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Editorial on the Research Topic

Advances in crop biomass production based on multi-omics approach
Introduction

While as the dominant source of energy during the past century, the detrimental

impacts of fossil fuels have become apparent in environmental pollution, unsustainability,

and global warming (Sharif et al., 2021). With increasing efforts and capitalization on

renewable energy technologies, bioenergy has become one important type of renewable

energy. Biomass of plants is an important feedstock of bioenergy production. Plants

suitable for biomass production share common characteristics: high yield (of dry matter or

a type of biomass, i.e., starch or sugar), low agronomic inputs, and low nutrition

requirements. Based on these features, woody species (e.g., willow and poplar), grasses

(e.g., sugarcane, switchgrass, and Miscanthus), aquatic plants (e.g., algae and duckweed),

and oil plants have been considered biomass plants. Additionally, wheat and rice straw are

important biomass sources. Biomass has several types according to the source species, the

moisture content, and composition of biomass material, such as lignocellulosic biomass

from woody plants, biomass from grasses (including cellulosic biomass from grasses or

extracted starch/sugar), aquatic plant biomass, and manures (McKendry, 2002). In turn,

these biomass types are compatible with different bio-conversion methods, e.g.,

combustion, fermentation, gasification, pyrolysis, and mechanical extraction of starch or

oils. Recently, numerous efforts have been made to convert biomass to high-value

chemicals and bio-based materials (Anchan and Dutta, 2021).

Downstream utilizations of biomass (e.g., conversion to biofuels or bio-based chemicals)

requires multiple disciplines, such as agricultural science, microbiology, and chemistry. By
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contrast, upstream knowledge of biomass, such as the genetic

determinants of biomass-related traits and molecular mechanisms

of biomass accumulation and composition, relies on plant biology,

and agricultural science. Notably, many biomass plants with large

and complex genomes (such as sugarcane) have been less studied or

have bottlenecks in transformation and traditional genetics (Zhang

et al., 2018; Wang et al., 2021; An et al., 2021; Chen et al., 2022).

Recently, research on biomass and bioenergy plants has been

advanced rapidly due to the development of genomics. For

example, state-of-the-art genomic technologies facilitated the

successful assembly of reference genomes for sugarcane,

Miscanthus, and switchgrass (Zhang et al., 2018; Mitros et al., 2020;

Lovell et al., 2021). Though huge diversity within and among biomass

crops provides invaluable resources for biomass utilization,

understanding of biomass production mechanisms is still limited

due to shortage of molecular and omic resources and challenges of

functional studies. It has become apparent that synergistic integration

of multiple omic technologies (e.g., transcriptomics, proteomics,

epigenomics, metabolomics, and phenomics) serves as a key

approach to circumvent the challenges. This Research Topic

includes seven research articles and two reviews, covering several

biomass species, including maize, sorghum, sugarcane, rice, and oil

plants to reveal the current advances of multi-omics in addressing the

mechanisms of biomass production.
Advances in multi-omic technologies
and resources facilitate studies on
biomass-related traits

This section showcases how omic technologies and resources can

facilitate biomass studies. Voelker et al. reported the genome

assemblies of 10 sorghum accessions including sweet and non-

sweet sorghum genotypes (Boatwright et al.; Kumar et al., 2022). A

large number of structural variations (SVs) were identified, which

highlighted the SV-related functional difference between sweet and

non-sweet sorghum genotypes. Wang et al. developed an image-

based phenotypic acquisition method to characterize leaf-sheath

traits in detail and applied the method to genome-wide association

studies (GWAS), providing a detailed genetic architecture of leaf-

sheath morphology. Guo et al. presented an integrative genomic

database for oil plants, the Genomic Information Repository for Oil

Plants (GROP, www.grop.site), which hosts 22 reference genomes of

18 species with 46 transcriptome datasets (Bayer et al., 2017; Unver

et al., 2017; Wang et al., 2018; Song et al., 2020; Sturtevant et al., 2020;

Chen et al., 2021). The construction of such an omics repository

addresses the need to integrate, share, and analyze the omics data

across oil plants for the research community. In addition, Tu et al.

reviewed the major applications of regular short-read RNA-seq in

plant biology, described a cohort of representative RNA-seq-analysis

tools in model plants and major crops, and emphasized that the full

utilization of fruitful RNA-seq resources will promote the omic

research on under studied species (including biomass crops) to a

high level.
Frontiers in Plant Science 025
Applications of omic
approaches provide insights into
biomass-related biology

This section collects representative papers using omic

technologies to gain insights into biomass-related biological

questions. Sugarcane is one of the key biomass and bioenergy

crops, providing about 80% of global sugar production and 40%

of ethanol production (Zhang et al., 2018). Efforts have been made

to investigate the molecular mechanisms of sugar accumulation in

sugarcane and in the comparable species sweet sorghum (Li et al.,

2018; Li et al., 2019a; Li et al., 2019b), from sugar transportation and

physiology to transcriptome and quantitative trait loci mapping

(Babu et al., 2009; Liu et al.; Moore, 2005; Aitken et al., 2006; Casu

et al., 2007; Zhang et al., 2021). Yuan et al. performed

transcriptomic and metabolomic studies on two sugarcane

varieties and revealed candidate genes for sucrose metabolism,

stem texture, and rind color. While the genes associated with

stem sugar accumulation have been identified in sugarcane (Casu

et al., 2007; Zhang et al., 2021), epigenetic regulation remains

elusive. Xue et al. profiled the DNA methylation in sugarcane

(Saccharum officinarum) leaves, roots, rinds, and piths, and

observed DNA methylation valleys (DMVs) overlapped with

transcription factors and sucrose-related genes, indicating the

involvement of epigenetic regulation in sucrose metabolism. Liu

et al. revealed the link of OsPRR37, a key component of the rice

circadian clock, with biomass production through DNA

methylation analysis. Overexpression of OsPRR37 in rice led to

suppressed growth and lowered biomass likely through the diurnal

changes of DNA methylation regulators (such as ROS1A/DNG702)

to hypo-methylate a key signal component controlling metabolism,

OsHXK1 (Zheng et al., 2021; Zhou et al., 2021). Ain et al. presented

a comprehensive review on recent progress in the identification of

molecular and genetic factors regulating growth, biomass

accumulation, and assimilate partitioning in bioenergy crops. The

review highlights a plethora of genes related to cell cycle, cell wall,

hormones, and related transcription factors as the targets to

improve photosynthesis, carbohydrate allocation, and biomass

production in the bioenergy crops. Additionally, this topic also

hosts an example of omics-enabled trait association study.

Specifically, Wang et al. used comparative RNA-seq to profile

seed-specific long-lived mRNA and identify a number of the

long-lived mRNA associated with rice seed longevity.
Concluding remarks

This Research Topic exemplifies that multi-omics represent an

important route to strengthen the studies of biomass crops,

particularly with complex genomes. Importantly, trends emerged

from these articles that a combination of multiple omic resources

and tools is a powerful approach to gaining new insights into

biomass production and related traits. The discoveries will pave the

road toward molecular design and breeding biomass crops with

tailored bioenergy purposes.
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Plant circadian clock coordinates endogenous transcriptional rhythms with diurnal
changes of environmental cues. OsPRR37, a negative component in the rice circadian
clock, reportedly regulates transcriptome rhythms, and agronomically important traits.
However, the underlying regulatory mechanisms of OsPRR37-output genes remain
largely unknown. In this study, whole genome bisulfite sequencing and high-throughput
RNA sequencing were applied to verify the role of DNA methylation in the transcriptional
control of OsPRR37-output genes. We found that the overexpression of OsPRR37
suppressed rice growth and altered cytosine methylations in CG and CHG sequence
contexts in but not the CHH context (H represents A, T, or C). In total, 35 overlapping
genes were identified, and 25 of them showed negative correlation between the
methylation level and gene expression. The promoter of the hexokinase gene OsHXK1
was hypomethylated at both CG and CHG sites, and the expression of OsHXK1 was
significantly increased. Meanwhile, the leaf starch content was consistently lower in
OsPRR37 overexpression lines than in the recipient parent Guangluai 4. Further analysis
with published data of time-course transcriptomes revealed that most overlapping
genes showed peak expression phases from dusk to dawn. The genes involved in
DNA methylation, methylation maintenance, and DNA demethylation were found to
be actively expressed around dusk. A DNA glycosylase, namely ROS1A/DNG702,
was probably the upstream candidate that demethylated the promoter of OsHXK1.
Taken together, our results revealed that CG and CHG methylation contribute to the
transcriptional regulation of OsPRR37-output genes, and hypomethylation of OsHXK1
leads to decreased starch content and reduced plant growth in rice.

Keywords: rice growth, DNA methylation, RNA-seq, circadian clock, output genes

INTRODUCTION

Plant DNA methylation occurs in the sequence context of CG, CHG, and CHH (where H is
A, C, or T) (Zhang et al., 2006). DNA methylation is considered a stable epigenetic mark that
can be transmitted across generations (Gehring, 2019). A specific DNA methylation state is also
under the dynamic regulation by de novo methylation, maintenance of methylation, and active
demethylation (Law and Jacobsen, 2010; Zhang et al., 2018). The function of DNA methylation
in plant reproductive cells has been extensively studied, and this knowledge has deepened our
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understanding of the dynamic DNA methylation patterns during
plant development (Zheng et al., 2019; Higo et al., 2020; Kim
et al., 2021; Zhou et al., 2021a). In addition, DNA methylation
reportedly has roles in regulating plant architecture, plant defense
against rice black-streaked dwarf virus, and multiple agronomical
traits (Zhang et al., 2015, 2020; Kawakatsu, 2020; Xu et al., 2020).
However, whether DNA methylation plays a role in regulating
circadian clock output genes remains unclear.

Circadian clock comprises multiple transcription-translation
feedback loops, which function to improve plant environmental
adaptation. Altered expression of circadian clock genes, such as
CIRCADIAN CLOCKASSOCIATED1 (CCA1), can increase levels
of plant growth and fitness (Dodd et al., 2005; Masuda et al.,
2020). Meanwhile, expression amplitude of CCA1 is associated
with the CHH methylation level in the promoter region, which
determines plant growth vigor (Ng et al., 2014). Recently, it
was reported that the circadian clock genes ZEITLUPE and
TIMING OF CAB EXPRESSION 1 act downstream of DNA
methyltransferases to control circadian rhythm (Tian et al.,
2021). These results shed light on DNA methylation-mediated
regulation of clock gene expression. Pseudo-Response Regulators
(PRRs) are key components of transcription-translation feedback
loops in plants and mediate the circadian regulation of clock
output genes (Farre and Liu, 2013), including genes involved
in the regulation of growth, flowering, abiotic stress, and yield-
related traits (Li C. et al., 2020; Li N. et al., 2020; Sun et al.,
2020; Wei et al., 2020; Liang et al., 2021). OsPRR37 was primarily
identified to delay the flowering time and increase grain yield
and adaptation in rice (Koo et al., 2013; Liu et al., 2013, 2015;
Yan et al., 2013; Gao et al., 2014; Fujino et al., 2019). A recent
study further revealed a distinct role of OsPRR37 in promoting
flowering in the japonica variety Zhonghua 11 under natural
long-day conditions (Hu et al., 2021). Although several output
genes involved in the photoperiodic flowering pathway are used
to explain the trait variations (Chen et al., 2021; Zhou et al.,
2021c), the underlying mechanism of how OsPRR37 regulates its
output genes and multiple traits remains unclear.

Circadian regulation of plant transcriptome benefits the acute
responses of plants to the daily fluctuating environment (Panter
et al., 2019). Our previous study confirmed that OsPRR37 protein
functions as a transcriptional repressor and confers expanded
regulation of transcriptome rhythms (Liu C. et al., 2018). The
regulation of circadian-regulated genes by DNA methylation in
Populus trichocarpa suggested that DNA methylation contributes
to the expression levels of clock output genes (Liang et al.,
2019). Based on these results, we hypothesize that OsPRR37 uses
DNA methylation as a pathway to regulate the transcription of
its output genes. In the present study, we sought to determine
whether and how DNA methylation regulates OsPRR37-
output genes. To this end, whole-genome bisulfide sequencing
(WGBS) and high-throughput RNA sequencing (RNA-seq)
were applied to identify the overlapping genes, which were
considered to be the OsPRR37-output genes regulated by DNA
methylation. The available data of time-course transcriptomes
were used to confirm the expression change of overlapping
genes and to analyze the genes involved in DNA methylation
pathways. Our results revealed that DNA methylation was an

alternative medium for OsPRR37 to regulate the output genes
and plant growth.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The OsPRR37 overexpression lines (OE5 and OE9) were
described as previously reported (Liu C. et al., 2018). Briefly,
OsPRR37 overexpression lines were generated by overexpressing
OsPRR37 in an elite rice variety, namely Guangluai 4 (GL). NIL-
OsPRR37 is a nearly isogenic line in the GL background and
contains the functional allele of OsPRR37 from the elite variety
Teqing. Rice growth phenotypes were obtained from the plants
growing under natural long-day conditions in Wuhan University,
Wuhan, China (30◦54′01′′N, 114◦37′23′′E). For WGBS and RNA
sequencing, seeds of GL and OE5 were planted in a growth
chamber (PRX-380B, Shanghai Guning Instrument Co., Ltd) for
15 days after germination. The growth chamber was set at 28◦C
under a 14-h light/10-h dark cycle with the light period of 6:00–
20:00. The top most expanded leaves were harvested at 9:00,
frozen in liquid nitrogen, and then stored at−80◦C for DNA and
RNA extraction. The same two biological replicates were applied
to WGBS and RNA-seq.

Bisulfite-Seq Library Generation and
Sequencing
Briefly, total genomic DNA of rice leaves was extracted using
the cetyltrimethylammonium bromide method (Doyle, 1987).
The DNA concentration and quality were estimated using
NanoDrop 2000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, United States), Qubit 3.0 fluorometer (Life
Technologies, Carlsbad, CA, United States), and 1.0% agarose
gel electrophoresis. Then, 2-µg genomic DNA spiked with
5-ng unmethylated Lambda DNA (Promega, Madison, WI,
United States) was fragmented by sonication to generate
fragments measuring 300–500 bp. These fragments were then
ligated with 5-methylcytosine-modified adapters and subjected
to bisulfide conversion using the ZYMO EZ DNA Methylation-
Gold Kit (Zymo Research, Irvine, CA, United States). The
bisulfide-converted DNA was purified, recycled, and then
amplified by PCR with 10 cycles using KAPA HiFi HotStart
Uracil + ReadyMix (Kapa Biosystems, Wilmington, MA,
United States) and Illumina 8-bp index primers. The WGBS
libraries were analyzed using the Bioanalyzer 2100 system
(Agilent Technologies, CA, United States) and sequenced on
Illumina NovaSeq 6000 with a paired-end sequencing length of
150 bp (PE150) at Frasergen Bioinformatics Co., Ltd (Wuhan,
China). The percentage of cytosines sequenced at cytosine
reference positions in the lambda genome was considered to
reflect the overall sodium bisulfite non-conversion rate.

Bisulfite-Seq Data Processing and
Analysis
Quality control of WGBS data was performed using FastQC
(version 0.11.9, Babraham Bioinformatics, United Kingdom).
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Sequencing adapters and low-quality reads were removed using
Trimmomatic (Bolger et al., 2014). The trimmed reads were then
aligned and mapped to the rice reference genome of Nipponbare
(MSU_v7.0) using Bismark (Krueger and Andrews, 2011). The
percentage methylation level was calculated by mC/(mC+ umC),
where mC and umC represent the number of methylated and
unmethylated reads, respectively. Only the CG/CHG/CHH sites
with a read coverage of ≥ 5 across all samples were used
for differential methylation analyses. Differentially methylated
regions (DMRs) were identified using the R package “dmrseq”
(Korthauer et al., 2019). Regions with a q-value < 0.05, number
of CG/CHG/CHH sites ≥ 5 and methylation difference > 20%
were defined as DMRs. DMR distribution on rice chromosomes
was plotted using Circos (version 0.69) (Krzywinski et al.,
2009). DMRs were annotated using ChIPseeker package (Yu
et al., 2015). Methylation status along the genomic regions of
DMRs ± 20 kb was plotted using pyGenomeTracks (version 3.6)
(Lopez-Delisle et al., 2021).

RNA Library Generation and Sequencing
Total RNA from rice leaves was extracted using TRIzol
Reagent (Invitrogen, CA, United States) for RNA sequencing.
RNA purity and integrity were analyzed using a NanoDrop
2000 spectrophotometer (NanoDrop Technologies, Wilmington,
DE, United States) and the Bioanalyzer 2100 system (Agilent
Technologies, CA, United States). RNA contamination was
assessed by 1.5% agarose gel electrophoresis. A total of 1 µg
of RNA per sample was used as the input material for library
preparation. The mRNA was purified from the total RNA using
poly-T oligo-attached magnetic beads. Sequencing libraries were
generated from the purified mRNA using the VAHTS Universal
V6 RNA-seq Library Kit for MGI (Vazyme, Nanjing, China)
following the manufacturer’s recommendations with unique
index codes. The library quantification and size were assessed
using a Qubit 3.0 fluorometer (Life Technologies, Carlsbad,
CA, United States) and Bioanalyzer 2100 system (Agilent
Technologies, CA, United States). Subsequently, sequencing with
a paired-end sequencing length of 150 bp (PE150) was performed
on the MGI-SEQ 2000 platform (MGI Tech Co., Ltd. Shenzhen,
China) by Frasergen Bioinformatics Co., Ltd (Wuhan, China).

Bioinformatics Analysis of RNA
Sequencing and Microarray Data
Sequencing adapters and low-quality reads were removed with
fastp (version 0.20.1) (Chen et al., 2018), and the quality of
raw reads was evaluated with FastQC (version 0.11.9, Babraham
Bioinformatics, United Kingdom). The remaining clean reads
were mapped to the rice reference genome of Nipponbare
(MSU_v7.0) using Hisat2 (version 2.1.0) (Kim et al., 2019).
Mapping statistics were generated using Samtools (version 1.11)
(Li H. et al., 2009). TPMCalculator was used to count the
reads mapped to individual genes as well as to measure gene
expression levels by calculating transcripts per million (TPM)
read values (Vera Alvarez et al., 2019). Differentially expressed
genes (DEGs) were identified using DESeq2 (Love et al., 2014).
Gene Ontology (GO) enrichment analysis was performed using

the GO annotation file MSU7.0 gene ID (TIGR) of agriGO v2.0
and clusterProfiler 4.0 (Tian et al., 2017; Wu et al., 2021). KEGG
enrichment analysis was performed using KOBAS 3.0, and the
output data were plotted using clusterProfiler 4.0 (Bu et al., 2021).
Gene symbols with known or unknown function were annotated
using MBKbase-rice database1, funRiceGenes database2, and
China Rice Data Center3 (Yao et al., 2018; Peng et al., 2020).
The raw RNA-seq data of time-course transcriptomes, which
were downloaded from NCBI-GEO database (GSE114188), were
reanalyzed as per the RNA-seq data processing pipeline in this
study. The corresponding time-course samples of GL and OE5
comprise six time points (4:00, 8:00, 12:00, 16:00, 20:00, and
0:00) with three replicates at 45 days growth under natural long-
day conditions. Statistical significance of different expressions
was evaluated by unpaired Student’s t-test at each time point.
The microarray data were obtained by GSE19024 on NCBI-GEO
(Wang et al., 2010). The corresponding tissue samples of interest
were described in Supplementary Table 1, which were the subset
of samples in a previous study (Wang et al., 2010). Before being
used to plot the heatmap, the signal values of biological and
technical replicates for the same tissue were averaged.

Quantitative RT-PCR and Starch Content
Determination
Quantitative RT-PCR was conducted with the same protocol as
previously reported (Liu et al., 2015). The PCR primer sequences
were 5′-TGACAAAGCCTAGTACAAATAAGGAGAG-3′ and
5′-CAGTGCTGTGCAGGATGAAATG-3′. Approximately, 0.2 g
of fresh leaf samples were weighed before estimating the starch
content. Starch content was determined according to previously
published protocols (Smith and Zeeman, 2006).

RESULTS

Rice Growth Was Repressed by
Overexpressing OsPRR37
During the field trails, we observed that rice growth was retarded
in OsPRR37 overexpression lines (OE). To investigate the effects
of OsPRR37 overexpression on rice growth, we record the
morphology and dry weight of GL, OE5, OE9, and NIL-OsPRR37
at 25, 40, and 55 days after sowing the seeds. The growth
of OE5 and OE9 was significantly repressed compared to the
growth of GL and NIL-OsPRR37 on these days (Figures 1A–F).
These results suggest that natural loss-of-function and gain-of-
function alleles of OsPRR37 showed a comparable growth rate
during the vegetative growth period. Then, the diurnal expression
profile of OsPRR37 was monitored over a day using quantitative
RT-PCR. OsPRR37 was identified as having similar expression
rhythms in GL and NIL-OsPRR37 as their peak expression phase
was around 12:00. Conversely, the expression of OsPRR37 in
OE5 and OE9 was much higher and showed altered rhythms
with the peak expression phase around 4:00 (Figure 1G). These

1http://www.mbkbase.org/rice/
2https://funricegenes.github.io/
3https://www.ricedata.cn/gene/
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results suggested that the overexpression of OsPRR37 changed its
diurnal rhythms and repressed rice growth. In a previous study,
it was reported that OsPRR37 widely regulates output genes and
particularly suppresses output genes with phases around 9:00
(Liu C. et al., 2018). To investigate whether DNA methylation
associated with OsPRR37 regulates the output genes, samples of
GL and OE5 at 9:00 were subjected to WGBS and RNA-seq. The
workflow of this study is shown in Figure 1H.

Whole-Genome Bisulfide Sequencing
and RNA Sequencing Quality
Assessment and Alignment
Whole-genome bisulfide sequencing and RNA-seq were
used to investigate the role of DNA methylation in the
transcriptional regulation of OsPRR37-output genes. WGBS
generated 48,752,185 and 63,773,173 raw reads for the two GL
replicates and 59,530,161 and 56,527,166 raw reads for the two
OE5 replicates. After quality control filtration, 45,246,229 and
59,675,582 clean reads remained for GL, and 56,065,476 and
53,133,046 clean reads remained for OE5. The clean reads ratio
ranged from 92.8 to 94.2%. The average percentage of Q30 and
GC content for the four sequencing libraries was 92.7 and 22.9%,
respectively (Supplementary Table 2). Of those clean data,
53.4% (GL-1), 51.7% (GL-2), 54.2% (OE5-1), and 52.2% (OE5-2)
were uniquely mapped to the rice genome (Supplementary
Table 3). Overall, 30,872,222 CG sites, 27,422,379 CHG sites, and
104,533,760 CHH sites were identified with sequencing coverage
range from 53.1 to 69.4% (Supplementary Table 4). Among
these, 10.6%–13.0% CG sites, 7.7–9.7% CHG sites, and 4.0–4.9%
CHH sites were methylated (Supplementary Table 5). The same
samples of WGBS were used in RNA-seq to obtain comparable
data. In total, RNA-seq generated 23,559,582 (GL-1), 25,090,638
(GL-2), 25,898,111 (OE5-1), and 26,350,196 (OE5-2) clean read
pairs (Supplementary Table 6). The percentages of Q30 ranged
between 84.9 and 86.1%. Of these clean read pairs, 90.0 to 90.7%
were mapped to the reference genome of rice (Supplementary
Table 7). These data were sufficient and reliable for subsequent
differential methylation and expression analysis.

Overexpressing OsPRR37 Altered Global
CG and CHG Methylation
To identify DMRs, three cytosine sequence contexts (CG, CHG,
and CHH) were separately applied to differential methylation
analysis. Genomic regions with a q-value of < 0.05 and a
differential methylation level of > 20% were considered as
DMRs. A total of 321 and 949 DMRs were found in CG (DMR-
CG) and CHG (DMR-CHG) sequence contexts, respectively.
However, no DMRs were identified in the CHH sequence
context. Among DMR-CG, 90 were hypermethylated and 231
were hypomethylated (Figure 2A). Conversely, among DMR-
CHG, 480 were hypermethylated and 469 were hypomethylated
(Figure 2B). These data revealed a higher proportion of
hypomethylated DMR-CG (72.0%) than DMR-CHG (49.4%).
Furthermore, the significance of methylated DMRs across the 12
chromosomes found that DMRs were evenly distributed on the
rice genome and were of high significance (Figures 2C,D).

To obtain DMR-associated genes (DMGs), DMR-CG
and DMR-CHG were both annotated with the R package
“ChIPseeker.” The result showed that 32.7%, 20.6%, and 15.9% of
DMR-CG were located in the promoter region at ≤1 kb, 1–2 kb,
and 2–3 kb upstream of transcription start site, respectively
(Figure 3A). The distal intergenic region accounted for 20.2%
of DMR-CG. Conversely, only a small fraction of DMR-CG
was annotated within Intron (2.5%), Exon (2.5%), Downstream
(≤1 kb: 0.9%, 1–2 kb: 2.2%, and 2–3 kb: 1.2%) and 3′UTR
(1.2%). This means that most DMR-CG (69.2%) were located
in the promoter region (Figure 3A). Similarly, 70.3% of DMR-
CHG were located in promoter region (Figure 3B). These
results supported the notion that cytosine methylation majorly
occurred in the promoter sequence. Then, we performed
functional enrichment analysis with these DMGs. The network
of five most enriched GO ontologies for DMR-CG-associated
genes showed that LOC_Os02g03540 and LOC_Os06g41360
enable ribose phosphate diphosphokinase activity and are
involved in ribonucleoside monophosphate biosynthetic process
(Figure 3C). LOC_Os03g45410/OsTBP2 and LOC_Os03g14720
enable obsolete RNA polymerase II transcription factor activity
and are involved in transcription initiation from the RNA
polymerase II promoter. LOC_Os03g45410/OsTBP2 was
reported to be a TATA-binding protein, which interacts with
the transcription factor IIB (Zhu et al., 2002). Interestingly,
LOC_Os03g14720 is a putative transcription initiation factor
IIF. These results highlighted that DMR-CG-associated genes
mainly function in gene transcription regulation. However,
no GO term was found to be significantly enriched for
DMR-CHG-associated genes.

Differentially Expressed Gene Analysis
Although OsPRR37 overexpression altered the methylation
of >1,000 DMGs, the number of transcriptionally regulated
DMGs remains unknown. Samples of GL and OE5 were subjected
to RNA-seq to profile the genome-wide gene expressions. The
overall gene expression level was slightly higher for OE5 than
for GL (Supplementary Figure 1), whereas the expression
correlation between samples was ranged from 0.9804 to 0.9929
(Supplementary Figure 2). Genes with low expression (sum of
TPM being < 2 in both GL and OE5) were filtered out. A total
of 743 DEGs (| log2FC| > | log21.5|, adjusted P-value < 0.05)
were identified between GL and OE5 (Supplementary Figure 3).
Among these DEGs, 286 (38.5%) were downregulated and 457
(61.5%) were upregulated (Figures 4A,B). The increment of the
mean TPM for upregulated DEGs was larger than the decrement
of the mean TPM for downregulated DEGs (Figure 4A). The
expression of DEGs in the two replicates was similar so that DEGs
are robust to be further analyzed (Figure 4B).

GO enrichment analysis found that DEGs are instrumental
in metal ion binding, transporter activity, and chitinase
activity and are mainly involved in carbohydrate metabolic
process, chitin catabolic process, defense response to bacterium
and fungus, and nitrate assimilation, among other functions
(Figures 4C,D). The KEGG pathway enrichment analysis
showed that upregulated DEGs participate in amino sugar and
nucleotide sugar metabolism, carbon metabolism, glycerolipid
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FIGURE 1 | Characterization of rice growth and OsPRR37 expression rhythms. Rice growth morphology and dry weight were documented at 25 days (A,B),
40 days (C,D), and 55 days (E,F) after sowing the seeds. The different lower-case characters above bars represent the significant difference level of P < 0.05.
(G) The expression levels of OsPRR37 detected by quantitative RT-PCR. The exact time of a natural long-day condition was indicated under the X axis.
(H) Simplified workflow of the present study. OE5 and OE9 are two independent transgenic lines.

metabolism, MAPK signaling pathway, and circadian rhythm,
among other roles. Downregulated DEGs are mainly involved in
plant–pathogen interaction, nitrogen metabolism, and circadian
rhythm (Figures 4E,F).

Characterization of Overlapping Genes
Between DMR-Associated Genes and
Differentially Expressed Genes
Overlap analysis between DMGs and DEGs was performed to
identify transcriptionally regulated DMGs. In total, 35 genes
were found to be shared between DMG and DEG sets. Among
these, five DEGs were found to be differentially methylated
in both CG and CHG sequence contexts, whereas 19 DEGs
were uniquely shared with DMR-CHG and 11 DEGs were
uniquely shared with DMR-CG (Figure 5A). The correlation
between methylation difference and expression fold-change of

overlapping genes was investigated. Consequently, 14 of 16 genes
(87.5%) showed negative correlation between expression and
CG methylation, and 14 of 16 genes (87.5%) were methylated in
promoter regions (Figure 5B). In contrast, 16 out of 24 genes
(66.7%) showed a negative correlation between expression and
CHG methylation, and 15 of 24 genes (62.5%) were methylated
in promoter regions (Figure 5C). After removing the redundant
genes, in total, 25 genes showed negative correlation between
expression and cytosine methylation level (Figures 5B,C).
Functional annotation with the MBKbase, funRiceGenes
database and China Rice Data Center identified seven genes
with known function: OsHXK1 (LOC_Os07g26540), OsZIP9
(LOC_Os05g39540), SDT/OsmiR156h (LOC_Os06g44034),
OsMADS18 (LOC_Os07g41370), OsPT11 (LOC_Os01g46860),
OsRLCK109/OsBBS1 (LOC_Os03g24930), and OsNAS3
(LOC_Os07g48980). Among these genes, OsHXK1 showed
the highest negative correlation between methylation difference
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FIGURE 2 | Identification and analysis of differentially methylated regions. Comparisons of hypermethylation and hypomethylation levels in GL and OE5 were plotted
for both CG (A) and CHG (B) sequence contexts. Different letters above violin plots represent significant differences at P < 0.01 as revealed by one-way ANOVA
analysis (Tukey’s multiple comparison test). DMR distribution on rice chromosomes in CG (C) and CHG (D) sequence contexts is shown. From outer to inner layers,
the circular plots represent chromosomes, hyper-DMR distribution (the more outward means higher significance), heatmap of GC content (deeper red colors indicate
higher GC content), heatmap of gene density (deeper green colors indicate higher gene density), and hypo-DMR distribution (greater proximity to the center of the
circle indicates higher significance).

and expression fold-change (Figures 5B,C). Detailed methylation
status indicated that the CG and CHG sites in the promoter
region of OsHXK1 were both hypomethylated (Figure 5D).

Diurnal Rhythms and Functional
Characterization of Overlapping Genes
As OsPRR37 is a key component in the rice circadian clock,
diurnal rhythms of overlapping genes were further investigated
with the reported time-course RNA-seq data of leaf samples at

45 days growth (Liu C. et al., 2018). Among the 35 overlapping
genes, 29 were observed to be differentially expressed with
at least one timepoint, which confirmed the identification of
DEGs in this study (Figure 6A and Supplementary Figure 4).
We also found that 31 overlapping genes showed diurnal
rhythms, and 27 were observed to show a peak expression phase
of 16:00–04:00. These data indicated that most differentially
methylated DEGs were under circadian control and tended
to function from dusk to dawn. Further investigation of
the seven reported overlapping genes revealed that four of
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FIGURE 3 | Characterization of DMR-associated genes. The distributions of CG-DMRs (A) and CHG-DMRs (B) summarized according to the annotated genomic
location. The order of the stacking bar charts is consistent with that of the legends on the right. (C) The network between genes and enriched GO terms. Genes are
indicated as MSU loci or gene symbols. GO categories are displayed in the name of GO terms.

them showed significant differences in their expression across
different time points of the day (Figure 6A). Interestingly,
OsHXK1, SDT/OsmiR156h, OsMADS18, and OsPT11 were
diurnally expressed and showed a peak expression phase of
20:00–4:00, indicating that they predominantly function during
the night. SDT/OsmiR156h can modulate the rice yield, plant
architecture, and seed dormancy by targeting Ideal Plant
Architecture1 (IPA1) (Jiao et al., 2010; Miao et al., 2019). Its
continuously high expression suggested the involvement of
the SDT/OsmiR156h-IPA1 module in OsPRR37-mediated rice
growth regulation. Except for SDT/OsmiR156h, the other six
genes were mapped in the microarray data of Zhenshan97 tissues
(Wang et al., 2010). OsMADS18 was widely expressed in the
tissues of seedling, leaf, shoot, sheath, stem, and panicle, which
is in line with its function in flowering signal transduction
(Figure 6B; Fornara et al., 2004; Yin et al., 2019). The significant
repression of OsMADS18 can partly explain the delayed growth

and flowering (Figure 6A). OsNAS3 encodes a nicotianamine
synthase that is important for Fe homeostasis (Aung et al.,
2019). Our result showed that OsNAS3 was widely expressed in
germinating seed, plumule, radicle, seedling, leaf, root, shoot,
sheath, stem, panicle, and spikelet. OsRLCK109/OsBBS1 was
diurnally expressed with a peak phase of 16:00–20:00 and
was highly expressed in leaf, root and sheath to regulate leaf
senescence and salt stress responses (Zeng et al., 2018). OsZIP9
was mainly expressed in the root and sheath to uptake zinc
for rice growth (Tan et al., 2020; Yang et al., 2020). However,
even though OsPT11 is a rice phosphate transporter that
regulates phosphate uptake and transport (Paszkowski et al.,
2002; Yang et al., 2012), it was highly expressed in many
tissues, such as geminating seed, radicle, root, leaf, sheath,
stamen, endosperm, and panicle. The role of OsZIP9 and
OsPT11 in coordinating ion uptake and rice growth needs to be
further confirmed.
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FIGURE 4 | Expression and functional enrichment of differentially expressed genes. (A) A comparison of mean expression levels of upregulated, no significant
difference, and downregulated genes between GL and OE. Different letters above violin plots represent significant differences at P < 0.01 as revealed by one-way
ANOVA analysis (Tukey’s multiple comparison test). (B) The heatmap of 457 upregulated and 286 downregulated DEGs. The TPM value of DEG was scaled by row
with the “pheatmap” package in R. Dotplots of significant GO terms for upregulated (C) and downregulated (D) DEGs. Dotplots of significant KEGG pathways for
upregulated (E) and downregulated (F) DEGs. GO terms and KEGG pathways with adjusted P-value < 0.05 were considered as significant, and if the number of
significant terms or pathways was > 15, only 15 terms or pathways were plotted.
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FIGURE 5 | Overlap analysis between DMGs and DEGs. (A) The distribution of overlapping genes between DMGs and DEGs. Scatter plots of the correlation
between methylation difference and expression fold change for overlapping genes in CG (B) and CHG (C) contexts. (D) Visualization of methylation status for the
representative gene OsHXK1.

OsHXK1 was identified to be highly expressed in the
germinating seed, leaf, stem, stamen, and endosperm
(Figure 6B). This expression pattern is in close agreement
with a previous study wherein OsHXK1 was reported to
regulate reactive oxygen species in rice anthers (Zheng et al.,
2019) and knockout of OsHXK1 improved rice photosynthetic
efficiency and yield (Zheng et al., 2021). In plant leaves, starch
is accumulated during the day and consumed by respiration at
night, and therefore, the starch content can indicate the strength
of photosynthesis. To investigate whether the photosynthesis
product was altered by the significantly elevated expression
of OsHXK1, we compared the total starch content in GL,
OE5, OE9, and NIL-OsPRR37 leaves at the ending (20:00) and
beginning (4:00) of the day. We found the total starch content

to be significantly lower in OE5 and OE9 than in GL and
NIL-OsPRR37 at both time points (Figure 6C). The low starch
content in OE lines resulted in energy deficit, consequently
causing repressed rice growth (Figure 1). These results revealed
that the enhanced expression of OsHXK1 by hypomethylation
decreased starch content and rice growth, thus suggesting
that OsHXK1 is a key output gene applied by OsPRR37 to
regulate rice growth.

Diurnal Expression Analysis of DNA
Methylation Related Genes
DNA methylation patterns are decided by coordinated regulation
of DNA methylation and demethylation pathways. To explore
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FIGURE 6 | Diurnal and tissue-specific expression analysis of the known overlapping genes. (A) Diurnal expression of the known overlapping genes between DMGs
and DEGs. The asterisks above curves mean significance difference at P < 0.05 (one asterisk) and at P < 0.01 (two asterisks). (B) Tissue-specific expression
analysis of known overlapping genes. (C) The measure of the starch content in rice leaves at the end (20:00) and beginning (4:00) of the day. Different letters above
bars represent significant differences at P < 0.01 as revealed by one-way ANOVA analysis (Bonferroni’s multiple comparison test). Values represent the means ± SD
of three replicates.

the upstream genes of DMGs, the genes involved in DNA
methylation were profiled with time-course RNA-seq data. In
total, based on a recent study, 36 genes were grouped into the
RNA-directed DNA methylation (RdDM) pathway, methylation
maintenance, and DNA demethylation (Sun et al., 2021).
Interestingly, most of them (26 genes) exhibited a peak expression
phase of 16:00–20:00 (Figure 7 and Supplementary Figure 5),
indicating that DNA methylation, methylation maintenance, and
DNA demethylation are particularly active around dusk. Among
these, several genes encoding Argonaute (AGO) proteins are
altered, including the downregulated AGO1a and AGO1d and
the upregulated AGO1b and AGO18 (Figure 7). The miR168-
AGO1 module can regulate multiple miRNAs to improve yield,
reduce flowering time, and enhance immunity (Wang et al.,
2021). Meanwhile, AGO18 sequesters miR168 to alleviate the
repression of rice AGO1 (Wu et al., 2015), and a regulation
module of miR168a–OsAGO1/OsAGO18–-miRNAs-target genes
was proposed to regulate agronomically important traits (Zhou
et al., 2021a). These results combined with our data suggest
a causal link between rice growth repression and the altered
module of miR168a-OsAGO1/OsAGO18.

A relatively similar expression of methylation maintenance
genes was observed between GL and OE5. Conversely, four
out of five genes of DNA demethylation showed significantly
different expression in GL and OE5 (Figure 7). Interestingly,
the expression of ROS1C/DNG701 and ROS1D/DNG704 was
suppressed, whereas that of ROS1A/DNG702 was increased.
These three genes were recently reported to demethylate
DNA in the gamete and zygote, which is crucial for zygote
gene expression and development (Zhou et al., 2021b).
In addition, a mutation in ROS1A/DNG702 can generally
lead to the increase of CG and CHG but not of CHH
hypermethylation on genomes of rice endosperms (Liu J.
et al., 2018). This result strongly corroborates our data
wherein DMRs were only identified in CG and CHG sequence
contexts, and because the expression of ROS1A/DNG702 was
increased in OE5, markedly more hypo-DMRs (55.1%) and
upregulated DEGs (61.5%) were observed (Figure 7). The effect
of ROS1A/DNG702 may be counteracted by the decreased
expression of ROS1C/DNG701 and ROS1D/DNG704. Taken
together, we believe that ROS1A/DNG702 was the upstream
protein that demethylated the promoter regions of OsHXK1 and
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FIGURE 7 | Diurnal expression patterns of DNA methylation-related genes. Eleven AGO family members in the RdDM pathway, four genes for methylation
maintenance, and five for DNA demethylation were presented with data of time-course transcriptomes. The three groups of genes are arranged under horizontal
dash lines with group names of RdDM (siRNA biogenesis), Maintenance, and DNA demethylation. The other five DNA methylation genes and 11 siRNA biogenesis
genes in the RdDM pathway are shown in Supplementary Figure 5. The asterisks above curves mean significance difference at P < 0.05 (one asterisk) and
P < 0.01 (two asterisks).

enhanced its expression, thus leading to decreased starch content
and reduced rice growth.

DISCUSSION

Circadian Rhythm of OsPRR37 Is
Important for Rice Growth
The endogenous expression period of clock genes is crucial for
a plant to match the light–dark cycle. If correctly matched,
the plant circadian system will enhance photosynthetic carbon
fixation and growth (Dodd et al., 2005). Our results found that
the circadian expression pattern of OsPRR37 in OE5 and OE9
was significantly different from that in GL and NIL-OsPRR37
(Figure 1). Although GL contains a loss-of-function allele of
OsPRR37, the circadian rhythm and plant growth observed were

similar between GL and NIL-OsPRR37 (Figure 1). Moreover,
GL and NIL-OsPRR37 showed no significant difference in
the starch content (Figure 6C). These results confirmed that
disturbing circadian rhythm of OsPRR37 decreased starch
content and plant growth.

Input and Output Pathways for OsPRR37
The regulatory network of transcription-translation feedback
loops in the core circadian clock is well drawn based on
exciting results of research on clock genes (Nakamichi, 2020).
However, the inputs and outputs of the circadian clock remain
unclear. The photosynthetic endogenous sugar levels provide
metabolic entrainment to the circadian clock system through
the morning-phased gene PRR7, the homolog of OsPRR37 in
Arabidopsis (Haydon et al., 2013). A recent study reported that
PRR7 mediates the circadian input to the promoter of CCA1 in
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the shoots (Nimmo and Laird, 2021). These results indicate an
entrainment route of sugar–PRR7–CCA1. In rice, sugars suppress
OsCCA1 expression while OsCCA1 regulates IPA1 expression
to mediate panicle and grain development (Wang et al., 2020).
Our results suggested that the SDT/OsmiR156h-IPA1 module was
involved in modulating OsPRR37-mediated rice growth. Based
on these results, whether and how sugar–OsPRR37–OsCCA1–
SDT/OsmiR156h–IPA1 comprises an integrated pathway need
more evidence in the future. Furthermore, the enrichment
analysis found that upregulated genes were enriched in
carbohydrate metabolic process (Figure 4C), amino sugar and
nucleotide sugar metabolism, and carbon metabolism pathways
(Figure 4E). These results suggested that sugar and carbon
metabolism pathways are altered by OsPRR37 overexpression.
Meanwhile, several downregulated genes are enriched in nitrate
assimilation (Figure 4D) and nitrogen metabolism (Figure 4F),
suggesting that nitrate assimilation and metabolism would be
other pathways coordinated by OsPRR37 to affect plant growth.

The Role of Differentially Methylated
OsPRR37-Output Genes
Epigenetic modifications are closely associated with alterations
in chromatin structure, such as histone modification and DNA
methylation. Rhythmic transcription of Arabidopsis clock genes
was considered to be regulated by rhythmic histone modification
(Song and Noh, 2012). However, to our knowledge, there
has been no research on the role of DNA methylation in
regulating clock output genes. OsPRR37 was believed to repress
morning-phased output genes and indirectly activate evening-
phase output genes (Liu C. et al., 2018). In the present study,
as we focused on samples in the morning (9:00), and our
primary goal was to identify the key overlapping genes that
were downregulated by OsPRR37. In this process, we hoped to
get some insight into how OsPRR37 is associated with DNA
methylation pathways so as to directly repress the morning-
phased output genes. However, the results showed that 25 out
of 35 overlapping genes were upregulated, and the expression
levels of 22 genes were negatively correlated with methylation
levels (Figures 5B,C). These results supported our hypothesis
that DNA methylation contributed to the regulation of OsPRR37-
output genes, but the dynamic methylation of these output genes
is probably under an indirect regulation of OsPRR37. In other
words, the differentially methylated output genes are in the most
downstream of OsPRR37, such as OsHXK1, SDT/OsmiR156h,
and OsMADS18, which are more directly to regulate rice growth,
flowering, and yield.

The Hierarchical Regulation Network of
OsPRR37
Different members of PRRs are supposed to function at their
specific times of the day to repress clock output genes (Farre
and Liu, 2013). Accumulating evidence has indicated that PRRs
interact with other proteins to regulate the transcription of output
genes. The B-box (BBX)-containing proteins BBX19 and BBX18
can physically interact with PRR9, PRR7, and PRR5 in a precise
temporal order from dawn to dusk, thus cooperatively regulating

the output genes (Yuan et al., 2021). OsPRR73 interacts with
histone deacetylase 10 (HDAC10) to co-repress OsHKT2;1, a
plasma membrane-localized Na(+) transporter, and confers salt
stress tolerance to rice (Wei et al., 2020). The OsPRR37 protein
can interact with Ghd8 and NF-YCs, which form an alternative
OsNF-Y heterotrimer to affect Hd1-mediated regulation of Hd3a
and flowering (Goretti et al., 2017). The distinct role of OsPRR37
in the ZH11 background indicated that OsPRR37 can associate
with different partners to perform different functions (Hu et al.,
2021). Moreover, the 35 identified differentially methylated DEGs
accounted for only a small proportion of DEGs (Figure 5A).
These results draw a map of the hierarchical regulation network
for OsPRR37 and thus put forward an interesting question about
the partners of OsPRR37 with which it regulates the large amount
of remaining DEGs. Nevertheless, differentially methylated DEGs
are the key candidates to regulate rice growth.

Epigenetic marks that modulate the expression of genes
behind the traits of interest have potential applications in crop
enhancement (Kakoulidou et al., 2021). With the development of
multi-omics technologies and related data processing pipelines
(Feng et al., 2021; Iqbal et al., 2021), the hierarchical regulation
network of the circadian clock will be gradually parsed and
applied to improve rice traits. Recently, the representative
role of OsPRR37 in the control of photoperiodic flowering
was systematically reviewed (Chen et al., 2021; Zhou et al.,
2021c). However, the underlying mechanism of how OsPRR37
regulates its output genes to affect multiple agronomic traits
remains unclear. By integrative analysis of WGBS and RNA-
seq data, our results revealed that DNA methylation contributes
to the regulation of OsPRR37-output genes, which provides an
alternative strategy to improve plant growth through epigenetic
modulation of OsPRR37-output genes.
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Various long-lived mRNAs are stored in seeds, some of which are required for the initial
phase of germination and are critical to seed longevity. However, the seed-specific long-
lived mRNAs involved in seed longevity remain poorly understood in rice. To identify
these mRNAs in seeds, we first performed aging experiment with 14 rice varieties,
and categorized them as higher longevity (HL) and lower longevity (LL) rice varieties
in conventional rice and hybrid rice, respectively. Second, RNA-seq analysis showed
that most genes showed similar tendency of expression changes during natural and
artificial aging, suggesting that the effects of these two aging methods on transcription
are comparable. In addition, some differentially expressed genes (DEGs) in the HL and
LL varieties differed after natural aging. Furthermore, several specific long-lived mRNAs
were identified through a comparative analysis of HL and LL varieties after natural aging,
and similar sequence features were also identified in the promoter of some specific long-
lived mRNAs. Overall, we identified several specific long-lived mRNAs in rice, including
gibberellin receptor gene GID1, which may be associated with seed longevity.

Keywords: seed longevity, RNA-seq analysis, rice varieties, artificial aging, natural aging

INTRODUCTION

The seed is the carrier of biological genetic information and the basis of agricultural production.
Seed longevity, the period over which seeds remain viable, is an important agronomical trait that
determines its viability, storability, and quality (Zhao et al., 2021). Typically, seed longevity is
measured using the final germination percentage and the indices of seedling percentage after aging
(Zhao et al., 2021). Generally, seeds with high seed vigor germinate and emerge more quickly, are
more resistant to stress and have the potential for high yield and quality in agricultural practice.
Seed aging refers to the reduction in seed viability, loss of vitality and irreversible changes that
result in the inability to germinate. Aging is a process that occurs along with the prolonged storage
of seeds. The degree of seed aging is compounded by improper storage conditions, especially high

Frontiers in Plant Science | www.frontiersin.org 1 May 2022 | Volume 13 | Article 85739023

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.857390
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-5221-281X
http://orcid.org/0000-0002-3424-8181
https://doi.org/10.3389/fpls.2022.857390
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.857390&domain=pdf&date_stamp=2022-05-16
https://www.frontiersin.org/articles/10.3389/fpls.2022.857390/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-857390 May 10, 2022 Time: 16:52 # 2

Wang et al. Transcriptome of Aged Rice Seeds

temperature and high humidity. During the storage period, a
series of harmful events will occur inside the seed, such as cell
membrane damage, DNA damage and mutation, and long-lived
mRNA degradation. Thus, the reduction in seed longevity is often
associated with damage to nucleic acids and proteins.

Seed longevity is determined by genetic and physiological
storage potential of the seeds (Qun et al., 2007; Bewley et al., 2012)
and by their interaction with environmental factors and events
causing deterioration during storage. Several genes controlling
seed longevity in rice have been identified. For example, the
transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3)
plays a central role in seed longevity (Sano et al., 2016), as the abi3
mutant is intolerant to desiccation and exhibits rapid viability loss
during dry storage. Additionally, the indole-3-acetic acid (IAA)-
amido synthetase gene GRETCHEN HAGEN3-2 (OsGH3-2) acts
as a negative regulator of seed viability by regulating many
genes related to the abscisic acid (ABA) pathway, subsequently
regulating the accumulation level of ABA (Yuan et al., 2021).
Gibberellin (GA) is another well-known phytohormone that
control seed dormancy and germination, in a manner different
from ABA. GIBBERELLIN INSENSITIVE DWARF1 (GID1)
encodes a soluble GA receptor, plays important role in seed
germination (Ge and Steber, 2018). The Arabidopsis contains
3 GID1 orthologs, named AtGID1a, AtGID1b, and AtGID1c,
while rice contains only a single GID1 (Ueguchi-Tanaka et al.,
2005; Nakajima et al., 2006). It has been shown that Gibberellic
acid (GA3)-treated seeds or those of the quintuple DELLA
mutant (with constitutive GA signaling) had higher artificial
aging resistance, indicating that GA might play a positive role
in seed longevity (Bueso et al., 2014). In addition, several QTLs
controlling seed longevity in rice have been identified, and
using 299 indica accessions, it was shown that eight major
loci related to sugar metabolism, DNA repair and transcription,
reactive oxygen species (ROS) and embryonic/root development
were associated with seed longevity (Lee et al., 2019). To date,
proteomic analyses revealed that changes in the regulation of
posttranslational modifications, protein synthesis, and protein
turnover play crucial roles in seed longevity, and that proteins
associated with metabolism, energy, and protein synthesis were
enriched after the artificial aging of seeds (Zhang et al., 2016).

Dry seeds accumulate various mRNAs, called long-lived
mRNAs, that are thought to be translated after the onset of
imbibition and to function during the early stage of imbibition
(Bai et al., 2020). More than 12,000 different long-lived mRNAs
have been identified in Arabidopsis dry seeds, and some of them
are essential for seed longevity (Nakabayashi et al., 2005). Abscisic
acid-responsive elements (ABREs) containing the core motif
ACGT were overrepresented in the promoters of highly expressed
genes in dry seeds (Nakabayashi et al., 2005). De novo protein
synthesis during the initial phase of seed germination occurs from
long-lived mRNAs stored in mature dry seeds without de novo
transcription (Kimura and Nambara, 2010), and 17% of long-
lived mRNAs that are specifically associated with monosomes are
translationally upregulated during seed germination (Bai et al.,
2020); thus, the translational capacity of dry seeds is important
for seed vigor (Rajjou et al., 2007). High-throughput sequencing
aid to identify potential seed longevity-related genes through

transcriptome sequencing. For instance, several genes involved
in ABA biosynthetic processes and the DNA damage response
pathway has been identified through RNA-seq (Qu et al., 2020).
However, more seed longevity-related genes need exploration.

Since natural aging too long, the aging process must be
artificially accelerated for seed longevity research. The controlled
deterioration treatment (CDT) was applied to accelerate seed
aging for a short period (Rajjou and Debeaujon, 2008). It has
been shown that similar molecular events accompany CDT and
natural aging at the proteome level in the model plant Arabidopsis
thaliana (Rajjou and Debeaujon, 2008). Several other aging
methods, such as the artificial aging method (AA, aging at high
temperature and high relative humidity) and the elevated partial
pressure of oxygen (EPPO) method (Groot et al., 2012; Buijs
et al., 2020), have been successfully used for seed aging study. The
results of different aging methods are affected by different loci in
the genome (Buijs et al., 2020; Fenollosa et al., 2020). At present,
artificial aging treatment is widely used by seed companies
as a vigor assay for numerous seed species to determine the
mechanisms of seed vigor loss during storage (Li et al., 2017;
Min et al., 2017). However, it is unknown whether natural and
artificial aging are distinct on the transcriptional level.

Here, we selected 14 conventional and hybrid rice varieties
and identified them as higher longevity (HL) and lower longevity
(LL) varieties. RNA-seq analysis showed that most differentially
expressed gene changes after naturing aging were similar to
that of after artificial aging, indicating that the effects of these
two aging methods on the transcription level are similar. Lastly,
we identified several specific long-lived mRNAs through a
comparative analysis of DEGs in HL and LL varieties after aging.

MATERIALS AND METHODS

Seed Material and Growth Conditions
Seven conventional rice varieties and seven hybrid rice varieties
were used for the follow-up experiments (Supplementary
Table 1). Conventional varieties (YZX, XW13, YC, HM,
YH988, XEH, NX32) were purchased from Zhangjiajie Farm
(Hunan Province, China), and these seeds were planted at
Changsha Observation and Research Station for Agriculture
Ecosystems, Chinese Academy of Sciences (Xiangfeng Village,
Jinjing Town, Changsha) under the same fertilization and
management conditions, harvested in September and stored at
−20◦C for later analysis. The hybrid varieties LLY1353, LLYHZ,
LLY1988, SLY5814, JLY1212, HR2, and LLY534 were planted
in the same field and were purchased from Hunan Yahua Seed
Industry Co., Ltd.

Determination of the Initial Water
Content in Rice
Prior to starting the aging tests, all seeds were dried under a
constant weight with initial moisture content, the initial moisture
content of the rice seeds was measured by a halogen moisture
analyzer. Seeds with a moisture content higher than 15% were
dried at a constant temperature of 30◦C, and the water content
was measured every 12 h until the moisture content was less than
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15%. When the moisture content of all varieties dropped below
15% and was basically the same, drying was stopped. Seeds were
then used for the aging experiment.

Natural and Artificial Aging Treatment
The natural aging treatment was performed as follows:
approximately 100 g of rice seeds of each variety that had
been dried to a consistent moisture content (approximately
14%) was used, and the seeds were stored at room temperature
(5–33◦C) and 60–80% relative humidity in a laboratory in
Changsha for 1 year.

Artificial accelerated aging treatment was performed as
described by Qu et al. (2020). One hundred g seeds were wrapped
in nylon bags, with 6 nylon bags for each variety, and marked
as artificial aging for 0, 10, 15, 20, 25, and 30 d. The seeds in each
bag were evenly placed in an artificial climate chamber (42◦C, and
humidity 87%) for 10–30 days.

Germination Rate Determination and
ID50
For each variety, approximately 10 g seeds treated with aging
for different days were used for the germination experiment.
The seeds were immersed in a 400-fold diluted “84” solution
for 10 min and then washed with distilled water to remove
floating seeds. Each sample was set three biological repetitions,
100 seeds for each repetition. These seeds were placed in a petri
dish impregnated with moist filter paper. After that, the seeds
were placed in an artificial climate chamber at 30◦C, and water
evaporation was observed every day and water was replenished if
needed. After 8 days of germination, the number of germinated
seeds was counted and recorded. ID50 refers to the time required
for the seed germination rate to drop to half of the initial
germination rate.

Conductivity Measurement
The rice seeds were shelled with a small shelling machine, and
25 health rice grains were selected. After being rinsed three times
with distilled water, the samples were dried with filter paper. The
rice grains were placed in a 50 mL beaker, and then 20 mL of
distilled water was added and soaked for 12 h at 25◦C, resulting
in three blank controls. Measurements were carried out using a
DDS-11A digital display conductivity meter. First, the electrode
was placed in distilled water for calibration before measurement,
and then the conductivity values of the sample (B) and the blank
control (A) were measured. The conductivity of the sample was
calculated as follows: conductivity = value B− value A.

RNA-Seq
Seeds of four varieties (LLY534, JLY1212, YZX, and NX32) that
were subjected to 10 days of artificial aging or 1 year of natural
aging, and those from untreated controls, were collected and
immediately treated with liquid nitrogen on ice using a small-
scale gluten washing machine and finally stored on dry ice. Each
treatment was set two biological replicates and all samples were
sent to Hangzhou Lianchuan Biotechnology Co., Ltd. for RNA-
seq.

RNA-seq libraries were constructed and paired-end sequenced
by Hangzhou Lianchuan Biotechnology Co., Ltd. RNA-seq
analysis was performed according to Qu et al. (2020). Briefly,
sequenced reads were screened, and quality-controlled sequences
were mapped using HISAT2 v2.1.1 (Pertea et al., 2016).
Transcript splicing and merging were conducted with StringTie
1.3.0. Normalized expression values were calculated with
Ballgown. We defined genes as differentially expressed when they
had a p< 0.05 and | log2FC| > 1. The sequencing data reported
in this paper are summarized in Supplementary Table 2 and
have been deposited in the GSA database (Genome Sequence
Archive in the BIG Data Center, Chinese Academy of Sciences;
PRJCA006248) (Members, 2018).

Bioinformatics Analysis
For Gene Ontology (GO) enrichment analysis,
GENEONTOLOGY1 was used to assess the detected DEGs
according to Biological Process, Molecular Function, and
Cellular Component ontologies. TBtools and Venny (version
2.1.0) were used for some gene screening work (Oliveros, 2007–
2015; Chen et al., 2020), and TBtools and R software (version
3.5.1) were used for graphing.

Motif Analysis
The sequences of rice were extracted from the Rice Genome
Annotation Project,2 and TBtools (GXF sequences extract
function) was used to extract the 5′UTR, 3′UTR and promoter
sequences of each gene. DNA motif analyses were performed
using the MEME suite (Bailey and Elkan, 1994), the FIMO was
used for identified motif. Firstly, motif was entered in the input
motif box. The 5′UTR or promoter sequences were entered in the
input the sequences box. Advanced options were set p < 1.0E-
4 and start search. Then frequencies of the background genes
(DEGs in NX32-natural aging vs. NX32-0d) were also calculated.

The MEME was used to identified the enriched motif in
5′UTR, 3′UTR and promoter sequences. Briefly, the classical
mode was selected for motif discovery. Sequences were uploaded
into the primary sequence box. Motif width was set to 6–9 bp.

Coexpression Regulatory Network
The network reconstruction was performed using the STRING
application in Cytoscape (Shannon et al., 2003). Pearson’s
correlation coefficient between AP2 transcription factor and
targeted gene of > 0.7 (positive regulation) or < 0.7
(negative regulation) were used as a threshold and visualized
using Cytoscape.

RT-qPCR Analysis
For the mRNA expression analyses, total RNA was extracted
from rice seeds using Trizol (Takara 9109, Japan). cDNA was
synthesized by using Maxima H Minus First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific K1682, United States)
following the manufacturer’s protocol. qPCR was performed
using Bio-Rad CFX96 with SYBR Premix Ex Taq II (Innovagene

1http://geneontology.org/
2http://rice.uga.edu/
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SQ101-01, China). The primers used for the qPCR analysis
are listed in Supplementary Table 4, and OsACTIN was used
as an internal reference. The cDNAs were amplified following
denaturation using 42-cycle programs (95◦C, 15 s; 60◦C,
20 s per cycle).

Statistics
Significant differences in the data were analyzed by Student’s
t-test or by multivariate comparison (one-way ANOVA) using
SPSS (version 17.0) software. The significant differences of the
changes during the aging between HL and LL were analyzed by
multivariate comparison (two-way ANOVA).

RESULTS

Classification of Rice Varieties by Seed
Longevity After Aging
To obtain rice varieties with higher longevity (HL) and
lower longevity (LL), we selected 14 rice varieties, including
7 conventional and 7 hybrid rice varieties (Supplementary
Table 1). Then, we carried out artificial aging experiment and
assessed seed longevity with a germination assay. Artificial aging
led to a rapid decline in the germination rate of all rice varieties.
Prior to aging, the germination rates of the YC and HM seeds
were 39.3 and 82.1%, respectively, which were lower than those
of other rice varieties (Figure 1A). The germination rates of
YH998 and NX32 were significantly higher than those of the
other varieties after aging, while the germination rate of YZX,
XEH, and YC were relatively low (Figure 1A). In terms of the
germination rate of hybrid rice varieties after aging, LLY534 and
LLYHZ had higher germination rates, while JLY1212, SLY5814,
and HR2 had lower germination rates (Figure 1B). Given that
different rice varieties have different initial germination rate
before aging, it is not accurate to use only the germination rate of
seeds to evaluate seed longevity. The half inhibitory time (ID50)
refers to the time that the seed germination rate is reduced to
half of the non-aged germination rate. The larger the ID50 value
is, the slower the seed germination rate decreases with aging,
which reflects the higher longevity of the seeds. According to
the results, YH998 did not reach half maximal inhibition even
after 30 days of artificial aging, and NX32 had the highest ID50
(25.3 days). Since YH988 is a red rice that is rich in anthocyanins,
which might have a role in anti-oxidation (Zhu, 2018), we chose
NX32 as the HL seed variety. The ID50 values of YZX and YC
were 9.8 and 5.2 days, respectively (Figure 1C). However, the
initial germination rate of YC was much lower than that of the
other varieties; therefore, we chose YZX as the LL seed variety
among the conventional rice varieties. In hybrid rice, the ID50
value of LLY534 was the highest (27.2 days; Figure 1D), while
the ID50 values of JLY1212, SLY5814, and HR2 were 16.0, 13.6,
and 12.3 days, respectively (Figure 1D). In addition, the initial
germination rate of SLY5814 was lower than that of the other
varieties. Although the germination rate of HR2 were similar to
JLY1212 after aging, the fatty acid content and eating quality of
JLY1212 were worse after aging (data not shown), and JLY1212
having a wider planting area in China. Thus, LLY534 and JLY1212

were chosen for further research as the HL and LL seed varieties
among the hybrid rice varieties. In summary, we obtained rice
varieties with higher or lower longevity in both conventional rice
and hybrid rice.

Comparison of the Effects of Natural and
Artificial Aging on Seed Longevity
Aging is a natural process. A major drawback of natural aging is
that it takes a long time, often approximately 1–2 years. Artificial
aging, also known as the accelerated aging of seeds, costs a shorter
time span, inducing the desired phenotypic changes in seeds (Hay
et al., 2019). However, the effect of these two aging methods on
the germination rate is still unclear in rice. To further compare
the germination rates of NX32, YZX, LLY534, and JLY1212 under
natural aging and artificial aging, we chose another batch of
seeds for an additional experiment. NX32 had the highest seed
longevity, and YZX had the lowest seed longevity (Figures 2A,B).
Concerning the hybrid rice varieties, LLY534 had higher seed
longevity, and its germination rate remained at approximately
48%, even after 30 days of artificial aging. Moreover, JLY1212
had lower seed longevity, and its seed vigor decreased rapidly
compared with LLY534 after artificial aging (Figures 2A,B). In
addition, the germination rates of NX32, YZX, LLY534, and
JLY1212 after 1 year of natural aging were 94.1, 82.3, 95.6, and
64.3%, respectively (Figure 2C). We analyzed the correlation
between the germination rate of seeds after 1 year of natural
aging and 10 days of artificial aging and found that the correlation
coefficient was high (Pearson’s R = 0.91; Figure 2D), suggesting
that the effect of artificial aging treatment for 10 days was similar
to the effect of 1 year of natural aging.

The cell membrane of rice seeds is often damaged during
aging, and cytosolic solutes can flow into intercellular spaces,
leading to an increase in the conductivity of the seed soaking
solution (Panobianco et al., 2007). We then tested the electrical
conductivity to evaluate the vigor of the seeds. Compared with
NX32 rice seeds, those of YZX had a higher electrical conductivity
increase after the artificial aging treatment (Figure 2E), and
the electrical conductivity of JLY1212 was higher than that of
LLY534 before and after aging (Figure 2E). These data indicated
that electrical conductivity could be used as an indicator for
evaluating seed longevity and that aging treatment might had a
greater impact on the membrane integrity of LL rice varieties than
that of HL rice varieties.

Transcriptomic Analysis of Rice Varieties
After Natural and Artificial Aging
The germination rate of rice seeds after artificial aging for
10 days was similar to that of seeds after natural aging for 1
year, suggesting that the effect of an appropriate artificial aging
time could mimic the effect of natural aging for 1 year. To
investigate the difference between natural and artificial aging at
the transcriptional level, RNA-seq experiments were performed
for rice seeds with 1-year natural aging or 10-days artificial
aging. Regarding conventional rice varieties, NX32 treated with
natural aging had 607 differentially expressed genes (DEGs)
compared with the mock treatment (stored at−20◦C for 1 year),
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FIGURE 1 | Germination rate and ID50 of conventional and hybrid rice seeds. (A,B) Germination rates of seven conventional (A) and seven hybrid rice varieties (B)
after artificial aging treatment. The germination rates were recorded after the seeds germinated for 8 days. The experiments were repeated three times, and the error
bars represent the SDs of three biological replicates (**P < 0.01, one-way ANOVA with Tukey’s test). (C,D) Half maximal inhibitory days (ID50) of six conventional
(C) and seven hybrid varieties (D). YH988 is not shown because it did not reach ID50 after 30 days artificial aging. Data are the means ± SDs based on three
biological replicates (**P < 0.01, one-way ANOVA with Tukey’s test).

of which 307 were upregulated and 300 were downregulated.
In addition, 371 upregulated genes and 327 downregulated
genes were identified in NX32 treated with 10-d artificial aging
(Figures 3A,B and Supplementary Table 2; | log2FC| ≥ 1;
p< 0.05). For the YZX rice variety treated with natural aging,
there were 600 upregulated genes and 254 downregulated genes.
For YZX treated with 10-d artificial aging, there were 254
upregulated genes and 277 downregulated genes compared
with the mock treatment (Figures 3A,B and Supplementary
Table 2). In hybrid seed varieties, 498 upregulated genes and
183 downregulated genes were identified in LLY534 treated with
natural aging, and 447 upregulated genes and 345 downregulated
genes were identified in LLY534 treated with 10-d artificial aging
(Figures 3A,B and Supplementary Table 2). In addition, 380

upregulated genes and 317 downregulated genes were detected
in JLY1212 treated with natural aging, and 581 upregulated genes
and 433 downregulated genes were detected in JLY1212 treated
with 10-d artificial aging (Figures 3A,B and Supplementary
Table 2). Heatmap analysis indicated that most gene expression
changes (p < 0.05 for artificial aging or natural aging) in NX32,
YZX, and LLY534 in natural aging and artificial aging were
correlated and changed in the same direction (Figures 3C–E).
The overlapping gene changes (p < 0.05 for artificial aging
or natural aging) between artificial aging and natural aging
were in the same direction, and the values were moderately
consistent in NX32 (r = 0.53, p < 0.05; Figure 3F), YZX
(r = 0.49, p < 0.05; Figure 3G), and LLY534 (r = 0.47, p < 0.05;
Figure 3H).
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FIGURE 2 | Germination rate and conductivity of seeds of the four rice varieties. (A,B) Germination rates of two conventional rice varieties (HL rice variety NX32 and
LL rice variety YZX) and two hybrid rice varieties (HL rice variety LLY534 and LL rice JLY1212) under artificial aging conditions (0, 10, 15, 20, 25, and 30 days)
(n.s., not significant; *P < 0.05, **P < 0.01, one-way ANOVA with Tukey’s test). (C) Germination rates of two conventional varieties (HL rice variety NX32 and LL rice
variety YZX) and two hybrid varieties (HL rice variety LLY534 and LL rice variety JLY1212) under natural aging for 1 year (*P < 0.05, **P < 0.01). (D) Correlation
analysis between natural aging (1 year) and artificial aging (10 d) of two conventional varieties (HL rice variety NX32 and LL rice variety YZX) and two hybrid varieties
(HL rice variety LLY534 and LL rice variety JLY1212) (Pearson’s R = 0.91). (E) Seed conductivity of two conventional varieties (HL rice variety NX32 and LL rice
variety YZX) and two hybrid varieties (HL rice variety LLY534 and LL rice variety JLY1212) under artificial aging conditions (0, 10, 15, 20, 25, and 30 d) (n.s., not
significant; *P < 0.05, **P < 0.01, one-way ANOVA with Tukey’s test).

These results suggested that natural and artificial aging
showed a similar effect on the transcription in rice seeds.

Comparison of mRNA Expression Levels
in Higher Longevity and Lower Longevity
Rice Varieties After Natural or Artificial
Aging
To test whether there is a difference in the expression of
long-lived mRNAs between HL and LL varieties, we made
a Venn diagram for the long-lived mRNA of these varieties

under aging conditions. The results showed that the number of
overlapping genes was relatively small across HL and LL varieties
under both artificial and natural aging conditions. There were
only 39 overlapping genes in NX32 and YZX under natural
aging conditions (Figure 4A), 75 overlapping genes in LLY534
and JLY1212 under natural aging conditions (Figure 4B), 18
overlapping genes in NX32 and YZX under artificial aging
conditions (Figure 4C) and 30 overlapping genes in LLY534
and JLY1212 under artificial aging conditions (Figure 4D).
The overall expression trend of HL and LL rice varieties was
determined based on the heatmap, which showed that some
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FIGURE 3 | Comparison of gene expression between artificial and natural aging of HL and LL varieties. (A,B) Number of differentially expressed transcripts (| log2FC|
> 1 and p < 0.05) in the four rice varieties after natural aging (A) and artificial aging (B) compared with mock conditions. (C–E) Heatmap of changes in gene
expression in NX32 (C), YZX (D) and LLY534 (E) after artificial aging and natural aging compared with mock treatment. Blue–red represents mRNA expression levels,
where red represents higher mRNA expression levels, and blue represents lower mRNA expression levels. Black–white represents the p-value of the expression level
of the transcripts. If the p-value is less than 0.05, it is black; otherwise, it is white. (F–H) Density figures showing the difference in NX32 (F), YZX (G) and LLY534 (H)
transcript changes (| log2FC| > 1 or p < 0.05) between artificial aging and natural aging. The x- and y-axes represent changes in the transcription level under
artificial aging and natural aging, respectively. Spearman correlation was used for correlation analysis. NA represents natural aging, AA represents artificial aging.

of the genes in NX32 and YZX were different under natural
aging conditions (| log2FC| ≥ 1 for NX32 or YZX; p < 0.05
for NX32 or YZX; Figure 4E), while the same tendency was
found in the comparison between LLY534 and JLY1212 with
natural aging (Figure 4F) and NX32 and YZX with artificial
aging (Figure 4G). In particular, the degree of mRNA changes
is the most obvious between JLY1212 vs. Mock and LLY534 vs.
Mock after artificial aging (Figure 4H), which is consistent with
the lowest germination rate of JLY1212 after aging. These results

indicated that there are certain differences in the transcription
levels between HL and LL rice varieties after aging.

Comparison of Gene Ontology Terms in
Higher Longevity and Lower Longevity
Rice Varieties After Natural Aging
To further analyze the difference in biological pathways between
HL and LL rice varieties, we compared the Gene Ontology
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FIGURE 4 | Comparison of significantly differentially expressed genes between four rice varieties with natural and artificial aging. (A,B) Venn diagram depicting the
overlap of significant transcript differences (| log2FC| > 1 and p < 0.05) between NX32 and YZX (A) and between LLY534 and JLY1212 (B) under natural aging
conditions. (C,D) Venn diagram depicting the overlap of significant transcript differences (| log2FC| > 1 and p < 0.05) between NX32 and YZX (C) and between
LLY534 and JLY1212 (D) under artificial aging conditions. (E,F) Heatmap of differentially expressed genes in conventional varieties NX32 and YZX (E) and in hybrid
varieties JLY1212 and LLY534 (F) when comparing natural aging with mock aging. Blue–red represents mRNA expression levels, and black–white represents the
p-value of the expression level of the transcripts. If the p-value is less than 0.05, it is black; otherwise, it is white. (G,H) Heatmap of differentially expressed genes in
conventional varieties NX32 and YZX (G) and in hybrid varieties JLY1212 and LLY534 (H) when comparing artificial aging with mock aging. Blue–red represents
mRNA expression levels, and black–white represents the p-value of the expression level of the transcripts. If the p-value is less than 0.05, it is black; otherwise, it is
white.

(GO) terms for DEGs in HL and LL rice varieties under
different aging conditions. In conventional rice varieties, GO
analysis showed that DEGs in NX32 after natural aging were
involved in lipid storage, seed oil body biogenesis, negative
regulation of the seed dormancy process, release of seeds
from dormancy and positive regulation of seed germination.
In addition, GO terms related to stress hormones were also
enriched, such as response to positive regulation of the gibberellic
acid-mediated signaling pathway (Figure 5A). Moreover, DEGs
in YZX after natural aging functioned in seed maturation,
cellular response to abscisic acid stimulus, response to abscisic
acid, seed germination, cellular water homeostasis and response
to desiccation (Figure 5B), especially the enrichment of seed
maturation and cellular response to abscisic acid stimulus. The
DEGs of the two conventional rice varieties after aging were
mostly related to the processes of seed vigor, dormancy, and
germination. Besides, there were also certain differences, the most
enriched GO terms of the YZX variety were seed maturation
and cellular response to abscisic acid stimulus (Figure 5B),
while lipid storage and seed oil body biogenesis was enriched
in NX32 (Figure 5A). In hybrid rice varieties, GO term analysis
showed that DEGs in LLY534 after natural aging for 1 year were
involved in translation, ribosome biogenesis, response to abscisic
acid and seed germination (Figure 5C). However, DEGs in
JLY1212 after natural aging for 1 year functioned in cytoplasmic
translation, regulation of seed dormancy process, lipid storage

and negative regulation of gibberellic acid mediated signaling
pathway (Figure 5D). Similarly, the main signaling pathways
enriched in LLY534 and JLY1212 also showed certain differences,
which also coincided with the greater difference between the
DEGs in the HL and LL varieties. In summary, the main enriched
biological pathways of HL and LL rice varieties after 1 year of
aging have certain differences, which may be one of the reasons
for the difference in seed longevity.

Analysis of the Specific Long-Lived
RNAs for Seed Longevity
Previously, it has been reported that the stability of embryonic
RNAs required for germination is related to seed longevity
(Saighani et al., 2021). These long-lived mRNAs play important
roles in the process of protein synthesis during the initial phase
of seed germination. Because most transcripts were degraded
during aging, we selected transcripts that were down regulated
in HL varieties but had a slower degradation rate than that of
LL varieties [log2FC HL < 0 and log2FC LL < 0 and (log2FC
HL-log2FC LL) > 0] as the long-lived mRNAs (p < 0.05 for
HL or LL) (Figures 6A,B). By two-way ANOVA, we screened
out these special long-lived mRNAs that degrade significantly
slower (p < 0.05 for the changes during the aging between HL
and LL) in HL varieties than in LL varieties. In conventional
rice, 174 long-lived mRNAs were identified in NX32 v.s. YZX
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FIGURE 5 | Gene Ontology (GO) enrichment of genes with significant expression changes after natural aging treatment compared with mock treatment in four rice
varieties. (A–D) GO terms of NX32 (A), YZX (B), LLY534 (C) and JLY1212 (D) after natural aging. The y-axis represents the functional subcategory, and the x-axis
represents the value of the −log10(p-value), which indicates the significance level.

after natural aging (Figure 6B and Supplementary Table 3). In
hybrid rice, 305 long-lived mRNAs were identified in LLY534
v.s. JLY1212 after natural aging (Figure 6B and Supplementary
Table 3). The degradation rate of these long-lived mRNAs is
slower after aging in HL varieties, and the degradation rate
of these long-lived mRNAs is more rapid after aging in LL
varieties. To identify more reliable long-lived mRNAs that
participate in the regulation of seed vigor in both conventional
rice and hybrid rice, we used Venn analysis to identify the
overlapping genes in the NX32 v.s. YZX and LLY534 v.s.
JLY1212 comparisons (Supplementary Figures 1A,B) and 14
overlapping genes were identified under natural aging conditions
(Figures 6C,D, Supplementary Figure 2, and Supplementary
Table 5). Of them, GID1 (LOC_Os05g33730) is gibberellin
receptor, indicating that the GA pathway may be related to
seed vitality. In addition, LOC_Os04g33460, a starch branching
enzyme IIa (OsBEIIa), was also identified. Further, we analyzed
the expression of GID1 and OsBEIIa in HL and LL varieties
seeds with or without natural aging using qPCR. The results
were consistent with the RNA-seq data (Figure 6E), indicating
the reliability of the RNA-seq data. In addition, in conventional
rice, 168 long-lived mRNAs were identified in NX32 v.s.
YZX after artificial aging (Supplementary Figure 1B and
Supplementary Table 3). In hybrid rice, 210 long-lived mRNAs
were identified in LLY534 v.s. JLY1212 after artificial aging
(Supplementary Figure 1B and Supplementary Table 3). One
overlapping genes (LOC_Os02g10180) was identified in the
comparison of NX32 vs. YZX and LLY534 v.s. JLY1212 after
artificial aging. And only a few genes overlapped between

artificial aging and natural aging in NX32 v.s. YZX or LLY534
v.s. JLY1212 comparisons (Supplementary Figure 1A). Since
the number of overlapping long-lived mRNA identified under
naturing aging is more abundant, we used them in the follow-
up analysis.

It has been suggested that the mRNA stored in the mature seed
is related to the ribonucleic acid protein complex, indicating that
they are translated during seed germination. It has identified a
conserved motif, GAAGAAGAA, which is significantly enriched
at the 5′UTR and present at low levels in general seed ribosome-
associated transcripts (Bueso et al., 2013). However, we did not
find this motif enriched in the 14 overlapping long-lived mRNA.
We analyzed whether these 14 overlapping long-lived mRNAs
have similar sequence features in the promoter, 5′UTR or 3′UTR.
It showed that three repeats of the sequence GGCGGCGGC
was enriched in the promoter (p = 1.3E-3, percentage = 83.3%,
background percentage = 51.3%; Supplementary Figure 3 and
Supplementary Table 6). In addition, this cis-element was
recognized by the AP2/EREBP transcription factors family
(Castro-Mondragon et al., 2022). The AP2/DREBP transcription
factor family plays a crucial role in seed development, seed
storage metabolism and seed longevity (Okamuro et al., 1997;
Cernac and Benning, 2004; Pereira Lima et al., 2017). The mRNA
expression levels of AP2/EREBP transcription factor members in
naturing aging were analyzed and their DEGs data were used
to build a possible transcriptional regulation pathway on rice
longevity regulation mediated by AP2/EREBPs (Supplementary
Figures 4A–D). In summary, we identified 14 specific long-
lived mRNAs that might be important to seed longevity. The
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FIGURE 6 | Heatmap analysis of long-lived mRNAs in HL and LL varieties. (A) Figure showing the log2FC in NX32, YZX, LLY534, and JLY1212 when comparing
natural aging with mock treatment (p < 0.05). The orange dots represent the specific long-lived mRNA. NA represent natural aging. (B) Heatmap of specific
long-lived mRNAs that degrade significantly slower in HL varieties NX32 and LLY534 than in LL varieties YZX and JLY1212 when comparing naturing aging with
mock treatment (p < 0.05). (C) Venn diagram depicting the overlap of specific long-lived mRNAs that degrade significantly slower in HL varieties than in LL varieties
(p < 0.05) between NX32 vs. YZX and LLY534 vs. JLY1212 under natural and artificial aging conditions. (D) Heatmap of overlapping specific long-lived mRNAs that
degrade significantly slower in HL varieties than in LL varieties (p < 0.05) between conventional rice varieties (NX32 and YZX) and hybrid rice varieties (LLY534 and
JLY1212) under natural aging conditions. NA represents natural aging. Black–white represents the p-value of the changes during the aging between HL and LL.
(E) qRT-PCR analysis of GID1 and OsBEIIa expression in NX32 and YZX with or without natural aging. OsACTIN was used as the internal control. The data are
presented as the mean ± SD (n = 3) (n.s., not significant; *P < 0.05, **P < 0.01, one-way ANOVA with Tukey’s test).

gibberellin receptor gene GID1 suggested that is GA pathway may
be involved in seed vigor.

DISCUSSION

Long-lived mRNAs are very important for seed vigor, and their
degradation has been detected alongside viability loss in seeds
(Fleming et al., 2018). It has been reported that RNA is more
vulnerable to oxidation by ROS than DNA due to its single-
strandedness (Kong and Lin, 2010), the oxidation of mRNA is not
random but selective (Bazin et al., 2011), and damaged mRNA
cannot be translated, which will lead to a loss of seed longevity.
Dry seeds often serve as the final point of seed development or the
initial step in the seed germination series during transcriptomic
analysis (Bai et al., 2017; Pereira Lima et al., 2017). It lacks
of study on the changes in the transcriptome during seed
storage and the identification of specific mRNAs associated with
longevity. In this study, we firstly identified 2 HL rice varieties and
2 LL rice varieties by screening 14 rice varieties (7 conventional
and 7 hybrid varieties) with artificial aging, and analyzed the

effect of artificial and natural aging on transcriptional events.
We found that most gene expression changes in the HL and
LL varieties under natural and artificial aging were correlated,
indicating that artificial and natural aging have similar effects
on transcription events. In addition, our results suggested that
the degradation of some transcripts occurred specifically during
aging, which is consistent with the highly selective nature of RNA
oxidation, as some mRNAs are more susceptible to oxidative
damage or targeted oxidation (Shan et al., 2003; Chang et al.,
2008; Bazin et al., 2011). However, this result differs from a
previous result showing that transcripts were degraded non-
specifically (Fleming et al., 2018). Previous studies have shown
that artificial aging (CDT method) and natural aging have similar
effects at the level of protein abundance changes (Rajjou et al.,
2008). However, the similarity between CDT and artificial aging
during seed longevity is controversial (Nguyen et al., 2012; Buijs
et al., 2018, 2020), as different QTLs are involved in seed longevity
depending on the seed aging protocol used (Nagel et al., 2011,
2015; Arif et al., 2017). Different aging methods have different
main effects on seeds, which might be one of the reasons for this
controversy. Changsha has a subtropical monsoon climate, the air
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is humid all year, and the temperature in summer is higher than
that during the rest of the year; thus, natural aging occurs under
conditions of high humidity, which may be one of the reasons
why the transcriptomes are similar under both natural aging and
artificial aging (high temperature and high humidity). Therefore,
the artificial aging method in this research could mimic the
natural aging method in high-humidity areas. Moreover, we
found RNA is much more prone to oxidative modifications
than DNA, even during anhydrobiosis, which would lead to the
abundance of oxidized transcripts changing during the after-
ripening dry period (Bazin et al., 2011). During rice seed storage,
the embryo still has a certain level of activity due to the high
humidity in the environment, which leads to the expression of
genes related to DNA repair or RNA processing. These might the
reason that some mRNAs increased after aging.

During seed maturation, long-lived mRNAs required for the
initial stage of germination are synthesized and then stored
in the seeds until they are required. Long-lived mRNA will
be degraded in the process of seed storage, which inevitably
affects the reduction of seed vigor. To identify the long-lived
mRNAs that play an important role in seed vigor, we mainly
compared the DEGs in HL and LL varieties after natural aging.
The heatmap of HL and LL varieties showed that there were
certain differences in the expression of some genes in these
varieties after aging, and this difference was more obvious
in JLY1212 under artificial aging, which might indicate that
JLY1212 was more intolerant to storage. At the same time, there
were some differences in the GO term enrichment of the HL
and LL varieties after natural aging, especially regarding seed
maturation, seed dormancy and lipid storage. The degree of
enrichment of signaling pathways, such as response to ABA,
response to salicylic acid and regulation of GA, also differs
between HL and LL varieties; these pathways are associated
with seed vigor (Zhao et al., 2021). In addition, we identified
14 special long-lived mRNAs, and their expression levels were
significantly different in HL and LL varieties after aging. A motif
involved in the initial process of seed germination was enriched
in the promoter of GID1. It has been reported that gibberellin
can promote seed germination (Yamaguchi and Kamiya, 2001),
and gibberellin has an inhibitory effect on seed deterioration
(Bueso et al., 2016); seeds treated with GA are more tolerant
to aging. The GA 20-oxidase (AtGA20ox) and GA 3-oxidase
(AtGA3ox) catalyzed successive steps in the synthesis of bioactive
GAs, which had highly lower transcript levels in AtGID1-
overexpressing plants than in wild-type plants. Overexpression
of AtGID1 increased the sensitivity of Arabidopsis to GA
(Ju et al., 2018), suggesting a potential role of GID1 in
seed longevity. In addition, three AtGID1 receptors have
partially specialized functions in seed germination in Arabidopsis,
AtGID1c play positive regulator of seed germination, whereas
AtGID1b negatively regulate germination in dormant seeds in
the dark (Ge and Steber, 2018). There are several putative
GA receptor genes in rice (Miao et al., 2019), therefore,
different GID1 homologous genes may play different roles in
rice seed longevity. The search for genes in the GA signaling
network may be important for the study of seed longevity
(Bueso et al., 2014).

ABA is the other major phytohormones in seed development
and seed vigor regulations. It reported that OsHIPL1 protein
may modulate endogenous ABA levels and altering OsABIs
expression and interacts directly with OsPIP1;1 to affect seed
vigor in rice (He et al., 2022), we analyzed the expression
of OsHIPL1 and OsPIP1;1 in the HL and LL varieties
(Supplementary Figures 5A,B), unfortunately, their expression
levels have no difference between two varieties, suggesting the
differences between the reverse genetic method and the forward
genetic method (e.g., transcriptomic analysis). We also identified
several long-lived mRNAs with unknown functions, which might
be the missed or omitted regulators in rice longevity. The
identification of specific long-lived mRNAs in seeds would help to
design genetic approaches for using mutants of these mRNAs to
understand the mechanisms of genes involved in seed storability
regulation in the future. Further work will validate the role of the
characterized genes in seed longevity and explore the mechanism
by which they are regulated by transcription factor AP2/EREBP.
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Metabolic composition can have potential impact on several vital agronomic traits,
and metabolomics, which represents the bioactive compounds in plant tissues, is
widely considered as a powerful approach for linking phenotype–genotype interactions.
However, metabolites related to cane traits such as sugar content, rind color,
and texture differences in different sugarcane cultivars using metabolome integrated
with transcriptome remain largely inconclusive. In this study, metabolome integrated
with transcriptome analyses were performed to identify and quantify metabolites
composition, and have better insight into the molecular mechanisms underpinning
the different cane traits, namely, brix, rind color, and textures in the stems (S) and
leaves (L) of sugarcane varieties FN41 and 165402. We also identified metabolites
and associated genes in the phenylpropanoid and flavonoid biosynthesis pathways,
starch and sucrose metabolism. A total of 512 metabolites from 11 classes, with the
vast majority (122) belonging to flavonoids were identified. Moreover, the relatively high
amount of D-fructose 6-p, D-glucose6-p and glucose1-p detected in FN41L may have
been transported and distributed by source and sink of the cane, and a majority of
them reached the stem of sugarcane FN41L, thereby promoting the high accumulation
of sugar in FN41S. Observations also revealed that genes such as C4H, CHS, F3H,
F3’H, DFR, and FG2 in phenylpropanoid and flavonoid biosynthesis pathways were the
major factors impacting the rind color and contrasting texture of FN41 and 165204.
Further analysis revealed that weighted gene co-expression network analysis (WGCNA)
hub genes and six transcription factors, namely, Tify and NAC, MYB-related, C2C2-
Dof, WRKY, and bHLH play a key role in phenylpropanoid biosynthesis, flavone and
flavonol biosynthesis, starch and sucrose metabolism. Additionally, metabolites such
as L-phenylalanine, tyrosine, sinapaldehyde, pinobanksin, kaempferin, and nictoflorin
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were the potential drivers of phenotypic differences. Our finding also demonstrated that
genes and metabolites in the starch and sucrose metabolism had a significant effect
on cane sugar content. Overall, this study provided valuable insight into the molecular
mechanisms underpinning high sugar accumulation and rind color in sugarcane, which
we believe is important for future sugarcane breeding programs and the selection of
high biomass varieties.

Keywords: sugarcane, metabolome and transcriptome, flavonoids, sugar metabolism, WGCNA

INTRODUCTION

Sugarcane (Saccharum spp.) is a perennial C4 Graminaceous
plant mainly cultivated in tropical and subtropical areas. It is
widely known as a main sugar and biofuel feedstock crop that
accounts for about 80% of global sugar production and 40% of
ethanol production (Zhang et al., 2018). A number of studies
have shown that a large quantity of sucrose is stored in the
sugarcane stem, accounting for about 650 mM per kg (Welbaum
and Meinzer, 1990). Furthermore, it has been reported that the
quality of cane cultivar is contingent upon various conditions
such as rind hardness, sucrose percent in juice and purity. High
sugar content is one of the main objectives of sugarcane breeding,
and increasing sugar content is economically important for the
development of the sugarcane industry (Thirugnanasambandam
et al., 2017). Bearing in mind the increasing demand for sugar
by the world growing population, it is essential to produce
cultivars with high sugar content. Cane varieties are known to
have a close association with sugar yield and its yield-related
parameters, namely, brix, stalk diameter, stalk weight, stalk
number, stalk height, and fiber (Mancini et al., 2012). The vast
majority of sugar-related agronomic traits such as HR brix,
sucrose percent, number of green leaves, leaf area and internode
length have demonstrated a significant relationship with rind
hardness (Babu et al., 2009). The mechanisms underpinning
sucrose accumulation have been investigated at various levels
including identifying and characterizing individual metabolites
(Glassop et al., 2007; Lin et al., 2022), transcriptome (Aitken
et al., 2006), and genes in the sucrose pathway and movement
of sucrose within plants (Moore, 2005), localization of genes (Rae
et al., 2005), genomic maps advancement and quantitative trait
loci localization (Casu et al., 2007).

In general, plants have developed different mechanisms to
adapt to changing environmental conditions, for instance, the
development of foliar trichomes, glandular hairs and a wax
layer, and the production of metabolites (Granados-Sánchez
et al., 2008). Previous studies showed that secondary metabolites
including flavonoids, terpenoids, phenolics, proanthocyanidins,
carotenoids, etc., are antioxidant agents (Rao et al., 2019), they
also inhibit and deters oviposition and feeding. These metabolites

Abbreviations: PAL, phenylalanine ammonia lyase; PTAL,
phenylalanine/tyrosine ammonia-lyase; C4H, cinnamate4-hydroxylase; 4CL,
4-coumarate CoA ligase; HCT, hydroxycinnamoyl CoA shikimate/quinate
hydroxycinnamoyl transferase; C3H, P-coumarate 3-hydroxylase; COMT, caffeic
acid O-methyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CHI,
chalcone isomerase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol
dehydrogenase; F5H, ferulate5-hydroxylase; F3’5’H, flavonoid 3’,5’-hydroxylase;
POD, peroxidase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase.

can also protect plants against predators and pathogens (Ikonen
et al., 2001), impede insect growth, attract pollinators (Agati
and Tattini, 2010), and act as allelopathic agents (Sarker and
Oba, 2018). Moreover, metabolites play crucial roles in protecting
plant against fungi, bacteria, and viruses (Sun et al., 2008),
and protect against ultraviolet radiation and high light (Rao
et al., 2019). They can, besides, have potential impacts on other
aspects of plant growth, development, and nutritional quality
that are important in sugarcane production as well as different
species and differ among plants of the same species, between
diverse plant tissues (e.g., new and mature leaves, root, stem,
fruit, etc.) (Rao et al., 2021). Therefore, metabolites provide
immense potential in molecular breeding program. To sum up,
it is of essence to investigate metabolites and their fundamental
regulatory mechanisms from a more macroscopic standpoint
such as metabolome.

Many thanks to the development of a high-throughput
metabolite identification tool for sugarcane (Schaker et al.,
2017), and the identification and quantification of all metabolites
in biological samples (Patti et al., 2012). For instance, the
metabolomics tool was employed to compare and quantify
metabolites and their antioxidant activities in young and mature
leaves of 12 different sugarcane varieties. It was revealed that
the mature leaves of sugarcane varieties Taitang172 and ROC22
contained a significant amount of flavonoid, and these varieties
exhibited high antioxidant activities among the 12 sugarcane
varieties (Rao et al., 2021). In related study, Chen et al. (2018)
detected 68 metabolites belonging to 11 metabolite classes, which
varied considerably among the different tissues of Tieguanyin
Tea cultivar using untargeted metabolomics. Wijma et al. (2021)
also identified a high quantity of biosynthesis of secondary
metabolites, amino acid metabolism, xenobiotics biodegradation
and metabolism in different tissues of sugarcane. In sugarcane
plants, several studies have been conducted using metabolomic
analysis to study different biological problems. For instance, a
previous study identified co-expression and specific metabolites
associated with metabolic pathways correlated with Brix and
fiber content using metabolite profiling (Perlo et al., 2020). In
another study, targeted metabolomics tool was also employed
to quantify 16 phenolamide and 90 flavonoid metabolites in
the seedlings of different rice tissues (Dong et al., 2015).
However, most of these previous studies only focused on
metabolomics tool to investigate metabolites in different tissues
of the plant. Whereas the integration of metabolomics with
transcriptomics to investigate the different bioactive compounds
and different potential transcriptional regulations in sugarcane,
which is essential in tracking the changes of metabolites and
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their corresponding regulatory genes within specific cane tissues
remains largely inconclusive.

Recently, metabolomics integrated with transcriptomics has
been widely used to investigate the metabolites and related genes
involved in biological pathways such as color variation and
quality formation in many plants. For example, a combined
transcriptomic and metabolomic analyses were adopted to
identify the carbohydrate and organic acid metabolism genes
associated with brix in of two types of tomato fruits. The
study revealed that L-malic acid, citric acid, and genes involved
in CHO metabolism were significantly associated with sugar
content in tomato fruits (Li et al., 2021). Moreover, integrated
transcriptome and metabolome tools were used to establish a
global map of metabolite accumulation and gene regulation
during fruit development in wild and cultivated watermelons
(Gong et al., 2021). The analysis of metabolite and transcriptome
profiles during the storage of two peach cultivars revealed the
molecular mechanisms underlying different fruit textures in
peach (Wang et al., 2018). Metabolic and proteomic analyses
were also employed to identify potential proteins and pathways
involved in sugarcane resistance (Wang et al., 2020). A previous
study identified seven candidate genes involved in anthocyanin
biosynthesis by transcriptomic and metabolomic analyses in
three sugarcane cultivars of different colors. These authors
identified some candidate genes associated with anthocyanin
biosynthesis using transcriptomic and metabolomic analyses.
They also found key flavonoids and anthocyanins that caused
color difference, and the key candidate genes that regulated these
metabolites (Ni et al., 2021). However, metabolites related to cane
traits such as sugar content, rind color, and texture differences in
different sugarcane cultivars using metabolome integrated with
transcriptome remain largely elusive.

In the present study, we employed integrated metabolomic
and transcriptomic analyses to detect and quantify the
composition of metabolites in two distinct sugarcane cultivars
(165204 and FN41), and to beer understand their relationship
with cane traits such as sugar content, rind color, and texture.
This study also aimed at identifying metabolites and associated
genes in the phenylpropanoid and flavonoid biosynthesis
pathways, and starch and sucrose metabolism. The results from
this study will offer new insights on sugarcane stem growth and
sugar accumulation and provide a theoretical basis for further
research such as the validation of gene function and the genetic
improvement of sugarcane cultivars.

MATERIALS AND METHODS

Plant Materials and Growth Condition
Two sugarcane cultivars (“165204” and “FN41”) were cultivated
in a randomized field plot according to standard agricultural
practices in a field at the Baisha Town, Fuzhou City, Fujian
Province, China (E 119◦14’, N 26◦16’) in 2019. The region
has a subtropical monsoon climate with an altitude of
123 m, an average annual temperature of 17–20◦ and an
annual rainfall of 1,200–2,100 mm. The site was previously
used for sugarcane monoculture cropping system using a

conventional approach. The following basic soil properties were
measured: OM = 28.73 g/kg, total nitrogen (TN) = 1.22 g/kg,
total phosphorus (TP) = 0.71 g/kg, and total potassium
(TK) = 9.19 g/kg, this environment is suitable for sugarcane
growth. The sugarcane cv. 165204 cultivated contained a green
rind with a brittle texture, while cv. FN41 consisted of a purple
rind with a hard texture. The treatments included (i) sugarcane
monoculture with 165204 and (ii) sugarcane monoculture with
FN41. Two varieties of sugarcane were cultivated on March 7,
2019, after the soil was plowed (40 cm depth) using rotary tillage.
Sugarcane monoculture was cultivated with a line spacing of 1.2
and a planting density of 85,000 buds/hm2. The experiment was
set in a randomized block design with two treatments and three
replicates constituting a total of six plots, with each covering
an area of 144.0 m2 (24.0 × 6.0 m). All plots were fertilized
with the traditional local fertilizer application of 250 kg/hm2

of urea, 100 kg/hm2 of K2O, and 450 kg/hm2 of calcium
superphosphate per season. Forty and sixty percent of the total
fertilizer application were applied at the seedling and elongation
stages of sugarcane, respectively. Sugarcane agronomic traits were
investigated at the sugarcane maturation stage on 2 January 2020.
The fresh stems and leaves of the two sugarcane varieties were
collected on the same day, specifically, the cane stems of the
seventh (middle) node of sugarcane, and the first fully expanded
leaf of sugarcane as the material. Three biological replicates were
collected for each tissue (stems and leaves) in two sugarcane
cultivars (165204 and FN41), and a total of 12 samples were
collected. “FN41L” and “165204L” represent the leaf tissues, while
“FN41S” and “165204S” represent the stem tissues of sugarcane
varieties FN41 and 165204, respectively. All the flesh samples
were washed with DEPC water and 75% ethanol, wrapped in tin
foil and labeled, then immediately placed in liquid nitrogen and
stored at –80◦C until further analysis.

Analysis of the Properties of Sugarcane
To measure the stalk diameter and height of the plants, 30
sugarcane plants were randomly selected from each bed and
measured with a tape and Vernier caliper. Extech Portable
Sucrose Brix Refractometer (Mid-State Instruments, San Luis
Obispo, CA, United States) was used to determine sucrose
content and calculated through using the formula: sucrose
(%) = Brix (%) × 1.0825 – 7.703. To understand the brittleness
and stiffness of the stems of two sugarcane cultivars, we
determined the mechanical properties of sugarcane stems by
the method of testing in tensile strength perpendicular to the
grain of wood. The tensile strength was measured according
to the standard GB/T14017-2009. The cane stems of FN41
and 165204 cut into dumbbell shape and were tested using
the UTM4304X electronic universal testing machine with a jig
adapted to the tensile strength of sugarcane (model: JDSB104B).
Test operation steps: In brief, we applied tensile force at a
uniform speed along the main stem of sugarcane through the
jig of the testing machine in the direction of the main stem
until the stem was destructed (Supplementary Figure 1), and the
tensile strength of sugarcane was calculated by adopting Elastic
modulus (E) = (F/S)× (dL/L)−1. F represents the tensile strength,
S stands the cross-sectional area of the sugarcane, dL denotes
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the elongation of the sugarcane, while L represents the original
length of the sugarcane. The elastic modulus can be regarded
as an indicator of the ease of producing elastic deformation of
a material. The larger the value, the greater the stiffness of the
material; the smaller the value, the more brittle the material.

Sample Preparation and Extraction for
Metabolomic Analysis
Firstly, the plant samples were freeze-dried in a lyophilizer
(Scientz-100F, Ningbo, China), then ground to powder using
a grinding instrument (MM 400, Retsch) for 1.5 min. Next,
100 mg of the powder was weighed and dissolved in 1.2 ml of
70% methanol extraction solution. Then, the dissolved samples
were placed in a refrigerator at 4◦C overnight and vortexed six
times to improve the extraction rate. After overnight incubation,
the mixture was centrifuged at 10,000 g for 10 min and the
supernatant was filtered with a microporous membrane (SCAA-
104, 0.22 µm pore size; ANPEL, Shanghai, China). The samples
were stored in a sample injection bottle for UPLC-MS/MS
analysis. Finally, a quality-control sample (mix) was prepared by
mixing an equal amount of all samples to monitor the stability of
the analytical conditions for assay analysis.

Ultra Performance Liquid
Chromatography and ESI-Q
TRAP-MS/MS Conditions
Metabolite profiling was performed using an UPLC-ESI-MS/MS
system [UPLC (Ultra Performance Liquid Chromatography),
Shim-pack UFLC SHIMADZU CBM30A system1; MS/MS
(Tandem mass spectrometry), Applied Biosystems 6500 Q
TRAP]. The analytical conditions were as follow, UPLC:
column, Waters ACQUITY UPLC HSS T3 C18 (1.8 µm,
2.1 mm∗100 mm). The mobile phase consisted of solvent A,
pure water with 0.04% acetic acid, and solvent B, acetonitrile
with 0.04% acetic acid. Sample measurements were performed
with a gradient program with the starting conditions of 95% A,
5% B. Within 10 min, a linear gradient to 5% A, 95% B was
programmed, and a composition of 5% A, 95% B was kept for
1 min. Subsequently, a composition of 95% A and 5.0% B were
adjusted within 0.10 min and kept for 2.9 min. The column
oven was set to 40◦C and volume of 2 µl. The effluent was
alternatively connected to an ESI-triple quadrupole-linear ion
trap (Q TRAP)-MS.

Linear ion trap (LIT) and triple quadrupole (QQQ) scans
were acquired on a triple quadrupole-linear ion trap mass
spectrometer (Q TRAP), API 6500 Q TRAP UPLC/MS/MS
System, equipped with an ESI Turbo Ion-Spray interface,
operating in positive and negative ion mode and controlled by
Analyst 1.6.3 software (AB Sciex). The ESI source operation
parameters were as follow: ion source, turbo spray; source
temperature 550◦C; ion spray voltage (IS) 5500 V (positive
ion mode)/-4500 V (negative ion mode); ion source gas I
(GSI), gas II(GSII) and curtain gas (CUR) were set at 50, 60,
and 30.0 psi with a high collision gas (CAD), respectively.

1https://www.shimadzu.com.cn/

Instrument tuning and mass calibration were performed with
10 and 100 µmol/L polypropylene glycol solutions in QQQ and
LIT modes, respectively. QQQ scans were acquired as MRM
experiments with collision gas (nitrogen) set to 5 psi. DP and
CE for individual MRM transitions were done with further
DP and CE optimization. A specific set of MRM transitions
were monitored accordingly for each period according to the
metabolites eluted (Fraga et al., 2010).

Metabolite Quantification and Data
Analysis
Qualitative analysis of metabolites was performed according
to the secondary spectrum information based on the self-
built Metware Database (MWDB) of Metware Biotechnology
Co., Ltd. (Wuhan, China) and other public databases of
metabolite information including MassBank2, KNAPSAcK3,
HMDB4, and METLIN5 (Zhu et al., 2013). Metabolite
quantification was carried out with data acquired in the
multiple reaction monitoring (MRM) mode of QQQ mass
spectrometry. Mass spectrometry data were then analyzed
and quantified using Analyst software v1.6.3 and Multiquant
Software v3.0.2.

The data of metabolites profiling were pre-processed using
unit variance (UV) scaling before multivariate analysis. Principal
component analysis (PCA) was executed using the prcomp
function in R software (version 3.0.3). Pearson’s correlation
coefficient between samples was calculated in R using the cor
function. Hierarchical cluster analysis (HCA) was performed
using R package pheatmap based on the Euclidean distance
coefficient. Further, orthogonal signal correction and Partial
Least Squares-Discriminant Analysis (OPLS-DA) were executed
after log2 transformation and Mean Centering of raw data by
the MetaboAnalyst package in R software. The differentially
expressed metabolites were screened based on OPLS-DA analysis
by the following criteria: (1) Metabolites with fold change ≥ 2
or fold change ≤ 0.5; (2) Based on the above, the metabolites
with VIP (variable importance in project) ≥ 1 were selected.
We conducted a combine analysis between the metabolome
and transcriptome datasets, the mean of all biological replicates
of differential metabolites in the metabolome data and the
mean value of expression of differential transcripts in the
transcriptome data were examined. Later, we transformed the
log2 datasets using the ‘cor’ package from the R software6. The
Pearson correlation (r) was then employed between metabolites
and transcripts in phenylpropanoid and flavonoid biosynthesis
pathway, followed by starch and sucrose metabolism pathway was
represented by network diagrams, and the genes and metabolites
were selected when R2 > 0.8 (Cho et al., 2016). Metabolome and
transcriptome relationships were visualized using the Cytoscape
software version 3.6.1 (Su et al., 2014).

2http://www.massbank.jp/
3http://kanaya.naist.jp/KNApSAcK/
4http://www.hmdb.ca/
5http://metlin.scripps.edu/index.php
6www.r-project.org/
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Transcriptome Sequencing and Data
Analysis
Total RNA was extracted from sugarcane samples using TRIzol
reagent (Invitrogen, CA, United States) according to the
manufacturer’s instructions. The isolated RNA was further
treated with RNase-Free DNase (Promega, Madison, WI, United
States) to remove possible genomic DNA. Qubit 2.0 fluorometer
(Life Technologies, Carlsbad, CA, United States) and Agilent
Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA, United
States) were used to estimate the concentration and purification
of the RNA, and its quality was confirmed using 1% agarose gel
electrophoresis. High-quality RNA was used for further library
construction. Library construction, library clustering and high-
throughput sequencing were carried out by adopting Metware
Biotechnology Co., Ltd (Wuhan, China) with an Illumina
HiSeqTM 2500 platform (Illumina Inc., San Diego, CA, United
States). Subsequently, the clean reads were obtained by removing
the adaptors, reads with N greater than 10%, and whose base
number with low-quality bases (Q < 20) were greater than 50%.
The error rate, Q20, Q30, and GC content of the clean data
were recorded to evaluate the RNA-seq quality. The raw RNA-
seq read data were deposited in the Short Read Archive7 and can
be accessed using the BioProject ID: PRJNA805530.

The clean reads were mapped to the reference sugarcane
genome sequence using HISAT2 v2.1.0. Novel genes and
transcripts were also predicted using StringTie v1.3.3b (Pertea
et al., 2016). Subsequently, the gene expression levels of the
samples were estimated as fragments per kilobase of exon model
per million mapped fragments (FPKM) using featureCounts
v1.6.1 (Liao et al., 2014). The differentially expressed genes
(DEGs) were identified using DESeq2 v1.22.2 with | log2Fold
Change| ≥ 1 and false discovery rate (FDR) < 0.05.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway functional enrichment analyses
were performed via the Gene Ontology Database and KEGG
Database8, respectively (Ashburner et al., 2000; Kanehisa et al.,
2004). Fisher’s exact test was used to select the significant
GO categories and KEGG pathways with the threshold of
FDR < 0.05. Besides, we also annotated gene functions based
on the following databases: NR (NCBI non-redundant protein
sequences), KOG (euKaryotic Orthologous Groups) (Koonin
et al., 2004), COG (Clusters of Orthologous Groups of proteins)
(Tatusov et al., 2000), Pfam (Protein family) (Finn et al., 2014),
Trembl (Translated EMBL Nucleotide Sequence Data Library)
and Swiss-Prot (a manually annotated and reviewed protein
sequence database) (Apweiler et al., 2004) with the BLAST
program (Evalue ≤ 1e-5) (Altschul et al., 1997). Transcription
factors (TFs) among the DEGs were predicted using iTAK online
program9. Alternative splicing (AS) events were detected using
rMATS v4.0.2. The SNP (Single Nucleotide Polymorphism) and
indel (Insertion-Deletion) variants were called using GATK v3.8
and then annotated using ANNOVAR10.

7http://www.ncbi.nlm.nih.gov/sra/
8https://www.genome.jp/kegg
9http://itak.feilab.net/cgi-bin/itak/index.cgi
10http://www.openbioinformatics.org/annovar/

Co-expression Analysis
We used R package WGCNA (Langfelder and Horvath, 2008) to
construct the gene co-expression network, and the genes with
average gene expression greater than 10 were selected. After
filtering, we obtained a total of 15,652 genes to construct the
module. Some parameters are as follows: the soft thresholding
power of the correlation network was set at 20, the deepSplit
value was 2, the minimum gene module size was equal to
100, and the modules whose distance was less than 0.15 were
merged and the total of 20 modules were generated. Later,
Pearson correlation analysis showed that the module was co-
expressed with the abundance of 24 metabolites related to
phenylpropanoid biosynthesis (ko00940), flavonoid biosynthesis
(ko00941), flavone and flavonol biosynthesis (ko00944), and
starch and sucrose metabolism (ko00500). Finally, Cytoscape
3.6.1 was used to visualize the core genes in the core co-
expression module (Kohl et al., 2011).

Quantitative RT-PCR Validation
The expression level of genes was validated using Quantitative
RT-PCR (qRT-PCR) according to the instructions of TransStart

R©

Top Green qPCR SuperMix (Transgen Biotech, Beijing, China).
A total of 26 genes were selected and verified using qRT-PCR.
The Gene-specific primers for qRT-PCR were designed with
NCBI primer-blast tool11 and listed in Supplementary Table 1.
The RNA samples used for qRT-PCR analysis were aliquots
of the samples used in the RNA-seq experiments. Each qPCR
reaction was performed using three biological replicates and
three technical replicates. The PCR reaction conditions were as
follows: 95◦; for 10 min followed by 40 cycles of 95◦ for 30 s
and 60◦ for 1 min. Reactions were performed using an Applied
Biosystems 7500 Real-Time PCR system. The actin gene was used
as the internal reference gene for normalization of expression,
and relative expression was calculated using the delta-delta Ct
method (2−MMCt method).

RESULTS

Phenotype and Quality Traits Description
of “FN41” and “165204”
Sugar content and texture of sugarcane are some of the most
important indexes of sugarcane quality and have some significant
relationship. Sugarcane with harder texture tend to produce
more and sweeter sugar content, which are ideal for sugarcane
squeezing, thus significantly reducing the production cost of
sucrose and providing huge economic benefits for the sugar
industries. On the other hand, the color difference of sugarcane
has certain ornamental and economic value in the sugarcane
industry. The sugarcane variety "FN41" has hard texture and
purple color, with a higher sugar content of 17.22%, and
"165204" cultivar texture consisted of a crisp and green ring
color and 12.85% of sugar content. These two cultivars are
deemed excellent materials for studying the mechanism of sugar

11https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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content, texture and color difference of sugarcane. The findings
of this study provide new insights into the molecular mechanism
underpinning the accumulation of high sugar, hardness and
color difference.

Although the two sugarcane cultivars were grown
simultaneously in the same field and under the same conditions,
the morphology of the tissues within the stalks and stem color
were distinct (Figure 1A). FN41 had a purple rind, with fibers
compressed fibers, while 165204 consisted of green rind and a
loose connective fibrous tissue. During harvest, several important
traits including the quality and yield of the two cultivars were
evaluated (Figure 1B). Sugar content showed a significant
differences were observed between FN41 and 165204 (percentage
concentration of sugar, p-value = 2.80E-08) and stem height
(p-value = 0.014). FN41 had a higher brix and stem height
compared to 165204. While the other qualitative trait evaluated
in our study were not significantly different between the two
cultivars. Therefore, we speculated that the two cultivars of

sugarcane have certain differences in sugar content, rind color,
and pith texture.

Metabolome Profiling and Identification
of the Differentially Accumulated
Metabolites Between FN41 and 165204
To quantify the total metabolites in the stems and leaves of
the two varieties we adopted a metabolomics tool. A total of
512 metabolites grouped into 11 classes were identified from
the 12 samples. Among them, there were 122 flavonoids, 89
phenolic acids, 67 amino acids and derivatives, 58 lipids, 44
organic acids, 35 nucleotides and derivatives, followed by 21
alkaloids, 7 lignans and coumarins, 3 tannins, 3 terpenoids,
and 63 other metabolites (Supplementary Table 2). One QC
sample was inserted for every 10 analyzed samples to monitor
the reproducibility of the instrument’s analytical process. The
overlay of the TIC plots between different quality control (QC)

FIGURE 1 | Physiological characteristics of FN41 and 165204 sugarcane cultivars, bar = 1 cm (A); Comparison of agronomic traits between FN41 and 165204 (B).
*p < 0.05, **p < 0.01, and ***p < 0.001.
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samples demonstrated the high repeatability and reliability of
the data in this study (Supplementary Figure 2). We also
performed PCA to visualize the metabolites composition in
the samples. It was observed that metabolites composition in
samples along PC1 (x-axis) accounted for 48.5% and PC2
(y-axis) represented 12.6% of variability, respectively. The
analysis also revealed that metabolites composition in the
stems of both varieties were densely clustered together, while
metabolites composition in the leaf of both varieties leaf samples
exhibited the opposite (Figure 2). The hierarchical cluster
analysis (HCA) further revealed that the trends of metabolites
composition were distinctly different between FN41 and 165204
(Supplementary Figure 3).

To pinpoint the significant differentially expressed dead-
end metabolites (DEMs) associated with phenotype, the
VIP (variable importance in project) ≥ 1.0 together with
fold change ≥ 2 or ≤ 0.5 were set as the thresholds. We
identified a total of 364 DEMs among the four groups compared
(165204S_vs_FN41S, 165204L_vs_FN41L, 165204S_vs_165204L,
and FN41S_vs_FN41L), including 74, 92, 280 and 250 DEMs in
165204S_vs_FN41S, 165204L_vs_FN41L, 165204S_vs_165204L,
and FN41S_vs_FN41L, respectively (Supplementary Table 3),
with most showing significantly high accumulation. In addition,
only 26 DEMs were shared between the 165204L_vs_FN41L and
165204S_vs_FN41S, while 66 and 48 DEMs were exclusively
associated with 165204L_vs_FN41L and 165204S_vs_FN41S,
respectively. Nevertheless, the number of DEMs common in
165204S_vs_165204L and FN41S_vs_FN41L were 193, much
larger than the 87 and 57 DEMs unique to 165204S_vs_165204L
and FN41S_vs_FN41L (Figure 3). We also noticed that these
DEMs were from distinct classes and mainly constituted
flavonoids, phenolic acids, and amino acids and derivatives,
suggesting that there were a variety of primary and secondary

metabolites involved in different tissue and dissimilarity
between species. KEGG pathway analysis among the DEMs
revealed that KEGG pathways, including carbon metabolism,
flavone and flavonol biosynthesis, flavonoid biosynthesis,
phenylalanine metabolism, and phenylpropanoid biosynthesis
were significantly enriched in the compared groups (Figure 4
and Supplementary Table 4). These results implied that the
DEMs related to the flavone and flavonol biosynthesis, flavonoids
biosynthesis, and phenylpropanoids biosynthesis are likely to
play important roles in the different cultivars.

Transcriptome Sequencing Revealed
Differentially Expressed Genes in the
Different Cultivars
To better understand the molecular basis of the metabolic
differences detected in the different cultivars, transcriptome
sequencing was performed using the stem and leaf tissues.
A total of 104.52 Gb of clean reads was generated from the
12 libraries after removing the adaptor sequences and low-
quality reads. The percentage of the high-quality score (Q30)
was more than 93.92%, GC contents varied from 51.02 to
55.12%, and the successfully mapped ratio was more than 86.03%
(Supplementary Table 5). The correlation coefficients between
the biological replicates of the same tissues were greater than
0.88 (Supplementary Figure 4). These results indicated the high
quality of the sequencing data. We carried out an evaluation
of differentially expressed genes (DEGs) via the four pair-wise
comparison groups (165204S_vs_FN41S, 165204L_vs_FN41L,
165204S_vs_165204L, and FN41S_vs_FN41L). The analysis
revealed that 165204S_vs_165204L had the largest number of
DEGs, consisting of 11,575, of which 6,628 were up-regulated
and 4,947 were down-regulated (Figure 5). Whereas a lower

FIGURE 2 | Principal component analysis (PCA) of the metabolites detected in the sugarcane stem and leaf samples with three biological replicates. “FN41L” and
“165204L” represent the leaf tissues of sugarcane varieties FN41 and 165204, respectively; “FN41S” and “165204S” represent the stem tissues of sugarcane
varieties FN41 and 165204, respectively, similarly hereinafter.
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number of DEGs was identified in 165204S_vs_FN41S, with
2,837, of which 1,938 were up-regulated and 899 were down-
regulated. The comparison of FN41S_vs_FN41L resulted in
10,757 DEGs, including 6,419 up-regulated and 4,338 down-
regulated. The comparison of 165204L_vs_FN41L revealed a total
of 9,597 DEGs, among which 6,115 were up-regulated and 3,482

DEGs were down-regulated. The detailed information about
the diversity of DEGs is available in Supplementary Table 6.
The results of DEGs between different comparison groups
indicated that the gene expression profiles varied significantly
between these two different sugarcane species. To confirm the
transcriptome data from RNA-Seq, 26 DEGs were selected

FIGURE 3 | Venn diagrams illustrating differential metabolism between two varieties in the same compartments (A), and in the stems and leaves of the same variety
(B).

FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEMs between (A) 165204S_vs_FN41S, (B) FN41S_vs_FN41L,
(C) 165204L_vs_FN41L, and (D) 165204S_vs_165204L.
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FIGURE 5 | Venn diagram of the DEGs of the four comparison groups.

randomly for qRT-PCR analysis (Figure 6). The qRT-PCR results
were similar to the gene expression profiles in the transcriptome
data, suggesting the transcriptome results were reliable.

Association of Metabolic Analysis and
Transcriptomic Analysis
To minimize the false positives single-omics analysis, the
integrated analysis of KEGG pathway enrichment, functional
analysis and correlation analyses were performed between
the transcriptome and metabolome. All the DEMs and DEGs
were mapped to the KEGG pathway database to identify the
main biological pathways to better understand the relationship
between genes and metabolites. KEGG enrichment analysis
showed that pathways enriched in at least one omics data
were 5, 15, 29, and 27 KEGG pathways (p-value < 0.05) in the
165204S_vs_FN41S, 165204L_vs_FN41L, 165204S_vs_165204L,
and FN41S_vs_FN41L pair-wise comparison groups,
respectively. The DEGs and DEMs were mainly enriched in
phenylalanine metabolism, flavonoid biosynthesis, flavone
and flavonol biosynthesis, starch and sucrose metabolism,
glycine, serine and threonine metabolism, carbon metabolism,
and citrate cycle (TCA cycle). Later, four pathways including
phenylpropanoid biosynthesis (ko00940), flavonoid biosynthesis
(ko00941), flavone and flavonol biosynthesis (ko00944), and
starch and sucrose metabolism (ko00500) were selected for
subsequent analysis to explore the potential links between the
metabolome and the transcriptome data.

To further identify modules related to phenylpropanoid
biosynthesis (ko00940), flavonoid biosynthesis (ko00941),
flavone and flavonol biosynthesis (ko00944), and starch and

sucrose metabolism (ko00500), the significantly changed
phenolic acids, flavonoids and saccharides were combined with
RNA-seq data to construct a co-expression network (Figure 7A
and Supplementary Table 7). Twenty modules (labeled in
different colors) were identified in the dendrogram, where the
gray module represents genes that were not assigned to specific
modules. Remarkably, the purple module showed a significant
correlation with the accumulation pattern of phenylpropanoid
biosynthesis (r > 0.85 or r < –0.85, p < 0.001), while the pink
module showed a significant correlation with the accumulation
pattern of flavone and flavonol biosynthesis (r > 0.9 or r < –0.9,
p < 0.001). Whereas the yellow module showed a significant
correlation with the accumulation pattern of starch and sucrose
metabolism (r > 0.89 or r < –0.79, p < 0.001) (Figure 7B).
Among these genes, 490 genes of the purple module were
positively related to p-coumaraldehyde, sinapic acid, caffeic
acid and coniferyl alcohol. We also noticed that 1,002 genes
of the yellow module were negatively related to D-fructose-6P,
D-glucose-6p, and α-D-glucose-1P. 595 genes of the pink module
were positively related to kaempferin, nicotiflorin, and vitexin
2”-O-rhamnoside.

Based on the number of connections between genes in
the co-expression network, the top 50 node genes in the
purple, pink and yellow modules were selected to generate
the co-expression subnetwork (Figure 7C and Supplementary
Table 7). Among these hub genes, we found six transcription
factors in the three modules, namely, Tify (Sspon.05G0031500-
1C) and NAC (Sspon.06G0028920-1C), in the purple module,
followed MYB-related (Sspon.01G0014260-1T) and C2C2-Dof
(Sspon.04G0023660-4P), in the yellow module, and WRKY
(Sspon.03G0003750-3C) and bHLH (Sspon.06G0010740-1A), in
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FIGURE 6 | RT-qPCR analysis showing the significance level of various genes identified in the different tissues of cane.

the pink module. These transcription factors play a key role in
phenylpropanoid biosynthesis, flavone and flavonol biosynthesis,
and starch and sucrose metabolism.

Integrating Related Genes and
Metabolites in the Phenylpropanoid and
Flavonoid Biosynthesis Pathway
To elucidate the differences in the production of
phenylpropanoids and flavonoids metabolism between the
two sugarcane species, we identified and mapped the DEGs and
DEMs that were predicted to be involved in the phenylpropanoid
and flavonoid biosynthesis (Figure 8). We observed that a total

of 16 DEMs were mapped to these pathways, including eight
phenylpropanoid biosynthesis, four flavonoid biosynthesis four
flavone and flavonol biosynthesis. The profiles of DEMs between
the two tissues showed the content of p-coumaraldehyde, caffeoyl
quinic acid, coniferaldehyde, coniferyl alcohol, sinapyl alcohol,
pinobanksin, naringin, vitexin, nicotiflorin, kaempferin, and
vitexin were more evident in the leaves than the stems. While
the accumulation of L-phenylalanine, tyrosine, sinapinaldehyde,
and neohesperidin in the stems were higher than that in the
leaves. We also compared the DEMs between the two cultivars,
it was observed that the precursors of the phenylpropanoid
biosynthesis pathway (L-phenylalanine and Tyrosine) were
more abundant in FN41S and FN41L than that in 165204S
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FIGURE 7 | Co-expression network analysis. (A) Hierarchical cluster tree showing 20 modules obtained by weighted gene co-expression network analysis (WGCNA).
The gray modules represent genes that are not divided into specific modules. Each branch in the tree points to a gene. (B) Matrix of module-metabolite associations.
Combining the gene expression profile data of stem and leaf tissues of different sugarcane varieties and the change patterns of phenylpropanoid biosynthesis,
flavone and flavonol biosynthesis, starch and sucrose metabolism, displayed by the WGCNA analysis. The number of genes in each module is shown in the left box,
followed by correlation coefficient and p-value between modules and metabolites, which are displayed at the intersection of rows and columns. (C) Co-expression
sub-network analysis of purple, pink, and yellow modules related to the accumulation of phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, starch and
sucrose metabolism. The first 50 nodes of purple, pink, and yellow modules to build the network were selected, and transcription factors are shown in red.

and 165204L, while sinapaldehyde, pinobanksin, kaempferin,
and nictoflorin followed the same trend. The expression of
pathway genes was also affected across different tissues. The
majority of DEGs were observed to be both up-regulated and
down-regulated, such as PAL, 4CL, HCT, CCR, CAD, C3H, POD,
and CHI. However, some DEGs exhibited unique expression
profiles in a specific species or tissue (specific expression data is
shown in Supplementary Table 8).

A Pearson’s correlation coefficients (PCCs) analysis was
performed to measure the degree of correlation between DEGs
and DEMs. In the phenylpropanoid and flavonoid biosynthesis
pathways, the results of the PCC calculation showed that forty-
three DEGs were significantly associated with eleven DEMs,
with the vast majority demonstrating positive association.
Specifically, 43 pairs were significantly and positively correlated
(PCC value > 0.8), whereas 27 pairs revealed significant and
negative correlations (PCC value < –0.8). Among them, the

number of differential genes associated with the coniferaldehyde
were more (23 DEGs), followed by epigallocatechin (18 DEGs)
(Figure 9). Besides, Sspon.03G0012160-2B was associated with
the metabolites, namely, coniferaldehyde and spermidine, and
demonstrated a highly positive correlation, followed by sinapic
acid, p-Coumaraldehyde and chlorogenic acid, exhibiting a
significant and positive correlation with Sspon.08G0002670-2B.
Whereas Sspon.01G0001310-3P and Sspon.03G0020600-2B were
significantly and positively correlated with epigallocatechin and
ferulic acid, respectively.

Integrating Related Genes and
Metabolites in the Starch and Sucrose
Metabolism
The DEGs and DEMs of starch and sucrose metabolism in
the FN41 and 165204 of the two tissues were investigated

Frontiers in Plant Science | www.frontiersin.org 11 June 2022 | Volume 13 | Article 92153646

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-921536 June 11, 2022 Time: 14:29 # 12

Yuan et al. Metabolomics and Transcriptome of Sugarcane

FIGURE 8 | Diagram of phenylpropanoid and flavonoid biosynthesis pathways with their related DEGs and DEMs. PAL, phenylalanine ammonia lyase; PTAL,
phenylalanine/tyrosine ammonia-lyase; C4H, cinnamate4-hydroxylase; 4CL, 4-coumarate CoA ligase; HCT, hydroxycinnamoyl CoA shikimate/quinate
hydroxycinnamoyl transferase; C3H, P-coumarate 3-hydroxylase; COMT, caffeic acid O-methyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CHI,
chalcone isomerase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; F5H, ferulate5-hydroxylase; F3′5′H, flavonoid 3′,5′-hydroxylase; POD,
peroxidase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; Non-significant DEGs are shown in black. The solid line indicates the metabolic reactions in
only one step. The dash line presents more than one step of the metabolic reaction.

using heat maps (Figure 10). Four DEMs were mapped
including D-Fructose-6p, D-Glucose-6p, α-D-Glucose-1p and
trehalose-6p. D-Fructose-6p, D-Glucose-6p and α-D-Glucose-1p
were more pronounced in the leaves than the stems, while
trehalose-6p exhibited the contrary. Interestingly, the content
of D-fructose-6p, D-glucose-6p, and α-D-glucose-1p were more
pronounced in FN41L and FN41S, respectively. Furthermore,
we identified 315 DEGs classified into 26 gene families with
diverse regulation patterns, highlighting the complex regulation
of sugar metabolism in sugarcane (specific expression data is
shown in Supplementary Table 9). We identified eighteen INV
DEGs, the majority of which were significantly up-regulated in

FN41 as compared to 165204 cultivar. Besides, two malZ genes
(Sspon.03G0016860-1A&-2B) were found up-regulated in FN41,
while the other five malZ genes (Sspon.08G0003790-3C&-1P,
Sspon.08G0018720-1B&-2D, and Sspon.08G0025470-1C) were
significantly down-regulated in FN41 In this study, we identified
11 SuS DEGs, all were up-regulated in the stems of the two
cultivars. Among them, four SuS genes (Sspon.01G0009300-
1A&-2B&-3C and Sspon.01G0011850-4D) were up-regulated
in FN41 as compared to 165204, while the remaining SuS
genes were down-regulated in FN41, indicating that SuS was
negatively correlated with sugar accumulation. Three SPS DEGs
and four SPP DEGs were also identified, of which two SPS
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FIGURE 9 | Co-expression analysis illustrating genes and metabolites in phenylpropanoid and flavonoid biosynthesis pathway. Nodes represent genes or
metabolites, and edges represent relationships between any two genes. Edges with solid and dashed lines represent positive and negative correlations, respectively,
as determined by a Pearson correlation coefficient > 0.8 or < –0.8, respectively.

(Sspon.03G0028140-2C&-1P) and two SPP (Sspon.07G0026460-
1B and Sspon.04G0011960-1A) were upregulated in FN41, which
indicate a higher sucrose formation in FN41.

It is worth noting that the results of PCC analysis
between genes and metabolites showed that in the starch
and sucrose metabolism pathway, trehalose 6-phosphate was
the only metabolite significantly associated with 47 DEGs, of
which 31 pairs were significantly and positively correlated,
while 16 pairs were significantly and negatively correlated
(Supplementary Figure 5). Among them, Sspon.02G0017170-
2C, Sspon.02G0015810-2B, and Sspon.02G0017910-1A showed a
significant and positive correlation with trehalose 6-phosphate.

DISCUSSION

Metabolomics is an effective tool for measuring metabolite
composition of various plant tissues. Targeted and untargeted
metabolomics techniques have also been used to identify and
quantify metabolites present in different organs of plant species
during different development stages (Wang et al., 2018; Xiao
et al., 2021). In this study, a targeted metabolomic approach
was adopted to investigate the metabolic changes in sugarcane
stems and leaves of two contrasting cultivars, FN41 and 165204.
A total of 512 metabolites from 11 classes were detected in the
sugarcane stems and leaves. This finding was confirmed with
the study conducted by Glassop et al. (2007) in which they
identified 121 and 71 metabolites in cultivar TMS and TBS

using metabolomics tool, respectively. Studies have revealed that
flavonoids play a vital role in plant tissues color formation, plant
development and food quality (Xu et al., 2015). Flavonoids are
also the largest and the most studied group of plant phenols
with variable phenolic structures which could be further divided
into flavones, isoflavones, flavonols, flavanols, flavanones, and
anthocyanins (Panche et al., 2016). For instance, Yang et al. (2022)
revealed that flavonoids in vegetative tissues of rice were observed
to be abundant. Correspondingly, we found that flavonoids were
the most dominant metabolites in the two sugarcane cultivars,
exhibiting distinct distribution patterns in the various plant
tissues. KEGG pathway enrichment analysis further showed
that a large number of metabolites, namely, phenylpropanoid
biosynthesis, flavonoid biosynthesis, and flavone and flavonol
biosynthesis pathways were enriched in the DEMs. This finding is
in consonance with a previous study, wherein it documented that
metabolites such as phospholipids, amino acids and most lipids
and fatty acids were enriched during rice seed germination (Yang
et al., 2022), suggesting that flavonoids play an important role in
distinguishing the two phenotypes of sugarcane.

Sucrose synthesis takes place in the cytoplasm of the leaf
pulp of sugarcane, and the main rate-limiting enzyme is SPS.
SPS catalyzes the irreversible conversion of uridine diphosphate
glucose (UDPG) to fructose-6P to form sucrose-6’p which has
been immediately catalyzed by SPP to form sucrose. SPS is also
known to be the key enzyme in resynthesizing sucrose from the
hexoses in the sink tissue (Huber and Huber, 1996). In this study,
we noticed that two SPS genes (Sspon.03G0028140-2C&-1P)
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FIGURE 10 | Diagram of starch and sucrose metabolism pathway with their related DEGs and DEMs. SPS, sucrose phosphate synthase; SPS, sucrose
phosphatase; SUS, sucrose synthase; INV, invertase; HK, hexokinase; scrK, phosphofructokinase; non-significant DEGs are shown in black. The solid line indicates
the metabolic reactions in only one step. The dash line presents more than one step of the metabolic reaction.

and two SPP (Sspon.07G0026460-1B and Sspon.04G0011960-
1A) that were up-regulated in FN41, which agreed with the
finding reported by Nguyen-Quoc et al. (1999), wherein the
overexpression of SPS gene in tomatoes results in increased
sucrose loading and transport rate. Our result is also in line with
the study conducted by Park et al. (2008). The authors mentioned
that over-expression of an Arabidopsis SPS gene resulted in
a considerable improvement of sink sucrose concentrations in
tobacco (Nicotiana tabacum cv. Xanthi) plants. We therefore,
postulated that the differences in sugar content among two
sugarcane cultivars may largely be associated with the up-
regulation of these genes in FN41.

Previous study has shown that the sugar content of the
watermelon fruit is mainly determined by three enzyme families,
sucrose synthase (SUS), SPS and insoluble acid convertase (IAI)

(Liu et al., 2013). SUS can catalyze both sucrose synthesis and
sucrose catabolism, but mainly convert UDP-glucose into sucrose
(Schmölzer et al., 2016). The overexpression of a potato sucrose
synthase gene in cotton enhances fiber production and sucrose
supply by expanding the plant leaves (Xu et al., 2012). In tomato
fruit, SUS contributes to the accumulation of glucose and fructose
(Li et al., 2021). Nevertheless, in the present study 7 of the 11
SuS genes were down-regulated in FN41 and SuS was negatively
correlated with sugar accumulation. This is probably due to the
dual role of SUS, which also known to perform the catabolic
function during sugarcane growth and development.

In plants, sucrose is irreversibly hydrolyzed by invertase
(INV) into glucose and fructose (Koch, 2004). INV can be
classified into cell-wall invertase (CWIN), vacuolar invertase
(VIN), and cytoplasmic invertase (CIN) according to the cell
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location (Wan et al., 2018). CWIN catalyzes cytoplasmic sucrose
hydrolysis, which is involved in sucrose cytoplasmic unloading
and hexose supply for development; VIN has an important
function in hexose accumulation, cell expansion; and CIN
contains cytoplasmic sugar homeostasis. In a previous research,
14 INV members were cloned in sugarcane, and VIN was
induced by fructose treatment (Wang et al., 2017). In the present
study, the majority of INV was upregulated in FN41 and four
INV genes (Sspon.02G0025100-1P, Sspon.05G0001850-2B, and
Sspon.06G0025320-1B&-2C) were downregulated in FN41. This
may be due to the fact that different INVs play versatile roles in
sugar metabolism and signaling in sugarcane. Hexokinase (HK)
is a fructose and glucose phosphorylating enzyme, and also act as
a sugar sensor that may regulate sugar-dependent gene repression
or activation (Jang et al., 1997). HK catalyzes the first committed
step of glucose metabolism by converting glucose to D-glucose-6p
(Dai et al., 1995). The biosynthesis of trehalose is accomplished
through trehalose 6-phosphate synthase (TPS) and trehalose 6-
phosphate phosphatase (otsB), and trehalose plays a protective
role against stress in plants (Paul, 2007). Metabolites including
D-fructose-6P, D-glucose-6p, α-D-glucose-1P, and trehalose-6P
were involved in the starch and sucrose metabolism of sugarcane.
The distributions of metabolites suggested that FN41 synthesizes
more monosaccharides in photosynthetic organs (source tissues)
to convert these into other forms of carbohydrates and transport
them for storage in heterotrophic cells (sink tissues). Therefore,
we inferred the metabolites in starch and sucrose metabolism
could be important, and the manipulation of these metabolites-
related genes could provide prospects for increasing sugar
content in sugarcane.

The phenylpropanoid pathway not only gives rise to
flavonoids, but also converts them into lignin and various other
aromatic metabolites such as coumarins, phenolic volatiles, or
hydrolyzable tannins (Vogt, 2010). Phenylalanine and tyrosine
are aromatic amino acids (AAAs) that are used for the synthesis
of proteins. In plants, high carbon flux is committed to
the biosynthesis of phenylalanine and tyrosine because they
serve as precursors of numerous natural products, such as
pigments, alkaloids, hormones, and cell wall components (Maeda
and Dudareva, 2012). We noticed that phenylalanine and
tyrosine were significantly up-regulated in FN41, implying that
FN41 has more metabolic substrates for subsequent metabolic
synthesis and may produce more energy in the sugarcane stems.
Lignin is one of the most important secondary metabolites
and one of the main components of the plant cell wall
that play an important role in plant development such as
enhancing the overall mechanical strength of plants, promoting
transportation through the vascular bundles (Boerjan et al.,
2003). Phenylpropanoids such as sinapyl alcohol, coniferyl
alcohol, and coumaryl alcohol act as important precursors
of lignin biosynthesis (Liu et al., 2018). In apples, it was
shown that the reduced levels of sinapaldehyde and p-coumaryl
alcohol ultimately led to significant lignin loss and growth
retardation (Zhou et al., 2019). Recent studies have also
shown that the cellulose content decreased while lignin content
increased during pigmentation of winter jujube, and guaiacyl-
syringyl (G-S) lignin was the main lignin type in the pericarp

(Zhang et al., 2021). A precursor of S-lignin and sinapaldehyde,
was found to be significantly up-regulated in the expression
of FN41 stems in this study, which we believed had effects
on the color and fiber composition of the stems, thereby
promoting the synthesis of S-lignin. Cinnamate 4-hydroxylase
(C4H), a cytochrome P450-dependent monooxygenase, catalyzes
the first oxidative step of the phenylpropanoid pathway in
higher plants by transforming trans-cinnamate into p-coumarate,
which is a key substrate required for the formation of all
flavonoids (Ayabe and Akashi, 2006). Plant growth and lignin
accumulation were inhibited in the Arabidopsis C4H mutant
(Schilmiller et al., 2009).

A number of studies have revealed that the leaf and stem
of sugarcane are have strong relationship with source and sink
(Roopendra et al., 2018). In this study, the leaf area, flavonoid
index and chlorophyll index in FN41L were more pronounced
than that of 165204L, which is the key to the significant difference
of sugar accumulation in stems of FN41 and 165204. We also
observed that the sugar content of FN41S was significantly higher
than that of 165204S. This finding is in agreement with the study
conducted by Roopendra et al. (2018), wherein it was revealed
that the sucrose content of cane culm, possibly influenced by
source–sink variation in sugarcane tissue. We believed that the
relatively high amount of D-fructose 6-p, D-glucose6-p, and
glucose1-p detected in FN41L may have been transported and
distributed by source and sink of the plant, and a majority of
them reached the stem of sugarcane FN41L, thereby promoting
the high accumulation of sugar in FN41L.

Differential gene analysis provides us with a correlation of
the possible gene functions at developmental stages based on
the changes in the expression levels of DEGs. However, each
gene in the differential analysis is isolated, whereas, in reality,
genes and gene products are composed of regulatory networks
to perform functions. WGCNA is a widely used systems biology
method for describing the correlation patterns among genes
across different samples that could be used to effectively screen
specific modules of interest with highly related genes (Langfelder
and Horvath, 2008). In this study, three modules related to
phenylpropanoid biosynthesis (ko00940), flavonoid biosynthesis
(ko00941), flavone and flavonol biosynthesis (ko00944), and
starch and sucrose metabolism (ko00500) were identified,
including hub genes and six transcription factors. In a previous
study, C2C2-Dof zinc finger family were found differentially
expressed between immature and mature tissues in the high-
fiber sugarcane only. They were also influenced cellulose and
lignin metabolism as well as the prominent players in carbon
metabolism (Lakshmi et al., 2018). In maize, ZmDOF36 acted
as a critical regulatory factor in starch synthesis, and could
help devise strategies for modulating starch production in maize
endosperm (Wu et al., 2019). The abnormal expression of bHLH3
disrupts the balance of the network and redirects flavonoid
metabolic flux in pale-colored fruits, resulting in differences
in the levels and proportions of anthocyanins, flavones, and
flavonols among differently colored mulberry fruits (Li et al.,
2020). NAC domain-containing protein could be involved in
many biological processes such as secondary wall biosynthesis
and abiotic stress response (Olsen et al., 2005).
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The color and texture of sugarcane stems are not only
important quality indicators but also the critical parameters that
affect the consumer acceptance of fresh sugarcane products.
Moreover, flavonoids are not only the main compounds that
determine the color of flowers, fruits and leaves but also play
an important role in plant growth, development, and plant
adaptation to environment. Flavonoid metabolites and their
associated genes in several plants have been comprehensively
studied (Albert et al., 2014). Many species of plants start
to change color after the activation of the flavonoid-related
enzymes (Vogt, 2010). Vitexin, isovitexin, and pinobanksin are
active components of many medicinal plants and have received
increased attention as their wide range of pharmacological
effects, such as antioxidant, antivirus, and antibacterial effects
(He et al., 2016). The detection of these metabolites in
sugarcane in the present study demonstrated the feasibility of
extracting antioxidant substances from sugarcane leaves and
stems. Naringin and neohesperidin have been reported to be
responsible for the bitterness of citrus and are mainly influenced
by its sugar content (Wang et al., 2016). In this study, the contents
of naringin and neohesperidin were significantly downregulated
in FN41, implying that these two metabolites may have played
significantly contributed to the sweet taste of sugarcane. We also
detected four anthocyanins in this study, while metabolites did
not differ significantly between the samples. This may account
for that the sugarcane stem rind and stem pith being sampled
in a mixed sample, resulting in a non-significant difference in
anthocyanin content. Chalcone synthase (CHS) was the first
enzyme to be identified in flavonoid biosynthesis and located
at the upstream point of the flavonoid biosynthesis pathway
(Kreuzaler and Hahlbrock, 1972). Previous studies revealed that
expression of MdCHS3 from apple in poplar resulted in reduced
total lignin content and increased cell wall carbohydrate content
in transgenic poplar cell walls (Mahon et al., 2021). Furthermore,
silencing of the CHS gene could shift the anthocyanin pathway
to the synthesis of chlorogenic acid and its complexes, and
CHS is a key regulatory protein for anthocyanin biosynthesis
in red and nectarine peaches (Rahim et al., 2014). In this
study, all of the CHS genes were significantly up-regulated in
FN41, demonstrating that CHS may play an important role
in the synthesis of anthocyanin and lignin of two sugarcane
cultivars. Flavanone 3-hydroxylase (F3H) converts naringen into
dihydrokaempferol, and Dihydroflavonol-4-reductase (DFR)
reduces dihydrokaempferol to leucoanthocyanidin, followed by
oxidation of colorless leucoanthocyanidin to the precursor
of anthocyanidins catalyzed by anthocyanin synthase (ANS)
(Springob et al., 2003). These three enzymes are key enzymes in
the synthesis of flavonol and anthocyanin. It was demonstrated in
orange carnation that pigments synthesis is restricted when F3H
expression was inhibited (Zuker et al., 2002). In grape berries,
sugar-induced anthocyanin accumulation and F3H expression
(Zheng et al., 2009). The purple leaf trait of ornamental kale
was controlled by a gene BoPr encoding a DFR (Liu et al.,
2017). Flavonoid 3′,5′ hydroxylases (F3′5′H) and (F3′H) are
required for the biosynthesis of flavones, flavanones, flavonols,
and anthocyanins, and has the potential to determine the pattern
of flavonoid B-ring hydroxylation (Ayabe and Akashi, 2006). Our

study revealed that F3′H and F3′5′H were upregulated in FN41
and 165402, respectively, triggering competition for substrates
between F3′5′H and F3′H. In the biosynthesis of flavonoids
and flavanols, the UGT78D family catalyzes glycosylation and
occurs at the O-3 or O-7 position (Kc et al., 2018). We observed
that flavonol-3-O-glucoside L-rhamnosyltransferase (FG2) was
upregulated in FN41.

CONCLUSION

To conclude, we explored the molecular mechanism of
differential sugar accumulation, rind color, and texture in two
sugarcane cultivars. High sugar content was observed in FN41 as
compared to 165204. Comparison of the differences in the level
of metabolites and gene expression was performed. The analysis
identified the metabolites and genes that have the potential to
regulate sugar content, rind color, and texture in sugarcane. The
results also suggested that genes such as C4H, CHS, F3H, F3′H,
DFR, and FG2 in phenylpropanoid and flavonoid biosynthesis
pathways may be a major factor impacting the rind color
and contrasting texture of FN41 and 165204 sugarcane stems.
Moreover, metabolites including L-phenylalanine, tyrosine,
sinapaldehyde, pinobanksin, kaempferin, and nictoflorin were
the potential drivers of phenotypic differences. Our findings also
indicated that genes and metabolites in the starch and sucrose
metabolism may have an important effect on sugar content in
sugarcane. Overall, this study revealed molecular mechanisms
underpinning the accumulation of sugar content, rind color, and
texture of two sugarcane verities, which we believed is important
for future sugarcane breeding programs and the selection of high
biomass varieties. Up-regulated genes in FN41, namely, F3H,
DFR, F3’H, and FG2 should be addressed in future studies to
probe the specific mechanism.
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Supplementary Figure 1 | Diagram of the method of testing in tensile strength
perpendicular to grain of wood.

Supplementary Figure 2 | Total ion chromatograms (TIC) under positive (A) and
negative mode (B).

Supplementary Figure 3 | Hierarchical clustering analysis of all metabolites
detected in this study. The abscissa indicates three biological replicates of
FN41stems (FN41S1, FN41S2, and FN41S3), 165204 stems (165204S1,
165204S2, and 165204S3), FN41 leaves (FN41L1, FN41L2, and FN41L3), and
165204 leaves (165204L1, 165204L2, and 165204L3), and the ordinate indicates
the metabolites detected in this study. The red segments indicate a relatively high
content of metabolites, while the blue segments indicate a relatively low
content of metabolites.

Supplementary Figure 4 | Heat map depicting correlation between
biological replicate.

Supplementary Figure 5 | Co-expression analysis of genes and metabolites in
starch and sucrose metabolism pathway. Nodes represent genes or metabolites,
and edges represent relationships between any two genes. Edges with solid and
dashed lines represent positive and negative correlations, respectively, as
determined by a Pearson correlation coefficient > 0.8 or <–0.8, respectively.
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Bio-based fuels have become popular being efficient, cost-effective, and eco-friendly
alternatives to fossil fuels. Among plant sources exploited as feedstocks, C4 grasses,
such as sugarcane, maize, sorghum, and miscanthus, are highly resourceful in
converting solar energy into chemical energy. For a sustainable and reliable supply of
feedstocks for biofuels, we expect dedicated bioenergy crops to produce high biomass
using minimum input resources. In recent years, molecular and genetic advancements
identified various factors regulating growth, biomass accumulation, and assimilate
partitioning. Here, we reviewed important genes involved in cell cycle regulation,
hormone dynamics, and cell wall biosynthesis. A number of important transcription
factors and miRNAs aid in activation of important genes responsible for cell wall
growth and re-construction. Also, environmental components interacting with genetic
controls modulate plant biomass by modifying gene expression in multiple interacting
pathways. Finally, we discussed recent progress using hybridization and genome editing
techniques to improve biomass yield in C4 grasses. This review summarizes genes and
environmental factors contributing biomass yield in C4 biofuel crops which can help to
discover and design bioenergy crops adapting to changing climate conditions.

Keywords: biomass accumulation, C4 crops, hormone dynamics, cell wall growth, circadian rhythms, fossil fuels

INTRODUCTION

The world population is expected to reach 9 billion by 2050, which was only ∼1.9 billion in the
twentieth century (Mullet, 2017). Rapid population expansion and rise in energy demands have
heightened research interests to build more sustainable, cost-effective, and eco-friendly energy
sources. The gradual effects of using rapidly depleting finite fossil fuels turned out in global

Abbreviations: ASEAN, Association of South East Asian Nations; eCO2, Equivalent CO2; GHGs, Greenhouse Gases;
mg/h, megagrams per hectare; PEP, Phosphoenolpyruvate; RUBISCO, Ribulose Bisphosphate Carboxylase/Oxygenase;
SQUAMOSA, SQUAMOSA Promoter-Binding Protein-Like (SPL); TFs, Transcription factors.
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warming (greenhouse effect) and subsequent climate change
that is ongoing. Owing to intensive industrialization and
urbanization, the level of greenhouse gases (GHGs) has
increased by 50 times in the atmosphere, which is among
the primary drivers of climate change (Subramaniam et al.,
2020). International Energy Agency predicted that from 2020 to
2025, the mean annual near-surface temperature would increase
by 1◦C with a range of 0.9–1.8◦C in comparison with pre-
industrial time-temperature level (time spanning from 1850 to
1900) along with the onset of frequent tropical cyclones (IEA,
2018). To minimize the disastrous effects of climate change and
fulfill energy demands, International Energy Agency (IEA) has
devised to exploit renewable energy sources. Major renewable
energy resources, such as wind, solar, plant biomass, ocean, and
hydropower being sustainable sources, can also aid in reducing
the use of fossil fuels and consequently GHGs. In the year 2019, a
12.5% increase in biofuel production was observed from 142.6 to
160.9 million liters, whereas in 2020 due to the global pandemic
situation, compromised prices of fossil crude oil have made
transport biofuels less competitive. However, future predictions
suggest that the average global output of bioethanol will further
rise to 182 billion liters which was 160 million liters in 2019,
whereas the United States and ASEAN region will contribute
for biodiesel and Hydro-treated vegetable oil (HVO) (Lauf et al.,
2021).

Biofuels are the fuels derived from biological substances
(e.g., agricultural wastes, animal matter, algae, forest vegetation,
and energy crops) (Koçar and Civaş, 2013). In this review,
we will primarily focus on the high biomass yielding energy
crops which are commercially used for energy generation.
Presently, regarding biofuel crops, there is a concern of
conflict about their use for food, feed, and energy generation.
However, several plant species are efficient in accumulating high
biomass with minimal inputs. Among them, ryegrass (Lolium
perenne), bamboo (Bambusa vulgaris), poplar (Populus deltoides),
and willow (Salix) are from C3 category of photosynthesis
while giant miscanthus (Miscanthus giganteus), sweet sorghum
(Sorghum bicolor), pearl millet (Pennisetum glaucum), napier
grass (Pennisetum purpureum), maize (Zea mays), sugarcane
(Saccharum), and switchgrass (Panicum virgatum) are ideal C4
energy crops (Byrt et al., 2011). C4 grasses take more advantage
of biomass accumulation, owing to higher energy-conserving
photosynthetic machinery, stress tolerance, water, and nitrogen
use efficiency (Somerville et al., 2010). C4 photosynthesis system
possesses specialized biochemistry and anatomical modifications
that protect the oxygenation of RUBISCO. Whereas, the PEP
enzyme, instead of RUBISCO serves as the first substrate of
CO2 in mesophyll cells that reduces the energy losses caused by
photorespiration (van der Weijde et al., 2013). This structural
collaboration of mesophyll (M) and bundle sheath (BS) enables
C4 plants to harvest more solar energy with improved water use
efficiency (WUE) and nitrogen use efficiency (NUE).

In a couple of decades, the increasing trend of biofuel use
in developed countries motivated many researchers to focus
their interests on biofuel crops and their bio-products. Among
C4 crops, Miscanthus and switchgrass have been extensively
studied for this purpose in the United States and Europe.

Sugarcane is contributing a major share of biofuels in Brazil.
Sorghum is also a promising competitor as a bio-energy crop
owing to drought tolerance and genetic diversity in sweet
and grain sorghum (Byrt et al., 2011). Advancement in recent
technologies of saccharification and lignocellulose digestion,
cultivation of sugarcane is widely practiced as a biofuel crop
(Carvalho-Netto et al., 2014). Scientists are more concerned
with introducing specialized hybrids or transgene as energy
crops to meet the objectives of sustainable energy by biofuels.
Plant biomass depends on genetic, physiological, edaphic and
environmental factors. Few publications encompassed basis of
biomass accumulation at genetic level but a comprehensive study
of genetic, physiological and environmental factors constituting
to biomass, was lacking (Endo et al., 2009; Byrt et al., 2011;
Lima et al., 2017). Therefore, besides biological and genetic basis
we addressed environmental modulations-based plant biomass
accumulation. Considering the general overview of the need for
bioenergy and the importance of biomass crops with special
concern for C4 crops, this review aims at identifying the
genes involved in different growth-related processes and how
growth patterns are modified in changed climatic conditions.
Furthermore, possible tools and strategies are discussed that are
effective in opting for increasing biomass in C4 crops.

GENETIC BASIS FOR BIOMASS

In plants, several genes belonging to different functional and
structural categories are involved in vegetative development.
Owning to advancement in molecular and genetic studies,
many genes and transcription factors have been identified
in contributing growth from juvenile to vegetative stage as
previously covered in the reviews (Demura and Ye, 2010; Lima
et al., 2017; Kandel et al., 2018). Following sections supplicated
the existing literature about genetic aspects of plant growth
regulation.

Growth and Developmental Regulation
Cell Cycle Machinery
Plant organ size control is a central component of biomass
productivity. In many animals and plants, overall organ growth
rate and size are associated with cell number that is controlled
by strict action of cell division together with cell expansion
(Vernoux et al., 2000). As in other eukaryotes, the cell cycle in
plants consists of DNA-replication (S-phase), and mitosis (M-
phase), which are separated by postmitotic (G1) and pre-mitotic
interphase (G2) gap phases, respectively (Scofield et al., 2014).
Cell cycle machinery is strongly modulated at different points to
verify the fidelity of chromosome duplication and cell division.
Highly conserved control mechanisms, the checkpoints G1/S
and G2/M transitions confirm that either cell cycle process has
been precisely accomplished at each phase before entering the
next phase or not (Barnum and O’Connell, 2014). Different
core cell cycle protein groups including CYCLINS (CYCs)
complexed with CYCLIN-DEPENDENT KINASES (CDKs),
the E2F/DIMERISATION PROTEIN (DP) transcriptional
regulatory proteins, KIP-RELATED PROTEIN/INTERACTOR
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OF CDKs (KRP/ICK), RETINOBLASTOMA-RELATED (RBR),
SIAMESE/SIAMESE-RELATED (SIM/SMR), proteins and the
multi-subunit E3 ubiquitin ligase ANAPHASE-PROMOTING
COMPLEX/CYCLOSOME (APC/C) control the progression
of events involved different phases (Inz, 2006; Inagaki and
Umeda, 2011). Genetic modulation of these proteins to enhance
biomass has been reported in model plant species (Arabidopsis,
tobacco, rice), with few C4 plants (sorghum and maize). Elevated
growth rate in tobacco has been resulted from overexpressing
the cyclin D-type (CycD2) gene from Arabidopsis. These plants
were found to have normal cell and meristem size but taller stem
overall, showing increased growth rate from seedling to maturity
(Boucheron et al., 2005). Defective shoot and root formation, as
well as a reduction in endoreduplication, were noticed in tobacco
ectopically expressing CycA3; 2 (Yu et al., 2003). Transcriptome
analysis identified elevated levels of cell cycle (i.e., cyclins)
genes in bioenergy sorghum immature internodes which shows
that their initial increase in size is due to cell-division coupled
growth (Kebrom et al., 2017). Further, quadruple (ick1/krp1,
ick2/krp2, ick6/krp3, ick7/krp4) and quintuple (ick1/krp1,
ick2/krp2, ick6/krp3, ick7/krp4, ick5/krp7) mutants of CDK
negative regulator ICK/KRP genes reported to have stimulated
CDK activity and cell proliferation that resulted in increased
fresh and dry weights; larger cotyledons; leaves; petals and seeds
(Cheng et al., 2013). Overexpression of novel Arabidopsis ABAP1
protein decreased cell proliferation by limiting mitotic DNA
replication in negative feedback loop during leaf development,
by repressing transcription of pre-replication complex (pre-RC)
genes (Masuda et al., 2008).

Another essential component of cell cycle machinery is the
anaphase-promoting complex (APC), a multi-subunit E3 ligase
that modulates cyclins (Cyc) and CDKs activity in checkpoints
to ensure the maintenance of cell division rate (Bodrug
et al., 2021). APC/C-subunits remain conserved throughout
evolution, however, gene duplication of different subunits
has been observed in some plants (de Lima et al., 2010).
Overexpression of Arabidopsis CDC27a/APC3a in tobacco was
associated with apical meristem restructuration, altered cell-
cycle marker expression, and accelerated plant growth up
to 30% at the flowering time leading to increased biomass
production (Rojas et al., 2009). While APC10 overexpression
in Arabidopsis causes CYCB1;1 protein degradation, thereby
accelerating the transition through mitosis (Eloy et al., 2011).
Transgenic tobacco plants overexpressing the APC10 gene are
taller with larger leaves, produce more seed capsules, and have an
augmented biomass accumulation. Furthermore, a cross between
APC3a- and APC10- overexpressing tobacco T1 plants have
enhanced growth phenotype compared to the overexpression of
single APC/C subunits (de Freitas Lima et al., 2013). Down-
regulation of rice OsCCS52A, an APC/C subunit resulted in
reduced plant height and smaller seeds with an endosperm
defect in endoreduplication (Su’udi et al., 2012). Semi-dwarfism
and reduced leaf size are also observed in CCS52A ortholog
rice tillering and dwarf 1 (tad1) mutant (Xu et al., 2012).
SAMBA negatively modulates cell proliferation through APC/C
interaction. In maize, samba-1 and samba-3 mutants showed
developmental defects, involving short plant height, reduced

leaf size due to an altered cell expansion and cell division rate
(Gong et al., 2021). In addition, several DRP family members
like DRP1A, DRP1E, DRP2A, DRP2B, and DRP5B are regarded
as SAMBA interactors. All of these proteins, except DRP5B,
are localized to the cell plate and mutations in DRP1E and
DRP1A resulted in defective cell plate assembly and cytokinesis,
as well as defects in cell expansion (Hong et al., 2003; Kang et al.,
2003; Fujimoto et al., 2008).

Long Vegetative Duration
The plant life cycle is divided into vegetative, transition, and
reproductive developmental phases. The vegetative phase is
associated with meristems producing stems and leaves. The
transition phase is related to an elevation of the apical meristem,
while the reproductive phase centers on meristems capable
of producing flowers or reproductive organs. The vegetative
phase starts at germination and continues through tillering,
the meristems actively produce a stem, buds, internodes, and
leaves. The long vegetative phase establishes continuous leaf
development needed to capture sunlight for photosynthesis that
supplies nutrients for expansion of roots for anchoring, storage,
and uptake of minerals for increased biomass production. Some
high-yielding C4 crops are Miscanthus x giganteus, Sorghum
bicolor, Pennisetum, and sugarcane (Saccharum spp.) genotypes,
characterized by enriched canopies, taller stems, and longer
growing seasons (Somerville et al., 2010; Mullet et al., 2014).
The biomass yield of Miscanthus × giganteus in some mid-west
United States locations reached 44–61 Mg/ha at peak biomass
accumulation (Heaton et al., 2008). Pennisetum purpureum
and Pennisetum typhoides reached their record yields of ∼88
and 80 Mg/ha, respectively during longer growing seasons
(Somerville et al., 2010). Similarly, high-biomass first-generation
sorghum hybrids accumulated ∼40–50 dry Mg/ha during
∼180 days growing season when grown in the south-central
United States (Olson et al., 2012). Biomass varies among types of
C4 crops for various reasons like stem sink strength, shoot/root
partitioning, and season length. For example, Miscanthus ×
giganteus produced higher biomass than switchgrass and maize
when these were grown in similar regions in the United States
due to differences in shoot/root biomass partitioning (Anderson
et al., 2011). High-biomass sorghum hybrids with long growing
seasons produce twice shoot biomass (∼40–50 Mg/ha) when
compared to grain sorghum hybrids in optimum growth
conditions and∼30% more biomass in rain-fed conditions when
both hybrids are grown in similar regions in the south-central
United States (Olson et al., 2012; Truong et al., 2017). The
increased biomass yield of high-biomass sorghum hybrids was
because of delayed flowering initiation resulting in prolonged
vegetative growth duration that increased total light energy
capture, improved radiation interception and use efficiency, and
elevated biomass partitioning.

Further, delayed flowering in long days concomitant
with an extensive period of vegetative growth resulted in
increased biomass yield as observed in several C4 grasses.
Photoperiod regulated flowering in sorghum is extensively
studied by modulating flowering regulators florigen related
genes (CN8, CN12, CN15), upstream activators (CONSTANS
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(CO) and EARLY HEADING DATE 1 (EHD1)), and repressors
(PRR37 and GHD7) of these genes that are regulated by
photoperiod and output from the circadian clock, once
sorghum exits in juvenile phase (Murphy et al., 2011, 2014;
Dong et al., 2012). Prolonged vegetative meristem activity
with increased biomass yield was observed in several plants
by overexpressing flowering-time genes (Demura and Ye,
2010). Indeed, the activation of the flowering promoting
factor-like1, flowering locus T1, C-like MADS-box protein,
early flowering 3 as well as embryo flowering 1-like protein in
tomato IL2-6 cultivar, supported late-maturing performance
(Caruso et al., 2016). Overexpression of gibberellin 20-
oxidase-1 and ARGOS also resulted in an extended growing
period by delaying the flowering time to give rise to larger
organ size and taller plants (Hu et al., 2003; Voorend et al.,
2016). Regulation switch from vegetative to reproductive
phase can be controlled by manipulating genes from several
developmental pathways, for example, gibberellin, circadian, and
flowering-related genes.

Hormones Dynamics and Primary Growth
Plant hormones are a diverse group of chemical substances
controlling growth and development-related events in plants
by regulating meristematic cell division and cell elongation.
These chemical signals modulate microtubule and cell plate
formation, cell wall constituent deposition, and remodeling
which are key factors of growth and thus biomass accumulation.
During the green revolution, scientists exploited the traditional
plant breeding approaches for the selection of short stature,
higher grain yield producing cultivars, which were low in
levels of endogenous hormones like gibberellin (Sánchez-
Rodríguez et al., 2010), auxin (Vanneste and Friml, 2009),
and brassinolide (Müssig, 2005) that are important as growth
regulators and performing growth regulatory functions from
cellular to developmental levels (Table 1).

Gibberellin
In Gibberellin (GA) signaling pathways, manipulation of both
positive and negative regulators employed positive effects on
growth and biomass accumulation. One control point of
biomass can be the substantial increase of GA rate-limiting
enzyme GIBBERELLIN 20-OXIDASE (GA 20-OXIDASE) which
is involved in the last steps of GA biosynthesis in the
cytoplasm. One of the primitive functional evidence of GA20ox
in Arabidopsis highlights the accelerated shoot growth, elongated
hypocotyls, and onset of early flowering (Coles et al., 1999).
In a potential biofuel crop, switchgrass, ectopic expression
of ZmGA20ox resulted in increased growth and biomass-
related traits (Do et al., 2016). Recently, nine genes of GA20-
ox1 were identified in sweet sorghum (bioenergy sorghum)
and showed differential spatiotemporal patterns of expression
while SbGA20ox1 was predominantly related to increased stem
biomass and assimilates partitioning (Wang et al., 2020). “Green
revolution” gene GA20-oxidase is involved in the synthesis of
principal biopolymer in the cell wall, i.e., cellulose in sorghum,
whereas dwarf1-1 cellulose deficient and male gametophyte-
dysfunctional mutant showed ablation of GA and altered

expression of three CESA genes generating cellulose deficient
and dwarf phenotypes (Petti et al., 2015). Similarly, plants
overexpressing ZmGA20ox displayed longer internodes and
leaves, more tillers, and twofold increase in maize biomass
(Voorend et al., 2016). Secondly, GA-INSENSITIVE DWARF1
(GID1) is the first receptor of bioactive GA in the signaling
pathway, which shows the highest affinity for GA4 (bioactive
form). Overexpressing the GID1 gene shows a substantial
increase in shoot elongation and growth in Arabidopsis, rice,
and poplar (Sakamoto et al., 2004; Hirano et al., 2008; Mauriat
and Moritz, 2009). The third main player in the gibberellin
signaling pathway is the DELLA repressor gene which hinders the
transcription of GA receptor, i.e., GID1. DELLA proteins act as a
feedback regulatory control in the GA signaling pathway and are
implicated in dwarf phenotype in maize with shifts in flowering
time (Lawit et al., 2010). A recently conducted study on sugarcane
affirmed the similar inhibitory roles of DELLA proteins. DELLA
proteins interact with PIF4 and elements in the ethylene signaling
pathway ScEIN3/ScEIL1, moreover, DELLA silenced lines showed
changes in carbon allocation in storage and structural molecules
and increased culm growth (Garcia Tavares et al., 2018).

Auxin
Auxin is a very important hormone involved in the growth
process and cell wall architecture. Numerous mutants related
to auxin synthesis, transport, and signaling showed overall
dwarf phenotypes, defects in tropisms, and altered organ
morphology (Vanneste and Friml, 2009). Auxin influx facilitator
AUXIN1/LIKE-AUX1 (AUX/LAX) is involved in inflorescence
development and root gravitropism. It is reported that mutations
in homologs of AUX1 genes in maize (ZmAUX1) and Setaria
viridis (SvAUX1) resulted in defective branch development of
inflorescence, reduced plant height, increased panicle length,
and sparse panicle phenotype (Huang et al., 2017). Aux/IAA
homolog ROOTLESS WITH UNDETECTABLE MERISTEMS
1 (RUM1) in maize is involved in seminal and lateral roots
formation. Transcriptome analysis of rum1 showed down-
regulated expression of like-auxin1 (lax1), the plethora genes
plethora 1 (plt1), baby boom 1 (bbm1), and heat shock
complementing factor 1 (hscf1), and the auxin response
factors arf8 and arf37 (Zhang et al., 2015). In maize, ARF5
(MONOPTEROS) is involved in vascular cells differentiation
and rum1 showed defective xylem organization and more lignin
deposition in root cells (Zhang et al., 2014).

Brassinosteroid
Brassinosteroids (BR) comprise an important group of steroidal
hormones originally isolated from the pollen of brassica plants
(Rehman et al., 2022a). Brassinolide (BL) is the biologically
active BR that is synthesized from compound campesterol
with the aid of a cytochrome P450-mediated pathway (Bishop,
2007). This was a relatively novel and less studied hormone
in the past, but recently it has gained attention as an active
growth-promoting hormone owing to its involvement in
many physiological functions (Fridman and Savaldi-Goldstein,
2013; Rehman et al., 2022b). Several genes are involved in
the signaling pathways of brassinolide from BL perception
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TABLE 1 | List of C4 crops genes as candidates for exploiting biomass-related traits.

Crop species Gene/Enzyme
manipulated

Description Comments References

Cell cycle machinery

Tobacco CycA3;3 A-type cyclins Antisense expression led the formation of defective embryo
and impaired callus formation

Yu et al., 2003

Tobacco Arath-CYCD2 or
Arath-CYCD3

D-type cyclins (G1-specific
cyclins)

OE transgenics exhibited increased cell number but not cell
size with higher leaf initiation rates

Boucheron et al.,
2005

Maize Samba1 and samba 3 SAMBA CRISPR/Cas9 mutant lines accelerated cell cycle, erect and
shortened foliage upper top leaf length, ligule formation and
internode elongation

Gong et al., 2021

Hormone related genes

Arabidopsis GA20ox GA20-oxidase OE produced 25% taller plants, accelerated shoot growth
and early flowering

Coles et al., 1999

Switchgrass GA20ox GA20-oxidase OE lines showed 2 folds biomass increase due to more
tillers, leaf size and elevated bioactive GAs

Do et al., 2016

Sorghum GA20ox1 GA20-oxidase Higher expression in bioenergy sorghum culms. Moreover,
sweet sorghum had higher GA levels and biomass.

Wang et al., 2020

Sugarcane GAI DELLA repressors OE lines showing the stunted culm growth and
development and modulation of shoot-to-root ratio in
sugarcane

Garcia Tavares
et al., 2018

Maize AUX1 (AUX/LAX) Auxin influx
facilitators

Mutant showed inflorescence development and root
gravitropism

Huang et al., 2017

Green foxtail AUX1 (AUX/LAX) Mutants led to defective inflorescence, reduced plant
height, increased panicle length and sparse panicle
phenotype

Huang et al., 2017

Maize Aux/IAA RUM1 (ROOTLESS WITH
UNDETECTABLE MERISTEMS
1)

Mutant rum1 showed defective xylem organization and
more lignin deposition in root cells

Zhang et al., 2015

Maize ARF5 (MONOPTEROS) Mutant showed root altered patterning of vascular cells
differentiation, thick cell walls with higher lignin contents

Zhang et al., 2014

Maize D11 Biosynthesis of BL Higher expression in young ears and seeds, Improve seed
quantity and quality.

Sun et al., 2021

Maize BRI1 BRASSINOSTEROID
INSENSITIVE 1

Mutant displayed overall dwarf stature, shortened
internodes, folded dark green leaves, decreased auricle
formation and feminization of female flowers

Kir et al., 2015

Cell wall biosynthesis related genes

Arabidopsis xxt1 xxt2 Xyloglucan transferase Double mutant showed aberrant root hairs and modified
mechanical properties

Cavalier et al., 2008

Arabidopsis TED6 and TED7 Tracheary Element (TE)
Differentiation-Related 6 and 7

RNAi showed delay in TE differentiation, abnormality in
SCW and cellulose synthesis

Endo et al., 2009

Arabidopsis LAC4 & LAC17 Laccases T-DNA insertion showed LAC17 effected the deposition of
G lignin units in the interfascicular fiber. lac4-2 lac17 double
mutant resulted in 40% reduced lignin.

Berthet et al., 2011

Plant species Gene/Enzyme
manipulated

Description Comments References

Sugarcane LAC Laccases Complementation in Arabidopsis lac17 (–19% lignin) mutant
restored lignin content

Cesarino et al.,
2013

Sorghum (bmr) bmr2, bmr6,
and bmr12

Brown midrib mutant 2 years-based field study of EMS bmr mutants displayed
decreased levels of lignin

Sattler et al., 2014

Maize (bm3) COMT Brown-midrib-3, lacking caffeic
acid O-methyltransferase
(COMT )

Antisense (AS225), and bm3 maize plants resulted in
disturbed cell wall assembly.

Guillaumie et al.,
2008

Sorghum CslF6 Cellulose synthase-like
F6 (CslF6) Glucan biosynthesis

Chimeric cDNA construct modifies the fine structure of
(1,3;1,4)-β-glucan polysaccharide chain

Dimitroff et al.,
2016

(Continued)
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TABLE 1 | (Continued)

Crop species Gene/Enzyme
manipulated

Description Comments References

Transcription factors and MicroRNA

Switch grass ERF001 SHINE “SHINE/WAX
INDUCER” (SHN/WIN) TF
(AP2/ERF) superfamily

Increased biomass, and efficient saccharification process Wuddineh et al.,
2015

Sugarcane SHN1 SHINE “SHINE/WAX
INDUCER” (SHN/WIN) TF e
factor (AP2/ERF) superfamily

OE results modified cell walls and increase in biomass by
(91–340%),

Martins et al., 2018

Maize MYB46/83 MYB (myeloblastosis) Synthesis and thickening of cell wall Zhong et al., 2011

Switchgrass R2R3-MYB MYB (myeloblastosis) OE lines showed an increased biomass up to ∼ 63% and
reduced lignin content around 50%

Shen et al., 2012

Maize MYB31 and MYB42 MYB (myeloblastosis) Redirected phenylpropanoid and lignin biosynthesis in
Arabidopsis, reduced S/G ratio (S, syringl units; G, guaiacyl
units)

Sonbol et al., 2009;
Vélez-Bermúdez
et al., 2015

Sorghum Myb60 Myeloblastosis (MYB) Overexpressed lines displayed enhanced lignification in leaf
midribs and increased phenolics

Scully et al., 2016

Finger millet bHLH57 (BASIC HELIX-LOOP-HELIX) Over-expressing depicted resistance to salinity stress with
enhanced photosynthetic efficiency and increased biomass

Babitha et al., 2015

Maize Dof 1 Zinc finger protein Increased NUE in transgenic sorghum and wheat.
Activation of carbon skeleton metabolism, i.e., PEPC
activity

Peña et al., 2017

Maize miR156, AtSPL9,
MIR172

SQUAMOSA Promoter-Binding
Protein-Like (SPL) miRNA

Delays reproductive phase leading the prolonged vegetative
stage

Lauter et al., 2005;
Chuck et al., 2007

Switchgrass GAUT4-KD,
miRNA156-OE,
MYB4-OE, COMT-KD
and FPGS-KD).

Myeloblastosis (MYB) miRNA Increased contents of carbohydrates by 12% and ethanol
yields by 21%

Dumitrache et al.,
2017

to activation of responsive genes for example receptor-
like kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1),
BRI1-ASSOCIATED RECEPTOR KINASE 1, SOMATIC
EMBROGENESIS RECEPTOR KINASE 1, and a repressor gene
GSK3-like kinase BIN2 (BRASSINOSTEROID-INSENSITIVE
2) (Sánchez-Rodríguez et al., 2010). After the discovery of BL,
mutant analysis in Arabidopsis revealed that plants deficient
in the genes related to BL biosynthesis or signaling pathways
showed dwarf phenotype, compromised male fertility, delay
in flowering time, altered patterns of vascular development,
and impaired photomorphogenesis (Feldmann et al., 1989).
In a very recent study on maize, an endoplasmic reticulum
localized gene, i.e., ZmD11 related to the biosynthesis of BL
rescued the panicle architecture and plant height in cpb1
mutant in maize and rice. ZmD11 increased seed length, seed
weight, and both seed starch and protein contents in rice and
maize crops (Sun et al., 2021). brassinosteroid-deficient dwarf1
(brd1) gene encoding brassinosteroid C-6 oxidase having a
maize lilliputian1 allele (lil-1) caused alteration in gravitropic
response of root, leaf cell density, and more wax deposition
conferring the adaptive mechanism to stress (Castorina et al.,
2018). BR receptor, i.e., BRASSINOSTEROID INSENSITIVE1
(BRI1) RNA interference (RNAi) knock-out mutants in maize
showed overall dwarf stature, shortened internodes, folded dark
green leaves, decreased auricle formation, and feminization
of male flowers (Kir et al., 2015). Similarly, in sorghum, the
nuclear localization of BRASSINOSTEROID INSENSITIVE 2
(BIN2) was inhibited by DW1 indicating its role in BR signaling.

Sorghum lines harboring mutated Dw1 (dw1) showed impaired
skotomorphogenesis, lamina joint bending, and insensitive to BR
gene regulation and feedback (Hirano et al., 2017) (Figure 1A).

This cluster of genes involved in biosynthesis and signaling
of the important growth-promoting hormones highlights
the connections with the cell wall, carbohydrates, and
photosynthesis-related pathways. Further studies need to
elucidate growth patterns of double or triple mutants from
multiple hormone pathways at transcriptional and biochemical
levels for efficient biomass response.

Cell Wall-Related Genes
The cell wall is a non-living protective cell layer that comprises
70% of the world’s plant biomass (Poorter and Villar, 1997;
Pauly and Keegstra, 2008). Second-generation cellulosic biofuel
(bioethanol, biohydrogen, and biomethanol) produced from
the plant biomass mostly comes from the cell wall. During
plant growth and cell extensibility, several processes are
involved among which cell wall loosening and rearrangement
strongly contribute in plant biomass traits. In plant species,
numerous gene families related to cell wall biogenesis, membrane
trafficking, remodeling, secondary cell wall synthesis, and
signaling comprise ∼10% of plant genomes (Lauter et al., 2005;
Yong et al., 2005; McCann and Carpita, 2007).

Many studies involving plant biomass engineering techniques
showed a strong effect on cell wall-related genes on growth
and biomass accumulation processes in C4 biofuel crops e.g.,
miscanthus (van der Weijde et al., 2013), sorghum (Scully et al.,
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2016; Xia et al., 2018; Tetreault et al., 2020), and sugarcane
(Jung et al., 2012; Bottcher et al., 2013). Genes responsible
for cellulose synthesis mainly include members of cellulose
synthase (CesA) and cellulose synthase-like (Csl) families. A
recently published comparative study have identified 77, 35,
and 109 CesA/Csl genes in Miscanthus floridulus, S. bicolor,
and S. spontaneum, respectively. Among the 10 groups of
CesA genes classified by phylogenetic approaches, a new group
was identified in Miscanthus floridulus, i.e., CesAX which was
not present in C3 rice. Higher expression of CesA genes and
their duplicates mainly followed by WGD (Whole Genome
Duplication) showed the additive effects in gene expression levels
resulting in more cellulose accumulation (Zhang et al., 2021).
Silencing or mutations of CesA genes in Arabidopsis and certain
other monocots have resulted in certain functional deformities
but there is no authentic evidence that over-expression of CesA
will certainly increase the cellulose content of the cell wall. In
Miscanthus × giganteus, cloning of six MgCesA genes showed
the involvement of MgCesA2, 3, 4, 7, and 8 in primary cell
wall biosynthesis and rest in (MgCesA10, 11, 12) secondary
cell wall synthesis and formation of cellulose synthase complex
(Zeng et al., 2020).

Two cellulose interacting genes TED6 and TED7 enhanced
the cellulose synthesis in xylem vessel elements, and lack of
function mutants resulted in the failed secondary cell wall
formation in Arabidopsis (Endo et al., 2009). Similarly, expression
profiling of interspecific sugarcane hybrids showed upregulation
of CesA, laccases, and callose synthase-related genes in high
biomass extreme F2 segregants (Wai et al., 2017). Lignin has
been an undesirable component of the cell walls in terms of
bioenergy generation, although it accounts for ∼30% terrestrial
organic carbon fixation in the biosphere (Battle et al., 2000).
In sorghum, brown midrib mutant (bmr) showed decreased
levels of lignin and the formation of an altered subunit. The
Bmr gene is a biosynthesis gene in monolignol units, which
yield the hydroxycinnamic subunits of lignin. Another class of
genes, laccases, are involved in the oxidation of monolignol
units before the incorporation into cell wall polymers (Bonawitz
and Chapple, 2010). In vitro oxidation of lignin precursors
(Liang et al., 2006) and localization in lignin synthesizing tissues
(Ranocha et al., 2002; Caparrós-Ruiz et al., 2006) have been
experimentally proved by laccases in plants. In Arabidopsis,
T-DNA insertion lines exhibited the reduced lignin content
in single mutants of AtLAC4 and AtLAC17 whereas, double
mutants displayed 40% reduced lignin but with irregular
xylem tissues (Berthet et al., 2011). Sugarcane, a benchmark
of biomass-derived biofuels showed the strong interactions of
SofLAC genes with phenylpropanoid biosynthesis genes in a
co-expression network. For the confirmation of monolignols
oxidation, complementation of the SofLAC gene under the native
promoter AtLAC17 was performed in Arabidopsis lac17 mutants
having reduced lignin. SofLAC repaired the lignin content in
Arabidopsis but lignin composition was altered in complemented
lac17 mutant lines (Cesarino et al., 2013). Xyloglucans (XyG)
comprise a major class in hemicellulose proportion of cell wall
and are extensively found in primary cell walls of eudicots and
non-gramineous monocots. In Arabidopsis, double mutant xxt1

xxt2 displayed a considerable reduction in detectable xyloglucan
and altered mechanical properties (Cavalier et al., 2008). For an
ideal bioenergy crop, higher lignin content is an undesirable trait
due to its recalcitrance to degradation, whereas higher crystalline
cellulose content is favored due to its digestibility. Conversely,
hemicelluloses are crosslinking both lignin and cellulose causing
a decrease in cellulose crystallinity, but a reduced level of
hemicellulose branching ensures easy separation of cell wall
components (Torres et al., 2015). However, molecular alteration
of hemicellulose is handicapped due to its vague and complex
biosynthesis and subsequent pathways. Research advances to
this field are nevertheless confined at molecular levels in model
species whereas, application of this knowledge in bioenergy-
related species is the main goal (Figure 1B).

Transcriptional Regulation and miRNA Role
Transcription factors are the genes encoding proteins (besides
RNA polymerase) that are essentially required for transcription.
Owing to the regulatory role in transcription activity, they
are capable of controlling the expression of many downstream
key genes related to growth and development. In plants, DNA
transcription involves more than 1,500 TFs to regulate target
genes by binding with cis-regulatory elements in the promoter
region (Singh et al., 2002). Secondary cell wall formed between
the primary cell wall and cell membrane strongly contributes
to the development and is an important attribute for the
biofuel industry. Biosynthesis and remodeling of cell wall
components are achieved through an orchestrated action of
TFs and downstream genes. Therefore, detailed knowledge of
transcription factors controlling secondary cell wall initiation
genes, polysaccharides synthesis, lignification process, and a
parallel process of programmed cell death (PCD) of xylem cells
(Ohashi-Ito et al., 2010) is important to dissect for biomass
regulation (Table 1).

Transcription factors of NAC (NAM—No Apical Meristem,
ATAF, CUC—CUP/SHAPED Cotyledon) family activates
a nexus of downstream transcription factors for example
MYBR2B3, and act as master switches by binding with cell wall
biosynthetic genes (Martins et al., 2018). SHINE “SHINE/WAX
INDUCER” (SHN/WIN) TF is a member of ETHYLENE
RESPONSIVE FACTOR (ERF) that functions as a regulator
of cell wall biosynthesis genes, resulting in increased cellulose
and decreased lignin contents (Ambavaram et al., 2011). In
switchgrass (Panicum virgatum) PvERF001 gene which is the
homolog of AtSHN2 conferred activation of cell wall synthesis
and accumulation of biomass (Wuddineh et al., 2015). Likewise,
sugarcane transcription factor ShSHN1 overexpressed in rice
induced changes in cell wall composition and increase in biomass
by (91–340%), pectin (26–209%), cellulose content (10–22%),
and saccharification efficiency (5–53%) in rice transgenic plants
(Martins et al., 2018). McCarthy reported that AtMYB46 and
its paralog AtMYB83 are found to function as activators of
the secondary cell walls and are expressed in xylem fibers and
vessels during secondary cell wall development (McCarthy et al.,
2009). In Arabidopsis myb46/83 double mutant, maize orthologs
of AtMYB46/83 successfully complemented the secondary cell
wall synthesis and thickening after rescuing the defected walls
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FIGURE 1 | Overview of the genes involved in different pathways in important C4 biomass plants. (A) Highlights the hormone genes directly or indirectly related to
growth and cell wall functioning. (B) Shows multiple genes involved in biosynthesis and remodeling of different cell wall-related components. (C) Transcription factors
regulate many genes involved in different pathways of secondary cell wall synthesis leading to modified cell wall components improving saccharification efficiency.
Black arrows show positive, red arrows show negative growth impacts and T lines show inhibitory influence on other genes. Whereas, green boxes enclose the
functionally characterized genes in their respective pathways.

(Zhong et al., 2011). Similarly, in switchgrass, overexpression
transgenic lines of R2R3-MYB (PvMYB4) showed increased
biomass up to ∼63% and reduced lignin content around 50%

(Shen et al., 2012). Some MYB genes in grasses, e.g., maize and
switchgrass function in lineage-specific fashion regarding lignin
biosynthesis regulation (Agarwal et al., 2016). For example,
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FIGURE 2 | (A) Contrasting transcriptional regulation patterns of MYB TFs in C3 and C4 plants. In C3 (Arabidopsis) ectopic expression of maize TFs enhance lignin
biosynthesis whereas in C4 (Maize) lignin content is reduced. This gives rise to lineage-specific transcription in C4 plants. (B) Increase in temperature and CO2

enhances photosynthesis and altered control of stomatal aperture enhancing WUE. Soil microbiota mass in the rhizosphere is also increasingly responsible for
modifications in the nutrient pool.

co-immunoprecipitation and ChIP-seq assays (co-IP) assays
showed that ZmMYB11, ZmMYB31, and ZmMYB42 induced
reduction in expression of lignin biosynthesis-related genes
COMT (caffeic acid-O-methyltransferase) and 4CL2 in maize
(Vélez-Bermúdez et al., 2015). ZmMYB31 and ZmMYB42 in
exogenous expression in Arabidopsis redirected phenylpropanoid
and lignin-related genes in Arabidopsis contrary to maize.
Moreover, ZmMYB31 and ZmMYB42 didn’t down regulate the
ZmF5H (ferulate-5-hydroxylase) gene in maize as compared

to Arabidopsis, leading to a decrease in S/G ratio (S, syringl
units; G, guaiacyl units) (Sonbol et al., 2009; Fornalé et al., 2010;
Vélez-Bermúdez et al., 2015). Ectopic expression of transcription
factor SbMyb60 in sorghum showed involvement in monolignol
biosynthesis pathways and increased lignin concentration
and plant biomass. Constitutively overexpressing SbMyb60
displayed enhanced lignification in leaf midribs and soluble
phenolic compounds in plant biomass (Scully et al., 2016).
This suggests that in monocot grasses the route of MYB TFs
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and their regulatory pathways are more diverse and need to be
investigated considering the models from grasses. Furthermore,
the differences in C3 and C4 photosynthetic regulatory pathways
should be studied in detail to increase the cellulose and
hemicellulose contents and decreased contents of recalcitrant,
i.e., lignin. (Figure 2B). Finger millet transgenic plants over-
expressing bHLH57 (BASIC HELIX-LOOP-HELIX) depicted
resistance to salinity stress with enhanced photosynthetic
efficiency and increased biomass (Babitha et al., 2015). AHL
(AT-HOOK MOTIF NUCLEAR LOCALIZED) family of
transcription factors in Arabidopsis controls the petiole and
rosette growth and architecture by antagonizing the role
of growth-promoting PHYTOCHROMEINTERACTING
FACTORS (PIFs) (Favero et al., 2020). Maize zinc finger protein
Dof1 transcription factor increased the nitrogen use efficiency
in transgenic sorghum and wheat. Tissue-specific expression of
ZmDof 1 under rbcS1(maize) promoter increased growth by
activation of carbon skeleton metabolism, i.e., PEPC activity
(Peña et al., 2017) (Figure 1C).

SQUAMOSA Promoter-Binding Protein-Like (SPL)
transcription factors are regulated by microRNAs (miRNA),
i.e., miR156 and AtSPL9 which positively regulate another
miRNA miR172 (Chen et al., 2010). AtSPL9 TF binds to
the promoter region of the MIR172 gene and induces the
transcription activity of downstream genes and repress adult-
related characteristics in Arabidopsis. At the later plant stage,
the miR156-AtSPL9-miR172 regulatory pathway progresses with
the decrease in miR156 levels and increase in miR172 leading
to repression of FLOWERING LOCUS T (FT) gene. This event
allows entering the plant to the reproductive phase and the
same regulatory pathway is conserved in maize where miR172
represses Glossy15, an AP2-like TF (Lauter et al., 2005; Chuck
et al., 2007). This interactive regulatory role of transcription
factor and microRNA is an effective molecular tool to extend
the vegetative phase for enhanced sink capacity and biomass
accumulation. Dumitrache et al. (2017) developed independently
overexpressing (OE) and silenced (KD) transgenic switchgrass
lines of specific genes and miRNA GAUT4-KD, miRNA156-OE,
MYB4-OE, COMT-KD, and FPGS-KD (Dumitrache et al., 2017).
Continuous monitoring of 2-year ratoon transgenes showed
increased contents of carbohydrates by 12% and ethanol yields
by 21% as compared to controlled conditions. In Arabidopsis,
the use of zinc finger artificial transcription factor (ZF-ATF)-
mediated interrogation lines helped in understanding growth
and biomass-related characteristics. Introgression lines of two
Arabidopsis genomes harboring 3F-EAR encoding T-DNA and
3F-VP16 encoding T-DNA constructs showed substantially
large phenotypes. Whereas, 3F-EAR is Arabidopsis based ERF-
associated Amphiphilic Repression (EAR) motif and acts as
a dominant repressor evident from the previous studies and
VP16 protein originated from the herpes simplex virus as a
transcriptional activator (Ohta et al., 2001; Hiratsu et al., 2003;
McCarthy et al., 2009). Further research is needed to elucidate
the differences in transcriptional regulation of Arabidopsis and
C4 grasses, involving the promoter analysis to identify important
cis-elements and the spatio-temporal regulation of TFs, affecting
development-related genes.

Hybridity and Polyploidy
Hybrids and polyploids are common in plants. Hybridization
between and within species is a natural process and is estimated
to occur in ∼25% of plant species (Mallet, 2005). Hybrid vigor is
a common consequence of hybridization and refers to superior
hybrid performance in yield, biomass, or other agronomic
parameters. Polyploidy refers to a cell or organism having two
or more sets of basic chromosomes. An autopolyploid is derived
from genome duplication within the same species, such as alfalfa
(Medicago sativa), sugarcane (Saccharum), and potato (Solanum
tuberosum), while allopolyploids are formed by chromosome
doubling following hybridization between species. Allopolyploid
is a “doubled interspecific hybrid,” which leads to heterozygosity
and hybrid vigor fixation. Many crops like cotton (Gossypium
hirsutum), bread wheat (Triticum aestivum), and oilseed rape
(Brassica napus) are cultivated as allopolyploids while rice (Oryza
sativa), and maize (Zea mays) are mainly grown as hybrids. Both
ploidy and hybridity affect growth vigor and cell size which are
directly associated with plant biomass production (Chen, 2010).

In maize, increased ploidy had a detrimental effect on plant
size which increases from haploid to triploid, but reduces
in tetraploid (Riddle et al., 2006), and is consistent with
smaller haploid Arabidopsis plants than diploids (Ravi and Chan,
2010). Induced polyploidy in hybrids may facilitate improving
yield components, diminish hybrid vigor breaks in subsequent
generations and restore inter-subspecific hybrids fertility (Miller
et al., 2012). In sorghum, the colchicine-treated polyploidy
induced plants showed high biomass with longer leaf length
and stronger root system (Ardabili et al., 2015). A triploid
Miscanthus × giganteus, C4 grass is considered an excellent
bioenergy crop due to its capacity to capture greenhouse gases
by sequestering carbon in underground rhizomes and high
biomass production when compared to diploid Miscanthus
species (Chae et al., 2013). The modern sugarcanes are polyploid
interspecific hybrids combining disease resistance, hardiness, and
ratooning of Saccharum spontaneum and high sugar content
from Saccharum officinarum. Genome restructuring and gene
expression modifications in these cultivars due to polyploidy
provide a selective advantage for a wider geographical adaptation,
increased vigor, sucrose, and fiber content (Ming et al., 2001;
Hoang et al., 2015). There is increased global demand for
alternative fuel sources, and sugarcane is gaining importance as
a biofuel crop with its high biomass production potential, besides
being a major sugar crop.

ENVIRONMENTAL CUES INFLUENCING
BIOMASS ACCUMULATION

Plants being sessile in nature are exposed to constantly changing
environment enveloping around them. In the presence of
judicious input resources and ideal genotypes, still plants
are exposed to fluctuating environment in terms of CO2
concentration, irradiance, and temperature which are function of
plant growth. Here we reviewed that how fluctuations in external
environment alter gene expression of important pathways and
eventually biomass accumulation patterns.
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Ambient CO2 Fluctuations
With the gradual increase of GHGs in the atmosphere, the extent
of CO2 is also increasing in the air as CO2 also comes under the
category of greenhouse gases. This increase in GHGs tends to
rise the global temperature which seriously changes the genetic
and physiological attributes affecting the growing patterns of
plants. This global warming accompanied by climate change
has increased the variability of precipitation and a continuous
increase in ambient CO2 concentration up to 490–1,260 ppm by
the end of the twenty-first century (IPCC, 2007). Considering
the global changes, fluctuations in CO2, light, and temperature
are having both direct and indirect effects on the growth and
biomass production of C3, C4, and CAM photosynthesis plants
(Ainsworth and Long, 2005). Owing to anatomical and functional
modifications in C4 species, it was assumed that C4 plants will
be less affected by CO2 rise as ambient CO2 already meets
the maximum saturation due to bundle sheath cells, as for C3
plants CO2 is a limiting factor for maximum photosynthesis.
However, previous researches suggest different reasons for the
increased response in terms of growth and productivity against
elevated CO2 in C4 plants as (1) direct effect on Rubisco as
CO2 saturation point increases (Ziska and Bunce, 1997), (2)
leakiness of bundle sheath cells (Watling et al., 2000), (3) young
leaves are supposed to undergo preliminary C3 photosynthesis
system (Cousins and Bloom, 2003), (4) reduced stomatal aperture
to enhance WUE or maintaining inner optimal temperature
(Ghannoum et al., 2000).

Dieleman et al. (2012) published a meta-analysis of
multifactorial experiments in which all treatments showed
that increased CO2 and warming increased plant biomass and
soil respiration. An increase in only CO2 treatment elicited more
biomass of fine roots, soil respiration, and a decrease in foliar
nitrogen (Dieleman et al., 2012). In another study De Souza
et al. (2008) compared the effects of ambient (∼370 ppm) and
increased (∼720 ppm) CO2 concentration on sugarcane growth
and biomass. Elevated CO2 led to an increase of 17% in plant
height, 30% in photosynthesis, 29% in sucrose contents, and 40%
more accumulation of plant biomass (De Souza et al., 2008).
This is thought to be achieved by physiological modifications
regarding WUE as transpiration rates and stomatal conduction
was reduced by –32 and –37%. An experiment involving free-air
carbon enrichment (FACE) showed an elevated photosynthetic
rate in young leaves and increased biomass and leaf number
in sorghum and maize, respectively (Maroco et al., 1999;
Cousins and Bloom, 2003). Recently, a study focused on the
membrane properties and photosystem II activity of maize and
pearl millet under elevated CO2 and temperature. The results
showed that maize outperformed in biomass accumulation in
the presence of high CO2 while pearl millet was more responsive
in high temperature (Bordignon et al., 2019). Conversely, a
comparative study conducted on two weedy species of C3
(Chenopodium album) and C4 (Setaria viridis) plants showed
the decreased biomass at elevated temperature alone but a
dramatic increase in biomass and seed yield by 33.9 and 114.4%,
respectively, at increased temperature and CO2 concentrations in
Chenopodium album. On the other hand, Setaria viridis showed

1.6- and 1.3-fold more biomass in an increased temperature
and CO2 conditions as compared to control and only increased
temperature (Lee, 2011). Experiments conducted on wheat
and maize as the representatives of C3 and C4 plants showed
that high CO2 in C3 (wheat) helps in ammonium NH4

+

assimilation which was very less in ambient CO2 and showed
declined rate of photosynthesis. Overall results showed that
cellular and chloroplast CO2 enhanced electron flux in wheat as
compared to maize. Several experiments showed that C3 plants
are more responsive toward elevated CO2 as they reduce the
extent of photorespiration and benefit more from enhanced
CO2. However, recently reported from a 20-year continuous
investigation using FACE experiment on 88 grassland plots,
that for 12 years C3 plants showed increased biomass owing to
higher eCO2 (Equivalent CO2) (Reich et al., 2018). Whereas, in
subsequent 8 years a shift in this trend was seen from C3 to C4
plants, which resulted in enhanced biomass and soil nitrogen
mineralization in C4 plants. These results are challenging
to current concepts regarding the C3-C4 eCO2 paradigm
(Figure 2A).

Circadian Rhythm Modulations by
Environmental Factors
The instabilities of external cues of the environment, such as light,
temperature, and nutrition, evoke a well-developed endogenous
time-keeping mechanism in plants which is called the circadian
cycle that allow in the modulation of energy and developmental
metabolism. For example, fluctuations in the diurnal rhythm of
light duration, temperature, and nutrition level modify intricate
transcriptional and post-transcriptional loops in plants similar to
animals (Harmer et al., 2001; Inoue et al., 2017). In Arabidopsis,
the circadian clock starts by the mutualistic interaction of two
transcription factors circadian clock associated 1 (CCA1) and late
elongated hypocotyl (LHY) (Mizoguchi et al., 2002) during the
morning hours. These two MYB TFs (CCA1, LHY) repress the
transcription of TIMING OF CAB EXPRESSION 1 (TOC1) also
known as PSEUDORESPONSE REGULATOR 1 (PRR1), which
acts as a regulator of many downstream genes. CCA1 Hiking
Expedition (CHE) (Pruneda-Paz et al., 2009), and GIGANTEA
(GI) (Strayer et al., 2000) also acts as a positive regulator
in circadian loops, whereas, CCA1 and LHY mRNA decrease
during the mid-day by TOC1 homologs (PRR9 and PRR7) in
feedback mechanism (Farré et al., 2005). During the evening,
Lux Arrythmo (LUX) mediated transcriptional repression of
PRR9 takes place by early flowering 4 (ELF4) and (ELF3)
(McClung, 2014).

In grasses, growth activity is mediated by a rib zone called
shoot apical meristem and is strongly influenced by light and
shade conditions. In densely grown sorghum populations, leaves
experience more shade conditions and inhibit shoot branching,
more stem elongation, and early flowering. A combination of
these responses is called Shade Avoidance Syndrome (SAS)
(Casal, 2013), which is a survival strategy in plants for the quest
for more sunlight and resources. Plant photoreceptors act to
monitor the light environment and perception, and they work
in synchrony with the circadian clock to regulate growth and
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development in plants (Devlin and Kay, 2001). Fluctuations in
the light intensity change the expression of 24 circadian genes
in bioenergy sorghum, among which CCA1 and LHY showed
12.7-fold lower and 5.9-fold higher expression in internodes of
shade-treated plants in comparison to control. CCA1 and LHY
regulate the expression of downstream genes for example in
sorghum, the homolog of Arabidopsis Granule Bound Starch
Synthase1 (GBSS1) gene which functions in starch biosynthesis
was also down regulated by 6.6-fold. Other clock-related genes
for example evening core clock genes were upregulated in
shade-exposed plants. For example, the expression of BT2,
and THIAMIN C SYNTHASE (THIC) function in important
pathways related to hormones, sugars, and thianmin synthesis
are regulated by circadian cycle genes (Mandadi et al., 2009).
Similarly, 6 days of exposure to extended darkness resulted
in malfunctioning in photosynthetic pigments, reduction in
photoassimilates, and total soluble and insoluble carbohydrates
in maize. However, CO2 exchange was not disturbed but
transient carbon pools were largely consumed by elevated
levels of nocturnal respiration rather than transport toward the
sink. Underlying processes may involve signals by trehalose-6-
phosphate and circadian rhythms which are controlling stress
response in multi-dynamic pathways (Graf et al., 2010; Wingler
et al., 2012). Light quality also mediates growth responses
by genetic and physiological modifications. Transcriptome
and metabolome profile of blue light exposed maize plants
showed genes and metabolites related to stomatal, carotenoid,
photosynthesis, and circadian cycle-related genes. CCA1 gene
was upregulated in presence of blue light, this upregulation is
consistent with the expression of many downstream genes related
to photosynthesis, starch synthesis, and stomatal development
processes (Liu and Zhang, 2021). In maize, the early stage
of light exposure stimulates the circadian rhythm genes to
increase light absorbance by regulation of photosynthetic genes
(Khan et al., 2010). As C4 plants possess well-developed Kranz
anatomy for the specialized storage of CO2 and water. In
maize plant ZmPIP4c, a water transport aquaporin gene showed
high expression profiles in bundle sheath cells during diurnal
change and is potentially responsible for the transport of
water in mesophyll cells. The synchronization in the expression
of NAD-malic enzyme gene (NAD-ME), phosphoenolpyruvate
carboxylase gene (PEPC), and carbonic anhydrase gene (CA)
from base to tip is consistent with the circadian rhythm
regulating cycle for efficient WUE in both light and dark
conditions (Xiang et al., 2020). Moreover, as already discussed
hybridization leads to heterosis, which is the outcome of
enhanced photosynthesis and metabolism possibly influenced by
CIRCADIAN CLOCK ASSOCIATED1 (CCA1). Two homologs
of maize, ZmCCA1a, and ZmCCA1b are diurnally upregulated
in Arabidopsis, cca1 Arabidopsis mutant was complemented by
ZmCCA1. Whereas, ZmCCA1b showed disruption in circadian
rhythms leading to reduced heterosis and plant height in the
greenhouse and slightly compensated in field conditions upon
light exposure. In hybrids, the temporal shift of ZmCCA1-
binding targets suggest the activated photosynthesis and growth
vigor genes in the morning phase relative to the inbred
lines (Ko et al., 2016). The behavior of circadian genes is a

good indicator to enhance our understanding of environment-
influenced genetic modulations.

TOOLS AND STRATEGIES TO ENHANCE
BIOMASS

Hybridization and Molecular Techniques
Until now, some plant species have been given attention for
the improvement of biomass which includes miscanthus,
switchgrass, willow, poplar, and eucalyptus, with their
improvement history dating back to the second half of the
twentieth century (Allwright and Taylor, 2016; Clifton-Brown
et al., 2019). Their improvement relied on hybridization or
breeding methods (crossing of different strains, species, or lines)
leading to heterosis or hybrid vigor of the F1 heterozygotes
with higher fitness in the population. Heterotic fitness refers
to superior growth, stature, fertility, and biomass in offsprings.
Several factors, for example, transcriptional regulation and
epigenetic changes drive improved characters in hybrids.
We have already reviewed that breeding techniques are
employed mostly in C4 grasses for achieving enhanced
biomass. However, the approval and release of commercial
cultivars take a long period of time, which factually delays
the cultivation in agriculture systems and slows down the
progress of conventional breeding (Clifton-Brown et al., 2019).
Conventional breeding techniques advance our understanding
toward marker-assisted selection for biomass-related traits,
stress tolerance, and scarification in biofuel grasses and woody
plants. In switchgrass, marker-assisted breeding enabled
the understanding of substitution of cell wall hemicellulose
polymers backbone and remodeling (De Souza et al., 2015)
whereas identification of specific loci was identified from
potential markers for high ethanol generation from switchgrass
populations (Chen et al., 2016). Prairie cordgrass is a potential
C4 bioenergy crop, and two clones of prairie cordgrass were
crossed and developed SSR markers for marker-assisted selection
of biomass traits (Gedye et al., 2012). Another study comprising
28 sugarcane genotypes identified simple sequence repeat (SSR)
markers associated with stalk number and stalk volume (Bilal
et al., 2015). In another experiment, 40 putative quantitative
trait alleles (QTAs) were identified from a self-crossed (295)
population of “R570,” with each allele contributing to phenotypic
variation by 3–7% in sugarcane (Hoarau et al., 2002). Likewise,
in sorghum, four QTLs were identified that control tiller
number and formation (Hart et al., 2001). Recently research
on the genotypes of M. sinensis indicated the genetic diversity
of cell wall constituents and concluded that a higher ratio of
para-coumaric acid to lignin contents and trans-ferulic acid
(TFA) increased the saccharification efficacy (van der Weijde
et al., 2017a). In sugarcane, stalk number is influenced by genes
and their alleles with additive and non-additive effects or their
interactions (Hongkai et al., 2009; Carvalho-Netto et al., 2014).
Considering the use of genome editing techniques for bioenergy
crops, the use of Transcription activator-like effector nucleases
(TALENs) have been employed for targeted modification in the
genome. High lignin content is an undesirable character for
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TABLE 2 | Few examples of genome editing techniques, engineering the C4 plants for biofuels.

Crops Targeted genes Technique Improved traits Associated pathway References

Sugarcane COMT Transcription
activator-like effector
nucleases (TALENs)

11–32% reduced lignin Increased hemicellulose
contents

Methyltransferase cell wall Jung and
Altpeter, 2016

Sugarcane COMT RNAi 12% reduction in lignin and improved
scarification by 32%

Cell wall Jung et al.,
2013

Switchgrass Pv4CL1 CRISPR/Cas9 8–30% reduced lignin 7–11% and 23–32%
increase in glucose and xylose release

Lignin synthesis pathways Park et al.,
2017

Sorghum BIOMASS YIELD 1 BY1 CRISPR/Cas9 Displayed reduced plant height, narrow stems,
erect and narrow leaves, and abnormal floral
organs.

Shikimate pathway Chen et al.,
2020

biofuel crops as in sugarcane, TALEN induced mutation in caffeic
acid O-methyltransferase (COMT) sequences modified cell wall
compositions. Pyrosequencing showed mutation frequencies
up to 99% and revealed 29–32% reduced lignin and elevated
hemicellulose contents (Jung and Altpeter, 2016). Similarly,
RNAi-derived COMT silenced sugarcane callus-derived plants
showed a 12% reduction in lignin and 32% improved scarification
but compromised agronomic performance (Jung et al., 2013).
CRISPR/Cas9 is a recent genome-editing technique expanding
its applications to construct desirable genetic circuits (Khakhar
et al., 2018). CRISPR/Cas9 system was employed in switchgrass
for the reduction of lignin contents (Park et al., 2017). Knock-out
mutant of the Pv4CL1 gene encoding 4-coumarate: coenzyme
A ligase (4CL) displayed increased scarification as compared
to wild. Tiller formation is one of the indices of biomass, two
genes grassy tiller1 (gt1) and teosinte branched1 (tb1) control
tiller formation in maize (Whipple et al., 2011). BRANCHED1
(BRC1) gene in sorghum is the homolog of tb1 gene, ectopic
expression of tb1 gene in Arabidopsis promoted axillary buds
formation Arabidopsis (Kebrom et al., 2006). Genome editing-
based mutagenesis using CRISPR/Cas9 showed proliferated
tillers in switchgrass as compared to wild plants (Clifton-Brown
et al., 2019). In sorghum, by1 mutant obtained by knocking
out BIOMASS YIELD 1 gene using CRISPR/Cas9 displayed
reduced plant height narrow stem length, erect and narrow
leaves, and abnormal floral organs. BIOMASS YIELD 1 gene
translates into an enzymatic protein catalyzing the first step of the
shikimate pathway (Chen et al., 2020). BY1 gene showed its role
in primary metabolism and secondary metabolites for example
flavonoids. In Arabidopsis hormone activated Cas9-based
repressor (HACRs) showed significant results that can be utilized
to achieve high grass biomass and economic yield (Khakhar et al.,
2018). Similarly, in sugarcane, using transgenic and molecular
techniques, an ortholog of the SLR1/D8/RHT1/GAI gene showed
substantial stem growth and structural modifications in storage
organs by regulating source-sink allocation changes (Garcia
Tavares et al., 2018). Although several transgenic lines with
enhanced features as bioenergy crops have been developed,
there is a need for a suitable selection process and quality
evaluation. However, due to cross-pollination in many grass
species, transgenic lines pose a threat of seed contamination.
Introgression and hybridization require labor-intensive and
time-consuming efforts with uncertain outcomes. Therefore,
recent genome editing techniques for example synthetic genetic

circuits (SGC) or CRISPR offer sophisticated and foreseeable
mutation induction in first-generation mutant lines (Scheben and
Edwards, 2018). Moreover, Near-infrared spectroscopy (NIRS)
and thermal aerial imaging technologies aid the phenotyping
of constituents and high-throughput options to screen abiotic
stress tolerance, respectively (van der Weijde et al., 2017b). Few
examples in Table 2 highlight the use of integrated phenotyping
and molecular technologies for biomass related research.

Nitrogen Management
Plant biomass of crops including C4 plants is influenced
by a variety of variables, i.e., plant genotype, photoperiod,
solar radiation, soil temperature, soil humidity, and many
more. Soil nutrient availability is one of the most significant
variables determining the crop biomass in C4 crops. So, by
regulating the optimal amounts of nutrient availability in soil,
growers may optimize the biomass output for biofuels and
of course economic gain (grain production). Soil degradation
and low soil fertility status significantly minimize the nutrient
availability in the soil to plants (Chatzistathis and Therios,
2013; Tanveer et al., 2019). Optimum fertilization appears to be
the most common method chosen by farmers in instances of
restricted nutrient availability in soils to improve the biomass of
cultivated C4 crops. Macronutrients, i.e., nitrogen, phosphorous,
magnesium, potassium, sulfur, and calcium, and micronutrients,
i.e., copper, zinc, manganese, iron, chlorine, and molybdenum
are classified as important nutrients for improving the biomass
of C4 crops. Nutrient scarcity has a detrimental impact on
biomass productivity (Anjum et al., 2019). Vegetation flushes
of C4 crops are severely hampered by nitrogen shortage as
nitrogen is an integral component of chlorophyll, pyrimidines,
purines, amino acids, proteins, and nucleic acids in C4 crops.
Borges et al. (2019) reported that the appropriate method of
nitrogen application at the appropriate time (early season)
significantly improved the biomass of sugarcane (Saccharum
officinarum) by 30% as compared to traditional fertilizers
practices. In addition, climate prediction models guided nitrogen
management methods can be opted, as the climate is a significant
determinant of crop growth, nitrogen demand, and nitrogen
losses processes. Seasonal climatic projections might be used
to establish nitrogen management plans for “dry” and “wet”
years, directing application rate, timing, and frequency of
nitrogen fertilizer application, as well as the advantages of
employing different types of nitrogen fertilizer in C4 crops
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like sugarcane, maize (Zea mays), sorghum (Sorghum bicolor),
pearl millet (Pennisetum glaucum), and Napier grass (Pennisetum
purpureum) (Anjum et al., 2019). Moreover, Khan Khyber et al.
(2010) reported that integrated application of 50% urea with
50% poultry manure significantly enhanced the grain yield of
maize by 57.14%, respectively, as compared to plots having
0% nitrogen application. Although much effort has previously
been done to maximize yields while maintaining high nutrient
utilization efficiencies, more integrated approach results are
still needed to minimize the nitrogen inputs while maintaining
optimum usage efficiency in C4 crops (Noor, 2017). To attain
the maximum production of biomass in C4 crops, maintaining
the optimum levels of all the necessary soil nutrients should
always be taken care of. However, determining the best nutrient
prescription in terms of boosting productivity especially biomass
production in C4 crops while also guaranteeing food security
and environmental friendliness is a difficult task, and still needed
further studies and detailed analysis.

Silicon Foliar Application
Silicon is a chemical element having atomic number 14 and is
represented with the symbol Si. In plants application of silicon
significantly enhances the crop biomass; improves the tolerance
to biotic and abiotic stresses, and aid plant stability and protection
(Zargar et al., 2019). In connection to the enhancement of cell
wall elasticity and stiffness, silicon that is firmly linked to the
cell walls is naturally present as a structural material. When the
quantity of monosilicic acid in the xylem sap is high, it becomes
a significant osmolyte, increasing the plant’s water and osmotic
potential. Furthermore, in terms of structural material and
osmolytes, Si consumes less energy than biomolecules like proline
and lignin. As a result, for a cheap cost, silicon can enhance the
homeostasis of C4 plants’ tolerance to a variety of biotic and
abiotic stressors in terrestrial environments. C4 plant biomass
recovery mediated by silicon is thought to have a bell-shaped
response curve to abiotic stressors and an S-shaped response
curve to biotic stresses. Silicon treatment to abiotic and biotic
stressed crops can boost averaged plant biomass carbon and crop
productivity by 35 and 24%, respectively. The efficacy of silicon-
mediated restoration, on the other hand, varies substantially
depending on the plant species and cultivars, the severity of
abiotic and biotic stressors, and the amount of bio-available
silicon. Ashraf et al. reported that the application of silicon
significantly improved the biomass production in sugarcane by
77% under salinity stress (Ashraf et al., 2009). Similarly, the
application of calcium silicate improved the crop biomass of
sugarcane and enhanced the resistance in sugarcane against stem
borer (Keeping and Meyer, 2002; Meyer and Keeping, 2005).
A study conducted on maize reported that the application of
silicon under water stress conditions significantly enhanced the
crop biomass and nutrient uptake (Kaya et al., 2007). It was
reported that the application of silicon significantly improved the
plant biomass under agricultural soil contaminated with heavy
metals like cadmium (Liang et al., 2005; Lukačová et al., 2013),
and in arsenic (Ullah et al., 2016). Application of silicon is a
significant option for improving the crop biomass of C4 crops,
but still more research and detailed analysis should be done as

most of the silicon application trials have so far been done in pots,
field-scale to eco-system-scale investigation is needed. Moreover,
several issues, such as the coupling relations between Si and plant
essential elements, the efficiencies of Si-mediated plant biomass
carbon restoration among plant species and stress intensities,
and the relationship between the biogeochemical Si cycle and
the resilience of terrestrial ecosystems, all require more research,
particularly in fragmented landscapes.

Foliar Application of Plant Growth
Regulators/Growth Hormones
Exogenous application of plant growth regulators/growth
hormones (PGRs) has been found to improve plant stress
tolerance and increase growth processes (Liu et al., 2019).
Growth hormones are identified as playing a critical role
in maintaining the plant morphology, flower blooming,
development, photosynthetic activity, and stomatal closure
in terms of physiological functions in C4 plants (Sharma
et al., 2020). Exogenous growth hormones were also used to
control seed germination, root elongation, cell development,
and tiller formation in C4 plants cultivated under trace-metal
contaminated soils (Maghsoudi et al., 2019). Similarly, in cereals
like maize foliar application of plant growth hormones under
abiotic stresses considerably improved the leaf area, plant
growth, dry biomass, and stem diameter of C4 plants (Tran
and Popova, 2013; Qandeel et al., 2020). It was reported that
exogenous application of various types of brassinosteroids,
i.e., 28-homobrassinolide, and 24-epibrassinolide significantly
enhanced the biomass and productivity of maize, sugarcane, and
sorghum grown under abiotic stresses, i.e., drought, salinity,
and trace-metal contaminated soils (Tanveer et al., 2018, 2019).
In another study, it was reported that application of 1-amino-
cyclopropane-1-carboxylic-acid (ACC-deaminase), humic acid,
and oxalic acid considerably enhanced bacterial community
development in the rhizosphere, facilitating the remediation
of organic pollutants, and improved the plant biomass, which
had previously been hindered by the presence of organic
contaminants in soil (Ping et al., 2006; Wen-Jie et al., 2011).
Similarly, plant growth regulators like melatonin and indole
acetic acid are also reported to significantly improve the plant
biomass under various abiotic stresses (Rostami et al., 2021).
Likewise, the application of abscisic acid, salicylic acid, auxins,
cytokinin, methyl jasmonate, and ethylene are also documented
to significantly improve the plant biomass under abiotic
stresses (Hasan et al., 2019). Yet, to explain precise processes
related to the impacts of growth hormones on plant biomass,
integrative studies combining conventional and sequencing
techniques are required.

CONCLUDING REMARKS AND
PROSPECTS

Biofuels being an alternative to fossil fuels are considered an
integral part of sustainable energy generation systems. To develop
the biofuel industry on a sustainable basis, increasing plant
biomass is a prime goal as feedstock in the biofuels industry.
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Biomass accumulation is a complex biological trait. However,
advancements in genetics and biotechnology have deciphered
that a plethora of genes are controlling growth and development
starting from the cell cycle to the juvenile, vegetative, and
reproductive maturity phase. Most of the pathways discussed
highlight the important genes which have been exploited to
tailor the bioenergy crops. Among them, genes involved in the
cell cycle, cell wall, and hormone and related transcriptional
factors considerably modify the carbohydrate allocation and
improve photosynthetic efficiency. But the real challenge is the
successful introduction of bioenergy specialized crops in fields on
a sustainable basis. Moreover, we pointed out altered regulatory
patterns of transcription activity of MYB TFs in C3 and C4
crops which indicate the lineage-specific carbohydrate storage
biopolymer incorporation in both. Therefore, research focuses
should be directed on C4 crops considering only C4 models in
terms of biomass accumulation and later on energy generation.

Regarding environmental factors which are acting upon
biomass accumulation, CO2, light, and temperature are among
unavoidable stresses to threaten the growth process. For this,
architecture for the maximum light interception, nutrient
absorption traits, and certain anatomical changes can be
engineered in wild plants to enable the cultivation of bioenergy
and orphan lignocellulose crops on marginal lands (resource-
deprived). Furthermore, optimization of locality-based bioenergy

crops and cultural practices to enhance biomass is critical but
not yet elaborated. The above-mentioned tools and practices
including breeding, molecular methods (DNA-free genome
editing method CRISPR/Cas9), high throughput sequencing, and
cultural practices can be opted for engineering and validation
of multiple genes from different pathways to generate climate-
smart energy crops. The afore-mentioned strategies will only be
realistic if they are part of an integrated approach to agriculture
that is developed collaboratively with agronomists, engineers, and
farmers to contribute to a bio-based economy.
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Sciences, Beijing, China, 2 National Engineering Research Center for Information Technology in Agriculture, Beijing Academy
of Agriculture and Forestry Sciences, Beijing, China, 3 Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular
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The rapid development of high-throughput phenotypic detection techniques makes it
possible to obtain a large number of crop phenotypic information quickly, efficiently,
and accurately. Among them, image-based phenotypic acquisition method has been
widely used in crop phenotypic identification and characteristic research due to its
characteristics of automation, non-invasive, non-destructive and high throughput. In
this study, we proposed a method to define and analyze the traits related to leaf sheaths
including morphology-related, color-related and biomass-related traits at V6 stage. Next,
we analyzed the phenotypic variation of leaf sheaths of 418 maize inbred lines based on
87 leaf sheath-related phenotypic traits. In order to further analyze the mechanism of leaf
sheath phenotype formation, 25 key traits (2 biomass-related, 19 morphology-related
and 4 color-related traits) with heritability greater than 0.3 were analyzed by genome-
wide association studies (GWAS). And 1816 candidate genes of 17 whole plant leaf
sheath traits and 1,297 candidate genes of 8 sixth leaf sheath traits were obtained,
respectively. Among them, 46 genes with clear functional descriptions were annotated
by single nucleotide polymorphism (SNPs) that both Top1 and multi-method validated.
Functional enrichment analysis results showed that candidate genes of leaf sheath
traits were enriched into multiple pathways related to cellular component assembly and
organization, cell proliferation and epidermal cell differentiation, and response to hunger,
nutrition and extracellular stimulation. The results presented here are helpful to further
understand phenotypic traits of maize leaf sheath and provide a reference for revealing
the genetic mechanism of maize leaf sheath phenotype formation.
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Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 82687575

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.826875
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.826875
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.826875&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/articles/10.3389/fpls.2022.826875/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-826875 June 22, 2022 Time: 14:27 # 2

Wang et al. GWAS of Maize Leaf Sheaths

INTRODUCTION

Maize leaf sheath is located at the base of leaf and wraps around
the stem node. It plays a role of protecting and supporting the
leaf. At the same time, it can protect the young and tender
intermediate meristems and young buds on the stem, and
enhance the mechanical support of the stem (Dong et al., 2019).
In the sink-source relationship, the leaf sheath can be used as
a nutrient storage organ in the early stage, namely, “sink.” And
it can be also used as an organ for the production or export of
assimilates in the later stage of growth, that is, “source.” It is
well known that leaf sheaths usually have elongation zones. As
a result of intercellular growth, the cells elongate in two separate
directions, above and below, and differentiate into longitudinally
parallel vascular bundles (Russell and Evert, 1985). Hence, maize
leaf sheaths can also be used as part of the “flow.” In summary,
the role of maize leaf sheaths in the plant is very important and
deserves more attention and in-depth study. In addition, maize
purple plant pigments are anthocyanin pigments. A large number
of domestic and foreign studies have shown that purple-red
anthocyanin pigments have anti-oxidation, anti-aging, immune
enhancement and tumor prevention functions (Zhang et al.,
2014; Li et al., 2020; Peniche-Pavia and Tiessen, 2020; Chatham
and Juvik, 2021). Therefore, it is of great theoretical and practical
importance to study the phenotypic characteristics of maize leaf
sheaths and to analyze their genetic structure.

Maize has a rich diversity due to its long planting history and
wide geographical span. Among them, the leaf sheath phenotype
of maize also varies between populations, particularly in color.
As a consequence, traditional studies of maize leaf sheaths are
usually based on a qualitative description or classification of leaf
sheath color. The leaf sheaths of maize commonly come in purple
and green. It has been pointed out that these color changes are
usually related to pigments (Fan et al., 2008). Li et al. (2018)
conducted genetic analysis and gene localization for the purple
leaf sheath trait using a recombinant inbred line population of
maize and found that the gene GRMZM5G822829 was highly
significantly differentially expressed between the purple and
green leaf sheath parents. Yang S. et al. (2014) used the maize
white sheath inbred line K10 as the research material, and
conducted preliminary genetic mechanism and gene mapping
of the white sheath traits. The results showed that the white
leaf sheath trait has nothing to do with cytoplasmic inheritance,
but was controlled by recessive nuclear genes and was under
polygenic control.

Nowadays, with the rapid development of high-throughput
phenotyping technology, it has become possible to obtain massive
crop phenotypic information quickly, efficiently and accurately
(Zhao et al., 2019). Among them, image-based phenotype
acquisition methods have been widely used in crop phenotype
identification and characterization due to their automatic, non-
invasive, non-destructive, and high-throughput characteristics
(Green et al., 2012; Tanabata et al., 2012; Bucksch et al., 2014;
Gage et al., 2017; Chopin et al., 2018; Zhang et al., 2020; Zhou
et al., 2021). Based on image data, a variety of phenotypes
can be analyzed, which can break through the limitations of
subjective cognition and carry out deeper research (Mir et al.,

2019). For example, the web-based tool PhenoPhyte is a flexible
affordable method to quantify 2D phenotypes from imagery.
And it can distinguish different experimental Settings through
experimental database management and calculate the phenotypic
parameters related to leaf area in phenotypic images (Green
et al., 2012). SmartGrain, as a high-throughput phenotyping
software for measuring seed shape through image analysis, using
a new image analysis method to reduce the time taken in the
preparation of seeds and in image capture (Tanabata et al., 2012).
TIPS is a system for automated image-based phenotyping of
maize tassels, and it allows morphological features of maize
tassels to be quantified automatically, with minimal disturbance,
at a scale that supports population-level studies. And it is
expected to accelerate the discovery of associations between
genetic loci and tassel morphology characteristics (Gage et al.,
2017). Another maize image analysis software is Maize-IAS,
which is an integrated application supporting one-click analysis
of maize phenotype, embedding multiple functions, with a high
efficiency and potential capability to image-based plant research
(Zhou et al., 2021). Thus, image technology has become a
high-throughput means to obtain and analyze the phenotypic
information of large populations of crops. The phenotypic
information can be used for quantitative trait loci mapping and
genome-wide association studies. It is helpful to break the gap
between crop traits and genetic markers and promote the study
of crop phenotypic-genotype association (Zhao et al., 2019; Yang
et al., 2020; Song et al., 2021).

Genome-wide association study (GWAS) as an analytical
method for identifying the relationship between a target trait and
a genetic marker or candidate gene within a group of individuals,
provides a powerful tool for researchers concerned with and
exploring the genetic mechanisms of phenotype formation across
multiple individuals (Xiao et al., 2016; Liu and Yan, 2019). In
particular, the mixed linear model (MLM) methods have proven
useful in controlling for population structure and relatedness
within GWAS. In the MLM-based methods, population structure
is fitted as a fixed effect, while kinship among individuals is
incorporated into the variance-covariance structure of individual
random effects (Zhang et al., 2010). Since the publication of
maize B73 reference genome (Schnable et al., 2009), GWAS has
been widely used in maize genetics research, and has played
a great role in the analysis of genetic mechanisms such as
traditional maize agronomic traits (Wallace et al., 2016; Zhou
et al., 2016; Li et al., 2017; Dai et al., 2018; Du et al., 2018;
Zhou et al., 2018; Owens et al., 2019), key phenotypes (Cui
et al., 2016; Li et al., 2016; Liu et al., 2016; Zhang et al.,
2016a; Sanchez et al., 2018; Guo et al., 2019; Mazaheri et al.,
2019) and stress resistance (Zhang et al., 2016b; Shi et al.,
2018; Cooper et al., 2019; Wang et al., 2019; Xie et al., 2019).
However, there are few genetic studies on the phenotype of
maize leaf sheath.

Through image acquisition, image segmentation, feature
extraction and manual measurement of leaf sheaths of 418
maize inbred lines at V6 stage, this study proposed a method
to define and analyze the shape, size, color and other
phenotypes related to leaf sheaths, and developed a pipeline for
image-based traits with phenotypic data analysis and genetic
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FIGURE 1 | The flowchart of image-based high-throughput phenotypic analysis and genetic mechanism analysis of maize leaf sheaths at seedling stage. (A) Image
analysis and phenotypic traits extraction. (B) Phenotypic data analysis and key traits selection for genetic analysis. (C) Genetic mechanism analysis of key traits.

mechanism analysis (Figure 1). In addition, 87 leaf sheath-
related phenotypic traits including morphology, color and
biomass were obtained. Based on these phenotypic traits, leaf
sheath characteristics of maize association analysis population
were analyzed. In order to further analyze the mechanism
of leaf sheath phenotype formation, 25 key traits of maize
were analyzed by GWAS, and 1,816 candidate genes of 17
whole plant leaf sheath traits and 1,297 candidate genes of 8
sixth leaf sheath traits were obtained, respectively. This study
has achieved high-throughput acquisition of the phenotype
from maize leaf sheath. And it also can provide a reference
for revealing the genetic mechanism of maize leaf sheath
phenotype formation.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and
Sample Collection
418 inbred lines used in this study were from the maize
association mapping panel published by Yang et al. (2011);
Supplementary Table 1, which were classified into four
subpopulations: Non-stiff stalk (NSS) with 124 lines, Stiff stalk
(SS) with 31 lines, Tropical-subtropical (TST) with 164 lines, and
99 mixed lines (Mixed). The plants were grown in the Beijing
Academy of Agriculture and Foresting Science in Beijing, China.
Maize seeds were planted manually at a depth of 5 cm on 17 May
2019. Each inbred line was planted in 4 rows with 7 plants per
row. Planting density and water and fertilizer management were
based on local field production (Lu et al., 2020).

Image Acquisition, Analysis, and Feature
Extraction
Maize plants were grown to the V6 stage, and three plants were
sampled from each inbred line population. The leaf sheaths were
spread out on a white soft background plate and fixed with
pins. Blade images were captured by an image acquisition device
(Canon EOS 5D Mark III) with a resolution of 5,760 × 3,840
pixels. The image processing program (Figure 1A) is developed
by Visual Studio Express 2015, using the open-source image
processing library OpenCV 2.3.

The image processing and feature extraction methods were
summarized as follows: (a) Identification of interested areas.
The original color image was converted into a grayscale image, an
adaptive thresholding algorithm was used to segment foreground
and background. (b) Object abstraction. The foreground
contained a circular marker, a color checker board and leaf
sheaths, these components were separated according to shape,
inner composition pattern and chromatic property. (c) Organ
dissection. The largest contour was considered as the sixth
leaf sheath, the rest contours were labeled as the fifth leaf
sheath candidate regions. First, found out bounding box of these
candidate regions, and calculated length/width ratio, if the ratio
value was more than 3.0, then we argued that belonged to
leaf sheath candidate. Chosen the largest leaf sheath candidate
regions to compute centroid coordinate which denote by Ccdit ,
and centroid of sixth leaf sheath denoted by Csix, the Euclidean
distance of above two point is Dcent , if the Dcent was less than
1/2 length of sixth leaf sheath bounding box, the candidate
regions was labeled as the fifth leaf sheath, repeated the procedure
for the remaining candidates, until the last one was tested. (d)
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Phenotypic traits calculation. Phenotypic measurement and
image-based feature extraction were performed on the whole
plant leaf sheath and the sixth leaf sheath of maize at the
V6 stage, respectively. The specific calculation and definitions
for each trait are detailed in Supplementary Table 2 and
Supplementary Note 1.

Together with the two biomass traits, dry weight (DryWeight)
and fresh weight (FreshWeight) of the whole plant, measured
manually by electronic balances, totally 87 leaf sheaths related
traits that covering three types (morphology, color and biomass)
and two objects (the whole plant leaf sheath and the sixth leaf
sheath) were obtained in this study (Supplementary Table 2).

Statistical Analysis of Phenotypic Data
The “lm” function in R (Version 3.6.3) software1 was used to carry
out linear regression analysis on the leaf sheath area extracted by
the image-based method and the dry/fresh weight measured by
manual. The R2 obtained from the model represent the accuracy
of the software algorithm.

Analysis of variance (ANOVA) and descriptive statistical
analysis were conducted via R (Version 3.6.3) software to
determine whether each phenotype is different between different
subpopulations. Pearson correlation analysis was used to
calculate the correlation coefficients among phenotypic traits.
And pamk, a function of R package “FPC,” was used to perform
unsupervised hierarchical cluster analysis (HCA) using Pearson
correlation coefficient as distance measure, and then 87 traits
were grouped based on clustering.

Broad sense heritability (H2) usually means the percentage of
genetic variation (VA) to the total variation of a phenotype. It
can be used to compare the relationship between genetic (σ2

A)
and environmental (σ2

e ) factors for a specific phenotypic variation
(VP). Heritability (H2) was calculated for each trait as follows:

H2
=

VA

VP
=

σ2
A

σ2
A + σ2

e

where σ2
A is the genetic variance, σ2

e is the environmental
variance. The analysis was performed in ASReml-R v.4.0 by using
the “asreml” function of R package asreml (Butler, 2009).

Genome-Wide Association Study
Genotypic data of maize association mapping panel were
obtained from Maizego.2 Firstly, the genotypic data of 418 inbred
lines needed in this study were extracted, and 794,722 SNPs
with minimum allele frequency (MAF) greater than 0.05 and
call rate greater than 0.9 filtered by PLINK 1.09 software were
used in GWAS. For GWAS, a multi-locus random-SNP-effect
mixed linear model tool (R package “mrMLM” version 4.0)
(Zhang et al., 2019) including six multi-locus GWAS methods
(mrMLM, FASTmrMLM, FASTmrEMMA, ISIS EM-BLASSO,
pLARmEB, and pKWmEB) was used on each leaf sheath related
phenotypic traits separately to test the statistical association
between phenotypes and genotypes. In addition, population

1https://cran.r-project.org/
2www.maizego.org/Resources.html

structure estimated by STRUCTURE program version 2.3.4
(Hubisz et al., 2009) and relative kinship calculated by TASSEL
5 (Bradbury et al., 2007) with 794,722 SNPs were brought into
the model. These six Multi-locus GWAS methods were processed
in two steps. First, each SNP on the genome was filtered with a
P-value ≤ 0.5/N, N is the total number of genome-wide SNPs.
Then, all the SNPs that are potentially associated with the trait
were included in a multi-locus genetic model further screened
with a defeat P-value = 0.0002 to declare a significance of SNPs
that associated with a given trait. The results obtained by the six
multi-locus GWAS methods were regarded as significant SNPs
associated with phenotypic traits. Furthermore, SNPs with the
highest significance obtained by each method were regarded as
Top 1, and SNPs identified by multiple methods were considered
to be more reliable results. All candidate genes were annotated by
ANNOVAR software according to the latest maize B73 reference
genome (B73 RefGen_v4) available in EnsemblPlants3 and NCBI
Gene database.4

Functional and Network Analysis
The biological functions of candidate genes with high confidence
for each phenotypic trait (Top1 SNP annotation or multiple
GWAS validation) were explored by pathway enrichment
analysis. Enrichment analysis of Gene Ontology (GO)
(Ashburner et al., 2000) was conducted using PlantRegMap
(Jin et al., 2015). And KOBAS V3.0 (Bu et al., 2021) was used
to enrich Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa, 2002) pathway. Among them, GO terms and KEGG
pathways with the P-value less than 0.05 were considered to be
significantly enriched results.

In order to have a better view of the relationship between each
trait and its candidate genes, an open-source software platform
(Cytoscape v3.7.2) (Shannon et al., 2003) was used to visualize
the complex trait-candidate gene-pathway network and integrate
the input data by their attribute information.

RESULTS

Phenotypic Extraction of Leaf Sheath
In this study, image analysis was used to replace the traditional
leaf sheath phenotype acquisition methods. In addition to
conventional traits such as length, width, and surface area of leaf
sheaths, many traits such as leaf sheaths morphology and color
were also extracted based on image, realizing high-throughput
acquisition of phenotypic of maize leaf sheaths. After processing
the original image, a total of 1,116 valid image samples were
obtained, covering 418 inbred lines. According to these leaf
sheath images, the characteristics of the whole plant leaf sheath
and the sixth leaf sheath of maize at V6 stage were extracted,
and a total of 85 2D leaf sheath-related traits were obtained.
Together with two biomass traits obtained by measuring the
dry and fresh weight of the whole plant leaf sheath, totally
87 traits covering morphology, color and biomass these three

3http://plants.ensembl.org/Zea_mays/Info/Traits
4https://www.ncbi.nlm.nih.gov/gene
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types (Supplementary Table 2 and Supplementary Note 1) were
analyzed in this study. Of these, there were 50 whole plant leaf
sheath traits, including two biomass traits, 18 morphological
traits and 30 color traits. And 37 traits of the sixth leaf sheath,
including 7 morphological traits and 30 color traits.

The measurement accuracy of the image-based phenotypic
acquisition method was valued by the linear regression analysis
on the leaf sheath area extracted by the image-based method and
the dry/fresh weight measured by manual, and the R2 obtained
from the model represent the accuracy of the software algorithm.
As shown in Figure 2, the R2 of two models were 0.77 and 0.81,
respectively. The R2 of both models were close to 1, indicating
that the measurement accuracy of the image-based phenotypic
acquisition method is high, and the traits could be used for
subsequent analysis.

Phenotypic Characteristics of Leaf
Sheath
The basic statistical analysis results (Supplementary Table 3) of
87 leaf sheath traits showed that the phenotypic traits of inbred
lines in maize association analysis population had extensive
continuous variation, with the variation coefficient ranging
from –0.67 to 21.49. Furthermore, it can be seen from the
data histogram that the phenotypic traits data were normally
distributed, indicating that all traits were quantitative traits.

Pearson correlation analysis was performed on 87 leaf
sheath phenotypes, and clustering was performed based on
Pearson correlation coefficient, as shown in Figure 3. Cluster
analysis results showed that 87 phenotypes of the three types
could be divided into 6 groups, and each group had clear
characteristics (marked with different colors in Figure 3). The
Morphological characteristics of leaf sheath can be divided into
three groups. Group I (Morphological Traits_Basic): 16 basic
morphological traits describing leaf sheath length, width and
area, etc. Group II (Morphological Traits_Shape1): 4 traits were
used to describe the morphological shape of leaf sheath. And
Group III (Morphological Traits_Shape2): 5 traits to characterize
the variation of morphological type of leaf sheath. There was
no significant correlation between the 9 traits describing leaf
sheath shape in the two groups and other traits, indicating
that leaf sheath shape was basically unrelated to leaf sheath
size, area and color. The 16 basic morphological traits of leaf
sheath had a significant positive correlation with DryWeight
and FreshWeight (P-value < 0.05), and clustered into the same
group (Morphological Traits_Basic and Biomass Traits). This
result is consistent with prior knowledge, which indicates the
reliability of data and the significance of obtaining various traits
from images. The leaf sheath Color Traits were also divided into
three groups. The first group (Color Traits_Subset1) consisted
mainly of comprehensive color traits, the second group (Color
Traits_Subset2) of traits were mostly the variation degree of
the single-channel color values, and the third group (Color
Traits_Subset3) was composed of single-channel color traits
and four comprehensive color traits. The 24 comprehensive
color traits were separated into two groups, because CIVE,
CIVE_S, ExR, and ExR_S mainly represent red, while the other

comprehensive traits mainly represent blue and green, indicating
the accuracy of data extraction.

87 phenotypic traits were analyzed among different
subpopulations in turn. The results showed that the inbred
lines of TST subpopulation had distinct characteristics and were
significantly different from at least one subpopulation in 84 traits
(96.55%) (P-value < 0.05). Among them, 64 traits (73.56%)
showed significant differences between TST and all other three
subpopulations (P-value < 0.05) (Supplementary Figure 1).
The traits with significant differences between TST and other
subpopulations covered all three types of traits, indicating that
the leaf sheaths of tropical and subtropical maize inbred lines
(TST) were different from those of other climate zone maize
inbred lines in terms of morphology, color and biomass. In
order to further explore which traits had the greatest difference
between TST and other subpopulations, excluding the two
biomass traits, the other 62 phenotypic traits were divided
into four groups according to trait types and research objects.
Consequently, the four groups were 12 leaf sheath morphological
traits of whole plant, 21 leaf sheath color traits of whole plant, 4
leaf sheath morphological traits and 25 leaf sheath color traits of
the sixth leaf, respectively. Then principal component analysis
(PCA) was carried out for each group of traits, and the results
showed that the samples analyzed in each group were divided
into two categories (Figure 4A and Supplementary Figure 2).
However, the Average Silhouette Width is the highest after
clustering according to 12 morphological traits of the whole
plant leaf sheath, which is 0.54 (Figure 4B). In addition, 10 of
the 12 traits (T_Area_Avg_SS, T_Area_Sd_SS, T_Area_Sum_SS,
T_Compactness_Avg_SS, T_Length_Avg_SS, T_Width_Avg_SS,
T_Length_Sd_SS, T_Width_Sd_SS, T_LWRatio_Avg_SS,
T_Width_Sum_SS, T_Perimeter_Avg_SS, T_Perimeter_Sd_SS)
were basic morphological traits of leaf sheath morphology,
suggesting that the main differences between TST and other
subpopulations were manifested in the conventional phenotypic
traits such as leaf sheath length, width and area.

Heritability Analysis
Heritability analysis was performed on 87 leaf sheath phenotypic
traits extracted from 2D images, and the results are shown
in Figures 5A,B. For the whole plant leaf sheath traits, the
heritability of these 50 traits ranged from 1.01E-07 to 0.6601.
Among them, the heritability of DryWeight and FreshWeight
was 0.5234 and 0.5429, respectively. And the heritability of
18 morphological traits ranged from 0.1029 to 0.5470, and 13
(72.22%) of these traits had a heritability greater than 0.3. Except
VARI-S, the heritability of the other 29 color traits ranged from
0.3142 to 0.6601, and 29 (96.67%) of these color traits had a
heritability greater than 0.3. For the sixth leaf sheath traits, the
heritability of these 37 traits ranged from 0.1594 to 0.5754. And
the heritability of 7 morphological traits ranged from 0.2683 to
0.5754, of which 6 (85.71%) had heritability greater than 0.3. The
heritability of 30 color traits ranged from 0.1594 to 0.5955, and
27 (90.00%) of them had heritability greater than 0.3. To further
investigate the genetic mechanism of phenotypic traits related to
maize leaf sheaths, traits with heritability greater than 0.3 were
screened for further genetic analysis in this study.
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FIGURE 2 | The R2 obtained from the linear regression analysis on the leaf sheath area extracted by the image-based method and the dry (A)/fresh (B) weight
measured by manual.

FIGURE 3 | Correlation analysis and clustering of 87 leaf sheath traits. 87 traits were obtained from two objects: the whole plant leaf sheath and the sixth leaf
sheath. After clustering, 87 traits were divided into six groups and marked with different colors: Morphological Traits_Basic and Biomass Traits, Morphological
Traits_Shape1, Morphological Traits_Shape2, Color Traits_Subset1, Color Traits_Subset2 and Color Traits_Subset3.
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FIGURE 4 | Sample grouping results based on 12 morphological traits of the whole plant leaf sheath. (A) Clusplot of the first two principal components of 12
morphological traits of the whole plant leaf sheath. (B) Silhouette plot of samples characterized by 12 morphological traits of the whole plant leaf sheath.

However, due to the large number of color traits with
heritability greater than 0.3, PCA was applied to the color
traits of the whole plant and the sixth leaf sheath separately
to accomplish the dimensionality reduction and key feature
extraction. The results showed that for the color traits of these two
objects, the first and second principal components (PCs) were
strongly correlated with most color variables, and the cumulative
contribution value of the first two principal components was
0.72 and 0.66, respectively (Figures 5C,D). Therefore, 4 traits
that consisted of the first two PCs of the two objects color traits
were selected for subsequent GWAS. Adding to the 21 non-
color traits with heritability greater than 0.3, totally 25 key traits
(2 biomass-related, 19 morphology-related and 4 color-related
traits) with high heritability was used to explore the genetic
mechanisms by GWAS.

Significant Single Nucleotide
Polymorphism Obtained by
Genome-Wide Association Study
In conclusion, the multi-locus random-SNP effect mixed linear
model in R software package “mrMLM” (version 4.0) (Zhang
et al., 2019) was used for GWAS analysis of biomass traits,
morphological traits and color principal components related
to 2D leaf sheaths, including 17 whole plant leaf sheath traits
and 8 sixth leaf sheath traits. Finally, 1142 SNPs significantly
related to 17 whole plant leaf sheath traits and 755 SNPs

significantly related to 8 sixth leaf sheath traits were identified
(P-value < 6.4e-07) (Table 1). Additionally, among the results
of the 6 GWAS methods, the most significant (Top1) SNP
obtained by each method and the SNPs verified by two or more
methods were considered to be highly reliable results. As a
consequence, 152 SNPs significantly associated with 17 whole
plant leaf sheath traits and 85 SNPs significantly associated with
8 sixth leaf sheath traits were obtained. These highly significant
or multi-method verification results will be reported as the key
findings of this study.

Identification and Annotation of
Candidate Genes
Gene annotation was performed on 1142 SNPs significantly
related to 17 whole plant leaf sheath traits and 755 SNPs
significantly related to 8 sixth leaf sheath traits by using the
latest maize B73 reference genome (B73 RefGen_v4) available
in EnsemblPlants and NCBI Gene databases. Finally, 1,816
candidate genes of 17 whole plant leaf sheath traits and
1,297 candidate genes of 8 sixth leaf sheath traits were
obtained, respectively. Among them, 275 genes of 17 whole
plant leaf sheath traits and 146 genes of 8 sixth leaf sheath
traits were derived from the most significant SNP (Top1)
obtained by each method and SNPs annotations verified
by multiple methods (Table 1). Genes annotated by SNPs
with the highest significance or multi-method validation were
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FIGURE 5 | The broad-sense heritability (H2) of the investigated 87 phenotypic traits and principal component analysis (PCA) of color traits with heritability greater
than 0.3. (A) The broad-sense heritability (H2) of the 50 phenotypic traits of the whole plant leaf sheath. (B) The broad-sense heritability (H2) of the 37 phenotypic
traits of the sixth leaf sheath. (C) The first five principal components for color traits of the whole plant leaf sheath. (D) The first five principal components for color
traits of the sixth leaf sheath.

further retrieved in NCBI Gene database, and 270 candidate
genes of 25 key traits for leaf sheath phenotype had detailed
functional descriptions (Supplementary Table 4). Among
them, a total of 46 genes with clear functional descriptions

were annotated by SNPs that both Top1 and multi-method
validated (Table 2).

Hence, it was obvious that each leaf sheath-related trait had
its own specific candidate gene, whether it was from the whole
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TABLE 1 | Summary of significant loci from genome-wide association study.

Object Category Trait No. of unique
SNPs

No. of unique
annotated

genes

No. of genes
only related to
specific trait

No. of
significant
SNPs listed
Top 1* and

validated by
multiple
methods

No. of unique
annotated

genes listed
Top1 and

validated by
multiple
methods

No. of genes
only related to
specific trait
listed Top 1

and validated
by multiple
methods

Whole plant leaf
sheath

Biomass DryWeight 35 62 26 6 12 12

Freshweight 47 86 49 10 19 17

Color Sum_PC1 58 105 79 11 22 16

Sum_PC2 75 132 101 9 18 18

Morphology T_Area_avg_SS 43 72 26 10 19 14

T_Area_Sd_SS 46 77 25 10 16 8

T_Area_sum_SS 41 71 22 12 24 14

T_Compactness_Avg_SS 213 348 242 11 19 17

T_Length_Avg_SS 53 94 50 9 18 14

T_Length_Sd_SS 34 59 36 9 15 10

T_Length_Sum_SS 50 87 50 12 21 17

T_LWRatio_Avg_SS 38 74 54 9 18 18

T_Perimeter_Avg_SS 35 65 30 8 14 7

T_Perimeter_Sum_SS 48 91 46 13 26 16

T_Rectangularity_Avg_SS 347 591 456 12 21 17

T_Width_Avg_SS 31 62 27 5 10 6

T_Width_Sum_SS 45 84 25 7 14 8

Summary 1,142 1,816 1,344 152 275 229

Sixth leaf
sheath

Color Sixth_PC1 75 134 102 12 22 18

Sixth_PC2 269 478 400 11 21 21

Morphology T_Area_S0 45 77 25 10 18 6

T_Compactness_S0 72 122 85 13 21 19

T_Length_S0 53 95 42 14 23 19

T_LWRatio_S0 136 245 192 11 18 16

T_Perimeter_S0 48 83 26 11 18 12

T_Width_S0 84 154 97 9 16 12

Summary 755 1,297 969 85 146 123

*Top1: the most significant SNP obtained by each GWAS method.

plant or the sixth leaf alone. In addition to the common traits
that could be extracted in previous studies, the 2D leaf sheath-
related traits proposed in this study also identified significant loci
and candidate genes. Consequently, it is necessary to subdivide
and refine the phenotype of plants at maize seedling stage
(Table 1). In addition, some of these traits had overlapped genes
in the whole plant and the sixth leaf sheath (Table 1), indicating
that these traits were genetically related to a certain degree. If
the study on the sixth leaf sheath can be used instead of the
whole plant study at V6 stage, it will greatly save the cost of
phenotype acquisition.

Pathways Enriched by Functional
Enrichment Analysis
In order to further explore the function of candidate genes, we
used functional enrichment analysis to enrich the candidate
genes annotated by the most significant SNP (Top1) and verified

by multiple methods in the whole plant and the sixth leaf sheath,
respectively. For the whole plant leaf sheath traits, a total of 81
GO terms and 1 KEGG pathways (P < 0.05) were obtained by
enrichment of candidate genes for leaf sheath phenotype, among
which 37 GO terms belonged to GO BP (biological process)
(Figures 6A–D). In GO BP terms, the pathways with the highest
significance were related to cellular component assembly and
organization. For instance, “ribosome assembly” (GO:0042255,
P-value = 2.70E-09), “organelle assembly” (GO:0070925,
P-value = 3.50E-09), “ribonucleoprotein complex assembly”
(GO:0022618, P-value = 6.90E-08), “cellular macromolecular
complex assembly” (GO:0034622, P-value = 1.30E-05), “cellular
component assembly” (GO:0022607, P-value = 5.80E-05) and
“cellular component organization or biogenesis” (GO:0071840,
P-value = 0.00016). Notably, several pathways related to cell
proliferation and epidermal cell differentiation were identified by
GO analysis: “regulation of cell proliferation” (GO:0042127,
P-value = 0.00834), “cell proliferation” (GO:0008283,
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TABLE 2 | Detailed functional descriptions of 46 genes annotated by both Top1 and multi-method validated SNPs.

Gene Description Chromosome Genomic_
nucleotide_
accession.version

Start_position_
on_the_genomic_
accession

End_position_on
_ the_genomic_
accession

Trait Object

GRMZM2G073826 Transcription factor
MYB3R-5

5 NC_050100.1 137,986,909 138,015,364 FreshWeight Whole plant
leaf sheath

GRMZM2G418206 Proteinaceous RNase P 1,
chloroplastic/ mitochondrial

5 NC_050100.1 137,893,158 137,908,282 FreshWeight Whole plant
leaf sheath

GRMZM2G040452 Catalytic/protein
phosphatase type 2C

4 NC_050099.1 237,957,682 237,960,493 Sum_PC1 Whole plant
leaf sheath

GRMZM2G085945 Zinc finger protein 5 NC_050100.1 219,927,636 219,928,886 Sum_PC2 Whole plant
leaf sheath

Zm00001d009690 RNA cytidine
acetyltransferase 1

8 NC_050103.1 76,264,531 76,273,801 Sum_PC2 Whole plant
leaf sheath

GRMZM2G103721 Phosphatidylinositol
3-kinase, root isoform

4 NC_050099.1 74,538,889 74,548,829 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G134248 Long chain base
biosynthesis protein 1a

4 NC_050099.1 74,702,902 74,704,363 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G156238 C2 Domain-containing
protein At1g53590

4 NC_050099.1 226,930,981 226,946,730 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G126860 Protein SUPPRESSOR OF
K(+) TRANSPORT
GROWTH DEFECT 1

8 NC_050103.1 14,003,169 14,008,552 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G126956 DNA damage-binding
protein 2

8 NC_050103.1 14,023,075 14,027,906 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G161169 Taxane
10-beta-hydroxylase

4 NC_050099.1 6,214,120 6,216,528 T_Area_Sum_SS Whole plant
leaf sheath

GRMZM2G065496 B3 Domain-containing
protein

1 NC_050096.1 168,954,911 168,957,922 T_Compactness_
Avg_SS

Whole plant
leaf sheath

zma-MIR169i MicroRNA MIR169i 4 NC_050099.1 49,606,834 49,607,024 T_Compactness_
Avg_SS

Whole plant
leaf sheath

FHA9 Myosin-9 1 NC_050096.1 5,773,058 5,778,341 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G371137 Probable LRR receptor-like
serine/threonine-protein
kinase At1g12460

1 NC_050096.1 5,836,567 5,841,667 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G047715 Homeobox-leucine zipper
protein HOX7

4 NC_050099.1 126,441,242 126,446,006 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G105933 Putative protein kinase
superfamily protein

4 NC_050099.1 126,356,761 126,359,205 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G097605 DNA repair helicase UVH6 10 NC_050105.1 91,197,531 91,202,542 T_Length_Sd_SS Whole plant
leaf sheath

GRMZM2G135770 Putative regulator of
chromosome condensation
(RCC1) family protein

4 NC_050099.1 84,989,713 84,995,057 T_Length_Sum_SS Whole plant
leaf sheath

GRMZM2G419305 Agenet domain-containing
protein/bromo-adjacent
homology (BAH)
domain-containing protein

4 NC_050099.1 85,143,298 85,148,546 T_Length_Sum_SS Whole plant
leaf sheath

GRMZM2G030839 Phosphomevalonate kinase 9 NC_050104.1 148,330,626 148,338,890 T_LWRatio_
Avg_SS

Whole plant
leaf sheath

GRMZM2G094592 IRK-interacting protein 7 NC_050102.1 138,421,602 138,423,876 T_Perimeter_
Avg_SS

Whole plant
leaf sheath

GRMZM2G143160 Serine/threonine-protein
kinase MPS1

1 NC_050096.1 271,894,088 271,899,733 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G147332 Oxysterol-binding
protein-related protein 1C

1 NC_050096.1 271,997,558 272,015,271 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G319357 Low molecular weight
protein-tyrosine-
phosphatase
slr0328

1 NC_050096.1 209,876,521 209,881,331 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

(Continued)
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TABLE 2 | (Continued)

Gene Description Chromosome Genomic_
nucleotide_
accession.version

Start_position_
on_the_genomic_
accession

End_position_on
_ the_genomic_
accession

Trait Object

GRMZM2G022926 OSJNBa0070C17.17-like
protein

10 NC_050105.1 144,286,874 144,289,145 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G028676 Vacuolar ATPase assembly
integral membrane protein
VMA21-like domain

10 NC_050105.1 144,223,404 144,224,474 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G128248 dnaJ protein 8 NC_050103.1 172,072,905 172,075,250 T_Rectangularity_
Avg_SS

Whole plant
leaf sheath

GRMZM2G123537 Pumilio homolog 3 4 NC_050099.1 176,122,607 176,128,541 T_Width_Sum_SS Whole plant
leaf sheath

zma-MIR172c MicroRNA MIR172c 4 NC_050099.1 176,265,726 176,265,848 T_Width_Sum_SS Whole plant
leaf sheath

GRMZM2G309025 S-domain class
receptor-like kinase 3

7 NC_050102.1 165,446,107 165,448,937 T_Width_Sum_SS Whole plant
leaf sheath

GRMZM2G339645 CSLF3—cellulose
synthase-like family F

7 NC_050102.1 165,345,171 165,348,432 T_Width_Sum_SS Whole plant
leaf sheath

GRMZM2G066997 Remorin 5 NC_050100.1 193,077,446 193,080,950 T_Width_Sum_SS,
T_Area_S0,
T_LWRatio_S0

Whole plant
and Sixth
leaf sheath

GRMZM2G477314 CF9 1 NC_050096.1 288,099,406 288,101,023 Sixth_PC1 Sixth leaf
sheath

GRMZM2G091303 Xyloglucan
endotransglucosylase/
hydrolase protein 24

10 NC_050105.1 143,472,231 143,474,095 Sixth_PC1 Sixth leaf
sheath

CKX10 Cytokinin dehydrogenase
10

1 NC_050096.1 21,236,2957 212,366,306 Sixth_PC2 Sixth leaf
sheath

GRMZM2G122126 6-
Phosphogluconolactonase

1 NC_050096.1 212,272,609 212,274,483 Sixth_PC2 Sixth leaf
sheath

GRMZM2G138355 Nudix hydrolase 13 10 NC_050105.1 114,632,712 114,636,142 Sixth_PC2 Sixth leaf
sheath

Zm00001d027570 Putative protein
phosphatase 2C 48

1 NC_050096.1 8,216,152 8,220,401 T_Area_S0 Sixth leaf
sheath

GRMZM6G207008 Characterized
LOC100272314

4 NC_050099.1 172,883,765 172,884,420 T_Compactness_
S0

Sixth leaf
sheath

Zm00001d051817 DNA topoisomerase 2 4 NC_050099.1 172,603,028 172,604,370 T_Compactness_
S0

Sixth leaf
sheath

GRMZM2G339907 NDR1/HIN1-like protein 26 7 NC_050102.1 163,429,440 163,430,393 T_LWRatio_S0 Sixth leaf
sheath

GRMZM2G039811 Transmembrane 9
superfamily member 9

2 NC_050097.1 204,934,314 204,938,233 T_Perimeter_S0 Sixth leaf
sheath

GRMZM2G153369 Hydrophobic protein RCI2B 2 NC_050097.1 205,006,561 205,007,668 T_Perimeter_S0 Sixth leaf
sheath

GRMZM2G007122 Putative
ubiquitin-conjugating
enzyme family

6 NC_050101.1 175,737,238 175,740,387 T_Perimeter_S0 Sixth leaf
sheath

GRMZM2G155686 Gibberellin 2-oxidase8 6 NC_050101.1 175,763,619 175,765,545 T_Perimeter_S0 Sixth leaf
sheath

P-value = 0.02853), “root epidermal cell differentiation”
(GO:0010053, P-value = 0.02308), “plant epidermal cell
differentiation” (GO:0090627, P-value = 0.02853) and “plant
epidermis development” (GO:0090558, P-value = 0.02884). In
addition, the one KEGG pathway was “Sphingolipid metabolism”
(zma00600, P-value = 0.02218).

For the sixth leaf sheath traits, a total of 57 GO terms
and 4 KEGG pathways (P-value < 0.05) were enriched in
the sixth leaf sheath phenotype candidate genes, among

which 31 GO terms belonged to GO BP (Figures 6E–H).
In GO BP terms, several pathways related to response
to hunger, nutrition and extracellular stimulation were
enriched by genes GRMZM2G147450 and GRMZM2G059121:
“cellular response to phosphate starvation” (GO:0016036,
P-value = 0.00245), “cellular response to starvation”
(GO:0009267, P-value = 0.00643), “disaccharide metabolic
process” (GO:0005984, P-value = 0.00779), “response to
starvation” (GO:0042594, P-value = 0.00779), “cellular
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response to nutrient levels” (GO:0031669, P-value = 0.00842),
“response to nutrient levels” (GO:0031667, P-value = 0.01184),
“cellular response to extracellular stimulus” (GO:0031668,
P-value = 0.01184) and “cellular response to external stimulus”
(GO:0071496, P-value = 0.01284). In addition, candidate genes
for the sixth leaf sheath traits were also enriched in multiple
pathways related to cell proliferation and epidermis development.
For example, “plant epidermis morphogenesis” (GO:0090626,
P-value = 0.00519), “cell proliferation” (GO:0008283,
P-value = 0.00606) and “plant epidermis development”
(GO:0090558, P-value = 0.03493). The most striking result
of KEGG is “Alanine, aspartate and glutamate metabolism”
(zma00250, P-value = 0.01283). And the other three pathways
are “Pyrimidine metabolism” (zma00240, P-value = 0.01379),
“Metabolic pathways” (zma01100, P-value = 0.01382) and
“Phagosome” (zma04145, P-value = 0.03899).

Trait-Candidate Gene-Pathway Network
Visualization
Cytoscape V3.7.2 was used to draw the trait-candidate gene-
pathway network of 2D maize leaf sheath traits at seedling stage,
and to show the relationship between 270 candidate genes and
25 key traits, and between candidate genes and their enriched
pathways. The whole network consisted of 444 nodes and 1,144
edges (Figure 7). In the network, there were 25 traits (the
largest nodes), including 17 whole plant leaf sheath traits (round
rectangle nodes) and 8 sixth leaf sheath traits (octagon nodes).
And the types of traits—morphology, color and biomass—were
also marked in blue, orange and green, respectively. In addition,
the candidate genes were marked with small gray circular nodes,
and the pathways were marked with small diamond. Among
them, pathways related to cellular component assembly and
organization were marked in earthy yellow, pathways related to
cell proliferation and epidermal cell differentiation were marked
in grass green, and pathways related to response to hunger,
nutrition and extracellular stimulation were marked in red.

DISCUSSION

Maize leaf sheaths wrap stem to provide structural support
and protect developing leaves, which is of great biological
significance. This study broke the traditional method of
phenotypic acquisition of maize leaf sheath, and proposed
an image-based high-throughput acquisition and data
analysis scheme for phenotypic traits of maize leaf sheath
from image acquisition, image phenotypic analysis and leaf
sheath phenotypic data analysis. Firstly, a simple and reliable
environment for maize leaf sheath image acquisition was
established, and the acquisition time of a single sample image
was less than 10s. Then, a maize leaf sheath phenotypic
image analysis software with friendly interactive interface was
developed based on open-source software development tools.
Based on the image analysis, 85 leaf sheath phenotypic traits
including shape and color can be analyzed, and the calculation
time for a single image was less than 60s. Finally, phenotypic
traits were extracted and analyzed from leaf sheath images of

418 maize inbred lines, and the statistical description results
of leaf sheath phenotypic traits of large maize populations
were obtained. It is time-consuming and laborious to obtain
the traditional traits such as length and width of leaf sheath
manually, but the image-based phenotypic acquisition method
can quickly obtain the length and width of leaf sheath in less
than 1 min. Besides, more than 80 phenotypic traits can also
be extracted. Thus, efficient and high-throughput acquisition of
leaf sheath phenotypes was achieved. Moreover, this method is
suitable for large populations and can help to obtain leaf sheath
phenotype in maize association analysis population.

A large number of traits can be extracted from plant images,
and a variety of new traits can be determined from different
dimensions. However, the interpretability of the traits still
needs further study. In this study, correlation analysis, cluster
analysis and PCA were performed on 87 leaf sheath-related
phenotypic traits of maize association analysis population. The
results showed that there were differences in morphological
characteristics and color traits of leaf sheath, with correlation
coefficients less than 0.5. In the morphological characteristics
of leaf sheath, it can be divided into three groups with definite
significance due to the different features described. Color traits
can be subdivided into three subsets with distinctive features.
Therefore, although some traits cannot explain their biological
significance by themselves, combined with trait grouping and
its highly correlated traits, the phenotypic traits with less clear
meanings can be characterized.

In order to verify the reliability of phenotypic acquisition from
leaf sheath images, correlation analysis was conducted between
dry and fresh weight of maize leaf sheath measured manually
and leaf sheath morphological traits obtained from images. The
results showed that 16 morphological characteristics of leaf
sheath had a significant positive correlation with DryWeight and
FreshWeight (p-value < 0.05), and clustered into the same group
(Morphological Traits_Basic and Biomass Traits). This result was
consistent with the prior knowledge, revealing the reliability of
the data, and demonstrating that the various traits obtained from
the image were meaningful. Moreover, among the color traits
extracted from the image, 24 comprehensive color traits were
divided into two groups, CIVE, CIVE_S, ExR and ExR_S mainly
represent red, while the remaining comprehensive traits mainly
represent blue and green. The clustering results based on the
phenotypic data were consistent with the trait characteristics,
which also showed the accuracy of the data extraction.

It can be seen from the results of this study that image-
based high-throughput phenotypic acquisition techniques can
obtain novel traits that breeders cannot evaluate through
traditional methods, such as geometric and color traits described
quantitatively. In this study, 88.51% (77/87) of leaf sheath-related
phenotypic traits had heritability greater than 0.3, indicating that
the formation of these phenotypes was influenced by genetic
factors. To further dissect the genetic mechanisms underlying
these phenotypes with heritability greater than 0.3, GWAS was
used to analyze the 25 key leaf sheath-related traits, and totally
3,113 candidate genes for leaf sheath-related traits were obtained.
The candidate genes with high significance or verified by multiple
methods were considered as high reliability results, which
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FIGURE 6 | Functional enrichment results of all candidate genes associated with phenotypic traits. (A) GO BP (biological process) terms enriched by the whole plant
leaf sheath candidate genes. (B) GO MF (molecular function) terms enriched by the whole plant leaf sheath candidate genes. (C) GO CC (cellular components) terms
enriched by the whole plant leaf sheath candidate genes. (D) KEGG pathways enriched by the whole plant leaf sheath candidate genes. (E) GO BP terms enriched
by the sixth leaf sheath candidate genes. (F) GO MF terms enriched by the sixth leaf sheath candidate genes. (G) GO CC terms enriched by the sixth leaf sheath
candidate genes. (H) KEGG pathways enriched by the sixth leaf sheath candidate genes.
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FIGURE 7 | The “trait-gene-pathway” network constructed by 25 key traits and their candidate genes and pathways. Traits, genes and pathways (GO terms and
KEGG pathways) are shown in different shapes and sizes. Of the 25 large nodes, 17 round rectangle nodes represent the whole plant leaf sheath traits, and 8
octagon nodes represent the sixth leaf sheath traits. And different color represents different type of traits (blue- morphology, orange- color and green- biomass). The
colorful small diamonds represent GO terms and KEGG pathways enriched by candidate genes. Among them, pathways related to cellular component assembly
and organization were marked in earthy yellow, pathways related to cell proliferation and epidermal cell differentiation were marked in grass green, and pathways
related to response to hunger, nutrition and extracellular stimulation were marked in red. Candidate genes are represented by the small gray circular nodes.

would provide reference for subsequent functional verification
of maize leaf sheath candidate genes. For example, cytokinin
dehydrogenase 10 (CKX10) is a candidate gene for major
component traits of the color of the sixth leaf sheath (Sixth_PC2).
Meanwhile, it has been reported that CKX10 plays an important
role in dry matter accumulation in V6 stage leaves (Lu et al.,
2020). CKX10 is a member of the CKX family, and a great deal of
work has been done on this gene family in gramineae (Mameaux
et al., 2012), including some studies on maize. In transcriptome
analysis of maize, CKX10 has also been reported as one of the
DEGs of KEGG pathways associated with hormone metabolism
(Zheng et al., 2020). Therefore, we speculate that CKX10 plays
an important role in the formation of leaf sheath color in
maize V6 stage. It is worth noting that some loci of these high
confidence results had a high explanatory power (PVE > 5%) for
phenotypic variation. For example, GRMZM2G135770, putative
regulator of chromosome condensation (RCC1) family protein,
was annotated by chr4.S_84970911 on chromosome 4, which
was significantly associated with the trait T_Length_Sum_SS, and
explained 6.54% of the phenotypic variance. GRMZM2G156238,

C2 domain-containing protein At1g53590, which has been
proved to be tissue-specific (Stelpflug et al., 2016). It was
reported in the study of organ-specific and stress-induced
gene expression mapping of maize (Hoopes et al., 2019). In
this study, it was annotated by chr4.S_224037650, also located
on chromosome 4, which was significantly associated with
the trait T_Area_Avg_SS, explaining 5.17% of the phenotypic
variance. And GRMZM2G156238 was also associated with the
other two leaf sheath morphological traits (T_Area_S0 and
T_Perimeter_Avg_SS). The above results proved the reliability of
the phenotype-genotype association analysis process and results
of this study. At the same time, it also reflects the significance
of trait refinement for the research of crop phenotypic genetics,
that is, the more refined the trait, the stronger the phenotype
interpretability of the obtained locus.

Pigment plays an important role in plant reproduction and
adaptability, and the research on plant pigment has always been
a hot topic. In this study, phenotypic traits of leaf sheath color
of maize inbred lines from four subpopulations with different
environmental adaptability were analyzed. The results showed
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that there were significant differences in 48 leaf sheath color traits
between tropical and subtropical maize inbred lines (TST) and
maize inbred lines from other climatic zones (P-value < 0.05),
which showed that the color of maize leaf sheath was closely
related to the ecological adaptability and evolution of maize. In
addition, the changes of pigment deposition, distribution and
shade among different kinds of maize are of great value to the
study of maize functional genome and the application of maize
genetics and breeding. Leaf sheath color is also an important
morphological marker to guide maize breeding. It can be used
for more intuitive selection and more directly genetic research
of related special traits. In this study, a total of 60 leaf sheath
color traits were extracted based on images, including 30 for
the whole plant leaf sheath and 30 for the sixth leaf sheath. In
addition to simple single-channel color traits, a number of novel
comprehensive color traits were also extracted. The results of
heritability analysis showed that the heritability of color trait was
generally high, so it was necessary to conduct GWAS analysis
to explore the genetic factors behind these traits. In our study,
PCA was used to reduce the dimensionality of the color traits
with heritability greater than 0.3, and then the first two principal
components were selected for GWAS. As a consequence, more
than 800 candidate genes related to color traits were identified
(Table 1). These results greatly enrich the existing research
results on maize leaf sheath genetics and provide a theoretical
basis for better explaining the mechanism of maize leaf sheath
phenotype formation.

In recent years, phenomics has emerged as a rapidly growing
data-intensive discipline. The rapid development of phenomics-
related technologies and research tools has brought about a
huge amount of phenotypic information at multiple scales and
data diversity, such as RGB, hyperspectral, near-infrared, thermal
and fluorescence imaging and other image data, as well as
data on various physiological traits during plant growth (Kim
et al., 2017). Crop life activity is a dynamic process under the
combined action of genes and environment. As high-throughput
sequencing technologies continue to develop and improve,
single-omics studies are becoming increasingly sophisticated.
And the integration of multi-omics data to study crops is on the
rise. Genomic studies combining genomic and phenotypic data
have been conducted in many crops and have rapidly decoded
the functions of a large number of unknown genes. In 2014,
13 traditional agronomic traits of rice were combined with two
newly defined traits and 141 related loci were identified using
GWAS (Yang W. et al., 2014). In 2015, 29 leaf phenotypic traits at
three key fertility stages were resolved using high-throughput leaf
phenotype acquisition (HLS) and subjected to GWAS analysis,
and 73 loci regulating leaf size, 123 loci regulating leaf color
and 177 new loci regulating leaf shape (Yang et al., 2015). In
2021, 48 maize stem micro-phenotypic traits were automatically
extracted by micro-CT image processing pipeline and 1,562
significant SNPs were identified for 30 key traits by GWAS
(Zhang et al., 2021). It is clear that combining high-throughput
phenotyping techniques with large-scale QTL or GWAS analysis
not only greatly expands our understanding of the dynamic
developmental processes in crops, but also provides a new tool
for plant genomics, gene characterization and breeding research.
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Hainan University, Haikou, China, 4Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research
Institute, Hainan University, Sanya, China
Biomass energy is an essential component of the agriculture economy and

represents an important and particularly significant renewable energy source in

the fight against fossil fuel depletion and global warming. The recognition that

many plants naturally synthesize hydrocarbons makes these oil plants

indispensable resources for biomass energy, and the advancement of next-

generation sequencing technology in recent years has now made available

mountains of data on plants that synthesize oil. We have utilized a combination

of bioinformatic protocols to acquire key information from this massive amount

of genomic data and to assemble it into an oil plant genomic information

repository, built through website technology, including Django, Bootstrap, and

echarts, to create the Genomic Information Repository for Oil Plants (GROP)

portal (http://grop.site/) for genomics research on oil plants. The current version

of GROP integrates the coding sequences, protein sequences, genome structure,

functional annotation information, and other information from 18 species, 22

genome assemblies, and 46 transcriptomes. GROP also provides BLAST, genome

browser, functional enrichment, and search tools. The integration of the massive

amounts of oil plant genomic data with key bioinformatics tools in a databasewith

a user-friendly interface allows GROP to serve as a central information repository

to facilitate studies on oil plants by researchers worldwide.

KEYWORDS

genomic data, oil plants, bioinformatics, information repository, transcriptomic data
Introduction

The advancement of human society has required enormous amounts of energy in

many forms, beginning with firewood and expanding to coal and then to petroleum,

natural gas, and kerogen shale. Fossil fuels began to occupy a crucial position when

civilization became industrialized with the introduction of steam power. Now, however,
frontiersin.org01
92

https://www.frontiersin.org/articles/10.3389/fpls.2022.1023938/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1023938/full
http://grop.site/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1023938&domain=pdf&date_stamp=2022-10-06
mailto:wzhj21@163.com
mailto:wzj@zafu.edu.cn
mailto:keanjin.lim@zafu.edu.cn
https://doi.org/10.3389/fpls.2022.1023938
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1023938
https://www.frontiersin.org/journals/plant-science


Guo et al. 10.3389/fpls.2022.1023938
the excessive dependence on fossil fuels has become a potential

threat to civilization. Among the 125 questions about

exploration and discovery published in Science (Levine et al.,

2021), three are related to energy: (1) Can we stop global climate

change? (2) Where do we put all the excess carbon dioxide? and

(3) Could we live in a fossil fuel–free world? The key answer to

all three of these questions is probably biomass energy.

One significant contributor to biomass energy is oil plants—

plants that naturally synthesize hydrocarbons, predominantly

lipids, in vivo. The oil plants comprise a large group of herbs,

shrubs, and trees, with commercial species that include oil palm

(Elaeis guineensis), oilseed rape (Brassica napus), peanut

(Arachis hypogaea), and soybean (Glycine max). In these

plants, the lipids are mainly stocked in their seeds, although

other species store hydrocarbons in their leaves, fruits, or stems.

Plant lipids can be classified into five broad categories: (1) fatty

acids with 16 to 18 carbons; (2) very long chain fatty acids with

over 18 carbons; (3) polyunsaturated fatty acids; (4) hydroxy

fatty acids; and (5) wax esters. These valuable lipids play vital

roles in the food, paint, lubricant, feed, and medical industries

due to their unique chemical properties (Bates et al., 2013;

Belayneh et al., 2018). Some of these plant lipids are now

recognized as having great medicinal value. For instance,

omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA), are essential in the human diet, as

they cannot be synthesized in vivo, and they are now known to

reduce heart attack risk(Ruxton et al., 2004) and to be effective in

treating neurodegenerative and neurological disorders(Dyall,

2015), cancer(Moloudizargari et al., 2018), fetal development

disorders (Dunstan et al., 2008), and cardiovascular disease

(Bouwens et al., 2009). However, oil plants are now

increasingly being recognized for their biomass value and

development potential.

The growing desire to capitalize on the significant industrial

and ecological value of oil plants has led to a multitude of

scientific projects aimed at improving the yield and quality of

these plants. Thanks to the rapid development of sequencing

technology, an enormous collection of genome sequencing and

transcriptomic data has been generated for many oil plants in

recent years. The first wild olive (Olea europaea) genome

(≈1.48G) was completed and published in 2017, and two

Oleaceae-specific paleopolyploidization events were identified,

leading to expansion and new functionalization of several gene

families (ACPTE, EAR, FAD2, and FAD2) involved in lipid

synthesis (Unver et al., 2017). For oil plants used in cosmetics

and as lubricants, researchers have utilized a combination of

multiple sequencing techniques, such as PacBio, Illumina, and

Hi-C, to assemble a high-quality chromosome-level jojoba

(Simmondsia chinensis) genome (≈887Mb, 2n=26) (Sturtevant

et al., 2020). Oilseed rape (Brassica napus), the plant that

produces the well-known canola oil that accounts for

approximately 13–16% of all globally consumed vegetable oils
Frontiers in Plant Science 02
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(Wang et al., 2018), was “recently” formed about 7500 years ago

by natural hybridization and polyploidization (Chalhoub et al.,

2014), so the complex genome assembly of different accessions

has been sequenced and improved many times (Chalhoub et al.,

2014; Bayer et al., 2017; Sun et al., 2017; Zou et al., 2019; Song

et al., 2020; Chen et al., 2021).

These advances have revealed important information about

stress responses, domestication, and lipid synthesis in oil plants

at the genomic level. The rapid accumulation of genomic data

has also accelerated the process of plant molecular breeding by

identifying and locating precise gene targets. Thus, constructing

a database that can integrate, share, and visualize genomic and

transcriptomic data for oil plants has become a necessity for the

research community. We have addressed this need by

constructing a public repository, the Genomic Repository of

Oil Plants (GROP, www.grop.site), that stores and shares the

genomic and transcriptomic data of oil plants.

GROP is the first digital resource library to store a range of

oil plant genomic data, including genes, genome sequences,

genome features, gene annotations, and transcriptome profiles.

GROP also provides a batch of search tools and data

visualization functions, including gene, gene family,

transcription factor, protein kinase, and keyword searches,

which allow users to retrieve relevant information quickly

from the large collection of genomic data. A Basic Local

Alignment Search Tool (BLAST) server has been deployed in

GROP to integrate genomic, gene nucleotide, and protein

sequences. A genome browser was also embedded in GROP

for the integrative visualization of genomic sequences,

annotation data, and functional genomic data. GROP also

includes tools for Gene Ontology (GO) enrichment, pathway

enrichment, and expression visualization that allow users to

perform functional analyses of their gene sets. We expect that

GROP will serve as an efficient genomic data center for the

research community interested in oil plants. We plan to

continuously update GROP to include newly generated

genomic data.
Material and methods

Genomic and transcriptome data
resource acquisition

Genomic data includes genome sequences, coding sequences

(CDS), protein sequences (PEP), and genome structure

annotation files (GFF) that are essential for in-depth

exploration of oil production by plants. The original genomic

data sources in GROP are composed of two parts, with one part

coming from major public bioinformatics databases and the

second part being a new version of the pecan (Carya

illinoinensis) genome assembly contributed by our research
frontiersin.org
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team. The raw sequencing data of the 46 oil plant transcriptomes

in the database were downloaded from the NCBI Sequence Read

Archive (SRA) database, which comprises RNA-seq from

different tissues at different developmental stages and from

plants in different environments. The RNA-seq data were

downloaded using the SRA toolkit. All data can be traced in

the database (Supplementary Table S1).
Gene annotation

Gene function annotation compares a gene sequence or protein

sequencewith bioinformatics databases to predict the function of the

gene. InGROP, the latest InterPro (Finn et al., 2016) protein resource

package (v86.0) and Panther classification data were collected. We

then used InterProScan v5.52 software to perform functional

predictions against protein sequences with 30 threads and a GO

term outputmode. These annotation results provide comprehensive

prospects for potential functions. The KEGG online analysis service

BlastKOALA (Kanehisa et al., 2016) was utilized to identify vital

genes in the KEGG pathways.

Gene family or protein domain classification was conducted

using Pfam (El-Gebali et al., 2019). We first obtained the conserved

domain feature resources included in thePfamdatabase, andwe then

used the HMMER software (Finn et al., 2011) to search all the oil

plant protein sequences against the HMM seeds. Transcriptional

factors and protein kinases were identified using the iTAK software

(Zheng et al., 2016) with the default parameters.
Expression profile calculations

For the 46 oil plant transcriptome datasets, a standard and

optimized pipeline was set up for automated calculations: (1)

fastq-dump command with split-3 was executed to transform

SRA data to the fastq format data using the SRA toolkit; (2) fastp

(Chen et al., 2018) was used for quality controlling, filtering,

adapter trimming, and per-read quality pruning; (3) a genome

index was built and the raw sequencing data mapped to the

corresponding genome to obtain a BAM file using the STAR

software (Dobin et al., 2013); and (4) the gene expression value

was calculated and normalized to FPKM (fragments per kilobase

of exon per million mapped fragments) and joint different

samples to a complete matrix using the RSEM software (Li

et al., 2009). These final expression profiles were ultimately

uploaded to the cloud server.
BLAST, genome browser, and FTP
server implementation

We provide clear and easy use of similar sequence search

services for oil plant researchers by deploying an online BLAST
Frontiers in Plant Science 03
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service based on the coding, protein, and genome sequences of

22 oil plant genome assemblies. This BLAST service is set up

using SequenceServer (Priyam et al., 2019) and optimized with

the jstree module, which splits the sequence library into three

parts (coding, protein, and genome sequences) and classifies

different assemblies that belong to the same species into

one node.

The genome browser is deployed on the Linux server so that

users can access the genomic information intuitively and

interactively using multiple web browsers (Chrome, Firefox,

IE, Safari, etc.). We configured an extendable genome browser

using Jbrowser (Buels et al., 2016) to integrate genomic

information about sequences, gene structure, RNA-seq,

mutation sites, etc.

We have provided a rapid data acquisition channel for

worldwide researchers by setting up a File Transfer Protocol

(FTP) download site utilizing the vsftp technique. In this case,

complete genomic sequences, genome structure annotation data,

multifold functional annotation data, and 46 RNA-seq

expression matrices have been cached on the FTP site.
Data model and website implementation

The data structure and relationship of the four most

significant data models (Species, Genome assembly,

Transcriptome profile, Gene) are shown in Figure 1. These

four data models are instrumental in the data retrieval and

assay procedures within the whole dataset (Table 1). In general,

GROP was established using a series of modern website

development techniques, including HTML, CSS, Bootstrap,

MySQL, and Django. Django was the key element connecting

the front webpage and genomic information, and it facilitates the

development process. The Django framework also allows us to

decorate a data management system that will facilitate future

data updates. The whole GROP project has been deployed on a

cloud server using a mixture pipeline of Gunicorn and Nginx, as

we described previously (Guo et al., 2020). Ultimately, a user-

friendly and usage-flexible public genomic platform has been

built for the oil plant scientific community.
Results

The GROP homepage

The homepage of the Genomic Repository of Oil Plants

(Figure 2) consists of three parts, from top to bottom: a

navigation bar, the main content, and footer content. The

homepage also offers links to several important bioinformatic

resources and services. The navigation bar includes multiple

dropdown menus that link to important information and online

tools, such as “Species,” “Genome assembly,” and “Tools.” The
frontiersin.org
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“Species” dropdown menu in the navigation bar (Figure 2A) lists

the 18 species currently included in GROP. Clicking on a species

name redirects users to its description page. The “Genome

assembly” dropdown menu currently lists 22 genome

assemblies for 18 oil plants and links to a new page that

includes the statistical information of the genome assembly

and the abstract of its publication. The “Tool” contains links

to all the tools, which are described in detail in the sections

below. GROP also allows users to download all raw data with an

FTP protocol, and the link is also included in the navigation bar.

The main content (Figure 2B) is divided into three sections, from

top to bottom: the top section contains the four most used tools

in GROP; the middle section shows pictures and links to the 18

oil plants in the GROP; and the bottom section includes an

introduction, links, toolbox, and data statistics and recent

updates. At the bottom of the homepage, the footer
Frontiers in Plant Science 04
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section (Figure 2C) shows the logos of the techniques used

for the development of GROP and provides the author

contact information.
BLAST and genome browser for
genomic data

GROP provides a BLAST tool for sequence similarity

searches. The gray box at the top of the BLAST interface

(Figure 3A) is the input box for the query sequences. In the

middle of the page, the user can select a target sequence database

that includes coding, protein, and genomic sequences for each

species (Figure 3B). The optional advanced parameters, such as

the E-value threshold and the number of alignments to be

shown, can be chosen in the input box at the bottom of the

page (Figure 3C). The returned results are divided into three

parts: the top left part is a graphical representation of the Blast

hits found (Figure 3D) and provides a quick overview of the

query sequence and the resulting hit sequences. The bottom left

part shows the BLAST table and alignments of the BLAST results

(Figure 3E). The download links are provided in the right half

(Figure 3F), allowing users to download BLAST results in either

the tab-separated or XML formats.

The basic interface of the genome browser (Figure 4)

provided by GROP includes three parts: the selection bar on

the left (Figure 4A), the navigation bar on the right (Figure 4B),

and the main display of the Genome Browser (Figure 4C). Users

can select an oil plant species from a list in the navigation bar.

Users can also upload various types of genomic annotation
TABLE 1 Data statictis of dataset in genomics respository of oil plant.

Data model Item count

Species 18

Genome assembly 22

Transciptome profile 46

Gene 413,509

Gene family 586,165

Transcriptional factor 33,485

Protein kinase 16,405

GO annotation 3,649,008

KEGG annotation 409,358
FIGURE 1

An overview of the GROP complete architecture. In general, four data models (species, genome assembly, transcriptome profile, and gene)
were built through data mining from an oil plant whole dataset. Researchers are able to visit GROP via the Django web framework.
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information to be displayed in the main panel. Available tracks

also provide users with annotated information of the gene

structure and other desired genomic information. For example,

BAM files can be uploaded to the genome browser for

visualization of aligned reads to the reference genome and to

detect base mismatches, insertions, deletions, and other

variation information. With these functions, users can visually

analyze their own genomic data of interest.
Frontiers in Plant Science 05
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Single gene search

The single gene search is one of the most important search

tools in GROP. The gene search tool can be implemented by

entering a gene identifier, which can be obtained in various ways

(BLAST, JBrowse, etc.). The gene search returns the source

organism, gene structure, sequence length, gene family, coding,

and protein sequences, and expression level. The functional
FIGURE 2

Homepage of the GROP database. (A) Navigation bar of GROP, including the species introduction, tool links, etc. (B) Main content, including a
quick link for the four most useful tools, species list, repository introduction, etc. (C) Website footer of GROP.
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annotation information from various bioinformatic databases,

such as Amigo, CDD, Gene3D, InterProScan, MobiDBLite,

Pfam, and Swiss-prot, is also provided in the gene

research results.
Bulk search and download

GROP provides multiple search methods to find clusters of

conserved genes, including gene families, transcription factors,

and protein kinases. Entering the Pfam ID of a gene family and

genome assembly into the gene family search function will

return a list of genes. Several methods to manipulate
Frontiers in Plant Science 06
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sequences in bulk are also supported at the top of the gene list

page. GROP also provides a keyword search tool, based on an

SQL fuzzy search for the entire database and including gene

coding, protein, and genome sequences, as well as InterProScan,

KEGG metabolic pathway, and Pfam annotation data.

An FTP download site was built with the complete data

resources for oil plants. This download site stores the nucleic

acid sequences of coding proteins, protein sequences, genome

sequences, genome structural features files for each genome,

functional annotation information about protein domains, GO

terms, and KEGG metabolic terms. We have also integrated the

gene expression data in the FTP site. Through the site,

researchers can download the entire dataset in the repository.
FIGURE 3

BLAST interface of GROP. (A) Query sequence input box for the BLAST program. (B) Search databases containing nucleotide and protein
sequences. (C) BLAST advanced parameter input box. (D) Visualized BLAST alignment map. (E) Detailed BLAST result information. (F) BLAST
results for download.
FIGURE 4

Genome browser interface of GROP. (A) Selection bar for genomic information in the browser. (B) Navigation bar for chromosome position,
zoom in and out. (C) Visualization interface for selected genomic information.
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Enrichment tool for GO and
pathway terms

On the GROP site, GO enrichment analysis can be

performed with a simple workflow: select the genome version

of the oil plant; select an ontology category (Biological Process,

Cellular Component, Molecular Function, or All); and provide a

list of gene IDs and the threshold p-value (Figure 5A). The result

of the enrichment analysis returned by GROP is a bar plot of the

enrichment analysis, where each bar represents an enriched GO

term, the length of the bar indicates the number of genes

included in the GO term, and the shade of the bar indicates

the p-value, with a color closer to red indicating a smaller p-

value with higher confidence (Figure 5B). A table of the results of

the enrichment analysis, presented beneath the bar graph, lists

each enriched GO ID and the gene frequency, p-value, link to the

gene list, GO function description, and annotation link. With

this tool, researchers can conveniently perform GO enrichment

and KEGG enrichment analysis on a specific list of genes in the

18 oil plants, thereby eliminating the need to use the R package

or other programs.
Expression visualizer

The heatmap is a popular visualization of gene expression

data that shows the expression levels of multiple genes or

transcripts in different environments, developmental stages, or

tissues. Researchers can easily comprehend the gene expression

pattern under different backgrounds.
Frontiers in Plant Science 07
98
A gene expression heatmap is generated in the Expression

Visualizer of GROP when the users select a RNA-seq Bioproject

from the dropdown list and then provide gene IDs of the query.

(Figure 6A). The gene expression visualizer returns an

expression heatmap of the input genes of the corresponding

transcriptome (Figure 6B). The horizontal axis and vertical axes

of the heatmap represent different genes and different samples in

the transcriptome, respectively. The heatmap is available in

different scales and can be downloaded. Gene expression data

are also provided as a data matrix at the bottom of the web page

for further analysis (Figure 6C).
Discussion

The agricultural development and utilization of biomass is

an important direction in developing renewable energy that can

be used to replace traditional fuel oil or coal energy. Oil plants,

such as hickory, olive, pecan, soybean, and walnut, are important

sources of healthy edible oil as well as important sources of

economic income for the food industry and agroforestry. By

contrast, jatropha, jojoba, oil palm, and tung oil trees are widely

used in manufacturing industries for the production of plastics,

lacquers, artificial rubber, printing inks, etc. The oil produced by

these oil plants is environmentally friendly and pollution-free

and has high economic and environmental value. Therefore, the

investigation of germplasm resources, genetics, and molecular

regulation of fatty acid synthesis traits has been the main focus of

oil crop research.

The rapid development of high-throughput sequencing has

allowed the assembly and annotation of the whole genome
A B

FIGURE 5

GO and KEGG enrichment analysis process in GROP. (A) Submission form for genome version, gene set, ontology term, and p-value. (B) Returned
enrichment result, including a histogram and a summary table.
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sequences of many important model plants and field crops;

however, the genomes of oil plants are difficult to decipher due

to the large proportion of repetitive sequences, high

heterozygosity, and large genome size. Nevertheless, in recent

years, the reduction in the cost of second-generation sequencing

technology and the development of third-generation long-read

sequencing has led to breakthroughs and the accumulation of a

huge amount of genomic and transcriptomic data for oil plants.

Therefore, the current issue is how to effectively analyze,

integrate, and share the genomic and transcriptomic data of

oil plants in the post-genomic era.

This study is the first to construct a genomic database for oil

plants. The work has analyzed and integrated the genomic data

for 22 oil plant genomes and 46 transcriptomic datasets using

various bioinformatics software, such as HMMER,

InterProScan, iTAK, and STAR, and has stored this

information in a MySQL database. A user-friendly web

platform was also established using Django. The resulting

repository provides gene, gene family, transcription factor,

protein kinase, and keyword searches, with efficient retrieval.
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The repository also provides gene ontology (GO) and metabolic

pathway (KEGG) enrichment analysis tools to resolve

significantly distributed functional or metabolic pathways in

gene sets. Researchers are also able to find the expression data

for gene sets from 46 transcriptomic gene expression datasets in

the Expression Visualizer. The BLAST and the JBrowse browser

tools are available in the repository, allowing researchers to

search for homologous sequences, browse the location and

structure of genes, and view the variation and expression

abundance of genes in different species in combination with

VCF and BAM files.

Currently, we still anticipate expanding the amount of data

and adding omics data, such as metabolomes. Persons interested

in further development of GROP are welcomed to share data or

to participate in any other kind of collaboration. The

construction of the Genomic Repository of Oil Plants will fuel

genomics and molecular biology research while enriching our

future understanding of oil plants. We believe that GROP will

become the data center for oil plant studies, and that efforts in

GROP will contribute substantially to oil plant research.
A

B

C

FIGURE 6

Gene expression visualizer in GROP. (A) Input panel of the transcriptome version and gene set. (B) Gene expression heatmap for different gene
sets, environments, and developmental stages. (C) Gene expression data matrix.
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Dynamic DNA methylation
changes reveal tissue-specific
gene expression in sugarcane
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Baoshan Chen1* and Haifeng Wang1,2*

1State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of
Agriculture, Guangxi University, Nanning, China, 2Guangxi Colleges and Universities Key Laboratory
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DNA methylation is an important mechanism for the dynamic regulation of

gene expression and silencing of transposons during plant developmental

processes. Here, we analyzed genome-wide methylation patterns in

sugarcane (Saccharum officinarum) leaves, roots, rinds, and piths at single-

base resolution. DNA methylation patterns were similar among the different

sugarcane tissues, whereas DNAmethylation levels differed. We also found that

DNAmethylation in different genic regions or sequence contexts plays different

roles in gene expression. Differences in methylation among tissues resulted in

many differentially methylated regions (DMRs) between tissues, particularly

CHHDMRs. Genes overlapping with DMRs tended to be differentially expressed

(DEGs) between tissues, and these DMR-associated DEGs were enriched in

biological pathways related to tissue function, such as photosynthesis, sucrose

synthesis, stress response, transport, and metabolism. Moreover, we observed

many DNA methylation valleys (DMVs), which always overlapped with

transcription factors (TFs) and sucrose-related genes, such as WRKY, bZIP,

WOX, SPS, and FBPase. Collectively, these findings provide significant insights

into the complicated interplay between DNA methylation and gene expression

and shed light on the epigenetic regulation of sucrose-related genes

in sugarcane.

KEYWORDS

sugarcane, DNA methylation, differentially methylated regions, DNA methylation
valleys, epigenetics
Introduction

DNA methylation is among the most common epigenetic modifications in eukaryotic

genomes and is involved in regulating gene transcription and transposon silencing (Law and

Jacobsen, 2010; Zhang et al., 2018a). In animals, DNA methylation mainly occurs at CG

sites, whereas in plants, it occurs at CG, CHG, and CHH sites (H represents A, T, or C) (Law
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and Jacobsen, 2010). Information on DNAmethylation in plants is

mainly derived from model plants, such as Arabidopsis thaliana

and rice (Oryza sativa). Methylation in three different contexts is

established and maintained by different pathways. CG methylation

is mainly catalyzed by methyltransferase 1 (MET1) (Kankel et al.,

2003), while chromomethylase 3 (CMT3) is responsible for

maintaining CHG methylation. Recent studies have shown that

CMT2 is also involved in the maintenance of CHG methylation

(Lindroth et al., 2001; Stroud et al., 2014) and plays a major role in

maintaining asymmetric CHH methylation. CHH methylation

maintained by CMT2 always occurs at long transposable

elements (TEs), which are often located in peri-centromeric

regions (Zemach et al., 2013; Stroud et al., 2014; Gouil and

Baulcombe, 2016). In all three contexts, cytosines can be de novo

methylated by the RNA-directed DNA methylation (RdDM)

pathway, which also involves domains rearranged

methyltransferase (DRM2) and several other proteins (Law and

Jacobsen, 2010; Kawashima and Berger, 2014; Cuerda-Gil and

Slotkin, 2016). DNA methylation is dynamically regulated by

methylases and demethylases, and four DNA demethylases have

been identified in A. thaliana, including ROS1, DME, DML2, and

DML3 (Choi et al., 2002; Gong et al., 2002; Morales-Ruiz et al.,

2006; Ortega-Galisteo et al., 2008).

Recently, extensive studies have shown that DNAmethylation

plays an important role in plant growth, development, and stress

response (Zhang et al., 2018a; Chang et al., 2020). For example,

deficient non-CG methylation levels in Arabidopsis resulted in a

twisted leaf shape, shorter stature, and partial sterility phenotypic

defects (Chan et al., 2006). In addition, 70% of drought-induced

methylation changes in rice were recovered after irrigation

resumed (Wang et al., 2011). Salt stress inhibits DNA

methylation in the promoter region of OsMYB91, promoting its

expression and increasing salt tolerance in rice (Zhu et al., 2015).

Although extensive studies on plant DNA methylation have been

reported, most have focused on models or economically

important crops, such as rice, soybean (Glycine max), sorghum

(Sorghum bicolor), cassava (Manihot esculenta), and tomato

(Solanum lycopersicum) (Li et al., 2012; Song et al., 2013; Wang

et al., 2015; Turco et al., 2017; Wang et al., 2018). These genomes

are relatively small and have low complexity, and very few DNA

methylation studies have been conducted on species with large

genomes and high genome complexity, such as bread wheat

(Triticum aestivum), Norway spruce (Picea abies), and Chinese

pine (Pinus tabuliformis) (Ausin et al., 2016; Li et al., 2019; Niu

et al., 2022). Owing to the complexity of the sugarcane

(Saccharum officinarum) genome (large genome size and

polyploidy), its reference genome has only recently been

released, providing an unprecedented opportunity to investigate

the role of DNA methylation in sugarcane growth.

Here, we explored genome-wide DNA methylation profiles

in four different sugarcane tissues using whole-genome bisulfite

sequencing (WGBS). Combined with transcriptome data, we

investigated the association between DNA methylation changes
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and expression divergence among four tissues (leaf, rind, pith,

and root). Moreover, comparative multi-omics analysis revealed

the regulatory role of DNAmethylation variation in the different

sugarcane tissues, especially in genes related to important

agronomic traits. Thus, our study provides a unique insight

into the role of DNA methylation in sugarcane research.
Materials and methods

Plant materials and tissue collection

Sugarcane cultivar Zhongzhe No. 1 was grown at the Fusui

planting base of Guangxi University (22°17’N, 107°31’E). We

selected sugarcane at the mature stage for sampling, in which

root, leaf +1, rind and pith of 10th stalk were collected.
Whole-genome bisulfite sequencing and
analysis

The whole-genome bisulfite sequencing (WGBS) library was

constructed as described by Wang (Wang et al., 2015). WGBS

libraries were sequenced on an Illumina NovaSeq 6000 system

(Illumina, San Diego, CA, USA) to obtain pair-end 150-bp reads.

Raw 150-bp paired-end reads were subjected to quality

control filters using FASTQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and trimmed using

Trimmomatic v0.39 (Bolger et al., 2014). The clean reads were

aligned to the sugarcane reference genome (Zhang et al., 2018b)

using BSMAP v2.90 (Xi and Li, 2009), and up to 10 base

mismatches were allowed. Only uniquely mapped reads were

used to estimate the methylation ratios. The methylation ratio

was calculated from the number of sequenced cytosines divided

by the total read depth [mC/(mC + non-mC)], and visual

analysis was conducted using ViewBS v0.1.9 (Huang et al., 2018).

Reproducibility between replicates of BS-seq was calculated as

methylation levels in 100-kb regions in both replicates, and

Pearson correlation coefficients between replicates were calculated.

The differentially methylated regions (DMRs) between

different tissues were calculated using the methylKit R package

(Akalin et al., 2012); the genome was divided into 100bp bins and

mC sites covered by more than 3 reads were used for subsequent

analysis. Themethylation differences between all sequence contexts

were as follows: CG difference was greater than 0.4, CHG difference

was greater than 0.2, and CHH difference was greater than 0.1.
Transcriptome sequencing and analysis

Total RNA was isolated from the same tissues used in the

WGBS library using TRIzol reagent (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s instructions. The RNA-
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seq library was constructed following the Illumina kit’s

recommendation and sequenced using Illumina NovaSeq 6000

(Illumina) with paired-end reads of 150 bp.

FASTQC was used for initial read quality control. Clean

reads were mapped to the sugarcane reference genome (Zhang

et al., 2018b) using hisat2 V2.1.0 with default settings (Kim et al.,

2015). We used Stringtie v2.1.4 to calculate the gene expression

levels (Pertea et al., 2015). Differentially expressed genes (DEGs)

were identified using DESeq2 v1.32.0 (Sahraeian et al., 2017)

with a 4-fold change and FDR < 0.05.
Gene ontology enrichment analysis

Gene functions were annotated using eggNOG-mapper

(Huerta-Cepas et al., 2019), and Gene Ontology (GO)

enrichment analysis was performed using GOATOOLS with

false-discovery rate correction (<0.05) (Klopfenstein et al., 2018).
Identification and characterization of
sugarcane DMVs

The DNA methylation valleys (DMVs) in sugarcane were

identified as previously described (Lin et al., 2017; Chen et al.,

2018; Li et al., 2018). Briefly, the genome was first divided into 1-kb

bins, and we calculated the DNA methylation levels in each bin.

The DMV is the bin where the methylation levels of all sequence

contexts are less than 5% in all tissues. Next, all overlapping DMVs

were merged (Figure 6B). Finally, genes (gene body and flanking 1

kb) located in the DMVs were defined as DMV genes.
Results

Characterization of DNA methylation
patterns among different
sugarcane tissues

To investigate the DNA methylation patterns in sugarcane,

we used WGBS to examine cytosine methylation in four

sugarcane tissues: leaf, root, rind, and pith. Each sample was

sequenced in two biological replicates, and approximately 70%

of the reads were aligned to the reference genome, except for one

biological replicate of the roots (Table S1). Pearson’s correlation

coefficients between different biological replicates were greater

than 0.95, except in the roots, indicating the high reproducibility

and accuracy of our sequencing data (Figure S1). Next, we

merged the two replicates because their data were highly

correlated. There were 1,137 million cytosines that could be

methylated in sugarcane, accounting for 39.2% of the sugarcane

genome; approximately 87% of the total cytosines were covered

by at least one read (Figure S2).
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From the distribution of global DNA methylation, we found

that gene-enriched regions showed low CG and CHG

methylation levels, while transposable element (TE)-enriched

regions had high methylation levels (Figure 1A). This result is

consistent with previous studies on other plants (Song et al.,

2013; Wang et al., 2015; Song et al., 2015). In addition, we found

that CHH methylation was slightly enriched in the gene-

enriched regions compared with that in regions with dense CG

and CHG methylation (Figure 1A). The distribution of CHH

methylation in sugarcane is consistent with that in maize (Zea

mays) (Gent et al., 2013). We also found a negative correlation

between gene and TE densities (R=-0.68, p < 2.2e-16)

(Figures 1A and Figure S3). To better understand the

relationship between DNA methylation levels and gene and

TE densities, we calculated their correlation coefficients. We

found that both mCG and mCHG methylation negatively

correlated with gene density, indicating that these two DNA

methylation contexts were mostly located in gene-poor

heterochromatic regions. However, leaf tissue showed no

correlation, and the other three tissues showed positive

correlations between gene density and mCHH levels (Figure

S4). This result was consistent with findings in rice, sorghum

(Sorghum bicolor), and maize (Gent et al., 2013; Niederhuth

et al., 2016). As expected, TE density positively correlated with

CG and CHG methylation levels (R > 0.7) but showed a weak

correlation with CHH methylation (|R|<0.3) (Figure S5).

To investigate the relationship between TE methylation and

the distance between TEs and adjacent genes, we calculated the

methylation levels of TEs. We found that higher TE CHH

methylation levels in all tissues positively correlated with the

closer distances of TEs to the gene, but this phenomenon was not

observed in CG and CHG methylation (Figure S6). Altogether,

these results suggest that gene and transposon densities and

methylation levels correlate, and the distribution of genes and

transposons in the genome jointly shapes the landscape of DNA

methylation in different regions of the genome.

Genome-wide distribution and global DNA methylation

levels showed obvious DNA methylation changes among the

four tissues (Figures 1A, B). Pith tissue showed the highest DNA

methylation levels, followed by the rind, root, and leaf. In

contrast to methylation levels, we found no significant

differences in the proportion of methylcytosines among the

four tissues, with CHH methylcytosine being the most

abundant (>67%), followed by CG and CHG methylcytosines

(Figure 1C). This finding is consistent with other plant studies

(Wang et al., 2015; Xu et al., 2018).
DNA methylation patterns of gene
and TE regions

Genome-wide DNA methylation analysis revealed

substantial differences in methylation levels among the four
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sugarcane tissues. Next, we analyzed DNA methylation levels in

the gene and transposon regions of the four tissues. The results

of the meta-analysis of gene and TE regions were consistent with

those of the genome-wide methylation analysis, i.e., leaf and pith

tissues showed the lowest and highest methylation levels,

respectively (Figures 2A, B). This trend was also consistent

between the gene body and TE regions (Figure 2). Strikingly,

gene body regions showed relatively high CHG and CHH

methylation levels, in addition to dense CG methylation

(Figure 2A), differing from many other plant species, such as

Arabidopsis and rice (Cokus et al., 2008; Li et al., 2012). In the

sugarcane genome, more than 58.7% of the sequences consisted

of repetitive elements (Zhang et al., 2018b), such as TEs, and

42.3% of protein-coding genes contained TE sequences in the

gene body regions, particularly in intron regions (Figure S7A).

After excluding genes with intronic TE insertions, we found that
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the methylation levels of gene body regions were notably

reduced in all three sequence contexts, especially non-CG

methylation levels. However, methylation levels of the flanking

regions were slightly reduced (Figures S7B, C). This result

suggested that most of the non-CG methylation of gene body

regions was determined by intronic TE insertions, which have

been reported in maize and other plant genomes with abundant

TEs (Wang et al., 2015; Wang et al., 2021; Niu et al., 2022).

Next, we compared DNA methylation between different

types of transposons, including Class I and II transposons.

Class I transposons showed higher levels of CG and CHG

methylation than Class II transposons, both in the transposon

body and flanking regions. However, CHH methylation was

higher in Class II transposons than that in Class I transposons

(Figure 2C). Long terminal repeat (LTR)-type transposons

mainly include Gypsy and Copia LTRs, whereas DNA
A

B C

FIGURE 1

Genome-wide DNA methylation profile of different tissues in sugarcane. (A) Circle plot of gene and TE densities and methylation level of CG,
CHG, and CHH across 32 homologous chromosomes in sugarcane. DNA methylation level is represented in a heatmap; blue and red indicate
low and high methylation levels, respectively. Gene and TE density are represented in a histogram. Average DNA methylation level and gene/TE
density are calculated using a 500-kb window. The gray circle indicates chromosomes. From the outer circle to the inner circle: a, gene density;
b, TE density (TE density is the ratio of TE length to window length); c, CG methylation; d, CHG methylation; e, CHH methylation. For the DNA
methylation circle, the order from outer to inner is Leaf, Root, Rind, and Pith. (B) Global average DNA methylation levels of CG, CHG, and CHH
across different tissues in sugarcane. (C) Relative proportion of methyl-cytosines in the three sequence contexts across different tissues.
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transposons contain several types of transposons (Figure S8A).

The Gypsy and Copia LTRs showed very similar DNA

methylation patterns (Figures S8B–E). However, different types

of DNA transposons exhibit substantially different methylation

patterns. For example, the CHH methylation level of the PIF-

Harbinger transposon was significantly higher than that of the

other types of transposons (Figure S9).
Active demethylase is associated with
reduced DNA methylation among
different tissues

DNA methylation levels are dynamically regulated by DNA

methylases and demethylases. The decrease in DNAmethylation

levels can be attributed to the low expression of DNA methylase

or high demethylase expression. To investigate the changes in

DNA methylation levels among the four tissues, we searched for

and annotated the DNAmethylase and demethylase genes in the

sugarcane genome (Table S2). As the sugarcane genome was
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assembled and annotated into four sets of homologous

chromosomes, we identified more homologous genes in the

sugarcane genome than in Arabidopsis and other plants. We

first examined the expression levels of DNAmethylase across the

four tissues, and we did not observe a gradual increase in

expression levels of these genes from the leaves to the roots

and stem (rinds and piths) (Figures 3A, B). In addition, we found

that only a few genes were differentially expressed in the RdDM

pathway (Figures 3B). These results suggest that increased DNA

methylation levels from the leaves to the piths were not

attributed to the increased expression of DNA methylases and

genes involved in the RdDM pathway.

We also examined the expression of putative DNA

demethylase genes. Consistent with the changes in DNA

methylation levels across the four tissues, we found that

several demethylated genes, such as ROS and DME, were

expressed at lower levels in pith tissue than in other tissues

(Figure 3C). This result suggests that the DNA demethylation

pathway plays a critical role in methylation level changes across

the four tissues.
A

B

C

FIGURE 2

DNA methylation patterns in gene/TE and flanking regions. (A) The metaplot of the gene body and the flanking region. (B) The metaplot of TE
and the flanking region. (C) The metaplot of the Class II TE and Class I TE. CG (left), CHG (middle), CHH (right).
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The association between DNA
methylation and gene activity

Cumulative evidence has shown that methylation of the gene

body and flanking regions is involved in regulating gene

expression (Wang et al., 2015; Zhang et al., 2018a; Xu et al.,

2018; Wang et al., 2019; Cai et al., 2021). CGmethylation of gene

body regions is always positively correlated with gene

expression, whereas non-CG methylation of gene body regions

negatively correlates with gene expression (Wang et al., 2015; Xu

et al., 2018; Wang et al., 2019; Cai et al., 2021). In addition,

recent studies have shown that CHH methylation of promoter

regions could promote adjacent gene expression (Gent et al.,

2013; Xu et al., 2018; Cai et al., 2021). To explore the relationship

between DNAmethylation and gene expression in sugarcane, we

first performed RNA-seq of the same tissues for DNA

methylation analysis. We found that approximately 75% of

clean reads were aligned to the sugarcane genome, and the

Pearson correlation coefficients between different biological

replicates of RNA-seq were between 0.88 to 0.96 (Table S3),

indicating the high reproducibility of our RNA-seq data. All

genes were divided into expressed (FPKM ≥ 1, 38,750 genes) and

unexpressed (FPKM < 1, 45,976 genes) groups and their
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methylation levels were calculated separately (Figure 4A).

Compared with unexpressed genes, CG gene body methylation

levels of expressed genes were higher than those of unexpressed

genes, whereas non-CGmethylation was lower in expressed gene

body regions than that in unexpressed genes. Consistent with

previous studies (Xu et al., 2018; Wang et al., 2019; Cai et al.,

2021), DNA methylation levels at the transcription start site

(TSS) and transcription end site (TES) were significantly

reduced in expressed genes compared with those in

unexpressed genes. Additionally, a significant increase in CHH

promoter methylation was observed in the expressed genes. A

similar phenomenon was observed in the other three tissues

(Figure S10).

Next, all expressed genes were divided into four groups

according to their expression levels from low to high [FPKM = 0

(Cluster1), 0 < FPKM ≤ 2 (Cluster 2), 2 < FPKM ≤ 10 (Cluster 3),

and FPKM > 10 (Cluster 4)], and the methylation level of each

group of genes was calculated (Figures 4B and Figure S11). For

all three methylation contexts, the methylation levels near TSS

and TES sites decreased as the expression level increased, and the

methylation level was lowest when the expression was highest. In

the gene body regions, CG methylation was positively correlated

with gene expression, and the genes with the medium high
A B

C

FIGURE 3

DNA methylated and demethylated genes are active in sugarcane tissues. (A) Heatmap showing the expression patterns of methylation-related
genes among tissues. (B) Schematic diagram of the canonical RdDM pathway (left). Heatmap showing the expression patterns of canonical
RdDM pathway genes among tissues. (C) Heatmap showing the expression patterns of demethylated genes. L, leaf; Rt, root; Rd, rind; P, pith.
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expression showed the highest CG methylation. This is

consistent with the phenomenon observed in studies on many

other plants (Wang et al., 2015; Xu et al., 2018; Wang et al.,

2019). Non-CG methylation levels were significantly negatively

correlated with gene expression, except for CHH methylation in

the promoter regions (Figure 4B).

To further examine the relationship between gene

expression and DNA methylation in different contexts (CG,

CHG, and CHH) and genic regions (i.e., upstream, gene body,

and downstream regions), we sorted all genes according to their
Frontiers in Plant Science 07
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methylation levels from low to high and divided them into four

equal groups (Clusters 1 to 4). Consistent with the above

analysis, CG methylation of gene body regions promoted gene

expression, but CG methylation at either the upstream or

downstream regions always inhibited gene expression. CHG

and CHH methylation mostly repressed gene expression,

except for upstream CHH methylation (Figures 4C and Figure

S12). Collectively, this relationship between DNA methylation

and gene expression is conserved in most of the studied plant

species. Our findings indicate that DNA methylation is involved
A

B

C

FIGURE 4

Association of methylation and gene expression. (A) Methylation level changes between the expressed and unexpressed genes in CG, CHG, and
CHH sequence contexts. Methylation differences between expressed and unexpressed genes were tested using the Wilcoxon rank-sum test.
***p-value < 0.001. (B) Correlations between methylation levels (CG, CHG, and CHH) and gene expression across gene body and flanking
regions. Methylation level of each gene group [Cluster1 (FPKM = 0), Cluster2 (0 < FPKM ≤ 2), Cluster3 (2 < FPKM ≤ 10), Cluster4 (FPKM ≥ 10)]
were calculated. CG (left), CHG (middle), and CHH (right). (C) Expression levels of methylated genes in the gene body and flanking regions.
Genes were divided into four quartiles based on methylation levels, from the first quartile (the lowliest methylated 25% of genes) to the fourth
quartile (the most highly methylated 25% of genes). Expression differences between different clusters were tested using the Wilcoxon rank-sum
test. The colors of the asterisk (*) represent the comparison between different clusters, and the size of the asterisk (*) indicates the criterion of
significance. (A–C) are data in leaf tissue.
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in gene expression regulation and DNA methylation of different

genic regions and sequence contexts plays different roles in

gene expression.
Extensive changes in gene expression
among different tissues in sugarcane

From the above analysis, we found that DNA methylation

levels are associated with gene expression in sugarcane. For

example, DNA methylation at different genic regions or

sequence contexts affects gene expression differently (Figure 4).

To further explore gene expression changes across different

sugarcane tissues, we examined the expression dynamics

across different tissues (leaf, root, rind, and pith) and

identified 21,460 DEGs between different tissues (Figure S13).

To search for functional signatures of different tissues, we

performed GO enrichment analysis to characterize DEGs from

the comparisons between different tissues. We found that

upregulated genes in leaves were enriched in photosynthesis

and monosaccharide catabolic processes. However, upregulated

genes in roots were enriched in response to abiotic and biotic

stimuli; upregulated genes in the rind were enriched in pathways

related to transport, such as intercellular and carbohydrate

transport. Compared with leaves and roots, upregulated genes

in the pith were involved in carbohydrate transport and organic

substance metabolic and biosynthetic processes. Additionally,

upregulated genes in the pith relative to those in the rind were

enriched in terms associated with fructose export from the

vacuole to the cytoplasm, regulation of the syringal lignin

biosynthetic process, plant-type cell wall organization or

biogenesis. These results confirm that DEGs from different

tissues are involved in biological pathways related to tissue-

specific physiological functions.
Identification of differentially methylated
regions among different tissues

To characterize methylation changes among different tissues

in sugarcane, we defined DMRs in each sequence context

according to the method of Akalin (Akalin et al., 2012). A

total of 113,536 CG-DMRs, 396,224 CHG-DMRs, and 1,146,516

CHH-DMRs were identified. Compared with CG and CHG

DMRs, CHH DMRs were the most abundant across different

comparisons among the four tissues. Meanwhile, compared with

hypo-DMRs (lower DNA methylation in the right comparison),

hyper-DMRs (higher methylation in the left comparison) were

dominant (Figure 5A), consistent with the increased DNA

methylation levels from leaf to root and then to rind and pith

in the above analysis. Next, we examined the distribution of

DMRs in different genomic features such as TE, intergenic,

upstream, downstream, intron, and exon regions. As shown in
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Figure 5B, TE, intergenic, and genetic (upstream, downstream,

intron, and exon) regions account for 53.52%, 27.45%, and

19.31% of the sugarcane genome, respectively. We found that

CG DMRs are mainly located in the intergenic regions; Non-CG

DMRs are mainly enriched in the TE regions, especially CHH

methylation. This may indicate that CHH methylation changes

mainly occur in the TE and intergenic regions (Figure 5B).

Moreover, we found that many DMRs (~20%) were located in

genic regions, including upstream, exon, intron, and

downstream regions. Therefore, we hypothesized that DMRs

adjacent to the gene regions might affect gene expression.
Differential expression genes are
associated with differentially methylated
regions

We found substantial differences in gene expression and

DNA methylation levels across different sugarcane tissues. In

particular, many DMRs occur in the gene body and/or proximal

regions, and these DMRs might contribute to changes in the

expression of adjacent genes. From the above analysis, we found

a large number of DMRs, including hyper- and hypo-methylated

DMRs, in the gene body and flanking regions. Except for CG-

DMRs, both CHG and CHH DMRs showed distinct

distributions of hyper- and hypo-DMRs across the gene

regions (Figures 5C and Figure S14). Strikingly, we observed

that DMR-overlapped genes were more likely to be differentially

expressed than DMR-non-overlapping genes, which was

consistent across the comparisons between tissues (Table S4).

These results indicate that changes in DNA methylation are

associated with DEGs.

More than 40% of the DEGs contained DMRs across all six

comparisons of the four tissues (Figure 5D). To understand how

DMR-associated genes were associated with tissue divergence,

we performed GO enrichment analysis of DMR-associated up-

and down-regulated DEGs. Compared with the other three

tissues, DMR-associated highly expressed genes in the roots

were mainly involved in response to stress and root

morphogenesis (Figure S15). For example, DMR-associated

genes encoding phosphoinositide-specific phospholipase C (PI-

PLC, Sspon.05G0021570-2P), class III peroxidase (PRX,

Sspon.01G0012950-1A), and MYB (Sspon.01G0019490-1A)

were highly expressed in roots, and their homologous genes in

Arabidopsis were involved in growth, response to stresses, and

lignin synthesis (Meijer and Munnik, 2003; Shigeto and

Tsutsumi, 2016; Chezem et al., 2017). We also found that

highly expressed DMR-associated DEGs in the leaves were

significantly enriched in photosynthesis and sucrose-related

pathways (Figure S16), such as photosynthesis, pigment

metabolic process, and sucrose biosynthetic process.

Furthermore, many biological processes related to sugar

biosynthesis and metabolism were enriched in the DMR-
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associated DEGs (Figure S16). For example, Sspon.02G0012860-

2B (Figure S16), which encodes NAD oxidoreductase, was

upregulated in leaves. A recent study showed that NAD

oxidoreductase was funct ional downstream of the

photosynthetic electron transport chain and participated in the

Calvin cycle, pigment synthesis (Pierella Karlusich and Carrillo,

2017), and is a key enzyme linking the light reaction of

photosynthesis to carbon metabolism. Gene encoding
Frontiers in Plant Science 09
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inorganic pyrophosphatase (PPi, Sspon.04G0005360-3D) was

highly expressed in leaves and its homologous genes in

Arabidopsis are key enzymes in sucrose synthesis (Farré et al.,

2000). Unlike leaves and roots, upregulated DMR-associated

genes in the stem (rind and pith) were enriched in transport-

related pathways such as sucrose and intracellular transport,

cellular metabolic process, and hydrocarbon metabolic process.

For example, Sspon.04G0012730-4D (Sugars Will Eventually be
A B

D

E

C

FIGURE 5

Differentially expressed genes are associated with differential methylation. (A) Barplot of hyper/hypo DMR. (B) The distribution of DMR in
different regions of the genome. a, Rt vs. L; b, Rd vs. L; c, P vs. L; d, Rd vs. Rt; e, P vs. L; f, P vs. Rd; g, genome. (C) Distribution of DMR in the
gene body and flanking region (Rt vs. L). (D) The proportion of DEG with DMR/without DMR. (E) Sucrose synthesis and hydrolysis pathways and
the expression pattern of DMR-DEGs related to sucrose synthesis and hydrolysis pathways. FBPase, fructose-1,6-bisphosphatase; PFK,
phosphofructokinase; PGI, phosphoglucose; PGM, phosphoglucomutase; SPS, sucrose phosphate synthase; SPP, sucrose-6F-phosphate
phosphohydrolase; SUS, sucrose synthase; SWEET, sugars will eventually be exported transporters; INV, invertase; L, leaf; Rt, root; Rd, rind; P,
pith; DEG, differentially expressed gene; DMR, differentially methylated region.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1036764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xue et al. 10.3389/fpls.2022.1036764
Exported Transporters; SWEET), Sspon.01G005290-1A (polyol/

monosaccharide transporter 5), and Sspon.01G0026170-1A (Mfs

transporter) encoding sugar transporters (Figures S15 and

Figure S16) were upregulated DMR-associated genes in the

rinds. Sugar transporters function in sugar transport,

distribution, and utilization in the phloem, as well as

maintaining the balance between source and sink (Julius et al.,

2017). Sspon.02G0017170-1A and Sspon.02G0017170-3D

(Figure S15) were highly expressed DMR-associated genes

in the piths encoding ADP-glucose pyrophosphorylase

(AGPase); their homologous genes in Arabidopsis catalyze

ADP glucose synthesis and release pyrophosphate, and are

the key enzymes determining starch synthesis (Tetlow

et al., 2004). Sspon.02G0019390-3C (Figure S15), encoding

phosphoglucomutase, was upregulated in the DMR-

associated genes in piths. In Arabidopsis, its homologous gene

catalyzes the mutual conversion of glucose-1-phosphate and

glucose-6-phosphate, key steps in sucrose metabolism

and synthesis (Streb et al., 2009). We found that genes

with many DMRs were highly expressed in the stem. In

conclusion, DMR-associated DEGs in different sugarcane

tissues are involved in essential biological pathways and

have tissue-specific physiological functions that are closely

related to photosynthesis, sugar metabolism, growth, and

sugarcane development.

High sucrose accumulation is a characteristic feature of

sugarcane. We found that DMR-associated DEGs were

enriched in essential biological pathways (Figures S15, S16),

such as sucrose synthesis, carbohydrate metabolism, and stress

response. To investigate how DMR-associated genes contribute

to the regulation of sucrose accumulation, we focused on the

sucrose synthesis and hydrolysis pathways (Figure 5E). We

observed that genes involved in the sucrose synthesis pathway,

including FBPase, PGI, SPS, and SPP, were highly expressed in

the leaves. However, in contrast to the other three tissues, genes

encoding sucrose synthase (SUS) showed lower expression in

leaves. These results suggest that sucrose synthesis in leaves

mainly depends on the SPS-mediated pathway, consistent with

previous studies (Buczynski et al., 1993; Verma et al., 2011).

Moreover, SWEETs involved in sucrose transport were highly

expressed in the leaves and stems, suggesting that the remaining

sucrose was transported into sink tissues for consumption and

storage, except for consumption in the leaves. Interestingly, we

found that all invertases (INVs) involved in sucrose hydrolysis

(Figure 5E) had a lower expression in stem tissue (rind and pith)

than that in leaf and root tissue, indicating that sucrose

transported to the stem was mainly used for storage,

confirming our suspicion. Taken together, efficient sucrose

synthesis in leaves, intense sucrose transport from leaves to

stem, and low INV activity in the stem might be responsible for

the high sucrose accumulation in sugarcane, indicating that

DNA methylation-regulated genes function in high sucrose

accumulation in sugarcane.
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Transcription factor genes are enriched
in sugarcane DNA methylation valleys

Recent studies have shown that there are always lowly

methylated or unmethylated regions in the genome, also

known as DNA methylation valleys (DMVs) (Stadler et al.,

2011; Lin et al., 2017; Chen et al., 2018; Li et al., 2018; Crisp

et al., 2020). During soybean seed development, genes contained

in DMVs tend to be enriched in tissue-specific biological

pathways such as protein storage and fatty acid metabolism

(Lin et al., 2017; Chen et al., 2018). Next, we scanned DNA

methylome data from the four tissues for regions with <5% bulk

methylation in all three cytosine sequence contexts as described

in (Chen et al., 2018) and identified 28,531, 26,445, 25,311, and

24,666 DMVs in leaves, roots, rinds, and piths, respectively.

Among these DMVs , 17 ,208 (2 .9%) , which were

hypomethylated, were common to all four tissues and did not

change significantly across different tissues. There were 8,704

non-redundant DMVs, accounting for 1.8% (51.7 Mb) of the

genome length, which was significantly lower than the DMV

ratio in other plants, implying species-specific DMV distribution

(Figure 6A). For example, a 6.3-kb DMV exhibited low levels of

all DNA methylation contexts across the four tissues and

contained two protein-coding genes (Figure 6B).

We further examined the DMV regions and identified DMV

genes if the gene body or flanking 1-kb regions overlapped with

the DMV. We identified 1,734 genes located in DMVs, and

transcription factors (TFs) (13.1%) were significantly enriched in

these DMV genes (p < 2.2e-16, chi-squared test) (Figure 6C). GO

enrichment analysis showed that these DMV genes were

involved in regulating gene expression, developmental,

stimulus-related, and saccharide-related processes (Figure 6D).

In addition, we found that many TFs played important roles in

these processes. For example, 488 DMV genes were associated

with sucrose metabolism, of which 136 (28%) were TF encoding

genes. Notably, many of these DMV TF genes were significantly

differentially expressed in the four tissues (Figure S17). For

example, the bZIP TF gene, Sspon.04G0028570-1P, was highly

expressed in root tissue relative to the other tissues, and its

homologous genes play an important role in biotic and abiotic

stress in Arabidopsis (Droge-Laser et al., 2018) (Figure 6E).

Moreover, Sspon.06G0007540-2C (Figure S17) encoding bZIP2

was higher in the piths than in the other three tissues, and the co-

expression of its homologous genes AtbZIP2 and KIN10 in

Arabidopsis activates DIN6-LUC to inhibit respiration (Baena-

Gonzalez et al., 2007), suggesting that Sspon.06G0007540-2C

might inhibit cellular respiration in the piths, reducing the

consumption of sugar and facilitating sugar accumulation in

the piths. In addition, some genes (non-TFs) located in the DMV

regions were involved in the saccharide pathway. For example,

Sspon.03G0028140-3D (Figure 6F) encoding SPS, a key gene

regulating the conversion of photosynthetic products into

sucrose and starch, was highly expressed in leaves (Verma
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et al., 2011). Furthermore, Sspon.01G0051520-1C (Figure 6G),

which encodes FBPase involved in sucrose synthesis, was highly

expressed in leaves—decreased FBPase expression inhibits

sucrose synthesis (Strand et al., 2000; Lee et al., 2008).

There fore , Sspon.03G0028140-3D (F igure 6F) and

Sspon.01G0051520-1C (Figure 6G) were highly expressed in

leaves, suggesting that they played a role in transforming

photosynthetic products and sucrose synthesis. Taken

together, these data show that TFs and genes located in DMVs

play essential roles in sugarcane development, stress response,

and sucrose synthesis.
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Discussion

Publication of the sugarcane genome provided us with an

unprecedented opportunity to investigate the role of DNA

methylation in sugarcane. In the present study, we analyzed

the dynamics of DNA methylation among tissues in sugarcane

and the relationship between DNA methylation and gene

expression, which will enhance knowledge in sugarcane

epigenetics. DNA methylation levels are dynamically regulated

by DNA methylases and demethylases (Law and Jacobsen, 2010;

Zhang et al., 2018a). We observed that DNA methylation levels
A B

D E

F

G

C

FIGURE 6

Transcription factors are enriched in sugarcane DMVs. (A) Summary of sugarcane DMV characteristics. (B) IGV of an 18-kb DMV located on
chromosome 7D. Genes in blue color (Sspon.07G0003000-1P and Sspon.07G0035420-1D encoding the pectin lyase-like superfamily are
involved in carbohydrate metabolic process) are located within this DMV, including 1 kb of 5′ and 3′ flanking regions. (C) Proportion of TF in
genome and DMV regions. (D) Enriched GO terms with an FDR < 0.05. (E–G) Methylome and RNA-Seq genome browser views of three genes
between at least two tissues. Red, green, cyan, and purple bars indicate leaf, root, rind, and pith, respectively. Gray collapsed bars indicate
expression level. L, leaf; Rt, root; Rd, rind; P, pith; DMV, DNA methylation valley; TF, transcription factor; IGV, integrative genomics viewer.
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differed among the tissues (Figure 1). Furthermore, as shown in

Figure 3, the expression patterns of DME and ROS in tissues are

consistent with those of MET1b and CMT3, and the expression

pattern of Sspon.04G0012050-1A (ROS) is consistent with those

of CMT2 and DRM2 (Sspon.01G0000660-1A). Based on the fact

that DNA demethylases can eliminate the mC of all sequence

contexts (Choi et al., 2002; Gong et al., 2002; Morales-Ruiz et al.,

2006; Ortega-Galisteo et al., 2008), we suggested that the DNA

demethylation pathway plays a critical role in changes in

methylation levels across the four tissues.

Cumulative evidence has shown that methylation of the

gene body and flanking regions is involved in regulating gene

expression (Wang et al., 2015; Xu et al., 2018; Zhang et al.,

2018a; Wang et al., 2019; Cai et al., 2021). In tea plant

(Camellia sinensis) (Tong et al., 2021), the methylation levels

in all three sequence contexts of unexpressed genes were

higher than those of expressed genes, the methylation levels

of CHH in flanking regions of unexpressed genes were lower.

However, CHH methylation patterns in sugarcane gene body

and upstream regions were consistent with tea plant, whereas

CG methylation pattern in gene body was opposite to that in

the tea plant (Tong et al., 2021); the difference in CG

methylation patterns in gene body between sugarcane and

tea plant may be related to species specificity, such as genome

size, and TE content. Moreover, CG methylation of gene body

regions is always positively correlated with gene expression

(Wang et al., 2015; Xu et al., 2018; Wang et al., 2019; Cai et al.,

2021), but we observed that the highest-expressed genes did

not have the highest CG methylation levels in the gene body

(Figures 4 and Figure S11). Methylation of the gene body can

quantitatively impede transcript elongation in Arabidopsis

(Zilberman et al., 2007). This may lead to the highest

expression of genes without the highest CG methylation

levels in the gene body. CG, CHG, and CHH methylation

levels near the TSS were negatively correlated with gene

expression (Figures 4B and Figure S11), similar to results for

rice, soybean, apple (Malus), tea (Camellia sinensis), wild

barley (Hordeum vulgare), Arabidopsis, and human

(Zilberman et al., 2007; Laurent et al., 2010; Li et al., 2012;

Song et al., 2013; Xu et al., 2018; Wang et al., 2019; Cai et al.,

2021), demonstrating that methylation near the TSS is a

common mechanism to suppress gene expression in

eukaryotes. Additionally, highly expressed genes were

correlated with higher CHH methylation levels in the

promoter region (200–2,000 bp) close to the TSS (Figures 4B

and Figure S11); a similar observation was made in soybean,

maize, apple, and wild barley (Gent et al., 2013; Song et al.,

2013; Xu et al., 2018; Cai et al., 2021). Taken together, the

relationship between DNA methylation and gene expression is

conserved in most of the studied plant species.

Genes regulated by DNA methylation are involved in several

important biological pathways (Wang et al., 2015; Cheng et al.,
Frontiers in Plant Science 12
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2018; Wang et al., 2018; Xu et al., 2018; Wang et al., 2019). For

example, highly expressed genes affected by DNAmethylation in

cassava are involved in carbohydrate metabolism, including

hexose and glucose metabolism (Wang et al., 2015).

Furthermore, upregulated genes regulated by DNA

methylation during strawberry (Fragaria × ananassa) ripening

are involved in fruit ripening-related processes, such as

cytokinin and abscisic acid biosynthesis (Cheng et al., 2018).

We found that DMR-DEGs in sugarcane were significantly

enriched in biological pathways of tissue-specific physiological

functions. For example, DMR-associated DEGs with higher

expression in roots were significantly enriched in stress

response and root morphogenesis (Figures S15, S16). Genes

upregulated in leaves regulated by DNA methylation were

involved in photosynthesis, hydrocarbon biosynthesis, and

metabolic processes (Figure S16). DMR-associated DEGs that

were highly expressed in the stem (rind and pith) were

significantly enriched in transport-related pathways and

metabolism-related processes, such as sucrose transport and

hydrocarbon metabolic process (Figures S15, S16). In

conclusion, DMR-associated DEGs between different tissues

are involved in the biological pathways of tissue-specific

physiological functions, which are essential for plant growth

and development.

We observed that DMR-associated DEGs were enriched in

important biological pathways (Figures S15, S16), such as

sucrose synthesis, carbohydrate metabolism, and stress

response. The high sucrose accumulation in sugarcane has

attracted our attention to sucrose synthesis and hydrolysis

pathways. As shown in Figure 5E, sucrose in leaves is mainly

derived from the SPS-mediated sucrose synthesis pathway,

and genes involved in sucrose transport are more highly

expressed in stems than in leaves and roots. Moreover, INV

involved in sucrose hydrolysis showed lower expression in the

stem. Sugarcane has a universal source-sink system; except for

consumption during leaf growth, the sucrose synthesized in

leaves is exported to sink tissues and used for consumption

and storage (Buczynski et al., 1993; Verma et al., 2011; Julius

et al., 2017). Previous studies have indicated that SPS activity

is a biochemical marker of high sucrose content in sugarcane

(Verma et al., 2011). Collectively, we suggest that efficient

sucrose synthesis in the leaves, intense sucrose transport to the

stem, and low INV activity in the stem may be responsible for

the high sucrose accumulation in sugarcane, indicating that

DNA methylation plays an important role in sucrose

accumulation in sugarcane.

Recent studies have shown that lowly methylated and

unmethylated regions contain functional regulatory elements

(Stadler et al., 2011; Lin et al., 2017; Chen et al., 2018; Li et al.,

2018; Crisp et al., 2020). For instance, genes located in the DMVs

of human embryonic stem cells or vertebrates, such as Foxa1,

Wnt1, GATA, and SOX2 (Stadler et al., 2011; Xie et al., 2013; Li
frontiersin.org

https://doi.org/10.3389/fpls.2022.1036764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xue et al. 10.3389/fpls.2022.1036764
et al., 2018), are involved in development and TF activity. DMVs

during seed formation are enriched in TFs and development-

related genes such as WOX, PLETHORA, PIN1, and YUCCA4

(Lin et al., 2017; Chen et al., 2018). We also found many DMVs

in sugarcane, which always overlapped with TFs, development,

and sucrose-related genes such as WRKY, bZIP, WOX, SPS, and

FBPase (Figures 6D–G and Figure S17), which function in

sugarcane growth, morphogenesis, stress response, and

carbohydrate metabolism, indicating that DMVs are common

and essential for growth and development. Furthermore,

approximately 40% of the genes (670 genes) located in the

DMVs were differentially expressed between at least two

tissues. Recent studies have shown that genes located in

DMVs are enriched in H3K27me3 and H3K4me3 (Xie et al.,

2013; Chen et al., 2018). Therefore, we hypothesized that DEGs

located in sugarcane DMVs might be regulated by histone

modification and TF regulation.
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Macıás, M. I., Ariza, R. R., and Roldán-Arjona, T. (2006). DEMETER and
REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases.
Proc. Natl. Acad. Sci. U.S.A. 103, 6853–6858. doi: 10.1073/pnas.0601109103

Niederhuth, C. E., Bewick, A. J., Ji, L., Alabady, M. S., Kim, K. D., Li, Q., et al.
(2016). Widespread natural variation of DNA methylation within angiosperms.
Genome Biol. 17, 194. doi: 10.1186/s13059-016-1059-0

Niu, S., Li, J., Bo, W., Yang, W., Zuccolo, A., Giacomello, S., et al. (2022). The
Chinese pine genome and methylome unveil key features of conifer evolution. Cell
185, 204–217.e14. doi: 10.1016/j.cell.2021.12.006

Ortega-Galisteo, A. P., Morales-Ruiz, T., Ariza, R. R., and Roldán-Arjona, T.
(2008). Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for
appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67, 671–681.
doi: 10.1007/s11103-008-9346-0

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., and
Salzberg, S. L. (2015). StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295. doi: 10.1038/
nbt.3122

Pierella Karlusich, J. J., and Carrillo, N. (2017). Evolution of the acceptor side of
photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP(+) oxidoreductase.
Photosynth Res. 134, 235–250. doi: 10.1007/s11120-017-0338-2

Sahraeian, S. M. E., Mohiyuddin, M., Sebra, R., Tilgner, H., Afshar, P. T., Au, K.
F., et al. (2017). Gaining comprehensive biological insight into the transcriptome by
performing a broad-spectrum RNA-seq analysis. Nat. Commun. 8, 59–59.
doi: 10.1038/s41467-017-00050-4

Shigeto, J., and Tsutsumi, Y. (2016). Diverse functions and reactions of class III
peroxidases. New Phytol. 209, 1395–1402. doi: 10.1111/nph.13738

Song, Q., Guan, X., and Chen, Z. J. (2015). Dynamic roles for small RNAs and
DNA methylation during ovule and fiber development in allotetraploid cotton.
PloS Genet. 11, e1005724. doi: 10.1371/journal.pgen.1005724

Song, Q. X., Lu, X., Li, Q. T., Chen, H., Hu, X. Y., Ma, B., et al. (2013). Genome-
wide analysis of DNA methylation in soybean. Mol. Plant 6, 1961–1974.
doi: 10.1093/mp/sst123

Stadler, M. B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., et al.
(2011). DNA-Binding factors shape the mouse methylome at distal regulatory
regions. Nature 480, 490–495. doi: 10.1038/nature10716

Strand, A., Zrenner, R., Trevanion, S., Stitt, M., Gustafsson, P., and Gardeström,
P. (2000). Decreased expression of two key enzymes in the sucrose biosynthesis
pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase,
has remarkably different consequences for photosynthetic carbon metabolism in
transgenic arabidopsis thaliana. Plant J. 23, 759–770. doi: 10.1046/j.1365-
313x.2000.00847.x

Streb, S., Egli, B., Eicke, S., and Zeeman, S. C. (2009). The debate on the pathway
of starch synthesis: A closer look at low-starch mutants lacking plastidial
phosphoglucomutase supports the chloroplast-localized pathway. Plant Physiol.
151, 1769–1772. doi: 10.1104/pp.109.144931

Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., et al. (2014). Non-CG
methylation patterns shape the epigenetic landscape in arabidopsis. Nat. Struct.
Mol. Biol. 21, 64–72. doi: 10.1038/nsmb.2735

Tetlow, I. J., Morell, M. K., and Emes, M. J. (2004). Recent developments in
understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 55,
2131–2145. doi: 10.1093/jxb/erh248

Tong, W., Li, R., Huang, J., Zhao, H., Ge, R., Wu, Q., et al. (2021). Divergent
DNAmethylation contributes to duplicated gene evolution and chilling response in
tea plants. Plant J. 106, 1312–1327. doi: 10.1111/tpj.15237

Turco, G. M., Kajala, K., Kunde-Ramamoorthy, G., Ngan, C. Y., Olson, A.,
Deshphande, S., et al. (2017). DNA Methylation and gene expression regulation
associated with vascularization in sorghum bicolor. New Phytol. 214, 1213–1229.
doi: 10.1111/nph.14448

Verma, A. K., Upadhyay, S. K., Verma, P. C., Solomon, S., and Singh, S. B.
(2011). Functional analysis of sucrose phosphate synthase (SPS) and sucrose
synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol. (Stuttg) 13, 325–
332. doi: 10.1111/j.1438-8677.2010.00379.x

Wang, H., Beyene, G., Zhai, J., Feng, S., Fahlgren, N., Taylor, N. J., et al. (2015).
CG gene body DNA methylation changes and evolution of duplicated genes in
cassava. Proc. Natl. Acad. Sci. U.S.A. 112, 13729–13734. doi: 10.1073/
pnas.1519067112

Wang, W. S., Pan, Y. J., Zhao, X. Q., Dwivedi, D., Zhu, L. H., Ali, J., et al. (2011).
Drought-induced site-specific DNA methylation and its association with drought
frontiersin.org

https://doi.org/10.1038/nature06745
https://doi.org/10.1073/pnas.2010250117
https://doi.org/10.1038/nplants.2016.163
https://doi.org/10.1016/j.pbi.2018.05.001
https://doi.org/10.1104/pp.123.2.681
https://doi.org/10.1101/gr.146985.112
https://doi.org/10.1016/s0092-8674(02)01133-9
https://doi.org/10.1016/s0092-8674(02)01133-9
https://doi.org/10.1371/journal.pgen.1006526
https://doi.org/10.1371/journal.pgen.1006526
https://doi.org/10.1093/bioinformatics/btx633
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1093/pcp/pcx090
https://doi.org/10.1093/genetics/163.3.1109
https://doi.org/10.1038/nrg3685
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/s41598-018-28948-z
https://doi.org/10.1101/gr.101907.109
https://doi.org/10.1038/nrg2719
https://doi.org/10.1111/j.1365-3040.2008.01890.x
https://doi.org/10.1126/science.1059745
https://doi.org/10.1126/science.1059745
https://doi.org/10.1073/pnas.1716758114
https://doi.org/10.1186/s13059-019-1746-8
https://doi.org/10.1186/s13059-019-1746-8
https://doi.org/10.1186/s13059-018-1390-8
https://doi.org/10.1186/1471-2164-13-300
https://doi.org/10.1186/1471-2164-13-300
https://doi.org/10.1146/annurev.arplant.54.031902.134748
https://doi.org/10.1146/annurev.arplant.54.031902.134748
https://doi.org/10.1073/pnas.0601109103
https://doi.org/10.1186/s13059-016-1059-0
https://doi.org/10.1016/j.cell.2021.12.006
https://doi.org/10.1007/s11103-008-9346-0
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1007/s11120-017-0338-2
https://doi.org/10.1038/s41467-017-00050-4
https://doi.org/10.1111/nph.13738
https://doi.org/10.1371/journal.pgen.1005724
https://doi.org/10.1093/mp/sst123
https://doi.org/10.1038/nature10716
https://doi.org/10.1046/j.1365-313x.2000.00847.x
https://doi.org/10.1046/j.1365-313x.2000.00847.x
https://doi.org/10.1104/pp.109.144931
https://doi.org/10.1038/nsmb.2735
https://doi.org/10.1093/jxb/erh248
https://doi.org/10.1111/tpj.15237
https://doi.org/10.1111/nph.14448
https://doi.org/10.1111/j.1438-8677.2010.00379.x
https://doi.org/10.1073/pnas.1519067112
https://doi.org/10.1073/pnas.1519067112
https://doi.org/10.3389/fpls.2022.1036764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xue et al. 10.3389/fpls.2022.1036764
tolerance in rice (Oryza sativa l.). J. Exp. Bot. 62, 1951–1960. doi: 10.1093/jxb/
erq391

Wang, L., Shi, Y., Chang, X., Jing, S., Zhang, Q., You, C., et al. (2019). DNA
Methylome analysis provides evidence that the expansion of the tea genome is
linked to TE bursts. Plant Biotechnol. J. 17, 826–835. doi: 10.1111/pbi.13018

Wang, L., Xie, J., Hu, J., Lan, B., You, C., Li, F., et al. (2018). Comparative
epigenomics reveals evolution of duplicated genes in potato and tomato. Plant J. 93,
460–471. doi: 10.1111/tpj.13790

Wang, Q., Xu, J., Pu, X., Lv, H., Liu, Y., Ma, H., et al. (2021). Maize DNA
methylation in response to drought stress is involved in target gene expression and
alternative splicing. Int. J. Mol. Sci. 22, 8285–8303. doi: 10.3390/ijms22158285

Xie, W., Schultz, M. D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., et al. (2013).
Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem
Cells. Cell 153, 1134–1148. doi: 10.1016/j.cell.2013.04.022

Xi, Y., and Li, W. (2009). BSMAP: whole genome bisulfite sequence MAPping
program. BMC Bioinf. 10, 232. doi: 10.1186/1471-2105-10-232

Xu, J., Zhou, S., Gong, X., Song, Y., Van Nocker, S., Ma, F., et al. (2018).
Single-base methylome analysis reveals dynamic epigenomic differences
Frontiers in Plant Science 15
116
associated with water deficit in apple. Plant Biotechnol. J. 16, 672–687.
doi: 10.1111/pbi.12820

Zemach, A., Kim, M. Y., Hsieh, P. H., Coleman-Derr, D., Eshed-Williams, L.,
Thao, K., et al. (2013). The arabidopsis nucleosome remodeler DDM1 allows DNA
methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205.
doi: 10.1016/j.cell.2013.02.033

Zhang, H., Lang, Z., and Zhu, J. K. (2018a). Dynamics and function of DNA
methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506. doi: 10.1038/s41580-
018-0016-z

Zhang, J., Zhang, X., Tang, H., Zhang, Q., Hua, X., Ma, X., et al. (2018b). Allele-
defined genome of the autopolyploid sugarcane saccharum spontaneum l. Nat.
Genet. 50, 1565–1573. doi: 10.1038/s41588-018-0237-2

Zhu, N., Cheng, S., Liu, X., Du, H., Dai, M., Zhou, D. X., et al. (2015). The R2R3-
type MYB gene OsMYB91 has a function in coordinating plant growth and salt
stress tolerance in rice. Plant Sci. 236, 146–156. doi: 10.1016/j.plantsci.2015.03.023

Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T., and Henikoff, S. (2007).
Genome-wide analysis of arabidopsis thaliana DNA methylation uncovers an
interdependence between methylation and transcription. Nat. Genet. 39, 61–69.
doi: 10.1038/ng1929
frontiersin.org

https://doi.org/10.1093/jxb/erq391
https://doi.org/10.1093/jxb/erq391
https://doi.org/10.1111/pbi.13018
https://doi.org/10.1111/tpj.13790
https://doi.org/10.3390/ijms22158285
https://doi.org/10.1016/j.cell.2013.04.022
https://doi.org/10.1186/1471-2105-10-232
https://doi.org/10.1111/pbi.12820
https://doi.org/10.1016/j.cell.2013.02.033
https://doi.org/10.1038/s41580-018-0016-z
https://doi.org/10.1038/s41580-018-0016-z
https://doi.org/10.1038/s41588-018-0237-2
https://doi.org/10.1016/j.plantsci.2015.03.023
https://doi.org/10.1038/ng1929
https://doi.org/10.3389/fpls.2022.1036764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Weizhen Liu,
Wuhan University of Technology,
China

REVIEWED BY

Yubin Li,
Qingdao Agricultural University, China
Atsushi Fukushima,
Kyoto Prefectural University, Japan
Chongjing Xia,
Southwest University of Science and
Technology, China

*CORRESPONDENCE

Min Tu
719378705@qq.com;
12739@whpu.edu.cn
Guangsen Song
1697446119@qq.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Plant Bioinformatics,
a section of the journal
Frontiers in Plant Science

RECEIVED 06 September 2022
ACCEPTED 21 November 2022

PUBLISHED 08 December 2022

CITATION

Tu M, Zeng J, Zhang J, Fan G
and Song G (2022) Unleashing
the power within short-read
RNA-seq for plant research:
Beyond differential expression
analysis and toward regulomics.
Front. Plant Sci. 13:1038109.
doi: 10.3389/fpls.2022.1038109

COPYRIGHT

© 2022 Tu, Zeng, Zhang, Fan and Song.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 08 December 2022

DOI 10.3389/fpls.2022.1038109
Unleashing the power within
short-read RNA-seq for plant
research: Beyond differential
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RNA-seq has become a state-of-the-art technique for transcriptomic studies.

Advances in both RNA-seq techniques and the corresponding analysis tools

and pipelines have unprecedently shaped our understanding in almost every

aspects of plant sciences. Notably, the integration of huge amount of RNA-seq

with other omic data sets in the model plants and major crop species have

facilitated plant regulomics, while the RNA-seq analysis has still been primarily

used for differential expression analysis in many less-studied plant species. To

unleash the analytical power of RNA-seq in plant species, especially less-

studied species and biomass crops, we summarize recent achievements of

RNA-seq analysis in the major plant species and representative tools in the four

types of application: (1) transcriptome assembly, (2) construction of expression

atlas, (3) network analysis, and (4) structural alteration. We emphasize the

importance of expression atlas, coexpression networks and predictions of gene

regulatory relationships in moving plant transcriptomes toward regulomics, an

omic view of genome-wide transcription regulation. We highlight what can be

achieved in plant research with RNA-seq by introducing a list of representative

RNA-seq analysis tools and resources that are developed for certain minor

species or suitable for the analysis without species limitation. In summary, we

provide an updated digest on RNA-seq tools, resources and the diverse

applications for plant research, and our perspective on the power and

challenges of short-read RNA-seq analysis from a regulomic point view. A

full utilization of these fruitful RNA-seq resources will promote plant omic

research to a higher level, especially in those less studied species.

KEYWORDS

plant transcriptomics, RNA-seq data analysis, alternative splicing, alternative
polyadenylation, coexpression network, gene regulatory network, regulomics
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Introduction
RNA-seq and its-derived techniques have been

commercially available and routinely used by biological

scientists, largely owing to the rapidly increased outputs of

major sequencing platforms, improved sequencing accuracy

and ever reduced costs (Stark et al., 2019). RNA-seq has

shaped nearly every aspects of our understanding in plant

research, from plant development and phytohorome signaling

to plant metabolism and stress tolerance.

RNA-seq can be divided into the short-read (Nagalakshmi

et al., 2008) and long-read RNA-seq technologies (Sharon et al.,

2013). In short-read RNA-seq, Illumina sequencing platform has

been dominant, while other platforms, such as Thermo Scientific

platforms (e.g., Ion PGM and Ion S5) or the BGI Genomics

platforms (e.g., DNBSEQ), have been frequently used in certain

circumstances or been gaining attentions recently (Patterson

et al., 2019; Foox et al., 2021). A short-read RNA-seq library is

typically sequenced to a read depth of 10~30 million reads per

sample with a read length varied from 50 to 200 bp. By contrast,

a number of approaches (e.g., Pacific Bioscience, PacBio and

Oxford Nanopore, ONT) provide long, uninterrupted

sequencing of a single RNA or DNA molecules, constituting

the third generation of real-time fluorescence sequencing

paradigm (Sharon et al., 2013; Cartolano et al., 2016;

Oikonomopoulos et al., 2016). A typical long-read RNA-seq

produces 500,000 to 10 million reads per run with a read length

ranging from 1,000 to 50,000 bp depending on the technologies

and platforms (Stark et al., 2019). The long-read sequencing

platforms are particularly suited for de novo transcriptome

assembly and identification of novel transcripts and isoforms,

as these approaches overcome some intrinsic issues related to

short-read sequencing.

While the rise of the long-read RNA-seq, the short-read

RNA-seq still is dominating the current utilizations in plant

sciences and has provided the majority of the data sets deposited

in public sequencing databases. With the recent advancement of

tools developed for analyzing short-read sequencing data, the

RNA-seq technology can be used for various applications,

including but not limited to: (1) de novo assembly of

transcriptome with or without a reference genome; (2)

detection of new transcripts or correction of existing gene

structures based on RNA-seq evidence; (3) to obtaining the

expression profiles at gene or transcript levels and to construct

the expression atlas covering a range of conditions and tissue

types; (4) to identify alternative splicing and alternative 5’ or 3’

untranslated regions (5’UTR or 3’UTR, respectively); (5) to

construct gene co-expression networks (GCNs) and predict

gene regulatory relationships in a large scale (also known as

gene regulatory networks, GRN). Here, GCN stand for a

network that can be constructed from a large set of RNA-seq

data and includes multiple clusters or modules. The module
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represents a group of genes determined statistically with high

correlation in their expression profiles and usually associations

in their functions (reviewed in Gupta and Pereira, 2019).

Notably, many genes within the same module do not represent

the direct targets of their upstream regulators. Thus, to further

disentangle the direct regulator-targets pairs from the indirectly

regulated or co-expressed genes, prediction of GRNs is another

important task in RNA-seq data analysis. Identification of GRNs

can be achieved by harnessing the following resources: (1)

identifying transcription factors (TFs) from co-expressed

modules; (2) identifying a group of co-expressed genes with

the statistically enriched cis-regulatory elements from a certain

family of TF; (3) leveraging the information of direct TF targets

by using existing results from chromatin immunoprecipitation

sequencing (ChIP-seq) or DNA affinity purification sequencing

(DAP-seq) experiments (O’Malley et al., 2016; Galli et al., 2020);

(4) applying the well-established algorithms for GRN inference.

While the many utilizations of RNA-seq, the differential gene

expression (DGE) is still the most often used analysis in many

plant researches, especially those carried on in crop species.

Here, we highlight typical examples of the tools and

applications that have been used in the model plants

(Arabidopsis and rice) and other major crops (e.g., tomato,

wheat, maize and soybean) (Table 1). These applications

demonstrate the power and comprehensiveness of short-read,

bulk RNA-seq analyses. Meanwhile, it is worth noting that

DGE has long been the primary analysis in the RNA-seq

studies of other less-studied plant species. In fact, many

species, especially those minor crops, biomass crops or

orphan crops, are key to provide sustainable agriculture and

to reach global food and energy security. Particularly, major

biomass crops, such as sorghum, sugarcane, Miscanthus, and

switchgrass, have large yield of biomass and stress tolerance

(Mullet et al., 2014; Boyles et al., 2019), justifying the

significance for researching on gene expression and

regu l a t i on as soc i a t ed wi th b iomas s compos i t i on

and production.

The limited utilization of RNA-seq in the minor plant

species has been partly due to: (1) the limited genomic

resources; (2) lacking bioinformatic tools that are user friendly,

with a graphical user interface, or well adapted to the omics data

of various species. In this context, we summarize a variety of

bioinformatic tools covering the diverse applications of bulk

RNA-seq analysis to facilitate the full use of short-read RNA-seq

data, and to help unleash the power of bulk RNA-seq in studies

of plants, especially in the minor and under-utilized crops

(Table 1; Figure 1). Notably, there have been several excellent

reviews regarding the development of RNA-seq technologies,

comprehensive summary of RNA-seq tools and calculation of

GCNs and GRNs in plant sciences (Van Verk et al., 2013;

Conesa et al., 2016; Proost and Mutwil, 2016; Gaudinier and

Brady, 2016; Sahraeian et al., 2017; Saelens et al., 2018; Haque

et al., 2018; Stark et al., 2019; Gupta and Pereira, 2019). We aim
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TABLE 1 Summary of the representative resources and tools for analyzing the short-read RNA-seq data in plants.

Name Reference URL Implementation Classification1

Plant Reactome Nathani et al., 2017 & Nathani
et al., 2020

http://plantreactome.gramene.org Web Page Annotation

Strawberry Liu and Dickerson, 2017 https://github.com/ruolin/strawberry Stand Alone Annotation

iDEP Ge et al., 2018 http://ge-lab.org/idep/ R Package Annotation

TransFlow Seoane et al., 2018 https://github.com/seoanezonjic/TransFlow. Stand Alone Annotation

MorphDB Zwaenepoel et al., 2018 http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/
index/.

Web Page Annotation

PISO Feng et al., 2019 http://cbi.hzau.edu.cn/piso/. Web Page Annotation

MapMan 4/Mercator4 Schwacke et al., 2019 https://www.plabipd.de/portal/legacy-mercator4 Web Page Annotation

PlantCircBase Chu et al.,2018 http://ibi.zju.edu.cn/plantcircbase/ Web Page Annotation &
Expr.

Gramene Tello-Ruiz et al., 2018 http://www.gramene.org Web Page Annotation &
Expr.

LeGOO Carrere et al., 2020 https://www.legoo.org Web Page Annotation &
Expr.

ZEAMAP Gui et al., 2020 http://www.zeamap.com Web Page Annotation &
Expr.

BarleyNet Lee et al., 2020 http://www.inetbio.org/barleynet Web Page Annotation &
Expr.

SAT-Assembler Zhang et al., 2014 https://sourceforge.net/projects/sat-assembler/ Stand Alone Assembler

BinPacker Liu et al., 2016 http://sourceforge.net/projects/transcriptomeassembly/files/
BinPacker_1.0.tar.gz/download

Stand Alone Assembler

Rascaf Song et al., 2016 https://github.com/mourisl/Rascaf. Stand Alone Assembler

IGB Freese et al., 2016 http://bioviz.org/igb. Web Page Browser

eFP-Seq Browser Sullivan et al., 2019 https://bar.utoronto.ca/eFP-Seq_Browser/ Web Page Browser

RNAprof Tran et al., 2016 http://rna.igmors.u-psud.fr/Software/rnaprof.php Stand Alone AS/APA

Apatrap Ye et al., 2018 https://apatrap.sourceforge.io. Stand Alone AS/APA

Name Citation URL Implementation Classification

priUTR Tu and Li, 2020 https://github.com/mint1234/3UTR- Stand Alone AS/APA

3D RNA-Seq Guo et al., 2021 https://ics.hutton.ac.uk/3drnaseq R Package AS/APA

TEtranscripts Jin et al., 2015 http://hammelllab.labsites.cshl.edu/software Stand Alone Expression

expVIP Borrill et al., 2016 www.wheat-expression.com Web Page Expression

OryzaExpress Kudo et al., 2017 http://plantomics.mind.meiji.ac.jp/OryzaExpress/ Web Page Expression

BAR Waese and Provart, 2016 http://bar.utoronto.ca Web Page Expression

DPMIND Fei et al.2018 http://202.195.246.60/DPMIND/ Web Page Expression

PEATmoss Fernandez-Pizo et al., 2020 https://peatmoss.online.uni-marburg.de Web Page Expression

ASmir Wang et al., 2019 http://forestry.fafu.edu.cn/bioinfor/db/ASmiR Web Page Expression

Soybean Expression
Atlas

Machado et al.,2020 http://venanciogroup.uenf.br/resources/ Web Page Expression

Grape-RNA Wang et al., 2020 http://www.grapeworld.cn/gt/2 Web Page Expression

CORNET Van Bel and Coppens, 2017 http://bioinformatics.psb.ugent.be/cornet/ Web Page Expr. & Coexp.

NaDH Brockmoller et al., 2017 http://nadh.ice.mpg.de/ Web Page Expr. & Coexp.

NorWood Jokipii-Lukkari et al., 2017 http://norwood.congenie.org Web Page Expr. & Coexp.

AspWood Sundell et al., 2017 http://aspwood.popgenie.org Web Page Expr. & Coexp.

RED Xia et al., 2017 http://expression.ic4r.org Web Page Expr. & Coexp.

EXPath Zheng et al.2017 http://expathtool.itps.ncku.edu.tw/ Web Page Expr. & Coexp.

TomExpress Zouine et al., 2017 http://tomexpress.toulouse.inra.fr Web Page Expr. & Coexp.

Maize eFP Brower Hoopes et al., 2019 bar.utoronto.ca/efp_maize Web Page Expr. & Coexp.

ATTED Obayashi et al., 2018 http://atted.jp Web Page Expr. & Coexp.

MCENet Tian et al., 2018 http://bioinformatics.cau.edu.cn/MCENet/ Web Page Expr. & Coexp.

(Continued)
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http://sourceforge.net/projects/transcriptomeassembly/files/BinPacker_1.0.tar.gz/download
https://github.com/mourisl/Rascaf
http://bioviz.org/igb
https://bar.utoronto.ca/eFP-Seq_Browser/
http://rna.igmors.u-psud.fr/Software/rnaprof.php
https://apatrap.sourceforge.io
https://github.com/mint1234/3UTR-
https://ics.hutton.ac.uk/3drnaseq
http://hammelllab.labsites.cshl.edu/software
http://www.wheat-expression.com
http://plantomics.mind.meiji.ac.jp/OryzaExpress/
http://bar.utoronto.ca
http://202.195.246.60/DPMIND/
https://peatmoss.online.uni-marburg.de
http://forestry.fafu.edu.cn/bioinfor/db/ASmiR
http://venanciogroup.uenf.br/resources/
http://www.grapeworld.cn/gt/2
http://bioinformatics.psb.ugent.be/cornet/
http://nadh.ice.mpg.de/
http://norwood.congenie.org
http://aspwood.popgenie.org
http://expression.ic4r.org
http://expathtool.itps.ncku.edu.tw/
http://tomexpress.toulouse.inra.fr
http://atted.jp
http://bioinformatics.cau.edu.cn/MCENet/
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at neither comprehensively cataloguing the RNA-seq analysis

tools for plant research, nor summarizing the achievements that

RNA-seq have been reached in plant research. We emphasize

that recent advancements in RNA-seq analysis tools allow to

fully unleash the power of short-read, bulk RNA-seq in many

plant species like biomass crops, to provide deep insights into

gene regulation at multiple levels and to go toward regulomics,

an analogous term to other omics that portraits transcription

control in a genome-wide manner (Werner, 2003; Werner,

2004). Particularly, regulomics refers to the omic-scale study

of gene expression regulation happened at transcriptional or

post-transcriptional levels (Werner, 2004), such as the regulation
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between transcription factors/coregulators and their targets and

the interaction between non-coding RNAs (e.g., miRNAs anf

lncRNAs) and mRNAs.
The applications of the short-read,
bulk RNA-seq in plant sciences

The short-read RNA-seq technique includes several core

steps, from RNA extraction, cDNA synthesis, adapter ligation,

PCR amplification, to the sequencing of library and data

analysis. Four key stages are required for the RNA-seq data
TABLE 1 Continued

Name Reference URL Implementation Classification1

AppleMDO Da et al., 2019 http://bioinformatics.cau.edu.cn/AppleMDO/ Web Page Expr. & Coexp.

Name Citation URL Implementation Classification

Melonet-DB Yano et al., 2018 http://melonet-db.agbi.tsukuba.ac.jp/ Web Page Expr. & Coexp. &
Anno.

TPIA Xia et al., 2019 http://tpia.teaplant.org Web Page Expr. & Coexp. &
Anno.

Plant Regulomics Ran et al., 2020 http://bioinfo.sibs.ac.cn/plant-regulomics. Web Page Expr. & Coexp. &
Anno.

CSI Penfold et al., 2015a & Penfold
et al., 2015b

http://go.warwick.ac.uk/systemsbiology/software. Stand Alone Network
construction

RSAT-Plants Contreras-Moreira et al., 2016 http://plants.rsat.eu Web Page Network
construction

tcgsaseq Agniel and Hejblum, 2017 https://cran.r-project.org/web/packages/tcgsaseq. R Package Network
construction

SeqEnrich Becker et al., 2017 http://www.belmontelab.com Stand Alone Network
construction

ExRANGES Desai et al., 2017 http://github.com/DohertyLab/ExRANGES R Package Network
construction

LSTrAP Proost et al., 2017 https://github.molgen.mpg.de/proost/LSTrAP Stand Alone Network
construction

RSAT Nguyen et al., 2018 http://www.rsat.eu/ Stand Alone Network
construction

NetMiner Yu et al., 2018 https://github.com/czllab/NetMiner. Stand Alone Network
construction

ExpressWeb Savelli et al., 2019 http://polebio.lrsv.upstlse.fr/ExpressWeb/ R Package Network
construction

HTRgene Ahn et al., 2019 http://biohealth.snu.ac.kr/software/HTRgene. R Package Network
construction

Compare
Transcriptome Analysis

Lee et al., 2019 https://github.com/LiLabAtVT/CompareTranscriptome.git). R Package Network
construction

JASPAR Fornes et al., 2020 http://jaspar.genereg.net Web Page Network
construction

GENIE3 Harrington et al., 2020 https://github.com/Uauy-Lab/GENIE3_scripts/ Stand Alone Network
construction

LSTrAP-Cloud Tan et al., 2020 https://github.com/tqiaowen/LSTrAP-Cloud Stand Alone Network
construction

RSAT Ksouri et al., 2021 https://github.com/RSAT-doc/motif_discovery_clusters Web Page Network
construction
1. The RNA-seq resources and tools are classified by their functions, including annotation, expression atlas (expression, or abbreviated as ‘Expr.’), co-expression analysis (abbreviated as
‘Coexp.’), alternative splicing and alternative polyadenylation (abbreviated as ‘AS/APA’), and network construction (tools for calculating coexpression networks or gene regulatory
networks). These resources and tools are first sorted by classification and then by publication years.
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analysis: (1) The first stage takes the raw sequencing reads to

quality control and maps the quality-controlled reads to the

transcriptome, which can be obtained from a reference genome

or be assembled from transcriptomic data; (2) The second stage

quantifies the number of reads mapped to each gene or

transcript, producing an expression matrix; (3) The third stage

modifies the expression matrix by normalization between

samples, accounting for technical differences, and removing

lowly expressed genes/transcripts; (4) The last stage calculates

differentially expressed genes or transcripts by statistical models.

Particularly, the number of computational tools for analyzing

RNA-seq data has been increased dramatically in the recent

decade (Stark et al., 2019). As such, substantial influences can be

generated on the biological conclusions drawn from the RNA-

seq data due to several aspects: differences in the computational

approaches used, software parameters or statistical models

selected and distinct combinations of the tools in a pipeline

(Conesa et al., 2016). The optimal set of computational
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approaches for RNA-seq depends on the experimental setup,

the biological questions being addressed and other factors, and is

beyond the scope of our mini-review (Conesa et al., 2016;

Sahraeian et al., 2017). However, several sets of RNA-seq tools

are well recognized, representing the classic pipelines (Trapnell

et al., 2012; Grabherr et al., 2012; Pertea et al., 2017). These

includes five main components: (1) the splice-aware aligners

(e.g., TopHat, STAR, HISAT and HISAT 2; Kim et al., 2019) to

map RNA-seq reads to the reference genome; (2) the tools for

reads extraction [e.g., HTSeq (Anders et al., 2014) and

featureCount (Liao et al., 2014)]; (3) the tools for transcript

construction (e.g., CuffLinks, StringTie) (Trapnell et al., 2012;

Pertea et al., 2017); (4) the tools for estimates gene/transcript

abundance [e.g., CuffDiff2, Ballgown and RSEM (Li and Dewey,

2011)]; and (5) the tools to identify differentially expressed genes

or transcripts based on statistical analyses (such as edgeR

(Robinson et al., 2010), DESeq2 (Love et al., 2014), Ballgown

and CuffDiff2). The majority of the applications and
FIGURE 1

The power of short-read, bulk RNA-seq can be unleashed by integrating the following resources and tools related to RNA-seq analysis: (1) Full-
length transcriptome can be achieved by full-length cDNA sequencing, PacBio Iso-seq or the Oxford Nanopore sequencing technologies, and
these full-length transcriptomes can help to better annotate gene structures and serve as the basis for expression profiling at the transcript-
level. (2) For many less-studied plant species, multiple functional annotation resources can be applied to provide a comprehensive annotation,
facilitating biological interpretation of sets of DEG or gene networks. (3) Through application of the tools introduced here and in previous
reviews, high-quality GCNs and GRNs can be made to prioritize hub genes or key regulators involved in the certain biological process
or phenotypes.
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computational tools summarized in the follow are compatible

with these classic RNA-seq pipelines.
RNA-seq data enhance transcriptome
assembly

The number of plant species with at least one reference

genome have multiplied dramatically over the past few years,

with 798 land plant species having genome assemblies (as of Jan.

2021) (Marks et al., 2021). While these genomic resources

greatly ease the RNA-seq analysis, still the complexity in plant

genomes and transcriptomes presents major challenges in RNA-

seq analysis. Many plant species feature large genomes (for

example, the median sizes of currently sequenced monocots

and eudicots respectively are more than 500 Mb) or complex

auto- or allo- polyploid genomes with some hybridization and

introgressions (Zhang et al., 2018; Zhao et al., 2021; Sun et al.,

2022). Many genomes are expanded by repetitive sequences

(such as transposons), making it difficult to achieve complete

and accurate annotation of multi-exonic genes. Besides,

alternative splicing (AS) and alternative polyadenylation

(APA) further enhance transcriptome complexity. In addition,

gene families commonly seen in the plant genomes are shaped

by whole genome duplication, segmental duplication and

tandem duplication. The members within a gene family or the

homo-/homoeo-logous alleles (in polyploid) usually share high

sequence similarity between each other, thus posing ad-ditional

challenges in accurate quantification of the expression levels by

using RNA-seq data.

To overcome these challenges, two strategies have been

evolved when a reference genome is available: (1) to assembly

transcripts first and then to quantify expression; (2) to

simultaneously construct transcripts and to quantify

expression. For the genome-guided transcriptome analysis,

multiple pipelines have been established that differ in the

algorithms used and the speed and computational resources

required, including the classic TopHat-Cufflink-Cuffdiff pipeline

(Trapnell et al., 2012) and HISAT-StringTie-Ballgown pipeline

(Pertea et al., 2017), as well as the new “Strawberry” tool (Liu and

Dickerson, 2017). By contrast, when a reference genome and

gene annotations do not exist, a transcriptome needs to be firstly

de novo assembled to facilitate expression quantification.

However, de novo assembly based on short-read RNA-seq data

usually leads to fractured and incomplete view of transcriptome,

complicating downstream analysis (Malik et al., 2018). Several

tools for de novo assembling full-length transcripts have become

popular with different algorithms and features, such as Trinity

(Haas et al., 2013), Oasis (Schulz et al., 2012), Trans-AbySS

(Robertson et al., 2010), SOAPdenovo-Trans (Xie et al., 2014),

Corset (Garber et al., 2011) and BinPacker (Liu et al., 2016).

More recently, Grouper provides a complete pipeline for

processing de novo transcriptomic analysis by using a new
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method for clustering assembled contigs (Malik et al., 2018).

TransFlow provides a versatile workflow to enhance de novo

transcriptome analyses and to annotate transcript structures

more accurately by combining short-read and long-read

sequencing data (Seoane et al., 2018).
RNA-seq data empower the construction
of expression atlas

Rapid accumulation of immense sets of RNA-seq data allows

the establishment of expression atlantes. An expression atlas

collects a large number of RNA-seq data from a certain species

and re-analyzes these data using standardized, open-source

pipelines to remove potential batch effects and any influences

caused by other factors, such as different research groups,

sequencing platforms and experiments (Papatheodorou et al.,

2018). Establishing expression atlas has been proved very

valuable in model organisms to promote not only omics

studies but more importantly our understanding in gene

functions, as clues to gene function can often be inferred by

examining when and where a gene is expressed in the organism

(Alberts et al., 2002). In model plants and major crops, such

expression atlantes have served as key resources to the research

community. For example, the information hub of Arabidopsis

(TAIR; Berardini et al., 2015) and maize (MaizeGDB; Lawrence

et al., 2008) have implemented with the expression atlas for each

species. Maize expression atlas websites have been updated or

built separately by multiple groups to integrate more RNA-seq

data, other omics data sets or visualizations (Sekhon et al., 2013;

Stelpflug et al., 2015; Tian et al., 2018; Hoopes et al., 2019; Gui

et al., 2020). Similarly, the rice expression atlas has been updated

from microarray to RNA-seq data sets and established by several

groups respectively (Sato et al., 2013; Kudo et al., 2017; Xia et al.,

2017). Recently, the expression atlantes have also been built for

other important crops, such as tomato (TomExpress, Zouine

et al., 2017), soybean (Machado et al., 2020), wheat (Borrill et al.,

2016), barley (BarleyNet, Lee et al., 2020) and sorghum (Makita

et al., 2015). The trend of building RNA-seq-based expression

atlas has been spread to many less-studied plant species, for

example, Picea abies (the Norwood database, Jokipii-Lukkari

et al., 2017), Populus tremula (the Aspwood database, Sundell

et al., 2017), chickpea (Kudapa et al., 2018), Physcomitrella Paten

(Perroud et al., 2018; Fernandez-Pizo et al., 2020), tabacco

(NaDH- Brockmoller et al., 2017), water melon (Melonet-DB -

Yano et al., 2018), apple (AppleMDO- Da et al., 2019), tea (TPIA

- Xia et al., 2019), grape (Wang et al., 2020), and Medicago

truncatula (LeGOO- Carrere et al., 2020).

Notably, two types of the integrative websites are particularly

valuable in facilitating comparative functional genomics and

molecular breeding. (1) The expression atlas website includes a

number of useful functions, from the visualization, comparison
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and functional enrichment of the omics data to comprehensive

annotations of genes or gene families and useful functions such

as primer design, BLAST and ortholog identification. (2) The

RNA-seq data are further utilized to construct co-expression

modules and integrated with other types of omics data, for

example epigenomic data sets. In addition, major plant genomics

websites (for instance, the Phytozome (Goodstein et al., 2011)

Ensembl Plants (Bolster et al., 2017), and Gramene (Tello-Ruiz

et al., 2018)) serve as the central data hub to link numerous plant

genomes to those of the model species, which are well

characterized and annotated. These iconic plant genomic hubs

lay a solid foundation for transferring and comparing the omic

information from model plants to less-studied species.
RNA-seq data capture large-scale co-
expression networks

One major cornerstone of the data-driven biological

interpretation of large-scale RNA-seq data is to transform

expression data into networks and modules. Among the

network representation methods, co-expression network is the

one that has been widely applied and successful in many species

(Farber and Lusis, 2008). In a co-expression network, genes are

connected by edges that quantify the similarity between gene

expression patterns, and the genes expressed similarly are

grouped together forming a co-expression module. Co-

expression network can be calculated by different approaches,

from correlation-based methods like Pearson Correlation

Coefficiency (PCC) (D’haeseleer et al., 2000) and weighted

gene co-expression network analysis (WGCNA) (Langfelder

and Horvath, 2008; Langfelder and Horvath, 2012), to linear

modelling (Vasilevski et al., 2012) and mutual information

methods (Daub et al., 2004). Through the “guilt-by-

association” principle, genes in a co-expression module

poss ib ly indicate s imi lar funct ions and modes of

transcriptional regulation (Wolfe et al., 2005), or similar

cellular compartments of the protein products (Ryngajllo

et al., 2011).

Over the past decade, high-quality co-expression networks

and their hosting data hubs have served as a valuable resource to

facilitate the gene functional studies in model plant species and

many major crops, including Arabidopsis (Van Bel et al., 2017;

Obayashi et al., 2018), rice (Xia et al., 2017), maize (Miao et al.,

2017; Tian et al., 2018; Hoopes et al., 2019), and tomato (Zouine

et al., 2017). More recently, co-expression networks have been

built in other plant species (Kudapa et al., 2018), including some

forest species with biomass purposes (Jokipii-Lukkari et al.,

2017; Sundell et al., 2017), demonstrating the power of

network representation in providing molecular functional

insights into biomass production. Nonetheless, the biologists

who work on less-studied plant species might neither have the

bioinformatic skills nor afford the computational resources that
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are required to integrate large-scale RNA-seq data sets and to

construct high-quality networks. Thus, user-friendly online or

offline tools have been developed to lower the bar for co-

expression-based analysis, such as the Kallisto-based LSTrAP

pipeline (Proost et al., 2017), the LSTrAP-Cloud (Tan et al.,

2020) and the ExpressWeb (Savelli et al., 2019). Besides,

computational methods have been reported to improve the

quality of co-expression network identification (NetMiner, Yu

et al., 2018; PCC-HRR Liesecke et al., 2018). These tools aim

toward paving the way to perform co-expression analysis in

plant species without limitations.

Leveraging these resources related to network analysis can

enhance our understanding in biomass production in different

plant species. On one hand, several expression atlas or co-

expression resources contains a number of samples from the

grass species (i.e., rice, wheat and maize) across stem elongation,

thus making possible to identify co-expressed modules

associated with stem growth or straw biomass accumulation

(Borrill et al., 2016; Kudo et al., 2017; Hoopes et al., 2019;

Obayashi et al., 2018). On the other hand, valuable web

resources (the AspWood and NorWood database for Populus

tremula and Picea abies, respectively) demonstrate the power for

generating insights into wood formation and cell wall

biosynthesis (Jokipii-Lukkari et al., 2017; Sundell et al., 2017).

Moreover, AspWood exemplifies comparative analysis between

the coexpression networks from two species, highlighting that

conserved coexpression patterns are detected for many processes

during wood formation (e.g., cambial growth, secondary cell wall

deposition and xylem maturation). In addition, many of the cell

wall metabolic regulators identified by coexpression analysis still

maintain relatively conserved functions in biomass

accumulation in other grasses, such as sorghum (Hennet et al.,

2020). To facilitate such comparative analysis between model

and non-model species, ATTED and Plant Regulomics have laid

foundation for cross-study and cross-species comparisons and

retrieving upstream regulators of certain genes of interest

(Obayashi et al., 2018; Ran et al., 2020).

While the efforts made in co-expression analyses, three types

of challenges remain in: (1) analysis of time-course expression

data, (2) inference of gene regulatory networks (GRNs) from the

co-expression data, and (3) comparison of co-expression

modules between plant species.

First, clustering or co-expression analysis particularly for

time-course data emphasizes on capturing the nonstationary

time dependence in the data, for which multivariate clustering

algorithms or nonlinear regression modelling methods usually

perform better than the traditional clustering approaches (Heard

et al., 2005). Thus, computational tools such as Smoothing spline

clustering (SSClust) (Ma et al., 2006) or tcgsaSeq (Agniel and

Hejblum, 2017) have been developed to identify gene clusters

from time-course expression data.

Second, new computational approaches have also been

available to predict gene regulatory cascade from large-scale
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RNA-seq data, e.g. the nonparametric Bayesian and Markov

clustering methods (Penfold et al., 2015a; Penfold et al., 2015b;

Desai et al., 2017; Yu et al., 2019). Successful examples have been

shown in crops, i.e. Harrington et al. (2020) report the GRNs in

wheat built with the GENIE3 software. Another group develops

the tool HTRgene to specifically extract stress-responsive

regulatory network, highlighting the value of GRNs in

underpinning particular biological questions (Ahn et al., 2019).

Another key to infer GRNs is to identify overrepresented known

cis-regulatory motifs in the gene promoters that are possibly

functional in the regulation of gene expression. Computational

search of cis-motifs in the promoter region can be readily

conducted by using online websites, such as PlantCARE

(Lescot et al., 2002), PlantPAN (Chow et al., 2019), or Jaspar

(Fornes et al., 2020). Recently, identification of the

overrepresented cis-motifs has been achieved by the

Regulatory Sequence Analysis Tools (RSAT; Nguyen et al.,

2018; Ksouri et al., 2021) and its plant-adopted version RSAT-

plant (Contreras-Moreira et al., 2016; Ksouri et al., 2021). Lately,

resources for visualization and efficient deployment of gene

regulatory omics data (ChIP-seq, for instance) have been also

available at ChIP-Hub (Fu et al., 2022) and Connec-TF (Brooks

et al., 2021), making possible for transferring the TF-target

regulatory relationship from the model plants to non-

model species.

Last, for the comparison of coexpression networks

between species, successful examples have been reported in

Brassicaceae (Becker et al., 2017). ATTED-II (Obayashi et al.,

2018) is a database hosting 16 co-expression platforms from

nine species, allowing the comparison of co-expression

modules between the species. In particular, as the resources

and tools to move RNA-seq analysis toward regulomics have

become mature, the Plant Regulomics database has been built,

hosting a huge volume of transcriptomic and epigenomic data

sets for six representative species (i.e., Arabidopsis, rice,

maize, soybean, tomato and wheat) and enabling the query

of upstream regulators of genes (Ran et al., 2020). The Plant

Regulomics database sets a nice example for future RNA-seq-

centered web interface and analysis direction for other

plant species.
RNA-seq data identify alternative splicing
and alternative polyadenylation

While the expression atlas and co-expression analysis are

based mainly on gene expression levels, RNA-seq data can also

capture structural changes in the transcripts, presenting another

layer of regulatory information with biological significance. Two

major structural alterations are frequently detected in the

transcriptome: (1) Alternative splicing (AS), a phenomenon in

which particular exons of a gene may be included or excluded

from the processed messenger RNA (mRNA), leading to
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multiple proteins encoded from a single gene; (2) Alternative

polyadenylation (APA), a phenomenon in which a transcript is

processed to produce multiple isoforms differing in their

untranslated regions (UTRs), in most of the cases, 3’UTRs.

Both AS and APA greatly increase the complexity of

transcriptome or the repertoire of proteins, and are involved

in the molecular, physiological and developmental pathways

(Seo et al., 2013; Srivastava et al., 2018). In human, Arabidopsis

and maize, respectively, ~95%, 61% and 57% of multi-exonic

genes are alternatively spliced, respectively (Pan et al., 2008;

Reddy et al., 2013; Wang et al., 2016). In parallel, over 80% and

75% of the genes in human and Arabidopsis respectively can

produce multiple mRNA isoforms through APA (Mayr, 2016;

Guo et al., 2016). The 3’UTR regions harbor cis-acting elements,

which regulate various mRNA properties, including RNA

stability, transportation, subcellular movement and translation

efficiency (Srivastava et al., 2018).

Currently, computational methods for identifying

differential AS have been achieved with different quantification

schemas, such as those using count-based models (i.e., DEXSeq

(Anders et al. , 2012), DSGseq (Wang et al. , 2013),

SpliceCompass (Aschoff et al., 2013), rMATS (Shen et al.,

2012), rDiff (Drewe et al., 2013) and RNAprof (Tran et al.,

2016)), and those modelling isoform ratios (i.e., Cufflinks and

DiffSplice) (Hu et al., 2013). Notably, some new genome

assemblies of plants might not have the standard gene

annotations as those of human or mouse, and not be readily

compatible with some AS quantification tools or need

considerable bioinformatic customizations. This issue presents

somewhat a technical bar to identify and quantify AS in any

plant species, even though identification of differential AS events

can be done in major plant species with rMATS and CuffDiff

(Liu et al., 2014). Also, new tools for identify intron retention, a

particular type of AS frequently seen in plants, has been reported

(Mao et al., 2017), enriching the toolbox for AS analysis.

For alternative polyadenylation, user-friendly tools

compatible with the genomes of non-model plant species are

relatively limited, whereas major efforts have been made to

capture 3’UTRs by specific experimental protocols, such as

PAT-seq (Harrison et al., 2015), 3’READs (Hoque et al., 2013),

and mTAIL-seq (Lim et al., 2016). Only a handful of tools have

been reported to identify 3’UTR variations and to calculate

differential 3’UTRs using short-read RNA-seq data from

plants. The priUTR pipeline detects differential 3’UTR events

from Cufflink-derived, genome-guided transcriptome

assemblies, discovering the link between 3’UTR and m6A

epitranscriptomic modification (Tu and Li, 2020). APAtrap is

one of the tools providing flexible and highly efficient APA

detection for plant RNA-seq data (Ye et al., 2018). In addition,

RNAprof detect both AS and APA events in plant RNA-seq data

sets (Tran et al., 2016), while 3D RNA-seq provides three-way

differential analysis: differential expression (DE), differential

alternative splicing (DAS) and differential transcript usage
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(DTU) of RNA-seq data (Guo et al., 2021). These recent

methods promise the identification of differential AS and APA

events as a regular analysis of plant RNA-seq data.
Discussion and concluding remarks

Many of the short-read, bulk RNA-seq data accumulated today

from less-studied plants may be under utilized. Thus, making full

use of these data by integrating RNA-seq tools presents an exciting

yet challenging prospect. Still, improvements can be made in the

following aspects: (1) to integrate with the long-read RNA-seq data;

(2) to develop tools or optimize the current pipelines to adapt to

complex plant genomes.

PacBio isoform sequencing (Iso-seq) has been the main choice

for identifying full-length transcripts. Besides, high-quality full-

length isoform sequencing has greatly expanded our

understanding in genome annotation, isoform phasing, detection

of fusion transcript and alternative splicing and alternative

polyadenylation (APA). For example, automated annotation

pipelines have been developed to combine the advantages of

different annotation methods, including ab initio and protein

evidence-based prediction and long-read sequencing data (Cook

et al., 2018; Tardaguila et al., 2018). However, limited by the

medium throughput, Iso-seq-based transcript quantification is far

from affordable, especially for the project with a tight budget or a

large number of samples. Thus, combining the Iso-seq-derived

transcriptome and short-read RNA-seq represents an affordable

strategy to both accurately capture a large number of transcripts and

to quantify them (Figure 1). On another hand, ONT technology has

demonstrated its potential in detection of poly(A) tail length and

RNA modifications. Therefore, combination of ONT RNA-seq

technologies and short-read RNA-seq results will enable novel

insights into epitranscriptomic regulation. It is worth to note that

while full-length transcriptomes based on the long-read sequencing

technologies are apparently advantageous over the short-read RNA-

seq in identification of alternative splicing and polyadenylation,

tools analyzing short-read sequencing data for these purposes (such

as rMATS, rDiff, RNAProf, APAtrap and priUTR) still have their

particular niches because short-read RNA-seq are still dominant in

the less-studied plant species and are cost affordably for most of the

labs, even in high sequencing depth.

In addition, expression quantification may be complicated

by other difficulties associated with plant genomes. Polyploid,

including both allopolyploid and autopolyploid, are widespread

in land plants. Polyploid species are frequent in biomass crops,

such as the allopolyploid Miscanthus species (Mitros et al., 2020)

and autopolyploid sugarcane species (Zhang et al., 2018). High

levels of sequence similarity between the homo-/homoeologous

alleles or gene members pose many challenges to the alignment

of short reads and subsequent expression quantification. Thus,

tools for the RNA-seq analysis of polyploid species or the

pipelines tuned for such expression quantification are
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necessary (Kuo et al., 2018; Paya-Milans et al., 2018), as

polyploid species have begun to be assembled recently.

Notably, short-read RNA-seq also has major merits in other

plant-related research areas, especially single-cell/single nuclear

RNA-seq and meta-transcriptome analysis, owing to the

compatibility and cost affordability. Short-read RNA-seq

facilitates meta-transcriptome characterization, profiling gene

expression in a microbial community and providing a snapshot

for functional exploration (Turner et al., 2013; Salazar et al.,

2019). In particular, deep RNA-seq can be used to profile the

gene expression from both the host and pathogens to obtain

insights into plant-microbial interactions (Rudd et al., 2015).

More recently, short-read RNA-seq has been pushed to single-

cell resolution due to a series of technological advancements,

including robotics, microfluidics and hydrogel droplets (Zhang

et al., 2019). In a few years, efforts in single-cell RNA-seq (scRNA-

seq) or single-nuclei RNA-seq (snRNA-seq) have expanded from

model plants (Arabidopsis, tomato and rice) to non-model species

(e.g., maize and poplar), from organ development and cell

differentiation to wood formation (Gutzat et al., 2020; Xu et al.,

2020; Li et al., 2021; Kajala et al., 2021; Chen et al., 2021a; Wang

et al., 2021; Bezrutczyk et al., 2021; Liu et al., 2022). Undoubtedly,

single-cell transcriptomics are leading the fore frontier of plant

single-cell biology and playing an ever-increasing role in plant

research and breeding. Excellent reviews and public database on

plant scRNA-seq datasets are available (Shaw et al., 2021; Chen

et al., 2021b; Shahan et al., 2021). Due to the differences in several

aspects of the wet- and dry-lab parts between the single-cell and

bulk RNA-seq experiments, the merits of short-read RNA-seq in

single-cell plant biology is beyond the scope of this review and can

be found elsewhere (Shaw et al., 2021).

In summary, our work discusses a representative collection of

RNA-seq analysis tools covering gene annotation, construction of

expression atlas, gene regulation and alternative splicing. We

emphasize that the integration of these tools will unleash the

power within RNA-seq analysis, uncover the gene regulatory

complexity for many less-studied plant species, and, ultimately,

promote the functional genomics of these species.
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Introduction: Sorghum (Sorghum bicolor (L.) Moench) is an agriculturally and

economically important staple crop that has immense potential as a bioenergy

feedstock due to its relatively high productivity on marginal lands. To capitalize

on and further improve sorghum as a potential source of sustainable biofuel, it

is essential to understand the genomic mechanisms underlying complex traits

related to yield, composition, and environmental adaptations.

Methods: Expanding on a recently developedmapping population, we generated

de novo genome assemblies for 10 parental genotypes from this population and

identified a comprehensive set of over 24 thousand large structural variants (SVs)

and over 10.5 million single nucleotide polymorphisms (SNPs).

Results: We show that SVs and nonsynonymous SNPs are enriched in different

gene categories, emphasizing the need for long read sequencing in crop

species to identify novel variation. Furthermore, we highlight SVs and SNPs

occurring in genes and pathways with known associations to critical

bioenergy-related phenotypes and characterize the landscape of genetic

differences between sweet and cellulosic genotypes.

Discussion: These resources can be integrated into both ongoing and future

mapping and trait discovery for sorghum and its myriad uses including food,

feed, bioenergy, and increasingly as a carbon dioxide removal mechanism.

KEYWORDS

sorghum, genome assembly and annotations, pangenomics, bioenergy,
structural variation
Abbreviations: CP-NAM, Carbon Partitioning Nested Association Mapping; SV, Structural Variant; SNP,

Single Nucleotide Polymorphism; TE, Transposable Element; LTR, Long Terminal Repeat; GO,

Gene Ontology.
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Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a versatile,

adaptable, and widely grown cereal crop that is valued for its

efficiency, drought tolerance, and ability to grow in marginalized

soils (Wayne Smith and Frederiksen, 2000). Present-day

genotypes exhibit extensive genetic, phenotypic, morphological,

and physiological diversity which stems both from their historical

spread and modern breeding efforts aimed at optimizing sorghum

for different end uses. With its wealth of naturally occurring

genetic diversity and advantageous traits, sorghum has enormous

value as a sustainable, fast-growing, and high-yielding bioenergy

crop (Calviño and Messing, 2012).

Currently, sorghum is classified into four major ideotypes:

grain, sweet, cellulosic, and forage. All of these types can be used

in different bioenergy production methods (Wu et al., 2010), but

to fully capitalize on their potential, it is essential to gain a better

understanding of the genomic changes driving traits related to

yield, carbon partitioning, and local adaptation. However, these

types of traits are often difficult to dissect due to the nature of

their underlying genetic architecture (Brachi et al., 2011), which

can involve hundreds to thousands of genes and complex

mutations that are not easily captured by short-read sequencing.

Structural genomic mutations are an important source of

variation in many species, and can play key roles in phenotypic

diversification and evolution. Advances in sequencing

technology, especially the advent of high-throughput long-read

sequencing, have made the detection of structural variants

feasible in many plant species where these types of changes

were previously uncharacterized. More recently, there has also

been a surge in the generation of pan-genomic data for a number

of important crop species, which has offered exciting new

insights into the extensive diversity of these plants and the

potential influence of complex structural mutations on

agronomically important phenotypes (2022; Golicz et al., 2016;

Zhang et al., 2019; Danilevicz et al., 2020; Zhou et al., 2020; Della

Coletta et al., 2021; Hufford et al., 2021; Li et al., 2021).

Previous genomic work in sorghum has linked structural

mutations to a number of key traits including dwarfing (Multani

et al., 2003), juicy stalks (Zhang et al., 2018), chilling tolerance

(Wu et al., 2019), and flowering time (Li et al., 2018). A whole-

genome comparison of the sweet sorghum genotype ‘Rio’ with

‘BTx623,’ (a short-statured, early maturing grain sorghum)

found hundreds of gene presence/absence variations (PAVs),

several of which occurred among known sucrose transporters

(Cooper et al., 2019). Furthermore, a genome-wide association

study (GWAS) exploring the genetic architecture of bioenergy-

related traits found that a large deletion in a sorghum-specific

iron transporter was linked to stalk sugar accumulation (2020;

Brenton et al., 2016). Most recently, we undertook a broad

survey of genome-wide deletions in a panel of nearly 350 diverse

sorghum accessions, and found large deletions in multiple genes
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related to biotic and abiotic stress responses that were unique to

particular geographic origins, and appeared to play a role in local

adaptation (Songsomboon et al., 2021).

Taken together, these results suggest that unraveling

complex traits in sorghum and other crops will require a

comprehensive picture of both structural and single nucleotide

mutations. In this study, we have expanded on the recently

published Carbon-Partitioning Nested Association Mapping

(CP-NAM) population that was developed and publicly

released as a key genetic resource for the characterization and

improvement of sorghum for multiple different end uses (2022;

Boatwright et al., 2021; Kumar et al., 2022). We generated high-

quality de novo genome assemblies for 10 of the CP-NAM

parents and used these genomes to identify millions of novel

variants, including a number of large structural variants (SVs)

occurring in genes or pathways that could be essential for

optimizing sorghum as a bioenergy feedstock.
Materials and methods

Sample collection and sequencing

Seeds for each genotype were ordered from the U.S.

Department of Agriculture’s Germplasm Resource Information

Network (GRIN)(https://www.ars-grin.gov/) and grown in the

greenhouses at the North Carolina Research Campus (NCRC) in

Kannapolis, NC. High-molecular-weight DNA was extracted

from each sample using a modified high-salt CTAB extraction

protocol (Inglis et al., 2018). Purified DNA was sent to the David

H. Murdock Research Institute (DHRMI) for quality control,

library preparation, and sequencing on a PacBio Sequel I system.
De novo assembly

Raw subreads for each genotype were combined and

converted to FASTQ format using the bam2fastx toolkit from

PacBio. Reads were then corrected, trimmed, and assembled

using Canu(v2.1.1) (Koren et al., 2017). For one of the

genotypes, ‘Grassl’, Canu failed to produce contigs due to

reduced read coverage after trimming, so the final assembly

was instead produced using Flye(v2.9) with the Canu corrected

reads (Kolmogorov et al., 2019).

The resulting contigs for all genotypes were scaffolded into

chromosomes using RagTag (v2.1.0) (Alonge et al., 2021) and

the parameters ‘-r -g 1 -m 10000000’. Contigs were ordered

based on their alignment to the BTx623 v3.1 reference genome

(Paterson et al., 2009) with minimap2 (Li, 2018). RagTag was

run without the correction step to avoid unnecessary

fragmentation of the contigs and unplaced contigs were

discarded. Assembled genome metrics were assessed both
frontiersin.org
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before and after scaffolding using QUAST(5.2.0) (Gurevich

et al., 2013).
Annotation

Protein and non-coding genes were annotated by building a

pan-gene working set using representative pan-gene models

selected from a comparative analysis of gene family trees from

18 Sorghum genomes (McCormick et al., 2018; Deschamps et al.,

2018; Cooper et al., 2019; Wang et al., 2021; Tao et al., 2021)

sourced from SorghumBase(https://www.sorghumbase.org/).

This pan-gene representative was propagated onto the 10

sorghum genome assemblies using Liftoff (v1.6.3) (Shumate

and Salzberg, 2021) with parameters(-a 0.95 -s 0.95 -p 20

-copies -cds -polish). The gene structures were updated with

available transcriptome evidence from Btx623 using PASA

(v2.4.1) (Haas et al., 2003). Additional improvements to

structural annotations were done in PASA using full length

sequenced cDNAs and sorghum ESTs downloaded from NCBI

using the query (EST[Keyword]) AND sorghum[Organism].

The working set was assigned Annotation Edit Distance(AED)

scores using MAKER-P (v3.0) (Campbell et al., 2014) and

transcripts with AED score < 1 were classified as protein

coding. Those with AED=1 were further filtered to keep any

non-BTx623 based models with a minimum protein length of 50

amino acids and a complete CDS as protein coding. The

remaining models with AED=1 were classified as non-coding.

Gene ID assignment was made as per the existing nomenclature

schema established for Sorghum reference genomes

(McCormick et al., 2018).

On average, approximately 55 thousand working sets of

models were generated for each sorghum line, out of which an

average of 41 thousand were coding and roughly 13 thousand

were non-coding (Supplementary Table 1). More than half

(61%) of the protein coding models mapped to a BTx623

reference gene, along with 23% of the non-coding models

(Supplementary Figure 1A). On average ~42% single exon

genes come from the reference BTx623 genome, while ~52%

come from non-BTX623 lines. ~92% of the single exon genes

that are not found in non-sorghum reference genomes, are

found in two or more sorghum accessions. ~29% of these have

a supporting AED score of less than 1 (Supplementary

Figure 1B). Functional domain identification was completed

with InterProScan (v5.38-76.0) (Jones et al., 2014). TRaCE

(Olson and Ware, 2020) was used to assign canonical

transcripts based on domain coverage, protein length, and

similarity to transcripts assembled by Stringtie. Finally, the

protein coding annotations were imported to Ensembl core

databases, verified, and validated for translation using the

Ensembl API (Stabenau et al., 2004).

In order to assign gene ages, protein sequences were aligned

to the canonical translations of gene models from Zea mays,
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Oryza sativa, Brachypodium distachyon, and Arabidopsis

thaliana obtained from Gramene release 62 (Tello-Ruiz et al.,

2020) using USEARCH v11.0.667_i86linux32 (Edgar, 2010). If

there was a hit with minimum sequence identity of 50% (-id 0.5)

to an Arabidopsis protein, the gene was classified as being from

Viridiplanteae, if there was a hit to rice the gene was classified as

Poaceae, and if a hit was to maize the gene was classified as

Andropogoneae. If there were no hits then the gene was

classified as sorghum specific.
Repeat analysis

Transposable elements (TEs) were identified and annotated

in each genome using EDTA (Ou et al., 2019). TE-greedy-nester

(Lexa et al., 2020) was used to further annotate both complete

and fragmented Long Terminal Repeat (LTR) retrotransposons.

Sequence divergence in the LTR regions was used to estimate

retrotransposon age (SanMiguel et al., 1998; Jedlicka et al., 2020).

The left and right LTR sequences were extracted from the

assembled genomes using the coordinates reported by TE-

greedy-nester and the getfasta tool from the BEDTools

package(v2.29.0) (Quinlan and Hall, 2010). For each TE, the

two LTR sequences were aligned using Clustal-W (Thompson

et al., 1994) as implemented in the R package msa (Bodenhofer

et al., 2015). Genetic distance was calculated based on the K80

model using the dist.dna function in the R package phangorn

(Schliep, 2011). The time of divergence was calculated based on

the equation T=K/(2 * r) (Bowen and McDonald, 2001), where T

is the time of divergence, K is the genetic distance, and r is the

substitution rate. A value of 0.013 mutations per million years

was used for r, consistent with the molecular clock rate for LTRs

estimated in rice (Ma and Bennetzen, 2004). To determine if any

of the shell genes across all the genotypes had overlaps with TEs,

a custom python script was used to match the annotated shell

gene coordinates with TE coordinates identified by TE-greedy-

nester (Lexa et al., 2020). A flanking sequence of 1000bp

upstream and downstream was considered. In order to find

the overlaps, only the contigs that were placed into

chromosomes by RagTag(v2.1.0) (Alonge et al., 2021) were

included since the unplaced contig sequences were not a part

of TE-greedy-nester analysis.
Variant calling

Filtered and scaffolded reads were realigned to the BTx623

reference genome using the nucmer program from the

MUMmer(v4.0) package (Delcher et al., 2003; Marçais et al.,

2018) with the following parameters ‘-c 100 -b 500 -l 50’.

Alignments were filtered using the delta-filter program from

the MUMmer package with the parameters ‘-m -i 90 -l 100’ and

converted to coordinate files using show-coords with the
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parameters ‘-THrd’. Variants were then called using Syri(v1.6)

(Goel et al., 2019).

Individual Syri VCF files were split by variant type (SNPs,

Deletions, Insertions, Inversions, and Translocations) resulting in

separate files for each variant type for each genotype. Insertions or

deletions smaller than 50 bp were classified as small indels while

those equal to or larger than 50 bp were classified as SVs. More

complex SV types that could not be validated with raw reads were

not considered for further analysis.

The Syri program produces a nonstandard VCF format

which includes information on variants from overlapping

syntenic blocks. This can result in duplicated variants and

fragmented insertions that must be addressed before

subsequent analysis with downstream tools. Duplicates of

existing variants were removed for all variant types, and

fragmented insertions were combined into single variants

(Supplementary Figure 2). These processed variant files were

then zipped and indexed using bgzip and tabix (Li et al., 2009)

and then merged across genotypes using the merge function

from the bcftools package with the parameters ‘-0 -I ‘ChrB:join,

Parent:join,DupType:join,modified:join’ -O v’. This resulted in

one variant file for each type of variant that included the

genotypes for all individuals. Insertions, deletions, and SNPs

were then annotated using SIFT (v2.4) (Vaser et al., 2016) and

the BTx623 version 3.1.1 annotation to identify overlap with

genes for insertions and deletions and missense prediction for

single nucleotide variants.
Phylogeny

Gene PAVs was called from pan-gene lift-off annotation

information using custom python scripts. As per default liftoff

parameters, gene presence was identified with a threshold of 95

percent similarity. PAVs for each genotype were encoded as a

binary vector (with 0 indicating gene absence, and 1 indicating

presence). Distance between genotypes was then calculated
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using the dist() function from the stats(v3.6.2) package in R

using the Jaccard distance, and a phylogenetic tree was

constructed using the NJ() function from the phangorn

package. The SNP phylogeny used to confirm the PAV

phylogeny was created using SNPs called from the program

Syri. Similar to the PAV tree, this phylogeny was built based on a

presence/absence binary matrix of SNPs. Genetic distance was

calculated using the dist() function and the NJ() function in R.
Gene ontology analysis

Gene ontology (GO) terms for genes affected by large

insertions and deletions or nonsynonymous SNPs were

curated from the publicly available annotation information file

associated with BTx623 v3.1.1 in phytozome (https://

phytozome-next.jgi.doe.gov/). GO enrichment analysis was

performed using the R package topGO(v1.0) (Alexa and

Rahnenfuhrer, 2016). The classic Fisher’s Test was used to

assess significance of enriched terms, and terms with a p-value

<0.05 were considered significant and kept for further analysis.

Redundant and highly similar GO terms were defined and

reduced based on semantic similarity using the R packages

AnnotationForge (Carlson and Pages, 2022) and rrvgo

(Sayols, 2020).
Results

Assembly quality and characteristics

To capture the genetic diversity of bioenergy sorghum, we

sequenced the parents of the previously established CP-NAM

population, which included globally diverse genotypes

representative of sweet, cellulosic, grain and forage type

bioenergy sorghums (Boatwright et al., 2021) (Table 1). The

initial contig-level assemblies showed a range of N50 values, with
TABLE 1 Genotype origins, races, and types.

Name Alternate ID Race Origin Type

Grassl PI 154844 Caudatum Uganda Sweet & Cellulosic

PI 329311 IS 11069 Durra Ethiopia Cellulosic

PI 506069 Mbonou Guinea-bicolor Togo Cellulosic

PI 510757 AP79-714 Durra Cameroon Cellulosic

Chinese Amber PI 22913 Bicolor China Sweet

Rio PI 563295 Durra-caudatum USA Sweet

Leoti PI 586454 Kafir-bicolor Hungary Sweet

PI 229841 IS 2382 Kafir South Africa Grain

(Continued)
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the lowest being 176 kb and the highest at over 3 Mbp

(Supplementary Table 2). The three sweet genotypes in

particular had a higher number of raw reads and more

contiguous assemblies than the other types (Figures 1A, B),

most likely as a result of differences in the effectiveness of the
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extraction protocol. After scaffolding and filtering unplaced

contigs, all 10 genotypes showed similar levels of high

contiguity, with final assembly sizes that were 90-98% the size

of the BTx623 reference genome and over 90% of known

BTx623 genes contained within the scaffolds (Figures 1C, D).
TABLE 1 Continued

Name Alternate ID Race Origin Type

PI 297155 IS 13633 Kafir Uganda Grain, Forage

PI 655972 Pink Kafir Kafir USA Forage

Information adapted from GRIN and (Boatwright et al., 2021).
A B

DC

FIGURE 1

Assembly metrics for 10 sorghum genotypes. (A) Contig N50 levels for different ideotypes show higher contiguity for sweet genotypes. (B) Raw
read counts prior to assembly are highly correlated with contig N50, and sweet genotypes (orange) have higher read counts than cellulosic
(green) or grain (yellow) genotypes. (C) Assembled genome size after scaffolding and filtering for each genotype shows that despite differences
in mean contig size, the final assemblies for both sweet and non-sweet types are very close to the expected reference genome size (horizontal
black line). (D) The number of BTx623 genes contained within the final scaffolds is very similar across all genotypes regardless of type.
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Gene annotation

Genes shared across deeper evolutionary time scales were

more conserved than sorghum-specific genes (Figure 2). The

sweet genotypes show slightly more conserved genes when

compared to other genotypes (Figure 2). Out of 62,044 genes

annotated in the pan-genome, around 36.69 percent(22,762

genes) were found to be core to all genotypes, 50.32 percent

(31,218 genes) were shell genes (present in more than one

genome, but not all of the genomes), and 12.99 percent(8,064

genes) were found to be cloud genes (unique to a single

genome) (Supplementary Figure 3A). The majority of shell

genes were present in 9 of 10 genomes, with the second largest

proportion of shell genes being present in 2 of 10 genomes

(Supplementary Figure 3B). Of shell genes identified, 44 and 45

were identified to be exclusive to all sweet and all non-sweet

genotypes respectively. Only 1-2 percent of shell genes in each

genotype overlapped with or were flanked by LTRs, indicating

that transposable element activity was not mediating the

m a j o r i t y o f o b s e r v e d g e n e c o n t e n t v a r i a t i o n

(Supplementary Table 3).
Genomic landscape of variation

Over 10.5 million single nucleotide variants were called

across the 10 genomes, as well as over 7.4 million small indels

and over 24 thousand large structural variants (insertions and

deletions ≥ 50 bp) (Figure 3, Tables 2, 3). Well over half (~65%)
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of these variants were defined as cloud variation (Table 3), while

the remaining variants were mostly shell. Only a small handful

of core variants were present in all of the genotypes except the

BTx623 reference. Phylogenetic relationships were inferred

using gene presence/absence to estimate genetic distance

(Supplementary Figure 4A), demonstrating that sweet,

cellulosic, and grain genotypes come from separate clades

within the category of bioenergy-type sorghum. These results

were confirmed by SNP phylogeny (Supplementary Figure 4B).
Genes affected by structural variants
and SNPs

There was a total of 171,000 SNPs that were found to be both

located in genic regions and encoding nonsynonymous variants,

and more than 2.5 thousand large SVs present in genic regions.

GO enrichment analyses of affected genes revealed that SNPs

and SVs tended to impact distinct categories of genes (Figure 4),

with protein phosphorylation being the only significant category

to appear in both datasets.

In addition to protein phosphorylation, genes impacted by

large insertions or deletions showed enrichment in GO categories

related to Golgi vesicle transport, photosynthesis, nucleoside

metabolism, protein modifications, and programmed cell death

(Figure 4B). Nonsynonymous SNPs, on the other hand, were

enriched in genes involved in pollen-pistil interactions, cell wall

biogenesis, cell proliferation, posttranscriptional regulation and

polysaccharide metabolism (Figure 4A).
FIGURE 2

Age of protein coding genes among the sorghum lines based on minimum sequence identity. Bar color indicates the level of phylogenetic
conservation, with blue indicating genes conserved across monocots and dicots; peach indicating the proportion of genes shared among the
grasses; yellow indicating the proportion of genes shared between sorghum and maize, and light purple representing the proportion of
sorghum-specific genes.
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FIGURE 3

Genomic landscape of variation averaged across the 10 genomes. Density estimates in tracks A-C were performed in 1Mb non-overlapping
sliding windows. (A) and (B) respectively show average SNP density and average SV density, with lighter colors indicating cloud variants and
darker colors indicating shell and core variants. (C) shows the average TE density, and (D) shows TE age averaged across 1Mb sliding windows.
Red indicates younger TEs while gray indicates older. Vertical blue bars spanning all tracks indicate the approximate position of the centromeres
of each chromosome.
TABLE 2 Variants found in each NAM parent genotype.

Genotype Deletions (bp>=50) Insertions (bp>=50) Indels (bp<50) SNPs Nonsynonymous

Grassl 2,721 1,714 976,703 2,659,850 37,265

PI 329311 3,560 1,956 1,319,281 3,321,035 47,482

PI 506069 3,531 1,865 888,425 3,003,469 47,555

(Continued)
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Repeat analysis

Overall, the TE composition was highly similar across all 10

genotypes (Figures 5, 3), with the LTR-Gypsy superfamily

comprising the majority of elements. The age analysis revealed

an abundance of younger TEs, with a mean age of 1.28 million
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years old along with a high frequency of very young TEs

approximately 0.1 million years old and very few old TEs (6-8

million years) (Figure 5; Supplementary Figure 5). Most (97.5%)

of the TEs were non-nested, with TE-greedy-nester reporting the

presence of only a handful (2.5%) of nested TEs. The overall

distribution of TE age followed a similar pattern across all of the
TABLE 2 Continued

Genotype Deletions (bp>=50) Insertions (bp>=50) Indels (bp<50) SNPs Nonsynonymous

PI 510757 2,952 1,919 1,593,228 2,859,852 44,168

Chinese Amber 3,560 1,744 994,023 2,975,137 48,780

Rio 2,563 1,791 717,304 2,119,637 35,714

Leoti 3,279 1,435 785,360 2,790,452 43,473

PI 229841 2,830 1,490 1,447,030 2,546,090 41,679

PI 297155 2,412 1,335 1,151,594 2,052,203 34,863

PI 655972 2,401 1,113 631,705 1,953,106 32,758
TABLE 3 Core vs. Shell vs. Cloud variants.

Type Deletions Insertions Total SVs Indels SNPs

Core 34 28 62 12,231 103,065

Shell 6,306 2,250 8,556 1,246,552 5,245,181

Cloud 7,855 8,232 16,087 6,195,713 5,416,344

Total 14,195 10,510 24,705 7,454,496 10,764,590
fro
A B

FIGURE 4

Enriched GO terms for genes impacted by (A) nonsynonymous SNPs and (B) large SVs. GO terms in each dataset were clustered and plotted
based on semantic similarity as described in the Materials and Methods. Circle size is proportional to p-value, with larger circles indicating more
significant terms.
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genotypes, with younger TEs being randomly distributed

throughout the genome (Figure 3, Supplementary Figure 6A-J)

as previously observed by (Paterson et al., 2009).
Differences in sweet and
non-sweet genotypes

Structural variants that were present in all three sweet

genotypes (Leoti, ChineseAmber, and Rio) but either absent

from or rare among non-sweet genotypes, were significantly

enriched among genes with functions related to metal ion

transport, in particular iron ion transport, as well as genes

involved in oxidative stress response, cell cycle arrest, and

phosphatidylserine biosynthetic processes. Conversely, variants

found only in all of the non-sweet genotypes tended to impact

very different categories of genes, such as those involved in

glycolytic processes, cytochrome assembly, and both RNA and

DNA regulation (Figure 6).
Discussion

Unraveling the molecular mechanisms controlling complex

traits such as carbon partitioning, yield, and stress response is an

essential step for crop improvement efforts aimed at creating

effective and sustainable bioenergy feedstocks for the future.

However, not only do these types of traits often involve changes

in large numbers of genes, but an ever-increasing number of

pan-genomics studies in crop plants have demonstrated that

these changes can encompass complex structural mutations in

addition to SNPs (2022; Cooper et al., 2019; Zhang et al., 2019;

Brenton et al., 2020; Zhou et al., 2020; Hufford et al., 2021;

Songsomboon et al., 2021). Therefore, the development of
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multiple reference-quality genomes within crop species is

critical to the exploration of complex genetic architectures and

has clear benefits when compared to a single reference genome,

especially in the case of larger structural variants (Della Coletta

et al., 2021). By de novo assembling 10 new high-quality

genomes for the parents of the CP-NAM population

(Boatwright et al., 2022), we have been able to uncover

millions of novel variants, including thousands of large

insertions and deletions.

Importantly, we found that SVs within coding regions

impacted different types of genes compared to SNPs,

highlighting the importance of incorporating both into future

trait mapping studies. Many nonsynonymous SNPs that were

segregating among the genotypes occurred in gene categories

that have previously been linked to carbon allocation in sorghum

and other closely related species. For instance, protein

phosphorylation induces key signaling cascades in plants that

control a variety of processes, and protein kinases have been

shown to be highly differentially expressed in both sweet

sorghum (Cooper et al., 2019) and sugarcane (Waclawovsky

et al., 2010) during stem sugar accumulation. Similarly, genes

involved in the regulation of plant hormones such as auxin were

also enriched for non-coding SNPs, and these pathways are

known to be essential for vegetative plant growth and stem

elongation, both of which are key phenotypes for biomass

accumulation (Kebrom et al., 2017).

Like SNPs, gene-impacting SVs were also found to affect

many genes related to protein phosphorylation; in fact, this was

the top category among genes containing large variants. But

other categories enriched for high-impact insertions and

deletions were distinct from the SNP dataset, and contained

many genes involved in pathways related to both abiotic and

biotic stress responses, which has been observed before in

diverse bioenergy sorghums (Songsomboon et al., 2021).
A B

FIGURE 5

TE age and composition. (A) A stacked bar plot describing the distribution of TE counts by age across all genotypes. Alternating colors indicate
different genotypes, and distributions are stacked in the order of the labels in figure 5b (i.e., the bottom yellow distribution shows the TE age
frequencies for pi655972, while the top shows the distribution for Grassl)., T he Y-axis is number of TEs and the X-axis is their age in millions of
years. (B) The proportion of superfamilies of TEs based on average counts of each superfamily across all genomes.
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Additionally our study identified structural variants affecting

genes involved in tRNA nucleoside modifications, programmed

cell death in response to symbionts, and photosynthetic light

response, all of which were previously identified by other studies

as GO terms of interest in relation to sorghum stress response

(Ortiz et al., 2017; Wang et al., 2017).
Frontiers in Plant Science 10
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SVs strictly occurring in either sweet or non-sweet genotypes

also offer unique insights into the differences between these types

that could be key to dissecting differences in carbon allocation in

sorghum. Of particular interest is the fact that SVs restricted to

sweet sorghum genotypes affected many genes related to metal

metabolism and iron transport. This connection between iron
FIGURE 6

Enriched GO terms for genes impacted by SVs and Indels in both Non-Sweet and Sweet Genotypes. Orange bars indicated gene categories in
sweet genotypes that were significantly impacted (p<0.05). Green bars indicated gene categories in non-Sweet genotypes that were
significantly impacted (p<0.05). The length of each bar corresponds to significance (-log(p-value)). Terms have been clustered and sorted based
on semantic similarity.
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transport and sugar accumulation has been observed in other

comparative genomic studies of sorghum (2020; Brenton et al.,

2016; Cooper et al., 2019), and appears to be a key factor

distinguishing sweet sorghums from both cellulosic and

grain types.

Over a third of protein coding genes and over 75 percent of

noncoding genes annotated in this study did not map back to the

Btx623 reference genome. With a growing number of studies

illustrating the importance of noncoding DNA and RNA as

potential regulatory elements (Waititu et al., 2020), it is evident

that large pan-genome annotations are vital in quickly

identifying and annotating potential regulatory ‘pseudo-genes’

as well as protein coding genes that are divergent from the

common reference. Previous pan-genome studies in sorghum

and maize have identified high levels of gene content variation,

with 53-64 percent of genes identified as non-core (Tao et al.,

2021; Ruperao et al., 2021; Hufford et al., 2021). We corroborate

these findings with about 63 percent of our genes being

identified as either shell or cloud to our population, despite

this particular population lacking wild representation, indicating

relatively high amounts of latent variation, even among

domesticated varieties of sorghum.

Taken together, our results demonstrate the value of

exploring genome-wide patterns of both SNPs and larger

structural variants to gain new insights into the genetic

architectures of complex and agronomically important traits.

To advance both sorghum breeding efforts and our

understanding of crop plant evolution, we have generated this

new extensive dataset that is publicly available through

SorghumBase (Gladman et al., 2022) and which can be readily

integrated into an already valuable genetic resource for future

mapping studies.
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