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Editorial on the Research Topic 


State-of-the-art technology and applications in crop phenomics, volume II


High-throughput acquisition and analysis of phenotypic data is crucial for plant breeding, as phenotypes are the language of plants and a way for them to express their growth status. We can understand plants and discover their secrets of life through the phenotypes. The crop phenotyping community has put a lot of effort into collecting, processing, and analyzing phenotypic data, which is increasingly considered an important tool for rapidly advancing genetic gain in breeding programs (Zhao et al., 2019). Various types of data have emerged from diverse phenotyping platforms ranging from lab-scale to field-scale, and as a result, various phenotypic data processing approaches have emerged at this historic moment. By integrating knowledge from life science, optics, artificial intelligence, computer science, and engineering, plant phenomics has developed into a cutting-edge discipline, and considerable progress has been made in both phenotyping facilities and methodologies.

To promote the most advanced research progresses in crop phenomics, this Research Topic  is prepared and released, which covers new advances in crop phenomics, including phenotyping platforms, methods, and applications. Although various phenotyping platforms have been developed, there is still a great demand for cost-effective phenotyping platform. Deep learning, as a highly effective technology, is applied to various types of images such as RGB, hyperspectral, and CT images to produce highly accurate phenotypic parameters. Meanwhile, the potential of machine learning approaches has also been demonstrated in phenotypic analysis, such as post-harvest quality control, breeding, plant research, and plant response to environmental stress.




Phenotyping platform design and development

The need for cost-effective phenotyping has been increasingly urgent over the past decade. To make phenotyping platforms more affordable, various aspects such as hardware investment, software solutions, labor cost, and tool sharing have been considered (Reynolds et al., 2019). In particular, the cost of phenotyping hardware is a critical factor in platform design and development. Consequently, some researchers are now directing their attention to developing low-cost phenotyping platforms. A low-cost fluorescence phenotyping platform consisting of four UV lamps, 12 white lamps, and a digital camera was built to evaluate dynamic infection process of Tobacco mosaic virus-green fluorescent protein in tobacco leaves. The performance was evaluated by comparing fluorescence images with RGB images acquired by the system, and the results showed that green fluorescence changes could be identified by the cheap and simple equipment and the non-destructive detection of TMV-GFP was realized (Ye et al.).

In recent years, 3D phenotyping has gained increasing attention in the field due to the ability to generate volumetric information that is not possible with 2D phenotyping. However, the production of 3D structures of plants remains a vital issue that needs to be addressed. Active technologies, such as LiDAR (Light Detection and Ranging), can generate highly accurate 3D geometric information of plants. However, the high cost of hardware investment associated with LiDAR is a significant concern. Alternatively, passive technologies, such as 3D reconstruction methodologies from images, have been investigated due to their low hardware cost. Nevertheless, local personnel costs may be required for data collection, calibration, and processing. At individual plant scale, a miniaturized shoot phenotyping platform, MVS-Pheno V2, has been developed to enable 3D reconstruction of individual plants using multi-view stereo techniques. Based on the MVS-Pheno V1 platform designed for low plant shoots, the MVS-Pheno V2 platform consists of four parts. The hardware is miniaturized to occupy less space, while controlled imaging conditions have been established to avoid the effects of light and wind and ensure high-quality images. Additionally, wireless communication and control have been integrated to avoid cable tangling. The data processing system includes 3D point cloud generation, calibration, and 3D phenotype extraction. To evaluate the performance of the platform, three cultivars of wheat shoots at four different growth stages were used in testing (Wu et al.). Roots are an essential part of all vascular plants that grow underground. Dowd et al. designed and developed “3D root Mesocosms” to enable the visualization and analysis of full-sized plant root architecture in 3-dimensions. The system uses a growth container with an internal volume of 45 ft3 (1.27m3) that is suitable for large crop and bioenergy grass root systems. The setup only requires an appropriate studio space and a digital camera, and the 3D visualization is created using a photogrammetric reconstruction pipeline. The system was evaluated on root systems of switchgrass, maize, and sorghum to demonstrate its capability for comparing and studying different species.

To study root phenotyping in 2D space, a high-throughput in situ root phenotyping platform called the RhizoPot platform was designed and developed with integrated hardware and software. The platform consists of four parts. The RhizoPot cultivated seedlings, while RhizoAuto collected in situ root images. A deep learning framework, DeepLabv3++, was used to segment root images, and WinRhizo software was used to obtain dynamic root phenotypes. Root hair phenotypes were analyzed by RhizoComp. This platform allows for the efficient and high-throughput analysis of the dynamic response characteristics of root phenotypes (Zhao et al.). Besides, the platform was used to investigate the effects of high-temperature weather on cotton seedlings’ growth dynamics of the above-ground parts and root phenotype by using images taken by this platform (Fan et al). The RhizoPot platform is a cost-effective solution that can save significant labor costs and offer a general solution for root phenotyping. It can be used for root phenotypic studies and various phenotypic tasks across multiple crops.

In addition to the external phenotype parameters of crops, the internal structure of crops is also a key focus of breeders. Imaging technologies such as CT imaging have entered the field of phenotype research. Despite the requirement for a high initial hardware investment, the use of high-quality equipment can result in promising outcomes. For example, a Micro-CT imaging system was developed to non-destructively acquire CT projection images of passion fruit, followed by 3D model reconstruction (Lu et al.). Comparable accuracy to manual operations was achieved regarding the external traits of passion fruit, while more reliable traits were achieved regarding the internal traits.





Combination of deep learning and RGB images

Regarding the methods used in plant phenomics, machine learning is one of the most widely used algorithms for data analysis. Among these methods, deep learning is essentially a neural network with three or more layers, allowing it to learn from large amounts of data. The advantages of deep learning, such as its efficient data processing capabilities, automatic feature extraction functions, and high prediction accuracy, make it an important tool for crop phenomics data analysis and prediction.

Crop phenomics generates massive amounts of image data of various types, including RGB images, hyperspectral images, CT images, and microscope images. Object detection, which recognizes and detects different objects in an image to classify them, is a key component of numerous agricultural tasks and applications, such as object counting and phenotyping (Wosner et al., 2021). Filed wheat spikes and rice panicles are the most important agronomic traits associated with yield. Thus, quick, and accurate detection and counting of spikes and panicles has always been one of the most important scientific Research Topics, especially the state-of-the-art performance in object detection and counting brought by deep learning has greatly facilitated progress in the spike and panicle detection and counting. A RetinaNet (SpikeRetinaNet) was trained for spike detection (Wen et al.), and several improvements were made to resolve the issues such as multi-scale feature fusing, efficiency, and occlusion problem.

The YOLOX (You Only Look Once) series of deep learning models have been shown to be powerful and versatile object detection models, offering high accuracy, speed, and flexibility, which make them an attractive option for use in plant phenomics. One of the YOLOX models, YOLO5, has been demonstrated to perform well in detecting and counting small panicles in field rice images under varying illumination and across different rice accessions, even with large image sizes (Wang et al.). In addition to its use in rice panicle detection and counting, the YOLOX deep learning model has been applied to the detection and identification of mature soybean stem nodes, and has been shown to be an effective tool for extracting stem-related phenotypes of mature soybeans. In a comparative analysis with other algorithms, YOLOX achieved a maximum average accuracy (mAP) of 94.36% in detecting soybean stem nodes. To facilitate the identification of soybean structural features, a direct search algorithm was designed (Guo et al.).

In crop phenomics, image segmentation, partitioning each pixel in a given image to provide an accurate representation of the object shapes, have replaced the traditional manual observation and measurement of phenotypic data (Luo et al., 2023). The developed deep learning models, including VGG, FCN, U-Net, SegNet, DeepLab, etc. are often used for conducting pixel-wise segmentation in crop phenomics. In current Research Topic, roots were automatically segmented from the in situ root images collected by RhizoPot platform by using DeepLab V3+ network, and it was integrated into the RhizoPot system (Zhao et al.).

Beyond the RGB images, a semantic segmentation model, the U-Net convolution neural network, was implemented on the CT images to distinguish different tissues in the samples (Lu et al.). Supervised image segmentation using a deep learning model usually needs to provide high-quality training sets, which are very labor-intensive. To address this issue, a label generation method based on digital image processing was designed, and the segmentation results with higher accuracy were picked as labels to be used for training.

Vision based classification is also applied in crop phenomics. Aiming at the online real-time identification and classification of tobacco shred types and their actual production in the field, the efficient and accurate identification of different tobacco shred types were urged. An MS-X-ResNet network was constructed by selecting ResNet50 network as the prominent network, and an accuracy of 96.65% was achieved (Niu et al.).





Combination of hyperspectral imaging and machine learning

Hyperspectral imaging is a rapidly developing method of crop phenomics because it captures both spectral and spatial information. Abiotic, biotic, and quality traits in crops in indoor and outdoor growing conditions can be detected, and phenotyping traits can be generated from a cellular to landscape scale (Sarić et al., 2022). Meanwhile, machine learning algorithms have become an essential tool for hyperspectral image analysis due to their outstanding prediction power, and consequently, in-depth study was developed in the physiological and biochemical research of crops by combining hyperspectral imaging and machine learning.

In terms of maize leaves, estimating the amino acid content can be useful for improving yield. Researchers used the PLSR (Partial Least Square Regression) algorithm to create various models for amino acid content by analyzing the reflectance of all bands, sensitive band ranges, and sensitive bands. The study demonstrated the potential for machine learning and hyperspectral imaging to be combined for genetic sensitivity analysis and variety improvement of maize (Shu et al.) In addition to leaves, seeds are also a focus of phenotypic research using hyperspectral imaging. In the study of wheat seeds, purity was identified as a key factor in the population of hybrid wheat. The transmittance and reflectance spectra provided a better solution for classifying hybrids and female parents than reflectance spectra alone. Specifically, a classification model, Detrend-CARS-PLS-DA based on the PLSR algorithm, was established using the transmittance spectrum combined with a characteristic wavelength-screening algorithm (Zhang et al.).

Deep learning models have demonstrated their power in crop phenotyping. Yu et al. provide an exciting strategy for predicting phenotyping traits of lettuces from spectral reflectance by developing two end-to-end models based on 2D CNN and FCNN, highlighting the potential contribution of combining deep learning models with spectroscopy for phenotype trait quantification. The use of hyperspectral imaging for stress symptom detection has been demonstrated (Lowe et al., 2017). The potential of combining hyperspectral reflectance and deep learning in assessing cotton drought resistance among different genotypes has also been shown. A 1D-CNN was designed and established to screen the spectral information of cotton leaves because it had natural structural consistency with one-dimensional spectral information. A vector with 1024 spectral features was used as the input, and the output layer was the chlorophyll fluorescence parameter Fv/Fm prediction value, which is significant in abiotic plant stress (Guo et al.).





Machine learning assisted trait analysis

The combination of machine learning and hyperspectral imaging has led to significant achievements, and applying machine learning algorithms to other types of imaging data holds considerable promise. LF-NMR/MRI, a non-destructive and accurate technology for assessing water status, has been widely applied in the fields of food and agriculture. Gu et al. used Principal Component Analysis and LF-NMR imaging to investigate the distribution and dynamics of water in the Xudou 20 soybean cultivar post-germination after culturing plants with varying concentrations of 6-benzylaminopurine (6-BA). In another study, Gao et al. utilized a 50-layer CNN model Residual-Network (ResNet-50) to predict the storage time of Newhall navel oranges based on high-resolution digital microscope images. The study by Feng et al. evaluated the potential of machine learning models to identify biomarkers for subspecies discrimination and yield heterosis prediction in rapeseed, in order to better understand ecotype divergence. Five machine learning algorithms, including discriminant analysis (DCA), random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), and CNN, were utilized for this purpose.

The papers in this Research Topic highlight new advances in phenotyping facilities, methodologies, and analysis that enable the collection of diverse image data ranging from the micro level to the whole-plant level. Phenotyping methodologies and phenotypic analyses, which range from the cellular level to the field scale, utilize various machine learning/deep learning and computer vision algorithms. These papers provide valuable insights into how advanced technologies can be used to measure and analyze crop traits and how this information can be used to improve crop breeding, management, and response to environmental stress. They demonstrate the potential of cutting-edge technologies to revolutionize crop research and production.
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The number of wheat spikes per unit area is one of the most important agronomic traits associated with wheat yield. However, quick and accurate detection for the counting of wheat spikes faces persistent challenges due to the complexity of wheat field conditions. This work has trained a RetinaNet (SpikeRetinaNet) based on several optimizations to detect and count wheat spikes efficiently. This RetinaNet consists of several improvements. First, a weighted bidirectional feature pyramid network (BiFPN) was introduced into the feature pyramid network (FPN) of RetinaNet, which could fuse multiscale features to recognize wheat spikes in different varieties and complicated environments. Then, to detect objects more efficiently, focal loss and attention modules were added. Finally, soft non-maximum suppression (Soft-NMS) was used to solve the occlusion problem. Based on these improvements, the new network detector was created and tested on the Global Wheat Head Detection (GWHD) dataset supplemented with wheat-wheatgrass spike detection (WSD) images. The WSD images were supplemented with new varieties of wheat, which makes the mixed dataset richer in species. The method of this study achieved 0.9262 for mAP50, which improved by 5.59, 49.06, 2.79, 1.35, and 7.26% compared to the state-of-the-art RetinaNet, single-shot multiBox detector (SSD), You Only Look Once version3 (Yolov3), You Only Look Once version4 (Yolov4), and faster region-based convolutional neural network (Faster-RCNN), respectively. In addition, the counting accuracy reached 0.9288, which was improved from other methods as well. Our implementation code and partial validation data are available at https://github.com/wujians122/The-Wheat-Spikes-Detecting-and-Counting.

Keywords: wheat spikes, detection and counting, deep learning, attentional mechanism, wheat yield


INTRODUCTION

As one of the three major cereal crops, wheat provides food for approximately one-third of the world’s population. Global wheat consumption has increased due to rising per capita income and urbanization. On the other hand, wheat crops are increasingly being hampered by phenological changes, shrinking germplasm areas, and other stresses. Therefore, wheat genetic improvement is critical to address future food security. At present, most wheat cultivation and breeding researchers rely on costly manual counting. This time-consuming process is driving the need for new tools. In addition, subjectivity and fatigue will lead to mistakes in counting wheat spikes (Jin et al., 2017). When assessing crop genetic improvement, although genotyping is easier and more accurate than before, efficient phenotyping algorithms and techniques still limit the establishment of phenotype-genotype relationships (Eversole et al., 2014). Therefore, the construction of efficient phenotypic algorithms and technologies are particularly urgent and necessary for improving genetic efficiency. Furthermore, wheat yield is one of the important indexes of quality breeding. So, the detection and counting of spikes efficiently are one of the main research directions of phenotypic technology based on phenotype-genotype relationships for crop production (Slafer et al., 2014; Ferrante et al., 2017).

In the past decade, image processing has been increasingly used in analyzing and extracting phenotypic parameters. Features that include color, texture, shape, and edge are fused in the classifier to detect wheat spikes using traditional image processing methods. Mirnezami et al. (2020) compared automated and semiautomated soybean trichome counting methods, which used thresholding and graph algorithms based on color and shape features. They achieved approximately 90% accuracy using semiautomated annotation, which outperformed manual counting. Kulkarni and Patil (2012) employed the Gabor filter to detect plant diseases by extracting typical plant features from red–green–blue (RGB) images, including texture, edge, and color for plant disease segmentation. Then, the features were used to train the artificial neural network, and the accuracy reached 91%. Sun et al. (2019) applied a region growing algorithm with a double threshold integrating spatial and color features to segment cotton bolls and developed an algorithm based on geometric features to count cotton bolls. The counting accuracy was 84.6%, and the F1 score was approximately 98%. The panicle segmentation method extracted the color and texture of the panicles to realize (semi) automatic counting of wheat spikes (Cointault et al., 2008). Fernandez-Gallego et al. (2018) presented an automatic spike-counting method to calculate the number of spikes based on color images taken under natural conditions. Additionally, the local peaks are segmented and counted by the color features and the Find Maxima. The results showed that the accuracy of wheat spikes counting is 90%, and the standard deviation is 5%. Although most of these studies achieved good results, there were still problems. They have used the traditional image processing method and therefore require manual screening of features. This limitation hinders the popularization and application of the algorithm in more complex problems. The wheat spike detection and counting is still a very challenging task.

Deep learning performs exceptionally well in detection and classification tasks. A series of novel deep learning models have been developed, such as region-based convolutional neural network (R-CNN), Fast R-CNN, Faster R-CNN, fully convolutional one-stage object detector (Fcos), You Only Look Once (Redmon et al., 2016; Redmon and Farhadi, 2017) version 3 (Yolov3), You Only Look Once version4 (Yolov4), You Only Look Once version 5 (Yolov5), RetinaNet, and single-shot multiBox detector (SSD) (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Liu et al., 2016; Lin et al., 2017a; Redmon and Farhadi, 2018; Tian et al., 2019, Bochkovskiy et al., 2020; Jocher et al., 2020), which are ready to be used in phenotyping applications. Backbone network and feature pyramid network (FPN) (Lin et al., 2017b) are the two main components of an object detection framework. The backbone network conducts feature extraction, whereas FPN conducts feature fusion. As a result, advancements in the backbone network and FPN directly impact the performance of the object detection network. He et al. (2016) proposed residual network (ResNet), introducing residual blocks and realizing across layer information transmission through shortcut connections resulting in improved optimization. After that, many studies designed various modules to strengthen the ability of network feature extraction. For example, selective kernel (SK) block (Li et al., 2019), squeeze-and-excitation (SE) block (Hu et al., 2018), non-local block (Wang et al., 2018), convolutional block attention module (CBAM) (Woo et al., 2018), split attention block (Zhang et al., 2020), etc. FPN fuses multiscale features extracted through deep convolutional networks. Tan et al. (2020) proposed a simple and efficient feature pyramid structure to address the top-down architecture of FPN, which is called a bidirectional feature pyramid network (BiFPN). It allows top-down and bottom-up multi-scale weighted feature fusion.

Wheat spike image sets, such as ACID (Pound et al., 2017) and SPIKE (Hasan et al., 2018) were used in many studies and they achieved good deep learning model training results (Alkhudaydi and Zhou, 2019; Madec et al., 2019; Yang et al., 2019). Misra et al. (2021) developed an online platform “Web-spikeSegNet” that uses deep learning methods to segment wheat spike images taken under laboratory environment conditions. It can achieve 99.59% segmentation accuracy. Zhao et al. (2021) proposed an improved Yolov5 network by adding a microscale detection layer, setting prior anchor boxes, and adapting the confidence loss. These improvement points solve spike error detection and miss detection caused by occlusion conditions in UAV images. These studies used deep learning methods to overcome the disadvantages of traditional image processing methods that require manual feature design. However, the datasets used in these studies are relatively homogeneous in terms of wheat spike collection environments and varieties. Most wheat spike datasets are limited in terms of genotype, geographic area, and observational condition. Therefore, the research requires a richer dataset and the ability to overcome the detection of wheat spikes in complex environments. The Global Wheat Detection (GWHD) dataset (David et al., 2020) was a standard image set collected by several research institutions, which was considered by many scholars as a new challenge for wheat spike detection. Bhagat et al. (2021) proposed a novel WheatNet-Lite network, which was solved the dense and overlapping wheat spikes. The network was validated on GWHD, SPIKE, and ACID datasets. The mAP50 values were 91.32, 86.10, and 76.32%, respectively. Li et al. (2021) also investigated the GWHD dataset. They trained RetinaNet models using migration learning. The images of wheat at the filling stage and the maturity stage from the GWHD dataset were used for regression analysis of count results. The R2 was 0.9722. Wang et al. (2021) proposed an occlusion robust wheat spike counting algorithm based on EfficientDet-D0 with the CBAM attention module. It was the network that focused more on small wheat spikes with the counting accuracy which was 94% and the false detection rate was 5.8% on the GWHD dataset. The new models in these studies were proposed to solve the wheat spike images occlusion problem. However, it is not only the occlusion images of wheat spikes that are difficult to recognize in the field, but also difficult to recognize wheat spike images with dim lighting and complex environmental backgrounds. Therefore, there is still room for continued improvement in wheat spike detection and counting. In this study, we used the GWHD dataset supplemented with wheat-wheatgrass spike detection (WSD) images, where WSD was collected from trials. There is one variety in our dataset, Jilin wheat-wheatgrass No. 37. Because of its excellent quality, wheat-wheatgrass has been crowned as a geographical landmark product of Jilin Province. The spike of wheat-wheatgrass No. 37 is rectangular in shape, and the spike length is usually 10–12 cm. The wheat spikes have white hulls and are awned but without hairs. WSD images added diversity to the GWHD to train spike detection models.

In this study, SpikeRetinaNet was trained to detect wheat spikes based on the RetinaNet network structure of a one-stage detector, which kept the one-stage detector’s speed while improving detection accuracy. In the dataset, it is difficult to distinguish wheat spikes because of light, shadows, color, and shape similarity. To solve the problems, the focal loss function was introduced into the structure of RetinaNet to reduce the influence of background during wheat spike detection tasks (Lin et al., 2017a). Meanwhile, we introduced the BiFPN (Tan et al., 2020) and double SA (DSA) (split attention block and spatial attention block) into the backbone network to realize fine-grained feature extraction and representation across feature map groups and strengthen the fusion of global information and local information. By proposing BiFPN, it introduces learnable weights to learn the importance of different input features and repeatedly applies top-down and bottom-up multiscale feature fusion. Because different input features have different resolutions, their contribution to the fused fine-grained features is different. Meanwhile, introducing DSA into the backbone realizes the interaction between feature map channels and receptive field regions. In this way, fine-grained discriminant feature of detecting wheat spikes, such as the shape, texture, and color, can be better extracted and represented. The cluster growth of wheat spikes makes it difficult to distinguish between multiple wheat spikes or multinode parts of wheat spikes because wheat spikes occlude each other. In the previous work, non-maximum suppression is an integral part of the object detection pipeline which is used to filter the detection candidate boxes. The detection box with the maximum score is selected and all other detection boxes with a significant overlap (using a predefined threshold) are suppressed. To this end, we introduced soft non-maximum suppression (Neubeck and Van Gool, 2006) (Soft-NMS) (Bodla et al., 2017), an algorithm that decays the detection scores of all other objects as a continuous function of their overlap, to solve the problem of missed detection caused by mutual occlusion.



MATERIALS AND METHODS


Image Data Acquisition

The original GWHD dataset included 4,700 high-definition color images of wheat from multiple genotypes. There were a total of 190,000 wheat spikes annotated. Wheat spikes in the image were labeled interactively by delimiting bounding boxes that contained all spike’s pixels using web-based labeling (Brooks, 2019). Seven categories that contain 3,373 images and 147,793 labeled spikes from Europe and North America were used in this article. The seven categories are Arvalis_1, Aralis_2, Aralis_3, INRAE_1, USask_1, RRes_1, and ETHZ_1. They are collected between 2016 and 2019. They were acquired over experiments following different growing practices, with row spacing varying from 12.5 cm (ETHZ_1) to 30.5 cm (USask_1). They include normal sowing density (Arvalis_1, Arvalis_2, Arvalis_3, and INRAE_1) and high sowing density (RRes_1 and ETHZ_1). The GWHD dataset covers a range of pedoclimatic conditions including very productive contexts, such as the loamy soil of the Picardy area in France (Arvalis_3), silt-clay soil in mountainous conditions, such as the Swiss Plateau (ETHZ_1) or Alpes de Haute Provence (Arvalis_1 and Arvalis_2). In the case of Arvalis_1 and Arvalis_2, the experiments were designed to compare irrigated and water-stressed environments. An average of 44 spikes was present in each image, with a range of 15–70 real spikes per image. The WSD images that contain 210 high-definition color images and 6,123 annotations were used in this study to supplement the experimental data as well. All images were collected from Chengkai Cooperative, Nangangzi Village, Zhenlai Town, Baicheng City, Jilin Province, China (45.83 N, 123.21 E) from May to July 2020 using a Canon 11 EOS 80D digital camera. Images were captured at the height of 30–70 cm above the wheat canopy and at various tilt angles. The resolution of the WSD images was 3,456 × 4,408 pixels. All images were stored in JPG format according to the RGB color standard. Then, the collected images were labeled by the LabelImg Tool (LabelImg, 2015). The overall process is shown in Figure 1.
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FIGURE 1. Data acquisition and labeling process: (A) map of data collection place; (B) the WSD images collection scene; (C) an example WSD image; (D) annotation of a WSD images.




Formation of the Mixed Dataset

The original image set was first normalized to obtain a total of 3,583 images of 1,024 × 1,024 pixels due to the limited computing power of laboratory equipment. The diversity and complexity of the mixed dataset brought great difficulties to the method in detecting and counting. Three image categories were the most difficult to identify: (1) images with low illumination, (2) complex environment, and (3) overlapping objects. For example, it is difficult to distinguish wheat spikes in the evening due to dim light and complicated shadows (Figure 2A). When wheat plants are young (Figure 2B(a)), their spikes are small and as green as the leaves. Wheat spikes (Figure 2B(b,d)) and stems are similar in color too, and there is a mutual occlusion phenomenon, which can easily confuse analysis. Figure 2B(c,d) is sparsely planted, with a visible soil background, and the distribution of shadows is mixed by light. The cluster growth of wheat spikes in Figures 2C(a,b) makes it difficult to distinguish between multiple wheat spikes or multinode parts of wheat spikes. In Figures 2C(c,d), wheat spikes occlude each other, which make it difficult to mark.
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FIGURE 2. Sample images taken under different complex conditions. (A) Dim illumination conditions. (B) The complex environment illumination conditions. (C) Overlapping occlusion of wheat spikes.


Our next step filtered out some inappropriate bounding boxes [the boundary box is too large (box areas >200,000) or too small (box areas <50)] from the dataset before putting the images into the model to make it more accurate and clean. Then, we used online augmentation techniques, such as horizontal and vertical flips, rotations and resizing, and augmenter and normalizer to enhance the image. This method has the advantage of not requiring the augmented data to be synthesized, which saves data storage space and provides high flexibility. Among the 3,583 wheat images collected, 70% of each category in the mixed dataset was extracted as the training dataset, 20% of images were extracted as the validation set, and 10% of images were extracted as the test set.



Overall Design of the SpikeRetinaNet

Figure 3 depicts the specific process of our proposed SpikeRetinaNet. First, the image features are extracted through the convolution layer. Then, the extracted feature sets are grouped and convoluted to calculate the weight of the feature channel and then performing a weighting operation on the obtained weights and feature sets. Second, we perform AdaptiveAvgPool2d and AdaptiveMaxPool2d on the results obtained. We then use the sum of the pooling results to calculate the weight value through the Sigmoid function and then performing another weighting operation on the weight value and feature set to get the result of spatial attention. Third, SpikeRetinaNet employs five levels of feature pyramids. P3, P4, and P5 are calculated by top-down and lateral connections of the corresponding backbone network’s C3, C4, and C5 layers (architectures for ImageNet (Krizhevsky et al., 2012) are divided into C1–C5), respectively. P6 is obtained by upsampling based on C5, and ReLU obtains P7 based on P6. The output is obtained by weighted bidirectional calculation of P3–P7. Finally, the results of each layer of the FPN are input into two subnetworks of classification and regression, respectively, to get the final output image.


[image: image]

FIGURE 3. The schematic layout of the SpikeRetinaNet for the robust detection and counting of wheat spikes.



RetinaNet

RetinaNet is an object detector that consists of a backbone network and two task-specific subnetworks. Among them, the backbone networks include a convolutional neural network to extract information from the image and the FPN enhancing the feature information with top-down and lateral connections. The two subnets use convolution to classify and regress from bounding boxes to real object boxes.

The core of RetinaNet is focal loss. It simply and efficiently solves the category imbalance faced by the one-stage detector, which improves the classification precision of the one-stage detector. RetinaNet was proposed to reshape the standard crossentropy loss to focal loss to deal with the category imbalance. It downweighs simple samples so that even if the number of samples is large, their contribution to the total loss is small. The focal loss formula is as follows Eq. 1.
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The weighting factor α ∈ [0,1] is the parameter for class 1, and 1−α for class –1, α maybe set by inverse class frequency or treated as a hyperparameter set by cross-validation. Though α balances the weight values of positive or negative examples, it does not differentiate between easy or hard examples. So, the modulating factor (1−pt)γ is introduced with a tunable focusing parameter and γ≥0 and pt is the class probability score. The proposed adjustment factor reduces the loss weights ratio from simple examples and quickly focuses on hard examples. It is suitable for difficult distinguishing between foreground and background, such as many negative examples in the process of wheat spike detection. Therefore, when discussing dense object detection (such as our mixed dataset), RetinaNet is the best choice for speed and accuracy.



Selection of the Feature Learning Network

The design of the feature learning network is very important. We add the DSA (double SA, split attention block, and spatial attention block) to the backbone network of RetinaNet to enable the feature mapping attention between different feature mapping groups and emphasize the spatial location information. Further detailed description in Figure 4 divides the features into two groups (V1 and V2) for 1 × 1 convolution followed by a 3 × 3 convolution. The attention weight is parameterized using two fully connected layers with ReLU activation. We aggregate channel information of a feature map using two pooling operations (maxpool and avgpool), generating two 2D maps. Then, we connect them and convolute them through standard convolution operation to form our 2D spatial attention maps. Finally, if the input and output feature maps have the same size, the final output Y of our DSA is produced using a shortcut connection: Y = V + X (V = Cancat{V1,V2}). For blocks with a stride, an appropriate transformation T(X) is applied to the shortcut connection to align the output shapes: Y = V + T(X). The specific shape is depicted in the note of Figure 4, where the feature maps become smaller and the channels become more numerous as the network depth deepens. The backbone network has better and more accurate feature extraction capabilities than ResNet. Therefore, we can extract more detailed features for the spike of wheat detection. For the problem of dim light and complex environment background in the mixed datasets, we can apply the DSA attention module to emphasize the characteristics of wheat spikes. Similarly, suppose the wheat spikes in the data set are similar to the background. In that case, we can also use the attention block to emphasize the useful features and suppress the useless features.
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FIGURE 4. Schematic layout outline of ResNet-DSA.




Design of the Feature Pyramid Network Backbone

We use BiFPN of FPN to enhance feature fusion. BiFPN can realize fast bidirectional cross-scale connections and weighted feature fusion. Among them, multiscale feature fusion is to be carried out using different levels and different resolutions of the input. This produces a list of multiscale features [image: image], which [image: image] represents the feature at a level li. BiFPN requires [image: image] to [image: image] level inputs for aggregate features. The traditional output calculation of FPN is shown in Eq. 2, where Resize is the upsampling or downsampling operators to adjust the image size and Conv is a convolutional operator.
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Therefore, BiFPN adds an extra bottom-up path aggregation network to solve the problem that conventional FPN only has top-down unidirectional information flows. Besides, the bidirectional network is simplified by removing the node with only one input channel to integrate more features without increasing much cost. Therefore, we represent the fused feature at level six for BiFPN shown in Eq. 3:
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[image: image] is the median feature at level six on the top-down pathway and [image: image] is the output feature at level six on the bottom-up pathway. The bidirectional fusion of BiFPN deepens the degree of feature fusion. So, in the mixed dataset, images with complex environment backgrounds can use deep, low-resolution, and high semantic features to distinguish wheat spikes and background. As a result, more overlapping wheat spikes can be retained. Meanwhile, shallow, high-resolution features could provide more accurate location information. It can also locate the problem of wheat spikes occlusion better.



Soft Non-maximum Suppression

Soft non-maximum suppression was introduced to obtain consistent improvements for the selection of candidate boxes. Soft-NMS suppresses overlapping boxes with a non-maximum value and sets the attenuation function for near boxes based on the overlapping boxes’ size instead of setting its score to zero. Intuitively, if the crossarea between the bounding box and M is higher than the threshold, its score should be reduced. If its overlap is lower than the threshold, it keeps the detection score unchanged. The calculation formula is shown in Eq. 4, where Si is the final score, i is the subscript, M is the box with the highest score in the prediction box set, bi is the box in the prediction box set B, and Nt is the intersection-over-union (IoU) threshold of M and bi. The formula Eq. 5 updated the pruning step with the following rule. Under natural conditions, the presence of wheat spikes occlusion is inevitable in wheat spikes data collection. The Soft-NMS can effectively retain the blocked wheat spikes without affecting the selection of the normal calibration box.
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See Table 1 for detailed architectures compared the SpikeRetinaNet with the original RetinaNet.


TABLE 1. Architectures for ImageNet.
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TRAINING THE WHEAT SPIKE DETECTING AND COUNTING MODEL


Computational Hardware and Platform

All processing experiments in this article were carried out by the DELL Precision T7920 Tower deep learning workstation which consisted of an Intel(R) Xeon(R) Gold 5218 CPU with a clock speed of 2.1 GHZ, 62.5 GB DRAM, 503 GB hard disk, and a GeForce RTX 2080 Ti/PCIe/SSE2 graphics card. The operating environment was Ubuntu 18.0.4, Pytorch = 1.7.0, Python 3.7.



Model Training

The SpikeRetinaNet was used in the mixed dataset training process. First, DSA was used to extract the features from the backbone network. Second, BiFPN improved the extracted feature map by adding more expression and multiscale target region data. Finally, two subnetworks with the same structure but no shared parameters used BiFPN feature maps to complete the object classification task and regress the offset from the bounding box to a nearby real object. The Soft-NMS was also used to choose calibration boxes. The parameters of the different layers are described in the note of Figure 3. The specific algorithm flow is as follows:

Input: image to be detected D.

Output: Vector C is used for sample categories, and R is used for boundary coordinates.

Step 1: Convolution layer for feature extraction. First, 64 convolution kernels with 7 × 7 stride-2 are used to feature extraction, and then, a maxpooling with 3 × 3 stride-2 is used to get the feature set. Second, all feature maps are divided into 2 splits. Additionally, the split attention is used to calculate the weight of each split, and the weighted feature maps are used as the input of the spatial attention module. Finally, a 1 × 1 Conv is used again to change the number of channels and use skip connection to fuse the original input features of a DSA block (the fusion method is element-wise sum). There are 101 layers as a feature extraction network.

Step 2: FPN, the multiscale features formed in the backbone network, is input into the feature pyramid for enhancement and utilization, and the feature map with stronger expression and multiscale target information is obtained. The backbone network is divided into C1–C5 layers. Add a 1 × 1 Conv on C5, and the upsampling is two times as much to generate the feature map, and then, a ReLU activation function is performed to form [image: image]. [image: image] is to add a 1 × 1 Conv on C5, and the upsampling is two times as much to generate the feature map and then fuse with [image: image]. [image: image] is directly mapped from C5 to merge [image: image] upsampling. [image: image] and [image: image] have the same structure as [image: image]. [image: image] to [image: image] is the input of the FPN. [image: image] is upsampled by C3 fusion [image: image], [image: image] is formed by [image: image] and C4 fusion [image: image] downsampling. [image: image] and [image: image] have the same structure as [image: image]. [image: image] is downsampled and fused by [image: image] and [image: image]. Finally, a 3 × 3 Conv stride-2 is used for all the layers obtained after fusion to eliminate the aliasing effect of upsampling.

Step 3: The output of each layer of the feature pyramid performs two subnetwork tasks (classification and boxes regression). Each subnetwork uses four layers of 3 × 3 × 256 Conv and then connects to 3 × 3 × KA (K is the number of object classes, A = 9 anchors per level) Conv. In addition, it finally uses Sigmoid activation to the output KA binary predictions at each spatial position.

Step 4: Use a trained model to perform the next decoding process on the top 1,000 boxes with the highest scores on each FPN level. Summarize boxes of all levels, filter boxes with a soft threshold of 0.1, and finally get the final boxes location of the target. The training loss is composed of boxes position information L1 loss and category information Focal-Loss. Considering the extreme imbalance between positive and negative samples when the model is initialized, the bias parameter of the last convolution is initialized.

The specific steps of the training are as follows: due to equipment limitations, a minibatch of four images will be used to train the model. The Optimizer selects Adam, uses Reduce LROnPlateau to dynamically adjust the learning rate, the initial learning rate is 1e-4, and uses all images of the training dataset to train 100 epochs to analyze the training process. Additionally, the same platforms are also applied to faster region-based convolutional neural network (Faster-RCNN), YoLov3, YoLov4, YoLov5s, YoLov5m, and SSD, which codes are publicly available for comparison.



Network Evaluations

For this study, all samples were divided into four types according to the IoU between the predicted bounding boxes and the real bounding boxes exceeding a given parameter. True positive (TP) corresponds to the correct predicted bounding boxes. False-positive (FP) corresponds to the erroneously predicted bounding boxes. False-negative (FN) is the marked bounding box that could not be detected. Otherwise, it is a true negative (TN). Eq. 6 precision (P) and Eq. 7 recall (R) are computed.
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Since the evaluation index mainly focuses on the positive sample, thus to weigh the precision index and the recall index, APk (the value k represents the type of wheat spikes) was defined in Eq. 8 as the area under the Pk and Rk curve of the class k. AP is a standard measure to measure the sensitivity of the network to target objects, and it is also an indicator of the overall performance of the network. Additionally, mAP was defined in Eq. 9 as the average precision of the eight classes of wheat spikes. The higher the mAP, the better the detection results of the convolutional neural network for the object detection, and the average detection time is also calculated to evaluate the performance of the model.
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Two other metrics were proposed to evaluate the performance of spikes counting: root mean square error (RMSE) as Eq. 10 and root mean square percentage error (RMSPE) as Eq. 11, which Np is the predicted value of wheat spikes and Ng is the actual value of wheat spikes. The number of spikes detected by the model and the number of spikes counted manually were analyzed by simple linear regression. The coefficient of determination R2 was calculated to assess the effectiveness of using one variable to predict the other.
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RESULTS


Ablation Study


Evaluation of the SpikeRetinaNet

In this subsection, we empirically show the effectiveness of our design choice. As shown in Table 2, the results indicate that the effect of added DSA blocks to RetinaNet is better than the original network, and the mAP is increased by 4.40%. The RetinaNet-BiFPN is better than RetinaNet-FPN, and the mAP is increased by 1%. Therefore, our model can improve the mAP of RetinaNet by about 5.40%. The class activation mapping (Selvaraju et al., 2017) of our model is shown in Figure 5. The CAM uses the gradient information from the feature map from the P7 layer of the BiFPN to understand the importance of each feature point to the target decision. The thermodynamic features of different colors reveal the “attractiveness” of the regional network. Among them, the red area represents the most significant influence on the network. As the color changes from red to yellow and finally to blue, it means that the influence has decreased. So, in Figure 5, these 24 images represent the visualization result of the 24 feature channels (partial feature channel of P7 layer of BiFPN), thus reflecting our method can focus on wheat spike features in the complex environment. The results show that our backbone has a better capability of feature extraction. Finally, we improve the NMS parts, using Soft-NMS to select candidate boxes, and the performance is improved by 5.59%. The network complexity of our method is increased, so the FPS is reduced from 35 to 22, the increase of time is not much, and the performance is improved significantly. As shown in Figure 6, the convergence rate of the loss value is similar in the self-verification comparison experiment, but the fluctuation of RetinaNet is the largest, and our method is the most stable.


TABLE 2. Mean average precision (mAP), frames per second (FPS), root mean square error (RMSE), and root mean square percentage error (RMSPE) of RetinaNet in detecting wheat spikes.
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FIGURE 5. The first image is the original image, the other images are the class activation mapping (CAM) for the different feature channels of our method.
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FIGURE 6. Ablation study loss.




Counting Strategy

After detection, 60 images of three categories (low illumination, complex environment background, and overlapping occlusion) are selected for counting, with a total of 1,448 wheat spikes. The counting result of our method is 1,345, and the counting accuracy is 92.88%. The counting result of RetinaNet is 1,301, and the counting accuracy is 89.84%. So, our method has improved by 3.04%. The above experiments indicated that our method could effectively overcome the three kinds of difficult recognition images to improve the precision of spike detection. As can be seen from the following four images (the above two images show a complex environment background, and the next two are low illumination and overlapping occlusion), the counting results of four different networks in the same image are inconsistent (Figure 7). Among them, yellow is missing spikes and blue is false spikes. The real counting result is 211, the total counting result of the RetinaNet is 193, and the RetinaNet-DSA-BiFPN result is 205. RetinaNet-DSA-BiFPN [Figure 7(c)] can detect wheat spikes that cannot be detected in RetinaNet [Figure 7(a)], which indicates that the increased fusion channel makes the fusion information more useful. Finally, the total number of our method [Figure 7(d)] is 207. The four images show that the missed boxes of our method are lower than those of other models. This is because Soft-NMS reduces the score of boxes with high IoU rather than directly filtering them out, thus allowing the correct boxes to be retained. The results show that our method improves detection accuracy by 6.63% in images with high detection difficulty.
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FIGURE 7. Four different examples, each with the four different methods. (a) Results of wheat spike detection with RetinaNet. (b) Results of wheat spike detection with RetinaNet + DSA. (c) Results of wheat spike detection with RetinaNet + DSA + BiFFPN. (d) Results of wheat spike detection with our method. Additionally, yellow boxes are missed spikes, blue boxes are false spikes.


For the detection results of 60 images, a comparison between the “RetinaNet” and the “our method” is performed (Figure 8). The regression slope of “our method” is higher than that of “RetinaNet.” In addition, it has a higher correlation, lower RMSE and RMSPE (the RMSE and the RMSPE of our method are 1.96 and 0.06, the RMSE and the RMSPE of RetinaNet are 2.63 and 0.08), which indicates that the counting result of our method (Figure 8B) is better than that of RetinaNet (Figure 8A). At the same time, in our method, the counting error is concentrated between ±5, which is better than RetinaNet.
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FIGURE 8. Counting accuracies calculated using “spike detection based counting” (top row) and “manual counting” (bottom row) strategies, respectively, for individual spikes (a total of 60 data points). The above two images are the results of RetinaNet, and the following two images are the results of our method. (A(a),B(a)) are linear regression results between the imaging derived and manual counts. (A(b),B(b)) are the histograms of counting errors. The “pre” in graph “spike detection-based counting” indicates the predicted regression line.





Comparing Against the State-of-the-Art Detectors

With mainstream object detection, the one-stage detector used Yolov3, Yolov4, Yolov5s, Yolov5m, and SSD, and the two-stage detector used Faster-RCNN. RetinaNet model is different from the five improved ideas but also has a good detection effect. Figure 9 shows 100 epoch performances of all models, our method, Yolov3, Yolov4, Yolov5s, Yolov5m, SSD, and Faster-RCNN. The convergence speed of the loss value of our method is faster than Yolov3, Yolov4, Yolov5s, Yolov5m, SSD, and Faster-RCNN. The final loss of our method is 0.05, Yolov3 is 0.07, SSD is 1.51, Faster-RCNN is 0.15, Yolov4 is 2.04, Yolov5s is 0.28, and Yolov5m is 0.27. Because the one-stage detector does not deal with the detection frame, the initial value of Yolov3 and SSD loss function is greater. As a result of the imbalance between positive and negative examples, the initial value and overall trend pair differ from the other models. Because of the two-stage detector’s special RPN network, the convergence speed of Faster-RCNN is slower than that of RetinaNet. Due to our model improving on the loss function, the convergence speed of our model is comparable to Yolov5 and better than the other models. Finally, the mAP value also shows that our method has achieved good experimental results (Table 3). The mAP value of our method is 2.79% higher than Yolov3, 1.35% higher than Yolov4, comparable to Yolov5, 7.26% higher than Faster-RCNN, and 49.06% higher than SSD.
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FIGURE 9. Our method comparing against the state-of-the-art loss.



TABLE 3. Mean average precision (mAP), frames per second (FPS), root mean square error (RMSE), and root mean square percentage error (RMSPE) of SSD, Yolov3, Yolov4, Yolov5s, Yolov5m, Faster R-CNN, and our method in detecting wheat spikes.
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After detection, 60 images of three categories (low illumination, complex environment background, and overlapping occlusion) are selected for counting, with a total of 1,448 wheat spikes. The counting result of the Faster-RCNN is 1275, SSD is 701, Yolov3 is 1302, Yolov4 is 1317, Yolov5s is 1347, Yolov5m is 1351, and the counting result of our method is 1345. The counting accuracy of our method is 92.88%, Faster R-CNN is 88.05%, Yolov3 is 89.91%, Yolov4 is 90.96%, Yolov5s is 93.02%, Yolov5m is 93.30%, and SSD is 48.41%. The counting accuracy of our method is 4.83% higher than that of Faster-RCNN, 2.97% higher than that of Yolov3, 1.92% higher than that of Yolov4, and 44.47% higher than that of SSD, and comparable to YoLov5. The above experiments show that our method can effectively overcome the three kinds of difficult recognition images to improve the accuracy of spike detection. As can be seen from the following four images (the above two images show a complex environment background, and the next two are low illumination and overlapping occlusion), the counting results of seven different networks in the same image are inconsistent (Figure 10). Among them, yellow is missed spikes, and blue is false spikes. The real counting result is 211, our method counting result is 207, the Yolov3 result is 170, Yolov4 result is 191, Yolov5s result is 194, Yolov5m result is 200, Faster R-CNN result is 161, and the SSD result is 46. The detection results indicate that Faster-RCNN is not good for images with complex environment backgrounds, Yolov3 and Yolov4 are not good for images with similar background color and occlusion spikes, and the counting effect of SSD is very bad. Additionally, our method is most concentrated in the counting error, mainly between −5 and 10. Therefore, our method is superior to the four methods and comparable to YoLov5.


[image: image]

FIGURE 10. Four different examples, each with the seven different methods: (a) sample of images; (b) results of wheat spike detection with SSD; (c) results of wheat spike detection with Faster R-CNN; (d) results of wheat spike detection with Yolov3; (e) results of wheat spike detection with Yolov4; (f) results of wheat spike detection with Yolov5s; (g) results of wheat spike detection with Yolov5m; (h) results of wheat spike detection with our method. Additionally, yellow boxes are missed spikes, and blue boxes are false spikes.


For the detection results of 60 images, the comparison among “Faster-RCNN,” “Yolov3,” “Yolov4,” “Yolov5s,” “Yolov5m,” “SSD,” and “our method” is performed (Figure 11). The RMSE and RMSPE of our method are 1.96 and 0.06. Faster R-CNN is 3.14 and 0.07, Yolov3 is 2.56 and 0.08, Yolov4 is 2.13 and 0.14, Yolov5s is 1.71 and 0.12, Yolov5m is 1.53 and 0.06, and SSD is 10.3 and 0.26. The results indicate that our method has better detection and counting effect than Faster R-CNN, Yolov3, Yolov4, and SSD in the mixed dataset.


[image: image]

FIGURE 11. Counting accuracies calculated using “spike detection based counting” (top row) and “manual counting” (bottom row) strategies, respectively, for individual spikes (a total of 60 data points). The (A) is SSD, (B) is Faster R-CNN, (C) is Yolov3, (D) is Yolov4, (E) is Yolov5s, (F) is Yolov5m, and (G) is our method. The left is linear regression results between the imaging derived and manual count. The right is the histograms of counting error. The “pre” in graph “spike detection-based counting” indicates the predicted regression line.





CONCLUSION

In this article, we developed a wheat spike detection method based on the SpikeRetinaNet to address the issue of small dense object detection and counting in complex scenes. The method consists of three critical steps: use BiFPN to better integrate multiscale features, network refinement by adding a DSA block, and Soft-NMS was used to solve the occlusion problem. In addition, the WSD images are added to enrich the varieties of the wheat dataset. Based on the methodology, mAP of wheat spikes and counted were outputted, with detection rates of 92.62 and 92.88%, respectively. Therefore, the knowledge generated by this study will greatly aid in the detection and counting of wheat spikes in complex field environments and provide technical reference for agricultural wheat phenotype monitoring and yield prediction.
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How to non-destructively and quickly estimate the storage time of citrus fruit is necessary and urgent for freshness control in the fruit market. As a feasibility study, we present a non-destructive method for storage time prediction of Newhall navel oranges by investigating the characteristics of the rind oil glands in this paper. Through the observation using a digital microscope, the oil glands were divided into three types and the change of their proportions could indicate the rind status as well as the storage time. Images of the rind of the oranges were taken in intervals of 10 days for 40 days, and they were used to train and test the proposed prediction models based on K-Nearest Neighbors (KNN) and deep learning algorithms, respectively. The KNN-based model demonstrated explicit features for storage time prediction based on the gland characteristics and reached a high accuracy of 93.0%, and the deep learning-based model attained an even higher accuracy of 96.0% due to its strong adaptability and robustness. The workflow presented can be readily replicated to develop non-destructive methods to predict the storage time of other types of citrus fruit with similar oil gland characteristics in different storage conditions featuring high efficiency and accuracy.

Keywords: citrus fruit, storage time prediction, oil glands, non-destructive evaluation, deep learning


INTRODUCTION

Citrus is an important agriculture commodity produced in over 140 countries, with the annual production of over 146 million tons (Liu et al., 2012). Due to the increase in cultivation area and improvement in management strategies (Díaz et al., 2017), the production of citrus fruit is expected to continuously increase in the future. Fresh citrus fruit usually go through commercial handling, transportation, wholesale or retail before finally reaching consumers; however, they may experience water loss and develop spoilage during postharvest storage, which will lessen their taste (Schirra et al., 2005; Marcilla et al., 2006). Currently, freshness evaluation is based on specially trained staff that assess the taste and aroma of the fruit samples (Guohua et al., 2012), which is a time-consuming and cost-expensive process featuring low repeatability and objectiveness. As freshness is strongly related to storage time under a specific storage condition (Mashabela et al., 2019; Tan et al., 2020), accurate and efficient methods for storage time prediction can help estimate freshness (Nesakumar et al., 2019), which can lead to better management in citrus shipping, storage, and retail procedures.

A common research path for fruit storage time prediction is to adopt volatile organic compounds (VOCs) gas sensors, whose non-destructive nature can be potentially related to practical applications. As every kind of fruit has a unique aroma made up of hundreds of VOCs, correspondence can usually be found among the flavor, product quality, storage time, and composition of VOCs (Baietto and Wilson, 2015; Liu et al., 2018b). One type of gas sensors adopts metal oxide semiconductors to detect the variations of the main components of VOCs, which have been used to predict the storage time of strawberries (Ghasemi-Varnamkhasti et al., 2019) and peaches (Liu et al., 2018a). To improve the detection sensitivity and humidity tolerance, quartz crystal microbalance (QCM) sensors are proposed for the estimation of fruit storage time, maturity, and shelf life (Nimsuk and Nakamoto, 2008; Adak et al., 2017). However, these gas sensors are rarely applied to citrus fruit, which might be caused by the subtle changes in their VOCs contents that are difficult to measure and differentiate (Cui et al., 2016). In a recent study, Raman spectroscopy is used to relate the intensity of rind carotenoid signals to the storage time (Nekvapil et al., 2018). Despite that it might be a useful solution for citrus freshness control, the signal quality depends on the instrument and user capability, making it hard to develop a well-accepted standard for practical in-situ applications.

As the external appearance of the fruit is the most important criterion for customers to evaluate the storage time, potential correlation between the rind status and storage time is worthy exploring. The peel turgor is an essential parameter of rind quality and the loss of turgor pressure is probably the main factor of rind compaction, as well as the decrease of attraction to customers (Alferez et al., 2010). However, non-destructive methods to quantify this process for storage time prediction still remain unavailable. On the other hand, secretory cavities occur naturally in all species of the family Rutaceae, and in the genus Citrus they are often referred to as oil glands. They can be found in the stem, mesophyll of leaves, all parts of the flower except the stamens, and the exocarp layer of the fruit rind, in the center of which an essential oil-accumulating reservoir develops (Turner, 1999; Knight et al., 2001). The essential oil is important in the protection of the plants due to their bactericidal and fungicidal nature, and their strong odor may also attract some insects to favor the dispersion of seeds and pollens (Rodov et al., 1995; Palazzolo et al., 2013). While it is still contentious whether the central cavity forms by lysigeny or schizogeny (Turner et al., 1998), the enlargement of oil glands has been anatomically observed and investigated in a series of studies (Liang et al., 2006), indicating that the initialization of glands is restricted to the early stages of fruit development while the enlargement is up to fruit maturity (Bennici and Tani, 2004; Hou et al., 2019). As a result, the total gland number is quite constant for mature fruit. Moreover, according to Bosabalidis and Tsekos (1982), glands are attached to the fruit epidermis by a stalk-like structure, which tends to become less obvious when the fruit develops. For mature citrus fruit, the gland stalk is even reduced to only a few cell layers in depth below the epidermis, making the oil glands outstanding on the appearance of the rind. In one study, gland characteristics of citrus fruit, such as gland size and density, have been investigated for maturity assessment, reaching a correlation coefficient of 0.77 (Hongwiangjan et al., 2015). Although little research has been conducted to reveal the evolution of oil glands during postharvest storage, the oil within the glands generally decreases during storage due to water loss, which is also the key factor of the loss of peel turgor. Ghanem et al. (2012) conducted a dehydration test, whose result further demonstrates that the compaction of the citrus peel is in accordance with the shrinkage of oil glands due to evaporated water. This characteristic might indicate the rind status in an easily quantifiable manner, which can be potentially adopted to develop non-destructive methods for storage time prediction.

This study aims to prospect the relationship, if any, among the characteristics of the rind oil glands, rind status, and storage time, based on which model-based prediction methods can be developed for non-destructive storage time prediction. The predicted storage time can be then used as a key parameter for freshness evaluation. As a feasibility study, we investigated the evolution of the rind oil glands of Newhall navel oranges in intervals of 10 days for continuous 40 days using a digital microscope, and K-Nearest Neighbors (KNN) and deep learning algorithms, respectively, were adopted to analyze the high-resolution images and develop two types of prediction models. The workflow presented can be readily replicated to develop non-destructive methods to predict the storage time of other types of citrus fruit with similar oil gland characteristics in different storage conditions featuring high efficiency and accuracy.



MATERIALS AND METHODS


Sample Fruit

Sample Newhall navel oranges (Citrus synesis) were harvested at a commercial orchid in Zigui, Hubei Province, China (111.0°N, 30.8°E) in December 2019. This type of oranges can usually be stored under room temperature for up to 40 days before their external appearance turn observably unfavorable, but within 40 days the changes in their appearance are hard to distinguish. The fruit were first cleaned on a citrus processing line and no waxing was applied, and they were then transported to Wuhan, China via air flight on the same day. As we focus mainly on the storage time prediction of healthy oranges in this study, we manually inspected the oranges and selected 600 ones with a sound surface. These fruits were then stored in a ventilated chamber with the environment similar to the warehouse (approx.10°C, 65%RH, no natural light) for a storage period of 40 days.



Chemical and Mechanical Measurement

Four hundred and fifty oranges in total were chosen for chemical and mechanical measurements in this study, in which the pH value, sugar-acid ratio, hardness, and weight were assessed. These oranges were evenly divided into five groups at random, and one group was adopted for the measurements on day 0 (denoted as the beginning of the test), 10, 20, 30, and 40, respectively.

The measurement of the pH value was conducted on 30 sample oranges each time. A small fruit sample was cut from each orange and then squeezed with double-layer gauze at room temperature, and an automated pH meter (SevenExcellence, METTLER TOLEDO) was used to assess the pH value of the juice. This measurement was replicated three times and the average was recorded. The sugar-acid ratio was obtained using a refractometer (ATGO PAL-BX/ACID1) following the same process on another 30 oranges. The remaining 30 oranges were first adopted for weight measurement, and the puncture test was then carried out on their equatorial region using a portable fruit hardness tester (Gy2) for hardness measurement.



Microscope Image Acquisition

A high-resolution digital microscope (VHX-6000) was adopted to observe the rind oil glands of 150 oranges during postharvest storage. Due to its capacity to obtain the depth information with high accuracy, it can well capture the evolutionary characteristics of the rind oil glands. Image acquisition was conducted in a chamber with no natural light. Since the light was only provided by the microscope itself, the same light condition was ensured all through the observation. According to, oil glands are generally uniformly distributed at the equatorial region of the rind of citrus fruit, and we therefore took one image every 10 days under 50× magnification randomly at the equatorial region for each orange, resulting in 150 images collected each time.



Model-Based Prediction Methods

Two prediction models based on KNN and deep learning algorithms, respectively, were developed for the prediction of the storage time, as shown in Figure 1. The KNN-based prediction model explicitly demonstrated the classification criteria and provided insights to relate the evolution of the oil glands to the rind status and storage time. The deep learning-based prediction model was capable of learning the features by itself, which was anticipated to achieve better performance in prediction accuracy and robustness.

[image: Figure 1]

FIGURE 1. Flowchart of the development of the K-Nearest Neighbors (KNN) and deep learning-based prediction models for the storage time of the Newhall oranges.




KNN-Based Prediction Model

K-Nearest Neighbors is one of the most commonly used unsupervised-learning method in machine learning for classification, which can be adopted for storage time prediction as the images were categorized into five classes based on the collection date. The algorithm first calculates the distance (Manhattan or Euclidean distance) between the unknown sample and K-nearest known samples, and it then classifies the unknown sample based on the distance and classes of the K-nearest samples (Chen et al., 2017). In this work, the oil glands captured in each image were identified into three types based on their evolutionary characteristics, which will be discussed in detail in Section “Evolution of rind oil glands,” and the features to perform storage time prediction were the proportions of different glands. For the images obtained each time, 130 were randomly selected as the training set and the remaining 20 were used as the test set.



Deep Learning-Based Prediction Model

Convolution Neural Network (CNN) achieves superior performance in computer vision tasks such as classification (Chen et al., 2021), object detection (Kang and Chen, 2020a), and segmentation (Kang and Chen, 2020b). Here, we applied a 50-layer CNN model Residual-Network (ResNet-50) to directly predict the storage time of the oranges based on the images obtained, which was also treated as a classification task. ResNet-50 applied the residual convolution module, in which a shortcut connection was introduced between the input and output, to improve the accuracy and trainability of the network. The model was then trained to predict the storage time of the oranges into one of the five classes using the same training set of the KNN-based model. The Multiple Level Perception (MLP) layers of the ResNet-50 model were redesigned to fit our designed output. The global-pooling layer of the block of the original ResNet-50 outputted a feature map with the size of 1 × 1 × 2048, and the generated feature map was reshaped into a feature vector (2048 × 1). After that, two fully-connected layers, of which the sizes were 256 and 6, respectively, were used to generate the prediction of the storage time. Batch-norm and drop-out were adopted after each fully connected layer to improve the performance of the network model.




RESULTS


Chemical and Mechanical Analysis

The pH value, sugar-acid ratio, weight, and hardness of these oranges in different storage periods were obtained through chemical and mechanical experiments. It can be observed from Figure 2A that the average pH value of the oranges increased with increasing storage time, which was mainly due to the degradation of the ascorbic acid (Touati et al., 2016). For the oranges freshly collected on Day 0, their juice had a relatively high acidic level with an average pH value of 3.6. While the juice was still slightly acidic on Day 40, the average pH value obtained was 20.0% higher than that of the first day. The result of the sugar-acid ratio is presented in Figure 2B, showing a generally decreasing trend during the storage period. For Day 0 and 10, the average sugar-acid ratios of the oranges were 18.7 and 18.3, respectively, indicating a satisfactorily sweet taste. The sugar and acid contents deteriorated due to respiration during storage, and the experimental data indicates a higher decreasing speed of sugar concentration than that of the acid during storage, resulting in a decrease in the sugar-acid ratio. However, these indexes were associated with significant variances, based on which accurate prediction of the storage time was difficult to perform. Moreover, their destructive nature also constrains their potential applications. According to Figure 2C, the weights of the oranges decreased with increasing storage time, which can be related to respiration and loss of water, but the variances of the results were even more significant. Figure 2D shows the result of the hardness test. A generally linear negative correlation was found between the hardness and storage time, which was mainly induced by the loss of water as well (Rivera et al., 2021). As the variances of the experimental data were relatively small, the hardness might be useful to distinguish the oranges into different storage periods. However, devices to non-destructively measure the hardness of citrus fruit are not commercially available at the moment. As a result, although the pH value, sugar-acid ratio, weight, and hardness demonstrated the decreased fruit quality with increasing storage time, they are not ideal indexes for non-destructive storage time prediction.

[image: Figure 2]

FIGURE 2. Results of the measurement of the (A) pH value, (B) sugar-acid ratio, (C) weight, and (D) hardness.




Evolution of Rind Oil Glands

The evolution of the rind oil glands during postharvest storage was analyzed based on the obtained microscope images. For the freshly-collected oranges shown in Figure 3A, oil glands were the most prominent characteristics on the orange rind under 50×-magnification observation. Due to the accumulation of essential oil, most of the oil glands presented a convex surface with a light contrast in color comparing with other parts of the rind, and these convex surfaces can be further confirmed with the depth information. Moreover, there were also several oil glands with a flat surface, which might be due to the slow accumulation of essential oil during fruit development or slight dissipation when the fruit was mature. According to, the essential oil content in citrus fruit increases promptly before the mature stage and then drops slowly as a result of the elimination of oil. For the oranges preserved for 40 days, as shown in Figure 3B, most of the oil glands experienced a significant decline in the oil content, making their surfaces concave appearing on the rind.

[image: Figure 3]

FIGURE 3. Microscope observation of the oil glands. (A) The characteristics of the oil glands on the 0th day, in which the oil glands were filled up essential oil and had a convex surface. (B) The characteristics of the oil glands on the 40th day, in which the essential oil was limited and the gland surface was concave.


To quantify the characteristics of the oil glands at different storage periods, we classified them into three types in a relatively simple way. Type I oil glands referred to those filled with essential oil and have convex surfaces observed from the rind, and Type II glands were characterized by a flat surface when they experienced the decrease in oil content. For the oranges stored for a relatively long time, little essential oil was left and the gland surfaces were obviously concave and in a darker color, and they were therefore classified as Type III glands. Figure 4A shows the images of the rind from Day 0 to Day 40, and it can be found that although Type I glands dominated the rind at the beginning, they gradually turned into Type II and Type III glands with increasing storage time. On Day 40, most of the glands were characterized as Type III glands, which can hardly be observed in freshly harvested oranges. Figure 4B compares the cross-section of the rinds on Day 0, 20, and 40, which further confirms that the elimination of oil was the key factor that turned the glands flat or even concave. Moreover, the rind itself also experienced the loss of water during postharvest storage and became thinner, which would decrease the rind turgor and result in the rind compaction (Rivera et al., 2021). As this process is in conjunction with the evolution of the oil glands, the gland characteristics can be used as an indicator of the rind status that can be easily quantified, which will be discussed in detail in “Modeling and Analysis.” Compared with other indexes to indicate the rind status such as the rind turgor and water potential, the proposed new indicator can be obtained immediately using images in a non-destructive manner, which can be conveniently adopted in real-world applications for storage time prediction.

[image: Figure 4]

FIGURE 4. (A) The images captured in different storage periods. An increasing number of Type I oil glands turned into Type II and III glands with increasing storage time, and most of the glands were Type III glands on day 40. (B) The cross-section of the rinds on day 0, 20, and 40, on which different types of oil glands can be observed.





MODELING AND ANALYSIS


Evaluation Metrics

We used accuracy to evaluate the performance of the KNN and deep learning-based prediction models, respectively. Accuracy is formulated as

[image: image]

where n is the total number of samples in the test set, [image: image] is the predicted classes of the [image: image] sample by the model, [image: image] is the ground truth label of the [image: image] sample, and I is the function to determine whether [image: image] equals [image: image].



KNN-Based Modeling

According to Section “Evolution of Rind Oil Glands,” the total number of the oil glands remained the same for the oranges during postharvest storage, while the oil content decreased with increasing storage time. As a result, the proportion of Type I glands would gradually decrease, and the proportion of Type II glands would first increase and then decrease as the glands would further turn into Type III glands. While the individual difference of the gland number is obvious, the proportions of three types of glands for each orange at different storage period were quite consistent. Here, we adopted the proportions of three types of glands in the images as the features for KNN-based classification, as shown in Figure 5A. Figure 5B shows the distribution of the training set, in which the data from the same storage time gathered spatially, demonstrating the efficacy of the selected features.

[image: Figure 5]

FIGURE 5. The results of the KNN-based prediction model. (A) The procedure to obtain the proportions of different glands from an image. (B) The training set of the KNN-based prediction model, in which the proportions of three types of oil glands in each picture are the features to perform freshness prediction. (C) Comparison between the predicted and actual storage time.


Euclidean distance was adopted for the criteria of classification, and the total distance D of the test sample and its K-nearest neighbors was therefore formulated as

[image: image]

where [image: image] is the proportions of different glands of the test sample, and [image: image] is the proportions of different glands of a neighbor sample from the training set. The test sample was then classified into the category, where the majority of its K-nearest neighbors belonged to.

We conducted the computation using the scikit-learn machine learning library (version 0.19.0) in Python. In order to achieve better model performance, the parameters of the model were debugged based on the approach presented in Qiu et al. (2008). Different numbers of neighbors were tested for comparison and the results are presented in Table 1. The highest accuracy achieved is 93.0% with five nearest neighbors, with the parameters of the model set as n_neighbors = 5, weights = uniform, leaf_size = 30, metric=“minkowski,” and n_jobs = 1. These parameters were then adopted to predict the storage time of the test samples, and the comparison between the predicted and actual storage time is presented in Figure 5C. There are only seven out of 100 test samples misclassified, and the errors are all within 10 days, demonstrating the feasibility to use oil gland characteristics and a KNN-based model to predict the storage time of the Newhall navel oranges.



TABLE 1. Accuracy of the KNN-based prediction model using different number of neighbors.
[image: Table1]



Deep Learning-Based Modeling

The deep learning-based model can directly predict the storage time of the oranges based on the microscopy images. The implementation code of the original ResNet-50 model was from open-source code in Github, which was programmed by using the slim library in TensorFlow 1.15. To achieve better accuracy on storage time prediction, the MLP layers of the model was redesigned to fit outputs. We trained ResNet-50 by using the Adam-optimizer, and the pre-trained weights of the convolutional layers of the ResNet-50 model were frozen. As a result, only the weights in the MLP layers were trained. During the training process, the network was trained with 50 epochs and the learning rate was 0.001. Image augmentation methods including flip, rotation, clip, and color adjustment in HSV color space were introduced. The results of storage time prediction are presented in Table 2. The overall accuracy of the trained ResNet-50 model on storage time prediction is 96.0%, with only four mismatched out of 100 test samples and the errors all within 10 days, as shown in Figure 6.



TABLE 2. Accuracy of the deep learning-based prediction model.
[image: Table2]
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FIGURE 6. The results of the predicted storage time of the deep learning-based model, which are compared with the actual storage time.





DISCUSSION

Research on citrus storage time prediction is limited as the changes of their VOCs contents are difficult to differentiate via gas sensors (Cui et al., 2016). In one study, a freshness coefficient of citrus fruit was proposed based on the Raman intensity of rind carotenoids, which would decrease with increasing storage time (Nekvapil et al., 2018). However, this coefficient has high variances which might influence the prediction accuracy, and the intensity of Raman signals also relies on the specific equipment adopted. These issues constrain the application of practical methods to predict the storage time of citrus fruit. This paper reveals the evolutionary characteristics of the Newhall navel oranges during postharvest storage, and a feasibility study is presented to relate these characteristics to the rind status and storage time. One obvious advantage of the proposed method is the high objectiveness as the captured gland characteristics are not likely to be influenced by different equipment for image acquisition. The non-destructive nature is also appealing to the citrus fruit market, and in situ applications can be developed if a portable microscope is used.

The KNN and deep learning-based prediction models both achieved high prediction accuracy with the test samples, with the errors all within 10 days. The KNN-based model presented explicit criteria for classification, which also provided insights for the evolution of the oil glands during postharvest storage. To explore potential classification criteria of the deep learning-based model, we visualized the weighted sum of the feature maps in the last convolution layer by multiplying the feature maps with the corresponding weights in the MLP layers. That is, the feature maps with higher weights in the MLP layers would be highlighted. Then, to investigate the weights of different features that the classification network relied on for storage time prediction, we upsampled the weighted sum feature maps and multiplied them with the input image. As shown in Figure 7, although the oil glands gathered densely in some part of the images and distributed rather loosely in other parts, the highlighted areas by the network included a large amount of glands, indicating that the glands have higher weights in classification. This demonstrates that gland characteristics are also important for the deep learning-based model.

[image: Figure 7]

FIGURE 7. Feature visualization results of the deep learning-based model in different storage time.


One issue for the presented work is that we focused only on Newhall navel oranges stored at a specific storage condition, and the evolution of the oil glands might be different for different citrus species and storage conditions. However, this study aims to evaluate the feasibility to correlate the evolutionary characteristics of the rind oil glands with the rind status, through which the storage time can be predicted non-destructively, and specific storage time prediction models for different citrus species and storage conditions are therefore out of the scope. The comparison between the predicted and actual storage time based on the sample images achieved high prediction accuracy, demonstrating the potential of the proposed method. Although this method might not apply to citrus species whose oil glands are difficult to observe or with a concave surface when freshly harvested, the workflow presented can be readily replicated to develop new storage time prediction models for other citrus species with similar oil gland characteristics to Newhall navel oranges under different storage conditions. We will also include more citrus species and storage conditions in our future work to further evaluate the proposed method.



CONCLUSION

In this paper, the feasibility of performing storage time prediction of Newhall navel oranges based on the evolutionary characteristics of the rind oil glands has been evaluated, and two prediction models based on KNN and deep learning algorithms, respectively, have been proposed. The observation through microscope images demonstrated that the surfaces of the rind oil glands would turn from convex to concave due to the elimination of essential oil during postharvest storage, which is in conjunction with the process of the decrease of rind turgor and can be related to the rind status. The KNN-based model adopted the proportions of different types of oil glands as the features for classification, reaching a high prediction accuracy of 93.0%. The deep learning-based model directly predicted the storage time according to the images, and a higher accuracy of 96.0% was also achieved. Moreover, the prediction errors of both models were all within 10 days. The workflow presented can be readily replicated to develop storage time prediction tools for various citrus fruit with similar gland characteristics to Newhall navel oranges under different storage conditions.
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In this study, we aimed to clarify the distribution and dynamics of water in the Xudou 20 soybean cultivar post-germination after culturing plants with various concentrations of 6-benzylaminopurine (6-BA). Low-field nuclear magnetic resonance and magnetic resonance imaging (LF-NMR/MRI), as well as principal component analysis (PCA), were used for the investigation. Results showed that low concentrations of 6-BA promoted soybean germination and high concentrations inhibited soybean germination, with 5 mg/l of 6-BA producing the most optimal conditions for growth. Moreover, the T22 determination of weakly bound water increased with increasing 6-BA concentration, and the PCA effectively distinguished soybeans cultured at different 6-BA concentrations. This study provides a method for the rapid detection of 6-BA concentration in bean sprouts and provides theoretical support and bean sprout quality assessment.
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GRAPHICAL ABSTRACT.



INTRODUCTION

Soybean is cultivated worldwide, with a wide planting range and a large area of China. Soybeans are rich in protein and provide eight essential amino acids (Jin, 2020). In addition, they contain a biological coagulant that can promote immunity, dietary fibers that can improve the function of digestive organs, and peptides that reduce blood glucose and blood pressure, promoting weight loss. However, their nutritional value is limited by anti-nutritional factors such as trypsin inhibitors as well as raffinose, which is not readily absorbed by the human body and can lead to abdominal distension. However, after the germination treatment, trypsin inhibitors in soybean are degraded, and the raffinose content also decreases (Urbano et al., 2005). Moreover, the post-germination soybean protein content is higher than before germination. In countries where beans are the main source of plant protein, such as Egypt and Pakistan, soybean germination is a common practice to improve the nutritional value of beans and eliminate unfavorable characteristics (Sathe et al., 1992).

6-BA is a synthetic white crystal powder that promotes cell division and induces tissue differentiation. It is often used to regulate plant growth and development. The effects of 6-BA are species-specific and influenced by concentrations and treatment lengths (Wang et al., 2010; Zhang et al., 2019). Although it is possible to increase crop yield using 6-BA, numerous illegal businesses or small workshops use excessive 6-BA amounts to shorten the sprouting cycle and improve the appearance and tenderness of bean sprouts. This poses a significant threat to consumers’ health. Japan classifies bean sprouts as “other vegetables” and stipulates that the maximum residue limit of 6-BA of other vegetable agricultural chemicals is <0.5 mg/kg. Through experiments, we found that 0 mg/l ≤ 6-BA ≤ 3 mg/l is an appropriate concentration, and the residue is less than 0.5 mg/kg, which satisfies the criterion above; 6-BA >3 mg/l is excessive, and the residue is greater than 0.5 mg/kg. Conventional methods for detecting the 6-BA composition of bean sprouts include rapid solvent extraction pretreatment technology and surface-enhanced Raman Spectroscopy (Zhang et al., 2012), high-performance liquid chromatography (Lin et al., 2013; Tang, 2021), resonance Rayleigh scattering, and fluorescence. Although these methods are characterized by relatively high accuracy and sensitivity, they are associated with several disadvantages, such as ease of sample destruction, long detection time, use of toxic solvents, and complex sample purification. Water absorption during the process of soybean soaking results in the hydration of the whole soybean and is necessary for the initiation and termination of soybean germination (Yue et al., 2020). The morphological structure of beans is complex. To date, there is no clear study on the transmission path of water into soybeans. Several researchers believe that the seed coat is the main factor influencing water dynamics in bean water systems because the external water must overcome the barrier of the seed coat to penetrate the soybean (Chachalis and Smith, 2001). In contrast, other researchers have reported that external water predominately enters the soybean through the seed navel (Manning and Van Staden, 1985; McDonald et al., 1988). Experimental evidence shows that seed holes are the main channel for external water to enter and leave the soybean (Kulik and Yaklich, 1991). In order to study the process of external water entering soybean during soybean soaking and the effect of different 6-BA concentrations on soybean water content, experiments were performed to detect changes in soybean hydrogen proton content to assess the water distribution and dynamics in soybean seeds.

As an emerging technology, LF-NMR/MRI has been widely used in energy and geotechnical studies (Ouyang, 2017; Dou, 2019), life sciences (Jiang et al., 2010), industrial nuclear magnetic analyses (Kirtil and Oztop, 2016; Hou et al., 2021; Liu et al., 2021), food (Lin et al., 2016; Zhu, 2016; Zhu et al., 2020), and agriculture (Song et al., 2018). The advantages associated with this method include non-destruction of samples, environmental protection, as well as rapid and highly accurate detection. Because of these characteristics, this method is also widely used to detect adulterated honey, oil, and meat products (Ribeiro et al., 2014; Li et al., 2018). The kinetic information between the sample molecules and molecules is detected by LF-NMR, and the data are collected by using an appropriate pulse sequence. The parameters such as relaxation time, relaxation peak position, and relaxation peak area quantitatively reflect the ability of proton motion in this state. LF-MRI uses the hydrogen atomic nucleus with spin characteristics to stop receiving radio frequency pulse excitation in a special magnetic field, and the resonance signal generated in the process of releasing energy is acquired by an external receiver, and processed by an electronic computer to obtain an image. Moisture plays an important role in the process of seed germination, so LF-NMR/MRI can be used to detect the changes of water in various phases and other growth information during the process of seed germination to analyze the growth state of seeds.

In this study, the soybean cultivar Xudou 20 was cultured in 6-BA solutions at concentrations of 0, 1, 3, 5, 7, and 9 mg/l to explore the effects of different 6-BA concentrations on the water distribution and dynamics in germinating seeds. Proton density gray maps of the plant sagittal plane were collected every 1 h, and the hydrogen spectrum was obtained every 12 h. At the same time, the horizontal axis diameter, vertical axis diameter, and fresh soybean quality data of all the test samples were measured. Moreover, PCA analysis was used to distinguish between soybean sprouts cultured in the 6-BA solution at different concentrations to provide theoretical support and solutions for soybean production and bean sprout quality detection.



MATERIALS AND METHODS


Samples

Xudou 20 has a high yield and strong stress resistance, suitable for sowing in many places in China. Therefore, Xudou 20 was selected as the experimental object. Xudou 20 was purchased from a general agricultural materials market. It is bred by cross-breeding Xudou 9 as the female parent and Xudou 10 as the male parent (Wang et al., 2015; Wang, 2019).



LF-NMR Measurements

An LF-NMR/MRI analyzer NMI20-015V-I (Newmag Co., Ltd. Suzhou, China) was used for the LF-NMR/MRI measurements. The characteristics of this instrument are as follows: magnetic field intensity, (0.5 ± 0.08) T; radio frequency pulses (RF), 18 MHz; magnet temperature, 32°C; probe coil diameter, 15 mm. Hydrogen spectrum trial transverse relaxation times (T2) were measured using the Carr-Purcell-Meiboom-Gill (CPMG) sequence. The parameters of CPMG were set as follows: corresponding resonances frequency (SF) for protons = 21 MHz; spectral width (SW) = 200 kHz; echo time (TE) = 0.25 μs; pulse widths at 90° (P1) and 180° (P2), 16 and 36 μs, respectively; waiting time (TW) = 2000 μs; radio frequency delay time (RFD) = 0.02 μs; analog gain (RG1) = 20 db; digital gain (DGR1) = 3; and number of echoes (NECH) = 3,000.



LF-MRI Measurements

The parameters of the imaging experiment were set as follows: in the visual field adjustment area, the field of view (FOV) read, and FOV phase were 60.0 mm collectively, and the offset read (OR) was 0 mm. In the layer selection adjustment area, the offset slice was −1.6 mm; the slice was set to 1; the slice width was 10 mm; the layer spacing was 2.1 mm; the deflection angle β was 90°; the other deflection angles were 0°. Moreover, TE was set to 5.885 ms, the repeat sampling time (TR) was 300 ms; the number of repeated samples was set to 32. The sagittal image information of the experimental samples was collected, and each sampling time was 30 min.



Samples Preparation

Prior to the experiment, 1, 3, 5, 7, and 9 mg of the 6-BA crystal sample (≥99%, Shanghai Sigma-Aldrich Trading Co., Ltd) were weighed out. Then, the 6-BA crystals were placed in a 50-ml beaker with 2 ml of NaOH (0.5 mol/l, Guangzhou Hewei Pharmaceutical Technology Co., Ltd.) solution. The beaker was placed into a 60°C water bath and stirred with a glass stirring rod until the 6-BA crystal was completely dissolved. Finally, the dissolved 6-BA crystal was used to make 1, 3, 5, 7, and 9 mg/l solutions and stored in a 1 L volumetric flask for subsequent experimental use. 6-BA solutions with six concentration gradients of 0, 1, 3, 5, 7, and 9 mg/l were used in this experiment, and deionized water (0 mg/l) was used as a control. After analysis through multiple experiments, in this article, 6-BA with a concentration higher than 5 mg/l (excluding 5 mg/l) is high concentration solution, and less than 5 mg/l (including 5 mg/l) of 6-BA is low concentration solution.

During the experiment, soybeans with similar sizes and shapes, no surface damage, and masses of approximately 0.25 ± 0.05 g were selected. A total of 120 soybeans were selected for experimental analysis. Twenty parallel samples were set for each concentration gradient in the LF-NMR spectrum experiment. The measurement was repeated three times for each sample, after which the average value was taken. Five parallel samples were randomly selected for each concentration gradient in the LF-MRI experiment, and three replicate measurements were conducted for each soybean. Soybeans were cultured in an intelligent artificial climate incubator (Zhejiang Tuopu Instrument Co., Ltd.) at a set temperature of 25°C and an RH of 45%. Before culturing, soybeans were sterilized with a NaClO (0.01%, Jiangbiao Detection Technology Co., Ltd.) solution for 15 min, rinsed 3–5 times with deionized water at a constant water temperature of 25°C ± 1°C, and soaked in a solution with a volume ratio of 1:3 (experimental sample:solution). The samples were soaked for 8 h, and the sagittal proton density gray map of the experimental samples was obtained every 1 h. Samples were incubated for 60 h without light, and the T2 relaxation time of the experiment was obtained every 12 h. Vernier calipers (Shengtaixin Technology Co., Ltd.) were used to measure the transverse and longitudinal axes diameters of all the experimental samples. According to the fresh soybean mass and transverse and longitudinal axis diameter data collected hourly during the soaking process, the growth rates of the soybeans before and after soaking were calculated according to Eqs. (1)–(3):
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where m is the fresh quality growth rate, d is the horizontal axis diameter growth rate, and r is the longitudinal axis diameter growth rate. In addition, subscripts 1 and 2 represent the corresponding parameters before and after soaking, respectively.



Statistical Analysis

Niumag NMR Analysis Application software Ver4.0 (Niumag Co., Ltd., Suzhou, China) was used for data analysis and distributed exponential curve fitting. The continuous distribution of exponentials for the CPMG experiment is defined by Eq. (4):
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where M(t) is the residual magnetization at a given time t after applying the first radio frequency pulse; Pi and T2i are the spin–spin relaxation amplitude and time, respectively, of the ith component; and [image: image] is the residual error.

Although soybeans with similar characteristics were selected for the experiment, the quality of each soybean could not be guaranteed to be similar; thus, it was necessary to eliminate the influence of dimension on the experimental results. Therefore, after obtaining the T2 parameter, the data were normalized according to Eq. (5):
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where [image: image] is the corresponding water population (area ratio) of the ith component, and m is the mass of the Xudou 20 sample. The signal per mass of the total water is the sum of each signal per mass component.

PCA and ANOVA were carried out for a set of observations using IBM SPSS (Statistical Package for the Social Sciences) statistics v. 23.0 (SPSS Inc., United States). All figures were plotted using Origin 2018 software (Microcal, United States). The obtained hydrogen proton density map was processed by pseudo-color using Niumag NMR image processing software (Niumag Co., Ltd.), and the region of interest (ROI) was extracted.




RESULTS AND DISCUSSION


LF-MRI Result Analysis

To study the dynamics of water entering soybeans during the soaking process and determine the effect of different 6-BA concentrations on water entering the seeds, a pseudo-color map of the soybeans was constructed every 1 h for 8 h, as shown in Figure 1.

[image: Figure 2]

FIGURE 1. Pseudo-color map of continuous time points during soybean soaking in 6-BA solution with different concentrations. The larger the pseudo-color value, the greater the hydrogen proton density in the experimental sample.


The pseudo-color map visually shows the distribution of water in the soybean. Red (high brightness) indicates a high hydrogen proton density and water holding capacity in the area, whereas blue (low brightness) indicates low hydrogen proton density and water holding capacity.

As shown in Figure 1, before soybean soaking, the water was concentrated in the center of the cotyledon (red in Figure 1), and the water gradually reduced in the center of the partial ion leaf. After soaking for 1 h, the volume of the soybean increased significantly, and water in the two cotyledons was evenly distributed after entering the soybean. After soaking for 2 h, the soybean seeds continued to absorb water and expand, and their morphology gradually changed. After soaking for 3 h, the morphology of the soybean did not change significantly. Except for the soybean soaked in 5 mg/l of 6-BA, the water was unevenly distributed in the experimental groups. After soaking for 4 h, the water content in the 3 mg/l and 9 mg/l 6-BA experimental groups significantly increased. Conversely, after soaking for 5 h, the water content of the experimental group with 9 mg/l 6-BA suddenly decreased. After soaking for 6–8 h, the water content and morphology of all experimental groups remained stable, and the water absorption reached the saturation value.

Water enters seeds with cell membranes of non-recovered functions and produces an imbalance of forces between local tissues from the swelling of cell constituents. Therefore, the time course of water uptake indicates that imbibition by dry seeds is, to some extent, accompanied by uneven swelling during the first entry of water. The signal intensity did not stop rising when the seed stopped expanding; water incorporation exceeded the expansion of the seed. This may be because inter- and intra-gas spaces of cells were diminished. Driving gases from small pores in cell constituents by replacement with water requires a large amount of free energy, a biological event. Another possibility is that the molecular structures of stored materials were rearranged to hold more water between the molecular structures, such as the transformation of starches from crystal to gel, and from gel to solution with release of cations. The conformational changes, or unfolding and refolding of macromolecular compounds, are biological processes (Kikuchi et al., 2006).

The trajectory of water entering the seed differs by species. For soybeans, water is believed to first pass through the seed coat, then through the micropyle and navel, and finally through the hypocotyl. Soybean imbibition reconstitutes the membrane structure, reactivates stored protein, and produces residual mRNA during soybean ripening before drying. The moisture and morphology of soybean changed during soaking. When 6-BA concentration in solution is higher than 5 mg/l leads to the denaturation of the soybean seed protein and produces a denser structure. In particular, soybean seeds may play a negative role in water retention in the initial soaking stage. As shown in Figure 1, with an increase in the 6-BA solution concentration, the water content in the soybean seeds gradually increased until saturation. However, when the 6-BA concentration exceeded 7 mg/l, the water content first increased and then decreased. When the concentration of the 6-BA solution was 5 mg/l, the water absorption of the soybean reached saturation fastest for the sample set, followed by 3 mg/l > 2 mg/l > 1 mg/l > 7 mg/l > 9 mg/l.



Extract Region of Interest Value Results Analysis

We calculated the average gray value based on the extracted ROI from the gray image obtained from the NMR proton density image. We obtained the average gray value change curve of the test samples at intervals of 1 h during the immersion in solutions containing different 6-BA concentrations for 8 h. The corresponding calculation results are shown in Figure 2, where the horizontal mark represents the immersion period. The vertical coordinate represents the average gray value of the ROI.
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FIGURE 2. Average gray value variation curve for a region of interest of soybean during soaking in 6-BA solution with different concentrations.


The higher the average gray value, the higher the water content of the experimental sample during soaking. The water absorption of soybean during soaking depends on the water absorption capability of the protoplasm. This water absorption is unrelated to soybean metabolism; soybeans can absorb water in both dormant and vital states. The protoplast colloid of soybean makes the inactivated biological macromolecules stretch through water absorption, showing the original structure and characteristics.

During our experimental procedure, the average gray value of the test samples increased with increasing soaking time. After soaking for 6 h, the water absorption saturation curve of the soybean samples gradually reached a stable state. The average gray value of the soybeans soaked with 5 mg/l of 6-BA was significantly higher than that of soybeans soaked in other 6-BA concentrations; the average gray value of the soybean soaked in 9 mg/l 6-BA was the lowest. These results are consistent with the visual observation results of the pseudo-color map, which shows that an appropriate concentration of 6-BA can promote water absorption in soybeans and bean sprout growth. Conversely, high 6-BA concentrations (6-BA>5 mg/l) lead to the deterioration of the structure of the soybean and inhibition of water absorption, thus hindering the growth of soybean sprouts.



Analysis of Growth Rate Results

After calculating the results according to Eqs. (1)–(3), change curves were determined for the fresh mass as well as the transverse and longitudinal axis diameter growth rates of the soybeans before and after soaking in various 6-BA solutions, as shown in Figure 3.
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FIGURE 3. Variation curves for the fresh mass, and transverse and longitudinal axis diameter growth rates before and after immersion in various 6-BA solutions.


Figure 3 is a multi-ordinate axis broken line diagram, in which the abscissa represents the concentrations of the 6-BA solution, the left axis of the ordinate represents the growth percentage of the soybean fresh mass before and after soaking, and the right axis of the ordinate represents the growth percentage of the soybean diameter before and after soaking. Using a concentration of 5 mg/l as the dividing point, the growth rate of the fresh mass and the transverse and longitudinal axis diameters of the soybean soaked in low 6-BA concentration solutions on the left increased with an increase in the solution concentration. Conversely, the soybean soaked in a high 6-BA concentration solution (6-BA>5 mg/l) showed an opposite trend, with a growth rate inversely proportional to the 6-BA concentration.

Notably, the primary factor influencing an increase in the quality and volume of the soybean is water. Therefore, it can be deduced that when the concentration of the 6-BA solution is 5 mg/l, the soaking efficiency of Xudou 20 soybeans improves. This observation is consistent with the NMR experimental analysis results.



Analysis of Hydrogen Spectrum Results in LF-NMR Spectrum Experiment

Using the CPMG pulse sequence of a low-field nuclear magnetic resonance instrument, the CPMG echo peak map of the soybean samples was obtained, and the T2 inversion spectrum was obtained by determining the inversion of the echo peak points. To eliminate the influence of different quality soybeans on the results, Eq. (5) was used to normalize the T2 inversion spectra. Then, the T2 inversion spectrum waterfall of the germinating soybean was constructed for 0, 12, 24, 36, 48, and 60 h under different concentrations of 6-BA, as shown in Figure 4.
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FIGURE 4. LF-NMR T2 relaxation time inversion spectrum waterfall of different germination times for different 6-BA concentrations: (A) soaking for 8 h, (B) germination for 12 h, (C) germination for 24 h, (D) germination for 36 h, (E) germination for 48 h, and (F) germination for 60 h. The experimental environment was as follows: temperature, 25°C; relative humidity, 50%; germination time, 0–60 h. The T2 relaxation time was determined using the CPMG sequence with the following parameters: SF, 21 MHz; SW, 200 kHz; TE, 0.25 μs; P1, 16 μs; P2, 36 μs; TW, 2000 μs; RFD, 0.02 ms; RG1, 20 db; DRG1, set to 3; and NECH, 3000.


According to basic principles of NMR, the length of T2 can reflect the degree of water freedom in the sample; while a shorter T2 indicates lower water freedom in the sample, a longer T2 indicates the opposite (Song et al., 2016). Four clear peaks can be observed in the images presented in Figure 4, indicating the presence of four water populations: strongly bound water (T21): 0–1 ms; weakly bound water (T22): 1–10 ms; immobilized water (T23): 10–150 ms; and free water (T24): 150–10,000 ms (Lin et al., 2018). The corresponding signal amplitudes are A21, A22, A23, and A24, respectively. Moreover, the strongly bound water contains macromolecules, such as proteins and amino acids that decay rapidly. As such, their signals are difficult to capture by LF-NMR and are thus ignored. In addition, the internal oil content of soybeans overlaps with the weak combined water signal. Moreover, the soaking process has a negligible impact on the oil content of soybeans. In this study, the primary analysis focus was the internal water dynamics in soybeans; the oil signal of soybeans was not analyzed. Both strongly and weakly bound water molecules exist in soybean cells; they combine with proteins via strong hydrogen bonds. These water molecules cannot flow freely and are thus not involved in soybean metabolism. Moreover, the hydrogen bonding effect of strongly bound water molecules is notably greater than that of weakly bound water. Immobilized water combines with an amide (protein) and hydroxyl (starch and cellulose) group in the soybean. The hydrogen bond force in immobilized water is weak, and free water exists in the internal space within soybeans due to capillary action. Free water is characterized by significant fluidity, is a good solvent, can dissolve numerous substances and compounds, and participates in soybean metabolism. Moreover, the greater the free water content, the more vigorous the metabolic activity.

Water content has a major influence on seed germination. When soybean sprouts were cultured in low 6-BA concentration solutions (0, 1, and 3 mg/l), the total peak area gradually increased with increasing 6-BA concentration. Conversely, the total peak area of the soybean sprouts cultured in high 6-BA concentrations (5, 7, and 9 mg/l) gradually decreased with increasing 6-BA concentrations. According to the principle of LF-NMR, the peak area reflects the change in the sample water content, where a larger peak area denotes a greater water content. A low concentration level of 6-BA can increase cell wall plasticity, increase the cell volume, promote the biosynthesis of nucleic acids and proteins, increase new cytoplasmic components, and promote the longitudinal growth of cells (Garnczarska et al., 2010). Alternately, a high concentration of 6-BA can induce ethylene biosynthesis and inhibit elongation growth (Rajjou et al., 2012).

Figure 4 indicates that the relaxation time of the weakly bound water T23 increases at higher 6-BA concentrations (in Figure 4, the peak area widens, and the relaxation peak reverts to its original position). This is likely because, during the entire germination process in the low 6-BA concentration treatment, the soybean was protected and supported by the cell wall, which generated pressure and gradually maintained a dynamic balance inside and outside the cells. Therefore, the peak A23 of the relaxation spectrum maintained a slightly continuous growth state after soaking and imbibition. However, a higher 6-BA concentration level resulted in a higher intracellular solution than external concentration; after 12–36 h of germination, water molecules migrated from areas of low concentration to those of high concentration, and the peak A23 of the relaxation spectrum continued to increase. After germination for 48 h, soybeans germinated in the 7 and 9 mg/l 6-BA solutions were in a low concentration state compared to those cultured in the other 6-BA solutions. Therefore, the peak A23 of the relaxation spectrum decreased sharply. In addition, the high 6-BA concentration solutions destroyed the cell wall of the soybean, and the A23, A21, and A24 peaks gradually disappeared. After 60 h of germination, the soybean cultured in the 5 mg/l 6-BA solution also changed due to cell infiltration and damage to the soybean cell wall. At this stage, only some weakly bound water (T23) was detected in the soybean sprouts and moisture in other phases was not detected.

The population type of the water in the experimental sample was determined using LF-NMR experiments, and the effects of the various 6-BA concentrations on different water populations in the soybean were further analyzed.



Effects of 6-BA on Different Phase Water in Soybean

Through the analysis of Table 1, it was found that under the treatment of different concentrations of 6-BA, the water content of each phase in soybean changed continuously with the increase of germination time. 6-BA had different effects on the water content of four phases in soybean: strong bound water, bound water, weakly bound water, and free water.



TABLE 1. Statistics table of unit mass T2 peak area.
[image: Table1]

Soaking for 8 h is the imbibition stage of soybean. Water molecules enter soybean seeds through imbibition, and the water content increases rapidly, preparing for the later radicle growth. Under the action of different concentrations of 6-BA, there were significant differences between high concentrations (5, 7, 9 mg/l) and low concentrations (0, 1, 3 mg/l). Eight to twenty four hours is the germination stage. At this time, the rapid water absorption of soybean seeds in the imbibition stage leads to the saturation of protoplasm, the increase of cell turgor pressure, and the impediment of cell water absorption, so the content of water in each phase does not increase significantly. Twenty four to sixty hours was the germination stage of soybean, and the water absorption content of seeds gradually leveled off.

During the imbibition stage, soybeans swelled and germinated after absorbing enough water, and all water populations except free water content increased significantly. Overall, low- and high-concentration 6-BA treatments exhibited opposite hydrodynamic profiles. Under the action of low concentration of 6-BA, each peak changed slightly at 8–60 h. Under the action of high concentration of 6-BA, the contents of A21, A22, and A23 were greatly reduced at 60 h after germination, the average value of A21 dropped sharply below 300, the average value of A22 dropped sharply below 50, and the average value of A23 dropped sharply below 4,000. The variation trends of 6-BA concentration gradients on soybean total moisture A24 are all shown as follows: under the action of high concentration 6-BA, the free water A24 content has a decreasing trend, and the reason for the reduction is that the moisture of each phase can interact with each other to a certain extent. Transformation, during germination, high concentration of 6-BA accelerates the mobility of water between phases. Under the action of low concentration of 6-BA, the content of A24 in free water showed a regular change of increasing–smoothing–decreasing.

Throughout the germination process, complex exchanges between moisture components occur. 6-BA can decompose nutrients such as carbohydrates and proteins stored in seeds into small molecular substances, which can be absorbed and utilized by the germ, breaking seed dormancy and promoting seed germination. Soybean seeds are rich in plant protein. 6-BA affects soybean seed water absorption by affecting the protein body of soybean seeds. During the germination process, the protein is gradually decomposed along with the swelling of the protein body and the change of the storage tissue.



Analysis of PCA Results

The spectral data of the soybean sprouts cultured in the 6-BA solutions were collected, and the CPMG back peak data were inverted and normalized. The peak point data of the CPMG detected for the sample were listed as multiple variables in a row; the row vector represented the experimental sample. The peak area data of the soybean sprouts treated with different concentrations of 6-BA were combined to form the original data matrix. Soybean sprouts cultured with different concentrations of 6-BA were detected for adulteration by principal component analysis, as shown in Figure 5. Each point in Figure 5 represents the soybean sprout samples. An area of the same color and shape represents the overall quality difference of the experimental sample. The image is divided into six areas to represent the characterization of soybean sprouts cultured in different 6-BA concentrations.
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FIGURE 5. PCA scores of soybean sprouts cultured with different concentrations of 6-BA. Each dot represents a sample; each color represents a 6-BA concentration.


In Figure 5, principal component 1 and principal component 2 show the contribution rates of each component obtained from the PCA conversion. The greater the contribution rate, the more information could be reflected based on the indicators of the original data. The contribution rate of principal component 1 was 94.1%, and that of principal component 2 was 5.4%. The two principal components retained 99.5% of the original data. The experimental samples in the same area represent the same processing methods, that is, parallel samples. The processing effect of different samples could be characterized by the interval distance in the figure: the greater the interval, the more obvious the effect. With the increase in 6-BA concentration, the distribution of soybean samples shifted from right to left on the principal component 1 axis, showing a certain regularity: the distribution of samples with 6-BA concentrations of 0, 1, and 3 mg/l overlapped partially, and the distribution distance of samples with 6-BA concentrations of 5, 7, and 9 mg/l was relatively dense. This shows that the quality of soybean sprouts treated with low concentrations and high concentrations of 6-BA clearly differed, further demonstrating the rationality of the model.



Different Detection Techniques Are Compared

High demand for quality and safe processed foods has stimulated the quest in innovative technologies in food science owing to the shortcomings of the existing or conventional technologies with respect to their sensitivity, selectivity, robustness, cost-effect and timeliness (Ezeanaka et al., 2019). To overcome these challenges, alternative techniques such as near-infrared spectroscopy (NIR), Raman spectroscopy, hyperspectral imaging (HSI), and NMR used in food quality analysis are used nowadays. They provide accurate results when compared with the conventional or traditional techniques. Raman spectroscopy can be used for both liquid and solid samples, which can provide detailed information about molecular vibration related to secondary and tertiary structures of protein, lipid structures, and water structures (Velioğlu et al., 2015; Zhang et al., 2020). NIR spectral information is derived from the double frequency and combined frequency absorption of organic hydrogen-containing groups (C-H, O-H, N-H), free water signal from frozen samples is easier to detect with NIR (Liu et al., 2020). HSI is a technology that combines vision technology and Vis–NIR spectroscopy, which allows the acquisition of spectral and spatial information simultaneously. The potential nature of non-destructive, cost-effective, and rapid sensing procedures is widely accepted in the fresh produce industry for quality assessment and detection of storage and quality issues (Pullanagari and Li, 2020). The major advantage with NMR is that it is both robust and non-destructive to the sample and require no sample treatment prior to analysis.

However, these techniques have some limitations in food process control monitoring. For instance, NIR not only needs some calibration models to be established mostly for online application but also is not reliable and sufficiently steady when used. For Raman spectroscopy, high cost and non-stability of the instrument limit its application in process analysis. The complex mechanism of hyperspectral imaging and the huge amount of data make it difficult to preprocess image data (Ezeanaka et al., 2019). NMR is a fundamental analytical technique that can obtain specific information about the proteins, lipids, and water; however, this technique is not suitable for detecting minor components such as low molecular weight proteins (Zhang et al., 2020). Therefore, further research and development are needed to counter these drawbacks. In-depth mining of information features, reducing the cost of constructing prior knowledge, and realizing the transition from feasibility to practicality will be the further research direction of non-destructive testing technology.




CONCLUSION

NMR proton density pseudo-color maps obtained by MRI experiments upon soybeans treated with different concentrations of 6-BA at continuous time points were constructed to assess the soybean quality and measure the transverse and longitudinal axis diameters of soybeans. The analysis of the gray value of the ROI and the changes in soybean quality and volume showed that a low 6-BA concentration promoted water absorption and soybean germination, whereas high concentrations produced inhibitory effects. In this experiment, the water content of the soybean was highest when the culture concentration of 6-BA was 5 mg/l. Moreover, four types of water populations were detected in the soybean: strongly bound water (T21), weakly bound water (T22), immobilized water (T23), and free water (T24). With an increase in the 6-BA solution concentration, the proportions of the four types of water and the relaxation time were uniquely altered. In addition, PCA analysis could effectively distinguish the concentration of the 6-BA solution containing the soaked soybean with relatively high accuracy. Moreover, the experimental soybean samples showed a regular distribution with an increase in the 6-BA concentration. At present, the literature mostly focuses on the time-dependent growth dynamics of soybean, and rarely a spatio-temporal analysis has been attempted. Furthermore, only a few studies have previously reported the effect of 6-BA on water dynamics during soybean sprout growth in China or other countries.

In conclusion, LF-NMR/MRI can reflect the post-germination water absorption and distribution in soybean seeds thanks to its non-invasive and non-destructive characteristics. Non-destructive testing technology for agricultural products is the basic type of technology for testing the quality of agricultural products.
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The currently available methods for evaluating most biochemical traits of plant phenotyping are destructive and have extremely low throughput. However, hyperspectral techniques can non-destructively obtain the spectral reflectance characteristics of plants, which can provide abundant biophysical and biochemical information. Therefore, plant spectra combined with machine learning algorithms can be used to predict plant phenotyping traits. However, the raw spectral reflectance characteristics contain noise and redundant information, thus can easily affect the robustness of the models developed via multivariate analysis methods. In this study, two end-to-end deep learning models were developed based on 2D convolutional neural networks (2DCNN) and fully connected neural networks (FCNN; Deep2D and DeepFC, respectively) to rapidly and non-destructively predict the phenotyping traits of lettuces from spectral reflectance. Three linear and two nonlinear multivariate analysis methods were used to develop models to weigh the performance of the deep learning models. The models based on multivariate analysis methods require a series of manual feature extractions, such as pretreatment and wavelength selection, while the proposed models can automatically extract the features in relation to phenotyping traits. A visible near-infrared hyperspectral camera was used to image lettuce plants growing in the field, and the spectra extracted from the images were used to train the network. The proposed models achieved good performance with a determination coefficient of prediction ([image: image]) of 0.9030 and 0.8490 using Deep2D for soluble solids content and DeepFC for pH, respectively. The performance of the deep learning models was compared with five multivariate analysis method. The quantitative analysis showed that the deep learning models had higher [image: image] than all the multivariate analysis methods, indicating better performance. Also, wavelength selection and different pretreatment methods had different effects on different multivariate analysis methods, and the selection of appropriate multivariate analysis methods and pretreatment methods increased more time and computational cost. Unlike multivariate analysis methods, the proposed deep learning models did not require any pretreatment or dimensionality reduction and thus are more suitable for application in high-throughput plant phenotyping platforms. These results indicate that the deep learning models can better predict phenotyping traits of plants using spectral reflectance.
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INTRODUCTION

Plant phenotyping is an interdisciplinary field of research that collects and analyses plant phenotyping traits, such as biophysical, biochemical, and physiological traits using non-destructive imaging and sensor-derived time-series data (Rebetzke et al., 2019; Roitsch et al., 2019; Grzybowski et al., 2021). Currently, rapid progress has been made in the plant phenotyping field based on quantifying traits of interest using hyperspectral imaging (HSI). HSI has been used to estimated biophysical traits, such as plant height and biomass (Aasen et al., 2015; Yue et al., 2017); biochemical traits, such as water content, chlorophyll, and nitrogen (Quemada et al., 2014; Zhou et al., 2018; Xie and Yang, 2020); physiological traits, such as salt, heat, and drought stress tolerance and photosynthesis (Zarco-Tejada et al., 2013; Mo et al., 2017). HSI is a non-destructive, rapid, remotely sensed method of plant phenotyping that simultaneously extracts spectral and spatial information relevant to the overall plant heath. Hyperspectral images contain hundreds and even thousands of continuous wavebands in visible near-infrared (Vis–NIR) range, and thus the spectral information obtained is rich. However, image processing is complex and the spectra contain redundant information (Xie and Yang, 2020).

Lettuce (Lactuca sativa L. var. longifolia) is one of the most popular vegetables in the world, rich in vitamins, carotenoids, dietary fiber, and other trace elements (Kim et al., 2016; Xin et al., 2020). Moreover, the soluble solids content (SSC) and pH in biochemical traits are key indicators of lettuce taste and harvest time, and thus it is crucial in the lettuce growing industry (Eshkabilov et al., 2021). Due to the rising demand for lettuce in recent years and the tendency of this crop to lose moisture in a short time at room temperature, rapid strategies for lettuce quality assessment are needed (Mo et al., 2015; De Corato, 2020; Eshkabilov et al., 2021). Lettuce quality is evaluated based on nutrient content, appearance, and shelf life (Eshkabilov et al., 2021). The traditional evaluation methods are mainly visual and destructive. Moreover, these methods require specialists and are time-consuming and costly (Simko et al., 2018; Simko and Hayes, 2018). Therefore, it is important to develop a method that can rapidly and non-destructively assess lettuce quality in phenotyping traits analysis.

Predictive modeling of some lettuce phenotyping traits has been developed using spectral reflectance obtained via hyperspectral technique combined with machine learning methods. Eshkabilov et al. (2021) detected the nutrient content of lettuces using partial least squares regression (PLSR) and principal component analysis (PCA). Wavelet transform (WT) and PLSR have been used to assess the moisture content in lettuce leaves (Zhou et al., 2018). Also, ANOVA, artificial neural networks (ANN), competitive adaptive reweighed sampling (CARS), random forest (RF), successive projections algorithm (SPA), and least squares support vector regression (LSSVR) have been used to study the responses of lettuce to biotic and abiotic stresses, such as worms, water and pesticide (Mo et al., 2017; Osco et al., 2019). Most studies have focused on the leaf scale of lettuces, with only a few focusing on the canopy scale of lettuces. However, high-throughput plant phenotyping (HTPP) platforms can extract canopy scale features (Nyonje et al., 2021). Besides, some studies had small sample sizes of less than 100 and only one cultivar (Mo et al., 2015, 2017; Sun et al., 2018; Eshkabilov et al., 2021). The spectra of lettuces are distinguishing between different varieties, and for the same variety of lettuces, the spectra are also distinguishing in different growth states. Therefore, the insufficient sample size and number of cultivars can compromise the robustness of the established models used to predict plant phenotyping traits. Additionally, raw spectra used to develop models contain noise and redundant information, limiting their application in HTPP platforms. As a result, pretreatment and wavelength selection are usually conducted using multivariate analysis methods before modeling (Gao et al., 2021). The spectra obtained by different pretreatment methods have a great influence on the modeling, and sometimes even have negative effects. Therefore, the application of multivariate analysis method to the HTPP platforms may reduce the throughput and prediction accuracy.

Recent advances in machine learning have shown that deep learning algorithms can automatically learn to extract features from raw data and significantly improve modeling performance for many spectral analysis tasks (Singh et al., 2018; Kanjo et al., 2019; Rehman et al., 2020). Sun et al. (2019, 2021) employed a deep brief network to estimate cadmium and lead contents of lettuces with high accuracy. Rehman et al. (2020) also developed a modified Inception module to predict the relative water content (RWC) of maize leaves and achieved a determination coefficient (R2) of 0.872 for RWC. Aich and Stavness (2017) used deep convolutional and deconvolutional networks for leaf counting and obtained mean and standard deviation of absolute count difference of 1.62 and 2.30. Wang et al. (2019) developed the SegRoot model based on convolutional neural networks (CNN) to segment root from complex soil background with R2 of 0.9791. Wang et al. (2017) employed deep VGG16 model to evaluate apple black rot with accuracy of 90.4%. Deep learning models include CNN model and fully connected neural networks (FCNN) model (Furbank et al., 2021). The purposes of this study are: (1) two end-to-end deep learning models were developed for rapid and non-destructive prediction of phenotyping traits of lettuce canopy in hyperspectral applications; (2) the proposed models can directly use the raw reflectance spectra as input to obtain prediction for biochemical traits, such as SSC and pH in lettuce phenotyping traits; and (3) to compare the difference in performance between the models built by various linear and nonlinear multivariate analysis methods and deep learning models. Specifically, the developed FCNN model (DeepFC) and the two-dimensional CNN model (Deep2D) could directly use the raw average spectral reflectance as input to predict the SSC and pH of lettuce canopy. The models could automatically learn to better extract the abstract features related to SSC and pH and thus did not require pretreatment or dimensionality reduction. Our models predicted SSC and pH better than multivariate analysis methods and were suitable for application in the HTPP platforms.



MATERIALS AND METHODS


Plant Materials

In this study, three annual bolting lettuce cultivars (Butter, Leaf, and Roman) with fast-growing and excellent quality were planted under open field conditions at the Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences (39.9438°N, 116.2876°E) on April 12, 2021. A field HTPP platform (LQ-FieldPheno, Beijing, China) was deployed at the experimental site (Figure 1). The plants were grown on raised beds with furrows between the beds (Figure 1). The growing environments of plants are: (1) no fertilizers were applied to the soil; (2) drip irrigation was conducted under professional supervision; and (3) water treatment was the same for all plants. Forty-five lettuces were selected from each cultivar on May 15, 20, and 25, 2021, put into the flowerpots, and then taken to the laboratory near the field for HSI. Each lettuce was imaged, then the lettuce juice was obtained as follows: (1) the lettuce roots were removed to obtain the leaves; (2) a hand-crank juicer (LKM-ZZ01, Like-me Technology Co., Ltd., China) was then used to extract the juice, finally store (3) in a centrifugal tube (capacity: 50 ml). A total of 387 lettuce juices were finally analyzed since the labels of eighteen lettuce samples were lost during the experiment (Supplementary Table S1). A digital refractometer (PAL-1, ATAGO Co., Ltd., Japan) and a pH meter (206pH1, Testo, Germany) were used to measure SSC and pH of lettuce juices, respectively.

[image: Figure 1]

FIGURE 1. Picture of plants and LQ-FieldPheno in the field.




Hyperspectral Imaging System

The Vis-NIR hyperspectral images of lettuce plants were acquired in reflectance mode in a black room (length: 1.5 m, width: 1.5 m, and height: 2.5 m). The HSI system consists of the following modules: (1) a high spectrograph (GaiaField-V10E, Dualix Spectral imaging, China), (2) a CCD camera, (3) four tungsten halogen lamps, and (4) a computer (Ins 15-7,510-R1645S, Dell, United States) with image acquisition software (Specview, Dualix Spectral imaging, China). The spectrograph is a built-in push-broom style line-scanning and has a spectral range of 400–1,000 nm, with 256 spectral bands at a spectral resolution of 2.8 nm. The CCD camera has a spatial resolution of 696 pixels per scan line and was equipped with a 23 mm lens. The lamps provide 350–2,500 nm light with a power of 50 W. The distance between the lettuce plants and lens was set to 1 m, and the angle between the lamp and camera was set at 45° to provide enough light to the imaging area for image acquisition. The images (dimension: 775 × 696 × 256) were obtained at the exposure time, frame rate, gain, spatial binning, and spectral binning of 30 millisecond, 14 frames per second, 1, 2, and 4, respectively.



Image Processing

The obtained raw hyperspectral images were distorted since the imaging mode of the hyperspectral system was set at push-broom style, and the non-planar camera lens and spectrometer were separated. As a result, the raw hyperspectral images were subjected to lens correction using the lens correction function provided by Specview. The corrected images were then calibrated to remove uneven light distribution and dark current from the sensor (Mishra et al., 2019; Gao et al., 2021). A 99% reflectivity flat polyvinyl chloride (PVC) board was scanned as the white reference to calibrate the light changes in the images, and the dark current from the hyperspectral sensor was removed by collecting the dark reference. The following calibration formula was used:

[image: image]

R, Rraw, Rw, and Rd represent the calibrated image, raw hyperspectral image, white reference image acquired from the PVC board with 99% reflectance, and dark reference image obtained through shutting the lamps and covering the camera lens, respectively.

The difference in plant height causes significant differences in spectral reflectance and brightness in different plant parts. Common threshold segmentation method cannot adequately extract the region of interest (ROI) of the entire canopy. In this study, the mask of the ROI was obtained from the calibrated hyperspectral image using spectral angle mapper (SAM; Kim, 2021). SAM was conducted based on six spectra extracted from the top point, top region, middle point, middle region, bottom point, and bottom region of plant (Figure 2) via ENVI 5.3 software (ITT Visual Information Solutions, Boulder, CO, United States). The mask was multiplied using the calibrated image to obtain the ROI image. The mean spectrum was calculated by averaging the spectra of all pixels in the ROI images for further modeling analysis.

[image: Figure 2]

FIGURE 2. The process of plant spectra extraction. (A) Calibrated hyperspectral images, (B) binary plant mask, (C) masked RGB plant, (D) 256 bands corresponding to the ROI, and (E) extracted plant mean reflectance spectrum.




Architecture of Proposed Models

Deep learning models are beneficial in the HTPP field due to their excellent information mining ability (Wang et al., 2019). For instance, it can be used for leaf counting (Aich and Stavness, 2017), image segmentation (Song et al., 2020), and quantitative or qualitative analysis (Wang et al., 2017; Kerkech et al., 2020). However, the deep learning model and spectroscopy combination are rarely used to quantify plant phenotyping traits. Herein, the models based on the two networks (2DCNN and FCNN) were developed for SSC and pH analysis of lettuces to understand the prediction accuracy of different network models for plant phenotyping traits.

The CNN emulates the visual perceptual mechanisms of living things (Fu et al., 2020). CNN can learn grid-like topology features, such as pixels and audio. The amount of calculation is small due to the sharing of convolution kernel parameters in the hidden layer and the sparseness of inter-layer connection makes, and thus CNN has a stable effect and no additional feature engineering requirements for data. In the previous investigation, the performance of the model with linear stacking of convolutional layers was poor, possibly due to the insufficient extraction of the raw spectral features. Herein, the Inception module improved on the naïve version was introduced (Figures 3A,B). The CNN and FCNN layers of Deep2D used ELU and linear activation functions, respectively. The optimizers, loss, and metrics of Deep2D were Adam, root mean square error (RMSE), and mean absolute error (MAE). The Inception module was introduced because: (1) the use of different size convolutional kernels implies different size perceptual fields enabling learning features at multiple scales; (2) the final concatenate operation can fuse features at multiple scales; and (3) the depth and width of the network are well balanced to prevent the network from falling into saturation. As shown in Figure 3B, three scale features were used, and then the features were subjected to a concatenation operation. The dimension of concatenated features was large, and thus fully connected module was used to reduce the feature dimension and improve the robustness of Deep2D.

[image: Figure 3]

FIGURE 3. Architecture of the naïve version Inception module (A) and Deep2D (B).


The FCNN model is a multi-layer perceptron (Scabini and Bruno, 2021). The principle of the perceptron is to find the most logical and robust hyperplane between classes. As shown in Figure 4A, unlike traditional perceptron, each node of the FCNN model has an operational relationship with all nodes in the next layer. FCNN usually has multiple hidden layers. Although adding hidden layers can better separate the data features, too many hidden layers can also increase the training time and produce overfitting. Herein, the dropout operation was introduced to prevent overfitting. The structure of the DeepFC is shown in Figure 4B, and the features in the input layer were first scaled up and then scaled down. The dropout operation was conducted on the top 2 layers after the inputting features. Moreover, the linear activation function was applied to hidden layers of DeepFC. The optimizers, loss, and metrics of DeepFC were the same as those of Deep2D.

[image: Figure 4]

FIGURE 4. FCNN schematic chart (A) and architecture of the DeepFC (B).




Comparison of Deep2D and DeepFC With Various Multivariate Analysis Methods

Three linear multivariate analysis methods [PLSR, locally weighted regression (LWR) and multiple linear regression (MLR)] and two nonlinear methods [ANN and support vector regression (SVR)] were used to establish models to compare with the proposed deep learning models (Deep2D and DeepFC).

PLSR is a multi-dependent variable Y against the multi-independent variable X modeling method. The method maximally extracts the principal components in Y and X, and maximizes the correlation between the principal components extracted from X and Y during the modeling process (Yu et al., 2015). Herein, X and Y represent the spectra and predicted values (SSC or pH), respectively. LWR is a nonparametric method for local regression analysis. It divides the samples into cells, performs polynomial fitting on the samples, and continuously repeats the process to obtain weighted regression curves in various cells. Finally, the centers of these regression curves are connected to form a complete regression curve (Raza and Zhong, 2019). MLR obtains a weighted summation relationship between each feature and the predicted values. The problems to be dealt with in practical work are usually complex multiple features, and thus compared with the univariate linear regression method, MLR is more suitable for use in practical work (Chung et al., 2021).

Artificial neural networks abstracts human brain neural networks based on information processing, thus establishing some simple models. Different networks are formed according to different connection methods. It is an operational model consisting of several interconnected nodes. Each node represents a specific output function (activation function). The connection between every two nodes represents a weight value for the signal passing through the connection (Osco et al., 2019). SVR is a key application branch of the support vector machine. It uses an optimal hyperplane that minimizes the total deviation of all sample points from the hyperplane, and then fits all the data through the optimal hyperplane (Zhang et al., 2017).



Spectral Pretreatment and Wavelength Selection

Light inhomogeneity and background interference generate noise in the reflectance spectra extracted from the hyperspectral images. Moreover, there are pitfalls of wavelengths unrelated to SSC and pH and a high correlation between adjacent wavelengths in the high dimensional spectra. As a result, the accuracy of the models developed via multivariate analysis methods may be reduced. However, spectral pretreatment methods, such as moving window smoothing (MWS), Savitzky–Golay Filter (SG), first-order derivative (FDR), second-order derivative (SDR), and WT and wavelength selection including CARS may address these problems and improve the performance of the models.

MWS sets a smooth window that is moved over each spectrum to average the spectra, thus denoising spectra. SG is a filtering method based on a local polynomial least squares fit in the time domain. The most important characteristic of this filter is that the shape and width of the spectra can be ensured to be constant while filtering out the noise. Derivative spectra, such as FDR and SDR can effectively eliminate background interference and improves the signal-to-noise ratio of the spectra via derivation of the spectra. CARS uses the absolute value of the regression coefficient as index to weigh the importance of wavelengths, and can effectively select the optimal combination of wavelengths.



Modeling and Model Evaluation

The reflectance spectra of 387 lettuces were divided into calibration and prediction sets with a ratio of 2:1 based on Kennard–Stone (KS) algorithm (Saptoro et al., 2012). A 15% proportion of the spectra from the calibration set was then randomly selected as the validation set. Specifically, the sample number of calibration, validation, and prediction sets were 219, 39, and 129, respectively. The SSC and pH values of 387 lettuces are shown in Table 1. For the models established via the multivariate analysis methods, the data sets were divided after pretreatment or wavelength selection. Spectra of 219 lettuces were used to develop the models, spectra of 39 lettuces were used to optimize the parameters of the models, and spectra of 129 lettuces were used to evaluate the performance of the established models.



TABLE 1. Reference measurement of SSC and pH of lettuces.
[image: Table1]

The performance of all established models was evaluated using the coefficient of determination and root mean square error for calibration set ([image: image], RMSEC), validation set ([image: image], RMSEV), and prediction set ([image: image], RMSEP), and the relative percent difference of prediction set (RPD). The formulas for R2, RMSE, and RPD were as follows:

[image: image]
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where yp, yr, and y are the prediction values, reference values, and mean value of reference values, respectively, and n is the number of samples, and SD is the standard deviation. The smaller the RMSEC, RMSEV, and RMSEP, the larger the [image: image], [image: image], [image: image], and RPD, and the better the performance of the model. The Deep2D and DeepFC were performed using Python 3.7.10 with TensorFlow 2.4.1 environment. The multivariate analysis methods, spectral pretreatment and wavelength selection were conducted using MATLAB2020 (Mathworks, Inc., United States). All experiments were conducted using DELL OptiPlex 7080 (Dell, Inc., United States) equipped with a 2.90 GHz Intel® Core™ i7-10700 processor, 32 GB of random-access memory, and an Nvidia Quadro P2200 graphical processing unit. The computer had Windows® 10 Home Edition 20H2 operation system.




RESULTS AND DISCUSSION


Spectral Reflectance Signature

The spectral reflectance of the lettuces in the wavelength ranges from 400 to 1,000 nm obtained from the hyperspectral images is shown in Figure 5A. The spectral reflectance signature of plants provides information on biophysical, physiological, and chemical features (Rehman et al., 2020). The band around 580 nm is related to xanthophylls (Pacumbaba and Beyl, 2011). The 710–760 nm (red-edge) band and band around 700 nm are related to chlorophyll (ElMasry et al., 2007; Pacumbaba and Beyl, 2011). The band around 980 nm in the NIR region is related to the O—H of water (Zhang et al., 2018). The spectral reflectance of the hyperspectral images of all lettuce plants pretreated using MWS, FDR, and SDR are shown in Figures 5B–D. Four bandwidth regions (400–435 nm, 515–650 nm, 690–780 nm, and 960–1,000 nm) of all plants have distinct variations. Herein, the reflectance values of MWS were not significantly different from the raw reflectance values. Compared with raw reflectance values, the variation of the reflectance values of FDR and SDR was significantly enhanced, especially SDR variation. A previous study also reported similar results (Eshkabilov et al., 2021).

[image: Figure 5]

FIGURE 5. Mean spectral reflectance of plants. (A) Raw spectra and spectra pretreated by MWS (B), FDR (C), and SDR (D).


The spectral reflectance of lettuces with different SSC and pH is shown in Figure 6. The reflectance values of lettuces with different SSC and pH had significant differences and changes. This phenomenon indicates that reflectance spectroscopy can be used to detect SSC and pH in lettuce. The spectral reflectance change at 600–800 nm was irregular with increasing SSC and pH. In the 400–500 nm and 800–1,000 nm regions, the spectral reflectance first increased, then decreased, and finally increased with increasing SSC. In contrast, the spectral reflectance change at the 800–1,000 nm region showed the opposite trend with increasing pH.

[image: Figure 6]

FIGURE 6. Mean spectral reflectance of plants of different SSC (A) and pH (B).




Prediction Results of SSC and pH Based on Deep2D and DeepFC

The SSC and pH of lettuces were predicted using the regression models developed by Deep2D and DeepFC. The RMSE of the training, validation, and test sets were used as the evaluation criteria for the optimization of hyperparameters, such as batch size and learning rate. A batch size of 4 and a learning rate of 0.0001 provided a relatively lower RMSE and were selected to train the models. The detailed hyperparameters of the Deep2D and DeepFC are shown in Supplementary Tables S2, S3, and the analysis results of SSC and pH of lettuces are shown in Table 2.



TABLE 2. Prediction of SSC and pH using Deep2D and DeepFC.
[image: Table2]

Deep2D obtained better results for SSC prediction than DeepFC ([image: image]: 0.9642, RMSEC: 0.1500, [image: image]: 0.8974, RMSEV: 0.1671, [image: image]: 0.9030, RMSEP: 0.1969, and RPD: 3.2237). Deep2D had excellent performance in predicting the SSC of lettuces since it had RPD greater than 3. This indicated that the multi-scale features associated with SSC extracted by Deep2D contain more abundant information than the single-scale features extracted by DeepFC. The robustness of Deep2D and DeepFC was similar in terms of the difference between [image: image] and [image: image]. However, the DeepFC had higher accuracy in analyzing pH ([image: image]: 0.8670, RMSEC: 0.0342, [image: image]: 0.8674, RMSEV: 0.0257, [image: image]: 0.8490, RMSEP: 0.0260, and RPD: 2.5839). The multi-scale features extracted by the Deep2D in relation to pH may have redundancy, and thus reduce the robustness of the model. DeepFC was more robust than Deep2D because it had a smaller difference between [image: image] and [image: image]. The prediction results for SSC and pH in the calibration and prediction sets based on the Deep2D and DeepFC are shown in Figure 7. The figures showed that the prediction values based on Deep2D were generally closer to the reference values for SSC. In the analysis of pH, for calibration set, the error of Deep2D was smaller, while for prediction set, the error of DeepFC was smaller. And the error of prediction set is more significant in actual application.

[image: Figure 7]

FIGURE 7. Prediction of SSC based on Deep2D (A) and DeepFC (B), and pH based on Deep2D (C) and DeepFC (D).


The two deep learning models had significantly different prediction abilities for various phenotyping traits. Therefore, a follow-up study should identify suitable network structures for prediction of different phenotyping traits. Moreover, a general network structure should be determined for simultaneous and accurate predictions of multiple phenotyping traits. Meanwhile, many studies have developed deep learning models combined with HSI to predict the phenotyping traits of plants and obtained good results. For instance, Rehman et al. (2020) used end-to-end deep model to predict the RWC of maize plants and obtained an [image: image] of 0.872. Moreover, Zhou et al. (2020) detected heavy metals in lettuce using a stack convolution auto encoder ([image: image]: 0.9418, RMSEP: 0.04123, and RPD: 3.214). Sun et al. (2019) estimated cadmium content in lettuce leaves using deep brief network and obtained optimal performance ([image: image] = 0.9234, RMSEP = 0.5423, and RPD = 3.5894). Most previous studies were based on the leaf scale of lettuce and obtained satisfactory results. Although the phenotyping traits of lettuce canopy are also crucial in the actual production needs and consumer choices, the study of the lettuce canopy is rare. This study and the abovementioned studies have demonstrated that deep learning models combined with HSI techniques can significantly predict plant phenotyping traits.



Prediction Results of SSC and pH Based on Various Multivariate Analysis Methods

Multivariate analysis methods, such as PLSR, LWR, MLR, ANN, and SVR were used to analyze the SSC and pH of the lettuces to more intuitively understand the performance of the Deep2D and DeepFC. Compared with deep learning models, multivariate analysis methods had much less ability to identify noise and effective information in spectra. As a result, multiple pretreatment methods (MWS, SG, FDR, SDR, and WT) were used to pretreat the spectra to reduce these negative effects before building regression models using multivariate analysis methods. The prediction results of SSC and pH of lettuces are shown in Tables 3, 4, and the corresponding parameter settings are shown in Supplementary Tables S4, S5.



TABLE 3. Prediction of the SSC of lettuces based on various multivariate analysis methods.
[image: Table3]



TABLE 4. Prediction of the pH of lettuces based on various multivariate analysis methods.
[image: Table4]

Compared with the other reflectance spectra, the FDR and SDR-pretreated spectra obtained better results for the models established by different multivariate analysis methods for SSC analysis, possibly because FDR and SDR enhanced the differences between the spectra of different SSC. All the pretreatment methods improved the precision of MLR models, and SDR obtained the best results with [image: image] of 0.9476, RMSEC of 0.1801, [image: image] of 0.9320, RMSEV of 0.1987, [image: image] of 0.8148, RMSEP of 0.2910 and RPD of 2.3327. Compared with other models, SVR models had poor performance, with FDR spectra having [image: image] > 0.8. The PLSR and LWR models had relatively great robustness. Moreover, LWR model with SDR spectra had the best results ([image: image] = 0.9183, RMSEC = 0.2209, [image: image] = 0.9249, RMSEV = 0.2040, [image: image] = 0.8587, RMSEP = 0.2657, and RPD = 2.6705). However, the best SSC results obtained by multivariate analysis methods were still lower than the results of Deep2D.

The ANN models had the worst performance for pH prediction. Compared with the raw spectra, only SG improved the accuracy of the models and obtained [image: image] of 0.9090, RMSEC of 0.0279, [image: image] of 0.8476, RMSEV of 0.0316, [image: image] of 0.6724, RMSEP of 0.0396, and RPD of 1.7546. Although all pretreatment methods enhanced the robustness of MLR models, the [image: image] corresponding to the best results was lower than 0.7. The PLSR and LWR models had relatively high performance. The results of PLSR, LWR, and MLR were similar to their results for SSC. Moreover, MWS, SG, and WT improved the accuracy of both PLSR and LWR models, and LWR model with MWS spectra had the best results ([image: image]: 0.8734, RMSEC: 0.0329, [image: image]: 0.8511, RMSEV: 0.0313, [image: image]: 0.7380, RMSEP: 0.0354, and RPD: 1.9619).

The results of the models established by multivariate analysis methods showed that the influence of different pretreatment methods on the same model was not always positive, and the effect of the same pretreatment method on different models was different. Therefore, it is important to select the appropriate multivariate analysis methods and pretreatment methods. Compared with the deep learning models, the manual feature engineering of multivariate analysis methods is indispensable before modeling, which reduces the throughput of data process in the HTPP platforms. The optimal prediction results for SSC and pH based on multivariate analysis methods are shown in Figure 8. The number of data points concentrated near the fitting line was significantly less than the optimal results in Figure 7. In summary, the performance of the models developed by multivariate analysis methods was significantly inferior to the performance of the proposed deep learning models. Therefore, deep learning algorithms can automatically learn to extract features from raw data and develop highly accurate models compared with multivariate analysis methods. Some previous studies also reported similar results (Singh et al., 2018; Kanjo et al., 2019; Rehman et al., 2020).

[image: Figure 8]

FIGURE 8. Prediction of SSC based on LWR and SDR (A), and pH based on LWR and MWS (B).




Prediction Results of SSC and pH Based on CARS

The reflectivity spectra extracted from hyperspectral images have a narrow bandwidth and a high dimension, leading to a high correlation of adjacent wavelengths and the existence of information unrelated to SSC and pH in the wavelengths (Tian et al., 2018). As a result, this can decrease the precision of the models established via multivariate analysis methods and increase the computational complexity. Herein, CARS was used to select key wavelengths from the pretreated spectra to obtain relatively better results. Three preferred pretreatment methods were selected for wavelength selection (SG, FDR, and SDR for SSC and MWS, SG, and WT for pH). Models were then established based on the superior multivariate analysis methods (PLSR and LWR) to observe result changes compared with the full-range spectra.

The analysis results are shown in Table 5, and specific parameter settings and concrete selected wavelengths are shown in Supplementary Tables S6, S7. Only model based on LWR and SG had improved performance for SSC prediction ([image: image]: 0.9210, RMSEC: 0.2225, [image: image]: 0.8865, RMSEV: 0.2233, [image: image]: 0.8450, RMSEP: 0.2475, and RPD: 2.5400). Moreover, the number of variables decreased by about 90% after CARS. Compared with the performance of the model for the full-range spectra, the performance of the models slightly decreased based on the selected wavelengths. The PLSR models showed better performance for pH analysis based on wavelengths selected by CARS. The WT-pretreated spectra had the least wavelengths and better results ([image: image]: 0.7739, RMSEC: 0.0449, [image: image]: 0.7589, RMSEV: 0.0331, [image: image]: 0.7404, RMSEP: 0.0322, and RPD: 1.9626). Meanwhile, the LWR and WT model had lowest prediction errors ([image: image] = 0.7628, RMSEC = 0.0459, [image: image] = 0.6461, RMSEV = 0.0382, [image: image] = 0.7477, RMSEP = 0.0330, and RPD = 2.0532). Besides, only the LWR and WT model obtained an RPD > 2 among the pH prediction models based on multivariate analysis methods. However, DeepFC still outperformed the optimal multivariate analysis methods-based model. These results showed that CARS selected different number of bands and specific bands for different pretreated spectra and models. Therefore, compared with multivariate analysis methods-based models, deep learning algorithms reduce the time and failure rate of manual feature extraction and are thus more suitable for application in HTPP platforms.



TABLE 5. Prediction of SSC and pH combining with CARS.
[image: Table5]




CONCLUSION

In this study, two end-to-end deep learning models based on 2DCNN and FCNN were proposed to predict SSC and pH of lettuce canopy, supplementing the research on phenotyping traits prediction of lettuce canopy scale. In the previous studies on the phenotyping traits of lettuce, before inputting the spectra into the model, manual feature engineering, such as pretreatment and wavelength selection was required. However, the proposed model of this study can take as input the raw mean reflectance spectra extracted from the hyperspectral images, and then directly output the SSC and pH of the lettuce canopy. The performance of the proposed models was also compared with the performance of five multivariate analysis methods (PLSR, SVR, MLR, ANN, LWR). Various pretreatment methods (MWS, SG, FDR, SDR, and WT) were used to denoise the spectra, while CARS was used to remove the redundant variables in the spectra to improve the performance of the models based on these five methods.

The proposed Deep2D and DeepFC were superior to all multivariate analysis methods. Herein, the Deep2D predicted the best results for SSC ([image: image]: 0.9030, RMSEP: 0.1969, and RPD: 3.2237). In contrast, the DeepFC predicted the best results for pH ([image: image]: 0.8490, RMSEP: 0.0260, and RPD: 2.5839). Additionally, PCA was used in previous study to predict SSC and pH of lettuce with R2 of 0.88 and 0.81, respectively (Supplementary Table S8), and the performance of the proposed deep learning models was also better than PCA models. These results indicate that the proposed Deep2D and DeepFC do not require any pretreatment or dimensionality reduction since they can automatically extract the optimal features associated with SSC and pH from the raw reflectance spectra. Therefore, deep learning models can predict SSC and pH better than multivariate analysis methods, reducing the time and error rate of feature selection in the analysis of plant phenotyping traits. However, it is necessary to determine the corresponding suitable or general networks structure for better quantitative analysis of various phenotyping traits of plant.

In further study, it is necessary to understand change of plant phenotyping traits over time to determine the optimal harvest time. Also, there are differences in the morphology of different varieties of lettuce, and thus the image characteristics can be considered to be integrated into the input of the proposed models to observe the performance of the models.
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The stem-related phenotype of mature stage soybean is important in soybean material selection. How to improve on traditional manual methods and obtain the stem-related phenotype of soybean more quickly and accurately is a problem faced by producers. With the development of smart agriculture, many scientists have explored soybean phenotypes and proposed new acquisition methods, but soybean mature stem-related phenotype studies are relatively scarce. In this study, we used a deep learning method within the convolutional neural network to detect mature soybean stem nodes and identified soybean structural features through a novel directed search algorithm. We subsequently obtained the pitch number, internodal length, branch number, branching angle, plant type spatial conformation, plant height, main stem length, and new phenotype-stem curvature. After 300 epochs, we compared the recognition results of various detection algorithms to select the best. Among them, YOLOX had a maximum average accuracy (mAP) of 94.36% for soybean stem nodes and scale markers. Through comparison of the phenotypic information extracted by the directed search algorithm with the manual measurement results, we obtained the Pearson correlation coefficients, R, of plant height, pitch number, internodal length, main stem length, stem curvature, and branching angle, which were 0.9904, 0.9853, 0.9861, 0.9925, 0.9084, and 0.9391, respectively. These results show that our algorithm can be used for robust measurements and counting of soybean phenotype information, which can reduce labor intensity, improve efficiency, and accelerate soybean breeding.

Keywords: soybean phenotype, computer vision, deep learning, directed search algorithms, phenotype acquisition


INTRODUCTION

Soybean (Glycine max L. Merrill) is one of the most important seed legume crops in the world. It is the main source of edible oil, accounting for nearly 25% of the total global product (Agarwal et al., 2013). The nutritional value of soybean helps prevent heart disease and diabetes to some extent. In addition, soybean is used for both human and animal consumption and is the main type of oil consumption worldwide (Silva et al., 2011). China is the world’s fourth largest soybean producer after the United States, Brazil, and Argentina (Karlekar and Seal, 2020). Since soybean plays an important role in modern economic environments, producing high-quality and high-yield soybean varieties has become the focus of breeding experts.

Wang (1996) indicated that soybean plant type changes in northeast China were mainly reflected in stem enhancement, dwarfing, and branch number reduction and were gradually dominated by fewer branches, a reduction in internodal length, and an increase in main stem node number. Dong (1997) collected data from multiple breeding experts, which indicated that in alpine regions such as Heilongjiang Province, the ideal soybean plant should have the characteristics of high plant height, high node number and density, and low branch number. Simpson and Wilcox (1983) suggested that high yield was positively correlated with late maturity, increased plant height, lodging susceptibility, and grain resistance. The characteristics closely related to seed yield are seed, pod, and node number. The number of nodes is also positively correlated with protein content. Sureshrao et al. (2014) recorded data on 13 yield components to study genetic variability and heritability and analyze genetic progress. The estimated heritability of plant height was higher and showed superior genetic progress. Branch number also has an influence on inheritance. Liu et al. (2011) identified QTLs for six yield-related traits and biological correlations between flowering traits and yield-related traits using simple repeat markers. The proposed yield-related traits included plant height (PH), main stem node number (NNMS), pod number per plant (PNPP), seed number per pod (SNPP), 100-seed weight (SW), and seed yield per plant (SYPP). Xue et al. (2022) suggested that plant height is an important part of plant structure and has an important impact on both crop quality and yield. Thus, mature soybean stem-related phenotypes have become important in soybean material selection. Consequently, developing a rapid, accurate, and high-throughput method to obtain stem-related mature soybean plant phenotypes will improve the breeding process and provide a useful tool for the incorporation of ideal traits into commercial germplasm.

In recent years, the development of intelligent agriculture has led to the expectation that soybean yield prediction, phenotype evaluation, and breeding research will be conducted through deep learning methods. Uzal et al. (2018) introduced a computer vision method that estimates the soybean pod number from the seed number and developed a classic approach based on tailored features extraction (FE), followed by a support vector machine (SVM) classification model, and CNNs. This highlights the particularly high increase in generalization capabilities of a deep learning approach over a classic machine vision approach. Tetila et al. (2020) evaluated five deep learning architectures to classify soybean pest images. Through the evaluation of different fine-tuning and transfer learning strategies for five different deep learning systems, the experimental results show that fine-tuning trained deep learning architecture obtains a higher classification rate than other methods. Maimaitijiang et al. (2020) proposed that multimodal data fusion using low-cost UAV, within a DNN framework, can provide a relatively accurate and robust crop yield estimation and deliver a valuable insight for high-throughput phenotyping and crop field management with high spatial precision. Dos Santos Ferreira et al. (2017) utilized convolutional neural networks (ConvNets or CNNs) in weed detection in soybean crop images and classified weeds into grass and broadleaf, aiming to apply weed-specific herbicide. This study achieved above 98% accuracy, using ConvNets, in broadleaf and grass weed detection in relation to soil and soybean. The average accuracy between all images was above 99%. Moeinizade et al. (2022) developed a robust and automatic approach to estimate the relative maturity of soybean using a time series of UAV images. An end-to-end hybrid model combining convolutional neural network (CNN) and long short-term memory (LSTM) is proposed to extract features and capture the sequential behavior of time-series data. This new information can be used to support plant breeding advancement decisions. Zhou et al. (2021) investigated the potential of estimating flood-induced soybean injuries using UAV-based image features, collected at different flight heights. A deep learning model was used to classify the soybean breeding plots to five FIS ratings, based on the extracted image features. The results indicate that the proposed method is highly promising in estimating FIS for soybean breeding. A soybean flower/seedpod detection system was built to collect growing state data by introducing convolutional neural networks. In this method, observed plant states (e.g., #flowers and #seedpods), in combination with predicted future environmental data, are used to predict soybean crop yields (Pratama et al., 2020). Lu et al. (2022) proposed a soybean yield in-field prediction method based on bean pods and leaf image recognition using a deep learning algorithm, combined with a generalized regression neural network (GRNN).

Although some researchers have explored mature soybean stem-related phenotypes, Li et al. (2021) measured stem length and total soybean main stem length, and Ning et al. (2021) obtained mature soybean stem-related phenotypes, including branch number, main stem, and plant type. It is clear that previous research on soybean plant phenotypes is relatively simple and fragmentary, and phenotypic genomics is based on high-dimensional phenotypic data. The determination of multiple phenotypes, such as pitch number, internodal length, branch number, branching angle, plant type spatial conformation, plant height, main stem length, and stem curvature, has always been problematic for soybean propagation researchers. The problems of manually counting objects are the large variety of characteristics, large numbers, and wide distribution, in addition to the time it takes. In terms of measurement, it is also time-consuming and laborious to measure the length and angle manually using a ruler and angle measuring device. These issues result in difficulty in acquiring mature stem-related soybean phenotypes, ultimately slowing any progress in soybean breeding. Xu et al. (2021) proposed that increasing planting density is an important approach to achieving the potential of soybean yield. Secondly, there was generally a negative correlation between branch number and planting density. Therefore, it is foreseeable that soybeans with few or no branches are currently the focus of research by breeding experts. The algorithm we propose can help breeders to study the phenotype of soybean plants and promote soybean breeding research.



MATERIALS AND METHODS

Figure 1 shows an overview of the proposed method. The input of our system includes a series of images of different soybean varieties taken on a platform in a cuboid darkroom (using soybeans planted and cultivated in 2019 and 2021, in fields and pots). The selected images are preprocessed to obtain sufficient data samples. The distributions of the training, validation, and test sets in the dataset are 0.8, 0.1, and 0.1, respectively, and are input into a variety of deep learning networks for training optimization. Through comparison of the test results, the best network was selected as the method for detecting the stem node position of mature soybean. Finally, we mapped the plant type spatial structure and measured the stem-related phenotype of mature soybean plants, via a directed search algorithm.
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FIGURE 1. (A) Original image, (B) labeled image, (C) dataset partition, (D) optimized model selection, (E) object detection results, (F) soybean stem node depiction, (G) digital plant skeleton rendering, and (H) extraction of stem-related phenotypes of soybean plants at maturity. Research flow diagram.



Image Acquisition

In this study, soybeans with infinite, finite, and sub-finite podding habits were selected as the experimental subjects. They were then planted at the Northeast Agricultural University experimental base and Xiangyang Farm, in pots and in the field. The field setup was as follows: 2 m × 2 m long rows, plant spacing of 5 cm, and ridge spacing of 55 cm. Three hundred harvested soybean plants were used as experimental samples, and three strains of each variety were selected to extract the soybean phenotype. Potted plants were planted as follows: the same variety was planted in three pots, with a 30-cm space between pots, and 25 plants were harvested as experimental samples. The planting time was mid-May, and harvesting took place in mid-October.

A cuboid darkroom, measuring 120 cm × 80 cm × 80 cm, was used to acquire the RGB images, as shown in Figure 2A. The exterior is constructed of a black synthetic material, the interior contains a silver reflective material, and the cuboid possesses an entrance at the top, which the camera is lowered through. The other sides are closed. Figure 2B details the internal structure of the cuboid darkroom and the arrangement of the soybean plants. Four LED lights are installed on the top four borders at the top of the cuboid darkroom, and reflective materials are arranged around the darkroom to ensure sufficient lighting. An iPhone 13 smartphone and a Canon (DS126291) camera are fitted in a circular shooting port on the top. To prevent the photograph from being affected by background reflections, the background consists of white light-absorbing cloth. When taking an image of a soybean plant, the plant is placed flat on the bottom of the cuboid darkroom and a camera is used to detect it from the top. It is necessary to keep the soybean plants vertical and unobstructed.
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FIGURE 2. Soybean image collection cuboid darkroom: (A) real map and (B) structural diagram.


The mature soybean stem dataset was set up using JPG format images taken by an iPhone 13 and a Canon (DS126291) camera. The first pair of true leaf expansion points at the bottom of the image is taken as the bottom, and the entire soybean mature plants were photographed as a standard. The shooting lens and background cloth are perpendicular to each other to ensure a clear shot. The image resolution of the iPhone 13 images is 3,024 × 4,032, and that of the Canon (DS126291) camera is 3,456 × 5,184. In addition, the images require a black circular marker with a 1-cm diameter, for use as a scale. In 2021, we obtained 300 field soybeans and 25 potted soybeans, each of which was photographed with a smartphone and a camera from opposite directions, giving four images per soybean. In addition, 223 field soybean images from 2019 were collected, and a total of 1,523 soybean plant images were obtained. The specific soybean plant varieties used are listed in Supplementary Table 1.

At the time of the image acquisition, 100 soybean plants were selected as reference plants to evaluate the algorithm performance. The plant height, pitch number, internodal length, main stem length, stem curvature, branching angle, and other phenotypic information of the reference plants were recorded using a ruler, a protractor, and other tools. All measurements were then recorded in a table.



Image Preprocessing

LabelImg was used to mark the main part of the mature soybean image. All the images requiring processing were placed into the “JPEGImages” folder and opened through LabelImg. The “create Rectbox” button was used to draw the smallest rectangular boundary to delineate the target object. The label category “soybean” was then applied. The annotation was saved in the specified folder, entitled “Annotations” in “xml” format. We used the YOLOX network to train and test the dataset, and the mAP was 99.99%. The precision–recall curve is shown in Figure 3C and meets the practical application requirements. The object detection network YOLOX identified the entire mature soybean plants by obtaining the coordinates of the upper left and lower right points. The images were clipped using these coordinates, and a soybean mature plant dataset with minimal background information interference is obtained, as shown in Figure 3A. The dataset is available at https://www.kaggle.com/datasets/soberguo/soybeannode.
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FIGURE 3. Image preprocessing process: (A) remove excess background and keep the smallest bounding rectangle of soybean plants, (B) data augmentation, and (C) precision–recall curve of soybean plant recognition performance.




Data Augmentation

Training deep learning CNN requires a substantial amount of images to reduce over- and under-fitting, as the original dataset does not include sufficient images for accurate training. Expanding the image set by applying various image augmentation techniques is necessary (Karlekar and Seal, 2020). It is recognized that artificially increasing the number of training samples by applying simple random transformations to input images improves the CNN performance (Chatfield et al., 2014). The augmented image set is created by rotating and flipping the images vertically and horizontally. The augmented image set consists of 6,092 images of which 4,874 (80%) are used for training, 609 (10%) are used for validation, and 609 (10%) are used for testing (Figure 3B). The resulting dataset is relabeled and fed into the deep learning networks we used to detect the training optimization.



Object Detection

The current object detection algorithm is excellent in agricultural development. Verma et al. (2021) identified insects in soybean crop fields by using YOLO series algorithms in object detection, achieving high accuracy. Zhang et al. (2020) used the improved Faster R-CNN model to detect four tomato leaf diseases: powdery mildew, Fusarium wilt, leaf mold, and ToMV. The model cannot only identify tomato diseases, but also detect the tomato leaf locations. Yuan et al. (2020) detected cherry tomatoes in a greenhouse through a single-shot multi-box detector (SSD). To obtain the best detection effect, we selected a variety of object detection algorithms. These included the typical two-stage object detection algorithm and fast regional convolution neural network (Faster R-CNN) (Ren et al., 2016), ResNet50 and VGG16; backbone networks for training; excellent one-stage object detection algorithms, SSD (Liu et al., 2016), YOLO v3 (Redmon and Farhadi, 2018), YOLO v4 (Bochkovskiy et al., 2020), and YOLOX (Ge et al., 2021). EfficientNet (Tan and Le, 2020) was selected as the YOLO v3 skeleton network. Each model was trained for 300 epochs to allow it to converge. Each object detection model was trained with initialization weights, and the hyperparameters used are presented in Supplementary Table 2. Using our computer hardware solution, CNN was trained on the stem node dataset of soybean mature plants. This is a personal desktop computer with Intel Core i9-10900k CPU, NVIDIA 3080Ti (12G) GPU, and 128 G RAM. We used the desktop to train seven networks in Python language under Windows operating system with the PyTorch framework.



Directed Search Algorithms

As yet, there is no complete method for obtaining the stem phenotypes of mature soybean plants. Some stem-related phenotypes have been manually obtained in previous studies, but this cannot meet the needs of breeding experts. Therefore, a directed search algorithm is proposed which does not need to study the disassembly and separation of soybean plants or require much human involvement. Consequently, the convenience and accuracy of phenotype acquisition are significantly improved.

Algorithm 1 (Figure 4A) was used to draw the plant-type spatial image. The process is as follows: the soybean plant images needed to extract stem-related phenotypes were input into the optimal convolutional neural network, to obtain an array of n rows and two columns:
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FIGURE 4. Pseudo-code: (A) directed search algorithm, (B) node judgment algorithm, and (C) phenotype acquisition algorithm.


where X represents the center point abscissa, Y represents the center point ordinate, and Node represents the n×2 array containing the center points of all the prediction boxes.

Our investigation and analysis of 100 soybean plants in the test set found that the angles formed by the three adjacent stem nodes are all close to 180°, with an average angle of 173.3774 (Supplementary Figure 1). Each branch of the plant is a smooth curve. Under this premise, through the Node coordinate array, we can judge whether it is a single-branch or multi-branched soybean plant, according to the angle relationship formed by the three points:
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where n represents the length of the Node coordinate array and Angle1 and Angle2 represent the angles formed by the three points obtained by the cosine theorem. The error angle is set as α. When the difference between Angle1 and Angle2 is less than the error angle α, the soybean plant is considered to be a single-branch soybean plant; otherwise, it is considered to be multi-branched.

For single-branch soybean plants, we only need to connect all detected stem nodes according to the y-axis coordinate order to obtain the spatial conformation.

For multi-branched soybean plants, to reduce the detection confusion caused by excessive stem nodes and a decrease in detection accuracy, the algorithm introduces the JudgeArea function to delineate a small rectangular area:
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where Area denotes the circled rectangular area, left,top,right, and bottom are the left, top, right, and bottom coordinate values of the rectangular area, respectively, and pixel represents the pixel value needed to increase the width of the rectangular area from left to right. We analyzed the data and assessed the pixel value in 5-pixel steps to ascertain the appropriate pixel value, as shown in Supplementary Figure 2. The abscissa represents the pixel value expanded left and right, and the ordinate represents the proportion of soybean plants whose main stem nodes are all within the rectangular area. The analysis showed that when both the left and right are expanded by 30 pixels, all the nodes on the main stem are within the rectangular area; thus, the algorithm adopts the 30-pixel expansion. This is because rectangular areas selected for different soybean plants undergo certain changes; therefore, this variable is used as a variable option that can be changed according to the actual situation.

This function delineates a rectangular area to exclude stem nodes that are not on the main stem, so that we can narrow the scope of the main stem nodes. The stem node coordinates in the rectangular area are stored in the Node1 array:
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Among them, x1 represents the abscissa of the center point, y1 represents the center point ordinate, Node1 represents an n1×2 array containing the center points of all the prediction boxes, and n1 is less than n.

After selecting the array node, the initial two points are used as the stem nodes on the main stem. We then start from these two points to perform the initial operation and search for the subsequent stem node. If the conditions are met, it is considered a main stem node, and if not, the evaluation of the next stem node is performed until all the stem nodes have been evaluated. Algorithm 2 (Figure 4B) is then introduced to assess the branch stem node. Algorithm 2 (Figure 4B) explains the JudgeNode function in Algorithm 1:
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Among them, n1 represents the coordinate array length of Node1. Angle2_1, Angle2_2, and Angle2_3, respectively, represent the angle formed by three points obtained by the cosine theorem. Max denotes finding the largest angle among the three angles and the corresponding point, and SecondMax represents finding the second largest angle among the three angles and the corresponding point. First, the largest angle and the corresponding points maxa1 and maxp1 are obtained according to the size of the angle, and the largest angle and the corresponding points maxa2 and maxp2 are also set here. Error angle α is also set here. If the difference between maxa1 and maxa2 is less than the error angle α, the Euclidean distance from maxp1 to Node1[j + 1,:] and from maxp2 to Node1[j + 1,:] is calculated through the JudgeDis function. The point with the smallest distance is considered the stem node. The algorithm takes the optimum angle value as the primary condition and the optimum distance as the secondary condition, before analyzing all points step by step until the optimal branch route is identified and connecting all the branches with the main stem by the method we propose below.

After the main stem node is ascertained, the stem node arrays on the left and right sides of the main stem are considered through the JudgeArea function and examined via Algorithm 2 (Figure 4B) until all stem nodes are judged to be complete.

All branches need to be combined following judgment. Here, a method to return branches to the main stem is adopted. This method is based on the lowest point of the branch. The stem node on the main stem with a close distance and a suitable angle is located. When connected with it, the spatial conformation of the multi-branched soybean plants is complete.

After judging all the branches, m arrays containing all stem nodes are obtained. By introducing both scale and Algorithm 3, (Figure 4C) we can analyze and measure stem-related phenotypes of mature soybean plants, including plant height, pitch number, internodal length, main stem length, stem curvature, and branching angle:

[image: image]

[image: image]

PlantH, PitchN, InternodalL, NumberB, BranchingA, MainSL, and StemC represent the plant height, pitch number, internodal length, main stem length, stem curvature, branching angle, and other related stem phenotypes of mature stage soybean, respectively. x represents the square of the difference in the two-point abscissa required to calculate the Euclidean distance. y represents the square of the difference between the two-point ordinates necessary to calculate the Euclidean distance. labelsize represents the scale.

Figure 5 describes the judging method when the directional search algorithm encounters the actual soybean plants. First, the distinction is made between single-branch and multi-branched soybean plants. The criterion is that all the soybean plant stem nodes can form a smooth curve. Among them, Figure 5A shows the judgment process of single-branch soybean plants, and Figure 5B shows the judgment process of multi-branched soybean plants. If the angle between all adjacent nodes has no large error, the algorithm identifies the soybean as a single-branch soybean plant and draws the soybean plant spatial conformation according to the overall node order. If the angle between adjacent nodes is found to have a large error, the algorithm identifies the soybean as a multi-branched soybean plant and flexibly selects the node sites to be determined, according to the low-end point and top point of the rectangular area. The angle and distance relationships are used to judge the node sites within this area. After the judgment of all the branches is complete, the branch and main stem are combined, according to the returning the branch to the main stem method. Finally, the complete soybean plant spatial conformation is drawn.
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FIGURE 5. Judgment process of algorithm on actual soybean plant: (A) single-branch judgment process and (B) multi-branched judgment process.




Judgment of Soybean Cotyledon Node

The cotyledonary nodes were not marked when marking the soybean images, as there were certain identification errors that would lead to the selection of the wrong cotyledonary nodes during phenotype calculation. (The accuracy of soybean cotyledon node recognition for the test set samples is shown in Supplementary Table 3). The cotyledonary nodes are highly important for many soybean stem-related phenotypes; therefore, the identification requirements are extremely high. In order to improve the identification accuracy of cotyledonary nodes, we took the cotyledonary nodes as the bottom edge of the image. This method only needs to tangent the soybean plant cotyledonary node to the bottom edge of the image when taking it and convert the original image into a binary image. We used different binary image conversion methods such as OTSU, TRIANGLE, and a combination of the two methods, we tested each method. The results are shown in Supplementary Table 4, the accuracy of the OTSU method is 89.04%, and the accuracy of the TRIANGLE method is 91.44%. The accuracy of the combined method is 98.74%, which is 9.7% and 7.3% higher than that of OTSU and TRIANGLE, respectively. In order to improve the binary image accuracy, we used the Otsu (1979) and TRIANGLE (Zack et al., 1977) thresholds to calculate the binary image, reducing the existing error in the binary image acquisition by calculating the intersection. From the final binary image, the average value of the black pixel coordinates at the bottom edge of the image is obtained as the cotyledon node (Figure 6).
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FIGURE 6. (A) Original image, (B) Image after binarization, and (C) Judgment of soybean cotyledon nodes. Judgment of soybean cotyledon node.




Evaluation Standard

We evaluated the results from the different networks used in our dataset. For the evaluation, a detected instance was considered a true positive if it had a Jaccard index similarity coefficient, also known as an intersection over union (IOU) (Csurka et al., 2004; He and Garcia, 2009) of 0.5 or more, with a ground-truth instance. The IOU is defined as the ratio of the pixel number in the intersection to the pixel number in the union. The ground-truth instances which did not overlap any detected instance were considered false negatives. The precision, recall, F1 score, AP, and mAP were calculated from these measures (Afonso et al., 2020):
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where TP is the number of true positives, FP is the number of false positives, FN is the number of false negatives, N is the total number of images in the test dataset, M is the number of classes, Precision(k) is the precision value at k images, and ΔRecall(k) is the recall change between the k and k-1 images.

Furthermore, the mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and the correlation coefficient (R) were used as the evaluation metrics to assess the counting performance. They take the forms as follows:
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where N denotes the number of test images, ti is the ground-truth count for the ith image, ci is the inferred count for the ith image, and [image: image] is the mean of ti.




RESULTS


Model Training and Evaluation

In order to identify the best CNN model for soybean stem nodes and markers, we trained and evaluated the single-stage object detection algorithms, namely, YOLO v3, YOLO v4, YOLOX, SSD, and YOLO v3 (EfficientNet), and two-stage object detection algorithms, namely, Faster R-CNN (VGG16) and Faster R-CNN (ResNet50). After 300 training rounds, we analyzed the network convergence type. The training loss function curve and verification process are shown in Figure 7. It can be seen that at the beginning of the training stage, the training loss decreased sharply, and after a certain number of iterations, the loss slowly converged to an accurate value.
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FIGURE 7. Loss function curves of different networks: (A) loss function curve of the training set and (B) loss function curve of the verification set.


After the training optimization, we obtained the evaluation indexes of mAP, AP, precision, recall, F1, and frames per second (FPS) on the test set, as shown in Table 1. Among them, “label” represents the identification label of the black circular marker in the target detection network image, and “node” represents the identification label of the soybean plant stem node. By comparing the performance of multiple models, it was found that SSD had the fastest FPS speed, reaching 136.23, but its mAP was only 26.01%, and its detection effect of the stem node was poor. For mAP, YOLOX demonstrated the best performance in all models, reaching 94.37%, but the FPS was much lower than SSD, at only 24.64.


TABLE 1. Detection effects of different networks on test sets.

[image: Table 1]
In addition, to intuitively show the different prediction effects of various network models, we selected single-branch and multi-branched soybean plants as samples, as shown in Figure 8. It was found that SSD had a worse prediction effect than other networks, and some obvious node information was not clearly identified. Faster R-CNN (VGG16) and Faster R-CNN (ResNet50) have a poor judgment of unobvious node information on the stem, and misjudgment is possible. YOLO v3, YOLO v4, and YOLO v3 (EfficientNet) had a poor soybean plant top node recognition effect, often missing the top node. YOLOX had the best detection effect of all network models and is superior to other networks in judging whether the node information is obvious on the stem or the top node information.
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FIGURE 8. Prediction effect of different networks on soybean plants: (A) original image, (B) detection results of Faster R-CNN (ResNet50), (C) detection results of Faster R-CNN (VGG16), (D) detection results of SSD network, (E) detection results of YOLO v3 (EfficientNet) network, (F) detection results of YOLO v3 network, (G) detection results of YOLO v4 network, and (H) detection results of YOLOX network.


Considering that our phenotype research focuses on average accuracy, we adopted YOLOX as the network to identify node and scale labels.



Phenotypic Identification Results

The optimal object detection network YOLOX was used to identify mature soybean images, and the mature soybean plant stem-related phenotypes were measured and counted by a directed search algorithm.

First, we analyzed the algorithm branch judgment results and created the histogram shown in Figure 9. It was found that our algorithm had an accuracy rate of 97.82% for single-branch soybean plants and 93.33% for multi-branched soybean plants, which is slightly weaker than the detection effect of single-branch soybean plants. The overall accuracy rate reached 95.58%, which is adequate for the needs of daily breeding specialists.
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FIGURE 9. Branch judgment accuracy.


The phenotypic information of 100 soybean plants, manually recorded during the acquisition period, was compared with the proposed algorithm to draw the correlation analysis diagram, shown in the figure, to evaluate the reliability and stability of the proposed algorithm. The correlation between the manual measurement results and algorithm measurement results of 100 selected soybeans was analyzed. Subsequently, a scatter plot and a regression line were drawn.

Figure 10A shows the correlation analysis between the soybean’s actual plant height and that predicted by the algorithm. The soybean plant height was calculated as the vertical distance from the top stem pixel to the cotyledon node baseline. One hundred soybeans were selected as materials to evaluate the true and predicted soybean plant height values. By creating the scatter plot and evaluating the correlation, the Pearson correlation coefficient R of the plant height was 0.9904 and the average absolute error was 1.907 cm. From the randomly selected 100 soybean plants, the plant height ranged from 40 to 120 cm, of which heights of 80–100 cm were the majority.
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FIGURE 10. Correlation analysis between true value and predicted value of soybean plant phenotypic information: (A) the correlation analysis diagram between the true value and the predicted value of plant height, (B) the correlation analysis diagram between the true value and the predicted value of pitch number, (C) the correlation analysis diagram between the true value and the predicted value of internodal length, (D) the correlation analysis diagram between the true value and the predicted value of main stem length, (E) the correlation analysis diagram between the true value and the predicted value of stem curvature, and (F) the correlation analysis diagram between the true value and the predicted value of branching angle.


Figure 10B shows the actual and predicted node correlation analysis of the 100 selected soybeans. Each soybean plant node refers to the stem between two adjacent nodes. The Pearson correlation coefficient R for the node number of each soybean was 0.9853, and the average absolute error was 0.3306. In addition, the bubble size represents the number of repetitions between the true and predicted values. For the randomly selected soybean plants, it was found that most of the soybean plant nodes were within 10–15 nodes, and generally, fewer nodes exist in the branches of multi-branched soybeans.

Figure 10C shows the actual and predicted internode spacing correlation analysis of the 100 selected soybeans. The internode spacing refers to the actual length of each internode. A total of 1,438 internode spacings were obtained from 100 soybean plants, the correlation of which was assessed. The internode spacing Pearson correlation coefficient was 0.9861, and the average absolute error was 0.3871 cm. In addition, it is worth noting that the vast majority of internodes fall within the range of 0–10 cm, and larger internodes are uncommon.

Figure 10D shows the actual and predicted stem length correlation analysis of the 100 selected soybean plants. The entire length of the main stem was determined by accumulating the length of all stems and nodes in turn. The Pearson correlation coefficient was 0.9925, and the average absolute error was 2.0271 cm.

Figure 10E shows the correlation analysis between the actual and predicted stem curvature values of the 100 selected soybean plants. The stem curvature is based on the main stem and is represented by the plant height-to-main stem length ratio. The Pearson correlation coefficient was 0.9084. For sampling, the 100 soybean plants were generally in a near-upright state, with only a few bent plants, indicating that this time soybean plants selected should have a certain degree of lodging resistance.

Figure 10F shows the correlation analysis of the actual and predicted branching angle values of the selected multi-branch soybeans. The branching angle is defined as the natural angle between the growth direction of the lower branch and the main stem. The Pearson correlation coefficient was 0.9391, and the average absolute error was 3.02°.

Figure 11 shows the artificial phenotype calculation results and algorithm predictions of the single-branch and multi-branched soybean plants. Figures 11A–D features single-branch soybean plants. Figure 11B is an original image taken by us. Figure 11C is the soybean plants’ spatial image drawn by the algorithm. Figure 11A shows the actual stem-related phenotype values of single-branch soybean plants. Figure 11D shows the predicted stem-related phenotype values of single-branch soybean plants. It was found that the single-branch soybean plant drawing process is relatively simple and does not require a complex judgment process. The node position can be accurately identified, and the phenotypic information can also be precisely obtained. Figures 11E–H feature the multi-branched soybean plants. Figure 11F is our original image, and Figure 11G shows the soybean plant spatial image plants drawn by the algorithm. For multi-branched soybean, the algorithm initially judges the main stem and displays its phenotypic information. The error between the predicted value and the actual value is very small, which meets the needs of automatic calculation. In addition, the extraction of the multi-branched soybean branch phenotype is complex and includes the branch angle, node number of each branch, and node spacing. The branch detection algorithm can still accurately judge the branch and describe the corresponding phenotypic information, of multi-branch soybeans.
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FIGURE 11. Results of phenotype calculation and algorithm prediction of single-branch soybean plants and multi-branched soybean plants: (A–D) are branching-free soybean plants, and (E–H) are multi-branched soybean plants.




Algorithm Computational Performance

In order to demonstrate the algorithm performance in terms of identifying soybean stem-related phenotypes, 50 soybeans were selected for running time measurement according to the classification of single-branch and multi-branched soybeans. The results are shown in Figure 12. Figure 12A shows the phenotypic calculation running time of each single-branch soybean plant, which was an average of 1.0594 s. Figure 12B shows the phenotypic calculation running time for each multi-branched soybean plant, which averaged 7.2789 s. Overall, the calculation time of each soybean phenotype was about 4.1692 s, far less than the artificial phenotype calculation time.


[image: image]

FIGURE 12. Speculation time of soybean phenotype acquisition: (A) single-branch soybean plants and (B) multi-branched soybean plants.





DISCUSSION


Plant Branching Morphology

For soybean plants with complex branches, plant branch morphology is an important soybean plant phenotype and is mainly dependent on the angle between each branch and the main stem, that is, the convergence degree between the lower branch and the main stem at maturity. As shown in the figure, the natural angles between the growth direction of the lower branch and the main stem are α and β. When the average value of all angles is less than 30°, it is convergent, and when the angle is greater than 30°, but less than 60°, it is semi-open. When the angle is greater than 60°, it is open. The soybean plant branch is mainly composed of convergent and semi-open types. Its defining characteristic is that the branch slowly extends upward from the main stem, close to the main stem growth. The figure on the left side of Figure 13A shows a semi-open type, as the average angle between the left and right branches and the main stem is greater than 30°, but less than 60°. The figure on the right side of Figure 13A shows a convergent example, as the average angle between the left and right branches and the main stem is less than 30°.
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FIGURE 13. Identification of branch morphology, stem curvature, and specific plants: (A) difference in branch morphology of plants, (B) difference in stem curvature, and (C) identification of specific plants.




Stem Curvature

The soybean plant stem curvature is the redefined soybean plant phenotype, consisting of the ratio of the true soybean height to the main stem length. The value range is 0–1. The closer the curvature is to 0, the more curved the soybean plant is, and the closer the curvature is to 1, the more erect the soybean plant is. This reflects the overall bending degree of the soybean plant and highlights its lodging resistance. Figure 13B illustrates that the actual curvature of branchless soybean plants on the left side is 98.42%, and the bending degree is very low, which is close to the upright plant and has strong lodging resistance. The actual curvature of the non-branched soybean plant, shown on the right side of Figure 13B, was 86.36%. The soybean plant began to slowly bend from the nodes below the middle, away from its original growth trajectory, and had poor lodging resistance.



Identification of Specific Plants

Soybean growing environments are changing, along with their growth methods, resulting in mature soybean plants having a variety of morphological characteristics. There are some special forms. Figure 13C shows the special soybean plants produced during the soybean growth process. The main specificity is reflected at the start of the bifurcation at the top of the plant and the formation of two top points. This causes errors in the algorithm’s automatic identification, leading to ignoring some sections and calculating the interval of others. However, generally, the situation can be resolved and the true soybean plant state can be identified, allowing the true phenotype to be fully extracted. In addition, the soybean plant morphology is changed not only by its environment, but also by human influence. Figure 13C shows the damage to the top of the soybean plant from humans. The whole soybean in the damaged part is broken, causing it to grow curved and downward. In the algorithm automatic identification process, phenotypic information such as node position and spacing can still be correctly identified before the damaged section. However, after it, there may be chaotic judgments, and the next node position information will not be correct.



Choice of Error Angle

In order to choose an appropriate error angle to distinguish unbranched soybeans from multi-branched, we selected 500 soybean plant images in the dataset, including unbranched and multi-branched plants, the maximum error angle, minimum error angle, and average error angle of 500 soybean plants were counted, and the process was repeated 100 times. The analysis of the error angle is shown in Figure 14A, the x-axis denotes the minimum error angle, the average error angle, and the maximum error angle, and the y-axis denotes the angle value of the error angle. In 100 repeated experiments, we got the upper limit of the maximum error angle of 11.6428°. In addition, since the curved part of the soybean plant generally appears at the top and the branched part generally appears at the bottom, we divided the soybean plant into the upper and lower halves of the stem node, according to the principle of equal division. The analysis of the error angle of the lower half of the stem node (Figure 14B) shows that the upper limit of the maximum error angle is 7.8530° in 100 repeated experiments. If the branch judging is based on the overall error angle of the soybean plant, selecting a value slightly larger than 11.6428° is recommended, and if it is based on the lower half of the stem node error angle, it is recommended that a value slightly larger than 7.8530° is selected. In this paper, we opted to judge the branch according to the error angle of the lower half of the stem node and selected an error angle of 10°.
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FIGURE 14. (A) Error angle analysis of the whole stem node of soybean plant, and (B) error angle analysis of stem node of the lower half of soybean plant. Statistical analysis of error angles.




Digital Plant Skeleton

Through deep learning and our directional search algorithm, we obtained the stem-related phenotypes of soybean plants with high throughput and accuracy and plotted the spatial conformation of soybean plants. We revealed the topological structure of soybeans, initially using digital plants, followed by the analysis and judgment of real soybean pods. In the next study, we will further examine the pods of non-decomposed soybean plants, obtain their corresponding phenotypes, grain number, length, and width, and return the obtained soybean pods to the node we detected. Consequently, we will obtain the spatial conformation of soybean plants containing pods. In addition to the soybean stem-related phenotypes that have already been, we will also obtain the pods per plant, pods per node, pod grains per node, pod length, pod width, and other soybean-related phenotypes which fully show soybean plant topological structure and phenotypic information.




CONCLUSION

In this paper, a method for automatically calculating the stem-related phenotypes of whole soybean plants, based on deep learning and a directed search algorithm, is proposed. This method detected the required node position information characteristics based on deep learning and used a directed search algorithm to extract the soybean stem-related phenotypes.

A soybean plant dataset, composed of 6,092 images, was established. The images were taken from several soybean varieties grown in various environments and were preprocessed. Through identifying and comparing datasets, we found that the overall performance of the YOLOX network was the best, and the mAP of the test set was 94.37%. In addition, the Pearson correlation coefficients R of plant height, pitch number, internodal length, main stem length, stem curvature, and branching angle were 0.9904, 0.9853, 0.9861, 0.9925, 0.9084, and 0.9391, respectively. The average running time was 4.1629 s, which is much less than the manual operation time, meeting automatic calculation requirements and verifying our method as both efficient and convenient.
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Estimation of the amino acid content in maize leaves is helpful for improving maize yield estimation and nitrogen use efficiency. Hyperspectral imaging can be used to obtain the physiological and biochemical parameters of maize leaves with the advantages of being rapid, non-destructive, and high throughput. This study aims to estimate the multiple amino acid contents in maize leaves using hyperspectral imaging data. Two nitrogen (N) fertilizer experiments were carried out to obtain the hyperspectral images of fresh maize leaves. The partial least squares regression (PLSR) method was used to build the estimation models of various amino acid contents by using the reflectance of all bands, sensitive band range, and sensitive bands. The models were then validated with the independent dataset. The results showed that (1) the spectral reflectance of most amino acids was more sensitive in the range of 400–717.08 nm than other bands. The estimation accuracy was better by using the reflectance of the sensitive band range than that of all bands; (2) the sensitive bands of most amino acids were in the ranges of 505.39–605 nm and 651–714 nm; and (3) among the 24 amino acids, the estimation models of the β-aminobutyric acid, ornithine, citrulline, methionine, and histidine achieved higher accuracy than those of other amino acids, with the R2, relative root mean square error (RE), and relative percent deviation (RPD) of the measured and estimated value of testing samples in the range of 0.84–0.96, 8.79%–19.77%, and 2.58–5.18, respectively. This study can provide a non-destructive and rapid diagnostic method for genetic sensitive analysis and variety improvement of maize.
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Introduction

Maize is one of the most important crops in the world (Long et al., 2017; Khanal et al., 2018; Shu et al., 2021). Nitrogen (N) is one of the most important nutrient elements in maize growth (Smil, 2002; Xu et al., 2021). The nitrogen translocation in maize leaves was mainly in the form of glutamine (Perchlik and Tegeder, 2018). The maize yield is correlated well with the amino acids in leaves, such as glutamine, glutamate, alanine, aspartate, and asparagine at the grain filling stage (Cañas et al., 2017). Therefore, accurate and rapid estimation of amino acid contents in maize leaves is of great significance in improving maize yield estimation and nitrogen use efficiency. The spectrophotometry, chemical analysis, and mass spectrometry are the main methods for determining the amino acid content. These methods can estimate a variety of amino acids and have the advantages of high sensitivity and accuracy. However, all of them need to damage samples and require complex sample processing, low throughput, and high price. The hyperspectral imaging technology provides a new method for estimating physiological and biochemical parameters of crops with the advantages of being rapid, high throughput, and non-destructive (Li et al., 2019; Mao et al., 2020). Hyperspectral imaging technology has been used for high-throughput screening of crop phenotypic traits (Zhu et al., 2020; Wang et al., 2021).

Hyperspectral imaging technology can acquire the spectral and spatial information of research objects at the same time (Zhu et al., 2019; Liu et al., 2020). Compared to digital or multispectral imaging, the advantage of hyperspectral imaging is that it can obtain hundreds of narrow bands with high spectral resolution and convenient operation. Changes in various chemical components of research objects will lead to variations in the reflectance of sensitive bands. Therefore, the spectral reflectance can quickly estimate agricultural products’ physiological and biochemical parameters (Pandey et al., 2017). The hyperspectral imaging technology has been widely applied and performed well in the non-destructive estimation of food and plant physicochemical properties (Yang et al., 2019; Huang et al., 2021), including meat, fruit, vegetation, and crop. Studies have shown that hyperspectral imaging has achieved satisfactory results in determining protein and amino acid content (Zhang et al., 2015; Egesel et al., 2016; Caporaso et al., 2018). To the best of our knowledge, little information has been conducted on applying hyperspectral imaging to molecular and biochemical parameters in plant leaves. Particularly, the research on the application of hyperspectral data in estimating the amino acid contents in fresh maize leaves is very limited.

Therefore, the study aimed to explore the feasibility of estimating various amino acid contents in fresh maize leaves using hyperspectral imaging data. Considering that the amount of nitrogen fertilizer will greatly affect the amino acid content in maize leaves, we conducted two independent experiments with variable N fertilizer applications. First, the sensitive band range and sensitive bands of each amino acid were selected by the coefficient of variation (CV) and partial least squares regression (PLSR) coefficient tests. Then, the models of 24 amino acid contents were established based on the reflectance of all bands, sensitive band range, and sensitive bands, respectively. Finally, the samples that were not involved in model construction were used to verify the model accuracy of each amino acid.



Experimental design and data acquisition

In this study, two experiments were conducted for different N applications. The Pika-L hyperspectral imager (Resonon, United States) collected the hyperspectral images of maize leaves. The 24 amino acid contents in maize leaves were determined by liquid chromatography-mass spectrometry (LC-MS).


Experimental design

(1) Exp1: different N application rates

Four inbred lines with great differences in nitrogen use efficiency were selected as the test varieties, including CIMBL123, CML422, 526018, and CIMBL78. The sensitivities of these varieties were as follows: CIMBL123 has a low soil and plant analyzer development (SPAD) value and yield with low nitrogen fertilizer. CML422 has a high SPAD value and yield with low nitrogen fertilizer. 526,018 has a low SPAD value and yield with high nitrogen fertilizer. CIMBL78 has a high SPAD value and yield with high nitrogen fertilizer. Maize seedlings were cultured in a complete nutrient solution with major vault protein (MVP) stone in the greenhouse until they had two outward leaves and one heart leaf. Then, three N fertilizer application rates were set up as follows: complete N treatment (N concentration was 5 mmol/L), 1/2 N treatment (N concentration was 2.5 mmol/L), and 1/4 N treatment (N concentration was 1.25 mmol/L). Before the V7 stage, 1.5 L nutrient solution was poured three times. A volume of 1 L nutrient solution was poured at the jointing stage and the male powder dispersing stage.

We collected leaf samples at the V6 stage and the filling stage. The 6th fully unfolded leaf and the leaf under the ear were cut off, and the hyperspectral images were obtained immediately. The veins and yellow areas of the leaves were then removed, and the remaining leaves were placed in tinfoil bags, frozen in liquid nitrogen, and stored in the refrigerator at –80°C for the amino acid content determinations. Six replicates were taken for the different N application experiments. A total of 144 samples were collected in Exp1.

(2) Exp2: N starvation treatment

Two inbred lines, namely, CIMBL123 and CML422, were selected as the test varieties. The Center for Crop Functional Genomics and Molecular Breeding of China Agricultural University provided all the test varieties. The maize seedlings were cultured in deionized water. In the early stage, the seedlings were cultured with a complete nutrient solution. The seedlings were treated with a low N treatment (0.05 mmol/L) when they had two leaves and one heart.

Leaf samples were collected every 3 days for a total of 13 times. The second fully expanded leaf was cut off from top to bottom, and the hyperspectral images were obtained immediately. The veins and yellow areas of the leaves were then removed, and the remaining leaves were placed in tinfoil bags, frozen in liquid nitrogen, and stored in the refrigerator at –80°C for the various amino acid content determinations. Six replicates were taken for the different N application experiments. A total of 146 samples were collected in Exp2.



Hyperspectral images acquisition

The hyperspectral images of maize leaves were collected after each sampling. The Pika-L imaging spectrometer was used to obtain the hyperspectral images. Pika-L images provide the band range of 400–1,000 nm with a total of 300 spectral channels and 900 spatial channels. The spectral resolution was 2.1 nm. The pixel size is 5.86 μm with a field of view of 17.6°. This equipment has the advantages of low astigmatism, low distortion, and a high signal-to-noise ratio.

A hyperspectral image acquisition system was designed and is shown in Figure 1. The system was mainly composed of Pika-L, a personal computer (PC), a halogen lamp, a mobile carrier platform, a stepper motor, a speed controller, and a blade flattening device. A halogen lamp provided stable light similar to sunlight to obtain a stable hyper-spectrum of leaves. The power of the halogen lamp is 220 W. To reduce the influence of the external environment on image quality, the hyperspectral image acquisition of maize leaves was carried out in a relatively stable dark room. Each leaf was spread flat on the platform. The hyperspectral image of the leaf was obtained directly above the leaf using the Pika-L spectrometer. Before the experiment, the hyperspectral imaging system was turned on and preheated for 30 min. The parameters of this system were set as follows: exposure time was 4.35 ms, and the speed of the electronically mobile carrier platform was 6 mm/s.
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FIGURE 1
Hyperspectral images acquisition system.




Preprocessing of hyperspectral images

The hyperspectral images obtained include green leaves and the background. The normalized difference vegetation index (NDVI) can be used to separate green leaves from the background. NDVI is calculated by the reflectance of the near-infrared band and the red band (Formula 1) (Thenkabail et al., 2000). This study set a threshold (NDVI > 0) to distinguish the leaf pixels from the background pixels. The average hyperspectral reflectance of green leaf pixels was obtained to estimate the content of amino acids in maize leaves.
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where rnir and rred are the reflectance of 780 nm and 660 nm, respectively.



Amino acid data collection

The amino acid content was determined using LC-MS. The liquid chromatography used was ACQUITY UPLC I-Class (Waters, United States). Mass Spectrometer adopted the Q Exactive Focus system (Thermo Fisher, United States). Thermo Xcalibur 4.0 was used for data analysis. The measurement process includes the following processes: (1) Sample processing. The leaf samples were ground into powder and freeze-dried. The 20-mg freeze-dried powder was weighed as a subsample, adding 1 ml of water. Then the subsample was shaken by an ultrasonic crusher for 30 min. The subsample was centrifugally rotated for 10 min at 14,000 rpm/min.

(2) Sample derivatization. A volume of 10 μl of supernatant was taken, 50 μl of borate buffer solution and 20 μl derivative solution were added, the resultant solution was placed at room temperature for 1 min and then derived on an oscillator at 55°C for 10 min.

(3) Suction and filtration. The derived sample was cooled to room temperature and then filtered using a 1-ml syringe and filter membrane. (4) Bottling and measuring sample. The filtered sample was transferred to the glass bottle, the sample on the machine was tested, and the data were exported. (5) Drawing the standard curve of amino acids. The standard sample of amino acids was diluted to different concentrations. The peak values of molecular ions varied gradually with the increase of solution concentration, showing a linear relationship. (6) Calculating the reference value of amino acids. The Thermo Xcalibur4.0 software was used to process the mass spectrogram. The types of amino acids were determined according to the retention time and mass-charge ratio, and the peak values of molecular ions were recorded. Finally, the contents of various amino acids were obtained by putting the ion peak value into the equation of the standard curve of various amino acids.

There were 24 amino acids in maize leaves, including alanine (Ala), γ-aminobutyric acid (GABA), β-aminobutyric acid (BABA), arginine (Arg), aspartic acid (Asp), citrulline (Cit), glutamic acid (Glu), glycine (Gly), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), ornithine (Orn), phenylalanine (Phe), proline (Pro), sarcosine (Sar), serine (Ser), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), glutamine (Gln), valine (Val), and asparagine (Asn).




Materials and methods


Data preprocessing

Savitzky-Golay filter was used to remove noise from the hyperspectral reflectance. Savitzky-Golay filter is one of the commonly used filtering methods in spectral preprocessing and can improve the smoothness of the spectrum and reduce the noise interference (Dai et al., 2017). Due to the different magnitude of various amino acid contents, z-score standardization was used to deal with the amino acid content.



Model construction

The estimation models of the 24 amino acid contents were constructed based on the reflectance of all bands, sensitive band range, and sensitive bands with the PLSR method. The PLSR, proposed by Herman Wold in the 1970s, cannot only reduce the dimension of the data but also solve the collinearity between the bands (Wu and He, 2014). In this study, the leave-one-out cross-validation was used to determine the number of principal components. We calculated the predicted residual error sum of squares (PRESS) of the predicted value of n–1 principal component and selected the principal components with the lowest PRESS for regression modeling. For all models, 70% (203) of the samples were used as the training set to construct the model, and the remaining 30% (87) were used as the test set to evaluate the model’s accuracy. To eliminate the random error, the modeling process was repeated 100 times, and the average result of the 100 repetitions was taken as the final result.



Sensitive bands screening

Hyperspectral data contain hundreds of bands. Data redundancy and multicollinearity need to be addressed. Studies have shown that only using sensitive bands to establish the model can not only reduce the computational burden but also improve the accuracy and stability of the model (Wan et al., 2020). In this study, the reflectance of maize leaves was obtained at 400–1,000 nm. The greater the reflectivity variability of this band, the more sensitive it is to amino acids. The CV (Equation 2) was used to determine the sensitive band range of each amino acid.
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where SD and mean represent the standard deviation and mean value, respectively.

Using the selected sensitive band range, we constructed the PLSR model of each amino acid and performed the regression coefficient test of the model. When screening sensitive bands, we referred to the study by Meng et al. (2013). Taking the band reflectance of the two regions as input variables, the estimation models of amino acids in maize leaves were established based on PLS regression. The regression coefficient was used to quantify the correlation between the band and the model. The larger the absolute value of the regression coefficient, the stronger the correlation between the band and the model. The absolute values of the regression coefficients of each band were sorted from small to large. The bands were removed one by one, and the model was then reconstructed. The reconstructed model was evaluated according to the PRESS. The band was counted when the PRESS value of the model was at its minimum. The above process was repeated 100 times. The bands with frequencies greater than 80 Hz used in modeling with the minimum model PRESS were taken as the sensitive bands of that amino acid.



Model evaluation

The evaluation indices of the model include the determination coefficient (R2), root mean square error (RMSE), relative root mean square error (RE), and relative percent deviation (RPD). The average values of R2, RMSE, RE, and RPD with test set for 100 times were used to evaluate the performance and stability of models.
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where m is the number of samples, yi, [image: image], [image: image] are the measured and the predicted values of various amino acid contents of sample i, and SD represents standard deviation.




Results and analysis


Statistics of different amino acid contents

The descriptive statistics for the entire sample are reported in Table 1. The descriptive statistics of the data included range, standard deviation (SD), and CV. The mean values of Sar, Ala, Glu, and Ser were relatively large, indicating that these amino acid contents in the samples were relatively high. The CV of Gln, Asn, Ser, and Gly was larger than the other amino acids, which may be that these amino acids were more sensitive to N treatment.


TABLE 1    Descriptive statistics of various amino acid contents in fresh leaves for the whole datasets (μmol/L).

[image: Table 1]

Figure 2 shows the comparison of various amino acid contents in maize leaves of two inbred lines sampled at the early and later stages of the nitrogen starvation experiment. In Figure 2, the early and later stages refer to the first three and the last three samples in the nitrogen starvation experiment, respectively. It can be seen that the contents of various amino acids of the two inbred lines in the later stage were lower than those in the early stage. The contents of alanine, γ-aminobutyric acid, arginine, glutamic acid, proline, sarcosine, threonine, and tyrosine in the later stage were significantly lower than those in the early stage.


[image: image]

FIGURE 2
The contents of various amino acids in the leaves of two inbred lines at the early and later stages of nitrogen starvation treatment. * and ** represent significance at the 0.05 and 0.01 probability level (p < 0.05 and P < 0.01).




Estimation models using the reflectance of all bands

With the spectral reflectance of all bands as the independent variable and the amino acid contents as the dependent variable, we established the PLSR model of 24 amino acid contents. The validation results of the model using the test set are shown in Table 2. The estimation accuracies of β-aminobutyric acid, ornithine, citrulline, methionine, and histidine were the best, with R2, RE, and RPD of the test set in the range of 0.84–0.95, 9.68%–20.38%, and 2.52–4.95. The models of sarcosine, alanine, glutamic acid, proline, threonine, aspartic acid, and leucine had relatively good estimation accuracy, with R2, RE, and RPD of the test set in the range of 0.57–0.73, 23.23%–39.75%, and 1.53–1.95. The performance of the other amino acid models was relatively poor.


TABLE 2    Evaluation results of PLSR model using test set for various amino acid contents based on the reflectance of all bands.
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Estimation models using the reflectance of the sensitive band range

Figure 3 shows the CV value of the spectral reflectivity of each sample (A) and all samples (B). The CV and variation range of the samples were large in the range of 400–717.08 nm and small in the range of 717.08–1,100 nm. We further constructed and validated the PLSR model of each amino acid based on the reflectance in the ranges of 400–717.08 nm and 717.08–1,100 nm, respectively. The results are shown in Table 3. The estimation model of citrulline was relatively good when using the reflectance in the range of 717.08–1,100 nm, while the estimation models of most other amino acids performed well when using the reflectance in the range of 400–717.08 nm. Therefore, the bands in the range of 400–717.008 nm were more sensitive to various amino acids than those in the range of 717.08–1,100 nm.


[image: image]

FIGURE 3
The coefficient of variation (CV) values of different samples (Left) and all samples (Right) in various bands. V7 and DAS15 represent the samples obtained at two sampling dates under different N treatments, respectively. N stress represents the samples obtained in the N starvation treatment experiment. V7 indicates that the maize is in the stage of the seventh fully unfolded leaf; DAS15 means the 15th day after maize silk.



TABLE 3    Evaluation results of PLSR model using test set for various amino acid contents based on the reflectance of band ranges.
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Estimation models using the reflectance of sensitive bands

The specific sensitive bands of various amino acids were further screened in the range of 400–717.08 nm. We established the PLSR model of each amino acid using the reflectance in the range of 400–717.08 nm and performed the regression coefficient test of the model. Figure 3 shows the usage frequency of each band in 100 times modeling. The dark colors indicate the more times the band appeared and the more important the band was. As seen in Figure 4, the sensitive bands of most amino acids were mainly concentrated in the ranges of 505.39–604.95 nm and 651.21–714.10 nm.


[image: image]

FIGURE 4
The usage frequency of each band in 100 times of modeling.


Table 4 shows the validation results of PLSR model using test set for each amino acid based on the sensitive bands. The estimation accuracies of methionine, ornithine, sarcosine, alanine, and asparagine were improved compared with the models constructed with the reflectance in the range of 400–717.08 nm. However, the estimation accuracies of alanine, histidine, threonine, tryptophan, citrulline, β-aminobutyric acid, and aspartic acid were almost unchanged, and those of other amino acids were relatively decreased. In summary, when modeling with the reflectance of the sensitive bands, the estimation accuracies of 11 amino acids by test set were improved or equivalent to that of the model using the reflectance of band range.


TABLE 4    Evaluation results of PLSR model using test set for various amino acid contents based on the reflectance of sensitive bands.
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Optimal estimation result of each amino acid content

The evaluation results of the optimal model for each amino acid and the bands used are summarized in Table 5. It generally suggests that the model estimation accuracies of β-aminobutyric acid, ornithine, citrulline, methionine, histidine, and sarcosine using test set were relatively high, with R2 more than 0.7. Among the 24 amino acids, five amino acids obtained the best estimation accuracy based on the reflectance of sensitive bands. A total of 15 amino acids obtained the best estimation accuracy based on the reflectance of the sensitive band range, of which 14 amino acids used the reflectance in the range of 400–717.08 nm.


TABLE 5    Summary of optimal estimate results of each amino acid content using the test set.
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Figure 5 shows the results of testing one model randomly selected from 100 PLS regression models by the optimal estimation method. The predicted values of histidine, sarcosine, glutamic acid, and alanine were close to the measured values. The measured and predicted values of threonine, proline, leucine, and aspartic acid also matched well.
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FIGURE 5
Scatterplot of the measured value against the predicted value of the various amino acid contents by the optimal estimation method using test set. The caption above each subfigure is the name of the amino acid. V7 and DAS15 represent the samples obtained at two sampling times under different N treatments. N stress represents the samples obtained in the N starvation treatment experiment. V7 indicates that the maize is in the stage of the seventh fully unfolded leaf; DAS15 means the 15th day after maize silk.





Discussion

In recent years, spectral technology is a rapidly developed and widely used non-destructive testing technology. Amino acids can help to promote plant growth and metabolism, enhance leaf photosynthesis, and improve crop resistance to diseases and insect pests (Liu et al., 2021). The research on the application of hyperspectral data in estimating the 24 amino acid contents in fresh maize leaves is very limited. We obtained the sensitive band range and sensitive bands of each amino acid through the CV and PLSR coefficient tests, respectively. The R2 of the estimated and measured value of amino acid content was up to 0.96, among which 11 amino acids had an R2 of more than 0.6.

The physiological and biochemical traits in crop growth, such as nitrogen content, enzyme content, protein content, amino acid content, and photosynthesis rate (Sofonia et al., 2019), can reflect the growth status of the plant and be used to estimate crop yields. It is important to obtain crop physiological and biochemical phenotypes accurately, quickly, and cheaply. In terms of crop physiological phenotypes, the main indices included fresh weight, dry weight, water content, photosynthesis parameters (Vc, max, Jmax), and the internal structure of leaves (Fu et al., 2019; Gerhards et al., 2019). The main indices for crop biochemical phenotypes involved in previous studies include nitrogen content, pigment (chlorophyll a and b, carotenoid, anthocyanin), sucrose content, water content, major elements, trace elements, and protein content (Gu et al., 2018; Zhang et al., 2020). Caporaso et al. (2018) used hyperspectral imaging and PLSR to predict single kernel protein content and performed well with an R2 of 0.82. Zhang et al. (2019) combined hyperspectral imaging with PLSR, principal component regression (PCR), and support vector machine (SVM) to detect starch content in rice. The R2 of the prediction model reached 0.80. Amanah et al. (2021) used near-infrared hyperspectral imaging to realize the non-destructive detection of anthocyanin content in black rice seeds, and the R2 of the best prediction model was 0.95. These studies showed that hyperspectral technology had high feasibility in the physiological indexes of crops. We also modeled the 24 amino acid contents in maize leaves. Some of them have high accuracy and are consistent with the above research results. Similar to the above study, we also determined the sensitive bands of each amino acid through the regression coefficient test of PLSR. The difference is that before determining the sensitive band, the full spectra were divided into two regions through the CV of band reflectance, which helped reduce the redundancy of spectral information and narrow the spectral range for subsequent screening of sensitive bands for sensitive bands to increase the computation amount of model operation.

Nitrogen transfer in plants usually occurs in the form of amino acids. The proportion of amino acids produced by leaf photosynthesis varies with different amounts of nitrogen application. Crop plants mainly absorb nitrate-nitrogen (NO3-) and ammonium-nitrogen (NH4+). NH4+, absorbed by roots, synthesizes glutamate under the action of glutamine synthetase and then forms amino acids by glutamate synthetase and amino acid transferase. The absorbed NO3- forms NO2- under the catalysis of nitrate reductase. Most of the absorbed NO2- is transformed to NH4+ by nitrite reductase and transported to the leaf to synthesize glutamate and amino acids. The amount of nitrogen applied is closely related to the proportion of various amino acid contents in leaves. Therefore, it is feasible to use hyperspectral information to diagnose various amino acid contents in leaves.

PLSR is the most widely used traditional regression modeling method (Fu et al., 2021). Considering that the sensitive spectral band of amino acids in leaves was unclear, we first used all bands to analyze the modeling effect of various amino acids. We then reduced the spectral range by the spectral reflectance CV of all samples. It is found that the sensitivity of 400–717.08 nm reflectance to the content of various amino acid contents was much higher than that of 717.08–1,100 nm reflectance. Different N treatments led to great differences in some amino acid contents in leaves. We divided the spectrum into two regions, which helped to reduce the redundancy of spectral information and to narrow the spectral range for subsequent screening of sensitive bands. It is determined that the sensitive bands of most amino acids are mainly concentrated in the ranges of 505.39–604.95 nm and 651.21–714.10 nm. This progressive feature band screening method effectively improves the accuracy of amino acid-sensitive bands. Many studies have shown that hyperspectral information can effectively retrieve leaf nitrogen and chlorophyll content, and sensitive bands of chlorophyll content are mainly around 500 nm and 670 nm (Wang et al., 2015; Silva-Perez et al., 2018). The characteristic bands of most amino acids were mainly concentrated in the ranges of 505.39–604.95 nm and 651.21–714.10 nm, which may be mainly caused by the influence of various pigments in maize leaves, especially the chlorophyll content.

There are relatively few studies on the non-destructive detection of the amino acid content in leaves by spectral spectroscopy. N stress experiments were carried out under suitable moisture and light conditions, and our study had no water stress. However, we have only analyzed the amino acids in maize leaves. With hyperspectral imaging, it is necessary to carry out further studies to prove the feasibility of non-destructive detection of the amino acid content on the leaves of more vegetation types. The models based on the reflectance of the sensitive band range or sensitive bands performed better than those using the reflectance of all bands, showing that selecting sensitive bands helped to effectively improve the accuracy of model estimation. There are many methods to choose sensitive bands, such as successive projection algorithm (SPA) (Shorten et al., 2019), competitive adaptive reweighted sampling (CARS) (Gu et al., 2019), and instability index between classes (ISIC) (Zhang et al., 2018). Next, we will compare and analyze the similarities and differences between the bands obtained by different band screening methods and their impacts on the accuracy of the estimation model. Studies show that machine learning performs better than traditional regression in crop estimation (Chlingaryan et al., 2018; Yue et al., 2018). We will try to use a machine learning algorithm in the follow-up research further to improve the accuracy and stability of the model. The different contents of various amino acids will also lead to different responses in the narrow hyperspectral band, and the screening of sensitive bands helps estimate the content of some amino acids. This study found that imaging hyper-spectrum can estimate the amino acid contents in maize leaves, which can guide more researchers to study this topic. Of course, we are still exploring this area, and we need to test further the ability of hyperspectral technology to non-destructively estimate amino acid contents in the leaves of other crops.



Conclusion

This study used hyperspectral imaging data to estimate the 24 amino acid contents in maize leaves. The sensitive band range and sensitive band of each amino acid were selected by the CV and PLSR coefficient tests, respectively. We found the spectral reflectance of various amino acids varied greatly in the range of 400–717.08 nm. The regression coefficient test of PLSR found that the sensitive bands of most amino acids were in the ranges of 505.39–604.95 nm and 651.21–714.10 nm. The model estimations of the 24 amino acid contents were constructed and validated based on the reflectance of all bands, sensitive band range, and sensitive bands. We selected the optimal estimation method for each amino acid. The estimation accuracy of the content of β-aminobutyric acid, ornithine, citrulline, methionine, and histidine was better than other amino acids, with R2, RE, and RPD of the test set in the range of 0.84–0.96, 8.79%–19.77%, and 2.58–5.18. The estimation accuracies of the content of sarcosine, alanine, glutamic acid, proline, threonine, leucine, and aspartic acid were normal, with R2, RE, and RPD of the test set in the range of 0.58–0.73, 23.23%–39.69%, and 1.56–1.94. The performance of the other amino acid models was relatively poor. This study can provide a reference for monitoring the traits of breeding materials based on hyperspectral technology.
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Plant phenotyping is essential in plant breeding and management. High-throughput data acquisition and automatic phenotypes extraction are common concerns in plant phenotyping. Despite the development of phenotyping platforms and the realization of high-throughput three-dimensional (3D) data acquisition in tall plants, such as maize, handling small-size plants with complex structural features remains a challenge. This study developed a miniaturized shoot phenotyping platform MVS-Pheno V2 focusing on low plant shoots. The platform is an improvement of MVS-Pheno V1 and was developed based on multi-view stereo 3D reconstruction. It has the following four components: Hardware, wireless communication and control, data acquisition system, and data processing system. The hardware sets the rotation on top of the platform, separating plants to be static while rotating. A novel local network was established to realize wireless communication and control; thus, preventing cable twining. The data processing system was developed to calibrate point clouds and extract phenotypes, including plant height, leaf area, projected area, shoot volume, and compactness. This study used three cultivars of wheat shoots at four growth stages to test the performance of the platform. The mean absolute percentage error of point cloud calibration was 0.585%. The squared correlation coefficient R2 was 0.9991, 0.9949, and 0.9693 for plant height, leaf length, and leaf width, respectively. The root mean squared error (RMSE) was 0.6996, 0.4531, and 0.1174 cm for plant height, leaf length, and leaf width. The MVS-Pheno V2 platform provides an alternative solution for high-throughput phenotyping of low individual plants and is especially suitable for shoot architecture-related plant breeding and management studies.
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  MVS-Pheno, multi-view stereo reconstruction, three-dimensional point cloud, phenotyping platform, wheat


Introduction

Multi-omics research is currently a hotspot in plant science, as shown by the emerging genomics–phenomics studies (Yang et al., 2013). Although a rapid advancement in genomics has achieved a high-throughput and predictable cost of gene sequencing, phenomics has become the bottleneck of plant multi-omics research (Furbank and Tester, 2011). Plant phenomics is based on obtaining high-quality and reproducible phenotypic traits in a high-throughput manner to quantitatively analyze the genotype and environment interactions and their effects on yield, quality, stress resistance, and other relevant traits (Jin et al., 2020). Satisfactory phenotypic platforms can promote the development of plant phenomics (Jin et al., 2020), enhancing the breeding process and providing data for accurate agricultural management decisions (Shakoor et al., 2017).

Plant phenotyping can be divided into several scales from macro to micro, including regional, population, individual plant, organ, and micro scales. However, ensuring the accuracy and throughput of plant phenotyping at different scales remains a challenge (Zhao et al., 2019; Jin et al., 2021). Many studies have conducted high-throughput phenotyping at the individual plant and organ scales due to the high demand for morphological and structural phenotyping in shoot architecture crop breeding and decision-making in agriculture management (Wu et al., 2019; Xiang et al., 2019; Xiao et al., 2021). Moreover, LiDAR (Wu et al., 2019), depth camera (McCormick et al., 2016; Teng et al., 2021), and high-resolution cameras (Bernotas et al., 2019; Li et al., 2020) are the common data acquisition sensors for morphological and structural phenotyping at individual plant and organ scales. For instance, multi-view stereo (MVS) image three-dimensional (3D) reconstruction is widely used to study morphological and structural phenotyping. It is considered to be the optimal solution to build a high-throughput and low-cost phenotyping platform for individual plants. The previous studies have shown that the phenotypes retrieved from MVS reconstruction can match the accuracy of LiDAR and reconstruct a high-quality 3D point cloud with vertex colors (Wang et al., 2019). How to quickly obtain high-quality plant multi-view images is the core of high-throughput acquisition of MVS-based phenotyping. Based on the relative motion relationship between the target plant and the camera sensor, plant multi-view image acquisition technology can be classified into two modes, i.e., “plant to camera” and “camera to plant” (Fiorani and Schurr, 2013).

In the “plant to camera” mode, the target plant is put on a rotating turntable, rotated, then cameras are fixed to obtain multi-view images of the plant (Zhu et al., 2020b). The number of cameras installed depends on the size of the plant and camera angle of view (Nguyen et al., 2016; Zhang et al., 2016; Gibbs et al., 2018). The first step involves removing the background and retaining only the plant in MVS images. Black or high-contrast colors with green are usually used as the background (Lu et al., 2020). However, tall plants or plants with flexible organs are easily shaken when rotating on the turntable, resulting in poor reconstruction point clouds, such as fuzzy edges of plant leaves and thicker stems than the actual ones. Therefore, it is mostly used to reconstruct 3D models of small plants, seedlings, or plant organs (He et al., 2017; Liu et al., 2017; Syngelaki et al., 2018).

In the “camera to plant” mode, the target plant is maintained at a static position, then one or more cameras are rotated around the plant to obtain multi-view images. The number of cameras required depends on the plant size. The overlap of adjacent images on the same layer should be more than 60%, and that of adjacent images on different layers more than 50%. Multi-view images for low plants such as pepper, eggplant, and cucumber, can be manually obtained without automating the acquisition process (Rose et al., 2015; Hui et al., 2018). However, a manual acquisition cannot ensure the uniformity of image acquisition location and overlap requirements of images; thus, not suitable for large-scale phenotyping applications. As a result, researchers have mounted cameras on flexible rocker arms to achieve automatic data acquisition, improving the automation level of data acquisition and meeting the needs of high-throughput data acquisition (Cao et al., 2019). A motor was needed to drive the rotating arm for tall plants, such as maize, and cameras were installed on the rotating arm to acquire shoot images while rotating (Wu et al., 2020). Since the target plants must remain static while the cameras take images, a higher reconstruction accuracy is obtained using this mode than the “plant to camera” mode. The “camera-to-plant” mode also supports in situ, continuous, and non-destructive measurement of individual plants or populations. The operators can directly take images around plants in the field (Walter et al., 2018; Xiao et al., 2020; Zhu et al., 2020a) or install the camera on the phenotypic vehicle (Sun et al., 2020) or mount it on an unmanned aerial vehicle (Zermas et al., 2019; Di Gennaro and Matese, 2020; Wang et al., 2021). Researchers compared the 3D reconstruction effects of the two MVS modes under the same image acquisition environment and they showed that “camera to plant” mode has higher accuracy and robustness than “plant to camera” mode (Gao et al., 2021).

Presently, “camera to plant” mode is used for 3D point cloud reconstruction and phenotypes extraction of plants with relatively simple morphological structure of single stem and large leaves, such as maize. A phenotyping platform MVS-Pheno V1 was developed for maize shoots using “camera to plant” mode (Wu et al., 2020). This platform allows for automatic multi-view images acquisition and structural phenotypes extraction approaches are integrated into the data processing system. However, the platform takes large space to deploy, and the turntable causes the target plant to tremble slightly while rotating. During image acquisition, light and airflow control are not taken into account. Despite of these shortcomings, MVS-Pheno was an advanced platform for automatic obtaining multi-view images of plants. None literature was found to improve MVS-Pheno platform.

For plants with many tillers, slender leaves, and serious shielding, such as wheat and rice, the reconstructed 3D point cloud using multi-view images is usually incomplete, with missing points on leaves and tips (Pound et al., 2014; Duan et al., 2016). Plants with complex morphological structures require enhanced multi-view image data acquisition and reconstruction.

The limitations and challenges in the previous MVS-based plant phenotyping studies can be summarized as follows: (1) Manual acquisition of multi-view images for plants is difficult to ensure the overlapping of incident images and achieve high-throughput acquisition. Automatic acquisition devices that require limited spaces to deploy are urgently needed. (2) Images acquired in open environment conditions are greatly affected by lights and winds, resulting in unsatisfactory reconstruction point clouds. Controlled imaging condition is favorite for such devices. (3) The rotation in “camera to plant” mode is easy to produce cable surrounded, resulting in the inability of continuous and automatic acquisition. (4) Point clouds obtained through multi-view image reconstruction are scaled with different size, automatic scale calibration has to be resolved for further batched phenotypes extraction. (5) The structure and detailed morphology of wheat are more complicated than maize plants, which puts forward higher requirements of acquired images for point cloud reconstruction.

Herein, a miniaturized shoot phenotyping platform MVS-Pheno V2 was developed for low plants, by optimizing the previous platform MVS-Pheno V1 (Wu et al., 2020). Besides, an automatic data acquisition and data processing pipeline for wheat has been constructed and evaluated. Therefore, MVS-Pheno V2 can provide a high-throughput and cost-effective solution for small-scale plant phenotyping of individual plants and organs.



Materials

This study used three winter wheat cultivars, FengKang13 (FK), JiMai44 (JM), and XiNong979 (XN), with different shoot architectures. The experiment was performed at the experimental field of Beijing Academy of Agricultural and Forestry Sciences (39°56′N, 116°16′E). Wheat was planted on 25 September 2020 with a density of 66,666 plants/ha and a row spacing of 16 cm. Sufficient water and fertilizer were supplied during the entire growth period. The field shoots were sampled from the beginning of returning to green stage to booting stage on 23 March 2021, 2 April 2021, 13 April 2021, and 19 April 2021 (three replicates per cultivar). Wheat shoots with different tiller numbers were selected during sampling to test the performance of the platform and verify the adaptability of data processing approaches to different tiller densities. The detailed measured tiller numbers of each sampled shoot are shown in Table 1. The sampled shoots were quickly transplanted to pots, and appropriate water was added to the pots to prevent leaf wilting. The MVS-Pheno V2 platform was used to obtain multi-view images of the shoots. After multi-view image acquisition, a 3D digitizer Fastrak (Polhemus, Colchester, VT, USA) was used to acquire morphological feature points of leaves of several shoots and tillers (Wang et al., 2019), which was used for data verification to evaluate point cloud reconstruction accuracy of MVS-Pheno V2 platform. Moreover, the multi-view images of pepper and eggplant shoots at the seeding stage, tomato, beet, lettuce, chamomile shoots, maize tassel and ears, and roots were acquired using the platform to test its performance on other plants and plant organs.


TABLE 1 Tiller numbers of each sampled wheat shoot in four growth stages. Each cultivar involves three sample replicates.

[image: Table 1]



Methods


Platform overview

The MVS-Pheno V2 platform has four components: hardware, wireless communication and control, data acquisition system, and data processing system (Figure 1). (1) The hardware comprised a supporting framework, driving motor, camera sensors, and computers. (2) The wireless communication and turntable control among controllers and operating computers were established by building a local wireless network to reduce the number of physical transmission cables and improve the ease of use and stability of the equipment. (3) The data acquisition system was used to realize automatic data acquisition and provide real-time working conditions to monitor the data acquisition process. (4) The pipeline data processing system was deployed on the server to realize 3D point cloud reconstruction and phenotypes extraction from the acquired multi-view images.


[image: Figure 1]
FIGURE 1
 Composition of MVS-Pheno V2 platform.




Hardware

The MVS-Pheno V1 platform (Wu et al., 2020) was designed to automatically acquire multi-view images of tall plants; thus, its hardware is relatively tall and large (Figure 2A). After a target plant is placed in the center of the platform, a supporting arm with several cameras rotates around the target plant to obtain images.


[image: Figure 2]
FIGURE 2
 Hardware of MVS-Pheno V2. (A) Structural composition of MVS-Pheno V1. (B) Overall appearance of MVS-Pheno V2. (C) The actual scene inside the platform when acquiring multi-view images of wheat shoots. (D) Detailed hardware composition of MVS-Pheno V2 platform.


The MVS-Pheno V2 is an improvement of the MVS-Pheno V1, with the most important improvement being the mode of driving. Since the V2 platform is designed for low plants, the V2 is relatively smaller than the V1, and the driving system is set above the target plant (Figures 2B,C), while the V1 platform drives the supporting arm and cameras near the ground (Figure 2A). The hardware of the V2 platform has seven units, including the shoot transportation unit, supporting unit, rotating unit, data acquisition unit, top unit, operating terminal, and computing server unit (Figure 2D, Supplementary Video 1).

The transportation unit (Figure 2D, Part-A) has a parallel rail, a stepping motor, and a tray for laying plants and transports the target plant to the center of the hardware. A marker plate should be laid near target plant for further point cloud calibration, while not be too close to the target plant during image acquisition to avoid sheltering by leaves. The supporting unit (Figure 2D, Part-B) has four retractable support columns and a cloth fence to construct a wind-shield module (Figure 2B). It supports the upper turntable and blocks additional lights and airflow. The adjustment height of the support columns is 100–160 cm. An opaque and non-reflective double-layer flannelette was adopted as the wind-shield. The rotating unit (Figure 2D, Part-C) has a turntable with the ring gear, a stepping motor, and a position switch. It is placed on the support unit to drive the acquisition unit to rotate around the target plant. The turntable has an inner radius of 60 cm and is customized based on specific requirements. The data acquisition unit (Figure 2D, Part-D) consists of a vertical arm, a data acquisition computer, and one or more cameras. The upper part of the vertical arm is mounted on the turntable and rotates with the turntable. The vertical arm has a height of 100 cm, and at most, three cameras can be installed on the arm. Canon77D cameras with 24-mm half-frame fixed focus lenses are used. An acquisition computer is installed at the bottom of the vertical arm to connect easily to the cameras through data cables. Herein, NUC, a mini-computer produced by Intel, was used. The computer is small and light (size: 11 × 11 × 5 cm, weight: 300 g) and can be mounted on the vertical arm to rotate synchronously with the turntable. The top unit (Figure 2D, Part-E) has a light supplement, electric control, and network modules. The LED light sources are installed in two layers. The upper layer four light sources (10-mm diameter, 20 W white light source) are in the cross-structure of the top unit, and the second layer four light sources (6-mm diameter, 16-W white light source) are on the support columns of the supporting unit. The light sources are inclined downward to avoid the backlight caused by being opposite to the cameras. A router is installed on the upper part (providing LAN network for NUC and operating terminal). This unit also has a motor control circuit board of the platform. The operating terminal (Figure 2D, Part-F) can be wirelessly separated from the platform for the effective operation of the equipment. A mobile phone, iPad, or laptop can also serve to setup the operation terminal (Figures 2B,D, Part-F). The computing server unit (Figure 2D, Part-G) is optional and is connected with the NUC through the network to receive the acquired multi-view images for phenotypes estimation.



Wireless communication and control

Routing strategy for signal and data transmission is complex in the MVS-Pheno V1 platform. Therefore, a wireless communication network among computers, controllers, and operation terminals established in MVS-Pheno V2 prevents winding among cables during turntable rotation. A detailed physical circuit diagram of network communication and signal control of the platform is shown in Figure 3. Wireless communication has three parts, i.e., WiFi serial communication, LAN, and network channel as discussed in the following: (1) The WiFi serial communication (USB to wireless serial communication, XMS, China) is used to realize the wireless connection between the electronic drive unit and NUC. (2) A LAN is located between the NUC and the operating terminal through a wireless router (wireless Gigabit router, Huawei, China), and facilitates the operating terminals; thus, remotely controlling the NUC. (3) A network channel is established between NUC and a high-performance computing server to transmit the acquired multi-view images in a fixed time.


[image: Figure 3]
FIGURE 3
 Physical circuit diagram of network communication and signal control in MVS-Pheno V2 platform.


The platform realizes automatic control through switches. Limit switches are set at the end of the transportation unit and side of the turntable, to detect the motion state of the plant on the rail in the transportation unit and the rotating state of the turntable in rotating unit in real-time. When triggered, the limit switch of the transportation unit sends an electrical signal to the control board to start rotation of the turntable. It triggers the NUC to start image acquisition. The limit switch of the turntable sends an electrical signal to inform the control board to stop the rotation of the turntable and inform the NUC to finish data acquisition when triggered. Moreover, the turntable alternately rotates forward and reverse to prevent the power supply cable twining on the rotating arm (the NUC and cameras provide a 220-V power supply). The load balancing and signal synchronous triggered acquisition mechanism are used to achieve synchronous acquisition and data transmission of multiple cameras.



Data acquisition system

The data acquisition system on the NUC acquires data automatically, allowing for real-time monitoring of working conditions. The system adopts a linear working flow and involves five steps, sample preparation, labeling, sample incoming, data acquisition, and sample outgoing as detailed in the following: (1) Sample preparation. Target plant shoots are planted or transplanted in pots, then placed on the tray of the transportation unit one after another. (2) Labeling. Each shoot has an identifier (ID). The ID can be entered using the keyboard or scanned using a code scanning gun on a prepared bar code. A corresponding data storage directory is then established. (3) Sample incoming. The transportation unit transports each plant to the end of the rail (the central position of the device) at a constant speed. (4) Data acquisition. The limit switch sends a command to the NUC. Then the acquisition system sends a rotation command to the turntable after a delay of 3 s to synchronously drive the camera to acquire multi-view images. The delay prevents the vibration of plants once transportation stops. The turntable rotates at a constant speed, and the camera takes images at same time intervals. The limit switch sends a command to the NUC, then the turntable stops rotating, and the camera stops taking images after the turntable rotates one cycle. (5) Sample outgoing. The transportation unit drives the plant out of the equipment. The multi-view image acquisition cycle is continuous, and each cycle usually takes 90 s. Around 28 images cloud be taken in each cycle with 60% overlapping between consecutive images. The data acquisition system was developed using the QT platform (a cross-platform C++ graphical user interface application development framework developed by QT company) and was tested on a workstation with a Win10 operating system (3.2-GHz processor and 8 GB memory).



Data processing system

The data processing system mainly includes MVS-based 3D point cloud reconstruction, point cloud calibration, shoot point cloud segmentation, and phenotype extraction. The system was developed using OpenGL and PCL (Point Cloud Library) and was tested on a workstation with a Win10 operating system (3.2 GHz processor and 64 GB memory).


MVS-based 3D point cloud reconstruction

For data processing, the acquired multi-view images are first turned into 3D point clouds. The 3D point cloud reconstruction includes sparse reconstruction based on SFM (structure from motion) algorithm and dense reconstruction based on the MVS algorithm. Here, batch reconstruction of acquired plants was realized by integrating open-source library OpenMVG and OpenMVS (Locher et al., 2016; Moulon et al., 2016). Vertices in the reconstructed point cloud involve both space coordinates and colors. Before denoising and sampling, the point number of a single scene should be >30 million (Figure 4A). In addition, a commercial software ContextCapture (Bentley, v.4.4.9), was used for 3D point cloud reconstruction to estimate the quality and usability of acquired image in commercial software.


[image: Figure 4]
FIGURE 4
 Point cloud calibration and shoot segmentation. (A) Reconstructed initial point cloud of scene inside MVS-Pheno V2 platform using the acquired multi-view images. (B) Point cloud cropping via cylinder. (C) Ground point cloud removal. (D) Down sampling of shoot point cloud. (E) Marker plate extraction and radius estimation for point cloud calibration. (F) Shoot point cloud segmentation. (G) Shoot point cloud denoising.




Point cloud calibration and shoot segmentation

Unlike the sensors such as LiDAR or depth camera, the size of point clouds generated based on MVS technology is affected by plant size, shooting position, camera angle, and camera configuration. Besides, it has a different global coordinate system and scale of point cloud. Therefore, it is necessary to calibrate generated point cloud and correct the positive direction of the point cloud to transform the point cloud to their real size with the XOY-plane as the reference plane and the Z-axis as the positive direction. Furthermore, plant shoots should be segmented to facilitate further phenotype extraction. Therefore, the reconstructed point cloud should undergo calibration and segmentation.


Coarse-point-cloud-cropping

The center part of the reconstructed scene with the target shoot should be roughly segmented, and the initial point cloud should be down-sampled to improve computational efficiency. In center part cropping, the central point of point cloud was used as center of a cylinder. The point cloud was projected on the XOY-plane, and two-third diameter of the circumcircle of the projected point cloud, which empirically covers the wheat points and excludes the cloth fence points, is used as the diameter of the cylinder to construct the cropping cylinder and remove the point cloud outside the cylinder (Figure 4B). The points lower than 10% height in the Z-axis direction were removed to obtain the point cloud (Figure 4C). The number of remaining points after cropping was about 0.8~2 million. The point cloud was further simplified using random sampling to obtain 10% points (Figure 4D), which is promising for phenotype estimation accuracy and efficiency.



Calibration

The point cloud size was calibrated using plane attribute and circle radius of the marker plate set near the target plant in the scene. The color threshold was used to segment the marker plate since the surface color of the marker plat was known (red). The hue, saturation, and lightness (HSL) space can intuitively present the hue, saturation, and lightness compared with red, green, and blue (RBG) space. Therefore, the HSL color space was used to extract the point cloud of marker plate. The conversion from RGB to HSL space is shown in Equation (1).

[image: image]

where max = max(r, g, b), min = min(r, g, b), and r, g, b ∈ [0, 1]. The point was regarded as a point of the marker plate if the color of a point satisfied h > 340, s > 0.6, and l > 0.3 (Figure 4E). The boundary points were detected, and the circumcircle of the marker plate was estimated (Figure 4E). The diameter ratio between the estimated circumcircle and the real size of the marker plate was used as the scaling factor of the shoot point cloud.

The scaling accuracy of the marked plate point cloud after calibration was evaluated by comparing it with manual measurements obtained by measuring the diameter of the marker plate point cloud after scaling using an open-source software CloudCompare (http://www.cloudcompare.org/). Each measurement was repeated 5 times and averaged to eliminate the manual error. The error between the estimated and actual diameter was quantitatively evaluated using indicator mean absolute percentage error (MAPE) as shown in Equation (2), where [image: image] is the estimated diameter from the point cloud, and di is the real size of the plate (6 cm).

[image: image]



Shoot-point-cloud-cropping

The spatial coordinates of the marker plate were extracted. It was easy to calculate the height of the upper edge of the pot since the height of the marker plate and the height of pots were known. The points below the upper edge of the pot were removed, and a plant point cloud was obtained (Figure 4F). Statistical denoising (Rusu and Cousins, 2011) removed small point clusters in the retained points to realize plant point cloud denoising (Figure 4G).




The 3D phenotype extraction

The extracted and calibrated point clouds were used to estimate the 3D phenotyping parameters of plant shoots, including plant height, projected area, multi-layer projected area, leaf area, convex volume, and compactness.


Plant-height

The height difference between the maximum and minimum value of the point cloud on the Z-axis was considered the plant height.



Projected-area-and-multi-layer-projected-area

The shoot point cloud was first projected on the XOY-plane (Figure 5A), and the projected point cloud was then sparsely sampled using voxel filtering (Figure 5B). The greedy triangulation was used to generate mesh from the sparsely sampled points (Figure 5C). Finally, the sum area of the triangulation mesh was considered the projected area of the input shoot. The shoot point cloud was divided into several segments (equal height) for multi-layer projected area, and the multi-layer projected area was calculated as the projected area (Figures 5D–F).


[image: Figure 5]
FIGURE 5
 The projected area and multi-layer projected area. (A,D) Projected point cloud on XOY-plane of a shoot and layers. (B,E) Sparsely sampled points in the XOY-plane of the shoot and corresponding layer in (A,D). (C,F) Generated 2D triangle mesh of points in (B,E) for area estimation.




Leaf-area

Wheat has thin stems, narrow and long leaves with flat and smooth surface features. As a result, meshing the whole plant point cloud can effectively retain the leaf while removing stem points to calculate leaf area. First, plant point cloud (Figure 6A) was down sampled using the voxel grid method to improve the next-stage computational efficiency and ensure the uniformity of point cloud density (Figure 6B). The point cloud was then smoothened using the moving least square method (Alexa et al., 2003) (Figure 6C). Practically, the fitting polynomial in the smoothing procedure was set at 3 to maintain the bending and twisting stage of the blade (Figures 6C,D). Furthermore, the greedy triangulation was used to generate mesh from the smoothened point cloud. Most stem points were removed after smoothing and meshing (Figure 6E). Finally, the sum of all triangular facet areas was calculated as the shoot leaf area. The merged visualization of the generated mesh and original colored point cloud is shown in Figure 6F.


[image: Figure 6]
FIGURE 6
 The leaf area estimation. (A) Wheat shoot point cloud. (B) Down sampled point cloud. (C) A leaf before and after point cloud smoothing. (D) Point cloud of a shoot after smoothing. (E) Triangulated mesh from the point cloud (D). (F) Merged visualization of generated mesh and original colored point cloud.




Shoot-convex-volume-and-compactness

The shoot convex volume was estimated by calculating the convex hull of plant point cloud (Figure 7A). The compactness of a shoot was considered as the ratio of the projected area (Figure 7B) to the convex hull area. The shoot was more compact when the compactness was larger.


[image: Figure 7]
FIGURE 7
 The shoot convex volume and compactness calculation. (A) Convex hull volume of a wheat shoot. (B) Convex hull area of projected plant points on a plane.







Results


Performance and applicability of MVS-Pheno V2 platform

The MVS-Pheno V2 is an improvement of the MVS-Pheno V1 based on hardware structure and software system for high-precision phenotype acquisition of small plant individuals or plant organs. The platform parameters and performance comparison of the two version platforms are shown in Table 2. The volume and height of V2 platform after disassembling are about quarter and one-third of those of the V1 version, respectively; thus, very portable. The light supplement and wind-shield modules were added to the V2 platform to reduce the disturbance of reconstructed data by inconsistent light and wind, but the overall cost did not increase. Moreover, the transportation structure was added to the V2 platform to make the multi-view data acquisition process more automatic. The V2 platform also systematically integrates with an open-source MVS reconstruction system, a robust calibration system, automatic point cloud phenotype calculation module, and network module. Consequently, a pipeline for automatic calculation of 3D plant phenotyping parameters from multi-view images was constructed.


TABLE 2 The MVS-Pheno platform parameters and performance comparison between V1 and V2.

[image: Table 2]

The data acquisition and processing efficiency (wheat shoot) using the MVS-Pheno V2 platform is shown in Table 3. The multi-view images of each shoot were acquired within 60 s, excluding the shoot incoming and outgoing time. The time interval of cameras was 2 s. The rotating speed is adjustable with a range from 0.5 to 2 rpm (rotations per min), and was set to 1 rpm in practice. The data was then automatically uploaded to a high-performance server for subsequent batch data processing. A point cloud reconstruction was the most time-consuming procedure. The point cloud pre-processing (point cloud calibration and denoising) and phenotype extraction were completed in seconds. The number of points obtained after denoising and down-sampling was within 20,000 for one camera and 80,000 for double camera acquired images, ensuring the point cloud quality; thus, improving phenotype extraction efficiency in later stages.


TABLE 3 Data acquisition and processing efficiency using MVS-Pheno V2 platform.

[image: Table 3]

Three potted wheat plants were randomly selected and multi-view images were acquired using MVS-Pheno V1 and V2, respectively, to intuitively demonstrate the improvement of MVS-Pheno platform. Figure 8 shows the visualized comparison results of the reconstructed point clouds. The MVS-Pheno V2 platform significantly improves the point clouds quality. Point clouds reconstructed using V1 platform are not clear in leaf edges, and adjacent organs are connected. Points missing can be observed in many organs. However, point clouds reconstructed using V2 platform was relatively complete with clear edges, and adjacent organs were accurately connected. The comparison demonstrates the improvement of the platform was necessary and effective, especially for complex and small-size plants.


[image: Figure 8]
FIGURE 8
 Visualized comparison of reconstructed point clouds from the acquired multi-view images using two version MVS-Pheno platforms of randomly selected potted wheat plants. For each subfigure, the left and right ones were reconstructed from images acquired using MVS-Pheno V1 and V2, respectively.




Point cloud calibration results

Automatic segmentation, extraction, and measurement marker plate in the reconstructed point cloud were realized when the plate was not in contact with the target plant. Marker plate point cloud was extracted from the reconstructed scene, and the circumcircle was estimated using the cultivar wheat plant sample scenes at different growth stages (Figure 9A). Even if the equipment and sensor positions were fixed, the generated point clouds were not reconstructed in equal scales under different acquisition scenarios. The manually measured radius conducted in CloudCompare of the marker plate point cloud under different plant scenes ranged from 0.02 cm to 0.2 cm, while the actual radius of the marker plate was 3 cm (Figure 9B). The 36 samples had different measured values of each marker plate, explaining why scale calibration was needed for each multi-view reconstruction scene, instead of just once calibration before measurement. Furthermore, the radius of the marker plate in each scene after scale calibration was also manually measured to evaluate the reliability of the scale calibration method. The measurement results are shown in Figure 9C. Except for sample No. 7 (FK-2 obtained on 13 April 2021), where the measured value discrepancies were considerable due to the marker plate being partly covered by wheat leaves during multi-view image capture, the difference between estimated and measured values for the other samples was minimal. The mean absolute percentage error (MAPE) and maximum error were 0.585 and 3.3%, respectively, indicating that the scale calibration method was accurate.


[image: Figure 9]
FIGURE 9
 Visualization results and error comparison of marker plate measurements. (A) Identified marker plate and radius estimation. Three rows represent segmented marker plate points, extracted boundary points, and fitted circumcircle, respectively. (B) The measured radius of marker plate before point cloud calibration. (C) Measured diameter of marker plate after point cloud calibration. Errors of calibrated diameters occur because the marker plate being partly covered by wheat leaves.




Point cloud reconstruction results


Point cloud visualization

The point cloud visualization of the reconstructed wheat shoots of the three cultivars at four growth stages is shown in Figure 10. The reconstructed wheat shoot point cloud at different stages was satisfactory, as discussed in the following results: Tillers of all shoots were completely reconstructed and had clear edges. The edge of the leaf points was not missing, the leaf tips were retained, and no holes exist (a few holes were observed in leaves at the lower part of the internal tillers) from the small leaf with a width of 0.5 cm and a length of 5 cm at the seedling stage, to big leaf with a width of 2.5 cm and a length of 25 cm at the booting stage. The reconstruction results for wheat plants with more tillers and compact shoot architecture which were relatively difficult to reconstruct, such as cultivar JM (Figure 10) were also satisfactory.


[image: Figure 10]
FIGURE 10
 Point cloud visualization of reconstructed wheat shoots of three cultivars at four growth stages. Bar charts represent projected leaf area (cm2) in four layers. The colors, black to yellow, indicate layered projected area from bottom-to-top layers.


Seedling plants, leafy plants with complex leaves, and plant organs were used to test the performance of the platform in other types of plants and other MVS reconstruction software. The MVS-Pheno V2 platform was used to obtain multi-view images. The open-source 3D reconstruction program integrated into MVS-Pheno V2 and ContextCapture software were used for 3D point cloud reconstruction. The reconstructed point clouds are shown in Figure 11. Good reconstruction point clouds with realistic colors were obtained, demonstrating that the platform was also applicable in other plants as long as the size of the plants is suitable. Moreover, the multi-view images acquired using this platform are available for other MVS reconstruction algorithms and software. The point clouds reconstructed using ContextCapture were optimized with fewer noise and seemed relatively clean. The point clouds obtained using open-source algorithms were with noises, but were relatively complete.


[image: Figure 11]
FIGURE 11
 Point cloud visualization of other plants and plant organs. The left ones were reconstructed using open-source 3D reconstruction program integrated into MVS-Pheno V2. The middle ones were reconstructed using ContextCapture software. The left and middle point clouds were visualized using vertex colors for each group, and the right ones were visualized using color differences along with the height direction of the middle point clouds.




Point cloud resolution and accuracy

The accuracy of the reconstructed point cloud was quantitatively evaluated by manually measuring plant height, leaf length, and width of wheat shoots. The plant height is an essential indicator of the scaling accuracy of reconstructed point clouds. The estimated plant heights of 36 sample shoots were compared with the manual measurement (Figure 12). The R2 and root mean squared error (RMSE) were 0.9991 and 0.6996 cm, respectively. The plant height error occurred in several shoots due to marker plate scaling error (Figure 9C). However, the overall performance of the extracted plant height was satisfactory. A 3D digitization data acquired using a 3D digitizer was used to estimate leaf length and width, which can be regarded as the ground truth in comparison (Wang et al., 2019). Due to the difficulty in realizing automatic leaf segmentation and recognition, corresponding tillers of the acquired digitizer data were found from the point cloud reconstructed using the platform, and the CloudCompare software was used to measure the maximum leaf length and width manually. Leaf width was measured at the widest part of each leaf. A total of 120 leaves randomly selected from upper, middle, and bottom positions among 36 sample plants were measured. The comparison results between the extracted values (measured manually using software) from the point clouds and estimated values from the 3D digitization data are shown in Figure 12. The R2 of the leaf length and width were 0.9949 and 0.9693, respectively. The RMSE of the leaf length and width were 0.4531 cm and 0.1174 cm, respectively. These results demonstrated that the reconstructed wheat plant using MVS-Pheno V2 platform had high accuracy and could retain leaf tip and edge features.


[image: Figure 12]
FIGURE 12
 Accuracy evaluation of the extracted plant height, leaf length, and leaf width. The extracted plant height was compared with the measured values. The measured leaf length and width values from the reconstructed point clouds and the estimated values from the 3D digitization data were compared. The estimated values were regarded as the basis for comparison.





Extracted phenotype analysis of wheat shoots

Phenotypes of 36 sample shoots were calculated (Figure 13). The FK had the shortest plant height at each growth stage. The JM had the longest plant height on 13 April 2021, while XN had the longest on 19 April 2021 (Figure 13). The compactness of each cultivar gradually increased with the growth process. Cultivar JM had the smallest compactness in the late growth stage, indicating that JM had a looser shoot architecture than other cultivars. The averaged leaf area was calculated based on the tiller numbers of each shoot to compare the tiller phenotypes (Table 1). Cultivar XN had the largest averaged leaf area while FN had the smallest averaged leaf area per tiller on 19 April 2021. These results indicated that XN had a larger leaf area than other cultivars in each tiller. Shoot convex volume and averaged leaf area per tiller increased with the plant growth. Figure 13 demonstrates that the platform is able to capture the phenotype differences among cultivars and individual plants.


[image: Figure 13]
FIGURE 13
 Estimated phenotypes of three wheat cultivars at four growth stages. Each cultivar had three samples. The estimated phenotypes include plant height, compactness, shoot convex volume, and averaged leaf area per tiller.


Each cultivar plants in different growth stages were not continuously measured using specific shoots because samples shoots were destructively transplanted from the field, leading to unsustainable increasing data in the averaged leaf area per tiller, such as FK-3, JM-1, and XN-3. The projected leaf area gradually increased with the growth process (Figure 10). The second layer was the largest, the first layer was close to the third layer, and the fourth layer was the smallest (from bottom to top). The FK had the smallest projected leaf area.




Discussion


Hardware improvement of MVS-Pheno platform

The miniaturized MVS-Pheno V2 platform was an improvement of the MVS-Pheno V1 (Wu et al., 2020) for small plants. The improvements were as follows: (1) Wireless communication and control were realized in the V2 platform; thus, signal and data cables in the V1 platform were removed, avoiding complex cable winding and improving the overall performance. (2) The V2 platform had the top mounted turntable structure for allowing complete separation of turntable and plants to be measured. As a result, the plants maintain the static state, avoiding movement during the collection process; thus, reducing the noise of the reconstructed point cloud, and the reconstructed point cloud can retain fine features such as leaf tip and edge. Besides, the change of hardware size reduces the space required by the platform. (3) Better light source control was realized in the V2 platform by setting up enclosure structure and light supplement module, ensuring consistent and even lights; thus, obtaining high-quality images. (4) The V2 platform had a suitable image background compared with the V1 platform. The enclosure cloth filters out the disordered background. It effectively prevents the moving background, such as the dynamic noise caused by people walking within the camera field of view during image acquisition. (5) The V2 platform had a more suitable calibration structure; thus, enhancing accuracy and robustness. In summary, the four elements of the MVS reconstruction system include even illumination, clear background, static plant, and sufficient image overlap. The MVS-Pheno V2 provides systematic a design based on these four aspects to ensure the high-resolution and high-precision acquisition of plant multi-view images.

Notably, the turntable adopts precision gear transportation to improve its rotation stability. Therefore, the V2 platform cannot be easily disassembled by non-professionals, reducing its portability.



Comparison with “camera to plant” methods and other types of 3D sensors

High-throughput 3D phenotyping of short plants is in high demand, and the “camera to plant” mode is commonly considered an effective and low-cost solution. Despite many efforts being made to achieve multi-view image acquisition (Rose et al., 2015; Hui et al., 2018), most of these methods are not automatic. The studies describing “camera to plant” have reported improved data acquisition efficiency. However, the hardware described in these studies seems to be prototype, and robustness and stability of these devices might not reliable (Nguyen et al., 2016; Cao et al., 2019). Besides the MVS-Pheno V1 platform (Wu et al., 2020), automatic control and data transformation were not considered in these studies. In contrast, MVS-Pheno V2 is highly automatic in data acquisition, and wireless control and data transformation are also involved in the system. Imaging environment, including light and airflow, are important factors for MVS-based 3D phenotyping. Although the imaging background and wind shelter were taken into account in Gao's research (Gao et al., 2021), the scenario was simply built to meet the basic demands of data acquisition. The MVS-Pheno V2 platform has light supplement and windshield modules, providing promising imaging environment.

The MVS-Pheno V2 platform was designed for low plant shoots; thus, the range was smaller than most 3D sensors. Because the point clouds were reconstructed using high-resolution images, the resolution and accuracy were satisfactory for plant phenotyping demands, and were better than Kinect and low-resolution LiDARs. The MVS-Pheno V2 platform was automatic; thus, easy for users to acquire and process data. Comparatively, other types of 3D sensors generally need to move around a target plant manually. The cost of the MVS-Pheno V2 platform was nearly 8,500 dollars, which was cost-effective compared with high-resolution 3D scanners, such as FARO Focus.



Improvement of data processing system

The data processing system of the MVS-Pheno V2 platform systematically integrates open-source libraries and realizes batch reconstruction of point clouds using multi-view images. Moreover, automatic point cloud calibration and phenotype extraction are also involved in the system. Consequently, an automatic data processing pipeline was established, which is essential for handling big data in plant phenomics (Zhang et al., 2017).

Point clouds generated using MVS reconstruction technology are unequally scaled under different data acquisition scenarios, even if the equipment and sensor positions remain unchanged and the positive direction of the reconstructed point cloud are inconsistent. Therefore, besides calibrating the point cloud scale, the calibration system should also correct the positive direction. Herein, the designed calibration system was robust and had satisfactory reconstruction accuracy, effectively ensuring automation for post-data processing. The extracted 3D phenotypes described in this study can also be achieved using existing methods. They were listed here to promise the integrity of MVS-Pheno V2, including hardware design and automatic data processing system. Unlike the data acquired using 3D digitizers (Zheng et al., 2022), the reconstructed point clouds of plants using MVS-Pheno V2 platform are unordered and without semantic information. Further point cloud feature extraction and analyzing algorithms should be developed to extract agronomy traits for next-stage applications.



Platform applicability and future improvements

The MVS-Pheno V2 platform has a limited imaging range and is unsuitable for tall and large plants described in the V1 platform (Wu et al., 2020). However, The V2 platform is more suitable for lower plants with or without branches or tillers and can also be used for plant organs, such as maize tassels, ears, and roots. The reconstructed point clouds of plant shoots were used to estimate 3D phenotyping characteristics such as leaf area, layered projected area, volume, and compactness. The MVS-Pheno V2 platform provides a low-cost and high-throughput solution for the 3D phenotyping of individual plants. Shielding affects plants with too compact tillers or a small group of plant population. Besides, the V2 platform cannot effectively reconstruct internal and lower leaves. Recovery of the missing points is also difficult for data acquired using LiDAR.

However, the platform needs some improvements in the future. For instance, the hardware should be made lighter and easier to disassemble to make the platform easier to deploy and save labor costs. Point cloud segmentation (Miao et al., 2021) and phenotype extraction algorithms for specific plant species should be developed.




Conclusion

A multi-view stereo reconstruction-based phenotyping platform MVS-Pheno V2 was developed for small plant shoots. The platform is composed of hardware and data processing system and can realize automatic and high-throughput data acquisition and phenotypes extraction. The hardware is a miniaturized equipment that needs small space to deploy. Controlled imaging condition is established to avoid light and wind affection and ensure image quality. Wireless communication and control were integrated to avoid cable twining. Data processing system includes 3D point cloud reconstruction using multi-view images, point cloud calibration that returned the point cloud to plant real size, and 3D phenotype extraction model. MVS-Pheno V2 is applicable for wheat, rice, leafy vegetables, plants at the seeding stage, and plant organs. The R2 was 0.9991, 0.9949, and 0.9693 for plant height, leaf length, and leaf width, respectively. The RMSE was 0.6996 cm, 0.4531 cm, and 0.1174 cm for plant height, leaf length, and leaf width. These results demonstrating the point cloud quality is satisfactory for wheat phenotypes measurement.
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Panicle number is directly related to rice yield, so panicle detection and counting has always been one of the most important scientific research topics. Panicle counting is a challenging task due to many factors such as high density, high occlusion, and large variation in size, shape, posture et.al. Deep learning provides state-of-the-art performance in object detection and counting. Generally, the large images need to be resized to fit for the video memory. However, small panicles would be missed if the image size of the original field rice image is extremely large. In this paper, we proposed a rice panicle detection and counting method based on deep learning which was especially designed for detecting rice panicles in rice field images with large image size. Different object detectors were compared and YOLOv5 was selected with MAPE of 3.44% and accuracy of 92.77%. Specifically, we proposed a new method for removing repeated detections and proved that the method outperformed the existing NMS methods. The proposed method was proved to be robust and accurate for counting panicles in field rice images of different illumination, rice accessions, and image input size. Also, the proposed method performed well on UAV images. In addition, an open-access and user-friendly web portal was developed for rice researchers to use the proposed method conveniently.
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Introduction

Rice is one of the important cereal crops in the world, especially in Asia. The yield of cereal crops is related to the number of panicles per square meter, grains per panicle and grain size (Slafer et al., 2014; Lu et al., 2015; Ferrante et al., 2017; Jin et al., 2017). Thus, in order to predict the yield of rice, panicle count is an appropriate method. However, manual counting has the defects of high labor cost, time consuming and error-prone. Also, for yield prediction, studies tend to process infield large size images (Fiorani and Schurr, 2013). It is necessary to develop a method to count panicles fast, accurately and automatically for filed images.

However, automatic panicle count is an enormous challenge. For panicle detection, complexity of the field environment can bring many difficulties, which is shown in Figure 1, such as different size, different shape, different posture, serious occlusion, different illumination and water refection. With the development of artificial intelligence and machine vision technology, many studies used machines to count the number of fruits for crop yield prediction, such as cotton (Singh et al., 2021), corn (Khaki et al., 2021), sugar-beet (Barreto et al., 2021), citrus (Dorj et al., 2017) and so on. For counting, the current studies for cereal panicle count can be mainly divided into three categories: image segmentation, object detection and counting directly through regressing network.


[image: image]

FIGURE 1
Challenges in rice panicle detection. (A) Different size. (B) Different shape. (C) Different posture. (D) Occlusion. (E) Different illumination. (F) Water reflection.


Image segmentation segments the panicles based on the phenotypic characteristics, such as color and texture. Combined with the counting method, the number of panicles can be counted. Xiong et al. (2017) proposed an algorithm to segment panicles based on superpixel regions generation, CNN and superpixel optimization and the F-measure was 76.73%. Hayat et al. (2020) proposed an algorithm for rice panicle segmentation based on unsupervised Bayesian learning and the mean F1 score was 82.10%. Ma et al. (2020) proposed EarSegNet based on semantic segmentation for winter wheat ears segmentation and the F1 score was 87.25%. Yang et al. (2020) used FPN-Mask model to segment panicles during grain filling stage and the pixel accuracy was 0.99. Misra et al. (2020) proposed SpikeSegNet for wheat spike detection and counting and the average accuracy for spike counting was 95%. Wang et al. (2020) proposed an algorithm using 3D point cloud to obtain agricultural crop dimensions, which was suitable for panicle count at high density. However, this method was designed for indoor images and could not be directly generalized to field. Besides panicle number, panicle shape, size, position and color et al. can also be obtained after panicle segmentation, which is convenient for further phenotypic analysis. However, the accuracy of the counting is largely dependent on the accuracy of panicle segmentation. When the rice panicles occluded with each other, it is hard to separate the panicles. And panicle segmentation needs to be combined with the counting method to obtain the panicle number, which would lead to error accumulation.

Object detection is a common method for counting by detecting and drawing bounding boxes. Besides panicle number, object detection can also obtain information about panicle size and position. Ji et al. (2021) proposed a detection method, which contained light saturation correction and Itti saliency-based system for candidate areas detection and combined with feature extraction and the usage of LS-SVM classifier for elimination of false. The F1 score of this method was 88.36%. However, without deep learning, this method might be limited for directly used in other applications due to comparably insufficient learning ability. In the research of object detection using deep learning, some of the studies directly resized the images due to the need of the deep learning networks. Zhou et al. (2019) proposed an improved R-FCN for rice panicle detection and the F-measure was 87.4%. Yang et al. (2021) proposed an improved YOLOv4 for detection of wheat spikes and the accuracy of the wheat spikes with different density distributions was 94%, 96.04% and 93.11%. However, the above two algorithms directly resized the images before feeding to the model, which might lead to lots of missing of the small panicles as the size of the small panicles would be largely decreased or even disappeared after resize when the original image size was large.

Using object detection for counting panicles in images with large image size, sliding window and image cutting are two commonly used methods. However, repeated detections between the adjacent sub-images bring new challenges. Desai et al. (2019) used a sliding window to detect the flowering regions based deep learning. However, this method counted the regions containing panicles to predict the panicle number, which was not suitable for the situation of dense growth and different sizes of rice panicles. Xu et al. (2020) proposed an algorithm namely multi-scale hybrid window panicle detect (MHW-PD) for rice panicle count. For images with large number of panicles, this algorithm cut the images into sub-images without overlapping and detected the sub-images based on convolutional neural network. If the two bounding boxes in the adjacent sub-images were close and the sum of the area of the two boxes was close to the average size of a panicle, the two boxes would be merged. This algorithm was not suitable for the panicles with different sizes. In addition, the author mentioned that for more dense and occluded rice panicles, the accuracy of the method was reduced and it would cause more miss-detection. For images with 71-80 panicles, the counting accuracy of this algorithm was 86.7%. Lyu et al. (2021) also split the large size images into small tiles and used the DBSCAN algorithm to remove the repeated detections. The average error of this counting method was 33.98%.

Counting directly through regressing network was another commonly used method for object counting. Lu et al. (2017) proposed a regressing network, TasselNet to count tassels directly. However, this method might be less robust in the later growth stage than object detector (Madec et al., 2019). TasselNetV2 and TasselNetV2 + was subsequently proposed by the same research group to improve the counting accuracy and efficiency (Xiong et al., 2019; Lu and Cao, 2020). Compared with other deep convolution neural networks, TasselNetV2 + reduced the use of the video memory and would be able to analyze large size images efficiently. Similarly, Khaki et al. (2022) proposed WheatNet for wheat head counting and its overall prediction error was 8.7%. One disadvantage of the counting directly through regressing network method was that this method can only obtain the panicle number. Thus, it was difficult to make a more specific analysis of the phenotype of panicles after counting.

The size of panicles varies greatly even in the same plot. Some panicles would be extremely small (for instance, blue boxes in Figure 2). If the original large size image was directly resized before feeding to the detection network, small panicles would be missed in detection.


[image: image]

FIGURE 2
Example of rice field image. The size of rice panicles varies greatly. Red boxes show examples of large panicles and blue boxes show examples of small panicles.


To detect and count panicles in rice field images with large image size, an algorithm based on deep learning was proposed in this paper. Firstly, an original high-resolution image was cut into several sub-images in an overlapping manner to ensure that a panicle would be appeared completely in at least one sub-image. Then, the sub-images were fed into the panicle detection networks and the detection results were merged to get the detection result. Three object detectors, namely YOLOv3, YOLOv5 and Faster R-CNN, were used and compared in this study. The repeated detections in the overlapping area of adjacent sub-images were then removed using two indicators. To validate the proposed algorithm, panicle detection for field rice images taken by ground-based imaging system with different illumination, rice accessions and spatial resolution were tested. To further investigate the robustness of the proposed method, panicle detection for field rice images taken by UAV was also tested.



Materials and methods


Rice cultivation and image acquisition

In this study, the experimental paddy field was located in Wuhan, Hubei province, China (30.5N, 114.3E). Rice (O. sativa) seeds were sown and germinated during the summer of 2017. Each field plot (96 × 80 cm2) had 20 rice plants of the same accessions, which were planted in 5 rows and 4 columns. The spacing between each plant was 16 × 16 cm2 and the spacing between each plot was 32 cm. Considered the edge effect, a guard row of rice plants was planted on the boundary between two adjacent plots. Rice plants in different plots belonged to different accessions. In total, 104 rice accessions were used for training and testing in this work. All these accessions come from core germplasm resources of Japonica rice in China. The names of the 104 rice accessions are listed in Supplementary Table 1. The panicle number of each field plot varied from 75 to 190. For each plot, the top-view image was acquired. A ground-based imaging bracket was used to obtain rice plot images. The camera (Canon EOS 760D, 18 mm focal length lens, 6000 × 4000 pixels) were mounted at the top of the imaging bracket. Wireless shutter was used to trigger the camera to take images when the imaging bracket moved manually in the paddy field.



Main flow of rice panicle detection algorithm

The rice panicle detection algorithm included off-line training and on-line detection (Figure 3).
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FIGURE 3
The flow diagram of the panicle detection algorithm. (A) Original high-resolution image. (B) Cutting into sub-images in an overlapping manner. (C) Sub-images. (D) Manual annotation and data augmentation. (E) Panicle detection model generation. (F) Testing sample. (G) Cutting the testing sample into sub-images in an overlapping manner. (H) Feeding the testing sub-images into the Panicle detection model. (I) Panicle detection results of the sub-images. (J) Panicle detection result after merging the detection results of the sub-images. (K) The final detection results of the original image after deleting the repeated detections in the overlapping area of the adjacent sub-images.


In total, 104 field-rice images (each image belonged to a different accession) with a resolution of 6000 × 4000 was used for training and testing our panicle detection algorithm. The 104 images were randomly split into 2 sets: 67 images for training and 37 images for testing.

The off-line training mainly contained 3 steps: (1) The original training images were divided into sub-images of appropriate size using sliding windows in an overlapping manner (Figure 3C). (2) The sub-images were annotated using the software, LableImg (Figure 3D); (3) The data was augmented and the PanicleDetect model was trained (Figure 3E).

The on-line detection stage mainly included 4 steps: (1) An original testing image was divided into sub-images of appropriate size using sliding windows in an overlapping manner (Figure 3C); (2) All sub-images corresponding to the original image were fed into the pre-trained PanicleDetect model (Figure 3H); (3) The detection results of the sub-images (Figure 3I) were merged (Figure 3J); (4) Repeated detections in the overlapping areas of the adjacent sub-images were deleted (Figure 3K).

An open-access and user-friendly web portal1 was developed for rice researchers to use the proposed method conveniently. The detailed operation of the website is illustrated in Supplementary Video 1. Users can upload a single image or multiple images at a time. Detection results including the resultant images and a text file recording the panicle number at each image can be downloaded.



Training of the PanicleDetect model

From the collected 104 images, 67 images were randomly selected and each original image were divided into sub-images using sliding windows in an overlapping manner. The overlapping size (stride) was determined by the average size of the large panicles to ensure that most of the panicles appeared completely in at least one sub-image. And the size of the sub-image was determined by the panicle size, the selected network and the video memory. In this study, the size of sub-image was set as 1056 × 1056 and the stride was set as 756. Therefore, each field rice image was divided into 40 sub-images. In total, 67 × 40 = 2680 sub-images were obtained for training the PanicleDetect model. Then we randomly selected 2144 images for training and 536 images for validation from the 2680 sub-images in an 8:2 ratio.

The PanicleDetect model was built based on YOLOv5x. YOLOv5x is a fully convoluted network. In the structure of backbone of YOLOv5x, the input image needs to be down-sampled for 5 times, and each down-sampling reduces the image size by half. Therefore, the input image size should be a multiple of 32. In this study, all the sub-images were resized to 416 × 416 pixels before feeding to YOLOv5x.

During training of the object detector, the data was augmented using image resizing, image blurring, image flipping and rotating, and transformation of hue, saturation and value. The training was run on the Windows 10 operating system (16-core i7 CPU, 2.5 GHz per CPU core, 16GB of memory, and an NVIDIA GeForce RTX 2070 super graphics card). The network was pre-trained on the COCO-Train2017 dataset, and the generated weight file was loaded as the initial weight. SGD optimizer (Song et al., 2013) was used in the training and the momentum (He et al., 2019) was set to 0.937. The training of model was divided into two stages, each of which trained for 50 epochs. At the first stage, the parameters of the backbone of YOLOv5x were frozen. And at the second stage, all the parameters of YOLOv5x were trained.



Removing the repeated detections in the overlapping areas

The specific processing steps of removing the repeated detections are illustrated in Figure 4. There were two types of overlapping boxes: overlapped panicles that should be retained (Figure 5A) and repeated detections that should be removed (Figure 5B).
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FIGURE 4
The specific processing steps of deleting the repeated detections. (A) Repeated detections in the overlapping area of two adjacent sub-images. (B) Merging results directly. (C) Deleting the repeated detections in two adjacent sub-images.
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FIGURE 5
Examples of two overlapping situations. (A) high density panicles (1,2,3) that should be retained. (B) Repeated detection (4,5) that should be deleted.


Non-maximum suppression (NMS) method using Intersection over Union (IOU) was the most widely used method to quantify and remove the overlapping detection boxes. Furthermore, methods similar to NMS for removing overlapping results have also been proposed, such as GIOU (Rezatofighi et al., 2019) and DIOU (Zheng et al., 2019). The definitions of IOU, GIOU and DIOU are provided in Eqs. (1)–(3).
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where Ac is the smallest enclosing box area, ρ is the Euclidean distance between the center points of two boxes, and c is the diagonal length of the smallest enclosing box.

When the areas of the overlapping boxes were similar, NMS methods can remove the repeated boxes correctly. However, when the areas of the overlapping boxes varied greatly, the union between overlapping boxes was very close to the bigger box, so some NMS methods may not work. In this work, the original large size rice image was divided into small sub-images in an overlapping manner. A panicle would appear in several sub-images. And a small part of a panicle may appear in one sub-image while the complete panicle appears in another sub-image. Therefore, the areas of the overlapping boxes of the repeated detections would vary greatly. In this case, the NMS methods may not be suitable. To remove the repeated detections while retain the overlapped panicles, two parameters, namely IOB and BOU (defined by Equation 4 and 5), were introduced in this manuscript to quantify the overlapping mode and degree between two overlapping boxes. If IOB > threshold of IOB and BOU > threshold of BOU, the bounding box which had a smaller area in two overlapping boxes was removed.
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where Boxsmaller is the box with the smaller area of the two overlapping boxes and Boxbigger is the box with the bigger area of the two overlapping boxes.



Performance evaluation using 6 indicators

In order to test the detection algorithm, 37 rice field images were selected. Six indicators, including the mean absolute percentage error (MAPE), Precision, Recall, F-measured, coefficient of determination (R2) and Accuracy were adopted to evaluate the performance of the detection. Among them, MAPE and Accuracy were used to evaluate the detection accuracy of the algorithm. The lower the MAPE and the higher the Accuracy, the more accurate the detection is.

Precision represents that how many panicles detected by the algorithm are ground-truth annotations. And Recall illustrates that among all the panicles identified by the human experts, how many panicles are detected by the algorithm. In practice, Precision and Recall interact with each other, so we need to balance these two indicators. F-measure was used to evaluate the detection performance in a more comprehensive way. A high F-measure value means that the rice panicle detection algorithm has a good performance. In addition, the coefficient of determination (R2) was used to test the fitting degree of machine counting results versus manual counting results. The definition of MAPE, Precision, Recall, F-measure and Accuracy are provided in Eqs. (6)–(10).
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Where n is the number of the test images, yi is the panicle number calculated manually, and yi is the panicle number calculated by our algorithm. TP, TN, FP, and FN represent the numbers of true positive, true negative, false positive, and false negative, respectively. In this paper, the true positive (TP) is the number of bounding boxes which detect the rice panicles correctly. The true negative (TN) is always considered to be zero because background is not determined for object detection in this study. The false positive (FP) is the number of bounding boxes which detected backgrounds falsely as rice panicles. The false negative (FN) is the number of ground truth rice panicles which are not detected by the algorithm.



Robustness evaluation of the PanicleDetect model

To evaluate the robustness of the PanicleDetect model to different rice accessions and illumination, 37 field rice images belonging to 37 different rice accessions were tested for panicle detection. In addition, the illumination of the different images varied due to the outdoor environment.

In order to improve the robustness of the model, the height and width of the input images were randomly scaled in data augmentation at the training stage. To evaluate the robustness of the model to different image size and spatial resolution, the sub-images (1056 × 1056) of the test images were resized to 256 × 256, 416 × 416, 608 × 608, 800 × 800 and 1056 × 1056, respectively, in the testing stage. Subsequently, the sub-images were detected by the model trained with sub-images of 416 × 416 pixels.

To further investigate the universality of the proposed method, panicle detection for field rice images taken by UAV was also tested. The tested UAV images were taken by the camera (FUJIFILM GFX 100 camera, 63 mm focal length lens) installed on the UAV platform (DJI M600 Pro, 20 m flight altitude, 1 m/s flight speed). Before detecting, the height and width of the test images were magnified 3.5 times because of the huge differences in spatial resolution between the UAV images and the training set. The spatial resolution of the UAV images was about 2mm per pixel while the spatial resolution of the training images was about 0.2 mm per pixel.



Comparison with other methods for panicle counting

Panicle-SEG (Xiong et al., 2017) was an algorithm for rice panicle segmentation. Combining Panicle-SEG with an appropriate image processing method, the number of the panicles in the image can be obtained by counting the connected components. For the binary images obtained by Panicle-SEG, opening and closing operations with a 5 × 5-size kernel was performed to remove noise and separate occluded rice panicles. Then the number and area of connected components were obtained. In order to deal with the occluded rice panicles, the median area of the connected components in each image was calculated. If the area of a component was larger than twice of the median area, the component’s area would be divided by the median area and then round up to an integer, which was regarded as the number of rice panicles corresponding to the component. For other connected components, each one was regarded as one rice panicle. The panicle number for each image was then computed.

MHW-PD (Xu et al., 2020) was an advanced algorithm for rice panicle count and was similar to the proposed method. In comparison, this paper calculated the mean counting accuracy in their manner (Xu et al., 2020), which is shown in Eq. (11).
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where Pc is the counting accuracy, Ncor is the correct (true positive) number of rice panicles detected by the model and Nreal is the actual number of the rice panicles in the test set.




Results and discussion

We tested the proposed panicle detection algorithm using 37 field rice images. Each rice image belonged to a different accession. Convolution neural network, YOLOv5x was trained for panicle detection. The results of YOLOv5x are shown in Figure 6. The mean values of the MAPE, Precision, Recall, F-measure, R2 and Accuracy were 3.44%, 96.24%, 95.81%, 95.98%, 0.96, and 92.77%, respectively.
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FIGURE 6
Performance of the PanicleDetect model.



Comparison of different object detection models for panicle counting

Four object detection models: YOLOv3 (Redmon and Farhadi, 2018), YOLOv5l, YOLOv5x and Faster R-CNN (Ren et al., 2017) were tested and compared for panicle counting (Table 1). The average time consumption for detecting one sub-image was also computed. The detection was run on the same environment as training.


TABLE 1    Comparison of different object detectors for panicle counting.
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The results showed that the proposed counting method had good adaptability to different object detection networks. Furthermore, YOLOv5x and Faster R-CNN outperformed the other two networks. Considering the detection efficiency, YOLOv5x was selected as the optimal network for the PanicleDetect algorithm.



Comparison of different methods for removing repeated detections in the adjacent sub-images

The proposed method using IOB and BOU was compared with the NMS IOU, GIOU and DIOU methods for removing the repeated detections. Six indicators were used to evaluate the results. The results are shown in Table 2. The results showed that the overall performance of the proposed method was better than other methods. The main reason for why the proposed method outperformed the other methods is presented in Figure 7. When the areas of the overlapping boxes were similar, high overlapping degree of the boxes would lead to high IOU, GIOU, DIOU, IOB and BOU, so all the 4 methods can remove the repeated boxes correctly (Figure 7A). However, when the areas of the overlapping boxes varied greatly, even if the overlapping degree of the boxes were very high, for instance, one box completely covered the other box, the IOU, GIOU and DIOU would be also low. In contrast, the IOB and BOU would still be high. In this case, the repeated boxes might be kept by the other methods, but be removed by the proposed method (Figures 7B–D). Thus, the proposed method used IOB and BOU performed better than the other methods.


TABLE 2    Evaluation of detection results of different methods.
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FIGURE 7
Detection results of rice image processed by the proposed method and other methods. (A) The areas of the overlapping boxes were similar. (B–D) The areas of the overlapping boxes varied greatly. In the detection results, green boxes are correct bounding boxes and red boxes are FP boxes.




Detection results under different rice accessions and illumination environments

The appearance of rice panicles varies greatly among different rice accessions. For example, the panicles were thick and straight in Figure 8A short and small in Figure 8B, and loose, bent and long in Figure 8C. In addition, the large growth density would cause occlusion between panicles or between leaves and panicles. Results showed that the proposed method was robust for detecting panicles of different rice accessions.
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FIGURE 8
Examples of rice field images with different rice accessions. (A) Thick and straight. (B) Short and small. (C) Loose, bent and long. In the detection results, green boxes are correct bounding boxes; white boxes are FN boxes; red boxes are FP boxes.


The illumination of the different images varied due to the outdoor environment. Therefore, it was important for the model to accurately detect images under different illumination conditions. As illustrated in Figure 9, for the high brightness image (Figure 9A), the FP is 3 and the FN is 4. In the image of medium brightness (Figure 9B), the FP was 1 and the FN was 3. In the image of low brightness (Figure 9C), the FP was 2 and the FN was 12. From the results, the model performed best for medium brightness image detection. And the model was robust to the images with different brightness. Specially, for images with extremely low brightness, such as Figure 9C, manual annotation was error-prone, labor-intensive and inefficient. However, the proposed algorithm performed well.
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FIGURE 9
Examples of rice field images with different illumination. (A) High brightness. (B) Medium brightness. (C) Low brightness. In the detection results, green boxes are correct bounding boxes; white boxes are FN boxes; red boxes are FP boxes.




Panicle detection of images with different image size and spatial resolution

Different devices and methods are used for capturing rice field images, which may cause differences in spatial resolution. Therefore, it is important that the proposed counting algorithm is robust for the images with different spatial resolution. Table 3 shows the performance of the PanicleDetect model with different input size/spatial resolution. The results showed that, enlarging or reducing the size of the input image by nearly twice, the MAPE of the model detection results could be kept within 5%, meaning that the proposed algorithm was robust to different spatial resolution.


TABLE 3    Comparison of the different input size/spatial resolution for the PanicleDetect model.
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Panicle detection of the field images taken by unmanned aerial vehicle

Using UAV to capture the rice field images is convenient and efficient. Thus, it is meaningful that the proposed algorithm can detect the panicles accurately in the field images taken by UAV. But the images taken by UAV may have the problems of low-resolution or defocus blur, which will bring challenges to rice panicle detection. The PanicleDetect model was trained using data augmentation with image blur, so the model was more robust for this situation. Figure 10 shows the detection results of two representative images with about 1000 × 1000 pixels taken by UAV. The results showed that, the proposed algorithm had a relatively high accuracy for counting panicles in UAV images.
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FIGURE 10
Detection results of field images taken by UAV. In the detection results, green boxes are correct bounding boxes; white boxes are FN boxes; red boxes are FP boxes.




Comparison with other methods for panicle counting

Panicle-SEG (Xiong et al., 2017) was an algorithm for rice panicle segmentation. Combining Panicle-SEG with an appropriate image processing method, the number of the panicles in the image can be obtained by counting the connected components. The counting method was described in detail in the method section. The same testing set was used to evaluate the performance of panicle counting using segmentation method, and the mean values of the MAPE, Precision, Recall, F-measure, R2 and Accuracy were 13.59%, 79.39%, 80.66%, 79.49%, 0.68, and 71.79%, respectively. This counting method has difficulty in dealing with the occluded rice panicles and rice panicles with different sizes. Therefore, the accuracy of this method was relatively low.

MHW-PD (Xu et al., 2020) was an advanced algorithm for rice panicle count and was similar to the proposed method. Specifically, this algorithm firstly cut the images into sub-images without overlapping, then detected the panicles in the sub-images using Faster R-CNN and fused the results. The panicle count accuracy of MHW-PD achieved about 93% for images with 0∼30 panicles per image, and about 87% for images with 31∼80 panicles per image. In comparison, this paper calculated the mean counting accuracy in their manner. The results showed that the proposed method reached an accuracy of 95.81% for images with 75∼190 panicles per image. In conclusion, the proposed method is able to process images with much higher number of rice panicles, and can maintain a higher accuracy.




Conclusion

It is challenging and meaningful to accurately measure panicle number in the field. This paper proposed a rice panicle counting algorithm that are especially designed for field images with extremely large image size. Instead of greatly resizing or cutting images without overlapping, small panicles can be preserved intact in the images. This algorithm enables the object detect networks, which were designed for input of relatively small image size, to detect small objects in large images. For field images of 6000 × 4000 pixels with an average of 140 panicles per image, the MAPE of this algorithm was 3.44%. The proposed method was proved to be robust and accurate for counting panicle in field rice images of different illumination, rice accessions, and spatial resolution. The proposed method also performed well on UAV images. One limitation for this work is that the proposed method was only tested at a single planting density, which was slightly higher than the typical planting density used for rice cultivation. Panicle detection at different planting densities will be tested in our future work. Generally, the method was robust and especially useful for panicle detection of extremely large images. In addition, this algorithm can be visited online so the researchers can use the algorithm to get panicle numbers conveniently.
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The primary task in calculating the tobacco shred blending ratio is identifying the four tobacco shred types: expanded tobacco silk, cut stem, tobacco silk, and reconstituted tobacco shred. The classification precision directly affects the subsequent determination of tobacco shred components. However, the tobacco shred types, especially expanded tobacco silk and tobacco silk, have no apparent differences in macro-scale characteristics. The tobacco shreds have small size and irregular shape characteristics, creating significant challenges in their recognition and classification based on machine vision. This study provides a complete set of solutions aimed at this problem for screening tobacco shred samples, taking images, image preprocessing, establishing datasets, and identifying types. A block threshold binarization method is used for image preprocessing. Parameter setting and method performance are researched to obtain the maximum number of complete samples with acceptable execution time. ResNet50 is used as the primary classification and recognition network structure. By increasing the multi-scale structure and optimizing the number of blocks and loss function, a new tobacco shred image classification method is proposed based on the MS-X-ResNet (Multi-Scale-X-ResNet) network. Specifically, the MS-ResNet network is obtained by fusing the multi-scale Stage 3 low-dimensional and Stage 4 high-dimensional features to reduce the overfitting risk. The number of blocks in Stages 1–4 are adjusted from the original 3:4:6:3 to 3:4:N:3 (A-ResNet) and 3:3:N:3 (B-ResNet) to obtain the X-ResNet network, which improves the model’s classification performance with lower complexity. The focal loss function is selected to reduce the impact of identification difficulty for different sample types on the network and improve its performance. The experimental results show that the final classification accuracy of the network on a tobacco shred dataset is 96.56%. The image recognition of a single tobacco shred requires 103 ms, achieving high classification accuracy and efficiency. The image preprocessing and deep learning algorithms for tobacco shred classification and identification proposed in this study provide a new implementation approach for the actual production and quality detection of tobacco and a new way for online real-time type identification of other agricultural products.
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tobacco shred, image preprocessing, deep learning, classification model, residual neural network, block threshold binarization


Introduction

China is a significant producer and consumer of tobacco and related products. In 2019, the total import and export value of China’s tobacco and associated products reached US$3.325 billion. In China’s tobacco and associated products, cigarettes’ export value is 705.4 million US dollars, accounting for 49.68% of tobacco and related products (Beijing, China; National Bureau of Statistics, 2020). The WHO Framework Convention on Tobacco Control (FCTC) implements guidelines for Articles 9 (Regulation of the contents of tobacco products) and 10 (Provisions for tobacco product disclosure) that require manufacturers and importers of tobacco products to disclose to government authorities the composition of tobacco products, including the type of tobacco shred and the blending ratio of each kind of tobacco shred (Acuña A, 2017). Tobacco manufacturers are also required to have the equipment and methods to detect and measure tobacco shred components. The blending amount of the expanded tobacco silk, cut stem, tobacco silk, and reconstituted tobacco shred in cigarettes influences the smoke characteristics, physical indicators, and sensory quality of cigarettes. Therefore, the realization of high-precision and high-efficiency identification of tobacco shred types is of great significance for identifying the authenticity of tobacco products, exploring formula design, and ensuring the quality of the tobacco blending process and the consistency of similar products.

In recent years, deep learning has provided advanced and efficient solutions for image processing tasks, such as image classification (Atila et al., 2021), image segmentation (Kang et al., 2020), and object detection (Janai et al., 2020). Its excellent feature extraction ability greatly reduces the workload of image processing tasks (Shao et al., 2017; Xiao Q. et al., 2019; Afonso et al., 2020). In view of the differences in the application objects, researchers mostly adjust the network structure according to the practical problems (Buiu et al., 2020; Liu et al., 2021; Gu et al., 2021).

In various detection tasks in agriculture, deep learning combined with machine vision has been widely used in plant disease and pest identification, such as wheat blast image classification (Fernández-Campos et al., 2021), rice disease and insect pest image classification (Yang et al., 2021), plant leaf disease classification (Gupta, 2017); plant variety identification, such as vegetable and fruit classification (Zhu et al., 2018; Steinbrener et al., 2019), rapeseed variety classification (Jung et al., 2021); crop quality detection, such as corn seed defect detection (Wang et al., 2022); fruit crop rapid sorting system research, such as citrus online sorting system(Chen et al., 2021), and so on.

With the development and maturity of deep learning technology in agricultural inspection tasks, deep learning research combined with machine vision in the identification and quality inspection of tobacco and its products is also rapidly heating up. Jiao et al. (2022) proposed a tobacco leaf grade recognition method based on a convolutional neural network. This method enhances 1,498 tobacco leaf images of 41 grades to 4,494 for testing, and the final classification accuracy on the test set reaches 95.89%. Lu et al. (2022) proposed a classification method of flue-cured tobacco leaves based on deep learning and multi-scale feature fusion. The process tested a total of 6,068 tobacco leaf images in 7 grades. The final classification accuracy rate is 80.14%. He et al. (2018) proposed an algorithm based on fuzzy pattern recognition. The method classifies the tobacco leaf samples by extracting the appearance features of tobacco leaves. The final accuracy on the training and test sets is 85.81 and 80.23%, respectively. Lu et al. (2021) proposed a tobacco leaf classification method combining a convolutional neural network and a double-branch integral. The technique selected 2,791 flue-cured tobacco leaves of 8 different grades as research samples, and the final tobacco leaf classification accuracy was 91.30%.

There are many related studies on tobacco leaf grading, and they are relatively mature. However, due to the difficulty of obtaining tobacco shred samples, small size, and slight morphological differences, the research on image classification is still lacking. The identification methods of tobacco shred types mainly include manual sorting, near-infrared spectroscopy, and computer vision analysis. The manual sorting method is that experienced workers identify and then complete the sorting work manually. The efficiency of this method is low and the classification accuracy fluctuates significantly due to the influence of artificial subjective experience. The quantification and detection accuracy of indicators cannot be guaranteed. Near-infrared spectroscopy (NIR) detects the spectral information of tobacco shreds to determine the spectral difference and analyze the type of tobacco shred. Since the raw material of reconstituted tobacco shred contains fine tobacco slag, tobacco stems, etc., its spectral information is less different from other types, and the identification error is significant (Jennife, 1999; Liu et al., 2006; Hu et al., 2010; Zhang et al., 2020).

The recognition method based on machine vision completes the type of tobacco shred by analyzing the image features. Dong et al. (2015, 2016a,2016b) proposed a patent for an identification method for establishing a corresponding tobacco shred feature database for different tobacco shred types. This method shows a feature database by extracting the RGB and HSV color space pixel variance values and texture feature values of contrast, entropy, and correlation in the tobacco shred image. Finally, it determines the tobacco shred type based on the correlation threshold of the feature. Gao et al. (2017) proposed a method for identifying the material composition of the tobacco shred based on the LeNet-5 network. This method proves that the macroscopic structure of the tobacco shred is different by analyzing the visible characteristics such as duty cycle, perimeter ratio, and uniformity of tobacco shred. The author cropped the four types of tobacco shred images to a large size to obtain a small picture of 52 × 52 pixels. There are 100 initial tobacco shred images, and 29,208 tobacco shred images are obtained after cropping. The model is trained and tested on the tobacco shred dataset, and the recognition accuracy rates on the training and test samples are 100 and 84.95%, respectively. Zhong et al. (2021) proposed a method for identifying tobacco shred types based on residual neural networks and transfer learning simultaneously. The original dataset used by the author contains a total of 400 images of expanded tobacco silk, cut stem, tobacco silk, and reconstituted tobacco shred. The accuracy rate of the test sample is 97.62%. After data enhancement of the initial dataset, there are 7,832 images with 4 types, and the recognition accuracy of test samples is 98.05%.

In a previously published research, the number of samples in the original tobacco shred dataset was small (100 by Gao et al., 2017 and 400 by Zhong et al., 2021). The high recognition accuracy obtained in these research works is because the sample directly occupies the entire shooting field of view when shooting, and an image with more uniform brightness and more obvious sample characteristics is obtained. In addition, more image samples are obtained by augmenting the original dataset. This method is challenging to apply to composition determination in the field because it cannot place more tobacco shred samples in the shooting field of view and can only be detected by a single piece. The change in shooting field size must be accompanied by the scaling of the tobacco shred image. The difference in features, such as size and brightness, poses a more significant challenge to the model’s generalizability. The original dataset of this method also has fewer samples, and the model has a greater risk of overfitting and may have specificity.

This study mainly aims at the online real-time identification and classification of tobacco shred types and their actual production use in the field. It proposes an overall image processing and classification scheme that realizes the efficient and accurate identification of different tobacco shred types. The main contributions of this study are as follows:


1.A block threshold binarization method for the tobacco shred image is designed. The tobacco shred image is segmented through contour extracting and region of interest (ROI) area cropping. The complete tobacco shred image is then obtained by expanding the ROI area. A dataset containing 8,202 original tobacco shred images is established, effectively avoiding overfitting and specificity.

2.The ResNet50 network is selected as the prominent network architecture and the MS-X-ResNet network is constructed. The constructed network achieves an accuracy of 96.65% on the tobacco shred dataset, outperforming other similar deep learning methods.

3.The focal loss function is introduced to alleviate the influence of different degrees of tobacco shred identification difficulty on the model, effectively improving its accuracy and stability.





Materials and methods

This study performs image acquisition, processing, segmentation, dataset establishment, and model building for four tobacco shred types. This section explains all materials and methods in detail, and the research flow chart is shown in Figure 1.


[image: image]

FIGURE 1
Research flow chart.



Materials

Each cigarette contains four tobacco shred types: expanded tobacco silk, cut stem, tobacco silk, and reconstituted tobacco shred. This study’s samples containing the four tobacco shred types came from the Zhengzhou Tobacco Research Institute of the China National Tobacco Corporation. Figures 2A–D are images of the four unscreened tobacco shred types. The JJSY30x10 circular inspection flat screen produced by Shanghai Jiading Cereals and Oils Instrument Co., Ltd. is used to filter the tobacco shred residues. The sieve surface is 20 mesh (0.9 mm), and a flat sieve is used for 10 s each time. Figures 2E–H shows the tobacco shred images after sifting the residues. Through screening, 2,200 pieces of each of the four types of tobacco shred were obtained, resulting in a total of 8,800 samples.
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FIGURE 2
The original images are (A) expanded tobacco silk, (B) cut stem, (C) tobacco silk, and (D) reconstituted tobacco shred. Images of tobacco shred after sifting are (E) expanded tobacco silk, (F) cut stem, (G) tobacco silk, and (H) reconstituted tobacco shred.




Image acquisition

An image acquisition darkroom with a ring light source was designed to obtain higher quality tobacco shred images. Figure 3 is a physical map of the image acquisition system. The housing size of the image acquisition system is 60 cm × 60 cm × 60 cm, and a black light-absorbing cloth is used outside to prevent interference from external light sources. The camera and the light source are fixed on the support bracket. A Hikvision MV-CE100-30GC 10-megapixel color industrial camera is equipped with a Hikvision MVL-HF1224M-10MP 12 mm focal length industrial lens. The background for the tobacco shot was a standard white balance card to ensure quality.


[image: image]

FIGURE 3
Image acquisition platform.


The official MVS software provided by Hikvision was used for image acquisition. The exposure time was 1/100 s, the sRGB model was selected for gamma correction, and the automatic white balance was turned on. A Huakang Technology 120-80-25 industrial ring angle light source equipped with a diffuser plate to diffuse the light evenly was used to ensure the light source uniformity. The front of the platform is open for easy insertion and removal of tobacco shred samples. The model image is transmitted to a computer via an optical fiber. Images were collected for the four shred types with 2,200 pieces each, a total of 8,800 pieces, and the size of each image was 2,788 × 2,238 pixels. Unqualified tobacco shred images, such as blurry and incomplete backgrounds, were manually screened out, and 8,202 tobacco shred images were obtained.



Image preprocessing

This research on tobacco shred type identification aims to meet the needs of subsequent online tobacco shred component detection in the field. For the component detection of tobacco shreds, it is necessary to simultaneously identify various types of tobacco shreds spread on-site and to calculate and obtain the component ratio. Therefore, our shooting field must be much larger than a single tobacco shred. Then, all shooting platform parameters need not be changed, and the current recognition model and dataset can be directly applied in the subsequent on-site component detection.

The sizes of the original tobacco shred images are 2,788 × 2,238 pixels. The overall image size in the original image is large, and the area occupied by the tobacco shred is small. It is necessary to perform image processing on the original image to facilitate system accuracy and efficient feature recognition to reduce irrelevant information, accelerate model convergence, and improve classification accuracy. The image preprocessing process is as follows: (1) grayscale image; (2) block threshold binarization; (3) obtain the tobacco shred outline; and (4) crop the ROI area.


Block threshold binarization: Comparison with other binarization methods

First, a simple threshold binarization was tested using a fixed threshold to binarize the grayscale image directly. The binarization results using four different thresholds are shown in Figure 4, which shows that different tobacco shred images have different threshold requirements. In Figure 4A, when the threshold is 175 and 180, and in Figure 4F when the threshold is 180, an unbroken binarized tobacco shred image can be obtained without splitting into two contours after processing. There are differences in tobacco shred thickness, light transmittance, and color depth, so different thresholds must be used for other tobacco shreds.
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FIGURE 4
Results of simple threshold binarization under different thresholds (A) original image 1, (B) threshold 165, (C) threshold 170, (D) threshold 175, (E) threshold 180, (F) original image 2, (G) threshold 165, (H) threshold 170, (I) threshold 175, and (J) threshold 180.


The total performance of the simple threshold binarizations at 165, 170, 175, and 180 thresholds is shown in Table 1. Table 1 shows that different thresholds have almost no effect on the tobacco shred processing (execution) time. The best performing threshold is 175. Among the 8,202 samples, 7,948 binarized tobacco shred images are complete. The proportion of complete samples to the total samples is 96.90% and requires 203.96 s.


TABLE 1    Simple threshold binarization performance evaluation table.
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Second, the adaptive threshold binarization is tested. This method sets the threshold according to the local image characteristics and can alleviate the problem of uneven image brightness to a certain extent. The adaptive threshold binarization results using five different neighborhood block sizes are shown in Figure 5. As seen in Figure 5, the neighborhood block size affects the contour’s details. A larger neighborhood block results in a more obvious contour. The interference also increases, and reducing the size of the neighborhood block can filter out more noise.
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FIGURE 5
Results of adaptive threshold binarization under different neighborhood block sizes. (A) 7 × 7, (B) 13 × 13, (C) 19 × 19, (D) 25 × 25, and (E) 31 × 31.


The performance of the adaptive threshold with the mean and Gaussian weighting methods is shown in Table 2. Table 2 shows that both adaptation methods are time-consuming when the neighborhood block sizes are 7 × 7, 13 × 13, 19 × 19, 25 × 25, and 31 × 31. Gaussian weighting is more time-consuming than the mean method, but performance is also significantly improved. When the size of the neighborhood block is 7 × 7 with the Gaussian weighting method, 7,811 of the 8,202 samples have complete binarized tobacco shred images, and the proportion of complete samples is 95.23%. However, the execution time reaches 9,411.28 s, which is impractical.


TABLE 2    Adaptive threshold binarization performance evaluation table.

[image: Table 2]

Third, Otsu’s threshold binarization is tested. Otsu’s threshold binarization finds a value between the double peaks of the grayscale histogram as a threshold. Since the light source coverage on the camera’s field of view is not entirely uniform, the use of Otsu’s threshold causes an aperture shadow, which generates more spots and increases the calculation amount for subsequent contour screening. Otsu’s threshold binarization effect is shown in Figure 6. The performance of Otsu’s threshold is shown in Supplementary Table 1. This method is time-consuming and has low precision, making it unsuitable for the binarization of tobacco shred images.
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FIGURE 6
Result of Otsu’s threshold binarization.


The performance of the three threshold binarization methods has been comprehensively analyzed. The simple threshold processing speed is fast, but there are still many cases of incomplete tobacco images. The adaptive threshold method takes too long to be practical. Otsu’s threshold causes many useless contours in the final binarized image, which increases computational and time costs for subsequent contour screening because the bimodal feature of the grayscale tobacco shred image is not apparent. The above three binarization methods are unsuitable for tobacco shred images. Starting from the processing ideas of the adaptive threshold and Otsu’s threshold, this study designs a block threshold binarization method that is applied to tobacco shred images.

The block threshold binarization process is as follows: (1) divide the original image according to the size of the neighborhood block and calculate the standard deviation (SD) of the pixels in the neighborhood block; (2) compare the SD of the neighborhood block with the SD threshold size. When the SD in the tobacco shred block is less than the SD threshold, set all pixel values in the neighborhood block to zero, filter the useless blocks, and reduce the computational cost of subsequent contour screening; otherwise, use Otsu’s threshold to binarize the block; (3) complete the binarization of the original image by traversing all neighborhood blocks.

This study explores the neighborhood block size and the SD threshold of the neighborhood block. Figures 7A–J shows tobacco shred images for ten neighborhood block sizes between 50 × 50 and 500 × 500.
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FIGURE 7
Schematic diagram of image segmentation under different neighborhood block sizes. (A) 50 × 50, (B) 75 × 75, (C) 100 × 100, (D) 125 × 125, (E) 150 × 150, (F) 175 × 175, (G) 200 × 200, (H) 300 × 300, (I) 400 × 400, and (J) 500 × 500.


Figure 7 shows that a smaller neighborhood block size implies more neighborhood blocks into which the sample is divided. When the neighborhood block sizes are 50 × 50 and 500 × 500, the numbers of neighborhood blocks are 2,520 and 30 blocks, respectively, a factor of 84. From this, it can be concluded that the smaller the neighborhood block size, the greater the number of neighborhood blocks to be processed, and the greater the amount of computation required.

The SD threshold is used to process the neighborhood block. The SDs of a tobacco shred image neighborhood block before and after processing are shown in Figure 8.
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FIGURE 8
Annotation map of the standard deviation of neighborhood blocks before and after processing (A) before, (B) after.


As shown in Figure 8A, the pixel SD in each neighborhood block is not zero before the tobacco shred image processing. The SD of the neighborhood block containing the tobacco shred is nearly ten times larger than without the tobacco shred. The SD threshold of the neighborhood block can effectively eliminate the background neighborhood blocks that do not contain the tobacco shred image, and the pixel values of the neighborhood blocks to be eliminated are set to zero.

The following discusses finding a neighborhood block threshold suitable to all tobacco shred images and the neighborhood block size with the best performance. As shown in Figure 8A, among the 208 neighborhood blocks, only 8 of them contain parts of the tobacco shred. The SDs of the neighborhood block containing the tobacco shred and the background block are quite different. Therefore, this study uses a statistical method to determine the neighborhood block’s threshold. The neighborhood block’s size is determined according to the complete proportion of the samples and the SD threshold is adjusted.

The steps for determining the threshold of the neighborhood block are as follows: (1) obtain the SD of all neighborhood blocks of the 8,202 tobacco shred samples; (2) draw the SD as a histogram with kernel density. The abscissa of the histogram is the SD, and the ordinate is the number of neighborhood blocks; (3) find the abscissa of the first trough in the kernel density curve and round it down as the neighborhood block threshold.

The principle of the above method is that the number of background neighborhood blocks is very different from the target neighborhood blocks containing tobacco shreds, and the position of the first trough of the kernel density curve is the boundary between the number of target blocks and the standard blocks. The first peak and valley are selected to minimize the errors caused by the following two situations: (1) an image with shredded tobacco shred residues appearing in the background block; (2) an image containing part of a tobacco shred is divided into background blocks. Both cases increase the SD of the background neighborhood blocks. Using subsequent peaks and valleys increases the probability of removing background blocks. It is unreasonable to directly remove the neighborhood blocks in case 2, which would affect the integrity of the tobacco shred image.

Figures 9A–J show histograms of the SD of the neighborhood blocks for different neighborhood block sizes. The abscissa is the neighborhood block SD, and the ordinate is the logarithm of the number of neighborhood blocks. The SD thresholds for different neighborhood block sizes are obtained from Figure 9 according to the steps for determining the SD threshold.
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FIGURE 9
Histogram of neighborhood block standard deviation under different neighborhood block sizes. (A) 50 × 50, (B) 75 × 75, (C) 100 × 100, (D) 125 × 125, (E) 150 × 150, (F) 175 × 175, (G) 200 × 200, (H) 300 × 300, (I) 400 × 400, and (J) 500 × 500.


Figures 10A–J are the tobacco shred images after removing the background using the corresponding SD threshold. As shown in Figure 10, the method for confirming the SD threshold using the statistical neighborhood block SD is effective. However, when the size of the neighborhood block is 400 × 400 pixels, the tobacco shred binarized image is incomplete, indicating that choosing a larger size for the neighborhood block may cause the image to be incomplete. But choosing a smaller size for the neighborhood block increases the computational load, so a tradeoff must be made between neighborhood block size and processing time.
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FIGURE 10
Result of block threshold binarization to remove background under different neighborhood block sizes. (A) 50 × 50, (B) 75 × 75, (C) 100 × 100, (D) 125 × 125, (E) 150 × 150, (F) 175 × 175, (G) 200 × 200, (H) 300 × 300, (I) 400 × 400, and (J) 500 × 500.


The block threshold’s binarization performance indicators are shown in Table 3. As seen from Table 3, when the neighborhood blocks range from 50 × 50 to 125 × 125, the block threshold performance is good, and the proportion of complete samples is over 98%. The binary value optimization performance is the best when the neighborhood block size is 75 × 75, and the fraction of complete samples is 99.67% but requires 472.74 s. When the neighborhood block size ranges from 175 × 175 to 500 × 500, the proportion of complete samples and the performance decreases as the neighborhood block size increases. Furthermore, when the neighborhood block is 125 × 125 pixels, the SD threshold is reduced from 7 to 6 to retain more original information about the neighborhood block, and the proportion of complete samples reaches 99.29% in 320.01 s. Therefore, this study uses a neighborhood block size of 125 × 125, and a SD threshold of 6 is adopted as the binarization parameter of the block threshold.


TABLE 3    Block threshold binarization performance evaluation table.
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The performance of the four threshold binarization methods is shown in Table 4. Overall, the block threshold binarization proposed in this study retains more contour information during binarization and has a low execution time, resulting in the best overall performance.


TABLE 4    Performance evaluation table of different threshold methods.
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Tobacco shred image segmentation

After the block threshold binarization process, residue contours may still be near the tobacco shred, so we continue to perform contour screening to obtain accurate tobacco shred images. Furthermore, because the same input image length and width are needed for the classification network, this study adjusts the ROI area so that the length and width of the cropped image are the same to prevent the scaling operation from distorting the tobacco shred image proportions.

Figure 11 shows some tobacco shred image segmentation results. The green frame is the original ROI area and the red box is the adjusted ROI area in Figure 11A. The segmented tobacco shred image in the ROI is shown in Figure 11B.
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FIGURE 11
Result of tobacco shred image segmentation (A) cropped ROI outline (B) segmented tobacco shred image through ROI.





Model construction


Dataset construction

Of the 8,202 image samples, 5,741 images were randomly selected as the training set, and the remaining 2,461 images were used as the test set (a 7:3 ratio). The quantity information for each tobacco shred type is shown in Table 5.


TABLE 5    Details of tobacco shred dataset.
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Multi-Scale-X-ResNet model construction

The ResNet50 network is adopted as the primary structure of the neural network. ResNet50 consists of 50 layers of networks, which can be divided into six stages: Stem, Stage 1–Stage 4, and Head. The model’s input is a 224 × 224 pixel tobacco shred image and the output size of Stage 4 is 7 × 7 × 2,048. The tobacco shred image classification is completed through the fully connected (FC) layer, and the model output is the tobacco shred type. The characteristic differences between tobacco shred types are slight, and using 7 × 7 convolution results is less effective for identifying tobacco shreds with smaller sizes.

Furthermore, since the expanded tobacco silk is made from tobacco silk through an expansion process, the proportion of expansion varies. It is difficult to distinguish between tobacco silk and expanded tobacco silk. The shallow feature map has a smaller receptive field and more details of small objects but lacks rich semantic information. The deep feature map has a more receptive lot and rich semantic information but contains less small object information. Therefore, using the multi-scale structure for feature fusion can solve the problem of feature loss to a certain extent. According to the shallow and deep network characteristics, the output results of Stage 3 and Stage 4 of the ResNet50 network are passed through the AvgPOOL layer and the Flatten layer, and the Concat layer is then used for feature splicing the output. The output is passed through the FC layer to obtain the final classification result. Tobacco shreds with small-sized features can be effectively extracted using the multi-scale structure, and the model recognition accuracy can be improved. After adding the multi-scale structure, the resulting network is named MS-ResNet.

Each stage of a ResNet network consists of a sequence of d blocks. The numbers of blocks in Stage 1–Stage 4 of ResNet50 and ResNet101 are (3, 4, 6, 3) and (3, 4, 23, 3), respectively. The two networks only have different numbers of blocks for Stage 3. The A-ResNet network is also obtained by changing the number of blocks in Stage 3. In addition, to reduce the complexity of the A-ResNet network and retain more shallow feature information, the number of blocks in Stage 2 of the A-ResNet network is changed to 3 to obtain the B-ResNet network. A-ResNet and B-ResNet are collectively referred to as the X-ResNet network. The numbers of blocks for the different ResNet networks are provided in Supplementary Table 2.

The MS-X-ResNet network structure proposed in this study is shown in Figure 12. The MS-ResNet network is obtained by fusing the multi-scale features of the ResNet network. The numbers of blocks of Stage 1–Stage 4 are adjusted from the original 3:4:6:3 to 3:4:N:3 (A-ResNet) and 3:3:N:3 (B-ResNet) to obtain the X-ResNet network. The MS-X-ResNet network is obtained by combining the MS-ResNet and X-ResNet networks.


[image: image]

FIGURE 12
Multi-Scale-X-ResNet network structure.


The identity and Conv block structures in Figure 12 are shown in Figure 13.


[image: image]

FIGURE 13
Structure of identity mapping module and convolution module in a residual neural network (A) identity block, (B) Conv block.





Loss function


Focal loss

The traditional loss function uses the cross-entropy function, which describes the distance between the actual and expected output probability distributions. The smaller the value of the cross-entropy, the more effective the learning in the model training process (Bishop and Nasrabadi, 2006; Xiao Z. et al., 2019).

Table 6 shows shape images of the four tobacco shred types. As seen from Table 6, the same tobacco shred type can have many different shapes. The difference between tobacco shred images is slight and identification is difficult. However, the traditional cross-entropy as a loss function ignores the identification difficulty of different types of samples. It only focuses on the accuracy of the correct label. In this study, the focal loss function (Lin et al., 2017) is selected to reduce the impact of sample identification difficulty on the network and improve its performance.


TABLE 6    Tobacco shred shape image table.
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The expression for the cross entropy loss function is

[image: image]

and the expression for the focal loss function is

[image: image]

where, Closs, cross-entropy loss function; Floss, focal loss function; m, number of the current batch of images input to the network; yji, authentic label; [image: image], predicted label; γ, modulation factor; pi, probability of softmax output.

Equation 2 gives the contribution of the classification samples to the loss. The introduction of the modulation factor γ makes the model weaken the contribution of the loss values of the easily identified samples and gives higher weight to difficult-to-classify samples during training. To void the model value to be equal to 0 or 1 during training, the set value range is [0.005, 0.995], if values below 0.005 are set to 0.005 and values above 0.995 are set to 0.995.



Influence of γ on model accuracy

The size of the modulation factor γ mainly affects the contribution of the loss value of the sample. With increasing γ, the contribution of the sample loss value is suppressed, with the loss values of easily identified samples suppressed more. Figure 14 shows the accuracy of the ResNet50 and MS-A-ResNet-50 networks on the test set for different γ values.


[image: image]

FIGURE 14
Accuracy rates of ResNet50 + FL and MS-A-ResNet-50 + FL networks under different γ.


As shown in Figure 14, the ResNet50 + FL (Focal Loss) network has its highest accuracy (93.01%) when γ = 0.5, and MS-A-ResNet-50 + FL has its highest accuracy (96.12%) when γ = 0.75. The multi-scale structure improves the performance of the model effectively. This study mainly explores the accuracy of the MS-X-ResNet network and selects γ = 0.75 as the modulation factor of the focal loss function.




Implementation details


Test platform

The experiment in this study is based on the Windows 10 operating system; the GPU is GeForce GTX 3080 (10 GB video memory), the processor is Intel(R) Core(TM) i7-12700K CPU at 3.61 GHz, and the running memory is 64 G. Model building, training, and testing are implemented in Python language, based on the PyTorch deep learning framework, the parallel computing framework uses CUDA 11.3 version, and the development environment uses Pycharm.



Network evaluation

This study uses accuracy rate (ACC), precision rate (P), recall rate (R), F1 score (F1), and avg_metrics as evaluation indicators (Table 7). In Table 7, TP, TN, FP, FN and ki represent true positive, true negative, false positive, false negative, and the evaluation indicators of samples of a tobacco shred type, respectively. Among the evaluation indicators, F1 is a comprehensive indicator that fuses precision rate and recall rate, and higher F1 values correspond to a better model (Kang and Gwak, 2021).


TABLE 7    Table of evaluation indicators.

[image: Table 7]

We use the four indicators, namely, accuracy rate, precision rate, recall rate, and F1 score, for performance evaluation of our improved model and other contrasting models. Weighted or equally weighted averaging methods can be chosen when calculating the average indicator. Due to the differences in classification difficulty of the different tobacco shred images, the equally weighted average method was chosen in this study.



Training details

We use bilinear interpolation (Guo et al., 2011; Kirkland, 2016) to ensure the image quality after scaling as much as possible. Each image in the tobacco shred dataset is scaled to 224 × 224 pixel size. Each channel of data is standardized with a mean of 0.5 and a SD of 0.5. The training set images are shuffled randomly before input to reduce the effect of image order on the model. Through the function of the optimization algorithm, the model performs gradient descent after multiple iterations and attenuates the learning rate during the model training process so that the model can obtain better classification performance.

The optimization algorithm of the model is Adam: the initial learning rate is 10–4, the weight decay is 10–4, β1 = 0.9, β2 = 0.99, and ε = 10–8. The batch size is set to 32. When training with the focal loss function, the initial learning rate is set to 10–3 because the focal loss function reduces the strength and frequency of network updates. The maximum number of iterations is set to 50. After each iteration, the model’s accuracy is tested on the test set, and the model and results generated by each iteration are retained.





Results


Multi-Scale-X-ResNet: Comparison with other networks

We chose the following models as baseline models: VGG16 (Rodríguez et al., 2018; Simonyan and Zisserman, 2019), GoogleNetV3 (Szegedy et al., 2016), ResNet50 (He et al., 2016), ResNet101 (Szegedy et al., 2015), and MobileNetV2 (Sandler et al., 2018).

Table 8 shows the performance indices obtained using the cross-entropy function for the baseline networks. It can be seen from Table 8 that the VGG16 network performs the worst among the baseline networks with an accuracy rate of 90.33%, and ResNet50 performs the best with an accuracy rate of 92.77%. The GoogleNetV3 and MobileNetV2 networks achieved 91.43 and 91.83% classification accuracy, respectively. The GoogleNetV3 network’s Inception structure includes the fusion of various scale features, which enables it to achieve excellent performance. The MoblileNetV2 network introduces an Inverted residual block, causing a smaller loss of high-dimensional information after passing through the ReLU activation function. In addition, the linear bottleneck is used to replace the nonlinear activation to prevent the activation function from filtering too much practical information during low-dimensional transformation, thereby improving the classification performance. From the classification performance of the GoogleNetV3 and MobileNetV2 networks, low-dimensional features contain the details of tobacco shred images, so the loss of this information reduces the network’s tobacco shred classification performance.


TABLE 8    Performance index of baseline models with tobacco shred images.
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Figure 15 shows the test accuracy of MS-X-ResNet using the focal loss function with different numbers of residual blocks. From Figure 15, the accuracy of the MS-A-ResNet + FL network is 94.84–96.26%, and the accuracy of the MS-B-ResNet + FL network is 94.91–96.54%.


[image: image]

FIGURE 15
Accuracy with different number of residual blocks in MS-X-ResNet.


Supplementary Table 3 shows the best test accuracies of the MS-X-ResNet network, in which the accuracy of the MS-A-ResNet-92 network using the focal loss function test set is 96.26%, and the accuracy of MS-B-ResNet-77 is 96.54%. The MS-B-ResNet-77 network has advantages in classifying tobacco shred images, so this network is selected to complete the tobacco shred classification task.

The performance of different networks using the focal loss function is given in Table 9, which shows that MS-B-ResNet-77 + FL has the best performance with the highest accuracy, average precision (Avg_Precision), average recall (Avg_Recall), and average F1 score (Avg_F1 Score). Compared with the baseline networks in Table 8, the performance of all the baseline networks has also improved.


TABLE 9    Performance comparison of different models using focal loss function.
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We choose the high-performing MobileNetV2 + FL and ResNet50 + FL baseline networks to make a detailed comparison with MS-B-ResNet-77 + FL for each tobacco shred type classification. The performance of each model on the test set is shown in Table 10. The precision of MobileNetV2 + FL (92.55%) for expanded tobacco silk is 3.02% higher than for ResNet50 + FL (89.53%), and the probability of other types of tobacco shred being mistaken for expanded tobacco silk decreases. The recall rate of MobileNetV2 + FL for tobacco silk (91.74%) is 3.97% higher than for the ResNet50 + FL network (87.77%), indicating that MobileNetV2 + FL has dramatically improved the recognition accuracy of tobacco silk. Compared with ResNet50 + FL, MobileNetV2 + FL has slightly better performance, especially in classifying between expanded tobacco silk and tobacco silk, which is the most challenging classification task because these have no apparent macro-scale characteristic differences.


TABLE 10    Performance of the three models on the test set of tobacco shred.

[image: Table 10]

Compared with ResNet50 + FL, MS-B-ResNet-77 + FL has obviously better performance, especially in classifying between expanded tobacco silk and tobacco silk. The precision of MS-B-ResNet-77 + FL (94.70% for expanded tobacco silk and 94.85% for tobacco silk) is 5.17 and 5% higher than ResNet50 + FL (89.53 and 89.85%, respectively). The recall rate of MS-B-ResNet-77 + FL (94.39% for expanded tobacco silk and 94.38% for tobacco silk) is 5.45 and 6.61% higher than for ResNet50 + FL (88.94 and 87.77%, respectively). The average precision, recall rate, and F1 score (96.50, 96.50, and 96.49%, respectively) of MS-B-ResNet-77 + FL are all higher than for ResNet50 + FL (92.89, 92.91, and 92.89%, respectively).

Overall, MS-B-ResNet-77 + FL performs the best in classification tests of each tobacco shred type compared with MobileNetV2 + FL and ResNet50 + FL. We believe this is because MS-B-ResNet-77 + FL adds a multi-scale structure, retaining detailed information about very small targets in the shallow feature map and reducing feature loss.



Time complexity

When deep learning is used for tobacco shred image classification tasks and performance indicators such as model precision, recall rate, and F1 score, the time complexity is also important. Too high time complexity will affect the actual deployment and application in the field. To ensure that the model proposed in this study can run smoothly on a computer without GPU, MS-X-ResNet model is compared with the baseline model to emphasize that the modified model can be practically used for tobacco shred image recognition. The test is performed on a computer with an Inter(R) Core(TM) i7-12700K CPU at 3.61 GHz and a running memory of 64 G. Only one image is used per test to test the actual model execution speed, which is most likely to occur in actual use. We calculate the average inference time for 2,458 tobacco shred images in the entire test set, and the results are shown in Supplementary Table 4. It can be found that our proposed MS-B-ResNet-77 network performs on par with ResNet-101. The network can process nine datasets containing a single image in 1 s. At the same time, since replacing the model’s loss function with Focal loss is performed during the model training process, it will not affect the inference execution speed of the model.




Discussion

In the deep learning image classification task, the dataset’s quality is one of the core factors affecting the model’s classification accuracy. The tobacco shred residue image size can be too small, and differences between the different types of tobacco shred residue images are not apparent. These residue images eventually become dirty data in the sample. Therefore, we first screened the tobacco shred residue. In addition, our dataset and current research are constructed for the subsequent detection of tobacco shred components and actual field production use. The shooting field of view is much larger than the single tobacco shred field of view, so the parameters of the subsequent shooting platform do not need to be changed.

Furthermore, different tobacco shred types have significant differences in thickness, light transmittance, and color depth, resulting in substantial challenges to the binarization of the tobacco shred images. We have performed many tobacco shred image processing experiments. The simple, adaptive, and Otsu’s threshold binarization performance were compared. Finally, a block threshold binarization method was designed, and its parameter settings and performance were researched. After follow-up contour screening, adjustment, and cropping of the ROI area, a dataset for the four tobacco shred types was constructed.

Network selection, structure adjustment, and hyperparameter optimization are complicated in deep learning classification tasks. In this study, the ResNet network’s Stage 3 and Stage 4 features are fused to obtain the MS-ResNet network. From the performance of ResNet50 and ResNet101, it can be concluded that different numbers of Stage 3 blocks affect the model’s performance in tobacco shred image classification tasks. To further improve the model’s performance, the number of blocks in MS-ResNet’s Stage 3 and the impact of the model classification performance are explored, and MS-A-ResNet is obtained. We also reduced the number of Stage 2 blocks in MS-A-ResNet from 4 to 3 to build MS-B-ResNet with reduced complexity. Since the image classification difficulty of different tobacco shred types is quite different, the focal loss function replaced the cross-entropy loss function to accommodate the test characteristics of the tobacco shred samples.

The advantages and disadvantages of the proposed methods and follow-up research directions are now discussed. The current, complete tobacco shred classification scheme has the following benefits:


1.The proposed scheme provides a complete set of solutions for screening samples, taking images, processing images, and building datasets for tobacco shred classification.

2.The number of raw tobacco shred data samples is large, consists of actual digital images, and provides a better generalizability for actual field use.

3.The MS-X-ResNet network demonstrates excellent performance in classifying and recognizing tobacco shreds. It has a good classification capability for tobacco shred images having different sizes and types.

4.The execution speed of the proposed network is fast, so the execution time in identifying tobacco shred images is low, saving computing resources and identification time.

5.The field of view of the shooting platform is much larger than the contour field of view of a single tobacco shred. The current shooting platform parameters and experimental data can be directly used in the subsequent online component detection research of tobacco shreds, providing good continuity with practical scenarios for application.



The proposed scheme also has the following limitations:


1.The specific size information of a tobacco shred image is not used in the model, and the tobacco shred images are scaled to 224 × 224 pixels before being sent to the network. Adding the size characteristics of tobacco shreds may improve the network’s performance.

2.Different convolutional network models have different sensitivities to the focal loss modulation factor γ. Focal loss with the same γ value for all convolutional networks in this study may not achieve optimal performance for each network.



Follow-up work is as follows: (1) the designed black box image acquisition device needs to be optimized further to obtain higher quality images, especially to improve the lighting installation methods to prevent shadows. (2) The block threshold binarization used was traditional and was not robust enough. Semantic segmentation can be used for tobacco shred extraction. (3) The influence of different tobacco shred types’ geometric features, such as length, width, area, and aspect ratio, on the classification can be explored, and these features can be input into the network with the image information. (4) The γ parameter of the focal loss can be optimized for different convolutional network models, and the network performance can be evaluated after obtaining the optimal tuning factor corresponding to each network. (5) This study was performed in the laboratory, and the method must be validated in practical scenarios for application.



Conclusion

This study describes the construction of an experimental platform and subsequent image processing to establish a tobacco shred dataset aimed at the practical classification and identification of tobacco shred types on a production line. Based on ResNet50, the MS-B-ResNet-77 network is proposed. Performance indicators including accuracy, precision, recall rate, F1 score, and time complexity are used to evaluate the network’s performance. This research achieves the following innovations:


1.A block threshold binarization method is designed by combining the processing ideas of the adaptive and Otsu thresholds. Further, contour screening and ROI area cropping steps are designed to segment tobacco shred images, and complete tobacco shreds can be obtained by expanding the ROI area.

2.The MS-X-ResNet network is proposed by fusing the multi-scale Stage 3 low-dimensional and Stage 4 high-dimensional features to reduce overfitting risk. The number of blocks in each stage is optimized to improve the model’s classification performance with lower complexity. Furthermore, performance evaluation for MS-X-ResNet is performed, and it is compared with multiple convolutional network models for tobacco shred image classification and recognition.

3.The focal loss function is applied to tobacco shred classification, which alleviates the influence of varying degrees of classification difficulty for different tobacco shred types on the model. This function effectively improves the accuracy and stability of the model.
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Tobacco is one of the important economic crops all over the world. Tobacco mosaic virus (TMV) seriously affects the yield and quality of tobacco leaves. The expression of TMV in tobacco leaves can be analyzed by detecting green fluorescence-related traits after inoculation with the infectious clone of TMV-GFP (Tobacco mosaic virus - green fluorescent protein). However, traditional methods for detecting TMV-GFP are time-consuming and laborious, and mostly require a lot of manual procedures. In this study, we develop a low-cost machine-vision-based phenotyping platform for the automatic evaluation of fluorescence-related traits in tobacco leaf based on digital camera and image processing. A dynamic monitoring experiment lasting 7 days was conducted to evaluate the efficiency of this platform using Nicotiana tabacum L. with a total of 14 samples, including the wild-type strain SR1 and 4 mutant lines generated by RNA interference technology. As a result, we found that green fluorescence area and brightness generally showed an increasing trend over time, and the trends were different among these SR1 and 4 mutant lines samples, where the maximum and minimum of green fluorescence area and brightness were mutant-4 and mutant-1 respectively. In conclusion, the platform can full-automatically extract fluorescence-related traits with the advantage of low-cost and high accuracy, which could be used in detecting dynamic changes of TMV-GFP in tobacco leaves.

KEYWORDS
green fluorescence, digital camera, image processing, tobacco, phenotyping platform


Introduction

Tobacco originated in tropical America and spread to Europe, Africa and Asia in the 16th and 17th centuries, which grew to become commercial production crop around the world because of the need of cigarettes and cigars (Arcury and Quandt, 2006; Hanafin and Clancy, 2015). China is the largest tobacco production and consumption in the world (Zhang and Cai, 2003). According to the statistics of the National Bureau of Statistics, the planting area of tobacco in China was 1.981×106hectares, and the yield was 2.156×106 tons in 2020. The total fiscal revenue of tobacco industry was 124.42 billion yuan in 2021, an increase of 3.36%, which positively contributed to the national and local financial income and economic development (China Tobacco, 2022).

Tobacco mosaic virus (TMV) is a single-stranded RNA virus that infects lots of plants, including tobacco, other solanaceous and crucifer plants, and several others (Saito et al., 1987; Yamaya et al., 1988; Britt et al., 1998; Summers, 2003; Adeel et al., 2021). According to scientific or economic importance, plant virologists list TMV as one of the top 10 viruses in Molecular Plant Pathology (Scholthof et al., 2011). Once the plant is infected with TMV, it would always exist, which makes the plant show symptoms such as deformity of leaves, leaf curling and mottling, dwarfing of plants and stunted growth, leading to yield reduction and economic losses (Ellis et al., 2020; Lv et al., 2020). In addition, TMV seriously affects the quality of tobacco leaves (Lin, 2012). Therefore, the detection of TMV is of great significance to tobacco production.

Traditionally, the main detection methods of tobacco virus are enzyme-linked immuno-sorbent assay (ELISA), electron microscopy (EM), serological identification and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) technology (Hong et al., 1999; Zheng et al., 2011). Van Regenmortel et al. found that ELISA was able to detect a wide spectrum of TMV strains (Vanregenmortel and Burckard, 1980), which is still a common and effective method for virus detection (Lommel et al., 1982; Zhang et al., 2013), and the preparation of antigen by ELISA requires crushing sample tissue to make it fully contact with buffer (Kumar and Prakash, 2016). One of the very first objects that can be observed by EM is TMV (Richert-Poeggeler et al., 2019), then EM became a classical method for studying plant viruses, for example Fang et al. combined electron microscopy negative staining with ultrathin sectioning and DAS (Double antibody sandwich)-ELISA to detect virus in tobacco shred (Fang et al., 2008). Due to its convenient, high sensitivity and specificity, RT-PCR is widely used in tobacco virus detection, especially multiplex RT-PCR (Letscher et al., 2002; Yang et al., 2010; Dai et al., 2012; Yang Y. et al., 2020). However, RT-PCR requires going through the steps of primer designing, total RNA extraction, cDNA synthesis, PCR reaction and product electrophoresis analysis, among which the total RNA extraction needs to grind the tobacco leaves (Song et al., 2007; Kumar et al., 2011; Zhao et al., 2015). It’s not difficult to find that these methods are destructive, laborious to operate, and some require expensive reagents. Therefore, a non-destructive method that can automatically detect tobacco virus has become expected.

In recent years, spectroscopic techniques have become potential methods for non-destructive detection of plant diseases, especially hyperspectral imaging technology (Sankaran et al., 2010; Thomas et al., 2018). Combined with successive projections algorithm (SPA) and machine-learning, Zhu et al. confirmed that hyperspectral imaging could be used for distinguishing TMV-infected tobacco leaves from healthy samples (Zhu et al., 2017). Gu et al. detected the infection of Tomato spotted wilt virus (TSMV) non-destructively in tobacco leaves at an early stage using hyperspectral imaging technology, and found that the NIR region (780–1,000 nm) is important for TSMV detection (Gu et al., 2019). Polder et al. developed a method for the detection of Potato virus Y (PVY) infected potato plants based on hyperspectral image data and fully convolutional neural network (CNN), which showed that the recall values were slightly lower than the accuracy of crop expert (Polder et al., 2019). Nagasubramanian et al. identified charcoal rot disease in soybean stems using 3D deep CNN model based on hyperspectral data, for which classification accuracy was 95.73% (Nagasubramanian et al., 2019). Therefore, hyperspectral imaging plays an important role in non-destructive detection of plant diseases. However, the high cost of devices is one of the important limitation factors for the usage of hyperspectral imaging technology (Bhagwat and Dandawate, 2021). Consequently, low-cost and non-destructive detection technology is the current research direction.

Markers are commonly used as auxiliary tools in biological research. Green fluorescent protein (GFP), which absorbs blue light and emits green fluorescence, is an important marker for gene expression and protein localization and was widely used in the observation of plant virus proliferation (Chalfie et al., 1994; Huang et al., 1997; Tsien, 1998; Phillips, 2001; Teuscher and Ewald, 2018). An advantage of GFP is that the protein is stable and usually has no toxicity to living cells, so when it is connected to plant virus by transgenic technology, and then the virus is inoculated into plants, the expression of the virus in plants can be seen by tracking the green fluorescence under blue light or ultraviolet (UV) light (Chalfie, 2009; Ma, 2009). UV light can stimulate blue light (Ma, 2009), which is why researchers use UV light to observe green fluorescence. At present, there are many plant viruses that were observed for their expression in plants by GFP, such as TMV, Tomato spotted wilt virus, Plantago asiatica mosaic virus, potato virus X, Wheat dwarf virus, Lettuce necrotic yellows virus, Rice grassy stunt virus, Rice ragged stunt virus, Tomato bushy stunt virus and so on (De Ronde et al., 2013; Minato et al., 2014; Wang et al., 2014). Thus, GFP is a mature marker for studying plant virus expression, and was used to monitor the infection of TMV on tobacco leaves in this study.

The methods of GFP detection include fluorescence microscopy (Yuste, 2005; Torrado et al., 2008; Mann et al., 2015), fluorescence spectrometer (Richards et al., 2003), portable handheld UV light with camera (Harper et al., 1999; Saxena et al., 2011; Shamekova et al., 2014), electronic microscopy (Liu et al., 2003; Adeel et al., 2021), and hyperspectral imaging system (Annamdevula et al., 2013). However, the cost of microscope device and its maintenance is relatively high for fluorescence microscope (Luby-Phelps et al., 2003; Toman, 2004). And most fluorescence spectrometers and EM are lab-based, high-cost, and not suitable for high throughput detection of GFP, while sample observation by portable handheld UV light with camera depends on artificial (Saxena et al., 2011). Therefore, it is of great significance to develop a low-cost machine for automatic evaluation green fluorescence of GFP. With the development of digital imaging techniques, we can get plant traits by using RGB imaging, which has become an important component of high-throughput plant phenotyping platforms (Yang W. et al., 2020). High-throughput plant phenotyping platforms can quickly obtain various morphological and physiological traits information of a large number of plants, and complete a large number of phenotyping traits measurement in the shortest time (Fahlgren et al., 2015). In fact, these platforms provide a new way for GFP detection, which will promote the development of TMV expression research in tobacco leaves.

The objective of this study is to develop a low-cost and automatic phenotyping platform for monitoring GFP expression in tobacco leaves change over time and automatically evaluating fluorescence-related traits, then analyzing the dynamic infection of TMV in tobacco leaves. Given its measuring efficiency and relatively low hardware cost, RGB digital imaging was preferred in this study. To achieve the goal, this study applied machine vision and automatic control technology to improve inspection accuracy and efficiency of this phenotyping platform.



Materials and methods


Materials

The tobacco varieties used in this study were Nicotiana tabacum L., with one wild-type strain SR1, and four mutants generated by RNA interference technology. These four mutants had different resistance to TMV, which could be detected by the platform. With a total of 14 samples, mutant-1 had two biological repeats, while SR1 and other 3 mutant lines had three biological repeats. All of these SR1 and 4 RNAi lines were cultivated by the steps in Supplementary Table 1.



Transient expression in Nicotiana tabacum L. leaves

Agrobacterium (with TMV-GFP plasmid) was activated in LB medium (with 100 μg/mL spec + 10 μg/mL rif) at 28°C, 200 r/min for 16 h. The activated Agrobacterium was added to the induction LB medium (with 100 μg/mL spec, 10 μg/mL rif, 40 μM acetosyringone, 10 μM pH 5.6 morpholine ethanesulfonic acid) at a ratio of 1:50 and incubated at 28°C, 200 r/min for 16–20 h. The induced Agrobacterium was centrifuged at 3,000 g/min for 5 min, the supernatant was poured off, and the bottom bacteria were collected. The bacteria were dispersed with resuspension medium (H2O + 10 M MgCl2 + 40 μM acetosyringone) and diluted to OD600 = 0.1. The diluted Agrobacterium was placed at room temperature for 2∼4 h. Agrobacterium was injected from the abaxial surface of the leaves into 4-week-old Nicotiana tabacum L. with a 1 ml syringe without needle until the whole leaf was infiltrated with the bacterial solution. The injected tobacco was placed in an incubator at 24°C during the day and 20°C at night, with 12 h of light per day, and the expression of GFP in the tobacco could be detected after 3∼7 days.

Two days after inoculation, the plants were moved to the platform for experiment lasting 7 days, and images were automatically collected every 1 h. Every inoculated leaf was fixed on the stage with small magnets, and the images of tobacco leaf inoculated with TMV-GFP were shown as Figure 1D.


[image: image]

FIGURE 1
The prototype of fluorescence phenotyping platform: (A) Appearance of the platform, (B) the inter structure of the platform, (C) the block diagram of the acquisition part, and (D) the acquired leaf fluorescence image.




System description

The prototype of the platform was shown in Figures 1A,B, and the acquisition part was shown in Figure 1C. The platform consisted of four UV lamps, 12 white lamps, a digital camera (Nikon, D90, Japan) equipped with a focus lens of 35 mm, a rotation stage, a working stage with 18 small leaf stages and 18 small pot pallets, a programmable logic controller (PLC, CP1H-Y20DTD, Omron, Japan), a computer workstation, and a darkroom. Every small leaf stage had its own unique digital tag. The object distance was 28 cm. The UV lamps were turned on during image acquisition, while the white lamps were turned off, so that the images of tobacco leaves with clear green fluorescence could be captured. As soon as the images were collected, the UV lamps were turned off and the white lamps were turned on for the tobacco growing. The opening and closing time of the white lamps would be set according to the normal sunrise and sunset. With the working stage as the reference, the leaf stages were fixed, and the pot pallets could move up and down. The UV lamps, white lamps, and the rotation stage were connected to the PLC. The PLC and digital camera were connected to the computer workstation. All the stages were black for the convenience of segmentation of images. The system was placed in the darkroom for stable imaging environment. In order to observe the interior of the darkroom conveniently, four sides of the darkroom can be opened.



System control

The system control software for the platform was developed by LabVIEW 8.6 (National Instruments, United States). In the software, the automatic observation and resulting images for each leaf were displayed and stored systematically according to current time string. In addition, the PLC was programmed by CX-Programmer 7.3 (Omron, Japan). The control of the digital camera was programmed in the C++ language and compiled into a dynamic link library for LabVIEW 8.6 calling.

The system control flowchart included the following steps (Figure 2; Supplementary Videos 1, 2). (1) Turn on all the power, prepare samples, and take off the lens’ cap of the digital camera. The program began to initialize the digital camera and PLC. (2) Set the following parameters, including storage location, daylight time range of the white fluorescent lamps, circle number, and the interval time between two circles. And a new folder with 36 subfolders would be created in the storage location. (3) Turn off the white lamps, turn on the UV lamps, reset the rotation stage, and set the time of exposure and aperture for fluorescent acquisition automatically. (4) Acquire fluorescent image (The diagram of control for the digital camera was shown in Figure 3). The rotation stage rotated 360 degrees, a total of 18 fluorescent images were collected and saved to corresponding Fluo-subfolder. (5) Turn off the UV lamps, turn on the white lamps, and set the time of exposure and aperture for RGB acquisition automatically. (6) Acquire RGB image (The diagram of control for the digital camera was shown in Figure 3). The rotation stage rotated 360 degrees, a total of 18 RGB images were collected and saved to corresponding RGB-subfolder. The acquisition of one circle was ended. (7) The program determined whether the circle number was ended. If it was, the program ended. Otherwise, the program would proceed with the following steps. (8) The program automatically got the current time and determined whether it was in the daylight time range. If it was, the program would turn on the white lamps. Otherwise, the program would turn off the white lamps. (9) Wait for the interval time between two circles. In this process, the program would continue to obtain the current time and repeated step (8). If the waiting was finished, the program would go to step (3).
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FIGURE 2
Diagram of control and data acquisition for the fluorescence phenotyping platform.
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FIGURE 3
Control diagram for the digital camera.


Next, the control for the digital camera would be introduced in detail (Figure 3). These contents corresponded to the acquire image part of the upper part. Each acquire image step in the Figure 2 would goes through all the steps in Figure 3. The detailed flowchart included the following steps. (1) Load the MAID Module of the digital camera. (2) Initialize the Module Obj of the digital camera. The MAID Module was downloaded from the official website of digital camera. (3) Initialize the digital camera, and waiting for the command. (4) Set the callback function. (5) Go on the command loop. The commands included the following contents: get parameters from the earlier step [Figure 2 step (2)], select device, check if set parameters or not, capture image and save image. (6) Execute command from step (5). (7) Check if the computer detected the image. If no, just waiting. If yes, go on the next step. (8) Check if the command loop is over. If no, go on the step (5). If yes, go on the next step. (9) Close the Module, and free the Library and memory.



Image process

All the image processing software was developed in LabVIEW 8.6. The flow chart of image processing and data analysis was shown in Figure 4. After a round of 7 days experiment, 36 subfolders corresponding to 18 samples were got. The fluorescent image processing and data analysis included the following steps. (1) Choose one subfolder path (Figure 4A). (2) The program randomly selected an image to display on the front panel for the selecting of region of interest (ROI). Then a ROI would be got (Figure 4B). (3) Cut all the images of the subfolder according to the ROI (Figure 4C). (4) Convert all the images to ExG images according to the formula (Figure 4D). (5) Binary option with the ExG images. The results were binary images (Figure 4F). (6) Extract green channel images from the RGB images of step (3) (Figure 4E). (7) Mask the binary images (Figure 4F) to green channel images (Figure 4E). The results were the green channel images of the binary area (Figure 4G). (8) Calculate the parameters related to area, brightness, and change trend according to the images of Figure 4G.
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FIGURE 4
Flow chart of image processing and data analysis to extract fluorescence-related traits. Panel (A) was the currently processed folder path. Panel (B) was the original image. Panel (C) was the cropped image. Panel (D) was the ExG image. Panel (E) was the green channel image. Panel (F) was the binary pseudo-color image. Panel (G) was the green channel image of the binary area.


where w indicates the fluorescence pixel number, where q indicates the gray value of the fluorescence pixel.




Results and discussion


Performance of the platform

To evaluate the fluorescence-related traits in tobacco leaf, we successfully developed a low-cost machine-vision-based phenotyping platform. To test the performance of this platform, we compared the fluorescent images with the RGB images collected by the system. The comparison results of the same leaf were shown in Figure 5 (Supplementary Video 3), including the obtained fluorescent and RGB images at the first day, the third day, and the fifth day, respectively. It could be seen intuitively that fluorescent images taken by this platform showed great differences, while there was no difference between the RGB images. This result indicated that the platform could detect the changes of green fluorescence in tobacco leaves through fluorescent images. Therefore, through this system, we can use cheap and simple equipment to observe the change of green fluorescence in tobacco leaves which was invisible by human eyes. Furthermore, this system can also be used to explore biological applications. For example, researchers have already used the system and achieved some preliminary results. Zhang et al. successfully observed the difference in the effect of artificial small RNA with only one nucleotide difference on plant disease resistance using the platform developed in this study (Zhang et al., 2020). And Zhang et al. accurately identified the antiviral ability differences of antiviral compounds with different subtle chemical modifications in plants (Zhang et al., 2021). These results showed that this system had potential to be widely used in plant research.
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FIGURE 5
The comparison of fluorescent images and RGB images of the same tobacco leaf. Panels (A–C) were fluorescent images. Panels (D–F) were RGB images.




Fluorescence image to reflect dynamic infection process of Tobacco mosaic virus-green fluorescent protein

The images of dynamic fluorescence changes were collected 2 days after inoculation with TMV-GFP. All samples were moved to the platform, and the system began to automatically capture fluorescent images. After image acquisition, take the steps described in the section “Image process” for image processing. Fist, the fluorescent images of ROI were extracted. Figure 6 showed the green fluorescence contrast of SR1 and 4 mutant lines samples (Supplementary Video 4), each row represented the same growth period, and each column represented different periods of the same sample. It could be seen that the leaves of SR1 and 4 mutant lines had different green fluorescence area, brightness and rates of green fluorescence change. Furthermore, it was potential to analyze the ability of TMV infection by analyzing the ratio of green fluorescence area to total leaf area. For these SR1 and 4 mutant lines samples, green fluorescence changed rapidly from c to e, and then changed slowly. It also showed that the green fluorescence area and brightness of mutant-1 was minimum, which indicated that the infection ability of TMV in mutant-1 was the weakest compared with SR1 and 4 mutant lines. In addition, it was potential to analyze the difference of TMV infection process by analyzing the results of different samples in the same period.
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FIGURE 6
The change of green fluorescence of SR1 and 4 mutant lines. Numbers 1 to 5 represented mutant-1, SR1, mutant-3, mutant-2 and mutant-4, respectively, and panels (a–f) represented different periods over time.


To test the performance of the system, we conducted repeated experiments and compared the results between the repeated experiments. As shown in Figure 7, there were two different lines, where a and b were the same line, c and d were another line, and 1 to 6 represented different growth periods. Comparing with the same line, the green fluorescence area and brightness had similar trends in the same period, which proved the stability of the system. In addition, the green fluorescence area and brightness of SR1 and 4 mutant lines were tested by independent samples Kruskal-Wallis test using SPSS 26.0, and the results of paired comparison were shown in Tables 1, 2 where each sample included all the data of its biological repeats. The results showed that the distribution of green fluorescence area and brightness between SR1 and other 4 mutant lines had extremely significant differences.
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FIGURE 7
The repeatability results of two different lines. Panels (a,b) represented different repetitions of the same line, panels (c,d) represented different repetitions of another line, number 1 to 6 represented different periods.



TABLE 1    The independent samples Kruskal–Wallis test of green fluorescence area.
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TABLE 2    The independent samples Kruskal–Wallis test of green fluorescence brightness.
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After confirming the feasibility and stability of the system, the fluorescent images taken by this platform were further processed to obtain binary images with the green channel. Figure 8 showed the fluorescent images and binary pseudo-color images of tobacco leaf at different periods. It could be seen that the green fluorescence area was gradually becoming larger with the growth of the tobacco plant. More importantly, it could also show that the segmentation method used in this paper can effectively segment the fluorescent part from the whole leaf.
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FIGURE 8
The fluorescent images [panels (a,c,e,g,i,k)] taken by this platform and binary pseudo-color images [panels (b,d,f,h,j,l)] of tobacco leaf in the different periods (Day one to Day six).




Fluorescence-related traits extraction

In order to analyze the change of green fluorescence more vividly, the parameters related to area, brightness, and change trend were calculated according to binary pseudo-color images, and the change curves were made. Pre-processing by Savitzky–Golay convolution smooth and Fast Fourier Transform filter in Origin 2022, the variation trends of green fluorescence area and brightness of these SR1 and 4 mutant lines samples (taking the average of biological repeats) were shown in Figure 9 (made by Origin 2022). According to Figure 9, we could see that the green fluorescence area in tobacco leaves gradually increased with the image acquisition time, and the rate of green fluorescence area change reached the maximum in 50–80 h (the dotted lines in Figure 9B), then the rate gradually slowed down. After 130 h (the dotted line in Figure 9A), the green fluorescence areas were basically stable and reached the maximum, and the order of the maximum was: mutant-4, mutant-2, mutant-3, SR1, and mutant-1. Besides, the maximum green fluorescence area and the peak rate of green fluorescence area change of mutant-4 and mutant-2 were much larger than SR1 (shown in Table 3). It showed that after stabilization, the order of maximum green fluorescence brightness was: mutant-4, SR1, mutant-2, mutant-3, and mutant-1, and the changes of green fluorescence brightness of these SR1 and 4 mutant lines samples had similar trend (shown in Figure 9C). Consistent with the change of green fluorescence area, the green fluorescence brightness tended to be stable after 130 h (the dotted line in Figure 9C) of acquisition, and the peak rate of green fluorescence brightness happened in the range of 50–80 h (the dotted line in Figure 9D). From Table 3, we could also see that there was little difference in the peak rate of green fluorescence brightness change per hour among SR1 and 4 mutant lines samples, which indicated that green fluorescence brightness changed slowly per hour. Therefore, we could quickly analyze the micro unquantifiable process through the macroscopic observation by this platform.
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FIGURE 9
The green fluorescence area and brightness change over time of SR1 and 4 mutant lines plants. Panel (A) showed the change of green fluorescence area, panel (B) showed the rate of green fluorescence area change per hour, panel (C) showed the change of green fluorescence brightness, and panel (D) showed the rate of green fluorescence brightness change per hour.



TABLE 3    The peak and median of the rate of green fluorescence area and brightness change per hour.
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Advantage and limitation

Based on the above results, the platform developed in this study could identify green fluorescence in tobacco leaves and realize the non-destructive detection of TMV-GFP. And the platform had been applied to explore the molecular mechanism of tobacco disease resistance through the expression of tobacco disease-GFP in tobacco leaves (Zhang et al., 2020, 2021). According to the knowledge we know, in order to reflect the characteristics of the platform developed in this study, it was compared with the other GFP detection methods, including fluorescence microscope, fluorescence spectrometer, portable handheld UV light with camera, electron microscope and hyperspectral imaging, mainly from five aspects: damage, cost, detection speed, automaticity and whether the results were visualized, and the results were shown in Supplementary Table 2.

Compared with other methods that much depends on artificial, such as EM and portable handheld UV light with camera, the platform developed in this study was highly-automated (Saxena et al., 2011; Adeel et al., 2021). Without making slices or grinding samples, the platform was non-destructive for samples. At the same time, automatic detection saved the time of preparing reagents and making slices, which made the platform realize rapid detection (Liu et al., 2003). More importantly, the platform developed in this study was low-cost with nearly $7,600. Compared with the fluorescence detection system and instruments on the market, such as chlorophyll fluorescence imaging system, fluorescence microscopes/spectrometer, EM and hyperspectral camera, the cost of this platform was greatly reduced about 6∼26 times. In addition, the platform could also realize the visualization of GFP distribution in tobacco leaves (shown in Figure 8), which made it easy to observe the movement of TMV in tobacco leaves only through the visual images. Therefore, the platform is a good method for detecting TMV-GFP.

However, this study still requires improvement. Firstly, the number of samples could be extended to hundreds of samples in future research to fit the high-throughput detection requirement. The current platform could only control temperature. In future research, the control units of environmental factors such as humidity can be added to better simulate the growth environment of tobacco during shooting and monitoring fluorescence signals. And the platform can also be built in the specified environment according to the needs of the researchers, which makes its application scope wider. Besides, the fluorescence-related traits extracted in this study included green fluorescence area, green fluorescence brightness, the change rate of green fluorescence area and brightness, and green fluorescence area ratio. In the future, 3D imaging and microscopic imaging techniques could be combined to mine the deep information of fluorescence-related traits to better qualitatively or quantitatively observe the infection of TMV-GFP in tobacco leaves. Moreover, only the infection of TMV-GFP in tobacco leaves was detected in this study, and the system has the potential to the infection of other plant viruses in stem, spike and other parts of the plant. Furthermore, the fluorescence-related traits could be combined with other omics to analyze the genetic mechanism behind them, and then provide new ideas for tobacco disease resistance breeding. In a word, the platform developed in this study has made some achievements in the research of low-cost, non-destructive and automatic detection of plant virus.



Further application perspective

In this study, we observed the movement of fluorescence signals in different tobacco leaves at seeding stage through the infection of TMV-GFP, and the movement rate was quantified by calculating fluorescence-related traits. In addition, when comparing the small differences in early fluorescence movement of different tobacco leaves, the platform could quantify them with data. In the future, we can try to visualize signal molecules in tobacco leaves to observe the direction and speed of signal transmission. And the following four points are the focus of our future research based on the platform:


1.Screening of transgenic plants: in plant transgenic experiments, multiple transgenic plants with different insertion sites and different insertion copies can be obtained by an Agrobacterium infection (Filipenko et al., 2009; Vain and Thole, 2009). We can identify the differences of resistance or growth and development speed between different plants by the platform, and quickly find suitable plants.

2.Study on circadian rhythm of biological clock: plants have circadian rhythms (McClung, 2006). The characteristics of the platform make it contributes to observe and analyze the circadian rhythms of plant development and resistance during its diurnal change.

3.Accurate identification of efficacy of new pesticides: in the development of pesticides, different molecular modifications may cause subtle differences in pesticide efficacy. The platform can be used to accurately and quantitatively analyze the efficacy of different pesticides to identify the most suitable products (Zhang et al., 2021).

4.Monitoring of plant endogenous substances: adding visual molecular tags is a useful way to observe the endogenous substances in plants (Greer and Szalay, 2002). Through adding visual molecular tags, we can observe the synthesis and transportation of these endogenous substances in plants for a long time by the platform.






Conclusion

This paper described an automatic fluorescence phenotyping platform to evaluate the fluorescence-related traits in tobacco leaf, including area, brightness and change trend. Based on image processing and data analysis, the infection of TMV-GFP in tobacco leaves can be displayed accurately and real-timely by digital camera, which can further deduce the TMV resistance of different tobacco samples objectively and efficiently. In summary, the low-cost and automatic platform that provides a novel method for the study of plant inoculated with virus through phenotypic information could be applied to the study of tobacco disease resistance breeding, including identification of resistance genes and screening of transgenic disease-resistant plants.
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1 Introduction

Wheat is one of the top three global staple crops and contributes to approximately 20% of the global dietary energy (Singh et al., 2014; Boeven et al., 2016). The application of wheat heterosis can improve yield potential and stability, which is considered an important approach to overcome food shortage (Boeven et al., 2018). Currently, the chemical hybridizing agent (CHA) and genic male sterility (GMS) systems are widely used as a two-line hybrid system in hybrid wheat production because they do not require maintenance or any pre-propagation (Zhao, 2010; Murai et al., 2016; Li et al., 2020). However, CHA and GMS are highly dependent on the crop growth stage and weather, and the female parent is often not completely sterile (Singh et al., 2010). Even in certain promoted varieties, the fertility of the female parent under sterile conditions is still as high as 5%, which can affect the purity of hybrid seeds (Singh et al., 2021). Therefore, methods for accurate classification of hybrid seeds are required to ensure high seed purity.

Traditional methods for detecting the genuineness of seed varieties include seedling morphology detection, morphological detection, isozyme gel electrophoresis, and simple sequence repeat (SSR) analysis (Perry and Lee, 2015; Liu et al., 2022). These methods are limited by their destructiveness, complicated operation, high cost, and slow process, and thus cannot be used for rapid online detection in the seed processing industry (Tu et al., 2021).

Hyperspectral imaging (HSI) is a new detection technology that integrates spectroscopy and machine learning and can simultaneously obtain spectral and spatial information of samples. Owing to its non-destructive and rapid process, HSI has been widely used in food, medical, agricultural testing, and many other fields in recent years (Xing et al., 2019; Yoon et al., 2019; Feng et al., 2020; Wang et al., 2022). HSI can analyze the sample composition and characteristics at the molecular level (Yin et al., 2017). Spectral information obtained varies owing to phenotypic differences between seeds of different varieties. Therefore, researchers have used HSI techniques to detect and classify different seed varieties. Near-infrared HSI (NIR-HSI) has been used to identify different wheat populations (Choudhary et al., 2009). Visible-near-infrared (VIS/NIR) hyperspectroscopy has been used to identify wheat gluten (Zhu et al., 2012). In addition, hyperspectral detection technology has also been used to identify different varieties and contaminants of einkorn wheat (Ravikanth et al., 2016; Bao et al., 2019). Classification of seeds based on hyperspectral data has been widely performed, and reliable results have been obtained in the identification of seeds of different varieties. These studies have demonstrated the potential of HSI applications in seed variety classification.

The seed coat is developed from the ovary wall and integument of the female parent (Matzke and Riederer, 1990). Seeds of different varieties develop in different mother plants, and the composition of the seed coat varies. However, the hybrid is developed from the female parent and its seed coat composition is similar to that of the female parent seed. Some studies have shown that hybrids have a more consistent distribution of reflectance spectra with the female parent than that with the male parent or other seeds (Wiwart et al., 2014; Xu et al., 2017; Yang et al., 2018). Ran et al. (2017) used NIR-HSI to distinguish corn hybrids from female parents, with an average correct recognition rate of 85%, which is lower than that of traditional methods such as SSR analysis and isoenzyme gel electrophoresis. Therefore, the discrimination of hybrids and their female parent seeds is more difficult when compared to seeds of different varieties.

VIS/NIR transmittance spectroscopy is often used as a non-destructive testing method to evaluate food quality and detect internal damage in fruits (Dong et al., 2019; Huang et al., 2021). Compared to the reflectance spectra, transmittance spectra reflect deeper regions of the fruit (McGlone and Martinsen, 2004). Qin et al. (Qin et al., 2016) used reflectance and transmittance spectra to identify haploid corn kernels with an identification accuracy of 93.2% for the transmittance pattern which is considerably higher than <60% for the reflection pattern. In addition, the transmittance spectrum is superior to reflectance spectrum in the detection of seed mildew (Pearson et al., 2001; Lu and Ariana, 2013). These studies showed that transmittance spectroscopy should be preferred over reflectance spectroscopy in situations where it is necessary to detect differences in deeper regions of samples. The composition of the hybrid and the female parent on the seed coat is similar, but the internal composition of the seed is affected by the genes of both parents, which is different from the female parent. Therefore, the detection of deeper regions of the sample is more reflective of the differences between hybrids and their parent seeds.

To ensure the purity of hybrid wheat seeds, we aimed to identify and classify seeds and their parents by combining reflectance or transmittance VIS/NIR hyperspectral data with machine learning algorithms in this study. The specific research objectives are as follows: (1) detect the ability of VIS/NIR hyperspectral technology combined with machine learning algorithms to identify hybrids and their parental seeds; (2) analyze and compare the classification results of reflectance and transmittance hyperspectral data in classifying hybrids and their parental seeds; (3) select the best spectral preprocessing and feature extraction method, and establish the optimal wheat hybrid identification model against its female parent seeds; (4) explore the performance of the best detection model in the classification and recognition of seeds harvested in different years.



2 Materials and methods


2.1 Experimental samples

A total of eight wheat varieties were used in this study, including Jingmai 9, BS 1086, CP 730, Jingmai 11, 05Y hua 68-2, Jingmai 183, BS 237, and 05Y hua 68-1. Jingmai 9, Jingmai 11, and Jingmai 183 are hybrids, and others are parental seeds. Notably, Jingmai 9 and Jingmai 11 have a common female parent. These experimental samples were all high-purity original seeds provided by the Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry, Beijing, China. Seeds were collected between 2020 and 2021, sealed in kraft paper bags, and stored in a dry environment. Before the experiment, withered or damaged wheat seeds were removed, and 204 seeds of each variety were randomly selected for data collection. The images of seeds of eight wheat cultivars and their pedigrees are shown in Figure 1. In addition, 50 seeds were randomly selected from every hybrid and their female parents produced in 2021, as well as Jingmai 9 and the female parents produced in 2020, to test the performance of the model. None of these seeds were involved in modeling and were solely used to verify the actual detection accuracy of the model.




Figure 1 | Images of wheat seeds and their pedigrees.





2.2 HSI and spectral data collection


2.2.1 HSI system

The VIS/NIR HSI system used in the experiment mainly consisted of the following six components (Figure 2): a linear scanning V10E imaging spectrometer (Spectral Imaging Ltd., Oulu, Finland), a charge-coupled device camera (EM285CL; Raptor Photonics, Ltd., Larne, United Kingdom), zoom lens (OLE23; Schneider, Ratingen Germany), 150 W halogen tungsten lamp (IT 3900 e; Illumination Technologies Inc., New York, NY, USA), stepper motor-driven precision mobile platform (IRCP0076-1 COMB; Isuzu Optics Corp., Hsinchu, Taiwan), a computer equipped with Spectral Image software. The imaging spectral range of the system was 311–1,090 nm, the spectral resolution was 0.77 nm, and there were 1,002 bands in total. The No. 1 and No. 2 halogen lamps were located above the precision mobile platform, symmetrically distributed on both sides of the camera, and illuminated on the platform at 45° angle for reflectance spectrum collection. The No. 3 halogen lamp was located below the platform, in a vertical line with the camera, and illuminated from bottom to top for transmittance spectrum acquisition. All acquisitions are carried out in a dark room.




Figure 2 | Hyperspectral imaging system.



To solely obtain the transmittance spectrum of seeds and reduce the influence of reflected light, a black cardboard mask (100 × 100 mm) containing tiny rectangular slits (2 × 4 mm) was prepared to hold the seeds (Figure 3). The seeds covered the slits entirely to reduce the influence of the reflected light generated by the surface of the light-scattering seed on transmittance spectrum acquisition when the spectral information was collected (Siedliska et al., 2017; Zhang et al., 2017).




Figure 3 | (A) A black paper mask (100 × 100 mm) containing small rectangular slits (2 × 4 mm) was used. (B) Wheat seeds were placed on the mask to avoid exposure to redundant light. (C) Schematic of transmittance hyperspectral image acquisition of wheat seeds.



A series of preliminary tests were performed before image acquisition to determine experimental parameters and system settings. Illumination power was determined by detecting the raw spectral intensity of wheat seed samples. Compared with reflection, light loses relatively more energy when penetrating the wheat sample. Therefore, it is necessary to adjust the light intensity by increasing the exposure time of the camera to ensure that the image intensity is at an appropriate level (<80% of the maximum pixel output of the camera) (Qin et al., 2016). A Teflon sheet was used for obtaining the white reference and is often used as a white reference for transmittance images in quality assessments of interior food regions (Leiva-Valenzuela et al., 2014; Hu et al., 2018). Further, we ensured that the image was not saturated when acquiring a white reference image by choosing a white reference plate of appropriate thickness. Finally, we determined that the thickness of the white reference plate was 4 mm, and the intensity at this time was close to 80% of the maximum pixel output of the camera.

When collecting the reflectance spectrum, the seeds were evenly placed on the black cardboard, the black cardboard was placed on the transfer table, and the No. 1 and No. 2 tungsten halogen lamps were turned on. When collecting the transmittance spectra, the hybrid seeds were evenly placed on a black cardboard mask containing rectangular slits, the black cardboard was placed on the transfer table, and the No. 3 tungsten halogen lamp was turned on.

To eliminate the influence of dark current and other noise on the image, the original hyperspectral image was corrected using the following formula:

 

Where Iraw represents the raw hyperspectral image, Iwhite represents the white image, and Idark represents the dark image. The dark reference image for the transmittance spectrum was acquired by completely covering the lens with an opaque cover. The white reference image was acquired by transmitting light through a white Teflon plate (4 mm thick) using light source 3. The dark reference images for the reflectance spectrum were acquired similar to the transmittance spectrum. In contrast, the white reference images were acquired using Teflon plates irradiated using light sources 1 and 2.



2.2.2 Spectral collection

Owing to the instability of the spectral information in a single pixel, it is necessary to extract and calculate the average value of spectral information of all pixels in the same sub-projection area to obtain an average spectrum. After obtaining the hyperspectral image of seeds, threshold segmentation was used to remove the background spectral information to establish a mask, and the entire seed region of interest (ROI) was selected to extract the average spectrum, which represents a simple and efficient method and is widely used in hyperspectral image processing (Siedliska et al., 2017; Nie et al., 2019; Zhang et al., 2020). In this study, the reflectance and transmittance spectrum bands were at 450.2 nm and 865.2 nm, respectively, and the difference between the seed spectrum value and the background reached the maximum value. Therefore, we split the seeds in these two bands, built an ROI mask via threshold segmentation, and then extracted the average spectrum of each pixel in the ROI. To eliminate the influence of the external environment and camera performance, the front and back bands containing obvious noise were removed and 765 spectral bands in the range of 400–1,000 nm were obtained, which were used for discriminant analysis. The script for spectral extraction was written using Matlab2021b.




2.3 Data analysis


2.3.1 Data preprocessing

Since the noise in the spectrum acquisition process interferes with subsequent data analysis, it is necessary to use an appropriate method to preprocess the original spectrum data to eliminate the background noise, baseline drift, stray light, and other interference signals during the spectrum acquisition process and to improve the model accuracy (Zhang et al., 2020). In this experiment, three methods, standard normal variable transformation (SNV), multiplicative scatter correction (MSC), and Detrend, were used to preprocess raw spectral data.



2.3.2 Characteristic wavelength extraction

Hyperspectral data contains redundant feature variables and collinear adjacent bands, which can slow down modeling, affecting the speed and robustness of the model. Therefore, multivariate wavelength selection algorithms are usually used to obtain key wavelengths to establish simpler and improved quantitative models. In this study, uninformative variable elimination (UVE), successive projections algorithm (SPA), and competitive adaptive reweighted sampling (CARS) were used to extract characteristic wavelengths from the average spectrum of wheat seeds, respectively, to simplify the model and improve the reliability of the model (Cai et al., 2008; Song et al., 2016; Wang et al., 2021).

In this study, the components used to determine the criterion parameter in the UVE algorithm was set to 20 and the remaining parameters used default values in Matlab2021b (random variables: ‘pz’ = 200; cutoff level considered: ‘cutoff’ = 0.99). To improve the processing efficiency of the algorithm, the minimum and maximum number of variables in the SPA algorithm were set to 2 and 50, respectively. When CARS was used as the variable selection algorithm, the sampling number of Monte Carlo simulation was 500, the final variable number to be selected was determined via 5-fold cross validation, and the maximum number of latent variables for cross validation was 5.



2.3.3 Partial least squares discriminant analysis (PLS-DA)

PLS-DA is a classification model widely used in chemistry, food science, and other fields (Rodionova and Pomerantsev, 2020). It is established based on PLS regression (PLSR) and its algorithm includes two key steps: PLSR fitting and class determination (Xia et al., 2019). This method combines the advantages of multiple linear regression and principal component analysis. PLS-DA can perform regression modeling under the conditions of many independent variables, multiple correlations, and poor correlation between independent variables (Wang et al., 2021).

During modeling, seeds of the three wheat hybrids were combined with their female or male parent seeds resulting in a total of 12 datasets. For each dataset, 80% of the samples were randomly selected as the training set to train a model and the remaining 20% of samples were used as testing set. The method was repeated 10 times for cross-validation to obtain the average classification accuracy. The RANDPERM operator in MATLAB was used for sample division.





3 Results and discussion


3.1 Spectral characteristics of hybrid wheat seeds

The spectral curves of seeds of the three groups of hybrid wheat and the parents are shown in Figures 4A–F, and the average spectra of each variety are shown in Figures 4G, H. The change in trends of reflectance and transmittance spectra of the three hybrid wheat seeds and the parental seeds was generally similar. However, the average reflectance and transmittance spectra of hybrid wheat seeds and their parents were not identical. This may be due to genetic differences caused by cross-breeding manifested as differences in gene expression levels (Nie et al., 2019). The reflectance spectra of the eight wheat species were relatively smooth and had no obvious spectral absorption peaks (Figure 4G), while three absorption peaks were detected in the spectrum of the average transmittance spectrum (the peaks and valleys were located at 450 nm, 900 nm, and 980 nm, respectively; Figure 4H). The band at approximately 450 nm is in the range of blue light, and certain specific bands are related to the pigments of plants, such as chlorophyll II a, chlorophyll II b, and carotenoids (Zhang et al., 2020). The band at 900 nm may be related to the third overtone of the C-H stretch. The spectral wavelength at 980 nm can be attributed to the O-H stretch second overtone (Cen and He, 2007). However, the spectral curves of the three groups of hybrid wheat and its parents have a high degree of overlap. It is unreliable to distinguish hybrid wheat from its parents only by the spectral curves’ difference in reflectance and transmittance values. However, the spectral curves of the three groups of hybrid wheat and its parents had a high degree of overlap. The discrimination of hybrid wheat from its parents based on the difference in spectral curves between reflectance and transmittance values alone is unreliable.




Figure 4 | Spectral curve of hybrids and their individual parental seeds: raw reflectance spectra of (A) Jingmai 9, BS 1086, CP730, (B) Jingmai 11, BS 1086, 05Y hua 68-2, and (C) Jingmai 183, BS 237, 05Y hua 68-1; raw transmittance spectra of (D) Jingmai 9, BS 1086, CP730, (E) Jingmai 11, BS 1086, 05Y hua 68-2, and (F) Jingmai 183, BS 237, 05Y hua 68-1; (G) the average reflectance spectra of each wheat variety; (H) the average transmittance spectra of each wheat variety.



A high-frequency noise was detected in the original spectrum, indicating the need for preprocessing (Figure 4). Preprocessing improves the classification accuracy of the model in classifying wheat and its pollutants (Ravikanth et al., 2016). Therefore, the raw average spectral data obtained in this study were preprocessed using MSC, SNV, and Detrend (Figure 5). The relative differences between the average spectra of the three groups of hybrid wheat and their parents were reduced after MSC and SNV (Figures 5A, B, D, E). The spectral value range increased after SNV processing. The absorption peak increased remarkably after Detrend treatment (Figures 5C, F). However, neither the raw nor preprocessed mean spectra differed significantly among different seed varieties. Therefore, it is necessary to establish a discriminant model to identify and classify hybrid wheat and parental seeds.




Figure 5 | Spectral curves of different preprocessing methods: reflectance spectral curves after (A) MSC processing, (B) SNV processing, and (C) Detrend processing; transmittance spectral curves after (D) MSC processing, (E) SNV processing, and (F) Detrend processing. MSC, multiplicative scatter correction; SNV, standard normal variable transformation.





3.2 Classification results and analysis of discriminant models based on full wavelengths

Based on the spectral data in the entire wavelength range for both transmitted and reflected light, the discriminant models of hybrid wheat mixed with female or male parent seeds were established by PLS-DA algorithm. The mean of the classification accuracy of 10 cross-validations of model were obtained, and the results are shown in Table 1. From the results of the PLS-DA model in Table 1, in the reflectance mode, the modeling results for identifying the hybrid and male parent seeds based on full-spectrum data are better than hybrid and female parent seeds. This had been in line with our research expectation that the embryo and endosperm of the hybrid seed contain both the genetic material of the male and the female parent, and show different phenotypes from their parents accordingly. However, the outer layers of wheat caryopses are composed of the pericarp, the actual seed coat, and remnants of nucellar tissues (Matzke and Riederer, 1990). These are developed from the ovary wall and integument, which leads to phenotypic similarity in seed coat between hybrids and their female parent. Therefore, the material composition of the seed coat of hybrid wheat seeds is similar to that of the female parent. This may also explain the higher accuracy in identification between hybrid and male parent seeds than that of hybrid and female parent seeds in reflectance mode.


Table 1 | The classification results based on full spectrum using PLS-DA algorithm.



The accuracy of classification and identification of hybrid and female parent seeds based on modeling full-spectral data was improved in transmittance mode compared to that obtained in reflectance spectroscopy. Conversely, the classification accuracy of the hybrid and male parent seeds models decreased. Owing to the poor penetration of reflected light, diffuse reflectance spectroscopy can only obtain information on the surface of the grain. In contrast, the transmittance spectrum can enable the full accumulation of the depth information of the analytical optical path and information inside the sample (Qin et al., 2016). The difference between hybrid and female parent seeds is mainly reflected in the embryo and endosperm inside the seed; thus, transmittance spectrum modeling of the hybrid and female parent is more reliable than modeling reflectance spectrum. However, for hybrids and male parents with differences in the seed coat, the model established based on transmittance spectrum is not better than that using reflectance spectrum. Moreover, there was a significant decline in the classification accuracy of Jingmai 9 and the male parent. For the three groups of seeds used in this study, the transmittance spectrum classification results of hybrids and female parents were better than those obtained using reflectance spectrum classification. Among them, the transmittance spectrum classification effect after Detrend preprocessing was the best, and the classification accuracy of the testing set of Jingmai 9, Jingmai 11, and Jingmai 183 reached 92.84%, 91.52%, and 92.38%, respectively. Therefore, further characteristic wavelength screening was performed using the transmittance spectrum preprocessed by Detrend, and an analysis model was established to provide more references for the development of multi-spectral rapid detection systems.



3.3 Modeling analysis based on characteristic wavelengths


3.3.1 Optimal wavelengths selection

The purpose of characteristic wavelength selection is to reduce the dimension of original high-dimensional spectral data, retain helpful information to the greatest extent, and eliminate redundant information. In this study, UVE, SPA, and CARS algorithms were used to re-model the selected characteristic bands from the complete spectral characteristics of the three hybrids and their female parent seeds after Detrend preprocessing. The specific wavelengths identified by the three variable selection algorithms are shown in Figure 6.




Figure 6 | Detailed location of characteristic wavelengths screened using different methods: (A) reflectance spectrum and (B) transmittance spectrum.



When UVE was used to select characteristic wavelengths in the transmittance spectrum, the number of spectral characteristic variables corresponding to different kinds of hybrid wheat was reduced from 753 to approximately 65–89. When SPA and CARS were used to select characteristic wavelengths, the number of variables was reduced from 753 to approximately 13–28. Few differences in the characteristic bands were screened out by the three characteristic wavelength algorithms in the transmittance and reflectance spectra (Figure 6). Compared with the reflectance spectrum, the characteristic wavelengths selected by different feature-screening methods were more concentrated in the transmittance spectrum. They were mainly concentrated in certain bands near 400–500, 630–650, and 910–1,000 nm. Few researchers have proposed that specific-wavelength bands in the visible light region may be related to plant pigments, such as chlorophyll II a at 430 nm, chlorophyll II b at 448 nm, carotenoids at approximately 448 nm and 471 nm, and anthocyanin at 623 nm, 642 nm, and 646 nm with absorption peaks (Sun et al., 2016; Zhang et al., 2020). Additionally, the spectral band in the range of 400–500 nm is related to the starch content of seeds, and the band at approximately 900–1,000 nm is considered to reflect the difference in seed protein content (Wang et al., 2022). The genes of the paternal parent influence the endosperm of the hybrid, and the starch and protein content of the hybrid showed few differences from the maternal parent, which were reflected in the corresponding bands of the spectrum. To further determine the optimal feature selection algorithm, further modeling analysis was performed based on the extracted characteristic wavelengths and the optimal feature selection algorithm was selected.



3.3.2 Classification results and analysis based on characteristic wavelengths

The spectral data preprocessed using Detrend were subjected to dimensionality reduction transformations of UVE, SPA, and CARS, and then the hybrid and female parent seed classification models were established using PLS-DA (Table 2). In the feature band screening method, the accuracy rate of the model established via SPA and UVE processing decreased in certain varieties compared with that of the whole band. The accuracies of models established using CARS processing were improved compared with that of full-band modeling. The overall performance of the classification and identification of hybrids and female parents based on transmittance spectroscopy was still better than that of reflectance spectroscopy. Based on the results presented in section 3.3.1, the characteristic bands finally screened using CARS were below 30, which can effectively eliminate unusable spectral information, and the number of extracted bands was <3.2% of the full band, which was considerably lower than that obtained using UVE. Therefore, the Detrend-CARS-PLS-DA model based on the transmittance spectra was the best model for classifying wheat hybrid and female parent seeds. Finally, the classification accuracies of the established model in the testing sets of Jingmai 9, Jingmai 11, and Jingmai 183 were 95.69%, 98.25%, and 97.25%, respectively.


Table 2 | The classification results of hybrids and female parent seeds based on different characteristics selection spectra.





3.3.3 Optimal model validation and visualization

In addition to the modeled sample of 1,632 seeds (204 seeds per category), this study selected 250 seeds (50 seeds per category for hybrid and female parent seeds) for optimal model validation and visualization. A visualization of the verification results is shown in Figure 7. Five, two, and three seeds were misidentified among Jingmai 9, Jingmai 11, and Jingmai 183, respectively (Figure 7); the validation accuracies of the three hybrids were 95%, 98%, and 97%, respectively; which was consistent with the modeling validation set (Table 2). Therefore, the model can maintain stable accuracy when detecting the same batch of seeds. This method can quickly perform preliminary detection of hybrid seed purity to identify samples with a high contamination ratio. Additionally, owing to the non-destructive detection characteristics of HSI, this method can be used for the online selection of hybrid seeds, and the purity of hybrid wheat samples can be improved by separating female parent seeds. Considering Jingmai 9 as an example, for Jingmai 9 seeds with a purity of 90%, the seeds identified as the female parent were filtered out via the aforementioned method which increased the seed purity to approximately 99%.




Figure 7 | Visualization of hybrid seed versus female parent seed classification results: (A) Jingmai 9, (B) Jingmai 11, and (C) Jingmai 183.






3.4 Validation of the detection model for the seed of different years

When hyperspectral data are obtained, their analysis is limited by modeling samples. While modeling can often maintain a high accuracy rate when detecting samples of the same batch in the same year, the accuracy significantly decreases when testing across different years or seed lots (Guo et al., 2017). Therefore, we selected the hyperspectral transmittance images of 50 seeds of Jingmai 9 and BS 1086 wheat seeds harvested in 2020 to verify the detection accuracy of the best purity detection model for seeds across years and visualized the results.

The cross-year detection results of Jingmai 9 and the female parent are shown in Figure 8. The final detection accuracy was 86%. Few identification errors were expected and since the training samples in the model did not contain seeds harvested in 2020 and seeds of the same variety harvested in different years have phenotypic differences. Compared with the seed samples harvested in 2021, the model classification accuracy significantly decreased based on the confounding of Jingmai 9 and female parent seeds harvested in 2020. Moreover, in the cross-year prediction of the model established for Jingmai 9 seeds mixed with its female parent seeds, only two female parent seeds were incorrectly identified as Jingmai 9, and 12 seeds of Jingmai 9 were predicted as the female parent seeds. Since the proportion of female parent seeds in hybrid wheat will be relatively small in actual production, the accuracy of this model used in assessment of actual seed purity will be further reduced. However, for seed sorting, owing to the high recognition precision of female parent seeds, this model can accurately discriminate female parent seeds from the hybrid sample. In this study, the purity detection model for hybrids against their female parents established using transmitted light can achieve good results in detecting seeds from the same lot. However, the detection accuracy may decline when analyzing seeds from different years. In further studies, it will be necessary to add standard samples from different years and growing environments to improve the prediction accuracy of the model.




Figure 8 | Visualization of detection of seeds of Jingmai 9 and its female parent.





3.5 Analysis of modeling results

In this study, we used transmittance and reflectance HSI to classify hybrids and their parent seeds, respectively. Reflectance HSI was more efficient in identifying and classifying hybrid and male parent seeds than when used for classifying hybrid and female parent seeds (Table 1). Hybrid and male seeds are harvested from plants of different varieties, and there are differences in the seed coat. Therefore, we obtained good results in identifying hybrid and male seeds using reflectance HSI, which can effectively identify differences in seed coats.

The influence of the maternal parent, including maternal cytoplasmic inheritance, genomic imprinting, and maternal effect (Wolf and Wade, 2009), on the formation of offspring is greater than that of the paternal parent. In Jingmai 11 and Jingmai 183, the optimal identification accuracies of the testing set of the hybrid and the male parent in the transmittance spectrum were 95.36% and 95.62%, respectively, which were better than the accuracies of 91.52% and 92.83% for the hybrid and the female parent, respectively (Table 1).

The transmittance spectrum is considered to enable the full accumulation of the optical path depth information to obtain information inside the sample (Qin et al., 2016). In our study, transmittance HSI was better than reflectance HSI in classifying and identifying the three hybrids and female parent. For the accumulation of internal depth information, the transmittance spectrum can reflect certain compositional differences inside the seeds. Therefore, transmittance hyperspectroscopy is considered suitable for the classification and identification of hybrids and female parents.

Transmittance spectra of single seeds can be considered a worst case with large additive and multiplicative scatter effects due to differences in kernel size, structure, and presentation angle (Pedersen et al., 2002). This results in a large variance in the transmittance spectrum measurements due to uncontrolled changes in light scattering (Figure 4). Although we have processed the spectra using a preprocessing method, the transmittance spectra still do not perform as well as the reflectance spectra in the identification of hybrids that are already distinct from the male parent in the seed coat. Among them, the optimal recognition effect for Jingmai 9 and male parent in transmittance spectrum was only 89.41%.

This study distinguishes hybrids from females in the 400–1,000 nm band based on variables selected via three feature-screening algorithms. The characteristic wavelengths selected for the transmittance spectrum are concentrated in specific wavelength bands such as 400–500 nm, 630–650 nm, and 910–1,000 nm. These bands of 400–500 nm and 630–650 nm correspond to the phytochromes of seeds (Sun et al., 2016; Zhang et al., 2020), which may be related to wheat seed coats. It is related to the precipitation of pigment content in the aleurone layer. The 910-1000nm band corresponds to the protein content of seeds (Wang et al., 2022), which reflects the difference in components between the hybrid and the female parent due to the genetic influence of the two parents. After feature screening, the model can still maintain a high prediction accuracy, reduce the number of spectra, and provide a reference for future multispectral detection.

In addition, the accuracy of the model decreased in the detection of Jingmai 9 and female parent seeds across years (Figure 8). The growth environment of seeds may differ across years, such as: rainfall, temperature, soil fertility. In practical applications, multi-year seeds should be added for modeling to further improve the transferability of the model.

At present, the actual production of wheat hybrids mainly involves the self-crossing of the female parent to produce the female parent’s seed-contaminated hybrid. Our results show that compared with reflectance HSI, transmittance HSI can more accurately identify hybrid and female parent seeds. It can provide a reference for pure sampling detection and online sorting of hybrids.




4 Conclusion

In this study, seeds of three pairs of different wheat hybrids and their parents were identified and classified using HSI technology combined with a PLS-DA model. The reflectance and transmittance modes were used for comparison and analysis, respectively. Combined with different preprocessing methods and feature extraction algorithms, a fast classification and identification method was established for discriminating hybrids and their female parent seeds. The established model can efficiently and non-destructively differentiate seeds from hybrids and their female parent seeds. The following specific conclusions can be drawn from this study:

1) Based on the similar seed coat phenotype, the identification accuracy of hybrid wheat and the female parent seeds was lower than that of hybrid wheat and male parent seeds when using reflectance spectrum for modeling and classification. The three wheat hybrids and their female parent seeds selected in this study were modeled in the hyperspectral full-spectral reflectance mode, and the recognition and classification accuracies were <90%.

2) The established transmittance hyperspectral model performed better than the reflectance model in classifying three hybrids and female parent seeds. The transmittance spectrum significantly improved the hybrid classification effect of hybrids and female parents compared to that obtained using reflectance spectrum.

3) After multivariate data analysis, the Detrend-CARS-PLS-DA model established using transmittance HSI showed best performance in classifying and identifying hybrid wheat and their female parent seeds. The classification and recognition accuracy of the testing set of Jingmai 9, Jingmai 11, and Jingmai 183 hybrids reached 95.69%, 98.25%, and 97.51%, respectively.

This method established by using transmittance spectroscopy combined with machine learning can accurately identify hybrid and female parent seeds. It can be widely used in the supervision and detection of wheat hybrid production and also in the timely detection of hybrid seed lots of low purity. In addition, combined with HSI-based non-destructive and rapid detection characteristics, this study provides a reference for the development of hybrid seed online detection and sorting systems in the future.
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Quantitative analysis of root development is becoming a preferred option in assessing the function of hidden underground roots, especially in studying resistance to abiotic stresses. It can be enhanced by acquiring non-destructive phenotypic information on roots, such as rhizotrons. However, it is challenging to develop high-throughput phenotyping equipment for acquiring and analyzing in situ root images of root development. In this study, the RhizoPot platform, a high-throughput in situ root phenotyping platform integrating plant culture, automatic in situ root image acquisition, and image segmentation, was proposed for quantitative analysis of root development. Plants (1-5) were grown in each RhizoPot, and the growth time depended on the type of plant and the experimental requirements. For example, the growth time of cotton was about 110 days. The imaging control software (RhizoAuto) could automatically and non-destructively image the roots of RhizoPot-cultured plants based on the set time and resolution (50-4800 dpi) and obtain high-resolution (>1200 dpi) images in batches. The improved DeepLabv3+ tool was used for batch processing of root images. The roots were automatically segmented and extracted from the background for analysis of information on radical features using conventional root software (WinRhizo and RhizoVision Explorer). Root morphology, root growth rate, and lifespan analysis were conducted using in situ root images and segmented images. The platform illustrated the dynamic response characteristics of root phenotypes in cotton. In conclusion, the RhizoPot platform has the characteristics of low cost, high-efficiency, and high-throughput, and thus it can effectively monitor the development of plant roots and realize the quantitative analysis of root phenotypes in situ.
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Introduction

The root system is the primary organ for absorbing water and nutrients, and the site for hormone and organic acid synthesis. The root phenotype is closely related to crop yield, quality, and stress resistance (Tracy et al., 2020). Therefore, root phenotype analysis is important for improving crop yield, and stress resistance (Joshi et al., 2017; Rinehart et al., 2022) and thus can promote the breeding of new crop varieties and stress-resistant cultivation measures.

The root phenotype plasticity depends on internal genetic factors and external environmental factors (Lynch, 1995; Gruber et al., 2013; Lynch, 2013), such as temperature (Nagel et al., 2009), moisture, soil structure (Bengough et al., 2011), and soil nutrients (Lambers et al., 2009). The optimal root phenotype in a given environment enables efficient exploration and competition for resources and can survive periods of nutrient or water scarcity (Li et al., 2022b) Therefore, exploring dynamic root phenotypes can further clarify the response mechanism of root phenotypes to the environment and reveal the relationship between root traits and yield for improving crop yield (Tracy et al., 2020).

The underground root system (the hidden half of the plant) is highly complex (Box, 2002; Atkinson et al., 2019). As a result, the study of root phenotypes is highly dependent on research methods. The traditional root phenotype research methods (multiple destructive sampling methods) manually separate the roots from the soil through root drilling method, excavation method (Cheng et al., 2009), clod method (Li et al., 2006), and shovelomics method (Trachsel et al., 2011) for morphological analysis. The destructive sampling root phenotyping method cannot achieve in situ root phenotype research. Moreover, it has a large workload and low efficiency and causes root loss during excavation and cleaning (Wasaya et al., 2018), making it difficult to achieve accurate root phenotyping. Therefore, developing a low-cost and high-efficient in situ root phenotype research device is necessary for soil substrates and for observing root and root hair phenotypes (Adu et al., 2014).

Non-destructive in situ root phenotyping methods enhance the collection of root images (Lynch, 2021) and in situ root images (Liu et al., 2020). Digital cameras and scanners are widely used to obtain images for in situ root platforms (Jeudy et al., 2016; Wu et al., 2018; (Yuan et al., 2016). Although digital cameras and scanners can collect in situ root phenotype images to identify roots, they cannot sufficiently identify root hair phenotypes. Although a microscope can observe root hair phenotypes, microscopy may also change the root hair phenotype during fixation and staining and thus cannot accurately capture root dynamic information (Guo et al., 2009). Therefore, high-throughput and high-resolution image acquisition methods should be developed for in situ root phenotype studies.

Root segmentation involves the extraction of roots from the root image via noise reduction, thresholding, and skeletonization. Root segmentation is crucial in in situ root phenotyping (Shen et al., 2020) since it enhances root trait analysis. However, root image segmentation and feature extraction are affected by the uneven background of root images, mutual occlusion, and easily movable root tips. Advances in deep learning and other machine learning methods have enhanced root image segmentation.

Convolutional neural networks (CNNs) are widely used in deep learning for image processing. CNNs are a hierarchical structure that performs sequential image filtering operations to transform images from traditional color image inputs into new feature representations. The commonly used image segmentation method relies on a “bottom-up” approach, designing an updated encoder-decoder configuration based on CNNs, combining a CNN with a second inverse CNN to segment images, or extracting the locations of key feature points in the root system (Yasrab et al., 2019). This method filters out pixels other than the root system and groups the root system using multiple filters (Seethepalli et al., 2020). Weka Segmentation (TWS) and RootPainter (Arganda-Carreras et al., 2017b) classify pixels for image segmentation via user-input training algorithms. However, they still need further improvement. Therefore, high-throughput in situ root image analysis can improve the quality of root image segmentation and in situ root research.

In conclusion, dynamic root phenotype analyses can be improved by obtaining high-resolution in situ root images, improving the efficiency and accuracy of in situ root image segmentation, and quickly obtaining root images (Shen et al., 2020). In situ root acquisition and analysis methods are currently in the developmental stage (Li et al., 2022a). Therefore, high-throughput in situ image acquisition and root image analysis platforms should be developed to improve dynamic root phenotyping methods. Cotton is one of the most important economic crops with a typical tap root and thus was used in this study to verify the RhizoPot platform, as a method for studying in situ root phenotypes. This method can observe changes in root morphology, including the characteristics of changes in fine roots and root hairs, under abiotic stress for quantitative analysis of in situ root phenotypes.

This study aimed to develop a general, high-throughput, high-efficiency, and low-cost in situ root phenotyping platform (RhizoPot platform) for dynamic root phenotyping analysis. The RhizoPot platform combines RhizoPot, RhizoAuto, DeepLabv3+, and RhizoComp, thus integrating the acquisition, segmentation, and contrast of in situ root images, to study the root morphology, root growth rate, and lifespan analysis of roots and root hairs during root development. The performance of the software and hardware of the RhizoPot platform was assessed using two genotypes of cotton (Gossypium hirsutum L.). Therefore, this research may enhance the study of dynamic root phenotyping.



Materials and methods


Composition of the RhizoPot platform

The RhizoPot platform (software and hardware) has four parts: RhizoPot, RhizoAuto, DeepLabv3+, and RhizoComp (Figure 1). The diagram below also shows the workflow of the platform. RhizoPot cultivates seedlings, while RhizoAuto collects in situ root images. DeepLabv3+ segments the images, which are then analyzed by WinRhizo software to obtain root phenotypes. RhizoComp analyzes in situ root images to obtain root lifespan, and the lifespan of root hairs was defined as the number of days from the appearance of root hairs to when the root hairs were distorted.




Figure 1 | The composition and workflow of the RhizoPot platform for in situ root phenotyping. (A) RhizoPot in a greenhouse. (B) Operation interface of RhizoAuto. (C) In situ root images from a RhizoAuto-controlled flatbed scanner. (D) Image comparison analysis tool RhizoComp. (E) Working photo of image segmentation tool DeepLabv3+. (F) Rendering of the segmented in situ root image. (G) The segmented images analyzed with WinRhizo software.




RhizoPot

RhizoPot is a plant culture container consisting of an acrylic plate and a scanner (Epson Perfection Version 39, Suwa, Japan), with soil as the substrate to simulate the field growth environment (Figure 2A). In this experiment, the RhizoPot was tilted at 60°. The panel of the flatbed scanner replaced the acrylic plate on one side, and it was placed in close proximity to the culture substrate to obtain a high standard image of the root system (Figures 2A, B). The inclined culture vessel enables more roots to come into contact with the panel using the scanner. It also facilitates the placement of RhizoPot, improves space utilization, and facilitates high-throughput assays (Figure 2C). The dimensions of the RhizoPot are 20 W x 8.5 D x 34 H cm3 (W, D, and H represent width, depth, and height, respectively). The outer wall of the RhizoPot is covered with a layer of black cardboard to prevent root exposure to light. About 1-5 plants were grown in each root culture container (sowing position; about 1 cm away from the side of the scanner panel).




Figure 2 | RhizoPot’s single cross-cuts (A), single entity photos (B), and batch work drawings (C).





RhizoAuto

RhizoAuto controls the RhizoPot scanner to automatically capture high-resolution root images. It is programmed in Java and sends the image capture command to the working scanner using the TWAIN module (http://TWAINmodule.sourceforge.net), which is then transferred to the computer. Each RhizoAuto can simultaneously control 10 RhizoPot flatbed scanners and run based on the set acquisition time, resolution, and file naming method. RhizoAuto first acquires a 1200 dpi resolution image, then a 4800 dpi resolution image. Herein, the 1200 dpi images were used for analyzing root morphological characteristics and lifespan, while the 4800 dpi images were used to analyze root hair phenotype and lifespan (Figure 3).




Figure 3 | An in situ root phenotype with a cluttered scene. (A) A sample input image of the root system of a cotton seedling growing on RhizoPot. (B) The scene with cluttered colors represents the difficulty associated with image segmentation. (C) Visible root hairs and root tips.





DeepLabv3+

DeepLab v3+ automatically segments roots from in situ root images with cluttered scenes into root images with a single background. It is based on deep learning, adopting the encoder-decoder structure based on CNN (Shen et al., 2020). It introduces a sub-pixel convolution method and an efficient upsampling method based on deep learning.

The convolution operation extracts the target features and obtains low-resolution feature maps. The sub-pixel convolution-based upsampling process can effectively improve image quality (Zhao et al., 2019). Therefore, subpixel convolution during root pixel segmentation can prevent pixel loss after standard DeepLabv3+ sampling, improve the segmentation accuracy of small and indistinguishable root trajectories, and further enhance the accuracy and integrity of the root system after segmentation. Image segmentation makes the root system white with a black background, which is suitable for WinRHIZO (Regent Instruments, Inc., Quebec City, Canada) analysis to obtain conventional root system indicators, including total root length (RL, cm), average root diameter (AD, mm) and total root surface area (RSA, cm2).

Herein, WinRHIZO Tron MF (Regent Instruments, Inc., Quebec City, Canada) was used for manual segmentation of in situ root images. The operator manually tracked and marked all roots using a mouse, segmented all roots, and then obtained root indicators based on the segmentation results. The effect and efficiency of the two root image segmentation methods were then compared to verify the efficacy of the DeepLabv3+.




Dynamic root phenotypes

The root morphological indexes were obtained after segmenting the regularly collected 1200 dpi root images. The change characteristics of root phenotype, such as root growth rate, root diameter change rate, and net root growth per unit volume, were calculated based on the time of in situ root image collection. This can enhance research on the growth rate and change characteristics of the root system in response to environmental changes (Suwanchaikasem et al., 2022).

The characteristics of root morphological changes were calculated as follows:

	RLD = RL/(A×DOF)

	RLDNGR=(RLDn-RLDn-1)/d



Where RLD represents the root length density (Salim et al., 2021); L, A, and DOF represent the root length observed in RhizoPot frames (m), observed RhizoPot frame area, and the depth-of-soil (2.5 mm), respectively (Johnson et al., 2001); RLDNGR, RLDn, and d represent net root growth per unit volume, root length density on the specified date after sowing, and time, respectively.



Root hair phenotype

Root hair length and density were measured using in situ root images (4800 dpi) via Adobe Photoshop CC 2019 (Adobe, San Jose, CA, USA). Briefly, “Histogram”, “Measurement Record” and “Information” were selected in the menu bar to facilitate statistics and calculations. The 4800 dpi root image was opened with the ruler tool, and a distance of 1 cm was selected on the photo, then measured by selecting “Record”. The number of pixels corresponding to each centimeter was obtained, and the root segment with root hairs was located. Five root hairs were randomly selected for measurement, and the number of pixels corresponding to the length of the root hair was calculated (Xiao et al., 2020). The length and density of root hair were then determined. ImageJ (https://imagej.net) was used to complete the work instead of Adobe Photoshop.



RhizoComp for analysis of root system and root hair longevity

RhizoComp, a root image comparison tool based on C+, can simultaneously perform operations on ten in-situ root image by zooming and moving. Herein, in situ root images of different time series were imported into RhizoComp. The entire process from emergence to senescence of a root was visualized by synchronizing zoom in and move. The lifespan of roots or root hairs was then determined using the time interval between the two images (Parent and Tardieu, 2012). Newly emerging roots are white with root tips, while senescent roots are dark brown or black with the distinctly folded epidermis (Hendrick and Pregitzer, 1992). This tool was also used to analyze root hair lifespan. The 4800 dpi root image was enlarged to the root system until the root hair was visible. The time of appearance and senescence of root hair in this area was searched, and its lifespan was judged based on the time interval. Root hair senescence was defined as senescence based on morphological changes when the root hair is twisted and bent (Hendrick and Pregitzer, 1992).



Validation of the RhizoPot platform

Validation was conducted in 2021 at the Hebei Agricultural University (38° 85′ N, 115° 30′ E), Hebei Province, China, using two commercial cotton (Gossypium hirsutum L) cultivars “K836” and “K837”. Sowing was performed 1 cm from the RhizoPot scanner panel, and the two seeds were sown 8 cm apart. The experiment had ten replicates. The plants were grown in a smart greenhouse under day/night temperatures of 28/25 °C, 14/10 h (light/dark) photoperiod, and a light intensity of 600 µmol/m2/s1. In situ root images (1200 dpi and 4800 dpi) were automatically acquired using RhizoAuto every day at 8 am for 110 d. The in situ root images were processed using DeepLabv3+ and RhizoComp to analyze the root growth rate, diameter change rate, net growth per unit volume, root lifespan, root length density, and lifespan of root hairs.



Data statistical analysis

One-way ANOVA was used to determine significant differences among the tested genotypes for each trait via SPSS Statistics 20 (IBM, USA). GraphPad Prism 8.0.2 (CA, USA) and Origin 2022b (OriginLab, USA) were used to plot figures. Statistical significance was set at P ≤ 0.05.




Results


A high-throughput integrated platform for plant culture and in situ root studies

The RhizoPot platform cultivated cotton to the boll opening period using soil or mixed substrates. The growth period was about 110 d (not limited to this number of days). The flatbed scanner was controlled using AutoScan to efficiently and automatically collect in situ root images in batches. The 1200 dpi and 4800 dpi root images were acquired at about 3 min/image and 10 min/image, respectively. The speed of in situ root image segmentation using DeepLabv3+ (Automatic segmentation) was about 10 min/image, significantly higher than manual segmentation’s efficiency (Figure 4). The automatic segmentation achieved batch and automatic root image segmentation. The daily changes in root phenotypic characteristics were compared, and the dynamic root phenotype and root lifespan were calculated.




Figure 4 | Comparison of the efficiency of automatic segmentation and manual segmentation of images with different root lengths.



The approximate cost of the RhizoPot platform, including each component, is detailed in Table 1. The total cost for the culture vessel, imaging sensor, and connection accessories was about $237 but could vary depending on labor input or bulk consumables used.


Table 1 | Details and costs of individual components in the RhizoPot platform.





Validation using two cotton varieties


The effect of DeepLabv3+ segmenting in situ root images

The segmentation effect of DeepLabv3+ on in situ root images was evaluated as follows: The root length, root surface area, root volume, and mean root diameter between DeepLabv3+ and manually segmented root images were compared using the collected cotton root images (Figures 5; S1). The DeepLabv3+ segmentation had a higher correlation with the manual segmentation, with root length having the highest correlation (R2 of 0.91) (Figure S1).




Figure 5 | In situ root image (A) and image after segmentation with DeepLabv3+ (B).





Dynamic root phenotypic traits of cotton

The root length of the two cotton varieties significantly increased from 1 d to 7 d, mainly due to the appearance and elongation of lateral roots (Figure 6). The root length then slowly increased (K836 and K837 reached the maximum at 62 d (302.52 cm) and 55 d (358.64 cm), respectively) (Figure 6A). The root diameter decreased from 10 d to 30 d due to the relatively large diameter of the main root at the initial stage, which decreased the average root diameter after lateral roots appeared in the early stage (Figure 6B). The root diameter rapidly increased at 30 d, then decreased at 68 d due to the senescence of the root system and the reduction of the thickness of the cortex. The root volume increased through the growth. However, the growth rate was faster in the early stage than in the later stage due to the rapid growth of primary and secondary lateral roots (Figure 6C).




Figure 6 | Dynamic characteristics of root phenotypes of two cotton varieties. (A) Root length, (B) root diameter, and (C) root volume.



The net growth rate of root length per unit volume (RLDNGR) rapidly increased in the early stage, reaching the maximum at 10 d, then decreased to a negative value after 60 d (Figure 7). Root senescence and elongation growth simultaneously occurred in the later period of cotton growth. However, the trend of senescence was greater than that of elongation growth.




Figure 7 | Net growth rate of root length per unit volume (cm/cm3/day) of two cotton varieties (RLDNGR).



The growth dynamics of a single root system were determined using root system images collected by the RhizoPot platform (Figure 8). The root system length significantly changed in the first 7 d, then gradually changed, becoming stable after 10 d. The root diameter first increased, then decreased (Figure 8B). The lateral root diameter of K836 and K837 did not significantly change at 8 d and after 10 d of rooting, respectively.




Figure 8 | Growth rate of average root length and root diameter. (A) Average root length and (B) average root diameter. The primary lateral roots of K836 and K837 were 116 and 92, respectively.





Phenotypic traits of root hairs in cotton

The root hair lengths of primary and secondary lateral roots of K836 cultivar were significantly different (Figure 9A). In contrast, the root hair length of primary and secondary lateral roots of K837 cultivar was not significantly different. The root hair density was not significantly different between the two varieties (Figure 9B). Moreover, root hair length did not significantly affect root hair density.




Figure 9 | Root hair traits of cotton. (A) Average root hair length, (B) average root hair density, and (C) average root hair lifespan. K1-1°LR, the primary lateral roots of K836; K1-2°LR, the secondary lateral roots of K836; K2-1°LR, the primary lateral roots of K837, K2-2°LR, the secondary lateral roots of K837. Different letters indicate significant differences between treatments (p<0.05).





Lifespan of roots and root hairs of cotton

The average lifespan of primary lateral root hairs of K836 and K837 was 30 d and 34 d, respectively (Figure 9C). The average lifespan of secondary lateral root hairs of K836 and K837 was shorter than that of primary lateral root hairs by 11 d and 15 d, respectively.

Survival analysis showed that the median lifespan of K836 lateral roots was longer than that of K837 lateral roots by 10 d (Figure 10A). However, the median lifespan of K836 primary lateral root hairs was shorter than that of K837 primary lateral root hairs by 6 d (Figure 10B). Besides, the median lifespan of  secondary lateral root hairs was not significantly different between the two cultivars (Figure 10C).




Figure 10 | Survival analysis of lateral roots and root hair. (A) Lateral roots. (B) Root hair of the primary lateral roots. (C) Root hair of the secondary lateral roots.



Lateral root lifespan was defined as the number of days between the appearance of the lateral root and the time when its appearance turned brown. The entire process of root from emergence to distortion and deformation was observed (Figure 11).




Figure 11 | Images of the same root area at different time points used to calculate root lifespan. Scale bar, 1 mm. Root pictures for different days: (A) 1 d, (B) 10 d, (C) 20 d, (D) 30 d, (E) 40 d, (F) 50 d, (G) 60 d, and (H) 70 d (dead roots).







Discussion


RhizoPot platform enhances the efficiency of in situ root imaging and analysis

In this study, the developed RhizoPot platform had the following characteristics; low-cost, high-efficiency, and high-throughput. Cameras (Bates and Lynch, 1996), monochrome vision cameras (Seethepalli et al., 2020), and industrial digital lenses (Liu et al., 2020) are the commonly used imaging equipment for the in situ root imaging platform. However, these types of equipment are expensive and not suitable for large-scale use. The developed platform had a low-cost flatbed scanner, which can obtain images at a wide range of resolutions, providing the basis for in situ root phenotypic analysis. Moreover, the 4800 dpi resolution image can be used to analyze root hair phenotypes. The vessel maximizes the representation of actual root characteristics of plants using soil as the culture medium. Furthermore, this platform improves the root image by making the root system grow directly on the scanner. Although the platform can obtain high-resolution images, the 1200 dpi and 4800 dpi root images take 3 and 10 min, respectively. Furthermore, RhizoPot can automatically acquire each in situ root image without human intervention, thus significantly improving efficiency compared with manual operations. In summary, the high-resolution root images obtained through this platform provide a basis for root phenotype studies and plant and microorganism interactions (Jeudy et al., 2016).

This platform can also automatically acquire root images. The computer obtains root images through AutoScan control scanner. Each computer can connect and control 10 scanners. Automatic image acquisition is completed by setting relevant parameters of AutoScan (scanning time and resolution). This platform is more efficient and flexible than individual culture vessels, such as RhizoTubes (Jeudy et al., 2016), RhizoChamber-Monitor (Wu et al., 2018), and root-TRAPR (Suwanchaikasem et al., 2022).

In addition, a deep learning-based image segmentation software DeepLabv3+ was developed. DeepLabv3+ combines the advantages of an encoder-decoder architecture and atrous spatial pyramid pooling (ASPP). DeepLabv3+ can capture rich associated information from plant root images across various resolutions, identifying and segmenting clear root trajectories. The results of DeepLabv3+ were highly correlated with the results of the conventional manual tracing method with WinRHIZO Tron MF (Figure 4). DeepLabv3+ can also complete image segmentation in batches while maintaining the integrity of the primary root and the continuity of the fine root edge contour without user interaction. DeepLabv3+ can automatically, efficiently, and accurately complete the segmentation of the root image, thus facilitating the acquisition of root indicators.

Meanwhile, RhizoComp was also developed to observe the root senescence process. RhizoComp can simultaneously observe ten high-resolution root images by zooming and moving the images synchronously, thus enabling continuous observations of the aging process of one or more roots. Compared with the traditional method of collecting ex vivo roots and observing through microscopy, this method significantly improves the efficiency and accuracy for root lifespan study.



Quantitative analysis of root development with RhizoPot platform

High-quality root images are important for root phenotyping analysis (Jeudy et al., 2016). Analyzing high-resolution in situ root images based on time series enhances studying of dynamic root phenotype characteristics. As a result, it facilitates the analysis of changes in root phenotype between genotypes or species in response to environmental changes (Niu et al., 2018). Root length growth rate, root diameter growth rate, root hair lifespan can be calculated using the root phenotype change parameters in a specific time (Xiao et al., 2020; Zhang et al., 2021; Zhu et al., 2022), thus promoting the study of the root system response to adversity. In this study, the high-resolution root images obtained by the RhizoPot platform were used to study the dynamic characteristics of lateral root phenotype (Zhu et al., 2022). The platform could better simulate the root development of the field conditions with high-throughput and efficiency compared with agar culture-based phenotypic methods (Zhu et al., 2022).

Several in situ root phenotyping platforms, such as RhizoChamber-Monitor (Wu et al., 2018) and RhizoTubes (Jeudy et al., 2016), have been developed for root image acquisition with high-efficiency and high-throughput and in a non-destructive manner. However, these platforms adopt the paper-based culture, which limits the representation of actual root characteristics of plants grown in soils, and thus can only be used to examine the root system of seedlings. RhizoPot simulates the field growth environment using soil or mixed culture media and thus can meet the need of the entire growth period of field crops (110 d). Yuan et al. (2016) developed a Brassica–rhizotron system with soil as the culture medium (Vessel volume; about 118 L). This approach was not suitable for automated operation, and the image quality was not high enough since the scanner panel was not in direct contact with the culture medium. In RhizoPot, a flatbed scanner is usually used as an imaging device, and it is in direct contact with the culture medium, thus improving the image quality. However, using a scanner as a panel has a limitation since the panel may be deformed by the gravitational pressure of the culture medium, resulting in failure of the scanning sensor and failure of the scanner. Therefore, related research is needed to improve this panel.



Application and Expansion of RhizoPot Platform

The RhizoPot platform is suitable for studying root development under various abiotic stresses, such as high temperature, drought, salinity, heavy metal, and oxidative stress. In this study, this platform was used to assess the characteristics of dynamic root phenotypes of two cotton varieties. The root growth rate, lateral root traits, and lateral root and root hair lifespan were also analyzed. A high degree of correlation was achieved (R2> 0.8) by comparing the results with the traditional method results, reflecting the advantages of the platform.

The platform can also be used to evaluate root structure of other species, such as legumes (Burridge et al., 2020). It can also be used to study phenotypic characteristics of plant roots under biological stress, such as the rate and law of change of root spots or the development process of roots in response to underground pests. Moreover, the platform can be used to study plant and microorganism interactions.




Conclusion

In this study, the RhizoPot platform was developed to analyze phenotypic characteristics during root development. RhizoPot is a high-throughput in situ root phenotyping platform that integrates plant culture, automated in situ root image acquisition, and image segmentation for quantitative analysis of root development. Herein, this platform was used to illustrate the dynamic response characteristics of root phenotypes in cotton. The platform was also used to explore dynamic root phenotypic traits, such as net growth rate of root length and lifespan, during cotton root development and verified root image segmentation efficiency, etc. The root image segmentation tool was effective and accurate, significantly outperforming manual segmentation, especially in terms of root length. In situ root images and segmented images can be used for root morphology, root growth rate, and lifespan analyses. In summary, the RhizoPot platform was low-cost and had high-efficiency and throughput. Therefore, it can be used to monitor the dynamic root phenotype characteristics during plant development and realize the quantitative analysis of root phenotype in situ.
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The chlorophyll fluorescence parameter Fv/Fm is significant in abiotic plant stress. Current acquisition methods must deal with the dark adaptation of plants, which cannot achieve rapid, real-time, and high-throughput measurements. However, increased inputs on different genotypes based on hyperspectral model recognition verified its capabilities of handling large and variable samples. Fv/Fm is a drought tolerance index reflecting the best drought tolerant cotton genotype. Therefore, Fv/Fm hyperspectral prediction of different cotton varieties, and drought tolerance evaluation, are worth exploring. In this study, 80 cotton varieties were studied. The hyperspectral cotton data were obtained during the flowering, boll setting, and boll opening stages under normal and drought stress conditions. Next, One-dimensional convolutional neural networks (1D-CNN), Categorical Boosting (CatBoost), Light Gradient Boosting Machines (LightBGM), eXtreme Gradient Boosting (XGBoost), Decision Trees (DT), Random Forests (RF), Gradient elevation decision trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees (ET), and K-Nearest Neighbors (KNN) were modeled with Fv/Fm. The Savitzky-Golay + 1D-CNN model had the best robustness and accuracy (RMSE = 0.016, MAE = 0.009, MAPE = 0.011). In addition, the Fv/Fm prediction drought tolerance coefficient and the manually measured drought tolerance coefficient were similar. Therefore, cotton varieties with different drought tolerance degrees can be monitored using hyperspectral full band technology to establish a 1D-CNN model. This technique is non-destructive, fast and accurate in assessing the drought status of cotton, which promotes smart-scale agriculture.




Keywords: chlorophyll fluorescence parameter Fv/Fm, high-throughput measurement, cotton, drought tolerance, hyperspectral, one-dimensional convolutional neural network



Introduction

Cotton (Gossypium hirsutum L.) is an important cash crop cultivated globally. Drought is major abiotic stress (Cruz de Carvalho, 2008), whose high frequency reduces the average productivity of major crops by up to 50% globally (Lamaoui et al., 2018). According to the World Food and Agriculture Organization, global food output losses caused by drought during the past decade amount to USD 30 billion (Zhang et al., 2021a). Cultivating drought-resistant varieties is not only important for resistance against frequent droughts but also an important current breeding goal. Drought-resistant varieties strongly tolerate drought, with moderate drought stress stabilizing the yields (Wang et al., 2018).

Breeding and screening drought-resistant varieties are usually complex and time-consuming since it depends solely on breeder expertise. Many relevant reports of the classification methods for different genotypes also exist, which mostly focus on fluorescence scanning, protein electrophoresis, deoxyribonucleic acid (DNA) molecular markers (Zhang et al., 2012), the determination of relative water content, net photosynthesis, stomatal conductance electron transfer rate, photochemical quenching, chlorophyll a/b ratio, plant height, and leaf area (Zou et al., 2020). The high-throughput method has gradually become an important technique for selecting drought-resistant varieties from numerous varieties. Drought significantly decreases the leaf water potential, followed by partial leaf stomatal closure, increased leaf temperature, and reduced photosynthetic efficiency (Najafi et al., 2007; Ahmed et al., 2013). Chlorophyll fluorescence kinetic parameters reflect leaf light energy absorption, transformation, transmission, and distribution characteristics (Hikosaka and Tsujimoto, 2021). The maximum photochemical quantum yield (Fv/Fm) in the chlorophyll fluorescence kinetic parameters represents the maximum light energy conversion efficiency in the photosystem II complex (PSII) reaction center. Thus, drought tolerance indicators have subsequently been developed to evaluate the drought adaptability of different plant genotypes. Fv/Fm positively correlates with drought degree (Zou et al., 2020). Therefore, Fv/Fm provides valuable information for evaluating plant physiological changes under drought stress (Lang et al., 2018), hence an efficient drought tolerance index in selecting the best drought tolerant cotton genotype. Measuring the crop drought Fv/Fm is feasible. However, it requires manual measurements and analysis, a 20–30 min plant adaptation period in the dark, which has low efficiency and requires a heavy workload; hence cannot meet plant phenotype analysis needs, such as high flux, automation, and real-time measurement. Therefore, high-throughput evaluation for screening drought-resistant cotton varieties by Fv/Fm warrants further studies. Rapid and efficient methods for screening cotton varieties must be developed by combining high-throughput phenotype methods and drought-resistant variety screening (Shakoor et al., 2017; Feng et al., 2019). This study focused on an accurate and robust prediction of drought-resistant varieties among different cotton genotypes, from small to large spatial scales.

Hyperspectral remote sensing performs fast, non-destructive, and economical data collection. Compared to conventional remote sensing, it produces a large amount of spectral information and has a high resolution and strong spectral continuity. It determines the optimal wave width and effective band from large hyperspectral datasets to obtain the best inversion effect (Yao et al., 2013). In addition, it comprehensively and accurately reflects the inherent spectral characteristics and differences between plants. Compared to the traditional identification method, this technology shortens the analysis time and reduces the material crop consumption, such as wheat (Mahesh et al., 2008; Choudhary et al., 2009), rice (Wang et al., 2015), cotton (Carreiro Soares et al., 2016), and grape (Zhao et al., 2018). Using hyperspectral data to monitor plant growth and development is based on plant spectral characteristics. Based on the spectral reflectance in different wavelength ranges, the spectral index provides a high crop parameter inversion accuracy. The vegetation color, cell structure, and water content determine most plant spectral characteristics. Thus, its successful application depends on a full understanding of the interaction between light and plant matter from the cellular to the canopy scale, the interpretation of reflectance data from different sources and related leaf spectral diversity. However, elucidating the interaction between drought and chlorophyll structural characteristics, cell structures, water, visible light, and near-infrared and short-wave infrared regions is a major challenge due to the inability to separate Fv/Fm from a series of other traits.

Large data volumes and the diversity of analysis methods for hyperspectral data often lead to large data problems (Montesinos-López et al., 2017); hence, advanced algorithms are required for parsing to generate physiological parameters evaluation models. With rapid agricultural artificial intelligence developments (Lu et al., 2017), excellent feature extraction and data inference abilities, and deep learning (DL) algorithms have attracted attention in constructing crop parameter inversion models combined with hyperspectral data (Shah et al., 2019). Machine learning (ML) methods, such as CatBoost, LightGBM, XGBoost, decision trees, Random Forests (RF), Gradient lifting trees (GBDT), adaboost, ExtraTrees, and K-Nearest Neighbor (KNN), are promising for extracting spectral features related to drought resistance by converting original data into new features (Khan et al., 2020). ML usually performs well on a sample-specific basis but loses generalizability when implemented on new data sets with different feature spaces and distributions of different plant species and growth conditions. DL is a new machine learning research field. It was developed to establish and simulate human brain neural networks for analytical learning, and simulates the mechanism of data interpretation in the brain. Thus, it is an unsupervised learning method (Durai and Shamili, 2022; Khan et al., 2022). It derives from artificial neural network research, and its multi-layered perceptron, with multiple hidden layers, which differs from machine learning. Unlike machine learning, DL has the input, hidden, output layers, and an accepting layer. One-dimensional convolutional neural networks (1D-CNN) are one of the most effective and popular deep learning models. It has the advantage of high recognition accuracy (Ghosal et al., 2018) and provides more general and robust leaf biochemical character retrieval. The network framework includes a convolution, pooling, and full connection layer used for feature extraction, compression, and classification, respectively. Convolutional Neural Networks (CNN) are used in many fields, such as weed and pest identification (Ding and Taylor, 2016), plant disease and stress diagnosis (Ghosal et al., 2018), and agricultural image segmentation (Xiong et al., 2017). Therefore, 1D-CNN has a good developmental history and an advantage in physiological parameter evaluation.

Many studies have used hyperspectral models to analyze and screen crop varieties. For example, Miao et al. (2018) introduced the t-SNE model, pretreated by Procrustes analysis (PA), into the field of hyperspectral imaging (HSI) to classify 800 grains of eight waxy maize varieties. Yu et al. (2021) combined DL and neural networks to classify 18 okra varieties. However, in most studies, the prediction results are based on the spectral information of a single growth stage. Combining the data of each growth stage achieves a higher prediction accuracy. As far as we know, research on screening drought resistant cotton varieties based on hyperspectral reflectance and deep learning at various growth stages has not yet been reported. Therefore, a 1D-CNN regression model with reflectance and Fv/Fm is crucial to screen drought resistant varieties among the different cotton genotypes.

In this study, we aimed to explore the feasibility of Fv/Fm based on 1D-CNN fitting to evaluate drought resistance among cotton genotypes by screening drought-resistant cotton varieties using hyperspectral and deep learning. The Fv/Fm and spectral reflectance of 80 cotton genotypes were measured at the flowering, boll setting, and boll opening stages under drought stress. We hypothesized that deep learning with strong interpretation and stability could be used to interpret the specific spectral responses of drought-resistant cotton genotypes, mainly the leaf reflectance in different genotype diversity and environmental change datasets. The specific objectives were: (1) To compare and analyze the full spectral data and the Successive Projections Algorithm (SPA) dimension reduction data; (2) To compare 1D-CNN with Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightBGM), XGBoost, DT, RF, Gradient elevation decision trees (GBDT), Adaptive Boosting (AdaBoost), Extra Trees (ET), and K-Nearest Neighbors (KNN); (3) To determine whether Fv/Fm prediction is feasible for screening cotton drought resistant varieties through cluster analysis. Based on Savitzky-Golay (S-G) and 1D-CNN model coupling, an Fv/Fm evaluation model was created, and a model update strategy was proposed to improve accuracy and robustness.



Materials and methods


Plant materials

Eighty cotton cultivars widely cultivated in the Yellow River Basin and the lower reaches of the Yangtze River across different timelines were analyzed in this study, as shown in Supplementary Table 1.



Experimental design and treatments

The experiment was conducted in a cotton field at Qingyuan experimental station of Hebei Agricultural University (38.85° N, 115.30° E, Baoding City, Hebei, China) from April to October 2021. The site information (Qingyuan Experiment Station) is presented in Figure 1. The study location has a temperate continental monsoon climate, with an average annual average temperature of 13°C and 2700 sunshine hours. The annual average precipitation is 532 mm, with about 60% of the precipitation from July to August. The experiment was laid out in a randomized complete block design (Supplementary Figure 1). The experiment had two drought stress levels based on the soil relative water contents (SRWC), including CK (well-watered, 75 ± 5% SRWC serving as the control) and DS (drought stress with 45 ± 5% SRWC) (Gao et al., 2020; Xiao et al., 2020). There were 160 plots per treatment replicated three times totalling 480 plots. The SRWC was monitored by time domain reflectometry (TDR, TRIME TDR series soil moisture meter, IIMKO Company, German) and then watered to maintain the SRWC within the appropriate ranges using micro-sprinkler irrigation.




Figure 1 | A sampling plot in Qingyuan District, Baoding, Hebei province. The red dot represents the sampling point.



Selected cotton seeds were sown on 24 April 2021. Four to five seeds were manually sown per hill using the hill-dropping seeding method, with a planting density of 5 plants m-2 and a row spacing of 48 cm. Next, mulching was done with a plastic film along the rows. The seedlings were thinned to one vigorous stand per hill upon germination at the two true-leaf stages (Zhang et al., 2021c). Drought stress treatment was induced at the third true-leaf stage. Each plot received 450 kg ha-1 of compound fertilizer containing 15% N, 15% P2O5 and 15% K2O as base fertilizer, and 150 kg ha-1 urea (46% N) was top-dressed at flowering. In addition, pest control, weed control, chemical control, and plant pruning were performed according to local agronomic practices. The soil texture based on the USDA soil classification standards of the tested soil at different soil layers in the cotton field is shown in Supplementary Table 2.

An electrically powered rain-out shelter was used to protect the plants against receiving precipitation. A rain sensor automatically controlled the rain-out shelter switch. The shelter closed automatically in the event of rain and opened as soon as the rain stopped. Thus, as described previously, any possible interference of natural precipitation with the waterlogging experiment was avoided.



Determination of indices and methods

Leaf hyperspectral, Fv/Fm, RWC and LWC were measured on 6 July 2021 (flowering stage), 14 August 2021 (boll setting stage), and 17 September 2021 (boll opening stage). Three representative plants were randomly selected from each plot. The specific determination of indices and methods was as follows:



Hyperspectral data collection

Based on the HR-1024i spectrometer (SVC, USA), the instrument blade clamp light source was used to measure the leaf surface reflection spectrum. The spectrometer had a measurement range of 350–2500 nm and a total of 1024 channels. The spectral resolution was 3 nm, and the sampling interval was 0.6 nm. To ensure a full spectrometer probe view field on leaf samples under the sun, the spectrometer sensor probe was vertically oriented downward, about 0.7 m from the cotton canopy top, and the field angle was set at 25 degrees. White board correction was carried out before each measurement to reduce error. The measurements were carried out in sunny, cloudless, windless, or low wind speed weather, between 10:00 am and 2:00 pm. Three representative, uniform, and pest-free plants were selected from each test plot to measure the reflection spectrum of the top four and fully developed leaves after topping. Before each measurement, the dust on top of the cotton leaves was wiped off to ensure the leaf surfaces were kept clean. Four sample points per leaf were selected, and their average was used as the leaf reflection spectrum. Measurements were taken once per month for three consecutive months. After field spectrum measurements, the top leaf for each plant was marked on its underside and labelled with a serial number for subsequent Fv/Fm measurements to ensure consistency. The detailed determination method and leaf selection are presented in Supplementary Figure 2.



Chlorophyll fluorescence content

A portable FMS-2 fluorometer (Hansatech, King’s Lynn, UK) was used to measure the chlorophyll fluorescence characteristic parameter Fv/Fm for newly developed, inverted leaves. Leaf initial (Fo) and maximum fluorescence (FM) were measured from 0:00 am to 2:00 am. The maximum photochemical quantum yield was then calculated as Fv/Fm = (Fm-Fo)/Fm (Bilger and Björkman, 1990).



Root water contents and leaf water contents

Three plants were selected and uprooted from each plot. Next, their roots and shoots were separated, and the fresh weights were determined. The roots and shoots were then dried 80°C to a constant weight to determine the dry weights. Finally, the water content was calculated as follows:





Calculation of drought resistance coefficient

The average Fv/Fm was measured to calculate the drought tolerance coefficient as described by Mwadzingeni et al., 2016.



Fv/Fm is the maximum photochemical quantum yield, CK is the normal conditions, DS indicates drought stress.



Spectral pretreatment and characteristic wavelength screening


Extraction, reflectance, and spectral pretreatment

The first step was to superimpose and match all spectral curves. In the second step, S-G first-order smoothing was used to eliminate spectral noise and reduce the influence of environmental background interference due to the spectral mutation of the instrument (del Amor et al., 2020). The third step was to remove the file header from the processed data, generate raw data, and save it as a TXT text file. The fourth step was calculating the averages of spectral data and generating spectral data for each ground object type. The fifth step was to interpolate the obtained data because the whiteboard reflectance band did not match the spectral band of each ground object type. The final step was to select the fourth data column (percentage) in the file and multiply the whiteboard reflectance according to the reflectance formula described by Zhao et al., 2022. This test adopted the vertical measurement method using the following formula:



Rt is the reflectivity of the measured object, Rr is the reflectivity of the standard version, L is the measured value of the measuring object, Lr is the standard value of the instrument.



SPA filter characteristic wavelength

A total of 1440 data groups were recorded. The SVC HR (overlay) software was used to extract the wavelength and reflectivity of each sample, and MATLAB was used to perform SPA on all spectra data to extract the characteristic wavelengths. Relevant source code can be found online https://blog.csdn.net/weixin_43637490/article/details/118468559.




Model development


One dimensional convolutional neural network (1D-CNN)

1D-CNN modeling was used to screen the spectral information of cotton drought-resistant genotypes. The main reasons were as follows: (1) the CNN network analyzed one-dimensional data (leaf spectral information) well. (2) It was able to advance the nonlinear mode from the data. (3) It allowed hierarchical spectral data processing to support feature abstraction and extraction. CNN is one of the best algorithms in deep learning, which can be divided into one-, two-, and three-dimensional. 1D-CNN is a classical deep neural network with high robustness, similar to 2D, with a local connection and weight-sharing characteristics. 1D-CNN was selected to adapt to the nature of spectral data (that is, the spectral reflectance had a one-dimensional data structure) to allow the convolution operation to extract the learning features of patterns. A convolutional neural network is usually used for image recognition, target detection, and classification (Fukushima, 1980). 1D-CNN also performs well in time series prediction and data fitting. In contrast, 2D-CNN is mainly used for image and text recognition, and 3D-CNN is for video recognition and medical applications. Due to its unique structure, CNN processes network structure data characteristics well, effectively solving the data processing difficulties caused by other factors (Liang et al., 2020). The hierarchy proposed in this study includes an input layer, multiple hidden layers (convolution, activation, and pooling layer), and the composition of a full connection (dense) and output layer (Figure 2) (Zhang et al., 2021b):




Figure 2 | Flow chart illustrating 1D-CNN data processing. The training set accounts for 75% and the test set 25%. A matrix was created with 72 rows, 1024 columns, and a dimension added to the training set channel. Another matrix was created with nine rows, 1024 columns, one channel number, zero elements, and a dimension was added to the test set channel. Finally, an empty deep learning model named “model” was defined. Next, five one-dimensional convolution layers were added (corresponding to five ReLU activation functions), including 16 convolution cores measuring 3 x 3 and a step length of one. The first maximum pool layer was added, and the pool core size was 2 x 2, and the step distance was two. The first global average pooling layer was then added, yielding the first full connection layer; the output size was (batch, 1). The RMSProp optimizer was then defined with a learning rate of 0.001, the gradient decay rate of 0.9, the fuzzy factor was zero, and the learning rate decay rate was zero. The MAE loss function and RMSProp optimizer were then used. The framework of the in-depth learning model was integrated, and data was transferred to the defined model by training 5000 epochs; the amount of data in each batch was 5. Finally, the table was given a title, and the image displayed. The test code is the same as the above training code.



The convolution layer functions to extract input data features. Different convolution kernels are equivalent to different feature extractors. The main feature is the use of weight sharing and local connections. The operation of one-dimensional convolution is shown in formula (3):



where * represents convolution operation, yi is the ith output characteristic diagram, xi is the ith input characteristic diagram, kij is the convolution kernel used in the layer convolution calculation, and bj is the offset of the jth characteristic diagram.

For the nonlinear transformation of features extracted from CNN and dense layers, the output of these layers and extracted features were activated using the corrected linear unit (ReLU) function (Cui and Fearn, 2018) (formula (4). The nonlinear activation function ReLU has a low computational cost and fast convergence speed. Its formula is:



where x is the feature of CNN or dense layer calculation.

The pooling layer was abstracted as statistical information extraction to reduce dimensionality and minimize array dimension based on maintaining the original characteristics. The convolution layer significantly reduces the number of network connections. Adding a pooling layer after a convolution layer avoids overfitting to a certain extent. The pooling layer effectively reduces the number of neurons, making the network invariant to small local morphological changes, which creates a larger receptive field. Two types of common pooling functions are recognized: maximum pooling (taking the maximum value of all neurons in a region) and average pooling (taking the average value of all neurons in a region), expressed as in formula (5) and (6), respectively:





where p is the characteristic matrix obtained by pooling, l is the characteristic graph width, and a is the characteristic matrix after convolution layer activation. The maximum and average pooling values calculate the maximum and average values in the adjacent rectangular area, respectively, and location-independent information can be obtained through the maximum pooling value.

The full connection layer is similar to the relationship between one layer and the next layer in the feed-forward network, in which each node of the upper layer and the nodes of the next layer have a weight connection. It is mainly used to complete the final prediction. Each output neuron of the full connection layer is connected to the neuron in the upper layer, and the input characteristics are combined after the activation function is used to output the prediction results. For the prediction problem, the output layer gives the probability value of the prediction category. Its output is given by formula (7):



where i = 1, 2, and k; δ is the ith output, with a total of K outputs; wi and bi are the weights and thresholds of the ith neuron, respectively; and f (x) is the activation function.

In this study, a vector that extracted 1024 spectral features was constructed as the input layer, the Fv/Fm prediction value was used as the output layer (usually, the input vector length is larger than the convolution kernel length), and the hidden layer included 1D-CNN with five convolution layers and two pooling layers (Figure 2). The spectral data was convoluted, and the convolution filter (also known as the kernel) was used to extract the feature map. The scaler variable was used to accept the entire data normalization process for the following anti-normalization. Data were subsequently normalized in Excel by subtracting the mean and dividing by the variance.

The number of hidden layers, the number of feature maps in each layer, the CNN kernel size, the pool and step size, and the regularization parameters are all adjustable and were optimized by experience to obtain the best value. The optimized architecture specification is presented in Figure 2. Additionally, the proposed architecture was developed as a common architecture for multiple scenarios and case studies (multiple independent data sets), while the existing architecture was evaluated separately on a single data set. The training data set in the CNN model developmental stage was randomly divided into two sub-datasets, calibrated and validated. During feed-forward and backpropagation, these batches were sequentially fed into the network. Once all batches were entered into the model (training era), the validation data set was used to evaluate model efficiency and accuracy on unknown samples. The model was trained on 6 July 2021 (flowering stage), 14 August 2021 (boll setting stage), and 17 September 2021 (boll opening stage) to ensure sample calibration and verification convergence.




Machine learning models

For a more comprehensive model performance and accuracy comparison, nine machine learning algorithms, including CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET and KNN, were used for modeling and comparative analysis using 1D-CNN.

CatBoost is a decision tree-based model consisting of an open source software library developed by Hancock (2020) with categorical features in a special way. LightGBM is a distributed gradient boosting framework based on a decision tree algorithm, which supports single-machine multi-threading and multi-machine parallel computing, to quickly process massive data (Meng et al., 2016). XGBoost is an additive model that optimizes only the sub-model in the current step in each iteration (Chen and Guestrin, 2016). DT is a non-parametric supervised learning tool with a tree structure composed of four elements: decision nodes, program branches, state nodes, and probability branches (Sarker et al., 2020). RF is a typical bagging algorithm in ensemble learning (Breiman, 2001), that randomizes the use of variables (columns) and data (rows) to generate many classification trees and then summarizes the results of the classification trees. GBDT was developed by Friedman (2001), and builds on each tree, learning the residual (negative gradient) of the sum of all previous tree conclusions (Kriegler and Berk, 2010). AdaBoost is an algorithm for constructing strong classifiers as a linear combination of simple weak classifiers (Freund and Schapire, 1997; Wang et al., 2022). ET is directly divided using random features and random thresholds on random features (Geurts et al., 2006; Ahmad et al., 2018). KNN was proposed by Cover and Hart (1967) and is not limited to a fixed number of parameters (Guo et al., 2003).



Model evaluation

To evaluate model performance, leaf samples from each data set were sorted, and 75% of the samples were used as the training data set and the remaining 25% as the test data set. In deep learning, the loss function is used to find errors or deviations in the learning process. However, the loss function uses the same metrics as the training process, which differs in value, to evaluate the performance of the generated model to ensure species fairness in the training and testing data sets (Burnett et al., 2021). Therefore optimization is a key step in comparing prediction and loss functions to optimize input weights. During model training, full-spectrum data is used as input, and model accuracy and loss are recorded simultaneously. The network parameters are fine-tuned based on the results. Therefore, the determination coefficient (R2), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) are selected to accurately evaluate test results (Ibrahim et al., 2021).

Set the predicted value to:   And the true value to y = {y1, y2,· ··, yn}.R2 is the determination coefficient. The higher the model R2, the higher the accuracy, and the better the fitting effect. The formula is as follows:



RMSE is the root mean square error, the difference between the predicted and actual values. The smaller the model RMSE value, the better the model prediction. The calculation formula is as follows:



MAPE is the mean absolute percentage error; a statistical index used to measure prediction model accuracy. The smaller the model MAPE value, the higher the prediction model accuracy. The calculation formula is as follows:



MAE is the mean absolute error, which is the average of the absolute error between the real and predicted values. It accurately reflects the predicted error value. The larger the model MAE value, the greater the error, indicating a lower prediction model accuracy. The calculation formula is as follows:

	(12)

where n is the number of samples, yi is the true values of cotton PH or AGB,   is the predicted values of cotton PH or AGB, and   is the average of the PH or AGB true values.




Results


Effects of drought stress on Fv/Fm in cotton leaves

Generally, when comparing drought stress effects on Fv/Fm (Figure 3), statistical differences were observed among the flowering, boll setting, and boll opening stages (p ≤ 0.05). The DS and CK were initially increased and then decreased in the three cotton growth stages. DS treatment significantly reduced Fv/Fm (P< 0.05), by 2%, 12%, and 3% across the three stages, respectively.




Figure 3 | Effects of drought stress on Fv/Fm at the flowering, boll setting, and boll opening stages. CK, normal conditions; DS, drought stress. * and ** indicate significance at the 0.05 and 0.01 probability levels, respectively.





Correlation between Fv/Fm and RWC, and LWC

Correlation analysis between Fv/Fm and RWC, and LWC is illustrated in Figure 4. The results revealed a significant positive correlation between Fv/Fm and RWC, and LWC under DS (Figure 4B) and CK (Figure 4A). Thus, Fv/Fm significantly positively correlated with drought resistance in cotton. Fv/Fm was further used as the input in the model to evaluate the drought resistance of cotton.




Figure 4 | Spearman correlation coefficients matrix and the corresponding 95% confidential levels between Fv/Fm and the water contents in the roots and leaves. Under normal conditions (A) and under drought stress (B), respectively. The significance level of correlations is indicated as follows: **P< 0.01. Fv/Fm, the maximum photochemical quantum yield; RWC, Root water contents; LWC, leaf water contents.





Preprocessing of hyperspectral data

The spectrum was pretreated to reduce the influence of the external environment, the dark current of the spectrometer and to eliminate baseline drift, light scattering, and spectrum noise. The Savitzky-Golay technology was applied to preprocess the hyperspectral data, eliminating spectral differences (filtering noise and smoothing waveforms) caused by different scattering levels and enhancing spectral and data correlation. The spectral band peaks and valleys were obvious, overlapping peak interference was avoided, and spectral resolution and sensitivity were improved through Savitzky-Golay pretreatment (Figure 5).




Figure 5 | Image analysis of spectral data, preprocessed by Savitzky-Golay, under different drought conditions and cotton growth stages. (A) The flowering stage of cotton under normal conditions; (B) The boll setting stage of cotton under normal conditions; (C) Boll opening stage of cotton under normal conditions; (D) The Flowering stage of cotton under drought stress; (E) The boll setting stage of cotton under drought stress; (F) Boll opening stage of cotton under drought stress.





Changes in the cotton canopy reflectance spectrum under different conditions

The cotton canopy spectral reflectance was measured at the flowering (Figures 6A), boll setting (Figures 6B), and boll opening stages (Figures 6C), respectively. The trends for the different varieties at different growth stages were similar, and the differences were obvious under different soil water conditions (Figure 6). In the visible light region (350–750 nm), there were two absorption valleys (370–510 and 600–710 nm) and reflection peaks (520–580 nm). The canopy spectral reflectance increased with drought stress, especially at the “green peak”. The higher the soil water content, the better the plant growth, the larger the leaf area index, the higher the chlorophyll content, the stronger the absorption of blue and red light, and the deeper the red valley, leading to an obvious green peak. The opposite scenario leads to a shallower red valley and, thus, a gentler and less obvious curve at the green peak. However, a reflection platform (760–1250 nm) occurred in the near-infrared region (750–1350 nm), where 1000 nm dropped abruptly. Spectral reflectance decreased with drought stress due to cotton cell structural changes, especially in the “near-infrared platform”, where the difference was significant. A lower spectral reflectance occurs under heavy drought stress. The spectral canopy curves under different drought conditions showed similar trends in the other growth stages. The reflectivity showed a downward trend in the short infrared band (1350–2500 nm), and two water absorption bands occurred at the 1450 and 1950 nm bands.




Figure 6 | Average reflectance spectra of cotton leaves under different drought conditions and growth stages. (A) The flowering stage of cotton under normal conditions and drought stress; (B) The boll setting stage of cotton under normal conditions and drought stress; (C) The boll opening stage of cotton under normal conditions and drought stress; Each line represents the average value of 240 reflectance spectra of 80 different cotton varieties. Solid lines represent normal conditions; dashed lines represent drought stress.





Full band modeling and analysis and comparative analysis of various modeling methods

To determine the best model algorithm for predicting cotton leaf Fv/Fm, we used the full band and the characteristic wavelengths screened by the SPA algorithm to compare and analyze 1D-CNN, CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN, respectively. The characteristic wavelengths screened by SPA were inadequate (Supplementary Table 3). Thus, only full band modeling results are shown here (specifically, training and test sets; Table 1). 1D-CNN, CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN had a relatively stable model accuracy under the different drought conditions during the flowering stage, but nine of the machine learning algorithms (CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN) were relatively unstable in estimating Fv/Fm during the boll setting stage under drought stress. 1D-CNN was also relatively unstable in estimating Fv/Fm during the boll setting stage under drought stress. However, the 1D-CNN model had the highest accuracy and the best effect in the comprehensive evaluation of cotton drought stress. The flowering stage had the highest accuracy when comparing the predictions and analyses of the various stages. The model was more stable under normal conditions.


Table 1 | Modeling of drought tolerance at different cotton growth stages with different prediction models.



Furthermore, the loss function of 1D-CNN was observed to decrease rapidly, and the loss rate was low, which improved the accuracy and reduced diagnosis time, leading to a better diagnosis performance (Figure 7).




Figure 7 | The loss rate curve of the 1D-CNN model with different drought conditions and cotton growth stages. (A–C), Flowering stage, boll setting stage, and boll opening stage under normal conditions, respectively; (D–F), Flowering stage, boll setting stage, and boll opening stage under drought stress, respectively.





Fv/Fm as predicted from canopy characteristics

To evaluate the cotton drought tolerance using the spectral features extracted by 1D-CNN, the predicted Fv/Fm value was determined by 1D-CNN and correlated with the actual value (Figure 8). Generally, under sufficient water conditions and drought stress, the correlation between the predicted and measured values was high (R2 ≥ 0.641). However, the correlation coefficient was the highest under sufficient water conditions (R2 of flowering, boll setting, and boll opening stages were 0.908, 0.974, and 0.821, respectively; Predicted and measured of flowering, boll setting, and boll opening stages were 0.7894 and 0.7923, 0.8467 and 0.8439, 0.7246 and 0.7241, respectively; Figures 8A-C). In addition, the correlation coefficient at the flowering stage was the highest among the treatments (R2 of CK and DS were 0.908 and 0.959, respectively; Predicted and measured of CK and DS were 0.7894 and 0.7923, 0.7959 and 0.7955; respectively; Figure 8A, D).




Figure 8 | Fv/Fm predicted and measured values from the test data set under (A–C) sufficient water conditions and (D–F) water stress conditions. The canopy characteristics input by each model is from (A, D) 6 July 2021 (flowering stage), (B, E) 14 August 2021 (boll setting stage), and (C, F) 17 September 2021 (boll opening stage).





Cotton drought tolerance evaluation based on the Fv/Fm drought tolerance coefficient and cluster analysis

Since the above fitting effect was the highest at the flowering stage, the drought tolerance coefficient was used to evaluate cotton drought tolerance. We clustered the Fv/Fm and predicted value drought tolerance coefficients through cluster analysis, thereby highlighting the varieties with strong drought tolerance (Figure 9). We assumed that the higher drought tolerance coefficients for predicted or measured Fv/Fm values indicated enhanced drought resistance. The predicted Fv/Fm classification was similar to the manual measurement classification (Figures 9A, B). The top ten drought tolerant varieties obtained through cluster analysis and evaluation of the measured drought tolerance coefficients were: 38, 24, 6, 56, 25, 58, 8, 43, 71, and 72 (Figure 9A). The top ten drought tolerant varieties predicted were 38, 24, 6, 56, 25, 58, 8, 43 71, and 72 (Figure 9B). The Fv/Fm, drought tolerance coefficient, can be more reliably evaluated from remote sensing data.




Figure 9 | Cluster analysis of the drought tolerance coefficients of the Fv/Fm measured values (A) and predicted values (B) for the 80 cotton varieties. 1, Jifeng 554; 2, Jifeng 103; 3, Jifeng 522; 4, Jifeng 908; 5, Jifeng 914; 6, Jifeng 1982; 7, Jifeng 4; 8, 7886; 9, Cangmian 268; 10, Jimian 315; 11, Han 218; 12, Hannong 12; 13, Han 8266; 14, Han 258; 15, Han 686; 16, YM111; 17, Nongda KZ05; 18, Nongdamian 10; 19, Nongdamian 12; 20, Lumianyan 28; 21, Xuzhou 1818; 22, Zhongmiansuo 41; 23, Shandongxiamian11-42; 24, Zhongmiansuo 12; 25, Yumian 19; 26, Ejing 1; 27, Zhongmiansuo 35; 28, Zhongmiansuo 60; 29, Xinshi 71143; 30, Xinza 15; 31, Xinshi 17; 32, GK39; 33, 0 shi; 34, Zhongmiansuo 94A915; 35, Lumianyan 36; 36, DP33B; 37, Guoxinmian01; 38, Guoxinmian02; 39, Guoxinmian03; 40, Guoxinmian05; 41, Hanwu 216; 42, Zhongmian 100; 43, Zhongmiansuo 79; 44, Cangmian 666; 45, Han 6203; 46, Shikang 126; 47, Cang 198; 48, Ji 228; 49, Guoxinmian 9; 50, K836; 51, Lumian 522; 52, Lumian 5172; 53, K638; 54, Guoxin 4; 55, Jifeng1187; 56, Jifeng 1458; 57, Jifeng 103; 58, Jifeng 914; 59, Jifeng 965; 60, MH335223; 61, Guoxinmian 11; 62, Zhongmiansuo 17; 63, Chunbeibao; 64, Zhongmiansuo 60;65, CG3020-3; 66, Jimian 2016; 67, Ji 1518; 68, Jihang 8; 69, Jimian 262; 70, Ji 178; 71, Ji 172; 72, Yuzaomian 9110; 73, Dexiamian 1; 74, Jicai 6913; 75, Zhongmiansuo 23; 76, Zhongmiansuo 50; 77, Ji668; 78, Zhibao 86-1; 79, Jimian 958; 80, Jifeng 1271.






Discussion

This study revealed a high correlation between Fv/Fm, RWC and LWC; thus, Fv/Fm can be used as a direct indicator for evaluating the drought resistance of cotton. In addition, Fv/Fm and 1D-CNN models are good at predicting the inversion process of physiological and biochemical cotton indicators and hyperspectral data. The models also achieved the expected effects, and this method can quickly and nondestructively evaluate cotton drought tolerance.


Relationship between measurement parameters under drought stress

Cotton flowering and boll setting stages are extremely sensitive to soil water content and are important for adequate yield, which significantly declines under stress (Bange et al., 2004; Pettigrew, 2004). Therefore, this study evaluated the drought resistance of cotton varieties by investigating the effects of drought stress on cotton plants at the flowering, boll setting, and boll opening stages in the field. Leaf photosynthetic structure is an important index to evaluate plant stress resistance and plays a key role in plant growth and metabolism, especially for photosystem PSII (El-Hendawy et al., 2019a). PSII maximum photochemical efficiency (Fv/Fm) has widely been used as an indicator for the early detection of different abiotic stresses (Naumann et al., 2008), which directly reflect crop damage under adverse environments. Under normal environmental conditions, Fv/Fm is relatively stable, but under adverse environmental conditions, photosynthetic efficiency is limited, and chloroplasts are protected from light damage, thereby significantly reducing Fv/Fm (Castañeda-Murillo et al., 2022). The findings in this study are consistent with those by Fracheboud (2002), where under drought stress, the Fv/Fm values of cotton varieties decreased during the growth period. Therefore, Fv/Fm values have gained interest as a screening tool to study preliminary and indicative responses to the rapid changes in plant photosynthetic status, and to evaluate the irreversible physiological damage caused by drought tolerance.



Optimizing input variables for the 1D-CNN model is important for hyperspectral inversion of cotton Fv/Fm prediction and drought tolerance evaluation

Numerous studies have mostly used vegetation index as an input to evaluate the degree of stress (Li et al., 2022). However, current vegetation index information is still limited, and the lack of a stable vegetation index closely related to drought stress may eventually reduce model generalizability. However, several specific spectral indices exist that have considerable potential in accurately estimating relevant parameters. SPA is a forward variable selection algorithm that minimizes vector space collinearity (Araújo et al., 2001). Its advantage lies in its extraction of several characteristic wavelengths from the whole band, which eliminates redundant information in the original spectral matrix when screening characteristic spectral wavelengths (Zhang et al., 2019). It is mainly divided into the following steps: firstly, data is imported under different processes; secondly, the Kennard stone algorithm is used to select samples; finally, SPA is used to select variables for multivariable calibration (Zhao et al., 2022). In this study, we used the MATLAB 2019b software to screen the characteristic spectral reflectance wavelengths of each process by coding a continuous projection algorithm, and only 1–2 sensitive wavelengths were screened under normal conditions at the flowering, boll setting, and boll opening stages. This challenged the establishment of a unified spectral index to estimate potential complex factors. Therefore, to improve relevant parameter prediction accuracy, some studies used the full spectrum wavelength (350–2500 nm) (Hansen et al., 2002; El-Hendawy et al., 2019b).

Interestingly, our study revealed that compared to the screening characteristic wavelengths using the continuous projection algorithm, the Fv/Fm predictions in the calibration and validation data sets had additional improvements based on the full band 1D-CNN model analysis. The maximum coefficient of determination values (R2) and minimum root mean square error values (RMSE) further revealed that the 1D-CNN model, based on data fusion in all conditions, was the most accurate in predicting Fv/Fm. Rasooli Sharabian et al., (2014) reported similar results. Elsayed et al. (2020) also revealed that compared to a single spectral index, a PLSR model based on spectral index data fusion and canopy temperature improved the GY prediction accuracy of barley and wheat under water stress. This study also revealed that the fusion of full band spectral data further improves the Fv/Fm prediction accuracy of cotton drought tolerance under different conditions. This is because this method can measure potential confounding factors related to environmental conditions. Therefore, it covers all the major physiological plant changes induced by drought stress.

This study supports machine learning and deep learning methods instead of the traditional cotton growth parameter estimation methods. Compared to CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN, the Fv/Fm remote sensing prediction accuracy inversion model constructed by 1D-CNN was higher and had strong stability. This shows that predicting physiological and biochemical indices and evaluating cotton drought tolerance using hyperspectral technology is feasible. In the field, different varieties have different leaf optical characteristics and canopy structures; thus, spectral interpretation is very complex. Despite these complexities, 1D-CNN achieved high accuracy in independent verification. 1D-CNN has previously been used for image segmentation, weed detection and prediction of other crops (such as rice and soybeans). However, the use of 1D-CNN for many cotton varieties is rarely reported. Based on our experimental process, the 1D-CNN estimation method used many characteristics and can use cotton spectral values directly as input, automatically learning and selecting features from the training data. Compared to traditional machine learning, 1D-CNN local connection, weight sharing, and hierarchical expression ensure that the network model effectively learns corresponding data features from many samples, avoids the complex feature extraction process and does not require manual feature extraction. Therefore, 1D-CNN improves prediction accuracy and reduces workload.



Possible problems with hyperspectral and 1D-CNN models

Unfortunately, 1D-CNN also has challenges, such as a high square error and high deviation (underfitting), which are mainly caused by inadequate sample number, inconsistent distribution of the training and verification sets, complex network structure (such as 1D-CNN), excessive sample noise interference, poor data quality, and overtraining. From the perspective of variance and deviation, underfitting equates to high training set variance and deviation, which performs well in the training set. Still, it performs poorly in the test and new data sets. Generally, the main methods required to effectively solve overfitting are to increase the data set size, simplify and regularize the model, increase the drop layer, perform feature selection and sparse learning, delete abnormal noise points, use integrated learning methods, and re-clean the data.

From this study, spectral reflectance alone may not be sufficient to identify the most drought-tolerant cotton lines during screening. Therefore more phenotypic information sources are needed to fully clarify the complexity of drought tolerant genotype responses in cotton.



Influence of time scale differences on model performance

Different time scales and their effects on plant growth must be adopted in agricultural development as a management strategy. The reasons for spectral differences between different time scales are plant growth, phenological development, and environmental changes (Fava et al., 2009; Meerdink et al., 2016; Yang et al., 2016). These differences may be inverted in the relationship between spectra and traits, which is what we detected in the performance of each independent model for the flowering, boll setting, and boll opening stages. Li et al. (2022) constructed six sorghum genotype models of dry and fresh weight using support vector machines on two separate dates and found that the combined model accuracy was higher than each independent model. Compared to the boll setting and opening stages, the flowering stage model was more robust and accurate (RMSE = 0.016, MAE = 0.009, MAPE = 0.011).

We observed that specific time scales affected accuracy. This study showed that the flowering stage accuracy was higher than the other stages. This may be due to vigorous growth of cotton crops during the early stage, rapid leaf area increases, large pigment accumulation in vegetation tissue, metabolic increase, high photosynthetic activity, strong Fv/Fm absorption, and a gradually enhanced regression equation fitting effect. With the postponement of the cotton growth period and the stress and aging of cotton plants in the later stages, leaves started losing their green coloration, turned yellow, and gradually withered. The Fv/Fm content subsequently decreased significantly until the leaves withered and died, unable to absorb light energy, and dry matter accumulation stopped (Silva Benavides et al., 2013), thus, leading to fitting effect deterioration. This is, therefore, the best period to estimate Fv/Fm.




Conclusion

Full band spectral data was studied here to predict Fv/Fm values and to evaluate cotton drought tolerance, (Figure 10) showed the workflow. The spectral distribution of the 80 cotton varieties at different growth stages and under different water stress conditions had similar trends. However, their near-infrared band reflectance decreased with drought stress and increased then decreased with growth. Compared to CatBoost, LightBGM, XGBoost, DT, RF, GBDT, AdaBoost, ET, and KNN, 1D-CNN models predicted cotton Fv/Fm during the three growth stages, implying that 1D-CNN models have higher accuracy and stability in the large-scale data processing. In evaluating cotton drought tolerance, the predicted Fv/Fm clustering results were similar to manually measured clustering results. Generally, the combined technology of S-G+1D-CNN has been successfully applied to predict cotton variety Fv/Fm values and evaluate drought tolerance. The full spectrum might therefore become an important tool for drought tolerance screening. In this study, it was not necessary to destructively sample all test field indicators, thus greatly reducing cost and time. This accelerated the related processing of phenotypic information for the different varieties and helped to develop a detection system for the high-throughput phenotypic identification algorithm. Therefore, more consideration should be given to spectral data and the computational power of deep learning models to reveal deeper phenotypic information. These models can be used to evaluate and screen out drought-resistant cotton varieties.




Figure 10 | Chlorophyll fluorescence and hyperspectral reflectance approach for detecting drought tolerance in cotton.
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Driven by the increase in its frequency and duration, high temperature weather is increasingly seriously affecting crop development. High temperature inhibits the leaf development, flowering, and pollination of cotton, but its effects on the roots and root hair phenotypes and lifespans remain unclear. Thus, this study selected the two cotton varieties Nongda 601 (ND) and Guoxin 9 (GX) as materials and adopted the RhizoPot, an in situ root observation system, to investigate the effects of high temperature (38°C day and 32°C night) on the growth dynamics of the aboveground parts and root phenotypes of cotton at the seedling stage. The results showed that high temperature reduced the net photosynthetic rate and chlorophyll content, decreased the dry matter accumulation and transfer to the root, and lowered the root-shoot ratio (R/S ratio). The root phenotypes changed significantly under high temperature. After 7 d of high temperature stress, the root lengths of ND and GX decreased by 78.14 mm and 59.64 mm, respectively. Their specific root lengths increased by 79.60% and 66.11%, respectively. Their specific root surface areas increased by 418.70 cm2·g-1 and 433.42 cm2·g-1, respectively. Their proportions of very fine roots increased to 99.26% and 97.16%, respectively. After the removal of high temperature (RHT), their root lengths tended to increase, and their proportions of very fine roots continued to increase. The root hairs of ND and GX were also significantly affected by high temperature. In particular, the root hair densities of ND and GX decreased by 52.53% and 56.25%, respectively. Their average root hair lengths decreased by 96.62% and 74.29%, respectively. Their root hair lifespans decreased by 7 d and 10 d, respectively. After the RHT, their average root hair lengths failed to recover. A principal component analysis indicated that the root architectures were significantly affected by root hair density, average root hair length, specific root length, and specific root surface area under high temperatures. In summary, cotton adapts to high temperature environments by increasing the specific root length, specific root surface area, and the proportions of very fine roots, and reducing the lifespan of root hairs.




Keywords: cotton, high temperature, in situ root, root dynamics, root hair, RhizoPot



Introduction

Abiotic stresses, such as high temperature, drought, salt, chemical toxicity, and oxidative stress, pose serious threats to agricultural production (Wang et al., 2003). High temperature weather is increasing in both frequency and duration due to emissions of greenhouse gases, which subsequently affects crop development (Luo, 2011). Studies have pointed out that if global warming exceeds the pre-industrial level by 1.5°C, extreme high temperature weather will further intensify (Hoegh-Guldberg et al., 2019), thus, hindering crop growth and development, reducing crop yield and quality, and even resulting in complete crop failure (Fahad et al., 2017; Li et al., 2020; Parker et al., 2020). This is mainly because high temperature can easily cause the plant defense system to fail, making the plants more vulnerable to pathogens and pests and inhibiting the accumulation of photosynthetic products (Kim et al., 2022).

Cotton (Gossypium hirsutum L.), as a major cash and fiber crop, originated in tropical and subtropical regions and prefers warmth and light. Temperature has an extremely significant effect on cotton growth and development, and it can affect its growth and maturation and regulate its phenological development and rate of biomass accumulation (Xu et al., 2017). Temperature beyond a certain range (35°C) seriously affects the germination and elongation of pollen tubes (Zahid et al., 2016), causes indehiscent anthers and sterile pollen, and reduces the single boll weight, which ultimately leads to a decrease in crop yield (Zhang et al., 2022). Each time the daily maximum temperature rises by 1°C, the lint yield will decrease by 110 kg/hm2 (Gao et al., 2021). The current temperature is close to or above the optimal temperature for cotton growth and yield (30°C) (Majeed et al., 2021).

High temperature weather may alter the resource allocation of shoots and roots. Compared with the shoot parts, root structures and their responses to temperature changes through interactions are rarely explored (Luo et al., 2020). Roots are a major organ responsible for maintaining plants and absorbing nutrients (Lynch, 2011). Their morphological and physiological characteristics are closely related to stress resistance (Joshi et al., 2016). Root growth is a dynamic process that is facilitated by suitable temperatures (Mai et al., 2018; Gavelienė et al., 2022). When the optimal temperature is 22–30°C, a temperature of 32–40°C will inhibit root distribution and growth (Zahid et al., 2016). The optimal temperature range promotes an increase in the root-shoot ratio (R/S ratio) (Koevoets et al., 2016), but a temperature above the optimal temperature will reduce the absorption of water and nutrients by the roots and weaken their resistance to abiotic stresses (Luo et al., 2020). However, further research is still needed to clarify the development of cotton roots and the responses of their root hair phenotypes under high temperature.

The root phenotypes of crops can be altered to improve their high temperature resistance, which constitutes an important phenotypic characteristic. High temperature not only inhibits root development (Calleja-Cabrera et al., 2020; Hund et al., 2008) but also affects the absorption of water by the roots and accelerates root senescence, causing the lignified roots to elongate to almost the tip and resulting in a reduction in the root absorption area and rate of nutrient absorption (Zhen et al., 2020). Martins et al. (2017) showed that, as the temperature increases, the roots could elongate faster to protect the meristems. Previous research showed that the root length and number of cotton roots increased significantly at 35°C (McMichael and Quisenberry, 1993; McMichael and Burke, 1994), but when the temperature exceeded 35°C, both the main root and lateral root lengths were shortened (McMichael et al., 1996). After subjecting 64 different varieties of soybean to high temperature treatment (40°C day and 32°C night), Alsajri et al. (2019) found that the root length, root surface area, and root volume all decreased significantly. Under high temperature stress, the root diameter and root cortex thickness of rice were both significantly inhibited (Zhen et al., 2020). A study also revealed that high temperatures reduced the root dry weight and R/S ratio but increased the specific root length, specific root surface area, and specific root volume (Tahir et al., 2008). Fine roots (roots<2 mm in diameter) are the most active part of the whole root system (Comas et al., 2000; Eissenstat et al., 2000) and serve as the main pathway for the absorption of water and nutrients and the regulation of plant growth (Zeleznik and Dickmann, 2004; Zhang et al., 2020). Studies have shown that the growth rate of fine roots increases with increasing soil temperatures (Mahmud et al., 2019). Therefore, it is necessary to explore the dynamic changes in cotton roots under high temperature stress to manage extreme high temperature weather in the field and provide important references for production practice.

Root hairs are formed through the elongation of root epidermal cells. They increase the contact area between the roots and soil and improve the efficiency of water and nutrient absorption (Bates and Lynch, 2001; Bengough et al., 2011). The growth and development of root hairs are affected by abiotic stresses, such as high temperature and drought, and the insufficiency of nutrients, such as phosphorus (P) and nitrogen (N) (López-Bucio et al., 2003; Wei et al., 2016). For example, temperature-sensitive Arabidopsis thaliana seedlings were unaffected at normal temperature (20°C) but failed to form root hairs at elevated temperature (30°C), which manifests as a reduction in the root hair length and density (Kim et al., 2021). The root hair number of trifoliate orange decreased at 40°C–45°C (Mohammad and Shiraishi, 2000). N stress significantly shortened the root hair lifespan of cotton but greatly increased its root hair density and length (Zhu et al., 2022). Under low P stress, cotton responded to P deficiency by extending its root hair lifespan and increasing its specific root length and lateral root branch density (Zhang et al., 2021). Drought stress accelerates the death of fine roots and root hairs, and cotton has adapted to such external environments by developing more fine roots and longer root hairs (Xiao et al., 2020). However, it is still unclear how the root hairs of cotton respond to high temperature. In this context, exploring the root hairs and root hair lifespan of cotton under high temperature is of great value to clarify the physiological mechanisms that underlie the high temperature resistance of cotton.

In summary, existing studies on the effect of high temperature on cotton mainly focus on the phenotypes of aboveground parts but rarely touch upon the responses of roots, root hair phenotypes, or their lifespans under high temperature. It is highly necessary to conduct dynamic research on roots, since it facilitates dynamic observation of the characteristics of changes in root phenotypes. Traditional root research methods, such as the digging method (Cheng et al., 2009), the soil coring method (Gahoonia and Nielsen, 1991), and the soil block method (Oliveira et al., 2005), cannot realize dynamic observation because they all require destructive sampling to separate the roots from culture soil. In addition, traditional methods are time-consuming and labor-intensive and cause substantial damage to roots, making it difficult obtain complete roots. Alternatively, X-ray computed tomography (CT) and magnetic resonance imaging (MRI) support the dynamic observation of roots and are widely used to study root phenotypes (Kurogane et al., 2021; Li et al., 2022). However, both methods are extremely expensive and limited by container size and substrate type. Our laboratory independently developed the RhizoPot, an in situ root observation system, which is highly efficient, inexpensive, simple to operate, and has high imaging resolution. It has proven useful in studies on cotton under N (Zhu et al., 2022), drought (Xiao et al., 2020), and P (Zhang et al., 2021) stresses. A RhizoPot can obtain continuous lossless images of root phenotypes, and was employed in this study to investigate the dynamic response characteristics of the root phenotypes of two cotton varieties under high temperature and clarify the effects of high temperature on the dynamic changes in cotton roots and the morphology and lifespan of root hairs. The results increase our understanding of the characteristics of cotton root phenotypes and longevity responses under high temperature stress, and will facilitate the breeding of cotton varieties that are resistant to high temperature.



Materials and methods


Materials and system

The experiment was conducted in the phytotron of Hebei Agricultural University (Baoding City, Hebei Province, China, 38.85° N, 115.30° E) from April to October 2021 (Figure 1A). Two local commercial cotton cultivars, Nongda 601 (ND) and Guoxin 9 (GX), were used in this study. The soil was sampled from the topsoil layer (0–20 cm) at the Experimental Station of Hebei Agricultural University (Baoding City, Hebei Province, China, 38.85° N, 115.30° E). The soil was pH 7.20; organic matter content, 16.57 mg·kg-1; total N, 1.23g·kg-1; alkali-hydrolysable N, 77.67 mg·kg-1; available phosphorus, 16.54 mg·kg-1; and available potassium, 129.32 mg·kg-1. After air drying, the soil was filtered through a 2 mm sieve to remove pebbles and large solid clods. The filtered soil was then mixed evenly by a weight ratio of soil: sand = 4:1 (v/v) to prepare a mixed substrate. The substrate was loaded into a RhizoPot, which was a growth vessel that we designed and assembled using transparent acrylic plates. A flatbed scanner (Epson Perfection Version 39, Suwa, Japan) used to collect images, and a laptop was used to control the operations of a scanner. The scanner was fixed to the inclined surface of the vessels. The outer wall of the RhizoPot was covered with a layer of black cardboard to prevent the exposure of roots to light (Figure 1B) (Xiao et al., 2020; Zhang et al., 2021). The mixed substrate weighed 6.5 kg in each RhizoPot.




Figure 1 | Schematic diagram of the in situ root observation system RhizoPot (A), RhizoPot growth imaging device (B), In situ root system image (C), rendering of the segmented in situ root image (D).





Growth conditions and treatments

Phytotron conditions: normal temperature CK, 26°C day and 20°C night; time: 14 h/10 h; light intensity: 600 μmol·m-2·s-1; relative water content of substrate: 45%–50% (Zhang et al., 2021). First, a wet towel was used to accelerate germination. Full seeds that germinated consistently were selected and sown in the RhizoPot. The seeds were 1 cm near the scanner side at a depth of 3 cm. High temperature (HT, 38°C day and 32°C night) treatment was started when the cotton grew to six leaves. The test treatments were as follows: CK + ND, normal temperature and Nongda 601 (CKND); CK + GX, normal temperature and Guoxin 9 (CKGX); HT + ND, high temperature and Nongda 601 (HTND); HT + GX, high temperature and Guoxin 9 (HTGX). After 7 d of high temperature treatment, the normal temperature (CK, 26°C day and 20°C night) was restored through the removal of high temperature (RHT). A total of 20 RhizoPot systems were employed. Each treatment was prepared with five replicates.



Determination methods


Determination of the morphological indicators of aboveground parts

The morphological indicators of aboveground parts were determined at 0 d, 1 d, 3 d, 5 d, and 7 d after high temperature treatment and 4 d and 7 d after the RHT. The height from the cotyledon node to the stem tip was measured as the plant height using a ruler. The stem diameter 1 cm above the cotyledon node was measured with a Vernier caliper. The leaf area was measured by the length and width coefficient method.



Determination of the physiological indicators of aboveground parts

The net photosynthetic rate of the top third leaf on the stem was determined at 0 d, 1 d, 3 d, 5 d, and 7 d after high temperature treatment and 4 d and 7 d after RHT using a portable photosynthetic system (LI-6400XT; LI-COR, Lincoln, NE, USA). The light intensity was set at 600 μmol·m-2·s-1. The maximum photochemical efficiency (Fv/Fm) and the actual photochemical quantum yield (ΦPSII) were measured using a portable modulated chlorophyll fluorimeter (PAM-2500, Walz, Germany) at the same location where the photosynthetic parameters were determined. The relative chlorophyll content (SPAD) was measured using a chlorophyll meter (SPAD-502, Konica-Minolta, Tokyo, Japan). The leaf measured was the same as that measured for photosynthesis.




In situ root observation

In situ root collection was performed each day starting with high temperature treatment. The resolution of images scanned was 1,200 and 4,800 dpi (Figure 1C). The whole observation window was scanned for 1,200 dpi images. The observation window was evenly divided into four parts for separate scanning for 4,800 dpi images (Xiao et al., 2020; Zhu et al., 2022). Scanned 1,200 dpi in situ root images were used for image segmentation using the improved DeepLab v3 + (Shen et al., 2020). The extracted roots were white, and the substrate was black (Figure 1D). The segmented root images were analyzed using WinRHIZO software (Reg 2009, Instruments Region, Inc., Québec City, Canada). The root length (RL, cm), average root diameter (AD, mm), root surface area (RSA), and root volume (RV, cm3) were obtained by analyzing the root images scanned. The roots were divided into fine roots (less than 2 mm in diameter) and very fine roots (less than 0.5 mm in diameter) based on the average root diameter obtained. The root length density (RLD, cm · cm-3) was calculated from the following formula (Zhang et al., 2021):

	

where A denotes the area of the observation window (cm2), and DOF denotes the soil thickness observable by the RhizoPot, which was set at 0.25 cm in this study.

The in situ root images with a resolution of 4,800 dpi were analyzed for root hair phenotype traits using Adobe Photoshop 2020 (Adobe, San Jose, CA, USA). Three points were randomly selected on each image. The average root hair length (ARHL, mm) was measured using the scale of Adobe Photoshop 2020. The number of root hairs within 1 mm2 of each point was measured to obtain the root hair density (RHD). The root hairs were considered senescent and dead when they gradually turned from white to yellow and became twisted (Xiao et al., 2020; Zhang et al., 2021).



Sample collection and parameter determination

The cotton plants were sampled after 7 d of high temperature treatment and 7 d of recovery. First, a plant was divided by the cotyledon node into its aboveground parts and belowground parts, and the fresh weights were measured. The dry weights were measured after the samples were dried to a constant weigh in an 85°C oven. A root flushing platform designed by our laboratory was used to rinse the substrate in the culture pan with a tap under a certain pressure to obtain clean whole roots that were free of impurity. The roots were then scanned using an Epson 10000 XL scanner with a resolution of 600 dpi. WinRHIZO software (Reg 2009, Instruments Region, Inc., Québec City, Canada) was used for analysis to obtain the root length, average root diameter, root volume, and root surface area. The specific root length, specific root surface area, and specific root volume were calculated:

	

	

	



Statistical analysis

Microsoft Excel 2010 (Redland, WA, USA) was used for data statistics, sorting, and analysis. SPSS 21.0 (IBM, Inc., Armonk, NY, USA) was adopted for a one-way analysis of variance (ANOVA) and a correlation analysis between the treatment groups. The Kaplan-Meier method was employed for survival analysis (Kaplan and Meier, 1958). The average root hair lifespan was equal to the average survival time, and the median root hair lifespan (i.e., time to 50% survival) was estimated and used to plot survival curves (Xiao et al., 2020). A correlation analysis and principal component analysis (PCA) were performed to clarify the relationships between these traits. GraphPad Prism 8.0 (San Diego, CA, USA) and Origin Pro2022b (OriginLab, Northampton, MA, USA) were used for drawing.




Results


Effects of high temperature and 7 d recovery on the morphology and relative chlorophyll content of the aboveground parts

High temperature significantly inhibited the development of the aboveground parts of cotton (Figure 2). The plant height, stem diameter, leaf area, and SPAD all tended increase as the duration of high temperature was extended, and the gap gradually widened at 5 d of the high temperature treatment. At 5 d, compared with those of the control, the plant heights of ND and GX under high temperature treatment decreased by 8.17% and 2.64%, respectively (Figure 2A); their stem diameters decreased by 2.10% and 1.26%, respectively (Figure 2B). High temperature aggravated cotton senescence, resulting in leaf abscission. The leaf areas of HTND and HTGX decreased by 8.77% and 7.46%, respectively (Figure 2C), and their SPAD values decreased by 6.77% and 6.86%, respectively (Figure 2D). At 7 d, compared with those of the control, the plant heights of HTND and HTGX decreased significantly by 9.05% and 8.08%, respectively; their leaf areas decreased by 24.29% and 16.33%, respectively, and their SPAD values decreased by 10.65% and 10.40%, respectively. The difference was significant in each case (p<0.05). In contrast, their stem diameters decreased by 1.81% and 0.56%, respectively. All the indicators increased after the RHT.




Figure 2 | Changes in plant height (A), stem diameter (B), leaf area (C), and relative chlorophyll content (D) of two cotton varieties under normal conditions and high temperature and after 7 d of recovery. The means of three replicates ± standard error are depicted. For each trait, bars with the same letter are not significantly different according to Duncan’s test at a p<0.05 threshold. ns, not significant (p>0.05).





Effects of high temperature and 7 d recovery on the net photosynthetic rate and chlorophyll fluorescence parameters

With the extension of duration of high temperatures, the net rate of photosynthesis (Pn) of HTND and HTGX both tended to decrease (Figure 3A). At 1 d, due to the short duration of high temperature, the net rate of photosynthesis of HTND and HTGX, compared with those of the control, increased significantly by 48.56% and 17.55%, respectively (p<0.05). At 2 d-7 d, the net rate of photosynthesis of HTND and HTGX abruptly decreased. Compared with those of the control, the net rate of photosynthesis of HTND and HTGX decreased significantly by 19.38% and 30.89% (p<0.05) at 3 d, respectively, and by 69.78% and 73.77% (p<0.05) at 7 d, respectively. Within 7 d after the RHT, the net rate of photosynthesis tended to increase, but it was still lower than that of the control.




Figure 3 | Changes in net photosynthetic rate (Pn) (A), maximum photochemical efficiency (Fv/Fm) (B), and actual photochemical quantum yield (ΦPSII) (C) of two cotton varieties under normal conditions and high temperature and after 7 d of recovery. The means of three replicates ± standard error are depicted. For each trait, bars with the same letter are not significantly different according to Duncan’s test at a p<0.05 threshold. ns, not significant (p>0.05).



PSII maximum photochemical efficiency (Fv/Fm) reflects the maximum photosynthetic potential of plants and is an important criterion on the occurrence of photoinhibition during photosynthesis. High temperature treatment significantly reduced the Fv/Fm of ND and GX (p<0.05) (Figure 3B). Compared with that of the control, the Fv/Fm of ND decreased significantly by 2.30%, 5.12%, and 7.16% at 3 d, 5 d, and 7 d of the high temperature treatment, respectively (p<0.05), while that of GX decreased significantly by 2.26%, 3.52%, and 6.55%, respectively, (p<0.05). Fv/Fm rapidly increased after the RHT. There was no significant difference between any treatment and the control at 7 d after RHT.

PSII actual photochemical quantum yield (ΦPSII) reflects the actual photochemical efficiency of a photoreaction. High temperature treatment reduced ΦPSII (Figure 3C), which was significantly lower than that of the control at each treatment period (p<0.05). Compared with those of the control, the ΦPSII of HTND at 3 d, 5 d, and 7 d decreased significantly by 7.97%, 23.56%, and 28.48% (p<0.05), respectively. Those of HTGX decreased significantly by 4.69%, 20.0%, and 27.45% (p<0.05), respectively. The changing trend of ΦPSII after the RHT was consistent with that of Fv/Fm. At 7 d after the RHT, the ΦPSII of HTND and HTGX were still significantly lower than those of the control and decreased by 20.90% and 14.93%, respectively (p<0.05).



Effects of high temperature and 7 d recovery on the biomass and R/S ratio

High temperature significantly inhibited the growth of cotton plants. After high temperature treatment, the fresh and dry weights of the aboveground and belowground parts decreased significantly (p<0.05) (Table 1). Compared with those of the control, the fresh and dry weights of the aboveground parts of HTND decreased by 24.10% and 22.90%, respectively. However, after 7 d recovery, there was no significant difference between them. In contrast, those of HTGX decreased by 26.08% and 28.60%, respectively. After the high temperature treatment, the fresh and dry weights of the belowground parts of ND decreased by 27.88% and 45.23%, respectively, while those of GX decreased by 26.39% and 38.04%, respectively. High temperature treatment caused the R/S ratios of the two varieties to significantly decrease by 29.56% and 15.89%, respectively (p<0.05).


Table 1 | Plant biomass and R/S ratio under normal and high temperatures.





Effects of high temperature and 7 d recovery on the roots (destructibility)

High temperature significantly inhibited the growth of cotton roots and reduced the root length, root surface area, root volume, and average root diameter (p<0.05) (Table 2). After high temperature treatment and the RHT, the root length of HTND decreased by 7.79% relative to that of the control, and its root surface area, root volume, and average root diameter decreased by 10.10%, 11.21%, and 4.50%, respectively. In contrast, those of HTGX decreased by 8.53%, 10.10%, 17.0%, and 6.54%, respectively.


Table 2 | Cotton root parameters of two varieties under normal and high temperatures.



Under high temperature treatment, the two varieties differed significantly from the control in terms of specific root length, specific root surface area, and specific root volume (p<0.05) (Table 2). High temperature treatment significantly increased the specific root length, specific root surface area, and specific root volume (p<0.05). Compared with those of the control, the specific root length, specific root surface area, and specific root volume of ND under high temperature treatment increased by 79.60%, 64.15%, and 78.10%, respectively. In contrast, those of GX increased by 66.11%, 433.42 cm2·g-1, and 5.20 cm3·g-1, respectively.



Effects of high temperature and 7 d recovery on the dynamics of root development

After high temperature treatment, the root length, root surface area, root volume, and average root diameter of cotton all decreased significantly (p<0.05) (Figure 4). The root length of HTND decreased significantly by 27.74% and 35.31% at 5 d and 7 d, respectively, while that of HTGX decreased by 13.21% and 22.71%, respectively. The root surface areas of HTND and HTGX decreased by 24.59% and 15.13% at 5 d, respectively, and by 33.68% and 31.68% at 7 d, respectively. The root volumes of HTND and HTGX decreased by 54.21% and 52.23% at 5 d, respectively, and by 61.90% and 51.95% at 7 d, respectively. The average root diameters of HTND and HTGX decreased by 18.25% and 13.40% at 5 d, respectively, and by 23.64% and 21.91% at 7 d, respectively. After the RHT, the root length, root surface area, root volume, and average root diameter all tended to increase.




Figure 4 | Changes in the root length (A), root surface area (B), root volume (C), and average root diameter (D) of two cotton varieties under normal conditions and high temperature and after 7 d recovery.





Effects of high temperature and 7 d recovery on the root growth rate and root length density

The changes in rates of root growth of two cotton varieties during treatment and 7 d after RHT were observed (Figure 5A). At 1d and 3 d, there was no change in the rate of root growth of HTND or HTGX relative to the control, and positive growth was observed in each case. The root growth rates of HTND and HTGX decreased by -0.018 and -0.004 at 5 d, respectively, and by -0.042 and -0.177 at 7 d, respectively. After the RHT, the root growth rates of HTND and HTGX tended to increase. The root growth rates of HTND and HTGX were 0.04 and 0.324 at 4 d after RHT, respectively, and 0.05 and 0.087 at 7 d, respectively. After high temperature treatment, the root length densities of ND and GX increased at 1 d, 3 d, and 5 d, similar to the trend presented by the root length density of the control. They began to decrease at 6 d of the high temperature treatment but increased again after the RHT (Figure 5B).




Figure 5 | Changes in the root growth rate (A) and root length density (B) of two cotton varieties under normal conditions and high temperature and after 7 d recovery.





Effects of high temperature and 7 d recovery on the proportions of fine roots and very fine roots

Observation of the cotton roots indicated that most of the roots< 0.5 mm in diameter (very fine roots). High temperature increased the proportion of very fine roots. Under control conditions, the proportion of very fine roots of CKND was 93%–97%, and that of CKGX was 94%–96% (Figures 6A, B). At 1 d of the high temperature treatment, there was little difference between HTND and the control in the proportion of very fine roots. At 3 d, the proportion of very fine roots in the total root length was 98.89%. At 7 d, the proportion of very fine roots peaked (99.26%). After the RHT, the proportion of very fine roots did not decrease but remained around 98% (Figure 6C). In contrast, the proportion of very fine roots of HTGX was basically consistent with that of the control at 1 d-3 d, increased to 99.67% at 5 d, and decreased slightly to 97.16% at 7 d. However, after the RHT, it remained around 99% (Figure 6D). This indicated that, under high temperature treatment, very fine roots emerged in large quantities, or there was no increase in root diameter.




Figure 6 | Changes in the proportions of fine roots and very fine roots of two cotton varieties under normal conditions and high temperature and after 7 d recovery (A: CKND; B: CKGX; C: HTND; D: HTGX).





Effects of high temperature on the root hair length, density, and survival

High temperature significantly inhibited the root hair density and root hair length of cotton and lowered the survival of its root hairs. After high temperature treatment, the root hair densities of ND and GX decreased significantly by 52.53% and 56.25% (p<0.05) relative to those of the control, respectively (Figure 7A). At 1 d of the high temperature treatment, neither ND nor GX differed significantly from the control in root hair length. The root hair length of HTND decreased significantly by 84.87%, 93.39%, and 96.62% relative to that of the control at 3 d, 5 d, and 7 d, respectively (p<0.05), while that of GX decreased significantly by 34.69%, 47.62%, and 74.29% (p<0.05), respectively (Figure 7B). Within 7 d after the RHT, the significant trend to decrease persisted (p<0.05).




Figure 7 | Changes in the root hair density (A), average root hair length (B), and root hair survival (C) of two cotton varieties under normal conditions and high temperature and after 7 d recovery. (A) values are the means of three replicates ± standard error, (B) values are the means of four replicates ± standard error, n, the number of root hairs used to draw the survival curve; The p -values indicate the statistical significance of the effect of high temperature stress on the root hair lifespan of cotton. For each trait, bars with the same letter are not significantly different according to Duncan’s test at a p<0.05 threshold. ns, not significant.



The root hair lifespan refers to the time from the emergence of root hairs to the occurrence of exterior twisting (Figure 8). The median lifespans of CKND and HTND were 27 d and 21.5 d, respectively, while those of CKGX and HTGX were 23 d and 21 d, respectively. High temperature aggravated the senescence of root hairs and caused the root hair lifespans of ND and GX to decrease significantly by 7 d and 10 d relative to those of the control, respectively (p<0.05) (Figure 7C).




Figure 8 | Images of the same root region of cotton root hairs under high temperature stress. Scale bar, 500 μm. Images shown are taken on 1d (A), 3d (B), 5d (C), 7d (D).





PCA and correlation analysis of cotton traits

As shown in Figure 9, the root hair lifespan significantly positively correlated with the average root hair length, root hair density, proportion of fine roots, root volume, root length, root dry weight, root fresh weight, net photosynthetic rate, and relative chlorophyll content but significantly negatively correlated with the specific root length and specific root surface area. The specific root length significantly positively correlated with the specific root surface area and specific root volume but significantly negatively correlated with the plant height, stem diameter, SPAD, net photosynthetic rate, Fv/Fm, ΦPSII, root fresh weight, root dry weight, R/S ratio, root length, root hair density, average root hair length, and root hair lifespan. The proportion of very fine roots significantly positively correlated with the proportion of fine roots. A PCA was performed on 17 root system indicators in this study (Figure 10). The rate of contribution of the first two principal components was 96.7%. Principal component 1 contributed 88.6%. In particular, the root length, proportion of fine roots, root hair density, average root hair length, root hair lifespan, and root dry weight were close to the positive direction of the x-axis, while the proportion of very fine roots, specific root length, and specific root surface area were in the negative direction of the x-axis. Principal component 2 contributed a smaller amount, accounting for 8.1% of total variation. The root growth rate substantially contributed to principal component 2.




Figure 9 | Pearson correlation matrix between the cotton traits. The level of significance of the correlations is indicated as follows: *p< 0.05; **p< 0.01. PH, plant height; SD, stem diameter; LA, leaf area; SPAD, spad value; Pn, net photosynthetic rate; Fv/Fm, maximum photochemical efficiency; ΦPsII, actual photochemical quantum yield; RFW, root fresh weight; RDW, root dry weight; R/S, root-shoot ratio; RL, root length; RA, root surface area; RV, root volume; RD, average root diameter; SRL, specific root length; SRSA, specific root surface area; SRV, specific root volume; RGR, root growth rate; RLD, root length density; VFR, proportion of very fine roots; FR, proportion of fine roots; RHD, root hair density; ARHL, average root hair length; RHL, root hair lifespan.






Figure 10 | Principal component analysis of 17 root system indicators (abbreviated as in Figure 9).






Discussion


Effects of high temperature on the morphology and physiology of the aboveground parts

Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. In reality, most biological temperature responses increase exponentially with temperature until they reach a thermal optimum. Plant roots perceive these stresses in the soil and adapt their architecture accordingly (Karlova et al., 2021; Moore et al., 2021). Plant growth is a process of continuous increase in weight and volume. This process is irreversible, but when exposed to high temperature, it undergoes a series of physiological and biochemical reactions, which ultimately lead to slow growth and even the arrest of growth until death. Previous research revealed that the plant height of cotton increased linearly with increasing temperature (Reddy et al., 2017) and that the leaf area index and the dry matter accumulation of the aboveground parts peaked at 35°C but began to decrease after 35°C (Virk et al., 2021). This study found that a high temperature of 38°C significantly reduced the plant height, stem diameter, leaf area, and SPAD of ND and GX (Figure 2). At the early stage of high temperature, the leaf growth decreased, and at 5 d, some leaves began to fall off, possibly because the high temperature accelerated leaf senescence, resulting in leaf abscission. This study also indicated that the dry and fresh weights of the aboveground parts decreased significantly after high temperature stress (Table 1), similar to the response of potato to high temperature (Taranet et al., 2018). The effect of high temperature on the dry matter accumulation was related to its effect on the photosynthetic rate. The photosynthetic rate of cotton decreased sharply at 35°C (Zahid et al., 2016; Moore et al., 2021). This study also discovered that high temperature reduced the photosynthetic rate (Figure 3A). This changing trend highly correlated with that of Fv/Fm, i.e., with the extension of high temperature duration, Fv/Fm and ΦPSII began to gradually decrease until the last day of stress (Figures 3B, C). This is consistent with the responses of other crops to high temperature stress. For example, the Fv/Fm and ΦPSII of melon (Weng et al., 2022) and soybean (Jumrani et al., 2017) are seriously inhibited and rapidly decreased under high temperature stress. After the RHT, the net photosynthetic rate and Fv/Fm both tended to increase. After 7 d of recovery, the Fv/Fm recovered to a normal level, and no irreversible damage was caused to the aboveground parts of cotton. Therefore, in this study, the response of aboveground parts to high temperature (HT) treatment (38°C day and 32°C night) showed obvious phenotypic and physiological characteristics of high temperature stress.



Effect of high temperature on root development

An increase in temperature is beneficial to the root growth of plants within a suitable range, but it affects root development once beyond this range (Fonseca de Lima et al., 2021; Snider et al., 2022). A major function of roots is to absorb water and nutrients. However, high temperature stress weakens this function, thus, reducing the transportation of water and nutrients to the aboveground parts and further inhibiting plant growth and changing root architecture (Giri et al., 2017; Calleja-Cabrera et al., 2020; Tiwari et al., 2022). Studies on wheat have pointed out that high temperature stress reduces the root dry weight, root length, and R/S ratio; increases the specific root length, specific root surface area, and specific root volume; and decreases the number of roots (Benlloch-Gonzalez et al., 2014). A study on high temperature stress in cotton suggests that high temperature reduces the root surface area, root length, root volume, and average root diameter (Reddy et al., 2017). This study showed that the specific root length significantly positively correlated with the specific root surface area and specific root volume (Figure 9), after high temperature stress, the specific root length, specific root surface area, and specific root volume of cotton increased significantly, which was consistent with the results of studies on wheat (Tahir et al., 2008; Benlloch-Gonzalez et al., 2014). In contrast, the root length, root surface area, and root volume decreased significantly, suggesting that high temperature inhibited root growth (Table 2).

In this study, the root length was significantly and positively correlated with root surface area and root volume (Figure 9). This was possibly because high temperature inhibited the synthesis of endogenous hormones, such as brassinolide and auxin, in roots. At elevated temperatures, the root system also elongates to protect the meristem (Martins et al., 2017), while increasing the number of roots and decreasing the length of lateral roots (Alsajri et al., 2019). Root branching strength and average root diameter were highly sensitive to high temperature, which significantly increased the root branching strength, and the average root diameter decreased due to the increase in branching strength (Nagel et al., 2009). This could possibly occur because high temperature accelerates the division of root meristems and accelerates the development of lateral root primordia (Otsuka and Sugiyama, 2012). When the average root diameter decreases, it may change the acquisition of root nutrients and affect root development (Luo et al., 2020), thus, increasing root branching and distribution to adapt to abiotic stresses, such as high temperature (Zahid et al., 2016). Studies on grape lupine and sorghum found that high temperature inhibits root growth, changes the R/S ratio, and affects the root architecture (Pardales et al., 1992; Ribeiro et al., 2014; Mahmud et al., 2019; Gavelienė et al., 2022). This study clearly found that high temperature treatment significantly reduced the growth rate of roots by relying on the in situ root observation system RhizoPot (Figure 5A) and that the root growth was arrested at 4 d of the high temperature treatment but recovered at 2 d after the RHT.



Reduction in root hair density, length, and lifespan by high temperature

A root hair is a top-closed tubular structure with epidermal cells that protrude outwards. Root hairs are closely fitted with soil, which greatly increases the root surface area and improves the efficiency of water and nutrient absorption (Peterson and Farquhar, 1996; Raven and Edwards, 2001). Root hairs consume little energy when absorbing nutrients from soil (Nestler and Wissuwa, 2016; Wang et al., 2021), and the growth and development of root hairs play a vital role in alleviating abiotic stresses, such as high temperature and drought (López-Bucio et al., 2003). Root hairs have a short lifespan of about 10 to 20 d, and their senescence is manifested as a death state of twisting and rotation (Hendrick and Pregitzer, 1992; Xiao et al., 2020; Zhu et al., 2022). The RhizoPot platform introduced in this study clearly displayed the whole process of root hairs from emergence to the state of twisting and rotation, which offers support for studies on the root hair phenotypes and lifespan of cotton under high temperature stress. This study found that root hair longevity is significantly and positively correlated with the mean root hair length and root hair density (Figure 9) after high temperature stress significantly reduced the root hair density of cotton (Figure 7A) and shortened its average root hair length (Figure 7B). The lifespan of root hairs was significantly reduced, and most of the root hairs twisted and died at the end of 7 d continuous high temperature treatment (Figure 7C). This result indicated that root hairs are highly sensitive to high temperature stress. However, this result was different from previous research that showed that root hair density and length both tend to increase under drought stress and low N and P stress (Xiao et al., 2020; Zhang et al., 2021; Zhu et al., 2022). This was probably because high temperature stress enhanced the cell membrane permeability of roots and raised their levels of reactive oxygen species, thus, inhibiting the development of root hairs (Kim et al., 2021). Further research is merited to identify the specific cause.




Conclusion

This study used a RhizoPot platform to investigate the dynamic traits of the root phenotypes of cotton under high temperature. When cotton was subjected to high temperature stress, its roots responded first. High temperature stress reduced the root length, root surface area, root volume, average root diameter, root growth rate, and root length density of cotton. The specific root length, root surface area, and root volume increased significantly, while the proportion of fine roots presented an opposite trend. After the removal of high temperature, the root length, average root diameter, and root growth rate all rejuvenated somewhat. The root hairs were more sensitive to high temperature stress, which shortened their lifespan and reduced the density and average length of root hairs. Cotton mainly adapts to high temperature stress by increasing the proportion of very fine roots, specific root length, and specific root surface area, which shortens the lifespan of root hairs.
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Three ecotypes of rapeseed, winter, spring, and semi-winter, have been formed to enable the plant to adapt to different geographic areas. Although several major loci had been found to contribute to the flowering divergence, the genomic footprints and associated dynamic plant architecture in the vegetative growth stage underlying the ecotype divergence remain largely unknown in rapeseed. Here, a set of 41 dynamic i-traits and 30 growth-related traits were obtained by high-throughput phenotyping of 171 diverse rapeseed accessions. Large phenotypic variation and high broad-sense heritability were observed for these i-traits across all developmental stages. Of these, 19 i-traits were identified to contribute to the divergence of three ecotypes using random forest model of machine learning approach, and could serve as biomarkers to predict the ecotype. Furthermore, we analyzed genomic variations of the population, QTL information of all dynamic i-traits, and genomic basis of the ecotype differentiation. It was found that 213, 237, and 184 QTLs responsible for the differentiated i-traits overlapped with the signals of ecotype divergence between winter and spring, winter and semi-winter, and spring and semi-winter, respectively. Of which, there were four common divergent regions between winter and spring/semi-winter and the strongest divergent regions between spring and semi-winter were found to overlap with the dynamic QTLs responsible for the differentiated i-traits at multiple growth stages. Our study provides important insights into the divergence of plant architecture in the vegetative growth stage among the three ecotypes, which was contributed to by the genetic differentiation, and might contribute to environmental adaption and yield improvement.
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Introduction

Crop species undergo multi−staged domestication from a particular center and then expand to a wider geographical distribution (Meyer and Purugganan, 2013). Long-term domestication and improvement reshape crops to diverse subspecies or ecotypes, with many geographically agronomic traits, to adapt to different agro-ecological and cultural environments. Recently, genomic changes underlying the differentiated traits among different subspecies or ecotypes have been successfully identified by high-throughput genotyping assisted population genetic analysis in many crops, which include rice (Wang et al., 2018b; Zhang et al., 2019), maize (Hufford et al., 2012; Liu et al., 2015), soybean (Zhou et al., 2015), cucumber (Qi et al., 2013), tomato (Lin et al., 2014) and cotton (Wang et al., 2017; He et al., 2021). Numerous loci/genes associated with root microbiota, plant architecture, grain yield, stress responses, and flowering time were identified and will accelerate the breeding process of new cultivars. Meanwhile, such genomic features and differentiated traits can be used as biomarkers to distinguish ecotype or subspecies (Zhang et al., 2019).

The allotetraploid rapeseed (B. napus) is a relatively new species and originates from interspecific hybridization between the ancestor of European turnip (B. rapa, A subgenome) and the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale (B. oleracea, C subgenome) less than 7500 years ago (Chalhoub et al., 2014; Lu et al., 2019; Song et al., 2020). To date, the rapeseed includes three ecotypes for adapting to different geographic areas (Qian et al., 2006; Snowdon et al., 2007; Yin et al., 2020). Winter (W) ecotype is mainly in Europe, and is generally sown in autumn and flowers in late spring after a strong vernalization. Spring (S) ecotype is mainly in Northern Europe, Canada, Australia, and north-western China; it is not winter-hardy and is generally sown in spring and flowers without vernalization. Semi-winter (SW) ecotype is mainly found in the Yangtze River basin of China, and is generally sown in autumn and flowers in early spring after moderate vernalization. It has been suggested that the winter ecotype was the original form of rapeseed, and the spring and semi-winter ecotype were developed ~416 and ~60 years ago, respectively (Lu et al., 2019). Recently, millions of genomic variations among W, S, and SW ecotypes of rapeseed were identified by SNP array and whole-genome resequencing (Wei et al., 2017; Wang et al., 2018a; Lu et al., 2019; Wu et al., 2019). A panel of genes, such as BnaA10.FLC, BnaA02.FLC, BnaA03.FLC.a BnaA02.FT, and BnaA03.FRI, were identified to be associated with the flowering time divergence of three rapeseed ecotypes, by integration of selective sweep analysis, genome-wide association study (GWAS), single gene haplotype analysis, and transgenic validation (Wei et al., 2017; Yi et al., 2018; Wu et al., 2019; Yin et al., 2020). The haplotypes in these genes and flowering time could be used to distinguish the ecotype and improve the cultivar in rapeseed. However, the divergence of genomic footprints and associated dynamic plant architecture in vegetative growth stages has not yet been analyzed systematically.

Machine learning (ML) is a set of computational approaches to find predictive patterns in data and has been widely used to identify biomarkers for subspecies discrimination and yield heterosis prediction (Zhang et al., 2019; Dan et al., 2021; van Dijk et al., 2021). Previously, we developed an automatic image analysis pipeline to quantify dynamic plant architecture throughout multiple development stages in rapeseed (Li et al., 2020). In this study, this pipeline was used to study the dynamic architecture of plant growth and growth rate within a rapeseed population, including 14 W types, 24 S types, and 133 SW types. We identified that a subset of 19 i-traits contribute to divergence of the three ecotypes using the random forest (RF) model of ML. And, we analyzed genomic variations of the population, genomic basis of the ecotype differentiation, and QTL information of all dynamic i-traits. It was found that 213, 237, and 184 QTLs of differentiated i-traits overlapped with the 37, 33, and 42 ecotype differentiation regions between W and S, W and SW, and S and SW, respectively. This suggests that our identified differentiation of i-traits among the ecotypes was contributed to by the genetic variations and differentiation.



Materials and methods


Sample collection and phenotyping

A total of 171 rapeseed cultivars or inbred lines were collected from ten countries or regions across the world (Supplementary Table S1). These lines were selected from our previously published population to represent the three ecotypes of W, S, and SW (Wang et al., 2018a). Phenotyping was performed in the high-throughput rice phenotyping facility (HRPF), located in Huazhong Agricultural University, Wuhan, China (Yang et al., 2014). All rapeseed lines were sowed in the pot and screened from the seedling to the initial flowering stage at 11 time points of T1 to T11, with intervals of one week (Supplementary Table S2). Experimental layout and management were the same as that described previously (Li et al., 2020). The trials were performed using a randomized block design with three replications in the winter-spring growing season of 2014-2015. In total, we generated a total of 215.42 Gb of RGB images (44,118 images; PNG format), which are available in a database (http://plantphenomics.hzau.edu.cn/usercrop/Rape/image/2014-2015-GWAS, selecting of “2014-2015-GWAS”). A set of 41 dynamic i-traits (18 i-traits in top view and 23 i-traits in side view) and 30 growth-related traits reflecting the growth speed were obtained using the image analysis pipeline, described previously (Supplementary Table S3) (Li et al., 2020). The detailed instructions of the image analysis pipeline and the source code of programs built in the LabVIEW 2015 (National Instruments, US) can be obtained in our previous study (Li et al., 2020). Outliers were removed by “3σ” criterion; the remaining i-traits were used for subsequent phenotypic analysis.



Identification of i-traits contributing to the divergence of ecotype

Five machine learning models, namely discriminant analysis (DCA), random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), and convolutional neural network (CNN), were performed to distinguish different ecotypes, based on the 18 i-traits in top view from T1 to T11 and 23 i-traits in side view from T7 to T11, respectively. DCA was performed by IBM SPSS 20.0. RF, SVM, MLP, and CNN were built by Python3.6. The detailed parameters were as follows: (1) Bayesian basis DCA expression was established to distinguish different ecotypes and i-traits with high contribution which were acquired with stepwise establishment of discriminant expressions. (2) CART algorithm was used to split nodes in building RF. (3) SVM with radial basis kernel was built for a best decision edge with the highest confidence between ecotypes, which was searched for by adjusting the slack variable and penalty factor C. (4) Multilayer perceptron (MLP) and convolutional neural network (CNN) were activated by softmax on the last layer. For each model, the i-traits were divided into training sets and testing sets and the capability of the model was evaluated by the performance using the test set. Finally, the i-traits excavated by RF model with high contribution to divergence of ecotype were used for subsequent analysis.



Redraw of rapeseed images from i-traits

Based on the i-traits excavated by RF model with high contribution to divergence, a text-to-images model StackGANv1 (https://github.com//hanzhanggit//StackGAN) was used to construct the rapeseed images. StackGANv1 was built by python 2.7 with tensorflow 0.12 and accelerated with GEFORCE RTX2080 SUPER. Stage I (i-traits to images) and stage II (images to images) were trained 800 times and 200 times, respectively. After the simulated images were obtained by the StackGANv1, three parameters, MSE, SSIM, and PSNR, were calculated to evaluate the image similarity between real and simulated images.



Mapping, variant calling and annotation

Sequence data (PE100 reads) of the 171 rapeseed lines were obtained from our previous study (Wang et al., 2018a). The variants were identified again based on the newly published ZS11 genome (Song et al., 2020). Putative single nucleotide polymorphisms (SNPs) were obtained using the Burrows-Wheeler Alignment tool (BWA), SAMtools, and Genome Analysis Toolkit (GATK), according to the variant calling process that was described previously (Tang et al., 2021). The raw variants were further filtered using the following criteria: (1) the relative heterozygosity (HR) had to be less than 0.2 (Wu et al., 2016); (2) the percentage of missing genotype had to be less than 60% in the population; and (3) the confidence score from GATK had to be greater than 20. Finally, missing genotypes of all variants were imputed using Beagle software and variants with allele frequencies lower than 5% in the population were discarded. The identified SNPs were annotated using the ANNOVAR package (Wang et al., 2010), based on the ZS11 genome and annotation model (http://cbi.hzau.edu.cn/bnapus/index.php).



Population genetics analysis

To build a phylogenetic tree and perform principal component analysis, a subset of 131,319 SNPs was selected randomly with a step of 5-kb window across the genome. These SNPs were distributed evenly among the genome and better reflect population structure and demography. The phylogenetic tree was constructed using MEGA X software (Kumar et al., 2018), with the neighbor joining method and 1000 bootstrap replicates. Principal component analysis was performed using the smartpca program in EIGENSOFT software (Price et al., 2006); with that the first two eigenvectors were used. Linkage disequilibrium (LD) between each pair of SNPs was calculated for 1,000-kb windows using PopLDdecay software (Zhang et al., 2018). The LD decay was calculated on the basis of the r2 value between two SNPs in each window and plotted using custom R script.



Ecotype differentiation analysis

Nucleotide diversity (π), measuring the degree of variability within a population, was calculated for 100-kb sliding windows with a step size of 10 kb using the VCFtools (Danecek et al., 2011). Population fixation statistics (FST) was estimated for 100-kb sliding windows with a step size of 10 kb using the PopGenome (https://popgenome.weebly.com/). The average FST from all sliding windows was used to reflect the degree of population divergence among different ecotypes. Sliding windows with the top 1% FST value were selected as putative significant differentiated windows. Of these, the top 1% had FST≥0.72, 0.66, and 0.5 for W vs S, W vs SW, and S vs SW, respectively. Neighboring windows, the distance <20 kb, were then merged into one region. These regions were regarded as highly diverged across ecotype.



Genome-wide association study

Genome-wide association study (GWAS) was performed using a mixed linear model (MLM) in genome-wide efficient mixed model association (GEMMA) software, such as that described previously (Wang et al., 2018a). The effective number of independent markers (N) was calculated using GEC tool (Li et al., 2012), and suggestive P value (1/N=8.67×10-7) was set as the significance threshold. The GWAS signals of all traits was identified according to the following two steps. Firstly, all P value of SNPs responsible for each i-trait were used as a query of function “clump” of PLINK software. The function was used to obtain the independent peak SNPs of each i-trait with a sliding window based on the decay of LD. The parameter of PLINK was –clump-p1 8.67×10-7 –clump-p2 1×10-5 –clump-r2 0.3 –clump-kb 500 –clump-allow-overlap. The QTL intervals for each i-trait were defined as the minimum and the maximum position of the SNPs meeting these criteria. Secondly, all QTLs with overlapping intervals were categorized as nonredundant QTLs.




Results and discussion


Phenotypic variation

We evaluated the phenotypic diversity and broad-sense heritability (H2) of the 41 dynamic i-traits. The magnitude of diversity varied drastically among different i-traits in the rapeseed accessions at each time point (Figure 1A; Supplementary Table S4). The average fold change for all i-traits was 4.44, ranging from 1.04 to 147.68 among the different time points. Of which, MU3_TEX_SV/TV (Third moment of whole plant in top/side view, reflecting the complex degree of leaves) and PC6_SV (Plant compactness of whole plant traits in side view, reflecting the compactness of the whole plant) had the highest range of phenotypic variation across all time points expect time point T8-T10, with the fold change of the traits ranging from 5.16 to 19.73 (Figure 1A). This result was similar to that reported previously (Li et al., 2020). However, the fold change of all 41 i-traits in this study was higher than that observed in rapeseed intervarietal substitution line (ISL) population previously (Li et al., 2020). This suggests that the dynamic i-traits have a wider diversity in the nature rapeseed germplasm compared with the artificially constructed population. Among the 11 time points, the average of H2 of all 41 i-traits was 0.67 (Figure 1B; Supplementary Table S4). Of these, most (39, 95.12%) i-traits have higher heritability (>0.50) at more than half of the time points. And, the i-traits generally showed the highest heritability at the time points T7 or T8 (the bud stage, Figure 1B). This phenomenon was also observed in the ISL population previously (Li et al., 2020).




Figure 1 | Dynamic phenotype of 43 i-traits across 11 time points and performance of models distinguishing the rapeseed ecotype. (A) Heat map showing the phenotypic fold change. (B) Heat map showing the broad-sense heritability (H2) of traits. (C, D) Classification accuracy of five machine learning models based on the i-traits in top-view from T1-T11 (C) and side view from T7-T11 (D). DCA, discriminant analysis; RF, random forest; SVM, support vector machine; MLP, multilayer perceptron; CNN, convolutional neural network. (E) Images of three rapeseed ecotypes from T7 in top view and side view. The top-left numbers indicated the No. of displayed accessions.





Performance of classification models

To identify the i-traits contributing to the divergence of three ecotypes in rapeseed, five machine learning models, namely discriminant analysis (DCA), random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), and convolutional neural network (CNN), were established using i-traits in top view from T1 to T11 and side view from T7 to T11, respectively. The classification accuracy of different models through all dynamic time points were shown in Figures 1C, D. A high classification accuracy with similar dynamic change among the time points was observed for all five models. The average of classification accuracy ranged from 0.75 to 0.83, and 0.79 to 0.83 for i-traits in top view from T1 to T11 and side view from T7 to T11, respectively. (Figures 1C, D). Moreover, the average of classification accuracy increased gradually and reached the maximum in T7 and T8 for i-traits in both top view (0.82 and 0.83) and side view (0.82 and 0.83), although the visual difference was not particularly obvious among some accessions in the three rapeseed ecotypes, from both top and side view at T7 period (Figure 1E). These results suggest that the machine learning is effective in distinguishing the rapeseed ecotypes based on the dynamic i-traits.



I-traits contributing to the ecotype divergence

It would be beneficial if the ecotype could be distinguished in early growth stage. Notably, RF with the contributed i-traits was established and displayed an impressive accuracy at the first inspection stage of top-view (T1) and side-view (T7); 78.0% samples were correctly classified in T1 and 81.7% samples were correctly classified in T7 (Figures 1C, D). A subset of nine i-traits in top view and 10 i-traits in side view from the top 50% of i-traits were screened by RF, which contributed to the divergence of ecotype in rapeseed (Supplementary Table S5). To further verify whether these extracted i-traits can well distinguish the individual plants, the nine i-traits and 10 i-traits in top-view and side view were taken to train stackGAN to generate images, respectively. Model with i-traits in T1 with 4,872 images in top-view was trained for 15 hours, and model with i-traits in T7 with 22,691 images in side-view was trained for 48 hours (Figure 2A). Examples of coupled real and simulated images are shown in Figures 2B, C. It was showed that the simulated images of plant were clear and bright with smooth texture details and highly similar with the coupled real ones. Moreover, three evaluation parameters of image similarity, mean square error (MSE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR), were 0.02, 0.75, and 17.13, respectively. This observation indicates a high similarity between the simulated and real images. Taken together, these results suggest that the selected traits could represent the overall plant well and be used as biomarkers to distinguish the ecotypes.




Figure 2 | Generation of images based on machine learning. (A) Procedure of generating rapeseed images by the StackGANv1 model. (B, C) Comparison of images between real and simulated images generated based on the nine i-traits in top view (B) and ten i-traits in side view (C) from the top 50% i-traits screened by the RF model.



The plant architecture reflected by the contributed i-traits might be associated with the environmental adaption and yield improvement among the ecotypes, which are the two important breeding processes in rapeseed (Hu et al., 2022). Of these, GCV_TV (Green color value in top view) shows the green component that to some extent is negatively associated with the chlorophyll content of plants (Wu et al., 2018). There was a significant difference for the GCV_TV of each stage among the three ecotypes (Figures 3A, F). This result suggests that GCV_TV had been selected artificially during the breeding, and the W ecotype, the original form of rapeseed, had more chlorophyll content in leaf, which putatively increased photosynthesis rate and sugar content. The W_TV (Plant width in top view) and PAR_SV (perimeter/projected area ratio of whole plant in side view) are associated with the leaf angle and shape, petiole length, and plant compactness. A significant difference was observed among the three ecotypes (Figures 3B, C), which suggests that the W ecotype displayed more horizontal leaves with short petiole (Figure 3F). These performances may help rapeseed with overwintering during strong vernalization (Hu et al., 2022). The FDNIC_TV/SV (Fractal dimension without image cropping of whole plant in top/side view) are positively associated with the biomass and yield in rapeseed (Li et al., 2020). SW ecotype had a significantly higher value for these two i-traits of each stage than that of W and S ecotype (Figures 3D, E). This observation might suggest that the yield of modern SW accessions had been improved during the rapeseed breeding (Hu et al., 2022). In addition, similar significant differences were observed for other contributed plant morphological i-traits among the three ecotypes (Supplementary Figures S1, S2). Furthermore, SE_TEX_TV/SV (standard error of whole plant in top/side view), S_TEX_TV/SV (smoothness of whole plant in top/side view), M_TEX_TV (mean value of whole plant in top view), and MU3_TEX_TV/SV (third moment of whole plant in top/side view), which are texture traits and reflect the complex degree of leaf grayscale in vegetable state, displayed significant differences among the three ecotypes across each stage (Supplementary Figures S1, S2). This result suggests that the leaves become more complex in S and SW ecotype, compared with W ecotype, during the breeding of rapeseed.




Figure 3 | Characteristics of the subset of i-traits contributing to ecotype divergence among the three ecotypes. (A–E) The box plots of GCV_TV (A), W_TV (B), PAR_SV (C), FDNIC_TV (D), and FDNIC_SV (E) from T1 to T11 among the three rapeseed ecotypes. Differences between the ecotypes were analysed by Wilcoxon rank-sum test and different letters represent significant difference (P < 0.05). (F): Plant morphology of the three rapeseed ecotypes from T7 in top view and side view. The top-left numbers indicated the No. of displayed accessions.





Genomic variation and population structure

The 171 rapeseed accessions consisted of 14 W ecotypes, 24 S ecotypes, and 133 SW ecotypes. These lines had a wide geographic distribution, including Europe (France, Sweden, Denmark, Germany, Czech Republic), Canada, Australia, China, and Japan (Figure 4A; Supplementary Table S1). A total of 6.83 billion paired-end reads (1.36 Tb of sequence) were obtained, with an average depth of 5.28× of the reference genome ZS11 (Supplementary Table S1). After mapping against the newly published genome of ZS11 (Song et al., 2020) and variants filtering, we identified a total of 5,324,005 SNPs (Figure 4B; Supplementary Table S6). Of these, 2,589,260 (48.6%), 1,166,139 (21.9%), and 1,568,606 (29.5%) were located in intergenic regions, upstream/downstream regions, and the gene body, respectively (Supplementary Table S7). We also identified 316,612 nonsynonymous SNPs, which caused start codon changes, gain of premature stop codons, or the production of elongated transcripts (Supplementary Table S7). The number and density of SNPs in the A subgenome (2,692,034; 7.08 SNPs/kb) was higher than that in the C subgenome (2,631,971; 4.61 SNPs/kb) (Figure 4B; Supplementary Table S7).




Figure 4 | Features of the rapeseed population consisted of winter, spring and semi-winter ecotypes. (A) The geographic distribution of the 171 accessions. Accessions from China are represented by a circle on the provincial capital city. Accessions from other countries are represented by a circle on the capital city. Circle size indicates number of accessions. (B) Circos plot showing genetic diversity among three ecotypes. R1: gene density, R2: SNP density, R3: genetic diversity (π) in whole population, R4: genetic diversity (π) in winter ecotype group, R5: genetic diversity (π) in semi-winter ecotype group, R6: genetic diversity (π) in spring ecotype group. (C) Phylogenetic tree of all accessions inferred from a subset of 131,319 SNPs, distributed randomly across whole-genome. The yellow, green, and blue dots indicate winter, spring, and semi-winter accessions. (D) PCA plots of the first two components of 171 accessions. (E) Summary of nucleotide diversity and population divergence across the three ecotype groups. Values in circles represent measures of nucleotide diversity for the group, and values between pairs indicate ecotype divergence (FST). (F) Decay of LD (r2) in the three groups (top) and two subgenomes (bottom).



To get the overall genetic relationship among the three ecotypes in this population, we explored the phylogenetic relationship and performed principal component analysis (PCA) of 171 accessions using randomly selected SNP markers. The neighbor-joining tree revealed the accession within W, S, and SW ecotype clustered each other, (Figure 4C). However, there were thirteen SW accessions mixed with the S ecotype clade. This result was supported by the PCA, in which principal component PC2 separated the W ecotype from the S and SW ecotype, and PC1 separated the S ecotype from most SW ecotypes except the abovementioned mixed thirteen SW accessions (Figure 4D). It was found that genetic diversity of SW ecotype types (π=1.68×10-3) was higher than that of S (π=1.56×10-3) and W (π=1.17×10-3) (Figures 4B, E; Supplementary Table S6). The diversity level in all three ecotypes was similar to that reported in the larger germplasm accessions previously (Wu et al., 2019; Tang et al., 2021; Hu et al., 2022), which suggests that our population could represent genetic diversity of the three ecotypes. And, the genetic diversity in A sub-genome was higher than that in C sub-genome in all three ecotypes, with the maximum difference observed in SW ecotype (Figure 4B). This observation was consistent with the fact that the diversity of B. rapa contribute more to A genome of B. napus than B. oleracea to C genome of B. napus diversity (Qian et al., 2006; Sun et al., 2017). The decay of linkage disequilibrium (LD) with physical distance between SNPs (1/2 max r2) occurred at 20.6 kb in our population, with 52 kb in W ecotype, 23.5 kb in S ecotype, and 18.4 kb in SW ecotype (Figure 4F; Supplementary Table S6). The LD extent of C sub-genome was much higher than that of A sub-genome, independent of the ecotype (Figure 4F; Supplementary Figure S3). The overall LD extent and its sub-genomic pattern in our study was similar to that reported previously (Lu et al., 2019; Wu et al., 2019; Tang et al., 2021).



QTL identification of the i-traits and growth-related traits

We performed GWAS using a set of 5,324,005 SNPs, which allowed us to identify the genetic basis of 41 dynamic i-traits and 30 growth-related traits. We detected a total of 4,088 loci associated with 66 traits across different time points, including 1,421, 1,753, and 914 loci associated with i-traits in top view, i-traits in side view, and growth-related traits, respectively (Figures 5A–C; Supplementary Table S8). The number of loci was significantly more than that identified for the same i-traits in the ISL population (Li et al., 2020), which suggested a higher detection power by combining high-throughput phenotyping and GWAS. Of which, 1,222 and 1,054 loci were responsible for the contributed i-traits in top view and side view, respectively. These associated loci were further involved in the 602 nonredundant QTLs, which was revealed by the trait-related association network (Figure 5D), suggesting the linkage or pleiotropy of locus. Of these, the largest proportion of nonredundant QTL were associated with a single trait (209, 34.7%), with those 105 nonredundant QTLs (17.4%) underlying single timepoint-dependent dynamic i-traits and 104 nonredundant QTLs (17.3%) underlying single growth-related traits. QTLs simultaneously affected the same trait at multiple growth stages, ranging from 2 to 7 and 2 to 5 for the dynamic i-traits in top view and side view, respectively (Supplementary Figure S4). The results reveal that these associated QTLs were expressed throughout multiple growth stages, which was almost impossible to detect by artificial phenotyping. For example, the QTLs involved in Bin161 on chromosome A07 simultaneously affected the PAR_TV at time points T4-T10 (Supplementary Figure S5A), which contributed to ecotype divergence and are associated with leaf angle and shape, petiole length, and plant compactness. And, the QTLs involved in Bin49 on chromosome A02 affected the MU3_TEX_SV at time points T7-T11 (Supplementary Figure S5B), which contributed to ecotype divergence and reflect the complex degree of leaf grayscale in vegetable state. Two i-traits in top view and all seven i-traits in side view were found to be associated with a number of loci at all eleven and five time points, respectively (Figures 5A, B; Supplementary Table S8). For the i-traits in top view and side view, the number of associated loci for each i-trait ranged from 1 to 218 (PAR_TV_5) at all 11 time points and from 1 to 134 (PC1_SV_7) at all 5 time points, with an average of 1.22-98.50 and 1.25-101.20 loci per time point, respectively. The QTLs were distributed nonrandomly throughout the rapeseed chromosome, with a maximum of 344 on C01 and a minimum of 102 on C5. However, there was the symmetrical distribution of QTL in A sub-genome (2,042) and C sub-genome (2,046) (χ2-test, p = 0.95).




Figure 5 | Dynamic QTLs detected in the population by GWAS. (A) QTLs responsible for the 18 i-traits in top view. i1-i18 represent GCV_TV, M_TEX_TV, SE_TEX_TV, S_TEX_TV, MU3_TEX_TV, U_TEX_TV, E_TEX_TV, TPA_TV, H_TV, W_TV, HWR_TV, FDNIC_TV, FDIC_TV, R_TV, PAR_TV, HA_TV, AC_TV, and GPA_TV, respectively. (B) QTLs responsible for the 23 i-traits in side view. i1-i23 represent M_TEX_SV, SE_TEX_SV, S_TEX_SV, MU3_TEX_SV, U_TEX_SV, E_TEX_SV, TPA_SV, H_SV, W_SV, HWR_SV, FDNIC_SV, FDIC_SV, R_SV, PAR_SV, HA_SV, AC_SV, GPA_SV, PC1_SV, PC2_SV, PC3_SV, PC4_SV, PC5_SV, and PC6_SV, respectively. The time points T1-T11 and T7-T11 are shown as circles with a colour gradient from light to dark, as indicated in the legend of (A, B). (C) QTLs responsible for the 30 growth-related traits. G1-G30 represent a_linear_TV, b_linear_TV, a_power_TV, b_power_TV, a_Exp_TV, b_Exp_TV, a_log_TV, b_log_TV, a_quadratic_TV, b_quadratic_TV, c_quadratic_TV, a_sin_TV, b_sin_TV, c_sin_TV, d_sin_TV, a_linear_SV, b_linear_SV, a_power_SV, b_power_SV, a_Exp_SV, b_Exp_SV, a_log_SV, b_log_SV, a_quadratic_SV, b_quadratic_SV, c_”uadr’tic_SV, a_sin_SV, b_sin_SV, c_sin_SV, and d_sin_SV, respectively. (D) Network of associated bins with different traits. Green, blue, purple, and yellow nodes represent color traits, growth-related traits, histogram texture traits, and plant morphological traits (Details in Supplementary Table S3). The grey nodes of the outer ring represent the identified 602 nonredundant bins.





Genetic divergence of the differentiated i-traits among the three ecotypes

To detect the genetic basis underlying the differentiated i-traits among the three ecotypes, we first calculated the pairwise population differentiation level and searched for genomic regions showing the highest level of fixation for SNPs (the top 1% of FST) across different ecotypes. There were 78, 73, and 79 such regions with an FST value greater than 0.72, 0.67, and 0.50 between W and S ecotypes, W and SW ecotypes, and S and SW ecotypes, respectively (Supplementary Table S6). These regions covered 9.11 Mb, 9,03 Mb, and 9.02 Mb in total, containing 605, 618, and 755 genes, respectively (Supplementary Table S6). We identified the local differentiation signals surrounding BnaA10.FLC on Chromosome A10 between W and S ecotype (Figure 6A), which had been detected previously and is a major association with seasonal crop type in rapeseed (Wu et al., 2019; Yin et al., 2020). This result prompted us to annotate the differentiation signals among the three ecotypes, in combination with the above-mentioned GWAS signals of differentiated i-traits.




Figure 6 | Genome-wide ecotype divergence with integration of multiple GWAS signals responsible for the differentiated i-traits. (A, B) Highly divergent regions between the winter and spring ecotypes (A) and winter and semi-winter ecotypes (B). The horizontal red dashed lines indicate the thresholds (top 1% of FST values). Region indicated by the asterisk was that surrounding BnaA10.FLC. (C-F) GWAS signals responsible for FDNIC_SV (C), PAR_SV (D), S_TEX_SV (E), and PAR_TV (F) across multiple time points, which overlapped the common divergent regions on C09 chromosome between winter and spring/semi-winter ecotypes. The red vertical dashed lines in Manhattan plots indicate the threshold of GWAS (-log (P value) = 6.02).



Interestingly, when the physical QTLs of ecotype differentiated i-traits were compared with the 230 divergent regions, we found that 35, 33, and 42 divergent regions were located within known QTLs responsible for the differentiated i-traits between W and S, W and SW, and S and SW, respectively (Supplementary Table S9). Overall, the ratio of divergent regions overlapping with QTLs of ecotype differentiated i-traits (47.8%) was significantly more than that overlapping with QTLs of i-traits that little contributed to the divergence of ecotype (31.7%) (χ2-test, p = 2.66×10-4). For the divergent regions between W and S ecotype, a subset of 213 QTLs responsible for FDNIC_TV/SV, PAR_TV/SV, S_TEX _TV/SV, HA_TV, HWR_SV, SE_TEX_SV, and TPA_SV overlapped with the divergent regions. For the divergent regions between W and SW ecotype, a subset of 237 QTLs responsible for FDNIC_TV/SV, PAR_TV/SV, S_TEX _TV/SV, GCV_TV, HA_TV, M_TEX_TV, W_TV, HWR_SV, MU3_TEX_SV, SE_TEX_SV, and TPA_SV overlapped with the divergent regions. For the divergent regions between S and SW ecotype, a subset of 184 QTLs responsible for FDNIC_TV/SV, MU3_TEX_TV/SV, PAR_TV/SV, GCV_TV, M_TEX_TV, S_TEX _SV, SE_TEX_SV, and TPA_SV overlapped with the divergent regions. Of these, four common divergent regions between W and S/SW, located on chromosome A10, C01, and C09, were found to overlap with the dynamic QTLs responsible for FDNIC_SV, PAR_ SV, S_TEX _SV, and PAR_ TV at multiple growth stages (Figure 6; Supplementary Figures S6–S8). The strongest divergent regions between S and SW on chromosome C02 overlapped with the QTLs responsible for PAR_SV and FDNIC_TV at multiple growth stages (Supplementary Figure S9). Taken together, these results supported that alleles of i-traits contributing to ecotype divergence have experienced selection among the ecotype in rapeseed, which revealed that differentiation of i-traits among the ecotypes was contributed to by the genetic variations and differentiation.
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Current methods of root sampling typically only obtain small or incomplete sections of root systems and do not capture their true complexity. To facilitate the visualization and analysis of full-sized plant root systems in 3-dimensions, we developed customized mesocosm growth containers. While highly scalable, the design presented here uses an internal volume of 45 ft3 (1.27 m3), suitable for large crop and bioenergy grass root systems to grow largely unconstrained. Furthermore, they allow for the excavation and preservation of 3-dimensional root system architecture (RSA), and facilitate the collection of time-resolved subterranean environmental data. Sensor arrays monitoring matric potential, temperature and CO2 levels are buried in a grid formation at various depths to assess environmental fluxes at regular intervals. Methods of 3D data visualization of fluxes were developed to allow for comparison with root system architectural traits. Following harvest, the recovered root system can be digitally reconstructed in 3D through photogrammetry, which is an inexpensive method requiring only an appropriate studio space and a digital camera. We developed a pipeline to extract features from the 3D point clouds, or from derived skeletons that include point cloud voxel number as a proxy for biomass, total root system length, volume, depth, convex hull volume and solidity as a function of depth. Ground-truthing these features with biomass measurements from manually dissected root systems showed a high correlation. We evaluated switchgrass, maize, and sorghum root systems to highlight the capability for species wide comparisons. We focused on two switchgrass ecotypes, upland (VS16) and lowland (WBC3), in identical environments to demonstrate widely different root system architectures that may be indicative of core differences in their rhizoeconomic foraging strategies. Finally, we imposed a strong physiological water stress and manipulated the growth medium to demonstrate whole root system plasticity in response to environmental stimuli. Hence, these new “3D Root Mesocosms” and accompanying computational analysis provides a new paradigm for study of mature crop systems and the environmental fluxes that shape them.




Keywords: root system architecture, CO2, roots, mesocosm, phenotyping, photogrammetry, point cloud, water stress



1 Introduction

A plant’s root system is a complex set of organs that do more than simply anchor the plant to the ground and provide paths of uptake from the soil (Novoplansky, 2019; Calvo et al., 2020). Roots allow a plant to perceive its surroundings and adjust future growth accordingly, maximizing its chances of survival and reproduction (Knight, 1811; Hématy et al., 2009; Galvan-Ampudia and Testerink, 2011; Bao et al., 2014; O’Brien et al., 2016; Dowd et al., 2019; Dowd et al., 2020). Thus, a plant’s Root System Architecture (RSA) is highly adaptable and is strongly affected by water and nutrient availability, competition with neighbors, rhizosphere interactions, and other aspects of the local growth environment (Malamy, 2005; Gruber et al., 2013; Yu et al., 2014; Rogers and Benfey, 2015; Morris et al., 2017). While it is widely accepted that understanding root form and function is one of the most critical aspects of plant biology, very little is known about below ground traits such as RSA compared to the wealth of information on above ground plant structures. As subterranean tissues with complex architectures that branch exponentially over time, they are very difficult to completely characterize, especially deep underground. Many methods exist to study root system architecture in various growth environments and growth stages (Atkinson et al., 2019; Dowd et al., 2021). However, all methods have significant tradeoffs, leading to the well-known gap between the information-dense data sets captured from plants grown in controlled environments, and the more realistic, but information-sparse nature of measurements collected from plants in the open field (Poorter et al., 2016; Topp et al., 2016).

Here we report the adaptation of traditional “root mesocosms” as a bridging system to facilitate the growth, excavation, and preservation of 3-dimensional (3D) RSA, while providing the unconstrained growth available in the field (Odum, 1984; Dowd et al., 2021). We incorporated sensor arrays to measure biologically relevant gradients and dynamics of environmental factors: matric (water) potential, temperature, and sub-soil CO2 content at various depths in the soil profile. We modeled the 3D environmental data to facilitate the comparison of the environmental conditions over time with the RSA, which in the future could be used for post hoc predictions of root activity and plasticity. Using photogrammetry (aka Structure from Motion, SfM), we generated highly detailed 3D reconstructions of the root systems and developed a pipeline for analysis across the soil profile. Accuracy of the 3D models was verified using manual ground truthing in 3D space. Clear differences among grass species RSA and in the effects of ecotypes and environments on RSA were measured as a demonstration of the flexibility and power of the approach.



2 Materials & methods


2.1 Mesocosm construction and preparation

The mesocosm is composed of several subsystems: 1) The external frame, 2) the internal frame, and 3) the sensors. Additional equipment is needed to digitize, visualize and analyze the RSA information.

The external frame has a base constructed using pressure treated 4 x 4 in (10.2 x 10.2 cm) dimensional lumber (i.e. 4x4s). The unit has a foot print of 53¼ x 43 ¼ in (135.3 x 109.9 cm). Four of the 4x4 pieces measuring 53 ¼ in (135.3 cm) long are laid out parallel to each other, with one on each outside edge and two in the middle with a spacing of 4 ¼ in (10.8 cm). This configuration allows a standard pallet jack or forklift to pick up the unit. Two 4x4s measuring 43 ¼ in (109.9 cm) are attached on top of the existing 4x4s using galvanized ¾ in (1.9 cm) bolts at each end, running perpendicular to create the rectangular base. Five 2 x 6 in (5.1 x 15.2 cm) pressure treated yellow pine dimensional lumber boards (i.e. 2x6s) cut to a length of 43 ¼ in (109.9 cm) were then laid out parallel to the top 4x4 boards, and attached to the first four 4x4 boards using 3 in (7.6 cm) construction screws, thus creating a base for the mesocosm unit (Figure 1A). Four 4x4s that were 72 in (182.9 cm) in length were inserted with a vertical orientation at the inside of the four-perimeter base frame. These vertically oriented 4x4s were attached using two ¾ in (1.9 cm) galvanized bolts. A drain box was constructed using ¾ in (1.9 cm) thick plywood that was constructed with an interior dimension of 36 x 36 in (91.5 x 91.5 cm) (Figure 1B). The drain box was centered on the external frame base between the four vertical 4x4s. This box was lined with a polyvinyl pond liner and fitted with a ¾ in (1.9 cm) diameter drain pipe which stuck out the front of the mesocosm unit. The box was then filled with stones ranging from one to 3 in (7.6 cm) diameter and an expanded metal top was placed on it.




Figure 1 | Major structural components of the mesocosm system. The mesocosm base is constructed from pressure treated lumber and designed for easy movement by a pallet jack (A). Directly above the base is a drainage box equipped with a drain spout to facilitate flow-through irrigation and allow sample collection (B). The internal component of the mesocosm is a scaffold system constructed of 0.5 inch PVC and fishing line (C). The exterior mesocosm walls are composed of lumber and held together with galvanized bolts (D). Between the internal frame and external lumber are thin boundaries of masonite that form smooth interior surfaces and a tarp to hold water in. The boards on the outside of the mesocosm can be attached and removed for easy access to the interior scaffold after roots have been grown (E).



The internal frame is used to support the roots, and maintain their spatial configuration when the roots are removed from the unit at the end of the experiment. The internal frame is constructed using a 0.5 in (1.3 cm) nominal diameter polyvinyl chloride (PVC) pipe. The internal frame is a rectangular prism 60 in (152 cm) tall consisting of 10 layers with each layer being 6 in (15.3 cm) apart. Each layer of the frame is square in shape with a nominal length of 36 in (91.4 cm). Each side of the square has a ⅛ in (0.32 cm) hole drilled at 4 in (10.2 cm) increments. A vibrant green polycarbonate line is strung across the frame connecting opposite holes, thus creating a 4 x 4 in (10.2 x 10.2 cm) grid in the XY plane. When these squares are assembled together it creates a 4 x 4 x 6 in (10.2 x 10.2 x 15.3 cm) grid in the XYZ planes (Figure 1C).

The drain pipe was used to designate the front of the unit. Eight 2x6 dimensional boards were used to connect the front vertical 4x4s on both the left and the right side. These 2x6s were attached on the inside face of the 4x4s using 5 in (12.7 cm) long construction screws, leaving 3 in (7.6 cm) gaps between boards. The front and back of the unit had seven 2x6s connecting the left side to the right side. These boards were connected to the outside face of the 4x4 using galvanized ¾ in (1.9 cm) nuts and bolts, which allowed the boards to be taken on and off as needed (Figure 1D).

Once the external frame is constructed, four sheets of ⅛ in (0.3 cm) thick particle board are cut to 48 in (121.9 cm) long by 36 in (91.5 cm) wide. These boards are placed with the long side in the vertical orientation, and on the inside of the external frame. A 16 mil (0.4 mm) thick polyethylene tarp is folded using an origami technique to create a rectangular prism shape that matches the external frame. The internal frame was then placed inside the tarp, and the front of the mesocosm unit was closed up (Figure 1E).



2.2 Growth conditions

Mesocosm systems were located inside the greenhouses at the Donald Danforth Plant Science Center (Saint louis, Missouri, USA; 38.67502, -90.39647). They were filled with one of two growth media, 100% Turface MVP (Profile Products LLC., Buffalo Grove, Ill; expanded clay particles composed of 60% SiO2, 5% FeO3, and less than each %5 of Al2O3, CaO, MgO, K2O, Na2O and TiO2) or a 3-to-1 ratio of greenhouse potting mix (Berger BM7, Berger Saint-Modeste, QC; %36 sphagnum peat moss, %23 pine bark, %13 perlite, wetting agent, and dolomitic and calcite limestone) to turface. Mesocosms were grown under natural light during the day and supplemented with 600 μmol m-2 of light to create a 14-10 light schedule. The greenhouse was set to 28 °CC/23 °CC and a minimum relative humidity of 40%. For all well-watered mesocosms, irrigation occurred every 1.5 hours from 6:30 am to 6:30 pm via 30 second pulses distributed from irrigator lines with 20 drip spikes evenly spread in a 4 x 5 grid on the top of each mesocosm. Irrigation rotated daily between reverse osmosis water and fertilizer composed of 123.4 ppm NO3, 42 ppm NH4, 35.5 ppm Urea, 93.2 ppm P, 188.2 ppm K, 1.6 ppm Mg, 0.2ppm B, 0.1 ppm Cu, 1.0 ppm Fe, 0.5 ppm Mn, 0.1 ppm Mo, 0.5 ppm Zn, and a pH of 6.5. The drain pipe was left open to be sure a constant drip from the box was maintained to ensure a fully well-watered status. For water stressed mesocosms the units were filled with turface that had been pre-calibrated to an estimated water potential of -2.5 MPa by mixing the media with predetermined amounts of fertilizer. After filling the units were irrigated on the same schedule as the well-watered units, except with only 5 second pulses of irrigation.



2.3 Environmental monitoring


2.3.1 Matric potential, temperature and CO2 sensors

A variety of sensor arrays have been tested and deployed in the mesocosms system. Three metrics that have successfully been modeled to capture their dynamics in 3D space are the matric potential and temperature of the growth media as well as sub-soil CO2 levels. Temperature and matric potential are both measured via TEROS21 (Meter Group Inc., Pullman, WA, USA) sensors connected to Em50 data loggers (Meter Group Inc., Pullman, WA, USA) while CO2 measurements were taken using a Picarro G2201-i Isotopic Analyzer (Picarro Group, Santa Clara, CA, USA). By arranging the sensors in an array of 14 sampling points throughout the growth volume data interpolations allow the 3D modeling of the dynamic fluxes in the root system’s local growth environment (Figure 2). Matric potential and temperature measurements were set to record hourly, continuously. The CO2 profile throughout the growth volume was assessed by sampling air from rubber tubes buried in an array. CO2 measurements for each location in a mesocosm were sampled for 10 minutes and the mean value of the recorded CO2 levels were taken once weekly. Automation of sampling was facilitated using 14 ports on the Picarro 16-Port Distribution Manifold, set to switch through sample ports connected to each tube in the array.




Figure 2 | Interior sensor layout of the mesocosm. The interior PVC and fishing line scaffold create a coordinate system that can be used for sensor placement and data interpolation. Various environmental sensors (black spheres) were placed in a grid formation at 3 elevations throughout the mesocosm growth profile, 1.25 ft, 2.5 ft, and 4.25 ft deep. At the two upper elevations 5 sensors are laid out in a cross pattern while on the lowest level there are 4 with the center sensor absent. The lower right panel shows a photograph of both TEROS21 matric potential/temperature sensors as well as air intake tubes for a Picarro gas analyzer.





2.3.2 Data interpolation

We augment the 14 sensor data points (black points in Figure S1) to 35 data points by linearly calculating the data at additional locations on the boundary of the 3D mesocosm box (purple points in Figure S1). The additional points are located at the corners of the mesocosm at the 3 elevations of the sensors, as well as the very top and bottom of the growth volume. Additionally, a center point was added on the top-most layer, bringing the total added points to 21. Note that we limit the maximum value of the water potential value to 0. These 21 boundary data points serve as boundary constraints for the 3D linear interpolation to the entire 3D mesocosm growth volume. This 3D linear interpolation is conducted by running the MATLAB function griddatan() which is a Delaunay triangulation based method.




2.4 Mesocosm harvest

When the desired plant growth stage has been reach the mesocosms are prepared for harvest by shutting down all irrigation and removing all the associated components (Figure 3A). If the experimental design allows, it is beneficial to allow the mesocosms to dry for a few days before harvesting to ease growth media extraction. At this time all cables from sensors are disconnected from data loggers and the final data points are downloaded.




Figure 3 | Mesocosm harvest method. Mesocosms supporting the growth of full size WBC3 and VS16 switchgrass genotypes (A). At harvest the shoots are cut a few centimeters above the soil profile (B). Shoots are bundled and dried for biomass measurements to accompany other shoot morphological traits collected during growth (C; Figure S2). Harvest begins by removing the uppermost exterior 2x6s, removing the masonite and pulling back the tarp to expose the top of the growth profile for excavation (D). Throughout sensors will be carefully extracted from the root system so as not to disturb the architecture (E). Harvest continues until all root tips are exposed from the growth media (F). Following complete excavation, the root system can be relocated in the PVC and fishing line scaffold and stored for future analysis (G).



At harvest, shoot tissues of the samples are harvested by cutting the plants near the surface of the growth media, above where the highest crown or adventurous root has emerged (Figure 3B). Shoot tissues are bundled together and are dried down to obtain biomass measurements (Figure 3C) to accompany any other shoot morphological data that was monitored during growth, such as plant height or tiller production (Figure S2).

In the absence of any shoot-born roots, it is still important to have a section of plant tissue above the growth media line to maintain proper orientation of the root system. Prior to the excavation of the root system the sample must be tied in place to maintain its position after the removal of the growth media. Additional fishing line, or other forms of support structures, can be used to tie the tissue emerging from the growth media surface (base of the shoot/top of the root crown) to the top most section of the PVC frame. These supports go underneath the crown at the same height as the growth media and support the structure at the elevation it was at during growth. Tying the tissue off to all 4 sides will maintain the root crowns’ location in the X and Y orientations.

After securing the sample each of the eight 2x6 boards on the front and back of the mesocosm are loosened slightly to allow the removal of the particle board support on the front and back walls. Next the top pair of 2x6 boards are removed to expose the interior of the mesocosm and allow access to the uppermost layer of the growth media (Figure 3D). When excavating it is important to do so slowly as to not damage, or sever, unseen roots. During excavation, gentle vacuum suction is applied from the bottom of the exposed growth medium. This allows newly exposed roots to settle downward on the nearest segments of the interior scaffold to maintain root architecture. Caution must be taken to assure that the location of the vacuum tube is not in contact with any roots, direct suction can pull them from their location or cause them to snap. If rooting is too dense then manual hand clearing is necessary to excavate the section of the root system.

It is also important not to harvest too deeply in any given section as a shift in the growth media could lead to a landslide effect shearing roots in the process. This is more likely to happen if the growth media is wet and has high cohesion. Accordingly, the section of the growth media column that was exposed should be excavated completely before the next set of 2x6 boards are removed and the process repeats. If the mesocosm being harvested has sensors arrayed throughout the growth media, then each sensor is removed as they are excavated (Figure 3E). When the root tips of the deep axial roots are fully exposed, then less delicate methods of medium removal, such as handheld shovels, can be utilized to complete the excavation (Figure 3F). The root system excavation is a labor-intensive process, with more complex root systems taking longer to harvest than smaller ones. On average an excavation takes a team of three several hours for each mesocosm.

After all of the growth media has been removed, the PVC frame can be slid out from the wooden exterior to provide 360 access to the exposed root system (Figure 3G). Depending on the growth medium used, an additional round of cleaning may be required to remove particles from dense areas of the root system. The now clean and free-standing root system can be stored for future analysis.



2.5 Photogrammetry

Utilizing 2D-photographs to develop a 3D point cloud through photogrammetry is a low-cost process requiring only a digital camera, an appropriate imaging studio, and photogrammetry software. Photogrammetry software identifies and utilizes a vast number of unique identification markers in each image to orient the photos in 3D space that share common markers. These can be natural/architectural markers such as wood grain or lines between boards or bricks; or can be produced for the purpose of being a positional marker, such as painted shapes or specific computer-generated alignment patterns.

Our photogrammetry studio uses a combination of painted shapes (splatters and stencils) on bright blue walls, computer generated markers (code available on OpenCV: https://docs.opencv.org/4.x/d2/d1c/tutorial_multi_camera_main.html), and physical structures (AC unit, electrical control box, wire conduits, etc.) (Figure 4A). This studio has also been outfitted with many LED lights with very high color rendering indices and color temperatures of 5000K (daylight) to capture the most color accurate images possible. In the studio the sample is positioned in a central location between the lights to allow for full 360° movement around that sample and to minimize shadows (Figure 4B).




Figure 4 | Photogrammetry studio and imaging process. Photogrammetry requires a dedicated space with many unique identification markers and strong uniform illumination (A). Plants samples are placed centrally in the studio to minimize shadows (B). Images are taken surrounding the subject (small rectangles are locations of individual camera locations) at several elevations to provide data to form the environment (C). Close up images are taken surrounding the root system with very high overlap to produce maximum system detail (D).



When imaging a sample by hand it is critical to use a sufficiently high shutter speed to ensure that the photographs of the sample and the environment remain in crisp focus. The images collected to produce the photogrammetry analyses detailed in this manuscript were taken at a shutter speed of 125 on a Canon EOS 50D (Ōta, Tokyo, Japan) set on the Tv (Time-value) priority setting. Ideally a fairly high aperture is also maintained to keep the entire root sample and identification markers within the depth of focus range. We found an aperture of 11-14 was ideal for the photogrammetry studio used in this study.

The zoom on the camera must not vary between images, as this will lead to artifacts in the resultant point cloud or failure of the photogrammetry software. Images were captured using a 10-18 mm wide angle lens with the zoom kept at 18 mm. It is important to keep the camera level during imaging which is monitored by an attached bubble level on the top of the camera.

It is critical that nothing is moved while the imaging is taking place. If an object in the environment (light plug cable, ground lights) or the sample itself is moved it will cause artifacts in the photogrammetry software. A small disturbance to the root scaffold will cause the very delicate roots to swing back and forth and it is likely that noise will be introduced into the point cloud. This could lead to a minor artifact, or possibly an entire doubling of the root system where two separate point clouds of the sample are produced with a slight offset.

The first images are taken along the perimeter of the photogrammetry room at a minimum of 4 elevations (eye level, chest, waist, and knees). This is to obtain a good baseline of the room and the ID markers (Figure 4C). This step will increase the match points of the up-close sample images and assist in camera alignment. Following this, images will be moved forward to be much closer to the plant sample. When imaging the sample up close photographs need to be captured on all sides as well as top-down images that angle smoothly from a dome shape to the flat walls of the root system scaffold. Images should have at least an 80% overlap (more is better) and should create a “dome” of coverage surrounding the sample (Figure 4D). A full-size crop plant root system is typically 4000+ images (including the images of the room perimeter).

Following image collection, the 2D-photographs are imported to a photogrammetry software to generate a 3D point cloud. The photogrammetry software found to perform the best with thin root structures is Pix4Dmapper (Pix4D S.A. Prilly, Switzerland). During the photogrammetric process voxels are mapped onto a 3D space to generate a 3D point cloud model of the sample. Once the point cloud is produced, we then apply our developed algorithms to process the point cloud data and extract RSA traits as described below in section 2.6.



2.6 Semiautomated segmentation of the root system point cloud

Following photogrammetry, the point cloud of the studio and surrounding environment is segmented away from the portion of the point cloud representing the root system. The 3D point cloud of the root system with the scaffold (white PVC pipes and green fishing lines) is loaded into MATLAB (R2017a). Each point has its (x,y,z) coordinates and (R,G,B) color information. We segment out the root system from the point cloud by the following four steps.


2.6.1 Linear transformation by aligning the scaffold point cloud to a predefined reference model

The first step standardizes the scaffold scale and position which is useful to remove the scaffold and extract features, especially the vertical distribution. We select eight points from the 3D point cloud plotted in MATLAB as target points. Four of these eight points are picked from the crossings of the fishing line grid on the top layer. The other four are chosen from the bottom layer (red points in Figure 5A). To be able to visualize and select the points more easily, we work on the local layer containing the target points (middle panel in Figure 5A). The reference model is defined based on the scaffold design. Then the control points on the reference model are set (right panel in Figure 5A). Note these eight target points can be arbitrarily selected as long as they are not on the same plane and the control points correspond correctly. A Procrustes alignment is performed to determine a linear transformation (translation, rotation and scaling) based on the target points and control points. We then apply these components to transform the entire 3D point cloud.




Figure 5 | Semi-automated segmentation of the root system point cloud. Point cloud of the root system with the scaffold is aligned to a predefined reference model by performing linear transform on manually picked target points to the control points (A). Point cloud of the scaffold is removed based on the position and color information (B). Blue noise on the root is then removed using a threshold method (C). A post manual processing is conducted to further clean the root system point cloud (D). Point cloud is skeletonized into a network system using an algorithm based on a Laplacian contraction method (E).





2.6.2 Removal of the scaffold

Although the scaffold now is aligned with the reference model (left panel in Figure 5B), we cannot simply delete the points along the reference as roots could be in contact with or be growing along the scaffold. Therefore, we determine the scaffold points not only based on the position, but also on the color. We set a small neighbor region near the reference model in case the candidate scaffold is slightly misaligned with the reference. We then define color thresholds to remove non-root points such as white, gray, and green points (right panel in Figure 5B).



2.6.3 Removal of background noise

Additionally, it is likely that some blue color from the photo studio background could be merged into the point cloud during the 3D reconstruction. We would like to remove the blue noise. We convert the RGB color into CIELAB (L*a*b*) color in which L* represents lightness, a* represents green to magenta, b* represents blue to yellow. We used a practical threshold (b* =15) which separates the blue noise with the root (left panel in Figure 5C). The output of this process is a point cloud devoid of artifactual color noise and natural in appearance (right panel in Figure 5C). However, it may still contain some noise for various reasons, such as light refraction through the translucent fishing line giving it a color similar to the surrounding roots. At this point the root system point cloud is saved as a.ply for the manual post-cleaning process.



2.6.4 Manual post-process cleaning

Once the point cloud has gone through segmentation in MATLAB, the data is further cleaned to remove unwanted artifacts, such as residual fishing line and noise. We make these changes in CloudCompare (v2.11.1 (Anoia), 2022) where the image can be cleaned using precise segmentation. Post-process manual cleaning allows for better accuracy of the root structure and can drastically improve the clarity of the 3D root system model (Figure 5D).

Noise on the point cloud at this stage is common, such as artifactual points in a cloud system that are not in the proximity of other roots, or remaining color transferred from the studio environment that was not completely removed by the color thresholding. Furthermore, due to the structural methodology of the mesocosm, it is necessary to remove certain artifacts from the point cloud that remain after segmentation, such as remnants of the PVC and fishing line scaffold. The segmentation tool is used to remove the noise and remnants, leaving an isolated root system (Figure S3).

Additionally, some areas of the point cloud will need manual correction and shaping. This is utilized predominantly in locations where tape has been placed to keep the roots together if they have broken during harvest or storage. The taped area appears larger and a different color in the point cloud but can be shaved down using precise segmentation. Shaping and smoothing can also eliminate areas of noise or unwanted artifacts. Once all artifacts are removed, the point cloud can be used for trait extraction and skeletonization (Figure 5E).




2.7 Root trait extraction from point clouds

From the point cloud, we can directly measure some global traits such as total number of points, convex hull volume (the volume of the smallest convex set containing the point cloud), elongation (PCA on point cloud, taking the ratio between PC2 variance and PC1 variance), flatness (the ratio between PC3 variance and PC2 variance), and maximum depth (the depth of deepest root point). We also can measure the vertical distributions for biomass (Gaussian density estimator for point cloud), convex hull volume (Gaussian density estimator for point cloud extracted from convex hull area at each depth), and solidity (spline interpolation of solidity through every depth). These distributions are then discretized into 10 bins for downstream analysis.

However, point clouds are made of scattered points without connection information. Volume and length-related features cannot be directly measured. To be able to compute the volume dependent features, we compute alpha shapes with a set of radii to form a few bounding volumes that envelop the point cloud (Edelsbrunner et al., 1983). As an analogy, we can think of the 3D space as ice cream and each point cloud data point as a chocolate chip suspended in the ice cream. An alpha shape is formed by scooping out the ice cream with a sphere spoon without bumping into chocolate pieces (the points) and then straightening the boundaries. The size of a spoon is a parameter denoted as alpha. We measure these alpha shape volumes with three different scales (alpha =0.5, 1, and 2) which indirectly describe the root volume (Figure 6). We calculate the solidity using the ratio between alpha shape volume at alpha =2 and convex hull volume. To be able to compute the length dependent features, point cloud is skeletonized into a network system using an algorithm based on a Laplacian contraction method (Cao et al., 2010), which was conducted in MATLAB R2017a. Then we can calculate length dependent features such as the total root length.




Figure 6 | Trait extraction via alpha shape analysis. An alpha shape is a kind of shape that envelopes the point cloud (A). Intuitively, it is formed by scooping out ice cream with a sphere spoon without bumping into chocolate pieces (the points) and then straightening the boundaries. The volumes of alpha shape can be calculated for different parameters such as alpha=0.5 (B) and alpha=2 (C).





2.8 Root system 3D biomass

Biomass measurements are taken by utilizing a grid system. Each layer of the mesocosm, starting from the bottom, may contain biomass and is weighed. This process starts by identifying the location of the sample in the coordinates created by the fishing line structure. Mass is weighed by cutting the roots at each layer and recording the weight within each 4 x 4 x 6 in (10.2 x 10.2 x 15.3 cm) section of the XYZ coordinate grid. After completing each layer, the crown of the root is then removed, labeled, and stored for further analysis.




3 Results


3.1 Species and genotype modeling facilitated by the mesocosm systems

We successfully grew and modeled the entire root system architectures of mature (after flower formation) maize (PHZ51), sorghum (BTX623), and switchgrass (WBC3, VS16) (Figure 7; Supplemental Videos 1-4, Table 1) in Turface MVP (Profile Products LLC., Buffalo Grove, Ill) using our 3D Root Mesocosm system. Variation in the root systems of these species is evident both by eye and through analysis of the subsequent point clouds developed through photogrammetry, despite some apparent “shoulder” artifacts that resulted in sagging of some roots from their original positions due to our wide grid spacing (ex. Figure 7). The bulk of our studies focused on two key switchgrass varieties that have adapted to different natural environments: upland (VS16) and lowland (WBC3) switchgrass (Milano et al., 2016). The distinct root system architectures of these genotypes are clear (Figures 8A, D, G). While the upland VS16 genotype is smaller, it shows much less horizontal growth compared to the lowland WBC3, presumably prioritizing carbon allocation to deeper rooting under our experimental conditions. Furthermore, VS16 shows more vigorous lateral root growth relative to the total root system size (solidity) and has a higher root-to-shoot ratio, responses believed to aid in capturing as much water as possible from the local environment. Conversely, WBC3 shows a much wider horizontal spread of water transporting axile roots (convex hull) coupled with less investment into water absorbing lateral roots, a pattern expected in plants adapted to environments with ample water availability (Weaver, 1926).




Figure 7 | RSA of 3 different mesocosm grown species (left). Representative point clouds for sorghum, maize, and switchgrass species. Orange dotted line denotes the approximate growth media level during growth. A radar plot detailing the analysis of 7 different root shape traits from the point clouds. Data shown are mean ± standard error in shaded regions. Sorghum and switchgrass n=3, maize n=2.




Table 1 | Root-to-shoot ratios of various species and treatment combinations grown in 3D mesocosms.






Figure 8 | RSA traits of switchgrass affected by genetics and environmental conditions. Representative point clouds and extracted root traits of various G x E experimental conditions examinable via mesocosms. Genotypic comparison of WBC3 (orange) and VS16 (blue) when grown in well-watered turface (A, D). RSA response of WBC3 to well-watered (orange) and water stressed (yellow) turface conditions (B, E). RSA response of VS16 when grown in well-watered turface (blue) or a 3:1 potting mix to turface blend (green) (C, F). Radar plots of data have all been standardized to allow comparison across treatments and traits, data shown are mean ± standard error. Point number (biomass proxy), convex hull, and solidity trait values (G) are presented for the entire depth of the growth media profile (WBC3 WW turface, orange; VS16 WW turface, blue; WBC3 WS turface, yellow; VS16 WW mixed media, green). Values for solidity were transformed by log(x*10000) for data visualization.





3.2 RSA model accuracy confirmed by 3D biomass ground truth

To ensure that the point clouds derived via photogrammetry are accurate to the actual RSA, a direct comparison to biomass in 3D space was necessary. Using the location of the internal mesocosm fishing line scaffold coordinates the root systems were dissected both physically and computationally (Figure 9; Figure S4). Using the 810 individual subunits formed by the scaffold the point cloud and biomass can be compared at a 4 x 4 x 6 in (10.2 x 10.2 x 15.25 cm) resolution. Biomass ground truth measurements align well with in silico generated cubes of the point clouds that occupy the same space (Figure S5). Scaling the values of each coordinate section to the entirety of the growth space, the biomass and voxel amount, can be directly compared.




Figure 9 | Biomass confirmation of point cloud accuracy. Comparison of data obtained from a switchgrass root system that had been physically and digitally dissected into the 180 independent sections outlined by the internal PVC and fishing line scaffold. Each gray square is a top-down view of a z-layer consisting of 9 x 9 cuboids. Data within each square represents the number of points, or the fraction of biomass, found in a cuboid as a percentage of the entire root system. Physical segmented biomass values correlate well with values of point number located in the same cuboid coordinate position when assessed on a relative scale, R2 = 0.88.



Beyond acting as a ground truth for point clouds, the biomass measurements obtained give an unprecedented sampling of entire root systems of full-grown crop plants largely preserved in their natural configurations. Out preliminary experiments show that differences can be observed between switchgrass genotypes, as well as in response to water stress (Figure 10). When grown under well-watered conditions both WBC3 and VS16 root systems displayed a similar profile of biomass allocation with depth, with the majority of biomass allocated in the upper profile and less allocated to each subsequent depth. In contrast, when WBC3 plants were grown under water stressed conditions the biomass allocation was modified and near-even amounts of root tissues were distributed at all depths down to 3 ft (91.44 cm).




Figure 10 | Biomass allocation by depth of switchgrass. Plot shows biomass measurements throughout the growth media profile for VS16 well-watered (blue), WBC3 well-watered (orange), and WBC3 water stressed (yellow). Data values are means ± standard error.





3.3 Mesocosms as a platform for water deficit experiments

The ready control and measurement of various environmental conditions in the 3D root mesocosms was demonstrated using a TEROS21 sensor array (Figure 2) to investigate the 3D root system phenotypic response of WBC-type switchgrass to physiologically-defined water stress. The high spatial and temporal resolution of our imputed sensor data (Figure S1) facilitated 4D monitoring of water fluxes from which we made delicate adjustments of irrigation to impose two levels of water availability: a well-watered treatment with a constant matric potential of -0.01 MPa and a water stress treatment with the average stress levels of approximately -2.5 MPa.

Continuously monitoring the matric potential revealed the real-time dynamics of water deficit throughout the duration of plant growth, including diurnal patterns of wetting and drying tied to daily transpiration (Figure S6). The TEROS21 system simultaneously collects temperature data which can be analyzed in conjunction at the same resolution (Figure S6). We note the temperature gradient in our system mimics field soils to an extent, insofar as temperature decreases with depth.

Several hallmarks of traditional responses to water deficit were seen in WBC3 when grown under the moderate-to-severe level of stress (-2.5 MPa), including a major reduction in root system volume and convex hull, but with maintenance of overall root system depth (Figures 8B, E; Supplemental Video 5), leading to a significant shift of the root to shoot ratio (Table 1). The tradeoff to maintaining depth with a smaller root mass is a reduced global solidity, which quantifies the thoroughness of soil exploration in the rooting zone (defined by the convex hull volume). Analysis of root system traits across the depth profile revealed the biomass and convex hull area of water-stressed WBC3 was larger than well-watered below ~30cm, revealing allocation of more biomass (point number) to root proliferation at depth (Figure 8G). However, in the upper profile WBC3 displayed more biomass and a larger convex hull under well-watered conditions compared to water stressed, with ~71% of the total root mass in the top ~12 inches (30.5 cm).



3.4 Assessing effects of growth media on RSA and the root zone environment

To study the effects of growth media on RSA and environmental parameters, we explored the incorporation of standard greenhouse potting mix (Berger BM7, Berger Saint-Modeste, QC) into the system under well-watered conditions (Figures 8C, F, G). When grown in a mix of 3:1 potting mix to turface WBC3 plants appeared to have longer and less branched lateral roots than when grown in pure turface (Figure S7). We suspect this change is a response to the particle size of the potting mix, which is much smaller than the average turface particle, and has a greater hydraulic conductivity. Roots growing though smaller potting mix particles require less lateral branching to access growth media bound water as there would be significantly more root-to-particle contact points along the root compared to growth in the turface. The VS16 plants developed very small root systems under the mixed media compared to the turface, as well as reduced root to shoot ratios, perhaps reflecting that they are not adapted to grow in an extremely wet environment (Figures 8C, F, G; Table 1).

We used a different facet of our 3D sensor array to monitor dynamic CO2 respiration from soils (Figure 11). Both root and microbial respiration are major drivers of subsoil CO2 production, and rhizosphere processes such as microbial consumption of root exudates and soil organic matter link these pools. Turface is a calcined clay product and contains little or no organic matter (OM) (Beddes and Kratsch, 2009; Calonje et al., 2010; Beddes et al., 2013), whereas greenhouse potting mix is primarily peat based and typically has a very high OM content (in our case Berger BM7 is ~79%). In turface at early time points, VS16 and WBC3 switchgrass CO2 profiles are very similar, although VS16 is set higher (Figures 11C, D). Over time (around week 8) CO2 levels at all three measured depths begin to rise, presumably as a result of rapid root proliferation. However, WBC quickly rises several-fold at the lowest depth (4.5 ft (1.4 m)), consistent with differences in its eventual root system size (Figure 8A).




Figure 11 | Subterranean CO2 levels in the mesocosms are affected by which switchgrass genotype is growing in what growth media. Graphs show CO2 levels in mesocosms growing WBC3 (A, C) and VS16 (B, D) grown in pure turface (C, D) and a 3:1 potting mix to turface blend (A, B). Measurements were taken at three depths, 1.25 ft (gray), 2.75 ft (orange) and 4.25 ft (blue) below the soil profile. Data values are means ± standard error.



Interestingly this same relationship is not seen in mesocosms filled with a 3:1 potting media: turface mix. Under these conditions the CO2 levels were several orders of magnitude higher compared to turface filled mesocosms and the levels remained constant or showed a slight decline throughout the growth term (Figures 11A, B; Figure S8). The significantly higher CO2 levels and their stability at the sample locations at the middle and higher elevations suggest that a combination of the organic components and microbial population of the potting mix play a more significant role than direct root respiration. Yet, WBC3 mesocosms showed elevated CO2 levels in the lowest growth media profile compared to VS16 mesocosms, an area where VS16 root systems did not occupy (Figure 8A). This result suggests that local root activity at depth in WBC samples may be driving increased microbial activity via rhizosphere priming (Kuzyakov, 2002) (Figures 11A, B).



3.5 Combined analysis of RSA models and 3D environmental data

Aligning the photogrammetry point clouds with the time course 3D environmental data fluxes provides the opportunity to make post hoc hypotheses on how the environment shaped the mature RSA. Alterations in matric potential and temperature in the growth media along the path of root development may give insight into the conditions that resulted in the RSA, and changes in sub soil CO2 are correlated with the presence of root respiration (Figure 12; Supplemental Videos 6, 7). This type of analysis may be used to make observations to provide training data to a model in an effort to estimate root location and activity based on localized environmental fluxes. Monitoring root system width and depth changes over time via proxy measurements is a promising idea that could provide an avenue to non-destructive root system shape measurements and time course analysis of root system development.




Figure 12 | Point cloud RSA models and environmental data synthesis. Data shows one switchgrass point cloud with coaligned environmental 3D data for matric potential (A), temperature (B) and CO2 levels (C). All data are from the same time point collected between 11 am and 1 pm.



Further, direct comparisons of RSA to environmental conditions can be achieved at the cuboid level, and we have seen interesting preliminary data demonstrating a root system’s capacity to affect its surroundings. 3D interpolated environmental data was partitioned into 9 x 9 x 10 cuboids similar to the biomass measurement described in 3.2. We labeled the cuboid that contains root as ‘root cuboid’ and the cuboid that does not contain root as ‘non-root cuboid’. For every layer, we calculated the average matric potential among root cuboid and the average matric potential among non-root cuboid. The data shows that under a well-watered condition, the matric potential of root and non-root cuboids are almost identical. However, under water stressed conditions, the root cuboids are consistently wetter at every layer, with the effect being more obvious at top layers that have more water availability than the bottom layers (Figure 13). We suspect this result indicates that active root uptake is drawing water into the root occupied regions from those without, and hints at the potential to infer a coarse 3D root system architecture over time from embedded sensor data.




Figure 13 | Bar plots of average matric potential for root cuboids and non-root cuboids at every layer for a water stressed sample (A) and a well-watered sample (B). Values near zero (blue) represent high water availability, while more negative values (red) denote a lower matric potential of the growth media and lower water availability.






4 Discussion


4.1 A 3D root mesocosm system for integrated environmental sensing and root phenotyping

The concept of mesocosms in plant biology have been used widely to refer to a variety of experimental systems. From assessing the effects of invasive European earthworms on North American tree growth (Hale et al., 2008), to the reduction in soil-mercury emission due to soil shading by vegetation (Gustin et al., 2004), or the effects of sediment nutrition and light resources on seagrass growth and development (Short, 1987; Short et al., 1995), mesocosms are a useful intermediate between the laboratory and the field (Odum, 1984).

Root mesocosms, typically large horticultural pots or long narrow pipes form which the entire root system can be extracted, have proven useful in understanding RSA and root function of several agricultural species. For examples: it was reported that a lower number of crown roots in maize can be beneficial for nitrogen acquisition in poor nitrogen soils (Saengwilai et al., 2014), a moderate progressive drought could lead to RSA adaptations in various rice cultivars that improve performance under reduced water management practices (Hazman and Brown, 2018), some Green Revolution wheat progenitors have smaller root systems than older landraces (Waines and Ehdaie, 2007), and Chilean red clover cultivars with certain RSA traits, such as high crown root diameter and low branching index, correlate with superior persistence (Inostroza et al., 2020). However, in these studies the root systems were physically constrained during growth, leading to, at minimum, compromised estimates of root length densities and other metrics across the depth profile. To our knowledge, we report here the first system to grow large crop plants to maturity and recover unconstrained, intact root systems in their nearly-natural configuration. With the accompanying imaging and analysis plus sensor data, we have developed a new, flexible, paradigm for comprehensive subterranean analysis of root and rhizosphere biology.



4.2 Next generation mesocosms

New versions of the mesocosm are being developed to expand the scope and versatility of the technology. A large-scale version, measuring appx. 3 m wide x 6 m long x 2 m tall is being developed to more closely replicate field dynamics. In this “common-garden” or “plot-level” system, rows of plants can be placed across several frames to begin to understand multi plant dynamics. We have also added a robotic imaging system for high-throughput above-ground plant imaging. Another version is modular, with subsystems for analyzing plants with smaller root systems such as rice, wheat, and covercrops. Several can also be connected together to create fewer, but larger units as experimental needs change. These systems will accommodate a wider variety of sensors and allow access to different depths through a series of ports that allow root and rhizosphere sampling in situ. Additionally, advancements to aid in root system excavation, such as forced air drying of the growth media and gentle vibration of the mesocosms during harvest, are in development. An important goal is to improve the realism of the system, and although we used artificial growth media in this study, in principle, any reconstituted soil or soil-substrate can be used. Considerations include the weight of the system and the ease and efficacy of recovering root systems intact.



4.3 The importance of capturing entire 3D root system architectures grown nearly unconstrained

Photogrammetry has many uses in plant biology and is a field of rapidly evolving interest (Iglhaut et al., 2019). Drone based imagery has been widely adopted as a tool to evaluate forest coverage, health and activity (Miller et al., 2000; Mlambo et al., 2017; Goodbody et al., 2019; Iglhaut et al., 2019). Similarly, terrestrial based projects such as assessments of the shape of individual trees (Wang et al., 2004; Gatziolis et al., 2015; Bauwens et al., 2017; Marín-Buzón et al., 2020) or various fruits (Gené-Mola et al., 2021; Ni et al., 2021; Feldmann and Tabb, 2022) have also become more common. A recent study has shown the power of optical reconstructions for 3D analysis of root crowns (Liu et al., 2021). However, to the authors’ knowledge, the 3D Root Mesocosms are the first system to generate 3D reconstructions of entire full grown crop root systems in nearly natural configurations, from any method.

Although the imaging of samples using photogrammetry is a low-cost process that does not require significant infrastructure, there are several challenges that still remain. Unlike other tomographic techniques, such as X-ray CT (Shao et al., 2021), photogrammetry does not resolve internal structures of the sample as the 2D images are only capturing surface features within line of sight of the 2D-photographs. This means that dense root crowns or areas of thick matted lateral roots are not resolvable. Thus, we are considering the potential to complement the photogrammetry derived point cloud with X-ray CT derived root crown reconstructions (Shao et al., 2021; Zeng et al., 2021). Additionally, photogrammetry at such a large scale can require significant computation power, dedicated software, and can currently take on the order of days to process each sample. Even considering these limitations, photogrammetry still represents a powerful tool to generate 3D models of root architecture that is flexible to image a wide array of samples, and is comparatively low-cost in relation to other tomographic methods.

The development of entire 3D root system models based on actual (non-computer-generated) plants also provides an opportunity to assess the amount of error inherent to a range of commonly utilized field-based root phenotyping methods such as soil cores, minirhizotrons, and shovelomics, which seek to estimate entire root systems from partial sampling (Pagès and Glyn Bengough, 1997; Trachsel et al., 2011; Wu et al., 2018). One idea is to generate in silico soil cores or minirhizotron images from the point clouds. This method could provide a sensitivity analysis for empirical sampling strategies using actual, rather than virtual (Burridge et al., 2020; Morandage et al., 2019), groundtruths. Such information could also be used as a valuable resource for improving root structure-function simulations (Kalogiros et al., 2016; Postma et al., 2017; Schnepf et al., 2018), or for the development of artificial intelligence approaches to complement missing data (Falk et al., 2020; Ruiz-Munoz et al., 2020; Gaggion et al., 2021).




5 Conclusion

The field of root system architecture phenotyping has advanced dramatically over the last few decades, from simple measurements taken with a ruler to the development of interactive virtual reality platforms. While the core complications of root phenotypic and functional analysis remain, advances along several avenues have allowed researchers to begin to analyze and visualize the subterranean dynamic complexities of root systems. We believe that, currently, coupling mesocosms and photogrammetry is a powerful way to assess the 3D structure of full grown, unconstrained root systems in their natural configurations. The methods detailed here, while labor intensive, are easily adapted to fit any size of plant and can be scaled appropriately to study concepts such as plant to plant root system interactions or planting density effects on RSA in a relatively inexpensive and easy to build manner. Further, the ease of incorporating various sensors or sampling schemes at the desired locations in the subterranean profile provides an unprecedented freedom to target specific areas of the root system to observe architectural traits and root function.
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Passion fruit is a tropical liana of the Passiflora family that is commonly planted throughout the world due to its abundance of nutrients and industrial value. Researchers are committed to exploring the relationship between phenotype and genotype to promote the improvement of passion fruit varieties. However, the traditional manual phenotyping methods have shortcomings in accuracy, objectivity, and measurement efficiency when obtaining large quantities of personal data on passion fruit, especially internal organization data. This study selected samples of passion fruit from three widely grown cultivars, which differed significantly in fruit shape, size, and other morphological traits. A Micro-CT system was developed to perform fully automated nondestructive imaging of the samples to obtain 3D models of passion fruit. A designed label generation method and segmentation method based on U-Net model were used to distinguish different tissues in the samples. Finally, fourteen traits, including fruit volume, surface area, length and width, sarcocarp volume, pericarp thickness, and traits of fruit type, were automatically calculated. The experimental results show that the segmentation accuracy of the deep learning model reaches more than 0.95. Compared with the manual measurements, the mean absolute percentage error of the fruit width and length measurements by the Micro-CT system was 1.94% and 2.89%, respectively, and the squares of the correlation coefficients were 0.96 and 0.93. It shows that the measurement accuracy of external traits of passion fruit is comparable to manual operations, and the measurement of internal traits is more reliable because of the nondestructive characteristics of our method. According to the statistical data of the whole samples, the Pearson analysis method was used, and the results indicated specific correlations among fourteen phenotypic traits of passion fruit. At the same time, the results of the principal component analysis illustrated that the comprehensive quality of passion fruit could be scored using this method, which will help to screen for high-quality passion fruit samples with large sizes and high sarcocarp content. The results of this study will firstly provide a nondestructive method for more accurate and efficient automatic acquisition of comprehensive phenotypic traits of passion fruit and have the potential to be extended to more fruit crops. The preliminary study of the correlation between the characteristics of passion fruit can also provide a particular reference value for molecular breeding and comprehensive quality evaluation.
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Introduction

Passion fruit (Passiflora edulis Sims) is native to Brazil and widely cultivated in warm areas of Asia, America, Australia and other regions (Corrêa et al., 2016; Teng et al., 2022). In recent years, there has been a continuous increase in its area and production in China (Chen et al., 2022). Passion fruit is popular for its captivating flavor, nutritional benefits, medicinal properties, and other economic value (Pongener et al., 2014). The center of the fruit contains many yellow, gelatinous pulp, and the juice also have a potent fragrance and is rich in sugar (Janzantti and Monteiro, 2017). Except as food, the whole fruit (pulp and pericarp) has sometimes been used in traditional medicines as a sedative or in therapies for the prevention of central nervous system disorders such as anxiety and insomnia (Sena et al., 2009; Miroddi et al., 2013). More than these, recent health-conscious trends have led to growing consumer demand for naturally derived colorants. The pericarp of passion fruit is an important raw material for natural colorants extraction (Kawasoe et al., 2021).

Nowadays, an important challenge in crop production and plant research is how to accelerate progress in breeding (Rahaman et al., 2015; Varshney et al., 2021). Breeding targets for crops can generally be divided into several broad categories: yield trait targets, quality trait targets, maturity period targets, tolerance targets to combat pests and pests, tolerance targets to environmental stresses, and fitness targets to protect the cultivated environment. Accurate acquisition and analysis of plant phenotypic traits are of great significance for improved breeding and functional gene mapping. In the past 20 years, the research of plant phenomics around the world has developed quite rapidly. Many non-destructive and high-throughput phenotyping methods have been widely used to automatically obtain plant phenotypic data, which are based on visible light imaging (Zingaretti et al., 2021), near-infrared imaging (Wang et al., 2014; Ambrose et al., 2016), infrared thermal imaging (Yang et al., 2020), hyperspectral imaging (Sun et al., 2022), X-ray computed tomography (X-ray CT), fluorescence imaging and magnetic resonance imaging (MRI) (van Dusschoten et al., 2016). Modern optical imaging technologies have achieved high-efficiency and non-destructive extraction of plant phenotypic traits (Sun et al., 2022). At the same time, the platforms carrying these optical devices have also made great progress, such as the greenhouse platform, vehicle platform, track platform, and UAV platform (Jin et al., 2021). These methods and platforms have realized the extraction and analysis of crop phenotypic traits and have been applied to the non-destructive testing of crops and to promote variety improvement and breeding.

However, most crop phenotypic research focuses on cereal crops such as wheat, rice, and soybean, and few research focuses on tropical crops especially passion fruit. An improved method has been proposed based on a Multiple Scale Faster Region-based Convolutional Neural Networks (MS-FRCNN) approach using the color and depth images acquired with an RGB-D camera to realize the detection of passion fruit in the actual orchard environment (Tu et al., 2020). There are also some scholars who use the visible light camera to obtain the color and other information of passion fruit, combined with physical and chemical descriptors digital image analysis, and then use the methods of principal component analysis and cluster analysis to predict the flesh quality of passion fruit. However, some indexes, such as pericarp thickness, still need to destroy the passion fruit sample for measurement, which will cause some measurement errors and be unfavorable to the inference of the final model (Jesus et al., 2022). Near-infrared (NIR) spectroscopy has also been applied to predict the total soluble solids, titratable acidity, and pulp content of passion fruit (Maniwara et al., 2019). The experimental result proved the feasibility of NIR spectroscopy for the evaluation of passion fruit quality.

The optical imaging technology in most of the above research can only obtain the shape and color information of the passion fruit surface without destroying the samples, but it cannot obtain its internal structural information. Benefiting from the rapid development of X-ray computed tomography (X-ray CT) with the function of perspective imaging of objects (Jenneson et al., 2003), it is gradually popularized from medical examination to other biological detection fields, including the imaging research of the internal structure of small animals (Bartling et al., 2008; Li et al., 2008; Ashton et al., 2015) and the imaging research of the internal structure of plants (Kotwaliwale et al., 2014). Researchers use this technical means to realize the non-destructive acquisition of the internal structure information of organisms. As for the application in fruits and vegetables, X-ray CT was used to evaluate the density and the water content in apples under varying moisture conditions (Tollner, 1992). Kim (Kim and Schatzki, 2001) used it to study the core breakdown development in pears and the segmentation and classification in hazelnuts (Khosa and Pasero, 2014). Recently, this technology has also been applied to the internal measurement of walnut (Bernard et al., 2020).

In order to distinguish plant samples and biological tissues, image segmentation technology has been widely used, which means classifying image pixels into different segments. Image segmentation technology can be divided into segmentation based on classical digital image processing technology (Cui and Zhang, 2018) and based on deep learning technology (Singh et al., 2018). In recent years, deep learning technology has been greatly developed. Due to its strong deep feature analysis ability and the convenience of end-to-end prediction, many researchers have applied the segmentation algorithm based on deep learning to the processing of plant images and achieved excellent results. Aich (Aich and Stavness, 2017) used deep learning architectures for initial segmentation and a convolutional network for leaf counting. Xiong (Xiong et al., 2017) designed a segmentation algorithm based on deep learning to achieve robust segmentation of rice panicle under different light environments and different growth states. Deep learning based segmentation technology were similarly applied in monitoring fruit growth (Fukuda et al., 2021), fruit detection and localization (Maheswari et al., 2021), detecting vascular bundles in computed tomography images of stem internodes (Du et al., 2022) and segmentation of major plant organs (Rawat et al., 2022). Overall, the thechnology based on classical digital image processing technology is easy to implement and interpretable but poorly generalizable. Overall, the segmentation technology based on deep learning is highly accurate and robust but requires large amounts of labeling data, and this process is labor-intensive.

Here, we present the development of a robust method that extracts the complete morphological traits of passion fruit for the first time using X-ray Micro-CT and deep learning. This method solves the problem that the traditional internal measurement method needs to destroy the sample, which could be laborious and error-prone, and realizes the nondestructive, accurate, and comprehensive measurement of passion fruit. More than that, we also analyze the correlation between the traits of passion fruit and propose a comprehensive evaluation method. Our results can be used as a reference for new breeding research. Biologists can cultivate better varieties by selecting the best germplasm as the basis of genetic improvement.



Methods


Plant materials and experiment design

In this study, 45 passion fruits were subjected to Micro-CT and manual measurements. These passion fruits were obtained in four separate batches, named PF041, PF042, Qinmi 9, and Tainong 1. Among them, PF041 and PF042 were cultivated in the Hainan University (Haikou City, Hainan province, China; 20.05°N, 110.3°E). Qinmi 9 and Tainong 1were cultivated in the passion fruit planting base in Sanya City (Sanya City, Hainan province, China; 18.33°N, 109.15°E), Hainan Province, China. It should be noted that PF042 and Qinmi 9 are generally considered to be the same variety. Due to the differences in their sources and growth stages, they were regarded as two types of samples in this paper.

After picking, all samples were transported to the laboratory in a sealed and refrigerated manner for the imaging experiment, which was divided into two parts: CT imaging experiments and manual measurement experiments. Subsequently, the fourteen phenotypic traits of passion fruit were calculated based on the CT imaging data. The artificially measured fruit width and length data were used as a reference to verify the reliability and robustness of the method in this paper.

The experimental workflow used in this paper is shown in Figure 1. As shown in Figure 1, the experimental process can be divided into four parts: (1) Sample preparation, (2) X-ray Micro-CT image acquisition, (3) Semantic segmentation and 3D reconstruction, and (4) Morphological traits extraction. In Figure 1A, the passion fruits were embedded in a flexible polyurethane foam sample holder (15 cm length × 15 cm width × 20 cm height) to keep the samples from any abrupt or slight movement during the scanning process in order to avoid producing distorted images. In Figure 1B, the X-ray Micro-CT scan data was reconstructed into several tomograms, and they were saved according to the scanning sequence (corresponding to the sample depth). In Figure 1C, the semantic segmentation method was performed on the basis of the tomograms. After that, the whole image was divided into pericarp, sarcocarp and background. In order to obtain more accurate extraction and quantification of their morphological traits, all the tomograms were sequentially stacked to reconstruct a three-dimensional image. In Figure 1D, an image processing pipeline was designed to measure the morphological traits of passion fruit based on three-dimensional images. Part of the traits was calculated based on the intermediate depth (Figure 1D 1)), such as pericarp average thickness, fruit longitudinal perimeter and fruit max cross-sectional area (Figure 1D 2)). Another part was calculated based on the whole data, such as fruit width, fruit width, fruit volume, and fruit surface area. The remaining part was calculated from the above traits. The details of each step will be introduced later.




Figure 1 | X-ray CT workflow of passion fruit measurements. (A) Composition of Micro-CT system and preparation of the sample. (B) Image acquisition. (C) Semantic segmentation and 3D reconstruction. (D) Morphological traits extraction.





X−ray computed tomography imaging system specifications

The Micro-CT imaging system was developed to obtain CT projection images non-destructively. The system consists of six main elements: an X-ray source (Y.FXE-225.48, German), an X-ray source chiller (Nova600, OXFORD, UK), an X-ray flat panel detector (XRD3025N-G22-A, Varex, USA), a rotation platform (OMTOOLS 100B, Panasonic, Japan), a lead chamber, a computer (CPU i5-7700k, DELL), and a PLC controller (CP1H, OMRON Corporation, Japan). The schematic system diagram is shown in Figure 2.




Figure 2 | X-ray Micro-CT system schematic diagram.



As we all know, for a Micro-CT imaging system, choosing different tube currents and tube voltage will have a great impact on the imaging results (Stuppy et al., 2003). In order to achieve the best imaging effect of passion fruit, after a large number of confirmatory experiments, this paper set the tube current as 50 μA, the tube voltage as 100 kV, the distance from the ray source to the detector as 75cm, the distance from the ray source to the rotary table as 38cm, and the number of scanning frames as 360. Under this parameter, the time-consuming of each scanning effort by the Micro-CT system is about 10 min.



Image acquisition and semantic segmentation

After the parameters of the Micro-CT system were set, each passion fruit sample was sequentially fixed in the designed flexible polyurethane foam container on the rotation platform (Figure 1A). In order to facilitate the traits calculation, uniformly place the passion fruit so that its longitudinal axis was parallel to the plane of the rotation platform as far as possible, and the top section was facing upwards. After the scanning was completed, the reconstruction algorithm was used to obtain the imaging results of each sample from the original data. It parsed them into several tomograms with a size of 2000*2000 pixels, which were saved in the TIF file format. This process takes about 5 minutes. Since the useless background occupied most of the pixels in each section, the region of interest (ROI) extraction algorithm was applied to each tomogram to reduce the background pixels while preserving the sample information. Such an operation could reduce the computation and make it more conducive for the deep learning network to obtain sample features. Finally, the size of each tomogram was reduced to 1000*1000 pixels.

A single tomogram from the final imaging result was used as a representative to analyze image features in Figure 3. It can be seen from Figure 3B that the grayscale distribution of the tomogram was mainly divided into three intervals. The grayscale value of the pixels with a proportion of 28.9% was zero, and the grayscale between 0 and 60 accounted for 47.41% ratio; the number of pixels with a grayscale higher than 60 only occupied a ratio of 23.69%. Analyzing by combining the three illustrations in Figure 3, it could be found that the pixels with zero gray value were the background area, which will not interfere with the segmentation. The pixels with gray distribution between 0 and 60 were generally the inherent noise caused by the imaging system. At the same time, the sarcocarp and pericarp of passion fruit we were interested in were distributed in the range of 60-255. Significantly, there was no apparent gray difference between the sarcocarp and pericarp in Figure 3A.




Figure 3 | Grayscale distribution of tomogram images. (A) Example of a tomogram image. (B) The gray histogram. (C) Visualizes an approximate percentage of pixels in each cluster.



Segmentation methods based on digital image processing technologies, combined with image filtering, morphological processing operators and other methods, and some prior knowledge, could show excellent segmentation performance on some tomography images (Hughes et al., 2017). Nevertheless, when applied to a large number of tomography image data with whole or even multiple passion fruit samples, it is very vulnerable to the changes in biological structure in the sample. Methods based on deep learning have been applied to biomedical image segmentation and achieved good results. However, using a deep learning model actually needs to prepare high-quality training sets in advance, which is very labor-intensive.

To solve the shortcomings when the two methods were applied to the segmentation of passion fruit tomogram images, this paper proposed a segmentation strategy that combined them: a label generation method based on digital image processing was designed to achieve segmentation of a series of images, and the part with higher accuracy in the segmentation results was picked as labels to be used to training deep learning model.

The Flow of the label generation method designed in this paper is divided into three main steps (Figure 4): image preprocessing (Figure 4A), contour extraction (Figure 4B), contour sorting and region segmentation (Figure 4C). Firstly, take the tomogram image as input. The gray value of it was first transformed to suppress the background area with a low gray value to improve the image contrast. Then the Otsu segmentation algorithm was applied to the non-zero regions in the image (Figure 4C). The significance of this step was to calculate the threshold depending on the area of interest rather than the entire image, which would be more conducive to the segmentation of the sarcocarp and pericarp. Based on the previous step’s segmentation results, the image’s contours would be extracted (Figure 4B).




Figure 4 | Flow of label generation method. (A) Image preprocessing. (B) Contour extraction. (C) Contour sorting and region segmentation.



According to the actual situation (Figure 5), the contour with the largest enclosing area, the second-largest and the third-largest generally corresponded to the outer edge of the passion fruit sample (Figure 5E), the inner edge of the pericarp (Figure 5F), and the outer edge of the sarcocarp (Figure 5G). Of course, it cannot be ignored that the sarcocarp would be divided into several separate parts in the partial depth of the tomograph. At this time, the third-largest contour did not contain all the core parts, so we designed a judgment method: When the fourth-largest contour is greater than 25% of the third-largest contour, the sarcocarp part was the combination of the third and fourth contours. The sarcocarp of passion fruit was generally represented as a single-connected domain, double-connected domain and triple-connected domain in the tomogram image, so we only calculated the first five contours for now. Regarding the generated contour as a mask, the label (Figure 5H) was obtained by convolution of the mask and original image. In this way (Figure 4C), a large number of tomograms were processed, and even if there was a certain amount of data, the resulting labels were inaccurate due to differences in structure. Despite all this, it did not affect the generation of a sufficient number of accurate labels.




Figure 5 | Label generation processing. (A) Example of a tomogram image. (B) After grayscale transformation. (C) Otsu segmentation result. (D) All contours. (E) Largest contour. (F) Second-largest contour. (G) Third-largest contour. (H) Label of the original image.



The U-Net convolutional model (Figure 6) was used for the semantic segmentation of passion fruit tomogram images. U-Net (Ronneberger et al., 2015) is a convolutional neural model which builds upon encoder-decoder architecture and is simply a hierarchical down-sampling convolutional layer followed by symmetric up-sampling convolutional layers, additionally feature maps from the encoder network are concatenated in the respective decoder part for the passage of semantic information. As an end-to-end network, it only needs to input images to get corresponding segmentation results after the network has been trained.




Figure 6 | Application of U-Net convolutional model in tomogram image segmentation.





3D reconstruction and morphological measurement

According to the settings of Micro-CT system parameters and reconstruction algorithm parameters, the actual size of the single pixel of the tomogram is 0.1mm*0.1mm. At the same time, 1300 tomogram images correspond to the actual size of 13cm, which shows that the thickness of each tomogram map is also 0.1mm. By observing the actual imaging situation, it was found that 800 tomogram images were enough to include all the information of a single passion fruit sample. The other 500 tomogram images would be discarded to reduce the amount of calculation.

After these tomograms were stacked into three-dimensional images, the isotropic resolution data could be obtained without adjusting the step size. The size of the resulting 3D image was 1000*1000*800 pixels, and the size of a single voxel was 0.1mm*0.1mm*0.1mm. It would provide a benchmark for subsequent volume and area calculations.

Based on the segmented three-dimensional image of passion fruit, the fruit traits in Table 1 could be calculated automatically in the designed image processing pipeline (Figure 1D). Volume is the complete connected-pixel count for each given sample (Hughes et al., 2017). The surface area was calculated by adapting a previously accurate method (Hu et al., 2020). The length and width of the passion fruit and the thickness of the pericarp were obtained by rectangle fitting and random sampling point distance measurement on several middle tomogram images (Zhu et al., 2022). All the traits of passion fruit were divided into three categories: passion fruit traits, sarcocarp traits and pericarp traits, which were the key indicators concerned in the scientific research, planting and production of passion fruit. The fruit traits include the length and width of passion fruit (also known as longitudinal diameter and transverse diameter), fruit surface area, fruit volume, max cross-sectional area (longitudinal) and fruit longitudinal perimeter.


Table 1 | The classification and abbreviation of passion fruit traits.



Moreover, the length-width ratio and fruit type index are calculated to evaluate the shape characteristics of passion fruit. The fruit length-width ratio (FLWR) is defined by (1) and the fruit shape index (FSI), which combines sphericity (Bernard et al., 2020) and the length-width ratio, is defined by (2). The closer the length-width ratio is to 1, the more coordinated the horizontal and vertical proportion of the passion fruit is. The closer the fruit shape index is to 1, the closer the whole fruit is to spherical.

 

 

At the same time, the pericarp volume, average thickness and sarcocarp volume of passion fruit could also be calculated, and then their proportion in the fruit volume would be calculated. Sarcocarp filling rate refers to the proportion of pulp in all components (including cavities and some low-density tissues) of passion fruit except the pericarp.

It should be noted that the workstation parameters during all the experiments are as follows: CPU: Intel i7-11700K @3.60 GHz, GPU: NVIDIA GeForce GTX3090, RAM: 64GB. The fully automatic calculation method for the phenotypic traits of passion fruit was developed based on the Python Language and OpenCV Library and run in PyCharm IDE. For an individual passion fruit, the process of image segmentation versus trait extraction takes approximately 100 seconds.




Result


Image data analysis and process of passion fruit

The pre-experimental results of Micro-CT reconstruction of a small number of passion fruit samples show that with the tube voltage set to 100 kV and the tube current set to 50 µA, the projection images with better contrast will be obtained. In order to reduce the influence of the low signal-to-noise ratio of cone-beam CT, 15 frames are collected and averaged within the same angle step.

Seven morphologically representative passion fruit samples are selected from all the samples and shown in Figure 7. Figure 7A shows the RGB images of these seven samples. It can be seen that they are quite different in shape and color. Some samples have a shape that is close to spherical, while some samples are closer to ellipsoidal. Figure 7B shows the three-dimensional reconstruction results of passion fruit from the Micro-CT system. The three-dimensional images show that the sarcocarp and pericarp of passion fruit samples have a high X-ray absorption rate. The middle cavity and some low-density tissues are insignificant due to their low absorption rate. Figure 7C shows the cross-sectional view of each sample to observe the internal characteristics, from which it can be seen that there are also some differences in the distribution of various tissues within each sample. Figure 7D shows the tomogram images of samples from Micro-CT, which is also the basis for sarcocarp and pericarp segmentation and three-dimensional reconstruction.




Figure 7 | Seven morphologically representative passion fruit samples. (A) RGB images of samples. (B) 3D-reconstruction images of samples from Micro-CT. (C) RGB cross-sectional view of samples. (D) Tomogram images of samples from Micro-CT.



The segmentation of the tomogram was carried out under the U-Net segmentation model. As shown in Figure 8A, each tomogram was divided into three parts: sarcocarp, pericarp and background (including background and fibrous tissue with extremely low X-ray absorption rate). The data set used to train the segmentation network includes 2000 training sets and 400 verification sets. In order to verify the accuracy and robustness of the segmentation model based on U-Net, two hundred tomograms of different depths from different samples were randomly selected as the test sets, and then the manual labels and segmentation results were combined for verification. The segmentation accuracy was quantified using two parameters commonly used in segmentation algorithms, Intersection over Union (IoU) and Dice Coefficient (Dice). The batch size was set as four and RMSprop was used to optimize the model with an initial learning rate of 0.001. To match the receptive field of the network, the input images were scaled by 0.5. The U-net model was trained for a total of 200 epochs.




Figure 8 | The accuracy analysis of the U-net segmentation model. (A) Original tomogram image, its label and segmentation result. (B) Dice and IoU of each category.



The quantitative and average indicators of each category are shown in Figure 8B. It can be seen that the mean Dice (mDice_All) and mean IoU (mIoU_All) of all three segmentation categories in the validation set reach about 0.983 and 0.971, respectively. After removing the background components, the mean Dice (mDice_Passion) and mean IoU (mIoU_Passion) of the passion fruit are about 0.975 and 0.955. Judging from the segmentation accuracy of each category, the Dice and IoU of the background are all above 0.990, the Dice and IoU of the sarcocarp are distributed around 0.985 and 0.972, and they are distributed around 0.973 and 0.945 for the pericarp. The result shows that the U-Net segmentation model has sufficient accuracy and reliable performance when it is used to segment passion fruit tomograms.



Passion fruit morphological traits extraction

In order to obtain the results of three-dimensional reconstruction, the segmented results of all the tomogram images are stacked sequentially into a three-dimensional format, and then the three-dimensional digital model of each sample could be obtained. Fourteen traits, as shown in the Table 1, can be automatically calculated in the designed image processing pipeline. The descriptive statistics (mean, standard deviation minimum and maximum) of the fourteen traits in all samples are given in Table 2.


Table 2 | Descriptive statistics of passion fruit morphological traits.



It can be seen from Table 2 that the average length and width of passion fruit samples in this experiment are 65.88mm and 61.05mm, the difference between samples is not more than 20mm, and the volume and surface area show significant differences. In addition, the average length-width ratio of the samples is 1.08, which indicates that most of the samples have relatively balanced dimensions in the horizontal and vertical directions. The fruit shape index also indicates this, but it can also be seen that there are still some flat and long individuals. The average proportion of the sarcocarp of passion fruit is 28%, and some samples reach 40%. Meanwhile, the average proportion of the pericarp is 23.65%, and some samples even exceed 50%. The average filling rate of the sarcocarp is 36.84%, which indicates that there are still a considerable number of cavities and other plant tissues in the fruit. The X-ray absorption rate by these tissues is extremely low, and the density is also very low.

The manual measurement method was adopted to verify the accuracy of the automatic measurement method. As shown in Figure 9, the length and width of the passion fruit were manually measured. The results show that the R2 coefficients of the manual measurement and the automatic measurement method in the measurement of width and length are 0.96 and 0.93, the Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Squared Error (RSME) of width are 1.94%, 1.18 and 1.56. As for length, they are 2.89%, 1.91 and 2.31. That is, for a passion fruit sample with a length and width of about 6cm, the error of the automatic measurement result is within 2mm. Such results can fully prove the reliability and accuracy of the automatic measurement method.




Figure 9 | Automatic and manual measurement results of passion fruit length and width.






Correlations and validation


Pearson correlation matrix for passion fruit morphological traits

Using the Pearson correlation coefficient, it is found that there is a specific correlation between these traits. According to Figure 10, it is evident that there is a strong positive correlation between the volume, surface area, length and width of passion fruit (0.661-0.966, P value 0.01), which follows the physical law. The max cross-sectional area strongly correlates with length, width and volume (0.821-0.902, P value 0.01). The longest girth shows the strongest correlation with fruit volume (0.801, P value 0.01), which is reasonable because neither length nor width alone can determine the final size of this feature. The volume of the sarcocarp and pericarp are positively related to the volume of the whole fruit. However, the general correlation (0.684, 0.676) is caused by differences between individuals and varieties. The filling ratio of fruit sarcocarp is highly correlated with its volume (0.839, P value 0.01). It shows a certain degree of negative correlation with length, volume and max cross-sectional area (-0.464, -0.493, -0.497), which indicates that the larger the size of the fruit, the lower the plumpness of fruit sarcocarp. At the same time, it can be noted that the proportion of the pericarp and its thickness show a strong correlation (0.888, P value 0.01), and the thickness of the pericarp is also strongly correlated with the volume of the pericarp (0.769, P value 0.01). At the same time, there is no significant correlation between the volume of the pericarp and the sarcocarp. The fruit shape index shows a negative correlation with the length-width ratio and surface area (- 0.565, - 0.466). When the length-width ratio is smaller, the fruit will be closer to the sphere, and the fruit type coefficient will be smaller. For three-dimensional objects, the surface area of the sphere is the smallest under the same volume. In this way, the conclusion of the analysis is consistent with the physical reality. In molecular breeding, comprehensive information is needed to support the analysis of the relationship between traits and genes. The specificity correlation among various characters of Passion Fruit can provide new reference information for breeders.




Figure 10 | Pearson correlation matrix for passion fruit morphological traits.





Principal component analysis for passion fruit morphological traits

In the passion fruit industry, manufacturers and consumers have special expectations. For example, manufacturers hope that the proportion of sarcocarp and pericarp in fruits will be higher to obtain higher economic benefits. At the same time, consumers are more inclined to buy fruits with a more round and beautiful appearance and larger volume. Using these traits data for principal component analysis can provide some references for a comprehensive evaluation of passion fruit sample quality.

Figure 11A is a gravel map drawn according to the data variation of the principal components. The eigenvalues tend to flatten after the third principal component. Combined with the variance interpretation rate of each principal component in Figure 11B, the first three dimensions of PCA explain 80.31% of the total variance. Figure 11C shows the contribution of each component in the first three principal dimensions. Dimension 1 corresponds to the morphometric traits (FW, FL, FMCA), the volumes (FV, PV, SV), and the fruit surface area. Dimension 2 is linked to the related traits of sarcocarp, such as volume and proportion. Dimension 3 focuses on the content of the sarcocarp and pericarp, which can be abstracted to describe the proportion of valuable parts in the fruit. According to the weight calculation results of each component of the principal component analysis, the sample individuals can be comprehensively evaluated by these fourteen traits. The top ten samples have scores ranging from 0.438 to 1.072 as shown in Figure 11D. Among all samples, these samples are in the head position in terms of size and volume. In order to better represent the contribution of each trait in the sample, all the trait data were normalized within the range of these ten samples, and finally, the stacked bar graph shown in Figure 11D was formed. The samples with the top three scores are among the best because of their large size, regular shape and prominent fruit volume, which coincide with the shopping philosophy of consumers. The remaining samples also have their own outstanding advantages in sarcocarp volume, sarcocarp filling rate and other traits. The comprehensive quality evaluation method based on principal component analysis can help producers and breeders understand the quality of samples more comprehensively and objectively. It can provide support for molecular breeding research aimed at obtaining better varieties.




Figure 11 | Principal Component Analysis using the passion fruit samples and the 14 traits quantified. (A) The characteristic root of the 14 components in PCA. (B) Scree plot of the percentage of components explained by all dimensions. (C) The contribution of each component to the first three dimensions. (D) Top ten samples of comprehensive quality evaluation and normalized expression of their 14 components.






Discussion


Advantages and disadvantages of Micro-CT system for passion fruit phenotype traits measurement

Nowadays, the Micro-CT system has been widely used in the medical field. Because of its nondestructive detection ability, it is also widely applied in crop research. This study applies this technology to the traits measurement of passion fruit for the first time. Fourteen phenotypic traits, such as fruit volume, length, width, sarcocarp volume and pericarp thickness, are obtained without damage and with high accuracy. It has prominent advantages over other traditional methods. First of all, it is a nondestructive measurement method. When using traditional methods to measure the internal traits of fruit, such as sarcocarp volume and pericarp thickness, it is necessary to cut the sample, which will lead to the rupture, deformation, and loss of some tissues. In particular, the flesh of passion fruit is very easy to liquefy, introducing specific errors in measuring passion fruit.

Moreover, the damaged fruits will no longer have any use value. After nondestructive measurement methods process the samples, the physiological and biochemical status of the samples will not be affected, which can continue to be used for in-depth research in gene metabolism and other fields. Secondly, the Micro-CT system can provide a three-dimensional digital image model of the sample, which is difficult for traditional sensors to provide. For example, although the structured light camera can provide a three-dimensional fruit model, it can not obtain internal traits. According to the three-dimensional digital model, the sample traits can be fully automatically extracted, effectively avoiding the subjective bias in manual measurement methods. The defect of the Micro-CT based measurement method mainly lies in that the physical density and the absorption rate of the X-ray of each biological tissue are different, and the response intensity reflected on the image is determined by both of them. In addition, it is affected by noise, which often leads to the situation that the gray levels of different tissues are close or some low-density tissues are difficult to distinguish from the air. The main parameters of the Micro-CT system, such as tube voltage and current, need to be adjusted before the experiment to obtain the best imaging effect.

The method studied in this paper has been well applied to passion fruit, but its significance is far more than this. These techniques and calculation methods can also be applied to other tropical fruits, such as coconut and pitaya. The reason is that there are often some density differences between the tissues of these tropical fruits, and the mass attenuation coefficients are also different, which will be reflected in the final imaging results. When calculating various characters based on the imaging results, because they all have inner and outer wrapping structures similar to Passion Fruit, the method used in this paper can be applied to other tropical fruits with only a few modifications. In the long run, because of their nondestructive characteristics, Micro-CT-based measurement methods have the potential of dynamic monitoring and character mining, which can continuously monitor the same sample in different growth or decay cycles and establish a complete growth or decay model. At the same time, this measurement method can mine more meaningful new traits, which is essential in promoting the research of plant development mechanisms and pathological influences. It is beneficial to cultivate new varieties, improve yield and quality, and has important practical significance in promoting the development of the agricultural economy.



Deference of segmentation based on traditional digital image process and deep learning

In image processing, especially in image segmentation, the primary methods can be divided into algorithms based on traditional digital image processing (DSP) and deep learning technology. In comparison, the traditional digital image processing methods are more straightforward and faster, while the methods based on deep learning have more vital generalization ability and better performance.

For the tomogram image segmentation of passion fruit, we used the standard structural features of the samples as prior knowledge to design a feature extractor. Finally, we achieved fast image segmentation based on DSP. When applied to a large amount of data, only about 30% of the data showed excellent results. In the remaining images, the segmentation effect was poor due to structural and grayscale differences, and it was not easy to directly use it for subsequent statistics and calculations. On the other hand, the deep learning method needs to manually mark the image before using it. It takes about 2 minutes to mark a 2000*2000 pixels Passion Fruit tomogram, and it is easy to introduce personal subjective bias in the marking result.

Because of these situations, this paper combined the two kinds of methods. In order to automatically and quickly generate labels, a segmentation algorithm based on DSP was designed to process a certain number of original images, and the one with the better effect was selected as the training set. It was used for network training of subsequent deep learning, and finally, the trained network was used to predict all the data to obtain the final segmentation result. The experimental results showed that the designed method for generating training set labels was reduced from the artificial 120 seconds/frame to 2 seconds/frame, and the accuracy was very little different from the manual labeling. The method in this paper performed more objectively on some ambiguous pixels decisive. The accuracy of the final network prediction results also reached a high level. Our method can also be extended to other crops, and the process is relatively simple.




Conclusions

This study presented a phenotype traits measurement method of passion fruit based on Micro CT and deep learning technology, which realized the nondestructive automatic and rapid extraction of fourteen phenotypic traits of passion fruit. Based on the phenotypic data of several samples, Pearson correlation analysis was carried out to mine the possible internal correlation, and the comprehensive quality of passion fruit was evaluated by combining principal component analysis. The experimental results showed that our proposed method not only filled the gap in the phenotypic measurement of passion fruit but also was a potential method for other species with similar structures. It could play a vital role in the future breeding improvement and industrial production.
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