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Editorial on the Research Topic
Advances in methods and tools for multi-omics data analysis

Multi-omics data analysis is a rapidly growing field with significant potential in
personalized medicine. Despite the many advances in this domain, there are still
important challenges that need to be addressed, such as standardization of methods and
limitations in interpreting results.

The Research Topic “Advances in Methods and Tools for Multi-Omics Data Analysis”
showcases novel techniques and tools, including machine/deep learning tools, multi-factor
analysis, Bayesian statistics, network-based models, and computational approaches for
network-based integrative multi-omics analysis.

This article Research Topic comprises one perspective article, which addresses the
translational challenges of multi-omics research in the realm of European personalized
medicine, four review articles covering challenges in the path towards achieving precision
medicine in cancer treatment and immuno-oncology, computational approaches for
network-based integrative multi-omics analysis, deep generative models for learning
joint embeddings of single-cell multi-omics data, and methods for characterization and
visualization of protein–protein interaction networks in a multi-omics integration context.

Additionally, there are five original research articles ranging from the presentation of a
new statistical framework for the analysis of longitudinal multi-omics data to the application
of multi-omics methods to different diseases such as cancer, cutaneous melanoma,
inflammatory diseases, myocardial dysfunction, and tuberous sclerosis complex-related
angiomyolipoma.

Various machine learning (ML) techniques that can be used to integrate multi-omics
data are discussed in this Research Topic. Network-based diffusion/propagation methods
and multiview/multi-modal ML are two such techniques that can exploit information
captured in each omics dataset and infer associations between different data types. Deep
learning methods are an example of multiview/multi-modal learning, which can capture
complex non-linear associations in a multi-layered manner.

Complex longitudinal omics datasets require new statistical approaches for their
analysis, and ALASCA, a new package presented by Jarmund, Madssen and
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Giskeødegård, shows a promising framework for tackling the
longitudinal and multivariate nature of multi-omics studies, as
well as covariate adjustment. In contrast, Magnusson et al. used a
different approach for longitudinal omics data analysis: they applied
linear mathematical mixed time-delayed splice variant models to
predict protein abundances from mRNA expression.

The review article by Brombacher and colleagues provides a
systematic overview of current deep generative models (DGM)-
based approaches for learning joint embeddings from multi-
omics data and illustrates how small sample sizes impact the
amount of information that can be recovered from such datasets.
Specifically, the review examines how the performance of popular
DGM-based approaches to infer joint low-dimensional
representations is influenced by varying numbers of cells,
which is particularly relevant at the stage of designing an
experiment.

Robin and colleagues discuss the role of protein-protein
interactions (PPIs) in cellular mechanisms and the construction
of PPI networks. PPIs are involved in physical and biochemical
processes in structured environments and can be constructed using
prediction methods and high-throughput experiments.
Computational methods have emerged as a promising way to
identify PPIs, and integration methods can be used to filter false
interactions. Visualization is a key step in analyzing PPI networks,
but the complexity of proteomes in different organisms presents a
challenge.

The article by Oldoni and colleagues summarizes the outcome of
the 2021 European Infrastructure for Translational Medicine
(EATRIS)-Plus Multi-omics Stakeholder Group workshop. This
multidisciplinary and cross-institutional working group aims to
become a European reference group for implementing
personalized medicine across Europe. This perspective article
discusses the potential of precision medicine in healthcare and
the challenges associated with it, such as moving beyond
genomics to integrated multi-omics and multi-modal complex
biomarker generation, new technologies and digital health, data
standardization to enable multi-modal integration and AI-
supported drug modeling, variability in omics data at source,
data privacy and regulatory aspects, and economic implications.

Moreover, the Research Topic includes original research articles
that demonstrate the application of multi-omics in various diseases.
For example, Wang and colleagues present a study where ultra-
performance liquid chromatography-mass spectrometer (UPLC-
MS) was used to measure plasma proteins and metabolites in

patients with renal cysts, sporadic angiomyolipoma, and tuberous
sclerosis complex (TSC)-related angiomyolipoma before and after
immunosuppressant treatment, with the aim of finding potential
diagnostic and prognostic biomarkers as well as revealing the
underlying mechanism of TSC tumorigenesis.

In another contribution, Wang et al. applied Least Absolute
Shrinkage and Selection Operator (LASSO) and Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) algorithms to
identify a cancer cell stemness feature, identifying 3 specific subtypes
of melanoma with different survival outcomes.

One of the key challenges in multi-omics data analysis is the
combination of different data types to identify composite biomarker
signatures. This merging is complicated by the fact that multi-omics
data often needs to be coupled with other data, such as imaging data,
phenotypic data, and medical data (Electronic Health Records and
patient-related outcomes). The integration of multi-omics and
multi-modal data marks a significant step closer to personalized
medicine, althoughmany challenges remain before these biomarkers
can be fully implemented in routine clinical care. The contributions
in this Research Topic represent a small but solid base of step
towards achieving these goals.
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The Integrative Analysis Identifies
Three Cancer Subtypes and Stemness
Features in Cutaneous Melanoma
Xiaoran Wang1†, Qi Wan1†, Lin Jin2, Chengxiu Liu3, Chang Liu1, Yaqi Cheng1 and
Zhichong Wang1*

1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China, 2The First
Affiliated Hospital of Shandong First Medical University, Shandong, China, 3Department of Ophthalmology, Affiliated Hospital of
Qingdao University Medical College, Qingdao, China

Background: With the growing uncovering of drug resistance in melanoma treatment,
personalized cancer therapy and cancer stem cells are potential therapeutic targets for this
aggressive skin cancer.

Methods: Multi-omics data of cutaneous melanoma were obtained from The Cancer
Genome Atlas (TCGA) database. Then, these melanoma patients were classified into
different subgroups by performing "CancerSubtypes" method. The differences of
stemness indices (mRNAsi and mDNAsi) and tumor microenvironment indices (immune
score, stromal score, and tumor purity) among subtypes were investigated. Moreover, the
Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-
Recursive Feature Elimination (SVM-RFE) algorithms were performed to identify a cancer
cell stemness feature, and the likelihood of immuno/chemotherapeutic response was
further explored.

Results: Totally, 3 specific subtypes of melanoma with different survival outcomes were
identified from TCGA.We found subtype 2 of melanoma with the higher immune score and
stromal score and lower mRNAsi and tumor purity score, which has the best survival time
than the other subtypes. By performing Kaplan–Meier survival analysis, we found that
mRNAsi was significantly associated with the overall survival time of melanomas in subtype
2. Correlation analysis indicated surprising associations between stemness indices and
subsets of tumor-infiltrating immune cells. Besides, we developed and validated a
prognostic stemness-related genes feature that can divide melanoma patients into
high- and low-risk subgroups by applying risk score system. The high-risk group has a
significantly shorter survival time than the low-risk subgroup, which is more sensitive to
CTLA-4 immune therapy. Finally, 16 compounds were screened out in the Connectivity
Map database which may be potential therapeutic drugs for melanomas.

Conclusion: Thus, our finding provides a new framework for classification and finds some
potential targets for the treatment of melanoma.

Keywords: cutaneous melanoma, classification, stemness feature, prognosis, canccer stem cell
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INTRODUCTION

Melanoma is a quite lethal tumor once it has spread
(metastasized). Melanoma arises from the precursor lesion
with an accumulation of unrestrained mutations; orthotopic
melanoma can be cured by resection in combination with
continuously proven adjuvant therapy (Bray et al., 2018; Siegel
et al., 2019).

Progression of melanoma can be characterized by the
genetically distinct subpopulations which are related to a high
occurrence of chemotherapy resistance. Given that about 90% of
metastatic tumors develop resistance, a high incidence of
melanoma in the reduced overall survival rate is due to the
resistance to chemotherapies (Chow et al., 2011). At present,
there are some validated adjuvant treatments for melanoma. Still,
considering the side effects and different drug treatment
responses of melanoma patients, the best choice and
implementation of comprehensive melanoma therapy are
unresolved. It is critical to find a more targeted selection for
advanced melanoma patients.

Among tumor cells, the strong chemoresistance of tumor stem
cells is closely related to high mortality after metastasis. Cancer
stem cells are defined as the precursors by tumorigenesis, self-
renewal, and pluripotency, namely, a subset of tumor-initiating
cells (Abbaszadegan et al., 2017). To date, melanoma stem cells
have been identified as a subpopulation of melanoma cells which
can express cellular markers, like CD271, CD133, ABCB5,
MDR1, etc. (Civenni et al., 2011; Keshet et al., 2008; Sharma
at al., 2010). According to recent studies, melanoma stem cells
can participate in related signal transduction pathways and play
vital roles in escaping from immune surveillance and resistance to
radiation therapy or chemotherapy (El-Khattouti et al., 2014;
Mohme et al., 2017; Pak et al., 2004). Studies have found that
molecules related to the expression of stemmarkers in tumors can
enhance the resistance of tumors to chemotherapy, which is the
basis for cancer stem cells to resist the toxic effects of
chemotherapy drugs. The expression level of some stem cell-
related markers is positively correlated with chemotherapy
tolerance. The reason why cancer stem cells can escape from
the cytotoxic effect of chemotherapeutic drugs includes their drug
excretion mechanism, anti-apoptosis mechanism, and DNA
damage repair mechanism (Meng et al., 2014; Schoning et al.,
2017). Cancer stem cells also could express stronger stem cell-
related potentials when they resist chemotherapy by activating
specific pathways (Takeda et al., 2016). Therefore, the study of the
characteristics of drug resistance mechanism of cancer stem cells
has excellent application prospects and significance, and it is
meaningful for complementary drug treatment programs to
melanoma patients.

Current therapeutic strategies targeting tumor stem cells
mainly include targeting specific surface markers or
intracellular signal transduction pathways, inducing tumor
stem cell differentiation, and changing the tumor stem cell
microenvironment (Pei et al., 2020; Qin et al., 2020; Zhang
et al., 2020). However, some studies have shown that tumor
cells can be dedifferentiated into tumor stem cells to supplement
depleted tumor stem cells under the influence of their

surrounding environment. The ability of this new tumor stem
cell to tolerate chemotherapy is still unknown. The heterogeneity
of tumors and the complexity of the surrounding
microenvironment make tumor treatment extremely
complicated, so understanding the tumor heterogeneity and its
external environment is vital (Lian et al., 2019). In particular,
changes in the immune environment related to tumors will help
us further to understand the melanoma therapeutic strategy.

MATERIALS AND METHODS

Data Collection and Cancer Subtype
Identification
The transcriptome profile of RNA sequencing data and matched
DNA methylation data of cutaneous melanoma as well as clinical
information were obtained from the TCGA database. After data
processing like distribution check, imputation, and
normalization, three data types including gene expression,
miRNA expression, and DNA methylation merged into a final
dataset for integrative analysis. Next, these melanoma patients
were divided into different subgroups by performing three
clustering methods in R package ("CancerSubtypes").

Stemness Index Calculation
Stemness Index Workflow (https://bioinformaticsfmrp.github.io/
PanCanStem_Web/) provides the steps and processes to
regenerate our stemness indices (mRNAsi and mDNAsi),
which train a stemness signature using normal stem cells and
apply the one-class algorithm to define a stemness index for each
tumor sample. The mRNA stemness index based on a gene set
contains 11,774 genes, and the DNA stemness index calculated by
a DNA methylation set contains 151 differentially methylated
CpG sites. We first scored melanoma patients by applying
Stemness Index Workflow and then scaled the stemness
indices range from 0 to 1.

Tumor Microenvironment Estimation
The immune score, stromal score, and tumor purity were
calculated from gene expression data by applying the
ESTIMATE algorithm in R package (“ESTIMATE”). By
running the ESTIMATE algorithm, immune score, stromal
score, and tumor purity of each melanoma patient can be
estimated. Then, we also scaled the value of immune score,
stromal score, and tumor purity range from 0 to 1.

Evaluation of the Relationship Between
Subtype and Clinical Variables
To clarify the clinicopathologic characteristics of the cancer
subtypes, the subgroup analysis of clinical variables including
mRNAsi, mDNAsi, immune score, stromal score, tumor purity,
age, sex, and metastatic status was performed. Next,
Kaplan–Meier plots were used to explore the prognostic value
of stemness index (mRNAsi and mDNAsi) and found that only
mRNAsi had a significant association with overall survival time in
all melanoma patients. Hence, mRNAsi was screened out for
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further analysis. Afterwards, each subtype of melanoma was
divided into low and high mRNAsi groups by median cutoff
of value, and Kaplan–Meier plots were drawn. The differences
between low and high mRNAsi groups in subtypes were
compared by log-rank tests. Eventually, Kaplan–Meier survival
analysis showed that the mRNAsi was only significantly
associated with overall survival in subtype 2. In addition, the
cutaneous melanoma patients in subtype 2 were randomly
divided into a 70% training dataset and a 30% validation
dataset. In training datasets, samples were divided into high
and low mRNAsi groups. “Limma” package in R software was
applied to identify the differentially expressed genes (DEGs). The
|log 2 fold change (FC)| ≥0.5 and p values <0.05 were considered
as the cutoff criterion for DEGs. Then, univariate Cox regression
analysis was used to screen the prognostic DEGs (p values <0.05).
Next, for subsequently selecting the important mRNAsi-related
features, the Least Absolute Shrinkage and Selection Operator
(LASSO) and Support Vector Machine-Recursive Feature
Elimination (SVM-RFE) algorithms were applied to reduce the
prognostic DEGs.

Identification and Validation of Stemness
Features
LASSO and SVM-RFE algorithms jointly determine the qualified
seed of DEGs for the risk formula, and the risk score is generated

as follows: risk score � ∑
N

i�1
(coefi × expri), in which N means the

number of feature genes, expri means the expression level of
genes, and coefi means regression coefficient calculated by
multivariate Cox regression analysis.

The risk score of each sample in training dataset was
estimated, and the patients were accordingly classified into
high- and low-risk group by the median cutoff. Univariate and
multivariate Cox logistic analyses for OS were performed on the
patient clinical characteristics (age, gender, stage, and metastasis)
and the risk score of stemness features.

To compare the differences between high- and low-risk
groups, we drew Kaplan–Meier survival curves and calculated
the significance by log-rank tests. The area under the curve
(AUC) of receiver operating characteristic curves (ROC) was
used to evaluate the 5-year overall survival predictive accuracy of
the model. Besides, to test the robustness of our results, stemness
features were further verified in a validation dataset (GSE65904)
which was downloaded from the GEO database.

Evaluation of the Association Between
Stemness Indices and Immune
Microenvironment
To explore the relationship between stemness indices and
immune microenvironment in different melanoma subtype,
single sample gene set enrichment analysis (ssGSEA) method
in R package (“GSVA”) was applied to specifically discriminate 24
human immune cells, including innate and adaptive immune
cells. The innate immune cells contain natural killer (NK) cells,
CD56bright NK cells, CD56dim NK cells, dendritic cells (DCs),
activated DCs (aDCs), immature DCs (iDCs), plasmacytoid DCs

(pDCs), neutrophils, macrophages, eosinophils, and mast cells,
and the adaptive immune cells, including T cells, B cells, and
cytotoxic cells. Moreover, the T cells consist of T effector memory
(Tem), T central memory cells (Tcm), CD8 T cells, Tgd cells,
regulatory T cells (Treg), T helper cells and T follicular helper
cells (TFH), Th1, Th2, and Th17. Next, the correlation analysis
between stemness indices (mRNAsi/mDNAsi) and 24 immune
cells expression was performed.

Immuno/Chemotherapeutic Response
Prediction
To explore the potential immuno/chemotherapeutic drugs, we
predicted the candidate compounds response for each sample
based on the Connectivity Map website (https://portals.
broadinstitute.org/cmap/). The significant compounds were
selected (p< 0.05). Additionally, immune checkpoint inhibitors
have been approved as routine drugs for melanoma. Thus, we also
predicted the potential response to immunotherapy by using the
TIDE website tool (http://tide.dfci.harvard.edu/).

Statistical Analysis
All statistical analyses were conducted using the R package
(v.3.5.2) and corresponding packages. Survival analysis was
applied by using “survival” and “survivalROC” package.
LASSO algorithm was conducted by “glmnet” package. SVM
algorithm was calculated with the “e1017” package. The
correlation coefficient was calculated by Spearman test. For
comparisons of two groups and more than two groups,
Kruskal–Wallis test and one-way analysis of variance were
used as non-parametric and parametric methods, respectively.
The association between subgroup and clinicopathological
characteristics was analyzed with the chi-square test.

RESULTS

Data Collection and Cancer Subtype
Identification
After combining multi-omics data into integrative analysis, 449
melanoma patient samples were obtained from the TCGA
database. Then, according to prior studies, these patients were
divided into three subtypes by three clustering methods including
consensus clustering (CC), consensus non-negative matrix
factorization (CNMF), and similarity network fusion with CC
(SNFCC) (Lu et al., 2018). Although all the clustering methods
can classify melanoma patients into 3 subtypes with different
survival outcomes (CC: p value � 4.23e-10; NMF: p value � 2.62e-
09; SNFCC: p value � 7.51e-09) (Figure 1A) and clear boundaries
between different color areas (Figure 1B), combined with the
value of average silhouette width (ASW) which works as a
measure of cluster coherence to assess whether samples are
more similar within subtypes. SNFCC showed more
advantages than other methods and were selected for
subsequent analysis (CC: ASW � 0.74; CNMF: ASW � 0.82;
SNFCC: ASW � 0.89) (Figure 1C). In SNFCC, subtype 1 contains
205 samples, subtype 2 consists of 177 samples, and subtype 3

Frontiers in Molecular Biosciences | www.frontiersin.org February 2021 | Volume 7 | Article 5987253

Wang et al. Stemness Feature for Melanoma

899

https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
http://tide.dfci.harvard.edu/
https://www.frontiersin.org/journals/moleculariosciences
www.frontiersin.org
https://www.frontiersin.org/journals/moleculariosciences#articles


FIGURE 1 | Classification of melanoma patients by three clustering methods including consensus clustering (CC), consensus non-negative matrix factorization
(CNMF), and similarity network fusion with CC (SNFCC). (A): Kaplan–Meier survival analysis of three subtypes with log-rank test p value; (B): clustering heatmap of three
subtype samples; (C): average silhouette width representing the coherence of clusters.
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includes 67 samples. Among three subtypes, subtype 2 has the
longest survival time compared to others.

Clinicopathologic Characteristics of the
Cancer Subtypes
According to the methods, we acquired stemness indices
(mRNAsi and mDNAsi) and tumor microenvironment
indices (immune score, stromal score, and tumor purity) of
449 melanoma patients. After excluding adjacent, duplicated,
and incomplete samples, data of 427 patients were included for
further subgroup analysis. Firstly, the melanoma patients were
ordered by their values of stemness and tumor
microenvironment indices (from low to high) to explore
whether any clinical feature was associated with these
calculated indices (Figures 2A–E). Remarkably, the patients
in subtype 1 had higher value of mRNAsi (median value �
0.71) than subtype 2 (median value � 0.66) and subtype 3
(median value � 0.63) patients (Table 1). Boxplots of mRNAsi
suggested that there is a significant difference among subtypes
(Figure 2F). Similarly, subgroup analysis of tumor purity
showed that patients in subtype 1 (median value � 0.88)

had higher values than subtype 2 (median value � 0.57) and
subtype 3 (median value � 0.83) (Figure 2J and Table 1). As
for immune and stromal score, results manifested that subtype
2 samples had higher values (immune median value � 0.61;
stromal median value � 0.49) than subtype 1(immune median
value � 0.28; stromal median value � 0.30) and subtype 3
(immune median value � 0.33; stromal median value � 0.34)
(Figures 2H,I and Table 1). However, there is no statistical
difference among the three subtypes in mDNAsi index
(Figure 2G). The median values of three subtypes were
0.25, 0.24, and 0.25, respectively (Table 1). Next, the
subgroup analysis of other clinical variables like overall
survival time, age, gender, race, metastatic status, and stages
was also applied. The results showed that survival time, age,
metastatic status, and stages were statistically different among
melanoma subtypes (Table 1).

Relationship Between Stemness Indices
and Tumor Microenvironment
Kaplan–Meier curves of mRNAsi and mDNAsi manifested that
only mRNAsi was significantly associated with overall survival

FIGURE 2 |Clinical variables associated with the stemness indices (mRNAsi andmDNAsi) and tumor microenvironment indices (immune score, stromal score, and
tumor purity) in melanoma. (A): the association between clinical variables (race, stage, gender, metastatic status, and subtype) and mRNAsi; (B): the association
between clinical variables and mDNAsi; (C): the association between clinical variables and immune score; (D): the association between clinical variables and stromal
score; (E): the association between clinical variables and tumor purity. Columns represent samples sorted by score of indices from low to high (top row). Rows
represent clinical variables. (F): boxplots of mRNAsi in individual samples stratified by subtype; (G): boxplots of mDNAsi in individual samples stratified by subtype; (H):
boxplots of immune score in individual samples stratified by subtype; (I): boxplots of stromal score in individual samples stratified by subtype; (J): boxplots of tumor purity
in individual samples stratified by subtype.
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time in all melanoma patients, and low mRNAsi group had a
longer survival time than high mRNAsi group (log-rank p �
0.009) (Figure 3A). Therefore, mRNAsi was selected out for the
next analysis. Subgroup analysis of mRNAsi showed that subtype
2 was significantly correlated to overall survival time (log-rank p
� 0.037), whereas Kaplan–Meier curves of subtype 1 and subtype
3 showed that there was no statistical difference (Figure 3B). In
addition, correlation analysis revealed that mRNAsi was
positively correlated with mDNAsi (r � 0.155, p � 0.001) and
tumor purity (r � 0.370, p � 0.000), while immune and stromal
score were negatively associated with mRNAsi (r � −0.220, p �
0.000; r � −0.590, p � 0.000) (Figure 3C).

Identification and Validation of Stemness
Features
To identify stemness features, subtype 2 samples were randomly
divided into a training dataset (n � 117) and a validation dataset
(n � 50). The clinical characteristics of training and validation
datasets are listed in Table 2, and statistical results indicated that
they were balanced between two datasets. Firstly, based on the
selection criteria, 364 DEGs were screened out in training
dataset, in which 319 genes were significantly downregulated
and 45 genes were significantly upregulated (Figure 4A). Next,
the univariate analysis of 364 DEGs was conducted, and the
results showed that 27 prognostic DEGs were significantly
associated with overall survival time in the training dataset
(Figure 4B). Finally, 11 mRNAsi-related genes were selected
by performing LASSO and SVM-RFE algorithm, and these genes
were further used to construct a risk score system (Figures
4C–E). By applying this risk model, a risk score for each
sample in the training dataset will be generated. Then,
melanoma patients were divided into a high-risk group (n �
58) and a low-risk group (n � 59) by using the median cutoff

value of the risk scores. Kaplan–Meier curves showed that
patients in the high-risk group have a shorter survival time
than low-risk group with a log-rank test of p< 0.001. To estimate
the prediction power of 11 mRNAsi-related genes’ signature, the
ROC curve was drawn, and five years of AUC was 0.944
(Figure 5A). Besides, in order to confirm the robustness of
the result, a verification test was conducted in the validation
dataset and GSE65904 dataset. The validation and GSE65904
datasets were classified into high-risk and low-risk groups
according to the training dataset. Kaplan–Meier curves
showed that there is a significant difference between high-risk
and low-risk groups in both validation dataset (log-rank p <
0.001) and GSE65904 dataset (log-rank p < 0.001) (Figure 5B
and Figure 5C). The five years of AUC were 0.846 and 0.680,
respectively.What is more, to explore the prognostic value of risk
score and other clinical features (age, race, gender, and
metastatic status), univariate and multivariate logistic
regression were applied. Based on the results, only the risk
score was significantly associated with overall survival in both
univariate and multivariate analysis (Table 3).

Association Between Stemness Indices and
Immune Microenvironment
To evaluate the associations between stemness indices and
immune microenvironment, correlations analysis between
immune cell individuals and mRNAsi (Figure 5D) and
mDNAsi (Figure 5E) was performed. In mRNAsi, most of
the immune cells were negatively correlated with mRNAsi, in
which iDC, macrophages, mast cells, NK cells, TFH, and Tgd
were commonly negatively correlated with three subtypes,
while only Th2 cell was commonly positively correlated
with three subtypes. As for mDNAsi, less immune cells
were associated with mDNAsi compared to mRNAsi and

TABLE 1 | Clinicopathological variables of subtypes in melanoma. IQR means interquartile range.

Subtype 1 Subtype 2 Subtype 3 p Test

n 195 167 65
Survival time (median [IQR]) 2.84 [1.30, 5.88] 4.44 [2.27, 9.48] 1.28 [1.01, 2.18] 0.000 Kruskal–Wallis test
Age (median [IQR]) 60.00 [49.00, 70.00] 55.00 [45.00, 68.50] 63.00 [56.00, 76.00] 0.002 Kruskal–Wallis test
Gender (%) Female 64 (32.8) 69 (41.3) 27 (41.5) 0.191 Chi-square test

Male 131 (67.2) 98 (58.7) 38 (58.5)
Race (%) Asian 4 (2.1) 4 (2.4) 4 (6.2) 0.459 Chi-square test

Not reported 5 (2.6) 3 (1.8) 2 (3.1)
White 186 (95.4) 160 (95.8) 59 (90.8)

MetStatus (%) Metastatic 159 (81.5) 155 (92.8) 15 (23.1) 0.000 Chi-square test
Non-metastatic 36 (18.5) 12 (7.2) 50 (76.9)

Stage (%) I/II nos 4 (2.1) 5 (3.0) 1 (1.5) 0.000 Chi-square test
Not reported 13 (6.7) 18 (10.8) 3 (4.6)
Stage I 30 (15.4) 40 (24.0) 3 (4.6)
Stage II 59 (30.3) 30 (18.0) 40 (61.5)
Stage III 77 (39.5) 67 (40.1) 15 (23.1)
Stage IV 12 (6.2) 7 (4.2) 3 (4.6)

mRNAsi (median [IQR]) 0.71 [0.61, 0.79] 0.66 [0.55, 0.73] 0.63 [0.53, 0.72] 0.000 Kruskal–Wallis test
mDNAsi (median [IQR]) 0.25 [0.17, 0.35] 0.24 [0.16, 0.31] 0.25 [0.18, 0.33] 0.533 Kruskal–Wallis test
Stromal score (median [IQR]) 0.30 [0.20, 0.43] 0.49 [0.37, 0.61] 0.34 [0.22, 0.43] 0.000 Kruskal–Wallis test
Immune score (median [IQR]) 0.28 [0.22, 0.39] 0.61 [0.51, 0.75] 0.33 [0.24, 0.44] 0.000 Kruskal–Wallis test
Tumor purity (median [IQR]) 0.88 [0.78, 0.93] 0.57 [0.39, 0.69] 0.83 [0.74, 0.93] 0.000 Kruskal–Wallis test
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only CD8 T cell and cytotoxic cell were commonly negatively
associated with three subtypes.

Immuno/Chemotherapeutic Response
Prediction
Immunotherapy is regarded as an emerging therapy and widely
used in melanoma. Therefore, we conducted the TIDE algorithm

and subclass mapping to compare the expression profile of the
two subgroups and another published dataset containing 47
patients with melanoma that responded to immune checkpoint
inhibitors (CTLA-4 and PD-1). Interestingly, we found that the
low-risk group in subtype 2 is more promising to respond to anti-
CTLA-4 therapy (Bonferroni corrected p � 0.007) (Figure 6B).
Then, we applied the samemethod to predict immune checkpoint
inhibitors for other melanoma subtypes. We surprisingly found

FIGURE 3 | Kaplan–Meier survival analysis and correlation analysis of stemness indices. (A): Kaplan–Meier analysis of mRNAsi and mDNAsi in all melanoma
samples; (B): Kaplan–Meier analysis of each subtype of melanoma patients with high or low mRNAsi; (C): the correlation analysis between mRNAsi and other indices
(mDNAsi, immune score, stromal score, and tumor purity).
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that low-risk groups no matter in subtype 1 (Figure 6A) or
subtype 3 (Figure 6C) significantly responded to anti-CTLA-4
therapy (Bonferroni corrected p � 0.03; Bonferroni corrected p �
0.012). Moreover, chemotherapy is a common treatment for
melanoma. Therefore, the Connectivity Map database was also
applied to predict potential compounds. Compounds
significantly correlated with at least two cancer subtypes will
be selected (Figure 6D). Eventually, 16 compounds were
significantly enriched, including anisomycin, cephaeline,
chenodeoxycholic acid, digitoxigenin, ellipticine, gossypol,
helveticoside, hycanthone, lanatoside C, metixene, nitrofural,
ouabain, oxedrine, prednisone, proscillaridin, and valinomycin.

DISCUSSION

Worldwide, cutaneous melanoma is known as a common type of
malignancy with high morbidity and mortality, while the
traditional classification lacks clinical benefits and strategies
for treatment are still ineffective. Therefore, in this study, we
tried to establish a more evaluable classification system to help
figure out better treatment choices for advanced melanoma
patients. Therapies without inclusive consideration of gene
transcription characters would bring treatment indeterminacy
(Hamid et al., 2018). Given that, we sought to take gene
expression, miRNA expression, and DNA methylation into
account to partition melanoma profile and compared three
clustering models. We successfully categorized melanoma
patients into 3 validated subtypes. Interestingly, significant
difference in overall survival time was observed among these 3
subtypes, which suggests that there exist biological relevance and
distinction among subgroups. In addition, it’s generally accepted
that melanoma tumors are composed of a mixture of different

cell types such as cancer cells, cancer stem cells, and immune cells.
We also defined the stemness indices (mRNAsi and mDNAsi)
and tumor microenvironment indices (immune score, stromal
score, and tumor purity) for different melanoma subtypes. The
results manifested that subtype 2 with higher immune score and
stromal score and lower mRNAsi and tumor purity score has the
best survival time compared to other subtypes, which was
consistent with our next findings that low risk of mRNAsi has
longer survival than high risk. Correlation analysis also proved
that intimate associations exist among these indices. Thus, our
research provides a framework for exploring how the context of
diverse cell types among subtypes may elucidate the observed
diverse clinical outcomes and treatment effects.

Cancer cells are recently hypothesized to be derived from
cancer stem cells which are closely correlated with relapse of
malignant tumors, drug resistance, and metastasis. Recent studies
have found that some stemness-related genes can not only initiate
malignant neoplastic cascade and maintain the oncogenicity of
stem cells, but also enhance the chemotherapy resistance of
tumor stem cells (Chen et al., 2016; Chiou et al., 2017; Kharas
and Lengner, 2017; Redmer et al., 2017). Therefore, therapeutic
targeting genes associated with melanoma stem cells are urgently
important. In this study, we developed and validated a robust
stemness-related signature which contains 11 genes (LOC284837,
OCLN, ABCC9, MEGF6, TSPYL5, RAB27B, TF, TNXB,
KIAA0495, TCEA3, and KCNH5). Among these stemness-
related genes, some have been identified to be associated with
stem cells. For instance, TF (tissue factor) is a multifunctional
membrane protein which correlates with various advanced
cancers. The overexpression of TF can increase the activity of
breast cancer stem cells in vitro (Shaker et al., 2017). The activated
RAB27B expression will promote the secretion of colorectal
cancer stem cell exosomes (Cheng et al., 2019). TSPYL5 is

TABLE 2 | Clinicopathological variables of training and validation dataset. IQR means interquartile range.

Training samples Validation samples p Test

n 117 50
OS.time (median [IQR]) 4.28 [2.28, 9.34] 4.50 [2.26, 9.44] 0.917 Kruskal–Wallis test
OS (median [IQR]) 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.428 Kruskal–Wallis test
Age (median [IQR]) 53.00 [44.00, 68.00] 57.50 [46.25, 69.50] 0.318 Kruskal–Wallis test
Gender (%) Female 51 (43.6) 18 (36.0) 0.459 Chi-square test

Male 66 (56.4) 32 (64.0)
Race (%) Asian 2 (1.7) 2 (4.0) 0.668 Chi-square test

Not reported 2 (1.7) 1 (2.0)
White 113 (96.6) 47 (94.0)

MetStatus (%) Metastatic 109 (93.2) 46 (92.0) 1 Chi-square test
Non-metastatic 8 (6.8) 4 (8.0)

Stage (%) I/II nos 4 (3.4) 1 (2.0) 0.197 Chi-square test
Not reported 16 (13.7) 2 (4.0)
Stage I 24 (20.5) 16 (32.0)
Stage II 18 (15.4) 12 (24.0)
Stage III 50 (42.7) 17 (34.0)
Stage IV 5 (4.3) 2 (4.0)

mRNAsi (median [IQR]) 0.66 [0.53, 0.73] 0.67 [0.58, 0.74] 0.362 Kruskal–Wallis test
mDNAsi (median [IQR]) 0.24 [0.17, 0.32] 0.20 [0.14, 0.29] 0.089 Kruskal–Wallis test
Stromal score (median [IQR]) 0.52 [0.37, 0.63] 0.46 [0.38, 0.57] 0.434 Kruskal–Wallis test
Immune score (median [IQR]) 0.61 [0.52, 0.74] 0.60 [0.49, 0.79] 0.969 Kruskal–Wallis test
Tumor purity (median [IQR]) 0.57 [0.42, 0.67] 0.60 [0.35, 0.71] 0.737 Kruskal–Wallis test
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highly expressed in human pluripotent stem cells, and the
overexpression of TSPYL5 is proven to promote cell
proliferation and migration (Na et al., 2019). Moreover,
KCNH5 and TCEA3 are shown to have high concentrations
in mesenchymal stem cells and mouse embryonic stem cells (Cha
et al., 2013; Jeong et al., 2013). Besides, the univariate and
multivariate regression analysis indicated that the risk score of
stemness-related signature could be regarded as an independent
prognostic model in melanoma. Hence, it seems reasonable to

believe that our identified stemness-related signature can be
regarded as a prognostic biomarker for further clinical
research. Consistent with taking advantage of integrated
stemness indices to classified melanoma in our study,
mounting evidence suggests that the control of melanoma
stem cell could be typically administrated to melanoma
patients (Luo et al., 2012; Rappa et al., 2008; Santini et al., 2012).

In this study, we explored the different immune environment of
melanoma with different stemness indices. In mRNAsi of this study,

FIGURE 4 | Stemness-related genes feature selection. (A): volcano plot of the differentially expressed stemness-related genes in training dataset; (B): forest plots
of the prognostic differentially expressed stemness-related genes; (C): the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm coefficient profiles of
the 12 genes that met the prognostic criteria initially; (D): Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. The point highlighted indicates
the lowest error rate, and the corresponding genes at this point are the best signature selected by SVM-RFE. (E): the Venn plot of overlap genes selected by LASSO
and SVM-RFE algorithms.
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we found that T helper 2 cell (Th2 cell) was the only commonly
positively correlated with three subtypes of melanoma. Th2 cells are
induced by interleukin 4, which can be secreted by basophils,
eosinophils, mast cells, natural killer T cells, or differentiated Th2
cells (Lee et al., 2002). Themain effect of Th2 cells is to activate B cell,
and then humoral immunity would be stimulated by plasma cells.
Nevertheless, tumor immunotherapy requires cellular immunity
which is mainly activated by Th1. Both Th1 cells and Th2 cells
can secrete cytokines to promote their proliferation and inhibit each
other’s proliferation (Saito et al., 1999). Under normal immune
environment, Th1 cells and Th2 cells are in a relatively balanced
state. Th2 bias signifies the imbalance of Th1/Th2. Th2 could
strongly inhibit Th1 responses (Guenova et al., 2013). Th2 cells
promote tumor growth and prevent tumor rejection. The bias of Th2
is regarded as one of the mechanisms of tumor immune escape.

Previous research proved that the tumor microenvironment of
advanced melanoma is composed of Th2-type polarization that
facilitates disease progression. Studies have also shown that Th2
dominance could mediate chronic inflammation which could
promote melanoma metastasis (Nevala et al., 2009). It has been
reported that, in melanoma, plasmacytoid dendritic cells can break
this kind of immune homeostasis by OX40L and ICOSL to support
melanoma progression (Aspord et al., 2013). Reversing the
imbalance of Th1/Th2 has been a concerned treatment for
tumors and other diseases (Kidd, 2003). Our results further
supported the importance of treatment to Th2 bias in melanoma.
To date, immunotherapy is pivotal for the treatment of patients with
advanced melanoma patients. Cytotoxic lymphocyte-associated
antigen 4 (CTLA-4) can compete with CD28 receptor-binding
antigen-presenting cell surface binding sites. CD28 receptors can

FIGURE 5 | Identification and validation of stemness-related genes feature for survival prediction. (A): Kaplan–Meier analysis of 11 mRNAsi-related genes’
signature and 5 years of the receiver operating characteristic (ROC) curve in training dataset. (B): Kaplan–Meier analysis of 11 mRNAsi-related genes’ signature and
5 years of the receiver operating characteristic (ROC) curve in validation dataset. (C): Kaplan–Meier analysis of 11 mRNAsi-related genes’ signature and 5 years of the
receiver operating characteristic (ROC) curve in GSE65904 dataset. (D): correlations between the mRNAsi and the subsets of tumor-infiltrating immune cells
estimated by “ssGSEA” method. (F): correlations between the mDNAsi and the subsets of tumor-infiltrating immune cells estimated by “ssGSEA” method.

TABLE 3 | Univariate and multivariate Cox regression analyses of 11 mRNAsi-related genes signature and clinical variables associated with overall survival in subtype 2
datasets.

Univariate analysis Multivariate analysis

Marker unicox_p HR lower .95 upper .95 mutlicox_p exp(coef) lower .95 upper .95
Age 0.003 1.026 1.009 1.044 0.051 1.019 1.000 1.039
Gender 0.487 1.197 0.722 1.985 0.716 1.111 0.629 1.962
Race 0.887 1.177 0.123 11.283 0.976 0.968 0.119 7.875
MetStatus 0.065 3.202 0.930 11.021 0.065 3.512 0.926 13.314
Stage 0.186 1.154 0.933 1.428 0.985 0.998 0.784 1.270
Risk score 0.000 1.225 1.154 1.300 0.000 1.270 1.176 1.370
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activate T cells. CTLA-4 is a highly homologousmolecule withCD28
and binds to the B7 molecule (CD80/CD86), and the binding
strength is higher than CD28. So once CTLA-4 is highly
expressed and combined, it will be a loss of the co-stimulatory
signal, and then CTLA-4 would inhibit lymphocyte activation and
proliferation. CTLA-4 plays a key role in regulating the T-cell system
and is often used as suppressive immune molecules in tumor
therapy. Anti-CTLA-4 monoclonal antibodies can augment T-cell
activation and proliferation and amplify immunity by blockading
CTLA-4 pathways, which enhances the patient’s ability to perform
an antitumor immune response. The use of CTLA-4
monoclonal antibodies to block the CTLA-4 pathway in
clinical immunotherapy of tumors also has been the current
research hotspot (Carreno et al., 2000; Wells et al., 2001).
However, in clinical data, the treatment has no survival
benefits (Boasberg et al., 2010; Robert et al., 2011). Immune
checkpoint inhibitors also have some severe side effects mostly
because the blockade of the immune checkpoint pathway makes
the immune responses of related organs and tissues amplified; it
cannot be terminated in time, and autoimmune damage would
occur. Which kind of patients is appropriate to a special
treatment remains unclear. As of now, we still do not have
sufficient evidence to guide clinical decisions. In this study, we
comprehensively described the stemness and environmental
characteristics of melanoma and found that low-risk mRNAsi
groups are promising to respond to anti-CTLA-4 therapy which
may provide effective measurement solutions to help the final
clinical decision and hoped to help patients with advanced
melanoma get the maximum remission rate.

Additionally, 16 potential compounds were identified to
significantly correlate with at least two cancer subtypes. Few of
these compounds have been used in melanoma researches
in vitro or in vivo. For example, previous experiments
proved that low doses of anisomycin can inhibit one-third
of protein synthesis in melanoma cells and induce cancer cell
apoptosis (Slipicevic et al., 2013). Gossypol was demonstrated
to have more cytotoxic to melanoma cell lines than the
conventional drugs like melphalan, cisplatin, and
dacarbazine (Blackstaffe et al., 1997). What is more,
nitrofural is known to act as pro-drugs, and the
combination of olaparib and nitrofural will enhance the
effect for the treatment of melanoma (McNeil et al., 2013).
Although large part of compounds had not been reported for
the treatment of melanoma, these undiscovered compounds
may be regarded as the promising drug for the subsequent
melanoma research.

Although our preliminary results have several implications for
patients with melanoma, several limitations must be considered.
Firstly, melanoma patients are recruited from public database,
and findings in this research are carried out by bioinformatics
methods. Secondly, the sample size in this study is small, and
experimental verifications are lacking. Thus, additional
fundamental researches are needed to explore the underlying
mechanisms.

In conclusion, our studies provide a comprehensive cellular
characterization for melanoma classification and additional
subtypes that may benefit from stemness-related genes
targeted therapies. Our studies also afford strategies to assess

FIGURE 6 | Immunotherapeutic response and potential compounds identification. (A): differential immunotherapeutic response targeting CTLA-4 and PD-1
between the high- and low-risk patients in subtype 1; (B): differential immunotherapeutic response targeting CTLA-4 and PD-1 between the high- and low-risk patients in
subtype 2; (C): differential immunotherapeutic response targeting CTLA-4 and PD-1 between the high- and low-risk patients in subtype 3; (D): heatmap of potential
compounds and enrichment score (positive in red, negative in blue) obtained from the Connectivity Map database for each melanoma subtype. The bottom panel
showed that the number of subtypes significantly enriched in compounds.
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more promising population for immunotherapy and identify
several potential compounds that could supply more effective
treatment.
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Background: Sepsis-induced myocardial dysfunction (SIMD) is the most

common and severe sepsis-related organ dysfunction. We aimed to

investigate the metabolic changes occurring in the hearts of patients

suffering from SIMD.

Methods: An animal SIMD model was constructed by injecting

lipopolysaccharide (LPS) into mice intraperitoneally. Metabolites and

transcripts present in the cardiac tissues of mice in the experimental and

control groups were extracted, and the samples were studied following the

untargeted metabolomics–transcriptomics high-throughput sequencing

method. SIMD-related metabolites were screened following univariate and

multi-dimensional analyses methods. Additionally, differential analysis of

gene expression was performed using the DESeq package. Finally,

metabolites and their associated transcripts were mapped to the relevant

metabolic pathways after extracting transcripts corresponding to relevant

enzymes. The process was conducted based on the metabolite information

present in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

Results: One hundred and eighteen significant differentially expressed

metabolites (DEMs) (58 under the cationic mode and 60 under the anionic

mode) were identified by studying the SIMD and control groups. Additionally,

3,081 significantly differentially expressed genes (DEGs) (1,364 were down-

regulated and 1717 were up-regulated DEGs) were identified in the
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transcriptomes. The comparison was made between the two groups. The

metabolomics–transcriptomics combination analysis of metabolites and

their associated transcripts helped identify five metabolites (D-mannose,

D-glucosamine 6-phosphate, maltose, alpha-linolenic acid, and adenosine

5′-diphosphate). Moreover, irregular and unusual events were observed

during the processes of mannose metabolism, amino sugar metabolism,

starch metabolism, unsaturated fatty acid biosynthesis, platelet activation,

and purine metabolism. The AMP-activated protein kinase (AMPK) signaling

pathways were also accompanied by aberrant events.

Conclusion: Severe metabolic disturbances occur in the cardiac tissues of

model mice with SIMD. This can potentially help in developing the SIMD

treatment methods.

KEYWORDS

sepsis, metabolic, myocardial dysfunction, SIMD, transcriptomics

1 Introduction

Sepsis is defined as a life-threatening organ dysfunction that

is caused by an overreaction of the body to infection (Singer et al.,

2016). It is a serious global problem and the most common cause

of in-hospital mortality (Rudd et al., 2020). Sepsis-induced

myocardial dysfunction (SIMD) is the most common and

severe sepsis-related organ dysfunction. SIMD induces or

exacerbates dysfunction in other organs. The prognosis of

patients with SIMD is poor, resulting in an extremely high

mortality rate (70–90%) (Martin et al., 2019; Ravikumar et al.,

2021). It is known that the mechanisms underlying SIMD involve

the release of circulating myocardial inhibitory substances, the

release of nitric oxide and reactive oxygen species, abnormalities

in calcium handling, downregulation of adrenergic pathways,

and mitochondrial dysfunction (Hollenberg and Singer, 2021;

Yang and Zhang, 2021). However, these abnormalities fail to

explain the mechanisms underlying the onset and progression of

SIMD. Circulating troponin and NT-proBNP exhibit good

specificity and sensitivity in the cases of myocardial ischemic

disease and cardiac failure. However, similar roles are not

observed in the case of SIMD (Hollenberg and Singer, 2021).

At present, a viable biomarker for SIMD is yet to be identified.

Metabolomics allows the exploration of small molecule

metabolites in blood or tissues. Results obtained by

conducting qualitative and quantitative analyses revealed that

the relationship between metabolites and physiological/

pathological changed over time (Rochfort, 2005; Patti et al.,

2012). Metabolites are the end products of the biochemical

activities occurring in the body. Therefore, metabolomics is

the omics study that is closest to phenotyping. A number of

metabolomics-oriented studies have been conducted to

understand the pathogenesis, progression, and patient

prognosis of sepsis (Neugebauer et al., 2016; Ping et al., 2019;

Ping et al., 2021). However, there is a lack of such studies on

SIMD. Additionally, transcriptomics facilitates the investigation

of gene function and gene structure at a global level to identify

differentially expressed genes (DEGs) within cells, tissues, or

individuals under different physiological or pathological states

(Velculescu et al., 1995; Virlon et al., 1999; Morris, 2009).

However, metabolomics solely may lead to incomplete

findings. Therefore, metabolomics–transcriptomics

combination analysis can be performed to accurately identify

key metabolites, hub genes, and metabolic pathways associated

with the ‘cause’ and ‘result’ dimensions (Rochfort, 2005; Griffin,

2006).

Mannose metabolism, amino sugar metabolism, starch

metabolism, unsaturated fatty acid biosynthesis, platelet

activation, and purine metabolism have some studies in sepsis

(Gao et al., 2015; Bakalov et al., 2016; Hwang et al., 2019; She

et al., 2022). However, there are no relevant studies in Sepsis-

induced myocardial dysfunction (SIMD). The AMPK signaling

pathway has some studies in SIMD (Song et al., 2020;Wang et al.,

2021).

We aimed to investigate metabolite changes occurring in the

heart tissues of mice suffering from SIMD. The SIMD-related

metabolites and metabolic pathways were identified and studied

by conducting untargeted metabolomics–transcriptomics

combination analysis. Overall, the findings of this study

provide new insights into the processes associated with the

pathogenesis, early diagnosis, and treatment of SIMD.

2 Methods

2.1 Animal model establishment

Male C57BL/6 mice (age: 6–8 weeks) were purchased from

Charles River (Beijing, China). The mice under study had free

access to food and water. The mice belonging to the experimental

group were administered intraperitoneal injections of

lipopolysaccharide (LPS) (20 mg/kg) once to induce SIMD.
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The volume of saline that was administered intraperitoneally to

the mice belonging to the control group was the same as the

volume of LPS injections. The mice were subjected to conditions

of echocardiography after 6 hours of injection, and 2D and

M-mode echocardiographic measurements were taken under

these conditions. A high-resolution in vivo imaging system

(VIVID E9, GE, United States) was used to record the data.

The left ventricular ejection fraction (LVEF), left ventricular end-

diastolic dimension (LVEDd), left ventricular end-systolic

dimension (LVESd), and left ventricular fractional shortening

FIGURE 1
The cardiac function of SIMDmice decreased significantly. (A) Representative images of mice heart examined by echocardiography. (B)EF%, FS
% and LVESd (n = 6, p < 0.001) (C)Tn-I in serum were measured by ELISA assays (n = 6, p < 0.01).
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(LVFS) functioned as the measurement indicators. A short-axis

view of the heart was obtained from the parasternal approach.

The ejection fraction was also calculated. The formula for

calculation is as follows:

(LVEDd3 − LVESd3)/LVEDd3 × 100

The ejection fractional shortening was calculated as follows:

(LVEDd − LVESDd)/LVEd × 100

Subsequently, the whole heart tissue samples were harvested

following the execution of the mice. The blood in the heart

chamber was rinsed with PBS. The samples were stored at a

temperature of –80°C for subsequent use. All necessary

permissions were obtained from the Ethics Committee of

Harbin Medical University, and all procedures met the

relevant regulatory standards.

2.2 Enzyme-linked immunosorbent assay

Commercially available enzyme-linked immunosorbent

assay (ELISA) kits (Meimian Biotechnology, Jiangsu, China)

were used to determine the levels of Tn-I. The instructions

FIGURE 2
The multidimensional results in positive and negative ionization modes are shown in this figure. (A,B) OPLS-DA score plot and OPLS-DA
validation plot intercepts in positive ionization modes: the Treated group vs. the Control group. R2Y = (0.0, 0.9638), Q2 = (0.0,−0.139). (C,D)OPLS-
DA score plot and OPLS-DA validation plot intercepts in negative ionization modes: the Treated group vs. the Control group. R2Y = (0.0, 0.8281),
Q2 = (0.0,−0.2474).
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provided by the manufacturer were followed to conduct the

studies.

2.3 Untargeted metabolomics studies

Heart tissue samples collected from mice belonging to the

experimental group (n = 6) and the control group (n = 6) were

slowly thawed at 4°C. Following this, the samples were treated

with a pre-chilled solution consisting of methanol, water, and

acetonitrile (methanol:acetonitrile:water = 2:2:1, v/v). The

solution was vortexed, after which it was sonicated over a

period of 30 min at a low temperature. Subsequently, the

sample solution was allowed to stand at –20°C for 10 min,

following which it was centrifuged at 14,000 g over a period

of 20 min at 4°C. Subsequently, the supernatant was extracted,

and it was dried under conditions of vacuum. The samples were

analyzed using the mass spectrometry technique.

Analyses were performed using an UHPLC (1,290 Infinity

LC, Agilent Technologies) coupled to a quadrupole time-of-

flight (AB Sciex TripleTOF 6,600). For HILIC separation,

samples were analyzed using a 2.1 mm × 100 mm ACQUIY

UPLC BEH 1.7 µm column (waters, Ireland). In both ESI

positive and negative modes, the mobile phase contained

A = 25 mM ammonium acetate and 25 mM ammonium

hydroxide in water and B = acetonitrile. The gradient was

85% B for 1 min and was linearly reduced to 65% in 11 min,

and then was reduced to 40% in 0.1 min and kept for 4 min,

and then increased to 85% in 0.1 min, with a 5 min re-

equilibration period employed. For RPLC separation, a

2.1 mm × 100 mm ACQUIY UPLC HSS T3 1.8 µm column

(waters, Ireland) was used. In ESI positive mode, the mobile

phase contained A = water with 0.1% formic acid and B =

acetonitrile with 0.1% formic acid; and in ESI negative mode,

the mobile phase contained A = 0.5 mM ammonium fluoride

in water and B = acetonitrile. The gradient was 1%B for

1.5 min and was linearly increased to 99% in 11.5 min and

kept for 3.5 min. Then it was reduced to 1% in 0.1 min and a

3.4 min of re-equilibration period was employed. The

gradients were at a flow rate of 0.3 ml/min, and the column

FIGURE 3
In two ionization modes, one-dimensional, and multi-dimensional analysis results of differential metabolites. (A)significant differences in
metabolite expression in positive ionization modes. (B)significant differences in metabolite expression in negative ionization modes.
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temperatures were kept constant at 25°C. A 2 µL aliquot of

each sample was injected.

The ESI source conditions were set as follows: Ion Source

Gas1 (Gas1) as 60, Ion Source Gas2 (Gas2) as 60, curtain gas

(CUR) as 30, source temperature: 600°C, IonSpray Voltage

Floating (ISVF) ± 5500 V. In MS only acquisition, the

instrument was set to acquire over the m/z range

60–1,000 Da, and the accumulation time for TOF MS scan

was set at 0.20 s/spectra. In auto MS/MS acquisition, the

instrument was set to acquire over the m/z range

25–1,000 Da, and the accumulation time for product ion scan

was set at 0.05 s/spectra. The product ion scan is acquired using

information dependent acquisition (IDA) with high sensitivity

mode selected. The parameters were set as follows: the collision

energy (CE) was fixed at 35 V with ±15 eV; declustering potential

(DP), 60 V (+) and −60 V (−); exclude isotopes within 4 Da,

candidate ions to monitor per cycle: 10.

The extracted data were used for metabolite structure

identification and subjected to data pre-processing techniques.

Subsequently, the data quality was evaluated and analyzed.

2.4 Pre-processing of the metabolomics
data

The MzXML files were generated from the raw MS data

(wiff.scan files). ProteoWizard MSConvert was used for data

conversion. Following this, the data were imported into the free

XCMS software. The parameters for peak pick up were

determined (centWave: m/z, 25 ppm; prefilter, c (10,100);

peak width: c (10,60)). The parameters for peak grouping

were also set (minfrac: 0.5; bw: 5; mzwid: 0.025). The isotopes

and adducts were annotated using the Collection of Algorithms

of Metabolite pRofile Annotation (CAMERA). The extracted ion

features consisted of variables that were characterized by >50% of

the non-zero measurements in at least one of the sets recorded.

The accuracy of the m/z values (<25 ppm) and the mass

spectroscopy–mass spectroscopy (MS/MS) spectral data were

compared with those present in an internal database

developed using authentic standards to analyze the metabolites.

2.5 Transcriptomics

The heart tissues of the mice belonging to the experimental and

control groups were used for the extraction of total RNA. The

process of sample extraction was performed using TRIzol. A

bioanalyzer (Agilent 2,100) was used to determine the purity and

concentration of the extracted RNA. The ribosomal RNA (rRNA)

Removal Kit was used for ribosomal RNA removal. The rest of the

total RNA samples were subjected to conditions of ionization to

break down the samples into fragments that were 200–300 bp long.

A random primer consisting of six bases and reverse transcriptase

were used to synthesize the first complementary DNA (cDNA)

strand. RNA was used as a template during the process.

Subsequently, the second strand was generated using the first

cDNA strand as the template. This process was followed to

generate a specific library. The polymerase chain reaction (PCR)

amplification process was used to increase the number of fragments

in the library following the process of library construction.

Subsequently, based on the library fragment size, the library

selection process was conducted (library size: 450 bp). The

quality of the libraries was determined using the Agilent

2,100 Bioanalyzer. This same system was also used to test the

effective and total library concentrations. The amount of data

required for the construction of the library and the effective

concentration of the library were analyzed. The mixing of the

libraries characterized by different index sequences was based on

the results. The mixed libraries were diluted to 2 nM and deformed

using alkali to form single-stranded libraries. The libraries were

analyzed using the paired-end (PE) sequencing method (Next-

Generation Sequencing (NGS); Illumina NovaSeq

6,000 sequencing platform) post the process of extraction and

purification of RNA and library construction.

All raw data were filtered to obtain high-quality sequences.

These sequences (Clean Data) were aligned with the reference

genome. HISAT2 was used for sequence alignment, and this

software could be accessed through http://ccb.jhu.edu/software/

hisat2/index.shtml. The expression level of each gene was

determined based on the alignment results. Subsequently,

differential analysis of sample genes was performed using

DESeq to identify DEGs satisfying the criteria of |

log2FoldChange| > 1 and p < 0.05. The ggplots2 package was

used to plot the volcano plots for the DEGs.

2.6 Metabonomics–transcriptomics
combination analysis

The differentially expressed metabolites (DEMs) and gens

(DEGs) were extracted. The gens corresponding to the relevant

enzymes were also extracted. The relevant data were obtained by

analyzing the metabolite information presented in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database. This

database can be accessed through the website https://www.kegg.

jp/dbget-bin/www_bfind?compound. Finally, DEMs and their

associated DEGs were mapped with the corresponding

metabolic pathways.

2.7 Statistical analysis

All statistical analyses were performed using SPSS 19.0, and

the plots were generated using GraphPad Prism 8.0 (statistically

significant results: p < 0.05). The metabolite-related data were

analyzed using ropls (R package). Multiple algorithms were used
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to realize multivariate data analysis. The orthogonal partial least

squares–discriminant analysis (OPLS–DA) and pareto-scaled

principal component analysis (PCA) methods were used for

data analysis. The 7-fold cross-validation method was used,

and response permutation tests were conducted to determine

the robustness of the model. For each variable associated with the

OPLS–DA model, the variable importance in the projection

(VIP) value was calculated. This helped determine the

contribution of the variables toward the classification process.

The student’s t-test was conducted for all metabolites

characterized with VIP values > 1. The significance of each

metabolite was determined by conducting the tests at the

univariate level.

3 Results

3.1 Sepsis-induced myocardial
dysfunction model

Results obtained by conducting echocardiography tests

suggested that the overall cardiac function of the members of

the experimental group, and EF%, FS% recorded for the

experimental group were significantly lower than those

recorded for the control group (p < 0.001) (Figures 1A,B).

LVESd recorded for the experimental group is significantly

higher than the control group (p < 0.001) (Figure 1B). It was

also observed that the circulating Tn-I level in the experimental

FIGURE 4
Bioinformatics analysis of RNA-seq data. (A) Sample correlation test. (B)PCA of mRNAs. (C) Volcano plot of mRNAs. C-group the control group
(n = 6). T-group the SIMD group (n = 6).
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FIGURE 5
Differential expression of metabolites and related transcripts. (A)Differential expression of metabolites and related transcripts in positive
ionization modes. (B) Differential expression of metabolites and related transcripts in negative ionization modes.
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group was significantly higher than the Tn-I level recorded for

the control group (p < 0.05) (Figure 1C). These indicated the

successful establishment of the SIMD model.

3.2 Metabolomics validation of the model

All the identified metabolites were analyzed using a

multi-dimensional statistical analysis method. The

OPLS–DA permutation test plot and the OPLS–DA score

plot generated under both the positive and negative ion

modes are shown in the Figure 2. It was observed that the

model could be used to differentiate between one group of

samples from the other, and overfitting could be avoided.

This indicated the good robustness of the model.

3.3 Identification of differentially
expressed metabolites

The results obtained under the positive and negative ion

modes were combined, and a total of 1,027 metabolites were

identified. Of all these samples, 390 metabolites were

identified under the positive ion mode, and

637 metabolites were identified under the negative ion

mode. Univariate and multi-dimensional analyses methods

were used to screen 118 DEMs (criteria for OPLS–DA:

VIP >1; p < 0.05). Among these, 58 significant DEMs

were identified under the cationic mode, and

60 significant DEMs were identified under the anionic

mode. The results obtained under these two modes are

presented in the Figure 3.

3.4 Transcriptomics analysis of sepsis-
induced my

ocardial dysfunction
High-throughput transcriptome analysis of the heart tissues

in the experimental and control groups was performed. The

correlation coefficients between the samples ranged from 0.8 to 1,

indicating an extremely strong correlation. PCA results indicated

high intra-group similarity between the samples in the

experimental and control groups. Of the 3,081 DEGs

recorded, down-regulation was observed for 1,364 DEGs, and

up-regulation was observed for 1717 DEGs (Figure 4).

FIGURE 6
Metabolites with significant differences between the two groups.
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3.5 Metabolomics–transcriptomics
combination analysis

DEMs obtained under the negative and positive ion modes

and the transcriptome data were subjected to conditions of the

metabolomics–transcriptomics combination analysis method.

The change in the fold of the top 20 DEM–DEG pairs is

shown in the Figure 5. Finally, multiple common metabolites

were identified by analyzing the mice in both groups. The

common metabolites were identified to be D-mannose,

D-glucosamine 6-phosphate, maltose, alpha-linolenic acid, and

adenosine 5′-diphosphate (Figure 6).

3.6 Differentially expressed metabolites
and differentially expressed genes:
Analysis of the kyoto encyclopedia of
genes and genomes pathway

The DEMs and DEGs were mapped simultaneously to the

KEGG pathway database to identify the common

pathways associated with the DEMs and DEGs

(Supplementary Tables S1–S9). The results are presented

in the Table 1.

4 Discussion

Metabolomics allows for a more precise exploration of

disease diagnosis and pathogenesis. The

metabolomics–transcriptomics combination analysis method

used helped us to identify significant DEMs between the two

groups, including D-mannose, maltose, D-glucose 6-phosphate,

alpha-linolenic acid, and adenosine 5′-diphosphate.

Additionally, metabolite-related metabolic pathways were also

investigated.

D-mannose, a common monosaccharide, is a digestive

product of polysaccharides and glycoproteins. However, the

amount of mannose present in the daily diet is significantly

small. Hexokinase converts mannose to mannose-6-

phosphate, which is then converted to fructose 6-phosphate

by mannose phosphate isomerase. This eventually participates

in the glycolytic pathway to produce lactic acid, glucose, and

pentose (Wood and Cahill, 1963; Ganda et al., 1979). Elevated

lactate levels indicate cellular dysfunction in patients with

sepsis. Hyperlactataemia is a sign of severe sepsis and results

in high mortality (Singer et al., 2016). Mannan-binding lectin

(MBL) is a crucial complement component in the human body

and is an important part of the processes associated with

innate immunity. Infection caused by pathogenic

microorganisms induces the secretion of MBL, which

specifically recognizes and binds to mannose on the surface

of microorganisms. This triggers complement activation and

mediates the process of generation of inflammatory response

(Fujita, 2002). It has been reported that in the sera of

individuals with sepsis attributable to Gram-negative

bacterial infections, MBL recognizes and binds to mannose

on LPS to activate the complementary MBL pathway and

initiate the body’s innate immunity to participate in the

inflammatory response (Fujita, 2002). This results in a

significant reduction in the MBL levels. The results

reported herein reveal that the mannose levels in the heart

tissues of mice with LPS-induced SIMD were significantly

higher than the mannose levels recorded for the control

group. Additionally, the expression level of Hk2, a gene

that mediates the process of D-mannose metabolism, was

significantly high. A large amount of D-mannose was

deposited in cardiac tissues, and this activated MBL to

TABLE 1 Pathways of metabolites and related transcripts.

DEMs DEGs Pathway

D-Mannose Hk2 Fructose and mannose metabolism

D-Glucosamine 6-phosphate Gnpda2Hk2; Gnpnat1 Amino sugar and nucleotide sugar metabolism

Maltose Gaa Starch and sucrose metabolism

Amy1 Carbohydrate digestion and absorption

Alpha-Linolenic acid Acot1 Biosynthesis of unsaturated fatty acids

Adenosine 5′-diphosphate Prkci Platelet activation

Igf1r; Pik3ca AMPK signaling pathway

Dguok Purine metabolism
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trigger innate immune responses and induce an inflammatory

response.

D-glucosamine 6-phosphate, a type of glucosamine, is an

important energy source for many bacteria present in the

body. It is also an important component of bacterial cell walls

(Matsuura, 2013). Moreover, D-glucosamine 6-phosphate is

also associated with the virulence of some bacteria (Kawada-

Matsuo et al., 2016).

Maltose is a disaccharide that is produced in the body

during starch catabolism. It can be metabolized to form two

glucose molecules. Researchers have previously used

magnetic resonance imaging-based metabolomics

techniques to study conditions of sepsis. The results

revealed that the maltose content in the metabolites of

patients with sepsis was significantly lower than the

maltose contents of patients not suffering from sepsis.

However, no such changes were observed in the sham-

operated and control groups (Bakalov et al., 2016). This

suggested that the significant reduction in the maltose

content was associated with the chronic depletion of the

long-term inflammatory response. We used an early-state 6 h

animal model to conduct the studies. The experimental

results suggested a significant increase in the maltose

content. However, whether the maltose content changes as

sepsis progresses needs to be further investigated.

Alpha-linolenic acid (ALA) is a type of omega-3 essential

fatty acid. It is a polyunsaturated fatty acid with three double

bonds. It has been previously reported that ALA and its

metabolites significantly inhibit the generation of LPS-induced

inflammatory response, and their action results in a decrease in

the rate of cellular reactive oxygen species (ROS) and NO

production. These could also inhibit the expression of iNOS

and TNF-α in cells and reduce the mortality in mice suffering

from endotoxin-mediated septic shock (Kumar et al., 2016).

Mitochondrial dysfunction is an adverse mechanism

associated with the cardiac dysfunction observed in patients

with sepsis (Ravikumar et al., 2021). It results in the inability

of the body to synthesize sufficient amounts of adenosine

triphosphate (ATP) to provide energy for the heart (Wasyluk

et al., 2021). Insufficient ATP synthesis also results in a reduction

in the adenosine diphosphate (ADP) content in cardiac tissues.

This result agrees with the results reported herein. It was also

observed that the amount of adenosine 5′-diphosphate in the

heart tissues of mice in the experimental group was significantly

lower than the content of adenosine 5′-diphosphate in the heart

tissues of mice belonging to the control group.

DEMs and DEGs were linked to mannose metabolism,

aminoglycan metabolism, starch metabolism, unsaturated fatty

acid biosynthesis, platelet activation, purine metabolism, and

AMP-activated protein kinase (AMPK) signaling pathways.

AMPK significantly affects the process of cellular energy

homeostasis (Carling et al., 2011). Stressors such as

hypoglycemia, hypoxia, and ischemia that remarkably deplete

ATP can activate this pathway (Canto and Auwerx, 2010; Hardie,

2011; Mihaylova and Shaw, 2011), which positively regulates the

signaling pathways that replenish cellular ATP supply.

There are some limitations to this study. Although LPS is an

important myocardial inhibitory factor, the predisposing factors

for cardiac dysfunction are not limited to Gram-negative

bacteria-induced sepsis. Therefore, we will further explore the

metabolic alterations and pathogenic mechanisms associated

with Gram-positive bacteria-induced SIMD in the future.

5 Conclusion

In summary, significant changes in metabolites occur in

the cardiac tissues of patients suffering from SIMD. These

changes are primarily associated with mannose metabolism,

aminoglycan metabolism, starch metabolism, unsaturated

fatty acid biosynthesis, platelet activation, purine

metabolism, and AMPK signaling pathways. The problems

associated with the aberrant metabolic events can be

addressed to help improve the prognoses of patients with

SIMD and provide new insights into the processes associated

with diagnosis and disease management.
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Profiling of mRNA expression is an important method to identify biomarkers but

complicated by limited correlations between mRNA expression and protein

abundance. We hypothesised that these correlations could be improved by

mathematical models based on measuring splice variants and time delay in

protein translation. We characterised time-series of primary human naïve CD4+

T cells during early T helper type 1 differentiation with RNA-sequencing and

mass-spectrometry proteomics. We performed computational time-series

analysis in this system and in two other key human and murine immune cell

types. Linear mathematical mixed time delayed splice variant models were used

to predict protein abundances, and the models were validated using out-of-
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sample predictions. Lastly, we re-analysed RNA-seq datasets to evaluate

biomarker discovery in five T-cell associated diseases, further validating the

findings for multiple sclerosis (MS) and asthma. The new models significantly

out-performing models not including the usage of multiple splice variants and

time delays, as shown in cross-validation tests. Our mathematical models

provided more differentially expressed proteins between patients and

controls in all five diseases. Moreover, analysis of these proteins in asthma

and MS supported their relevance. One marker, sCD27, was validated in MS

using two independent cohorts for evaluating response to treatment and

disease prognosis. In summary, our splice variant and time delay models

substantially improved the prediction of protein abundance from mRNA

expression in three different immune cell types. The models provided

valuable biomarker candidates, which were further validated in MS and asthma.

KEYWORDS

proteomics, RNA-seq, T-cell differentiation, biomarkers, multiple sclerosis

1 Introduction

Identifying biomarkers that can be used in clinical routine to

diagnose patients, monitor disease and response to treatment is

required for more precision-based medicine (Mayeux, 2004;

Chase Huizar et al., 2020). The complex etiology behind many

diseases, potentially involving multiple genes and proteins across

multiple cell types, renders biomarker discovery for most

complex diseases challenging (Rifai et al., 2006).

Proteins are regarded as optimal biomarkers as they are

often directly connected to patho-physiological processes as

well as serving as targets for many therapeutic interventions (Ek

et al., 2021). Whereas measuring global protein levels in a

clinical setting remains challenging, gene expression profiling

can be readily performed on the limited amount of material

obtained from most clinical sampling procedures.

Combinations of mRNAs can have high diagnostic efficacy

in multiple diseases (Gustafsson et al., 2014; Mao et al., 2018;

Gawel et al., 2019; Cha et al., 2020). Ideally, mRNA profiling of

clinical samples could be used to identify protein biomarkers

for diagnoses, subtyping of diseases and evaluating treatment

response.

mRNA expression has often been used to determine

corresponding protein levels, even though the accuracy of

such estimations can be very imprecise (Gygi et al., 1999;

Fortelny et al., 2017). Indeed, the correlation between mRNA

and protein expression is often poor (Gygi et al., 1999; de

Sousa Abreu et al., 2009; Maier et al., 2009; Vogel and

Marcotte, 2012; Fortelny et al., 2017), which becomes

highly problematic when using mRNA expression as proxy

for protein levels. Several strategies have been proposed to

circumvent this issue using more dynamic approaches, as

compared to steady-state approximations, accounting for

example for spatial and temporal variations in both mRNA

and protein expression (Liu et al., 2016; Kuchta et al., 2018).

The discrepancy between mRNA and protein abundance is

also due to several other factors, including but not limited to

differences in the rates of translation and degradation between

proteins and cell types (Wethmar et al., 2010). The large

number of potential transcript isoforms that can be

generated from the same gene due to alternative splicing as

well as cell type-specific differences in splice variant use

represent additional layers of complexity that complicate

the correlation between mRNA to protein (Barbosa-Morais

et al., 2012; Floor and Doudna, 2016). To our knowledge,

leveraging the contribution and dynamics of different splice

variants to infer protein abundance remains largely

unexplored.

Here, we developed a novel method incorporating time

delay and splice variants to improve protein level inference

from mRNA expression. To test our approach, we performed

RNA-seq and mass spectrometry proteomics analysis during

early human TH1 differentiation and used a machine learning

modelling approach to infer the relationship between mRNA

and protein abundance. TH differentiation is an optimal

model system to dissect the relationship between mRNA

and protein as 1) primary human naïve TH (NTH) cells

can be isolated with high purity and in large quantity from

human blood (ii), all NTH cells are synchronised in the G1

phase of the cell cycle, further reducing inter-cell

heterogeneity (Sprent and Tough, 1994) and 3) easy access

to large quantities of material enabling relative quantification

of mRNA and associated protein abundance to be assayed

over time (Schmidt et al., 2018). Moreover, TH cells are

important regulators of immunity and thereby associated

with many complex diseases, and TH1 differentiation itself

is pathogenetically relevant in several diseases (Raphael et al.,

2015). The utilised models were based on a time delayed

linear model between mRNA splice variants of the same gene

and protein levels. We generalised the model by applying it
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onto recent data from human regulatory T (Treg) cell and

murine B cell differentiation. By combining the strength of

time-series analysis and RNA-sequencing, we noted a much

better agreement between our mRNA-based measures and

proteomics. To test our models, we showed the potential

clinical usefulness by predicting potential biomarkers in five

complex diseases using our derived models. Analysis of these

predicted proteins in asthma and multiple sclerosis (MS)

supported their biological relevance. Finally, we validated

one of the predicted biomarkers, sCD27, using two

independent cohorts of MS patients, which showed a

remarkably better stratification between patients and

controls than any of our previously reported protein

biomarkers. The application of our approach to multiple

different cell types, species and diseases shows its general

applicability to increase the power of mRNA-based studies

for biomarker discovery.

2 Materials and methods

2.1 Isolation of naïve CD4+ T helper cells
and TH1 polarization

Peripheral blood mononuclear cells (PBMC) were isolated

from blood donor derived buffy coats (n = 12), purchased at the

blood bank facility at Linköping University Hospital, through

gradient centrifugation using Lymphoprep™ (Axis Shields

Diagnostics, Dundee, Scotland). Naïve CD45RA+ CD4+ T cells

were isolated with negative immunomagnetic selection using the

“Naive CD4+ T Cell Isolation Kit II, human” (Miltenyi Biotec,

Bergisch Gladbach, Germany) according to the instructions

provided by the manufacturer. Cells were suspended in RPMI

1640 media containing L-glutamine, 10%FBS and 1% Penicillin/

Streptomycin mixture (all from Gibco, Thermo Fisher Scientific,

Waltham, MA, United States) and subsequently activated and

FIGURE 1
RNA-seq and mass-spectrometry analysis of TH1 differentiation revealed highly variable correlations. (A) Experimental design. (B) Heat map of
transcript and protein abundance dynamics in genes that show significant negative (left) and positive (right) correlations. Genes of particular
relevance for T cells and T cell differentiation are highlighted in the figure. (C) Examples of transcript splice variants showing that both STX12 (left) and
IL7R (right) were significantly negatively and positively correlated with protein levels. (D) Illustration of themodelling procedure for resolving the
poor correlation, using STX12 as an example.
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polarized towards TH1 using Dynabeads™ Human T-Activator

CD3/CD28 (1 bead/cell) (Dynal AS, Lillestøm, Norway), 5 ng/μl

recombinant human IL-12p70, 10 ng/μl recombinant human IL-

2 and 5 μg/μl anti-IL-4 antibodies (clone MAB204; all three from

Bio-Techne, Minneapolis, MN, United States). The cells were

cultured and differentiated at 37°C, with 5% CO2 for 0 min, 0.5, 1,

2, 6 and 24 h for RNA-seq and 0 min, 1, 2, 6, 24 h and 5 days for

proteomics (Figure 1A). The earliest time point for the RNA-seq

time series was determined based on the change in expression of

IL2, IFNG and TBX21 at 3, 5, 10, 15, 30 and 60 min of

TH1 differentiation, measured by qPCR, where the expression

of IL2 and IFNG was significantly increased after 30 and 60 min

(p < 0.05, Student’s t-test) (See Supplementary Methods and

Supplementary Figure S1). After cell culture, the cells were

processed for RNA and protein extraction. An overview of the

study is shown in Figure 1A and Supplementary Figure S2.

2.2 RNA-sequencing

2.2.1 Extraction of RNA
RNA was isolated using the ZR-Duet DNA/RNA kit (Zymo

Research, Irvine, CA, United States) following the protocol

provided by the manufacturer. The RNA was stored at −80°C

until library preparation.

2.2.2 Library preparation and sequencing
The RNA library preparation and subsequent RNA-

sequencing (RNA-seq) were carried out by the Beijing

Genomics Institute (https://www.bgi.com/global/). Library

preparation was performed using the TruSeq RNA Library

Prep Kit v2 (Illumina, San Diego, CA, United States). Each

sample was sequenced to the depth of 40 million reads per

samples with pair end sequencing and a read length of 100 bp on

an Illumina 2500 instrument (Illumina).

2.2.3 RNA-seq analysis
All RNA-seq data, both in-house and public, were processed

similarly using the following pipeline: Sample qualities were

assessed with fastQC (Version 0.11.8) and the mRNA reads

were subsequently aligned using STAR (version 2.6.0c) (Dobin

et al., 2013), with the parameter “--outSAMstrandField

intronMotif” and “--out Filter Intron Motifs Remove

Noncanonical,” to the “Homo_sapiens.GRCh37.75.dna.

primary_assembly.fa” from Ensemble. The resulting read

alignment bam files were assembled into transcripts with

StringTie (version 1.3.4d) (Pertea et al., 2015), with default

parameters, using the GRCh37.75 gtf annotation from

Ensemble. To evaluate mRNA to protein relationship, the

mRNA reads were mapped to the mass spectrometry signal of

protein abundance using the Homo.sapiens and Mus.musculus

package in R (BC., T., 2015a; BC., T., 2015b). Correlations were

calculated using Pearson correlations across gene expressions,

i.e., one coefficient per gene.

2.3 Mass spectrometry

2.3.1 Protein extraction
The cells were thawed and resuspended in 100 μl of 8 MUrea

in 40 mM Tris-HCl (pH 7.6) (Sigma-Aldrich, Saint Louis, MO,

United States). Ten million cells per time point and biological

replicate were pooled from 3–5 samples from different

individuals to reach the necessary amount of material

required for subsequent analysis steps. In total, cells were

isolated from 12 different individuals to achieve the necessary

amount of material. The suspension was sonicated using focus

sonicator (Sonic Dismembrator 500, Thermo Fisher Scientific,

Waltham, MA, United States) for 3 cycles of 10 s pulse with 10 s

intervals at 10% of power. After sonication, a magnetic rack was

used to remove the T-Activator beads used for the polarization.

Protein concentration was measured using the Pierce™ BCA

Protein Assay Kit (Thermo Fisher Scientific). 40 ug of each

sample were used for digestion.

2.3.2 In solution digestion
Reduction and alkylation of disulfide bonds on proteins were

carried out using 1 M dithiothreitol (Roche, Switzerland; final

sample concentration 10 mM) for 45 min and 1 M

Iodoacetamide (Sigma-Aldrich; final sample concentration

30 mM) for 30 min in a dark, respectively. Following

alkylation and reduction, the samples were diluted with

ammonium bicarbonate buffer (pH 8.0) until the urea

concentration was 1 M (Sigma-Aldrich). The proteins were

digested with trypsin (MS grade; Promega, Madison, WI,

United States) overnight at 37°C at an enzyme to protein ratio

of 1:20. Finally, the peptides were acidified with 100%

Trifluoroacetic acid (TFA; Sigma-Aldrich) to a final

concentration of 1% TFA and then desalted using macro spin

columns (Harvard apparatus, Holliston, MA, United States).

2.3.3 TMT labeling
Peptides were labeled with 6-plex TMT reagent using

manufacturer’s protocol with some modification (Thermo

Fisher Scientific). The six peptide samples from each time series

were resuspended in 100 μl of 100 mM TEAB buffer (pH 8.0;

Sigma-Aldrich) and a unit of each TMT reagent was resuspended

in 40 μl of acetonitrile. Subsequently, the prepared TMT reagent

was transferred to the peptide sample and then vortexed. The

samples were incubated for 2 h at room temperature (RT). The

labelled peptide samples from each time series were pooled and

concentrated by vacuum centrifugation. The labelled sample was

resuspended 100 μl with 10 mM ammonium formate (Sigma-

Aldrich) in water (pH 10).
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2.3.4 High pH fractionation
The TMT labelled samples were separated using an analytical

column (Xbridge, Waters, MA, United States; C18, 5 μm,

4.6 mm × 250 mm) on the Agilent 1200 series HPLC system

(Agilent Technologies, Santa Clara, CA, United States). Peptides

were eluted using following gradient over 115 min: 0–10 min 0%

B, 10–20 min 5% B, 20–80 min 35% B, 80–95 min 70% B,

95–105 min 70% B, 105–115 min 0% B; 10 mM ammonium

formate (pH 10; Sigma-Aldrich) was mobile phase A, and

10 mM ACN (pH 10) was mobile phase B. The 96 fractions

were added up into 24 fractions, vacuum dried and stored

at −80°C after desalting.

2.3.5 LC-MS analysis
The fractionated peptides were analysed on an Orbitrap

Fusion Lumos Tribrid Mass Spectrometer (Thermo Fisher

Scientific) coupled with the Easy-nLC 1200 nano-flow liquid

chromatography system (Thermo Fisher Scientific). The peptides

from each fraction were reconstituted in 0.1% formic acid and

loaded on an Acclaim PepMap100 Nano-Trap Column

(100 μm × 2 cm; Thermo Fisher Scientific) packed with

5 μmC18 particles at a flow rate of 5 μl per minute. Peptides

were resolved at 250-nl/min flow rate using a linear gradient of

10%–35% solvent B (0.1% formic acid in 95% acetonitrile) over

95 min on an EASY-Spray column (50 cm × 75 µm ID), PepMap

RSLC C18 and 2 µm C18 particles (Thermo Fisher Scientific),

which was fitted with an EASY-Spray ion source that was

operated at a voltage of 2.3 kV. Mass spectrometry analysis

was carried out in a data-dependent manner with a full scan

in the mass-to-charge ratio (m/z) range of 350 to 1,800 in the

“Top Speed” setting, 3 seconds per cycle. MS1 and MS2 were

acquired for the precursor ions and the peptide fragmentation

ions, respectively. MS1 scans were measured at a resolution of

120,000 at anm/z of 200. MS2 scan was acquired by fragmenting

precursor ions using the higher-energy collisional dissociation

method and detected at a mass resolution of 30,000, at an m/z of

200. Automatic gain control for MS1 was set to one million ions

and forMS2 was set to 0.1 million ions. Amaximum ion injection

time was set to 50 ms for MS1 and 100 ms for MS2. Higher-

energy collisional dissociation was set to 35 for MS2. Precursor

isolation window was set to 0.7m/z. Dynamic exclusion was set

to 35 s, and singly charged ions were rejected. Internal calibration

was carried out using the lock mass.

2.3.6 Peptide and protein identification
The obtained data were analysed using MaxQuant (version

1.6.0.1). MS raw data were searched using Andromeda algorithm

with matching to the Uniprot human reference (released in

November 2017). A specificity of trypsin was determined at

up to 2 missed cleavages. In modification,

carbamidomethylation, TMT 6-plex modification at lysine and

N-termination were set as the fixed modifications, and oxidation

of methionine was set as a variable modification. The false

discovery rate (FDR) for peptide level was evaluated to

0.01 for removing false positive data. For highly confident

quantifications of protein, protein ratios were calculated from

two or more unique quantitative peptides in each replicate. Data

was normalized and removed contaminant and razor peptide. To

enrich differentially expressed proteins (DEPs), we analysed the

quantitative ratios (as the Log2 value). The fold-change ratio cut

off was more than 2 or less than 0.5 based on intensity of 0 min.

Searched data went through statistical process with Perseus

(version 1.5.1.6).

2.4 Mathematical modelling

2.4.1 Splice variant model construction
We hypothesized that protein abundance could be predicted

using a linear combination of the corresponding splice variants.

To predict protein abundance, we used the Sklearn (Pedregosa

et al., 2011) implementation of the LASSO (Tibshirani, 1996), an

L1-penalized linear regression model.

min
β, ∈ Re

{
1
N

����Y − βX
����2 + λ

����β
����1}

Here, the time series of one protein is denoted the vector Y,

and the corresponding time series of the splice variants are

denoted by the matrix X. The rate constant for each splice

variant is contained in the vector β. Furthermore, the λ
parameter regulates the influence of the L1 term and was

determined individually for each protein. The λ term was

chosen to minimize the prediction error of a leave-one-out

cross validation. In the TH1 dataset, the time points differed

such that the mRNA abundance also had a measurement at

t = 30 min, while the protein data instead had a measurement

of t = 120 h. For comparison, the protein data for 30 min was

interpolated, while the 120 h time point was omitted. The

same procedure was performed using the Treg data from

(Schmidt et al., 2018) where Treg were induced by either

TGF-β, TGF-β and ATRA, or TGF-β and butyrate. Lastly, the

same procedure was performed for mice B cells where B cell

differentiation was induced by the Ikaros transcription factor

(Gomez-Cabrero et al., 2019) (GSE75417).

2.4.2 Time delay analysis
The effect of time delays between mRNA and protein was

analysed since this might affect the prediction of protein

abundance. First, we considered the TH1 data and linearly

interpolated between 0 and 24 h for both the mRNA

expression and protein abundance data with a quadratically

increasing distribution between the time delays. In total,

200 time series were interpolated, such that the difference

between the first time points was 43 s, and the difference

Frontiers in Molecular Biosciences frontiersin.org05

Magnusson et al. 10.3389/fmolb.2022.916128

353636

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.916128


between the last samples was 15 min. In the updated model, we

added a protein specific time delay τ to regulate which time point

of splice variant expression should be used. As an example, a τ =
0.5 h would result in splice variant abundance of t = [0, 1, 2, 6,

24 h] predict protein abundance interpolated at t = [0.5, 1.5, 2.5,

6.5, 24.5 h]. Full details on the models can be found in

Supplementary Table S1.

min{
1
N

����Y(t + τ) − βX(t)����2 + λ
����β
����1}

2.4.3 Cross validation
To select the values of λ and τ, a double cross-validation was

performed (Supplementary Figure S3). First, one of the time

points of the protein measurements was removed from the set,

leaving only 5 data points. Secondly, a leave-one out cross-

validation was performed on the remaining 5 time points,

giving an estimate of the accuracy of the model approach

given a time delay and a lambda value for the penalty term in

the Lasso operator. We used the 200-time delays ranging between

0 and 24 h, and a varying set of lambda parameters (increased

until all parameters equaled zero). Thirdly, the time delay and

penalization that generated the smallest average squared

residuals between the second cross-validation and the data

were chosen and used to predict the sixth data point from

splice variants. Fourth, this double cross-validation procedure

was repeated for all 6 data points.

2.5 Differential expression analysis

The raw counts of each transcript were z normalized, and, in

the case of predicted protein, combined using the transcript-

specific coefficient from the linear model. Next, differential

expression was analysed using a non-parametric Kruskal-

Wallis test as implemented in the SciPy Python package. We

used the Benjamini Hochberg false discovery rate (FDR) when

accounting for multiple testing.

2.6 Disease prediction

Disease relevance of the splice variant models was tested by

re-analysis of RNA-seq case and control material of samples

containing conventional CD4+ T-cells, i.e., CD4+ T-cells with all

its sub-types. We found T-cell prolymphocytic leukaemia

(T-PLL, GSE100882), asthma in obese children (GSE86430),

and allergic rhinitis/asthma (GSE75011) studies through a

Gene Expression Omnibus (GEO) repository search and MS

through collaboration (James et al., 2018). For each of the studies,

we used the TH1 and Treg derived models on how to combine

mRNA splice variants to predict protein abundance. The

resulting sets of predicted protein levels were tested for

differential expression between patients and controls using a

non-parametric Kruskal-Wallis test. We also applied Kruskal-

Wallis tests to the individual splice variants that were used by the

models. We assessed model effects by measuring the increase in

nominally differential expression from model predictions

compared to ingoing splice variants into the model. In the

study of MS, we performed a specific gene selection and

performed FDR correction using the Benjamini Hochberg

selection procedure (FDR < 0.05). Using protein data from

two of the largest biomarker studies in MS (Huang et al.,

2020; Mahler et al., 2020), we compared the protein

measurements with our predicted proteins. One study

reported 36 out of 92 proteins as significant (Huang et al.,

2020) and another study (Mahler et al., 2020) reported the

expression of four proteins whereof two were significant. We

found that the expression of all our predicted differentially

expressed protein agreed with the two studies (9/9 negatively

reported from first study and 1/1 negatively and 1/1 positively

reported from second study) and the corresponding P-value was

calculated as ((92–36)/92)9 x (2/4)2 = 2.9 × 10−3.

2.7 Protein validation

2.7.1 Patients and controls
Cerebrospinal fluid (CSF) was collected from a cohort of

41 patients with newly diagnosed clinically isolated syndrome

(CIS) or relapsing remitting MS (RRMS) (Supplementary Table

S2) that has been described in more detail elsewhere (Håkansson

et al., 2018). All patients fulfilled the revised McDonald criteria

from 2010 (Polman et al., 2011). The patients were followed, and

new samples obtained after one, two and 4 years. Disease activity

was assessed using “no evidence of disease activity” (NEDA),

defined by no clinical relapses, no sustained EDSS progression

and no new T2 or Gadolinium enhancing lesions. 12 patients at

the two year- and 7 patients at the 4-year follow-up were

classified as NEDA, whereas patients with relapses, brain MRI

activity and sustained disease progression were classified as

“evidence of disease activity” (EDA; n = 27 and n = 32 at two

and 4 years, respectively). Two patients did not complete the

study (Håkansson et al., 2018). Twenty-three healthy age-and

sex-matched blood donors were included as controls. A second

cohort of CSF samples from 16 Natalizumab-treated patients

with RRMS or secondary progressive MS (SPMS) was also

included. CSF samples were obtained (out of a total of

≈70 included patients with RRMS or SPMS) before and after

1 year of treatment with Natalizumab (Supplementary Table S2).

This study cohort has been described previously (Mellergård

et al., 2010; Mellergård et al., 2013; Gustafsson et al., 2014). All
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patients were recruited at the Department of Neurology,

Linköping, University Hospital Sweden and both patients and

controls gave written consent prior to inclusion. The study was

approved by The Regional Ethics Committee in Linköping.

2.7.2 Protein measurements
Quantification of sCD27 was performed using the Human

Instant ELISA™ kit from eBioscience (Thermo Fischer Scientific)

according to the instructions provided by the manufacturer. The

optical densities (O.D.) were read at 450 nm with a wavelength

correction at 620 nm in a Sunrise™ microplate reader (Tecan,

Männedorf, Switzerland). Data acquisition was performed using

Magellan™ version 7.1 computer software (Tecan). The lowest

detection limit was 0.63 U/ml and values below the detection

limit were given half the value of the detection limit. Statistical

differences were determined using Mann-Whitney U-test or

Wilcoxon matched-pairs signed rank test (Graphpad Prism

v7.04, San Diego, CA, United States). Annexin A1, measured

by the human Annexin A1 ELISA kit (Abcam, Cambridge,

United Kingdom), was undetectable in all analysed samples

(n = 32, of whom n = 16 samples were included before and

n = 16 after 1 year of treatment with Natalizumab). Multiplex

Bead Technology (MILLIPLEX®MAP Kit, Cat. #: HCYTOMAG-

60K-01, Merck Millipore, Burlington, MA, United States) was

used to measure soluble CD40L according to the manufacturer’s

description. The samples were analysed on a Luminex®200™
instrument (Invitrogen, Carlsbad, CA, United States) and data

was collected using xPONENT 3.1™ (Luminex Corporation,

Austin, TX, United States) analysed using the MasterPlex®

Reader Fit (MiraiBio Group, Hitachi Solutions America Ltd.,

San Bruno, CA, United States). The lowest detection limit was

1.6 pg/ml and values below the detection limit were given half the

value of the detection limit. sCD40L concentration was below the

lowest detection limit in 71 out of 96 samples (74% undetectable)

and was therefore considered as undetectable.

3 Results

3.1 A significant portion of T-cell genes
showed diverse correlations between RNA
splice variants and proteins

To generate accurate mRNA and proteinmodels, considering

the major factors of time delay and splice variant usage, we first

developed a model by analysing early TH1differentiation. This

was done by performing time series transcriptomic (RNA-seq)

and proteomics (mass spectrometry) analysis at six different time

points, from 30 min to 5 days, during TH1 differentiation,

whereof five time points were paired between the omics and

could be further used to infer correlations between mRNA and

protein (Figure 1A and Supplementary Figures S3, S4). We found

a total of 15,699 genes and 6,909 proteins to be expressed during

early TH1 differentiation. Out of the 6,909 expressed proteins,

5,749 could be mapped to genes and out of those, 4,920 were also

found to be expressed at the transcriptomic level. As expected, a

significant proportion of the 4,920 genes showed a significant

positive correlation between mRNA and protein levels (n = 407,

expected 123 out of 4,920, binomial test p < 10–93) during TH1 cell

differentiation. Interestingly, a significant fraction of negatively

correlated genes was also observed (n = 205, expected 123, p <
10–11) (Figure 1B and Supplementary Table S1). Notably, the

overall median Pearson correlation (rho) between mRNA and

protein was only 0.21. Analysis of the distribution of the

correlation coefficients revealed significant enrichments of

both positive and negative correlations between splice variants

and their corresponding proteins (binomial test for enrichment

of significant negative correlation p < 1.3 × 10–3, odds ratio =

1.48) (Figure 1C and Supplementary Figure S5). For example, the

known T-cell associated genes, IL7R and STX12 (Kanduri et al.,

2015), contained multiple splice variants, of which several were

positively or negatively correlated to their corresponding protein

levels (Figure 1C). Given the large variation in correlation

between different splice variants of a given gene and its

corresponding protein, we proceeded to construct predictive

splice variant models of protein abundance.

3.2 A linear model combining the
expressions of multiple splice variant
transcripts showed substantially stronger
correlations with protein abundance than
individual transcripts

In order to construct generally applicable and predictive

mRNA-to-protein models, we applied a simple linear relation

between the protein abundance of a gene and its associated

mRNA splice variants. Furthermore, we allowed for different

translation times for each gene. Firstly, we used a cross-validated

L1 penalised linear regression model to favour simple models

using single splices without any time delays (Figure 1D). The

rationale for the L1 penalty was to effectively remove splice

variants that carry little or no predictive power over protein

abundance. In practice this resulted in maximum of three splice

variants per protein for the TH1 model, which is a method

limitation due to the few data points and our regularisation.

This simple model resulted in a median gene-protein correlation

of rhoTH1 = 0.86 using cross-validated predictions (Figure 2A).

Likewise, to test the generality of the approach we also trained

similar models for two existing mRNA-protein time-series

datasets with similar results, that is from human Treg cells

(Schmidt et al., 2018) (rhoTreg = 0.79) and mice B cells

(Gomez-Cabrero et al., 2019) (GSE75417) (rhoBcell = 0.94)

(Figure 2A). Next, to test whether the increase in correlation

was due to the incorporation of negatively correlating splice

variants, multiple transcripts, or time delay, we also constructed
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such models without each of these parameters. Importantly, our

model outperformed the models using only the most highly

correlated splice variant for each gene (rhoTH1 = 0.71, rhoTreg =

0.44, rhoBcell = 0.52), and the models using multiple transcripts

but without a time delay (rhoTH1 = 0.74, rhoTreg = 0.69, rhoBcell =

0.45) (Figures 2B,C), thus demonstrating that both multiple

dynamical splice variants and time delay increase the fit of

data and are needed for optimal performance.

To define the optimal time delays between splice variants and

proteins, we analysed the time delay distributions and found it to

have a mean of 8 h 17 min, 6 h 18 min and 8 h 49 min for TH1,

Treg and mice B cells, respectively. The detailed parameters of our

models are fully displayed in Supplementary Table S1. Next, by

using double cross-validation we confirmed that our models

could do out-of-sample prediction significantly better than

conventional gene expression-based models of protein

abundance (binomial test; pTH1 = 10–297 (expected 14.4 of

28.9, observed 18.0), pTreg = 10–247 (expected 21.2 of 43.5,

observed 25.2), pmice B = 10–59 (expected 2.3 of 5.5, observed

3.3)), and better than static splice variant models which did not

include time delays (pTH1 = 10–1459 (expected 14.8 of 29.6,

observed 21.8), pTreg = 10–8 (expected 22199 of 44397,

observed 22811), pmice B = 5 × 10–4 (expected 2.6 of 5.5,

observed 2.9), Figure 2C). Moreover, we used time-point

scrambling and dynamical correlation analysis to show that

our analysis was not seriously affected by time-dependences

within the time-series (data not shown). In summary, we have

identified simple linear models of mRNA splice variants and time

FIGURE 2
Multiple transcripts and time delays increased mRNA and protein correlations significantly in multiple cell types. (A) Gene/protein Pearson
correlations in TH1 (left), Treg (middle), and murine B-cell (right) differentiation. In the histogram, the grey curve shows the correlation distribution
when the sumof all splice variant expressions of a transcript (Fortelny et al., 2017) is used to quantifymRNA abundance (median: dashed line), while in
the blue histogram our time delayed multiple splice variant based models are used (medians: solid lines at 0.86, 0.79, and 0.94 for TH1, Treg and
murine B-cells, respectively). Only cross-validated protein predictions are shown for the proteins for which the null-model could be rejected. (B)
Out-of-sample cross validation prediction of the three models. Aiming to quantify the predictive power of each added input to the model, we
observed that a linear model with gene-specific time delays was themodel that generated predictions with the smallest sumof squared residuals. (C)
Median correlation coefficients (rho) for different mathematical protein prediction models derived from mRNA with increasing protein abundance
correlations. P-values were derived from predictions using leave-one-out cross-validation.
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delay which could be used to model the time courses in T- and

B-cell differentiation (see the full models in Supplementary Table

S1). We would like to emphasize that this is a minimal

requirement for mRNA-protein models to be meaningful, so

we proceeded to analyse if the models were useful to translational

research by identifying biomarkers in complex diseases.

3.3 The models showed increased
biomarker sensitivity which were further
verified in multiple sclerosis and asthma

Lastly, we aimed to test the potential usefulness of our

derived models for the identification of protein biomarkers by

applying them on available RNA-seq datasets from human total

CD4+ T cells. We found datasets for five different diseases

(Seumois et al., 2016; James et al., 2018; Johansson et al.,

2018; Rastogi et al., 2018); asthma, allergic rhinitis, obesity-

induced asthma, pro-lymphocytic leukaemia, and MS, as well

as corresponding controls. Because our models correlated well to

protein abundances, we hypothesised that differential expression

tests using the predicted proteins between patients and controls

would be more sensitive than testing directly on the mRNA

expression for all splice variants individually. Indeed, we

observed that the fraction of nominally differentially expressed

genes was higher than using an individual differential expression

analysis in all comparisons (binomial p < 9.8 × 10–4). Moreover,

we consistently observed a higher enrichment for the TH1 model

compared to the Treg model (p < 0.03) (Figure 3A), with the

highest enrichments in MS and asthma. We therefore proceeded

to use our TH1 model on MS and asthma.

First, we compared our MS findings with previously reported

proteins using two large biomarker studies (Huang et al., 2020;

Mahler et al., 2020) of MS and found a significant agreement

comparing our nominal predictions (binomial p < 2.9 × 10–3; see

Methods). Then, we found 20 genes with FDR<0.05, of which
none were detected at 20% FDR level by testing for differential

expression on the mRNA expression data directly

(Supplementary Table S3). Interestingly, eight of the 20 genes

had previously been associated with MS (Figure 4 and

Supplementary Table S3). To further justify the relevance of

the added genes we analysed if CSF levels of these proteins were

related to clinical outcome and immunomodulatory treatment in

two independent cohorts, newly diagnosed MS patients

(clinically isolated syndrome (CIS) and relapsing/remitting

MS, n = 41) vs. healthy controls (HC, n = 23), and response

to Natalizumab treatment in relapsing remittingMS patients (n =

16). In both cohorts, only sCD27 was present in CSF at a

detectable level (Supplementary Table S4), while Annexin

A1 and sCD40L were not. Analysis of all patients (n = 57) vs.

HC (n = 23) showed high separation (AUC = 0.88, non-

parametric p = 3.0 × 10–8, Figure 3B), and treatment with

Natalizumab reduced the sCD27 levels by 34% (p = 4.9 ×

10–4). Notably, sCD27 levels at baseline of newly diagnosed

MS and CIS patients were able to predict disease activity after

4 years follow up (AUC = 0.87, p = 1.2 × 10–3, Figure 3C), which

was a stronger prediction than that of all our previously reported

14 biomarkers (Håkansson et al., 2018). Taken together, using

the splice variants-to-protein model we were able to uniquely

identify and validate biomarkers of MS in an independent patient

cohort, while these genes could not be discovered using previous

state-of-the-art test for differential gene expression.

For asthma we found six of the top 20 genes that were

differentially expressed (determined by conventional mRNA

expression) to be previously associated with the disease

(Supplementary Table S5). Next, we analysed asthma-

associated genes uniquely identified by our model and found

seven additional genes to be associated with asthma

FIGURE 3
Proteins models led to the discovery of new potential biomarkers of complex diseases that were validated in multiple sclerosis (MS). (A)
Differential predicted protein (PP) analysis of five diseases using the TH1 (light blue) and Treg (dark blue) models showed higher fraction of nominally
significant genes than that of normal differential gene expression tests. (B)Measurement of actual protein levels of the predicted proteins in a cohort
of patients with early MS [clinically isolated syndrome (CIS)] vs. healthy controls (HC) (left side of the figure) and from a cohort of MS patients pre
vs. post 1-year treatment with Natalizumab (right side of the figure). sCD27 was measured in cerebrospinal fluid (CSF) using ELISA. (C) Receiver
operating curve using sCD27 concentration as a single prognostic marker of NEDA at four (solid line) and 2 years (dashed line) after CIS.
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(Supplementary Table S6). Interestingly, these genes had

previously also been reported to be relevant for the disease

(Enomoto et al., 2009; Nestor et al., 2014; Poole et al., 2014;

Dreymueller et al., 2015; Persson et al., 2015; Ferreira et al., 2017),

and are currently being evaluated as potential therapeutic targets

(Figure 4). Examples of those genes include NDRG1, which

regulates TH2 differentiation, a key driver in asthmatic

disease, downstream of the mTORC2 complex (Murray et al.,

2004; Heikamp et al., 2014), ADAM17, a metalloproteinase

involved in lung inflammation (Dreymueller et al., 2015),

PIEZ O 1, a mechanosensor regulating T cell activation (Liu

et al., 2018) and pulmonary inflammatory responses (Solis et al.,

2019), and the P-selectin ligand encoding gene SELPLG,

important for recruitment of lymphocytes to the airways

(Leath et al., 2005; Purwar et al., 2011). Furthermore, the

immunomodulatory genes TNFAIP8 and ARHGAP15 were

identified in GWAS studies as shared risk variants for several

IgE-mediated diseases including asthma, allergic rhinitis and

atopic eczema (Ferreira et al., 2017). Thus, we have validated

that our model can identify relevant biomarker candidates and

therapeutical targets also in the context of another immune-

mediated disease, i.e., asthma.

4 Discussion

In the present study we have shown that simple mRNA-

protein models, in which the protein expression is defined as a

linear combination of the splice variants of a gene with a time

delay accounting for the dynamical effect induced by post-

transcriptional processes and protein synthesis, can improve

our ability to predict protein abundance from mRNA

expression. Furthermore, we demonstrated the impact that

this finding can have within genome medicine by predicting

and validating biomarkers for MS and asthma. Throughout the

paper we aimed to increase the sensitivity in RNA-seq differential

expression analysis. Sensitivity was measured using the fraction

of nominally (p < 0.05) differentially expressed genes. This

FIGURE 4
Overview of detected potential biomarkers in asthma and MS. The model identified several proteins that have previously been identified in MS
and asthma. The upper panel shows the potential biomarkers identified in MS and the lower panel shows the same in asthma. *mRNA expression, ¤
identified in mice. PBMCs, peripheral blood mononuclear cells. References stated in the figure aColamatteo A et al., J Immunol, 2019; bAchiron A
et al., Ann N Y Acad Sci, 2007; cvan der Vuurst de Vries RM et al., JAMA Neurol, 2017; dWong YYM et al., Mult Scler, 2018; eMasuda H et al., J
Neuroimmunol, 2017; fde JG-GJ et al., Immunobiology, 2018; gBomprezzi R et al., HumMol Genet, 2003; hWanke F et al., Cell Rep, 2017; iAquino DA
et al., J Neuropathol Exp Neurol, 1997; jBonetti B et al., Am J Pathol, 1999; kEnomoto Y et al., J Allergy Clin Immunol, 2009; lFerreira MA et al., Nat
Genet. 2017; mPersson H et al., J Allergy Clin Immunol, 2015; nMurray JT et al., Biochem J, 2004; oNestor CE et al., PLoS Genet, 2014; pPurwar R et al.,
PLoS One, 2011.
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application revealed significantly more predicted biomarkers

than by using off-the-shelf methods for RNA-seq data analysis

only, which suggests increased sensitivity.

Despite being part of the central dogma and of uttermost

importance in biology and medicine, the prediction of protein

levels from mRNA levels has long been associated with low

precision, which has been a matter of debate (Fortelny et al.,

2017). Due to the complex process of mRNA-to-protein

translation, there are several aspects that need to be

considered (Liu et al., 2016). In this paper we thoroughly

addressed two presumed main aspects; 1) how to incorporate

splice variants into the prediction protein expression, and 2) how

to deal with the time delay of the translation between mRNA and

protein expression. Interestingly, both aspects were found to

impact prediction of protein abundance, as shown in our

combined model, although the incorporation of splice variants

influenced the protein abundance prediction the most. Herein,

we report splice variants to have a wider correlation profile, both

positive and negative, than what would be expected, and our

novel approach takes advantage of this anti-correlation between

splice variants and proteins. In previous work, the impact of

incorporating splice variants into protein predictions has been

analysed. These studies have focused on mechanistic cell type

independent factors such as splice variant-specific degradation

rates (Eraslan et al., 2019). Instead, we found that the correlations

were cell type-specific, and we constructed data-driven predictive

models. To construct those models, we performed activation of

NTH cells followed by time-series analysis, which enabled us to

infer the system based on its dynamics. A necessary requirement

for such as model was dynamical data covering a decent number

of time-points that allowed for the possibility of including

modelling of intermediate time-points and the inference of

time delays. However, the resulting Pearson correlations from

our model need to be taken cautiously as we could not do a

complete test as parts of the longitudinal data was visible to the

model. From our models we proposed a biomarker discovery

strategy which was validated in three steps. First, we found that

usage of these models in complex disease enabled identification

of more differentially expressed genes, which we therefore

predicted as potential biomarkers. Second, we noted that many

of the predicted proteins had previously been associated with MS

and asthma, confirming that our strategy predicts relevant disease

genes. Third, we validated one such protein as a biomarker in MS,

namely sCD27.While sCD27 has already been associated with MS

(van der Vuurst de Vries et al., 2017; Wong et al., 2018; Mahler

et al., 2020), our clinical analysis of two independent cohorts

yielded novel findings of remarkably good prognostic capabilities

for treatment response and 4 years disease activity, which is

important areas for early MS treatment selection.

Although incorporating splice variant information into the

model was the main influential factor on the correlation, time

delay also had an impact. The kinetics in translation of mRNA to

protein is of general interest given its crucial importance in the

design of experiments, for example in verifying relevance of

mRNA expression to protein expression. Such models should

ideally be functionally validated based on mechanistic principles,

described by ordinary differential equations, such as the ones

presented by for example Jovanovic et al. (2015). However, given

that time-series experiments are time- and labor intensive, as well

as expensive and predictive large-scale models are highly needed

for biomarker discoveries, a database that provides the relevant

time delay between mRNA expression and the expression of its

corresponding protein would be immensely valuable. Here, we

present such an atlas, comprising almost 5000 gene expression-

to-protein translation kinetics (Supplementary Table S1).

A limitation with the paper is that we investigated few key cell

types, namely TH1 cells, TREG cells and B cells whereof wet lab

experiments was only performed in one of these cell types. However,

we were able to transfer the approach to two other cell type re-using

data of other studies, demonstrating the robustness of the model

assumptions. Furthermore, the chosen cell types are central in

regulation of immune responses, and the TH cells indeed are

involved in many complex and common illnesses, like infectious,

allergic, autoimmune and cardiovascular diseases and cancer

(Farber, 2020).

In conclusion, we have constructed data-driven linear models

incorporating splice variant information and time delay to

predict protein expression from mRNA. We showed the

general applicability of our approach by developing robust

models for datasets from several cell types, and therefore the

general principle of the model should be applicable to other cell

types. For example, we expect this modelling strategy to be

generally applicable to other cellular differentiation systems,

such as embryonic stem cell differentiation, and to be

increasingly useful for understanding basic biology and

identification of new biomarkers as more RNA-seq and

proteomic data sets become publicly available. Finally, we

have shown that our proposed approach is of clinical

relevance for prediction of validated biomarkers.
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Overview of methods for
characterization and
visualization of a protein–protein
interaction network in a
multi-omics integration context

Vivian Robin1, Antoine Bodein1, Marie-Pier Scott-Boyer1,
Mickaël Leclercq1, Olivier Périn2 and Arnaud Droit1*
1Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC,
Canada, 2Digital Sciences Department, L’Oréal Advanced Research, Aulnay-sous-bois, France

At the heart of the cellular machinery through the regulation of cellular

functions, protein–protein interactions (PPIs) have a significant role. PPIs can

be analyzed with network approaches. Construction of a PPI network requires

prediction of the interactions. All PPIs form a network. Different biases such as

lack of data, recurrence of information, and false interactions make the network

unstable. Integrated strategies allow solving these different challenges. These

approaches have shown encouraging results for the understanding of

molecular mechanisms, drug action mechanisms, and identification of target

genes. In order to give more importance to an interaction, it is evaluated by

different confidence scores. These scores allow the filtration of the network and

thus facilitate the representation of the network, essential steps to the

identification and understanding of molecular mechanisms. In this review,

we will discuss the main computational methods for predicting PPI,

including ones confirming an interaction as well as the integration of PPIs

into a network, and we will discuss visualization of these complex data.

KEYWORDS

interactome, biological network, computational prediction, integrated strategies,
graphic view, protein-protein interaction

Introduction

Proteins are essential to life, controlling molecular and cellular mechanisms. Their

main role is to carry out cellular biological functions through interactions with molecules

or macromolecules (Pellegrini et al., 1999; Vinayagam et al., 2014; Fionda, 2019). These

interactions are organized in networks (Bersanelli et al., 2016) of various molecular

elements (e.g., protein–DNA and protein–drug) involved in physical and biochemical

processes in structured environments. Biological networks have been highlighted by the

work of Barabási and Oltvai (2004), who showed that cellular networks are governed by

universal laws. This new concept revolutionized the vision of system biology, initiating
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creation and analysis of the first protein–protein interaction

(PPI) network of yeast Saccharomyces cerevisiae (Dezso, Oltvai

and Barabási, 2003).

In the PPI network, proteins are represented by nodes, and

interactions between proteins by edges (Gursoy, Keskin and

Nussinov, 2008; Zou et al., 2018). The size of the network and

the amount of information (e.g., discovered node) varies between

species (Kotlyar, Rossos and Jurisica, 2017; Wang and Jin, 2017).

The number of PPIs is constantly changing due to complexity of

the genome and many interactions remain undiscovered (Safari-

Alighiarloo et al., 2014; Thanasomboon et al., 2020). PPIs can be

determined by high-throughput experiments such as co-

immunoprecipitation, two-hybrid screening, pull-down assays

(MacDonald, 1998; Lin and Lai, 2017; Louche, Salcedo and Bigot,

2017), or by computational methods. Experimental methods are

time-consuming, relatively expensive, and difficult to reproduce

(von Mering et al., 2002; Piehler, 2005; Browne et al., 2010;

Ngounou Wetie et al., 2013). In response to these challenges,

computational methods have emerged, showing promising

results in terms of performance to integrate functional

(i.e., same biochemical reaction) and physical interactions. A

physical interaction describes a physical contact between

proteins, as a result of biochemical events steered by

interactions including electrostatic forces, hydrogen bonding,

and the hydrophobic effect (Berne, Weeks and Zhou, 2009;

Nitzan, Casadiego and Timme, 2017). These computational

methods allow a more specific identification of interactions

than experimental prediction methods (Droit, Poirier and

Hunter, 2005; Shoemaker and Panchenko, 2007; Zhou, Li and

Wang, 2016).

Although PPIs from computational methods provide a better

prediction of physical interactions, PPI databases contain a few

false positive interactions (Peng et al., 2017; Luck et al., 2020).

One way to remove these false interactions is through integration

methods (as can be seen in session integration of a PPI network).

Following the integration of the data, it becomes possible to filter

PPI. To observe the resulting network and the proteins having a

role in mechanisms, visualization is a key step.

Visual representation allows to understanding PPIs and to

analyze networks (Iranzo, Krupovic and Koonin, 2016;

Armanious et al., 2020; Schneider et al., 2021; Sejdiu and

Tieleman, 2021). However, due to complexity of proteomes of

different organisms, visualization is a challenge (Crowther,

Wipat and Goñi-Moreno, 2021). Moreover, the density of the

graph representing the proportion of interactions in the network

compared to the total number of possible interactions makes

representation more difficult (Ren et al., 2013; Franzese et al.,

2019; Wu et al., 2019). To facilitate representation, the network is

divided into sub-networks (He and Chan, 2018; Farahani,

Karwowski and Lighthall, 2019). These sub-networks are

obtained by filtration or by decomposing the network

according to proteins of interest, with the concept of ego

network (Liu et al., 2019; Tian, Ju and Yang, 2019). Ego

networks are subgraphs centered on a seed node and

comprise all nodes connected at a defined distance from the

ego (seed node) (Zhou, Miao and Yuan, 2018; Malek, Zorzan and

Ghoniem, 2020). Sub-networks facilitate representation and

allow identification and understanding of cellular mechanisms,

core proteins, or biomarkers (Gehlenborg et al., 2010; Laniau,

2017; Hao et al., 2019).

In this review, we will discuss computational methodologies

for construction of PPI networks as well as integration and

validation of these networks. Next, we will discuss the

visualization aspect of a network by discussing its roles and

advantages and disadvantages of different visualization tools.

Computational methods for PPI
construction

Computational methods for predicting PPIs can be classified

into three prediction methods: based on the genomic context,

machine learning algorithm, and text mining (Table 1).

The methods can be combined to refine the prediction of

PPIs. Alachram et al. (2021) exploited text mining algorithms

mixed with machine learning algorithms to capture biologically

significant relationships between entities, including PPIs.

Methods based on genomic context

The genomic context refers to the structure of genomic data

(e.g., genes), as well as the statistical or mathematical methods to

test for gene, protein set association (Dimitrieva and Bucher,

2012; Mooney et al., 2014). Genomic context methods are usually

based on gene sequences, structure, and organization of genes on

the chromosome (Skrabanek et al., 2008; De Las Rivas and

Fontanillo, 2010; Reimand et al., 2012; Rao et al., 2014).

Domain fusion interaction prediction
method

Gene fusion leads to fusion proteins, which are an assembly

of several proteins encoded by different genes created by joining

(fusion) of one or more genes (Morilla et al., 2010; Latysheva

et al., 2016). This fusion results in a single or multiple

polypeptides that takes on the functional properties of each in

original proteins. The existence of a functional interaction

between protein A and protein B is based on the hypothesis

that if protein domains A and B of one species have fused

homologs in a single AB polypeptide in another species, then

domains A and B are functionally linked (Truong and Ikura,

2003; Chia and Kolatkar, 2004). The gene fusion method marked

a major turning point in methods for predicting PPIs. This

computational method, developed by Eisenberg et al. (2000),
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was the first computational method to find PPIs from the genome

of distinct species based on polypeptides (Marcotte et al., 1999).

The comparison of inter-species sequences can show AB

sequences, which are also called Rosetta stones because they

allow the interaction between A and B to be deciphered (Date,

2007). This method assumes that if the affinity of A and B

increases as B increases when A is fused to B, then pairs of

proteins may have evolved from proteins with A and B

interaction domains on the same polypeptide (Chia and

Kolatkar, 2004; Kamisetty et al., 2011). To improve this

method, Veitia, (2002) integrated eukaryotic gene sequences.

This incorporation increases robustness of AB polypeptide

prediction due to the larger volume of sequences in

eukaryotes. A question of equilibrium explains this increase in

robustness: the required concentrations of proteins A and B

cannot be higher than the equilibrium concentration of AB

polypeptides, proteins A and B cannot be separated. Despite

the addition of these sequences, few PPIs are found explaining a

limited interactome or many PPIs are missing (Latysheva et al.,

2016). This method is usually combined with other methods such

as machine learning methods (De Braekeleer, Douet-Guilbert

and De Braekeleer, 2014; Birtles and Lee, 2021). The accuracy

values, therefore, take several methods and are not specific to the

domain fusion method. Tagore et al. (2019) have developed the

ProtFus tool which combines machine learning, protein fusion,

and text mining methods to obtain accuracy values between 75%

and 83% to predict PPIs.

Conserved gene neighborhood

This method relies on neighbor gene conservation at the

genomic scale. This method compares the position of genes from

different genomes to predict potential interactions (Dandekar

et al., 1998). For example, a gene is always next to the B gene. Two

direct neighboring genes in different genomes suggest

interactions. This method is widely used in the prediction of

PPIs in eukaryotes (Rogozin et al., 2002). Nomenclature

discrepancies in ortholog genes, as well as the search of

orthologs that are adjacent on chromosome, explain the low

predictive coverage of PPIs (Raman, 2010; Lv et al., 2021).

Recently, this method in multi-omics integration has

confirmed that bacterial genomes are not randomly organized

and can form clusters depending on the local genomic context

(Esch andMerkl, 2020). They obtained an accuracy value of 55%.

As they mention, this type of method is not intended for the

discovery of direct interactions. Recently, a new tool: GENPPI

(Anjos et al., 2021), allowing the generation of PPI networks by

TABLE 1 Summary table of computational methods for the prediction of a protein–protein interaction. Computational methods for predicting PPIs
are grouped into three distinct categories: genomic context–based methods, machine learning, and text mining. Within each of these
approaches, several sub-methods exist. A database can be composed of interactions obtained by several prediction methods.

Main method Main advantage Main disadvantage Database

Genomic
context

Domain fusion, conserved gene
neighborhood, phylogenetic profiles,
and co-evolution (De Las Rivas and
Fontanillo, 2010; Raman, 2010; Rao
et al., 2014)

Interspecies comparison
requires few IT resources, fast
calculation

Low coverage rate, prediction,
using only genomic features

String (Szklarczyk et al., 2019), BioGRID
(Oughtred et al., 2021), Hippie
(Alanis-Lobato, Andrade-Navarro and
Schaefer, 2017), IntAct (Hermjakob et al.,
2004a), HPRD (Keshava Keshava Prasad
et al., 2009)

Machine
learning
algorithm

Supervised learning: support vector
machine, artificial neural networks,
naïve Bayes learning, decision trees
(Sarkar and Saha, 2019; Chakraborty
et al., 2021)

Handling multi-dimensional
and multi-variety data, high
efficiency

Data acquisition (massive
datasets), High error
susceptibility, requires significant
IT resources

String, BioGRID, IID (Kotlyar et al., 2019),
Hitpredict (Patil, Nakai and Nakamura,
2011)

Unsupervised learning: K-means,
hierarchical clustering (Bello-Orgaz,
Menéndez and Camacho, 2012; Lu
et al., 2021)

Text mining Extracting information from scientific
studies and references databases as
PubMed

Many publications are
available, rapidity of
execution, inexpensive, easily
accessible data

Requests that the interactions be
cited in the articles

String, BioGRID, MINT
(Chatr-aryamontri et al., 2007), IntAct,
HPRD (Keshava Prasad et al., 2009)

Using natural language processing
(NLP) technology

(Raja, Subramani and Natarajan, 2013;
Vyas et al., 2016; Badal, Kundrotas and
Vakser, 2018)
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taking into account evolutionary relationships that can only be

annotated from genomes, namely, conserved gene

neighborhoods (CN), phylogenetic profiles (PPs), and gene

fusions, has been introduced, showing that these three

methods mainly allow the annotation of missing data and

thus the understanding of a limited number of interactions.

At present, the tool is being tested in their laboratory.

Phylogenetic profiles

This method is based on the comparison of phylogenetic data

between gene families of different organisms (Pellegrini et al.,

1999; Škunca and Dessimoz, 2015). The phenotypic profile is

represented by a binary vector composed of values 0 and 1,

corresponding to the absence and presence of proteins in an

organism, respectively. Proteins with close or similar

phylogenetic profiles tend to be strongly functionally related

(Pellegrini, 2019). Ding and Kihara (2018) recently implemented

this approach to predict new interactions from known

Arabidopsis thaliana interactions. The phylogenetic profile

approach is combined with machine learning approaches.

This method allowed the detection of PPIs with high

precision and accuracy. In their work, the performance values

range from 75% to 93.2% accuracy.

Coevolution

Coevolution is a fundamental principle of evolutionary

theory. Coevolution is defined as the chain of transformation

events during the evolution of two species in a mutually

dependent manner (de Juan, Pazos and Valencia, 2013).

Coevolution results from selective pressure between two or

more species (Anderson and de Jager, 2020; Takagi et al.,

2020). The interactions of coevolved proteins can be kept

either by direct binding or by functional associations (Tillier

and Charlebois, 2009). If there is an interaction between two

proteins, when one protein mutates, the other protein might have

a compensatory mutation, otherwise; two proteins cannot

support stability or functions of the interaction during

evolution. The evolutionary pressure resulted in the

elaboration of co-evolutionary protein pairs in cells that keep

the interaction and therefore the function of the protein (Pazos

et al., 1997; Goh and Cohen, 2002; Xia et al., 2008).

The global advantage of methods based on the genomic

context is the interspecies comparison that requires high

computing resources (Sun et al., 2008; Pattin and Moore,

2009). The limitations of these methods are a limited number

of predicted PPIs, using only genomic features (Chiang et al.,

2007; Raman, 2010; Rao et al., 2014). Recent work by Green et al.

(2021) using coevolution had accuracy values of the order of 80%

showing promising results for the prediction of protein

interaction structures and interfaces. The work of Croce et al.

(2019) offered similar results in terms of accuracy for the

prediction of protein domain interactions.

The methods based on the genomic context are relevant for

evolutionary history analysis, small proteome size, or for

experimental verification, agronomic analysis on mutations, or

other variants (Koh et al., 2012; Zahiri, Bozorgmehr and

Masoudi-Nejad, 2013; Malik, Sharma and Khatri, 2017). On

the other hand, these prediction methods are less appropriate

for medical data analysis, especially for the search of driving

proteins in mechanisms due to the high complexity of the human

proteome (Kuzmanov and Emili, 2013; Zhong et al., 2019;

Swamy, Schuyler and Leu, 2021).

Methods based on the machine
learning algorithm

Machine learning (ML) belongs to the field of artificial

intelligence (AI) and computer science. ML algorithms learn

from already obtained data to predict outcomes in a specific

context (El Naqa and Murphy, 2015; Murdoch et al., 2019). This

field has undergone a considerable revolution in the last 10 years

with the emergence of promising newmethods for PPI prediction

(Ding and Kihara, 2018; Kotlyar et al., 2019; Das et al., 2020). ML

can be classified into two subclasses: supervised and

unsupervised learning. Supervised learning can be defined as a

machine learning task that learns to predict from labeled data,

conversely; unsupervised learning will learn to predict an

outcome on unlabeled data (Zhao, Wang and Wu, 2017;

Sarkar and Saha, 2019; Razaghi-Moghadam and Nikoloski,

2020).

Supervised learning method for PPI
prediction

Support vector machines
Support vector machines, developed by Vapnik, (1963);

(Cortes and Vapnik, 1995), build the best hyperplane to

separate training sample classes by a maximal margin, with all

positive samples lying on one side and all negative samples lying

on the other side. Hyperplane, in the framework of a PPI

network, will classify the protein pairs as a binary problem.

Protein pairs serve as input, and it classifies if an interaction is

possible or not. Protein pairs that are close to the hyperplane are

called support vectors and predict an interaction between that

pair of proteins (Sarkar and Saha, 2019; Chakraborty et al., 2021).

Ma et al. (2020) developed a method called ACT-SVM for

predicting PPIs. This model maps protein sequences to

numerical features. Extraction of numerical features is

performed twice on the protein sequence to obtain two

vectors: a vector and descriptor CT (composition and
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transformation) are combined to form a single vector. Feature

vectors of a protein pair will be the input of the SVM. The closer

these feature vectors of a pair of proteins are to to hyperplane, the

higher the probability of an interaction between these proteins.

Dunham and Ganapathiraju, (2021) benchmarked different

PPI prediction algorithms, and show how well they perform on

realistically proportioned datasets. Based on verified interactions

and a known false interaction rate, 16 datasets using the SVM

method are generated. Accuracy values ranged from 51 to 96%,

which highlights false interactions predicted or not predicted by

the SVM methods.

Artificial neural networks
Artificial neural networks (ANNs) are inspired by neural

networks in the brain (Wang, 2003; Zhang, 2018). An artificial

neural network is composed of different layers with a variable

number of neurons, and each layer is connected between them

(Yann Lecun, 1986). To simplify, an ANN network works like an

artificial neuron that can receive and send information as a signal

to the neurons connected to it. This signal is represented by a real

number calculated by a non-linear function of the sum of the

inputs to a neuron. Neurons and edges can be weighted, and the

weighting is adjusted during the learning process. Weight varies

according to the intensity of the signal. Signals travel from the

first to the last layer, and this results in the output of active

neurons (those with a high intensity) (Baxt, 1995; Krogh, 2008;

Dongare, Kharde, and Kachare, 2012).

In the context of PPI prediction, artificial neurons represent

pairs of proteins. The signal propagates between different artificial

neurons. Neurons and edges with high intensity suggest a

connection between proteins. A suggested input for these

algorithms is the protein sequences of two proteins, other inputs

can be put such as 3D structures of proteins (Xie, Deng and Shu,

2020; Pan et al., 2021). The prediction of PPIs based on their amino

acid sequences as well as their physiochemical properties is of great

interest to understand the probabilistic constraints of the prediction

(Ahmed, Witbooi and Christoffels, 2018; Tang et al., 2021). Sharma

and Shrivastava (2015) applied an ANN approach that takes the

animated acidic sequences of protein pairs as inputs and returns as

output whether the pair interacts or not.

The ANN method had quite similar results to the SVM

methods. The accuracy values are variable, Hu et al. (2021)

showed an accuracy of 71.5% for the prediction of hot spots

in a PPI while Pan et al. (2022) observed an accuracy of about

90% in predicting protein interactions in Arabidopsis thaliana as

a result of this work.

ANNs are exploited as a reference method in several

classification tasks (Rohani and Eslahchi, 2019; Baek et al.,

2021), but they suffer from some limitations. Artificial

neurons that are interaction pairs are checked to limit the

introduction of bias during the prediction step (H. Li et al.,

2018a; Wu et al., 2021).

Naïve Bayes classifier
A naïve Bayes classifier (NBC) relies on the simple probability

of the Bayes’ theorem (Bayes et al., 1763). NBC classifies an item by

taking each feature of the item independently (e.g., color and

shape). To predict a PPI interaction, protein sequences are split

into several sub-sequences of n residues. Bayes classifier establishes

a probability matrix allowing to classify the different residues;

residues that will interact with each other and the non-interface

residues. This method is based on conditional probabilities, the

probability that is an interaction knowing that an interaction has

already occurred. This method will predict interaction sites from

protein sequence information alone (Murakami and Mizuguchi,

2010; Geng, Chen andWang, 2021). Accuracy values are generally

lower than those of the SVM and ANN methods, due to the

difference in the amount of information available on the proteins.

In PPI prediction, each observation is represented by a vector

Z (X1; X2;X3;. . ..; Xm,Y), where X{X1,X2,X3,. . ..,Xm} is the

m-dimensional input variable and Y is the output variable

taking {0,1}. As input, this method can take either protein

interaction datasets or genomic interaction datasets (Jansen

et al., 2003; Alashwal, Deris and Othman, 2009; Lin et al.,

2021). In the end, the classifier gives a binary response, a zero

indicating the interaction is not verified, and a one when there is a

potential interaction. Geng et al. (2015) adopted naive Bayes

classification to predict site interactions between two proteins.

Each pair of proteins is split into several residues, with two

residues of two proteins in the same cluster interacting. In terms

of performance, they achieved an accuracy value of 60%, which is

generally lower than those of the SVM and ANNmethods, due to

the difference in the amount of information available on the

proteins (Ahmed, 2020; Jonathan et al., 2021; Lin et al., 2021).

Identification of interface residues by this method is less

expensive and gives results comparable to experimental methods

for the prediction of interactions (Murakami and Mizuguchi,

2010; Amirkhah et al., 2015).

Decision trees

A decision tree is a statistical tool that will represent a set of

choices as a hierarchical tree. According to different choices made,

the algorithm ranks the input elements according to distinctive

features: domain presence, spatial folding, site fixation, etc. The

decision tree will classify the pair of proteins either as interacting

(the proteins in the pair interact with each other) or as non-

interacting. Each pair of proteins is characterized by several

information and subdomains forming a vector. An interaction

is predicted as true if the probability of interactions between two

different protein domains is high (Chen and Liu, 2005).

Lee and Oh, (2014) exploited the decision tree method to find

discriminating biological features that allow the identification

and identify true positive interaction. They have acquired
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accuracy averages of 97%. This classification helps to understand

the biological context of an interaction. The performance of these

methods is dependent on the amount of information available for

a biological entity and the projection of low-dimensional features

(Xuan et al., 2019; Blassel et al., 2021; Zhou et al., 2021). Li et al.

(2021) presented challenges of these methods in terms of

performance.

Within supervised methods, a sub-class of methods has

emerged in recent years: self-supervised learning methods

(Chen et al., 2022; Murphy, Jegelka and Fraenkel, 2022), able

to train themselves to learn and predict the output of one part of

the input data from another part of the data (Wang et al., 2021;

Guo et al., 2022). A graph neural network is a self-supervised

method for predicting interactions and in particular PPIs

(Mahdipour and Ghasemzadeh, 2021; Jha, Saha and Singh,

2022; Y. Wu et al., 2022b). They are based on machine

learning algorithms that extract important information from

graphs and use this information to make predictions (Li et al.,

2020b; Shen et al., 2021). Jha, Saha, and Singh (2022) developed a

method for predicting PPI interactions based on structural

information contained in the PDB (Burley et al., 2021) and

the sequence characteristics of proteins. The molecular graph

of a protein has nodes representing the amino acids (also called

residues) of which proteins are made up of. A PPI is formed when

pairs of atoms contained in two different residues, have a

Euclidean distance less than the threshold distance set, here

6 angstroms. They obtained accuracy values after training of

99.5%. The results of this work show better prediction

effectiveness than traditional machine learning methods such

as SVM and ANN. Although this method is recent, the resulting

accuracy values for interaction prediction are promising such as

the prediction of drug–target interactions with an average

accuracy value of 89.76% (Zhao et al., 2021), and the

prediction of ncRNA–protein interactions with an accuracy

value of 93.3% (Shen et al., 2021).

Unsupervised learning method for PPI
prediction

The unsupervised analysis includes several methods. The

most widely used method is clustering, which aimed to group

data into clusters. We will focus on two main clustering methods

in the context of creating PPI networks (Malouche, 2013;

Creusier and Biétry, 2014).

Clustering methods

K-means clustering and hierarchical clustering methods are

unsupervised learning techniques, the most used in the

prediction of PPIs (Johansson-Åkhe, Mirabello and Wallner,

2019; Nath and Leier, 2020; Wang et al., 2020;

Shirmohammady, Izadkhah and Isazadeh, 2021). Proteins will

be clustered according to common characteristics (Ou-Yang, Yan

and Zhang, 2017). Clustering steps are repeated to refine the

clusters and improve prediction of PPIs (Bello-Orgaz, Menéndez

and Camacho, 2012; Lu et al., 2021). Proteins in the same cluster

have a high probability of interaction (Geng, Chen and Wang,

2021).

The input data can be of various nature for the prediction of

PPIs (Krause, Stoye and Vingron, 2005; Zhao, Wang and Wu,

2017; Wang et al., 2020). Sun et al. (2008) relied on the

phylogenetic profile of a protein as input. The phylogenetic

profile is a comparative genomic method that predicts the

large-scale biological molecule function through evolution

information (Mikkelsen, Galagan and Mesirov, 2005). Liu

et al. (2018) resorted to hot spot residues databases and in

particular the Alanine Thermodynamic Scanning Database.

Hot spot residues are functional sites in protein interaction

interfaces, and these sites allow the understanding of the type

of interactions and are highly conserved in proteins to ensure the

functions. Itraq (K. Wang et al., 2018a) used protein sequences as

input and hierarchical clustering to identify age-related

biomarkers of dental caries. Protein interactions were then

successfully validated by multiple reaction control mass

spectrometry.

Each of these two clustering methods has sub-methods. For

example, hierarchical clustering methods can be divided into two

sub-families: “bottom-up” and “top-down” methods (Maimon

and Rokach, 2006; Wang et al., 2010; S Bhowmick and Seah,

2015).

Clustering methods are known to be sensitive to noisy data

due to experimental bias during acquisition of protein sequences

(Arnau, Mars and Marín, 2005; Brohée and van Helden, 2006;

Wang et al., 2008). As a result, false-positive interactions appear

in the clusters (Sloutsky et al., 2013; Pizzuti and Rombo, 2014;

Aghakhani, Qabaja and Alhajj, 2018; Stacey, Skinnider and

Foster, 2021).

The global advantage of methods based on machine learning

is the processing of multidimensional and multivariate data from

several omics or horizontal omics (Das et al., 2020; Jamasb et al.,

2021). Prediction of interactions is highly efficient (Terayama

et al., 2019; Balogh et al., 2022), but machine learning requires

large computational resources and large datasets of good quality

(Hashemifar et al., 2018; Y. Wang et al., 2018b).

Machine learning–based approaches are approaches that will

be scalable in different domains, these approaches offer very

promising results (Casadio, Martelli and Savojardo, 2022; Huang

et al., 2022; Pan et al., 2022). However, as we have seen in the

articles, many sequences or interactions are necessary to train the

model (Li M. et al, 2022; Hu et al., 2022; Jha, Saha and Singh,

2022). So, these approaches will be preferred for large-scale omics

approaches, prediction of new interactions, or identification of

clusters or hubs (protein with many interactions) (Pei et al., 2021;

Song et al., 2022; Stringer et al., 2022). Different studies on PPI by
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You et al. (2013), Shirmohammady, Izadkhah, and Isazadeh

(2021), and Kusuma et al. (2019), respectively, showed an

accuracy of 88%, 63.8%, and 84.6% for clustering methods.

This difference in accuracy is explained by the fact that

clustering methods depend on the annotations and missing

data contained in them (Wang et al., 2010; Zhou et al., 2022).

Methods based on text mining

Text mining is a technique for exploring and transforming

unstructured text into structured data (e.g., tables). In PPI

prediction, text mining allowed to extracting information about

proteins and their interactions from scientific studies and reference

databases. Text mining techniques try to automate the extraction

of sentence-related proteins from abstracts or paragraphs of text

corpora (Papanikolaou et al., 2015). Several text mining methods

exist, some are based on statistical matches between gene names,

protein names in public repositories, and online resources. Links

and types of interactions between proteins are defined by action

verbs, for example, interact, interfering, and reacting. He, Wang

and Li (2009) benefited from this technique through the PPI finder

tool that was developed to extract human PPIs from PubMed

abstracts based on their co-occurrences and interaction words, the

retrieved interactions are then validated by the occurrence of Gene

Ontology (GO) terms. More complex text mining methodologies

use advanced dictionaries and generate natural language processes

(NLPs) to build networks. The networks generated by these

methods have as nodes the names of the genes or proteins, and

as edges the verbs found. By these methods, a semantic notion is

added (Raja, Subramani and Natarajan, 2013; Badal, Kundrotas

and Vakser, 2018; Roth, Subramanian and Ganapathiraju, 2018).

Newer methods utilized kernel methods, a class of algorithms for

pattern analysis, to predict PPIs from the text. Vyas et al. (2016)

applied this method and data mining for disease-related protein

identification, functional annotation, and other proteomic studies.

The overall advantage of text mining–based methods is the

amount of information available and the extremely low cost to

acquire PPIs (Alanis-Lobato, 2015; Zhu and Schmotzer, 2017). The

main limitation is that the interactors must be close together or in

the same sentence (Badal, Kundrotas and Vakser, 2015; Bajpai

et al., 2020). Text mining methods have generally high accuracies

because PPIs come from the text published as a result of

experiments, thus reducing false interactions. For example, the

InfersentPPI (Li X. et al, 2022) tool gave an accuracy value of

0.89 for humans, and the ModEx (Farahmand, Riley and

Zarringhalam, 2020) tool gave an assurance value of 0.88.

Interaction prediction methods based on text mining are

highlighted in the literature because of the large amount of data

available in all domains (Jia et al., 2018; Khashan, Tropsha and

Zheng, 2022). These methods are recommended for the study of

molecular mechanisms and for a large and fast statistical analysis.

But in the context of new experiments where little information is

available, these methods do not seem to be very suitable

(Elangovan, Davis and Verspoor, 2020; Piereck et al., 2020;

Shi et al., 2021).

Integration of a PPI network

A set of interactions between different biological entities that

allows the study of biological systems is called an interactome

(Cusick et al., 2005; Tieri et al., 2014; Guney et al., 2016; Pinu

et al., 2019; Halder et al., 2020; Castillo-Arnemann et al., 2021;

Wörheide et al., 2021). Understanding molecular interactions

and how they give rise to higher-level functions or diseases is

important, especially for repositioning drugs, finding new

biomarkers, and potentially developing new therapies or

elucidating biological and functional processes (Tieri et al.,

2014; Guney et al., 2016; Zhou, Miao and Yuan, 2018; Halder

et al., 2020; Castillo-Arnemann et al., 2021; Dimitrakopoulos

et al., 2021; L. Wu et al., 2022a). These PPI networks can be

integrated horizontally and/or vertically (Lercher and Pál, 2008;

Ma and Zhang, 2019). Horizontal integration aimed to create a

PPI network from different PPI databases for many interactions

(Hibbs et al., 2007; Subramanian et al., 2020), whereas vertical

integration will assemble information from different omics

(genomics, proteomics, metabolomics, etc.) databases for a

given interaction (Wang and Jin, 2017; Ulfenborg, 2019; Das

et al., 2020; Welch et al., 2021). All interactions can be modeled

into a multi-layered graph structure (Kinsley et al., 2020) where

each layer represents a network associated with omic-specific

information (Hammoud and Kramer, 2020). PPI networks are a

central layer in the multi-omics integration process (Mosca and

Milanesi, 2013; Hammoud and Kramer, 2020; Dugourd,

Christoph Kuppe and Marco Sciacovelli, 2021) (Figure 1).

Horizontal and vertical integration took advantage of

topological properties of the network to facilitate construction

of different interactomes, to improve classification and

evaluation of a PPI (Peng et al., 2017; Kim, Jeong and Sohn,

2019; Halder et al., 2020; Novkovic et al., 2020). Network

topology helps in understanding inter/intracellular interactions

and functionality, identifying sub-networks (Banerjee et al., 2020;

Pournoor et al., 2020; Mishra, Kumar and Mukhtar, 2021). Thus,

the topological properties of a PPI network give insight into

dynamics of the network and sub-networks and allow the

detection of proteins whose roles can be key in complex

central biological mechanisms (Yu et al., 2004; Chen et al.,

2019; Wahab Khattak et al., 2021). Filtering the network on

topological properties allows the acquisition of highly connected

nodes and thus facilitates analysis against the topological data.

For example, it is possible to filter network by keeping only

proteins of a certain degree (Wu et al., 2009; Navlakha et al., 2014;

Azevedo and Moreira-Filho, 2015), or by other topological

properties from the graph theory such as, degree distribution

(Han et al., 2004; Pablo Porras et al., 2020), shortest path (Du
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et al., 2014), and transitivity (Hakes et al., 2008; Lynn and Bassett,

2021).

Integration of a PPI network in a multi-omics context is

nowadays an essential issue in the understanding of

biological mechanisms (Hawe, Theis and Heinig, 2019;

Bodein et al., 2021; Dimitrakopoulos et al., 2021). To

integrate an interaction into a network, it must first be

estimated by a so-called confidence score (Stelzl and

Wanker, 2006; Li et al., 2016; Xu et al., 2021),

representing probability that the interaction is accurately

identified by algorithms and is expressed as a percentage

(Kamburov et al., 2012; Peng et al., 2017). This score is

usually a ratio of the measured value to the total number of

the measured value for each interaction. For example, the

Mi-score measures the number of publications observed for

an interaction out of the overall number of publications

available to the network (Villaveces et al., 2015a). Sub-

networks represent a part of the network retaining only

interactions with a high confidence score (Flórez et al.,

2010; Pietrosemoli and Dobay, 2018; Hao et al., 2019),

which can also be extracted to facilitate visualizations.

Proteins forming groups called clusters in the sub-

networks are recovered. By modifying the threshold of the

confidence score, we can better define new clusters and the

impact size of the sub-network.

Horizontal integration of a PPI network

Horizontal integration is a solution to eliminate these false

interactions and allows to find missing data, thus adjusting the

resulting confidence score (Everson et al., 2019; Gebreyesus et al.,

2022). Horizontal integration methods have contributed to

development of various types of databases based on organism-

specific diseases, biological processes, and detection methods,

such as the Integrated Interactions Database (IID) (Kotlyar et al.,

2019), IntAct (Hermjakob et al., 2004a), and StringDB

(Szklarczyk et al., 2019). PPI is usually redundant in different

databases. A PPI found in one database may also be found in

others such as BioGRID (Oughtred et al., 2021) or Reactome

(Gillespie et al., 2022). This communication between the different

databases corresponds to horizontal data integration (Zitnik and

Leskovec, 2017; Cowman et al., 2020).

Assembly and merging are the main algorithms for

horizontal integrations (De Las Rivas, Alonso-López and

Arroyo, 2018; Amanatidou and Dedoussis, 2021). Two PPI

networks are assembled by alignment algorithms. Alignment of

PPI networks aimed at finding topological and functional

similarities between different PPI networks (Kazemi et al.,

2016; Ma and Liao, 2020). In a first step, the alignment

algorithm looks for overlapping regions in two networks.

These regions form clusters that will be assembled to make a

FIGURE 1
Workflow of key steps to design a PPI network assembly. PPI networks can be integrated horizontally and/or vertically. Horizontal integration
creates a PPI network by concatenating interaction information from different PPI databases (here networks 1 and 2 represent two PPI networks from
two different databases), while vertical integration gathered information from different omics databases for a given interaction. In the vertical
integration box, each omics network represents different interactomes such as protein–protein, drug–protein, and RNA–protein. Once the
networks are generated, it is necessary to evaluate its interactions confidence to filter the network. Interactions in red are interactions with a high
confidence score. After narrowing the network, specialized tools can be used to visualize the network and information about the connected entities
(e.g., identify proteins with a central role in the mechanisms).
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local alignment. Then, using local interactions between clusters,

a second alignment is performed: global alignment (Malod-

Dognin, Ban and Pržulj, 2017; Alcalá et al., 2020; Chow et al.,

2021). Other horizontal integration algorithms applied

propagation algorithms as the random walk with restart

(RWR) process (detailed in vertical integration of a PPI

network). Xu et al. (2018) drawled on these propagation

methods to reconstruct a multi-level PPI network and

identify protein complexes.

Through these different network alignment algorithms,

many PPI databases have been updated or created. The most

exploited are BioGRID (Oughtred et al., 2021), IntAct

(Hermjakob et al., 2004b), String (Szklarczyk et al., 2019),

and UniprotKB (The UniProt Consortium, 2019). A large set

of databases is referenced in startbioinfo.org (Kshitish et al.,

2013) and pathguide.org (Bader, Cary and Sander, 2006).

Following the revolution in NGS technology and the

increase in PPI datasets, the integration of a single cell with

PPI networks is showing promising results. Indeed, the single-

cell method coupled PPI network will allow the understanding

of gene regulation, cellular heterogeneity (Cha and Lee, 2020),

tissue-specific networks, identification of ligand–receptor

interactions, functional interactions, and cell–cell

communication (Armingol et al., 2021; Johnson et al., 2021;

F. Ma et al., 2021a). Cell–cell interactions mediated by

ligand–receptor complexes are essential for the

coordination of various biological processes, such as

development, differentiation, and inflammation. These

interactions subsequently ensure that physiological

processes are carried out (Vento-Tormo et al., 2018;

Efremova et al., 2020). Using single-cell data and PPI

networks, it will be possible to understand this crucial

interaction and thus to create new therapies targeting these

ligand–receptor interactions in future (Ji et al., 2020; Lee et al.,

2021). The applications of single cell PPI are numerous and in

many fields such as health (Qi et al., 2022) and agronomy

(Zhang et al., 2019). These methods will help in the

understanding of cellular mechanisms, regulation according

to the environment, and in the development of new therapy

(Ryu et al., 2019; Mahdessian et al., 2021). Single-cell data can

also be used to filter and weight the PPI network following a

differential analysis or by filtering according to fluorescence

(Dünkler et al., 2015; Wu et al., 2017). Recently, Klimm et al.

(2020) have developed SCPPIN, a method of integrating

single-cell RNA-seq data with protein–protein interaction

networks. By filtering the network by differentially

expressed genes and maximum subgraph weight, they

detected active modules in cells of different transcriptional

states.

However, horizontal integration faces problems such as

uniformity of protein interaction identifiers and redundancy

of information, data structure, and organization (Dohrmann,

Puchin and Singh, 2015; L. Liu et al., 2020a).

Vertical integration of a PPI network

Vertical integration of networks is generally represented by

multi-layer networks (Lv et al., 2021; Watson, Schwartz and

Francavilla, 2021). Each layer represents an interactome

(protein, gene, and drug). Biological relationships between

biological entities and types of interactions form the

relationships between different omics layers (Lee and Nam,

2018). Network propagation (or diffusion) algorithms are

commonly promoted in omics vertical integration (Di Nanni

et al., 2020; Pak et al., 2021). By integrating the information

from the different omics and by diffusion algorithms, it is

possible to understand the most probable interactions where

the diffusion signal has strongly transited (Zhao et al., 2018).

Propagation algorithms are a class of algorithms that integrate

input data information across connected nodes of a given network.

Propagation is usually performed by random walk with restart

(RWR) algorithms, inspired by the work of Page et al. (1999) to

classify web pages in an objective and mechanical way. RWR is the

state-of-the-art approach to infer the relationship: as the name

suggests, a random walker, starting from a set of nodes of interest

(starting nodes), jumps to neighboring nodes, or nodes in another

layer according to a certain probability assigned to the edges of the

nodes (Lee and Yoon, 2018). In addition, the walker has a certain

probability, known as the damping factor, such that for each step

taken in any direction, there is a probability associated with

returning to one of the original sets of nodes (Valdeolivas et al.,

2019; Nguyen et al., 2021; Qu et al., 2021; Wen et al., 2021). The

probability is calculated from a transition matrix from one node to

the other, allowing to obtain a weight for each interaction. This

node-dependent weight will reflect an interaction between two

omics layers (Bhatia, 2019; Dupré, 2022). Lei et al. (2019a) adjusted

this method to detect essential proteins. In this method, PPIs are

weighted according to network topology, gene expression, and GO

annotation data. Then, an initial score is assigned to each protein

in a PPI network by exploiting information on subcellular

localization and protein complexes. Then the RWR algorithm is

applied to the weighted PPI networks to iteratively score the

proteins, allowing the filtration of interactions with high weight.

The main other algorithms based on topological

properties use integration strategies from two classes:

empirical methods and machine learning method (Jin et al.,

2014; Haas et al., 2017; Eicher et al., 2020). Empirical methods

simply assembled different layers of the network, whereas

machine learning methods tried to find missing information

about how information flows between the omics layers (Picard

et al., 2021; Santiago-Rodriguez and Hollister, 2021). MoGCN

(Li X. et al., 2022) is a tool for multi-omics integration based

on a convolutional graph network. This tool allows the

classification and analysis of cancer subtypes. MoGCN can

extract the most significant topological features and properties

of each omic layer for downstream biological knowledge

discovery.
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Integration of PPI networks into multi-layer networks has a

central role (Liang et al., 2019; Huang and Zitnik, 2021). Indeed,

projection of PPI and layer connectivity allows improvement of

the mechanistic and functional knowledge of a cell, identifying

key proteins and repositioning drugs (F. Li et al., 2020c).

Silverbush and Sharan (2019) created an approach to direct

the human PPI network using the drug response and cancer

genomic data. A directed graph is a graph in which the edges have

a direction. The direction of the relationships or edges is found by

diffusion methods. The oriented network allows the detection of

key genes in cancers.

In vertical or horizontal integration, the PPI layer must be

reliable. The topological properties of the network can allow the

establishment of a confidence score for a given interaction. It is

essential to understand these properties to build the most robust

network possible (Zhang, Xu and Xiao, 2013; Sardiu et al., 2019).

Validation of PPI

An important question persists in network analysis: can we

trust on the network of interactions to be a true biological

interaction? PPIs from these methods have supplied insights

into functions of individual proteins, regulatory pathways,

molecular mechanisms, and entire biological systems. Noise

inherent in the interactome information hinders evaluation of

PPI data (Correia et al., 2019). Several PPIs are, in fact, false

positives in these methods and even in methods using strict

criteria to define a positive (Yu et al., 2004; Scott and Barton,

2007). It should be noted that the coverage of the interactome is

also incomplete and uneven, so we cannot always filter out the

less reliable evidence (Han et al., 2005; Stelzl and Wanker, 2006).

Many different methods exist for finding reliability and giving a

measure of confidence. These techniques can be classified into

three main categories.

Contextual biological information
This strategy for assessing the veracity of an interaction

looked for different information, for example, overlapping

patterns of co-expression, conservation of structure, and

sequences (Aytuna, Gursoy and Keskin, 2005; Tirosh and

Barkai, 2005). As an example, Schaefer et al. (2013) seek

biological information based on influenza virus knowledge to

validate PPIs.

Scores based on the literature
Acts as an orthogonal validation and analyzed how often a

PPI is cited in publications. The main problem with

implementing this method is the application of thresholds, so

that only interactions with a sufficiently high score are retained

(Bozhilova et al., 2019). Well-studied proteins will have a greater

number of interactions and associated publications than proteins

that are new or have little information. Hence, thresholds need to

be standardized. In order to normalize thresholds among

different databases, the MI-score method was created

(Villaveces et al., 2015a). This method allows to merge data

from different databases that are in the PSI–MI(Proteomics

Standards Initiative–Molecular Interaction) format

(Hermjakob et al., 2004a; Bader, et al., 2006; Kerrien et al.,

2007), and link an interaction to a notation system. This

method generates three different scores: publication score

(number of different publications on an interaction), method

score (considers the different methods of detecting an

interaction), and the type of score which refers to the type of

interaction. The type of interaction follows the nomenclature of

the PSI-MI controlled vocabulary, for example, genetic

interaction, physical association, and co-location.

Aggregated methods
Use different score calculation strategies and combine these

strategies into a single score. Several scoring methods exist,

including the toolkit developed by Braun et al. (2009) that

includes four statistical tests to verify a PPI from a high-

throughput experiment. The results of the four tests are then

combined to calculate the probability that a new pair of

interactions is a true biophysical interaction. Intscore is a

reference aggregation tool, which calculates confidence scores

for user-specified sets of interactions. Its scoring system is based

on network topology and annotations. The aggregated score can

be computed by machine learning approaches (Kamburov et al.,

2012). Recently, Paul and Anand (2022) developed several

similarity measures using GO to create a confidence score

for PPIs.

Apart from these three distinct categories, to measure the

confidence of PPIs, robust measures resulting from data

provenance and network topology are needed, such as the

average redundancy difference between various sources,

natural connectivity of the PPI network as well as the number

of edges in a protein-centered sub-arrays (ego networks)

(Bozhilova et al., 2019; Wang et al., 2019). The main problem

with all these methods is that a score is mainly specific to one

database, so threshold values are highly database dependent

(Kamburov et al., 2012; Dahiya et al., 2019; Xu et al., 2019).

To address this issue, consensus networks appeared such as

HugGan (Huang et al., 2022) which is a tool that gathers

31 data sources using deep learning approaches to keep only

interactions with a high confidence score resulting in a network

with high coverage and quality.

Visualization of protein–protein networks

Networks are a powerful way to visualize complex systems

(Charitou, Bryan and Lynn, 2016; Mlecnik, Galon and Bindea,

2018). Visualization of PPI networks is crucial for the

understanding of pathways, sub-graphs, sub-network, and
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central proteins (Sharan and Ideker, 2006; Fionda et al., 2009;

Snider et al., 2015; De Las Rivas, Alonso-López and Arroyo, 2018;

Vella et al., 2018; Marai et al., 2019). The simplistic and rapid

visualization of networks makes it a tool of choice (Gillis, Ballouz

and Pavlidis, 2014; Chung et al., 2015; Xu et al., 2021). This has

led to the development of methods and tools that allow

visualization. The integration of PPI networks and their

visualizations in a multi-omics context has helped in the

modeling of complex systems such as Parkinson’s disease

(Tomkins and Manzoni, 2021), identifying central proteins in

diseases (Narayanan et al., 2011; Deng, Xu and Wang, 2019),

understanding protein clusters linked to cellular function (Zhao,

Wang and Wu, 2017; Amanatidou and Dedoussis, 2021),

understanding mechanisms of action (Jia et al., 2021; Yuan

et al., 2021), and drug repositioning (Lee and Yoon, 2018;

Soleimani Zakeri, Pashazadeh and MotieGhader, 2021).

Larger and complex networks are more difficult to visualize.

This is the case of the most popular source offering a

representation of PPI networks such as StringDB (Szklarczyk

et al., 2019). This online database is intended for the inspection of

small networks or sub-networks (less than 500 interactions).

Therefore, because of their size and topology, the PPI network

requires specialized tools (Bosque et al., 2014; Freilich et al., 2018;

Aihaiti et al., 2021).

The methods for visualizing a network can be divided into

three categories (Table 2).

The methods can be combined to take advantage of each of

the benefits of these categories. This is the case with cyNeo4j

(Summer et al., 2015) which combines Cytoscape (Otasek et al.,

2019) and Neo4j (Gong et al., 2018) for fast visualization of large

networks based on a graph-oriented database. Cytoscape is the

most widely used tool for the visualization of large networks

(Shannon et al., 2003). Other visualization systems do not fit into

these categories and are based on web-based visualization

interfaces and on a relational database (Salazar-Ciudad and

Jernvall, 2013; Salazar et al., 2014; Hayashi et al., 2018). This

is the case of the PINA 3.0 (Du et al., 2021) tool, which is a

consensus database containing five interactomes and offering a

web visualization service allowing the identification of interacting

protein pairs in different cancer types. The weaknesses of these

methods are the size of the networks, the execution time of a

query, and their limited applicability (Jeanquartier, Jean-Quartier

and Holzinger, 2015; Zhou and Xia, 2018; Perlasca et al., 2020).

Visualization tools are evaluated by four criteria:

compatibility (available on which OS (operating systems):

Windows, Mac Os, and Linux, analytic functions (presence of

functions measuring the topological properties of the network,

weak interactions of external data, etc.), visualizations (graph

layout, dynamics, and parallel implementation), and the

extensibility of the tool (addition of plugins, type of input,

and output file) forming distinct classes (Sanz-Pamplona

et al., 2012; Agapito, Guzzi and Cannataro, 2013; Dallago

et al., 2020). In the context of biological network analysis and

in particular protein networks, one of the essential criteria is

dynamic visualization tools (Xia, Benner and Hancock, 2014;

Zhou and Xia, 2018). PPI networks have a dynamic organization

of biological sub-networks (Yang, Wagner and Beli, 2015). In

other words, the molecular interactions in a cell vary in time, as

do the signals from the environment surrounding an interaction

(Przytycka, Singh and Slonim, 2010; M. Li et al., 2018b).

TABLE 2 Summary table of tool for visualizing of protein–protein interaction network. Visualization methods to analyze network are grouped into
three distinct categories: visualization through downloadable tools, visualization by libraries integrated with languages, and visualization
through graph-oriented databases. The user has to choose his tools according to his study context. For analysis of high dimensional data containing a
large amount of information, it is advisable to manipulate tools based on graph databases. Conversely, if the user wants to have a quick
representation, we recommend the user to turn more to visualization libraries or downloadable software.

Tool Advantage Disadvantage

Visualization through
downloadable tools

Cytoscape (Otasek et al., 2019), Gephi (Bastian,
Heymann and Jacomy, 2009), Tulip (Auber et al.,
2017), Graphviz (Ellson et al., 2001), Pajek
(Mrvar and Batagelj, 2016)

Many add-on features, flexibility for
network analysis, easy to handle, open
source and free

Difficult to set up automation interface,
working with big networks requires big
memory and computing power

Visualization by libraries
integrated with languages

Igraph (Csárdi and Nepusz, 2006), NetworkX
(Hagberg et al., 2008), graph-tool (Peixoto Tiago,
2014), NetView (Neuditschko, Khatkar and
Raadsma, 2012)

Open source and free, well documented,
accessible, import and export graphs
easily, easy to implement

Graphic possibilities are limited, restricted
number of nodes

Visualization through
graph-oriented databases

Neo4j (Gong et al., 2018), ArangoDB (ArangoDB
NoSQL Multi-Model Database: Graph,
Document, Key/Value, 2022), JanusGraph
(Sharp. 2017), OrientDB (Tesoriero, 2013),
Elasticsearch (Shay Banon, 2014), Siren
(Giovanni Tummarello and Renaud, 2015)

Speed of calculation, adapted big
networks, integrated search engine,
Flexible and agile structures

Request for calculation servers. Not very
scalable as it is designed for a single server
architecture
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In order to overcome the limitation of network size and

consider the dynamics of the networks, several tools have been

developed over the last decades (Sanz-Pamplona et al., 2012;

Winkler et al., 2021). The success of Cytoscape is due to the large

number of plugins/features that can be added directly from the

tool (Saito et al., 2012; Lotia et al., 2013). The calculation of

overrepresented GO terms in a network can be performed by

Bingo (Maere, Heymans and Kuiper, 2005), a widely downloaded

Cystoscape plugin. Through Cytoscape, we also find plugins

allowing the understanding of the dynamic organization of

biological networks such as TVNViewer (Curtis et al., 2011),

KDDN (Tian et al., 2015), and Dynetviewer. Another

downloadable software offering a visual representation of PPI

networks is the Gephi (Bastian, Heymann and Jacomy, 2009).

Downloadable network visualization tools have difficulties with

the implementation of data (Villaveces et al., 2015b; Li et al.,

2016). Visualization libraries such as igraph (Csárdi and Nepusz,

2006) and NetworkX (Hagberg et al., 2008) will make it easier to

import and export networks but are limited in terms of adding

new functionality and graphic possibilities (Pandey, 2018; L. Wu

et al., 2022a).

Network visualization tools are specific to the detection

method (Ashtiani et al., 2018). HPIminer (Subramani et al.,

2015) extracts information from human PPIs and PPI pairs in

biomedical literature and provides a visualization of interactions,

networks, and associated pathways using two databases, namely,

HPRD (Goel et al., 2012) and KEGG (Kanehisa et al., 2016).

Another area of improvement for online or general-purpose

visualization tools and libraries is the addition of a

visualization engine or search engine (Chisanga et al., 2017).

Tools integrating visualization engines such as NAViGaTOR

(Brown et al., 2009) and MIST (Hu et al., 2018) have been

developed. These tools allow the acceleration of the visualization

of large PPI networks (Yu and Zhang, 2008; Gerasch et al., 2014;

Zaki and Tennakoon, 2017). It is also possible to improve the

speed of visualizations by connecting directly to graph databases

such as Neo4j (Gong et al., 2018, p. 4) and ArangoDB (Touré

et al., 2016; Timón-Reina, Rincón and Martínez-Tomás, 2021;

ArangoDB NoSQL Multi-Model Database: Graph, Document,

Key/Value, 2022). Since graph databases store data directly in

a graph form, they are becoming a preferred resource for storing

complex relationships of heterogeneous biological data (Yoon,

Kim and Kim, 2017; Jupe et al., 2018; Castillo-Arnemann et al.,

2021). Flexibility of multi-omics integration offered by graph

databases facilitates data mining to support different hypotheses

(Lysenko et al., 2016; Brandizi et al., 2018; Wandy and Daly,

2021).

All these tools for the visualization of PPI networks are based

on different visualization algorithms (Koutrouli et al., 2020;

Sandoval and Orlando, 2021). Visualization algorithms can be

based on simplistic approaches such as adjacent matrices (Fekete,

2009), circular layouts (Suderman and Hallett, 2007), or complex

approaches such as force-directed algorithms (Liu et al., 2021).

Themain differences between simple and complex algorithms for

visualization depend on the size of the network, the topology of

the network, and the dimensionality of the information (Heberle

et al., 2017; Becker et al., 2020; Raja et al., 2020). The selection of

the appropriate visualization algorithm will depend on the nature

of the network. In the context of single networks, in particular

PPI networks, visualization algorithms focus on the identification

of protein sub-clusters or hub proteins (Li et al., 2020b; H. Ma

et al., 2021b). Cytoscape’s Cytohubba (Chin et al., 2014) plugin is

commonly dedicated for sub-network identification and central

protein identification. The most powerful method of Cytohubba

for better sub-network visualization is the maximum clique

centrality (MCC) method. This algorithm allows the

visualization of groups of proteins called clusters, based on

the assumption that essential proteins tend to be grouped

together (Lu et al., 2010; Lei et al., 2019b; Kim, Jeong and

Sohn, 2019). Recently, Zu et al. (2017) used this plugin’s

method to visualize six target genes for quercetin (an organic

compound of the flavonoid family), suggesting a therapeutic

potential in type 2 diabetes mellitus (T2DM) and Alzheimer’s

disease.

However, in a multi-omics integrations context one seeks

above all to connect information from different omics fields

(transcriptomics, proteomics, metabolomics, lipidomics, and

metabolomics (Haas et al., 2017; Fan, Zhou and Ressom,

2020; Cansu Demirel, Kaan Arici and Tuncbag, 2022). In this

context, multi-layer algorithms for visualization are preferable to

force-directed algorithms (Bodein et al., 2021; Dursun, Kwitek

and Bozdag, 2021; Marín-Llaó et al., 2021). There are several

algorithms for implementing multi-layer networks, in the

context of multi-omics integration, the most highlighted

implementation is the one named by Hammoud and Kramer,

(2020): “Interactive/Interconnected/Interdependent Networks

and Networks of Networks Implementation.” This

implementation has as input a set of monoplex networks

(single layer networks, e.g., PPI network). Each network

interacts with the other networks. The different monoplex

networks will form distinct layers which will be connected by

the inter-side nodes (Rappoport and Shamir, 2018; Yan et al.,

2018; Zoppi et al., 2021; Cuenca et al., 2022). Recently

Arena3dweb (Karatzas et al., 2021), a web application

incorporating these algorithms and offering a visualization of

multi-layer graphs in a 3D space, has enabled GPCR signaling

pathways implicated in melanoma.

Summary and outlook

In this review, different computational strategies for

predicting PPI, from integration to visualization to methods

for validating interactions have been studied. Many

computational prediction approaches rely on experimental

methods to predict a PPI interaction (Rao et al., 2014; Peng
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et al., 2017; Ding and Kihara, 2018; Tanwar and George Priya

Doss, 2018). Although this increases the coverage of the network,

it can disrupt the horizontal integration process (Browne et al.,

2010; Ngounou Wetie et al., 2013). Sets of PPI interactions from

different datasets are constructed and transformed

independently, which can lead to information gaps, redundant

information, and poor identifier compatibility when aligning two

PPI networks. Ideally, at any point in the overall integration

process (including vertical and horizontal), each omics data set

should be evaluated in the context of the other datasets, so that

complementary information can be fully exploited, and added

information can be identified (Bozhilova et al., 2019; Bajpai et al.,

2020). Implementation of validation scores based on topological

properties allows to limit the redundancy of edges and will allow

to filter the PPI network (Pietrosemoli and Dobay, 2018; Sardiu

et al., 2019).

Information redundancy is the repetition of information

without adding additional information in different

databases. The increase in omics data and PPI integration

methods has contributed to the growth of many PPI

databases. However, this increase in the number of

databases increases the redundancy of information,

making it difficult for the user to choose a PPI database

(Rabbani et al., 2018; Hawe, Theis and Heinig, 2019; Zahiri

et al., 2020). In addition, information redundancy slows

down the calculation time for the construction and

visualization of networks (Chen et al., 2019, 2019). To

limit and remove redundancy, different information

scores have been set up (Silverbush and Sharan, 2019;

Mahdipour and Ghasemzadeh, 2021). The Mi-score

(Villaveces et al., 2015b) consisting of three scores, is

increasingly used to validate a PPI.

The study of PPI networks is a growing field of systems

biology. Due to their significant role, PPI networks are used to

understand cellular functions or biological mechanisms (Stelzl

and Wanker, 2006; Jordán, Nguyen and Liu, 2012; Safari-

Alighiarloo et al., 2014). The integration of these networks,

both vertically and horizontally, can highlight clusters of

proteins with central roles, aiding the understanding of drug

action mechanisms (Martin, Roe and Faulon, 2005;

Dimitrakopoulos et al., 2021; Marín-Llaó et al., 2021;

Tomkins and Manzoni, 2021). PPI networks offer prospects

in many fields, such as medicine, health and also in agri-food

(Hao et al., 2019; Hasan et al., 2020; Thanasomboon et al., 2020;

Charmpi et al., 2021). Vertical and horizontal integration

algorithms are mainly based on propagation and alignment

algorithms but are often combined with machine learning

methods to predict the probability of reliability of an

interaction (Li and Ilie, 2017; Lee and Nam, 2018; Zhang

et al., 2018; Das and Chakrabarti, 2021). These propagation

algorithms will allow to focus on sub-networks, keeping only

the interactions where the propagation signal is high

(Gehlenborg et al., 2010; Laniau, 2017).

By focusing on sub-networks as opposed to complete

networks, visualization is facilitated allowing the

identification of sub-groups of interactions (Tian, Ju and

Yang, 2019; T.-H. Liu et al., 2020b). The visualization of

networks is a problematic issue for networks and especially

for PPI networks (Du et al., 2021). Visualization tools depend

mainly on the size of our networks (Summer et al., 2015; Zou

et al., 2017). Currently, multilayer network visualization is

limited to small networks and requires a consequent pre-

formatting of the data (Smith-Aguilar et al., 2019;

Hammoud and Kramer, 2020; Sebestyén, Domokos and

Abonyi, 2020).The study of multilayer networks based on

the PPI network is constantly evolving and will become

more powerful with advancement of more powerful

mathematical models offering better predictions (Kapadia

et al., 2019; Karatzas et al., 2021; Cuenca et al., 2022).

Different perspectives on the integration of PPI networks

can be imagined. The visualization of multilayer multi-omics

networks and creation of consensus networks for each omics

dimension to understanding new mechanisms of multi-omics

integration. A consensus network is the result of the horizontal

integration of different databases (Berto et al., 2016; Mosca

et al., 2021). Through this network, it will be possible to

homogenize the different thresholds of the different

databases and to eliminate the recurrence of information

(Leblanc et al., 2013; Affeldt et al., 2016; Zohra Smaili et al.,

2021). Recently, Woo and Yoon (2021) created a Monaco

aligner that can find multiple alignments with high accuracy

to identify functional modules. In the era of big data and NGS

(next generating sequencing) technologies, it is difficult to

know which information is needed to build a PPI network.

Machine learning and deep learning methods offer novel

perspectives in the prediction and standardization of

information in PPI networks (Gligorijević and Pržulj, 2015;

Borhani et al., 2022; Cervantes-Gracia, Chahwan and Husi,

2022). Standardizing and evaluating the relevance of

interactions will facilitate integration of PPI networks

(Fiorentino et al., 2021; Nadeau, Byvsheva and Lavallée-

Adam, 2021).

On the visualization side, several perspectives can be

imagined, a tool to visualize each layer independently and

globally in a multilayer network (Kanai, Maeda and Okada,

2018; McGee et al., 2019). As the size and complexity of PPI

networks increases, more efficient visualization algorithms are

needed (Chong, Wishart and Xia, 2019; Koutrouli et al., 2020).

Augmented reality technologies and virtual reality (VR)

remove the constraints of 2D/3D space constraints (Pirch

et al., 2021; Hütter et al., 2022). Moreover, the notable

advances in the prediction of the structure of proteins from

their sequence in amino acids with alphafold (Jumper et al.,

2021), which could lead to a revolution in the PPI prediction

algorithm. In view of the generous size of PPI networks,

visualization tools focus on specific networks, including
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Mechnetor (González-Sánchez et al., 2021), a tool for

visualization of biological mechanisms. At the moment,

there are no tools available to visualize the interactome

protein specific to a tissue, but there are different databases

on this subject (Islam et al., 2013; Basha et al., 2018).
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The acceleration of large-scale sequencing and the progress in high-

throughput computational analyses, defined as omics, was a hallmark for the

comprehension of the biological processes in human health and diseases. In

cancerology, the omics approach, initiated by genomics and transcriptomics

studies, has revealed an incredible complexity with unsuspected molecular

diversity within a same tumor type as well as spatial and temporal heterogeneity

of tumors. The integration of multiple biological layers of omics studies brought

oncology to a new paradigm, from tumor site classification to pan-cancer

molecular classification, offering new therapeutic opportunities for precision

medicine. In this review, we will provide a comprehensive overview of the latest

innovations for multi-omics integration in oncology and summarize the largest

multi-omics dataset available for adult and pediatric cancers. We will present

multi-omics techniques for characterizing cancer biology and show howmulti-

omics data can be combined with clinical data for the identification of

prognostic and treatment-specific biomarkers, opening the way to

personalized therapy. To conclude, we will detail the newest strategies for

dissecting the tumor immune environment and host–tumor interaction. Wewill

explore the advances in immunomics and microbiomics for biomarker

identification to guide therapeutic decision in immuno-oncology.

KEYWORDS

multi-omics, machine learning, immunology, immunomics, microbiome, cancer,
precision medicine

Introduction

Cancer is an important cause of death worldwide, even if its mortality has declined

during the last decade (Santucci et al., 2020). The International Agency for Research on

Cancer (IARC) GLOBOCAN cancer statistics predicted an increase of 50% for the cancer

incidence and an increase of 62.5% of the mortality from now to 2040 worldwide (Ferlay

et al., 2020). There is an urgent need to better cancer survival rate; however, to cure this

disease, we first need to understand its underlying mechanisms.
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Until recently, cancer was widely considered as organ

dependent and characterized by the site of apparition of the

tumor. This hypothesis was slowly abandoned due to the

heterogeneity present between two patients with a similar

tumor (Dagogo-Jack and Shaw, 2018) that was identified

through the emergence and democratization of next-

generation sequencing (NGS). NGS allows the generation of a

large amount of data in a short period of time, marking the

beginning of a new era for cancer research: the genomics era

(Knox, 2010; Lakshmanan et al., 2020). This led to a new

characterization of cancer, not based on the tumor site but

founded on molecular classification (pan-classification)

(Hoadley et al., 2014; Campbell et al., 2018). Following the

expansion of genomics, the exploration of the other layers of

cancer biology started. The apparition of different omics such as

transcriptomics, epigenomics, and proteomics allowed the

possibility to understand the underlying complexity of tumors

(Alyass et al., 2015). The dawn of omics studies led to the

discovery of further complexity with cancer presenting intra-

tumoral heterogeneity at a cellular level (Dagogo-Jack and Shaw,

2018). The study of these new omics highlighted an unsuspected

complexity inside the tumor architecture but also furthered our

understanding of interactions between cancer and its

environment (gene-environment, microenvironmental

interaction, and immune system interaction) (McAllister et al.,

2017; Zhou et al., 2017; Gonzalez et al., 2018; Barriga et al., 2019).

The use of single omics, such as genomics and

transcriptomics, uncovered many driver genes to better

comprehend the genomic landscape of cancer. Interestingly,

some of these studies revealed the wide complementarity of

genomics and transcriptomics, many of the driver genes being

identified by either one or the other modality (Wong et al., 2020;

Berlanga et al., 2022). This fosters the need of combining the

interconnected biological elements of cancer to move from

single-omics to multi-omics analysis. The multi-omics

integration is defined by the modelization of more than one

biological element in order to characterize biological systems in

its globality at the phenomenological level (de Anda-Jáuregui and

Hernández-Lemus, 2020). The purpose of doing this is to look at

how the different biological layers of the cells interact with each

other, leading to the creation of an interconnected network

highlighting the underlying complexity of cancer. Data

integration in cancer have three main goals: understanding

the molecular mechanism of cancer, clustering disease

samples, and predicting an outcome (survival or therapy

efficacy) (Hiley et al., 2014; Jamal-Hanjani et al., 2014; Tebani

et al., 2016; Sharifi-Noghabi et al., 2019). Computational

methods were needed to integrate the large diversity of data

prompting the development of new algorithms to overcome the

intricacies of multi-omics integration.

To this day, even with the new information that multi-

omics approaches can bring, understanding how cancer

develops and maintains is puzzling. Indeed, cancer cells

interact with many different components including the host

immune system (Witkowski et al., 2020). These interactions

define the tumor immune microenvironment (TiME) that can

be beneficial or detrimental to cancer cells, leaning toward

more tolerogenicity or immunogenicity (Iwai et al., 2002;

Garrido and Aptsiauri, 2019; Gou et al., 2020; Tang et al.,

2020). To understand the TiME provides insights on how the

cancer cells hijack the immune system to survive, but also

might predict if a tumor is likely to respond to

immunotherapy by immune checkpoint blockade (ICB)

(Riaz et al., 2017). Indeed, biomarkers derived from the

study of TiME appeared to be helpful to anticipate cancer

sensitivity to immunotherapy (Goswami et al., 2020).

Immunomics, the field of omics-based analysis that aims to

describe the reaction of the immune system to another

biological component (pathogen or cancer), can be used to

analyze the interactions existing between the host immune

system and the cancer cells and how it leads to immune

recognition or immune ignorance (Arnaout et al., 2021).

However, to fully depict the interconnection that exists

between the tumor and the immune system, other players

need to be taken into the equation. Indeed, it has been shown

that the microbiome can influence the sensitivity of cancers to

ICB, suggesting an interplay between the host microbiota and

the immune constitution of tumor microenvironment

(Baruch et al., 2021). Immunomics and microbiomics are

two novel components that should be included into multi-

omics models to integrate the tumor/host interaction in

cancer complexity.

In the first part, due to the growing interest in multi-omics,

this review will address the challenges raised by omics and how to

overcome them. In the second part, we will provide an overview

of different databases that are useful in cancer research. In the

third part, this review will attempt to illustrate how to integrate

mutli-omics to clarify cancer complexity, and how the use of

machine learning can help to predict survival and treatment

response. Finally, we will give an overview of new methods to

decipher the interaction between the host and the cancer cells

and how it can bring opportunity for personalized therapy

(Figure 1).

Challenges

To integrate the massive data flow generated through the

different biological elements explored by NGS, innovative

computational tools are needed for diminishing the data

dimension, then making them manipulable by human hands.

These tools allow researchers to fulfill the gap of missing

knowledges and contribute to the discovery of novel biomarkers,

deciphering the complexity of cancers (Subramanian et al., 2020;

Poirion et al., 2021; Wörheide et al., 2021; Zeng et al., 2021). Despite

the progresses in these new instruments, multiple challenges remain.
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TABLE 1 Description of different tools for multi-omics integration with their application and their major strength and limits.

Method Principle Aim Omics element Pros Cons

JIVE Matrix
factorization

Disease subtyping,
systemic knowledge,
module detection

Genomics and epigenomics Integrate large amount of data Sensitive to outliers and missing
values

NMF Disease subtyping,
module detection,
biomarker discovery

Genomics and epigenomics Filtering weak signal. Integrate
large amount of data. Detection of
cluster of small size

Time and memory consuming.
Underperforming on missing
values

nNMF

jNMF

intNMF

SLIDE Disease subtyping,
module detection,
biomarker discovery

Genomics, epigenomics and
proteomics

Integrate large amount of data Underperforming with missing
values. Optimum solution is not
guaranteed

MALA Logic data mining Sample classification Genomics and
transcriptomics

Works well on experimental data.
Integrate large amount of data

Phenotype number must be
delivered with data. Sensitive to
missing values

iCluster Gaussian latent
variable model

Genomics, epigenomics and
transcriptomics

Needs to test a large amount of
solution to find the most relevant

iCluster+ Generalized
linear regression

Disease subtyping Genomics, transcriptomics,
proteomics and epigenomics

Handle missing values No evaluation of statistical
significance for selected features

iClusterBayes Bayesian
integrative
clustering

Biomarker discovery Genomics, transcriptomics,
and epigenomics

Good performance in the presence
of explicative data

Underperform with outliers

MOFA Bayesian factor
analysis

Biomarker discovery,
systemic knowledge

Proteomics, metabolomics
and lipidomics

Handle well missing values Linear model can miss linear
relation

MOFA+ Genomics and epigenomics The use of continuous learning
enabling MOFA to recover
different trajectory

Need of multi-modal measurement
for the same set of cells

JIVE: joint and individual variation explained.

(n, j, int) NMF: (network, joint, integrative) non-negative matrix factorization.

SLIDE: structural learning and integrative decomposition.

MALA: micro array logic analyzer.

MOFA: multi-omics factor analysis.

FIGURE 1
Overflow of the omics integration for precision medicine. The bulk tumor is composed of many different biological elements that can be
classified and used to find novel interactions between interconnected elements. These interactions can be used to molecularly characterize and
subtype cancers with the aim of anticipating their clinical evolution and treatment sensitivity to promote precision medicine.
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One of these challenges is the heterogeneity that exists across

the biological layers. It may differ in type, with numerical or

categorical features, discrete or continuous variables with

different ranges. The number of features can also vary

between the different data sources, creating novel struggles to

consider. Another burden, operating during sample collection,

are missing values, setting up uninterpretable elements difficult

to handle by some algorithms. Also, processing outliers and

highly correlated variables might be burdensome to integrate as

they might be irrelevant, create noise, or overfeed a system

(Mirza et al., 2019; Song et al., 2020a).

To face these challenges, different tools have been created

that we will summarize (Canzler et al., 2020; Nicora et al., 2020;

Subramanian et al., 2020). Two main types of algorithms can be

distinguished: 1) the “exploratory matrix” and 2) the

“probabilistic matrix”. The first one is based on the matrix

and its result. It performs best with a well-defined matrix, can

handle outliers, but is less accurate when data are missing

(Devarajan, 2008; Chauvel et al., 2020; Hamamoto et al.,

2022). The probabilistic matrix utilizes probabilistic formulas

(such as Gaussian and Bayesian). These algorithms shine when

the dataset is incomplete, with missing values, but lose accuracy

with outliers (Needham et al., 2007; Yuan et al., 2021; Chu et al.,

2022). This approach aims to reduce the size of the matrix to

identify patterns within the dataset, allowing for powerful

classification models (Table 1).

Exploratory matrix

Starting with exploratory matrices, herein is a brief overview

of two algorithms using this approach: matrix factorization and

logic data mining. These methods would be preferred for well-

defined exhaustive datasets containing extreme values that need

to be considered.

Matrix factorization: joint and individual variation explained

(JIVE), non-negative factorization (NMF), and structural

learning and integrative decomposition (SLIDE) are some of

the tools based on this approach. This algorithm uses a system of

multiplication between columns and rows on a dataset

decomposed in multiple matrices of smaller dimension. Each

matrices have n columns, referring to n common objects, that will

be multiplied by m rows, referring to other common objects. The

matrix can contain different biological elements, that is, gene

expression and miRNA measurement. The strength of matrix

factorization is to cluster different matrices together but requires

a dataset with scarce missing values (Brunet et al., 2004;

Devarajan, 2008; Lock et al., 2013; Pierre-Jean et al., 2022).

Logic data mining is a multistep procedure: 1) feature

binarization, that assigns a threshold to convert each feature

in binary values (0 or 1); 2) feature selection, that uses a machine

learning approach to select a subset of data with relevant features

introduced in a model; 3) extraction of logic formulas to build the

final classification model. As an example, microarray logic

analyzer (MALA) is based on this approach and has been

used to identify overexpressed interrelated genes and proteins

involved in a common pathway (Bertolazzi et al., 2008;Wang and

éditeur, 2009; Weitschek et al., 2012).

Probabilistic matrix

We will now detail four types of algorithms to better

conceptualize the probabilistic matrix approach. These models

follow the principles of Gaussian probability, linear regression, or

Bayesian statistics and are very useful to troubleshoot datasets

with missing values.

Gaussian latent variable model uses a probabilistic matrix

starting with the dimension reduction of the dataset. The matrix

composed of N columns and D rows will be decreased to a matrix

with a lower dimensionality on D. D will be reduced in Q most

relevant data. Relevant data will then be extracted to identify a

pattern explaining the results. Because the algorithm is based on

Gaussian probability, dataset with a Gaussian distribution

perform better with this instrument than expression profiles

near 0. Lower outliers close to the null value may cause

misinterpretation during the analysis. However, missing values

are well managed by the algorithm. A tool using this algorithm,

iCluster, will be further explained in the next chapter (Li and

Chen, 2016).

Generalized linear regression is one of the subcategories

found in the generalized linear model. This algorithm is

composed of three components: 1) random component; 2)

systematic component; and 3) link function. The first step is

the matrix generation, then a linear regression will be applied to

the matrix finding the best possible linear relation to fit the

expected values. The systematic components are distributed on

the line while random components are outside of the line. The

link function will identify a relationship between the linear

predictor and the distribution of the random components. It

aims to explain why some values are following a linear repartition

while others are not. This model performs well when using data

that are already explained on unexplained data. The accuracy

might, however, be hindered by outliers that may introduce

misinterpretation. This model is used in the icluster + tools

(Mo et al., 2013; Song et al., 2022).

Bayesian integrative clustering: the objective of this approach

is to capture the major variations of multiple omics datasets,

using a reduction of the high-dimensional space to a low-

dimensional subspace. This could be vulgarized into a

compaction of the data. The algorithm will extract the

principal variations of the datasets to integrate matrices of

different dimensions to a single matrix called Z with n x k

dimensions, following the rule of multivariate normal

distribution. A joint integrative clustering will capture relevant

features to individualize distinct clusters across omics datasets.
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The use of Baye’s theorem enables the analysis of factors with

various distributions and correlation among datasets. The

probabilistic model is also permissive of missing values

(Needham et al., 2007; Fang et al., 2018; Mo et al., 2018).

Bayesian factor analysis: this is a key component of the multi-

omics factor analysis (MOFA) family tools used for multi-omics

data integration. This unsupervised method infers principal

component-based factors to decompose each matrix of M

different omics components. The matrices will be transformed

into a Z matrix of factors for each sample and M weight (W)

matrices with features in rows and factors in columns, for each

omics element. Downstream analysis will identify inference

across Z and W matrices. Also, because the algorithm is based

on a Bayesian framework, the distributions of the data are placed

on the unobserved variables of the models and the algorithm will

keep running until all the data have been characterized

(Needham et al., 2007; Argelaguet et al., 2018; Min et al., 2018).

To finish, despite the numerous tools that are now available,

the perfect tool does not exist. The continual development of

computational methods necessitates systematic evaluation

(benchmarking) of the omics data analyses tools and methods

(Mangul et al., 2019). The major issue on this benchmarking is

the lack of “gold standard” datasets, providing unbiased ground

truth. This lack of gold standard hinders the possibility to

establish generalizable benchmarks to test novel complex

software (Mangul et al., 2019; Weber, 2019; Marx, 2020).

Different notable benchmarks are available comparing: multi-

omics and multi-view clustering algorithms (Rappoport and

Shamir, 2018), multi-omics dimensionality reduction (Cantini

et al., 2021), multi-omics for cancer subtyping (Duan et al., 2021),

TABLE 2 Publicly available cancer databases with their main characteristics.

Database Multi-omics data available Disease References

TCGA (The Cancer Genome Atlas) 20,000 individual tumor samples Cancers (Weinstein et al., 2013; Tomczak et al., 2015)

RNA-Seq, DNA-Seq, miRNA-Seq, SNV, CNV, DNA
methylation, and RPPA, clinical data (treatment received
and response to treatment), histological data

TCIA (The Cancer Immunome
Database)

8,000 tumor samples Cancers Charoentong et al. (2017)

Genomic immune-related gene set, immune infiltrate,
neoantigens, cancer antigens, HLA types, and tumor
heterogeneity

ICGC (International Cancer Genomics
Consortium)

20,383 samples listed Cancers (Hudson et al., 2010; Australian Pancreatic Cancer
Genome InitiativeBailey et al., 2016; Thompson
et al., 2018)

Somatic and germline whole genome sequencing, genomic
variation data

METABRIC (Molecular Taxonomy of
Breast Cancer International Consortium)

2,503 breast tumor samples Breast
cancers

Curtis et al. (2012)

Clinical traits, gene expression, SNP, and CNV.

TARGET (Therapeutically Applicable
Research to Generate Effective
Treatments)

24 different types of pediatric cancers Pediatric
cancers

(Ma et al., 2018; Rajbhandari et al., 2018)

Gene expression, miRNA expression, CNV, and DNA-seq
data

CRI (Cancer Research Institute) iAtlas 10,000 tumors samples Cancers (Thorsson et al., 2018; Eddy et al., 2020)

Clinical data (immunotherapy responses and clinical
phenotypes), genomics, immunomodulatory genes,
neoantigens load

DNA-seq: deoxyribo nucleic acid-sequencing.

RNA-seq: ribonucleic acid-sequencing.

miRNA-seq: micro ribonucleic acid-sequencing.

SNV: single nucleotide variant.

CNV: copy number variation.

SNP: single nucleotide polymorphisms.

DNA, methylation: deoxyribo nucleic acid methylation.

RPPA: reverse-phase proteomic arrays.

miRNA, expression: micro ribonucleic expression.

HLA: human leukocyte antigen.
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and multi-omics survival prediction methods (Herrmann et al.,

2021). Regardless of the use of the same dataset for comparison,

the results obtained are not necessarily reproducible on another

database and cannot be apply to the integration of omics that

were not included in the initial dataset. The lack of a gold

standard dataset impairs the success of the benchmarking

(Krassowski et al., 2020).

Multi-omics database

The expansion and acceleration of NGS have generated a

tremendous amount of data. In a collaborative effort, extensive

omics databases have been created to stock and make those data

publicly accessible to researchers, allowing for large meta-

analysis for a tumor category or across cancer types. These

datasets can host the sequencing output of different biological

elements from bulk tumor or single-cell sequencing as well as

clinical and treatment information. We will provide a summary

of the main databases that are available for cancer research and

detail the characteristics of each library with tumor types

included and the biological and clinical contents provided

(Table 2).

The Cancer Genome Atlas (TCGA) is the largest pan-cancer

multi-omics database with clinical annotation allowing for large

meta-analysis. TCGA is widely used by the research community,

promoting new discoveries on tumor biology, evolution, and

treatment specific biomarkers validated on meta-analysis across

cancer types (Weinstein et al., 2013; Tomczak et al., 2015).

The Cancer Immunome Database (TCIA) is a new database

of immunogenic analysis of NGS data from 20 different types of

solid tumors derived from TCGA database. This database has

served for the elaboration of a pan-cancer immunogenomic

classification for checkpoint blockade sensitivity (Charoentong

et al., 2017).

The International Cancer Genomics Consortium (ICGC) is

the most ambitious biomedical efforts research since the human

genome project. This database has permitted novel observation

of cancer biology through the whole genome annotated

alterations from 2,800 samples (Hudson et al., 2010;

Australian Pancreatic Cancer Genome InitiativeBailey et al.,

2016; Thompson et al., 2018).

The Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) contains genomic data from breast

cancers. This database helped improving the classification and

subtyping of breast tumors and already led to the discovery of

10 subgroups (Curtis et al., 2012).

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) is a clinically annotate database hosting

genomics and transcriptomics data from pediatric tumors. This

dataset empowered the description of the driving process of

childhood cancers, and was used, for example, for characterizing

the immune environment of pediatric cancers and its prognostic

impact (Ma et al., 2018; Rajbhandari et al., 2018; Sherif et al.,

2021).

Cancer Research Institute (CRI) iAtlas is a database platform

allowing the study of interaction between tumors and immune

microenvironment, granting the possibility to explore immune

response across genomics and clinical phenotypes. iAtlas (first

version) allows researchers to explore these readouts and the

relation between tumor types and immune response (Thorsson

et al., 2018). CRI iAtlas now shares information about

immunotherapy response useful for biomarker identification

(Eddy et al., 2020).

The dramatic acceleration in data production and the policy for

data sharing have increased the comprehension of cancer

complexity and fostered the integration of interrelated biological

elements of omics analysis in more and more complex

computational models that we will show in detail in the following.

Multi-omics for greater accuracy

Multi-omics for a better classification of
cancer types

Tumor heterogeneity remains a hurdle to understand tumor

biology. For example, for a same tumor type, there is a wide variation

in clinical evolution across population of patients, highlighting

differences in tumor cells to progress or mutate (Lagoa et al.,

2020; Wu et al., 2020). These differences are barriers to develop

efficient therapies (Marusyk et al., 2012; Cyll et al., 2017; Marusyk

et al., 2020). Cancer is relatively easy to classify as the classification is

based on the histotype and site of origin of the tumor. However, the

classification system has increased in complexity in the last decades

with the introduction of genomics and molecular features to better

account for the clinical evolution and foster the identification of

histologic groups (Carbone, 2020). Therefore, omics data can be

used to individualize tumor types. In this aim, a variety of

bioinformatic tools have been developed to refine and accelerate

sample classification.

One of these tools that allows the sample classification is a

microarray logic analyzer (MALA). MALA is based on logic data

mining algorithm. Its follows a three-step process: (Santucci

et al., 2020) discrete cluster analysis, (Ferlay et al., 2020)

selection of the most relevant (cluster of) genes, and (Dagogo-

Jack and Shaw, 2018) logical formulas characterizing the samples

(Weitschek et al., 2012). In the context of cancer research, a

comparative study came out with the purpose to evaluate which

tools could be the most accurate in treating multilevel omics data.

MALA with sparse canonical correlation analysis (SCCA) and

non-negative matrix factorization (NMF) were compared. When

using the experimental data, MALA performed the best sample

classification compared to the others. However, on a larger data

set of simulated data, the efficiency of the model decreased

(Pucher et al., 2019).
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Multi-omics for cancer subtyping

To better understand cancer, researchers need to characterize

the different cancer subtypes. Subtyping cancer is more

complicated and remains one of the major challenges in

cancer research. The identification of subtypes can provide an

understanding of the underlying molecular mechanisms and

thereby help design precise treatment strategies for efficient

cancer management. Contrary to classification that is more

histologic, the subtypes are influenced by oncogenic

alterations and/or modifications in the gene/protein

expression (Anderson et al., 2021). Molecular classification has

partially elucidated tumor heterogeneity, however, different

subtypes can be identified depending on different layers of

biological elements: genomics, alterations, gene and protein

expression profile as well as cellular composition (Skoulidis

and Heymach, 2019). The main challenge is to be able to

accurately analyze the large amount of data and to determine

and isolate predictive patterns. Multi-omics provides a powerful

approach to process, treat, and characterize the large quantity of

data required for cancer subtyping (Menyhárt and Győrffy,

2021).

Cancer subtyping can be efficiently addressed by matrix

factorization, such as joint and individual variation explained

(JIVE) algorithm. This tool aims to individualize two types of

structures: joint and individual structures. The former is the

biological patterns of the samples that are shared between the

different component types (i.e., gene expression and

miRNA), while the latter is intrinsic of one component

and unrelated to others (Lock et al., 2013). One structure

can interfere in finding a signal in the second structure and

vice versa. JIVE was developed to distinguish these possible

interfering effects by decomposing the datasets into a sum of

three terms: (Santucci et al., 2020) low-rank approximation

capturing joint variation across the biological components,

(Ferlay et al., 2020) low-rank approximation capturing

structured variation specific to a given component, and

(Dagogo-Jack and Shaw, 2018) residual noise. It explores

the information provided by a specific biological data type or

by the interaction between several data for subtyping. A

logical weakness of this method is its sensitivity to

outliers. JIVE algorithm was tested on 234 glioblastoma

samples, with an input of miRNA and gene expression

matrices. It showed that the gene expression introduced

more structured variation than miRNA and that joint

structure variation between the gene expression and

miRNA was more accurate to classify the biological

subgroups. Overall, the multi-component integration

improved the subclassification of glioblastoma samples.

In the optic of diseases subtyping, a growing diversity of tools

based on matrix factorization were developed. As an example,

non-negative factorization (NMF) consists in multiplication

between the columns and the rows of a matrix. The input

data sets are formed by a matrix called A, composed of N

genes and M samples. Genes that regulate the expression of

downstream genes will be identified and labeled k. In the second

step, the matrix A will be split in two matrices: W composed of

the N genes and k, and H composed of k andM samples. Finally,

W and H matrices will be combined in a new matrix. The

advantage of the NMF technics is to easily cluster gene and

samples, but this is a time and memory consuming tool that does

not handle negative input and is not designed to integrate

multilayer components (Lee and Seung, 1999; Brunet et al.,

2004; Zhang et al., 2012; Yang and Michailidis, 2015).

Briefly, NMF extensions were implemented to allow multi-

omics profiling. Multi-omics integration with jNMF was

compared to single omics to class clinical data from TCGA

into different subgroups and outperformed the single element

model. Moreover, the number of groups will depend on the

clinical data used (Zhang et al., 2012). A secondmajor update was

intNMF, while jNMF only considers homogenous effects inWHI

and intNMF considers heterogenous effects (Yang and

Michailidis, 2015). As an example, breast cancer subtyping

with multi-omics data integration of five biological

components by intNMF refined the subclassification from four

classical subsets to six unique clusters (Chalise and Fridley, 2017).

The last update of NMF is called network-based integrative

(nNMF). nNMF involves a two-step process with network

generation and integration of the network. To generate the

network, a consensus matrix is built with a binary value

attributed to each sample to reflect the connectivity between

samples. Successive cycles are performed attributing a new binary

value for every novel entry until the matrix is stabilized. The

mean of the consensus matrix is made for each iterative cycle

until the last cycle. This generates a consensus matrix for each

data type integrated. The larger elements of the consensus matrix

reflect the higher similarity between samples. After the networks

are generated, samples can be considered as vertices and the

consensus values as the edges. The network integration is based

on the message passing theory (updating and combining

network) that is processed on two ways: strong signals present

in any data are conserved and consistent signals in multiple data

are added up during an iterative process. Weak signals disappear

while filtering out the noise. An advantage of nNMF is its ability

to detect true cluster of small size with high reliability. Clinical

application of nNMF demonstrated the capacity to establish

novel clusters on head and neck squamous cell carcinoma,

glioblastoma, and low-grade glioma data sets, suggesting a

new comprehensive subtyping that eliminates previously

unclassified samples (Chalise et al., 2020).

NMF and its extensions are based on matrix factorization

algorithm that are efficient tools to treat a massive amount of data

but are underperforming with missing values. To complement

this part, iCluster family tools are good alternatives. iCluster is

based on probabilistic matrices algorithm and iCluster is based

on a Gaussian latent variable model. The basic concept of
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iCluster is to jointly estimate the link between the data with a

dimension reduction principle: data and features are clustered

together to maximize the correlation between data types (Shen

et al., 2009). iCluster was used to classify novel subtypes of

esophageal cancers based on genomics, epigenomics, and

transcriptomics data. The classification varied depending on

the type of omics. Compared to previous classification, the

samples were consistently classified into three groups with

different biological traits and prognostic significance (Ma

et al., 2021). It was also used in breast cancer to integrate

DNA and RNA data leading to novel subtyping with

noticeable clinical outcomes beyond classic expression

profiling (Curtis et al., 2012).

The first extension of iCluster was iCluster+ (or

iClusterplus), a model based on a generalized linear regression

combined to the basic algorithm of iCluster. Compared to

different models, iCluster + produces the best classification

when integrating unknown datasets. It has been useful to

construct two molecular subtypes and identified two core

genes (CNTN4 and RFTN1) for lung adenocarcinoma (Zhao

et al., 2021). Two limitations to this tools can be pinpointed: it

needs to test hundreds of values to tune the optimal solution

parameters and there is no evaluation of statistical significance

for a selected feature (Sathyanarayanan et al., 2020).

The most recent upgrade is iClusterBayes, which uses a

Bayesian integrative clustering algorithm. The main advances

of iClusterBayes are to overcome the limitations of iCluster + that

were priorly exposed. This tool was tested on kidney cancer and

glioblastoma and grants the possibility for tumor subtyping.

However, iClusterBayes was not compared to another method,

so that its capacity to discover novel subtypes could not be

assessed (Mo et al., 2018).

SLIDE is a tool based on the concept of the multi-view of

data, using a matrix factorization algorithm. SLIDE was

developed in the continuity of JIVE, trying to investigate on

shared and individual structure. Compared to JIVE, SLIDE

allows the creation of partially shared scores in addition to

the individual ones. SLIDE was able to upgrade breast cancer

subtyping using gene, methylation, miRNA, and protein profiling

(Gaynanova and Li, 2019).

The integration of multiple layers of interconnected

biological elements through a wide palette of multi-omics

tools available is a great opportunity to better classify

biological-relevant cancer subtypes and to reduce unclassified

samples. The choice of the algorithm should judiciously fit the

characteristic of a given dataset to optimize the model

performance.

Biomarker discovery

The tumor biology is intimately related to disease evolution

and treatment response (Marusyk et al., 2020). The assimilation

of clinical data as additional features to feed multilayer integrated

models enables association between molecular subtypes and

clinical outcome. Discovering biomarkers associated with

prognosis and treatment sensitivity/resistance is a keystone for

risk-group classification and therapeutic decision. The

identification of treatment specific biomarkers is also granting

the opportunities to provide therapies tailored to the biological

trait of a specific tumor, opening the path for precision medicine.

Machine learning and deep learning models, trained on

Kaplan–Meier derived survival data, are powerful classifiers to

predict the clinical evolution. In this part, we aim to illustrate

how multi-omics integration alongside machine and deep

learning approaches might facilitate biomarker discovery and

guide treatment decision.

Application of multi-omics to biomarker
discovery

Multi-omics tools have been developed to discover novel

biomarkers in oncology. For example, jNMF allows biomarker

discovery for prediction of drug response through pathway

signature analysis. The identification of novel connections

between tumor biology and drug response highlighted an

association between BRAF inhibitors efficacy and BRAF/MITF

overexpression in breast cancer (Fujita et al., 2018). Also,

iClusterBayes demonstrated its ability to discover biomarkers,

revealing the role of MTAP/CDKN2A/2B expression for PD-L1

blockade sensitivity with a proportional relation of

Kaplan–Meier survival to the gene expression level (Mo et al.,

2020).

Lemon-tree is another tool for multi-omics processing that

runs a series of tasks that are self-contained step in the learning

and clustering process. The workflow of the tools is as follow: ask

biological question→ preprocess data→ clusterization→ builds

modules of cluster→ compute score→ results. Using this tool to

discover biomarkers was operated on glioblastoma genes, looking

at the amplification levels and copy-loss level of genes. The

results show that genes that have copy number alteration

(CNA) of glioblastoma oncogene EGFR and tumor

suppressors CDKN2A and PTEN, but also novel candidates

such as KRIT1 and PAOX were assimilated with a worse

prognosis (Bonnet et al., 2015). iProFun, is a method

analyzing the “cascade effects” of the genes. It takes as input

statistics associated with the data, aiming to detect the joint

variation between each data. This study highlighted potential

therapeutic candidates (AKT1, KRT8, and MAP2) in ovarian

cancers. But it also demonstrated the role of BIN2 in ovarian

cancer, and how it can be a favorable survival outcome (Song

et al., 2019). Finally, AMARETTO is used to identify driver genes

by integrating genomics and epigenomics data. This is a three-

step process, identifying candidate cancer driver genes, modeling

effect on gene expression, and association of drivers with their
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targets. In other words, it creates clusters depending on driver

genes and expression of the genes. AMARETTO was able to

highlight different driver genes such as GPX2 for smoking

induced cancer (lung squamous cell carcinoma), but also

identified OAS2 and TRIM22 as modulator of the immune

response (Champion et al., 2018).

Machine learning model for biomarker
discovery

Machine learning are algorithms that can predict models

using statistical methods based on training data. Algorithms can

be trained in two ways: via supervised or unsupervised learning.

Supervised learning relies on a labelled input dataset used to train

and develop a function to predict the outcome on an

experimental dataset. The algorithm attempts to find patterns

relating the features to the given label. The second step is to

integrate data test and to classify the validation data in the right

label by following the identified patterns. The correlation

between the given and predicted labels can be compared to

assess the accuracy of the model. Unsupervised learning

clusters the samples by identifying and regrouping different

features following a similar pattern (Huang et al., 2015). The

main difference of supervised learning is that the input data are

not labelled. Machine learning approaches algorithms containing

only one hidden layer.

A powerful tool developed for multi-omics integration is the

artificial neural network (ANN). It can be used for machine

learning and for deep learning. ANN is a simple approach to

create an artificial model, composed of neurons organized in

layers. This is composed of an input layer, hidden layer, and an

output layer. The input layer corresponds to the dataset given to

the algorithm and the output layer corresponds to the possible

outputs of the algorithm, in this case, a classification of the data.

The hidden layer is what defines the complexity of the algorithm,

it represents possible pathways linking the input layer to the

output layer. For the integration of multi-omics, different blocks,

specific to each type of omics data, are created. Depending on the

biological question, different machine learning algorithms can be

preferred.

A vast diversity of algorithms are available for machine

learning; random forest classifier and k-nearest neighbor are

commonly supervised classifiers that are easily suitable for

biomarker discovery. A random forest algorithm builds

multiple decision trees that are randomly generated. Each

decision tree provides a classification. The classification that is

chosen in a majority of cases is used to classify each datapoint of

the dataset (Tin Kam, 1995). K-nearest neighbor follows three

main steps: 1) a reference dataset is clustered into the different

classes that need to be distinguished, 2) the experimental data are

integrated into the dataset, and 3) the experimental data are

classified by calculating the distance to each defined class and

classifying each datapoint in the nearest cluster (Fixt and Hodges,

2022).

These different approaches have been successfully applied to

biological data to improve prognoses prediction. For example, ANN

has already been used to analyze the survival in two breast cancer

datasets. The model was able to predict the prognoses (favorable or

unfavorable) and relapse probability (Chi et al., 2022). In the second

example, machine learning approaches were compared to

histopathological grading to classify and predict patients’

outcome in glioblastoma. In this test, a k-nearest neighbor-based

ANN approach out scaled the histopathological grading for tumor

classification and survival prediction. (Petalidis et al., 2008). In the

third example, a random forest algorithm allowed the discovery of a

novel prognostic biomarker in the Ewing Sarcoma. As an example, a

lower Ki67 expression was associated to a better prognosis for the

subset of samples with low-CD99 expression (Bühnemann et al.,

2014). In the final example, a gene expression-based algorithm of

k-nearest neighbor and random forest identified novel prognostic

genes had increased the accuracy for the classification of the poorly

defined group of soft tissue sarcomas. They were also able to

annotate the samples in molecular subsets with potential

therapeutic susceptibility (van IJzendoorn et al., 2019).

Deep learning for treatment guiding

Deep learning approaches are a subset of machine learning

that contains multiple hidden layers organized in a network

allowing for progressive learning (LeCun et al., 2015; Bi et al.,

2019). Deep learning can be deep neural network (DNN) or

convolutional neural network (CNN). DNN is similar to ANN

with an increased number of hidden layers, and CNN is a class of

ANN used for imaging analysis (Simonyan and Zisserman, 2015;

Szegedy et al., 2015; He et al., 2016; Chollet, 2017).

Survival analysis learning with multi-omics neural network

(SALMON) attempts to aggregate and simplify the gene

expression data to enable prognosis prediction. Deep learning

approaches typically introduce an extensive number of

parameters from a limited sample set that can introduce data

overfitting rendering the models ineffective. In comparison,

SALMON favorizes the use of eigengene matrices of gene co-

expression modules to feed the model. This model was compared

to other survival prognostic models on breast cancer datasets,

including DeepSurv and random survival forest. SALMON

predictor reached a higher survival concordance index than

other methods and showed that the integration of multi-omics

data combined with clinical and demographical features can

increase the prediction performance. This algorithm was used

to develop an age-specific prognostic score for breast cancer

(Huang et al., 2019).

CNN is very useful for deconvolutional observations of

histological images used to classify and predict cancer

prognoses. CNN was successful to detect and to predict
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patient outcomes on haematoxylin-eosin-stained tumor tissue

microarray with a higher accuracy than the visual prognostic

prediction. For that, the image was cut into spots that were

characterized with a pre-trained convolutional neural network

(Bychkov et al., 2018). MesoNet is another tool developed to

analyze larger images. To do so, the whole-slide images are

subdivided in tiles that have a score assigned. Based on the

score, the algorithm can select the most relevant tiles for the

prediction. The cumulated score of the selected tiles informs the

prediction of a patient’s overall survival (Courtiol et al., 2019).

These tools perform well to analyze cancer heterogeneity. To

finish, survival convolutional neural network (SCNN) is a CNN-

based algorithm combined to an integration tool. This model

identifies visual patterns from regions of interest isolated in

biopsies and relates them to patient’s outcome to create a

model. This comprehensive tool can also integrate genomics

biomarkers. This technology was able to develop a better

prognostic prediction tool compared to WHO genomics

classification (Mobadersany et al., 2018).

DrugCell is a visible neural network for drug response

prediction. The model is built with two branches. The first

one modulates the hierarchical organization of molecular

subsystems in human cells. Each subsystem, involving small

protein complexes, is connected to larger pathways and to

cellular functions assigned from a bank of artificial neurons.

The input layer is the mutation status from genomics data and

the output corresponds to the state of the whole cell based on the

genotype. The second branch of the system is a CNN assessing

the fingerprint of a drug. The output from the two branches of the

model is combined in a single layer of neurons integrating the

response of a genotype to a certain treatment. To test on the first

side of the model, they used two large drug screening resources:

the Cancer Therapeutics Response Portal (CTRP) v2 and the

Genomics of Drug Sensitivity in Cancer (GDSC) database. Using

these two resources, it covers 684 drugs and 1,235 cell lines. Each

cell-line genotype was represented with a binary vector (mutated

or non-mutated). The chemical structure of the drug was

represented by an average of 81 activated bits in the Morgan

fingerprint vector. Drug cell was trained to associate each

genotype-drug paired with its corresponding drug–response

curve. As a last point, drug cell was clinically tested stratify

cancer patients depending on their response to treatment. They

tested drug cell on clinical trial data from 221 estrogen receptor

positive metastatic breast cancer patients and showed that the

model was able to predict the response to mTOR and CDK4/

6 inhibitors. Drug cell also includes a feature for predicting the

sensitivity to drug combination (Kuenzi et al., 2020).

In a number of studies, DNN was used to predict prognoses.

As an example, DeepSurv is a tool defined as a prognostic model.

With the integration of time-dependent and treatment-sensitive

survival data to the model, it was trained to provide treatment

recommendations. DeepSurv was tested on four real-life datasets:

Worcester Heart Attack Study (WHAS), the Study to

Understand Prognoses Preferences Outcomes and Risks of

Treatment (SUPPORT), the Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC), and

Rotterdam & the German Breast Cancer Study Group

(GBSG). DeepSurv takes input as the patient’s baseline data.

The output is composed of one node estimating the log-risk

function in the Cox model (estimation of the effect parameters

without any consideration of the hazard function). As the second

part, it uses a treatment recommender system. This system takes

into account a group of patients assigned to a specific treatment

group to predict the log-risk of a given treatment. Using the same

base line hazard functions, it is possible to calculate the personal

risk-ratio of prescribing one treatment and then, determine a

treatment recommendation algorithm. To assess the possibility

of a treatment recommendation system, DeepSurv was trained

on the Rotterdam tumor bank to build the recommendation

system that was then tested on GBSG. The treatment

recommendation system demonstrated that, on a real clinical

dataset, the patient’s survival would be increased by following the

treatment recommendation of the algorithm. In comparison, a

random survival forest-based recommendation system was not

able to improve the patient’s outcome (Katzman et al., 2018). To

conclude, DeepSurv provides strong modeling capabilities with

the ability of guiding the therapeutic decision and bringing the

clinician closer to computer-assisted technology for precision

medicine in oncology.

Other examples of machine and deep learning models

applicable for biomarker discovery are detailed in a recent

review articles devoted to this subject (Nicora et al., 2020)

(Zhu et al., 2020). So far, these powerful algorithms have been

used to successfully develop models for prognosis and treatment

response prediction. However, these cutting-edge technologies

are not yet ready for personalized treatment recommendation in

the perspective of prospective clinical implementation.

New hope in omics: deciphering
host–tumor interplay

Novel fields of interest have emerged to unravel host–tumor

interactions (Hui, 1989) through the immunologic cancer

response (Nisar et al., 2020) (Binnewies et al., 2018) and to

understand how tumor cells can trick the host to hijack its

defensive system and favor cancer immune evasion. The

comprehension of the immune escape mechanisms opened

the path to immune-mediated therapeutic opportunities. ICB

are molecules that restore the immune system’s ability to

recognize and eliminate tumor cells such as PD1/PDL1

(program cell-death protein one and its ligand) or CTLA4

(cytotoxic T-lymphocyte associated protein 4) inhibitors have

revolutionized the treatment of some adult cancers (Nishino

et al., 2017). However, not all the patients with a same disease will

respond to these treatments and anticipating the patients who
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will be responders remains challenging. Indeed, ICB efficacy is

highly dependent of the constitution of the tumor cell

immunogenicity, the host immune recognition and, ultimately,

the TiME (Bonaventura et al., 2019). The advances in NGS and

the growing number of high-throughput tumor sequencing

datasets alongside the constant improvement of computational

analyzes opened the way to new disciplines like immunomics and

microbiomics.

ICB biomarker identification

The host-tumor interaction comprises a succession of

interrelated steps facilitating or refraining an efficient

immune recognition of tumor cells. These steps are

dependent of the tumor biology, the host ability to

recognize the tumor, and the mechanisms that will

promote immune inflammation or immune evasion. Briefly,

the somatic mutations of tumors result in the expression of

neoantigens that can be exposed to and recognized by the host

antigen presenting cells (APCs). This will activate an immune

cascade responsible for the activation and recruitment of

effector T cells in the tumor (Chen and Mellman, 2017).

These primary steps determine the infiltration of the tumor

by effector immune cells: the tumor infiltrated lymphocytes

(TILs). The anti-tumor activity of TILs is influenced by the

presence of stimulatory or inhibitory signaling. PDL1,

expressed by tumor and immune cells, binds to the

PD1 receptor on T cell and generates an inhibitory signal

leading to T-cell exhaustion and loss of activity (Chen and

Mellman, 2017). To be fully efficient, ICBs needs the tumor to

be infiltrated by inflamed T cell rending possible to develop

biomarkers of efficacy (Bonaventura et al., 2019).

The identification of biomarkers was first made possible by

immunohistochemistry (IHC) assay that has the advantage of

spatial annotation but is limited by the sparse number of

features that can be assessed. A classification in three IHC

immune states for tumor infiltrated lymphocytes (TILs)

density is usually admitted with immune inflamed (or

“hot”), immune excluded, and immune deserted (or “cold”)

tumors (PMID: 30,179,157). Few biomarkers are so far

broadly recognized. Some from the IHC like tumor

infiltrated lymphocytes (TILs) density, mostly for CD8, and

the protein expression of PD-L1 in the tumor. Other

biomarkers derive from NGS test: tumor mutation burden

(TMB) and the level of expression of interferon-gamma

(IFNγ) or INFγ gene expression profile signature (Ayers

et al., 2017; Nishino et al., 2017). These biomarkers are

known to be independent predictors of response to ICB,

however the predictive value of cumulative biomarkers

remains partially solved, so that the integration of

multilayers omics analysis for dissecting the immune

environment through immunomics was brought to the fore.

Immunomics for TiME profiling

Immunomics is the part of omics integration that aims to

comprehend the host-tumor interaction and to profile the TiME.

Integrative immunomics allows for quantitative, functional,

spatial, and clonal annotation of the immune environment to

comprehend the host/cancer interaction and discover

biomarkers for ICB efficacy.

To integrate and study immune cell-host interactions, novel

bioinformatic tools were developed. The quantification and

enumeration of immune cell infiltrate can be deducted from

bulk-tumor RNAseq data by deconvolution-based tools, such as

MCP-counter (Becht et al., 2016) and CIBERSORT (Newman

et al., 2019), or through gene expression scores (Danaher et al.,

2017). It is also possible to use computational analyzes to infer

the somatic mutations and the neoantigens presented by the

tumor cells as well as the immunogenicity of these neoantigens,

for example, the TMB assesses the mutational load of a tumor

(Endris et al., 2019). The enumeration of intra-tumor T-cell and

B-cell clonotype expansion, through T-cell receptor (TCR) and

B-cell receptor (BCR) rearrangement, are particularly interesting

as a surrogate of the immune reactivity potentially induced by the

tumor. Different tools exist to extract the T-cell and B-cell

clonotype repertoire from genomics or transcriptomics data,

such as MiXCR (Bolotin et al., 2015) and immuneDB

(Rosenfeld et al., 2018). These methods align VDJ sequences,

quantify them, and sort them in distinct clonotypes. With the

development of these tools, high-throughput NGS dataset can be

analyzed through the spectre of immunomics and for discovering

new biomarkers of ICB efficacy. We will, herein, present some of

the latest studies of immunomics integration.

A pan-cancer analysis, from the publicly available TARGET

dataset, aimed to characterize and classify immune subsets of

pediatric solid cancers based on transcriptomics and survival

data (Sherif et al., 2021). The gene expression profile and gene set

enrichment analysis (ssGSEA) individualized six distinct

immune groups with diagnostic and prognostic association.

The study used the data from 408 samples from five pediatric

cancers: neuroblastoma, osteosarcoma, and three kinds of renal

cancers.

The immune infiltrate was first assessed by the immunologic

constant of rejection (ICR) method (Thorsson et al., 2018) in

three classes from low- to high-immune score. Kidney rhabdoid

tumors had the higher immune score and Wilms tumor the

lowest. Correlation clustering of ssGSEA-based immune

signatures identified five main modules: interferon-gamma

(IFN-G) and tumor growth factor beta (TGF-B) signaling,

macrophages, lymphocytes, and wound healing. These five

modules were used for the identification of six immune

subtypes: T-cell helper 2 (Th2) dominant, inflammatory,

immunologically quiet, wound healing dominant,

macrophages dominant, and lymphocyte suppressed subtypes.

Each immune subtype was composed by a specific immune

Frontiers in Molecular Biosciences frontiersin.org11

Raufaste-Cazavieille et al. 10.3389/fmolb.2022.962743

787979

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.962743


infiltrate by CIBERSORT enumeration, that mirrored the

immune signature.

Tumor types were unevenly distributed between the immune

groups, and thus highlighting the association of the immune

phenotype and the diagnosis. Furthermore, the immune

subtyping was correlated with the prognosis, inflammatory

subtype having the best clinical outcome while wound healing

dominant subtype had the worse survival. The clinical impact

was observed across cancers and within a same cancer type. This

work demonstrates that access to NGS, well clinically annotated

large tumor database, and immunogenomics integration help

understand the interplay of host immune system and tumor cells.

The immune landscape characterization can also improve tumor

classification and prognostication as shown in this pediatric

database.

A systematic meta-analysis of tumor and

microenvironmental biomarkers for ICB sensitivity has

investigated the relative impact of independent and combined

biomarkers. An immunomics analysis from bulked-tumor

transcriptomics and genomics was performed on a dataset

from seven cancer types from 1,008 adult patients (CPI1000+)

treated with immune checkpoint blockade (ICB) (Litchfield et al.,

2021). The goal of this work was to select a large panel of

biomarkers, aggregated by a systematic literature search, to

assign a Z score for each of them and test their prediction

impact for ICB efficacy in a large pan-cancer population. The

different biomarkers explored the T-cell response, the

mechanisms for immune evasion and infiltration, and the host

factors.

In univariate analysis, clonal and total TMB and CXCL9

expression, a CD8 attractive chemokine, were the strongest

predictors for ICB response, followed by CD8A expression,

T-cell inflamed INFG gene expression, and CD274

expression. Due to the high prevalence of TMB in the

literature, researchers decided to subdivide the somatic

mutation by mutations fitting in an immunogenic signature.

Some signatures like dinucleotide variants, that are source of

amino-acid changes and generate immunogenic epitopes,

ultraviolet (UV), or tobacco mutation signatures also came

out as significant determinant of ICB response. In somatic

copy number analysis, two copy number anomalies were

identified as positive or negative predictor of response.

Surprisingly, host factors like the loss of HLA heterogeneity

or HLA subtypes did not show any impact on ICB sensitivity.

They also performed single-cell RNA sequencing of a reactive

CD8 TILs from patients to identify T-cell intrinsic markers of

ICB sensitivity and highlighted CXCL13 and CCR5 gene

involvement. The immune cell enumeration or BCR/TCR

clonality assay were not assessed in this study.

Amachine learningmodel for multivariate analysis including

the significant determinant of response was a better predictor of

ICB response than TMB alone in the initial cohort and three

external independent validation datasets. Also, a two-parameter

biomarker model combining clonal TMB and CXCL9 expression

had a better prediction accuracy than clonal TMB alone, yet

inferior to the multivariate model. The integration of

multiparameter biomarkers could explain approximatively

60% of the response to ICB in the different cancer types.

This study showed that multilayers integration of

immunogenomics data and multiparameter models can

improve the prediction of biomarker to anticipate the

response to immunotherapy. It is open the opportunity to

mechanistically solve host-tumor interaction and to

understand how ICB remodel the tumor environment.

Others studies of multilayer immunomics analysis depicted

the role of B cell in promoting ICB efficacy (Anagnostou et al.,

2020; Helmink et al., 2020). In Helmink’s study, conducted on

multiple cohorts of melanoma and renal cell carcinoma treated

with ICB, for comparison between responders and non-

responders, or immunotherapy naïve to test the prognostic

impact of B-cell infiltrate. The input data comprised RNAseq,

deconvolution immune cell enumeration, BCR clonality, single-

cell RNA sequencing, and mass cytometry (CyTOF) for

functional analysis and histological evaluation for spatial

annotation. The gene expression profile showed an increase

in the activation marker genes of B cells (IFNG, MZB1,

JCHAIN, and IGLL5) in ICB responders. Using TRUST-

algorithm for BCR clonotype enumeration, they observed an

increase of clonal counts for heavy and light chains and in BCR

diversity in responders. MCP-counter deconvolution algorithm

also confirmed the enrichment of B cells in responders

compared to non-responders. To confirm the role of B cell

in ICB activity, they used IHC to assess B-cell density and to

interrogate the spatial repartition of B cell and they performed

functional study. The IHC confirmed an increase in B-cell

density in responders and revealed a spatial organization in

tertiary lymphoid structure (TLS) where CD20+ B cells

colocalize with CD4+, CD8+, and FOXP3+ T cells. A

previous study similarly showed a correlation between B-cell

signature and increased the expression of CD8A and CD8+

T-cell infiltration (Griss et al., 2019). Functional

characterization of tumor B cell by single-cell RNA-seq and

CyTOF, first confirmed the B-cell enrichment, but also decipher

a unique immune activity of B cell (increased activity in

CXCR4 signaling, cytokine receptor interaction, and

chemokine signaling pathways) and a switch in immune

activated CXCR3+ memory B cells in responders. The use of

single-cell RNAseq and spatial omics in cancer analyze allowed,

in this case, to discover unsuspected novel interaction. This

comprehensive approach has revealed the structural role of

B cell and tertiary lymphoid structures in responses to ICB

treatment.

Multi-omics integration for immune characterization has

dramatically furthered the identification of biomarkers raising

the possibility of personalizing ICB treatment based on the tumor

immune constitution.
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Microbiomics as a modulator of the
immune environment

The microbiome is the community of microbial species that

inhabit a human body (Bhatt et al., 2017). The study of

interactions between cancer and the microbiome has gained

popularity in the past few years, showing the interplay

between cancer features and species colonizing the intestinal

flora. The intestinal flora can, indeed, play a role on cancer

(Sepich-Poore et al., 2021) by influencing the risk of cancer

apparition (Song et al., 2020b) and cancer immune response, it

also may be useful for cancer detection (Chen et al., 2021). Theses

interactions can lead to mucosal inflammation or systemic

metabolic/immune dysregulation and modulate immune

responses by altering anti-cancer immunity and response to

therapy (Bhatt et al., 2017; Gopalakrishnan et al., 2018;

Riquelme et al., 2019; Dohlman et al., 2021; Jackson et al.,

2022). In this part, we will show that immunomics and

microbiomics data should be integrated into classic omics

analysis to master cancer complexity.

There are different sequencing techniques to elucidate the

microbiome composition. The first one is the sequencing of the

bacterial 16 S ribosomal RNA (rRNA) that is abundant and

specific to each species. The 16 S rRNA genes are isolated and

amplified from microbiome containing samples and then

sequenced for species characterization. The downside of this

technique is the need of high accuracy in the primer for

amplification (Janda and Abbott, 2007; Pei et al., 2010). A

second technique, majorly used in microbiomics, is shotgun

sequencing that uses the taxonomic, functional, and genomics

profile of the bacteria to deduct the microbiome composition

(Quince et al., 2017). The study of microbiome can also be done

using classic omics techniques like transcriptomics

(metatranscriptomics), proteomics (metaproteomics), and

metabolomics used to detect dysregulation of genes, proteins,

and metabolites (Franzosa et al., 2014; Bikel et al., 2015; Singhal

et al., 2015; Daliri et al., 2017).

Lately, in the aim of cancer treatment, the study of microbiome

allowed significant discoveries. It was first stated that antibiotics can

disrupt the activity of immunotherapy inducing loss of response to

immune checkpoint blockade (ICB). Inmurinemodel ofmelanoma,

it was shown that the use of different antibiotics decreases the

response of PD-1 treatment compromising its tumor effect (Routy

et al., 2018). The same effect was observed in patients with non-small

cell lung cancer (NSCLC), renal cell carcinoma (RCC), and

urothelial carcinoma. The use of those antibiotics negatively

impacted their overall survival and progression-free survival

(Derosa et al., 2022) (Routy et al., 2018). This observation

suggested that a balanced microbiota is necessary for inducing

and maintaining the tumor immune response and prompted

further evaluation of microbiome in patients treated with ICB.

Microbiome exploration by metagenomics in NSCLC patients

treated with ICB confirmed the impact of intestinal flora,

showing an enrichment of some species in responders, notably

Akkermansia muciniphila (AkM) and Firmicutes, and in non-

responder (Prevotella, Clostridium species) (Derosa et al., 2018;

Routy et al., 2018). A recent work confirmed the role of AkM in

response to ICB and introduced the notion relative abundance of

bacteria in cancer (Derosa et al., 2022). They demonstrated that a

high abundance of AkM can improve the patient outcomes in

NSCLC, but if present in high quantity, AkM will be deleterious for

ICB response. This raised the hypothesis that restoring microbiota

equipoise could restore the response. This was assessed by fecal

microbiota transplantation of responder flora in non-responders

that was able to shift from unsensitive to sensitive phenotype and

restore ICB efficacy. After operating the transplantation, 16 S RNA

sequencing revealed that a higher abundance of Veillonellaceae

family and poor in Bifidobacterium bifidum increased the

sensitivity to the treatment (Baruch et al., 2021).

The role of microbiomics for modeling the host-tumor

interaction and the immune response to cancer is now

established, however, microbiomics has not yet been routinely

implemented in multi-omics analysis but is probably a key

element of cancer biology. Considering the high plasticity of

the microbiome constitution, longitudinal analysis of the flora

should be preferred (Turnbaugh et al., 2009; Khoruts et al., 2010;

Spencer et al., 2011; Kong et al., 2012). Most importantly, the gut

microbiota is highly intricated with the host immune reaction to

the tumor warranting its integration in the models of tumor

immune environment analysis.

Improving multi-omics integration in the
context of immunomics

As we have shown, combiningmultiple biological elements of

the tumor and of the host environment is an extremely powerful

way to anatomize the TiME and to discover new biomarkers.

However, there is no standardized method for immunomics and

most of the computational integration tools are home made. To

improve the generalization of the observation and to accelerate

the possibility of patient selection for personalized therapy,

standardization of the method is urging.

In that sense, an available R package for computational tool for

immuno-oncology biological research (IOBR) has been developed to

comprehensively combine and interpret multi-omics data in the

context of immuno-oncology (Zeng et al., 2021). IOBR has been

built to easily integrate whole exome and RNA sequencing from

bulk tumor as well as single-cell RNA sequencing and long non-

coding RNA data. It consists of a four-module pipeline with a

signature/deconvolution, phenotype, mutation, and model

construction. The signature module can identify immune or

tumor specific signatures through expression gene profile and

deconvolution estimate of the immune infiltrate. The

deconvolution part directly integrates CIBERSORT (Newman

et al., 2019), TIMER (Li et al., 2020), MCP-Counter (Becht et al.,
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2016), xCELL (Aran et al., 2017), EPIC (Racle and Gfeller, 2020),

and quanTIseq (Finotello et al., 2019). The phenotypemodule tests a

large set of immune and non-immune-related published

phenotypes, and the mutation part is able to determine

association between different gene alterations and signatures.

Finally, this tool has a model construction module that provides

robust biomarker identification and model construction from the

prior modules. The utilization of standardized ready-to-use package

for onco-immunomics analysis is crucial to hasten biomarker

discovery and test their inter-cohort reproducibility.

Future directions to fully characterize the immune environment

and its dynamic would be to implement microbiomics data to such

model and to construct longitudinal models with the introduction of

time dependent models (Bodein et al., 2022). The incorporation of

spatial annotation and single-cell omics to explore the cancer

architecture at the cell level in all its heterogeneity and to

complement with functional analysis offers a new venue to

elucidate the TiME (Roh et al., 2018; Helmink et al., 2020; Zheng

et al., 2021).

Conclusion

Cancer is a complex and highly heterogenous disease that is yet

partially solved. Despite the molecular characterization made

possible by the advances of NGS technologies, many of the

underlying oncogenic mechanisms remain puzzling. The

integration of the multilayers of the omics elements is an avenue

to further elucidate cancer biology. In this review, we highlighted the

challenges of computational modelization of large multi-omics

datasets and we provided some clues for how to overcome these

barriers. We presented some innovative bioinformatic tools

developed to enlighten the implication of all the interconnected

biological elements of cancer and showed how determinant they are

to refine the disease subtyping and classification, and to discover

biomarkers. Multi-omics integration has also heightened the field of

immunomics and microbiomics, and thus has dramatically

accelerated the identification of robust biomarkers for ICB

efficacy toward the development of tailored immunotherapy.

The constant modernization of the models endows analyses

of increasingly larger datasets with a growing number of

components. Collaborative effort for high-quality and

clinically well-annotated databases, combining all the elements

of high-throughput sequencing, is crucial to feed the models.

Finally, the standardization of the methods would aid in

replicating and confirming the results to increase the global

knowledge and, ultimately, improve cancer treatments.
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Personalised medicine (PM) presents a great opportunity to improve the future

of individualised healthcare. Recent advances in -omics technologies have led

to unprecedented efforts characterising the biology and molecular

mechanisms that underlie the development and progression of a wide array

of complex human diseases, supporting further development of PM. This article

reflects the outcome of the 2021 EATRIS-Plus Multi-omics Stakeholder Group

workshop organised to 1) outline a global overview of common promises and

challenges that key European stakeholders are facing in the field of multi-omics

research, 2) assess the potential of new technologies, such as artificial

intelligence (AI), and 3) establish an initial dialogue between key initiatives in

this space. Our focus is on the alignment of agendas of European initiatives in
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multi-omics research and the centrality of patients in designing solutions that

have the potential to advance PM in long-term healthcare strategies.

KEYWORDS

personalised medicine, translational medicine, multi-omics, EU initiatives, research
infrastructures, bottlenecks in health data

Introduction

Definition of personalised medicine and
-omics technologies

The ‘Personalised Medicine’ (PM) field has evolved rapidly

over recent years, and now plays an increasingly important role

in disease prevention, diagnosis, prognosis, and the unearthing of

novel therapeutics. The European Commission recently defined

PM as: “a medical model using characterization of individuals’

phenotypes and genotypes (e.g., molecular profiling, medical

imaging, lifestyle data) for tailoring the right therapeutic

strategy for the right person at the right time, and/or to

determine the predisposition to disease and/or to deliver timely

and targeted prevention” (European Commission, 2021). This

definition has also been adopted by the European PERMIT

project (Banzi et al., 2020).

The application of PM has the clear potential to aid routine

clinical decision making processes based on (an) individual

patient profile(s) and condition(s) in order to minimise

harmful side effects, ensure a more successful outcome, assure

more efficient patient management, and at the same time provide

an economic advantage (Goetz and Schork, 2018; Kisor and

Ehret, 2020). A strong contribution to this comes from new

molecular biomarker analysis technologies, often summarised

under the term -“omics” (e.g., genomics, transcriptomics,

proteomics, metabolomics, radiomics, and lipidomics)

(Karczewski and Snyder, 2018; Krassowski et al., 2020).

Following landmark observations of genetic variants for use as

stratification biomarkers to select best responding patients,

including Her-2 amplification in breast cancer Pegram et al.

(1998) and BRAF mutation in melanoma Davies et al. (2002),

multiple examples of omics impact in PMwere described, such as

in oncology van ’t Veer et al. (2002), diabetes Chen et al. (2012),

inflammatory bowl disease Lloyd-Price et al. (2019) and rare

neurometabolic disease Tarailo-Graovac et al. (2016). The

resulting data enable scientists and healthcare professionals to

obtain mechanistic insights in a patients’ disease state and

determine the correct course of action (Chen and Snyder, 2013).

However, the integration of multiple different types of -omics

data to identify composite biomarker signatures is a current

bottleneck in PM. This integration is further complicated when

we consider the integration with other data such as imaging data,

phenotypic data, medical data (Electronic Health Records

(EHRs) and patient-related outcomes (Abul-Husn and Kenny,

2019). This level of integrated multi-modal omics and

phenotypic (and/or health) data application facilitates a more

precise understanding of disease biology. When disease

mechanisms are better understood, drug/therapeutic target

identification and the selection of course of treatment for a

specific subgroup of patients is possible (Karczewski and

Snyder, 2018; Krassowski et al., 2020). The integration of

multi-omics and multi-modal data marks a significant step

closer to PM (Wenk, 2005; Aslam et al., 2017; Li et al., 2017;

Kalisky et al., 2018; Olivier et al., 2019), although many

challenges remain before the further development and

implementation of these integrated data in routine clinical care.

European workshop to discuss PM
potentials, bottlenecks and
challenges, and propose solutions

The EATRIS-Plus project, funded by the EU’s research and

innovation funding programme Horizon 2020, aims to build

capabilities and deliver innovative scientific tools to support the

long-term sustainability of EATRIS as one of Europe’s key PM

research infrastructures.

As part of this project, the EATRIS-Plus Multi-omics

Stakeholder Group was established in 2020 with the intention

of facilitating best practices for omics research and bringing

better alignment in goals and objectives in large-scale multi-

omics initiatives across Europe and beyond. Moreover, the group

seeks to become a key opinion leader group in PM.

The EATRIS-Plus Multi-omics Stakeholder Group held its

first virtual meeting on 4 March 2021. The group brings together

close to 20 experts from world-leading European institutions and

associated with EATRIS-Plus. Further expert members include

key stakeholders in the multi-omics landscape, such as Ivo Gut

representing the EASI Genomics initiative, Manel Esteller from

the International Human Epigenome Consortium, Katja Kivinen

from the 1 + MG initiative, Esa Pitkänen and Tomi Mäkelä from

the iCANDigital Precision Cancer Medicine project, and Leming

Shi (Fudan University, China) representing the International

Human Phenome Consortium. In addition to EATRIS, a further

two European Research Infrastructures were represented by

Lukasz Kozera and Michaela Mayrhofer from BBMRI and

Jennifer Harrow and Serena Scollen from ELIXIR.

The focus of the workshop was to explore

common bottlenecks and start a dialogue around potential

areas of collaboration across participating organisations. As

mentioned above, the overall aim of this multidisciplinary and
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cross-institutional working group is to become a European

reference group for fully implementing PM across Europe.

This first publication from the group reports the main

conclusions on the identification of current bottlenecks,

pitfalls and potential solutions in multi-omics research in

support of PM.

Bottlenecks in the application of
multi-omics to PM

Moving beyond genomics to integrated
multi-omics and multi-modal complex
biomarker generation

Diseases are caused by a complex combination of genetic and

environmental factors. As a consequence, the uncovering of

precise molecular processes by which these factors result in

the disease phenotype(s) is vital, yet difficult.

Historically, genomics (e.g., using an individual patient’s

genotypic information) laid the foundation for PM (Sadee,

2011). PM has been successfully applied in the areas where

strong genetic drivers provide an excellent platform for

developing personalised approaches, for example in oncology

(Berger and Mardis, 2018) and rare diseases (Alves et al., 2018).

Indeed, there are nowadays many reported successes in the

application of genomics to clinical care, and this portfolio of

success continues to grow (Shendure et al., 2019).

However, the application of PM for other areas of disease

where solely genetic factors are less of a driver, such as

neurological or metabolic disorders, can be considered as in

its infancy. Analysis and application of PM that goes beyond

genomics alone and passes through the development and

validation of integrated multi-omics biomarker signatures

including all the biological layers (effectors and regulators)

rather than small sets of putative biomarkers has been

demonstrated (Prasser et al., 2018; Glaab et al., 2021). A

significant bottleneck, a significant bottleneck in the

application to PM remains the required multi-modal data

integration that can exploit and integrate multiple molecular

and clinical data types in order to improve our understanding of

disease mechanisms, stratify patients and inform clinicians about

optimised strategies for therapeutic intervention.

New technologies, new challenges, and
digital health

A key element discussed during the first EATRIS-Plus Multi-

omics Stakeholder Group was the role of artificial intelligence

(AI) in boosting the use of multi-omics in the PM domain. AI can

be harnessed to deconvolute high-dimensional data from multi-

omics data profiling and resolve molecular profiles that are

indicative of treatment response and/or potential drug

toxicity. However, examples of the application of AI in omics

analyses are scarce which optimally need sufficient multi-scale,

multi-modal and longitudinal omics data to reasonably capture

relationships that may exist between input and output features.

Also, significant challenges are faced in the application of AI to

the PM domain in the areas of interoperability, data quality and

result reproducibility.

Similar challenges are faced by digital health, being a

promising, multidisciplinary approach under development

encompassing the use of medical technologies (wearable

devices, digital healthcare programs, etc), that permit disease

monitoring, management, health risk assessment and/or

prevention (Jandoo, 2020). Digital health offers great potential

in PM. It improves medical outcomes and enhances efficiency,

empowering patients to make better-informed decisions about

their own health and providing new options for the prevention,

early diagnosis, and management of chronic conditions outside

of traditional health care settings (Jandoo, 2020). Additionally,

digital health is a potential source of data that can be useful for

designing public health policies and epidemiological programs

with impact in PM.

Data standardisation to enable multi-
modal integration and AI supported drug
modelling

Data modelling can predict many patient characteristics, but

its prediction accuracy depends on the quantity and quality of

available data, as well as the interoperability of the tools

(algorithms, code) used. Using AI to build effective evidence-

based decisions requires the collection of significant volume of

complex standardised data (multi-omics, imaging, EHRs, etc.)

that need to be reliable. The volume of biomedical data being

collected has increased exponentially over the past years, but

these data are not always readily available for AI-based

approaches. This is partly due to the sensitive nature of

clinical phenotype data and to the difficulties in obtaining

standardised and structured experimental datasets and

information from EHRs and research databases (Panahiazar

et al., 2015; Abul-Husn and Kenny, 2019; Conesa and Beck,

2019).

Mathematical models should be both flexible and dynamic;

as data is continuously provided the model should improve and

be more accurate. However, data that is not of high quality will

produce results that are not actionable or insightful, and that can

even be misleading and useless in clinical practice. Therefore,

high-quality multi-omics, clinical, and epidemiological data are

fundamental for generating, establishing, and sustaining

algorithms that are sufficient for application.

In order to increase quality, standardisation, and reusability

of scientific data, and specifically for these data to be machine
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actionable, the FAIR principles were published in 2016

(Wilkinson et al., 2016). For data to be truly FAIR (Findable,

Accessible, Interoperable, Reusable), the principles need to be

applied to data at source, including information relating to

samples, experimental methods, and data analyses. This is

imperative to ensure the required results’ reproducibility

needed for the application of AI in the field of PM and to

promote the reuse of multi-omics data in patient management

(Wilkinson et al., 2016; Abul-Husn and Kenny, 2019; FAIR,

2021).

The FAIR data principles have provided a valuable route

forward to the standardisation of data enabling the application of

AI in PM. However, due to varying data qualities and multiple

different standards used across the landscape, heterogeneity and

reduced interoperability, e.g., a timely and secure access, is still

common. Integration and use of EHR data so that it can be used

to optimise health outcomes for individuals and populations is

difficult, and the true application of multi-modal data to PM

remains a challenge. Wider adoption of health data standards

and models such as the Fast Healthcare Interoperability

Resources (FHIR), the Clinical Data Interchange Standards

Consortium (CDISC) and the Observational Medical

Outcomes Partnership (OMOP), and continuing efforts to

map these data models to each other, is needed (Fischer et al.,

2020).

Variability in omics data at source

A key factor for the quality and reusability of multi-omics

and clinical data is the availability and feasibility of relevant

quality assurance (QA) and quality control (QC) schemes for

laboratories in the field. Limited participation in QA/QC

schemes due to budget or other constraints leads to

decreased harmonisation of sample and data processing

methods across laboratories, potentially resulting in lower

reliability of analytical results (Freedman et al., 2015).

Although standardisation of genomics data is improving

(Endrullat et al., 2016; Lubin et al., 2017; Corpas et al.,

2018) for other -omics data and EHRs there is a distinct

lack of common standards and/or reference benchmark values

for assessing complex tests and for determining clinical

validity and utility of, for example, biomarkers

(Quackenbush, 2004; Simons, 2018; Veenstra, 2021).

Many multi-omics focussed initiatives, such as the

EATRIS-Plus project are aimed at tackling the

challenges of data interoperability and increasing data

FAIRness with the delivery of standard operating

procedures (SOPs) that are ready to be implemented by

the scientific and clinical communities, enabling

standardisation among methods and technical controls in

order to increase results reproducibility and improve

reliability of the techniques.

An additional critical consideration for the application of

multi-omics and clinical data to PM is population diversity. As

the biological determinants of health are strongly influenced by

environmental and sociocultural factors, and European

populations are characterised by genetic and biological

diversity, population-tailored reference values for multi-omic

and clinical data are required. Currently there is a need of

large cohorts representing human population genotypes

diversity that can be analysed in order to deliver accurate

reference values. The EATRIS-Plus project is aiding this

situation by providing a proof of concept with a focus on the

Caucasian population (EATRIS, 2022a).

Data privacy and regulatory aspects, and
economic implications

Many data stewardship aspects provide significant challenges

to data privacy, for example in the areas of data harmonisation

and data curation, use of Common Data Models, standardised

nomenclature and data transfer specifications. Such challenges

and data management decisions have critical implications for

data access both within and outside of jurisdictional regions and,

for example, on design, creation and implementation of extract

transform load workflows enabling data source maintenance and

governance, quality assessment and testing.

Additionally, general concerns around data privacy and

regulatory compliance-related restrictions as well as ethical

and legal aspects must not be overlooked. When working with

multi-omics and/or clinical data there are multiple data security,

ethical, and personal information barriers that can present

potential roadblocks (Knowles et al., 2017; Adamo et al., 2018;

Adamo et al., 2020). Moreover, each European country has its

own national implementations of General Data Protection

Regulation (GDPR) for processing personal data (Vlahou

et al., 2021).

The regulatory framework of PM is still emerging, and the

lack of clear regulation continues to discourage investment in

the field, especially since developing and implementing

personalised approaches is costly - as described in the

2020 report on the current state of PM from the

Personalised Medicine Coalition (PMC). In fact, coverage

and payment policies both in the public and private sectors

play an important role in ensuring patient access and

encouraging continued innovation. To tackle the rising

health care costs, often policy makers and payers do not

promote PM (Kisor and Ehret, 2020). However, the costs of

PM could be justified as an investment: PM approaches

supporting disease prevention and identifying best

therapeutic treatment will likely improve patient life quality

and reduce cost in the healthcare management (Gavan et al.,

2018). In fact, PM could be considered as social responsibility

since most of us will become patients in our lifetimes.
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Tackling the challenges for
implementation of PM in routine clinical
care

As for all novel technologies, for assuring an effective

implementation in clinical care a series of factors need to be

taken in account: 1) the benefits, 2) the risks, 3) associated ethical

and social aspects and 4) room for innovation. The integration of

these four components requires the strong and effective

communication between all stakeholders involved in the PM

pipeline in order to successfully tackle all challenges. In

particular, patients should be placed at the centre and

empowered working in concert with researchers, clinicians,

industry, and regulators. Patients should be directly involved

in research, actively participating in projects, and they should

take control as much as possible of their treatment.

It is true to say that healthcare professionals cannot manage a

patient properly without taking into account his or her value or

the patient’s lifestyle, an important aspect of PM. This is not

always straightforward and requires a cultural change that has

already started. EATRIS is contributing to this transformation via

different initiatives involving the European Patients’Academy on

Therapeutic Innovation (EUPATI) and the European Patient

Forum (EPF) (EATRIS, 2021; EATRIS, 2022b; EATRIS, 2022c).

Furthermore, the EATRIS Data Pillar, a key structure of the

EATRIS strategy, is devoted not only to the harmonisation of

data management and application but also to the unveiling and/

or designing of new pathways for uncovering novel therapeutic

strategies, with patients at the centre of considerations,

continuing to ensure patient privacy. This is reflected in the

project portfolio of EATRIS data, empowering the community

to drive towards data standardisation, validation, and

TABLE 1 EATRIS project portfolio in the Data field.

Project Scope Goals

Beyond 1 million
Genomes (B1MG)

Access to the genome information of at least one million European
citizens for joint European research by 2022

• To make the genome information of at least one million European
citizens accessible for joint European research as if it were one large
cohort, while the data will be made accessible using a federated
infrastructure

EATRIS-Plus To build further capabilities and deliver innovative scientific tools to
support the long-term sustainability strategy of EATRIS as one of
Europe’s key research infrastructures for PM

• To develop a multi-omic toolbox to support cross omic analysis and
data integration in clinical samples

HealthyCloud To support the creation of a European Health Data Space • To deliver a Strategic Agenda including a Ready-to-implement
Roadmap for the European Health Data Space ecosystem

• The project has been organized around four fundamental objectives
that cover:

• interactions with stakeholders to ensure their voices are included as
part of the Strategic Agenda

• the inclusion of Ethical, Legal and Societal aspects in the design of the
future Health Research and Innovation Cloud (HRIC) ecosystem

• the sustainable access, use and re-use of health-related data
considering a progressive adoption of the FAIR principles

• the technological solutions in terms of computational facilities and
mechanisms to enable distributed health data analysis across Europe

EOSC-Life To create an open collaborative digital space for life science • To publish ‘FAIR’ data and a catalogue of services provided by
participating RIs for the management, storage and reuse of data in
the European Open Science Cloud (EOSC)

• To implement workflows across disciplines and address the needs of
interdisciplinary science

• To address the data policies needed for human research data under
GDPR

EOSC-Future To demonstrate an operational EOSC Platform (‘System of Systems’)
with an integrated execution environment consisting of data,
professionally provided services, and open research products and
infrastructure that will be accessed and used by the European
researchers

• To realise a EOSC-Core and EOSC-Exchange with interoperable
data and resources

• To allow the integration of data and resources from the Science
Cluster communities into the EOSC Platform

• To involve users in the co-design and implementation of the EOSC
Platform

BY-COVID To connect well-established data resources and deliver access to
heterogeneous yet interlinked and organised data across domains and
jurisdictions via the components of the COVID-19 Data Platform
(https://www.covid19dataportal.org/)

• To create a flexible and interlinked core of FAIR data capable of
addressing the constantly evolving questions during a pandemic
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TABLE 2 European initiatives focused on omics research for PM.

Initiative Scope Goals

EATRIS-Plus To build further capabilities and deliver innovative scientific tools
to support the long-term sustainability strategy of EATRIS as one
of Europe’s key research infrastructures for PM

• To develop a multi-omic toolbox to support cross omic analysis
and data integration in clinical samples

• To drive patient empowerment through active involvement in the
infrastructure’s operations

• To expand strategic partnerships with research infrastructures and
other relevant stakeholders

1 + Million Genomes (1 + MG) Access to the genome information of at least one million
European citizens for joint European research by 2022

• To make the genome information of at least one million European
citizens accessible for joint European research as if it were one large
cohort, while the data will be made accessible using a federated
infrastructure

Beyond 1 million Genomes
(B1MG)

To make it easier to share human health data around Europe. The
project provides coordination and support to 1 + MG.

• To create the infrastructure, the legal guidance and the best
practices to enable cross border genetic and phenotypic data access

International Human
Epigenome Consortium (IHEC)

To provide free access to high-resolution References human
epigenome maps for normal and disease cell types to the research
community

• To coordinate the production of References maps of human
epigenomes for key cellular states relevant to health and diseases

• To coordinate rapid distribution of the data to the entire research
community with minimal restrictions, to accelerate translation of
this new knowledge into health and diseases

• To coordinate the development of common bioinformatics
standards, data models and analytical tools to organize, integrate
and display whole epigenomic data generated from this important
international effort

iCAN Digital Precision Cancer
Medicine project

To improve outcomes and quality of life of cancer patients • To integrate tumor molecular profiling and patients’ health
data

• To improve cancer diagnostics and treatments

• To accelerate world-class scientific innovation with the patient
in focus

X-omics To establish an integrated multi-omics research infrastructure
across Netherlands with expertise in molecular biology research
(genomics, proteomics, metabolomics, data integration and
analysis and their combination)

• To advance X-omics technologies far beyond state-of-art

• To realize an integrated X-omics infrastructure in Netherlands

PERMIT To develop recommendations for robust and reproducible
personalised medicine research

To develop recommendation for
• the application and types (supervised or unsupervised) of
different stratification algorithms, and the robustness and
validation of the stratification methods

• translational research establishing a link between data-driven
stratification and the choice of treatment options

• randomised clinical trials needed to test treatment strategies for
each of the identified patient clusters, and to test the added
value of the personalised approach vs non-personalised
standard of care

Deutsche COVID-19 OMICS
Initiative (DeCOI)

To use NGS-based omics data in COVID-19 research • To establish an infrastructure addressing short-term, but also
mid- and long-term challenges of the current pandemics

• To prepare the NGS sector in Germany for future threats

NeurOmics To revolutionise diagnostics and develop new treatments for ten
major neuromuscular and neurodegenerative diseases

To use the most sophisticated -omics technologies in order to

• increase the number of patients with a genetic diagnosis

• develop biomarkers for clinical application

• improve understanding of pathophysiology and identify drug
targets

• identify disease modifiers

• develop targeted therapies

• translate findings to other, related disease groups

Personal Genome Project
United Kingdom

To provide open genome, trait, and health data • Open access data to enable the timely development of tools for
personalised medicine and provide a resource for advancing
research

(Continued on following page)
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reproducibility to deliver transformative revolution in the

translational medicine domain (Table 1).

Moreover, the adaption of the regulatory, ethical and legal

landscape for facilitating the exploitation of patient data in the

context of PM is simultaneously occurring across many large

European organisations. For example, the EATRIS regulatory

service and support centre is available to guide key stakeholders

through this complex world, especially for complex and hybrid

products for which clear regulatory guidance may not be

available.

European cooperation for tackling
the challenges of multi-omics in the
realm of PM

In order to overcome the aforementioned challenges of PM

implementation several national and international initiatives are

working towards providing solutions in the further development

and implementation of multi-omics research (Table 2). However,

a strong synergy between such initiatives is needed to further

ensure successful outcomes and to tackle any potential

defragmentation (Van Gool et al., 2017). Despite this

commonly understood need for alignment and cooperation

among ongoing initiatives, misalignment of agendas, priorities

and deliverables are potential obstacles that must be understood

in order to overcome.

In Europe, Research Infrastructures (RIs) can and do

facilitate this process. In particular, the Alliance of Medical

Research Infrastructures (AMRI, https://eu-amri.org/),

consisting of EATRIS (the RI for translational medicine,

https://eatris.eu/), ECRIN (the RI for clinical research,

https://www.ecrin.org/) and BBMRI (the RI for biobanking

https://www.bbmri-eric.eu/) works to support the development

of PM by expanding strategic partnerships with relevant

stakeholders and expediting interactions. Because of the high-

level of participation from countries all over Europe, AMRI allows

an alignment of research activities at pan-European scale, and even

beyond.

One focus of AMRI is to ensure and implement a common

quality framework across the multi-omics domain. The AMRI

RIs are already committed to quality in science (Freedman et al.,

2015) and lead various actions addressing reproducibility, best

practice guidelines, benchmarking, standards and reference

materials for generation, sharing and management of multi-

omics data and metadata. To date, a lot of effort has been put

into enabling genomics as part of the PM pipeline (Sadee, 2011;

Berger and Mardis, 2018). In particular, the European

Commission driven 1 + Million Genomes initiative (1 + MG)

aims to enable access to the genomic information of at least one

million European citizens for joint European research as if it were

one large cohort, while the data remains safely stored locally

(Saunders et al., 2019). To support this effort, the Beyond

1 Million Genomes (B1MG) project is creating the federated

infrastructure, including shared legal guidance and best practices

for cross-borders data access. Additionally, EASI Genomics,

provides easy and seamless access to cutting-edge DNA

sequencing technologies to researchers from academia and

industry.

However, to go beyond genomics and truly integrate

multi-omics in the PM pipeline requires the facilitation of

the process of data sharing, federated data analysis and

TABLE 2 (Continued) European initiatives focused on omics research for PM.

Initiative Scope Goals

ICPerMed To provide a platform to initiate and support communication and
exchange on personalised medicine research, funding and
implementation

• To contribute to the reasonable and fair implementation of
personalised medicine approaches into the health systems for
the benefit of patients, citizens and society as a whole

• To provide a flexible framework for cooperation between
member organisations

The Personal Health Train
Network

To learn from each other’s experiences and solutions.
Netherlands PHT network is actively engaged in promoting the
FAIR movement, such as the GO FAIR implementation network
and committed to the principles for development of the PHT as
outlined in the PHT Manifesto

• Promoting data FAIRification

EASI Genomics To provide easy and seamless access to cutting-edge DNA
sequencing technologies within a framework compliant with
ethical and legal requirements, as well as FAIR and secure data
management

• To build an infrastructure for enabling omics analyses
(genomics, transcriptomics, epigenomics, metagenomics,
immunogenomics, etc.)

IMPACT Strategic Action designed to offer services to the Spanish R&D&I
landscape, oriented to Precision Medicine, through 3 programs

• To promote generation and transfer of high-quality knowledge
to the National Health System

• Predictive Medicine

• Data Science • To ensure excellence in science and technology

• Genomic Medicine • To assure equity and efficiency in the use of available resources
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integration for other omics technologies. In this regard,

EATRIS-Plus (EATRIS, 2022a) is developing a multi-omic

toolbox (Figure 1) to support data integration and joint

analysis in clinical samples. By providing such a toolbox to

the research community, EATRIS-Plus will act as an engine to

enable high-quality research in the context of patient

stratification and accelerate the implementation of PM

solutions.

FIGURE 1
The EATRIS+multi-omics toolbox. The multi-omics toolbox will be developed and tested with a real-setting demonstrator, an already established
cohortof1,000healthyindividuals inCzechiauponwhomgenomicsequencinghasbeenalreadyperformed.Informationavailableonthishealthyindividual
cohortwillbeaugmentedduringtheprojectwith transcriptomic,proteomicandmetabolomicdata.Byprovidingsuchtoolboxto theresearchcommunity,
EATRIS-Pluswillbetheenginetoenablehigh-qualityresearchinthecontextofpatientstratificationandacceleratetheimplementationofPersonalised
Medicine solutions. EATRIS is the European Infrastructure for Translational Medicine providing services for accelerating biomedical innovation.

TABLE 3 Summary of challenges and recommendations from the EATRIS + multi-omics workshop (March 2021).

Challenge Recommendation

Moving beyond genomics • Communicate and educate on the pros and cons of other omics technologies such as proteomics,
metabolomics and lipidomics

• Develop multi-modal data integration models that showcase the added value of multi-omics approaches in
Personlized Medicine

New technologies, new challenges • Share lessons-learned, failures and successes when evaluating new technologies in Personalized Medicine

• Evaluate the added value of Artificial Intelligence and Digital health in Personalized Medicine, particularly in
combination with multi-omics data

Data standardisation • Adopt international standards of health data and models including the FAIR principles of data stewardship
(e.g., OMOP, FHIR, CDISC)

• Define criteria for quantity, quality and FAIR levels of data prior to multi-modal data analyses for a specific
objective in Personalized Medicine

• Work withflexible and dynamicmathematicalmodels to adapt to changing data collections in PersonalizedMedicine

Variability in omics data at source • Use internationally recognised laboratory standards and standard operating procedures for omics analyses

• Adopt and apply quality assurance and control schemes for laboratories, such as the EATRIS Certificate of
Commitment to Quality

• Include confounding factors such as population diversity in biological systems in the multi-modal data analysis

Data privacy and regulatory aspects • Consider ethical, legal, societal aspects when designing multi-omics Personalized Medicine studies

• Comply withinternationalstandardsondatasecurity,includingtheGeneralDataProtectionRegulationinpersonaldata

• Report of the successes and failures of implementations from the European landscape

Implementation of Personalized Medicine in routine
clinical care

• Consider well prior to multi-omics Personalized Medicine implementation: 1) the benefits, 2) the risks, 3)
associated ethical and social aspects, 4) room for innovation
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There are several similarly focussed initiatives looking to

blossom the integration of multi-omics in the PM pipeline at the

national level. For example, in Netherlands, the X-omics

initiative has established a national research infrastructure

consisting of several facilities (genomics, proteomics,

metabolomics, and data analysis, integration and stewardship),

with the aim of generating data that is FAIR at source and ready

for multi-omics integration in a customizable cloud-based digital

research environment.

In Finland, the iCAN project is developing a platform for

enabling the integration of cutting-edge molecular profiling

information from tumours with rich longitudinal health data.

InSpain, the IMPACTinitiative inPMare favouring thebuilding

of national platforms focused on the implementation of omics

techniques and data exploitation in daily clinical practice, through

the Health Research Institutes which are members of EATRIS.

Although the outcomes of such initiatives are undoubtably

useful and have an impact in PM development and

implementation, rapid development also requires fast and

flexible ethical, legal and regulatory policy making as well as

tackling some technical challenges (Adamo et al., 2018; Misra

et al., 2019). To support healthcare providers and patients with

new tools, it is crucial to facilitate data access, pilot studies for

PM, and incorporate learned lessons into future policymaking.

Common strategies for the implementation of omics

technologies in the PM field should be developed in the early

stages of projects, even considered during the design of the call

topics and proposals, with all relevant stakeholders (researchers,

clinicians, patients, regulators, funders), efficiently

communicating in order to align agendas and priorities.

Stepping into already running processes limits the potential of

common understanding and therefore only with a close

collaboration from the start, consortia will be able to truly

efficiently and effectively support PM development and deliver

impactful and transformational solutions. Common objectives,

milestones and achievements need to be defined and should

always be considered and oriented from the citizens and patient

perspectives. Finally, it is fundamental that policymakers engage

to bridge the gap between science, medicine and the policy

agenda, since we all are eventual patients of our combined

European healthcare systems.

Conclusion

The recent advances in -omics technologies and their

integration holds great promise for further development and

implementation in the PM pipeline in order to revolutionise

European healthcare. This journey is still in its infancy and many

complex challenges and issues must be understood and

addressed before the true benefits of PM can be seen in full

implementation at the clinical setting. The sharing of knowledge

on multi-omics capabilities, challenges and potential solutions is

imperative for this field to mature and evolve. Here we describe

how the EATRIS-PlusMulti-omics Stakeholder Group workshop

has brought together relevant stakeholders to work towards PM

implementation and commitment to achieve this goal. Key

observations are summarized in Table 3.

An improved environment for innovation and for the

integration of -omics requires a cultural and educational shift

to be embraced by the entire scientific community. One of the

biggest challenges will be to convince citizens, patients,

healthcare communities and national regulators to allow the

sharing of personal, clinical and multi-omics data to enable

and accelerate PM.

Data quality and result reproducibility, a good cooperation

and communication between multi-omics consortia, and an

alignment with the policy agenda, are all essential aspects for

facilitating the translation of multi-omics-related discoveries

from bench to clinic and only following this approach we will

be able to make PM an accessible reality, where the European

citizen and patient is at the centre.
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Recent extensions of single-cell studies to multiple data modalities raise new

questions regarding experimental design. For example, the challenge of sparsity

in single-omics data might be partly resolved by compensating for missing

information across modalities. In particular, deep learning approaches, such as

deep generativemodels (DGMs), can potentially uncover complex patterns via a

joint embedding. Yet, this also raises the question of sample size requirements

for identifying such patterns from single-cell multi-omics data. Here, we

empirically examine the quality of DGM-based integrations for varying

sample sizes. We first review the existing literature and give a short overview

of deep learning methods for multi-omics integration. Next, we consider eight

popular tools in more detail and examine their robustness to different cell

numbers, covering two of the most common multi-omics types currently

favored. Specifically, we use data featuring simultaneous gene expression

measurements at the RNA level and protein abundance measurements for

cell surface proteins (CITE-seq), as well as data where chromatin accessibility

and RNA expression are measured in thousands of cells (10x Multiome). We

examine the ability of the methods to learn joint embeddings based on

biological and technical metrics. Finally, we provide recommendations for

the design of multi-omics experiments and discuss potential future

developments.
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1 Introduction

Many diseases, such as cancer, affect complex molecular

pathways across different biological layers. Consequently,

there iscurrently an ongoing surge in multi-omics techniques

that study the interaction of biomolecules across various omics

layers (Veenstra, 2021b; Picard et al., 2021). Multi-omics

techniques have been used, e.g., to infer mechanistic insights

about molecular regulation, the discovery of new cell types, and

the delineation of cellular differentiation trajectories (Colomé-

Tatché and Theis, 2018; Adossa et al., 2021; Veenstra, 2021a;

Tarazona et al., 2021). However, because performing multi-

omics experiments in the same cell is still costly and

experimentally complex, many experiments have been carried

out with comparatively small numbers of cells so far.

Additionally, single-cell multi-omics data suffer from the

sparseness and noisiness of the measured modalities,

differences in sequencing depth, and batch effects. Data

analysis is further complicated by differing feature spaces as

well as shared and modality- or batch-specific variation (Lance

et al., 2022).

Deep learning approaches, known for their ability to learn

complex non-linear patterns from data, have become a popular

building block for integrating different data types (Grapov et al.,

2018; Erfanian et al., 2021). For example, in 2021s Conference on

Neural Information Processing Systems (NeurIPS) competition

(https://openproblems.bio/neurips_2021), which addressed the

topic of multimodal single-cell data integration, neural networks

proved to be the most popular model choice, with shallow deep

learning models being among the best-performing methods

(Lance et al., 2022). Specifically, deep generative models

(DGMs), such as variational autoencoders (VAEs), are

FIGURE 1
Neural network architectures. (A) Exemplary network architecture of vanilla VAE, where x represents the input data and x̂ is the reconstructed
data. Random variables z in the bottleneck layer are indicated by dashed circles. μ and σ represent the mean and standard deviation of the
distributions, typically Gaussian distributions with diagonal covariance matrices, learned in the bottleneck layer. (B) Typical workflow: High-
dimensional omics data are mapped to a low-dimensional embedding, which can then be utilized for visualization and downstream analyses
such as clustering or trajectory inference. (C) General architecture of multimodal VAEs. (D) Cross-modality translation: High-dimensional
measurements from one modality are mapped to a low-dimensional embedding with the modality-specific encoder. The latent representation is
then used as input for the decoder of the respective other modality. (E) Adversarial training principles: Adversarial discriminators can be employed (1)
to align low-dimensional embeddings of differentmodalities (squares vs. circles) of the same cell (same color) in the latent space (black arrows), (2) to
align reconstructed profiles with the cross-modal reconstructions (lighter colors) obtained by decoding low-dimensional embeddings of one
modality with the decoder of the other modality (black arrows in the reconstruction space, or (3) to align re-embedded decoder outputs from intra-
modal and/or cross-modal reconstruction (lighter colors) with the original embeddings (red arrows in the latent space).
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increasingly employed to infer joint embeddings, i.e., low-

dimensional representations, from multi-omics datasets. This

allows for performing all further downstream analyses

simultaneously within this joint latent space (Figure 1B).

This review provides a systematic overview of current DGM-

based approaches for learning joint embeddings from multi-

omics data and illustrates how small sample sizes impact the

amount of information that can be recovered from multi-omics

datasets. Specifically, we examine how the performance of

popular DGM-based approaches to infer joint low-

dimensional representations from such data is influenced by

varying numbers of cells. The required number of cells is

particularly relevant at the stage of designing an experiment

(Treppner et al., 2021). To tackle the challenging task of

evaluating the quality of a latent representation with respect

to the conservation of biological signal and batch correction

capabilities, we draw on the guidelines provided by Luecken et al.

(2021a).

The training of DGMs on multi-omics data is challenging

due to the inherent high dimensionality and low sample size of

multi-omics data and the large number of model parameters that

need to be estimated while avoiding overfitting and bias (Kang

et al., 2021). Thus, we investigate the impact of cell numbers on

the performance of selected single-cell multi-omics integration

algorithms. We consider eight popular VAE-based tools that

incorporate different integration paradigms and training

strategies for this illustration. Specifically, we included

product-of-experts- and mixture-of-experts-based approaches

and techniques that employ additional, commonly used

integration techniques, such as cross-modality translation and

adversarial training. Also, we chose models with different degrees

of architectural complexity, including one model (Li et al., 2022)

with (self-) attention modules and additional regularization by

clustering consistency. We thus created an exemplary selection

that represents the range of architectural choices, additional

training and regularization strategies, and levels of complexity

currently used for the task at hand. Thus, viewing the selected

models as representatives of the current landscape of DGMs for

multi-omics integration, our case study enables us to draw

conclusions on the performance of the investigated tools in

small sample size scenarios, and to give recommendations

regarding architectural choices, integration strategies, and

regularization paradigms.

2 Deep learning background

As the number of experimental methods in molecular

biology is exploding, immense amounts of data are produced.

Machine learning techniques can help in extracting information

from such data to make it human-interpretable.

In recent years, deep learning has emerged as a potent tool for

analyzing such high-throughput biological data. At the core of

these approaches are artificial neural networks (ANNs) that

provide powerful yet versatile building blocks to learn

complex non-linear transformations and thus uncover

underlying structures from high-dimensional data.

In particular, a networks’ architecture comprises

interconnected layers of neurons. Each neuron is connected to

all of the neurons in the preceding layer. The depth of the

network is determined by the number of hidden layers,

i.e., the layers between the input and output layers. In

contrast, the number of neurons in one layer determines a

network’s width (Figure 1A). With deep architectures, ANNs

are especially effective at learning increasingly complicated

patterns from large volumes of data based on non-linear

transformations. Specifically, each individual neuron computes

a weighted sum of its inputs, where the weighted total is then

subjected to an activation function, typically producing a

nonlinear transformation of the neuron’s output. The weights

of an ANN, which link the neurons between layers and make up

the model’s parameters, are a crucial part of the model. Training

an ANN amounts to finding model weights that optimize a loss

function, which represents how well the model fits the data.

However, one of the major difficulties in training ANNs is

optimizing the loss function as it is typically complex and

non-convex and the parameter space is high-dimensional

(Angermueller et al., 2016).

While supervised deep learning relies on labeled data to solve,

e.g., classification problems, unsupervised deep learning can be

employed in exploratory analyses to uncover central structure in

data. For example, researchers frequently aim to understand cell-

type compositions, for which they usually rely on unlabelled data.

Hence, unsupervised deep learning methods have become

increasingly popular in omics data analysis. Specifically,

DGMs have been used for imputation (Lopez et al., 2018; Xu

et al., 2020), visualization of the underlying structure of single-

cell RNA-sequencing (scRNA-seq) data (Ding et al., 2018), and

synthetic data generation (Marouf et al., 2020; Treppner et al.,

2021).

Many computational approaches for processing scRNA-seq

data use dimensionality reduction to produce a compressed

representation of the high-dimensional transcription space.

Grouping cells based on some measure of distance is a typical

step in scRNA-seq research since these analyses usually attempt

to understand the cell type composition of tissues or samples.

However, conventional distance metrics, such as Euclidean

distance, are unsuited to accurately represent similarity

relations between cells due to the high dimensionality of the

gene expression space, which is commonly referred to as the

curse of dimensionality. As a result, the solution usually adopted

is to reduce the number of dimensions based on the assumption

that such a low-dimensional space captures the underlying

biological phenomena. As an illustration, a transcription

factor may be responsible for the activation of many genes.

Therefore, one variable characterizing the activation of genes
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through the transcription factor would be adequate to describe

the patterns of gene expression rather than modeling the high-

dimensional space spanned by all genes and their combinations

(Kharchenko, 2021). Principal component analysis (PCA) is one

method for reducing the dimensionality of scRNA-seq data.

However, applying PCA to scRNA-seq data has a number of

drawbacks since it assumes a symmetric distribution, which is

typically not satisfied in scRNA-seq data, and only learns linear

relationships. As a result, researchers have developed DGMs that

accurately represent the distributional assumptions of scRNA-

seq data while accurately portraying the data’s inherent

complexity (Lopez et al., 2018; Grønbech et al., 2020).

An autoencoder is the basis for many DGMs and is

composed of three modules: an encoder, a bottleneck layer,

and a decoder. The encoder reduces the input to a lower

dimension (through the bottleneck layer), and the decoder

reconstructs the original input from the bottleneck. This

design also forms the foundation for the variational

autoencoder and effectively compresses the essential

information needed for data reconstruction (Lopez et al.,

2020), which is mainly used to eliminate noise from data by

compressing and re-compressing and reducing data to lower

dimensions for visualization. In contrast, a variational

autoencoder aims to infer the parameters of the probability

distribution assumed to underly the source data, which can

subsequently be used to generate realistic in silico data.

Specifically, DGMs are trained to capture the joint

probability distribution over all features in the input data,

thus allowing to also generate new synthetic data with the

same patterns as the training data by sampling from the

learned distribution. This is typically done by introducing

latent random variables z in addition to the observed data x.

In single-cell transcriptomics applications, these latent variables

might encode complex gene programs based on non-linear

relationships between genes. Typically, the joint distribution

pθ(x, z) of observed and latent variables is described through a

parametric model, where θ represents the model parameters. The

joint probability can be factorized into a prior probability pθ(z)

and a posterior pθ(x|z) and can thus be written as pθ(x, z) = pθ(z)

pθ(x|z). Inferring the data likelihood pθ(x) = ∫pθ(x, z)dz from the

joint distribution requires marginalizing over all possible values

of z, which is typically computationally intractable (Kingma and

Welling, 2019). Hence, approximate inference techniques are

employed to efficiently optimize themodel parameters (Blei et al.,

2017).

Two methods are frequently used in the machine learning

literature to aggregate distributions, such as data from various

single-cell modalities like gene expression and surface proteins.

One strategy involves multiplying the density functions of the

two modalities to create a product of experts (PoE) approach. On

the other side, a mixture of experts (MoE) approach can blend

the modalities using a weighted sum. In Section 2.2, we go over

these strategies’ benefits and drawbacks.

In single-cell applications, the most frequently used DGMs to

date are Variational autoencoders (VAEs) (Kingma andWelling,

2013) and generative adversarial networks (GANs) (Goodfellow

et al., 2014), which we present in more detail below.

2.1 Variational autoencoders

VAEs employ two independently parameterized but jointly

optimized neural network models to learn an explicit

parametrization of the underlying probability distributions.

This is achieved by non-linearly encoding the data into a

lower-dimensional latent space and reconstructing back to the

data space. Specifically, the encoder (or recognition model) maps

the input data x to a lower-dimensional representation given by a

sample of the latent variable z, while the decoder network

performs a reverse transformation and aims to reconstruct the

input data based on the lower-dimensional latent representation

(Figure 1A).

To approximate the underlying data distribution pθ(x), the

encoder and decoder parameterize the conditional distributions

pθ(z|x) and pθ(x|z), respectively. Since pθ(x) and pθ(z|x) are

intractable, a variational approximation qϕ(z|x) is employed,

typically given by a Gaussian distribution with diagonal

covariance matrix.

Intuitively, the model is trained by reconstructing its inputs

based on the lower-dimensional data representation, such that

the latent space recovers the central factors of variation that allow

for approximating the data distribution as closely as possible.

Formally, a training objective for the model can be derived based

on variational inference (Blei et al., 2017). The parameters ϕ and

θ of the encoder and decoder distributions can be optimized by

maximizing the evidence lower bound (ELBO), a lower bound for

the true data likelihood pθ(x), with respect to ϕ and θ. Denoting

with KL the Kullback-Leibler divergence KL[q‖p] ≔ Eq[log q
p]

for probability distributions q and p, the ELBO is given by

ELBO x; ϕ, θ( ) � Eqϕ z|x( ) log
pθ x, z( )
qϕ z|x( )[ ]

� Eqϕ z|x( ) logpθ x|z( )[ ] − KL qϕ z|x( )‖p x( )[ ] (1)

Here, the likelihood of a single observation (i.e., cell) x

indicates how well it is supported by the model. The first

term on the right side of Eq. 1 describes the reconstruction

error indicating how well the generated samples from the model

resemble the input. The KL-divergence on the right-hand side

quantifies the difference between the approximate posterior to

the true posterior, and, therefore, defines the tightness of the

bound—meaning the difference between the ELBO and the

marginal likelihood.

The decoder network is typically built to learn the parameters

of specific distributions, which best describe the underlying

biological data. For scRNA-seq and surface protein data
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(CITE-seq) a negative binomial distribution is frequently

assumed, while single-cell assay for transposase-accessible

chromatin using sequencing (scATAC-seq) data usually

requires an additional modeling term that accounts for the

increased sparsity of the data, e.g., in the form of a zero-

inflated negative binomial (ZINB) distribution (Minoura et al.,

2021). Other approaches use a binarized version of the scATAC-

seq data (Ashuach et al., 2021; Wu et al., 2021; Zuo et al., 2021;

Zhang R. et al., 2022).

The typical workflow for analyzing high-dimensional (single-

or multi-) omics data with a VAE is illustrated in Figure 1B. The

data is embedded with the encoder to obtain a low-dimension

representation, which can subsequently be used for downstream

analysis, such as clustering or trajectory inference.

2.2 Multimodal variational autoencoders

Several approaches already exist in which multimodal VAEs

(Shi et al., 2019) are used to map different omics measurements

into a common latent representation (Gong et al., 2021; Minoura

et al., 2021; Lotfollahi et al., 2022). Each of these methods uses

different approaches to combine the latent variables of the

respective modalities. We can usually distinguish between

MoE and PoE models (Figure 1C). Hence, we describe a MoE

and a PoE model in more detail below and examine their

performance in our analyses.

We denote a single-cell multimodal dataset as x1:M, where

two modalities (M = 2) is the most common case. The joint

generative model can therefore be written as

pθ(x1: M, z) � p(z)∏M
m�1pθm(xm|z), where pθm(xm|z)

represents the likelihood of the decoder network for modality

m, and θ = {θ1, . . . , θM}.

For the MoE model, the resulting joint variational posterior

can be factorized into qϕ(z|x1: M) � ∑M
m�1αmqϕm(z|xm), with

αm = 1/M and ϕ = {ϕ1, . . . , ϕM}. This results in the following

ELBO:

ELBO � 1
M

∑
M

m�1
Ezm~qϕm z|xm( ) log

pθ x1: M, z( )
qϕ z|x1: M( )[ ]

� 1
M

∑
M

m�1
Ezm~qϕm z|xm( ) logpθ x1: M|zm( )[ ] −KL qϕm z|xm( )‖p x( )[ ]{ }

(2)
which is similar to Eq. 1, but the ELBOs of the individual

modalities are combined by a weighted average. In contrast, PoE

approaches (Gong et al., 2021; Lotfollahi et al., 2022) combine the

variational posteriors of the individual modalities as products

qϕ(z|x1: M) � ∏M
m�1qϕm(z|xm).

Shi et al. (2019) argue that PoE approaches suffer from

potentially overconfident experts, i.e., experts with lower

standard deviations will tend to have a more considerable

influence on the combined posterior, as experts with lower

precision come with lower marginal posteriors. In contrast, in

the MoE approach we consider here, both modalities receive

equal weighting, reflecting the assumption that both modalities

are of similar importance. Intuitively, employing a PoE approach

corresponds to taking the ‘intersection’ of the individual

posteriors, as a single posterior assigning a near-zero

likelihood to a specific observation is enough to cause the

product to be near-zero. In contrast, an MoE approach

corresponds to taking the ‘union’ of all posteriors.

Additionally, the weights αm assigned to each modality can be

adjusted to reflect prior assumptions on their relative importance

or be learned from the data during training.

2.3 Cross-modality translation

In addition to architectural choices regarding the integration

of the modality-specific sub-networks via a PoE or MoE

approach, many VAE-based methods introduce training

objectives that facilitate specific functionality such as cross-

modality translation or encourage particular properties of the

embedding, such as clustering consistency between the modality-

specific latent representations. On a higher level, these

components can be seen as regularizers that push the

embeddings found by the model towards certain desired

properties.

A prominent example of such an additional feature to direct a

joint embedding is cross-modality translation. Here, a cell’s

measurements of one modality, say, gene expression, are

mapped to the joint latent space with the respective modality-

specific encoder. Then, the decoder of another modality, say,

chromatin accessibility, is employed to map the latent

representation of the gene expression profile to a

corresponding chromatin accessibility profile (Figure 1D).

This is only possible due to the integration of both modalities

into a shared latent space, in which 1 cell’s encoded

representations of different modalities align.

When paired measurements of both modalities in the same

cell are available, the translated reconstructions in the respective

other modality can be compared to the cell’s observed profile

during training. The model learns a latent embedding that

facilitates consistent cross-modality predictions. Thus, the

model is explicitly pushed towards an embedding from which

both modality-specific profiles can be reconstructed equally well,

and that can, therefore, help in better capturing general

underlying biological cell states as defined by the interplay of

both modalities.

After training, cross-modality translation can be used to

impute measurements of cells for which a specific modality is

missing or to answer counterfactual questions such as ‘based on

this specific gene expression profile, what would the

corresponding chromatin accessibility profile have looked

like?’. This could be further combined with in silico

Frontiers in Molecular Biosciences frontiersin.org05

Brombacher et al. 10.3389/fmolb.2022.962644

101102102

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.962644


perturbations, i.e., generating synthetic profiles of one modality

and using the model to infer corresponding profiles in other

modalities. Additionally, this technique can be used to query the

trained model for, e.g., subpopulations of cells where the cross-

modality predictions are particularly well or particularly poorly

aligned with the true measurements and to further characterize

them, thus, also facilitating interpretability.

Examples of approaches that employ this technique are given

by, e.g., Minoura et al. (2021), Wu et al. (2021), and Zhao et al.

(2022), and will be presented in more detail below in Section 3

and in the experimental Section 6.

2.4 Adversarial training strategies

Another commonly used regularization technique is given by

adversarial training, which is closely related to cross-modality

translation and is often employed concurrently. Such adversarial

components are often integrated into a variational or standard

autoencoder framework and are inspired by generative

adversarial networks (GANs) (Goodfellow et al., 2014),

another form of DGMs that differs from VAEs in how the

joint probability distribution over all input features is

specified. While VAEs learn an explicit parameterization of

(an approximation of) this distribution (see 2.1), in GANs,

this distribution is available only implicitly via sampling. A

GAN consists of a generator and a discriminator neural

network that can be thought of as playing a zero-sum

minimax game: The generator simulates synthetic

observations that are presented to the discriminator together

with real data observations. The discriminator then has to decide

whether a given sample is a real observation or a synthetic one

from the generator.

In multi-omics data integration, such adversarial approaches

are typically integrated into (V)AE models as additional

components to regularize the latent representation and/or the

decoder reconstructions (Liu et al., 2021; Xu et al., 2021a; Hu

et al., 2022; Zhao et al., 2022), while, e.g., Amodio and

Krishnaswamy (2018); Amodio et al. (2022) present purely

GAN-based approaches. More specifically, a discriminator is

typically employed to distinguish between two omics

modalities, either based on samples from their latent

representations or based on reconstructed samples from cross-

modal decoders (Figure 1E, black arrows). The objective of the

discriminator then is to maximize the probability of correctly

identifying the original modality a sample comes from, while the

encoder and decoder of the (V)AE model are trained to fool the

discriminator by producing samples that are indistinguishable.

By training all components jointly, the (V)AE model is

encouraged to find a latent embedding in which the different

modalities are better aligned and integrated, and/or learn

decoders that allow for accurate cross-modal predictions well

aligned with the intra-modal predictions. In practice, this is

achieved by incorporating adversarial penalty terms into the

loss function.

Such adversarial components can also be used to train the

model in a cyclical fashion for additional intra-modal and cross-

modal consistency. For intra-modal consistency, the low-

dimensional embeddings of samples of one modality are

decoded with the modality-specific decoder. Subsequently, the

reconstructions are re-encoded with the modality-specific

encoder and compared to the original embedding of the

sample. An adversarial discriminator can be employed to align

the embedding of the original sample with the embedding of the

re-encoded reconstruction of that sample (Figure 1E, red

arrows). For cross-modal consistency, the low-dimensional

embeddings from samples of one modality are decoded and

subsequently re-encoded with the decoder and encoder of the

other modality. By aligning these cross-modal embeddings with

the original embeddings using an adversarial discriminator, the

model can learn to produce cross-modal translations that are

consistent with the original sample when re-embedded in the

latent space.

3 Literature review

Although recently, several available deep learning-based

applications for the integration of single-cell multi-omics data

have been reviewed in (Erfanian et al., 2021) and (Stanojevic

et al., 2022), there is still a lack of a more comprehensive review

focusing specifically on DGMs. In the following, we are going to

survey approaches for paired (both modalities measured in the

same cell in one experiments) and unpaired (modalities

measured in different cells in separate experiments) single-cell

data. An overview is given in Table 1, where we list recent deep

learning-based approaches for multi-omics data integration. We

remark whether the methods are designed for paired or unpaired

datasets and compare the basic network architectures and

demonstrated modalities on which the respective methods

have been demonstrated. Additionally, we comment on the

integration tasks tackled by each model and provide a

reference to the implementation.

We exclusively included methods that learn a joint

embedding based on DGMs and have been demonstrated on

multi-omics data of different modalities (not just, e.g., single-cell

RNA-seq from different protocols).

3.1 Approaches for paired data

The Cobolt model (Gong et al., 2021) learns shared

representations between modalities and is based on a

multimodal VAE, where an independent encoder network is

used for each modality and the learned parameters of the

posterior distributions are combined using a PoE approach.
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TABLE 1 Overview of recently published deep learning-based methods to integrate single-cell multi-omics data. 1Only for mapping single-omics to
multi-omics; 2Only when converting peaks to activity scores.

Name References Un-
paired

Network
architecture

Demonstrated modalities Integration type Code

MAGAN Amodio and
Krishnaswamy
(2018)

yes Two GANs, both
unsupervised and semi-
supervised training

Flow cytometry + scRNA-seq;
Multiple CyTOF Panels; Multiple
CyTOF Replicates

Integration of single-omics
data

https://github.com/
KrishnaswamyLab/
MAGAN

SCIM Stark et al. (2020) yes multimodal
autoencoders with an
adversarial objective

scRNA + CyTOF, more
modalities possible

Integration of multi-omics
data

https://github.com/
ratschlab/scim

BABEL Wu et al. (2021) no VAE with separate
encoders and decoders,
trained by cross-
prediction

SNARE-seq, SHAREseq, CITE-
seq, scRNA-seq, scATAC-seq

Cross-modality translation https://github.com/
wukevin/babel

Cobolt Gong et al. (2021) yes MVAE (direct fusion/
concatenation)

SNARE-seq, 10x multiome
(treated as different modalities)

Integration of multi-omics
data and multi- with single-
omics data

https://github.com/
epurdom/cobolt

DAVAE Hu et al. (2022) yes VAE, shared encoder +
adversarial classifier

scRNA-seq from different
samples/protocols (SmartSeq2,
10X), scRNA + scATAC-seq, 10X/
Visium. Requires common input
features

Integration of multiple scRNA-
seq into an atlas References,
transfer learning

https://github.com/
jhu99/scbean

DCCA Zuo et al. (2021) no VAE with separate
mutually supervised
encoders and decoder

scRNA-seq + scATAC-seq (10x,
SNARE-seq, SHARE-seq,
scNMT-seq)

Transfer learning, impute
missing modalities

https://github.com/
cmzuo11/DCCA

MultiVI Ashuach et al.
(2021)

no1 VAE (distributional
average and penalization
to mix the latent
representations)

scRNA-seq + scATAC-seq
(PBMC 10x)

Integration of multi-omics
data and multi-omics with
single-omics data, imputation
of missing modalities

https://github.com/
YosefLab/scvi-tools

p/mp
SMILE

Xu et al. (2021b) no Modality-specific
encoders trained by
noise-contrastive
estimation

scRNA-seq + scATAC-seq,
scMethyl + scHi-C, SNARE-seq,
sci-CAR, SHARE-seq, (integration
of > 2 modalities possible)

Integration of single-omics and
multi-omics data

https://github.com/
rpmccordlab/SMILE

SCALEX Xiong et al. (2021) (yes)2 VAE with batch-free
encoder and a batch-
specific decoder

CITE-seq, spatial transcriptome
MERFISH data, scRNA-seq +
scATAC-seq

Integration of single-omics
data, integration of multi-
omics data

https://github.com/jsxlei/
SCALEX

scMM Minoura et al.
(2021)

no VAE (mixture of
experts)

CITE-seq + SHARE-seq Integration of multi-omics
data, cross-modal prediction

https://github.com/
kodaim1115/scMM

scMVAE Zuo and Chen
(2021)

no MVAE (3 strategies:
product of experts,
neural network, direct
concatenation)

SNARE-seq Integration of multi-omics
data

https://github.com/
cmzuo11/scMVAE

TotalVI Gayoso et al.
(2021b)

no VAE CITE-seq Integration of multi-omics
data, missing protein
imputation

https://github.com/
YosefLab/scvi-tools

Con-AAE Wang et al. (2022) no Two autoencoders,
using adversarial loss
and latent cycle-
consistency loss

sci-CAR, SNAREseq Integration of single-omics
data, integration of multi-
omics data

https://github.com/
kakarotcq/RNA-Seq-
and-ATAC-Seq-
mapping

MIRA Lynch et al. (2022) no VAE SHARE-seq and 10X Integration of multi-omics
data

https://github.com/
cistrome/MIRA

Polarbear Zhang et al.
(2022a)

yes VAE with semi-
supervised cross-
domain translation

SNARE-seq (+snATAC-seq,
scATAC-seq, scRNA-seq)

Cross-modality translation,
align single-modality data,
predict missing modalities

https://github.com/
Noble-Lab/Polarbear

Multigrate Lotfollahi et al.
(2022)

yes VAE (product of
experts)

CITE-seq and scRNA-seq +
scATAC-seq (adaptable to other
modalities)

Mapping of novel multi-omic
query datasets to a References
atlas, imputation of missing
modalities, integration of
multi-omics

https://github.com/
theislab/multigrate

Portal Zhao et al. (2022) yes AE + GAN: adversarial
discriminators on latent
spaces

Various single-cell RNA-seq
(Drop-seq, 10X, SmartSeq2),
scRNA (10X, DropSeq) + snRNA-
seq (Split-Seq), scRNA +
scATAC-seq

Integration of multi-omics and
single-omics data, cross-
modality translation

https://github.com/
YangLabHKUST/Portal

(Continued on following page)
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Additionally, Cobolt can jointly integrate single-modality

datasets with multi-omics datasets, allowing one to draw on

the many publicly available scRNA-seq or scATAC-seq datasets.

Multigrate (Lotfollahi et al., 2022) is another model that

employs a PoE to combine the posteriors of different modalities.

Additional datasets can be integrated into the model by

minimizing the maximum mean discrepancy (MMD) loss

between joint representations of different datasets.

Similar to Cobolt and Multigrate, scMM (Minoura et al.,

2021) is a VAE-based method that trains an encoder network for

each modality independently. However, instead of combining the

parameters of the posterior distributions using a PoE, a MoE is

used. By equally mixing information from both modalities

through the MoE, the model avoids putting too much

emphasis on one individual modality only (Minoura et al.,

2021). In addition, scMM provides a method for model

interpretability that uses latent traversals, where synthetic cells

are generated by the learned decoder and one latent variable is

modified continually, while the others remain fixed. The

Spearman correlations calculated between each latent variable

and the features of each modality then allow relevant features to

be identified. Additionally, by using a Laplace prior, scMM learns

disentangled representations, with correlations between latent

variables being penalized, which allows for better interpretation

of individual features (Treppner et al., 2022).

Similarly, the MultiVI model presented by Ashuach et al.

(2021) is also based on a MoE with αm = 1/M where M denotes

the number of modalities, as the authors use individual encoders

for each data modality and then average the resulting variational

posteriors. However, a regularization term is added to the ELBO,

which penalizes the distance between the learned latent

representations such that a joint representation can be

inferred (Ashuach et al., 2021).

While the single-cell multi-view profiler (scMVP) (Li et al.,

2022) is also based on a multimodal VAE architecture with

modality-specific encoders and decoders and a joint latent space,

it more explicitly accounts for the much higher sparsity of single-

cell measurements from joint profiling protocols, with a

throughput of only one-tenth to one-fifth of that of single-

modality assays (Li et al., 2022). Specifically, the authors

employ attention-based building blocks for both the encoder

and decoder. Attention mechanisms have first been proposed in

computer science in the context of machine translation

(Bahdanau et al., 2014; Kim et al., 2017) and are based on the

idea of using flexible weighting of an input observation, to have

the model specifically ‘attend to’ the most important parts of the

observation. In the context of omics data, attention scores are

assigned to the observed features (e.g., genes, chromatin loci) of

each cell, to enhance the effect and interplay of specific features.

In contrast to fixed weights, the attention scores are learned

during model training and can thus adapt to highlight the most

informative features for learning, e.g., latent representations.

Attention-based mechanisms have specifically been

popularized by transformer models (Vaswani et al., 2017) due

to their high performance on sparse datasets in the area of natural

language processing or protein structure prediction. In scMVP,

the authors build on that by using multi-head self-attention

transformer modules to capture local, long-distance

correlation in the encoder and decoder of the term frequency-

inverse document frequency-transformed (Stuart et al., 2021)

scATAC-seq data while using simple attention blocks in the RNA

encoder and decoder. Given the latent embedding, the modality-

specific decoders are weighted according to the posterior

probabilities of cell-type or cluster identity. To encourage

consistency of the shared latent space, the decoder-

reconstructed values of each modality are again embedded

into the latent space, and the KL-divergence between the joint

latent embedding and the modality-specific re-embedding from

the reconstructed data is minimized as an additional loss term.

This corresponds to the idea of cyclical adversarial training as

described in Section 2.4 and Figure 1E. More generally, this

concept is based on a cycle GAN (Zhu et al., 2017) and is also

present in, e.g., Xu et al. (2021a); Zhao et al. (2022); Khan et al.

(2022); Wang et al. (2022) and Zuo et al. (2021).

SCALEX (Xiong et al., 2021) builds on SCALE (Single-Cell

ATAC-seq Analysis via Latent feature Extraction) (Xiong et al.,

2019), a tool for analyzing scATAC-seq data. The developers of

SCALE found that its encoder could be beneficial in

disentangling cell-type- and batch-related features, which

would allow for online integration of different batches.

Specifically, using a VAE, SCALEX integrates different batches

into a batch-invariant embedding through simultaneous learning

of a batch-free encoder and a batch-specific decoder. The latter

contains a domain-specific batch normalization layer. This

TABLE 1 (Continued) Overview of recently published deep learning-basedmethods to integrate single-cell multi-omics data. 1Only formapping single-
omics to multi-omics; 2Only when converting peaks to activity scores.

Name References Un-
paired

Network
architecture

Demonstrated modalities Integration type Code

scMVP Li et al. (2022) no Multimodal VAE with
Gausian mixture prior
and attention modules

SNARE-seq, sci-CAR, Paired-seq,
SHARE-seq, 10X (could be
extended to parallel profiling of
other epigenomic data)

Integration of multi-omics
data

https://github.com/bm2-
lab/scMVP
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allows the encoder to concentrate only on batch-invariant

biological data components while being oblivious to batch-

specific variations. The resulting generalizability of the

encoder further allows for the integration of new single-cell

data in an online manner, i.e., without the need to retrain the

model. The authors demonstrate this property of SCALEX by

generating multiple expandable single-cell atlases.

Another subgroup of models addresses the task of translating

between different modalities. These cross-modality translation

approaches, however, often do not learn a common latent

representation of the data. For example, Polarbear (Zhang R.

et al., 2022) trains VAEs on each of two modalities (here: scRNA-

seq and scATAC-seq data) and then links the respective encoders

to the decoders of the other modality. The authors intend that the

training in the first stage, i.e., the training of the individual VAEs,

takes place on publicly available single-assay data, whereby the

translation task is carried out on SNARE-seq data in a supervised

manner.

Another such model called BABEL (Wu et al., 2021) similarly

employs distinct modality-specific encoders and decoders for

scRNA- and scATAC-seq data but utilizes a shared latent space.

In contrast to PoE/MoE approaches, this joint representation is

not constructed from separate spaces from each modality, but the

encoders directly project onto the common latent space. Mutual

cross-modal translation together with single-modality

reconstruction are then used to train the model, i.e., from

each modality-specific encoder, a sample of the joint latent

representation is obtained and subsequently passed through

both decoders to reconstruct both the scRNA and the

scATAC profiles of the respective cell. Thus, both the

reconstruction of the modality itself and the respective other

modality based on the joint latent embedding are evaluated for

each modality.

A similar approach is taken by Portal (Zhao et al., 2022),

where a domain translation framework is combined with an

adversarial training mechanism to integrate scRNA- and

scATAC-seq data. Specifically, as in (Wu et al., 2021),

modality-specific encoders directly embed the data in a shared

latent space and cross-modal generators are introduced to decode

the latent representation to the respective other modality. The

resulting domain translation networks for each modality are then

trained to compete against adversarial discriminators on the

domain of each modality that aims to distinguish between

original cells from the respective modality and cells translated

from the other modality. The discriminators are specifically

designed to adaptively distinguish between domain-shared and

domain-unique cells by thresholding the discriminator scores.

Since, according to the authors, domain-unique cell populations

are prone to be assigned with extreme discriminator scores,

discriminators are, thus, made effectively inactive on cells with

a high probability of being modality-specific, which avoids the

risk of over-correction by enforced alignment of domain-unique

cells. Further, additional regularizers are employed: an

autoencoder loss based on the within-modality

reconstructions, a latent alignment loss to encourage the

consistency of a specific cell’s embedding and the embedding

of its cross-modal reconstruction, and a cosine similarity loss

between cells and their cross-modal reconstructions. Notably,

Portal uses the first 30 principal components of a joint PCA as

inputs for the model and employs a 20-dimensional latent space,

such that the dimension reduction component is less pronounced

than for the other models, and the data are not modeled as

counts.

The authors of Zuo and Chen (2021) have extended scMVAE

and proposed Deep Cross-Omics Cycle Attention (DCCA) (Zuo

et al., 2021), which improves some of the weaknesses of scMVAE.

DCCA combines VAEs with attention transfer. While scMVAE

combines two modalities into a shared embedding, which

potentially attenuates modality-specific patterns, in the case of

DCCA, each data modality is processed by a separate VAE. These

VAEs can then learn from each other through mutual

supervision based on semantic similarity between the

embeddings of each omics modality.

In the sciCAN model presented by Xu et al. (2021a),

modality-specific autoencoders map the input data to a latent

space for each modality, and a discriminator is employed to

distinguish between the two modalities based on their latent

representations. Additionally, a cross-modal generator is

employed that generates synthetic scATAC-seq data based on

the scRNA-seq latent representation, and a second discriminator

is employed to distinguish between generated and real scATAC-

seq samples. Additionally, the generated scATAC-seq data can be

fed to the encoder again, and the latent representation is

compared with the original latent representation from the

scRNA-seq data used for generating the scATAC-seq data,

thus introducing a cycle consistency loss (see Figure 1E,

Section 2.4). Notably, the model does not necessarily expect

paired measurements from the same cell but employs a shared

encoder for both modalities, and, thus, requires a common

feature set.

The authors of Hu et al. (2022) propose the DAVAE model

based on domain-adversarial and variational approximation to

integrate multiple single-cell datasets and paired scRNA-seq and

scATAC-seq data. The model employs an adversarial training

strategy to remove batch effects and enable transfer learning

between modalities, by incorporating a domain classifier that

tries to determine the batch or modality label based on the latent

representation of VAE and training the VAE encoder to ‘fool’ the

classifier via an adversarial loss component. Similarly to Portal

and sciCAN, the DAVAE model also employs a shared encoder

and thus requires a common set of input features.

Similarly, the scDEC model proposed by Liu et al. (2021) is

based a pair of generative adversarial models to learn a latent

representation. While focusing on scATAC-seq data analysis,

this approach also allows for integrative analysis of multi-modal

scATAC and scRNA-seq datasets for trajectory inference during
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differentiation processes and cell type identification based on the

joint latent representation.

Finally, MIRA (Lynch et al., 2022) combines probabilistic

cell-level topic modeling (Blei, 2012) with gene-level regulatory

potential (RP) modeling (Wang et al., 2013; Qin et al., 2020) to

determine key regulators responsible for fate decisions at lineage

branch points. The topic model uses a VAE with a Dirichlet prior

to learn both the topic of the gene transcription and the topic of

gene accessibility for each cell to derive the cell’s identity.

Complementing MIRA’s topic model, its RP model integrates

the transcription and accessibility information for each gene

locus to infer how the expression of the respective gene is

influenced by surrounding regulators. To this end, the topic

model learns the rate with which the regulatory influence of

enhancers decays with increasing genomic distance. In addition,

the identity of key regulators is identified by analyzing

transcription factor motif enrichment or occupancy.

3.2 Approaches for unpaired data

Since the generation of multi-omics measurements in the

same cell is still costly and experimentally complex, many

methods for integrating datasets measured in different cells

are being developed.

Because of the difficulty of linking latent representations

learned from variational autoencoders in the absence of

measurement pairing information, Lin et al. (2022) proposed

a transfer learning approach. Although not a DGM, it is worth

mentioning in this article because of its usefulness and the

possibility of adapting it to unsupervised settings. Notably, it

represents a method for a horizontal alignment task, i.e., it relies

on a common set of features as anchors and thus requires the

translation of scATAC peaks to gene activity scores.

In a similar spirit, the scDART model proposed by Zhang Z.

et al. (2022) learns a neural network-based joint embedding or

unpaired scRNA-seq and scATAC-seq data by composing the

embedding network with a gene-activity module network that

maps scATAC peaks to genes. In addition, scDART can leverage

partial cell matching information by using it as a prior to inform

the training of the gene activity function.

Similar to the sciCAN model presented by Xu et al. (2021a),

scAEGAN (Khan et al., 2022) also embraces the concept of cycle

consistency, integrating the adversarial training mechanism of a

cycle GAN (Zhu et al., 2017) into an autoencoder framework.

Specifically, for each modality, a discriminator and a generator

are defined. In addition to the standard GAN loss for each

modality, a cycle loss is calculated by mapping a cell from one

modality to the second modality with the second modality’s

generator and mapping it back to the first modality with the first

modality’s generator and comparing that to the original

observation. Unlike for Xu et al. (2021a), the model does not

rely on a common feature set but first trains an autoencoder

model independently for each modality before training a cycle

GAN on the two latent spaces to enforce their consistency.

A similar approach is employed in the Contrastive Cycle

Autoencoder (Con-AAE) proposed byWang et al. (2022). Again,

the consistency between latent spaces of modality-specific

autoencoders is enforced by a cycle consistency loss. However,

here, it is more tightly integrated within the AE architecture, as

the modality-specific encoder and decoders are used as

generators, i.e., samples from one modality are embedded

with the modality-specific encoder but decoded with the

decoder of the other modality, and subsequently encoded with

the other modality encoder back to the latent space, where they

are compared with the original latent representation from the

original encoder of the modality.

A purely GAN-based approach to integrating unpaired data

by aligning the respective manifolds is presented in Amodio and

Krishnaswamy (2018).

Another line of research for the integration of unpaired

multi-omics data focuses on the concept of optimal transport

(Peyré and Cuturi, 2019). A separate embedding or distance

matrix is constructed from each modality, and the alignment

task is formulated to find an optimal coupling between the two

embeddings or distance matrices. An optimal coupling

corresponds to finding a map along which one modality can

be “transported” with minimal cost to the other, which can be

formalized as an optimal transport problem (Peyré and Cuturi,

2019). Examples for such optimal transport-based methods are

UnionCom (Cao et al., 2020), SCOT (Demetci et al., 2022) and

Pamona (Cao et al., 2021). While these approaches typically

rely on computing a coupling between modality-specific

distance matrices and are not deep learning-based, a recent

approach called uniPort employs a VAE architecture and solves

an optimal transport problem in the latent space. More

specifically, a shared encoder that requires a common input

feature set across modalities is used to project the data into a

common latent space, is combined with modality-specific

decoders for reconstruction, and an optimal transport loss is

minimized between the latent cell embeddings from different

modalities.

Finally, the recently published Graph-Linked Unified

Embedding (GLUE) framework (Cao and Gao, 2022) is based

on the construction of a guidance graph based on prior

knowledge of the relations between features of the different

modalities to explicitly model regulatory interactions across

different modalities with distinct feature spaces. This is

achieved by learning joint feature embeddings from the

knowledge graph with a graph VAE and linking them to

modality-specific autoencoders. Specifically, the decoder of

these modality-specific AEs is given by the inner product of

the feature embeddings and the cell embeddings from the latent

space of the respective modality. Additionally, the cell

embeddings of different modalities are aligned using an

adversarial discriminator.

Frontiers in Molecular Biosciences frontiersin.org10

Brombacher et al. 10.3389/fmolb.2022.962644

106107107

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.962644


4 Benchmark dataset

To acquire an objective performance estimate of the ability of

different multi-omics integration approaches to describe the

biological state of a cell through learning a joint embedding

from multiple modalities, we used the benchmark dataset which

was provided in the course of the NeurIPS 2021 competition and

for which the ground-truth cell identity labels are known

(Luecken et al., 2021a). This dataset was the first available

multi-omics benchmarking dataset for single-cell biology. It

mimics realistic challenges researchers are faced with when

integrating single-cell multi-omics data, e.g., by incorporating

nested donor and site batch effects (Lance et al., 2022).

Specifically, the NeurIPS benchmark dataset is a multi-donor

(10 donors), multi-site (4 sites), multi-omics bone marrow

dataset comprising two data types (Lance et al., 2022):

• CITE-seq data with 81,241 cells, where for each cell RNA

gene expression (GEX) and cell surface protein markers

using antibody-derived tags (ADT) are jointly captured.

• 10X Multiome assay data with 62,501 cells, where nucleus

GEX and chromatin accessibility measured by assay for

transposase-accessible chromatin (ATAC) are jointly

captured.

In total, this dataset contained information on the

accessibility of 119,254 genomic regions, the expression of

15,189 genes, and the abundance of 134 surface proteins, and

has been preprocessed as described in Luecken et al. (2021a). We

acquired the benchmark dataset from the NeurIPS 2021 website

(https://openproblems.bio/neurips_2021), it can, however, also

be accessed via https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE194122.

As recommended in Luecken and Theis (2019), we filtered

this dataset for highly variable genes, as they are considered to be

most informative of the variability in the data. In addition,

analogous to the FindTopFeatures function of Signac (Stuart

et al., 2021), we filtered the ATAC data such that we retained only

peaks with the 25% highest overall counts. Finally, to determine

the effect of the number of cells, we randomly subsampled the

original NeurIPS dataset to subsamples containing information

on 500, 1,000, 2,500, 5,000, and 10,000 cells, where for each

number of cells we sampled 10 subsamples of that size.

5 Performance metrics

Generating a highly resolved, interpretable, low-dimensional

embedding capturing the underlying biological cell states is

pivotal for the analysis of multi-omics data (Lähnemann et al.,

2020; Lance et al., 2022). We assess the performance of the

compared integration approaches based on six metrics capturing

the conservation of biological variation (normalized mutual

information (NMI), cell type average silhouette width (ASW),

trajectory conservation) and the degree of batch removal (batch

ASW, site ASW, graph connectivity) (Lance et al., 2022). These

metrics are described in detail in Luecken et al. (2021b) and are

briefly introduced below:

• NMI compares the overlap of two clusterings. It is used to

compare the Louvain clustering of the joint embedding to

the cell type labels. It ranges from 0 (uncorrelated

clustering) to 1 (perfect match).

• Cell type ASW is used to evaluate the compactness of cell

types in the joint embedding. It is based on the silhouette

width, which measures the compactness of observations

with the same labels. Here, the ASW was computed on cell

identity labels and scaled to a value between 0 (strong

misclassification) and 1 (dense and well-separated

clusters).

• The trajectory conservation assesses the conservation of a

continuous biological signal in the joint embedding.

Trajectories computed using diffusion pseudotime after

integration for relevant cell types are compared. Based on a

diffusion map space embedding of the data, an ordering of

cells in this space can be derived. Using Spearman’s rank

correlation coefficient between the pseudotime values

before and after integration, the conservation of the

trajectory can be quantified, with the scaled score

ranging from 0 (reverse order of cells on the trajectory

before and after integration) to 1 (same order).

• Batch ASW describes the ASW of batch labels per cell. The

scaled score ranges from 0 to 1, where 1 indicates well-

mixed batches and any deviation from 1 indicates a batch

effect.

• Site ASW describes the ASW of site labels per cell and can

be interpreted analogously to batch ASW.

• The graph connectivity score evaluates whether cells of the

same type from different batches are close to each other in

the embedding by assessing if they are all connected in this

embedding’s k-nearest neighbor (kNN) graph. It ranges

from 0 (no cell is connected) and 1 (all cells with the same

cell identity are connected).

6 Results

We use various metrics to quantify the preservation of

biological variation and metrics for the removal of technical

effects based on the 10-dimensional embeddings obtained when

applying Cobolt, scMM, TotalVI, and SCALEX to subsamples of

the NeurIPS CITE-seq dataset, and Cobolt, scMM, MultiVI,

scMVP, DAVAE, and Portal to subsamples of the NeurIPS

Multiome dataset. We randomly sampled 500, 1,000, 2,500,

5,000, and 10,000 cells ten times each and applied the models

to the respective datasets. We refrain from extensive parameter
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optimisation as we put ourselves in the position of a user new to

the field of deep learning, who will, most likely, leave the default

parameters unchanged and use the same parameters as the

original authors in their application of their proposed method.

Thus, we used the default hyperparameters of the respective

models as reported by the authors who originally proposed them

where possible (Supplementary Material: Hyperparameters).

When applying scMM to the CITE-seq data, we frequently

observed non-converging training runs, in particular for larger

sample sizes. Here, we refer to the convergence of the iterative

optimization procedure by stochastic gradient descent on the loss

function of the respective model (see also Section 2).

Convergence is achieved if towards the end of the training,

the changes in the loss function in each iteration become

smaller and eventually level out, whereas in non-converging

runs we observe exploding gradients of the loss function. This

is often due to suboptimal hyperparameter choices. For scMM,

lowering the learning rate for sample sizes above 2,500 by one

order of magnitude and increasing the batch size from 128

(default used by scMM) to 200 achieved convergence of the

model training on all subsamples.

In general, similar performances were achieved irrespective

of which of the two data types we used for deriving a joint

embedding (Figures 2, 3). For the Multiome dataset, two of the

considered tools, DAVAE and Portal, employ a shared encoder

based on a common set of features across both modalities (top

30 principal components of a joint PCA on both datasets for

Portal and common highly variable genes when converting

scATAC peaks to gene activity scores for DAVAE) and thus

embed each cell’s profiles in the two modalities separately. To

keep the evaluation as comparable as possible to the other tools,

we thus created a joint embedding by calculating the mean of

each cell’s embedded profiles in the two modalities in a mixture-

of-experts approach.

We compare our results with the metric values achieved by

the models of the NeurIPS 2021 competition for the integration

of the Multiome dataset (data points were extracted via

WebPlotDigitizer-4.5 (Rohatgi, 2021) from Supplementary

Figure S6 of (Lance et al., 2022)). However, as we merely used

a subset of at most 10,000 cells of the original benchmark dataset,

we expect our investigated algorithms to score higher for most

metrics if they were to be subjected to the complete benchmark

dataset.

By visual inspection of the Uniform Manifold

Approximation and Projection (UMAP) (Becht et al. (2019);

Konopka and Konopka (2018) version 0.2.9.0 with default

parameters) plots of one exemplary subsample (Figure 4 and

Figure 5), we see that MultiVI shows no obvious clustering for

500 cells (2, top panel). In contrast, defined cluster structures are

beginning to build at this low cell number, and become more

refined for 10,000 cells, for all other investigated tools. This

behavior of MultiVI for smaller numbers of cells is also reflected

in lower values for most of the investigated performance metrics

(Figures 4, 5). Interestingly, the TotalVI tool, which is built on a

similar architecture and was used for the CITE-seq dataset does

not show such behavior (4, top panel).

UMAP plots including further meta information on the

embedded cells are given in Supplementary Figures S3–22 for

the exemplary subsample.

To ensure that the number of parameters in the respective

models is not the determining factor for decreasing performance

on small sample sizes, we calculated the Spearman correlation

coefficient between the ranks of the models from Figures 2, 3 and

the evaluation metrics. The predominantly negative correlations,

i.e., lower rank (better performance) with an increasing number

of trainable parameters, indicate that more complex models also

deliver better performance regardless of the number of

observations.

6.1 Preserving biological information

We assess the preservation of biological variation based on

the NMI, cell type ASW, and the trajectory conservation scores

(Figure 2). In addition, we show boxplots of the metrics for all

models and sample sizes for bothMultiome and CITE-seq data in

the Supplementary Figures S1, 2, to show the variability of each

metric across the 10 replicates of each dataset size.

NMI, as a measure of cluster overlap, reaches values of approx.

0.7 for all Multiome and CITE-seq integrating models. The NMI is

slightly lower than what was achieved during the NeurIPS

2021 competition, where the best competition entries reached an

NMI of close to 0.8 for the complete Multiome dataset (Lance et al.,

2022) (see Supplementary Figure S1). This is to be expected as we

evaluate the models in a low sample size scenario. MultiVI profits

greatly from a larger cell number, while an increasing cell number

only slightly increases the performance of the other models. Across

most sample sizes, Cobolt performed best for the CITE-seq datasets,

while Portal performs best on the Multiome datasets for all sample

sizes but does not profit much from increasing sample size. For

larger sample sizes, scMVP shows only slightly worse performance

than Portal on the Multiome dataset.

Cell type ASW is a measure of cluster compactness and

overlap. We see values of around 0.5 for the Multiome and CITE-

seq datasets, which implies overlapping of clusters and only a

moderate separation. This is slightly lower than the 0.6 that

models have achieved in the NeurIPS 2021 competition (Lance

et al., 2022). For Multiome data, the impact of cell numbers was

minor in Cobolt, scMM, Portal, DAVAE and scMVP

representations and higher for MultiVI. For CITE-seq data,

only scMM and TotalVI show a dependence between cell type

ASW and cell number. As expected, increasing the number of

cells leads to a decrease in variance.

The trajectory conversation scoremeasures the preservation of

a biological signal, e.g. in the form of developmental processes. For

the CITE-seq dataset, all models reach comparable scores of
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around 0.9 irrespective of the cell numbers, with a substantial

decrease in variance for larger cell numbers. In contrast, for the

Multiome dataset, an increase in cell numbers affects the trajectory

conservation score for all models except DAVAE. In particular

MultiVI shows a large improvement in performance with

increasing cell numbers, while for Portal, scMVP, Cobolt and

scMM, the scores increase from around 0.87 to around 0.96.

Cobolt performs best for higher cell numbers, while the

performance of Portal and scMVP is on par and slightly better

than Cobolt for lower cell numbers. The maximum score that

models reach in our analysis slightly exceeds the median of the

trajectory conservation scores of around 0.9 achieved by models of

the NeurIPS 2021 competition (Lance et al., 2022).

Taken together, Cobolt is the strongest performing model

based on almost all biology preservation metrics on the CITE-seq

data and regarding cell type ASW on the Multiome data,

performing well even in scenarios with small sample sizes.

Portal is the strongest performing model on the Multiome

data based on NMI and trajectory conservation and performs

well on cell type ASW, also showing consistently high

performance across sample sizes.

6.2 Removing technical effects

We assess the removal of technical artifacts based on the

batch ASW and graph connectivity score (Figure 3). As a

measure of between-site technical variation and to account for

the shortcomings of batch ASW (which does not sufficiently

account for the nested batch effects of donors and sites) and

graph connectivity (which is not sufficiently challenging) (Lance

et al., 2022), we also assess batch ASW with the site as a covariate

(‘Site ASW‘), as has been suggested by Lance et al. (2022).

The Batch ASW score of around 0.8 that we observe in our

results indicates only a minor batch effect, although the score is

slightly lower than the 0.9 that models achieved in the course of the

NeurIPS 2021 competition (Lance et al., 2022) (see Supplementary

Figure S2). There is a slight increase in performance for increasing

cell numbers across both datasets. For the Multiome dataset, Portal

consistently performed best, closely followed by scMVP in particular

for larger cell numbers, while MultiVI scored lowest for most cell

number settings. For the CITE-seq dataset, SCALEX shows the

highest Batch ASW score across all cell number settings, implying

superior handling of batch effects even with small sample sizes. This

is in line with SCALEX being specifically designed to separate batch-

related from batch-invariant components (Xiong et al., 2021).

The graph connectivity score indicates how well cells of the

same cell type and cells coming from different batches are

connected in the joint embedding. For the Multiome dataset,

MultiVI’s graph connectivity score is considerably lower for

small sample sizes, while all models improve performance

with an increasing number of cells. Portal and scMVP are the

best performing models, reaching a score of almost 1 for higher

cell numbers in the case of the Multiome dataset in line with the

scores achieved by themodels of the NeurIPS competition (Lance

et al., 2022). For the CITE-seq dataset, the performance of

FIGURE 2
Biological preservation metrics. NMI, cell type ASW, and trajectory conservation score indicate the biological preservation quality achieved by
joint embeddings from various models. On the 10x Multiome data, the performance of Portal, scMVP, Cobolt, scMM, DAVAE, MultiVI is shown (top),
whereas the performance on CITE-seq data is shown for Cobolt, TotalVI, SCALEX, and scMM (bottom). Median scores across all iterations are shown
inside the tiles.
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TotalVI increased with increasing cell numbers, achieving the

highest graph connectivity score for 5,000 and 10,000 cells. In

contrast, the number of cells had only a minor effect on the other

models. scMM consistently had the lowest graph connectivity

score for the CITE-seq dataset.

Site ASW captures site-specific batch effects. Compared to

Batch ASW, the performance differences between the models

that we applied to the CITE-seq dataset are enhanced. For the

CITE-seq dataset, Cobolt and SCALEX perform best, with Cobolt

surpassing SCALEX for increasing cell numbers. scMM

consistently has the lowest scores on the CITE-seq data. For

the Multiome data, the spread of the investigated models is

comparable to the one of Batch ASW. Portal achieved the

highest Site ASW scores followed by scMVP, which is in

agreement with their high Batch ASW score.

Portal and scMVP are the best performingmodels for metrics

considering the removal of technical effects on the Multiome

data, whereas MultiVI’s performance suffers. On the CITE-seq

data, SCALEX and Cobolt are among the best performing

models, while scMM shows consistently low scores across

metrics and cell numbers.

6.3 Usability

The scMMmodel by (Minoura et al., 2021) was easily usable.

The authors provide both a command line interface and a script

that is straightforward to adapt and run. However, HDF5-based

data (such as the popular “AnnData” objects) has to be manually

restructured to separate files to be used as input for the model.

For CITE-seq-data, model training did not always converge, in

particular for larger sample sizes, which could be addressed by

lowering the learning rate and changing the batch size. While this

behavior did not occur with very small learning rates (2 orders of

magnitude smaller than the default used by Minoura et al.

(2021)), this also tended to substantially lower the performance.

To run the scMVP model by (Li et al., 2022), package

dependency issues had to be resolved manually. Here, too,

data had to be restructured manually to fit the custom input

data structs defined by the authors. Adapting and running the

model and extracting the learned embedding was

straightforward.

All in all, all investigated tools were relatively easy to use and

adapt, though in most cases not without at least intermediate

programming skills (e.g., to transform own data into rather

specific and often largely undocumented data structs defined

by the authors).

Finally, looking at the time the tools need for their

calculations, we found that the central processing unit (CPU)

time (without preprocessing) of Cobolt considerably exceeds the

CPU time of the other tools especially for the Multiome dataset

(Supplementary Figures S1, 2). Of note, the tools were run on

different machines, which hinders a direct comparison. However,

it should give the reader a rough idea about the processing time

each tools requires, and it is useful to see how well the different

investigated tools scale timewise for increasing cell numbers.

FIGURE 3
Technical effect removal metrics. Site ASW, batch ASW, and graph connectivity score indicate the quality of technical effects removal achieved
by joint embeddings from variousmodels. On the 10x Multiome data, the performance of Portal, scMVP, scMM, Cobolt, DAVAE, and MultiVI is shown
(top), whereas the performance on CITE-seq data is shown for the SCALEX, Cobolt, TotalVI, and scMM (bottom). Median scores across all iterations
are shown inside the tiles.
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FIGURE 4
UMAP of the 10-dimensional latent space of Cobolt, scMM, MultiVI, scMVP, DAVAE, and Portal based on 500 (top) and 10,000 (bottom) cells of
one exemplary subsample from the Multiome dataset each. The color coding corresponds to manually annotated cell types as provided by Luecken
et al. (2021a).
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7 Outlook and discussion

The rapid emergence of experimental protocols for profiling

several omics layers from the same cell or in independent

experiments is closely followed by the development of

corresponding computational models for analyzing and

integrating such data. These methods promise to answer

biological questions previously out of reach. Still, they have so

far been hampered by often rather small and sparse datasets and

the lack of a systematic overview and comparison. In particular,

considering the sparsity and high dimensionality inherent to

single-cell (multi-)omics data, researchers seek to identify a low-

dimensional embedding that integrates the information from

multiple modalities and can be used for further downstream

analyses. Consequently, many computational tools to infer such

a joint latent representation have recently been proposed, often

based on deep learning approaches due to their success in

identifying complex structures from data in unsupervised

settings. Specifically, deep generative models such as VAEs that

infer a low-dimensional, compressed representation of the input

data in an unsupervisedway are among themost popular solutions,

often including additional components or custom architectures to

accommodate the properties of single-cell multi-omics data and

facilitate specific characteristics of the learned embedding.

Due to the rapidly growing number of complex

methodological proposals for solving the challenging task of

computationally integrating multi-omics data, an overview

and categorization of such models are essential for

understanding the advantages and disadvantages of the

different methods. We have compiled a comprehensive review

of the literature on DGMs for learning joint embeddings of

multi-omics data and categorized the different models according

to their architectural choices.

In addition to this overview, we have also illustrated the

robustness of selected models to small sample sizes, where

sample size refers to the number of cells in the dataset. For

evaluating model performance, we have relied on the guidelines

of a comprehensive benchmarking project (Luecken et al.,

2021a). We have evaluated the models based on established

metrics concerning their ability to adjust for technical effects

while maintaining biological signals. Our analyses have shown

that Cobolt, an approach that uses a multimodal VAE with

products of experts to combine individual embeddings, and

Portal, an approach that uses the principal components of a

FIGURE 5
UMAP of the 10-dimensional latent space of Cobolt, scMM, TotalVI, and SCALEX based on 500 (top) and 10,000 (bottom) cells of one exemplary
subsample from the CITE-seq dataset each. The color coding corresponds to manually annotated cell types as provided by Luecken et al. (2021a).
The following cell types are not present in the 500 cell sample: CD4+ T CD314+ CD45RA+, CD8+ T naive CD127+ CD26−CD101-, cDC1, dnT, Plasma
cell IGKC-, Plasma cell IGKC+, Plasmablast IGKC-, T prog cycling.
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joint PCA on both modalities as input to an autoencoder with an

adversarial training strategy, deliver the best performance for

most biological preservation metrics, particularly for small

numbers of cells. On the other hand, Portal and scMVP, an

approach that employs attention-based components and a

dedicated architecture to deal with the sparsity of scATAC-seq

data, score highest for metrics related to removing technical

artifacts on the 10x Multiome data, while SCALEX performs best

on the CITE-seq data.

To consider the usability of the approaches from the

perspective of a user who is not an expert in tuning deep

learning models, we employed the default hyperparameters of

the models as proposed by their original authors. While this

could potentially introduce bias and dedicated tuning of

hyperparameters might improve the results, our focus was on

comparing the different approaches relative to each other and

relative to the sample size of the respective dataset rather than

absolute values of a metric which might be improved by

hyperparameter tuning.

Especially for users with little programming experience, some

of the models investigated will be difficult to apply, as they

require, e.g., the use of command line tools. Here, libraries such

as scvi-tools (Gayoso et al., 2021a) offer a significant benefit by

providing extensive documentation and exemplary applications.

Interpretability is an aspect that is of great importance for the

application of DGMs (Treppner et al., 2022). Some of the models

we have reviewed already offer the possibility of making the

corresponding outputs interpretable for users. For example, post-

hoc methods such as applying archetypal analysis (Cutler and

Breiman, 1994) to the joint embedding as conducted by TotalVI

(Gayoso et al., 2021b), can make the models explainable after

they have been trained. On the other hand, model-based

interpretability can be directly incorporated into the model

architecture to allow for immediate interpretation, such as the

latent traversals and specification of a dedicated prior to facilitate

disentanglement in (Minoura et al., 2021). However, no

dominant approach has yet emerged in this area, providing

scope for new developments.

Wewould like to stress that our review should not be understood

as a comprehensive benchmark but rather as an illustrative case

study, as wemerely looked at the investigatedDGM tools in the scope

of representative examples of the landscape of state-of-the-art

approaches, with a focus on potential differences in the number

of cells they require to perform well.

In this work, we merely discussed some of all available omics

modalities, and the performance of the models may be affected

for the better or the worse if applied to other data types due to

differing data characteristics, e.g., in the degree of sparsity.

The performances we obtained by running the investigated

tools on a benchmark dataset may well deviate if applying those

tools to other datasets of differing biological backgrounds, e.g., in

terms of cell type composition, tissue types, etc. Although a focus

on specific cell types is beyond the scope of our review, we invite

others to use our findings as a stepping stone to explore the

performance of DGMs for specific biological scenarios.

In the future, linking information from measurements of

transcriptomes, epigenomes, proteomes, chromatin organization,

etc., could lead to a deeper understanding of cellular processes.

Scientists could then further enhance their understanding of these

processes by information on the spatial context.
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The increasing availability of multivariate data within biomedical research calls

for appropriate statistical methods that can describe and model complex

relationships between variables. The extended ANOVA simultaneous

component analysis (ASCA+) framework combines general linear models and

principal component analysis (PCA) to decompose and visualize the separate

effects of experimental factors. It has recently been demonstrated how linear

mixed models can be included in the framework to analyze data from

longitudinal experimental designs with repeated measurements (RM-ASCA+).

The ALASCA package for R makes the ASCA+ framework accessible for general

use and includes multiple methods for validation and visualization. The package

is especially useful for longitudinal data and the ability to easily adjust for

covariates is an important strength. This paper demonstrates how the

ALASCA package can be applied to gain insights into multivariate data from

interventional as well as observational designs. Publicly available data sets from

four studies are used to demonstrate the methods available (proteomics,

metabolomics, and transcriptomics).

KEYWORDS

R, omics analysis, statistical method, ASCA, longitudinal data analysis, multivariate
analysis

1 Introduction

The increasing availability of high-dimensional data through omics-technologies can

yield new insights into how intricate biological systems evolve and how they respond to

various experimental conditions. However, there is a need for parallel development of

novel statistical methods that can deal with the increased complexity of such data. The

methods must be valid for multidimensional data sets, flexible for different experimental

settings, as well as interpretable. Commonly used methods for multivariate data analysis,

such as principal component analysis (PCA) and partial least squares (PLS) regression, are
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not able to fully account for more complex experimental designs.

Multilevel PLS-DA, for instance, can only handle two time

points, and adjusting for confounders can only be handled by

subgroup analysis. One powerful approach for analysis of

multivariate data is the ANOVA simultaneous component

analysis (ASCA) framework that combines ANOVA with PCA

(Smilde et al., 2005; Smilde et al., 2012). More recently, extended

ASCA methods such as ASCA+ (Thiel et al., 2017), LiMM-PCA,

and repeated measures ASCA+ (RM-ASCA+, Martin and

Govaerts, 2020; Madssen et al., 2021) have emerged that

combine general linear (mixed) models with PCA. In this way

the flexibility of regression models are merged with the

visualization of multivariate analysis, providing excellent

interpretability by allowing to separate and display the

complex multivariate patterns originating from different

experimental factors. Despite these benefits, the availability of

software implementations of ASCA+, and thus the use of the

framework, has been limited.

In short, (RM-)ASCA+ comprises three steps: first, linear

regression with or without random effects produces regression

coefficients (β) which are summarized into a fixed effect

parameter matrix (B, also including fixed intercepts). In the

case of K measurements of J variables in I individuals, the linear

mixed model based regression with R random effect coefficients

(γ, including intercepts) and p fixed effect coefficients (β,

including the intercept) can be written as

Y � XB + ZU + E, (1)
whereY is an IK × J response matrix,X is an IK × p designmatrix,

B is a p × J parameter matrix, Z is an IK × R design matrix for

random effects,U is an R × J random parameters matrix, and E is

an IK × J residual matrix. Equation 1 can also be written as

where the design matrices are filled with custom values for

demonstration, y(i,k),j is the kth measurement of variable j in

individual i, and ϵ(i,k),j the corresponding residuals. It will in

many cases be sufficient to include a random intercept for

participant. ZU is then simplified to an IK × J matrix with one

intercept per individual per variable (γr,j→ γi,j), repeated for K rows.

The subject-specific random intercepts (γi,j) and the residuals (ϵ(i,k),j)
are assumed to be normally distributed with mean zero and

variations σ2u and σ2e , respectively. Ordinary ASCA+ represents

the special case when no random effects are included. The

second step in RM-ASCA+ is to decompose the XB matrix into

effectmatricesMh representing specific parts of the regressionmodel,

XB � M0 +∑
h

Mh. (3)

Here,M0 represents the intercept and is typically of little interest.

In ordinary ASCA,M0 usually represents the grand mean matrix,

whereas in RM-ASCA+ it typically either represents the baseline

mean of all, or one of the groups, depending on how the effects

are coded in the model. The effects h reflect the statistical and

experimental design (for examples, see Madssen et al., 2021). In

the context of a longitudinal study, an effect matrix MT would

represent the effect of time, i.e., the change from baseline. If the

study comprises multiple groups, additional effect matrices

describing group differences (MG) and time-group interaction

(MT:G) would be appropriate. Other covariates included in the

regression model, such as gender or body mass index (BMI),

would also require a separate effect matrix. The final step in RM-

ASCA+ is to apply PCA to individual or combined effect

matrices, depending on the research question, and extract

scores and loadings. The resulting scores and loadings can

then be plotted to visualize how variables are affected by the

selected effects.

Providing an estimate of uncertainty and robustness is an

important feature for all statistical techniques. There is a risk of

overfitting when using (RM-)ASCA+, as (RM-) ASCA+ is a

supervised method applied to labeled data (Bertinetto et al.,

2020). To mitigate the risk of overfitting, the confidence of

the estimated scores and loadings from (RM-)ASCA+,

reflecting the effects of factors and possibly their interaction,

should be tested. Most common are resampling methods such as

bootstrap, jack-knife and permutation (Vis et al., 2007; Bertinetto

et al., 2020). The latter involves random shuffling of the data

labels before applying (RM-)ASCA+, often 1,000–10,000 times.

As no systematic relationships should exist in the data when

measurements are shuffled across experimental conditions, it

establishes null-distributions for scores, loadings, or other

metrics. A p-value can then be calculated by comparing the

metric from the unaltered model to the null-distributions. While

exact permutation tests exist for main effects, only approximate

tests are available for interaction effects (Anderson and Braak,

2003; Bertinetto et al., 2020). In contrast to the permutation test,

the bootstrap and jack-knife methods conserve the data labels.

Here, the robustness of the metrics are tested by applying (RM-)

ASCA+ to either a subset of the original data set, where a

proportion of the participants are excluded (jack-knife), or a

resampled data set, where individual participants are selected at

random with replacement (bootstrap). When this is repeated in

the order of 1,000–10,000 times, confidence intervals can be

estimated for the scores and loadings by extracting upper and
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lower percentiles from the results of the resampled data sets.

Multiple strategies exist for permutation testing (Anderson and

Braak, 2003), and their suitability for RM-ASCA+ models with

various designs is currently under investigation.

The Assorted Linear functions for ASCA (ALASCA) package

for R has been developed to make the ASCA+ and RM-ASCA+

frameworks accessible for the general researcher. The package

does not require advanced programming skills and is publicly

available from the Github code repository (https://github.com/

andjar/ALASCA). Although the ALASCA package supports both

ASCA+ and RM-ASCA+ analysis, the main focus of this paper will

be analysis of repeated measures of multivariate data with RM-

ASCA+ due to the increasing need for flexible methods to deal

with longitudinal experimental designs. The package utilizes

well-known R syntax for defining regression models, offers

options for predefined or custom scaling, includes multiple

validation methods (jack-knifing and bootstrapping), and

produces publication-ready figures. While the package is

designed to be easy to use, it provides a wide range of

customizable options available for advanced users. Further, the

package includes several options for exporting the resulting

models for archival, post-processing, external visualization, or

sharing. Earlier versions of the ALASCA package has been used

to reveal how serum cytokine levels change throughout

pregnancy in healthy women (Jarmund et al., 2021) and in

women with polycystic ovary syndrome (Stokkeland et al.,

2022), and to show how the cytokine development is sensitive

to maternal and fetal factors. The flexibility of the RM-ASCA+

framework was crucial for the combination of multiple cohorts

and for making complex relationships available for

interpretation. Since then, the package has been further

developed for general use and includes new functions for

validation and visualization.

In this paper, we demonstrate how the ALASCA package can

be used to analyze various multivariate omics-data using RM-

ASCA+. Three publicly available data sets are analyzed to

illustrate each modeling step, including appropriate choice of

scaling, model setup, and validation technique, and to

demonstrate how the results can be easily visualized and

interpreted. The data sets are diverse in terms of biological

level (proteomics, metabolomics, transcriptomics) and

experimental design (repeated measures within observational

and randomized-controlled intervention studies). This

practical and integrated approach will demonstrate the

flexibility of the ALASCA package for data exploration and

analysis.

1.1 Related works

Previous implementations of ASCA and ASCA-related

methods exist for several common statistical software such as

R and Matlab (Bertinetto et al., 2020). The first implementation

of ASCA was published as Matlab scripts by Smilde et al. (2005).

For R, the earliest implementations include ASCA-genes (Nueda

et al., 2007, the scripts are no longer available) and the lmdme

package (Fresno et al., 2014). Later options include MetStaT

(removed from CRAN but available as archive https://cran.r-

project.org/src/contrib/Archive/MetStaT/) for R and the PLS_

toolbox and MetaboAnalyst (Xia et al., 2015) for Matlab

(Bertinetto et al., 2020).

Themultiblock package for R offers a comprehensive set of

methods for multiblock analysis, including various ASCA-

based methods such as LiMM-PCA, generalized ASCA, RM-

ASCA+, and covariates ASCA (Liland, 2022; Smilde et al.,

2022). A Matlab implementation of RM-ASCA+ has been

published by Madssen et al. (2021), (scripts available at

https://github.com/ntnu-mr-cancer/RM_ASCA). An

extension of RM-ASCA+ has been proposed in the case of

zero-inflated count data, namely the zero-inflated counts

(ZIC)RM-ASCA+ by applying zero-inflated negative

binomial mixed models, with code available for R (https://

github.com/AukeHaver/ZICRM-ASCA_plus).

The ALASCA package offers several distinct features

compared to existing implementations such as integrated

scaling and validation, option to force equal baseline

(important for randomized designs), supports both sum and

contrast coding, precise yet simple specification of effect

matrices, and diverse options for visualization.

2 Materials and methods

2.1 Package overview

The main functions of the ALASCA package are described in

Table 1 and a typical work flow is illustrated in Figure 1. The

ALASCA() function is used to define the regression model,

scaling, and validation strategy. The resulting ALASCA object

can then be visualized in several ways.

The ALASCA() function accepts a range of arguments

related to the regression model and validation (Table 2).

Recommended arguments for various study designs and

research questions are demonstrated in the examples below.

ALASCA will fit linear mixed models if the regression formula

contains terms with | such as (1|ID) (i.e., random effects) and

ordinary linear regression models otherwise. Regression

coefficients are estimated with one of three algorithms,

depending on the specific model to be fitted, namely, the

Rfast package (Papadakis et al., 2021), the lme4 package

(Bates et al., 2015), or base lm (R Core Team, 2020).

Coefficients are estimated by Rfast as default due to

performance, but Rfast has some limitations on which

regression models can be fitted. Therefore, lme4 and lm can

be used as alternatives when more complex regression models

are used. The two latter can be applied by specifying
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use_Rfast = FALSE and will also produce p-values and

additional information such as R2 for each regression model.

When lme4 is used, p-values are calculated with Satterthwaite’s

degrees of freedom method with the lmerTest package

(Kuznetsova et al., 2017). The data.table package is

extensively used to improve performance by doing data

TABLE 1 Important functions in the ALASCA package.

Function Description

ALASCA() Initialize and create the ALASCA model

flip() Invert the signs of scores and loadings

plot(. . ., type = “effect”) Plot scores and loadings from a model

plot(. . ., type = “prediction”) Plot marginal means from the underlying regression models

plot(. . ., type = “validation”) Plot score and loading for all validation runs

plot(. . ., type = “histogram”) Plot score and loading for all validation runs as histograms

plot(. . ., type = “residuals”) Plot regression residuals

plot(. . ., type = “covars”) Plot regression coefficients of covariates

plot(. . ., type = “2D”) Plot the main results of the model

plot(. . ., type = “participants”) Plot measurements from individual participants

summary() Returns key information about the model

get_scores() Returns the scores of the model

get_loadings() Returns the loadings of the model

get_covars() Returns additional regression coefficients

get_predictions() Returns marginal means from the model

FIGURE 1
The typical workflow in the ALASCA package involves three stages: (1) Preparation, (2) execution, and (3) visualization. When the user has
prepared the data and decided regression model, scaling, and validation strategy, the ALASCA() function is called. The ALASCA() function will then
scale the data, perform regression analyses, apply principal component analysis (PCA) to the effect matrices, and extract loadings and scores. The
option reduce_dimensions = TRUE will use PCA to reduce the number of variables to k, and loadings are automatically transformed back to
the original variable space. Validation is performed if validate = TRUE is specified. The validation consists of performing (RM-)ASCA+ on n
resampled data sets, and using percentiles for loadings and scores for confidence intervals. When themodel is constructed, the user can visualize and
report results in various ways.
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manipulation by reference and other optimizations (Dowle and

Srinivasan, 2021). ALASCA objects are also manipulated by

reference with help of the R6 package (Chang, 2021).

Traditionally in R, functions will not modify variables in

place but requires that variables are reassigned. ALASCA

objects, however, can be modified without re-assignment.

For instance, both flip(model) and model <-
flip(model) will modify the model object.

Currently, model validation can be performed with cluster

bootstrap or jack-knife, both with stratification. During

validation, the ALASCA() function will call itself using a

modified data set n_validation_runs times (Figure 1).

The default is 1,000 runs. If cluster bootstrap is selected

(default), each participant is replaced by a randomly selected

participant from the same stratification group, with replacement,

and all measurements from the sampled participant are added to

the modified data set. If jack-knife is chosen, the stratification

groups are iterated and one out of q (defaults to q = 7)

participants are excluded at random from the iteration. By

default, any column named group in the data set df will be

used for stratification, i.e., the relative group sizes are kept during

validation. Alternatively, another column in df can be specified

for stratification as stratification_column. If there is no

group column and stratification_column is not

specified, the first effect term will be used for stratification.

Loadings from the validation runs are rotated towards

loadings from the initial run using procrustes rotation, and

the rotation matrix is applied to the scores from the

validation run as well. As the sign of loadings and scores in

PCA is arbitrarily defined, ALASCA() will test whether

changing the signs of each principal component (PC)

improves the fit of the scores from validation runs and the

initial run, and choose the signs minimizing the summed

distance of the scores. Only PCs explaining more than 5%

variance are used for rotation. Finally, 95% confidence

intervals (CIs) are calculated for scores and loadings by

selecting the 2.5% and 97.5% percentiles from the

validation runs.

Visualizations are made within the popular

ggplot2 framework (Wickham, 2016; Kassambara, 2020;

Slowikowski, 2021). The default color palette for figures is the

viridis palette which is designed to be readable and perceptually

uniform despite gray scale printing and the most common forms

of color blindness (Wickham and Seidel, 2020; Garnier et al.,

2021). Custom ggplot2 themes can be used by specifying

plot.my_theme. If save = TRUE was used during

initialization of the model, the plot() function will

automatically save all plots that are produced.

For megavariate data sets, the large number of measured

variables makes individual regression too time consuming for

validation with sufficient numbers of iterations. If

reduce_dimensions = TRUE, ALASCA() will perform

an initial PCA on the measurements, prior to regression, so

that the original variables are replaced by PCs (Figure 1), similar

as for Limm-PCA (Martin and Govaerts, 2020). The number of

PCs kept from the initial PCA is selected so that 95% of the

variance in the measurements is explained. The limit can be

changed by specifying reduce_dimensions.limit.

Additionally, one can prevent ALASCA from running out of

memory by saving results from the validation runs directly to a

duckdb or sqlite3 database instead of keeping all the results in

memory with save_to_disk = TRUE (R Special Interest

Group on Databases et al., 2021; Müller et al., 2021;

Mühleisen and Raasveldt, 2022).

Logging of important events, such as estimated time for

validation or error messages, is performed with the log4r

package and written to file by default (White and Jacobs,

2021).

TABLE 2 Important arguments for the ALASCA() function. A full list of arguments can be shown in R using ?ALASCA::ALASCA().

Function Default Description

df — Data frame containing the data set to be analyzed

formula — Regression formula

scale_function “sdall” Function to scale data. See description of possible defaults in the text

separate_effects FALSE When TRUE, separate effect terms

equal_baseline FALSE When TRUE, remove interaction at baseline

validate FALSE When TRUE, validate the model

reduce_dimensions FALSE When TRUE, use principal component analysis to reduce the number of variables

wide FALSE Set to TRUE if data are provided in wide format

stratification_column NULL Name of the column to be used for stratification during validation. By default, use group or first the effect term

validation_method “bootstrap” Set to “jack-knife” to use jack-knife resampling for validation

n_validation_runs 1000 Number of validation runs

save FALSE When TRUE, automatically save the model and subsequent plots

limitsCI c(0.025, 0.975) Lower and upper percentiles for confidence intervals
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2.2 Installation and data preparation

The ALASCA package is freely available at the Github code

repository and can be installed in R with the following

commands:

install.packages(“devtools”)

devtools:install_github(“andjar/ALASCA”,

ref = “main”)

Version 1.0.0 of ALASCA was used for this paper. The code

to reproduce all results in this paper, including data preparation

and figures, can be found in the supplementary materials, and

simplified function calls are given below. The full code in the

supplementary materials utilizes additional packages such as here

and reshape2.

The ALASCA() function requires at minimum a data frame

or data table df and a regression formula. Generally, data can be

organized in two formats (Supplementary Figure S1): long (all

measured variables have separate rows) or wide (all observations

have separate rows, with the different variables as separate

columns). If data are provided to ALASCA() in long format

with one row for each measured variable (Supplementary Figure

S1A and examples 1 and 3 below), the variable names (i.e., the

measured variables) must be in a column named variable. If

wide format is used (one row per measured sample, with

variables as separate columns, Supplementary Figure S1B and

example 2 below), wide = TRUE must be provided to

ALASCA() and all columns not mentioned in the formula or

being specified otherwise (Table 2) will be treated as columns

containing measurements of interest. At least two other columns

are required, regardless of format: One column must contain an

identifier for the experimental unit, typically the study numbers

of the participants. By default, this column is either derived from

the random intercept in the formula or, in case there are no or

multiple random intercepts in the formula, it is assumed to be

named ID. If another column is to be used, it must be specified as

participant_column. Secondly, one column must contain

the first effect of interest and will be used to label the x-axis in

subsequent score plots. By default, this is assumed to be the first

term in the formula. If another column is to be used, it must be

specified as x_column. General data preparation is

demonstrated in the supplementary files. For example, the

function call

ALASCA(

df,

formula = value ~ v1 + v2 + (1|ID),

validate = TRUE)

will assume that the provided data (df) is organized in long

format (Supplementary Figure S1A) and includes the columns

variable, value, v1, v2, and ID (random intercept). The

regression formula value˜v1 + v2 + (1|ID) corresponds to a

model with value as outcome, ID as random intercept, and v1

and v2 as main effect terms. Bootstrap validation will also be

applied as validate = TRUEwith 1,000 iterations (default). If df

contains a column called group, the observations will be stratified

by group during bootstrapping, otherwise they are statified by v1.

Since scaling has not been specified (see below), the outcome data

will be scaled by the default method (i.e., division by the standard

deviation, by variable).

The effects of interest can be specified (e.g., effects =

c(“v1”, “v1:v2”) where v1, v2, . . . are terms in the

regression formula) or inferred by ALASCA. In the latter case,

the first formula term is assumed to be of interest. Next, ALASCA

will look for an interaction term, and, if it exists, include the

interaction and second main effect. For example, if the formula is

value~v1*v2 + v3 + (1|ID), ALASCA will assume that v1,

v2, and v1:v2 (interaction) are all of interest. How they are

combined depends on separate_effects. If

separate_effects = FALSE (default), only one

combined effect is extracted (i.e., v1*v2 or v1+v2+v1:v2).

If separate_effects = TRUE, two separate effect matrices

will be produced: v1 and v2+v1:v2. ALASCA will explicitly

state which effects that are assessed when ran.

Columns representing effects of interest, typically the time

and group columns, are expected to contain factors,

i.e., categorical data with ordered levels. For example,

df$group <- factor(df$group) will convert the

group column to factors with the factor levels ordered

alphabetically. The first levels of time and group are used

as baseline or reference group. Level order can be specified

explicitly, factor(. . ., levels = c(“Male,”

“Female”)), or by specifying just the reference,

relevel(. . ., ref = “Male”).

The data should not be normalized or scaled as part of

the preparation. Instead, a scaling function must be

specified and provided to the ALASCA() function. This

prevents data leak during validation where a subset of the

data set is used to determine scaling factors that are

independently applied to the remaining data for

validation. Four predefined options are currently

available (Timmerman et al., 2015):

• scale_function = “sdall” will divide the value

column by the standard deviation of all samples, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y ·,·( ),j( )

• scale_function = “sdt1” will divide the value

column by the standard deviation of all baseline

samples, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y ·,k( ),j( ), k � 1

• scale_function = “sdref” will divide the value

column by the standard deviation of all samples in the

reference group, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y i,·( ),j( ), i ∈ Reference group
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• scale_function = “sdreft1” will divide the value

column by the standard deviation of all baseline samples in

the reference group, by variable:

ŷ ·,·( ),j � y ·,·( ),j/SD y i,k( ),j( ), i ∈ Reference group, k � 1

where SD refers to the standard deviation, ŷ(i,k),j is the scaled and
y(i,k),j the raw value of variable j for individual i at time point k

(see Eq. 2). Mean centering is by default performed before scaling.

In addition, a custom scaling function can be provided. The

scaling function should have the data frame as argument and

return a data frame with scaled values:

scale_function <- function(df){

... # Scale the value column

return(df) }

2.3 Example 1: Observational design with
repeated measurements

To illustrate the analysis of longitudinal, observational data,

we use two publicly available proteomics data sets (Erez et al.,

2017; Tarca et al., 2019) to approach the following research

questions:

1. How does the plasma proteome develop throughout normal

pregnancy?

2. How does smoking affect the plasma proteome development

throughout normal pregnancy, when accounting for body

mass index (BMI)?

3. Does the plasma proteome of pregnancies that are later

complicated by early- or late-onset preeclampsia follow

distinct developmental trajectories?

2.3.1 Materials
The two data sets contain repeated measurements of

1,125 plasma proteins from pregnant women, and share the

same control group (n = 90 women). The first study, by Tarca

et al. (2019), focused on early-onset preeclampsia (n = 33

women), whereas the second study, by Erez et al. (2017),

investigated late-onset preeclampsia (n = 76 women). BMI,

smoking status, age, and parity were available for controls and

early-onset preeclampsia cases only.

For the two first analyses, we selected control cases to

visualize the normal plasma proteome development

throughout pregnancy. To utilize as many serum samples as

possible, the control samples were divided into five time intervals:

first trimester (≤ 13+6 weeks, n = 76), early second trimester

(14+0–21+6 weeks, n = 87), late second trimester (22+0–27+6 weeks,

n = 43), early third trimester (28+0–33+6 weeks, n = 40), and late

third trimester (≥ 34+0 weeks, n = 32). Only the first sample from

each participant at each time interval was included.

For the second analysis, the data from the previous example

are reused as BMI and smoking status were available for the all

healthy women. Smoking was coded as a factor in the group

column with non-smokers acting as reference. Pre-pregnancy

BMI was included as a continuous covariate as BMI is a potential

confounder in the analysis.

For the third analysis the data sets from Erez et al. (2017) and

Tarca et al. (2019) were merged to assess whether the plasma

proteome of EO- and LO-preeclamptic pregnancies developed

along distinct trajectories. The two data sets shared the same

control group. Since women who developed EO-PE did not

deliver plasma samples in late pregnancy, we restricted the

analysis to samples collected before week 32+0. The remaining

plasma samples were divided by gestational age into four time

intervals: before week 14+0 (≤ 13+6 weeks), week

14–21 (14+0–20+6), week 21–28 (21+0–27+6), and week

28–32 (28+0–31+6).

2.4 Example 2: Randomized intervention
with repeated measurements

To demonstrate how data from randomized intervention

studies with repeated measurements can be analyzed with RM-

ASCA+, we investigated a publicly available metabolomics data

set from Euceda et al. (2017). In this data set, we aimed to assess

the following research questions:

1. How is the metabolomic response in breast cancer affected by

adding the drug bevacizumab to standard neoadjuvant

chemotherapy?

2. How does the metabolomic response in breast cancer differ

between responders and non-responders receiving

neoadjuvant cheomtehrapy with or without bevacizumab?

Whereas Example 1 focused on the interpretation of models,

this example will review scaling and validation strategies.

2.4.1 Materials
The publicly available metabolomics data set from Euceda

et al. (2017) contains measurements of 16 metabolites from

270 tumor biopsies from 122 patients randomized to either

bevacizumab + chemotherapy (n = 60) or chemotherapy alone

(n = 62). Biopsies were taken before treatment (T1), at 12 weeks

into treatement (T2), and at tumor removal at 24 weeks (T3) and

profiled with high resolution magic angle spinning MR

spectroscopy (HR MAS MR). In total, 46 participants provided

three biopsies, 21 in the chemotherapy group and 25 in the

bevacizumab group. By time point, 105 (50% later received

bevacizumab), 78 (47% receiving bevacizumab), and 87 (55%

receiving bevacizumab) biopsies were available at T1, T2, and

T3, respectively. Madssen et al. (2021) used this data set in the
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original description of RM-ASCA+ and their results are

reproduced and further explored here using the ALASCA package.

For the second analysis, participants were classified as

responders (n = 44) or non-responders (n = 78) on basis of

tumor size at surgery (T3). In the chemotherapy group, there

were 20 responders and 42 non-responders, and the

corresponding numbers for the bevacizumab group were

24 and 36, respectively.

2.5 Example 3: Megavariate data

This example introduces dimension reduction which makes

analysis of megavariate data sets manageable. A publicly available

transcriptomics data set by Skaug et al. (2021) was analyzed to

answer the following research questions:

1. Does skin gene expression differ between patients with

systemic sclerosis (SSc) and healthy controls?

2. Does longitudinal skin gene expression differ between

patients with limited and diffuse SSc?

2.5.1 Materials
Skaug et al. (2021) collected forearm skin biopsies from

113 unique patients with limited (n = 43) or diffuse (n = 70)

SSc and 44 matched healthy controls. Two additional biopsies

were subsequently collected from a subset of the patients. A

fourth biopsy was excluded due to the low sample size (n = 1).

Gene expression was measured by RNA sequencing and

microarrays. Variables with more than 10% missing values

were excluded (1,065 genes), and the remaining missing

values were replaced by half of the lowest measured value for

the corresponding variable. To avoid duplicated gene names,

“(d)” was added to the gene name when multiple probes assessed

the same genes. In sum, 26,910 genes were kept for analysis.

3 Results and discussion

3.1 Example 1: Observational design with
repeated measurements

3.1.1 How does the plasma proteome develop
throughout normal pregnancy?

Longitudinal plasma samples were collected from 90 healthy

pregnancies and analyzed for 1,125 proteins. A possible model to

assess normal proteome development throughout pregnancy

involves a main effect for time (k) and a random intercept for

each participant i. In R, this model can be specified as

value~time + (1|ID), where value is outcome, time

the predictor, and ID the random intercepts. Since the first

time point acts as baseline, protein levels were scaled by the

standard deviation of the baseline samples by setting

scale_function = “sdt1”. The RM-ASCA+ model was

then initialized as

mod <- ALASCA(

df = df,

formula = value ~ time + (1|ID),

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S1.

RM-ASCA+ extracted two general patterns of change as

represented by the first (PC1) and second (PC2) principal

component, explaining 87% and 9%, respectively, of the

variability in the data set (Supplementary Figure S2). Each

component is associated with positive and negative loadings

describing how each plasma protein is related to the

corresponding PC. Proteins with positive loadings have higher

concentration in time points with higher score values, and vice

versa for proteins with negative loading values.

The first component represents a monotone increase (for

positive loadings) or decrease (for negative loadings) in plasma

level throughout pregnancy (Figure 2). The largest change takes

place in the first and second trimester before stabilizing in

the third trimester, as can be validated by assessing the

underlying regression models (Figure 3). Bone

morphogenetic protein 1 (BMP-1), epithelial discoidin

domain-containing receptor 1 (EDDR1), and placenta

growth factor (PlGF) showed the strongest positive

loading on the first component, and therefore increase the

most during the first trimesters. The increase of BMP1,

EDDR1, and PlGF levels in plasma is clearly visible from

the raw data itself (Supplementary Figure S3). In the

opposite end, dual specificity mitogen-activated protein

kinase kinase 4 (MAP2K4), histidine-rich glycoprotein

(HRG), and endothelin-converting enzyme 1 (ECE1)

showed the strongest negative loadings on the first

component (Figure 2). This pattern is also evident from

inspection of raw data (Supplementary Figure S3).

The second component represents a non-linear development

with either peak (for positive loadings) or dip (for negative

loadings) in the second trimester (Supplementary Figure

S4). The first pattern is seen for proteins such as vascular

endothelial growth factor A (VEGF-A), C1q and PAPPA-A.

C1q did, however, show significant variability and had a CI

for the loading that included zero. In contrast, the

concentration of sialic acid-binding Ig-like lectin (siglec-)

6, Activin A, and IL-1 R4 showed a u-shaped dipping in the

second trimester. These patterns are visible in the raw data as

well (Supplementary Figure S5). Some variables had high

loadings on both PC1 and PC2. Their trajectory is a

combination of the two, as can be seen as flattening of the

curve PlGF in the third trimester (Figure 3 and

Supplementary Figure S3).
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3.1.2 How does smoking affect the plasma
proteome development throughout normal
pregnancy, when accounting for BMI?

The impact of smoking and pre-pregnancy BMI on plasma

proteome development was examined in the same group of

women as the analysis above (Section 3.1.1). Of the 90 pregnant

women, 18 (20%) were smoking. Samples were collected from

76 (17% smoking), 87 (20% smoking), 43 (16% smoking), 40

(18% smoking), and 32 (19% smoking) women in the first

trimester, early and late second trimester, and early and late

third trimester, respectively. The BMI was 29 ± 7.8 and 28.1 ±

6.8 kg m−2 in the smoking and non-smoking group,

respectively, and 28.3 ± 7.0 kg m−2 overall. The influence of

BMI on the protein profile was assumed to be constant during

pregnancy and thus there was no interaction with time in the

regression model. In contrast, the effect of smoking was allowed

to vary with time.

The regression formula was expanded to include a group

term and time-group interaction: time*group is

shorthand for time + group + time:group, where

the two first terms represent the main effects of time and

group, respectively, and the latter their interaction.

Similarly, BMI was added as a covariate and the

corresponding column kept as numerical values. The time

and group effect matrices from Eq. 3 can be analyzed either

separately or combined, so the model was ran twice, with

separate_effects = TRUE, i.e., PCA is applied

separately to MT and MG+T:G, specified in the second run.

The RM-ASCA+ models were initialized as

mod <- ALASCA(

df = df,

formula = value ~ time*group + BMI + (1|ID),

scale_function = “sdt1”,

validate = TRUE

)

and

mod <- ALASCA(

df = df,

formula = value ~ time*group + BMI + (1|ID),

separate_effects = TRUE,

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S2.

RM-ASCA+ offers two approaches to compare the time

development of distinct groups of individuals. When the

time and group effects are analyzed as a combined unit,

i.e., the effect matrices for time, group, and time-group

interaction in Eq. 3 are subjected to the same PCA, the

resulting components will describe the common

development of the groups. When the time and group

effects are analyzed as separate units, i.e., the effect matrix

for time is separated from the effect matrices for group and

FIGURE 2
Time development of the plasma proteome throughout pregnancy as (A) scores and (B) loadings. The plasma level of proteins with high loading
is increasing when the scores increase and vice versa. Only the 12 proteins with highest and lowest loadings, separated by the vertical dotted line, are
shown due to the large number of assessed proteins.
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time-group interaction in Eq. 3 and analyzed separately by

PCA, two sets of scores and loadings are extracted. The first

set of scores and loadings describes the development of the

reference group, whereas the second set describes how the

other groups diverge from the reference group. The

underlying regression models, as well as the resulting

regression coefficients, are, however, the same for the two

approaches as the matrices X and B in Eq. 3 remain

unchanged.

Analysis of the combined effect of time and group shows that

smoking and non-smoking women demonstrate similar

development in plasma proteome in pregnancy, with a

tendency to lower scores for the smoking group

(Figure 4). The parallel lines in Figure 4 suggest that the

differences between the groups are stable over time, with

somewhat lower levels of proteins such as BMP-1 and higher

levels of proteins such as MP2K4 in smoking women.

However, the confidence intervals are overlapping,

suggesting that the effect of time is stronger than the

effect of smoking, and no group specific development is

evident.

Separating the effect of time and group changes the focus

from common trajectories to divergent trajectories. The isolated

time development of the non-smoking group, acting as reference,

is similar to the time development of the combined group shown

in Figure 2. The isolated group and time-group effect

demonstrates how the plasma proteome of smoking women

diverge from non-smoking women during pregnancy

(Figure 5). The first component shows a stable and reliable

difference between the two groups, with higher scores for the

smoking women. Higher scores corresponds to higher plasma

levels of proteins with positive loadings and vice versa. Thus,

smoking women showed higher levels of proteins such as casein

kinase II 2-alpha’:2-beta heterotetamer (CK2-A2:B) and

roundabout homolog 3 (ROBO3), and lower levels of proteins

such as apolipoprotein A-I (Apo A-I) and siglec-9.

Apolipoprotein A-I is an important constituent of high-

density cholesterol, and is known to be decreased by smoking

(Richard et al., 1997; Meenakshisundaram et al., 2010; Slagter

et al., 2013).

The ability to adjust for covariates is one of the main

advantages of (RM-)ASCA+ when compared to other

FIGURE 3
Marginal means for scaled protein concentration from linear mixed models. The intercept has been removed to highlight the robustness of
development over time. The plot was made with the plot(. . ., type = “prediction”) function.
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FIGURE 4
Time development of the plasma proteome throughout pregnancy in smoking and non-smoking women as (A) scores and (B) loadings. The
plasma level of proteins with high loading is increasing when the scores increase and vice versa. Only the 12 proteins with highest and lowest
loadings, separated by the vertical dotted line, are shown due to the large number of assessed proteins.

FIGURE 5
Time development of the plasma proteome throughout pregnancy in smoking and non-smoking women as (A) scores and (B) loadings. The
time development of the non-smokingwomen has been removed to highlight the effect of smoking. The plasma level of proteins with high loading is
increasing when the scores increase and vice versa. Only the 12 proteins with highest and lowest loadings, separated by the vertical dotted line, are
shown due to the large number of assessed proteins.
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multivariate methods such as PLS. Continuous covariate

adjustment was first introduced with ASCA+ and with RM-

ASCA+ this ability has been extended to longitudinal data. For

longitudinal trials, adjusting for covariates can offer both more

precise and less biased effect estimates, and increase statistical

power. Although covariate adjustment can be achieved for

methods such as PLS by including it as part of data

preprocessing, the ASCA+ framework leverages the users’

existing intuitions and knowledge of both linear regression

and PCA together in a cohesive approach. With RM-ASCA+

the effect of BMI can be isolated by including BMI as a covariate

in the regression model, but not in the effect matrices subjected

FIGURE 6
Time development of the plasma proteome throughout pregnancy in (A) healthy women and (B)women developing early-onset (EO-) or late-
onset (LO-) preeclampsia (PE). The time development of healthy women is isolated in the upper panels, whereas the lower panels visualize how the
plasma proteome differs between the groups. The plasma level of proteins with high loading is increasing when the scores increase and vice versa.
Only the 12 proteins with highest and lowest loadings, separated by the vertical dotted line, are shown due to the large number of assessed
proteins.
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to PCA. The effect of BMI is thus presented as ordinary β

coefficients (Supplementary Figure S6). The β coefficients are

the same regardless of whether the time and group effects are

assessed separately or not, and represent the adjustment for

BMI. High BMI was associated with higher plasma levels of

leptin, and the complement components C1s and C5a. In

contrast, lower levels of kallistatin, soluble receptor for

advanced glycation end products (sRAGE) and neural cell

adhesion Molecule (Nr-CAM) were observed with increasing

BMI. Obesity is related to low-grade inflammation with lower

levels of both the anti-inflammatory kallistatin (Zhu et al., 2013;

Frühbeck et al., 2018) and the cardioprotective sRAGE (Norata

et al., 2009), and leptin is strongly linked to obesity and

correlate with body fat percentage (Obradovic et al., 2021).

In addition, the strong effect of BMI on leptin, IGFBP2, and

SHBG is in line with previous research on plasma proteomics

(Goudswaard et al., 2021).

3.1.3 Does the plasma proteome of pregnancies
that are later complicated by early- (EO-) or late-
onset (LO-) preeclampsia (PE) follow distinct
developmental trajectories?

To assess the developmental trajectories of preeclamptic

women, the full data sets of Erez et al. (2017) and Tarca et al.

(2019) were used. In total, 572 plasma samples were included for

analysis. Of 199 participants, 33 (17%) developed early-onset

preeclampsia (EO-PE) and 76 (38%) developed late-onset

preeclampsia (LO-PE). For the different time points, 151 (12%

EO-PE and 27% LO-PE), 157 (16% EO-PE and 39% LO-PE), 135

(20% EO-PE and 54% LO-PE), and 129 (13% EO-PE and 56%

LO-PE) samples were analyzed. The disease groups were coded in

the group column with the controls acting as reference and the

previous regression formula was similar to the previous example

(Section 3.1.1) except that the BMI term was removed. To isolate

the potentially distinct trajectories of the preeclamptic

pregnancies, the time and group effect matrices were

separated by setting separate_effects = TRUE. The

RM-ASCA+ model was thus initialized as

mod <- ALASCA(

df = df,

formula = value ~ time*group + (1|ID),

separate_effects = TRUE,

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S3.

Women developing EO-PE showed lower plasma levels of

proteins such as PlGF, VEGF-121, and soluble tyrosine-protein

kinase receptor Tie-1 (sTie-1), and higher plasma levels of

proteins such as Siglec-6, activin A, and matrilysin/MMP-7

(Figure 6 and Supplementary Figure S7). These findings

support the original results by Tarca et al. (2019)

(Supplementary Figure S8). The differences from the control

group were present from early pregnancy for some proteins, and

increased steadily as the pregnancy progressed. The development

of the reference group is similar as in sections 3.1.1, 3.1.2 except

minor changes of scores and loadings due to redefined time

points.

Interestingly, women developing LO-PE showed a similar

but delayed shift in plasma proteome (Figure 6). It is, however,

necessary to also investigate PC2, as PC1 explained only 41%

of the group variation. PC2 demonstrates a clear difference

between women developing LO-PE, and the remaining women

(Supplementary Figure S9). Women developing LO-PE seem

to have higher levels of proteins such as MMP-7, RAN and

PPID from early pregnancy, and lower levels of proteins such

as HSP70, BMP10, and integrin aVb5 (Supplementary Figure

S10). These findings are consistent with the original results by

Erez et al. (2017). It is useful to visualize the marginal means

from the underlying regression models when a protein has

strong loading on multiple PCs and there are robust

differences in score in the corresponding PCs. From

Supplementary Figures S7, S10, it can be seen that women

developing PE had clearly higher MMP-7 throughout

pregnancy.

3.2 Example 2: Randomized intervention
with repeated measurements

3.2.1 How is the metabolomic response in breast
cancer affected by adding bevacizumab to
standard neoadjuvant chemotherapy?

In contrast to the previous example with observational data,

studies with randomized intervention assume that the groups are

equal prior to intervention. Thus, the regression model should

not include a main effect for treatment (Twisk et al., 2018). A

regression model with a time effect, a time-group interaction, and

a random intercept can in R be defined as value~time +

time:group + (1|ID). By default, however, the interaction

term between time and group (time:group) will include the

interaction between the first time point (i.e., baseline) and group,

which has to be removed. This can be achieved by providing

equal_baseline = TRUE to the ALASCA() function. Thus,

the function call

mod <- ALASCA(

df = df,

formula = value ~ time + time:group + (1|ID),

equal_baseline = TRUE,

scale_function = “sdt1”,

validate = TRUE

)

reproduce the findings of Madssen et al. (2021). The

corresponding design matrix is shown in Supplementary

Table S4.
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To illustrate how scaling and validation strategy impact the

analysis, the model was generated for all 16 combinations of

scaling (sdall, sdt1, sdref, and sdfref1), resampling (bootstrap and

jack-knife), and extraction of effect matrices (combined and

separate). The bootstrap and jack-knife samples were reused

for each model to make the results comparable.

To assess the effect of adding the drug bevacizumab to

standard neoadjuvant chemotherapy to treat breast cancer, the

effect matrix for time and the effect matrix for time-group

interaction were analyzed separately by PCA (Figure 7). The

addition of bevacizumab led to higher concentrations of alanine,

glucose, and lactate, and lower concentrations of gluthatione,

succinate, and phosphocoline. The increased alanine and glucose

levels, and decreased gluthatione levels, were statistically

significant at T3 following bevacizumab treatment in

univariate models (Supplementary Figure S11) and the

FIGURE 7
Time development of tumor biopsy metabolome before and during cancer treatment. (A) The time development of the participants receiving
chemotherapy only is isolated in the upper panels, whereas (B) the lower panels visualize how the metabolome differs between the groups. The
levels of metabolites with high loading is increasing when the scores increase and vice versa.

Frontiers in Molecular Biosciences frontiersin.org14

Jarmund et al. 10.3389/fmolb.2022.962431

129130130

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.962431


residuals showed acceptable normal distribution (Supplementary

Figure S12). These results are discussed in detail byMadssen et al.

(2021). ALASCA also allows the results to be displayed as a more

classical ASCA analysis, by plotting the first and second PC

against each other, as in Supplementary Figure S13.

The choice of scaling and validation strategy has strong

impact on uncertainty estimates (Supplementary Figures

S14–S16). Jack-knife resulted in markedly smaller CIs for both

scores and loadings than bootstrap. The choice of scaling does

not alter how the results are interpreted but using baseline

samples for scaling (sdt1 or sdreft1) enhanced the separation

of the groups at the third time point. ALASCA provides two

additional visualizations of the validation results: either the

scores and loadings for each individual iteration

(Supplementary Figure S17) or the distribution of scores and

loadings as histograms (Figure 8).

In general, Timmerman et al. (2015) advice that “scaling

factors should be free from the effect of interest.” The

argument is that if the effect of interest actually increases

between-group variation, then we have to avoid that this effect

is damped by scaling. I.e., the between-group variation

introduced by experimental manipulation should not be

part of the scaling factor. In this specific example with a

randomized trial, the baseline measurements constitute a

subset of data where no such between-group variation has

yet been introduced. In other cases, however, it may be less

clear which groups that are affected by the experimental

condition of interest. In addition, the scaling factor must be

based on a sufficiently large group. In this paper, we are

primarily using the baseline measurement for scaling to

balance the need for a sample free from the effect of

interest (typically the effect of time and time-group

interaction) and sample size. In example 3, however, where

a healthy and a diseased population are compared at a single

time point and where the disease is manifest, the scaling factor

is based on the healthy controls only.

FIGURE 8
Distribution of the bootstrapped parameters (A) scores and (B) loadings for the RM-ASCA+ model shown in Figure 7. Main model estimates are
shown as vertical line. The dotted lines mark zero. The plot was made with the plot(. . ., type = “histogram”) function.
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Bootstrapping seems the preferable resampling strategy

despite jack-knifing resulting in smaller CIs and clearer

separation between groups. Targeted studies are needed to

assess the performance and coverage of specific validation

strategies for (RM-)ASCA+, and the most conservative

approach seems reasonable until such studies emerge. A

possible explanation for the smaller CIs from jack-knife

may be that bootstrapping “‘shakes’ the original data more

violently than jackknifing” (Efron and Hastie, 2016, p. 161);

on average, bootstrapping leaves out approximately 37% of the

participants compared to 14% for jack-knife when 1/

7 participants are excluded. Many refined strategies exist

for resampling and CI calculation for multilevel models

and may be implemented in later versions of ALASCA

when the strengths and weaknesses have been thoroughly

mapped (van der Leeden et al., 2008). Similarly,

permutation tests exist in exact or approximate form for

general ASCA models and provide means to calculate p

values for model terms and interactions (Anderson and

Braak, 2003; Bertinetto et al., 2020), and may be

implemented in ALASCA when their performance under

various model design have been thoroughly explored.

3.2.2 How does the metabolomic response in
breast cancer differ between responders and
non-responders receiving neoadjuvant
chemotherapy with or without bevacizumab?

To investigate whether the metabolomic changes in tumors

from patients having a good response to either chemotherapy

alone or chemotherapy+bevacizumab differed from non-

responders, a main effect for response and a three-way

interaction between time, group, and response was added. In R,

the model can be specified as value ~ time + response + time:

response + time:group + time:group:response + (1|ID). Since

equal_baseline = TRUE, the treatment groups are similar

at baseline, whereas the response groups can differ. In this case, the

effect matrix is specifiedmanually. If not, the response effect would

be separated as for BMI in example 1. The ALASCA() call was:

mod <- ALASCA(

df = df,

formula = value ~ time + response +

time:response + time:group +

time:group:response + (1|ID),

equal_baseline = TRUE,

effects = “time + response + time:response +

time:group + time:group:response”,

scale_function = “sdt1”,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S5.

The regression model including a three-way-interaction

between time, response, and treatment showed that responders

had somewhat higher concentrations of tyrosine and glutathione,

and lower concentrations of glucose and lactate at baseline and

showed a larger shift in metabolomic profile than non-responders

(Figure 9). After 12 weeks of treatment (T2), the metabolomic shift

seems similar in the reponder group as well as non-responders

receiving bevacizumab. At 24 weeks, however, the responders had

the largest change in metabolic profile, followed by non-

responders receiving bevacizumab, whereas non-responders

receiving chemotherapy only had the smallest change.

FIGURE 9
Time development of tumor biopsy metabolome before and during cancer treatment, in responders and non-responders as (A) scores and (B)
loadings. Since participants were randomized to treatment but not response, the baseline levels are equal for all participants within each response
groups. Non-responders receiving chemotherapy only show the smallest change of metabolome. The level of metabolites with high loading is
increasing when the scores increase and vice versa.
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One should note that the baseline levels shown in Figure 9

reflect amore complex statistical model than the previous example,

where the treatment groups shared the same baseline. Since the

tumors from responders and non-responders may have had some

distinct properties from the beginning, the baseline levels of

responders and non-responders are allowed to vary, whereas

the baseline levels of the treatment groups are kept equal. Thus,

the three-way interaction between time, treatment, and response

could not have been reproduced by simply creating four groups

(treatment×response) and using the same regression model as

above (value~time + time:group + (1|ID)).

3.3 Example 3: Megavariate data

3.3.1 Does skin gene expression differ between
patientswith systemic sclerosis (SSc) and healthy
controls?

Since control samples were only available for a single time

point, skin gene expression in healthy controls were

compared to patients with limited or diffuse SSc at

baseline. Reduction of dimensions by PCA was applied

due to the size of the data set.

Although the ALASCA package is primarily designed for

longitudinal data sets, it also supports ordinary linear models

without random effects. When there is no time term in the

regression formula, the first term will be used as abscissa. Gender

and age were included as covariates to demonstrate adjustment of

categorical and continuous variables. In R, the regression model

can be defined as value~disease + gender + age:

mod <- ALASCA(

df = df,

formula = value ~ disease + gender + age,

scale_function = “sdref”,

reduce_dimensions = TRUE,

validate = TRUE

)

The corresponding design matrix is shown in Supplementary

Table S6.

ALASCA can be used to compare multivariate data from

experimental designs with single measurements and adjust for

confounders such as gender. When only two groups are

compared, the difference between the groups is fully explained

by PC1 (Figure 10). Patients with SSc showed stronger expression

of several genes related to collagen alpha proteins such as

COL8A1, COL4A1, and COL4A4. In contrast, the healthy

controls showed stronger expression of genes such as

SCARA5 (Scavenger Receptor Class A Member 5), C1QTNF7

(Complement C1q Tumor Necrosis Factor-Related Protein 7),

SP5 (Transcription Factor Sp5), SGCG (sarcoglycan gamma),

and ENHO (Energy Homeostasis-Associated Protein). The genes

with highest and lowest loading showed some overlap with the

FIGURE 10
The difference in skin biopsy transciptome between healthy controls and patients with systemic sclerosis (SSc) as (A) scores and (B) loadings.
The effects of age and gender have been adjusted for (Figure 11). The expression of genes with high loading is increasing when the scores increase
and vice versa. Only the 12 genes with highest and lowest loadings, separated by the vertical dotted line, are shown due to the large number of
assessed genes.
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genes with the highest/lowest fold-change as reported in the

original study, but ALASCA also identified several new genes of

possible interest (Supplementary Figure S18). In addition, the

original study did not adjust for gender and age.

Many of the genes differently expressed in males and females

were located on the sex chromosomes (Figure 11). Male

participants had stronger expression of genes such as

TXLNG2P (Taxilin Gamma Pseudogene, Y-Linked), Lysine

Demethylase 5D (KDM5D), and DDX3Y (DEAD-Box

Helicase 3, Y-Linked). Females, on the other hand, showed

stronger expression of genes such as XIST (X Inactive Specific

Transcript), EIF1AX (Eukaryotic Translation Initiation Factor

1A, X-Linked), and DDX3X (DEAD-Box Helicase 3, X-Linked).

Increasing age was associated with stronger expression of genes

such as CADM3 (Cell Adhesion Molecule 3) and NOVA1

(NOVA Alternative Splicing Regulator 1), whereas genes such

as ACSF2 (Acyl-CoA Synthetase Family Member 2) and MVD

(Mevalonate Diphosphate Decarboxylase) showed the opposite

pattern.

The default settings in the ALASCA package are suggestions

and should not be treated as authoritative recommendations. The

user’s choice of parameters and settings should be informed by

the research question and the data. For example, by reducing the

number of variables through PCA as in this example, one

improves efficiency at the cost of accuracy. Currently, there

are many opinions on how to select the number of necessary

components (Abdi and Williams, 2010), and the performance of

various methods depends on the nature of the data being studied

(Peres-Neto et al., 2005). The number of components selected by

the ALASCA package during dimension reduction depends on

how much variance wish to retain (by default,

reduce_dimensions.limit = 0.95 so that 95% of the

variance will be kept). A good strategy would be to compare the

results from multiple models with various limits to see how

sensitive the results are to that specific parameter. A similar

strategy can be employed to gain confidence in other parameters

as well.

3.3.2 Does longitudinal skin gene expression
differ between patients with limited and
diffuse SSc?

The longitudinal skin gene expression from patients with

limited or diffuse SSc was assessed with the limited variant as

reference group. To reduce the number of variables subjected to

regression by applying an initial PCA prior to regression,

reduce_dimensions was set to TRUE. As the default

FIGURE 11
The effects of age and gender on gene expression in skin biopsies from healthy controls and patients with systemic sclerosis. The coefficients
are regression coefficients from linear regression models, colored by chromosome location. Some genes were associated with mulitple probes, and
are marked with “(d)” to avoid duplicated names. The error bars reflect 95% confidence intervals from bootstrapping. Only the 12 genes with highest
and lowest coefficients are shown. The figure was made with the plot(. . ., type = “covars”) function.
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PCA algorithm in R sometimes stops due to internal errors, an

alternative PCA function can be provided by specifying

pca_function (Baglama et al., 2021). The regression

model is similar to the final model in Example 1 with

separated effects for time and group:

mod <- ALASCA(

df = df,

value ~ time * group + (1|ID),

scale_function = “sdt1”,

pca_function = “irlba”,

reduce_dimensions = TRUE,

separate_effects = TRUE,

validate = TRUE

)

FIGURE 12
Time development of skin biopsy genome in patients with limited or diffuse systemic sclerosis. (A) The time development of patients with
limited systemic sclerosis is isolated in the upper panels, whereas (B) the lower panels visualize how the skin biopsy genome develop distinctly
between the groups. The expression of genes with high loadings is increasing when the scores increase and vice versa. Only the 12 genes with
highest and lowest loadings, separated by the vertical dotted line, are shown due to the large number of assessed genes.
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The corresponding design matrix is shown in Supplementary

Table S7.

The initial skin biopsy from patients with limited SSc differed

from the two subsequent biopsies with a tendency to increased

expression of genes such as GNE (Bifunctional UDP-N-

acetylglucosamine 2-epimerase/N-acetylmannosamine kinase),

SOX13 (SRY-Box Transcription Factor 13), and DBN1 (drebin 1)

with time (Figure 12A). The difference in gene expression between

the patient groups was stable over time (Figure 12B). Patients with

diffuse SSc showed stronger expression of genes such as SFRP4

(Secreted Frizzled Related Protein 4), ANGPT2 (Angiopoietin 2),

and COL4A4 (Collagen Type IV Alpha 4 Chain) than patients with

limited SSc. In contrast, genes such as SPAG17 (Sperm Associated

Antigen 17), SCARA5, and WIF1 (WNT Inhibitory Factor 1) were

more strongly expressed in skin from patients with limited SSc than

patients with diffuse SSc. Although SFRP4 was reported to have the

highest fold-change between diffuse and limited SSc in the original

publication (Skaug et al., 2021), ALASCA identifies several the genes

of possible interest (Supplementary Figure S19).

4 Conclusion

The (RM-)ASCA+ framework offers a flexible and robust

method to quickly discover patterns in multivariate data.

Advantages with (RM-)ASCA+ compared to other methods such

as PLS-DA include the possibility to model longitudinal changes

from multiple timepoints, to incorporate advanced experimental

designs, and to include confounders in the analysis. The ALASCA

package for R makes the (RM-)ASCA+ available for general use by

offering a simple interface to model complex relationships, to scale

the data, to perform model validation, and to produce a variety of

publication-ready visualizations.
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Advances in omics technologies allow for holistic studies into biological

systems. These studies rely on integrative data analysis techniques to obtain

a comprehensive view of the dynamics of cellular processes, and molecular

mechanisms. Network-based integrative approaches have revolutionized

multi-omics analysis by providing the framework to represent interactions

between multiple different omics-layers in a graph, which may faithfully

reflect the molecular wiring in a cell. Here we review network-based multi-

omics/multi-modal integrative analytical approaches. We classify these

approaches according to the type of omics data supported, the methods

and/or algorithms implemented, their node and/or edge weighting

components, and their ability to identify key nodes and subnetworks. We

show how these approaches can be used to identify biomarkers, disease

subtypes, crosstalk, causality, and molecular drivers of physiological and

pathological mechanisms. We provide insight into the most appropriate

methods and tools for research questions as showcased around the

aetiology and treatment of COVID-19 that can be informed by multi-omics

data integration. We conclude with an overview of challenges associated with

multi-omics network-based analysis, such as reproducibility, heterogeneity,

(biological) interpretability of the results, and we highlight some future

directions for network-based integration.

KEYWORDS

multi-omics, data integration, multi-modal network, machine learning, network
diffusion/propagation, network causal inference
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Introduction

Studies that implement large-scale molecular profiling

techniques (-omics technologies) have increased our

understanding of disease mechanisms and led to the discovery

of new biological pathways, genetic loci underpinning disease

progression, biomarkers, and targets for therapeutic

development (Horgan and Kenny, 2011; Sun and Hu, 2016;

Karczewski and Snyder, 2018). Until recently, these studies

have mostly relied on single omics investigations.

Dependencies between biological features and the

relationships between different molecular layers (for example

transcriptome, proteome, metabolome, microbiome, and

lipidome) remain mostly elusive. The holistic understanding

of the molecular and cellular bases of disease phenotypes and

normal physiological processes requires integrated investigations

of the contributions and associations between multiple (different

but parallel) molecular layers driving the observed outcome.

Most importantly, genetic information flows from the genome

to traits and involves several molecular layers (Sun and Hu, 2016;

Hasin et al., 2017). Thus, understanding the genetic architecture

of complex phenotypes would involve integrating and

investigating the interactions between different molecular

layers (Buescher and Driggers, 2016; Hasin et al., 2017;

Chakravorty et al., 2018; Zapalska-Sozoniuk et al., 2019).

Multi-omics datasets require appropriate computational

methods for data integration and analysis. These methods/

models implement statistical, network-based, and/or machine

learning (ML) techniques on different omics layers to elucidate

key omics features associated with diseases at various molecular

levels and predict phenotypic traits and outcomes with increased

accuracy (Ritchie et al., 2015; Bersanelli et al., 2016; Zeng and

Lumley, 2018).

Based on the hypothesis that molecular features within a

system establish functional connections or are part of modules

to carry out processes, network-based methods offer a

framework to conceptualize the complex interactions in a

system as a collection of connected nodes (molecular

features). They further suggest possible connections (e.g.,

genotype to phenotype relationships) and/or subnetworks

(e.g., biological pathways) that are informative of an

observed phenotype (Chakravorty et al., 2018). Therefore,

network-based methods are particularly useful to assess

complex interactions within multi-omics datasets and

illustrate dependencies among multiple features. In addition,

some network-based methods can incorporate prior

information to guide the integrative analysis. For this reason,

network-based methods have attracted considerable attention

in multi-omics data integration around understanding disease

mechanisms and drug discovery (Wu et al., 2018; Agamah et al.,

2021). Previous reviews have mostly focused on the network-

based analysis of single-omics data (Camacho et al., 2018; Yan

et al., 2018; Zitnik et al., 2019) or different approaches toward

multi-omics data integration (Cavill et al., 2016; Duruflé et al.,

2021). Here, we review different integrative network-based

approaches and some tools for multi-omics data analysis.

The outline of the review is as follows; we begin with a

discussion on integrative multi-omics approaches, where we

highlight the approaches for network-based analyses. We then

discuss the different classes of methods for multi-modal

network analysis. Next, we describe several network-based

integrative multi-omics tools. This is followed by a

discussion on the application of network-based tools to

pertinent biological questions. This section provides

guidance on the choice of the most appropriate network-

based tools to answer a given biological question. As further

examples, we show how some tools have been applied to

COVID-19 research, which is currently one of the research

areas benefiting from multi-omics integration approaches.

Finally, we conclude with a discussion on some challenges

associated with multi-omics analysis and the possible

directions to mitigate such challenges.

Integrative multi-omics approaches

After initial data selection, processing, and quality assurance,

an appropriate data analysis approach needs to be selected. We

categorize integrative multi-omics analysis approaches into two

main categories, multi-stage and multi-dimensional (multi-

modal) analytical approaches (Figure 1) (Holzinger and

Ritchie, 2012; Wen et al., 2021). The multi-stage integration

involves integrating data from different technologies using a

stepwise approach. In this approach, omics layers are analysed

separately before investigating statistical correlations between

different biological features from the datasets under

consideration. This analytical approach puts an initial

emphasis on the relationships of features within an omics

layer and how they relate to the phenotype of interest (Ritchie

et al., 2015). The multi-modal analytical approach involves

integrating multiple omics profiles in a simultaneous analysis

(Holzinger and Ritchie, 2012; Ritchie et al., 2015; Karczewski and

Snyder, 2018; Ulfenborg, 2019).

Methods for multi-modal network
analysis

In this review, we focus on (i) machine learning-driven

network-based methods, (ii) network-based diffusion/

propagation methods, and (iii) causality- and network-based

inference methods. The selection criteria were based on the

fact that these multi-omics/multi-modal network-based

methods implement network architectures together with

statistical and mathematical models for integrative multi-

omics data analysis. Most of these methods can be
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implemented in both multi-stage and multi-dimensional multi-

omics analysis (Figure 1).

Machine learning-driven network-based
methods

ML is a collection of data-driven techniques for fitting an

analytical model to a given dataset. ML methods do not only

provide the framework to automatically learn models from

large multi-omics data and make accurate predictions but also

implement network architectures to exploit interaction across

the different omics layers e.g., for exploring omics-phenotype

associations (Reel et al., 2021). ML comprises mainly

supervised and unsupervised learning methods. Supervised

learning uses labelled datasets to train models to yield the

desired output and emphasizes predictions by inferring

discriminating rules from the data. Supervised learning

model training requires comprehensive data and can be

time-consuming, while unsupervised learning uses

unlabelled data, to find latent structures or patterns in

the data.

FIGURE 1
An overview of the multi-omics integration approach and the methods for network-based integration. (A) Processed omics data and prior
knowledge for integrative analysis. (B) An integrative multi-omics approach that could be implemented. (C) Integrative network-based methods (D)
Multi-layered network showing intra-layer interaction (solid lines) and crosstalk (dashed lines) across different layers (L1, L2, L3). The nodes are
shaped and coloured to represent different omics featureswithin the omics layers they are involved in. The edges are coloured to showdifferent
interactions within and between omics layers.
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Classical graph-based ML methods (e.g., label

propagation, a method for assigning labels to unlabelled

points) can be used for a variety of tasks including

generating graph edges, estimating node weights

(quantitative measure of node importance) as well as

estimating and optimizing edge weights (quantitative

measure of the importance of the pairwise interaction

between nodes) in a network to exploit the structure of

graphs and learn models from the data (Karasuyama and

Mamitsuka, 2017). Subsequent network optimization

techniques introduce perturbations into the network and

identify highly perturbed subnetworks to prioritize the most

relevant features that correlate with the biological processes

under study.

Multiview/multi-modal ML is an emerging method for

multi-omics data integration used to exploit information

captured in each omics dataset and infer from the

associations between the different data types (Nguyen and

Wang, 2020). Multi-view learning implements the

alignment-based framework and the factorization-based

framework (Nguyen and Wang, 2020). The alignment-

based framework is a method based on the supervised

setting for seeking pairwise alignment among different

omics data whereas the factorization-based framework is

based on an unsupervised setting for seeking a common

representation of features across different omics layers.

Deep learning methods, an example of multiview/multi-

modal learning, have become one of the more promising

integration methods not only because of their ability to

exploit the structure of graph neural networks/graph or

convolutional networks in both supervised and

unsupervised settings with high sensitivity, specificity, and

efficiency compared to classical ML methods but also, the

predictive performance and capability to capture nonlinear

and hierarchical representative features (Martorell-Marugán

et al., 2019; Kang et al., 2022). The hierarchical feature

processing can capture complex nonlinear associations in

a multi-layered manner. The architecture of deep learning

models consists of the input layer, hidden layer(s), and

output layer. From the perspective of multiomics data

integration, most deep learning methods follow the steps

of (i) feature selection, (ii) transforming high dimensional

multiomics data into low-ranked latent variables, (iii)

concatenating multi-omics features into a larger dataset

and (iv) analysing the data for the desired task such as

node ranking, link prediction, node classification and

clustering (Figure 2) (Kang et al., 2022). It is worth noting

that the deeper the hidden layer, the more it can learn

complex patterns in the data. A major challenge for deep

learning methods is the problem of overfitting due to large

features and the small sample size of multi-omics data. In

addition, a large amount of cleaned data is required to train

and validate the model, thus influencing how the model is

interpreted (Kang et al., 2022). We refer the reader to a

current review on deep learning in multi-omics data

integration by Kang et al. (Kang et al., 2022).

FIGURE 2
Graph Neural Networks (GNNs) are a class of deep learning methods designed to perform inference and predictions on graph data by learning
embeddings for graph attributes (nodes, edges, global-context). The concept behind the architecture of these methods is such that it accepts graph
data as input and produces the same input graph with updated embeddings before making predictions. GNN uses a function (f) on each graph
component vector [nodes vector (Vn), edge vector (En), global-context vector (Un)] in the input graph to learn abstract feature representations
of the graph to compute a new feature vector for nodes (Vn+1), edges (En+1) and global-context (Un+1)). The output layer could predict nodes
ranked according to a particular score (s1, s2, s3) and also predict edges (links) in the input network.
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Network-based diffusion/propagation
methods

Network-based diffusion/propagation is a technique for

detecting the spread of biological information throughout the

network along network edges, thanks to its ability to amplify

feature associations based on the hypothesis that node proximity

within a network is a measure of their relatedness and contribution

to biological processes (Cowen et al., 2017; Di Nanni et al., 2020).

The method has been exploited in many network-based analysis

pipelines and is suitable for analysing patient-level molecular profiles

with different aims including disease subtyping because of its label

propagation (Di Nanni et al., 2020). Propagationmethods, including

random walk, random walk with restart, insulated heat diffusion,

and diffusion kernel networks, provide a quantitative estimation of

proximity between features associated with different data types by

considering all possible paths beyond the shortest paths (Figure 3)

(Cowen et al., 2017; Di Nanni et al., 2020).

From a data analysis perspective, the network diffusion

(ND) methods require omics data and network data. The

network data could be obtained from a priori knowledge,

inferred from omics data, or generated using a mixed

FIGURE 3
(A) Describes a random walk from the seed node (e.g., node A). The concept behind random walk is a guilt-by-association approach where an
imaginary particle explores the network structure from seed nodes. The direction of movement of the particle is completely independent of the
previous directions moved. At each step, the particle transition from any node in the graph with a certain probability (shown on the edges). The
probability flow of random walks on a network is used as a proxy for information flows in the network to study the function of features,
subnetworks, and prioritize features in the network. After several iterations, we are interested in the distribution of our position (Stationary
distribution) in the graph (final state after iterative walks). The stationary probability distribution can be seen as a measure of the proximity between
the seed(s) and all the other nodes in the graph. Nodes within the network can be prioritized using a specificmetric (s1, s2, s3) such as the geometric
mean of their proximity to seed nodes. (B) Describes heat diffusion from a reference query (e.g., node A). The concept behind heat diffusion in
biological networks is perturbing nodes and simulating how the disturbance flows across edges within the network. Node disturbancemeans adding
a scalar value (e.g., log fold changes fromgene expression experiment, copy number variations) to node(s).Within a biological network, heat diffusion
allows for the assessment of connectivity and topology of features which can allow the identification of relevant/dysregulated pathways and/or
mutational effects across edges to neighbouring nodes. The purple arrowmeans diffusion jumps across different layers. The thickness of the purple
arrow signifies the effect of query node (A) on nodes (F) and (H) as shown in nodes (F) and (H) in the final state graph after diffusion. Nodes within the
network can be prioritized using a specific metric such as diffusion state distance.
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approach of a priori and novel knowledge (Di Nanni et al.,

2020). Omics data information, e.g., genetic aberration events

underlying differential expression and/or a biological

phenotype, are superimposed on the nodes (source nodes)

within the network before the information is propagated via

the edges until convergence and consensus features are found

(Cowen et al., 2017; Di Nanni et al., 2020).

NDmethods transform input vectors of scores obtained from

the omics data into dense vectors to eliminate missing values and

ties. This transformation process can be applied before, after, or

during the integration step to refine the results based on

molecular network data (Di Nanni et al., 2020). In the ND-

before integration approach, the diffusion method is applied to a

collection of scores (scores obtained from the omics data) that

represent the multi-omics data. The ND-after integration

approach is implemented when the various multi-omics data

have been initially integrated into a unique structure. The ND-

during integration approach is implemented in an instance where

each layer exchanges information during the diffusion process.

Box 1 provides a summary of the equations related to the

diffusion methods.

BOX 1 Summary equations of the network propagation/
diffusion methods

Random Walk

xT � [AD−1]k.xo

Random Walk with Restart (RWR)

xT � α[I − (1 − α)AD−1]−1 .x0

Insulated Heat Diffusion

xT � α[I − (1 − α)AD−1
2]

−1
.x0

Diffusion Kernel

xT�eα(D−A).xo

Where,
xT is the final state of the network after the propagation of

information throughout the network
x0 is the initial biological information (initial state vector of

aberration scores e.g., gene expression scores). A is the adjacency
matrix of the network. D is the diagonal matrix of the out-degrees
of nodes. AD−1 is the normalized adjacency matrix. k is the number
of time steps, α is the restart probability and I is an identity matrix

Causality- and network-based inference
methods

The mechanism of action within a biological system is

fundamental to understanding such a system. For this reason,

biological network inference and causal learning can be used to

investigate the direct and indirect multi-layer associations and

possible causal relations between omics data features in the

system (Griffin et al., 2018).

Causal networks are generally graphical representations that

demonstrate likely causal relations between nodes by capturing

directional interactions and modelling dependencies between

biological variables. The method enables researchers to put

directionality between features in a network as well as decipher

modules (subnetworks) and/or features associated with patient

survival, disease processes, or pinpoint sources of perturbations

within multi-omics biological network data (Hawe et al., 2019).

Partial correlation-based networks enable the inference of features

regulating co-expression or the activities of other features within the

network by estimating conditional dependencies (partial correlations)

(Hawe et al., 2019). Partial correlation corrects for spurious associations

among features that are mediated by other variables measured in the

dataset, thereby reducing the density of the network and enhancing its

interpretability (Hawe et al., 2019). These methods have been

implemented to infer mechanistic regulatory interactions or predict

markers in biological networks (Hawe et al., 2019).

Alternatively, network-based computational frameworks that

implement probabilistic graphical models offer attractive solutions

for causal reasoning and inference over multi-omics data (Friedman,

2004; Koller and Friedman, 2009; Griffin et al., 2018). A probabilistic

graphical model (PGM) is a graph technique for modelling joint

probability distributions and (in)dependencies over a set of random

variables (Koller and Friedman, 2009). From a data analysis

perspective, PGM uses graph-based representation (nodes as

features and edges as direct probabilistic interactions between

node pairs) as the basis to encode the complex distribution of

the data for probabilistic reasoning and inference (Koller and

Friedman, 2009). The framework of probabilistic graphical

models includes a variety of directed and undirected models

(Koller and Friedman, 2009). Directed models (e.g., Bayesian

networks) require pre-defined directionality or capture

conditional (in)dependencies to assert an influence on

features. Undirected models (e.g., Markov networks) are

undirected graphical models that offer a simpler

perspective on directed models, especially in instances

where the directionality of the interactions between features

cannot be determined. Compared to directed models which

can be used for causal reasoning and inference, undirected

models are limited to inference tasks because they fail to

capture the influence of nodes on neighbouring nodes.

In addition to partial correlation and probabilistic graphical

models, advanced ML models and frameworks that are more

computationally efficient have been explored for inferring causal

relationships between multi-modal data (Peters et al., 2017; Badsha

and Fu, 2019; Luo et al., 2020; Wein et al., 2021). Also, new methods
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TABLE 1 Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

Machine learning-driven network-based tools

mixOmics An R toolkit dedicated to
the exploration and
integration of biological
data sets with a specific
focus on variable
selection. The package
contains suite of
algorithms and
functions. The function
network is used for
graph visualization

1) Receives as input
multiple matrices each
representing a different
omics

Infer interactions
between nodes by using
a pairwise association
score

Leverages on
measurements of
variables

Relevance networks Supervised and
unsupervised
ML

most omics types (genes,
mRNA, metabolites,
miRNomics data,
proteomics)

2012 González et al.
(2012)

2) Perform network
analysis using the
network function

Similarity
network fusion

A network-based
framework that uses
networks of samples as a
basis for integration. It
fuses individual
networks from each
omics layer to represent
the full spectrum of
underlying data

1) SNF first creates a
sample-similarity
network for each omics
level and then fuses
these into one network
using a nonlinear
combination method

Uses a scaled
exponential similarity
kernel to determine the
edge weight. The
weighted edges
represent pairwise
sample similarities

Nodes represent
samples and the node
size represents a
phenotype like survival

Identifies disease
subtypes, performs
survival prediction

Unsupervised
ML

most omics types
(mRNA, DNA
methylation, and
microRNA (miRNA)
expression data)

2014 Wang et al. (2014b)

Lemon-Tree A multi-omics module
network inference
software suite that finds
co-expressed gene
clusters and reconstructs
regulatory programs
involving other
upstream omics data

1) Infer co-expressed
gene clusters

Computes edge weight
which represents the
frequency with which
pairs of genes belong to
the same cluster

Compute the regulator
score and considers the
number of trees a
regulator is assigned to,
with what score
(posterior probability),
and at which level of the
tree

Predicts driver
genes/biomarker

Unsupervised
ML

expression data, copy
number, microRNA,
epigenetic profiles

2015 Bonnet et al. (2015)

2) Build consensus
modules using the
spectral edge clustering
algorithm

3) Build module
network

4) Module learning

Multiscale
Embedded Gene
Co-expression
Network Analysis
(MEGENA)

An R package co-
expression network
analysis framework that
effectively and efficiently
constructs and analyses
co-expression networks

1) Constructs fast planar
filtered network

Computes a similarity
score between node pair

Compute node degree
as node weight/size

Predicts
subnetworks, driver
hubs

Unsupervised
ML

Genes, mRNA, Fast
planar filtered network

2015 Song and Zhang,
(2015)

2) Identify multi-scale
clustering structures

3) Perform multiscale
hub analysis

4) Perform cluster-trait
association analysis

Omics Integrator The approach applies
advanced network
optimization algorithms
to a network to find

1) Garnet identifies a set
of transcriptional factors
associated with mRNA
expression changes by

Uses least-squares
regression to relate the
transcription factor

Transcription factors
with motifs exhibiting
statistically significant
regression coefficients

Predicts
subnetworks that
connect changes

Supervised ML most omics types
(mRNA, epigenetic
changes, proteins,
metabolites)

2016 Tuncbag et al.
(2016)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

high-confidence,
interpretable
subnetworks that best
explain the data

incorporating epigenetic
changes nearby
expressed genes

affinity scores to mRNA
expression changes

are given a weight
of–log (p-value)

observed in omics
data

The software is
comprised of the Garnet
and Forest tools

2) Garnet scans regions
proximal to transcribed
genes for transcription
factor binding sites and
then regresses
transcription factor
affinity scores against
gene expression changes

Forest converts uniform
edge weights to costs
using a scoring function

The prize function
assigns negative weights
to nodes based on the
number of connections
they have in the
interactome

Forest provides
perturbation strategies
for perturbation
analyses to determine
the robustness of a
network

3) Forest identifies a
condition-specific
functional sub-network
from user data and a
confidence-weighted
interactome

4) The confidence-
weighted interactome is
integrated with the
‘omic’ hits using the
prize-collecting Steiner
forest algorithm, where
the data is either
connected directly or via
intermediate nodes,
called ‘Steiner nodes’

Weighted
Similarity Network
Fusion

A method that
implements a modified
similarity network
approach to identify
disease subtypes. It

1) Build a regulatory
network from the input
data

Considers the similarity
of two patients by
considering the overall
difference between the
expression levels of all

Computes feature
weights by first ranking
features using a
modified PageRank
algorithm followed by

Identifies disease
subtypes, performs
survival prediction

Unsupervised
ML

miRNA, mRNA,
transcription factors

2016 Xu et al. (2016)

2) Calculating the
weight for each feature

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

accounts for feature
weights when clustering
patients

their features and the
weight of each feature

Integrating feature
ranking and feature
variation

and ranking the features
based on network
information and the
expression variation of
the features

3) Obtain weighted
sample similarity
networks from genes
(mRNAs, TFs) and
miRNAs separately
using the weights and
expression data of the
features

4) Perform network
fusion and clustering to
find patient groups that
imply disease subtypes

iOmicsPASS A method for
integrating multi-omics
profile over genome-
scale biological networks
and identifying
predictive subnetworks
that provides the
mechanistic
interpretation of a
specific phenotype

1) Integrates
quantitative multi-
omics data by
computing interaction
scores for a network

Computes scores for
each molecular
interaction. The scores
are derived in the
context of the type of
interactions data (TF
regulatory network and
protein-protein
interaction network
with or without DNA
copy number)

Utilizes measurement of
each molecule in their
respective omics data
sets as node score

Predicts phenotypic
group-specific
subnetworks,
feature selection

Supervised ML Biological network,
mRNA, proteomics data,
DNA copy number,
sample metainformation

2019 Koh et al. (2019)

The tool considers
molecular interactions
within and between
omics data types as a
data feature

2) Discover molecular
interactions whose joint
expression patterns
predict phenotypic
subnetworks/groups
3) Report biological
pathways enriched in
the subnetworks using a
modified nearest
shrunken centroid
algorithm

Sparse
CRossmodal
Superlayered Neural
Network
(SCR-SNN)

A subtype classification
model that represents a
sparse version of a cross-
modal super-layered
neural network

1) Biomarker filtering Estimates connection
between nodes

Compute weight for
nodes

Predicts disease
subtype

Neural network DNA methylation,
mRNA

2020 Joshi et al. (2020)

2) Biomarker selection,
using a cross-modal,
super-layered neural
network
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

3) Integration of selected
biomarkers from omics
data

4) Prediction model
building

Integrative
Network Fusion

A framework for high-
throughput omics data
integration that
leverages machine
learning models to
extract multi-omics
predictive biomarkers

1) A set of top-ranked
features is extracted by
juxtaposition by
Random Forest (RF) and
linear Support Vector
Machine (LSVM)
classifiers

Uses a scaled
exponential Euclidean
distance kernel to
compute edges weight

Implements a feature
ranking scheme on
similarity network
fusion integrated
features

Identifies disease
subtypes and
predictive
biomarkers

Supervised ML mRNA, microRNA
expression, protein levels,
copy number variants,
DNA Methylation

2020 Tuncbag et al.,
(2016); Chierici
et al., (2020)

2) A feature ranking
scheme is computed on
similarity network
fusion-integrated
features

3) A random forest
model is trained on the
intersection of two sets
of top-ranked features
from the juxtaposition
and feature ranking
scheme (rSNF) and
provides compact
predictive biomarkers

Discovery of
active Modules In
Networks using
Omics (DOMINO)

A network-based active
module identification
algorithm used for
identifying subnetworks
that show significant
over-representation of
accrued activity signal
(“active modules”)

1) Receives as input a set
of genes flagged as the
active genes in a dataset
and a network of gene
interactions

Uses the confidence
scores of the tissue-
specific functional
interactions as weights
of edges

Uses gene activity scores Predicts
subnetworks

Unsupervised
ML

gene network and
transcriptomics data

2021 Levi et al. (2021)

2) Partition the network
into disjoint, highly
connected subnetworks

3) Detect relevant
subnetworks containing
active over-represented
genes

4) Further, refine
subnetworks into
compartments

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

5) Repartition’s
subnetwork
compartments in
putative modules

6) Reports final modules
that are over-
represented by active
genes

multi-source
information super
network

A network-based
framework for
constructing a single
network from multi-
source data

1) Constructs a super
network based on the
weighted sum of the
pairwise weighted edge
vectors (for each pair of
genes)

Computes edge weights Computes gene-specific
scores based on
characteristics and
topology of the super
network

Predicts
subnetworks

Unsupervised
ML

Genes, pathway
information, CNVs,
Drug data, mRNA,
miRNA, PPI

2018 Zachariou et al.
(2018)

i-Modern A deep learning network
framework for
integrating multi-omics
data

1) Feature extraction
using optimized
autoencoder

Estimate connection
between nodes

Implements a
randomization
approach to explore
node weight

predict omics
signatures, patient
subgroup
classification

Neural network miRNA, somatic
mutations, copy number
variation (CNV), DNA
methylation, proteins

2022 Pan et al. (2022)

2) Low-dimensional
feature extraction via
Cox-PH models

3) Patient subgroup
classification

OmicsNet 2.0 A network-based multi-
omics analysis platform
and an R package
(OmicsNetR) to easily
build, visualize, and
analyze multi-omics
networks

1) Accepts different data
types as input

The methodology does
not take edge
directionality orweights
into account

Uses feature activity
scores

Predicts sub-
networks, crosstalk

Unsupervised
ML

Genes, proteins,
transcription factors,
miRNAs, metabolites,
SNPs, Taxa, lc-ms Peaks

2022 Zhou et al. (2022)

2) Search different
molecular interaction
database

3) Creates multi-omics
networks

4) Performs network
visual analytics

multi-omics data
integration for
clustering to identify
cancer subtypes
(MDICC)

A method for multi-
omics data integration
that implements affinity
matrix and network
fusion methods

1) Construct an affinity
matrix for different
omics data based on a
Gaussian kernel
function

Computes edge weight
as a measure of the
Euclidean distance
between samples

Utilizes measurement of
each molecule in their
respective omics data

Predicts disease
subtypes

Unsupervised
ML

mRNA, miRNA,
proteomics data, DNA
methylation

2022 Yang et al. (2022)

2) Fuse affinity matrices
into a new relational
matrix with low rank

3) Cluster fused network

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

Network-based diffusion/propagation tools

Tied Diffusion of
Interacting Events
(TieDIE)

TieDIE method extends
the heat diffusion
strategies by leveraging
different types of
genomic inputs to find
relevant genes on a
background network
with high specificity

1) Computes scores for
each node in the graph

The diffusion approach
is used to describe the
edge score between
node pairs (1 and -1).
Aij = 1 if node i activates
node j, Aij = −1 if node i
represses or inactivates
node j, and 0 otherwise,
where A is an adjacency
matrix

Scores between -1 and
+1 are assigned to the
nodes reflecting a
positive or negative
association with the
disease state

Predicts biomarkers
and disease-specific
subnetworks

Diffusion-based genes, proteins, biological
pathway features, mRNA,
DNA methylation

2013 Paull et al. (2013)

2) Utilizes multiple
diffusion processes to
predict disease-related
genes, subnetworks, and
pathways A node score of

0 reflects genes not
known to be associated
with the disease process

Nodes scores could
represent experimental
measurements

Network-based
Integration of
Multi-omics Data
(NetICS)

A gene prioritization
method that is a
framework for per-
sample network-based
integration of diverse
data types on a directed
functional interaction
network

1) Constructs a directed
functional interaction
network from input
functional interactions

Compute connectivity
scores between node
pairs

Compute a ranking
score for all genes

Predicts biomarkers Random walk miRNA-gene interaction,
mRNA, DNA
methylation, genetic
aberrations, protein levels

2018 Dimitrakopoulos
et al. (2018)

NetICS provides insight
into how aberration
events that are different
between samples of the
same disease type cause
similar expression
changes in other genes

2) Diffuse aberration
scores from the aberrant
genes following the
directionality of the
network interactions

3) Diffuse differential
expression scores from
differentially expressed
genes

4) Predicts how
aberration events cause
expression changes
through gene interaction

Hierarchical
HotNet

An algorithm that
simultaneously
combines network
interactions and vertex
scores to construct,
identify, and rank
statistically significant
high-weight altered
subnetworks across
different omics datasets.

1) Combines network
topology and vertex
scores

Defines a similarity
measure between node
pairs using both
network topology and
vertex scores

Uses vertex scores in the
input network

Predicts a hierarchy
of mutated
subnetworks

Random walk Interaction network with
vertex scores

2018 Paull et al., (2013);
Reyna et al., (2018)

2) Defines a similarity
matrix from the network
using a random walk-
based approach

3) Implements
hierarchical clustering to

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

It addresses the
limitations of HotNet
(Vandin et al., 2012),
HotNet2 (Leiserson
et al., 2015) by
combating
ascertainment bias in
data and integrating
both network topology
and vertex score

construct a hierarchy of
clusters consisting of
highly connected
components

4) Assesses the statistical
significance of clusters

regNet regNet R package
utilizes gene expression
and copy number data to
learn regulatory
networks to estimate the
potential impacts of
individual gene
expression alterations on
clinically relevant
signature genes

1) RegNet learns a
regulatory network from
a large collection of
paired gene expression
and copy number
profiles

Compute a connectivity
table that represents
learned links between
genes

Compute impact score
for regulator genes,
describing the
contribution to
expression changes in
another gene

Predicts driver
genes or disease
biomarkers

Diffusion-based transcription factors,
mRNA, copy number
data

2018 Seifert and Beyer,
(2018); Marín-Llaó
et al., (2020)

2) Uses network
propagation to quantify
the impacts of altered
genes sample-specific
gene expression changes
on other clinically
relevant target genes

Integrative multi-
cohort and multi-
omics meta-analysis
framework

A multi-omics meta-
analysis framework that
can identify robust
molecular subnetworks
and biomarkers for a
given disease condition

1) Module (A) takes
multiple independent
mRNA datasets and
performs a leave-one-
out meta-analysis to
identify reliable
differentially expressed
genes

The confidence score for
each protein-protein
interaction is obtained
from the STRING
database

Utilizes experimental
values from differential
expression and
methylation for omics
features

Predicts biomarkers
and subnetworks
describing patients’
clinical outcome

Diffusion-based mRNA, DNA
methylation, protein-
protein interactions

2019 Shafi et al. (2019)

2) Module (B) takes
multiple independent
DNA methylation
datasets and identifies
differentially methylated
genes

3) Module (C) identifies
methylation-driven
genes

4) Methylation-driven
genes are used as inputs
in a network
propagation algorithm

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

to identify the proposed
subnetworks

Random walk
with restart on
multiplex and
heterogeneous
biological networks

A random walk
algorithm able to exploit
multiple biological
interaction sources to
integrate multiplex-
heterogeneous networks

1) Define adjacency
matrix for input
networks

Generates weighted or
unweighted adjacency
matrix

Scores nodes according
to their proximity to the
seed nodes

Predicts candidate
features and
subnetworks

Random walk Multi-modal data 2019 Valdeolivas et al.
(2019)

2) Compute transition
probabilities of the
random walk with
restart

3) Performs propagation
from seed nodes

MultiPaths A Python framework to
build customized
harmonized multi-
omics networks from
multiple biological
databases. MultiPaths
framework contains two
independent Python
packages: DiffuPy and
DiffuPath useful for
interpreting and
contextualizing results
from multi-omics
experiments

1) DiffuPy implements
four existing network
propagation algorithms
and five graph kernels
and enables propagating
user-defined labels,
either as lists of entities
or lists of entities with
their corresponding
quantitative values

The methodology does
not take edge
directionality or weights
into account for
propagation

Compute node scores
using a function of
graph kernel and input
scores

Predicts
subnetworks

Diffusion-based genes, mRNA,
metabolites, miRNomics
data, biological pathway/
processes data

2020 Reyna et al., (2018);
Marín-Llaó et al.,
(2020)

2) DiffuPath, wraps the
generic diffusion
algorithms fromDiffuPy
and applies them to
construct biological
networks

Analytic and
integration
framework for
multi-omics
longitudinal datasets

An integrative
framework for building
multi-omics networks
from longitudinal
datasets. It consists of
multi-omics kinetic
clustering and multi-
layer network-based
analysis. The method is
based on the modeling
and clustering of
expression profiles with
similar behaviours using
the timeOmics (Bodein
et al., 2019) approach

1) Performs network
reconstruction

Infers correlations
between molecules
based on multi-omics
data

Uses experimental
measurements as node
scores

Identify crosstalk,
key biological
functions, or
mechanisms

Random walk Metabolites, genes,
protein abundance,
mRNA

2020 Bodein et al. (2020)

2) Perform over-
representation analysis

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

Random Walk
with Restart for
multi-dimensional
data Fusion
(RWRF)

The method uses a
similarity network of
samples as the basis for
integration

1) Construct a similarity
network for each data
type

Edge weight is estimated
by calculating the
similarity measure

Estimate stationary
probability distribution
which indicates
similarity between the
seed node and other
nodes

Identify disease
subtypes

Random walk
with restart

mRNA, DNA
methylation, microRNA

2021 Wen et al. (2021)

2) Fuse similarity
networks

3) Performs random
walk with restart on the
multiplex network

4) Performs network
clustering

Causality- and network-based inference tools

Differential
network analysis in
genomics (DINGO)

DINGO is a pathway-
based model for
estimating patient
group-specific networks
and making inferences
on differential network
activation between
patient-specific groups.
DINGO jointly
estimates the group-
specific conditional
dependencies by
decomposing them into
global and group-
specific components

1) Estimates global
component, which
represents the relations
common to both
patient-specific groups

Constructs differential
scores for group-specific
edges

The vertices are ordered
by their degree
centrality

Predicts driver
genes

Differential
network
approach

mRNA, DNA copy
number, DNA
methylation, microRNA

2015 Ha et al. (2015)

2) Estimates local group-
specific component
which represents the
differential unique
relations in each patient-
specific group

3) Determines
significant differential
edges

Permutation-
based Causal
Inference
Algorithms with
Interventions

The non-parametric
algorithm is used to
learn directed acyclic
graphs comprising both
observational and
interventional data. An
example is the greedy
sparsest permutation
algorithm

1) Generate an
interventional
distribution

Estimates edge weight Utilizes experimental
measurements of
features

Allows for inference
of causal graphs

Unsupervised
ML

Multi-modal data (omics,
clinical data)

2017 Wang et al. (2017)

2) Search for a
permutation

3) Learn from
interventions

iDINGO iDINGO R package is an
expansion of DINGO.
The package estimates
group-specific
dependencies between
different omics data and
make inferences on the

1) Integrate ordered data
platforms using the
chain graph model

Constructs differential
scores for group-specific
edges

The vertices are ordered
by degrees (number of
connections)

Predicts hub omics
features
characterized by the
number of
differential edges

Differential
network
approach

mRNA, DNA copy
number, DNA
methylation, microRNA

2018 Class et al. (2018)

2) Constructs
differential scores for
group-specific edges to

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

integrative differential
networks, considering
the biological hierarchy
among the omics
platforms. It integrates
omics data using the
chain graph model

determine the
significant differential
edges

prior
incorporation
Mixed Graphical
Model (piMGM)

Can learn with accuracy
the structure of
probabilistic graphs over
mixed data by
appropriately
incorporating priors
from multiple sources

1) Incorporates prior
information from
multiple sources

Leverage conditional
dependencies to
estimate the strength of
edges

Utilizes experimental
measurements of
features

Identify disease
subtypes, active
pathways in healthy
and disease samples

Probabilistic
graphical model

Multi-modal data (omics,
clinical data)

2018 Ha et al., (2015);
Manatakis et al.
(2018)

Identifies gene pathways
associated with disease
subtype

2) Score the reliability of
prior information by
using a weighted scheme
3) Merge prior
information into a single
prior distribution for
each edge

4) Learning the structure
of probabilistic graphs

5) Uses separate
regularization
parameters for edges
with and without priors

6) Determine active
pathways

CausalMGM A method for learning a
causal graph over
variables of mixed type
linked to disease
diagnosis and
progression

1) Learn the undirected
graph over mixed data
types

Leverage conditional
dependencies to
estimate the strength of
edges

Leverages on
measurements of
variables

Identify causal
pathways,
biomarkers, and
patient stratification

Probabilistic
graphical model

Multi-modal data (omics,
clinical data)

2019 Sedgewick et al.
(2019)

2) Perform local
directionality
determinations with
conditional
independence tests

Multi-Omic
inTegrative Analysis
(MOTA)

A network-based
method that uses data
acquired at multiple
layers from the same set
of samples to rank

1) Builds a differential
network

The weight of edges
represents the partial
correlation (above
threshold) between
node pairs

Computes an activity
score (MOTA Score) for
each node based on its
p-value and its
connected nodes

Predicts driver
genes or disease
biomarkers

Differential
network
approach

mRNA, metabolite,
glycomics data, proteins

2020 Class et al., (2018);
Fan et al., (2020)

2) Computes partial
correlation between

(Continued on following page)
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TABLE 1 (Continued) Network-based multi-omics integrative tools for predicting biomarkers, crosstalk, disease subtypes, and subnetworks/enriched modules.

Tool Description Major steps of the
tool

Edge weighting
component

Node weighting
component

Outcome Method/
Approach

Input data type year References

candidate disease
biomarkers

node pairs using
graphical LASSO

3) Calculates the
differential partial
correlation to determine
intra-omics connections
for the network

Integrative multi-
omics network-
based approach
(IMNA)

An integrative multi-
omics framework for
regulatory network
analysis

1) SNP-gene mapping
pairs collection

Uses the confidence
scores of the tissue-
specific functional
interactions as edge
weight

Computes signature
scores for each node
from different networks.
Signature scores for a
gene from different
networks are combined
and normalized to get a
composite score for
each gene

Identifies tissue-
specific gene
interaction
networks and key
nodes

Bayesian
network
approach

GWAS signals, eQTLs,
epigenomic regulatory
annotations, mRNA,
protein interactome, and
chromatin long-range
interactions

2020 Chen et al. (2020)

2) Construct SNP-gene
bipartite network

3) Construct a
functional interaction
network

4) Computes signature
score for nodes in the
network

5) Computes composite
score to provide
quantitative evidence of
node to evaluate the
importance of the
regulatory function

6) Perform key driver
analysis on tissue-
specific gene interaction
networks

MRPC An R package that learns
causal graphs and allows
for inference

1) Learning the graph
skeleton

Incorporates the
principle of Mendelian
randomization as
constraints on edge
direction

Utilizes experimental
measurements of
features

Allows for inference
of causal graphs

Unsupervised
ML

Genomic data, mRNA 2021 Badsha et al. (2021)

2) Orienting edges in the
skeleton

3) Simulating
continuous and discrete
data

4) Assessment of
inferred graphs

(Continued on following page)
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that extend Bayesian networks have been developed for causal

inference. For instance, Zheng et al. (Zheng et al., 2018) developed

a newmethod to estimate the structure and inference from aBayesian

network by transforming the structure learning problem into a

continuous optimization formulation that does not impose any

structural assumptions on the graph. In another instance,

Lachapelle et al. (Lachapelle et al., 2019) proposed a novel score-

based approach to learning from Bayesian networks via the edge

weights of neural networks. The approach developed by the authors

adapts the optimization method presented by Zheng et al. (Zheng

et al., 2018) to allow for non-linear relationships between variables

using neural networks. Box 2 provides a summary of the equations

related to the Bayesian and Markov methods. Given that the

underlying principles behind network-based approaches for

analysis vary, combining such approaches is feasible and may

increase prediction accuracy as shown by Zheng et al. (Zheng

et al., 2018) and Lacapelle et al. (Lachapelle et al., 2019).

BOX 2 Summary equations of the Bayesian andMarkov network.
Bayesian Network
Each node in a Bayesian network is represented as a probability

distribution of cause given the observed evidence which is built
from the Bayes theorem shown below (Kotiang and Eslami, 2020).

P[Cause |Evidence] � P[Evidence |Cause] . P[Cause]
P[Evidence]

Thus, the full probability model for a Bayesian network is
obtained by specifying the joint probability distribution (i.e., a
series of the conditional probability distribution of the nodes in
the network) (Kotiang and Eslami, 2020).

Markov Network

P(X � x) � 1
z
exp(∑

i

ωifi(x{i}))

Where x is the feature vector, Z is the normalization constant
calculated as

Z � ∑
xϵX

exp (∑
i

ωifi(x{i}))

fi is the feature function defined as

fi(x{i}) � {
1 Fi(x{i}) � true
0 otherwise

ωi is the non-negative real-valued weight which reflects
constraints on nodes

Fi is the logistic formula.

Review of network-based integrative
multi-omics tools

We systematically reviewed literature primarily published

between 2010 and 2022 that report on ML-driven network-based

tools, network-based diffusion/propagation tools, and causality-T
A
B
LE

1
(C

o
n
ti
n
u
e
d
)
N
e
tw

o
rk
-b

as
e
d
m
u
lt
i-
o
m
ic
s
in
te
g
ra
ti
ve

to
o
ls

fo
r
p
re
d
ic
ti
n
g
b
io
m
ar
ke

rs
,
cr
o
ss
ta
lk
,
d
is
e
as
e
su

b
ty
p
e
s,

an
d
su

b
n
e
tw

o
rk
s/
e
n
ri
ch

e
d
m
o
d
u
le
s.

T
oo

l
D
es
cr
ip
ti
on

M
aj
or

st
ep
s
of

th
e

to
ol

E
dg

e
w
ei
gh

ti
n
g

co
m
po

n
en
t

N
od

e
w
ei
gh

ti
n
g

co
m
po

n
en
t

O
ut
co
m
e

M
et
ho

d/
A
pp

ro
ac
h

In
pu

t
da
ta

ty
pe

ye
ar

R
ef
er
en
ce
s

M
IM

O
SA

2
A
n
R
pa
ck
ag
e
an
d
w
eb

ap
pl
ic
at
io
n
m
et
ab
ol
ic

ne
tw
or
k-
ba
se
d
to
ol

fo
r

in
fe
rr
in
g
re
la
ti
on

sh
ip
s
in

m
ic
ro
bi
om

e-
m
et
ab
ol
om

e
da
ta

1)
C
on

st
ru
ct

a
co
m
m
un

it
y
m
et
ab
ol
ic

m
od

el
by

lin
ki
ng

m
ic
ro
bi
om

e
da
ta

fe
at
ur
es

to
re
fe
re
nc
e

da
ta
ba
se
s

T
he

m
et
ho

d
do

es
no

t
ta
ke

ed
ge

di
re
ct
io
na
lit
y

or
w
ei
gh
ts

in
to

ac
co
un

t

U
ti
liz
es

C
M
P
sc
or
e
fo
r

ea
ch

fe
at
ur
e

A
llo
w
s
in
fe
re
nc
e
of

m
ic
ro
be
-m

et
ab
ol
it
e

re
la
ti
on

sh
ip
s
an
d

pr
ed
ic
ts

di
se
as
e-

as
so
ci
at
ed

fe
at
ur
es

U
ns
up

er
vi
se
d

M
L

M
et
ab
ol
it
e,
m
ic
ro
bi
om

e
da
ta

20
22

N
oe
ck
er
et
al
.(
20
22
)

2)
C
om

pu
te

co
m
m
un

it
y

m
et
ab
ol
ic

po
te
nt
ia
l

(C
M
P
)
sc
or
es

fo
r
ea
ch

ta
xo
n,

sa
m
pl
e,
an
d

m
et
ab
ol
it
e

3)
A
gg
re
ga
te

C
M
P

sc
or
es

at
th
e
co
m
m
un

it
y

le
ve
l

4)
E
va
lu
at
es

th
e

re
la
ti
on

sh
ip

be
tw
ee
n

to
ta
l
C
M
P
sc
or
es

an
d

m
et
ab
ol
it
es

by
fi
tt
in
g
a

lin
ea
r
re
gr
es
si
on

m
od

el

Frontiers in Molecular Biosciences frontiersin.org18

Agamah et al. 10.3389/fmolb.2022.967205

154155155

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.967205


and network-based inference tools. We further highlight the

tool’s uniqueness in terms of (i) input data types, (ii) method/

algorithm implemented, (iii) most important analytical steps, (iv)

potential node and/or edge weighting, and (v) predicted outcome

(crosstalk, disease subtypes, biomarkers, subnetworks, and

patient survival). The tools presented in this review (Table 1)

(i) have broad biomedical data applications and are not restricted

to specific (disease) research topics only, (ii) are implemented as

standalone software like R, MATLAB, Python libraries, or as part

of a pipeline and, (iii) account for the weight of nodes and/or

edges within the network.

Research questions explored using
integrative multi-omics network
approaches

Understanding how crosstalk between
omics layers impacts a biological process
or disease phenotype

A perturbed biological system is characterized by deviations

in the behaviour of the molecules (omics data features) causing

changes in crosstalk (Figure 1). These changes could become

apparent inmultiple (connected and dependent) omics levels and

may represent a wide range of molecular events responsible for

disease phenotype or impaired biological processes.

Network-based diffusion/propagation tools (described in

Table 1) offer a framework to identify aberrant omics features

(e.g., gene expression, somatic mutations, copy number

variations, molecular subnetworks informative of disease

subtype) and how their presence and activities within the

network induce possible (downstream) changes that might

underpin disease phenotype.

In a study to understand the molecular function of SARS-

CoV-2 and SARS-CoV proteins and their interaction with the

human host, Stukalov et al. (Stukalov et al., 2021) profiled the

interactomes of both virus groups and investigated the effect of

viral infection on the transcriptome, proteome, ubiquitinome,

and phosphoproteome of a lung-derived human cell line.

Functional analysis of the various biomolecules within a

molecular network revealed crosstalk between the cellular

processes during perturbations taking place upon infection at

different omics layers and pathway levels. The authors (Stukalov

et al., 2021) implemented the Hierarchical HotNet NDmethod to

explore host-SARS-CoV-2 protein interactions during viral

infection and its impact on omics levels and cell lines to

understand how that could influence molecular pathways.

Importantly, the group observed that the transforming growth

factor beta (TGF-β) signalling pathway, known for its

involvement in tissue fibrosis as one of the hallmarks of

COVID-19 (Mo et al., 2020), was specifically dysregulated by

SARS-CoV-2 ORF8. Further results revealed that autophagy, one

of the mechanisms for controlling SARS-CoV-2 replication and

monitoring the progression of viral infection (Sargazi et al.,

2021), was specifically dysregulated by SARS-CoV-2 ORF3.

These findings highlight the biological relevance of crosstalk

and the insights it provides to understanding disease

mechanisms.

Identifying modules/subnetworks for
disease or disease progression prediction/
prognosis

Modular organizations within a network, characterized by

clusters of neighbouring nodes highlight features that are

functionally related or involved in similar activities within the

system. In contrast to identifying (crosstalk of) features

informative of disease mechanism, the focus here is on

identifying different omics data features that cluster together

to inform molecular transitions that describe disease severity

level and/or disease subtypes.

Network-based tools that predict disease subtypes or

subnetworks informative of a phenotype or a phenotypic

group (described in Table 1) are useful for answering such

questions and can help in e.g., estimating survival rates across

different patient groups. Tools that implement ML and ND-

based methods are useful to identify clusters in a network (see

Table 1). It is noteworthy that the approach or steps,

algorithms, and input data types implemented by such tools

to predict subnetworks vary (as described in Table 1). In a

recent application of a network-based method to COVID-19

research, Sun et al. (Sun et al., 2021a), employed MEGENA

(Song and Zhang, 2015), an unsupervised ML method, to

perform protein-metabolite-lipid multi-omics network

analysis based on the differential co-expression (correlation

between pair of omics features) of these omics data features.

The network analysis indicated that tryptophan metabolism

and melatonin, a metabolite related to tryptophan metabolism

may contribute to molecular transitions in critical COVID-19

patients. Studies have shown that tryptophan and melatonin

can improve the immune system and reduce inflammation in

COVID-19, suggesting that function disorder may cause

impairment to tryptophan metabolism and immune

response (Essa et al., 2020; Shneider et al., 2020).

Interestingly, activation of tryptophan metabolism has been

clinically shown to be selectively enhanced in severe patients

(Takeshita and Yamamoto, 2022). The authors further

identified pathologically-relevant lipid modules which are

being altered among mild COVID-19 patients.

Interestingly, connections between clusters/modules in the

omics data may explain the crosstalk of biological features which

are specific to the disease state and may serve as biomarkers for

monitoring disease progression, treatment, and management

(Yan et al., 2016; Overmyer et al., 2020; Su et al., 2020).
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Identifying candidate drivers of disease
mechanisms

The contributory effect of features (nodes) within a system

varies and depends on factors including but not limited to the

level of feature expression or abundance, the level of interaction

with other features, and the (background) state of the system.

While some of these omics data features are passive (i.e., have

little or no effect on system stability), others may have a

significant effect on the observed phenotype.

In many biological disease-related problems, exploring

relationships between multi-omics data extends beyond

measuring marginal associations between features. Thus,

identifying biologically relevant nodes that influence changes

TABLE 2 Useful network-based integrative multi-omics tools for drug discovery.

Tool/Method Description Major steps of
tool

Outcome Method/
Approach

Input data type Year References

DTINet A computational
pipeline focuses on
learning a low-
dimensional vector
representation of
features, which
accurately explains the
topological properties
of individual nodes in
the heterogeneous
network, and then
makes prediction
based on these
representations via a
vector space projection
scheme

1) Integrates a variety
of drug-related
information sources
to construct a
heterogeneous
network

Drug–target
interactions

Unsupervised
ML

drug-related information
protein-protein
interactome

2017 Luo et al.
(2017)

2) Applies a compact
feature learning
algorithm to obtain a
low-dimensional
vector representation
of the features

3) Finds the best
projection from drug
space onto protein
space

4) Infers new drug-
target interactions

DrugComboExplorer A tool for identifying
driver signalling
pathways and inferring
the polypharmacy
efficacies and synergy
mechanisms through
drug functional
module-induced
regulation of target
expression analysis

1) Identify the seed
(driver) genes

Prioritize
synergistic drug
combinations,
Uncover potential
mechanisms of
drug synergy

Unsupervised
ML

DNA sequencing, gene
copy number, DNA
methylation, RNA-seq
data

2019 Huang et al.
(2019)

2) Explore networks
from the seed genes
by integrating the
RNA-seq profiles
and pathway
knowledge

3) Explore networks
from the seed genes
by integrating the
methylation profiles
and pathway data

4) Combine the
networks generated
from the RNA-seq
data and the
methylation data

Reciprocal nearest
neighbour and
contextual information
encoding (RNCE)

A network integration
approach accounting
for network structure
by a reciprocal nearest
neighbour and
contextual
information encoding
(RNCE) approach

1) Applies the
similarity network
fusion (SNF)
approach to fuse
drug networks

Predicts drug
targets, drug
mechanism of
action

Unsupervised
ML

Pharmacogenomic data
such as gene expression
data under drug
perturbation or drug
sensitivity data at the cell-
line level

2021 Chen and
Wong, (2021)

2) Generate
contextual
information network

3) Compensate for
the contextual
information network
with the initial SNF
network
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within the system could serve as candidate disease-related nodes

responsible for an underlying phenotype (Dimitrakopoulos et al.,

2018). Causal and network inference methods described in

Table 1 can be implemented to explore likely causal features,

potential causal relationships, and infer networks that

differentiate severe disease from mild in a multi-modal

network. Although causal methods provide insights into likely

causal agents, investigating and confirming true causality extends

beyond computational analysis to experimental validation in

relevant models. Also, ML and diffusion-based methods can

be used to explore candidate drivers. We describe in Table 1

some network-based tools that predict candidate disease-related

nodes. In a recent COVID-19-related study, Tomazou et al.

(Tomazou et al., 2021) implemented a network-based multi-

omics data integration approach based on a multi-source

information super-network scheme (described in Table 1) to

prioritize COVID-19-related genes that could be useful as drug

targets. The super network was constructed based on the

weighted sum of the pairwise weighted edge vectors (for each

pair of features) obtained from different sources. The method

then prioritizes genes in the network by calculating a

characteristic score known as the Multi-source Information

Gain (MIG). Some of the genes identified by the authors

include Serum Amyloid A (SAA1, SAA2, SAA3) which has

been clinically verified as a sensitive biomarker in evaluating

the severity and prognosis of COVID-19 (Li et al., 2020),

C-reactive protein (CRP) clinically shown to be a marker of

systemic inflammation associated with adverse outcomes in

COVID-19 patients (Smilowitz et al., 2021), Serine proteinase

inhibitor A3 (SERPINA3) shown to be a biomarker for COVID-

19-related organ damage (coronary artery disease) and

erythropoiesis impairment (Demichev et al., 2021), and

vascular cell adhesion molecule (VCAM1) shown to be a

vascular and inflammatory implicated in the inflammatory

response to sever COVID-19 (Birnhuber et al., 2021).

Drug discovery

Network-based methods that employ systematic integration

of disease-specific omics profiles coupled with drug-related data

(e.g., FDA-approved, experimental drugs, drug-target

interactions) into a heterogeneous network have been shown

to provide answers to biological questions related to drug

development (Wang et al., 2014a; Vitali et al., 2016; Luo et al.,

2017). In this type of network analysis, nodes could represent

both omics data features and non-omics data features such as

drugs, diseases, and drug targets. The edges represent the

functional association between the data types such as

pharmacological or phenotypic information.

The network-based view of drug discovery and development

may involve multiple methods or tools at different steps. ND and

ML methods have been widely implemented in this research area

to make predictions (Luo et al., 2017; Tomazou et al., 2021).

Predictions from such methods present an effective way to

complement experimental methods with the aim of, (i)

identifying drug targets, (ii) understanding the disease-drug

relationship, (iii) investigating drug-target interactions, (iv)

identifying potential drug candidates, (v) drug response

prediction, (vi) drug-drug relations, and (vii) predict effective

drug combinations. Of note, driver nodes or subnetworks as

predicted by tools described in Table 1 might also inform on drug

targets. An interesting application of network-based methods for

drug discovery is the COVID-19 study by Tomazou et al.

(Tomazou et al., 2021), whereby some of the predicted

candidate compounds including dexamethasone, atorvastatin,

beta-estradiol, cyclosporin-A, imatinib, and remdesivir have

been found to generate promising results in clinical trials

(https://clinicaltrials.gov/). We describe in Table 2, some

useful integrative multi-modal network-based tools that are

specifically for drug discovery.

Current challenges and
recommendations

Design of experiment

The choice of a network-based integration method does not

only depend on the biological question but also the experimental

design. Certain network-based methods can only deal with

paired data, whereas others can also deal with sparse datasets

where there is no or only partial overlap between the samples

profiled with the different omics layers. Importantly, the scope of

the research will inform the type of data that should be generated.

For instance, the paired data, herein referring to different omics

data measurements from the same biological sample, is preferred

when establishing a holistic picture of systems biology

underpinning molecular mechanisms linked to disorders,

whereas non-paired data (data generated from different

biological samples) is more appropriate for comparative

(meta)analysis of samples or omics data measurements. It is

therefore recommended to consider the scope of research and the

network-based methods that fit.

Reproducibility

Researchers routinely expect that results generated by applying

network models are reproducible. For network-based methods, the

key issues related to reproducibility are non-harmonized data, biased

model evaluation, and lack of transferable code or software. First,

multi-omics network-based integration involves the use of

heterogeneous data, and some sort of data harmonization is

required. A promising approach to harmonize multi-omics

research is to ensure that the data comply with FAIR data
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principles (findability, accessibility, interoperability, and reusability).

The data FAIRification process ensures that a (meta)data schema/

method which captures relations between (omics) measurements,

data structure, and concepts are clearly defined and easily

interpretable by both humans and computers. The metadata

schema provides information about the omics data structure and

facilitates easy mapping of measured features onto persistent

identifiers and established biological networks to investigate the

connection between network elements (Krassowski et al., 2020).

Second, confidence inmulti-omics network-basedmethods requires

systematic evaluation and validation of both datasets and models as

a prerequisite for benchmarking toward reproducibility (Krassowski

et al., 2020). This approach requires harmonized datasets of quality

and quantity that provide unbiased ground truth to ensure that the

model at least predicts biologically verified features or edges. Given

that there is no gold standard metric for validation, it is critical to

validate on a variety of data sources and use metrics that are robust

to the level of missing data. Third, to replicate results from previous

studies, a detailed report of the analysis together with executable

analysis code is important to achieve this purpose. The report and

code could be hosted in repositories (e.g., GitHub, Bitbucket,

GitLab), reproducible scientific workflow management systems

(e.g., Nextflow, Galaxy), environment sharing avenues (e.g.,

Conda, Docker), or packaged as libraries for programming

languages (Canzler et al., 2020). In addition to the key issues,

adapting general best practices in the computational analysis will

aid reproducibility.

Heterogeneity

Heterogeneity (a measure of variation) of multi-omics datasets,

characterized by diverse data sources, data types, and data structure

results in computational complexity, analysis bias, and hampers a

robust and reproducible integrative network analysis (Lee et al.,

2021). There is an increasing awareness of controlling heterogeneity

acrossmulti-omics integrative analysis, butmost of them are focused

on paired data rather than non-paired data.

In the context of network-based integrative analysis

developing models and algorithms that could account for

non-uniformity by identifying the most robust signals

encompassing data, heterogeneity is important. This could be

in the form of variable selection models to identify important

covariates with the strength of multiple datasets, and yet

maintain the flexibility of variable selection between the

datasets to account for the data heterogeneity (Lima et al., 2020).

(Biological) Interpretation of results

Interpreting results from an integrative multi-omics analysis

is a process of disentangling multiple functional relationships.

Primarily, the systematic interpretation of results depends on the

kind of biological question and the type of omics measurements

used for the analysis. Different omics technologies may have

different levels of completeness and sensitivity in terms of

detecting biological features. This might result in some omics

data types containing more information than others as well as

impact the results significantly (Jung et al., 2020). It is important

to consider the inherent relationship between the omics profiles

used during the interpretation of the results. More often

functional annotation of features is based on generalized

information which allows a less comprehensive understanding

of the molecular mechanisms underlying a phenotype. For this

reason, incorporating relevant contextualized pathway

information (e.g., tissue-specific or cell-specific) in the analysis

has been useful to assess the functional relevance of nodes and

subnetworks on the disease/phenotypic landscape, thereby

facilitating interpretation.

The capacity to interpret predicted features and interactions

of known biological relevance may take the form of deductive

reasoning or semantic similarities to support a hypothesis (Guo

et al., 2022). In the context of algorithms, robust node weighting

and edge weighting metrics measured based on known evidence

(e.g., text mining, contextualized pathway information) is

important to make an inference that is potentially biologically

grounded and experimentally confirmable, knowing that the

association between omics layers extends from one-to-one and

one-to-many to many-to-many.

Sparsity

There is sparsity at the sample level (not all samples have

been profiled with the same assays) and at the feature level. The

latter is far more prominent in metabolomics and proteomics

than in DNA and RNA sequencing. This is mainly due to the

selection of peaks (intensities observed in MS1 survey scans) for

fragmentation by data-dependent acquisition (DDA) or data-

independent acquisition (DIA) tandem mass spectrometry

(LC-MS/MS) approaches (Guo and Huan, 2020; Davies

et al., 2021). Typically, an ideal acquisition mode ought to

produce spectra of high quality for as many of the ions present

in the sample as possible, however, that is not the case, resulting

in sparsity at the feature level. This issue is partly but not

completely resolved in the newer DIA and integrated DDA-

DIA modes which operate in a less-selective manner and have

higher coverage as compared to the older DDA mode (Sun

et al., 2021b; Davies et al., 2021).

Another contributing factor to sparsity in omics data in

tandem with omics technologies is the absence of

accumulation of a molecule to a detectable level by omics

platforms (evidenced even across platforms of the same omics

technology (e.g., next-generation RNA and DNA sequencing).

This is partly associated with experimental design, poor

biological sample quality, and sample processing.
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For computational analysis purposes, mputation can be used to

solve missing value problems; however, imputation does not apply

to all omics data types (Folch-Fortuny et al., 2015). In addition to

imputation, sample similaritymeasurementmethods such asmatrix

calibration (Li, 2015) and the Mahalanobis distance approach

(Sitaram et al., 2015) could be useful to extrapolate for missing

values, however, these methods are also limited to specific omics

data types. Thus, a feature may have values only in a small

percentage of samples leading to sparse matrices, where features

may have a wide variety of distributions. Some multi-omics data

integration methods can handle sparse data and also feature

reduction methods; however, skewed estimates might result in a

biased interpretation of results (Greenland et al., 2016). To address

the issue of sparsity in the context of networks, network integration

aggregates independent data sources to form amore comprehensive

attributed interactome, where the edges are qualified by specific

semantic relations or similarity correlation, and the level of

confidence in the node pair relationship based on evidence from

similarity scores, literature and graph databases (Guo et al., 2022).

Also, incorporating autoencoders, a deep learning approach, and its

denoising and variational variants autoencoders (e.g., sparse

autoencoders) have been used to address this issue in graph

neural networks (Ng, 2011). Autoencoders learn a representation

of the data from the input layer, enforce sparsity constraints and try

to reproduce it at the output layer. During this process, the model

can learn from incomplete data and generate new plausible values

for imputation (Pereira et al., 2020).

Future directions

An area of prospect for integrative multi-omics network-

based research, which remains an important opportunity, is

making efforts to limit the challenges linked with network-

based multi-omics integration in the context of

heterogeneity, reproducibility, sparsity, and interpretation

of results as discussed above. Another area of importance is

building hybrid integrative models which are capable of

handling paired and non-paired omics data, as well as

other biomedical data. Furthermore, efforts to develop a

framework tool or metadata schema that standardizes or

harmonizes various multi-omics approaches for data

integration could be useful. For example, such a

framework may leverage an optimized approach to weigh

and prioritize genes, pathways, biological processes, drug

targets, and relationships between various other biological

FIGURE 4
Overview of the discussed network-based multi-omics integrative tools and research questions (in the circle) that they can be applied to. The
tools implement different methods including unsupervised machine learning (*), supervised machine learning (**), neural networks (***), diffusion-
based (+), random walk (++), differential network (#), probabilistic graphical model (##) and Bayesian methods (###).
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features from the multi-omics datasets. However, such

framework tools will also require the expertise of domain

experts, as well as the detailed and uniform characterization

of statistical and technical attributes of the data (Krassowski

et al., 2020).

Discussion

Network-based integrative multi-omics analysis offers the

opportunity to elucidate interactions that can occur among all

classes of molecules in a biological system as well as information

flow between and within multiple omics levels. In addition, it

potentially provides substantial improvement of biological

understanding by helping in the interpretation of results, as

compared to single omics analysis, although collecting multi-

omics data from different sources does not guarantee that it will

be possible to learn about (all of) the relationships present.

Various graph-based multi-omics methods have been

developed for network analysis; however, their application is

dependent on the scope of the research question of interest and

the (omics) data types available. Consequently, this will inform

the choice of an integrative analytical approach and tools. The

network-based methods discussed use different scoring metrics,

algorithms, and data types which together translate into a

comprehensive data source/graph to be employed for

interpretation into biological knowledge. The overviewand

description of the tools for network-based integrative analysis

(Table 1) show that different approaches can be implemented in

different ways to achieve similar results. Additionally, the

classification of tools (Figure 4) highlights that some tools can

be applied to more than one research question. However, due to

the difference in approaches of these methods, we recommend

the use of multiple analytical and methodological approaches

during integrative data analysis, to compare and validate the

study results in different ways before interpretation for further

downstream tests or follow-up studies.
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Aim: To profile the plasma proteomics and metabolomics of patients with renal
cysts, sporadic angiomyolipoma (S-AML) and tuberous sclerosis complex related
angiomyolipoma (TSC-RAML) before and after everolimus treatment, and to find
potential diagnostic and prognostic biomarkers as well as reveal the underlying
mechanism of TSC tumorigenesis.

Materials and Methods: We retrospectively measured the plasma proteins and
metabolites fromNovember 2016 to November 2017 in a cohort of pre-treatment
and post-treatment TSC-RAML patients and compared them with renal cyst and
S-AML patients by ultra-performance liquid chromatography-mass spectrometer
(UPLC-MS). The tumor reduction rates of TSC-RAML were assessed and
correlated with the plasma protein and metabolite levels. In addition,
functional analysis based on differentially expressed molecules was performed
to reveal the underlying mechanisms.

Results: Eighty-five patients with one hundred and ten plasma samples were
enrolled in our study. Multiple proteins andmetabolites, such as pre-melanosome
protein (PMEL) and S-adenosylmethionine (SAM), demonstrated both diagnostic
and prognostic effects. Functional analysis revealed many dysregulated pathways,
including angiogenesis synthesis, smooth muscle proliferation and migration,
amino acid metabolism and glycerophospholipid metabolism.

Conclusion: The plasma proteomics andmetabolomics pattern of TSC-RAMLwas
clearly different from that of other renal tumors, and the differentially expressed
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plasma molecules could be used as prognostic and diagnostic biomarkers. The
dysregulated pathways, such as angiogenesis and amino acid metabolism, may
shed new light on the treatment of TSC-RAML.

KEYWORDS

UPLC-MS, proteomics, metabolomics, tuberous sclerosis complex, everolimus

Background

Tuberous sclerosis complex (TSC) is a rare disease caused by
germline mutations of tumor suppressor genes in either the TSC1
gene on chromosome 9 or the TSC2 gene on chromosome 16
(Henske et al., 2016). Its incidence is approximately 1 in
6,000–10,000, and there are around 2 million patients worldwide,
although the rate may be greatly underestimated due to large
numbers of undiagnosed patients (Lam et al., 2018). TSC
threatens multiple organs throughout the body and causes
corresponding distinctive manifestations, including subependymal
giant cell astrocytoma (SEGA) in the brain, rhabdomyosarcoma
(RA) in the heart, lymphangioleiomyomatosis (LAM) in the lung,
angiomyolipoma (AML) in the kidney and so on.

For the underlying mechanism, the most widely acknowledged
theory is that silencing of the TSC complex caused by mutations
could lead to overactivation of the mammalian target of rapamycin
(mTOR) signaling pathway, which has been proven to be critical in
various physiological processes, such as regulating cell growth,
metabolism and autophagy (Yang et al., 2013; Ranek et al., 2019).
Aberrant constitutive mTOR pathway activation could result in
unregulated cell proliferation, migration, and invasion and finally
cause hamartoma in different organs (Bottolo et al., 2020). Based on
the above mechanism, mTOR inhibitors, including rapamycin and
everolimus, have been developed to control the various
manifestations, including renal AML (Bissler et al., 2013; Cai
et al., 2018), brain SEGA (Krueger et al., 2010; Franz et al., 2013)
and pulmonary LAM (McCormack et al., 2011).

As the most common cause of early death among patients with
TSC (Shepherd et al., 1991; Amin et al., 2017), the renal lesions have
three main forms, namely, AML (the most common, making up
more than 80%), renal cysts and renal cell carcinoma. The abrupt
rupture of TSC related AML (TSC-RAML) is a common cause of
mortality and is sometimes referred to as a “ticking bomb” within
the body. Exist-2 is thus far the largest multi-center randomized
controlled trial assessing the effect of everolimus on TSC-RAML
(Bissler et al., 2013). This trial validated its efficacy with a 42%
response rate and an acceptable safety profile, making everolimus
the only drug approved by the Food and Drug Administration of
America to treat TSC-RAML. Our center has also conducted a 2-
year, nonrandomized, open-label, phase 2 clinical trial, and the
result showed that 50% volume reduction rate reached 52.94% at
3 months and 58.82% at 6 months, further confirming the favorable
effect of mTOR inhibitors on TSC-RAML (Cai et al., 2018).

In the EXIST-2 trial, plasma VEGF-D and collagen IV levels
were found to be potential prognostic as well as diagnostic
biomarkers, and these results have been validated by subsequent
studies not only in TSC-RAML (Dabora et al., 2011; Malinowska
et al., 2013) but also in the TSC-LAM (Young et al., 2010; Xu et al.,
2013; Amaral et al., 2019). So far, very few efficient biomarkers have

been discovered to guide clinical treatment or follow-up of patients
with TSC.

mTOR is an atypical serine/threonine protein kinase that forms
two distinct signaling complexes, mTORC1 and mTORC2, which
are distinguished primarily by their association with Raptor or
Rictor, respectively (Martin et al., 2014). Through direct
phosphorylation and activation of S6 kinase 1 (S6K) and
inactivation of 4E-BP1, mTORC1 regulates many cellular
metabolisms, such as amino acid, glucose, nucleotide, fatty acid
and lipid metabolism (Morita et al., 2015; Mossmann et al., 2018).
During this process, massive proteomic and metabolomic hallmarks
will be produced if mTOR continuously activated. As one of the
most commonly used high-throughput approaches to detect
proteome and metabolome in biofluids, ultra-performance liquid
chromatography-mass spectrometer (UPLC-MS) has been widely
applied in searching for candidate diagnostic and prognostic
biomarkers and potential drug targets (Wang et al., 2019;
Blomme et al., 2020; Sovio et al., 2020; Behsaz et al., 2021; de la
Calle Arregui et al., 2021; Wang C. Y. et al., 2021; Wang Z. et al.,
2021).

Therefore, the aim of our study was to retrospectively analyze
the plasma proteomic and metabolomic profiles with UPLC-MS and
to search for diagnostic and prognostic markers of TSC-RAML to
guide clinical management.

Materials and methods

Human samples and clinical data

This study was conducted at Peking Union Medical College
Hospital from November 2016 to November 2017 and was
approved by the Institutional Review Board of Peking Union
Medical College Hospital and the Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences (Approval
number: KS2020127). This research was carried out according
to the Code of Ethics of the World Medical Association
(Declaration of Helsinki), and formally written consent
documents were provided by every participant before been
enrolled in this study.

The inclusion criteria were as follows: 1) The TSC patients met
the clinical or genetic diagnosis of TSC according to the
International Tuberous Sclerosis Complex Consensus Conference
in 2012 and took oral everolimus at a dose of 10 mg/qd for at least
6 months. 2) The S-AML patients received partial nephrectomy and
the diagnosis was confirmed as AML. 3) All plasma samples from
the TSC patients were collected pre-treatment and 3 or 6 months
after initiating everolimus treatment. 4) Patients with renal cysts
were considered healthy controls, and blood samples were collected
preoperatively during the same period.
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The exclusion criteria were: 1) Those who had no pre-operative
or pre-treatment plasma in our sample bank. 2) Patients who had
malignant tumors or metabolomic diseases such as diabetes and
hyperlipidemia.

All the enrolled TSC patients were assessed independently by
two radiologists to determine the tumor volume at baseline, every
3 months within the first year, every 6 months within the second
year and yearly thereafter. The maximum AML volume was used to
calculate the tumor response, and >50% volume reduction was
regarded as effective. All TSC patients received next-generation
gene sequencing (NGS) to assess their TSC gene mutations. The
exact process of NGS were described in our previously published
article (Wang et al., 2022a).

Sample collection

Whole blood samples were collected in the morning at 07:
00 am–09:00 am with at least 10 h of fasting to eliminate the
impact of diet. The 4 mL EDTA tubes with whole blood were
transferred and separated by density gradient centrifugation
within 1 h after collection. The plasma was stored at −80°C until
conducting the formal experiment.

Sample preparation for proteomics

To remove the highly abundant proteins (including albumin,
IgA and IgD) from the plasma, High Select™ Top14 Abundant
Protein Depletion Mini Spin Columns (Thermo Fisher Scientific,
MA. United States) were applied according to the manufacturer’s
instructions (as attached in Supplementary Material S1). After this
procedure, we obtained 300 µL samples with the highly abundant
proteins removed. Ten microliters of each sample were removed to
measure the protein concentration by the BCA assay (Pierce).

Every 100 mg of protein was reduced with 20 mM dithiothreitol
(DTT) for 5 min at 95°C and subsequently alkylated with 50 mM
iodoacetamide for 45 min at room temperature in the dark. Protein
digestion was carried out using the filter-aided sample preparation
technique (FASP). Proteins were loaded onto 30 kDa filter devices
(Pall, Port Washington, NY, United States). Trypsin (Trypsin Gold,
mass spec grade, Promega, WI, United States) was added (enzyme to
protein ratio of 1:50), and the samples were incubated at 37°C
overnight. The samples were centrifuged at ×14,000 g, and
approximately 30 µL of the liquid was used for analysis.

For the quality control (QC) samples, 3 µL was taken from
23 randomly selected representative samples and mixed with the
testing samples together, and the mixture was loaded with the testing
samples. The QC samples were injected every 10 samples. All the
samples were loaded on the autosamplers with a mixture of iRT.

ESI-LC-MS/MS for proteome library
generation

The pooled peptide samples of each group were separated by
high-pH RPLC columns (4.6 mm × 250 mm, C18, 3 μm; Waters,
United States). Each pooled sample was loaded onto the column in

buffer A1 (H2O, pH 10). The elution gradient was 5%–30% buffer
B1 (90% ACN, pH 10; flow rate, 1 mL/min) for 30 min. The eluted
peptides were collected at one fraction per minute. After
lyophilization, the 30 fractions were resuspended in 0.1% formic
acid and then concatenated into 10 fractions by combining fractions
1, 11, 21, and so on. To generate the spectral library, the fractions
from RPLC were analyzed in DDA mode. The parameters were set
as follows: the MS was recorded at 350–1,500 m/z at a resolution of
60,000 m/z; the maximum injection time was 50 ms, the auto gain
control (AGC) was 1e6, and the cycle time was 3 s. MS/MS scans
were performed at a resolution of 15,000 with an isolation window of
1.6 Da and a collision energy at 32% (HCD); the AGC target was
50,000, and the maximum injection time was 30 ms.

ESI-LC-MS/MS for proteome data-
independent acquisition analysis

The digested peptides were dissolved in 0.1% formic acid and
separated on an RP C18 self-packing capillary LC column (75 μm ×
150 mm, 3 μm). The elution gradient was 5%–30% buffer B2 (0.1%
formic acid, 99.9% ACN; flow rate, 0.3 μL/min) for 60 min. For MS
acquisition, the variable isolation window DIA method with
38 windows was developed. The specific window lists were
constructed based on the DDA experiment of the pooled sample.
The full scan was set at a resolution of 120,000 over the m/z range of
400 to 900, followed by DIA scans with a resolution of 30,000; the
HCD collision energy was 32%, the AGC target was 1E6, and the
maximal injection time was 50 ms.

Spectral library generation

To generate a comprehensive spectral library, the pooled sample
from each group was processed. The DDA data were processed using
Proteome Discoverer (Thermo Scientific, Germany) software and
searched against the human SwissProt database appended with the
iRT fusion protein sequence (Biognosys). A maximum of two
missed cleavages for trypsin was used, cysteine
carbamidomethylation was set as a fixed modification, and
methionine oxidation deamination and +43 on Kn (carbamyl)
were used as variable modifications. The parent and fragment ion
mass tolerances were set to 10 ppm and 0.02 Da, respectively. The
applied false discovery rate (FDR) cutoff was 0.01 at the protein
level. The results were then imported into Spectronaut Pulsar
(Biognosys, Switzerland) software to generate the library.
Additionally, DIA data were imported into Spectronaut Pulsar
software and searched against the human SwissProt database to
generate the DIA library. The final library was generated by
combining the DDA and DIA libraries of all the enrolled samples.

Data analysis

The DIA-MS data were analyzed using the Spectronaut Pulsar
(Biognosys, Switzerland) with the default settings. All of the results
were filtered with a Q-value cutoff of 0.01 (corresponding to an FDR
of 1%). Proteins identified in more than 50% of the samples in at
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least one subgroup were retained for further analysis. Missing values
were imputed based on the k-nearest neighbor method or by the
minimum value (details provided in Supplementary Figure S1A).

Raw proteomics data were log10 transformed and then
centralized. Student’s t-test was used, and the software was R
(version 4.1.1). Any differential proteins that fulfilled all of the
limitations were considered significant: 1) p-value <0.05; and 2) Fold
change ≥2.

Sample preparation for metabolomics

First, each mixture of plasma sample (50 μL) and H2O (150 µL)
was vortexed for 30 s. Then, 400 µL acetonitrile was added to the
mixture, vortexed for another 30 s and centrifuged at ×14,000 g for
10 min. The samples were dried under vacuum, and the supernatant
was then blended with 200 μL of 2% acetonitrile. Before being
transferred to the autosamplers, 10 kDa molecular weight cutoff
ultracentrifugation filters (Millipore Amicon Ultra, MA) were
applied to separate the blood metabolites from the larger
molecules. QC samples were prepared by mixing aliquots of one
hundred and ten representative samples and they were injected
every ten samples throughout the analytical run to assess the method
stability and repeatability.

UPLC-MS analysis for metabolomics

The Waters ACQUITY H-class LC system coupled with an AB
Sciex TripleTOF 5600 (AB Sciex, United States) was launched to
perform the ultra-performance LC-MS analyses of the plasma
samples. We separated the plasma metabolites with a 17 min
gradient on a Waters HSS C18 column (3.0 × 100 mm, 1.7 μm),
and the flow speed was 0.5 mL/min. Mobile phases A and B were
0.1% formic acid in H2O and acetonitrile, respectively. The gradient
was as follows: 0–1 min, 2% solvent B; 1–3 min, 2%–15% solvent B;
3–6 min, 15%–50% solvent B; 6–9 min, 50%–95% solvent B;
9–9.1 min, 95%–100% solvent B; 9.1–12 min, 100% solvent B;
12–12.1 min, 100%–2% solvent B; and 12–17 min, 2% solvent B.
The column temperature was 45°C. Data dependent acquisition
mode was used to acquire the MS and MS/MS spectra. The 10 most
abundant ions were submitted for MS/MS fragmentation with a
collision energy of 35+-15 eV.

Data processing for metabolomics

Progenesis QI (Waters, Milford, MA, United States) software
was applied to analyze the raw data. The data handling and
metabolite identification processes can be found in the
Supplementary Materials S2. The exported results file consisting
of m/z, retention time and relative peak intensity was submitted for
further statistical analysis. We established various statistical
techniques, such as missing value estimation, log10 transformation
and Z score scaling; thus, the features could be more comparable
in MetaAnalyst 5.0. The data handling process is depicted in
Supplementary Figure S2B, similar to the proteomic process.
Any differential variables that fulfilled all the limitations were

considered significant: 1) p-value <0.05; and 2) Fold
change ≥1.5.

Functional enrichment analysis

The R package “ClusterProfiler” was applied to conduct Gene
Oncology (GO) enrichment analysis (Yu et al., 2012). The
interaction network between the proteomics and metabolomics
and the functional enrichment of the differential metabolites used
MetaboAnalyst 5.0 (http://www.metabo analyst.ca). The “WGCNA”
package was applied to find characteristic markers of every group
(Langfelder and Horvath, 2008; Langfelder and Horvath, 2012).
GSEA application (version 4.1.0) was applied to perform GSEA
hallmark analysis. The “ClueGo” module of Cytoscape (version 3.9.
0, United States) was launched to conduct and display the functional
enrichment results (Shannon et al., 2003).

Statistical analysis

Unless specially mentioned above, R (version 4.1.1) was used to
perform all the analyzes and construct all the figures. All above tests
were two-sided and p-value ≤ 0.05 was regarded as statistically
significant. The R package “pwr” (version 1.3–0) has already been
applied to calculate the minimum samples required for the analysis.

Results

Human samples and clinical data

A total of 85 patients were enrolled in our final analysis,
including 29 TSC-RAML, 29 S-AML and 27 renal cyst (CY)
patients. Among the 29 TSC-RAML patients, 25 had double
samples, namely, the pre-treatment (pre_TSC) and post-
treatment plasma (post_TSC) samples. The basic clinical
information of all enrolled patients is shown in Table 1, and the
workflow of this study is depicted in Figure 1.

In terms of mutations in the 29 TSC patients, 9 had nonsense
mutations, 6 had shift frame mutations, 6 did not have any
mutations detected, 4 had missense mutations and 4 had other
mutations (2 with base deletions, 1 with an insertion and 1 splicing
variation), which can be seen in Supplementary Table S1.

Regarding the treatment effect of everolimus, the results showed
that after 3–6 months of treatment, 92% (23/25) of patients
experienced tumor reduction, and more than half (56%, 14/25)
of patients reached the endpoint of 50% tumor reduction (as
depicted in Figure 1B).

The proteome of TSC-RAML, S-AML and
renal cyst

Quantitative proteomic data of one hundred and ten plasma
samples based on the DIA mode were created. After processing the
raw data, a total of 997 proteins remained for further analysis (the
process can be seen in Supplementary Figure S1A).
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First, t-distributed stochastic neighbor embedding (t-SNE) was
applied, and distinctions within the subgroups could be observed,
although there was some overlap within the S-AML vs. the CY and
post_TSC vs. pre_TSC (Figure 2A). Then, we performed gene co-
expression clustering, pathway analysis and functional module
classification by means of weighted gene correlation network
analysis (WGCNA) and “ClueGO”. All 997 proteins were
classified into eight whole proteome coexpression clusters (WP-
CC), among which the “WP-CC 1” module was positively and
significantly associated with TSC-RAML but negatively associated
with renal cysts and S-AML (Figure 2B). In addition, the cluster of
“WP-CC 2” demonstrated the same tendency. The proteins within
the two clusters were then enrolled into the functional analysis and
displayed by the “ClueGO”. Interestingly, the proteins in the two
rewired clusters were mainly enriched in the glycosaminoglycan
catabolic process, regulation of phosphatidylinositol 3-kinase
signaling and cell-matrix adhesion (WP-CC 1, Figure 2C) and
glycosaminoglycan catabolic process, regulation of smooth
muscle cell migration and proliferation, extracellular matrix
disassembly, and regulation of phospholipase activity pathways
(WP-CC 2, Figure 2D).

Comparison of the proteomes of TSC-
RAML, S-AML and renal cysts

According to the threshold (FC ≥ 2, p ≤ 0.05), there were
198 differentially expressed (DE) proteins in the pre-treatment
TSC-RAML group compared with the renal cyst group, including
73 upregulated and 125 downregulated molecules (Figure 3A,
above). Gene oncology (GO) functional enrichment revealed that
there were several dysregulated pathways, including platelet
degranulation, blood coagulation, hemostasis, cell-matrix
adhesion and humoral immune response within the two groups
(Figure 3B, above). Since the GO functional enrichment of DE
proteins may neglect pivotal information regarding the interactive
mechanism, we additionally applied gene set enrichment analysis
(GSEA) regarding hallmarks with the molecular signature database
(MSigDB v7.4). The results of GSEA hallmark analysis
demonstrated that compared with the renal cyst group, the pre-
treatment TSC-RAML group possessed two significantly
upregulated and seven significantly downregulated pathways
(Figures 3C, D). As expected, the angiogenesis pathway was
significantly upregulated in the plasma of TSC-RAML patients,
which was in accordance with the pathological process of

angiomyolipoma biosynthesis (Xian et al., 2011). In addition,
KRAS signaling up was upregulation.

Due to the characteristic symptoms and specific mutations of the
TSC1 or TSC2 genes, TSC-RAML is quite different from S-AML in
many aspects, including multifocal, a larger tumor volume and a
higher incidence of tumor rupture, which is the main cause of death
among adult TSC-RAML patients (Amin et al., 2017; Lam et al.,
2018). Therefore, we also analyzed the plasma proteins in TSC-
RAML and S-AML to illustrate their differences at the proteome
level.

According to the differential analysis, we identified 174 DE
proteins, namely, 77 upregulated and 97 downregulated proteins
(Figure 3A, middle). Similarly, the GO enrichment analysis of all DE
proteins suggested dysregulated blood coagulation, hemostasis, etc.,
(Figure 3B, middle). Furthermore, the hallmark GSEA showed that
compared with S-AML, TSC-RAML had high targets of
angiogenesis and the K-RAS signaling up pathway, which was
quite similar to the results of TSC vs. renal cysts (Figures 3C, D).

Differential analysis was also carried out within the post_TSC
versus pre_TSC groups to assess the effect of everolimus on plasma
proteomics. With the corresponding cutoff value, 40 upregulated
and 28 downregulated molecules were observed (presented in
Figure 3A, below), and the GO analysis revealed altered nuclear-
transcribed mRNA catabolic process, mRNA catabolic process, and
protein targeting to ER pathways after everolimus treatment
(Figure 3B, below). The GSEA pathway analysis revealed
upregulated MYC targets V1, estrogen response late, interferon
gamma response and the mTORC1 signaling pathway.
Interestingly, treatment with everolimus reversed almost all of
the altered pathways caused by the TSC gene mutations (Figure 4).

Diagnostic and prognostic role of serum
proteomics in TSC-RAML

To find potential biomarkers that could not only distinguish
TSC-RAML from renal cysts and S-AML but also predict the
response to everolimus, the DE proteins within the different
subgroups were analyzed.

Finally, 34 intersecting molecules were observed
(Supplementary Figure S2A). The top 11 upregulated and
downregulated proteins are shown in Table 2. From the
expression pattern, we can clearly see that most upregulated
proteins returned to normal levels after everolimus treatment and
vice versa.

TABLE 1 The baseline information of all enrolled patients.

Items TSC-RAML S-AML Renal cyst

Pre_treatment Post_treatment

Cases (n) 29 25 29 27

Age (years) 29 29.5 39 47

— (14, 42) (18, 42) (15, 54) (13,78)

Gender (M/F) 11/18 9/16 5/24 13/14
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From the AUC value, we found that these proteins could
perfectly distinguish TSC-RAML from renal cysts and S-AML
and within the treatment groups. Furthermore, we compared the
correlation between the protein level and maximum tumor volume

burden. After applying Pearson analysis, we identified five proteins
(out of the 34 intersected DE proteins) positively correlated with the
maximum renal angiomyolipoma (p < 0.05), namely, PCSK1N,
PMEL, HK1, GOT2 and SPTBN2 (as presented in

FIGURE 1
(A) The workflow of our study. (B) The tumor volume reduction rate of TSC-RAML after everolimus treatment.
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Supplementary Figures 2B–F). Since VEGF-D has been previously
proven to be a gold standard biomarker of TSC, we compared the
expression level of the intersected proteins with VEGF-D, and many
of the proteins demonstrated better discrimination (Figure 5).

Themetabolomics of TSC-RAML, S-AML and
renal cysts

To describe the metabolomic profiling of TSC-RAML, S-AML
and renal cysts, UPLC-MS was applied to measure the
concentrations of small metabolites.

Using the same samples and methods for grouping, we
measured the plasma metabolites of 110 samples. After pre-
analytical data processing (including quality control, missing
value estimation, log transformation and Z score scaling), we

identified a total of 517 metabolites for further analysis
(Supplementary Figure S1B).

First, an unsupervised t-SNE analysis (Figure 6A) was launched,
and from the results we can clearly see that there was a distinguished
altered metabolomic component within the 4 subgroups, especially
with the TSC (including pre-treatment and post-treatment TSC-
RAML) vs. renal cyst and S-AML, illustrating the specific
metabolomic profiling of TSC-RAML.

Similarly, to find the characteristic metabolomic clusters of
TSC-RAML, WGCNA was applied and six whole metabolome
coexpression clusters (WM-CC) were constructed, within which
“WM-CC 1”, “WM-CC 4” and “WM-CC 5” were significantly
correlated with TSC-RAML (Figure 6B). The metabolite
expression levels of the different modules were obviously
different within subgroups (Figure 6C). Furthermore, the
pathway enrichment of the three distinguished modules

FIGURE 2
Proteomics profile of all enrolled patients. (A) t-SNE analysis revealed the unique proteome of TSC-RAML. (B)WGCNA identified 8 whole proteome
co-expression clusters (WP-CC). (C) Functional analysis of the “WP-CC 1” cluster showed dysregulated cell-matrix adhesion. (D) Functional analysis of
the “WP-CC 2” cluster showed altered regulation of smooth muscle cell migration.
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illustrated their altered metabolomic patterns, including
upregulated arginine biosynthesis, cysteine and methionine
metabolism as well as downregulated amino sugar and
nucleotide sugar metabolism and tryptophan metabolism of
TSC-RAML (Figures 6D–F).

The comparison metabolomics of TSC-
RAML versus renal cysts and sporadic AML
and altered metabolomic profiles after
everolimus treatment

Similar to proteomics, the 110 samples were first divided into
4 subgroups (pre-treatment TSC-RAML, post-treatment TSC-
RAML, renal cysts and S-AML). When comparing pre-treatment
TSC-RAML vs. renal cysts, there were 272 differentially expressed
metabolites, namely, 116 upregulated and 156 downregulated
metabolomic molecules (depicted as a volcano plot in Figure 7A,

above). The pathway analysis revealed dysregulated tryptophan
metabolism, arginine biosynthesis and glycerophospholipid
metabolism (Figure 7B, above). In addition, the joint pathway
that integrates DE proteins and metabolites revealed a critically
dysregulated metabolism, including the citrate cycle, tryptophan
metabolism and pyruvate metabolomic disturbance (Figure 7C,
above).

For the TSC-RAML vs. S-AML group, a total of 283 DE
metabolites were confirmed, which included 106 upregulated and
177 downregulated metabolites (as depicted in Figure 7A, middle).
The pathway analysis revealed altered D-glutamine and
D-glutamate metabolism, nitrogen metabolism and porphyrin
and chlorophyll metabolism (Figure 7B, middle). The joint
pathway analysis stressed the dysregulated glucose metabolism
and nitrogen metabolism (Figure 7C, middle).

Regarding the metabolomic effect of everolimus treatment, 22 DE
metabolites were identified for the post-treatment vs. pre-treatment
TSC-RAML, including 9 upregulated and 13 downregulated

FIGURE 3
Comparison within different groups and functional analysis of DE proteins. (A) Volcano plot based on the threshold. (B) GO enrichment of DE
proteins. (C) GSEA items of the proteomics. (D) GSEA enrichment of all of the statistically significant items (**significantly upregulated; without
annotation: significantly downregulated).
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metabolites (Figure 7A, below). The pathway analysis showed that
everolimus treatment changed many pathways, including pyrimidine
metabolism and tryptophan metabolism (Figure 7B, below). The joint
pathway analysis showed many altered amino acid and nucleotide
metabolism pathways (Figure 7C, below).

Potential diagnostic and prognostic
metabolite biomarkers of TSC-RAML

To discover both prognostic and diagnostic metabolites, we
chose the intersected DE metabolites within different groups. As

FIGURE 4
The display of significant GSEA enrichment results within the different subgroups.
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a result, 13 DE metabolites were selected (Supplementary Figure
S3A), and the corresponding data are presented in Table 3. After
assessing the 13 metabolite levels with the maximum tumor
volume with Pearson correlation analysis, we did not find any
metabolites associated with the maximum tumor volume
burden (Supplementary Figures 3B–F). The relative
expression levels of some critical metabolites are depicted in
Figure 8, from which we can clearly see that treatment with
everolimus could reverse the altered metabolite levels caused by
the TSC mutations.

Discussion

In summary, our proteomics analysis found an upregulated
angiogenesis pathway, while metabolomics showed the multiple
altered amino acid pathways, such as the arginine biosynthesis,
tryptophan metabolism and glutamate metabolism. In addition,
plasma proteins such as PMEL and metabolites such as

S-adenosylmethionine showed potential diagnostic and
prognostic functions, demonstrating a significant role in
translational medicine, which fills a knowledge gap in
this field.

Functional analysis of proteomics

From the GSEA functional enrichment of TSC-RAML, we
found that the angiogenesis pathway was significantly
upregulated compared with both renal cysts and sporadic
AML patients. The WGCNA cluster and ClueGO enrichment
also identified characteristic upregulation of smooth muscle cell
migration and proliferation in TSC-RAML patients. As the name
suggests, angiomyolipoma is comprised of different proportions
of proliferative blood vessels, smooth muscle and adipose tissues
(Lam et al., 2018). Arbiser, J. L. et al. proved that TSC-associated
benign neoplasms, including renal angiomyolipoma, are highly
vascular and possess the ability to synthesize and secrete VEGF

TABLE 2 Potential diagnostic and prognostic proteins of TSC-RAML.

Proteins TSC vs. CY TSC vs. S-AML Post vs. Pre TSC

FC p-value AUC FC p-value AUC FC p-value AUC

PMEL 29.470 7.738*10−16 0.98 4.013 8.235*10−6 0.80 0.417 0.003 0.72

N4BP2 23.410 8.112*10−23 0.96 7.094 4.641*10−15 0.93 0.197 1.245*10−11 0.88

PCSK1N 19.641 1.319*10−22 0.97 8.969 2.364*10−15 0.94 0.306 1.287*10−8 0.85

AEBP1 18.236 4.138*10−20 0.96 19.609 3.524*10−21 0.99 0.254 7.560*10−8 0.87

TGFBR3 6.789 2.314*10−12 0.94 4.141 6.437*10−9 0.90 0.395 7.270*10−7 0.82

SDHA 6.475 2.174*10−12 0.90 2.772 3.488*10−9 0.85 0.300 4.956*10−11 0.90

CEACAM1 4.274 4.455*10−11 0.85 3.148 4.153*10−10 0.84 0.479 2.463*10−5 0.74

PIGR 3.507 8.261*10−11 0.85 2.587 7.037*10−9 0.82 0.351 3.544*10−7 0.86

COL15A1 3.203 4.183*10−8 0.81 3.276 8.893*10−9 0.84 0.437 9.088*10−6 0.80

PDCD1LG2 3.115 9.367*10−8 0.80 2.088 2.152*10−6 0.78 0.283 1.221*10−10 0.85

SFTPD 2.865 1.106*10−6 0.77 3.761 8.652*10−10 0.85 0.204 2.319*10−9 0.87

GOT2 0.052 1.775*10−3 77.1 0.116 9.052*10−3 0.76 6.584 0.049 0.65

RPS3 0.054 6.529*10−18 0.97 0.079 7.896*10−11 0.90 2.662 5.470*10−6 0.81

ACP1 0.061 7.662*10−27 0.98 0.093 4.018*10−6 0.95 4.153 8.919*10−6 0.96

HK1 0.071 1.245*10−13 0.96 0.473 3.383*10−4 0.75 6.133 0.012 0.62

UBA1 0.090 1.889*10−3 0.72 0.137 0.036 0.63 6.512 0.049 0.67

NAA15 0.112 9.777*10−3 0.76 0.095 0.012 0.73 2.142 1.210*10−8 0.86

CALD1 0.154 3.338*10−12 0.94 0.109 2.028*10−10 0.91 5.864 1.831*10−8 0.85

FLOT2 0.171 9.640*10−6 0.84 0.0890 1.248*10−22 0.96 3.083 0.003 0.78

RPS9 0.204 2.093*10−9 0.88 0.434 0.041 0.50 3.710 1.493*10−7 0.82

YWHAH 0.216 7.075*10−10 0.88 0.277 1.788*10−9 0.87 3.033 4.405*10−9 0.84

ACAT1 0.217 3.956*10−10 0.92 0.262 1.596*10−9 0.89 3.101 2.377*10−7 0.86
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in vitro (Arbiser et al., 2002). Later, researchers found that
mTOR1 plays a central role in the process of angiogenesis
through multifactorial ways, including promoting VEGF-A
expression by HIF-1α dependent and HIF-1α independent

mechanism (Dodd et al., 2015). Based on this hypothesis,
additional experiments have suggested that a combination of
rapalogs (Rapamycin and its analogs) and angiogenesis
inhibitors, such as everolimus plus sorafenib, may

FIGURE 5
The relative expression level of PMEL (A), GOT2 (B), HK1 (C), RPS3 (D), ACAT1 (E) and VEGFD (F)within different groups. The above sentence should
be added after "Relative proteins levels of some important molecules based on the UPLC-MS results.
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significantly decrease the tumor size and improve the
therapeutic efficacy by inhibiting mTORC1 and the mitogen-
activated protein kinase (MAPK) pathway (Yang et al., 2017),
which is superior to the treatment with single rapalogs alone.
Another study also found that angiogenesis inhibitors (sunitinib
and bevacizumab) have therapeutic effects on TSC-related
tumors, although they are not as effective as rapamycin
(Woodrum et al., 2010).

Another significantly upregulated pathway relative to renal
cysts and sporadic AML was K-RAS pathway activation, which
has been proven to play a critical role in the tumorigenesis of
various cancers and therefore has been implicated as a cancer
target during the past few years, such as in pancreatic ductal
adenocarcinoma (Mehra et al., 2021), lung cancer (Chu, 2020),
and breast cancer (Gupta et al., 2020). As an important
downstream target of the K-RAS signaling pathway, the role
of PI3K-Akt-mTOR axis in tumor occurrence and development
has been validated by a variety of researchers (Hillmann and
Fabbro, 2019). Although many drugs targeting the K-RAS
pathway have been explored to induce tumor regression in
other diseases (Kinross et al., 2011; Hillmann and Fabbro,
2019), the evidence for their use in TSC-RAML is limited.
Therefore, our results may provide new ideas for the
treatment of rapamycin-resistant TSC-RAML.

Protein biomarkers for differential diagnosis
and everolimus effect prognostication

In our analysis, we discovered that the plasma pre-melanosome
protein PMEL, antigen for HMB-45, demonstrates good differential
(AUC of TSC vs. CY: 0.98; AUC of TSC vs. AML: 0.80) and
prognostic ability (AUC of Post vs. Pre TSC: 0.72), as depicted in
Table 2. In addition, the PMEL level was also associated with the
tumor burden (r = 0.55, p < 0.001, as depicted in Figure
Supplementary Figure S2E). To the best of our knowledge, our
study is the first to discover the latent role of plasma PMEL in
diagnosing and predicting the outcome of TSC-RAML. Pigment
cell-specific PMEL is an extraordinarily well-conserved type I
transmembrane glycoprotein mainly engaged in the formation of
fibrillar sheets within melanosomes (Watt et al., 2013), and it is
associated with melanocyte-related diseases and pathological
neurodegeneration, such as Alzheimer’s Disease (AD) and
Parkinson’s disease (PD) (Watt et al., 2013).

In 2001, Stone, C. H. assessed the relationship between the
immunophenotypic and ultrastructural profile of renal
angiomyolipoma and found that all 27 renal angiomyolipomas
stained positive for HMB-45, regardless of their identification as
epithelioid, spindle, or adipocytic cells, suggesting all components
were coming from a common cell ancestor and providing a unitarian

FIGURE 6
Metabolomics profile of all enrolled patients. (A) t-SNE analysis revealed the distinguishedmetabolomic pattern of TSC-RAML. (B)WGCNA identified
six whole metabolites co-expression clusters (WM-CCs). (C) The relative expression levels of metabolites within three differential modules. (D) Pathway
analysis based on the “WM-CC 1” module revealed altered arginine biosynthesis. (E) Pathway analysis based on the “WM-CC 4” module showed altered
amino sugar and nucleotide sugarmetabolism. (F) Pathway analysis based on the “WM-CC 5”module demonstrated altered tryptophanmetabolism.
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concept for renal angiomyolipoma (Stone et al., 2001). In addition to
angiomyolipoma, pulmonary LAM cells are also positive for HMB-
45 (Venyo, 2016; Guo et al., 2020), indicating that neural crest cells, a
kind of migratory, multipotent embryonic cell, maybe the cell origin
for LAM and other TSC-related tumors (Delaney et al., 2014). Two
recent published articles have found the relative reduction of T
lymphocytes within the tumor microenvironment for TSC related
LAM (Guo et al., 2020) and AML (Wang et al., 2022b), suggesting
adoptive transferred PMEL-specific CD8+ T cells may be effective
because this cytotoxic T cells can specifically attack PMEL + tumor
cells (Hanada et al., 2019; Han et al., 2020).

Another protein, PCSK1N, also called proSAAS, an inhibitor of
prohormone convertase 1 (PC1) activity produced by
neuroendocrine cells, has been proven to be a biomarker for
many neurological disorders, including Alzheimer’s disease (AD),
Pick’s disease, and the Parkinsonism-dementia complex (Shakya
et al., 2020; van Steenoven et al., 2020). Encoded by the PSCK1N
gene, ProSAAS was initially identified as a neuroendocrine-specific

proprotein convertase binding protein and was classified into the
granin family of proteins (Shakya et al., 2020). In addition, proSAAS
can be proteolytically processed into a large number of active
neuropeptides, including SAAS, PEN and LEN, all of which have
been regarded as neurotransmitters (Khoonsari et al., 2019). Several
proteomic and transcript studies have found elevated proSAAS
protein levels in cerebrospinal fluid and upregulated proSAAS
expression in the brain during Alzheimer’s progression
(McDermott et al., 2019).

More than 90% of TSC patients have central nervous system
abnormalities, including cortical or subcortical tubers,
subependymal nodules, giant cell astrocytoma, and white matter
migration lines (Curatolo et al., 2015). These pathological lesions
can lead to many neurological symptoms, such as epilepsy and
tuberous sclerosis-associated neuropsychiatric disorders
(TANDs). In our analysis, we found that plasma PCSK1N was
significantly elevated compared with renal cyst (FC = 19.6, p =
1.3*10−22) and S-AML (FC = 8.97, p = 2.36*10−5) but was reduced

FIGURE 7
Comparison within different groups and functional analysis of the DE metabolomics. (A) Volcano plot based on the threshold. (B) Pathway
enrichment of DE metabolites showed the many altered metabolomic pattern within different groups, including tryptophan metabolism. (C) Joint
pathway analysis integrating the DE proteins and metabolites.
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dramatically after everolimus treatment (FC of post vs. pre = 0.3,
p = 1.29*10−8), which indicated that plasma PCSK1N may be a
useful marker for TSC.

Furthermore, some other biomarkers, including SDHA, GOT2,
HK1 and ACAT1, are involved in metabolic processes, including
glucose metabolism, and amino acid and fatty acid metabolism,
indicating the wide reprogramming of vital metabolic and
biochemical processes caused by TSC genemutations (Lam et al., 2018).

Functional analysis of metabolomics

In our comparative metabolomic analysis, we also found
characteristic plasma metabolomic patterns of TSC-RAML,
including arginine biosynthesis, glutamine and glutamate
metabolism, tryptophan metabolism, and glycerophospholipid
metabolism, which was consistent with the joint pathway
analysis integrating proteomics and metabolomics (as depicted
in Figures 6, 7). The overactivated mTOR pathway caused by
dysfunctional hamartin or tuberin could lead to a subsequent
metabolic alteration to sustain necessary proliferation and
survival, including aberrant metabolism of amino acids, glucose,
nucleotides, fatty acids and lipids. On the other hand, the altered
metabolites, particularly amino acids such as arginine and
glutamine (Wolfson and Sabatini, 2017), could reversely
stimulate mTOR via RAS related GTP binding proteins
(Mossmann et al., 2018), resulting in positive feedback. As one
of the several amino acids that can directly activate the mTOR
pathway, arginine can modulate cellular signaling pathways
through many mechanisms, such as been transformed into the
cytoplasm by solute carriers (SLCs) or by binding to L-amino acid

receptor, G-protein coupled receptor GPRCA6 (Chen et al., 2021).
In contrast, deprivation of arginine could convert Rag GTPases
into an inactive state and lead to the immediate deactivation of
mTORC1 (Darnell et al., 2018), thus suppressing the growth and
inducing cell death of various cancer types, and corresponding
clinical trials are being conducted (Chen et al., 2021). Our
metabolomic analysis showed that arginine biosynthesis was
significantly upregulated and that the fold change in L-arginine
could even reach 2.183 and 1.89 compared with renal cysts and
AML, respectively (p < 0.01), which suggested that arginine-
targeted drugs or an arginine-light diet may be a promising
choice for TSC-RAML patients.

In contrast to arginine directly activating the mTOR pathway,
glutamine can activate mTOR through a Rag GTPase-
independent pathway and it requires the participation of
ADP-ribosylation factor 1 (Arf1) (Yan et al., 2020). In
addition, TSC-deficient cells have also demonstrated
increasing consumption of glutamine to engage in an
overactive tricarboxylic acid cycle (which has already been
depicted in Figure 7) and create the antioxidant agent
glutathione (Lam et al., 2018). Another important pathway,
glycerophospholipid metabolism, which has been reported by
Bottolo, L. et al. in their research regarding TSC-related LAM,
was associated with the severity of lung disease and total body
burden of LAM (Bottolo et al., 2020). In our study, however,
glycerophospholipids showed an upregulated tendency but it did
not reach statistical significance (p > 0.05). We think the
difference may be due to the inner heterogeneity with TSC-
LAM and TSC-RAML and the limited samples within our two
studies. Therefore, larger sample size and more centers should be
engaged to validate these results.

TABLE 3 Potential diagnostic and prognostic metabolites of TSC-RAML.

Metabolites TSC vs. CY TSC vs. S-AML Post vs. Pre TSC

FC p-value AUC FC p-value AUC FC p-value AUC

Lucyoside K 6,657.429 4.883*10−51 1.0 73,025.948 1.443*10−56 1.0 0.662 1.26*10−3 0.76

His Trp 2,171.442 1.311 *10−31 1.0 36.0719 1.762*10−25 0.98 1.507 0.0483 0.68

Pro Pro Glu Phe 404.041 2.352*10−16 1.0 111.556 5.911*10−16 0.99 1.783 0.0377 0.67

Inosine 16.936 8.377*10−19 0.98 5.760 2.746*10−14 0.95 0.635 0.0240 0.67

Dipropyl sulfide 3.947 5.690*10−4 0.79 4.141 9.994*10−3 0.73 0.3487 0.0101 0.72

S-Adenosylmethionine 3.037 2.174*10−12 0.81 2.236 3.155*10−4 0.76 0.581 0.0256 0.71

Gly Trp Glu Ser 0.0671 3.920*10−10 0.94 0.0608 2.444*10−12 0.95 3.569 2.549*10−5 0.87

Adenosine 3′-monophosphate 0.105 8.144*10−17 0.96 0.0389 2.938*10−16 0.95 0.0565 0.0310 0.57

3,4-Methylenedioxymethamphetamine (MDMA) 0.1478 1.383*10−18 1.0 0.123 5.726*10−20 1.0 0.481 0.00613 0.71

Gly Asp Ala Ala 0.156 6.092*10−11 0.96 0.131 1.910*10−15 0.97 3.569 2.549*10−5 0.76

Aspartyl-Tryptophan 0.198 8.160*10−10 0.94 0.131 4.811*10−14 0.99 2.429 0.00145 0.79

Ketotifen-N-glucuronide 0.265 8.674*10−6 0.83 0.363 6.097*10−4 0.76 0.5145 6.686*10−4 0.75

alpha-Terpineol formate 0.547 1.776*10−8 0.91 0.524 6.846*10−7 0.87 0.6539 0.00913 0.70
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Metabolite biomarkers for differential
diagnosis and prognosis prediction

Regarding prognostic and diagnostic biomarkers, several
metabolites attracted our attention, including S-adenosylmethionine,

inosine, and adenosine 3′-monophosphate. As one of themost important
methyl donors, S-adenosylmethionine (SAM) plays a critical role in the
methylation of multiple biological processes, including DNA, RNA and
histone methylation as well as the synthesis of creatine and
phosphatidylcholine (Elango, 2020; Menezo et al., 2020), which may

FIGURE 8
Relative metabolite levels of some important molecules based on the UPLC-MS results. The relative expression level of Aspartyl-Tryptophan (A),
Dipropyl sulfide (B), Gly Trp Glu Ser (C), Inosine (D), Lucyoside K (E) and S-Adenosylmethionine (F) within different groups.
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be the reason why the level of inosine showed the same tendency as
SAM (as depicted in Figure 8). Researchers have found that
intracellular SAM can be detected by SAMTOR, a sensor for
SAM binding with KICTOR, thus leading to mTORC1 activation
and autophagy suppression (Kitada et al., 2021). In addition, SAM is
also the sole donor of aminopropyl groups, which have been proven
to be overexpressed in various cancers and are vital for cell
proliferation (Kaiser, 2020). SAM mainly originates from
methionine and ATP under the catalysis of methionine
adenosyltransferase (MAT). MAT contains three isozymes in
mammals. MAT1 and MAT3 are limited in hepatocytes, while
MAT2 are widely expressed in almost all tissues (Alam et al.,
2022). Accumulating evidence suggested that SAM and its
enzyme MAT2A are closed related with tumorigenesis of various
cancers, like colon and breast cancers (Alam et al., 2022). Targeting
SAM or MAT2A has proven beneficial among several type of
cancers, especially in MTAP-deleted cancers (Bruce et al., 2021;
Kalev et al., 2021). We suggest that a high level of plasma SAM could
satisfy a higher demand for nutritional supplies and altered
methylation pattern to sustain tumor progression, indicating that
SAM could be a potential pharmacological target, and further
research is required.

As retrospective research, our study has some potential
disadvantages. First, the small sample size due to the essence of rare
disease and lack of external validation may limit the wide application of
biomarkers in clinical. To overcome this drawback, we are carrying out

multi-center cooperation and the result will be published once finished.
In addition, although we have discovered many biomarkers for TSC-
RAML,more vitro and vivo experiments targeting themolecules should
be carried out to explore the inner mechanism.

In conclusion, we integrated the plasma proteomics and
metabolomics data of TSC-RAML and discovered altered
unique pathways as well as potential prognostic and diagnostic
biomarkers (as summarized in Figure 9). Our results provide new
thoughts regarding the underlying mechanism of TSC-RAML
and potential drug targets for future research.
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