%, p = 0.021; Figure 9). Interestingly, the 

TABLE 4 Significantly different bacterial metabolic pathways 
identified in infant stool samples pre- and post-diet intervention 
(calculated using paired t- test).

Function p-value FDR

Cofactor prosthetic group 

electron carrier and 

vitamin biosynthesis

0.003 0.066

Metabolic regulator 

biosynthesis

0.003 0.066

Amino acid biosynthesis 0.005 0.066

Unclassified pathways 0.008 0.066

Aromatic compound 

biosynthesis

0.008 0.066

Carbohydrate biosynthesis 0.009 0.066

Fatty acid and lipid 

biosynthesis

0.01 0.066

Carbohydrate degradation 0.01 0.066

Aldehyde degradation 0.01 0.072

Glycolysis 0.01 0.072

Amino acid degradation 0.01 0.072

Fermentation 0.01 0.072

Reactive oxygen species 

degradation

0.02 0.072

Secondary metabolite 

degradation

0.02 0.072

Inorganic nutrient 

metabolism

0.02 0.072

Secondary metabolite 

biosynthesis

0.02 0.072

Hormone biosynthesis 0.02 0.072

Alcohol degradation 0.02 0.073

Glycan degradation 0.03 0.078

Cofactor prosthetic group 

electron carrier 

degradation

0.03 0.078

Entner–Doudoroff 

pathways

0.03 0.078

TCA cycle 0.04 0.078

Cell structure biosynthesis 0.04 0.078

Antibiotic resistance 0.04 0.078

Pentose phosphate 

pathways

0.04 0.078

Nucleoside and nucleotide 

biosynthesis

0.04 0.078

Carboxylate degradation 0.04 0.078

Fatty acid and lipid 

degradation

0.04 0.078
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RDA showed significant clustering of infant gut bacterial 
communities according to change in relative difference in dietary 
sugar (p = 0.046; Figure  10). In addition, a downward trend 
(although not significant) was observed in the bacterial richness 
of infant stool samples and increased relative difference in dietary 
sugar (p = 0.06; Figure 11). Relative difference in dietary sugar 
was correlated with significant changes in 150 gene clusters in the 
infant gut microbiome (Supplementary Table 3). However, no 
significant correlations were identified for any bacterial 
metabolic pathways.

Fat
No significant correlations were identified between relative 

difference in dietary fat intake and infant gut microbiome 
composition. However, associations were identified between 
relative difference in dietary fat and the functional potential of 
the infant gut microbiome. Relative difference in dietary fat was 
correlated with significant changes in 140 gene clusters 
(Supplementary Table  3). These gene clusters fell into three 
metabolic pathways: storage compounds biosynthesis, fatty acid 

and lipid biosynthesis, and metabolic regulator biosynthesis, all 
of which were positively correlated with the relative difference 
in dietary fat (p = 0.039, 0.016, and 0.038, respectively; 
Figure 12).

Antibiotic resistance genes

Forty unique ARGs were detected in the infant gut 
microbiome across the pre-and post-diet samples. For both 
pre-and post-diet samples, ARGs were found across eight 
different antibiotic classes. The mean number of ARGs per 
infant in pre-and post-diet samples was 4.8 and 4.7, 
respectively (Figure 13). The most common ARGs identified in 
pre-diet samples potentially conferred resistance to 
tetracycline, while the most common in post-diet samples 
potentially conferred resistance to tetracycline, erythromycin, 
and azithromycin (Table 6). Overall, the most common ARGs 
in both pre-and post-diet samples were tet(Q), tet(O), and 
msr(D) (Table 6).

FIGURE 6

Hierarchically clustered heatmap showing the differential relative abundance of bacterial functional metabolic pathways across pre-diet vs. post-
diet infant stool samples. A significant increase in the relative abundances of genes involved in 28 bacterial metabolic pathways was detected in 
post-diet compared to pre-diet samples.
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Discussion

We show that a maternal dietary intervention consisting of 
pre-prepared reduced fat and sugar meals during lactation for 
2 weeks significantly alters the functional potential of the infant 
gut microbiome. The dietary intervention did not, however, affect 
the bacterial composition of the infant gut microbiome. In 
addition, changes in individual dietary factors over the course of 
the diet were correlated with the abundance of certain bacterial 
taxa, as well as the functional potential of the infant 
gut microbiome.

The dietary intervention resulted in detection of an increased 
abundance of genes involved in 28 bacterial metabolic pathways. 
These metabolic pathways are involved in the biosynthesis and 
degradation of co-factors, prosthetic groups, electron carriers, 
vitamins, amino acids, fatty acids, lipids, carbohydrates, and 
secondary metabolites. Previous studies have shown that infant 
diet modulates the functional capacity of the infant gut 
microbiome (Stewart et  al., 2018) and that maternal diet 
modulates the functional capacity of the HM microbiome 

(Seferovic et al., 2020). For example, Stewart et al. reported that 
breast milk intake (partially or exclusively) was significantly 
associated with increased lipid and carbohydrate metabolic 
pathways in the infant gut microbiome and that breast milk was 
the single strongest factor responsible for modulation of the infant 
gut microbiome (Stewart et al., 2018). In comparison, Seferovic 
et al. showed that a maternal dietary intervention in lactating 
women can modify the functional capacity of the HM microbiome 
(Seferovic et al., 2020). A high-fat vs. a high-carbohydrate diet and 
a high-glucose vs. a high-galactose diet were associated with 
significant increases in multiple bacterial metabolic pathways 
(many of them involved in amino acid biosynthesis) in 
HM. However, similar to our study, the taxonomic composition 
of the HM microbiome was minimally affected by the maternal 
dietary intervention. The small sample size in our study may have 
reduced the power to detect an effect of maternal diet on HM 
microbiome composition; therefore, further studies with a larger 
cohort and a longer duration of dietary intervention may reveal 
more effects of maternal diet that were not detectable in our study. 
The significant change in the infant gut microbiome function is 

TABLE 5 Significantly different bacterial metabolic pathways identified in infant stool samples pre- and post-dietary intervention and the 
corresponding organisms that potentially account for the functional changes.

Function Corresponding organisms

Co-factor prosthetic group electron carrier and vitamin 

biosynthesis

Bacteroides dorei, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium breve, Bifidobacterium 

longum, Clostridium neonatale, Escherichia flexneri, Klebsiella variicola, and Klebsiella grimontii

Metabolic regulator biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Amino acid biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Aromatic compound biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Carbohydrate biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Fatty acid and lipid biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Carbohydrate degradation B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Aldehyde degradation B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Glycolysis B. dorei, B. vulgatus, B. adolescentis, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Amino acid degradation B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Fermentation B. dorei, B. adolescentis, B. vulgatus, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Reactive oxygen species degradation B. dorei, B. vulgatus, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Secondary metabolite degradation B. dorei, B. vulgatus, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Inorganic nutrient metabolism B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Secondary metabolite biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Hormone biosynthesis None

Alcohol degradation B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Glycan degradation B. dorei, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Co-factor prosthetic group electron carrier degradation None

Entner–Doudoroff pathways E. flexneri, K. variicola, and K. grimontii

TCA cycle C. neonatale, E. flexneri, and K. grimontii

Cell structure biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Antibiotic resistance E. flexneri, K. variicola, and K. grimontii

Pentose phosphate pathways B. adolescentis, B. vulgatus, B. longum, E. flexneri, K. variicola, and K. grimontii

Nucleoside and nucleotide biosynthesis B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Carboxylate degradation B. dorei, B. vulgatus, B. adolescentis, B. breve, B. longum, C. neonatale, E. flexneri, K. variicola, and K. grimontii

Fatty acid and lipid degradation B. dorei, B. vulgatus, B. breve, C. neonatale, E. flexneri, K. variicola, and K. grimontii
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unlikely driven by the macronutrients level in HM, as the dietary 
intervention did not change fat, protein, and lactose concentrations 
in HM (Leghi et al., 2021). Thus, this change might be driven by 
other HM biochemical components such as human milk 
oligosaccharides (HMOs), which have been shown to alter the 
functional capacity of the HM microbiome (Seferovic et al., 2020).

To our knowledge, no previous study has investigated the 
effects of maternal dietary intervention during lactation on the 
functional potential of the infant gut microbiome in humans. 
Studies in pregnant and lactating mice have reported that 
consumption of a high-fat diet is associated with changes in 
offspring gut microbiome function (Wankhade et  al., 2017; 
Srinivasan et al., 2018); however, no studies have looked at the 
effects of a low-fat diet on offspring gut microbiome function. 
Srinivasan et al. reported that a maternal high-fat diet before, 
during, and after pregnancy is associated with increased pathways 
involved in fructose and mannose metabolism and decreased 
pathways related to indole alkaloid biosynthesis, α-linolenic acid 
metabolism, and carotenoid metabolism in the offspring gut 
microbiome (Srinivasan et  al., 2018), while Wankhade et  al. 
reported that high-fat diet consumption by dams during 
pregnancy and lactation was associated with an increase in 
pathways involved in regulating microbial replication and repair 
in the offspring gut microbiome (Wankhade et  al., 2017). In 
contrast, our study showed that a reduced fat and sugar maternal 
dietary intervention resulted in increased presence of pathways 
involved in genetic material synthesis, such as nucleoside and 
nucleotide biosynthesis and cell structure biosynthesis. It should 
be noted, however, the functional inference reported in the above 
animal studies (Wankhade et al., 2017; Srinivasan et al., 2018), was 
generated using PICRUSt (phylogenetic investigation of 
communities by reconstruction of unobserved states), a 
computational tool for indirect analysis of function predicted 
from 16S rRNA gene sequencing. This method is somewhat 
limited in that it is not actually detecting the presence of microbial 

genetic material in samples, beyond the 16S rRNA gene, but 
instead inferring function based on taxonomy. This type of 
functional inference is thereby not as accurate as 
metagenomic data.

The significant increase in the abundance of genes involved 
in biosynthesis and degradation of vitamins, amino acids, fatty 
acids, lipids, and carbohydrates that we  observed after the 
intervention is in agreement with the known role of the gut 
microbiome in the human metabolism of these dietary 
components (Rowland et al., 2018; Schoeler and Caesar, 2019). 
Several gut bacterial species have been associated with amino 
acid and carbohydrate metabolism and short chain fatty acid 
(SCFA) synthesis. In addition, the human gut microbiome plays 
an important role in synthesizing vitamins, especially those that 
humans cannot synthesize, such as thiamin (vitamin B1; 
LeBlanc et al., 2013). Indeed, after the intervention, there was a 
significant increase in the abundance of genes involved in the 
thiamine diphosphate biosynthesis I  pathway (p = 0.028), 
responsible for thiamin synthesis. The mechanism by which the 
maternal dietary intervention generated these alterations is 
unclear, since no significant changes in the infant gut 
microbiome composition were detected after the intervention, 
and HM macronutrient content was not affected by the 
intervention (Leghi et  al., 2021). However, there were clear 
compositional differences in the microbiome between pre-and 
post-diet samples for one individual, whose mother interestingly 
had an increase in sugar intake during the intervention. 
Increased sugar intake may have changed a certain component 
in HM such as HMOs (Seferovic et al., 2020), which could drive 
this marked change in the infant gut microbiome composition. 
Future research should consider increasing the sample size and 
investigating potential associations with HMO profile to 
validate these findings.

We also identified correlations between the relative change in 
individual dietary factors and the abundance of genes involved in 
some bacterial metabolic pathways. Relative difference in dietary 
fibre was correlated with a significant increase in genes associated 
with the storage compound biosynthesis metabolic pathway. No 
such finding has been reported by previous studies investigating 
the maternal dietary effect on the HM and infant gut microbiomes. 
However, only one study has linked total maternal fibre intake 
with changes in the beta diversity of the overall composition of 
HM KEGG bacterial metabolic pathways (LeMay-Nedjelski et al., 
2020). Additionally, relative difference in dietary fat was correlated 
with a significant increase in genes associated with three bacterial 
metabolic pathways: storage compounds, fatty acid and lipid, and 
metabolic regulatory compounds biosynthesis. These results are 
consistent with those from a previous study in mice, where a 
maternal high-fat diet was reported to increase bacterial metabolic 
pathways involved in lipid metabolism and bile acid secretion 
synthesis of the offspring gut microbiome function in a 
sex-specific manner (Wankhade et al., 2018). Other studies of 
non-lactating mice reported that high-fat diet consumption is 
associated with a significant increase in the abundance of genes 

FIGURE 7

Change in maternal fiber intake % was positively correlated with 
the abundance of genes involved in storage compound 
biosynthesis.
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associated with fatty acid metabolism (Xiao et al., 2017) and fatty 
acid biosynthesis in the gut microbiome compared to a high-sugar 
diet (Shan et al., 2019) and control diet (Shang et al., 2017). In 
contrast to our findings, Hildebrandt et al. reported that when 
mice on a standard chow diet switched to a high-fat diet, they 
showed an increased abundance of genes involved in signal 
transduction and membrane transport and a decreased abundance 
of genes associated with amino acid and carbohydrate metabolism 
(Hildebrandt et  al., 2009). The biological significance of these 
findings is unknown; however, it has been reported that bacteria 
can store the excess of certain nutrients, including lipids, in the 
form of storage granules as a source of metabolic precursors or as 
an energy reserve (Murphy and Vance, 1999). Collectively, our 
results show that maternal diet during lactation influences the 
infant gut microbiome functional capacity; however, further 
studies are needed to investigate the mechanisms driving these 
changes and whether these changes have positive or negative 
health effects.

The 2-week maternal dietary intervention had no statistically 
significant effect on the composition of the infant gut 
microbiome. This is in agreement with the results of the only 
previous study to investigate the association between maternal 
diet during lactation and the infant gut microbiome composition 
(Babakobi et al., 2020). This finding is also in agreement with 
other dietary interventional studies, where short-term dietary 
interventions either did not induce changes or failed to 
significantly alter the gut microbiome composition in healthy 
adults (Korem et al., 2017), adults at high risk for developing 
metabolic disorders (Roager et  al., 2019), children (Shulman 
et al., 2017), and mice (Dimova et al., 2017). However, given the 
high level of inter-individual variation in the infant gut 
microbiome, the low participant numbers in our study may have 
limited our ability to detect statistically significant changes in 
bacterial composition.

We also identified significant correlations between relative 
differences in individual dietary factors and the composition and 
functional potential of the infant gut microbiome. These appear 
to be driven by 2–4 participants that exhibited the greatest changes 
in dietary components. Decreased relative difference in dietary 
protein was correlated with an increase in the relative abundance 
of V. parvula. This finding is unexpected as Veillonella spp. are 
known for their role in amino acid hydrolysis and fermentation 
(Dai et al., 2011). However, no previous study has reported such 
an association. Relative difference in dietary protein was positively 
correlated with Klebsiella michiganensis relative abundance. This 
finding is in agreement with the amino acid fermenting function 
of Klebsiella spp. (Dai et al., 2011; Cai et al., 2020). However, no 
previous study has reported such an association. In terms of sugar, 
decreases in maternal pre- and post-diet sugar levels were 
associated with decreases in the relative abundance of L. paracasei. 
This finding is consistent with the known sugar metabolizing 
functions of Lactobacillus spp. (Makarova et  al., 2006). The 
positive correlation between Lactobacillus spp. abundance and the 

A B

FIGURE 8

Change in maternal protein intake % was negatively correlated with the relative abundance of Veillonella parvula (A) and positively correlated with 
the relative abundance of Klebsiella michiganensis (B).

FIGURE 9

Change in maternal sugar intake % was positively correlated with 
the relative abundance of Lactobacillus paracasei.
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change in maternal sugar intake is inconsistent with previous 
studies that associated a high-sugar diet with decreased abundance 
of Lactobacillus spp. in mice (Sen et al., 2017; Yue et al., 2019; 
Khan et  al., 2020). Nevertheless, the increased abundance of 

Lactobacillus spp. in these infants may be beneficial due to the 
probiotic potential of members of this genus (Martín et al., 2005; 
Shokryazdan et al., 2014).

The trend toward a negative association between infant stool 
bacterial richness and relative difference in maternal sugar intake 
is consistent with observations in mice, wherein mice who 
consumed a high-sugar diet had decreased alpha-diversity 
compared to those who consumed a normal diet (Sen et al., 2017; 
Do et al., 2018). In humans, this finding is in line with those of De 
Filippo et al., where they showed that gut microbiota richness in 
African children is higher than European children (De Filippo 
et al., 2010, 2017). They suggested that the low richness of the gut 
microbiota in European children could be due to Western diet 
consumption (high in sugar, animal protein, and fat). However, 
this finding is based on long-term dietary habits, and there was no 
direct assessment of dietary intake association with gut 
microbiome richness. Overall, our results suggest that change in 
maternal intake of fiber, protein, and sugar during lactation may 
affect infant gut bacterial composition; however, further studies 
on a larger cohort need to be conducted to confirm these findings.

Analysis of the infant gut resistome showed that the most 
prevalent ARGs in pre-and post-diet samples potentially 
conferred resistance to tetracycline. This finding agrees with 
previous studies where a high prevalence of resistance to 
tetracycline was detected in the faecal samples of healthy infants 
(Gueimonde et al., 2006; Rose et al., 2017; Pärnänen et al., 2018) 
and those at a high risk of eczema (Loo et al., 2020), suggesting 

FIGURE 10

Redundancy analysis (RDA) biplots showing the two first axes of ordination for nine infant stool microbiome samples. Samples are coloured 
according to the change in maternal sugar intake with the dietary intervention.

FIGURE 11

Infant stool bacterial richness was negatively correlated with 
change in maternal sugar intake with the dietary intervention; 
however, this was not statistically significant.
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their presence may be unremarkable. The mean number of ARGs 
per infant did not differ between pre-and post-diet samples (4.8 
and 4.7), respectively. In contrast, one study compared the gut 
resistome of 35 obese children before and after a microbiota-
targeted dietary intervention. A diet composed of traditional 
Chinese medicinal foods, whole grains, and prebiotics resulted in 
a significant reduction in ARGs within these children (Wu et al., 
2016). To date, no study has investigated whether or not maternal 
diet could affect ARGs of the infant gut microbiome. Infant gut 
ARGs have been shown to be associated with different factors 
such as mode of delivery and infant sex (Lebeaux et al., 2021). 
Maternal diet may also be a factor that could potentially influence 
the infant gut resistome. Importantly, Pärnänen et  al. 
characterized the HM, infant, and maternal gut microbiomes 
using metagenomic sequencing in order to identify potential 
sources of infant gut ARGs. Their results showed that infant gut 
ARGs resembled those of their own mother’s gut and HM, 
suggesting vertical transmission from mothers to infants 
(Pärnänen et al., 2018). If maternal diet can impact the maternal 
gut resistome, it may, in turn, influence the HM and infant gut 
resistome. Therefore, future research should consider exploring 

the relationship between maternal diet and infant gut ARGs in a 
larger cohort.

Strengths and limitations

The key strength of this study is the use of a home delivery 
service to deliver meals to participants, which increases 
dietary intervention compliance and consistent dietary intake. 
In addition, the use of shotgun metagenomics allows 
characterization of functional capacity for the microbial 
communities. Another strength is that our study design 
included baseline (pre-diet) samples to establish a baseline 
microbiome, combined with use of strict inclusion criteria 
where all participants with factors that have been shown to 
impact maternal gut, HM, and infant gut microbiomes were 
excluded, including probiotic and antibiotic use. A number of 
limitations do, however, need to be acknowledged. The sample 
size is small, and the duration of the intervention is relatively 
short; thus, is it unknown whether the same results may 
be obtained if a similar dietary intervention were applied on a 

A

C

B

FIGURE 12

Change in maternal fat intake was positively correlated with the abundance of genes involved in storage compound biosynthesis (A), fatty acid and 
lipid biosynthesis (B), and metabolic regulator biosynthesis (C).
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larger cohort and/or for a longer period. Additionally, time of 
sampling might be  a confounding variable, as maternal 
weight/BMI typically decreases in the early months 
postpartum, and the infant gut microbiome develops 
temporally. The effects of other potential confounders such as 
infant sex and mode of delivery were minimized by including 
an equal number of these variables. In analyses of relative 
abundances, every increase or decrease in a certain microbe’s 
abundance can lead to changes in that from other community 
members. This is an inherent limitation of using relative 
abundances to compare between different samples, however, 
despite this, this method is still well-accepted as an effective 
way to document the microbial composition of different 

sample types. Metabolic pathway analyses were not conducted, 
instead, all reference to these is based on the relative 
abundance of associated genes, which may or may not have 
been actively expressed.

Conclusion

This pilot study is the first to report the effect of a controlled 
maternal dietary intervention during lactation on the breastfed 
infant gut microbiome. While the effect of maternal diet during 
pregnancy on the composition of the infant gut microbiome has 
been previously investigated (Chu et al., 2016; Lundgren et al., 

FIGURE 13

The number of antibiotic resistance genes (ARGs) in infant stool samples collected pre-and post-dietary intervention. X represents the mean value.

TABLE 6 Most commonly detected antibiotic resistance genes and their associated antibiotic class in pre-and post-dietary intervention infant 
faecal samples.

Antibiotic resistance 
genes

Antibiotic class Related pathogens Frequency within samples

Pre-diet intervention Post-diet intervention

mef(A) Erythromycin, azithromycin Streptococcus pneumoniae 2 2

blaTEM-1B Ampicillin Escherichia coli 2 2

blaOXY-6-2 Ampicillin Klebsiella oxytoca 2 1

tet(Q) Tetracycline Butyrivibrio fibrisolvens 6 4

tet(W) Tetracycline Bacteroides fragilis 2 2

aph(3′)-Ia Kanamycin E. coli 2 0

cfxA4 Ampicillin B. fragilis 2 2

blaACI-1 Ampicillin Acidaminococcus intestini 2 2

cfxA3 Ampicillin Pseudomonas aeruginosa 2 0

tet(O) Tetracycline Campylobacter coli or 

Campylobacter jejuni

3 2

erm(F) Erythromycin, azithromycin B. fragilis 1 2

msr(D) Erythromycin, azithromycin S. pneumoniae 1 3
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2018; Savage et al., 2018; Ponzo et al., 2019; Babakobi et al., 
2020; García-Mantrana et  al., 2020), here, we  show that 
maternal diet during lactation significantly alters the functional 
potential of the infant gut microbiome. While there were no 
significant differences in the overall bacterial composition of 
infant stool samples taken before or after the dietary 
intervention, we  did find associations between changes in 
individual dietary factor intakes of protein and sugar during 
lactation and changes in the relative abundances of certain taxa 
in the infant gut microbiome. The impact of these changes on 
infant health and development remains to be  further 
investigated. We  speculate that the maternal diet may have 
altered the HM microbiome or other milk components that 
likely mediated the observed changes in the infant gut 
microbiome. Future dietary interventional studies investigating 
the relationship between maternal diet during lactation and the 
infant gut microbiome should consider examining the HM 
microbiome and other milk components such as HMOs, 
antimicrobial peptides, and SCFAs. This may shed light on the 
mechanism/s by which maternal diet impacts the infant gut 
microbiome. Results obtained from such studies may allow 
optimization of dietary recommendations for lactating women 
to better support breastfed infant health and development.
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Comparative genomic and 
functional analyses of 
Paenibacillus peoriae ZBSF16 
with biocontrol potential against 
grapevine diseases, provide 
insights into its genes related to 
plant growth-promoting and 
biocontrol mechanisms
Lifang Yuan 1, Hang Jiang 2, Xilong Jiang 1, Tinggang Li 1, 
Ping Lu 3, Xiangtian Yin 1* and Yanfeng Wei 1*
1 Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 
China, 2 Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 
China, 3 College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, 
China

Paenibacillus peoriae is a plant growth-promoting rhizobacteria (PGPR) widely 

distributed in various environments. P. peoriae ZBFS16 was isolated from 

the wheat rhizosphere and significantly suppressed grape white rot disease 

caused by Coniella vitis. Here, we present the complete genome sequence of 

P. peoriae ZBFS16, which consists of a 5.83 Mb circular chromosome with an 

average G + C content of 45.62%. Phylogenetic analyses showed that ZBFS16 

belongs to the genus P. peoriae and was similar to P. peoriae ZF390, P. peoriae 

HS311 and P. peoriae HJ-2. Comparative analysis with three closely related 

sequenced strains of P. peoriae identified the conservation of genes involved 

in indole-3-acetic acid production, phosphate solubilization, nitrogen 

fixation, biofilm formation, flagella and chemotaxis, quorum-sensing systems, 

two-component systems, antimicrobial substances and resistance inducers. 

Meanwhile, in vitro experiments were also performed to confirm these 

functions. In addition, the strong colonization ability of P. peoriae ZBFS16 was 

observed in soil, which provides it with great potential for use in agriculture 

as a PGPR. This study will be helpful for further studies of P. peoriae on the 

mechanisms of plant growth promotion and biocontrol.
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Paenibacillus peoriae, comparative genome analysis, plant growth-promoting, 
biocontrol, antimicrobial substances
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Introduction

Paenibacillus peoriae (previously Bacillus peoriae) is a 
Gram-positive, facultatively anaerobic, rod-shaped bacterium 
with flagella and belongs to the genus Paenibacillus and the 
family Paenibacillaceae. Species in the genus Paenibacillus are 
either Gram-positive or variable, facultatively anaerobic or 
strictly aerobic, produce ellipsoidal endospores, and are 
nonpigmented, rod-shaped and motile (Ash et al., 1993; Siddiqi 
et al., 2015). Currently, the genus Paenibacillus contains 240 
species, including the plant-beneficial species of P. polymyxa 
(Zhang et al., 2018; Timmusk et al., 2019), P. ehimensis (Naing 
et  al., 2015), P. alvei (Emmanouil et  al., 2016), P. macerans 
(Liang et al., 2014), P. lentimorbus (DasGupta et al., 2006) and 
P. peoriae (Von der Weid et  al., 2003; Jiang et  al., 2022). 
Previously, P. peoriae was reported to act as a plant growth-
promoting rhizobacteria (PGPR), which can produce biofilms, 
stably colonize the rhizosphere of plants and compete with 
other microbiota (Von der Weid et al., 2003; Vejan et al., 2016; 
Jiang et al., 2022). Meanwhile, P. peoriae has the ability to act as 
a biological control agent against many plant pathogens, 
including Fusarium spp., Diplodia macrospora, D. maydis, 
Verticillium dahlia, Rhizoctonia solani, Colletotrichum 
gloeosporioides, and C. graminicola (Von der Weid et al., 2003; 
Yadav D. et  al., 2021; Jiang et  al., 2022), and even the 
antimicrobial peptide purified from P. peoriae could protect 
against Staphylococcus aureus, Escherichia coli, and Candida 
albicans (Ngashangva et al., 2021).

PGPR has been considered environmentally friendly 
alternatives to fertilizers or agrochemicals for improving crop 
yield and quality (Vejan et al., 2016; Hashem et al., 2019). Many 
microorganisms, such as Bacillus, Pseudomonas, Burkholderia, 
Caulobacter, and Paenibacillus spp., are PGPRs, and some have or 
will be successfully applied in practical applications (Ahemad, 
2015; Garcia-Seco et al., 2015; Hashem et al., 2019). Production of 
indole-3-acetic acid (IAA), the capability of fixation of nitrogen, 
dissolution of phosphorus, secretion of ferriphagin and plant 
hormones, and antibiotic biosynthesis are important mechanisms 
of PGPR (Li et al., 2020; Yin et al., 2022). IAA is an important 
phytohormone that controls cell enlargement and tissue 
differentiation of plants. Nitrogen (N) and phosphorus (P) are 
important nutrients for plant growth and productivity. PGPRs are 
called diazotrophs because of their ability to fix N2 in 
nonleguminous plants and form a nonobligate interaction with 
host plants (Ahemad, 2015). Additionally, by providing P to 
plants, PGPRs solubilize inorganic P in soil to low molecular 
weight organic acids (Zaidi et  al., 2009; Yuan et  al., 2020). 
Siderophores can form stable complexes with Fe and other heavy 
metals (Al, Cd, Cu, Ga, In, Pb and Zn), and most plant growth 
promotion occurs via siderophore-mediated Fe uptake (Rajkumar 
et  al., 2010). P. polymyxa., which is closest to P. peoriae, was 
identified as having key genes or gene clusters related to IAA, 
phosphate solubilization and nitrogen fixation for plant growth 
promotion (Li et al., 2020; Zhou et al., 2020).

The predominant genera of PGPRs are Pseudomonas and 
Bacillus, which have the feature of biocontrol, as well as most 
species in Paenibacillus (Naing et al., 2015; Grady et al., 2016; 
Hashem et al., 2019). Paenibacillus helps to control phytopathogens 
(bacteria, fungi, nematodes and viruses) by triggering induced 
systemic resistance (ISR) by producing secondary metabolites 
(Grady et  al., 2016). Antimicrobial substances produced by 
Paenibacillus, including peptides, enzymes, and volatile organic 
compounds, could be used to control soil-borne fungal pathogens 
and food-borne bacteria (Zhai et al., 2021). Paenicidin A and 
penisin are antimicrobial peptides produced by P. polymyxa NRRL 
B-30509 and Paenibacillus sp. strain A3, respectively (Baindara 
et  al., 2015; Van Belkum et  al., 2015). Paenibacillin exhibits 
excellent tolerance to pH and heat, with activity against a broad 
range of fungi and bacteria (Abriouel et al., 2011; Li Y. et al., 2019; 
Li L. et al., 2019). Nonribosomal peptide synthetases are large 
multimodular biocatalysts that utilize complex regiospecific and 
stereospecific reactions to assemble structurally and functionally 
diverse peptides that have important medicinal applications 
(Strieker et al., 2010).

The role of P. peoriae in plant growth promotion and biological 
control remained unexplored until very recently, and few reports 
revealed the mechanisms regarding the plant growth promotion 
and biological control of P. peoriae. P. peoriae ZBSF16 exhibit 
significant broad inhibitory spectra against various pathogenic 
fungi and bacteria on grape and possess perfect characteristics and 
potential for the biocontrol of grape diseases. In this study, 
we demonstrated the sequence and annotation of P. peoriae strain 
ZBSF16 and compared its genome with the three major 
representative P. peoriae strains (P. peoriae ZF390, P. peoriae 
HS311 and P. peoriae HJ-2) that are beneficial to plant growth. 
Our aim was to provide important insights into the functions of 
the biocontrol strains and analyze the mechanisms of plant growth 
promotion and biological control at the gene level, which will 
benefit improved application of P. peoriae to plants in the field.

Materials and methods

Bacterial strains, culture conditions, 
antagonistic assays and genomic DNA 
extraction

P. peoriae ZBSF16 was isolated from the wheat rhizosphere in 
Shandong Province, China on May 7, 2020 and was deposited as 
a reference strain (strain no. 24769) in the China General 
Microbiological Culture Collection Center. Strain ZBSF16 was 
cultivated in LB (Luria broth) medium at 28°C with shaking at 
180 rpm for 24 h. The growth curve and the dynamic change in pH 
were measured every 4 h by spectrophotometer (Persee, TU-1900) 
and pH meter (Sartorius, PB-10) and the biochemical tests were 
performed as described by Yin et al. (2022). The morphology of 
the strains was observed scanning electron microscope (TESCAN 
VEGA3 SBU). Strain ZBSF16 was evaluated for its antagonistic 
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activities to Coniella vitis, Gloeosporium fructigrum, Pestalotiopsis 
clavispora, Alternaria viticola, Diaporthe eres, F. oxysporum, 
Botrytis cinerea, Botryosphaeria dothidea, Aspergillus niger, 
F. graminearum, F. pseudograminearum and Allorhizobium vitis by 
plate bioassays inoculated with 2 μl of bacterial suspension  
(Li Y. et al., 2019). The inoculation concentration of strain ZBSF16 
was determined by the optical density at 600 nm (OD600 = 0.8). 
Genomic DNA was extracted from cultured ZBSF16 cells 
(OD600 = 0.8) using a QIAamp® DNA Mini Kit (Qiagen, Valencia, 
CA, United States) according to the manufacturer’s instructions.

Whole-genome sequencing and 
assembly

The genomic DNA of P. peoriae ZBSF16 was sequenced at 
Biomarker Technologies with the Pacific Biosciences (PacBio) 
RSII Single Molecule Real Time (SMRT) sequencing platform (Li 
Y. et al., 2019). For genome assembly, the filtered subreads were 
assembled by Canu v1.5 software, and then, circlator v1.5.5 was 
used to cyclize the assembled genome. A 10-kb insert size template 
library was prepared according to the PacBio Sequel gDNA 
protocol and sequenced using the PacBio Sequel instrument. 
Circular genome views of the alignments were generated by 
CGView (Yuan et al., 2020).

Gene prediction and functional 
annotation

Genes and components of the genome were predicted by 
using Prodigal v2.6.3, and functional annotation was performed 
by comparisons against multiple databases, including NR 
(nonredundant) protein databases, SwissProt and the enhanced 
COG database, KEGG database, TrEMBL, and the Eggnog 
database. Transfer RNA (tRNA) genes were predicted with 
tRNAscan-SE v2.0, and ribosome RNA (rRNA) genes were 
predicted with Infernal v1.1.3. antiSMASH v5.0.0 was used to 
predict secondary metabolic gene clusters, and CRT v1.2 was used 
for CRISPR identification. Furthermore, pathogenicity and drug 
resistance can be researched by BLAST against the CAZy, TCDB, 
CARD, PHI, and VFDB databases.

Phylogenetic tree construction

The evolutionary position of P. peoriae ZBSF16 was 
determined by 16S rDNA gene sequence analysis, multilocus 
sequence analysis (MLSA) and PhyloPhlAn method (Segata et al., 
2013; Asnicar et al., 2020; Yin et al., 2022). 22 strains belonging to 
Paenibacillus were selected for constructing phylogenetic trees to 
investigate the evolution of strain ZBSF16 (Supplementary Table 1). 
Five housekeeping genes (16S rRNA, gyrB, rpoD, rho, and pgk) 
were selected for MLSA, sequence alignments of ZBSF16 with 

other Paenibacillus strains were carried out using the maximum 
likelihood clustering method, which was performed in MEGA6 
with a bootstrapping test of 1,000 replications to generate 
phylogenetic trees.

Comparative genomics analysis and 
mining for genes related to 
plant-beneficial traits

For the comparative genomic analysis, the genome sequences 
of P. peoriae ZBSF16 were compared to P. peoriae ZF390, P. peoriae 
HS311 and P. peoriae HJ-2 by MAUVE comparison software 
(Darling et al., 2004). Additionally, a circular chromosomal map 
of all the genomes used in the pan-genome analysis was prepared 
by using BLAST Ring Image Generator (BRIG) v 0.95, taking 
strain ZBSF16 as a reference genome (Alikhan et al., 2011; Mukhia 
et al., 2022). Furthermore, average nucleotide identity (ANI) was 
conducted by using the orthologous average nucleotide identity 
(OrthoANI) tool, and in silico DNA–DNA hybridization (DDH) 
was calculated by using the Genome-to-Genome Distance 
Calculator (GGDC) (Goris et al., 2007). Functional genes involved 
in plant growth promotion, such as genes responsible for IAA 
production, phosphate solubilization, nitrogen fixation, biofilm 
formation and synthesis resistance inducers, were searched in the 
NCBI databases as described by Kumar et al. (2019). The blast 
search was performed against the locally constructed database of 
the publically available genomes of P. peoriae, with the genome of 
P. peoriae ZBSF16 as a query. The identities of different functional 
genes at the amino acid level were compared among the strains by 
using BLAST, with an E-value cut off of 1e-15 was used for the 
BLAST search (Kumar et al., 2019). Secondary metabolite gene 
clusters were predicted by antiSMASH 4.0.2 (Jiang et al., 2022).

Measurement of IAA production, 
phosphate solubilization, siderophores 
and ammonia production

To determine the production of IAA, strain ZBSF16 was cultured 
in DF (peptone, 5.0 g; yeast extract, 1.5 g; beef extract, 1.5 g/l; NaCl, 
5.0 g/l; tryptophan, 0.5 g/l) salt minimal medium, with a concentration 
of L-tryptophan of 1.02 g/l. After incubation for 24 h at 28°C, the IAA 
concentration was estimated as the method described by Yuan et al., 
(2020). The capability of strain ZBSF16 to solubilize phosphate was 
estimated via National Botanical Research Institute Phosphate 
(NBRIP) solid medium as described by Yin et al., (2022), and the clear 
zone around the colony was measured after 7 days at 28°C. A CAS 
agar plate was used for qualitative analysis of siderophores, and yellow 
circles that appeared around the colonies were measured after 7 days 
at 28°C. The capability of strain ZBSF16 to produce ammonia was 
detected by the method described by Przemienieck, and Nessler’s 
reagent was used to determine its ability to produce ammonium 
(Przemieniecki et al., 2019; Elhaissoufi et al., 2020).
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Analyses of antibiotic resistance and 
hemolysis

The characteristics of antibiotic resistance of strain ZBSF16 
were tested on nine antibiotics, including ampicillin (200 μg/ 
ml), kanamycin (50 μg/ml), rifampicin (50 μg/ml), vancomycin 
(50 μg/ml), streptomycin (10 μg/ml), spectinomycin (50 μg/ml), 
gentamycin (10 μg/ml), tetracycline (5 μg/ml), and chloramphenicol 
(20 μg/ml). The minimum inhibitory concentration (MIC) and 
minimum bactericidal concentration (MBC) of spectinomycin for 
strain ZBSF16 were determined as previously described. P. peoriae 
ZBSF16 was grown in LB broth at 28°C for 24 h, Wagstsuma Blood 
Agar Base (Hopebio, China) was used to determine hemolysis as 
described previously (Brillard et al., 2001; Yuan et al., 2020).

Plant growth promotion, colonization 
and biocontrol assays

To determine the plant growth promotion capability of 
ZBSF16, ten Vitis vinifera seedlings (cv. Red globe) were treated 
with 50 ml of ZBSF16 culture (108 CFU/ml) by irrigation every 
15 days for 2 months. Another ten V. vinifera seedlings used as 
controls were treated with sterile water. All treated grape plants 
were placed in a greenhouse maintained at temperature 28°C and 
90% relative humidity (RH). At 60 days after inoculation, the root 
length, shoot length, fresh weight, and dry weight of the seedlings 
were measured. Meanwhile, the infection rate and disease index 
of grape white rot on Vitis vinifera seedlings (cv. Red globe) were 
calculated after inoculating C. vitis conidial suspension (106 
conidial/ml) two month later at 28°C and 70–80% RH (Chethana 
et al., 2017; Ji et al., 2021).

To observe the population dynamics of the ZBSF16 strain in 
the rhizosphere soil, Vitis vinifera seedlings (cv. Red globe) were 
transplanted into nursery pots containing sterile soil, and each 
seedling was irrigated with 50 ml of P. peoriae ZBSF16 bacterial 
suspension at a concentration of 108 CFU ml−1. Rhizosphere soil 
was collected at different time points (0, 7, 14, 21, 28, 35, 42, 49 
and 56 days after inoculation), and the number of ZBSF16 in the 
rhizosphere soil was determined by the plating counting method 
with LB medium containing spectinomycin and streptomycin.

Grape white rot caused by Coniella vitis was used as the 
pathosystem to determine the biocontrol potential of ZBSF16. 
Leaves and fruit of V. vinifera (cv. Red globe) were used to assess the 
preventive effect and control effect of strain ZBSF16 as described by 
Yin et al. (2022). Ten biological replicates were performed for each 
treatment, and the experiments were independently repeated three 
times. All the leaves and fruit were maintained at 28°C and 90% RH.

Statistical analysis

All experimental data were analyzed by SPSS 22.0 software, 
and all the values are presented as the mean ± standard error of at 

least three replications. Significant differences (p < 0.05) were 
determined by one-way analysis (ANOVA) of variance and 
Duncan’s multiple range test (Yuan et al., 2020; Yin et al., 2022).

Results

Organism information and antagonistic 
characteristics

As a gram-positive, anaerobic, rod-shaped bacterium with a 
length of 3–5 μm and a diameter of 0.8–1.2 μm, ZBSF16 can utilize 
diverse carbon sources and belongs to the Paenibacillus genus 
(Supplementary Figures  1A,B; Supplementary Table  2). The 
growth curve showed that the strain was in the exponential 
growth phase between 4 and 20 h after inoculation, with the pH 
value increasing to 7.77 (Supplementary Figure 1C). Additionally, 
the strain grew best when the pH value was between 6 and 8 and 
could endure 2% NaCl (Supplementary Figures 1G,H).

P. peoria ZBSF16 was isolated as a biocontrol agent for use 
against Coniella vitis, which exhibited the highest inhibitory rate 
of 64.44% (Supplementary Figure 2A). Antagonistic spectrum 
assays showed that strain ZBSF16 presented broad, strong 
antipathogenic activities against various fungi on grape, including 
Gloeosporium fructigrum, Botrytis cinerea, Diaporthe eres, 
Alternaria viticola, F. oxysporum, Aspergillus niger, Pestalotiopsis 
clavispora, and Allorhizobium vitis (Figure  1A). In addition, 
ZBSF16 is considered a biocontrol agent for its extracellular 
enzyme activity, and it can produce protease, cellulase and 
lipoidase, which is an important mechanism for inhibiting 
pathogens (Supplementary Figures 1D–F).

Plant growth promotion, colonization 
and biocontrol assays

The ability of ZBSF16 to promote growth was verified by 
inoculating the rhizosphere of plants of V. vinifera (cv. Red globe) 
with the suspension in the greenhouse. P. peoriae ZBSF16 produced 
siderophores and was considered an excellent PGRP 
(Supplementary Figure 3E). The rate of growth promotion for the 
length (weight) of the aboveground parts and the root length (fresh 
weight, dry weight) were 46.56% (60.20, 183.75%) and 60.78% 
(137.25, 454.54%), respectively (Figure  2C). In addition, the 
bacterial counts of ZBSF16 on the root surface were maintained at 
105 CFU/g after 1 month of inoculation (Supplementary Figure 3F). 
Further study showed that the infection rate and disease index of 
grape white rot on V. vinifera caused by C. vitis were decreased 70% 
and 62.97, inoculating with strain ZBSF16 compared to the control 
plants (Supplementary Figures 2D,E).

Two treatments were performed to determine the preventive 
effect and control effect of strain ZBSF16. The results demonstrated 
that strain ZBSF16 displayed excellent biocontrol traits for grape 
white rot disease (Figures  1B,C), with the preventive effects for 
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detached leaf and detached fruit being 90.59 and 94.52%, respectively. 
The control effects for detached leaves and detached fruit were 94.52 
and 84.70%, respectively (Supplementary Figures 2B,C).

Analyses of antibiotic resistance and 
hemolysis

The strain ZBSF16 exhibited resistance to ampicillin, 
chloramphenicol, tetracycline, gentamycin, rifampicin, kanamycin 
and vancomycin but not to streptomycin or spectinomycin. In 
addition, strain ZBSF16 showed an MIC of spectinomycin of 216 μg/
ml and an MBC of 1,024 μg/ml (Supplementary Figures 3A–C). 
Meanwhile, the strain was unable to produce hemolysin activity on 
plates according to the blood agar hemolysis assay 
(Supplementary Figure 3D).

General genomic features of 
Paenibacillus peoriae ZBSF16

The completed genome of the rod-shaped bacterium P. peoria 
ZBSF161 has been shown to be  composed of one circular 

1 https://www.ncbi.nlm.nih.gov/nuccore/CP092831.1

chromosome of 5,839,239 bp in size, with an average G + C content 
of 45.62% (Figure 3). The details of the assembly information and 
genomic features are summarized in Supplementary Tables 3, 4. A 
total of 5,188 predicted genes were identified in the genome, 
including 4,944 protein-coding sequences, 39 ribosomal RNA 
operons, 109 tRNAs, and 4 other RNAs. Genes associated with 
carbohydrate transport and metabolism (7.98%) were the highest 
density, followed by transcription (7.51%), amino acid transport 
and metabolism (5.59%), inorganic ion transport and metabolism 
(4.81%), signal transduction mechanisms (3.82%), replication, cell 
wall/membrane/envelope biogenesis (3.92%), replication, 
recombination, and repair (3.61%) and energy production and 
conversion (3.31%) (Figure  3). In addition, four crisprs were 
involved in ZBSF16, and the length of the repeated sequences 
ranged from 19 to 30 bp (Supplementary Table 4).

Comparison of the Paenibacillus peoriae 
ZBSF 16 genome with other completely 
sequenced Paenibacillus peoriae strains

Phylogenetic tree
To determine the relationships of P. peoria ZBSF16 with 

Paenibacillus spp. strains, phylogenetic trees based on the 16S 
rRNA gene sequences were built. The result indicated that ZBSF16 
was close to the strain P. peoria ZF390; however, P. kribbensis AM49 

A B

C

FIGURE 1

Antagonistic assay of Paenibacillus peoriae ZBSF16 against eleven pathogenic fungi and one pathogenic bacterium. (A) Antagonistic assay of P. 
peoriae ZBSF16. Coniella vitis (CV). Gloeosporium fructigrum (GF). Pestalotiopsis clavispora (Pc). Alternaria viticola (Av). Diaporthe eres (DE). 
Fusarium oxysporum (FO). Botrytis cinerea (BC). Botryosphaeria dothidea (BD). Aspergillus niger (AN). Fusarium graminearum (FG). Fusarium 
pseudograminearum (FP). Allorhizobium vitis (ALV). (B,C) Biocontrol efficiency of P. peoriae ZBSF16 on grape white rot caused by Coniella vitis. (a1, 
b1) Inoculated with C. vitis; (a2, b2) LB broth; (a3, b3) sterile water; (a4, b4) culture of ZBSF16; (a5, b5) inoculated with C. vitis 24 h after inoculation 
with the culture of ZBSF16; (a6, b6) inoculated culture of ZBSF16 24 h after inoculation with C. vitis.
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and P. peoria ZF390 were in a clade (Supplementary Figure 4A). 
Additionally, strain ZBSF16 was clearly classified as P. peoria in the 
phylogenetic tree based on the MLSA, and P. peoria ZBSF16 was 
most closely related to strains P. peoria ZF390, P. peoria HS311 and 
P. peoria HJ-2 (Supplementary Figure 4B). PhyloPhlAn method 
was performed to verify the evolutionary position. As expected, 
P. peoria ZBSF16 was most closely related to strains P. peoria ZF390, 
P. peoria HS311 (Figure 4).

ANI and DDH analysis

Average nucleotide identity (ANI) and DNA–DNA 
hybridization (DDH) are powerful approaches for evolutionary 
distance assessment between bacteria at the genomic level, and 
compared strains usually with ANI values > 96% and DDH values 
≥ 70% are regarded as the same species (Richter and Rosselló-
Móra, 2009; Jiang et al., 2022). ANI values showed that ZBSF16 

A

C

D E

B

FIGURE 2

Determination of the plant growth-promoting properties of Paenibacillus peoriae ZBSF16. (A) IAA production of P. peoriae ZBSF16. DF−, DF 
medium without L-tryptophan; DF+, DF medium containing L-tryptophan. (B,C) The growth-promoting effect of Paenibacillus peoriae ZBSF16 on 
grape; (D) mineral phosphate solubilization of P. peoriae ZBSF16; (E) ammonia production of P. peoriae ZBSF16.
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between P. peoria ZF390, HS311 and HJ-2 were 95.22, 95.23 and 
95.24%, respectively. However, the DDH value between ZBSF16 
and P. peoria HS311 was > 70% (Supplementary Figure  4). 
Obviously, ZBSF16 did not belong to P. polymyxa and P. kribbensis, 
according to the lower ANI values (< 91%) and DDH values 
(< 50%; Supplementary Figure 5).

Comparison of ZBSF16 with Paenibacillus 
peoriae strains

In comparison, the entire genome size of the four P. peoriae 
strains ranged from 5.84 to 6.19 Mb, the G + C content ranged 
from 44.99 to 45.62%, and the predicted coding genes ranged 
from 5,188 to 5,894. Furthermore, the genomes of strains ZF390 
and HS311 contained three and one plasmids, respectively. 
ZBSF16 and HJ-2 both contained one circular chromosome, and 
the additional genomic features of the six strains are described in 
Table 1.

To evaluate the evolutionary distance among these sequenced 
strains in relation to several Paenibacillus strains, the genome 
sequence of ZBSF16 was compared to three sequenced P. peoriae 
strains (ZF390, HS311 and HJ-2), two P. polymyxa strains 
(HY96-2 and SQR-21) and one P. kribbensis (AM49) by mauve. 
The alignments among Paenibacillus strains are presented in 
Figure  5A. Horizontal gene transfer was obviously observed 
among Paenibacillus strains, and the ZBSF16 genome is much 
more similar to HS311 than to ZF390 within P. peoriae strains 
based on comparative analysis. There were 3,479 conserved genes 

shared by the seven sequenced strains of the Paenibacillus strains, 
and 3,960 genes were shared within the four sequenced P. peoriae 
strains, including ZBSF16, ZF390, HS311 and HJ-2. In detail, 
ZBSF16 shared 4,152, 4,143 and 4,135 genes with ZF390, HS311 
and HJ-2, respectively. Furthermore, 357 unique genes were 
present in the genome of P. peoriae ZBSF16, genomes with their 
unique regions are presented in circular images (Figure 5B), and 
the functions of most unique genes are still unknown. Notably, 
only 3,772 genes were shared by ZBSF16 and P. kribbensis AM49, 
which is less than those in The P. polymyxa strains (Figures 5B,C; 
Supplementary Figure 6).

Genetic basis for promoting plant 
growth

IAA is an important phytohormone that controls cell 
enlargement and tissue differentiation in plants. In this study, 
ZBSF16 showed a higher IAA biosynthetic capacity (28.67 μg/ml; 
Figure 2A), and 12 genes related to IAA biosynthesis were identified 
in strain ZBSF16. Nine genes in the IAA biosynthesis pathway were 
shared among the four P. peoriae strains with homology higher than 
90%, except for three genes (trpE, trpG and trpCF) that were not 
found in strain HJ-2 (Table  2). As a major essential nutrient, 
phosphorus and nitrogen are necessary for the growth and 
development of plants, and ZBSF16 exhibits the capability of 
phosphate solubilization and nitrogen fixation (Figure  2D). 
Additionally, comparative genome analysis showed 14 genes related 
to phosphate solubilization in ZBSF16, which was highly similar to 

FIGURE 3

Genome map of Paenibacillus peoriae ZBSF16. The distribution of the circle from the outside indicates the genome size, forward CDS, reverse 
CDS, repeat sequence, tRNA (blue), rRNA (purple), GC ratio (yellow and blue indicate regions where the GC ratio is higher than average and lower 
than average, respectively), and CG skew positive (dark) and negative (red).
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ZF390, HS311 and HJ-2, and the gene iap, which is shared by strain 
ZF390 and HS311 (Table 2). Furthermore, 15 genes responsible for 
nitrogen fixation were all found in the genomes of ZBSF16, HS311 
and HJ-2, most of which were highly conserved, with sequence 
identities ranging from 93 to 100%. However, nifH, nifN, nifB, nifD, 
nifE, nifK, nifX and hesA were absent in strain ZF390 (Table 2). 
Meanwhile, 30 genes involved in flagella and 12 genes related to 
biofilm formation were discovered in strain ZBSF16, and 40 genes 
involved in flagella (except for fliD and fliS) and biofilm formation 
exhibited high conservation (> 88%) in ZF390, HS311, HJ-2 and 
ZBSF16 (Supplementary Tables 5, 6). Quorum sensing (QS) 
relegated many traits of bacteria, including biofilm formation and 
colonization. QS is conserved across hundreds of species belonging 

to the Paenibacillaceae family, and seven genes related to QS were 
identified in P. peoriae strains in this study (Supplementary Table 7). 
Additionally, 11 genes associated with the chemtaxis and 
two-component systems (TCS), except CitG and DcuS, were 
conservative in different strains of P. peoriae (Supplementary Table 8).

Genes/gene cluster for antibiotic 
synthesis and induction of resistance

P. peoriae ZBSF16 showed potent broad-spectrum antifungal 
activities. Based on the antiSMASH database, 14 clusters related 
to secondary metabolite synthesis were identified in ZBSF16. 

FIGURE 4

Phylogenetic analysis of Paenibacillus peoriae ZBSF16 against six other Paenibacillus from genomes using PhyloPhlAn 3.0.2.
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TABLE 1 Genomic features of Paenibacillus peoriae ZBSF16 and other P. peoriae strains.

Features P. peoriae 
ZBSF16

P. peoriae ZF390 P. peoriae HJ-2 P. peoriae 
HS311

P. polymyxa 
HY96-2

P. polymyxa 
SQR21

P. kribbensis 
AM49

Size (bp) 5,839,239 6,193,667 6,001,192 6,006,533 5,745,779 5,828,436 5,778,702
GC content (%) 45.62 44.99 45 45.47 45.60 45.60 46.80
Replicons Chromosome Chromosome; Plasmid pPlas1; 

plasmid pPlas2; plasmid pPlas3
Chromosome Chromosome; 

plasmid unnamed
chromosome chromosome chromosome

Total genes 5,188 5,894 5,439 5,408 4,955 5,128 5,149
Predicted no. of CDS 4,944 5,749 5,237 5,131 4,799 4,974 5,023
Ribosomal RNA 39 40 39 39 42 39 30
Transfer RNA 109 101 108 99 110 111 92
Other RNA 4 4 N/A 1 4 4 4
CRISPR 4 N/A 9 1 N/A 2 4
Pseudogene 92 115 N/A 138 136 78 184

A

B C

FIGURE 5

Comparison of Paenibacillus peoriae ZBSF16 genome sequences against six other Paenibacillus genome sequences. (A) Synteny analysis of P. 
peoriae ZBSF16 with the P. peoriae ZF390, P. peoriae HS311, P. peoriae HJ-2, P. polymyxa HY96-2 P. polymyxa SQR-21 and P. kribbensis AM49 
genomes. Pairwise alignments of the genomes were generated using MAUVE. The genome of strain ZBSF16 was used as the reference genome. 
Boxes with the same color indicate syntenic regions. Boxes below the horizontal strain line indicate inverted regions. Rearrangements are shown 
by colored lines. Scale is in nucleotides. (B) Pangenome analysis with closely related strains identified the unique genes present in the query 
genomes that are highlighted in the outermost circle, the strain ZBSF16 as the query genome is placed in the innermost circle. (C) Venn diagram 
showing the number of clusters of orthologous genes shared and unique genes.

220

https://doi.org/10.3389/fmicb.2022.975344
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fmicb.2022.975344

Frontiers in Microbiology frontiersin.org

TABLE 2 Homolog analysis of genes involved in plant growth promotion in Paenibacillus peoriae ZBSF16 and other P. peoriae strains.

Genes Product definition

P. peoriae ZBSF16 P. peoriae ZF390 P. peoriae HS311 P. peoriae HJ-2

Locus  
Tag

Protein 
ID

Protein  
ID

Homology 
(%)

Protein  
ID

Homology 
(%)

Protein 
ID

Homology 
(%)

Indole-3-acetic acid biosynthesis genes
acoc Chorismite synthase MLD56_14630 UMY52826.1 WP_007430826.1 99.49 WP_007430826.1 99.49 NA 100.00
pheB Chorismite mutase MLD56_05715 UMY55941.1 WP_013369718.1 99.17 WP_013369718.1 99.17 NA 99.72
aroF 3-Deoxy-7-

phosphoheptulonate 
synthase/chorismite 
mutase

MLD56_07785 UMY56321.1 WP_017426658.1 97.97 WP_013309435.1 99.71 NA 99.71

Tryptophan-rich sensory 
protein

MLD56_02865 UMY55416.1 WP_014279544.1 89.64 WP_014279544.1 89.64 NA 96.02

trpA Tryptophan synthase 
subunit alpha

MLD56_14590 UMY52818.1 WP_013310712.1 98.13 WP_013310712.1 98.13 NA 98.51

trpB Tryptophan synthase 
subunit beta

MLD56_14595 UMY52819.1 WP_014282083.1 96.73 WP_014282083.1 96.73 NA 99.25

trpS Tryptophan--tRNA ligase MLD56_20860 UMY53981.1 WP_016819987.1 98.18 WP_013311859.1 97.26 NA 96.66
trpC Indole-3-glycerol 

phosphate synthase TrpC
MLD56_14605 UMY52821.1 WP_017427551.1 94.30 WP_013371667.1 95.06 NA 97.35

trpD Anthranilate 
phosphoribosyltransferase

MLD56_14610 UMY52822.1 WP_013371668.1 95.98 WP_013371668.1 95.98 NA 97.70

trpE Anthranilate synthase 
component I

MLD56_14615 UMY52823.1 WP_007430823.1 97.87 WP_007430823.1 97.87 NA NA

trpG Glutamine 
amidotransferase

MLD56_18435 UMY53538.1 WP_007431477.1 91.83 WP_007431477.1 91.83 NA NA

trpCF Phosphoribosylanthranilate 
isomerase

MLD56_14600 UMY52820.1 WP_019687860.1 91.23 WP_019687860.1 91.23 NA NA

ipdC Thiamine pyrophosphate-
binding protein

MLD56_00395 UMY54998.1 WP_007428062.1 100.00 WP_007428062.1 100.00 NA 98.75

Phosphate solubilization genes
phoN Phosphatase PAP2 family 

protein
MLD56_05880 UMY55971.1 WP_010347599.1 87.07 WP_013309103.1 97.79 NA 99.97

iap Aminopeptidase NA NA WP_013309451.1 NA WP_013309451.1 NA NA NA
phoA Alkaline phosphatase MLD56_07175 UMY56211.1 WP_019686611. 93.21 WP_013309329.1 97.48 NA 97.03
phnE Phosphonate ABC 

transporter, permease 
protein PhnE

MLD56_21880 UMY54161.1 WP_016324733.1 99.30 WP_016324733.1 99.30 NA 99.30

phnE Phosphonate ABC 
transporter, permease 
protein PhnE

MLD56_21885 UMY54162.1 WP_016820374.1 98.87 WP_016820374.1 98.87 NA 99.25

phnD Phosphonate ABC 
transporter substrate-
binding protein

MLD56_21870 UMY54159.1 WP_010344588.1 96.89 WP_010344588.1 96.89 NA 99.69

phnC Phosphonate ABC 
transporter ATP-binding 
protein

MLD56_21875 UMY54160.1 WP_020723499.1 98.83 WP_020723499.1 98.83 NA 97.66

pstS Phosphate ABC 
transporter substrate-
binding protein PstS

MLD56_08410 UMY56438.1 WP_016819622.1 98.70 WP_016819622.1 98.70 NA 99.35

pstC Phosphate ABC 
transporter permease PstC

MLD56_08415 UMY56439.1 WP_013370343.1 99.66 WP_053325097.1 99.33 NA 99.68

pstA Phosphate ABC 
transporter permease PstA

MLD56_08420 UMY57301.1 WP_013309592.1 99.66 WP_013309592.1 99.66 NA 100

pstB Phosphate ABC 
transporter ATP-binding 
protein PstB

MLD56_08425 UMY56440.1 WP_013370344.1 97.86 WP_013370344.1 97.86 NA 99.29

(Continued)
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TABLE 2 Continued

Genes Product definition

P. peoriae ZBSF16 P. peoriae ZF390 P. peoriae HS311 P. peoriae HJ-2

Locus  
Tag

Protein 
ID

Protein  
ID

Homology 
(%)

Protein  
ID

Homology 
(%)

Protein 
ID

Homology 
(%)

pstB Phosphate ABC 

transporter ATP-binding 

protein PstB

MLD56_08490 UMY56453.1 WP_007429703.1 96.83 WP_007429703.1 96.83 NA 99.21

phoU Phosphate signaling 

complex protein PhoU

MLD56_08495 UMY56454.1 WP_016819636.1 96.80 WP_016819636.1 96.80 NA 100

phoN Phosphatase PAP2 family 

protein

MLD56_05880 UMY55971.1 WP_010347599.1 87.07 WP_013309103.1 97.79 NA 99.97

Nitrate transport and nitrate/nitrite reduction

narI Nitrate reductase gamma 

subunit

MLD56_17955 UMY57358.1 WP_013372381.1 95.59 WP_013311337.1 96.93 NA 96.37

narJ Nitrate reductase 

molybdenum cofactor 

assembly chaperone

MLD56_17960 UMY57359.1 WP_010345152.1 95.72 WP_010345152.1 95.72 NA 98.40

narH Nitrate reductase beta 

subunit

MLD56_17965 UMY53450.1 WP_016324613.1 92.25 WP_014282714.1 99.43 NA 99.62

narG Nitrate reductase alpha 

subunit

MLD56_17970 UMY53451.1 WP_007431447.1 93.95 WP_007431447.1 93.95 NA 98.62

narK MFS transporter NNP 

family nitrate/nitrite 

transporter

MLD56_17930 UMY53446.1 WP_013311332.1 98.18 WP_013311332.1 98.18 NA 98.63

Niterate transport and reduction

nirD Nitrite reductase small 

subunit NirD

MLD56_03440 UMY55525.1 WP_017428677.1 93.58 WP_017428677.1 93.58 NA 96.33

nirC Nitrite transporter NirC MLD56_04985 UMY55818.1 WP_016819917.1 98.47 WP_016819917.1 98.47 NA 90.46

nirB Nitrite reductase large 

subunit NirB

MLD56_03435 UMY55524.1 WP_016818403.1 97.65 WP_016818403.1 97.65 NA 98.27

amtB Ammonium transporter 

Amt family

MLD56_09035 UMY56554.1 WP_010348916.1 96.79 WP_007429827.1 97.00 NA 99.79

nifH Nitrogenase iron protein 

NifH

MLD56_05440 UMY55888.1 NA NA WP_007429042.1 98.26 NA 100

nifN Nitrogenase molybdenum-

iron protein NifN

MLD56_05460 UMY55892.1 NA NA WP_014280100.1 98.16 NA 93.08

nifB Nitrogenase fixation 

protein NifB

MLD56_05435 UMY55887.1 NA NA WP_014280095.1 95.79 NA 97.35

nifD Nitrogenase fixation 

protein NifD

MLD56_05445 UMY55889.1 NA NA WP_007429043.1 97.93 NA 95.69

nifU Nitrogenase fixation 

protein NifU

MLD56_21125 UMY54031.1 WP_013373004.1 100 WP_013373004.1 100 NA 100

nifE Nitrogenase molybdenum-

cofator synthesis

protein NifE

MLD56_05455 UMY55891.1 NA NA WP_014280099.1 96.91 NA 99.56

nifK Nitrogenase molybdenum-

iron protein subunit beta

MLD56_

RS05450

UMY55890.1 NA NA WP_007429044.1 97.45 NA 97.45

nifX Nitrogen fixation protein 

NifX

MLD56_

RS05465

UMY55893.1 NA NA WP_014280101.1 97.67 NA 96.90

hesA HesA/MoeB/ThiF family 

protein

MLD56_

RS05470

UMY55894.1 NA NA WP_014280102.1 100.00 NA 97.24

NA, not available.
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Among these gene clusters, three clusters (Cluster 1 related to 
fusarcidinB, Cluster 8 related to cyclic-lactone-autoinducer, and 
Cluster 9 related to tridecaptin) were shared among the four 
P. peoriae strains, the two P. polymyxa and P. kribbensis; the 
functions of fusarcidin B and tridecaptin were antifungal and 
antibacterial, respectively. Cluster 3 related to paenibacillin was 
specific and only found in strain ZBSF16, which was a kind of 
lantibiotic. In addition, polymyxin and paenilan did not appear in 
P. kribbensis, paeninodin could not be detected in P. polymyxa, and 
genes related to Cluster 17 encoding the biosynthesis of paenilan, 
pelgipeptin, aurantinin and so on were not found in ZBSF16 
(Figure 6; Supplementary Table 9).

The resistance inducer biosynthesis gene cluster, including 11 
genes related to ISR and 3 genes involved in PAMP-triggered 
immunity (PTI), was analyzed in strain ZBSF16, which is highly 
conserved in the selected P. peoriae strains (> 79% identity). The 
genes alsS and budA were identified in strain ZBSF16, which 
showed a lower similarity to ZF390. The gene flgL involved in PTI 
of plants showed higher similarity to ZF390, and it could not 
be identified in strains HS311 and HJ-2 (Table 3).

Discussion

Paenibacillus is widely distributed in a variety of environments, 
including wetlands, meadow soil, desert sand, oceans, wheat soil 
rhizospheres, cucumber greenhouses and infected honeybees 
(Jeon et al., 2009; Wang et al., 2013; Ahn et al., 2014). The genus 
Paenibacillus is reported to have the ability to promote the growth 
of many plants, such as maize, wheat, tomato, and pumpkin (Hao 
and Chen, 2017; Dixit et  al., 2018). The genome size of 
Paenibacillus species ranges from 3.02 Mbp to 8.82 Mbp. As a 
member of 200 species in Paenibacillus, P. peoriae was described 
to play a role in promoting the growth of plants by some studies 
in the past and was confirmed in this study (Figure 2), with a 
genome size of 5.74–6.19 Mbp and GC content of 44.99–45.62% 
(Table 1). P. peoriae was close to P. polymyxa and P. kribbensis in 
terms of evolutionary status, and ZBSF16 was identified and 
confirmed to belong to P. peoriae by ANI and DDH. Compared to 
P. peoriae HJ-2, which presented antagonistic activity against 
Fusarium spp., ZBSF16 had a broad antifungal and antibacterial 
spectrum, which could protect against 10 species of fungi and 2 
species of bacteria.

Many PGPRs, including Bacillus, Rahnella, Pseudomonas, 
Klebsiella, Agrobacterium and Paenibacillus sp. can produce IAA 
to stimulate the growth of plants, and Paenibacillus nonsymbiotic 
bacteria yielded high concentrations of IAA (in the range of 4.90–
0.19 IAA/mg biomass; Shokri and Emtiazi, 2010; Trinh et  al., 
2018). P. polymyxa, P. borealis, and P. terrae showed the secretion 
of a significant amount of IAA, but no P. graminis had the ability 
to produce IAA (Navarro-Noya et al., 2012; Kim et al., 2017). 
P. peoriae HJ-2 isolated from soil significantly promoted the 
growth of P. polyphylla, and P. peoriae ZBSF16 for the first time 
was used to describe the ability to synthesize IAA and promote the 

growth of grape, with IAA production of 28.67 μg ml−1. The 
various pathways for IAA biosynthesis include tryptophan (Trp), 
tryptamine (Tam), indole-3-pyruvic acid (IPyA) and indole-3-
acetamide (IAAm) pathways, and the IPyA pathway was suggested 
in Paenibacillus because of the absence of tryptophan 
monooxygenase or indole-3-acetamide hydrolase (Mano and 
Nemoto, 2012; Xie et  al., 2016). In addition, the ipdC gene, 
encoding a key enzyme in the IPyA pathway, is shared in all 
Paenibacillus (Xie et al., 2016). In this study, ipdC homologies were 
present in all sequenced P. peoriae, which demonstrated that 
P. peoriae may rely on the IPyA pathway for IAA synthesis.

FIGURE 6

Comparison of antibiotic synthesis clusters of Paenibacillus 
strains. Antibiotic synthesis clusters were identified using 
antiSMASH, and gene cluster intraspecific genes were compared.
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TABLE 3 Genes related to synthesis resistance inducer in Paenibacillus peoriae ZBSF16 and other P. peoriae strains.

Genes Resistance 
inducers

Plant 
resistance 
type

Product 
definition

  P. peoriae ZBSF16   P. peoriae ZF390   P. peoriae HS311   P. peoriae HJ-2

Locus tag Protein ID Protein ID Homology 
(%) Protein ID Homology 

(%)
Protein 

ID
Homology 

(%)

alsS 2,3-Butanediol ISR Acetolactate synthase MLD56_10755 UMY56883.1 WP_003206007.1 75.92 WP_013310040.1 95.43 NA 95.96

budA/ alsD 2,3-Butanediol ISR Acetolactate 

decarboxlase

MLD56_10750 UMY56882.1 WP_000215036.1 68.25 WP_016821069.1 97.18 NA 97.58

bdh 2,3-Butanediol ISR 2，3-Butanediol 

dehydrogenase

MLD56_18150 UMY53485.1 WP_019688213.1 98.29 WP_013311373.1 99.43 NA 96.00

ilvN 2,3-Butanediol ISR Acetolactate synthase 

small subunit

MLD56_07545 UMY56280.1 WP_007429525.1 98.76 WP_013309386.1 99.38 NA 99.38

metH Methanethio ISR Methionine synthase MLD56_13735 UMY52659.1 WP_010345928.1 96.68 WP_010345928.1 96.68 NA 80.94

metE Methanethio ISR 5-Methyltetrahydro- 

pteroyltriglutamate- 

homocysteine 

S-methyltransferase

MLD56_24010 UMY54554.1 WP_013373554.1 93.47 WP_013312443.1 97.73 NA 96.50

ispF Isoprene ISR 2-C-methyl-D-

erythritol 

2,4-cyclodiphosp- hata

MLD56_22685 UMY54300.1 WP_000488386.1 100 WP_007432605.1 98.10 NA 98.73

ispE Isoprene ISR 4-(cytidine 

5′-diphospho)-2-C- 

methyl-D-erythritol 

kinase

MLD56_00170 UMY54955.1 WP_013308121.1 99.65 WP_013308121.1 99.65 NA 98.94

gcpE Isoprene ISR Flavodoxin- dependent 

(E)-4-hydroxy-3- 

methylbut-2-enyl- 

diphosphate synthae

MLD56_19660 UMY53756.1 WP_010348073.1 98.92 WP_010348073.1 98.92 NA 100

lytB Isoprene ISR 4-hydroxy-3 

-methylbut-2-enyl 

diphosphate reductase

MLD56_07780 UMY56320.1 WP_013309434.1 99.37 WP_013309434.1 99.37 NA 99.00

fni Isoprene ISR Type 2 isopentenyl- 

diphosphate Delta-

isomerase

MLD56_23495 UMY54455.1 WP_017427145.1 91.80 WP_013312347.1 96.45 NA 96.72

guaB Peptidoglycan PTI carboxypeptidase MLD56_00435 UMY55002.1 WP_017427215.1 97.94 WP_017427215.1 97.94 NA 97.94

flgL Flagenllin PTI flagellin MLD56_23175 UMY54392.1 WP_016822919.1 96.44 N/A N/A NA NA

tuf EF-Tu PTI Elongation factor Tu MLD56_22575 UMY54278.1 WP_017815361.1 96.21 WP_017815361.1 96.21 NA 98.99

NA, not available.
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P. polymyxa strains have long been known to solubilize 
phosphate, which carries the phn genes (phnABCDEWXM) 
responsible for solubilizing organic phosphate (Zhou et al., 
2020; Soni et al., 2021). The phnB gene was absent in some 
species of Paenibacillus, including P. beijingensis 1–18, 
P. peoriae KCTC 3763 and P. terrae HPL-003 (Jeong et al., 
2012; Shin et al., 2012; Li L. et al., 2019). In this study, phnA 
and phnB were not found in the genomes of P. peoriae. The 
Pst (phosphate-specific transport) system is a major transport 
system for Pi. The pst operon of Paenibacillu is composed of 
pstS, pstC, pstA and pstB (Li et al., 2020), and the four pst 
genes were all present in P. peoriae ZBSF16, which contribute 
to the solubilization of phosphate. It has been reported that 
Rahnella aquatilis ZF7 can produce acid, which may have 
high activity for solubilizing organic phosphate (Yuan et al., 
2020). A higher phosphate solubilization ability of P. peoriae 
ZBSF16 was observed, although the pH value of ZBSF16 
remained alkaline when cultured.

Nitrogen fixation is one characteristic of the genus 
Paenibacillus, and more than 20 species of the genus 
Paenibacillus can fix nitrogen (Grady et al., 2016; He et al., 
2021). Nitrogen fixation is mainly catalyzed by 
Mo-nitrogenase, and the nif gene cluster (nifB, nifH, nifD, 
nifK, nifE, nifN, nifX, hesA and nifV) encoding 
Mo-nitrogenase is shared in N2-fixing Paenibacillus strains 
(Xie et al., 2014). When the nif gene cluster is lost, non-N2-
fixing strains are produced, such as P. peoriae KTCT 3763, 
P. polymyxa SC2 and P. polymyxa E681 (Kim et al., 2010; Ma 
et al., 2011). When acquiring the vnf and anf genes, strains of 
vnfHDGKEN encoding V-nitrogenase and anfHDGK 
encoding Fe-nitrogenase appeared, such as P. azotofixans 
ATCC 35681 and P. forsythia T98 (Xie et  al., 2014, 2016). 
Most likely due to gene loss, the nifV gene was absent in the 
gene cluster in P. peoriae ZBSF16, but ZBSF16 retained its 
nitrogen-fixing capacity.

The genus Paenibacillus is known for its ability to produce 
antibacterial metabolites, including fusaricidins, pelgipeptin, 
surfactins and polymyxins (Grady et  al., 2016). The 
antibacterial metabolites of P. polymyxa ZF129 and 
P. polymyxa ZF197 were significantly different, but 
paeninodin, fusaricidin, paenibacterin and tridecaptin were 
shared by the two strains (Li et  al., 2020). In our study, 
fusaricidin B, tridecaptin, polymyxin and paenicidin B were 
found in P. peoriae ZBSF16, which contribute to its strong 
antipathogenic activities. In addition, fusaricidin B, 
tridecaptin and polymyxin were conserved in P. peoriae, 
P. polymyxa and P. kibbensis, which were also shared in 
P. polymyxa ZF129 and P. polymyxa ZF197. The antifungal 
mechanism of fusaricidin is permeabilization and disruption 
of cell membranes (Jiang et al., 2022), which may be one of 
the reasons why P. peoriae ZBSF16 showed a broad 
antifungal spectrum.

ISR is the form of induced resistance wherein plant defenses 
are preconditioned by prior treatment that results in resistance 

against subsequent challenge by a pathogen or parasite 
(Choudhary et al., 2007). ISR can increase systemic levels of the 
plant hormone salicylic acid (SA) and trigger the jasmonic acid/
ethylene pathway. Paenibacillus-mediated ISR has been 
demonstrated against fungi (e.g., C. truncatum, C. orbiculare and 
F. oxysporum) and bacteria (e.g., Xanthomonas axonopodis pv. 
vesicatoria, Erwinia carotovora subsp. carotovora) in pepper, 
cucumber, banana, and Arabidopsis thaliana (Sang et al., 2014; 
Nakkeeran et al., 2021; Yadav M. et al., 2021). Nine genes involved 
in ISR were explored in P. polymyxa, with higher sequence identity 
(> 95%) in different strains, while key genes associated with 
volatile organic compounds (2,3-butanediol, methanethiol and 
isoprene) were contained (Li et al., 2020). A total of 12 genes 
related to ISR were found in P. peoriae ZBSF16, which were highly 
similar to those in P. polymyxa (homology > 99%). The results 
demonstrated that P. peoriae and P. polymyxa could induce similar 
systemic resistance in plants.

Conclusion

P. peoriae ZBSF16 showed broad-spectrum antagonistic 
activities against 12 plant pathogens and exhibited obvious 
biocontrol effects against grape white rot disease. The aim of this 
study was to reveal the plant growth-promoting and biocontrol 
mechanisms of P. peoriae. Whole-genome analysis and 
phylogenetic analysis revealed that ZBSF16 belongs to P. peoriae 
and is closely related to P. peoriae ZF390. Comparative analysis of 
the genome of P. peoriae ZBSF16 with other Paenibacillus spp. 
indicated that ZBSF16 harbored many genes related to IAA 
production, nitrogen fixation, phosphate solubilization, biofilms 
and flagella, which have been proven to be beneficial to plant 
growth. In addition, genes associated with antibiotic synthesis and 
induction of resistance were identified. Overall, the features of 
P. peoriae ZBSF16 make it a high-probability biocontrol agent and 
biofertilizer, and these results will contribute to in-depth research 
on the mechanisms of plant growth promotion and biocontrol.
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SUPPLEMENTARY FIGURE 1

General characteristics of Paenibacillus peoriae ZBSF16. (A) Image of 
ZBSF16 colony morphology. (B) Image of ZBSF16 cells via scanning 
electron microscopy. (C) Growth dynamics and pH change of P. peoriae 
ZBSF16. Bars plot the means ± standard deviation of three replicate 
experiments. P (D) Production of protease. (E) Cellulose degradation. 

(F) Production of lipase. Determination of NaCl (G) and pH (H) tolerance 
capabilities of P. peoriae ZBSF16.

SUPPLEMENTARY FIGURE 2

Antagonistic assay and biocontrol effect of Paenibacillus peoriae ZBSF16. 
(A) Colony radius and inhibition rate of each microorganism. Bars plot the 
means ± standard deviation of three replicate experiments. Coniella vitis 
(CV). Gloeosporium fructigrum (GF). Pestalotiopsis clavispora (Pc). 
Alternaria viticola (Av). Diaporthe eres (DE). Fusarium oxysporum (Fo). 
Botrytis cinerea (BC). Botryosphaeria dothidea (BD). Aspergillus niger 
(AN). Fusarium graminearum (FG). Fusarium pseudograminearum (FP). 
Allorhizobium vitis (ALV). (B,C) Incidence, disease index and control 
efficiency of P. peoriae ZBSF16. (a1, b1) Inoculated with C. vitis; (a2, b2) LB 
broth; (a3, b3) sterile water; (a4, b4) culture of ZBSF16; (a5, b5) inoculated 
with C. vitis 24 h after inoculation with the culture of ZBSF16; (a6, b6) 
inoculated culture of ZBSF16 24 h after inoculation with C. vitis. 
(D) Disease symptoms and growth state of Vitis vinifera (cv. Red globe) 
inoculated with strain ZBSF16. (E) The infection rate and disease index of 
grape white rot on Vitis vinifera (cv. Red globe) inoculated with strain 
ZBSF16. CK plants were treated with sterile water. Different letters above 
the bars denote a significant difference at p < 0.05 according to Duncan’s 
multi-range test.

SUPPLEMENTARY FIGURE 3

Determination of antibiotic resistance of Paenibacillus peoriae ZBSF16. 
(A) Survival of P. peoriae ZBSF16 treated with different antibiotics. 
Spectinomycin (Spe), streptomycin (Str), ampicillin (Amp), vancomycin 
(Van), kanamycin (Kan), gentamycin (Gen), chloramphenicol (Chl), 
tetracycline (Tet) and rifampicin (Rif). (B) Minimum inhibitory 
concentration (MIC) of spectinomycin for strain ZBSF16. (C) Minimum 
bactericidal concentration (MBC) of spectinomycin for strain ZBSF16. 
(D) Hemolysis assay of ZBSF16. (E) Siderophores production of P. peoriae 
ZBSF16. (F) Population dynamics of P. peoriae ZBSF16 in the rhizosphere 
soil of grape.

SUPPLEMENTARY FIGURE 4

(A) Phylogenetic tree for P. peoriae ZBSF16 and the genus Paenibacillus 
based on 16S rRNA (Bacillus velezensis FZB42 was used as an outgroup). 
(B) Phylogenetic tree of Paenibacillus peoriae ZBSF16 among other 
Paenibacillus species. The phylogenetic tree was constructed based on 
five housekeeping genes (16S rRNA, gyrB, rpoD, rho, and pgk) according 
to the aligned gene sequences using the maximum likelihood method in 
MEGA 6.0. Bootstrap values (1,000 replicates) are shown at the branch 
points. The scale bar indicates 0.05 nucleotide substitutions per 
nucleotide position. GenBank accession numbers associated with the 
housekeeping loci of all strains can be found in Supplementary Table 1.

SUPPLEMENTARY FIGURE 5

ANI (A) and DDH (B) value matrix heatmap between Paenibacillus peoriae 
ZBSF16 and six other Paenibacillus genome sequences.

SUPPLEMENTARY FIGURE 6

Venn diagram showing the number of clusters of orthologous genes 
shared and unique genes.
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