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Editorial on the Research Topic 


Influence of potential diagnostic biomarkers in lung cancer


Lung cancer remains the leading cause of cancer-related death worldwide (1). However, in recent years, there have been significant advancements in patient prognosis, primarily due to the discovery of a variety of therapeutic options. These include targeted therapies such as tyrosine kinase inhibitors (TKIs), immunotherapy with immune checkpoint inhibitors (ICIs), treatment combinations, and new treatment schedules for conventional therapies (2). The successful implementation of these treatment options is closely related to the precise molecular and cellular characterization of tumor samples. By identifying specific molecular aberrations, such as EGFR, ALK, BRAF mutations, or MET amplifications, oncologists can tailor treatments to target the underlying genetic alterations (3). Additionally, understanding the histological types, disease stages, metastatic spread, and PDL-1 levels plays a crucial role in devising personalized treatment plans. However, despite the advancements in treatment options, the prognosis for a significant fraction of lung cancer patients remains poor. This can be attributed to the insufficiency of available methods and or biomarkers to accurately diagnose, stratify, and predict patient responses to the available treatment options (2). Addressing these limitations in prognostic accuracy is crucial, as it can lead to improved screening efficiency, better risk stratification, and the ability to tailor treatments more effectively. Consequently, this has the potential to reduce health disparities among patients.



1 Optimizing the arsenal of imaging screening tools for lung cancer

The primary radiographical screening method for lung cancer remains LDCT (Low-Dose Computed Tomography), which has proven to be beneficial and indispensable. However, its implementation has resulted in only a modest 25% reduction in mortality (4–7). A significant drawback of LDCT is the occurrence of false-positive results, ranging from 60% to 94%, which can introduce biases in both diagnosis and treatment decisions (4). As a result, there is a growing focus on research to explore new diagnostic and imaging solutions that can complement LDCT or other conventional screening methods, including endomicroscopy during bronchoscopy. One promising approach involves the development of optical imaging using fluorescent probes, such as FAP-specific chemical probes, in combination with clinically compatible imaging systems. This innovative method can provide a readout of enzymatic activity, enabling disease monitoring, prognostication, and potentially aiding in therapy stratification (Mathieson et al.). Furthermore, the use of biological biomarkers like EGFR mutation status in conjunction with LDCT and/or other imaging methods such as 8F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT)-based radiomics analyses showed promise in achieving both sensitive and specific early detection of NSCLC or predicting patients outcomes (Mathieson et al., Qi et al.).




2 Tissue biopsy in the era of precision medicine

Lung biopsies and samples from resectable surgery remain invaluable samples for screening and stratifying patients. They are utilized for histological and molecular characterization of the tumor bulk and the tumor microenvironment, thereby confirming the diagnosis and assessing disease progression (Qi et al., Gao et al.). Despite the challenges associated with obtaining these samples, researchers have made significant progress in refining the techniques used for their analysis. Advancements in minimally invasive biopsy procedures, such as endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and image-guided percutaneous biopsies, have reduced the invasiveness and increased the feasibility of obtaining representative tissue samples (7). Furthermore, the development of cutting-edge screening methods, including highly sensitive immunohistochemistry (IHC) panels and advanced next-generation sequencing (NGS) technologies includingg DNA and mRNA sequencing on Formalin-fixed paraffin-embedded (FFPE) samples, has significantly improved the amount and quality of information that can be extracted from limited biopsy specimens. These techniques allow for the detection of specific biomarkers, genetic mutations, DNA methylation (Gao et al.) and expression patterns associated with diagnostic potential including ASCL1, NEUROD1, POU2F3, YAP1 (Gao et al.).




3 liquid biopsy in the era of precision medicine

In the quest for enhanced prognostic accuracy and personalized medicine, liquid biopsy has emerged as a revolutionary non-invasive technique in lung cancer management including SCLC and NSCLC (Adenocarcinoma, squamous cell carcinoma, and large cell carcinoma) (7, Peng et al., Wan et al.). It consists in the analysis of tumor-derived components in bodily fluids, such as whole blood and its derivative (plasma and serum), urine, saliva and cerebrospinal. Liquid biopsy offers a comprehensive and real-time assessment of genetic mutations and molecular alterations. Biomarkers analyzed through liquid biopsy as discussed by Kan et al. includes circulating tumor cells (CTCs) (Hong et al.), circulating tumor DNA (ctDNA) (Peng et al., Knapp et al.), circulating microRNA (miRNA), non-coding RNA (ncRNAs), and tumor-derived extracellular vesicles (EVs) (8). Most of these biomarkers originate directly from the tumor sites and enter the peripheral bloodstream during the early stages of the disease, making them indicators of early-stage cancer or potential markers for early metastasis. Accordingly CTC count or CTC aneuploid subtypes in the peripherepheral blood were investigated as acceptable biomarkers for diagnosing lung cancer, detecting early metastasis and predict patient survival (Xie et al., Zhang et al.). Expression level of signaling protein (chemokines/cytokines, ligands, receptors and mediators) represents a large field of liquid biopsy biomarkers that was addressed in this Research Topic. Tian et al. provided evidence that plasma CXCL14 may serve as diagnostic and prognostic biomarkers in lung cancer. Liu et al. used a lectin microarrays and blotting analysis to detect the differential expression of glycoproteins in bronchoalveolar lavage fluids (BALF) from a cohort of 281 patients with lung 281 patients with lung cancers. This study demonstrated that Protein Glycopatterns in BALF is Potential Biomarker for Diagnosis of Lung Cancer. The findings related to liquid biopsy and circulating biomarkers underscore the immense potential of this field, especially when coupled with robust analytical tools for genomic (NGS), proteomic (mass spectrometry, multiplexed Elisa, flow cytometry, etc.), and metabolomic analyses (Wan et al.). The use of these advanced analytical techniques has opened up new horizons (Wang et al.) and expanded the possibilities for early detection and characterization of various Lung cancer (Knapp et al.). Nevertheless, regarding the work of Gargiuli et al. on a cross-comparison of high-throughput platforms for circulating miRNA quantification, major challenges remain in the field. In fact, standardizing methods and defining expression cut-offs that hold clinical significance are crucial for the successful implementation of liquid biopsy biomarkers.




4 In silico methods and tools for biomarker discovery

A widely used tool in biomarker research is the in silico approach, which focuses on retrieving large datasets that have already been published and made available in well-known repositories, such as The Cancer Genome Atlas (TCGA) and the Surveillance, Epidemiology, and End Results (SEER) databases (9, 10). This approach allows researchers to gain initial insights into the potential value of biomarkers. Additionally, it can strengthen findings observed in small cohorts by analyzing larger and more diverse datasets. In silico assays were used in this issue to explore the prognostic value of KEAP1/NFE2L2 mutations in NSCLC and the diagnostic value of SHOX2 and RASSF1A DNA methylation in early lung adenocarcinoma (Gao et al., Zhu H. et al.). The integration of TCGA data with in vitro experiments proved fruitful in identifying the novel prognostic/diagnostic potential of HPGDS, whose expression was associated with lipid metabolism and aggressiveness in lung adenocarcinoma (Shao et al.). This underscores the importance of combining computational analyses with experimental approaches to comprehensively understand the significance of biomarkers in disease development and progression.




5 Functional studies

Functional studies indeed, play a critical role in understanding how diagnostic/prognostic biomarkers influence various lung cancer cell processes, including proliferation, differentiation, resistance to apoptosis, and drug response. In this Research Topic, studies employ a range of methodologies, such as loss and gain of function experiments, in vitro analyses, and in vivo models, to demonstrate that: i) Inhibitor of DNA binding 2 (ID2) functions is a tumor suppressor in lung adenocarcinoma (Chen et al.); ii) Choline Kinase Alpha2 promotes lipid droplet lipolysis in NSCLC, and its phosphorylation status correlates with a poor prognosis (Zhu R. et al.). By employing such functional studies, researchers gain valuable insights into the mechanisms through which specific biomarkers impact lung cancer biology, providing a foundation for potential therapeutic strategies and improved patient outcomes.




6 Conclusion

In summary this Research Topic comprehensively addresses the current challenges related to the development of potential and accurate diagnostic biomarker in Lung cancers. As technology continues to advance, the future of diagnostic/prognostic biomarkers holds great promise in transforming the landscape of medical research and patient care in lung cancer.
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Background: Routine clinical surveillance involves serial radiographic imaging following radical surgery in localized non-small cell lung cancer (NSCLC). However, such surveillance can detect only macroscopic disease recurrence and is frequently inconclusive. We investigated if detection of ctDNA before and after resection of NSCLC identifies the patients with risk of relapse, and furthermore, informs about response to management.

Methods: We recruited a total of 77 NSCLC patients. A high-throughput 127 target-gene capture technology and a high-sensitivity circulating single-molecule amplification and resequencing technology (cSMART) assay were used to detect the somatic mutations in the tumor tissues as well as the plasma of NSCLC patients before and after surgery to monitor for minimal residual disease (MRD). Kaplan-Meier and Cox regression analysis were performed to evaluate the relapse-free survival (RFS) and overall survival (OS) of patients with predictor variables.

Results: Patients with a higher stage (III/IV) and preoperative ctDNA-positive status demonstrated a significant 2.8-3.4-fold risk and 3.8-4.0-fold risk for recurrence and death, respectively. Preoperative ctDNA-positive patients associated with a lower RFS (HR = 3.812, p = 0.0005) and OS (HR = 5.004, p = 0.0009). Postoperative ctDNA-positive patients also associated with a lower RFS (HR = 3.076, p = 0.0015) and OS (HR = 3.195, p = 0.0053). Disease recurrence occurred among 63.3% (19/30) of postoperative ctDNA-positive patients. Most of these patients 89.5% (17/19) had detectable ctDNA within 2 weeks after surgery and was identified in advance of radiographic findings by a median of 12.6 months.

Conclusion: Advanced stage and preoperative ctDNA-positive are strong predictors of RFS and OS in localized NSCLC patients undergoing complete resection. Postoperative detection of ctDNA increases chance to detect early relapse, thus can fulfill an important role in stratifying patients for immediate further treatment with adjuvant and neoadjuvant therapy.

Keywords: non-small cell lung cancer, circulating tumor DNA, circulating single molecule amplification and re-sequencing technology, prognostic biomarker, minimal residual disease


INTRODUCTION

Lung cancer is a leading cause of cancer-related mortality, with an estimated nearly 2.1 million new cancer cases diagnosed leading to an estimated 1.8 million deaths worldwide in 2018 (1). In the United States, it is estimated that approximately 230,000 new cases of lung cancer will be diagnosed, and about 140,000 people will die from the disease in 2019 (2). For early-stage non-small cell lung cancer (NSCLC) patients, the best chance for cure is a complete (R0) resection by anatomic lung resection with mediastinal lymph node dissection. The 5-year overall survival (OS) of this approach is 61.5% and 5-year recurrence-free survival (RFS) is 59.0% (3). Following a radical surgery, serial radiographic imaging is routine. Because such surveillance detects only macroscopic recurrence, it is frequently inconclusive due to postoperative normal tissue changes. Given the population health burden of lung cancer, there is an imperative to develop a sensitive and specific biomarker that can detect the molecular residual disease (MRD) before macroscopic recurrence.

Plasma circulating tumor DNA (ctDNA) are DNA fragments in the blood that contain tumor-specific somatic alterations. It can be collected at minimal discomfort to the patient. The detection of ctDNA is a promising strategy for the prognosis and surveillance of solid tumors (4–6). It can predict the recurrence of non-metastatic breast, colon and pancreas cancers (7–9). Likewise, it can be detected in the postoperative blood sample in 94% of lung patients experiencing recurrence, and the results precede radiographic findings by a median of 5.2 months in 72% of patients (10). Being able to identify microscopic remnants of tumor cells and metastases can drastically change treatment algorithms, especially for localized lung cancer. In this study, we set out to determine whether preoperative or postoperative ctDNA positive status can predict survival outcomes in patients with localized lung cancer.

Furthermore, the detection of a positive EGFR mutation in the plasma of NSCLC patient during third cycle of treatment by erlotinib or chemotherapy has been associated with a reduced progression-free survival (PFS) and OS (11). We also addressed the hypothesis that post-surgical ctDNA detection could guide personalized interventions of adjuvant and neoadjuvant therapy.



MATERIALS AND METHODS


Study Cohort

A total of 81 patients diagnosed with solitary lung nodules intended for surgery at the Thoracic Surgery Department of The Second Xiangya Hospital were collected into our study between February 2014 and December 2015. All patients gave their written informed consent for specimen collection, provision of clinical information, and biomarker analysis before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Second Xiangya Hospital, Central South University, Changsha (Project identification code: 2014S006).



Study Inclusion Criteria

Eligible patients were age >18 years old with solitary lung nodules who agreed to the curative-intent treatment in this study. Preoperatively, the patients received chest computer tomography (CT) scans. Their blood samples were collected 1–7 days before surgery. Postoperatively, the patients received surveillance CT scans or positron emission tomography (PET)-CT scans at a series of scheduled time-points (2 weeks, 3, 6, 12, 18, and 24 months). Blood samples were also collected from patients during these follow-up visits. Patients with stage II or higher, if their physical condition permits, were further treated by adjuvant chemotherapy or target therapy (with or without radiotherapy) 1 month after surgery. If a recurrence or metastasis was suspected, a biopsy was performed to confirm the diagnosis. If a biopsy was not possible, then surgery, chemotherapy, radiotherapy or targeted therapy would be administered according to the specific situation.



Pathological Analysis of Tumor Specimens

Tumor specimens were collected by surgery. Macro-dissection was performed to enrich the tumor tissue percentage to around 80% before DNA extraction. Histologic evaluation of stained FFPE tumor sections was used to confirm the diagnosis of NSCLC. For the clinical staging of disease, the criteria from the TNM staging system of the International Association for the Study of Lung Cancer (version 8) was used.



DNA Isolation From FFPE and Plasma Samples

Genomic DNA and total RNA Isolation from FFPE specimen blocks or scrapings from cytological slides were performed using the AmoyDx FFPE DNA and RNA Kits with nucleic acid purification spin columns (Amoy Diagnostics, Xiamen, China). By spectroscopy analysis, all purified DNA and RNA samples were verified to be of high quality for mutation analysis. Matching 10-mL blood samples, collected in Streck tubes (Streck, La Vista, NE, United States), was taken by venipuncture within 48 h of tumor specimen collection. DNA for the cSMART assay was prepared from 2 mL of purified plasma using a commercially available kit (QIAamp DNA Blood MiniKit, Qiagen, Hilden, Germany). The concentration of the purified DNA was measured by the Qubit® dsDNA HS Assay Kit (Life Technologies, Grand Island, NY, United States).



cSMART Plasma Assay

A novel cSMART assay (12, 13) was used for the detection and quantitation of hotspot oncogenic ctDNA mutations targeting 127 recurrent mutations in lung cancer (Supplementary Table S1). In brief, 50 ng of FFPE DNA was fragmented in NEB Next dsDNA fragmentase buffer (New England Biolabs, MA, United States) to an average size of 300 bp. DNA libraries were generated as previously described (14) except that a degenerate 4 bp barcode sequence was incorporated into the sequencing adaptor for uniquely identifying and counting single allelic molecules. Single DNA molecules were circularized and targeted with back-to-back primers located within 20 to 48 bp from the mutation loci to ensure maximum sensitivity and specificity for mutation detection. The ctDNA status was classified as detectable (ctDNA-positive) or undetectable (ctDNA-negative) according to mutation ratio. A mutation ratio equal to 0 is defined as ctDNA-negative and greater than 0 is defined as ctDNA-positive.



Statistical Analyses

Data were summarized using descriptive statistics. The ctDNA variables in the different groups were compared using the Kruskal–Wallis non-parametric test. Fisher’s exact test was used to test for the association between ctDNA detection and histological subtypes. The primary outcome measure was RFS as evaluated by standard RECIST criteria. RFS was defined as the length of time after surgery that the patient survives without any signs or symptoms of lung cancer. OS was defined as the length of time from the date of diagnosis until death. Curves for RFS and OS were constructed using the Kaplan–Meier method and compared using the log-rank test. Multivariable Cox proportional hazards regression analyses for RFS and OS were performed using the Wald test to assess the predictive ability of preoperative and postoperative ctDNA. Analyses were performed using statistical software Graphpad Prism (version 7.0) and SPSS (version 22). Power calculation for Cox proportional hazards regression was estimated using the R package “powerSurvEpi1.” We used the powerEpi function that takes into account the correlation between two covariates, which we considered to be stage and preoperative ctDNA status. For RFS and OS, taking a minimum postulated hazard ratio (HR) of 2.7 and 3.7, power estimates were 69 and 77%, respectively, at a type I error rate of 0.05.



RESULTS


Patient Characteristics and Tissue Capture

After accounting for missing data, 77 patients underwent surgery for localized lung cancer were included in the final analysis (Figure 1). We collected a total of 77 tissue samples. Accompanying this was the collection of 77 preoperative blood samples that belonged to 77 patients and 199 postoperative blood samples drawn at different times from 71 patients (Supplementary Table S2).


[image: image]

FIGURE 1. Consort diagram of patient enrollment, specimen collection and clinical management.


Table 1 and Supplementary Table S3 summarizes the clinical characteristics of patients. Their median age was 60.3 years old, have a male to female ratio of 2.7 and most were never smokers (49, 63.6%). Those diagnosed with adenocarcinoma, squamous carcinoma, and others, the numbers were 40 (51.9%), 30 (39.0%), and 7 (9.1%) patients, respectively. Those with tumors located in the right-upper, right-middle, right-lower, left-upper, and left -lower lobes, the numbers were 26 (33.8%), 2 (2.6%), 18 (23.3%), 20 (26.0%), and 11 (14.3%) patients, respectively. Those diagnosed with disease stages I, II, III, and IV, the numbers were 41 (53.2%), 18 (23.4%), 16 (20.8%), and 2 (2.6%) patients, respectively. The two cases of stage IV patients were accidentally found to have pleural implant metastasis during operation.


TABLE 1. The clinical characteristics of patients.

[image: Table 1]All the 77 patients harbored at least one mutation in their tumor tissue, with an average of 1.2 gene mutations per patient (Supplementary Table S4). The most frequent mutations observed in tissues located in the TP53 (60%), EGFR (21%), KEAP1 (9%), NAV3 (8%), CDKN2A (8%), and PIK3CA (8%) genes (Supplementary Figure S1).



Preoperative and Postoperative ctDNA Status

Preoperative ctDNA-positive status was detected in 46 of 77 patients (59.7%). They constituted 43.9% (18/41), 72.2% (13/18), 81.3% (13/16), and 100% (2/2) of patients with stage I, II, III, and IV, respectively (Figure 2A). They further associated with males, never smokers, lung squamous carcinoma and visceral pleural invasion (p < 0.01) (Figure 2C). There was no association between preoperative ctDNA-positive status and age or BMI. Among 46 patients with positive preoperative ctDNA, the average number of gene mutation is 1.46, with one gene mutation detected in 29 cases, 2 in 13 cases, and 3 in 4 cases (Supplementary Table S2).
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FIGURE 2. (A) Fraction of patients with detectable preoperative ctDNA in NSCLC at cancer stage I∼IV. (B) Fraction of patients with detectable postoperative ctDNA in NSCLC at cancer stage I∼IV. (C) Characteristics associated with positive preoperative ctDNA. (D) Negative conversion ratio of preoperative ctDNA at cancer stage I∼III.


Postoperative ctDNA-positive status was detected in 30 of 71 patients (42.25%). They formed 29.0% (11/38), 41.2% (7/17), 71.4% (10/14), and 100.0% (2/2) of patients with stage I, II, III, and IV, respectively (Figure 2B). Among the 41 patients with detectable preoperative ctDNA, 22 of them continued to have detectable postoperative ctDNA. The negative conversion ratios were 62.50% (10/16), 41.67% (5/12), 36.36% (4/11), and 0.0% (0/2) of patients with stage I, II, III, and IV, respectively (Figure 2D).



Preoperative and Postoperative ctDNA-Positive Statuses Associated With Lower Recurrence-Free Survival (RFS) and Overall Survival (OS)

During the median follow-up period of 46 months in this study, 35 (45%) patients had a cancer recurrence, and 25 (32.47%) patients died from cancer recurrence/metastasis. In stage I–III patients, those with preoperative ctDNA-positive status had a lower RFS and OS than those who did not (P < 0.001; Figures 3A,B and Supplementary Tables S2, S5). During the follow-up, patients with postoperative ctDNA-positive status were detected in at least a one-time point for 28 (39%) patients. Among these, 17 of 28 (61%) patients experienced a recurrence, and 13 of them eventually died due to recurrence/metastasis. In stage I–III patients, those with postoperative ctDNA-negative status had a higher RFS and OS than ctDNA-positive patients (P < 0.05; Figures 3C,D and Supplementary Tables S2, S5).
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FIGURE 3. (A) Kaplan–Meier estimates of recurrence-free survival (RFS) for all assessable patients undergoing curative intent surgery for early NSCLC cancer, stratified by pre-operative ctDNA status: detectable (positive) versus undetectable (negative). (B) Kaplan–Meier estimate for overall survival (OS) for matched patients, stratified by pre-operative ctDNA status. (C) Kaplan–Meier estimates for RFS, stratified by postoperative ctDNA status. (D) Kaplan–Meier estimates for OS, stratified by post-operative ctDNA status. (E,F) Kaplan–Meier estimates for RFS (E) and OS (F) for patients’ whose ctDNA status changes from detectable (positive) pre-operatively to undetectable (negative) post-operatively compared with patients whose ctDNA status remains undetectable (negative) both pre- and post-operatively.


We investigated patients whose ctDNA turned negative after surgery, indicating their lesion was completely removed. Among the 41 patients who were preoperative ctDNA-positive, 22 continued to have detectable postoperative ctDNA. Patients with undetectable postoperative ctDNA (ctDNA turned negative) had a significantly better RFS and OS than detectable postoperative ctDNA (ctDNA stayed positive) (p < 0.05; Figures 3E,F and Supplementary Tables S2, S5). Postoperative ctDNA preceded the radiographic findings or clinical symptoms by a median of 12.6 months in 19 (63.3%) of patients. In these 19 patients, 17 were postoperative ctDNA-positive within 2 weeks after surgery, implying ctDNA was not fully cleared after surgery and they likely had an MRD. We also found that among the 31 patients who were preoperative ctDNA-negative, 8 have newly detectable postoperative ctDNA.



Cox Regression Analysis for RFS and OS in Patients With NSCLC

Independent univariate analysis showed that stage, preoperative and postoperative ctDNA statuses were significant clinicopathological factors for RFS and OS (Table 2). After multivariate analysis, only stage and preoperative ctDNA status remained significant for RFS and OS (p < 0.05). The results indicated that having a higher stage (III/IV) compared to a lower stage (I/II) conferred a 2.8- or 3.8-fold risk of recurrence/metastasis or death, respectively. Also, having a preoperative ctDNA-positive status, compared to ctDNA-negative status, conferred a 3.4- or 4.0-fold risk of recurrence/metastasis or death, respectively.


TABLE 2. Recurrence-free survival (RFS) and overall survival (OS) analysis by clinicopathologic variables and pre- and post-operative ctDNA status.
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DISCUSSION

Our findings indicated that among other factors, having a lower disease stage and a preoperative ctDNA-negative status were two strong predictors of a better outcome in RFS and OS. The Kaplan-Meier for RFS and OS stratified by ctDNA detection status also showed that before and after surgery, the ctDNA-negative NSCLC patients had superior RFS and OS compared with ctDNA-positive patients.

We found the ctDNA detection rate dropped from 59.7 to 42.25% after the curative resection of the primary tumor, with most reductions in stage I and II patients. A study of 41 patients tracking ctDNA mutation frequency of 6 tumor driver genes (EGFR, KRAS, TP53, BRAF, PIK3CA, and ERBB2) within 10 days before and after surgical resection, also reported a ctDNA mutation frequency decreased from a median of 8.88 to 0.28%, with most reductions seen in patients with stage I disease (15). In another study of 76 NSCLC patients who underwent curative-intent surgery, the ctDNA mutation frequency decreased from 7.94% ± 4.78% before surgery to 0.28% ± 0.32% after surgery (p < 0.001) (16). These results imply that earlier stage lung cancer patients are less likely to have residual disease after resection.

Early-detection strategies have the potential to reduce cancer morbidity and mortality (17). Our previous study have shown that ctDNA can be used in the early diagnosis of lung cancer (18). In this cohort, even for stage I patients, 48.8% of patients have detectable levels of ctDNA in their plasma. In stage III disease, more than four-fifths of patients have detectable ctDNA. Another study has shown ctDNA is detectable in 47% of patients with stage I cancers of any type, and 55, 69, and 82% of patients with stage II, III, and IV cancers, respectively (19).

At present, most solid tumors are treatable by surgery, and even when occult metastasis has occurred, adjuvant therapy or additional surgery can contribute to cure in certain patients (20). Studies are demonstrating the necessity and efficacy of adjuvant and neoadjuvant therapy in early-stage NSCLC patients (21, 22). However, adjuvant chemotherapy in early-stage NSCLC provide an absolute survival benefit of only 4–5% compared to observation or best supportive care (21). Because the current staging model does not accurately identify the molecular residual disease (MRD) or micro-metastases, it could misguide patient selection. Validation of predictive biomarkers is urgently required to facilitate patient selection and risk stratification. Postoperative ctDNA monitoring can help with the identification of patients who could receive the most benefit from neoadjuvant and adjuvant therapy.

Postoperative ctDNA detection of patients correlates with better monitoring of relapse (9). Abbosh et al., report that ctDNA-positive status associated with the relapse of disease after intent-to-cure surgery in NSCLC patients. In that study, 13 of 14 patients experienced relapse had measurable ctDNA before demonstrating clinically evident disease and detection of ctDNA preceded the radiographic diagnosis by a median interval of 70 days. In another study that assessed the MRD in patients with lung cancer using CAPP-Seq, ctDNA was detected after curative-intent therapies among 20 of 37 patients, all of whom had disease recurrence and ctDNA associated with disease relapse earlier than CT imaging by a median lead time of 5.2 months in 72% of lung cancer patients (10). On the contrary, a very few, 1 out of 10 patients, exhibited persistent or recurrent ctDNA levels who did not relapse during a follow-up period of median 775 days (23). The time interval between the postoperative increase in ctDNA levels and the clinical diagnosis of cancer recurrence opens up a window of opportunity for intervention.

Our study focused on the effect of preoperative and postoperative ctDNA status on survival in resectable lung cancer. This study has a relatively long follow-up time, and the conclusion is persuasive. Nevertheless, this article has certain disadvantages. In our cohort, 25 patients received adjuvant therapy, of whom 21 received adjuvant chemotherapy. Because the designed time point of blood collection is not completely coincident with adjuvant chemotherapy, 8 patients lack the comparison before and after chemotherapy, and 7 patients have negative ctDNA before and after adjuvant treatment. Therefore, our data cannot evaluate the impact of adjuvant chemotherapy on ctDNA. However, previous studies have confirmed the possible role of circulating DNA in judging the efficacy of chemotherapy (24, 25). A well-designed clinical trial is needed to verify the role of ctDNA in evaluating the efficacy of neoadjuvant therapy for lung adenocarcinoma.

In summary, when used in conjunction with AJCC staging, ctDNA provides a relatively precise risk stratification. The serial monitoring of ctDNA in a larger cohort of patients receiving neoadjuvant or adjuvant treatment in the future would provide a more robust indication regarding patient selection.
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Lung cancer is one of the most prevalent and life-threatening neoplasias worldwide due to the deficiency of ideal diagnostic biomarkers. Although aberrant glycosylation has been observed in human serum and tissue, little is known about the alterations in bronchoalveolar lavage fluid (BALF) that are extremely associated with lung cancer. In this study, our aim was to systematically investigate and assess the alterations of protein glycopatterns in BALF and possibility as biomarkers for diagnosis of lung cancer. Here, lectin microarrays and blotting analysis were utilized to detect the differential expression of BALF glycoproteins from patients with 80 adenocarcinomas (ADC), 77 squamous carcinomas (SCC), 51 small cell lung cancer (SCLC), and 73 benign pulmonary diseases (BPD). These 281 specimens were then randomly divided into a training cohort and validation cohort for constructing and verifying the diagnostic models based on the glycopattern abundances. Moreover, an independent test was performed with 120 newly collected BALF samples enrolled in the double-blind cohort to further assess the clinical application potential of the diagnostic models. According to the results, there were 15 (e.g., PHA-E, EEL, and BPL) and 14 lectins (e.g., PTL-II, LCA, and SJA) that individually showed significant variations in different types and stages of lung cancer compared to BPD. Notably, the diagnostic models achieved better discriminate power in the validation cohort and exhibited high accuracies of 0.917, 0.864, 0.712, 0.671, and 0.781 in the double-blind cohort for the diagnosis of lung cancer, early stage lung cancer, ADC, SCC, and SCLC, respectively. Taken together, the present study revealed that the abnormally altered protein glycopatterns in BALF are expected to be novel potential biomarkers for the identification and early diagnosis of lung cancer, which will contribute to explain the mechanism of the development of lung cancer from the perspective of glycobiology.




Keywords: lung cancer, bronchoalveolar lavage fluid, protein glycosylation, lectin microarray, diagnostic model



Introduction

Lung cancer is the most frequent malignancy, with the highest incidence and mortality in both sexes worldwide, accounting for approximately 2.1 million new cases (11.6% of all tumors) diagnosed and 1.8 million deaths (18.4% of all tumors) per year globally, which seriously endangers human health (1). According to the different pathological characteristics, lung cancer is classified into small cell lung cancer (SCLC) and non-SCLC (NSCLC) clinically (2). The latter can be further subdivided into three main histological subtypes of adenocarcinoma (ADC), squamous cell carcinoma (SCC), and large cell carcinoma, and rarer variants such as mixed or undifferentiated pulmonary carcinomas (2). The major cause of this poor prognosis is primarily related to diagnosis at an advanced stage (stage III or IV) for the majority of patients with lung cancer and their therapeutic limitations that miss the optimal treatment opportunity (3). Therefore, early diagnosis is pivotal, and it is estimated that 36%–73% of patients will survive longer than 5 years if they are identified at an early stage (stage I or II) (4, 5).

To improve the early detection and outcome of lung cancer patients, several systematic randomized clinical trials have recommended using high-sensitivity imaging technology such as low-dose computed tomography (LDCT) as a screening tool for monitoring high-risk individuals (6). Although LDCT scan can reduce mortality, its clinical utility is restricted due to the high false positive rate with multiple screenings and unnecessary radiation exposure (7). Furthermore, substantial progress has been made in our understanding of tumor biological processes and advancement in treatment strategies, which has led to the development of targeted therapy for lung cancer with significant improvement in the overall progression-free survival rate (8). Despite this array of new targeted immunotherapy treatments, a cure remains elusive for the majority of patients because of the inevitable drug resistance (9). Consequently, to overcome the obstacles and complement current diagnosis and screening methods, the discovery of potential protein biomarkers with high sensitivity and specificity for early detection, therapy guidance as well as prognosis monitoring is an urgent priority. To date, numerous studies have focused on searching for indicators in blood, yet the clinical application of traditional serum-based biomarkers is still far from satisfactory owing to its low diagnostic efficacy (10–12). Currently, protein biomarker detection using body fluids such as urine, saliva, exhaled breath condensate, and pleural effusion has emerged as a promising modality for cancer diagnosis and monitoring of disease progression mainly because of its minimal invasiveness and easy accessibility (13–16). Bronchoalveolar lavage fluid (BALF), a type of proximal biofluid routinely obtained from the segmental bronchus of interest during flexible fiberoptic bronchoscopy in individuals with suspected pulmonary disease, has also been considered as a useful, safe and minimally invasive biological specimen for lung cancer biomarker discovery (17). By utilizing this approach, airway components can be recovered from a large area of lung parenchyma (18). This is particularly important for preinvasive and early cancer research, as these primary lesions may have no visible histological changes under bronchoscopy or cannot be reached by the biopsy needles, which makes BALF potentially useful in the clinical for early diagnosis of lung cancer (19). Interestingly, the fraction of BALF that is not required for standard pathological procedures could be conveniently used for proteomics analysis and lung cancer biomarker detection. BALF has its merit in that it provides varied information including immunologic, inflammatory and infectious processes and can directly reflect the true physiological or pathological status of the patients (17). Detection of proteins in BALF from patients with lung cancer can provide direct information on exposure within the lung.

Glycosylation is one of the most critical and heterogeneous post-translational modifications during protein biosynthesis, and it is an enzyme-directed site-specific process, which is also critical for a wide range of biological processes, including microbial infection, cell differentiation, tumor metastasis, as well as cell carcinogenesis (20, 21). To our knowledge, more than 50% of cellular proteins, including most secreted proteins, cell surface proteins and intracellular proteins, are glycoproteins modified by different types of glycan structures that closely reflect the physiological status of the cell (22). Hence, research efforts concentrating on the effect of disease state on the glycan biosynthesis may be more direct and evident than that of cancer-related protein alterations, which also contributes to the diagnosis and understanding of disease (23). It is now well manifested that the formation of abnormal glycosylation is a key feature of malignant transformation of tumor cells (24, 25). Altered protein glycosylation often occurs early in tumor development, and the expressions of certain tumor-associated glycans in precursor lesions of different types of cancer have become powerful early diagnostic markers (23). Aberrant glycosylation has been observed during the development and progression of lung cancer, including changes in expression, fucosylation, N-glycan branching types, and increased sialylation on proteins or glycolipids (26–28). By using systemic glycomics strategies, we can further examine disease-related changes in glycoproteins. Researchers detected the differential glycopatterns of lung cancer tissue and nonmalignant tissue at the level of individual glycan structures by nLC-chip-TOF-MS (29). In addition, the relevant study also developed a serum mass profile-based signature to identify patients with early stage of lung cancer, which revealed that several components with abundances could distinguish patients with early-stage lung cancer from healthy high-risk smokers (30–32). In the past two decades, the use of lectins is one of the main methods to study glycosylation (33). A lectin microarray is composed of a group of lectins with unique glycan-binding properties printed on a solid support. These lectins are immobilized in a high-density matrix and exhibit a multivalent display (34). Currently, with the emergence of high-throughput glycomic techniques, lectin microarrays are capable of quantitative analysis of N- and O-linked glycans simultaneously based on subtle differences with minimal sample preparation and have become a primary and valuable approach for investigating the glycosylation of original intact samples without the need for glycan release, separation or purification (34, 35). Furthermore, analysis of various types of biological specimens, such as cells, tissues, and body fluids, by lectin microarrays has been developed in different diseases (36–41). For instance, Hirao et al. (42) performed lectin microarray analysis on lung cancer tissue and cell lines and found AAL, HHL, and ConA as lectin probes specific to NSCLC.

In this exploratory study, to investigate lectin-specific glycosylation changes in BALF associated with lung cancer, lectin microarrays were applied to compare different or similar alterations in glycopatterns between benign pulmonary disease (BPD) and lung cancer with different types (including ADC, SCC, and SCLC) as well as different stages [including early stage lung cancer (LC-ES) and advanced stage lung cancer (LC-AS)]. In addition, we also assessed the possibility of aberrant glycopatterns in BALF as novel potential biomarkers for the identification and early diagnosis of lung cancer.



Materials and Methods


Ethics Statements

The collection and use of all human BALF samples for research presented here were approved by the Ethical Committee of the First Affiliated Hospital of Xi’an Jiao Tong University in Xi’an, China. Written informed consent was received from patients for the collection of their BALF. The study methodologies were conducted in accordance with the ethical guidelines of the Declaration of Helsinki.



Training Cohort and Validation Cohort

BALF samples were obtained from patients who were undergoing fiberoptic bronchoscopy examination at the First Affiliated Hospital of Xi’an Jiaotong University from July 2018 to March 2019. A total of 208 diagnosed lung cancer (80 ADC, 77 SCC, and 51 SCLC), 73 clinical controls with detected BPD but only with non-malignant lung disease consisting of pneumonia, tuberculosis and bronchiectasis, as confirmed by biopsy, were selected for the current study. All 281 subjects were randomly divided into a training cohort (n=163) and a validation cohort (n=118) for the construction and verification of the diagnostic models. Patients were studied in terms of their baseline clinicopathological characteristics and are presented in Table 1. The enrolled patients were newly diagnosed with the disease by histopathology, and those who had taken any treatment, such as preoperative radiotherapy, chemotherapy, chemoradiotherapy or curative, were excluded. BALF samples were collected by instillation and aspiration of 10 to 20 ml of sterile saline (0.9%) in the appropriate bronchopulmonary segment during fiberoptic bronchoscopy. After extraction from the respiratory airways, the majority of BALF samples appeared to be clear, and any samples with a slightly reddish appearance due to blood contamination were excluded. Approximately 10 ml of collected BALF was immediately placed on ice and thereafter Protease Cocktail Inhibitor added at a concentration of 1 μl/ml BALF to minimize protein degradation. The total volume was then centrifuged at 4,000 rpm and 4°C for 20 min to remove the cellular fraction and macromolecular insoluble materials. The supernatant was collected and then concentrated using 4 ml 3 kDa Amicon centrifugal filters. After the protein concentration was determined by the BCA assay (Beyotime Institute of Biotechnology, China), the resultant BALF was aliquoted into 1.5 ml cryotubes and stored at -80°C until the consecutive analysis.


Table 1 | Baseline clinicopathological characteristics of the study cohorts.





Double-Blind Cohort

To properly confirm the availability of the diagnostic models established in the training cohort, another independent cohort of 120 BALF specimens was collected between April 2019 and July 2019 at the same hospital using similar selection criteria and sample processing strategies described above to serve as the double-blind cohort for this study. The results were compared with the clinical final diagnosis to evaluate the diagnostic value for lung cancer. A summary of the patient’s clinical characteristics of each group is also provided in Table 1.



Fluorescent Labeling of BALF Proteins

First, 100 μg of BALF proteins were labeled with Cy3 fluorescent dye (GE Healthcare, Buckinghamshire, UK). Next, labelled proteins were separated from the excess free dye by Sephadex G-25 columns (GE Healthcare) according to the manufacturer’s instructions. Finally, the purified Cy3-labeled BALF proteins were quantified and stored at -20°C in the dark until processing.



Lectin Microarray

The Cy3-labeled proteins were incubated in a lectin microarray to detect different glycoproteins among clinical samples. A lectin microarray was produced using 37 lectins (Vector Laboratories, Sigma-Aldrich, and Calbiochem) with different binding preferences covering N- and O-linked glycans that were spotted on homemade epoxysilane-coated slides with Stealth micro spotting pins (SMP-10B) (TeleChem,USA) using a Capital smart microarrayer (CapitalBio Beijing, China). The specifically recognized glycan structures by lectin are summarized in the Supplementary Material, Table S1. The concentration of each lectin was 1 mg/ml in a buffer recommended by the manufacturer containing 1 mM of the appropriate monosaccharide. As shown in Figure 1A, each lectin was spotted in triplicate per block with quadruplicate blocks on one slide. BSA and BSA conjugated with Cy3 were used as negative and positive controls to verify the feasibility of the lectin microarray. The slides were placed in a humidity-controlled incubator at 50% humidity overnight to immobilize the lectins. After immobilization, the slides were blocked with blocking buffer containing 2% BSA in 1×PBS (0.01 mol/L phosphate buffer containing 0.15 mol/L NaCl, pH 7.4) for 1 h and rinsed twice with 1× PBS. Then, 6 μg of Cy3-labeled BALF proteins diluted in 120 μl of hybridization buffer (2%, w/v, BSA, 500 mM glycine and 0.1%, v/v, Tween-20 in PBS, pH 7.4) was incubated on the blocked slide within the chamber for 3 h at room temperature in the dark. After incubation, the microarray was rinsed twice with 1× PBST (0.2%, v/v, Tween 20 in 1× PBS, pH 7.4) for 5 min each, followed by a final rinse in 1× PBS and dried via centrifugation at 600 rpm for 5 min. The microarrays were scanned at 70% photomultiplier tube and 100% laser power settings using a Genepix 4000B confocal scanner. The acquired images were analyzed at 532 nm for Cy3 detection by Genepix 3.0 software.




Figure 1 | The different bronchoalveolar lavage fluid (BALF) glycopatterns in benign pulmonary diseases (BPD), adenocarcinomas (ADC), squamous carcinomas (SCC), and small cell lung cancer (SCLC) using a lectin microarray, respectively. (A) The layout of the lectin microarrays. Each lectin was spotted in triplicate per block with quadruplicate blocks on one slide. Cy3-labeled BSA was spotted as a location marker and unlabeled BSA as a negative control. (B) The binding profiles of Cy3-labeled BALF glycoproteins bound to the lectin microarrays. The lectin microarrays revealed significant signal differences among BPD, ADC, SCC, and SCLC marked with white frames. While the significant differences among three types LC marked with red frames. (C) Heat map and unsupervised average linkage HCA of the normalized data of 37 lectins in the 281 BALF samples. Each sample were listed in columns, and the lectins were listed in rows. The color and intensity of each square indicated expression levels relative to the other data in the row. Red, high; green, low; black, medium.





SDS-PAGE and Lectin Blotting Analysis

Glycosylation alterations detected by lectin microarrays between BPD controls and patients with different stages of lung cancer were further verified by SDS-PAGE and lectin blotting. To normalize the differences between subjects and to tolerate individual variation, 100 μl of each sample from BPD, LC-ES, and LC-AS were pooled. The pooled BALF proteins of each subject were analyzed by SDS-PAGE, and lectin blotting.

For SDS-PAGE, samples were mixed with 5 × loading buffer, boiled for 5 min at 100°C and then electrophoresed on a 3% polyacrylamide stacking gel and a 10% resolving gel. After electrophoresis, some gels were stained directly with silver nitrate.

For lectin blotting, the proteins in gels were then transferred onto a polyvinylidene difluoride membrane (Immobilon-P; Millipore Corp. Bedford, MA, U.S.A.) with a wet transfer unit (Hoefer Scientific) for 1.5 h at 300 mA. After transfer, the membranes were washed four times with TBS (150 mM NaCl, 10 mM Tris-HCl, 0.05% v/v Tween20, pH 7.5) and then blocked for 1 h with Carbo-Free Blocking Solution (Vector, Burlingame, CA) at room temperature. The membranes were then washed again and incubated with Cy5 (GE Healthcare, Buckinghamshire, UK)-labeled RCA120, AAL, LCA, and WFA (2 μg/ml in Carbo-Free Blocking Solution) with gentle shaking overnight at 4°C in the dark. The membranes were then washed twice each for 10 min with TTBS and scanned by a red fluorescence channel (635 nm excitation/650 LP emission) with the voltage of 800 PMT using a phosphor imager (Storm 840, Molecular Dynamics).



Statistical Analysis

In order to minimize possible systematic variation, the median normalization method for the original lectin microarrays data was as follows. The net fluorescence intensity value of each spot was calculated by subtracting the average background value, and the values that were less than the average background ±2 standard deviations (SD) were removed from each data point. The median of the effective data points for each lectin was globally normalized to the sum of the medians of all effective data points for each lectin in a block, and we named these the normalized fluorescent intensities (NFIs). The NFI data were further analyzed by Expander 8.0 (http://acgt.cs.tau.ac.il/expander/) to perform an unsupervised average hierarchical cluster analysis (HCA).

Statistical differences between two arbitrary data sets or multiple data sets were first evaluated using a Kruskal-Wallis test, followed by a Dunn’s Multiple Comparison Test to correct for multiple comparisons through GraphPad Prism 8.0 software (GraphPad, La Jolla, CA, USA), and values of *p < 0.05, ** p < 0.01 or *** p < 0.001 were considered statistically significant. Five diagnostic models including Model LC, Model ADC, Model SCC, Model SCLC, and Model LC-ES were constructed according to the glycopattern abundances based on a forward binary stepwise logistic regression analysis using SPSS version 22.0. The discriminatory performances of candidate lectins and diagnostic models were measured using the area under the curve (AUC) on receiver operating characteristic (ROC) curve analysis by Origin 8.0 software.




Results


Alterations in BALF Glycopatterns Among BPD, ADC, SCC, and SCLC Detected by Lectin Microarrays

To identify the abnormal glycopatterns associated with lung cancer, all samples from BPD, ADC, SCC, and SCLC were separately detected using lectin microarrays. The layout of the lectin microarrays and Cy3-labeled BALF glycoproteins from four subjects bound to the lectin microarrays are shown in Figures 1A, B. The generated data from three biological replicates of each sample were imported into Expander 8.0 software and analyzed by HCA to achieve the hierarchical relationship based on the similarities and differences among all glycopattern abundances. As shown in Figure 1C, the normalized data from 281 samples were distributed in the heat map. The expression levels of BALF glycoproteins among BPD, ADC, SCC, and SCLC showed obvious differences through different colours. The NFIs of each candidate lectin were further represented in a box plot by the Kruskal-Wallis test to show the variable expression levels of BALF glycopatterns. In total, 15 lectins revealed significant alterations in glycan expression among BPD, ADC, SCC, and SCLC (Figure 2). As shown in Figure 2A, the results showed that the Siaα2-3Galβ1-4Glc(NAc)/Glc binder MAL-II, the Galβ-1,4GlcNAc (type II), the Galβ1-3GlcNAc (type I) binders RCA120 and ECA, as well as the High-Mannose binders HHL, exhibited significantly decreased NFIs in all patients with lung cancer compared with BPD (all p < 0.001). In contrast, the αGalNAc binders GSL-I and DBA, the β-D-GlcNAc and (GlcNAcβ1-4)n binder DSA, and the Fucα1-6 GlcNAc(core fucose) binders AAL exhibited significantly increased NFIs in all patients with lung cancer compared with BPD (all p < 0.001). However, there was no significant difference among the three subtypes of lung cancer. Meanwhile, the lectins revealed significant differences among ADC, SCC, and SCLC, as shown in Figure 2B. The bisecting GlcNAc binders PHA-E, the Galα1-3(Fucα1-2)Gal (blood group B antigen) binders EEL, and the Galβ1-3GalNAc binders BPL were associated with decreased NFIs in ADC compared with BPD and SCC (all p < 0.05). In contrast, the GlcNAc binders GSL-II, the GalNAcα-Ser/Thr(Tn) binders VVA, and the Galβ1-3GalNAcα-Ser/Thr(T) binder PNA showed significantly increased NFIs in patients with ADC compared with BPD and SCC (all p < 0.05). Notably, a decrease in the NFIs of PNA was observed in SCC compared with ADC and SCLC (all p < 0.05). Also, the Galβ1-3GalNAc binders MPL showed a decreased in NFIs in patients with SCC compared with SCLC (p < 0.001).




Figure 2 | Box plot analysis of the data obtained with the 15 candidate lectins first by Kruskal-Wallis test, followed by Dunn’s Multiple Comparison Test. (A) The difference of bronchoalveolar lavage fluid (BALF) glycopatterns between benign pulmonary diseases (BPD) and LC (including different types) marked with black. (B) The difference between adenocarcinomas (ADC), squamous carcinomas (SCC), and small cell lung cancer (SCLC) marked with red. Those differences were indicated by the p-value (*p < 0.05, **p < 0.01, and ***p < 0.001).





Alterations in BALF Glycopatterns During the Development and Progression of Lung Cancer

In our study, we hoped to identify which glycans emerged and how the glycans were differentially expressed in BALF during the development of lung cancer. Therefore, 162 patients with a definite clinical stage of 208 lung cancer subjects were further divided into early stage (including stage I/II NSCLC and limited stage SCLC) lung cancer (LC-ES) and advanced stage (including stage III/IV NSCLC and extensive stage SCLC) lung cancer (LC-AS). Similarly, analyses of aberrant glycosylation among BPD, LC-ES, and LC-AS were performed by lectin microarrays. The fluorescent images are displayed in Figure 3A. The generated data from three biological replicates of each sample were executed by HCA using Expander 8.0 software to achieve the hierarchical relationship based on the similarities and differences among all glycopattern abundances (Figure 3B). The NFIs of each candidate lectin were further represented in a scatter plot. In this differential analysis, 14 lectins revealed significant alterations in BALF glycopatterns among BPD, LC-ES, and LC-AS. As shown in Figure 4A, the NFIs of RCA120, MAL-II, EEL, and PHA-E in LC-ES and LC-AS were significantly lower than that of BPD (all p < 0.001). In contrast, both DBA and AAL exhibited significantly increased in all the stages of lung cancer compared with BPD (all p < 0.001). However, the NFIs of these lectins were not significantly different between LC-ES and LC-AS. As shown in Figure 4B, the Gal binders PTL-II, the α-D-Man binders LCA, and the αGalNAc binders SJA as well as the termination in GalNAcα/β1-3/6Gal binders WFA exhibited a decreased in NFIs in patients with LC-ES compared with BPD and LC-AS (all p < 0.05). In contrast, an increase in the NFIs of the WGA was observed in patients with LC-ES compared with BPD and LC-AS (all p < 0.01). Also, the VVA and the branched (LacNAc)n binders PWM showed significantly decreased or increased NFIs in patients with LC-AS compared with BPD and LC-ES (all p < 0.01). In addition, with the development of lung cancer, the NFIs of the αGalNAc binders GSL-I showed a gradual increasing trend from BPD to LC-AS (all p < 0.05).




Figure 3 | The different bronchoalveolar lavage fluid (BALF) glycopatterns in benign pulmonary diseases (BPD), early stage lung cancer (LC-ES), and advanced stage lung cancer (LC-AS) using lectin microarray and blotting analysis. (A) The binding profiles of Cy3-labeled BALF glycoproteins bound to the lectin microarrays. The lectin microarrays revealed significant signal differences among BPD, LC-ES, and LC-AS marked with white frames. While the significant differences among LC-ES and LC-AS marked with red frames. (B) Heat map and unsupervised average linkage hierarchical cluster analysis (HCA) of the normalized data of 37 lectins in the 235 BALF samples. Each sample were listed in columns, and the lectins were listed in rows. The color and intensity of each square indicated expression levels relative to the other data in the row. Red, high; green, low; black, medium. (C) SDS-PAGE analysis. (D) Binding pattern profiles of glycoproteins from BALF samples of BPD, LC-ES and LC-AS stained by four Cy5-labeled lectins (RCA120, AAL, LCA, and WFA). Blot affinity results showed 3, 3, 2, and 3 apparent bands belong to different molecular weight ranging from 15 to 250kDa, which were marked as a1-a3, b1-b3, c1-c2, and d1-d3 bound by RCA120, AAL, LCA, and WFA, respectively. a1, 85kDa; a2, 52~60kDa; a3, 45kDa; b1, 60kDa; b2, 50kDa; b3, 40kDa; c1, 52~60kDa; c2, 42kDa; d1, 50kDa; d2, 25kDa; d3, 15kDa. (E) The fluorescent intensities of each band with apparent difference were read by Image J.  Those differences were indicated by the p-value (*p < 0.05, **p < 0.01, and ***p < 0.001).






Figure 4 | Scatter plot analysis of the data obtained with the 14 candidate lectins first by Kruskal-Wallis test, followed by a Dunn’s Multiple Comparison Test. (A) The difference of bronchoalveolar lavage fluid (BALF) glycopatterns between benign pulmonary diseases (BPD) and LC (including different stages) marked with black. (B) The difference between early stage lung cancer (LC-ES) and advanced stage lung cancer (LC-AS) marked with red. Those differences was indicated by the p-value (*p < 0.05, **p < 0.01, and ***p < 0.001).





Validation of the Differential Expression Levels in the BALF Glycopatterns During the Development and Progression of Lung Cancer by SDS-PAGE and Lectin Blotting Analysis

To further validate the different abundances of glycoproteins in BALF from BPD, LC-ES, and LC-AS subjects, SDS-PAGE and lectin blotting analysis were performed with silver staining, Cy5-labeled RCA120, AAL, LCA, and WFA staining, respectively. The results of SDS-PAGE showed similar molecular weights (MWs) and global abundances of BALF proteins for patients with BPD, LC-ES, and LC-AS, except for two apparent different bands with a MW of approximately 25 kDa and 20 kDa, as compared with those of LC-ES (Figure 3C). As shown in Figures 3D, E, the RCA120 staining displayed a decreased binding tendency from BPD, and LC-ES to LC-AS subjects according to three apparent bands (a1-a3) ranging from 85 to 45 kDa, while the AAL staining displayed stronger binding to three apparent bands (b1-b3) with MWs of approximately 60 kDa, 50 kDa and 40 kDa in LC-AS than that in BPD and LC-ES subjects. LCA staining showed a weaker binding to two apparent bands (c1-c2) with MWs of approximately 60 to 42 kDa in LC-ES and LC-AS than that in BPD subjects. Notably, WFA staining displayed weaker binding to three apparent bands (red arrows) with MWs of approximately 50 kDa, 25 kDa, and 15 kDa in LC-ES than that in BPD and LC-AS subjects. These results were generally consistent with the results from the lectin microarrays.



Construction of the Diagnostic Models in the Training Cohort Based on BALF Glycopattern Abundances

The BALF glycopatterns of BPD, ADC, SCC, SCLC, LC-ES, and LC-AS subjects were assessed based on the above lectin microarray data with different types and stages of lung cancer. The detailed information of the ROC analysis for the constructive models and candidate lectins in the training cohort is shown in Figure 5A and Table 2.




Figure 5 | The diagnosis accuracy of the diagnostic models and selected lectins analyzed by receiver operating characteristic (ROC) analysis. (A) The ROC analysis for the diagnostic models and candidate lectins in the training cohort. (B) The ROC analysis for the diagnostic models in the validation cohort.




Table 2 | Detailed information of the receiver operating characteristic (ROC) analysis for the constructive models and candidate lectins in the training cohort and validation cohort.



First, the Model LC mathematic formula was established to distinguish lung cancer from BPD using binary logistic regression analysis.

	

The diagnosis accuracy of Model LC that referred to three lectins (ECA, GSL-I, and RCA120) in the training cohort was appraised by ROC analysis. When judging the types of lung cancer, the results indicated that Model LC had higher discriminatory power for differentiating lung cancer from BPD (AUC: 0.926, sensitivity: 0.837, and specificity: 0.875) than that of these single candidate lectins, such as ECA (AUC: 0.859, sensitivity: 0.894, and specificity: 0.775), RCA120 (AUC: 0.881, sensitivity: 0.772, and specificity: 0.875), HHL (AUC: 0.870, sensitivity: 0.878, and specificity: 0.750), MAL-II (AUC: 0.866, sensitivity: 0.837, and specificity: 0.825), and PHA-E+L (AUC: 0.810, sensitivity: 0.683, and specificity: 0.825). Simultaneously, the ROC curve indicated that Model LC had higher discriminatory power for differentiating different stages of lung cancer from BPD (AUC: 0.962, sensitivity: 0.908, and specificity: 0.875) than that of three candidate lectins, such as ECA (AUC: 0.893, sensitivity: 0.949, and specificity: 0.775), RCA120 (AUC: 0.915, sensitivity: 0.735, and specificity: 1.000), and HHL (AUC: 0.892, sensitivity: 0.908, and specificity: 0.750).

Then, diagnostic models for identifying different types of lung cancer were constructed separately. The Model ADC mathematic formula was built to distinguish ADC from SCC and SCLC using binary logistic regression analysis.

	

The diagnosis accuracy of Model ADC that referred to four lectins (DBA, STL, UEA-I, and BPL) in the training cohort was appraised by ROC analysis, indicating that Model ADC had higher discriminatory power for differentiating ADC from SCC and SCLC (AUC: 0.776, sensitivity: 0.787, and specificity: 0.729) than that of the two single candidate lectins, such as DBA (AUC: 0.634, sensitivity: 0.520, and specificity: 0.729), and PHA-E (AUC: 0.634, sensitivity: 0.720, and specificity: 0.583).

The Model SCC mathematic formula was established to diagnose SCC from other subtypes of lung cancer using binary logistic regression analysis.

	

The diagnostic accuracy of Model SCC that referred to lectin PNA in the test cohort was appraised by ROC analysis, which resulted in an AUC of 0.649 with a sensitivity of 0.641 and a specificity of 0.644.

The Model SCLC mathematic formula was constructed to differentiate SCLC from NSCLC using binary logistic regression analysis.

	

The diagnostic accuracy of Model SCLC that referred to six lectins (STL, BS-I, PTL-II, SBA, PSA, and GNA) in the training cohort was appraised by ROC analysis, indicating that Model SCLC had higher discriminatory power for differentiating SCLC from NSCLC (AUC: 0.846, sensitivity: 0.710, and specificity: 0.867) than two single candidate lectins, such as STL (AUC: 0.652, sensitivity: 0.591, and specificity: 0.700) and BS-I (AUC: 0.618, sensitivity: 0.785, and specificity: 0.467).

Furthermore, a diagnostic model for distinguishing lung cancer patients at different stages was also constructed by binary logistic regression analysis.

	

The diagnostic accuracy of Model LC-ES that referred to six lectins (MAL-II, LTL, GSL-I, RCA120, PTL-II, and PWM) in the training cohort was appraised by ROC analysis, indicating that Model LC-ES also had higher discriminatory power for differentiating LC-ES from LC-AS (AUC: 0.941, sensitivity: 0.818, and specificity: 0.937) than four single candidate lectins, such as PTL-II (AUC: 0.702, sensitivity: 0.939, and specificity: 0.406), PWM (AUC: 0.791, sensitivity: 0.697, and specificity: 0.750), LCA (AUC: 0.708, sensitivity: 0.742, and specificity: 0.687) and WGA (AUC: 0.709, sensitivity: 0.909, and specificity: 0.406).



Verification of the Diagnostic Models in the Validation Cohort

In order to assess the discriminatory efficiencies, the diagnostic models constructed in the training cohort were then applied to a validation cohort including BPD (n = 33), ADC (n = 32), SCC (n = 32), SCLC (n = 21), LC-ES (n = 22), and LC-AS (n = 42). All subjects preliminarily judged the properties of diseases they underwent through Model LC, and then those patients who were diagnosed with lung cancer by Model LC were further judged using other constructed models to determine their pathological types and stages of cancer. Similarly, ROC analyses were carried out to evaluate the diagnostic accuracy of the constructive models. The detailed results are shown in Figure 5B and Table 2.

When judging the types of lung cancer, first, the ROC curve showed that Model LC (cutoff value: 0.754, AUC: 0.961, sensitivity: 0.918, and specificity: 0.939) had superior diagnostic accuracy in distinguishing lung cancer from BPD, and it could correctly classify 78 of 85 lung cancer cases and 31 of 33 BPD cases. Next, the ROC curve showed that Model ADC (cutoff value: 0.569, AUC: 0.619, sensitivity: 0.706, and specificity: 0.586) had high diagnostic accuracy in distinguishing ADC from other subjects, and it could correctly classify 17 of 29 ADC cases and 34 of 49 SCC and SCLC cases. The ROC curve showed that Model SCC (cutoff value: 0.578, AUC: 0.693, sensitivity: 0.800, and specificity: 0.667) had high diagnostic accuracy in distinguishing SCC from other subjects, and it could correctly classify 20 of 30 SCC and 38 of 48 ADC and SCLC cases. The ROC curve showed that Model SCLC (cutoff value: 0.728, AUC: 0.718, sensitivity: 0.721, and specificity: 0.684) had high diagnostic accuracy in distinguishing SCLC from other subjects, and it could correctly classify 13 of 19 SCLC cases and 42 of 59 ADC and SCC cases. Meanwhile, when judging the stages of lung cancer, the ROC curve showed that Model LC (cutoff value: 0.658, AUC: 0.935, sensitivity: 0.906, and specificity: 0.879) had superior diagnostic accuracy in distinguishing lung cancer from BPD, and it could correctly classify 58 of 64 lung cancer cases and 29 of 33 BPD cases. Notably, the ROC curve indicated that Model LC-ES (cutoff value: 0.668, AUC: 0.856, sensitivity: 0.829, and specificity: 0.810) had superior diagnostic accuracy in distinguishing LC-ES from other subjects, and it could correctly classify 17 of 21 LC-ES cases and 31 of 37 LC-AS cases.



Evaluation of the Clinical Application Potential of the Diagnostic Models in the Double-Blind Cohort

Another independent test was developed in a double-blind cohort with 120 subjects to further appraise the clinical application potential of these diagnostic models for differential diagnosis between lung cancer at different types and stages and BPD. A comparison of the double-blind test results and clinical final diagnosis is shown in Table 3. In terms of judging the types of lung cancer, 73 of 120 cases of BALF specimens were identified as lung cancer-positive by Model LC. In fact, 72 of 84 lung cancer cases (including 28 of 31 ADC cases, 25 of 32 SCC cases, and 19 of 21 SCLC cases) and 35 of 36 BPD cases were correctly classified by Model LC with an accuracy of 0.892 (107/120). Forty-two of 73 cases of BALF specimens were identified as ADC-positive by Model ADC. In fact, 11 of 28 ADC cases and 41 of 44 other types of lung cancer cases (including 23 of 25 SCC cases and 18 of 19 SCLC cases) were correctly classified by Model ADC with an accuracy of 0.712 (52/73). 34 of 73 cases of BALF specimens were identified as SCC-positive by Model SCC. In fact, 15 of 25 SCC cases and 34 of 47 other types of lung cancer cases (including 23 of 28 ADC cases and 11 of 19 SCLC cases) were correctly classified by Model SCC with an accuracy of 0.671 (49/73). 49 of 73 cases of BALF specimens were identified as SCLC- positive by Model SCLC. In fact, eight of 19 SCLC cases and 49 of 53 other types of lung cancer cases (including 26 of 28 ADC cases and 23 of 25 SCC cases) were correctly classified by Model SCLC with an accuracy of 0.787 (57/73). Notably, when judging the stages of lung cancer, 66 of 109 cases of BALF specimens were identified as LC-positive by Model LC. In fact, 65 of 73 lung cancer cases (including 22 of 27 LC-ES cases and 43 of 46 LC-AS cases) and 35 of 36 BPD cases were correctly classified by Model LC with an accuracy of 0.917 (100/109). Forty of 66 cases of BALF samples were identified as LC-ES-positive by Model LC-ES. In fact, 17 of 22 LC-ES cases and 40 of 43 LC-AS cases were correctly classified by Model LC-ES with an accuracy of 0.864 (57/66). 


Table 3 | The results of the double-blind test compared with clinical final diagnosis.






Discussion

Lung cancer is a severe health problem that prevails around the world (43). At present, fiberoptic bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected respiratory system lesions to obtain specimens for histological or cytological examination. Naturally, BALF is sampled before biopsy during this process, gathering specimens that are difficult to detect by bronchoscopy. However, the cytological examination for BALF is greatly influenced by artificial factors and its diagnostic accuracy is relatively poor. Proteins are the major component of BALF and have been recognized to play valuable roles in the discovery of biomarkers for lung cancer. Comparative analyses have documented that certain proteins are present at higher levels in BALF than in plasma, suggesting that they are specifically produced in the respiratory tract (44, 45). Protein glycosylation is the enzymatic addition of sugars or oligosaccharides to proteins, which leads to the functional diversity of proteins and participates in the diversity of their biological activities, particularly in cancer genesis and progression (46). Due to the complexity of glycan structures and the heterogeneity of glycosylation sites, it is a challenge for the complete characterization of tumor glycomics and glycoproteomics represents (47, 48). To date, aberrant glycosylation has been observed in patients with various types of cancer, such as gastric, breast, and colorectal cancer (25, 49, 50). In recent years, research on the changes in glycosylation in lung cancer has made extensive progress, providing a new thread for its diagnosis and therapy (23). Lectin microarray as a high-throughput analytical glycoscience strategy allows rapid observation of different glycans following minimal sample preparation, which guarantees the real state of protein glycosylation in clinical samples from body fluids of health, benign lesion, and cancer being accurately reflected (35). Moreover, lectins, which bind to the glycan of the glycoproteins, can be exploited to identify abnormal glycopatterns, which in turn would contribute to increasing the specificity of cancer diagnosis.

In our study, first, the alterations in glycoproteins in 281 individual BALF subjects were systematically probed by lectin microarrays and lectin blotting analysis; then, those participants were randomly assigned into a training cohort and validation cohort for the construction and verification of diagnostic models, respectively. Moreover, an additional 120 newly collected BALF samples enrolled in the double-blind cohort were independently detected to examine the diagnostic accuracy of the diagnostic models. According to the research results, there were 15 lectins (e.g., PHA-E, EEL, and BPL) that contribute to significant alterations in the BALF glycopatterns among BPD, ADC, SCC and SCLC through statistical analysis. Meanwhile, 14 lectins (e.g., PTL-II, LCA, and SJA) revealed noticeable alterations in the BALF glycopatterns between the control group and lung cancer patients at different stages, and the validation results of lectin blotting were generally consistent with the results from lectin microarrays. The findings indicated that the expression levels of Tn antigen and its derived structure T antigen recognized by GSL-I, VVA, and DBA in BALF were up-regulated both in different subtypes and stages of lung cancer compared with BPD, of which the level of VVA was significantly higher in ADC than that in BPD and SCC. Tn antigen is one of the most specific tumor-associated carbohydrate structures that is not normally expressed in peripheral tissues or blood cells but can promote tumor cell invasion (51). The expression of this antigen found in most human carcinomas is derived from blockade during the normal O-glycosylation pathway, in which glycans extend from the common precursor GalNAcα1-O-Ser/Thr (Tn antigen) (52). Similar to our results, an earlier study found that T and Tn antigen in ADC were detected at a higher frequency than in SCC by immunohistochemical staining (53). Moreover, the present study also observed that the expression levels of GSL-I and VVA gradually increased with the stages of lung cancer, which may reflect the tumor burden and is related to the poor prognosis of pulmonary disease. Our previous study also demonstrated that the level of T antigen in serum was increased in patients with stage III and stage IV ADC compared with levels in healthy controls (40). Based on the above results, the differential expression levels of T and Tn antigen may have potential as biomarkers that not only recognize lung cancer and distinguish the histological subtypes of NSCLC but also may serve as a prognostic indicator for lung cancer.

In mammals, core fucosylation, a typical terminal modification of proteins, is the addition of α1-6-linked fucose to the innermost GlcNAc residue of N-glycans, which is only catalyzed by fucosyltransferase 8 (FUT8) (54). Studies frequently reported that FUT8 is highly expressed in many malignant diseases, such as lung, breast, and colorectal carcinomas, but it is negatively correlated with the development of gastric cancer (55–58). Hirao et al. (42) performed lectin microarray analysis of lung cancer tissues and cell lines and identified AAL as a lectin probe specific to NSCLC. In line with these findings mentioned above, the expression level of core-fucosylation recognized by AAL was elevated in different types and stages of lung cancer compared with expression in BPD in this study. Of particular relevance for our research, the binding performance of Gal and GalNAc glycans recognized by BPL, PNA, MPL, SJA, WFA, WGA, and PWM deserves our attention, which may help with pathological typing and early diagnosis of lung cancer. Among these lectins, compared with SCC, the expression of BPL decreased significantly in ADC. The expression of PNA and MPL decreased significantly in SCC compared with expression in ADC and SCLC. Simultaneously, the expression of SJA and WFA related to LC-ES was down-regulated in comparison with that in LC-AS, however, the expression of WGA and PWM was up-regulated in LC-ES, and showed a same expression trend as BPD. This finding reminds us the glycans recognized by these four lectins provide important information for the early diagnosis of lung cancer. In addition, the expression levels of Gal and GalNAc structures recognized by RCA120, EEL, ECA, PTL-II, and PHA-E, as well as sialylated structure binders MAL-II were significantly decreased in different types and stages of lung cancer, while the expression levels of DSA and GSL-II increased significantly in lung cancer compared with levels in BPD, especially in ADC. To sum up, according to the research results, these lectins (MAL-II, RCA120, ECA, HHL, DBA, DSA, and AAL) have potential to become biomarkers for the diagnosis of lung cancer. Moreover, ADC and SCC may be distinguished by PHA-E, EEL, BPL, GSL-II, and VVA. Also, PNA and MPL can be used to distinguish SCC and SCLC. Notably, PTL-II, LCA, SJA, WFA, WGA, and PWM are expected to be valuable biomarkers for the early diagnosis of lung cancer.

Furthermore, we constructed five diagnostic models (Model LC, Model ADC, Model SCC, Model SCLC, and Model LC-ES) based on BALF glycopattern abundances for the differential diagnosis between benign and malignant lung diseases, as well as the classification and periodization of lung cancer. The distinguishing performance of all models was better than that of single lectins. Model LC, Model SCLC, and Model LC-ES achieved desired diagnostic powers with an AUC value greater than 0.700 (p < 0.01) for the diagnosis of lung cancer, SCLC, and LC-ES in both the test and validation cohorts. In addition, Model LC and Model LC-ES exhibited high accuracies of 0.917 and 0.864 in the double-blind cohort, respectively, which are clinically valuable for the identification of benign and malignant pulmonary diseases and early diagnosis of lung cancer with stable and reliable BALF glycopattern biomarkers. However, the sample discrimination abilities of Model ADC, Model SCC, and Model SCLC are not as good as the above two diagnostic models. Therefore, the subtle differences in glycosylation hidden behind different pathological types of lung cancer need to be further explored.

There are still some limitations in this study. One is that the clinical sample size of patients with LC-ES is relatively small, and the other is that our research has not involved the detailed molecular mechanism that causes aberrant glycosylation for the progression of lung cancer. Further investigations in larger cohorts are required to assess the clinical application potential of these BALF glycopattern biomarkers in diagnosing lung cancer and even distinguishing other cancers in the future. We will also focus on the glycosylated pathway related to the development of lung cancer and intend to elucidate the correlation between abnormal glycosylation alterations and malignant biological behaviors.

In conclusion, our current study systematically explored the lung cancer-related changes in BALF glycosylation and detected differentially expressed glycoproteins among patients with BPD, ADC, SCC, SCLC, LC-ES, and LC-AS by lectin microarrays and blotting analysis, which indicated that different combinations of lectins can be used to detect the type of lung cancer, and even its pathological stage. Further, five diagnostic models with better discrimination were constructed to distinguish different types and stages of lung cancer, and Model LC and Model LC-ES revealed high accuracy greater than 0.850 in the double-blind test, which may contribute to identifying benign and malignant pulmonary diseases and diagnosing lung cancer at an early stage. This study provides insight into the discovery of promising biomarkers for the diagnosis of lung cancer based primarily on the precision alterations in BALF glycopatterns.
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Objective

The size distribution of circulating aneuploid cells (CACs) and its clinical significance were investigated in resectable non-small cell lung cancer (NSCLC).



Patients and Methods

A total of 50 patients with resectable NSCLC were enrolled in this study. Blood samples (50 pre-surgery and 35 post-surgery) were collected and used for the detection of CAC chromosome 8 heteroploidy through the subtraction enrichment and immunostaining fluorescence in situ hybridization (SE-iFISH) method.



Results

Less than 20% small cell size and more than 80% large cell size CACs were detected. Karyotypes, including triploid, tetraploid, and multiploid, had varying distributions. The triploid subtype accounted for the majority of small cell size CACs, whereas the multiploid subtype accounted for the majority of large cell size CACs. We found that total small cell size and triploid small cell size CACs, but not large cell size CACs, derived from pre-surgery samples, were associated with shorter disease-free survival. Moreover, total small cell size and triploid small cell size CACs were associated with higher TNM stage and recurrence. Nevertheless, the variation between pre- and post-surgery CACs was not related to survival among patients with resectable NSCLC.



Conclusions

Pre-surgery small cell size CACs, especially the triploid subtype, could be regarded as a potential prognostic biomarker for patients with resectable NSCLC.





Keywords: non-small cell lung cancer, circulating aneuploid cells, prognosis, resection, biomarker



Introduction

Lung cancer is the leading cause of cancer-associated death worldwide (1). Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer cases, with a low 5-year survival rate of less than 20% (2–4). A total of 45% of early-stage NSCLC patients experience postoperative recurrence, including those who have already undergone primary tumor resection (5). Therefore, biomarkers for predicting relapse in patients with resectable tumors are extremely important for dynamic clinical evaluation and treatment choice. Lower airway bacterial microbiomes, tumorspheres, circulating cell-free DNA, urine cell-free DNA, and circulating non-hematopoietic cells such as circulating tumor cells (CTCs), circulating endothelial cells (CECs), or circulating aneuploid cells (CACs) could reportedly be used as biomarkers for NSCLC diagnosis, relapse prediction, and drug resistance evaluation (6–11).

CTCs, CECs, and CACs are well-known for their association with metastasis and progression and provide information for individual therapy and prediction of prognosis in several cancer types such as breast, colorectal, prostate, and lung (7, 12–17). Epithelial markers such as EpCAM and cytokeratin are often used to enrich CTCs (18). However, this approach may miss an aggressive and clinically relevant subpopulation of tumor cells, partially because of the epithelial-mesenchymal transition (EMT) that occurs with a reduction in or loss of epithelial markers in the tumors (19, 20). This kind of EMT+ CTC is helpful in predicting poor outcome and managing therapy, which is important for patients (19). In addition, CTCs are a heterogeneous population; hence, clarification of its characteristics can shed light on tumor heterogeneity, recurrence mechanism, treatment efficacy, or poor prognosis for cancer patients (21, 22).

In addition to the numbers of CTCs, CECs, and CACs, the specific characteristics of these cells seem to be more significant as biomarkers. Aneuploidy is a common trait in solid tumors (23, 24); moreover, chromosomal redistribution contributes to proliferation during the evolution of tumor cells (25, 26). Examination of aneuploidy in chromosome 8 can identify CTCs in epithelial and glioma tumors with high sensitivity (20, 27, 28). Moreover, chromosomal instability status can reveal the heterogeneous phenotype of CTCs, CECs, and CACs (21). Li et al. suggested that an increased percentage of triploid CTCs was associated with chemotherapy resistance in advanced gastric cancer (27). Moreover, quantified chromosome ploidy may be a predictor of therapeutic efficacy and disease progression (29).

Herein, we analyzed the clinical significance of CACs and their aneuploidy subtypes in samples of peripheral blood from patients with resectable NSCLC. We found that small cell size CACs, especially the triploid small cell size CAC subtype, were correlated with the prognosis of patients with resectable NSCLC.



Materials and Methods


Patient Enrollment and Specimen Collection

A total of 50 patients who were newly diagnosed with NSCLC between December 2014 and December 2015 and received R0 resection at Peking University Cancer Hospital were enrolled in this study. These patients were histologically confirmed as having stage I to IIIA NSCLC, including 30 cases of adenocarcinoma, 18 of squamous carcinoma, and two of large cell lung cancer (Table 1). Peripheral blood samples (7.5mL) were collected from all patients before the surgery and again from 35 patients one week after resection. All blood samples were processed within 24 h of collection. Each patient provided written informed consent, and the Institutional Ethics Committee of Peking University Cancer Hospital approved this study. The study was conducted according to the principles of the Declaration of Helsinki.


Table 1 | Characteristics of patients (n = 50).





CAC Detection by SE-iFISH

To identify CACs, we performed subtraction enrichment and immunostaining fluorescence in situ hybridization (SE-iFISH) on the samples as previously described (30, 31). CAC enrichment was performed using the subtraction enrichment method. A 7.5mL blood sample from each patient was centrifuged at 600 × g for 5 min to separate the plasma. The sedimented cells were placed on top of 3 mL of anon-hematopoietic cell separation matrix (Cytelligen, San Diego, CA, USA) and then centrifuged at 400 × g for 5 min to deplete the red blood cells. To separate the leukocytes, immune-magnetic particles conjugated with anti-CD45 monoclonal antibodies were added and incubated with the supernatant obtained above at 25°C for 15 min. Next, the entire solution was added on the top of separation matrix again, followed by centrifuging at 400 × g for 5 min. Next, the supernatants were collected from above the magnetic beads and magnetic separation was performed; then, the bead-free solution was centrifuged again at 500 × g for 2 min. The cell pellet was mixed with 100 μL of cell fixative, then applied to the CAC slides. These slides underwent air-drying and were then suitable for iFISH.

Next, we performed iFISH on the resulting samples according to the kit’s instructions (Cytelligen). Prepared samples on the coated slides were hybridized for 4 h with the Vysis Centromere Probe (CEP8) Spectrum Orange (Abbott Laboratories, Abbott Park, IL, USA), followed by incubation with Alexa Fluor 594-conjugated monoclonal anti-CD45 antibodies (Cytelligen) at room temperature for 30 min. Finally, we used 4-6-diamidino-2-phenylindole (DAPI) (Life Technologies, Carlsbad, CA, USA) to stain the nuclei. At least two pathologists performed CAC counting for DAPI+ and CD45- cells, identified chromosome 8 aneuploidy under fluorescence, and calculated cell size. CACs of ≤ 5 µm (approximately the size of a WBC or less) were considered small cell size CACs, whereas those>5 µm were considered large cell size CACs.



Statistical Analyses

All statistical analyses were performed using IBM SPSS Statistics software version 23.0. Correlations of CACs with clinical or pathological characteristics were calculated and analyzed using the chi-square test or Fisher’s exact test, and logistic proportional hazards regression analysis was further used to analyze the multivariate hazard ratios. Disease-free survival (DFS) was defined as the duration from surgery to cancer relapse. Kaplan-Meier survival plots for 3-year DFS were generated based on whether patients were positive or negative for CACs pre- and post-surgery, and the log-rank test was used to compare survival curves. P < 0.05 was considered statistically significant. All P values were two-sided.




Results


Patient Characteristics

This study included 50 cases of NSCLC, of which 28 patients were male and 22 were female. The patients had a median age of 62 years and an average age of 61.5 years (range 39–81). Patient characteristics are presented in Table 1. For the pre-treatment clinical stage, 22 (44%), 3 (6%), and 25 (50%) patients were at stage I, II, and IIIA, respectively. In contrast, the numbers of patients at pathological TNM stages I, II, and IIIA were 28 (56%), 12 (24%), and 10 (20%), respectively. Pathological examination confirmed that 18 (36%), 27 (54%), and 5 (10%) patients were diagnosed with T1, T2, and T3 stages, respectively. In addition, 31 patients were diagnosed without lymph node metastasis (N0 stage), and 10 and 9 patients were diagnosed with N1 and N2 stages with lymph node metastasis, respectively. Among the 50 cases, four (8%) had lymph-vascular invasion. As for the follow-up data (DFS data are also shown in Table 1), tumor recurrence and progression occurred in 16 (32%) patients, whereas the status of the 34 (68%) other patients remained unchanged until the time of reporting.



CAC Detection

CACs were identified as having an abnormal chromosome 8 karyotype (Figure 1). With the general size of WBCs as the threshold, CACs were identified as either small (≤ 5 µm) (Figures 1A–C) or large (>5 µm) (Figures 1D–F). As in previous studies (32, 33), CACs were further divided into triploid, tetraploid, and multiploid subtypes.




Figure 1 | CAC detection (A–F) Representative images of circulating aneuploid cells (CACs). (A–C) Small cell size CAC. (A)Triploid small cell size CAC. (B) Tetraploid small cell size CAC. The WBC (CD45+) is indicated by a yellow arrow. (C) Multiploid small cell size CAC. (D–F) Large cell size CAC. (D)Triploid large cell size CAC. (E) Tetraploid large cell size CAC. (F) Multiploid large cell size CAC. (G–J) Pre-surgery CAC subtype distribution in 50 patients. (G) Proportion of small cell size and large cell size CACs. (H) Proportion of heteroploid subtypes of total CACs. (I) Proportion of heteroploid subtypes of small cell size CACs. (J) Proportion of heteroploid subtypes of large cell size CACs. (K–N) Post-surgery CAC subtype distribution in 35 patients. (K) Proportion of small cell size and large cell size CACs. (L) Proportion of heteroploid subtypes of total CACs. (M) Proportion of heteroploid subtypes of small cell size CACs. (N) Proportion of heteroploid subtypes of large cell size CACs.



First, we analyzed the number and characteristics of CACs derived before surgery from 50 patients with resectable NSCLC. We found 554 CACs in our patient cohort, including 454 (82%) large cell size CACs and 100 (18%) small cell size CACs (Figure 1G). The heteroploid features were as shown in Figures 1H–J. The total and large cell size CACs contained more multiploid (73% and 88%) than triploid (15% and 5%) or tetraploid cells (11% and 6%). However, small cell size CACs had the largest proportion of triploid cells (62%), compared to tetraploid (33%) and multiploid cells (4%) (Figures 1H–J). In addition, total, small cell size, and large cell size CACs were detected in 88% (44/50), 66% (33/50), and 86% (43/50) of patients, respectively (Table 2). There were 62%, 60%, and 82% positive rates for triploidy, tetraploidy, and multiploidy in the total CACs, respectively. For small cell size CACs, 56%, 44%, and 8% of patients had triploidy, tetraploidy, and multiploidy, respectively. For large cell size CACs, 22%, 34%, and 82% of patients had triploidy, tetraploidy, and multiploidy, respectively (Table 2).


Table 2 | CAC detection before and after the surgery.



Next, we detected 628 CACs derived from 35 patients post-surgery. Compared to the proportion of CACs in pre-surgery samples, the same percentages of large cell size CACs (82%, 512) and small cell size CACs (18%, 116) were observed in post-surgery samples (Figure 1K). We observed a similar distribution of the different CAC heteroploidies between the pre-treatment and post-surgery samples (Figures 1L–N). Multiploid CACs were the major subtype among the total and large cell size CACs, with proportions of 75% and 89%, respectively, whereas the triploid subtype was the main component (60%) among small cell size CACs (Figures 1L–N). Furthermore, the positive rates were 94%, 74%, and 94% for total, small cell size, and large cell size CACs, with rates for triploidy, tetraploidy, and multiploidy similar to those detected pre-surgery (Table 2).



CAC Subtypes and DFS

We analyzed the correlations between histoclinical characteristics and pre-surgery CACs among our patients (Table 3). Unsurprisingly, triploid CACs were related to later-stage TNM and recurrence (p < 0.05). Moreover, 90% of TNM stage III patients had triploid CACs, whereas 55% of TNM stage I/II patients had triploid CACs (Figure 2A, left panel). Triploid CACs were present in 88% of patients who had relapsed and 50% of patients who had not relapsed (Figure 2A, right panel). More importantly, small cell size CACs were associated with a higher recurrence rate and were present in 88% of patients who had relapsed and 56% of patients who had not relapsed (Figure 2B). Furthermore, 90% of TNM stage III patients had triploid small cell size CACs; however, only 38% of TNM stage I/II patients had triploid small cell size CACs (Figure 2C, left panel). Triploid small cell size CACs were present in 81% of patients who had relapsed, and in 44% of patients who had not relapsed (Figure 2C, right panel). Nevertheless, there was no significant correlation between clinical features and large cell size CACs (Table 3). The multivariate hazard ratios for CACs are shown in Table 4. Recurrence was an independent predictive factor for positive triploid CACs, small cell size CACs, and triploid small cell size CACs; however, gender, age, and TNM were not independent predictive factors for positive CACs.


Table 3 | Correlation between pre-surgery CAC and clinical characteristics (n = 50).






Figure 2 | Pre-surgery CAC analysis in 50 patients (A) Correlation of pre-surgery triploid circulating aneuploid cells (CACs) with TNM stage and recurrence. The proportion of patients who had triploid CACs was higher among those with TNM stage III and recurrence than those with TNM stage I/II and without recurrence, respectively (P < 0.05). (B) Correlation between pre-surgery small cell size CACs and recurrence. The proportion of patients who had small cell size CACs was higher among those with recurrence than those without (P < 0.05). (C) Correlation of pre-surgery triploid small cell size CACs with TNM stage and recurrence. The proportion of patients who had triploid small cell size CACs was higher among those with TNM stage III and recurrence than those with TNM stage I/II and without recurrence, respectively (P < 0.05). (D–O) Survival analysis. (D) Total CAC was not correlated to DFS (P > 0.05). (E) Patients with triploid CACs had shorter DFS compared to those without triploid CACs (P < 0.05). (F, G) Tetraploid and multiploid CAC subtypes were not correlated to DFS (P > 0.05). (H) Patients with small cell size CACs had shorter DFS compared to those without (P < 0.05). (I) Patients with triploid small cell size CACs had shorter DFS compared to those without (P < 0.05). (J, K) Tetraploid and multiploid small cell size CAC subtypes were not correlated to DFS (P > 0.05). (L–O) Total large cell size CACs and triploid, tetraploid, and multiploid large cell size CAC subtypes were not correlated to DFS (P > 0.05).




Table 4 | Logistic regression analysis of CAC and clinicopathologic characteristics among 50 patients with resectable NSCLC.



The relationship between DFS and total, small cell size, and large cell size CACs was further clarified (Figures 2D–O). Among these analyses, we found that pre-surgery triploid CACs, small cell size CACs, and triploid small cell size CACs were associated with shorter DFS (Figures 2E, H, I). However, the Kaplan-Meier curves showed no significant differences between the other CAC subtypes and outcome in NSCLC (Figures 2D, F, G, J–O). We also found no significant relationship between clinical characteristics or DFS and total, small cell size, or large cell size CACs collected one week after surgery (Table 5 and Figures 3A–M).


Table 5 | Correlation of post-surgery CAC to clinical characteristics (n=35).






Figure 3 | Survival analysis of post-surgery CACs among 35 patients (A–D) Total circulating aneuploid cells (CACs) and triploid, tetraploid, and multiploid CAC subtypes were not correlated to DFS (P > 0.05). (E–H) Total small cell size CACs and triploid, tetraploid, and multiploid small cell size CAC subtypes were not correlated to DFS (P > 0.05). (I–L) Total large cell size CACs and triploid, tetraploid, and multiploid large cell size CAC subtypes were not correlated to DFS (P > 0.05).



These data suggest that in resectable NSCLC before surgery, small cell size CACs, especially of the triploid subtype, are correlated to poor prognosis.



Variations in CAC Values

We further studied CAC variation in samples derived from 35 patients pre- and post-surgery (454 and 628 CACs, respectively). The average numbers of total, small cell size, and large cell size CACs and their aneuploidy subtypes were slightly increased, with an increase in number from 1 to 5 per patient (Figures 4A–C and Table 6). Moreover, 54%, 57%, and 54% of patients had more total, small cell size, and large cell size CACs after surgery. For small cell size CACs, the counts of the triploid, tetraploid, and multiploid subtypes increased after surgery in 57%, 23%, and 23% of patients, respectively. For large cell size CACs, the counts of the triploid, tetraploid, and multiploid subtypes increased after surgery in 26%, 29%, and 57% of patients, respectively. Based on the CAC variations pre- and post-surgery, we divided patients into the “Increased” and “Not increased” groups, as shown in Table 7. Nevertheless, the variation in number of total, small cell size, and large cell size CACs, as well as all their heteroploid subtypes, was not significantly correlated with clinical features or DFS (Table 8) (Figures 4D–O) (P>0.05). These data suggest that the variation in post-surgery CAC counts was not associated with tumor recurrence among patients with resectable NSCLC.




Figure 4 | Analysis of CAC pre- and post-surgery variation among 35 patients (A) Variation in numbers of total CACs and the three subtypes. (B) Variation in numbers of total small cell size CACs and the three subtypes. (C) Variation in numbers of total large cell size CACs and the three subtypes. (D–G) Variations in total CACs and the triploid, tetraploid, and multiploid subtypes were not correlated to DFS (P > 0.05). (H–K) Variations in total small cell size CACs and the triploid, tetraploid, and multiploid small cell size CAC subtypes were not correlated to DFS (P > 0.05). (L–O) Variations in total large cell size CACs and the triploid, tetraploid, and multiploid large cell size CAC subtypes were not correlated to DFS (P > 0.05).




Table 6 | Average CAC number in 35 pairs of patients before and after the surgery.




Table 7 | CAC variation in the 35 NSCLC cases before and after surgery.




Table 8 | Correlations between clinical characteristics and CAC variations pre- and post-surgery in 35 NSCLC patients.






Discussion

The detection of CTCs to monitor the prognosis of cancer patients has been previously reported (34, 35). Based on the pervasiveness of aneuploidy in solid tumors, we used the SE-iFISH system to detect chromosome 8 ploidy, identifying CACs in 50 patients with stage I to IIIA NSCLC who underwent surgery. In this study, we investigated a variety of correlations between clinical significance and karyotypic subtype or CAC size.

The CellSearch system has been approved for the detection of CTCs as a novel clinical marker and prognostic factor in metastasized breast, colorectal, prostate, and lung cancers (14, 17, 36, 37). However, the incidence of CTCs in NSCLC was reportedly lower than that in other cancers such as prostate, breast, ovarian, and colorectal cancer, as determined using the EpCAM-dependent method (38). Lin’s previous study validated the SE-iFISH method with over 80% recovery efficiency in lung cancer cells (20), and no CAC was found in 30 healthy donors (29). Previous studies using the conventional CellSearch method reported positive rates of only 23%–36% among NSCLC patients (37, 39, 40).By contrast, the SE-iFISH method used in this study previously yielded a 92% (24/26) CTC-positive rate among lung cancer patients (20). Similarly, Ye et al. evaluated CTCs in 594 blood samples from 19 various carcinomas, suggesting that the overall positive rate of CTCs in 594 samples was 89.0%, with the CTC-positive rate of lung cancer being 92.9% (79/85) through the use of SE-iFISH (29). Consistent with these data, we found that 88% and 94% of patients were positive for total CACs pre- and post-surgery, respectively, although total CACs did not significantly correlate with DFS in resectable NSCLC.

In addition to the high CAC-positive rate in NSCLC detected using the SE-iFISH method, we then wondered whether all the CACs were malignant cells. Therefore, we divided CACs into small cell size and large cell size groups. It was shown that small cell size CACs (≤ 5 µm) accounted for only a small proportion of total CACs (≤20%), whereas large cell size CACs (>5 µm) were the majority (≥80%) among the 50 cases. However, small cell size CACs, but not large cell size CACs, were related to poor outcomes in resectable NSCLC patients in our study. A previous study of advanced lung cancer showed that small cell size CTCs accounted for 52.8% of the absolute CTC number and were related to progression-free survival (40). Evidently, small cell size CACs were significantly fewer in resectable NSCLC cases than in advanced NSCLC. Another study suggested that tumor cells undergoing EMT were smaller in size than those without EMT characteristics (41) and that EMT is generally regarded as the reason for cancer relapse, metastasis, and poor prognosis (19). Wang et al. further showed that the majority of Vimentin+ (a marker for mesenchymal cells) CACs were small in size and completely different from Vimentin− cells (32). All of these studies suggest that small cell size CACs with more malignant behavior are closely related to tumor progression and poor prognosis.

Aneuploidy, which can cause tumor formation, remains the most common feature of chromosomal instability in solid cancer (25). Coward et al. further explained this by suggesting that polyploid tumor cells, with significantly elevated genomic content, facilitate rapid tumor evolution and the acquisition of therapy resistance (26). A previous study clarified that SE-iFISH was feasible for efficient co-detection and in situ phenotypic and karyotypic characterization, as well as for quantification of CACs, which made further classification into diverse subtypes possible based on chromosome ploidy and biomarker expression (30). Numerous papers have already described the clinical significance of aneuploid CACs (15, 27, 30, 33, 42, 43). Ye et al. even studied 594 blood samples from 19 different carcinomas using the SE-iFISH method and found that patients at stage III–IV had more tetraploid, polyploid, large cell size, and total CTCs compared with those in patients at stage I–II (29). In addition, the latest research in 18 healthy volunteers and 34 early‐stage and 24 advanced lung adenocarcinoma patients suggested that combined detection of specific aneuploid subtypes of circulating tumor endothelial cells and CTCs may facilitate diagnosis in early-stage patients with a higher sensitivity and specificity (15).Therefore, we focused on changes in the different CAC ploidies before and after surgery. We classified CACs into the karyotypic triploid, tetraploid, and multiploid subtypes. We found that small cell size CACs had a higher percentage of triploidy, whereas large cell size CACs possessed a higher multiploidy ratio. Triploid CACs and triploid small cell size CACs were related to shorter DFS and poor clinical features. We reviewed related articles from PubMed and found that the triploid CTC subtype is considered to be related to therapeutic resistance in several solid tumors. Chen et al. found that in patients with esophageal cancer, those without triploid cells were more sensitive to chemotherapy than those with them (33). Similarly, Li et al. also suggested that an increased percentage of triploid CTCs was associated with chemotherapy resistance in advanced gastric cancer (27). As for pancreatic cancer, Xu et al. found that triploid CTC number could not only predict chemo-sensitivity but was also associated with reduced 1-year survival (43). Our study, focusing on 3-year DFS in resectable NSCLC, further suggested that triploid small cell size CACs, not triploid large cell size CACs, might be more helpful for predicting prognosis. The above data may suggest that triploid cells are more malignant and can hence lead to proliferation, progression, and chemotherapy resistance. Triploid CACs or triploid small cell size CACs may have potential as new prognostic predictors and therapeutic targets in tumors, including NSCLC.

We also investigated how CAC number and CAC ploidy changed before and after surgical treatment. After resection, the CAC number and subtypes increased slightly, but no significant correlation was found between DFS and the variation pre- and post-surgery. Treatment through surgery may facilitate the entry of CACs into the general circulation, and these cells were mostly nonmalignant CACs or endothelial cells, which could be gradually eliminated by circulating immune cells (44–46). Among patients who underwent breast cancer resection, the CAC number was reportedly elevated 3–4 days after surgery but fell back to the pre-surgery condition one week post-surgery (47). However, no publication has yet illustrated the proper time for post-surgery CTC or CAC blood collection in lung cancer. In our study, CACs kept increasing among patients with resectable NSCLC one week after surgery, suggesting that blood collection may need to be performed much later. A previous study illustrated that an operation was not able to reduce CTCs in all cases, and a considerable number of CTCs remained in circulation following resection of the primary tumor. Moreover, some CTCs may already be pre-existing in the patients’ circulation, and not derived from the resection of primary malignant tumors, influencing later metastasis and recurrence (34, 48, 49). This may be why post-surgery CACs had a weak influence on clinical outcome in our study.



Conclusions

In summary, we used SE-iFISH to detect CACs in patients with resectable NSCLC. We first divided total CACs into small and large sizes and further classified these CACs into three heteroploid subtypes based on chromosome 8 ploidy. We found that small cell size CACs accounted for no more than 20% of total CACs and were significantly related to shorter DFS in patients with resectable NSCLC. Pre-surgery small cell size CACs, especially of the triploid subtype, were significantly correlated with later TNM stage and recurrence, suggesting that this subtype might be a good biomarker for poor prognosis in patients with resectable NSCLC.
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Lung cancer is currently the leading cause of cancer death in both developing and developed countries. Given that lung cancer has poor prognosis in later stages, it is essential to achieve an early diagnosis to maximize patients’ overall survival. Non-small cell lung cancer (NSCLC) is the most common form of primary lung cancer in both smokers and non-smokers. The current standard screening method, low‐dose computed tomography (LDCT), is the only radiological method that demonstrates to have mortality benefits across multiple large randomized clinical trials (RCT). However, these RCTs also found LDCT to have a significant false positive rate that results in unnecessary invasive biopsies being performed. Due to the lack of both sensitive and specific screening methods for the early detection of lung cancer, there is an urgent need for alternative minimally or non-invasive biomarkers that may provide diagnostic, and/or prognostic information. This has led to the identification of circulating biomarkers that can be readily detectable in blood and have been extensively studied as prognosis markers. Circulating microRNA (miRNA) in particular has been investigated for these purposes as an augmentation to LDCT, or as direct diagnosis of lung cancer. There is, however, a lack of consensus across the studies on which miRNAs are the most clinically useful. Besides miRNA, other potential circulating biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNAs) and non-coding RNAs (ncRNAs). In this review, we provide the current outlook of several of these biomarkers for the early diagnosis of NSCLC.
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Introduction

Despite advances in detection and treatment for various types of cancer, lung cancer has remained one of the cancers with the highest incidence and mortality (1). In 2018, the World Health Organization (WHO) reported that lung cancer was the leading cancer diagnosed accounting for approximately 2.1 million cases in both developing and developed countries (1). Moreover, lung cancer has the highest cancer mortality, with 1.8 million deaths or 18.4% of all cancer deaths annually. Currently in the USA, the National Institutes of Health (NIH) data shows that 57% of all lung cancer is diagnosed at a distant organ metastasis, with an overall five-year survival of 19.4% (2). In fact, lung cancer causes more deaths than prostate, breast, colorectal and brain cancers combined (3). Given that lung cancer has such a poor survival profile, there is an urgent need to discover new treatment, and more importantly, sensitive and specific methods to detect lung cancer at an early stage to commence treatment as soon as possible.

Lung Cancer is divided into Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC). Most cases are NSCLC (85%) compared with SCLC (15%) (4). NSCLC can be further divided into different subtypes. The most common subtypes include: Lung Adenocarcinoma (LUAD, 40%), squamous cell carcinoma (LUSC, 25%) and large cell carcinoma (10%) (5). Other less common NSCLC include neuroendocrine tumors and carcinomas with pleomorphic, sarcomatoid elements.

Low‐dose computed tomography (LDCT) is a radiological method that has been used to screen NSCLC. Once a suspicious nodule is identified using this method, an invasive biopsy will be performed. The National Lung Screening Trial (NLST), in 2010, has shown that LDCT decreased mortality by 20%, but alarmingly, this screening method had a 96.4% false positive rate (6), making it extremely non-specific and leading to many unnecessary invasive procedures and associated complications. This highlights the need for a NSCLC detection method that is both sensitive and specific.

Due to the lack of sensitive and/or specific radiological screening methods, there has been much research effort to investigate biomarkers to perform a “liquid biopsy.” Liquid biopsies are methods of screening or diagnosing diseases using saliva, urine, cerebrospinal, and blood (plasma and serum) biomarkers. Examples of these biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating microRNA (miRNA), non-coding RNA (ncRNAs), and tumor-derived extracellular vesicles (EVs) [reviewed in (7)]. Within this group, miRNAs have become one of the leading NSCLC biomarker candidates. MiRNAs are non-coding RNA which are ~22 nucleotides in length. Their primary function is to bind to messenger RNAs (mRNA) to restrict protein translation or increase mRNA degradation. In certain cancers, such as ovarian, lung or pancreatic cancers, changes in miRNA expression may provide both sensitive and specific diagnoses (8–10). More importantly, miRNA may be found in blood, stool, urine, and sputum, making their extraction minimal to non-invasive (11–15). Owing to these properties, miRNAs are also currently being investigated as biomarkers for disease prognosis and treatment response by surgical or medical therapy (16–18).

In this review, we provide a summary of the leading candidates for lung cancer liquid biopsies including miRNA, CTCs, ctDNA, and other ncRNAs. We highlight that when these biomarkers are used in conjunction with LDCT, it is possible to achieve both sensitive and specific early NSCLC detection.



Current Radiological Screening Methods

The most common radiographical screening methods include using LDCT, and it is the only universally recommended method for lung cancer screening (19). The evidence to screen with LDCT is strong, and it is the only screening test shown to reduce the NSCLC mortality rate in multiple large randomized clinical trials (RCT) (6, 20, 21). The NLST screened 53,454 people aged between 55 to 74 years old with at least 30 pack-years, or have stopped smoking within the previous 15 years from 2002 to 2010 (6). The trial participants were screened once by LDCT when they were randomized, and then two additional times at yearly intervals (6). The study reported that there was actually a 20% reduction in mortality over a five-year period in the LDCT group as compared with the chest x-ray (CXR) group (6). Alarmingly, despite the high sensitivity of LDCT, the trial also discovered that LDCT had a 96% false-positive rate (6), making the test highly unspecific. Along with the US-based NLST trial, other European-based trials experienced similar results. The Nederlands-Leuvens Longkanker Screenings ONderzoek (NELSON) trial, the second-largest LDCT lung cancer screening RCT involving 15,792 individuals, showed that while there was no mortality benefit within five years of the annual LDCT screen, there was a 26% reduction in lung cancer death after 10 years of follow-up (20). The NELSON trial also had a high false positive rate (59.4%), highlighting that LDCT, when used in isolation, is highly non-specific (20). Smaller European trials, such as the Multicentric Italian Lung Detection (MILD) trial, and the Danish Lung Cancer Screening Trial (DLCST), also showed a LDCT false positive rate ranging from 18.5% to 67.5% (21, 22).

Such high false-positive rates, and over diagnosis, significantly increase the use of unnecessary invasive procedures and may lead to complications. Furthermore, annual LDCT screening also leads to increased radiation exposure. For example, in the NLST, an average radiation exposure of 8 mSv over three years could potentially cause one cancer in every 2500 people screened (23). Therefore, there have been efforts to combine biomarkers with imaging to permit a decrease in radiation exposure. Using 939 study participants from the MILD study (10-year follow-up RCT screening 4,099 participants aged 49-75 years with a smoking history of more than 20 years), Sozzi et al. (24) screened a previously discovered panel of 24 miRNAs (25). This retrospective analysis of a large patient cohort revealed that the miRNA panel could reduce LDCT false positives from 19.6% to only 3.7% (24). Due to the success of this retrospective analysis, a prospective clinical trial is currently on-going (BioMILD) (26).


Potential Screening Methods by Liquid Biopsy

To reduce unnecessary invasive procedures and radiation exposure, and increased screening coverage for lung cancer, there is an urgent need for a cheap, sensitive and specific screening test that could be used in conjunction with LDCT. The “liquid biopsy” field is rapidly expanding in the field of translational cancer research (27). Biomarkers such as circulating tumor DNA (ctDNA), circulating tumor cells (CTC), miRNA, circulating ncRNA, and many others have been explored as potential clinical markers for detection and prognosis in different cancers such as prostate, lung, and melanoma (27). Out of all the biomarkers, the use of miRNAs has the greatest potential, due to its simplified extraction methods (from blood, saliva, and urine), sensitivity, and well-established role in messenger RNA (mRNA) regulation. In fact, having a liquid biopsy as a molecular test for patients with NSCLC, is included amongst a list of recommendations in the new guidelines for the College of American Pathologists (CAP), as well as the International Association for the Study of Lung Cancer (IASLC), and the Association for Molecular Pathology (AMP) (28).

There are many reasons why a liquid biopsy is useful: Firstly, a significant patient subgroup cannot undergo conventional biopsy procedures or be induced under anesthesia for surgery due to poor clinical condition or the location of the tumor. Secondly, liquid biopsies spare the patient from surgery complications from CT-guided transthoracic lung biopsies. Thirdly, in a single tissue biopsy, the amount of tissue may not be enough to perform all the required tests or analyses, which is compounded by the heterogeneous nature of the tumor. Finally, invasive procedures or surgeries are more expensive than a blood draw, making non-invasive markers more cost-effective (28).




Potential NSCLC Biomarkers

There are a number of potential biomarkers currently being investigated or studied. In the next sections, we will discuss such biomarkers’ utility, current status, as well as pros and cons. A summary of the various biomarkers and associated clinical trials are shown in Tables 1–3.


Table 1 | Circulating biomarker candidates for NSCLC diagnosis.




Table 2 | Ongoing clinical trials studying using microRNA to detect NSCLC.




Table 3 | Circulating ncRNA candidates for NSCLC diagnosis.




MicroRNA (miRNA)

MiRNA dysregulation is well known to be associated with a wide range of diseases, including cancer, due to their important function in gene regulation. It has been long known that miRNA dysregulation can lead to certain oncogene upregulation or tumor suppressor gene down-regulation (31). This dysregulation has been shown to down-regulate protective genes such as PTEN and TP53 (32, 33) while increasing the expression of oncogene such as RAS and MYC (34, 35). For example, cigarette smoke has been shown to downregulate the miRNA let-7c, a known regulator of the oncogene KRAS, which is known to induce tumorigenesis (36). This suggests that dysregulation of miRNA may be an early event in lung cancer tumorigenesis and may contribute to cancer progression (37). It can be postulated that by detecting such changes may also contribute to the early detection of cancer.

There are several reasons that make miRNA attractive as a detection tool. Primarily, it can be sensitively detected, and extracted non-invasively (38). Additionally, miRNA has been known to be very stable in bodily fluids, including serum and plasma, thus making it a readily obtainable biomarker (38). Interestingly, in different lung cancer subtypes such as squamous cell carcinoma, adenocarcinomas, and small cell carcinoma, miRNA expression can behave in a tissue-specific manner (39, 40).

In general, miRNAs are released from cells via distinct exosomal or non-exosomal pathways. The three main theories on miRNA secretion into blood are: 1) Leakage due to chronic inflammation and/or cell apoptosis 2) Active loading into exosomes, which are 40-100nm vesicles, released from the tumor cell and 3) Active secretion and bound to proteins (e.g. AGO2) or lipoproteins (LDL, HDL) (41, 42).

Given that there is dysregulation of miRNA in tumor cells, in theory there should be changes in multiple miRNA levels, which could be detected in body fluids, including plasma, whole blood, sputum, and urine (38). For example, a study by Yanaihara et al. showed that 12 miRNAs could be used to discriminate NSCLC from non-cancerous lung tissues (43). Whereas a review by Moretti et al. identified, through literature search, one highly specific and one highly sensitive miRNA panel respectively to detect stage I and II NSCLC. This review proposed that a two-phase screening may be appropriate, where the highly sensitive panel is used first, and then the highly specific panel can confirm the finding of the first panel, and by doing so, this could increase the overall detection sensitivity to 91.6%, with an overall specificity of 93.4% (44).

As described, miRNAs can also be used to distinguish subtypes of lung cancer. For example, miR-7c, miR-21, miR-29b, miR-106a, miR-125a-5p, miR-129-3p, miR-205, and miR-375 can be used to distinguish the subtypes of NSCLC and SCLC with an accuracy of 93.7% (45). While there are yet to be large scale validation studies of NSCLC miRNA detection panels, there have been promising results in other cancer types. Recently, Ochiya et al. have shown that a panel miRNA can be used to detect early stages of ovarian cancer with 99% sensitivity and 100% specificity (39). Therefore, there is much potential for the discovery of a highly sensitive and specific NSCLC miRNA panel to to improve patient outcomes by detecting disease in its earliest stage so treatment can commence without delay.

Besides endogenous gene regulation, miRNA can be transmitted in the blood and act in cell-to-cell communication similar to the mode of action of a hormone (46). This is interesting as it suggests that certain “hormone-like” miRNA expression may change in the blood of NSCLC patients, thus supporting the hypothesis that changes in plasma miRNA could be used to detect the development and the spread of cancer. For example, miR-233 has been identified as a “hormone-like” miRNA, and has been reported to transport into breast cancer cell with no cell-to-cell contact (47). This further solidifies that miRNA expression change may be early events of carcinogenesis and that miRNA detection can provide early indications of tumorigenesis and metastasis.

Due to cancer’s diverse nature, it can be very difficult to accurately predict the prognosis of patients, as it can be influenced by lifestyle and specific driver mutations unique to the cancers. Research performed in metastatic renal cell carcinoma showed that stem cells release microvesicles that carry several miRNAs that were associated with the establishment of a metastatic friendly environment in the lung (48). In terms of NSCLC, high expression of tissue let-7a, miR-221, miR-137, and miR-182 have been shown to increase the invasiveness of lung cancer cells and predict poor prognosis (49). While Kim et al. has shown that miR-126 reduction and miR-200c elevations in biopsied samples indicate poor prognosis in NSCLC patients (50). Finally, a meta-analysis of miRNAs by Yu et al. demonstrated that a global increase in overall miRNA level in NSCLC patients tended to be associated with decreased survival (51).

Plasma-derived expression of miRNAs for NSCLC detection, is a minimally invasive procedure, currently at an early phase of development. There are a number of current clinical trials using miRNAs for NSCLC detection (summarized in Table 2). Sozzi et al. showed that a panel of 24 plasma miRNA have 87% sensitivity and 81% specificity, for detecting lung cancer, and have a 27% positive predictive value, and 99% negative predictive value (24). This miRNA panel is currently undergoing the BioMILD trial (Table 2), which may provide evidence on the utility of miRNA alongside LDCT to diagnosis NSCLC. Preliminary data from the BioMILD trial panel suggest that it may be able to screen for patients who are high risk in lung cancer development. Furthermore, the Sozzi et al. study was able to identify patients who were at high risk of developing lung cancer up to two years before radiological diagnosis (57).

Rosetta Genomics (not active at time of review) was approved by the Food Administration Agency (FDA) in 2012, to use a library of miRNA to differentiate between small cell lung cancer, carcinoid, squamous non-small cell lung cancer, and non-squamous cell non-small cell lung cancer (40). However, this miRNA panel was only to be used on tissue biopsy samples, which restricted its use as early detection of lung cancer and as a minimally invasive procedure (58). As such, identifying miRNA in plasma, which can detect different subtypes of NSCLC, can be a future path when investigating the relationship of miRNA and NSCLC.

Hummingbird diagnostics is currently developing NSCLC, melanoma, breast cancer, and general cancer miRNA panels (59). Their 17 patents granted in the field of whole blood miRNA expression profiling are currently being clinically validated with funding from three European FP-7 consortia (BestAgeing, RiskyCAD, and EURenOmics) (59). Due to this early phase, it has much potential, and can hopefully be translated into clinical use in the future. As such, identifying miRNA in plasma, which can detect different subtypes of NSCLC, has promise in the minimally invasive diagnosis of NSCLC. There has been a lack of investigations to study miRNA panels intended to separate early-stage squamous cell carcinoma and adenocarcinoma, the two most common NSCLC subtypes.



Circulating Tumor Cells (CTCs)

Circulating Tumor Cells (CTCs) have been a popular research topic for cancer detection in recent years. CTCs are cells detached from tumors, which can be detected mainly in whole blood, but can also be found in other body fluids such as pleural effusions (60). Since CTCs can represent the malignancy, it has the potential to be used as a minimally invasive biomarker to understand the tumor’s biology and associated somatic mutations and copy number aberrations. Furthermore, it has been reported that CTCs have an important role in cancer metastasis as they will invade venous or lymphatic vessels, and seed in different organs; thus CTCs may be a useful tool in the detection of metastatic cancer (61). As such, there are several phase II and III clinical trials undergoing investigation for the number of CTCs in blood and their relationship with treatment response. For example, in the Treat-CTC (NCT01548677) Phase II RCT, the investigators are investigating the correlation between CTCs and disease survival in patients with human epidermal growth factor receptor 2 (HER2) negative primary breast cancer treated with trastuzumab therapy.

Besides using the amount of CTCs in the blood as an overall detection for metastatic cancer, it has been reported that protein, and mRNA from the CTCs can be used to determine specific mutant protein and prognosis (62). For example, the presence of EpCAM/MUC1 mRNA-positive CTCs significantly decrease a NSCLC patient’s disease-free, and overall survival (63). Furthermore, high amounts of CTCs collected from the pulmonary vein (≥18 PV-CTCs/7.5ml), has been found to be associated with decreases in survival of early staged NSCLC patients (64). Interestingly, the commercially available nanoString nCounter platforms have been shown to be able to measure plasma CTC-RNAs. This platform can directly measure mRNA without requiring its conversion to cDNA or multiplexed target enrichment (MTE), by directly capturing and counting of individual targets (65). In fact, the FDA approved the nCounter-based Prosigna assay in 2013 to diagnosis breast cancer subtypes, and risk of recurrence, by using a 50-gene signature in breast tissue samples (66). The  nCounter system also has been shown to be able to detect EV-derived mRNA (67). Thus, there is potential to use this platform to detect gene expression in CTCs with high sensitivity.

CTCs can also be analyzed to detect common somatic EGFR mutations (68) as well as ALK translocations using filter-adapted fluorescent in situ hybridization (FA-FISH) (69). As mentioned above, since NSCLC treatments may involve targeting specific mutations, requiring fine-needle biopsy of the tumor for mutation analysis, CTC mutation analysis may provide a non-invasive method of determining a tumors mutation. The detection of CTCs is however limited to only a few tumor cells per 1x106-107 peripheral blood mononuclear cells in patients with advanced tumors (27). The Treat-CTC study also reported that most patients only have one CTCs per 15 ml of blood, thus making it a major limitation to the study (70) using current detection methods. Since CTCs are present in low numbers in blood, detection requires highly sensitive and specific methods. The current FDA approved CellSearch® (Veridex LLC) uses EpCAM-coated magnetic beads to isolate CTCs; it is currently approved for metastatic breast, colorectal, and prostate cancers (71). There have been studies investigating CellSearch™ as a tool for NSCLC, and it has been reported that in metastatic NSCLC, only 32% of patients have more than two CTCs before chemotherapy treatment (27). Whilst high specificity of more than 89% can be achieved, sensitivity varies from 27-70% (27), which may limit its clinical scope in NSCLC diagnoses. Even though this method is FDA approved, and that detection sensitivity of CTC in late-stage NSCLC is improved significantly (27), this method has little clinical utility for early detection of NSCLC.

Other more recent CTC isolation systems, such as ClearCell® FX (72), the VTX-1 Liquid Biopsy System (73),  and the Parsortix™ Cell Separation System (74), have been shown to improve CTC capture to the point where there are enough tumor cells to be xenografted into mice, and to study the tumor cells’ molecular biology (75, 76). However, these studies mainly focus on SCLC as these tumors have high numbers of CTCs in blood, with a strong ability to proliferate (75). In comparison, NSCLC have fewer CTCs in the blood, and lower relative proliferative abilities, especially during early cancer stages. This makes NSCLC CTCs much harder to capture and study (75).



Circulating Free Tumor DNA (ctDNA)

Circulating free tumor DNA is single or double-stranded DNA from CTCs or the tumor itself. CtDNA exists in serum or plasma and may preserve many mutation characteristics of the tumor cells (77). For example, it can preserve somatic point mutations or methylation patterns of metastatic colorectal cancer cells with KRAS mutation, which have been used to predict the patient’s prognosis (78). Moreover, ctDNA has been reported to correlate with tumor burden and to the therapeutic response in NSCLC. A meta-analysis by Fan et al. showed that in groups that were treated with or without chemotherapy, detection of the EGFR mutation in ctDNA improved patient prognosis, while patients with the KRAS mutation had a worse prognosis in NSCLC (79).

Since many cancer treatments target specific mutations, and cancer can develop drug resistance quickly, it is important to rapidly determine a tumor’s mutation status. While invasive tumor biopsy and immunohistochemical staining are the gold standards in mutation determination (80), ctDNA may be representative of the genome of the tumor. Thus, ctDNA can be used to identify mutations non-invasively (80, 81). In fact, the cobas® EGFR Mutation Test v2 from Roche was FDA approved to detect NSCLC EGFR exon 19 or exon 21 substitution mutations, in 2016 (82). Indeed, in more recent large clinical trials, (e.g. AURA2, AURA3 and FLAURA), it has been demonstrated that it is possible to use cobas® to detect ctDNA with EGFR mutations in locally advanced and metastatic NSCLC. For example, the AURA3 trial used ctDNA to gauge NSCLC response to osimertinib as compared with platinum-based therapy plus pemetrexed. This study supported that ctDNA can be used to detect EGFR T790M mutations in plasma, though the study also cited that there can be a high false negative rate (83). Similarly, the AURA2 trial also exhibited low sensitivity, with circulating T790M mutation only present in 40% of patients. Thus, it was suggested that patients who were plasma ctDNA negative should obtain a tissue DNA sample for verification (84). The FLAURA trial, also investigated circulating levels of T790M mutations and found that detectable signals were higher in patients that had a higher tumor burden due to increased shedding of ctDNA. Furthermore, this study reported that there were patients with “non-shedding” tumors with no detectable plasma ctDNA  and these patients had better prognosis than patients with detectable plasma ctDNA (85). Thus, plasma ctDNA may be specific in detecting later staged NSCLC, and their mutation status, but it may not be sensitive enough to detect early staged NSCLC.

Other clinical trials also found that while ctDNA is highly specific, it may not be as sensitive as miRNA, with early trials ranging between 43-65.7% in detecting malignancy mutations (28, 86). For example, the IPASS and LUX-LUNG3 Phase III RCTs showed that sensitivity level was only 43% (28). Whereas the ASSESS trial showed that ctDNA can detect EGFR mutations with low sensitivity (46%), but a high specificity (97%) (28). Later trials, such as the phase IV IFUM trial, have found that the sensitivity to detect ctDNA was improved up to 65.7% using the Scorpion Amplification Refractory Mutation System (ARMS)-based EGFR mutation detection kit (86). Interestingly, different subtypes of lung cancer may secrete a different amount of ctDNA due to the degree of necrosis in early staged NSCLC. In a study by Abbosh et al., a commercial ctDNA assay panel (developed by Natera) was used to screen the first 100 stage I (LUSC and LUAD) TRACERx study participants; which resulted in ctDNA being detected in 94% of LUSC, whereas only 13% of LUAD patients were positive. (87). Since LUAD is the largest subtype of NSCLC and any lung cancer (5), the use of ctDNA is limited to only late stage, and thus need to be combined with other biomarkers or imaging modalities to detect early stage NSCLC.

There are multiple ways of detecting ctDNA, which includes PCR based methods and Next-Generation Sequencing (NGS) based methods. PCR based method examples include quantitative PCR (qPCR), digital PCR (dPCR), and BEAMing (which stands for beads, emulsion, amplification and magnetics) (27). In contrast, NGS based methods include CAncer Personalized Profiling by deep Sequencing (CAPP-Seq), and Tagged AMplicon deep Sequencing (TAM-Seq) (88). Compared to PCR based methods, NGS based methods are more expensive, but their sensitivity and specificity are very promising. CAPP-seq has been assessed to have an initial sensitivity and specificity of 85% and 96% (88). However when stage 1 tumors where specifically assessed, the sensitivity was reduced to 50% (88). A recent paper by Chabon et al. showed that by optimizing the CAPP-seq methodology, and using machine learning to generate a lung cancer likelihood in plasma score (Lung-CLiP), stage 1 NSCLC can be detected with 41% sensitivity and 98% specificity, while stage 2 can be detected with 54% sensitivity (89). Moreover, as oppose to PCR based methods, NGS uses an unbiased approach, assessing all genes, and as such can detect unknown gene mutations of lung cancer.

DNA methylation dysregulation is a hallmark of carcinogenesis, as CpG island hypermethylation can reduce the expression of certain onco-protection genes. Since ctDNA is mainly derived from apoptotic or dead tumor cells, they should represent the tumor genomic DNA (90). In fact, Hao et al. have shown that methylated ctDNA was identified in 32 of 34 (94%) colo-rectal cancers which had metastasized to the lung (91). This indicates that ctDNA may be able to help identify if the lung tumor is of primary, or metastatic origin. Currently, the MEDAL trial is the first prospective study to compare the detection of aberrant methylation and mutations in ctDNA among stage 1A to 3 surgical NSCLC patients (92). The MEDAL trial results are due in 2021, and it will be interesting to see if they provide evidence to support using methylated ctDNA for NSCLC detection.

There have been many questions about the use of ctDNA as an early diagnosis tool. Like CTCs, ctDNA has been reported to have very low amount in blood ranging normally from 13-51 ng/ml (93). This requires large volumes of blood to be drawn or high levels of secretion. Moreover, the cancer may need to be relatively advanced before sufficient ctDNA can be extracted to cross the detection threshold, thus making it more useful to detect later stages of the cancer. Finally, while cobas® can reach acceptable levels of specificity, sensitivity issues remain problematic. Since detection of tumor specific mutations are possible, this high specificity may make the assessment of ctDNA an ideal candidate to be used in conjunction with LDCT. Indeed, the CancerSEEK trial showed that ctDNA has a median of 70% sensitivity across eight cancer types, when combined with protein biomarkers, in 1,015 patient samples, which included lung cancer (94).

GRAIL Inc is currently conducting four large scale ctDNA randomized control trials (RCT): the SUMMIT trial (95), the PATHFINDER trial (96), the Circulating Cell-free Genome Atlas (CCGA) Study (97) and the STRIVE study (98). Out of the four RCTs, the SUMMIT trial specifically aims to evaluate the performance of the GRAIL ultra-deep sequencing to detect ctDNA in patients at high-risk for developing lung cancer, with the levels of ctDNA detected correlated with LDCT outcomes (95). The trial will enroll 25,000 participants deemed at high risk, i.e., at least 30 pack years of smoking, and if a former smoker, have quit in the past 15 years: or having a Prostate, Lung, Colorectal and Ovarian (PLCOm2012) risk score ≥1.3% (6-year lung cancer risk).



Non-coding RNA (ncRNA)

Non-coding RNA (ncRNA) is an emerging field in disease treatment and detection, which has been gaining traction in the last few years. For a long time, researchers considered ncRNA as background noise, however recent discoveries have shown that ncRNA have a significant role in malignancy development. Currently, there are six main ncRNA classes: MicroRNA (miRNA), transfer RNA-derived small RNAs (tsRNAs), PIWI-interacting RNA (piRNAs), long ncRNAs (lnRNAs), pseudogenes and circular RNAs (circRNAs) (99). A summary of these ncRNAs that are potential biomarkers for NSCLC is summarized in Table 3.

TsRNAs are a group of ncRNAs discovered in the last decade. They are modified transfer RNAs altered by a still unknown enzyme, and have been found to regulate mRNA by binding to its 3’UTR, 5’UTR or the reading frame (99). There are reports that certain tsRNAs are significantly upregulated in different types of cancer. For instance, ts-46 and ts-47 are associated with both chronic lymphocytic leukemia and lung cancer (100). In fact, the over-expression of both ts-46 and ts-47 has been shown to reduce lung cancer cell line proliferation (100). Due to the changes in expression during the diseased state, tsRNA has been suggested to be used as a minimally invasive cancer biomarker. In a study by Zhu et al., tRNA-ValTAC-3, tRNA-GlyTCC-5, tRNA-ValAAC-5, and tRNA-GluCTC-5 were increased significantly in plasma-derived exosomes from liver cancer patients (101). Since very few studies have been performed on tsRNAs, their precise role in cell biology remains relatively unknown. Therefore, more studies are essential before its clinical utility can be determined.

PiRNAs are another group of newly discovered ncRNAs. They are 24-31 nt in length (102, 103), and are loaded into the PIWI family of Argonaut proteins, which then silence transposons in the gonads (99). Since they are mainly expressed in gonadal cells, under normal circumstances, they are expressed at low levels in somatic tissues (99, 104). There have been reports that cancer and healthy blood and tissues have distinct piRNA signals (105). For example, piR-823 is highly expressed in serum and urine of a patient with advanced renal cell carcinoma (103). Like tsRNAs, because of this change in expression, reports suggest that piRNA may be used as either a prognostic or diagnostic biomarker. For example, the expression of piR-1245, from colorectal carcinoma tissue, has been shown as an independent prognostic biomarker (106). Interestingly, piRNAs are similar in size and stability with miRNA, though it is much less well-studied (99). Due to its incomplete biological understanding, and immature detection methods, more studies must focus on piRNA before it can become a biomarker candidate for disease diagnosis.

LncRNA is an emerging field in disease treatment and detection. Recent research has suggested that lncRNA regulate the development and apoptosis of cells through various mechanisms, such as; acting as a decoy, as a signaling molecule, as a guiding transcription factor, or as a scaffold for genomic DNA histones (107). Similar to miRNA, lncRNA are relatively stable in body fluids and seem to be tissue-specific (108). In contrast to miRNA, which can be exocytosed, lncRNAs are released into the blood when tumor cells undergoes apoptosis or lysis (108). Similar to miRNA, lncRNA can be potentially used to detect pathological conditions. For example, detection of PCAT2 has been shown to be a more sensitive and specific marker for prostate cancer than prostate-specific antigen (PSA) (109). While in NSCLC, MALAT-1 has been shown to have a sensitivity of 56% and specificity of 96% for detection (110). LncRNA have complex direct and indirect regulation and multifocal effects on both mRNA transcription and protein translation. Thus, more research will be needed before lncRNA can be used in disease detection and treatment. Currently, several clinical trials are studying the use of lncRNA as a prognostic or detection biomarker. Two such clinical trials are underway, NCT02641847 which studies using lncRNA to measure triple-negative breast cancer response, and NCT03057171 is studying the use of lncRNA to detect MALT lymphoma in the stomach.

Pseudogenes are a subclass of lncRNA transcripts. Their nucleotide sequence can be very similar to their corresponding mRNA transcript, which allows miRNAs to bind to it, thus acting as a miRNA decoy (99). For example, BRAFP1 pseudogene acts as a miRNA decoy for BRAF, thus leading to an increase in BRAF expression and increased cell proliferation (111). Due to its relevance in protein expression, there have been efforts to use it as a diagnostic marker. Kalyana-Sundaram et al. identified 218 pseudogenes expressed only in cancer but not in healthy individuals (112). This makes it a strong target for the development of a multi-panel cancer screening tool. Another study, in gastric cancer, showed that there were lower levels of the pseudogene PTENP1 compared to healthy individuals, which when used along with the expression level of two lnRNAs (CUDR and LSINCT-5), have high diagnostic power (113). Pseudogenes are also being investigated as a prognostic biomarker. Two distinct clusters of 241 and 205 pseudogenes may be able to predict survival time in kidney cancer (114). Even though there are some studies suggesting that pseudogenes may have clinical significance, it is much less studied than lncRNA. Like many ncRNAs, more studies need to be performed before they can become reliable diagnostic and prognostic biomarkers.

CircRNAs are a group of endogenous noncoding RNA with closed loops instead of the traditional linear form (115). They seem to closely regulate miRNA expression and function, thus indirectly affecting miRNA downstream pathways (107). For example, ciRS-7 contains 70 selectively conserved miRNA binding sites and have been shown to be associated with Argonaute (AGO protein) to act as a miRNA sponge for miR-138 (116). It has also been reported that in esophageal squamous cell carcinoma, that the circRNA, cir-ITCH, serves as a sponge for miR-7, miR-17, and miR-214 (117). Given that in different cancers, there can be upregulation or downregulation of circRNA ranging from two to six-fold (118), this dysregulation can contribute to the dysregulation of miRNA by upstream regulation.




Conclusion and Future Directions

NSCLC remains one of the cancers with the highest incidence and mortalities (119). Many of those diagnosed, present with advanced or metastatic tumors, and therefore there is an urgent need for a screening test for early NSCLC diagnosis and treatment to increase survival (120). Liquid biopsy has become an attractive screening method due to its minimally invasiveness and sensitivity. However, there are many biomarker candidates currently being developed. In this review, we have discussed the use of miRNA as a NSCLC screening tool, as well as CTCs, ctDNAs and other ncRNAs.

Despite the significant effort to identify and develop standalone, minimally invasive biomarkers panels for NSCLC, a more likely clinically scenario will be the use of a combination of biomarkers and radiological evidence to aid in early diagnosis. We have summarized this approach in Figure 1 and purposed to continue using LDCT to screen for NSCLC in high risk population due to its sensitivity. Furthermore, multiple clinical trials have shown that LDCT may reduce cancer mortality in the long run. If the LDCT is positive, a circulating biomarker test can be used to increase the specificity and to reduce the false-positive of LDCT. If the LDCT is positive, but the circulating biomarker test is negative, the clinician can decide if the patient requires a tissue biopsy, or can return for a LDCT screening test later, based on the countries’ guidelines, presenting symptoms, and physical examination.




Figure 1 | (A) Current NSCLC screening flowchart (B) Purposed combined screening radiologic imaging with biomarkers. As LDCT is sensitive but unspecific, it can be used as an initial screening test. If the LDCT is positive, the next step we purposed is to use circulating biomarkers to increase the LDCT’s specificity. If the LDCT is positive, but the biomarker screen is negative, we purpose to base the decision to perform a tissue biopsy on the clinician’s judgment.
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Background

Circulating tumor cells (CTCs) represent a collection of heterogeneous cells. Studies have shown epithelial CTCs and folate receptor (FR) positive CTCs could be used as diagnostic biomarkers for lung cancer (LC). This study aimed to determine whether cell surface vimentin (CSV) positive CTCs could be used as a biomarker for LC as well.



Methods

78 treatment-naïve non-small-cell lung cancer (NSCLC) patients, 21 patients with benign lung diseases (BLD) and 9 healthy donors (HD) were enrolled in this study. CTC detection was performed using CytoSorter® mesenchymal CTC kit (CSV). The correlation between CSV positive CTCs (CSV-CTCs) and LC patients’ clinicopathological characteristics would be evaluated, and diagnostic performances of CSV-CTCs and serum tumor markers for LC would be compared.



Results

CTC detection rates (average CTC count: range) in LC patients, patients with BLD and HD were 83.33% (2.47: 0-8), 47.62% (0.5: 0-3) and 0% (0: 0), respectively. CSV-CTCs could be used to differentiate LC patients from the patients with BLD and HD (P < 0.0001). CSV-CTCs were correlated with cancer stage, lymph node involvement and distant metastasis (P = 0.0062, 0.0014 and 0.0021, respectively). With a CTC cut-off value of 2, CSV-CTCs would have a sensitivity and specificity of 0.67 and 0.87, respectively, for diagnosing LC. CSV-CTC positive rates showed statistical differences among HD, BLD patients and LC patients at different cancer stages (P < 0.0001). Furthermore, CSV-CTC positive rates were positively correlated with tumor size, lymph node involvement and distant metastasis (P = 0.0163, 0.0196 and 0.03, respectively). CSV-CTCs had a better diagnostic performance than serum tumor makers, such as carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cancer antigen 125 (CA125) and CA153.



Conclusion

When CTC cut-off is set to 2 CTCs per 7.5 mL of blood, CSV-CTCs can be considered as an acceptable biomarker for diagnosing LC with a sensitivity and specificity of 0.67 and 0.87, respectively.





Keywords: circulating tumor cells, cell surface vimentin (CSV), NSCLC, cancer diagnosis, serum tumor markers



Introduction

Lung cancer (LC) is the most common cancer and the leading cause of cancer-related deaths both worldwide and in China (1, 2). There were approximately 787,000 newly diagnosed cases and 631,000 deaths for LC in 2015 in China (3). China occupies only about 20% of the world’s population, but more than one third of the LC cases are in China. Although diagnostic and treatment modalities for LC have an enormous progress in recent years, most LC patients still have a poor prognosis with a 5‐year survival rate ranging from 4-17% depending on cancer stage and regional differences (4). “Early detection, early treatment” means that patients would have a better treatment strategy and survival outcome if the tumors were diagnosed earlier (5). However, most LC patients are already in advanced stages of disease at the time of diagnosis. Thus, early detection of LC is important to improve the overall survival.

The primary approaches to diagnose LC include medical imaging examination, serum tumor markers test and biopsy. Tumors are usually quite small at an early stage and therefore they can be hardly detected by the imaging techniques due to the sensitivity limitation. Biopsy is the gold standard for cancer diagnosis, but it cannot be performed regularly due to the invasive nature, thus it cannot be used as a surveillance means to monitor the real-time progression of disease. Serum tumor makers, such as neuron‐specific enolase (NSE), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125) and CA153, are frequently used in practice for LC diagnosis (6). However, serum tumor makers generate easily false positive results due to inflammations, infections, pregnancy, or other physical conditions, rendering these markers not very trustworthy. As a consequence, to improve the clinical outcomes of LC patients, it is in need to find a reliable biomarker for better screening and early diagnosis of LC.

Circulating tumor cells (CTCs) are tumor cells that have detached from the primary tumor or metastatic lesions and escaped into circulation. CTCs can colonize other organ to give rise to a new metastatic lesion once they find a suitable site (7). Studies have suggested that CTCs represent the undergoing process of metastasis and can be used as a prognostic marker to predict clinical outcomes of LC patients(8–11). CTCs can be detected in the blood even when the tumor is clinically undetectable (typically < 0.01 cm3) (12), implying that CTC is a good biomarker candidate for early diagnosis of LC.

CTCs are a collection of heterogeneous cells, indicating that each CTC may differ from each other in term of cell size, gene mutation and protein expression (13, 14). Several studies have suggested the use of CTCs for screening and early diagnosis of LC (15–17). Duan et al. used GILUPI CellCollector to detect CTCs in 44 patients suspected of LC and in 20 healthy donors (HD). With a CTC cut-off of 1, CellCollector has a sensitivity and specificity of 0.53 and 0.9, respectively (15). Li et al. used a negative enrichment‐fluorescence in situ hybridization (NE‐FISH) method to detect CTC in 174 LC patients and 90 control and discovered that NE‐FISH had a sensitivity and specificity of 0.68 and 1, respectively (16). Chen et al. used ligand-targeted polymerase chain reaction (LT-PCR) technique to detect folate receptor (FR) positive CTCs in 756 participants, including 473 patients with non-small cell lung cancer (NSCLC), 227 patients with benign lung diseases (BLD), and 56 HD, and found that with a sensitivity and specificity of 0.76 and 0.88, respectively, FR positive CTCs could be used as a biomarker in the diagnosis of NSCLC (17).

Both epithelial and FR positive CTCs can be used as biomarkers for LC diagnosis (15–17), we would like to know whether cell surface vimentin (CSV) positive CTCs (CSV-CTCs) can be used as a biomarker for LC as well. 78 NSCLC patients, 21 patients with BLD and 9 HD were recruited in this study. The diagnostic performances of CSV-CTCs and serum tumor markers for LC would be compared and the correlation between CSV-CTCs and LC patients’ clinicopathological characteristics would be analyzed.



Materials and Methods


Ethics and Participants

In total, 78 NSCLC patients, including 30 stage I, 7 stage II, 13 stage III and 28 stage IV, 21 patients with BLD and 9 HD were enrolled in the First Affiliated Hospital of Guangzhou Medical University. The included patients were diagnosed between May 2019 and October 2019. All included patients had negative history of malignancy within 5 years prior to enrollment, and were treatment-naïve before enrollment. Recruited patients with BLD suffered from hamartoma, papilloma, granulomatous inflammation, fibroma, benign nodule and other lung infections. All included HD had no abnormal finding in medical imaging examination and no medical history of any malignant disease. The LC patient demographics and clinical information, including age, gender, smoking history, tumor histology, TNM stage, and serum levels of NSE, CEA, CA125 and CA153 were collected.



Identification of CSV-CTCs

CytoSorter® (Hangzhou Watson Biotech, Hangzhou, China) CSV mesenchymal CTC kit was used for CTC detection. CTC detection procedure was following the manufacturer protocol and was described in the previous study (18). In brief, the streptavidin-functionalized CytoChipNano was first coated with biotin-labeled CSV antibody before placing onto CytoSorter®. 7.5 mL of collected peripheral blood was first proceeded to gradient-centrifuge within 6 hours after collection to collect the peripheral blood mononuclear cells (PBMC). PBMC sample solution was then transferred into the spiral sample tube on CytoSorter®. The enrichment procedure was controlled by CytoSorter® software designed for each CTC capturing antibody. Once the CTC enrichment was finished, the CytoChipNano was removed from CytoSorter® and proceeded to the manual immunofluorescence staining of CSV-FITC (fluorescein isothiocyanate), CD45-PE (lymphocyte antigen-phycoerythrin) and DAPI (4,6-diamidino-2-phenylindole). An OPPNO immunofluorescence microscope (DSY5000X, OPPNO, Chongqing, China) was used to identify CTCs by searching for CSV-FITC positive, CD45-PE negative, and DAPI positive cells. CSV-CTCs appeared green and blue, but not orange, while white blood cells appeared orange and blue, but not green, under florescent microscope. All identified cells must be checked for morphology under bright-field.



Measurement of Serum Tumor Markers

A 3 mL of fasting venous blood sample was collected from each patient and HD in the morning. Serum was separated by centrifugation at 4000 rpm for 10 minutes within 2 hours after blood collection. NSE, CEA, CA125 and CA153 were detected by an automatic electrochemical luminescence analyzer (Cobas e602, Roche, Germany). All serum tumor marker tests were conducted according to instrument operating manuals. 17.5 ng/mL, 5 ng/mL, 35 U/mL and 25 U/mL were considered as the upper limits of normality for NSE CEA, CA125 and CA153, respectively.



Statistical Analysis

Statistical analyses were performed using Prism 6.0 (Graphpad, La Jolla, CA, USA) and SPSS 20 (IBM Corp., Armonk, NY, USA). The x2 test and Fisher’s exact test were used for the comparison of categorical parameters. One-way analysis of variance (ANOVA) was performed to calculate the differences among multiple groups. Student t test was used for continuous variables, as appropriate. The diagnostic performance was evaluated by the receiver operating characteristic (ROC) curve according to the value of sensitivity, specificity and area under curve (AUC). CTC cut-off value was determined by the highest Youden index (sensitivity + specificity - 1). Comparison of diagnostic potency of different systems was rated by the AUC value. A two-sided p value less than 0.05 was considered statistically significant.




Results


Detection of CSV-CTCs in LC Patients, Patients With BLD and HD

A CSV-CTC is shown in Figure 1A as a cell appearing green and blue, but not orange under florescent microscope. CSV-CTCs were detected in 65 out of 78 LC patients with a mean of 2.47 cells (range:0-8), 10 out of 21 patients with BLD with a mean of 0.5 cells (range: 0-3) and in none of the 9 HD as shown in Table 1. A significant difference of CSV-CTCs was found among LC patients, patients with BLD and HD (P < 0.0001, Figure 1B). Furthermore, if LC patients were broken-down by stage, significant differences of CSV-CTCs were still found between BLD patients and stage I, II, III or IV LC patients (P = 0.0167, 0.0307, 0.0014, or < 0.0001, Figure 1C), indicating that CSV-CTCs could be used as a biomarker to distinguish LC patients from the patients with BLD and HD. 9 out of 10 patients with BLD who were found to have CSV positive cells had either inflammation diseases, fibrosis or other lung infection conditions.




Figure 1 | CSV-CTCs are correlated with LC patients ’ cancer stages, lymph node and distant metastases and can be used to distinguish LC patients from patients with BLD and HD. (A) Immunofluorescent staining of a captured CSV-CTC and a white blood cell (WBC), indicated by the yellow and white arrows, respectively. CSV positive CTCs are defined as DAPI (blue) positive, CSV (FITC, green) positive and CD45 (PE, orange) negative cells, while a WBC as a DAPI positive, CD45 positive and CSV negative cell. Scale bar represents 10 μm, immunofluorescent staining, X 20 (B) CSV-CTC enumeration can differentiate LC patients from BLD patients and HD (both P < 0.0001). (C) CSV-CTCs are correlated with cancer stage (P = 0.0062). Significant differences of CSV-CTCs are found between BLD patients and stage I, II, III or IV LC patients (P = 0.0167, 0.0307, 0.0014, or < 0.0001). CSV-CTCs are correlated as well with age (P = 0.0274), lymph node metastasis (P = 0.0002) and distant metastasis (P = 0.0021), as shown in (D, F, G), respectively. However, CSV-CTCs are not associated with tumor depth as shown in (E). “*”, “**”, “***”, and “****” indicates 0.01 < P < 0.05, 0.001 < P < 0.01, 0.0001 < P < 0.001, and P < 0.0001, respectively.




Table 1 | CTCs can be used to distinguish lung cancer patients from the control (HD + BLD patients).





CSV-CTCs Are Associated With Lymph Node and Distant Metastases in LC

CSV-CTC enumeration in stage I-IV LC patients ranged from 0 to 4 CTCs per 7.5 mL of blood (mean: 1.6), 0-4 (2), 0-5 (2.54) and 0-8 (3.5), respectively (P = 0.0062, Figure 1C). CTC detection rates were 73.33%, 85.71%, 84.62% and 92.86%, respectively. CSV-CTCs are positively correlated with cancer stage. Patients aged over 60 years old had a slightly higher CTC detection rate (90% compared to 76.32%) and more CTCs (2.88 compared to 2.05) than patients younger than 60 years old (P = 0.0274, Figure 1D), which might be due to that the former had usually advanced tumors. CSV-CTCs are statistically associated with lymph node involvement and distant metastasis (P = 0.0014 and 0.0021,respectively, Table 2). Patients with lymph node or distant metastasis had more CTCs (3.34 versus 1.65 or 3.5 versus 1.9, Figures 1F, G). No significant difference of CSV-CTCs was found among LC patients grouped by gender, smoking history or tumor type (adenocarcinoma or squamous) as shown in Table 2. CSV-CTCs were not associated with tumor depth (P = 0.0646, Figure 1E). Taken together, our results show that CSV-CTCs are correlated with lymph node and distant metastases, suggesting that the CSV-CTCs represent the CTC sub-population with more invasive nature.


Table 2 | Correlation of CTCs with LC patients’ demographics and clinical characteristics.





Evaluation of Diagnostic Performance of CSV-CTCs for LC

CSV-CTCs were detected in almost half of the enrolled patients with BLD (47.62%). In order to reduce the false positives in BLD patients, a ROC curve was drawn and Youden index was calculated as shown in Figure 2 and Table 3 to determine the CTC cut-off at which CSV-CTCs would have the best diagnostic performance for LC. When CTC cut-off was set to 1 or 2, it generated a sensitivity and specificity of 0.83 and 0.67, or 0.67 and 0.87, respectively (Table 3). Youden index of CTC cut-off of 2 is slightly higher than that of 1 (0.53 versus 0.5, Table 3). If CTC positive was defined as any patients with CTCs no less than 2, CSV-CTC positive rates showed a significant difference among LC patients, patients with BLD and HD as shown in Table 4 (P < 0.0001) and Figure 2B. If LC patients were broken-down by stage, CSV-CTC positive rates showed significant differences between BLD and stage I, III or IV LC patients (P = 0.0389, 0.0014 or < 0.0001, Figure 2B). However, the CSV-CTC positive rate did not show a significant difference between BLD and stage II LC patients (P = 0.1423), which might be due to the small sample size of enrolled stage II patients (n = 7).




Figure 2 | CSV-CTCs can be used as biomarker for diagnosing LC. (A) ROC curves of CSV-CTCs for LC with different CTC cut-off. When CTC cut-off value is set to 2, the ROC curve has the highest AUC of 0.767 with a sensitivity and specificity of 0.67 and 0.87, respectively. (B) CSV-CTC positive rates show significant differences among LC patients, patients with BLD and HD (P < 0.0001). CSV-CTC positive rates show significant differences as well between BLD and stage I, III or IV LC patients (P = 0.0389, 0.0014 or < 0.0001). CSV-CTC positive rates are associated with LC patients’ age, tumor depth, lymph node and distant metastases (P = 0.037, 0.0163, 0.0196 and 0.0013, respectively) as shown in (C–F). “*”, “**”, and “****” indicates 0.01 < P < 0.05, 0.001 < P < 0.01, and P < 0.0001, respectively.




Table 3 | Youden index of different CTC Cut-off values.




Table 4 | CTCs can be used to distinguish LC patients from the control (BLD patients + HD) when CTC cut-off is set to 2.





Correlation of CSV-CTC Positive Rates With LC Patients’ Clinicopathological Characteristics

CSV-CTC positive rates were correlated with age, lymph node involvement, lymph node and distant metastases (P = 0.037, 0.0196, 0.0013 and 0.03, respectively, Table 5 and Figures 2C, E, F). CTC positive rates were not correlated with gender, smoking history, nor tumor histologic type as shown in Table 5. CTC positive rates was not associated with cancer stages (P = 0.0533, Table 5), although CTC positive rates did increase in more advanced LC. It might be due to the small sample size. CSV-CTC positive rate was correlated with tumor depth (P = 0.0163, Table 5).


Table 5 | Relationship of CTCs with LC patients’ demographics and clinical characteristics when CTC cut-off is set to 2.





Comparison of CSV-CTCs and Serum Tumor Markers for Diagnosing LC

67 LC patients and 13 control donors (9 patients with BLD and 4HD) had serum tumor marker tests data at enrollment. Serum levels of tumor markers, including NSE, CEA, CA125, and CA153, in LC patients and control are shown in Figures 3A–D. No statistical difference of serum tumor marker level between LC patients and control was found, indicating that serum tumor markers were not good biomarkers for LC. However, when we compared serum tumor markers with LC patients’ clinicopathological characteristics, most serum tumor makers were correlated with cancer stage, tumor size, lymph node involvement and distant metastasis as shown in Table 6. Most serum tumor markers were not associated with gender, age, smoking history or tumor histologic type, except for CA153, which was correlated with age and tumor type (P = 0.0291 and 0.0081, respectively, Table 6). Serum tumor markers could reflect tumor burden in LC. LC patients at advanced cancer stage, with bigger tumors, lymph node or distant metastases, tend to have higher serum level of tumor markers. Serum tumor markers are associated as well with CSV-CTC status as shown in Table 6. Significant differences of NSE, CEA and CA153 levels between patients with and without CSV-CTCs were found (P= 0.0063, 0.0191 and 0.0067, respectively). Significant differences of serum levels of CEA, CA125 and CA153 were found between CSV-CTC positive and negative patients (P= 0.0202, 0.0315 and 0.0279, respectively). Among the 4 serum tumor markers, CA153 is the tumor marker most related with LC patients’ clinicopathological characteristics.




Figure 3 | Serum levels of tumor biomarkers in control (BLD + HD) and LC patients. Serum levels of neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125) and CA153 in control and LC patients are shown in (A-D). None of these serum biomarkers showed statistical significance in differentiating LC patients from the control. (box plot with mean, min to max). Conjugation of CTCs with serum markers did not improve the diagnostic performances for LC, since all AUC of combinations of CTCs with serum tumor markers were reduced as compared to CTCs alone as shown in (E-H).




Table 6 | Correlation of serum tumor biomarkers with LC patients’ clinicopathological characteristics.



ROC curves were drawn to compare the diagnostic performance of CSV-CTCs with serum tumor makers. The diagnostic efficacy of CSV-CTCs (AUC = 0.909) was significantly higher than those of NSE, CEA, CA125 and CA153 (AUC = 0.661, 0.673, 0.53, and 0.624, respectively, Figures 3E–H). Combinations of CTCs with serum tumor markers for diagnosing LC were also explored. However, the combination did not improve the diagnostic potency, for all AUC of combinations were reduced as compared to CTCs alone (Figures 3E–H).




Discussion

Studies have suggested the use of CTCs for LC screening (15–17, 19). However, the low detection rate restricts the clinical application of CTCs as a diagnostic aid in practice. CellSearch®, the only CTC system that has been cleared by the US Food and Drug Administration (FDA) for clinical use in patients with metastatic breast, colorectal and prostate cancer (20–22), utilizes anti-EpCAM (epithelial cell adhesion molecule) immunomagnetic beads to capture epithelial CTCs. Krebs et al. used CellSearch® to detect CTCs in stage III and IV LC patients, and the CTC detection rates were only 5% and 32%, respectively (23). Marchetti et al. used CellSearch® and CTCs were detected in 15 out of 41 NSCLC patients (41%) (24). Ilie et al. used CellSearch® and ISET® to detect CTCs in advanced NSCLC patients, and the CTC detection rates were 32% and 76%, respectively (25). Many platforms have been developed to isolate CTCs, depending on either the unique biophysical or biochemical properties of CTCs, or a combination of both (26). Different CTC enrichment methodologies have different sensitivities for CTC detection. ISET® stands for “Isolation of Epithelial Tumour Cells by Size”, using microfiltration to enrich CTCs and then immunofluorescent staining of epithelial markers to identify CTCs. ISET® usually has a higher CTC detection rate in LC than CellSearch®. Guibert et al. used ISET®, and CTCs were detected in 89 out of 96 advanced NSCLC patients (93%) (27). With the improvement of technologies, new CTC detection methods become more sensitive. Tong et al. used Cyttel, a negative immunomagnetic selection method, to detect CTCs in 127 patients with advanced NSCLC and the CTC detection rate was 84% (28). CytoSorter®, a microfluidic-based CTC immuno-capture platform, was employed in this study for CTC detection. One advantage about CytoSorter® is that any biotin-labeled antibody can be immobilized on the streptavidin-functionalized CytoSorter® nanochip for capturing desired cells. Epithelial‐to‐mesenchymal transition (EMT) is a common phenomenon during cancer development (29). EMT causes the reduced expression of epithelial markers, such as EpCAM and cytokeratin, and enhanced expression of mesenchymal markers, such as vimentin, twist, snail and slug (30). Over-expression of vimentin in cancer cells is highly correlated with cancer progression, and EMT would lead to the translocation of vimentin from the intracellular region to the cell surface to become cell surface vimentin (CSV) (31). It is reported that CSV can be used as a target for capturing EMT and mesenchymal CTCs (32). Previous study has shown CTC detection rate with CSV antibody was higher than that with EpCAM antibody in breast and pancreatic cancers (18, 33). This study aimed to evaluate CSV-CTCs as a biomarker for LC. Our first result indicate CSV-CTCs can distinguish LC patients from BLD patients and HD. As suggested by the other studies and our results, CTCs can be used in general as a diagnostic biomarker for LC (19).

When CTC cut-off was set to 2 CTCs per 7.5 mL of blood, CSV-CTCs have a sensitivity and specificity of 0.67 and 0.87, respectively, for diagnosing LC. The cut-off value is consistent with the previous finding in pancreatic cancer (18). Different CTC systems use different methodologies and thus have different sensitivities. Results from different CTC platforms are not comparable due to the different cut-off values caused by different sensitivities. Table 7 summarizes recent studies concerning the use of CTCs as a diagnostic tool for LC (15–17, 34–37). In spite of different CTC detection methods, these studies all come to the same conclusion that CTCs can be used as a diagnostic biomarker for LC. Among them, EpCAM based methods, such as CellSearch® or CellCollector, usually have a lower sensitivity due to the lower CTC detection rate. CSV-CTCs are usually CTCs that underwent EMT, representing the mesenchymal and the mixed types of CTCs. Our results show that CSV-CTCs can be used as a diagnostic biomarker for LC. As shown in Table 7, the diagnostic potency of the CSV based strategy is slightly better than the EpCAM based methods. Techniques using physical properties such as size difference or negative immuno-selection to enrich CTCs might have a higher CTC detection rate although with lower purity. High expression of FR alpha (FRα) is usually observed in LC, especially in adenocarcinoma. Therefore, FR based PCR has been proposed to detect CTC in LC, and the results are promising. FR based PCR method has a better sensitivity and specificity as shown in Table 7 (16, 35). In fact, in the Chinese expert consensus on lung cancer screening and management, it is suggested that FR PCR based CTC detection can be used in conjugation with medical imaging examination to enhance the diagnostic specificity of lung nodule diagnosis (38). Li et al. used immunolipid magnetic spheres conjugated with 3 different antibodies, epidermal growth factor receptor (EGFR), vimentin and folic acid (FA), to detect CTC in early stage NSCLC patients. Using 2 CTCs per 7.5 mL of blood as cut-off value, the positive rates of EGFR, vimentin and FA magnets used alone and in combination in LC patients were 65%, 33.3%, 93.3% and 100%, respectively (39). It reconfirms that vimentin is not a good target to be used to capture CTCs in early stage LC. However, the combination of multiple targets, such as EpCAM, CSV, EGFR or FA, might be a good strategy to increase the CTC detection rate in early stage LC.


Table 7 | Summary of studies concerning the diagnostic performance of CTCs in LC diagnosis.



One major drawback of the CSV based method is that many false positives were found in patients with BLD. Although CSV positive cells were not detected in HD, they were found in 10 out of 21 patients with BLD. For patients with BLD who were found to have CSV positive cells, 90% of patients had either inflammation diseases, fibrosis or other lung infections. The reason for the false positive is that CSV is not a tumor specific marker. In fact, most of the targets used for CTC detection are not tumor specific. CSV has been identified to participate in cell adhesion, migration and cellular signaling (21). Expression of CSV is not only seen in cells undergoing EMT, but also in cells infected with certain virus, and in activated lymphocytes, myofibroblasts and stellate cells (40–42). As inflammation and fibrosis are usually common observed in patients with BLD, the false positives might come from the activated lymphocytes and myofibroblasts. A counterstain of activated lymphocytes and myofibroblasts or use of a tumor specific marker should be applied to reduce false positives.

CSV-CTCs are correlated with LC patients’ cancer stage, lymph node involvement and distant metastasis, which is consistent with previous findings that CTCs can reflect tumor burden in LC (15, 16). Our results surprisingly show that CSV-CTCs are correlated with LC patients’ age. It could be that older patents recruited in this study had usually advanced tumors. If LC patients were first grouped by cancer stage, no significant correlation between CTCs and age would be found in each group (data not shown). CSV-CTC enumeration was not associated with tumor size. CTCs captured by CSV antibody was only one subtype of CTCs. As Li used 3 different antibodies to enrich CTC in LC and found that only CTC enumeration detected by the combined use of 3 antibodies was correlated with cancer stages (39). It suggests that the total CTCs, but not one subtype, may be correlated with tumor size. However, CSV-CTC positive rate was correlated with tumor size, lymph node involvement, distant metastasis, but not with cancer stage, which might be explained by the small sample size. It is believed that CTCs undergoing EMT survive better in circulation and have higher chance to colonize at distant site to form metastasis (43). Therefore, cancer patients with metastasis should have more EMT and mesenchymal CTCs, which is in line with our findings in this study that LC patients with lymph node or distant metastasis tend to have more CSV-CTCs, which might represent the CTC subtype with more invasive nature.

Serum tumor markers have been used extensively in daily practice for LC diagnosis. Therefore, lastly, we liked to compare the diagnostic potency of serum tumor markers and CTCs for LC and see whether the combination of serum tumor markers with CTCs would improve the diagnostic performance. Serum levels of NSE, CEA, CA125 or CA153 cannot distinguish LC patients from the control, indicating that serum tumor markers are not reliable markers for LC screening. Similar to the CSV-CTCs, serum tumor marker test generates many false positives in patients with BLD. However, in some extent, all serum tumor markers can somehow reflect LC patients’ clinicopathological characteristics as shown in Table 6. Some serum tumor markers can even reflect the status of CSV-CTCs. Studies showed that a combination of several tumor markers can produce a higher sensitivity (44, 45). However, the best combination of tumor markers for diagnosing LC remains unknown. The AUC of the combined use of NSE, CEA, CA125 and CA153 is still smaller than that of CSV-CTCs alone (data not shown). Li et al. also found that the diagnostic sensitivity for LC yielded from the combination of four serum tumor markers, CEA, CA125, cytokeratin fragment 21-1 (CYFRA 21-1), and squamous cell carcinoma (SCC), was still lower than that achieved based on CTC counts alone (17). Conjugation of serum tumor markers with CSV-CTCs unexpectedly did not improve the diagnostic performance, which is contradictory to a previous finding that diagnostic performance for LC would be improved by combining CTCs with serum tumor markers (17). It could be explained by the different CTC populations captured in these two studies. While we detected the EMT CTCs, the other study detected total CTCs. Both CTC and serum tumor markers can generate false positive or negative result. Thus, they can only be used as a reference in practice. Biopsy should be still considered as the gold standard for disease confirmation.

Although it is reported that CSV can be used as a target to enrich CTCs in sarcoma, breast, pancreatic, prostate and gastric cancers (18, 32, 33, 46, 47), the high false positive results in patients with BLD raised the question that whether CTCs captured by anti-CSV were truly tumor cells. One major limitation of this study is that we did not collect the captured CTCs for any downstream analysis to confirm its identity. Also sample size was limited. We might get more statistically significant results if more LC patients with different cancer stages were recruited in this study.



Conclusions

Results of this study show that CSV-CTCs can be used as an acceptable biomarker for LC with a sensitivity and specificity of 0.67 and 0.87, respectively. CSV-CTCs are positively correlated with lymph node and distant metastases, indicating that CSV-CTCs represent the CTC subtype with more invasive nature. Still further research with larger patient population is needed to verify our findings.
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Background

Lung cancer is a malignant tumor that has the highest morbidity and mortality rate among all cancers. Early diagnosis of lung cancer is a key factor in reducing mortality and improving prognosis.



Methods

In this study, we performed CTC next-generation sequencing (NGS) in early-stage lung cancer patients to identify lung cancer-related gene mutations. Meanwhile, a serum liquid chromatography-tandem mass spectrometry (LC-MS) untargeted metabolomics analysis was performed in the CTC-positive patients. To screen potential diagnostic markers for early lung cancer.



Results

62.5% (30/48) of lung cancer patients had ≥1 CTC. By CTC NGS, we found that > 50% of patients had 4 commonly mutated genes, namely, NOTCH1, IGF2, EGFR, and PTCH1. 47.37% (9/19) patients had ARIDH1 mutations. Additionally, 30 CTC-positive patients and 30 healthy volunteers were subjected to LC-MS untargeted metabolomics analysis. We found 100 different metabolites, and 10 different metabolites were identified through analysis, which may have potential clinical application value in the diagnosis of CTC-positive early-stage lung cancer (AUC >0.9).



Conclusions

Our results indicate that NGS of CTC and metabolomics may provide new tumor markers for the early diagnosis of lung cancer.
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Introduction

According to statistics provided by the International Agency for Research on Cancer (IARC) of the World Health Organization, there were approximately 2.09 million new cases of lung cancer and approximately 1.76 million deaths from lung cancer worldwide in 2018 (1). Both the morbidity and mortality rank first among cancers, and the 5-year survival rate of lung cancer at stage IV is only 6% (2). The main reason for this high mortality is that early-stage lung cancer lacks typical clinical symptoms, and when it is diagnosed, it is often already in the advanced stage, or even has metastases. Therefore, early diagnosis of lung cancer is a key factor in reducing cancer-related death and improving prognosis. At present, the commonly used diagnostic strategies for lung cancer include imaging, such as computed tomography, sputum exfoliation cytology, serum tumor markers and bronchoscopy, which can easily result missed diagnoses and misdiagnosis. Therefore, it is urgently important to identify new biomarkers for the early diagnosis of lung cancer.

Circulating tumor cell (CTC) refers to tumor cells derived from tumor tissue that enter the peripheral blood circulation. Even in the early stage of tumor, tumor cells may flow into the circulatory system. Therefore, CTC is an important marker for liquid biopsy and can be used as a non-invasive and real-time monitoring tool for tumors to detect micrometastases (3, 4). A French study showed that CTC could be employed to detect early-stage lung cancer 4-5 years earlier than Low-Dose Computed Tomography (LDCT) in chronic obstructive pulmonary disease (COPD) patients (5). In the past 10 years, the clinical application of CTC has primarily focused on the number of CTCs (6, 7). In recent years, single-cell sequencing of CTC was performed by next-generation sequencing (NGS) technology, which provided a novel and precise tool for CTC research (8, 9). Our previous research (10) showed that LDCT combined with CTC may be a more effective method for early-stage lung cancer screening. Through NGS analysis of CTC, we identified three cancer-related genes KIT, SMARCB1 and TP53 in five CTC positive patients.

During the development of tumors, metabolites in the body change. More recently, researchers have turned to metabolomics to analyse specific metabolic markers for the early diagnosis of lung cancer (11). Untargeted metabolomics can qualitatively indentify differential metabolites between different groups, thereby screening potential disease markers. A clinical study on the early diagnosis of lung cancer, including 65 non-smoking female non-small cell lung cancer (NSCLC) patients, 6 benign lung tumors patients, and 65 healthy controls, determine that cysteine, serine and 1-monooleoylglycerol, as a biomarker panel, can be used to diagnose non-smoking female NSCLC (12). Musharraf et al. analysed the plasma of lung cancer patients, COPD patients, healthy smokers and healthy non-smokers using GC-MS technology and observed that the fatty acid and glucose levels of lung cancer patients were higher than those of patients in other groups (13). Research by Ding et al. suggests that glucose metabolism disorders may be closely related to lung cancer, as indicated by the presence of such metabolites as glycerol phosphate, lactic acid, acetyl-CoA, and 3-phosphoglycerate (14). However, the accuracy and reliability of the identification of metabolites are low, and no efficient diagnostic markers for lung cancer have been found.

Recent studies have verified that changes in cancer cell metabolites regulate the tumor microenvironment (15, 16), which is very important in the occurrence and development of tumors, because it has the role of connecting genotype and phenotype (17). As early as 1889, Paget proposed that the organ microenvironment (“soil”) can affect the planting, invasion, survival, and growth of specific tumor cells (“seeds”). In addition, CTC can survive in the peripheral blood through the immune escape mechanism and as latent tumor-initiating seeds that eventually break out to replace the host tissue (18). CTC exists in the early stages of cancer and can be detected earlier than imaging (19), and can be used for early diagnosis of cancer (20). Guo et al.’s study explored the role of CTC detection and metabolomics profiles in the prediction of early recurrence of lung cancer (21). In addition, CTC is a complete tumor cell, carrying all the information of the tumor, such as RNA, DNA, proteins, sugars, lipids and so on. The CTC of patients with gastric cancer or colorectal cancer has different single-cell metabolism profiles and is a potential biomarker for identifying specific cancer types (22). Certain lipid metabolites can be used to distinguish patients with lung cancer from patients with benign lung diseases (23). But so far, there is no relevant research to explore the correlation between CTC and metabolomics in cancer diagnosis. In this study, we performed CTC NGS and LC-MS untargeted metabolomics analyses in early-stage lung cancer patients, to identify lung cancer-related gene mutations and metabolites in CTC-positive patients, and analyze the value of early diagnosis of lung cancer.



Materials and Methods


Patients

A total of 48 pathologically diagnosed as lung cancer patients were enrolled in this study from the Fourth Hospital of Hebei Medical University from Dec 2018 to Jan 2019. All these patients and healthy controls were volunteers from LDCT lung cancer screening from HeBei Province (10, 24). None of the patients received preoperative radiotherapy or chemotherapy. Among the diagnosed lung cancer patients, 21 were male, and 27 were female. The age range was 38-75 years with an average age of 59.1 years. Postoperative pathology showed that all lung cancer patients were NSCLC, and 3 squamous cell carcinomas, 45 adenocarcinomas. According to the eighth edition of the TNM staging criteria, 41 cases were stage I, and 7 cases were stage IIa. And in this study, combined with clinical experience, we defined these I/IIa patients as early-stage lung cancer. All patients underwent CTC in vivo before surgery, and peripheral blood was taken for metabolomic detection. Meanwhile, 30 healthy controls were enrolled in the group, and their personal characteristics, such as gender, age, and smoking history, matched those of the lung cancer group, there was no significance. Approval was obtained from the Forth Hospital of Hebei Medical University ethics committee (Shijiazhuang, Hebei, China), and written informed consent was obtained from all the patients.



Circulating Tumor Cell Analysis


CTC Capture and CTC PD-L1 Identifcation

The CellCollector® (GILUPI GmbH, Potsdam, Germany) is a medical stainless-steel wire with a 2 cm functional area coated with EpCAM antibodies and hydrogel coatings. CellCollector® was punctured into the peripheral blood of the cubital vein through a 20G indwelling needle and was held in the body for 30 minutes to capture tumor cells. After the collection of CTC was completed, the CellCollector® with captured CTC is stained and identified according to the instructions of the staining kit, and a negative control (NK92 cells, Culture Collection of the Chinese Academy of Sciences, Shanghai, China) and positive control (SK-BR-3 cells, Culture Collection of the Chinese Academy of Sciences, Shanghai, China) were also provided. CD45 (Exbio, Clone Mem-28-Alexa647) antibody, cytokeratin 7/19/pan-CK antibody (Exbio Praha, Clone A53-B/A2-Alexa488) and PD-L1 (Clone PD-L1, Abcam) antibody staining analysis was performed, and nuclear staining was subsequently performed by Hoechst 33342 (Sigma) to identify tumor cells and analyse the expression of PD-L1 in CTC.



Whole Genomic Amplification and Next Generation Sequencing of CTC

After identifying CTCs by immunofluorescence staining, the CTC area under the microscope was located and sheared. A small portion of the CTCs contained in the sampling needle was collected into a PCR tube, and the MALBAC method was employed to perform whole-genome amplification. Qubit 3.0 and Nanodrop 2000 (Thermo Fisher) were used for quantitative analysis. The eligibility criteria were as follows: Qubit 3.0>10 ng/μl, ND 2000>40 ng/μl. Quantitative PCR (ABI7500) was employed to detect the coverage of some tumor driver gene fragments. Each amplified sample was tested for coverage of 8 different segments, and 5 or more coverages were qualified. If both the output and the coverage were observed to meet the requirements, the amplification product was determined to pass the inspection.

In total, 50 ng of genomic DNA (Nanodrop concentration as the standard) was used to construct sequencing libraries using the Ion Ampliseq Library Kit 2.0 (Thermo Fisher) and Ion Ampliseq Cancer Hotspot Panel v2 in keeping with the manufacturer’s instructions. Then, quality inspection and next-generation sequencing (NGS) were performed. NGS was performed with HiSeq X Ten (Illumina) following the manufacturer’s protocols using a paired-end 150-bp (PE150) sequencing strategy with a 127-gene panel.




Metabolomics Analysis


Sample Preparation for Metabolomics

Thirty CTC-positive lung cancer patients were selected for fasting blood sampling. 5mL whole blood was collected into a sterile coagulation BD vacuum blood collection tube, immediately mix upside down for 5-8 times, place at 4°C for 30-120min, and centrifuge at 4°C 1300g for 10min, and transfer 0.2-1mL serum to 1.5mL EP tubes, saved at -80°C. Meanwhile, the 30 healthy volunteers were also took for fasting blood sampling, and serum preparation same as lung cancer group.

A 100-μL serum sample was collected, and the metabolite was extracted with 400 μL methanol:acetonitrile (1:1, v/v) solution. The mixture was vortexed for 30 seconds and sonicated on ice for 10 min, and this step was repeated 3 times. The sample was placed at -20°C for 30 min. After centrifugation at 13000 g at 4°C for 15 min, the supernatant was carefully transferred to a sample bottle for LC-MS/MS analysis.



Metabolite Detection

Metabolites were analyzed using the UPLC-Triple-TOF-MS-based platform (AB SCIEX, USA). The chromatographic separation of metabolites was performed using an ExionLCTMAD system (AB Sciex, USA) equipped with ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm i.d., 1.7 μm; Waters, Milford, USA). Mobile phase A is water (containing 0.1% formic acid), mobile phase B is acetonitrile/isopropanol (1/1) (containing 0.1% formic acid); the flow rate is 0.40 mL/min, the injection volume is 20 μL, and the column temperature is 40 °C.

As part of the system adjustment and quality control process, a combined quality control sample (QC) was prepared by mixing all samples of equal volume. QC samples were injected at regular intervals (every 9 samples) to monitor the stability of the analysis. QC samples were treated and tested in the same way as analytical samples. It was preferable to represent the entire sample set, and to monitor the stability of the analysis.



Data Preprocessing and Annotation

After UPLC-TOF/MS analysis, the raw data were imported into Progenesis QI 2.3 (Waters Corporation, Milford, USA) for peak detection and comparison. The preprocessing result generated a data matrix consisting of retention time (RT), mass-to-charge ratio (m/z) values and peak intensity. At least 50% of the metabolic characteristics detected in all samples were retained. After filtering, half of the lowest metabolite value of a specific metabolite was estimated. In these specific samples, the metabolite level fell below the lower limit of quantification, and each metabolite characteristic was normalized by the sum (25). QC samples were used for data quality control, and delete the variables with the relative standard deviation (RSD) of quality control sample > 30% to obtain the final data matrix for subsequent analysis.

By matching with the database (http://www.hmdb.ca/, https://metlin.scripps.edu/), the metabolite list and data matrix were finally obtained. Differential metabolites were analyzed by Principal component analysis (PCA) and Orthogonal partial least squares discriminate analysis (OPLS-DA). The model validity was evaluated from model parameters R2 and Q2, which provide information for the interpretability and predictability, respectively, of the model and avoid the risk of over-fitting. Variable importance in the projection (VIP) were calculated in OPLS-DA model. P- values were estimated with paired Student’s t-test on Single dimensional statistical analysis. T-test combined with multivariate analysis OPLS-DA method was used to screen out the differential metabolites between groups (while meeting VIP >1, P-value <0.05).

Moreover, the classification information of differential metabolites was further obtained by comparing with HMDB 4.0 database (http://www.hmdb.ca/). And mapped into their biochemical pathways through metabolic enrichment and pathway analysis based on database search (KEGG, http://www.genome.jp/kegg/), so as to evaluate its influence on the biological metabolism process.




Statistical Analysis

The data were analyzed by SPSS 22.0 software. The measurement data followed the normal distribution using the mean ± standard deviation, those not following the normal distribution used the median (quartile), and the counting data used frequency or rate. A t-test was used for the comparison of measurement data in a normal distribution, and a rank sum test was used for the comparison of measurement data in a non-normal distribution. The chi-square test was used to compare counting data. ROC curves were used to analyze the diagnostic effect of different indexes on lung cancer. P-values < 0.05 were considered to be significant.




Results


CellCollector® In Vivo CTC Detection

A total of 30 of 48 patients had ≥1 CTC detected with the CellCollector® in vivo strategy, and the detection rate was 62.5% (range, 0-17, median, 1). Figure 1A is a representative diagram of CTC capture. No CTC was detected in healthy controls (Figure 1B). The detection rates of CTC were 64% (16/25) and 60.86% (14/23) in the <60-year-old patients and ≥ 60-year-old patients, respectively. The detection rates among male and female patients were 66.67% (14/21) and 59.26% (16/27), respectively. Regardless of whether the patients smoked, the detection rate was equivalent, 63.33% and 61.11%, respectively. In addition, we also found that the detection rate of stage I lung cancer patients was 65.85% (27/41), and the detection rate of stage II patients was 42.86% (3/7) (Figure 1D). Figure 1E is the distribution of the number of CTCs in I/II patients, there was no correlation between the number of CTC and stage (Figure 1E). There was no correlation between CTC and clinical characteristics (Table 1). Meanwhile, PD-L1 protein was detected and 52.08% (25/48) of patients had PD-L1 expression on CTC (Figure 1C).




Figure 1 | CellCollector captures representative CTC graphs and CTC and CTC PD-L1 detection. (A) CellCollector captures CTC identification charts. Patient 1 captures 7 CTCs, patient 2 captures 3 CTCs, patients 3 and 4 capture 1 CTC. (B) Detection rate and number of CTC in lung cancer patients and healthy controls. (C) Detection rate of PD-L1+ CTC in patients with lung cancer. (D) Detection rate and number of CTC in stage I and stage II lung cancer patients. (E) Distribution of detected CTCs in stage I and stage II patients.




Table 1 | Clinical characteristics of patients.





Next Generation Sequencing of CTC

Preamplification and quality inspection were performed on 30 patients with CTC. 19 randomly selected samples were qualified for quality inspection. NGS was performed to analyze 127 cancer-related mutated genes (Figure S1). The gene mutation rate of 19 patients was 48.2% to 74.8%, among which 4 patients had a gene mutation rate of >70%, 12 patients had a gene mutation rate between 60% and 70%, 2 patients had a gene mutation rate between 50% and 60%, and 1 patient had a gene mutation rate below 50% (Figure 2A). To explore whether the lung cancer-related mutant genes could be screened early by CTC gene detection, we conducted a common mutation analysis on 19 CTC sequencing samples. According to the proportion of patients with common genetic mutations, we are divided into 3 groups, which are >10%, >30% and >50% (Figure 2B and Table 2). Among these groups, >50% of patients had 4 common mutation genes, namely, NOTCH1, IGF2, EGFR and PTCH1. 47.37% (9/19) of patients had mutated ARID1A. Gene information and mutation sites are shown in Table 2. Based on analysis of the COSMIC database, NOTCH1 and ARID1A are reported to be associated with lung cancer.




Figure 2 | CTC NGS analysis of cancer-related gene mutations in lung cancer patients. (A) Proportion of mutated genes in 19 lung cancer patients. (B) >10%, >30%, >50% of patients with mutated genes.




Table 2 | Mutation gene information in >10%, >30% and >50% patients.





Multivariate Analysis for Discriminating Metabolites Between Lung Cancer Patients and Control Individuals

To determine whether there are specific differential metabolites in the early-stage of lung cancer, this study used LC-MS to perform metabolomics analysis on serum samples of lung cancer patients and control individuals. Typical total ion current (TIC) chromatograms of metabolic profiles analyzed using UPLC-Triple TOF-MS/MS in the positive mode or negative mode are shown in Figures S2A–D. The peaks are abundant and uniform and no obvious differences between the lung cancer group and the healthy groups were detected. In order to evaluate the stability of the analysis system during the on-boarding process, QC samples are necessary, which are a mixture of all samples in equal volumes. During data analysis, the stability of the instrument during the entire analysis process can be investigated through the repeatability of QC samples, Meanwhile, it can also be used to find the variable with great variation in the analysis system to ensure the reliability of the results. PCA suggested that the QC samples were clustered closely, verifying the good repeatability of the UPLC-Triple TOF-MS/MS method (Figures S2E, F). PCA score plots and heat map show the distribution of metabolites in lung cancer group and healthy control group in the positive/negative ion mode. The metabolite profiles showed that the early lung cancer group and the healthy control group could be significantly separated, and the lung cancer group samples had high similarity (Figure S2).

To further identify the differential metabolic characteristics of the early-stage lung cancer group, the differential metabolites between groups were screened by t- test combined with multivariate OPLS-DA analysis, which showed some differences in the metabolites between the lung cancer group and healthy groups under both ionization modes (Figures 3A, B). The quality of OPLS-DA was evaluated by R2Y and Q2 values, which were calculated as 0.035 and -0.437 in the negative ion mode, 0.031 and -0.624 in the positive mode (Figures 3C, D). Combined with VIP >1, P <0.05 and FC >1 or FC <1, the volcano chart shows that there were up-regulated or down-regulated metabolites among the 100 differential metabolites (Figures 3E, F). The most significant upregulation of differential metabolites in the early lung cancer group involved the lipid material, especially sphingolipids (such as trihexylceramide) and glycerophospholipids (such as cardiolipin), which are components of the cell membrane, and the differential metabolites are most significantly downregulated. Cyclic guanosine phosphate and guanosine 1-phosphate play important roles in purine nucleotide metabolism. In short, it is believed that these 100 differential metabolites are closely related to early-stage lung cancer (Figure 3G).




Figure 3 | Differential metabolite analysis of serum from the lung cancer group and the healthy control group. (A) OPLS-DA score of the lung cancer group and the healthy control group in the negative ion mode. (B) OPLS-DA score of the lung cancer group and the healthy control group in the positive ion mode. (C) OPLS-DA differential metabolite serum anion permutation testing. R2 = (0, 0.0353), Q2 = (0, -0.4372). (D) OPLS-DA differential metabolite serum cation permutation testing. R2 = (0, 0.3151), Q2 = (0, -0.6284). (E) Volcano plot of serum anion metabolites in the control group and lung cancer group. (F) Volcano plot of differential metabolites of serum cations in the healthy controls and lung cancer group. (G) Metabolite heat map of serum differences between healthy controls and lung cancer groups.





Metabolic Pathway Analysis of the Differentially Regulated Metabolites

100 differential metabolites screened were classified into compounds by the Human Metabolome Database (HMDB), and the KEGG (Kyoto Encyclopedia of Genes and Genomes) database was used for pathway annotation and enrichment analysis. There were 6 types of differential metabolites that we screened (Figure 4A), most of which were lipids and their analogues, accounting for 78.87%, followed by organic acids and their derivatives, accounting for 8.45%, and phenylpropyl esters, accounting for 5.63%. The KEGG pathway analysis was divided into six categories (Figure 4B). The three most significant pathways for enrichment through KEGG are choline metabolism in cancer, glycerophospholipid metabolism, and the retrograde endocannabinoid signaling pathway. Enrichment analysis of the KEGG pathway revealed that the highest rate of differential metabolite enrichment was the cytosolic DNA-sensing pathway and the pathogenic Escherichia coli infection pathway (Figure 4C).




Figure 4 | HMDB compound classification and KEGG pathway analysis of serum metabolites in the lung cancer group and healthy control group. (A) HMDB compound classification of serum metabolites between the lung cancer group and the healthy control group. (B) Serum KEGG pathways between the lung cancer group and the healthy control group. (C) KEGG enrichment pathways for serum metabolites in the lung cancer group and the healthy control group.



Previous studies have found that the occurrence and development of tumors are closely related to glucose and lipid metabolism (26, 27). In this study, according to KEGG pathway analysis, there were more differential metabolites enriched in the glucose and lipid metabolism pathways and tumor metabolism pathways between the two groups (Figure 4B). Among these metabolites, there were 21 differential metabolites involved in lipid metabolism pathways (Table S1), 5 differential metabolites involved in polysaccharide synthesis and metabolic pathways (Table S2), and 15 differential metabolites involved in tumor metabolic pathways (Table S3). We are currently conducting a targeted metabolomics study in another large cohort using UPLC -MS/MS. One of the results of a small sample study (5 lung cancer test groups and 5 healthy control groups) showed that phosphatidylethanolamine is up-regulated, which is similar to the results of this study (Figure S3).



Evaluation of the Metabolic Index in the Diagnosis of Lung Cancer

To effectively screen potential biomarkers in the early-stage lung cancer group, we further compared the differential metabolites in lipid metabolic pathways, polysaccharide synthesis and metabolism pathways, and tumor-related pathways between the early-stage lung cancer group and the healthy control group using receiver operating characteristic (ROC) curve and area under the curve (AUC) (Figure S4). It was found that AUC > 0.9 contained 9 differential metabolites related to lipid pathways, 3 differential metabolites related to polysaccharide synthesis and metabolism, and 5 differential metabolites related to tumor pathways. These metabolites were primarily glycerophospholipids, which are integrated with 3 types of upregulated differences and 7 types of downregulated difference, namely, PE (14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE (16:0/22:5(7Z,10Z,13Z,16Z, 19Z)), PE (14:0/20:4(5Z,8Z,11Z,14Z)), PC (18:0/20:4(8Z,11Z,14Z,17Z)), PC (16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC (16:0/20:4(5Z,8Z,11Z,14Z)), LysoPC (16:1(9Z)/0:0), L-isoleucine, LysoPC (18:0), L-palmitoylcarnitine (Figure 5 and Table 3).




Figure 5 | ROC curve of nine metabolites in the diagnosis of lung cancer.




Table 3 | The diagnostic efficacy of various metabolites in lung cancer.






Discussion

In this study, CTC counting, CTC next-generation sequencing, and LC-MS untargeted metabolomics were combined to characterize the potential gene mutation and energy metabolism disturbance characteristics of lung cancer, to provide a better detection method for the early screening and diagnosis of lung cancer patients. We used CellCollector® in vivo CTC capture technology to detect CTC in early lung cancer patients. The CTC detection rate was 62.5%. Compared with in vitro technology, it has a higher detection rate, which is consistent with previous research results (24, 28). Because the content of CTC in the peripheral blood of tumor patients is very low, the number is even rarer in precancerous lesions or early tumors. In our study, the median CTC was 1 in stage I/II NSCLC patients and 0 in healthy volunteers. CTC detection can be used for the early diagnosis of lung cancer, which is also consistent with previous studies (20). Unfortunately, our study cannot find out whether the number of CTCs is correlated with different stages of lung cancer, which may be related to the small sample size, of which only 7 cases were in stage II. This is also what we need to increase the sample size and patients with different stages of lung cancer to further explore in our subsequent studies.

The high CTC detection rate provides convenience for CTC molecular typing and CTC next-generation sequencing. Through CTC NGS, this study found that more than 50% of early lung cancer patients have 4 common mutated genes, namely NOTCH1, IGF2, EGFR and PTCH1. Also, 47.37% of patients have ARID1A mutations. EGFR has the highest mutation rate in NSCLC (29). NOTCH1, a member of the PCG gene family, was first discovered in mouse B-cell lymphoma and is regarded as a co-oncogene of C-MYC, closely related to cell proliferation, differentiation and apoptosis (30). Studies have shown that the stimulation of the Notch signaling pathway by high NOTCH1 expression can induce BM-1 to mediate the production of related intracellular signals to accelerate the transmission efficiency of lung cancer, thereby inducing the occurrence, development, metastasis and invasion of lung cancer (31). In our study, 68.42% of patients had a mutation in NOTCH1. Huang et al. (32) found that homozygous ARID1A was deleted at the 5’ end of the lung adenocarcinoma cell line, strongly suggesting that ARID1A is a tumor suppressor gene. Imielinska et al. reported exons and genome sequences of 183 cases of lung adenocarcinoma, and the results showed that mutations of the ARID1A gene existed in lung adenocarcinoma cells (33). ARID1A is a member of the SWI/SNF family and can regulate the expression of specific genes by changing the structure of chromatin. It is currently considered as a potential tumor suppressor gene, which plays an important role in inhibiting cell proliferation, inhibiting cell metastasis, and promoting cell differentiation and apoptosis. Frequent mutations in a variety of human malignancies indicate that ARID1A plays an important role in the occurrence and development of human malignancies. Among them, the expression of ARID1A in NSCLC was significantly lower than that of normal bronchial epithelial cells. In addition, ARID1A mutations are related to the activation of PI3K/AKT signaling pathway. However, the mutations and prognostic significance of ARID1A gene in different studies are different. There are still some problems to be solved, such as the target genes regulated by ARID1A and the specific mechanisms in tumor suppression, whether other signaling pathways can exert tumor suppression effects, and the prognostic value of ARID1A and patients. This requires comprehensive and in-depth research (34). Our study is the first to find IGF2 and RTCH1 mutations in peripheral blood CTC NGS of early lung cancer. Whether these mutations can be combined with NOTCH1, EGFR and ARID1A mutations as tumor markers in the diagnosis of early lung cancer merits further investigation.

Studies have found that CTC already exists in the early stages of cancer (35), and disturbances of metabolism are produced in the body (36), including disorders of glucose and lipid metabolism (13, 27, 37, 38), and the homeostasis of the microenvironment of the body is disrupted. Through metabolomics analysis, we found 100 different metabolites, which mainly occurred in lipid metabolism, polysaccharide synthesis and metabolism, amino acid metabolism and other pathways and were dominated by lipid metabolism, being especially enriched in choline metabolism and glycerophospholipid metabolic pathways. Chen et al. found that abnormal sphingolipid metabolism is the most important metabolic change in lung cancer patients (39). A study on lung adenocarcinoma in female non-smokers found that abnormal lipid metabolism may play role in the development of lung cancer (12). High-lipid molecules, including phospholipids (e.g., glycerophospholipids and sphingomyelin), and cholesterol are the main component of cell membranes and participate in cell signaling and cell proliferation. Lipid metabolism changes cause abnormal cell signals and lead to tumor formation (40, 41).

Tumor growth requires the uptake of a large amount of energy in the blood. The body ensures the normal energy metabolism of other organs by increasing the “raw materials” in the aerobic oxidation pathway, resulting in increased glucose metabolism and decreased fat metabolism (42). The purpose of this study was to discover a combination of serum metabolite biomarkers for the early detection of non-small cell lung cancer. In our study, the most obvious differences in the screened metabolites can be divided into four categories, namely phosphatidylethanolamine (PE), phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC), L-isoleucine and L-palmitoylcarnitine. A large number of metabolomic studies have been undertaken to identify robust biomarkers for lung cancer diagnosis using plasma, serum, or urine. However, we found remarkably few metabolomic studies that specifically attempted to detect early-stage lung cancer.

The concentration of LysoPC was reduced in stage I/II NSCLC, which is similar to previous research (43). Another targeted metabolomics study found and verified that β-hydroxybutyric acid, LysoPC 20:3, PC ae C40:6 (a kind of phosphatidylcholines), citric acid, and fumaric acid differed significantly between healthy controls and stage I/II NSCLC. Robust predictive models with AUC >0.9 were developed and validated using these metabolites and other, easily measured clinical data for detecting different stages of NSCLC (44). It has been observed and reported that in mouse and human models, the plasma concentration of total LysoPC is usually inversely related to the risk of various types of cancer (45–47). In our study, we found that another member of the phosphatidylcholine family, PC(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(18:0/20:4(8Z,11Z,14Z,17Z)) and PC(16:0/20:4(5Z,8Z,11Z,14Z)), also appears to play a role in both stage I and stage II NSCLC. A study reported that PC levels were dysregulated in early-stage NSCLC patients (48). Decreased lipid membrane unsaturation levels were observed to protect tumor cells from free radicals or chemotherapeutics and promote invasion and infiltration (49). Clearly, more detailed lipidomic studies need to be conducted to investigate the biological significance of these PC alterations.

Lysophosphatidylethanolamine (LPE) is a group of lipids that has been recently shown to be related to breast cancer (50). In addition, PE (16:0/18:1) is associated with the stage and prognosis of pancreatic cancer and may be a potential diagnostic marker (51). Yang et al. found 25 different lipid metabolites, including PE, between malignant pleural effusion (MPE) and benign pleural effusion (NPE), indicating that lipid metabolites may be used to partition MBE and BPE (52). In our study, PE (14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE (16:0/22:5(7Z,10Z,13Z,16Z, 19Z)), and PE (14:0/20:4(5Z,8Z,11Z,14Z)) were upregulated and effectively distinguished the control group, with specificity and sensitivity close to 100% being observed. In addition, we found that the level of amino acids (L-isoleucine) was significantly increased in the lung cancer model group compared with that of the control group, indicating disorder in amino acid metabolism in the cancer model group. Maeda et al. reported 6 significantly different amino acid metabolites, with AUCs of 0.817 and 0.801 (on their validation sets), for diagnosing stage I and stage II lung cancer (53). One Study showed that L-palmitoylcarnitine is significantly reduced in advanced lung cancer patients (54). In another study, the level of palmitoylcarnitine was lower in the hepatocellular carcinoma group than in the cancer-free control group, and blood acylcarnitine levels may be influenced by hepatic fatty acid metabolism, in other words, decreased acylcarnitine levels may reflect the decreased production of acyl groups in the liver or other tissues. Indeed, palmitoylcarnitine and palmitic acid are associated with fatty acid metabolism, and this group displayed an impact factor of 0.030 based on metabolic pathway analysis (55). The decrease in L-palmitoylcarnitine in our study may also be related to a disorder of lipid metabolism in patients with lung cancer.

This study is based on CTC NGS and metabolomics analysis to conduct a comprehensive assessment of early lung cancer, in order to find new biomarkers and improve the diagnosis rate of early lung cancer. Previous studies have reported that the CTC single-cell metabolism profile may provide direct functional insights into the tumor cell metabolism of patients, and promote a more direct understanding of the relationship between cancer cell genotype and metabonomic phenotype (22). Whether CTC gene mutations and metabolomics can be used for the early diagnosis of lung cancer, we will re-enroll patients and conduct targeted verification, and finally analyze the scoring algorithm to select the best markers suitable for early diagnosis. However, there are still some shortcomings to this research. First, due to the small sample size in this study, a large sample study is needed to further verify the reliability of our research results. Second, the differential metabolites screened by untargeted metabolomics were only detected by one cohort, and not further verified by targeted metabolomics. Additional study is necessary to more fully explore and validate the metabolic changes detected in this study in NSCLC patients. And we are cognizant of these aspects and are accordingly in the process of a targeted metabolomics study in another large cohort using UPLC -MS/MS. In the end, we only performed CTC gene mutation detection but did not sequence the tissue. Whether there is a relationship between the mutations carried by CTCs and the changes in metabolic substances, which affect the microenvironment of patients, and whether there is a connection with the occurrence and development of lung cancer warrants further study.



Conclusions

In our study, there was a higher CTC detection rate, with 62.5% in I/II NSCLC, and 4 high frequency mutation genes, namely, NOTCH1, IGF2, EGFR and PTCH1. Meanwhile, we found that 10 different metabolites may have potential clinical application value for the diagnosis of CTC-positive early-stage lung cancer (AUC > 0.9). Later, a larger cohort of patients will be required for verification, which may help determine whether these markers can be used for the early diagnosis of lung cancer.
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Background

Metaplastic thymoma is a very rare tumor with only a few case reports documented in literature. Hence, its molecular features have not been well explored.



Material and Methods

Seventeen specimens of metaplastic thymoma were sequenced and retrospectively analyzed by fluorescence in situ hybridization (FISH) and immunohistochemistry in the study. In addition, seven cases of micronodular thymoma with lymphoid stroma and nine cases of type A thymoma were also investigated.



Results

Among these metaplastic thymomas, fifteen cases showed classical histological features, and two cases displayed characteristic micronodular-like growth patterns. DNA and RNA based next-generation sequencing identified and confirmed highly recurrent Yes Associated Protein 1 (YAP1) - Mastermind Like Transcriptional Coactivator 2 (MAML2) translocation (13/17, 76.5%) in metaplastic thymoma but not in micronodular thymoma with lymphoid stroma (0/7, 0%) and type A thymoma (0/9, 0%). In addition, six nonsense mutations were also detected in the metaplastic thymoma. FISH in microdissection specimens indicated that both epithelioid and spindle cell components harbored YAP1-MAML2 gene rearrangements.



Conclusions

Our study explored the genetic alterations in epithelioid and spindle cell components in metaplastic thymoma. Furthermore, YAP1-MAML2 gene rearrangements emerged as a potential diagnostic biomarker helpful for distinguishing metaplastic thymoma from type A and micronodular thymoma with lymphoid stroma.
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Introduction

Metaplastic thymoma is an uncommon thymic epithelial malignancy that accounts for less than 1% of all types of thymomas (1). It is a relatively indolent neoplasm that shows biphasic differentiation and comprises of a solid growth epithelial cells along with gradual transiting spindle cells components (2). This terminology for the tumor was introduced in the World Health Organization (WHO) 2004 scheme and continued to the 2020 World Health Organization (WHO) classification for lung and thymus (3, 4).

To our knowledge, only rare cases of metaplastic thymoma have been reported in Asian population (5, 6), whereas about a total of 30 cases have been described separately in the English literatures (7, 8). The genomic alterations driving metaplastic thymoma have not previously been defined in any guidance or classification and hence little is known about its molecular characteristics. Recently, it had been reported that there are high frequency Yes Associated Protein 1 (YAP1) - Mastermind Like Transcriptional Coactivator 2 (MAML2) fusions in an eight metaplastic thymomas cohort study, and the genetic alterations may be closely related to tumor occurrence or prognosis (9).

In this study, we used a unified RNA and DNA next-generation sequencing (NGS) assay and Fluorescence in Situ Hybridization (FISH) to analyze the molecular characteristics of metaplastic thymoma and compared it with micronodular thymoma with lymphoid stroma as well as type A thymoma.



Material and Methods


Patients and Specimens

Seventeen cases of previously diagnosed metaplastic thymoma were collected by screening the archives of the Department of Pathology of Shanghai Chest Hospital from 2010 to 2019. The whole hematoxylin and eosin (H&E) slides of all cases were reviewed by three pathologists with more than ten years of diagnostic experience on thoracic neoplasms. Since type A thymoma and micronodular thymoma with lymphoid stroma (MNTLS) may morphologically overlapped with metaplastic thymoma, we also selected 16 cases, including nine cases of type A thymoma and seven MNTLS. All the samples were surgically resected and their formalin-fixed and paraffin-embedded (FFPE) specimens were used for the study. Clinical information, including age, sex, smoking status, tumor size, and Masaoka-Koga staging of all patients were collected from the medical records. Clinical follow-up data were collected from the consultations of clinicians or obtained from the medical records. The follow-up duration was calculated from the date of surgery to last telephonic follow-up.

This study was approved by the Ethical Committee of Shanghai Chest Hospital of Shanghai Jiao Tong University, Shanghai, China. All patients agreed to participate in the study with all relevant data and written informed consent was obtained from all patients before surgery and subsequent clinical studies. Written informed consents were also obtained from all patients or their legal representatives for the use of surgically resected specimens, as appropriate.



Immunohistochemical Analysis

A panel of immunohistochemical markers, including cytokeratin (1:400 diluted; clone AE1/AE3; Dako), P63 (1:200 diluted; clone DAK-p63; Dako), TDT (ready-to-use; clone EP266; Dako), CD3 (1:200 diluted; clone SP7), CD20 (1:200 diluted; clone MX003), and CD5 (1:200 diluted; clone 4C7; DAKO), and CD117 (ready-to-use; Polyclonal; Dako) were used for routine and differential diagnosis in the tissue sections of formalin-fixed paraffin-embedded thymoma specimens. 4-5μm representative tissue sections were used and immunohistochemical analysis was performed using the auto-stainer GI100 (DAKO OMNIS; Agilent technologies) and automated stainer (Ventana Benchmark XT; Roche Ventana) following the manufacturer’s instructions. All the samples were stained with H&E in the first and last slides. Immunostained sections were counterstained with hematoxylin. Appropriate positive and negative controls were concurrently run.



Unified RNA and DNA NGS Assay by PANO-Sequencing Analysis Program

Selected cases were subjected to the parallel amplification numerically optimized (PANO) sequencing assay (10), using a modified on-shelf product (panel #022T, HeliTec Biotechnologies, ShenZhen, China) with designed MAML2 primers spiked in the multiplexed primer pools. This panel can identify all functional fusion events in multiple common genes and genetic variations in all the National Comprehensive Cancer Network (NCCN)-specified biomarkers. To perform this assay, total nucleic acids were first extracted from formalin-fixed paraffin-embedded (FFPE) tissue samples using a PANO-Pure FFPE TNA extraction kit (HeliTec Biotechnologies, ShenZhen, China), and 50 ng of input was used for library construction. This single-tube library construction protocol used DNA for the detection of single nucleotide variants (SNV) as well as insertions and detections (InDels) mutations, RNA for fusion detection, and tiled intronic primers for DNA-based fusion detection when transcripts were unavailable. The reactions were performed in a single tube from extraction to sequencing as a unified library, without experimentally separating DNA or RNA. Sequencing were performed. Raw sequencing data were analyzed using a proprietary PANO-Call ver. 18.12 bioinformatics pipeline for both mutation and fusion calls.



Fluorescence In Situ Hybridization (FISH) Analysis for MAML2 Translocation

Fusion FISH assays were performed on nine metaplastic thymoma cases including six fusion gene-positive cases and three fusion gene-negative cases. 4 μm thick representative tissue sections slides of FFPE tissue sections were used. Epithelioid and spindle cell components were laser-microdissected respectively for analysis using a commercial MAML2 Break Apart Rearrangement Kit. All slides were deparaffinized, pretreated, hybridized with denatured probes, and incubated overnight. The slides were then washed and stained with 4’,6-diamidino-2-phenylindole (DAPI). The results were visualized using an automatic fluorescence microscope (Zeiss AXI0, Imager.Z2, Germany). The SPEC MAML2 Dual Color Break Apart Probe is a mixture of two directly labeled probes hybridizing to the 11q21 band. The green fluorochrome direct-labeled probe hybridizes distal to the MAML2 gene, and the orange fluorochrome direct-labeled probe hybridizes proximal to that gene. At least 200 cells were counted for each section. By calculating the number of positive cells greater than three areas and taking the average value, those cases with more than 10% of tumor cells showing positivity were interpreted as harboring MAML2 gene rearrangement.




Results


Clinical and Pathologic Findings

The cohort of 17 metaplastic thymoma patients comprised of nine men and eight women, aged 29-71 years. The tumor size ranged from 1.5 cm to 13.5 cm. Clinical information and prognosis data are presented in Table 1. All patients underwent surgical treatment and did not receive postoperative adjuvant therapy. The follow-up duration was eight months to ten years, and no case of tumor recurrence was found until the final follow-up. Clinical information on micronodular thymoma with lymphoid stroma and type A thymoma is listed in Supplementary Table 1. Morphologically, most metaplastic thymomas displayed classical histopathology which consisted of solid growth epithelial cell components and mild gradually transitioning spindle cell components in varying proportions (Figure 1). Two cases focally or partially showed characteristic micronodular-like growth patterns with abundant lymphoid stroma. However, unlike in MNTLS, the lymphocytic stroma comprised of almost TDT-positive and CD20-negative T lymphocytes with scattered epithelial tumor cells present in the two cases (Figure 2). In case 5, the biphasic differentiation of the tumor was not obvious and the epithelial component accounted for more than 90% of the evaluated slides. In case 8, the tumor cells displayed obvious degenerative changes with strange irregular nuclei, intranuclear pseudo-inclusions, but with no proliferate activity. No correlation was observed between morphological differences and fusion gene status. Immunohistochemically, the epithelial islands in all cases were strongly positive for pan-cytokeratin and P63. CD5, CD117 and CD20 expression were negative. TDT- and CD3-positive lymphocytes were only confined to micronodular-like growth areas. The immunohistochemical staining results for tumor cells and lymphoid stroma are listed in Supplementary Table 2.


Table 1 | Clinical information of 17 cases of metaplastic thymoma in this study.






Figure 1 | Histological features of metaplastic thymoma. Anastomosing cords or trabeculae of epithelioid cell (red rectangle) and pseudosarcomatous spindle cell components (blue rectangle). H&E staining at 40X magnification. Both epitheloid and spindle cell components harboring YAP1-MAML2 gene rearrangements are indicated by red and white arrows respectively.






Figure 2 | Micronodular-like growth pattern in metaplastic thymoma. (A) This growth pattern accounts for 50% of the tumor size in case 5, H&E staining at 4X magnification. The box in the left bottom shows a clear border between epithelioid cell nests and lymphoid stroma, H&E staining at 40X magnification. (B) Micronodular-like growth pattern is focally present in case 10, H&E staining at 4X magnification. (C) TDT-positive lymphocytes are not present in epithelial cell components of case 5. (D, G) P63 outline the epithelial cells. (F) TDT-positive lymphocytes are scattered in epithelioid cell nests of case 10. (E, H) Micronodular-like growth epithelioid cell nests all display narrow split signals in the assays using MAML2 dual color break apart probe.





Unified RNA and DNA NGS Assay

Sequencing analysis identified YAP1-MAML2 translocation in 13 out of 17 (76.5%) cases of metaplastic thymomas but not in MNTLs and type A thymomas. Moreover, two metaplastic thymoma cases with micronodular-like growth patterns were also found to harbor this rearrangement. There was no significant correlation between translocation and the proportion of cellular components or growth patterns in metaplastic thymoma. No other fusion events were detected in any of the cases. Intrachromosomal inversion by RNA sequencing identified five products in metaplastic thymoma: 5 YAP1_exon 1 fused to 3 MAML2_exon 2, 5 YAP1_exon 1 fused to 3 MAML2_exon 3, 5 YAP1_exon 4 fused to 3 MAML2_exon 2, 5 YAP1_exon 5 fused to 3 MAML2_exon 2 and 5 YAP1_exon 6 fused to 3 MAML2_exon 2. Six nonsense mutations were identified in metaplastic thymoma cases. Four mutations were found in cases with MAML2 fusions: ALK Q1188X in case 1, CDK4 R5X in case 3, PTEN Q110X in case 5, and CDK4 W179X in case 6. The other two nonsense mutations, HRAS Q95X and BRAF W476X, were detected in one fusion-negative patient. These nonsense mutations result in the production of a shortened protein, which may be nonfunctional. Breakpoint locations determined by DNA-based sequencing are listed in Table 2.


Table 2 | Unified RNA and DNA NGS Assay and FISH detection of YAP1-MAML2 fusions in 17 metaplastic thymoma cases.





Validation of MAML2 Fusions in Metaplastic Thymoma by FISH Verifying

Tumors of nine patients’ harboring fusion conditions including six sequencing fusion-positive cases and three fusion-negative cases were detected by FISH method in microdissection slides. The results revealed that both epithelioid and spindle cell components harboring YAP1-MAML2 fusions in positive cases, including two tumors with micronodular-like growth pattern (Figures 1 and 2).




Discussion

Our molecular findings confirmed a higher frequency of YAP1-MAML2 gene rearrangements in metaplastic thymomas. In addition, six nonsense mutations were identified in these cases, including ALK Q1188X, CDK4 R5X, PTEN Q110X, and CDK4 W179X in four fusion gene-positive cases, and HRAS Q95X along with BRAF W476X in one fusion gene-negative case. The MAML2 gene rearrangements were also studied in micronodular thymoma with lymphoid stroma and conventional type A thymoma, but no rearrangements were found in these types. Furthermore, we identified a micronodular-like growth pattern in two cases of metaplastic thymoma.

Thymic epithelial tumors are traditionally classified into four groups: spindle cell thymoma, predominantly lymphocytic thymoma, mixed lymphocytic and epithelial thymoma, and predominantly epithelial thymoma, according to the lymphocyte-to-epithelial cell ratio and the shape of epithelial cells (11). Taking into account the prognosis and molecular alterations, the 2004th and 2015th WHO classification of tumors of the thymus modified and revised the nomenclature (4, 12). Occasionally, in addition to spindle cell morphology, type A thymoma demonstrates various histological patterns including rosettes with or without central lumens, papillary projections in cystic spaces, or meningioma-like wholes, and may mimic a biphasic growth pattern that is often devoid of immature T cells. In our cohort, we also identified cases of metaplastic thymoma with abundant lymphoid stroma. Two patients had abundant lymphoid stroma mimicking the growth pattern of micronodular thymoma, and one patient had symptoms of slight blepharoptosis. Unlike MNTLS in which most of the lymphocytes, were mature B lymphocytes, the lymphoid cells of the stroma in these two metaplastic thymoma cases were TDT-positive T lymphocytes, and these lymphocytes would or would not be present in the epithelial nests. However, scattered tumor epithelial cells could always be found in the lymphoid stroma, reminiscent of type B1 thymoma. Miki et al. have suggested a relationship between metaplastic thymoma and type AB thymoma (13). Therefore, it is necessary to distinguish metaplastic thymoma from type A and B in clinical practice, as it is quite challenging in individual cases by only morphological evaluation.

The epithelial-mesenchymal transition seems to be involved in the transitional differentiation of epithelioid and spindle cell components. Moreover, the histogenesis and relationship between metaplastic thymoma and other thymic epithelial neoplasms remains unknown (14). Sarcomatoid transformation was not found in metaplastic thymoma cases that were included in our study as per the follow-up data available, and this phenomenon has been reported in very few studies (15, 16).

There may be morphological or even genetic alterations that overlap between metaplastic thymoma, type A/AB and MNTLS, but chromosomal abnormalities by comparative genomic hybridization and previous molecular studies have shown no evidence to support these conjectures (17). Marina et al. have reported a recurrent genetic signature of YAP1-MAML2 fusion in metaplastic thymoma for the first time and described two distinct YAP1-MAML2 transcription products (9). Our results confirm a high frequency of YAP1-MAML2 fusions in metaplastic thymoma cases, suggesting that it may be a common pathogenetic mechanism in the development of metaplastic thymomas. Although there was a certain degree of morphological overlap among metaplastic thymoma, MNTLS or even type A/AB thymoma, it basically did not affect the accurate pathological typing. In addition, sequencing results have also suggested that the histogenesis mechanism of metaplastic thymoma may be different from MNTLS and type A/AB thymoma. In a recent study, Lucas et al. have described a recurrent gene rearrangement of KMT2A-MAML2 in type B2 and B3 thymomas (18). Fusion with different gene partners suggests that MAML2 gene rearrangement may be a potential biomarker for the morphological classification of thymomas.

Recurrent YAP1-MAML2 fusions have been reported in poroma and porocarcinomas, pediatric NF2‐wildtype meningioma, composite and retiform hemangioendothelioma, glioblastoma, nasopharyngeal carcinoma and ovarian cancer cell lines (19–24). However, its function is poorly understood. YAP1 and MAML2 are on the opposite strands of adjacent genetic loci on the p arm chromosome 11, and the co-expression of YAP1-MAML2 fusion transcripts is thought to be the consequence of intrachromosomal inversions. Gabriele et al. have validated the fusion and found that YAP1-MAML2 fusion is associated with increased YAP1 signaling and further driving the Hippo signaling cascade in YAP1-MAML2 tumors (25). Previous studies on multiple solid tumors suggest that YAP1 aberrant activation is related to poor prognosis, chemoresistance, and resistance to cell death (26, 27). However, the biologic behavior of metaplastic thymoma appears indolent, and the function of YAP1-MAML2 fusion in metaplastic thymoma needs to be further explored.

In conclusion, the present study further confirms and emphasizes the fundamental genetic alterations of YAP1-MAML2 gene rearrangements in metaplastic thymomas. Moreover, we identified two cases of metaplastic thymoma with a micronodular growth pattern. Our findings also indicate that the YAP1-MAML2 gene rearrangements may be a useful diagnostic biomarker for distinguishing metaplastic thymoma from type A thymoma and micronodular thymoma with lymphoid stroma.
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Purpose

The KEAP1-NFE2L2 (Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2)) mutations are associated with resistance to chemotherapy or immunotherapy in non-small cell lung cancer (NSCLC). Conversely, it has been reported that NFE2L2 mutations potentiate improved clinical outcome with immunotherapy. However, therapeutic benefits for patients with KEAP1/NFE2L2 mutations remain unclear. The purpose of this study was to investigate the association between KEAP1/NFE2L2 and NSCLC prognosis, and to explore whether immunotherapy can improve prognosis in populations with KEAP1/NFE2L2 mutations.



Experimental Design

The impact of KEAP1/NFE2L2 mutations on survival outcomes in NSCLC patients received immunotherapy and chemotherapy was verified in the randomized phase II/III POPLAR/OAK trials (blood-based sequencing, bNGS cohort, POPLAR (n = 211) and OAK (n = 642)). The Cancer Genome Atlas (TCGA) NSCLC cohort (n=998) and an in-house Chinese NSCLC cohort (n=733) was used For the analysis of immune-related markers.



Results

Compared with KEAP1/NFE2L2 wild-type, patients with KEAP1/NFE2L2 mutations were significantly associated with poorer overall survival (OS, HR = 1.97, 95% CI 1.48–2.63, P < 0.001) on atezolizumab and docetaxel (HR = 1.66, 95% CI 1.28–2.16, P < 0.001). In KEAP1/NFE2L2 mutant group, there was no significant difference in median OS between atezolizumab and docetaxel (HR 0.74, 95% CI 0.53–1.03, P = 0.07). NFE2L2/KEAP1 mutations were significantly associated with higher TMB values and PD-L1 expression in the OAK/POPLAR and in-house Chinese NSCLC cohorts. GSEA revealed that KEAP1/NFE2L2mutant subgroup was associated with deficient infiltration of CD4+ T cells, NK T cells and natural Treg cells, and lower expression of DNA damage response genes in TCGA NSCLC cohort.



Conclusions

Our study revealed that patients with KEAP1/NFE2L2 mutations have a worse prognosis than wild-type patients, both on immunotherapy and chemotherapy. In addition, in patients with KEAP1/NFE2L2 mutations, immunotherapy did not significantly improve prognosis compared to chemotherapy.





Keywords: prognostic, KEAP1/NFE2L2, non-small cell lung cancer, immunotherapy, chemotherapy



Introduction

The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid-2-related factor 2 (NRF2, also known as NFE2L2) pathway plays a critical role in the oxidative stress response (1). Mutations in this pathway are common in non-small cell lung cancer (NSCLC) and have been associated with enhanced tumor growth and aggressiveness (2). With the development of evidence on the role of KEAP1/NFE2L2 pathway on chemotherapy resistance in pre-clinical NSCLC models (3), there have been increasing efforts to evaluate the impact of KEAP1/NFE2L2 mutations on the prognosis of survival in NSCLC patients.

The effect of KEAP1/NFE2L2 mutations on chemotherapy efficacy has been examined in several studies. In a retrospective cohort study of over 1400 NSCLC patients from the Regina Elena National Cancer Institute, Memorial Sloan Kettering Cancer Center and The Cancer Genome Atlas (TCGA) network, it is found that KEAP1/NFE2L2 mutations represent a mechanism of intrinsic resistance to chemotherapy (4). A retrospective cohort study of 103 NSCLC patients, found a poor survival in patients with KEAP1/NFE2L2 mutations. Consistent with the above study results, other study had also demonstrated that KEAP1/NFE2L2 mutation reduces response rate and survival in NSCLC patients receiving chemotherapy (5).

In terms of immunotherapy, a previous study of 550 NSCLC patients from Memorial Sloan Kettering, has shown that patients with KEAP1/NFE2L2 co-mutation in KRAS have significantly shorter survival (6). A letter to the editor present a cohort of 69 patients from the Memorial Sloan Kettering Sequencing with KEAP1/NFE2L2 mutations who were treated with immunotherapy and demonstrated inferior survival compared with patients with KEAP1/NFE2L2 wild-type tumors (7).Similar results were also described in KEAP1 mutations of a prospective study with 66 NSCLC patients, which are unresponsive to immunotherapy (8). In the immunotherapy group of MYSTIC trial, patients with KEAP1/NFE2L2 mutations had poor overall survival compared with KEAP1/NFE2L2 wild-type patients (9). Congruent with prior studies, KEAP1 mutations were associated with significantly shorter overall survival (OS) in patients receiving immunotherapy (10, 11). However, the impact of KEAP1/NFE2L2 mutation on the efficacy of immunotherapy in advanced NSCLC remains a controversial topic. There has been conflicting evidence on the role of KEAP1/NFE2L2 mutations in ICI response with several series reporting better response to ICI. For example, a small (N=34) retrospective analysis found that KEAP1 mutations were more frequent in pembrolizumab-treated NSCLC patients who had sustained clinical benefits (12). In addition, an exploratory analysis of the KEYNOTE-042 trial presented at the AACR 2020 meeting suggested a possible role for ICI therapy in KEAP1-mutant NSCLC (13). Based on the above study, the clinical significance of KEAP1/NFE2L2 mutations in immunotherapy remains elusive and somewhat contradictory.

Since many previous studies have shown that KEAP1/NFE2L2 mutation is associated with poor prognosis of NSCLC, it is of great clinical significance to determine which treatment method can improve the prognosis of NFE2L2/KEAP1 mutant population. A previous study of NSCLC patients with KEAP1/NFE2L2 mutations from Memorial Sloan Kettering Cancer Center database, has shown that KEAP1/NFE2L2 mutations were associated with inferior overall survival but improved survival in the KEAP1-NFE2L2 mutant tumors treated with immunotherapy compared with other treatments (14). However, no prospective study datas have been retrospectively used to compare the outcomes of patients with KEAP1/NFE2L2 mutations who receive immunotherapy versus chemotherapy.

Therefore, in order to evaluate the prognostic effect of KEAP1/NFE2L2 mutations on immunotherapy and chemotherapy using data from two independent cohorts (the prospective randomized phase II/III POPLAR/OAK trials with both immunotherapy and chemotherapy groups) were used to analyze the prognostic effect of KEAP1/NFE2L2 mutations on atezolizumab and docetaxel, and the correlation with immunogenic markers. In addition, TCGA data and Chinese real world data were used to analyze prognostic mechanisms. Our findings suggest that the KEAP1/NFE2L2 mutations may be a poor prognostic biomarker for NSCLC, and compared with docetaxel, atezolizumab did not prolong OS in patients with KEAP1/NFE2L2 mutations.



Materials and Methods


Clinical Cohorts and Study Design

We searched literatures and found two NSCLC cohorts treated with anti-PD-L1 and docetaxel, which were POPLAR study (phase II trial, NCT01903993) and OAK study (phase III trial, NCT02008227), with 211 and 642 patients had blood-based next-generation sequencing data (Foundation One panel), respectively. We retrieved the targeted-sequencing and clinical data of these patients (n=853) from previously published article (PMID: 30082870) (15). Survival analysis were conducted to explore the prognostic value of mutations in these two cohorts. To further explore the transcriptome mechanism, the mRNA expression data from Cancer Genome Atlas (TCGA) NSCLC cohort (n=998) were also included for Gene set enrichment analysis (GSEA, see below). We obtained the WES and mRNA expression data from the GDC data portal (https://portal.gdc.cancer.gov/projects). To clarify the immune-related characteristics, we compare the PD-L1 and TMB levels of mutational subgroups in the OAK/POPLAR cohorts and an in-house Chinese NSCLC cohort (n=733).



KEAP1/NFE2L2 Mutations

Nonsynonymous mutations including TRUNC (frameshift del, frameshift ins, nonsense, nonstop, splice region, and splice site), INFRAME (inframe del and inframe ins), and MISSENSE mutations of KEAP1/NFE2L2 were defined as KEAP1/NFE2L2 mutations in this study.



Gene Set Enrichment Analysis (GSEA)

GSEA was performed in the TCGA NSCLC cohort using gene sets from Molecular Signature Database (MSigDB) v.7.0 to investigate the biological features of KEAP1/NFE2L2 mutant NSCLC (16). GSEA was conducted by clusterProfilter R package (17). The P-value estimates the statistical significance of the normalized enrichment score (NES). A gene set with P < 0.05 was determined to be significantly enriched in genes.



Statistical Analysis

Continuous variables were compared by the Mann Whitney U test and categorical variables were compared using chi-squared or Fisher’s exact tests. The Kaplan–Meier method was used to delineate the OS curve, and the log-rank method was used to assess the significance. The hazard ratio (HR) was determined through the univariable and multivariable Cox regression. Variables with a P-value below 0.10 in the univariable regression were included in the multivariable analyses.

All analyses and graphs were performed using R 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria). If not specified, tests were two-tailed, and a P-value of <0.05 was considered statistically significant. The workflow of the study is illustrated in Figure 1.




Figure 1 | Workflow of the study. Flow diagram illustrating the cohorts considered and the main purposes of the analytical process.






Results


Characteristics of the Patients and Mutational Patterns

A pooled analysis of two independent cohorts of 853 advanced NSCLC patients showed that 171 (20.0%) harbored KEAP1/NFE2L2 mutations, comprising 211 patients from the POPLAR trial (49 [23.2%] with KEAP1/NFE2L2 mutations) and 642 from the OAK trial (122 [19.0%] with KEAP1/NFE2L2 mutations). KEAP1/NFE2L2 had higher mutation frequency in lung squamous cell carcinoma (OAK/POPLAR, P = 0.05; OAK, P = 0.044; POPLAR, P = 0.069). A high proportion of smokers were found in patients with KEAP1/NEF2L2 mutations (OAK/POPLAR, P < 0.001; OAK, P < 0.001; POPLAR, P = 0.009). The characteristics of patients with KEAP1/NEF2L2 mutations versus wild-type in the overall cohort are shown in Table 1. The genomic mutational landscape of 853 patients showed that KEAP1 or NEF2L2 mutations prevailed in 118 (14%) or 58 (7%) (Supplementary Figure 1), respectively.


Table 1 | Clinical characteristics of patients with NFE2L2/KEAP1 mutations treated with atezolizumab or docetaxel in the OAK/POPLAR cohorts.





Immunotherapy and Chemotherapy Are Not Effective in Patients With NFE2L2/KEAP1 Mutations

In the KEAP1/NFE2L2-mutant cohort, the median OS was not significantly different between docetaxel and atezolizumab. (OAK/POPLAR, HR = 0.74, 95% CI 0.53–1.03, P = 0.07; OAK, HR = 0.72, 95% CI 0.48–1.06, P = 0.094; POPLAR, HR = 0.79, 95% CI 0.42–1.47, P = 0.45) (Figures 2A, C, E).




Figure 2 | Survival analyses in the OAK/POPLAR cohorts. (A) Kaplan–Meier curves of overall survival (OS) in the patients with KEAP1/NFE2L2 mutations who received atezolizumab and docetaxel in the OAK/POPLAR cohorts. (B) Kaplan–Meier curves of OS in the patients without KEAP1/NFE2L2 mutations who received atezolizumab and docetaxel in the OAK/POPLAR cohorts. (C) Kaplan–Meier curves of OS in the patients with KEAP1/NFE2L2 mutations who received atezolizumab and docetaxel in the OAK cohort. (D) Kaplan–Meier curves of OS in the patients without KEAP1/NFE2L2 mutations who received atezolizumab and docetaxel in the OAK cohort. (E) Kaplan–Meier curves of OS in the patients with KEAP1/NFE2L2 mutations who received atezolizumab and docetaxel in the POPLAR cohort. (F) Kaplan–Meier curves of the OS in the patients without KEAP1/NFE2L2 mutations who received atezolizumab and docetaxel in the POPLAR cohort.



However, in the KEAP1/NFE2L2 wild-type cohort, OS for patients treated with atezolizumab was longer than patients treated with docetaxel (OAK/POPLAR, HR = 0.63, 95% CI 0.53–0.76, P < 0.001; OAK, HR = 0.63, 95% CI 0.51–0.78, P < 0.001, POPLAR, HR = 0.64, 95% CI 0.44–0.92, P = 0.016) (Figures 2B, D, F).

When EGFR and ALK mutations were excluded, survival analysis in KEAP1/NFE2L2 mutant cohorts indicated no significant difference in OS between patients treated with atezolizumab or docetaxel (OAK/POPLAR, HR = 0.74, 95% CI 0.52–1.05, P = 0.095; OAK, HR = 0.73, 95% CI 0.48–1.1, P = 0.13; POPLAR, HR = 0.73, 95% CI 0.35–1.4, P = 0.31) (Supplementary Figures 2A, C, E). However, analysis in the KEAP1/NFE2L2 wild-type cohort showed that the OS for patients treated with atezolizumab was longer than that for patients treated with docetaxel (OAK/POPLAR, HR = 0.6, 95% CI 0.5–0.73, P < 0.001; OAK, HR = 0.6, 95% CI 0.48–0.75, P < 0.001; POPLAR, HR = 0.62, 95% CI 0.41–0.94, P = 0.025) (Supplementary Figures 2B, D, F).



KEAP1/NFE2L2 Mutations Are Associated With Worse Immunotherapy Survival in NSCLC

In the OAK/POPLAR-atezolizumab cohort, KEAP1/NEF2L2 mutations (55.7%) were associated with a higher disease control rate (DCR) (OAK/POPLAR, P = 0.0074) than KEAP1/NEF2L2 wild-type (38.5%) (Supplementary Figure 3A).

Patients with KEAP1/NEF2L2 mutations had a significantly shorter median OS than KEAP1/NFE2L2 wild-type patients (OAK/POPLAR, HR = 1.97, 95% CI 1.48–2.63, P < 0.001) (Figure 3A). In addition, the survival analysis in the OAK-atezolizumab cohort and POPLAR-atezolizumab cohort showed that patients with KEAP1/NFE2L2 mutations exhibited shorter OS than KEAP1/NFE2L2 wild-type (OAK, HR = 1.8, 95% CI 1.28–2.52, P<0.001; POPLAR, HR = 2.44, 95% CI 1.42–4.2, P<0.001) (Figures 3B, C). When EGFR and ALK mutations were excluded, survival analysis in the OAK/POPLAR-atezolizumab with the EGFR/ALK wild-type cohort, OAK atezolizumab with EGFR/ALK wild-type cohort, and POPLAR-atezolizumab with EGFR/ALK wild-type cohort showed that patients with KEAP1/NFE2L2 mutations still exhibited shorter OS than those with KEAP1/NFE2L2 wild-type (OAK/POPLAR, HR = 1.97, 95% CI 1.48–2.63, P < 0.001; OAK, HR = 1.8, 95% CI 1.28–2.52, P<0.001; POPLAR, HR = 2.44, 95% CI 1.42–4.2, P<0.001) (Supplementary Figure 4).




Figure 3 | Survival analyses in the OAK/POPLAR-atezolizumab cohorts. (A) Kaplan–Meier curves of overall survival (OS) in the atezolizumab treated patients with or without KEAP1/NFE2L2 mutations in the OAK/POPLAR cohorts. (B) Kaplan–Meier curves of OS in the atezolizumab treated patients with or without KEAP1/NFE2L2 mutations in the OAK cohort. (C) Kaplan–Meier curves of OS in the atezolizumab treated patients with or without KEAP1/NFE2L2 mutations in the POPLAR cohort.



In univariate analyses, KEAP1/NFE2L2 mutations, race, smoking status, histological and pathological types (HIST), bTMB, baseline serum lactate dehydrogenase (SLD), and PD-L1 status were significantly correlated with OS (Table 2). In multivariate analyses, KEAP1/NFE2L2 mutations, HIST, baseline SLD, and PD-L1 status were significantly correlated with OS (Table 2).


Table 2 | Hazard ratio (HR) of clinical and genomic variables on overall survival via univariate and multivariate analysis in patients treated with Atezolizumab.



Subgroup analysis based on PD-L1 expression level showed OS benefit in the KEAP1/NFE2L2 wild-type group was significant in patients with PD-L1 < 50% (PD-L1 < 50%, HR = 1.77, 95% CI 1.23–2.55, P = 0.01; PD-L1 ≥ 50%, HR = 1.86, 95% CI 0.74–4.66, P = 0.13) (Supplementary Figure 5).



KEAP1/NFE2L2 Mutations Associated With Worse Chemotherapy Survival in NSCLC

In the OAK/POPLAR-docetaxel cohort, KEAP1/NEF2L2 mutations (45.8%) were associated with lower DCR (OAK/POPLAR, P = 0.0017) than KEAP1/NEF2L2 wild-type (66.7%) (Supplementary Figure 3B).

Survival analysis showed that worse OS was observed in patients with KEAP1/NFE2L2 mutations than in the KEAP1/NFE2L2 wild-type group (OAK/POPLAR, HR = 1.66, 95% CI 1.28–2.16, P<0.001) (Figure 4A). In the OAK and POPLAR-docetaxel cohort, patients with KEAP1/NFE2L2 mutations had a significantly worse OS than those in the KEAP1/NFE2L2 wild-type group (OAK, HR = 1.54, 95% CI 1.13–2.1, P = 0.006; POPLAR, HR = 2.17, 95% CI 1.31–3.6, P = 0.002) (Figures 4B, C).




Figure 4 | Survival analyses in the OAK/POPLAR-docetaxel cohorts. (A) Kaplan–Meier curves of overall survival (OS) in the docetaxel treated patients with or without KEAP1/NFE2L2 mutations in the OAK/POPLAR cohort. (B) Kaplan–Meier curves of OS in the docetaxel treated patients with or without KEAP1/NFE2L2 mutations in the OAK cohort. (C) Kaplan–Meier curves of OS in the docetaxel treated patients with or without KEAP1/NFE2L2 mutations in the POPLAR cohort.



When EGFR and ALK mutations were excluded, patients with KEAP1/NFE2L2 mutations associated with OAK/POPLAR-docetaxel exhibited shorter OS than the KEAP1/NFE2L2 wild-type group (OAK/POPLAR, HR = 1.68, 95% CI 1.27–2.22, P < 0.001; OAK, HR = 1.56, 95% CI 1.13–2.15, P = 0.0068; POPLAR, HR = 2.34,95% CI 1.31–4.19 P = 0.0033) (Supplementary Figure 6).

In univariate analyses, KEAP1/NFE2L2 mutations, race, smoking status, histological and pathological types (HIST), bTMB, and baseline serum lactate dehydrogenase (SLD) were significantly correlated with OS (Table 3). In multivariate analyses, KEAP1/NFE2L2 mutations, bTMB, baseline SLD, and PD-L1 status were significantly correlated with OS (Table 3).


Table 3 | Hazard ratio (HR) of clinical and genomic variables on overall survival via univariate and multivariate analysis in patients treated with Docetaxel.



Subgroup analysis based on PD-L1 expression level indicated a significantly negative impact on KEAP1/NFE2L2 mutations on OS in the PD-L1<50% subgroup (PD-L1<50%, P = 0.0062; PD-L1 ≥ 50%, P = 0.53) (Supplementary Figure 7).



NFE2L2/KEAP1 Mutations Were Associated With Higher TMB Values and PD-L1 Expression in the OAK/POPLAR and In-House Chinese NSCLC Cohorts

In the OAK/POPLAR cohorts, patients with KEAP1/NFE2L2 mutations had a greater TMB than those with KEAP1/NFE2L2 wild-type (OAK/POPLAR, P<0.0001; OAK, P<0.0; POPLAR, P < 0.0001) (Supplementary Figures 8A-C). In the in-house Chinese NSCLC cohort, NFE2L2/KEAP1 mutations significantly correlate with higher TMB value (P<0.0001 (Supplementary Figure 8D). KEAP1/NFE2L2 mutations was associated with numerically better PD-L1 expression in the OAK cohort (P= 0.69) (Supplementary Figure 9A). In the in-house Chinese NSCLC cohort, KEAP1/NFE2L2 mutations showed significant correlation with higher PD-L1 expression level (P=0.03) (Supplementary Figure 9B).



KEAP1/NFE2L2 Mutations Are Associated With a Low Immune Infiltration and Low Expression of DNA Damage Response (DDR) Genes in TCGA NSCLC Cohort

We previously identified that KEAP1/NFE2L2 mutations were irrelevant to PD-L1 expression but associated with higher TMB. Therefore, we speculated that other potential mechanisms may contribute to worse clinical benefit in patients with mutant KEAP1/NFE2L2. We conducted gene set enrichment analysis (GSEA) using transcriptome data of TCGA NSCLC cohort. Significant enrichment scores were observed in DDR related and T cell related pathways (Supplementary Table 1). Our results revealed that DNA damage repair related functions were downregulated in KEAP1/NFE2L2 mutant NSCLC. This mutant subgroup was also with deficient infiltration of CD4+ T cells, NK T cells and natural Treg cells (Figure 5).




Figure 5 | Enrichment plot showing biological signatures based on gene set enrichment analysis (GSEA) of KEAP1/NFE2L2 mutant NSCLC. (A): Significant down-regulation in multiple DDR-related pathways including base excision repair, DNA repair, fanconi anemia pathway, G2 M DNA damage checkpoint, HDR through HRR and nucleotide excision repair. (B): Significant down-regulation in CD4 T cell (the green and blue curves) and NK T cell (the purple curve), significant up-regulation in T regulation cell (the pink curve).






Discussion

In this report, we analyzed the prognostic association between KEAP1/NFE2L2 mutations and immunotherapy and chemotherapy in 853 patients from the OAK and POPLAR cohort. As previously reported (10), the analysis revealed NFE2L2/KEAP1 were frequently mutated in NSCLC. Previous studies have demonstrated that KEAP1/NFE2L2 mutation reduces response rate and survival in NSCLC patients receiving chemotherapy or immunotherapy. However, the prognosis of KEAP1/NFE2L2 mutations in immunotherapy remains contradictory (12, 13).

In this study, we found that KEAP1/NFE2L2 mutations were associated with poorer survival in NSCLC patients receiving atezolizumab or docetaxel, while there was no significant difference in survival between atezolizumab and docetaxel. These results revealed that patients with KEAP1/NFE2L2 mutations may not benefit from the treatment that is available at present compared with wild-type patients.

Our research showed that KEAP1/NFE2L2 mutations in NSCLC patients were associated with poor OS in chemotherapy. These results corroborate the proposals of Goeman et al., who suggested that KEAP1/NFE2L2 mutations played an important role in NSCLC progression and chemotherapy resistance (4). Jeong et al. revealed that the KEAP1 deletion conferred chemoresistance in murine lung cancer cells and mutations in KEAP1/NFE2L2/CUL3 were associated with worse outcomes after first-line chemotherapy (3). Chemotherapeutic drugs can kill cancer cells via the generation of reactive oxygen species (ROS) and subsequent DNA damage. KEAP1/NFE2L2 mutations lead to the constitutive activation of NF2E2L2, promoting cellular resistance to oxidative stress, proliferation, and metabolic reprogramming (18), which may be the possible mechanisms of chemotherapy resistance.

TMB and PD-L1 are widely recognized as prognostic biomarkers for immunotherapy (18, 19). Xu et al. reported that all patients who harbored KEAP1/NFE2L2 mutations had higher TMB values and PD-L1 expression in pan-cancer (20). Our study showed consistent results, where the significantly higher TMB values and PD-L1 expression were associated with KEAP1/NFE2L2 mutation compared with KEAP1/NFE2L2 wild-type in NSCLC. Perhaps the most clinically relevant finding is that the OS was shorter in patients treated with atezolizumab with mutated KEAP1/NFE2L2 than in those with wild-type KEAP1/NFE2L2 independent of TMB and PD-L1. This proves that KEAP1/NFE2L2 mutations affect immunotherapy by another mechanism.

In recent years, studies on the tumor immune microenvironment have been at the forefront of cancer research (19). The effect of the tumor immune microenvironment on immunotherapy has been well reported in many cancer types (20, 21). Cai et al. indicated that defective tumor angiogenesis and lack of adequate immune-cell infiltration were the immunological properties of patients with mutated KEAP1/NFE2L2 (22). Our study showed consistent results that mutated KEAP1/NFE2L2 patients lack infiltration of CD4+ T cells, NK T cells and natural Treg cells, which could be the reason that patients with KEAP1/NFE2L2 mutations have a poor response to immunotherapy. ROS is a group of short-lived, highly reactive, oxygen-containing molecules that can induce DNA damage (23). However, KEAP1/NFE2L2 mutation leads to structural activation of NFE2L2, which promotes cellular resistance to oxidative stress and can balance ROS levels, thus reducing the level of DNA damage repair. This could explain why patients with KEAP1/NFE2L2 mutations lack DDR gene expression. Luo et al. reported a negative trend in the association between the GSEA enrichment score of DDR-related pathways and TMB (24), which also validates a higher TMB in KEAP1/NFE2L2 with mutations than in wild-type due to the lack of DDR gene expression. In addition, previous studies have indicated that patients who smoke have higher TMB levels (25). Therefore, a higher proportion of smokers in patients with mutant KEAP1/NFE2L2 may lead to an increase in TMB level.

In combination with the results of previous studies and the present study, the KEAP1/NFE2L2 mutation, as a poor prognostic factor for NSCLC, is associated with poor prognosis with targeted therapy (26), chemotherapy (2–5), or immunotherapy (6–11). But until now little success has been achieved in developing safe and effective KEAP1/NFE2L2 inhibitors for cancer therapy. Therefore, it is of great clinical significance to find a treatment method with relatively good prognosis for patients with KEAP1/NFE2L2 mutations among existing treatment methods. In this study, we compared the prognostic differences between chemotherapy and immunotherapy in patients with KEAP1/NFE2L2 mutation using datas from the OAK/POPLAR cohorts. In this study, compared with docetaxel, atezolizumab did not prolong mOS in patients with KEAP1/NFE2L2 mutations. This suggested that immunotherapy did not significantly improve prognosis compared to chemotherapy in patients with KEAP1/NFE2L2 mutations.

Our study has several limitations. First, to overcome the inadequacy of data from the OAK and POPLAR cohort for mechanism analysis, we introduced TCGA NSCLC transcriptome and in-house Chinese NSCLC datas into our study to analyze the impact of gene mutations. However, differences between these three databases may lead to bias and heterogeneity, which limits the clinical interpretation and clinical application of our study results. Second, only survival data of immunotherapy and chemotherapy were used in this study, it was not possible to analyze the prognostic difference between immunotherapy and other treatments other than chemotherapy in KEAP1/NFE2L2 mutation patients. It has implications for the search for relatively superior therapies in patients with KEAP1/NFE2L2 mutations.

In conclusion, the KEAP1/NFE2L2 mutation, as a poor prognostic factor for NSCLC, is associated with poor prognosis with immunotherapy or chemotherapy. Further research should be undertaken to investigate new therapeutic targets for patients with mutated KEAP1/NFE2L2.
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Introduction

Small cell lung cancer (SCLC) has recently been characterized as heterogeneous tumors due to consensus nomenclature for distinct molecular subtypes on the basis of differential expression of four transcription markers (ASCL1, NEUROD1, POU2F3, and YAP1). It is necessary to validate molecular subtype classification in primary SCLC tumors by immunohistochemical (IHC) staining and investigate its relevance to survival outcomes.



Methods

Using a large number of surgically resected primary SCLC tumors, we assessed the mRNA and protein levels of the four subtype markers (ASCL1, NEUROD1, POU2F3 and YAP1) in two independent cohorts, respectively. Next, molecular subtypes defined by the four subtype markers was conducted to identify the association with clinicopathologic characteristics, survival outcomes, the expression of classic neuroendocrine markers, and molecules related to tumor immune microenvironment.



Results

Samples were categorized into four subtypes based on the relative expression levels of the four subtype markers, yielding to ASCL1, NEUROD1, POU2F3 and YAP1 subtypes, respectively. The combined neuroendocrine differentiation features were more prevalent in either ASCL1 or NEUROD1 subtypes. Kaplan-Meier analyses found that patients with tumors of the YAP1 subtype and ASCL1 subtype obtained the best and worst prognosis on both mRNA and IHC levels, respectively. Based on multivariate Cox proportional-hazards regression model, molecular subtype classification determined by IHC was identified as an independent indicator for survival outcomes in primary SCLC tumors. Correlation analyses indicated that the four subtype markers in SCLC cancer cells were interacted with its tumor immune microenvironment. Specifically, tumors positive for YAP1 was associated with fewer CTLA4+ T cell infiltration, while more immune-inhibitory receptors (FoxP3,PD1, and CTLA4) and fewer immune-promoting receptor (CD8) were found in tumors positive for ASCL1.



Conclusions

We validated the new molecular subtype classification and clinical relevance on both mRNA and protein levels from primary SCLC tumors. The molecular subtypes determined by IHC could be a pre-selected effective biomarker significantly influenced on prognosis in patients with SCLC, which warrants further studies to provide better preventative and therapeutic options for distinct molecular subtypes.
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Introduction

Small cell lung cancer (SCLC) is a particularly aggressive and lethal form of malignancy carcinoma, which predominantly originated from pulmonary epithelial neuroendocrine (NE) cells and characterized by rapid cell division, highly metastatic nature, propensity for acquired therapeutic resistance and exceedingly poor prognosis. While the addition of immunotherapy to standard chemotherapeutics is the first breakthrough in SCLC treatment in over 30 years, the absolute improvements is modest with approximately 2-month in median overall survival, further exploration of the underlying disease mechanisms and refinement of the candidate predictive biomarkers remained to be done (1, 2). Numerous unfavorable results of targeted- and immuno- therapies in SCLC might be due to the insufficient selection of particular patient populations, which in sharp contrast with non-SCLC (NSCLC) that a pre-selected effective biomarker has dramatically altered treatment strategies (3).

SCLC was clinically considered as a single monolithic entity, which was coincide with the emergence of nearly universal deletion or inactivation of TP53 and RB1 at the genetic level (4). Historically, broader analyses of the morphological characteristics, multiple NE phenotype markers and neuronal transcription factors in human SCLC cell lines (5), genetically engineered mouse models (GEMM) (6), and patient-derived xenografts (PDX) (7) were used to interrogate the intratumoral heterogeneity and consequently manifested the potential relevance to consideration of SCLC subgroup stratification. Initial dichotomy between classic SCLC, representing the ASCL1-high subtype, and variant SCLC, representing the NEUROD1-high subtype, was further demonstrated in human tumors and PDX models through clustering of DNA methylation and gene expression profiles (8). Besides these two NE lineage-specific transcription factors, POU2F3, a master transcriptional regulator of tuft cell, was recently identified as a distinct subtype, which expressed exclusively in variant SCLC tumors that lack the expression of classical NE markers (9). An additional molecular subtype consisted of a small unclassified tumors was proposed as driven by YAP1, which is a transcriptional co-activator in the Hippo signaling pathway and preferentially expressed in non-NE cells (10).

Accumulated evidence for these distinct transcriptional factors of SCLC prompts a possibility of therapeutic vulnerabilities towards specific subtype. However, transcriptome-based observations regarding the predicted features of molecular subtypes also revealed the phenomenon of considerable intratumoral subtype overlap (11), which suggested that there is a clonal selection for a dominant transcription factor in the same tumor cell populations. YAP1 was also observed to be positive in stromal cells (12), while bulk RNA sequencing data of primary SCLC tumors failed to identify the specific expression of YAP1 in tumor cells. Notably, immunohistochemical (IHC) methodology provides an objective and visualized metric of molecular subtype markers that allow discriminating the dominant subtype-related markers in tumor cells. Recently, the feasibility of defining the molecular subtype by IHC has been validated in primary SCLC tumors, and the presence of distinct molecular subtype populations also suggested the substantial intratumoral heterogeneity within SCLC tumors, which may potentially assist treatment decisions in SCLC (13). However, the information on previous treatment and survival was missing in their study, hence the need for an independently prognostic inquiry among distinct molecular subtypes. Therefore, we investigated whether molecular subtype markers in primary SCLC tumors may related to the patients’ metastases, survival and the difference in tumor stromal components, immune infiltration or markers of immune activation.



Materials and Methods


Patients and Samples Selection

We retrospectively collected 94 frozen tumor samples and 138 formalin-fixed, paraffin-embedded (FFPE) tumor tissue blocks from 232 patients who had consecutively undergone completely surgical resection of primary SCLC in Tianjin Medical University Cancer Institute and Hospital between November 2008 and May 2017. This study has been approved by the ethics committee of Tianjin Medical University Cancer Institute and Hospital with an ethical approval number of bc2021104. All enrolled tumors were pathologically confirmed as SCLC after surgery. Most of 232 tumors were treatment-naive, with only 31 cases underwent chemotherapy at the time of tumor collection. All tumors were pathologically re-staged according to the American Joint Committee on Cancer (AJCC) tumor-node-metastasis (TNM) staging system, 8th edition. One hundred and nine (79.0%) patients subsequently received adjuvant chemotherapy after surgery, with a median cycle number of 4 (range = 1-12 cycles). Characteristics of patients including age, gender, smoking history, preoperative and postoperative treatment history, disease progression during follow-up period were also extracted from the medical records system and telephonic follow-up. The detailed clinicopathologic characteristics of the 94 RNA cohort and 138 FFPE cohort are summarized in Table 1.


Table 1 | Demographic and clinical information related to the tumor samples from two cohorts.





Real Time Quantitative PCR

Ninety-four RNA samples diagnosed as SCLC by frozen sections were used to subtyping based on their relative expression levels by reverse transcription-quantitative PCR (RT-qPCR). Total RNA was extracted from the frozen tissues using Trizol reagent (Invitrogen) according to the recommended protocol by manufacturer. cDNA was converted using reverse transcriptase from a TUREscript cDNA Synthesis Kit (Aidlab). RT-qPCR was then administered to investigate the gene expression of ASCL1, NEUROD1, POU2F3 and YAP1 using a SYBR-Green assay system. The sequences of the primer sets for real time RT-qPCR were as follows: ASCL1 forward, 5’-TCACCTCTAACACGCACAG-3’ and reverse, 5’-GGCTACTGAGACGAAAGACA-3’; NEUROD1 forward, 5’-GAAAGCCCTCTGACTGATT-3’ and reverse, 5’-GAGAAGTTGCCATTGATGC-3’; POU2F3 forward, 5’-GACCACCATCTCACGATT-3’ and reverse, 5’-GCATCATTCAGCCACTTC-3’; YAP1 forward, 5’-CCTCAGTGTTGTAGCAGTA-3’ and reverse, 5’-GACTCTTAGGTCTCCTTCAG-3’; GAPDH forward, 5’-TGCACCACCAACTGCTTAGC-3’ and reverse, 5’-GGCATGGACTGTGGTCATGAG-3’. The 2−ΔΔCq method was performed to normalize and calculate the relative mRNA amount of target genes to GAPDH.



Tissue Microarray

For the construction of tissue microarrays (TMAs), the hematoxylin and eosin (HE) whole-slides of 138 cases were reviewed under a light microscope. One representative region contained both dense tumor cells and sufficient mesenchymal cells was selected and circled with highlighters under the microscope, with a diameter of about 3-5mm. The position marked on the HE slides was also marked on the surface of corresponding paraffin block. Then the selected areas on the individual donor paraffin blocks were punched as 2 mm cores to array in 3 recipient paraffin blocks with a biopsy needle. Next, the recipient paraffin blocks were sectioned serially onto “charged” glass slides with a thickness of 4 μm, followed by histocytological reconfirming by HE staining. The remaining microarrays slides were stored at 4°C for subsequent IHC experiment.



IHC

TMAs sections were first subjected to the oven at 65°C for overnight and then followed by deparaffinized with xylene, rehydrated with an ethanol gradient, and microwave-induced antigen retrieval was performed for 10min at 100°C in citric acid buffer at PH 6.0 or in Tris-EDTA buffer at PH 9.0. Next, endogenous peroxidase activity and nonspecific binding were blocked with 0.3% H2O2 in methanol for 30 min and 10% goat serum for 30min, respectively. Sections were subsequently treated with 0.1% Triton X-100 for 15min, and rinsed with water followed by incubated with the predetermined, appropriate dilutions of primary antibody overnight at 4°C in a humidified chamber. The detailed primary anti-human protein antibodies with corresponding dilutions used in this study were available in Supplementary Table 1. Control tissues were processed in parallel with tissues exposed to the non-immunized serum. The next day, sections were rinsed after rewarming at 37°C for 30min and then incubated with the homologous HRP-conjugated secondary antibody for 30min followed by DAB and hematoxylin staining, respectively. The stained tissue sections were then processed through graded alcohols and xylene, cover-slipped, and allowed to dry at room temperature.



IHC Scoring Criteria

Except for PD-L1, H-score was adopted to evaluate the immunoreactivities in cases with available results for each marker, which was calculated by multiplying the percentage of stained cells (1-100%) in each intensity category by corresponding intensity of positivity (1 = weak, 2 = moderate, 3 = strong), and the results were summed to yield a range of cumulative score of 0 to 300. Stained slides were observed by three investigators including two pathologists under light microscope using a whole slide of each representative core. The average of H-scores for CD56, Chromogranin A, and Synaptophysin was derived to determine the combined NE score and cases with NE markers unavailable were excluded. Particular attention was paid to the judgment of PD-L1 because 22C3 clone is an approved companion diagnostic antibody in clinic for its predictive role in response to immunotherapy based on a mixture of immune and tumor cell expression (14). The combined positive score (CPS) of PD-L1 is defined by the ratio of the number of all PD-L1-expressing cells (tumor cells, lymphocytes, macrophages) to the number of all tumor cells as the following formula: CPS = (No. PD-L1-stained cells/Total No. viable tumor cells)*100. Tumor cells must exhibit partial or complete membrane staining (≥1+) to be counted as “stained”, whereas immune cells are counted if there is any staining.



Survival Outcomes

The primary and secondary endpoint of this study were overall survival (OS) and disease-free survival (DFS), respectively. OS was defined as the time from surgery to the date of death or to the time of censored if the patient was still alive. DFS was defined as the time from surgery to the date of the first objective disease progression (local or distant metastasis) or the date of death, whichever occurred first. Outpatient and telephonic follow-up were adopted regularly and the last follow-up time was on September 4, 2020. The median duration of follow-up of all patients was 64.1 months (range = 4.4-117.7 months).



Statistical Analyses

Unsupervised clustering was performed using package”pheatmap”of R software (version 3.4.4). Venn diagram was drawn using Origin software (version 9.1) to delineate the cross expression among molecular subtype markers. Categorical variables were analysed using chi-square test (χ2), χ2 correction for continuity or Fisher’s exact test, as appropriate. Survival curves were delineated with the Kaplan-Meier method and differences between curves were estimated by the log-rank test. Variables with P values below 0.1 in the univariate analyses were considered into the multivariate Cox proportional-hazards regression model, with a backward-forward stepwise method. Correlation between continuous variables was calculated using Pearson Correlation Coefficient. All data analyses were conducted with SPSS 24.0 statistical software (IBM Corporation, Armonk, NY, United States) and P-value below 0.05 of the two-sided test was considered significantly different statistically.




Results


Expression Level of Four Subtype Markers and Their Prognostic Relevance in RNA Cohort

The relative expression levels of ASCL1, NEUROD1, POU2F3, and YAP1 were quantified by RT-qPCR. The mean values (± standard deviation [SD]) of ASCL1, NEUROD1, POU2F3, and YAP1 expression were 2.13 (± 9.68), 2.11 (± 7.95), 0.75 (± 2.22), and 0.23 (± 0.50), respectively. POU2F3 was not expressed in 15 (16.0%) patients and YAP1 was not expressed in 40 (42.6%) patients. Next, unsupervised cluster analyses was performed to identify the dominant marker in SCLC tumors based on the transcriptional levels of the four molecular subtype markers (Figure 1). Then, specimens were divided into the following four dominant subtypes: 63 (67.0%) tumors with ASCL1, 10 (10.6%) tumors with NEUROD1, 11 (11.7%) tumors with POU2F3, and 10 (10.6%) tumors with YAP1 subgroup, respectively. Kaplan-Meier analyses identified that patients whose tumors classified into ASCL1 subtype obtained significantly worse OS (P = 0.033) and DFS (P = 0.017) compared to those patients whose tumors with dominant markers of NEUROD1, POU2F3, or YAP1 (Supplementary Figure 1), which suggested that molecular subtype classification based on transcriptome data may serve as a predictor for survival outcome in primary SCLC tumors.




Figure 1 | Unsupervised Clustering Analyses of ASCL1, NEUROD1, POU2F3, and YAP1 Gene Expression of Primary Small Cell Lung Cancer Tumors. A total of 94 patients were included to perform this analyses. SCLC-A, SCLC tumors classified into the ASCL1 subtype; SCLC-N, SCLC tumors classified into the NEUROD1 subtype; SCLC-P, SCLC tumors classified into the POU2F3 subtype; SCLC-Y, SCLC tumors classified into the YAP1 subtype. OS, overall survival; DFS, disease-free survival; ASCL1, achaete-scute homologue 1; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein 1.





Distribution of Molecular Subtype Markers and Their Correlation With NE Differentiation in FFPE Cohort

Detailed results of immunoreactivities for the four molecular subtype markers determined by IHC are described in Supplementary Table 1. ASCL1, NEUROD1, POU2F3, and YAP1 was detected to be positive in 93 (74.4%), 34 (27.4%), 71 (56.8%), and 50 (39.7%) of tumors, respectively (Supplementary Table 2). ASCL1 and YAP1 exhibited moderate to strong expressions with a mean H-score of 191 (range = 2-294) and 166 (range = 3-285), whereas the H-score of NEUROD1 and POU2F3 showed a relatively weak to moderate expressions with a mean value of 121 (range = 2-270), 145 (range = 2-285). Representative images of IHC staining in primary SCLC tumors for these four markers were shown in Figure 2. We observed that most tumors were positive for multiple molecular subtype markers and Venn diagram illustrated the cross expression of these markers in SCLC tumors (Figure 3A), which suggested substantial molecular subtype heterogeneity in primary SCLC tumors. ASCL1 exhibited coordinated expression with the other three molecules in 81.1% of ASCL1-positive cases. POU2F3 showed a higher co-expression rate (55.6%) than NEUROD1 (30.0%) and YAP1 (36.7%) in ASCL1-positive cases. A total of 124 samples with available H-scores were used to compare the relative expression levels of the four molecular subtype markers, and a dominant marker is defined as the marker with the highest H-score. A breakdown of molecular subtype composition revealed that ASCL1 is the dominant subtype in 52.4% of the tumors, followed by YAP1 (21.8%), POU2F3 (19.4%), and NEUROD1 (6.5%) (Figure 3B). Furthermore, we found that the average combined NE score of tumors in either POU2F3 (median = 88) or YAP1 (median = 63) subtypes were dramatically lower than tumor in either ASCL1 (median = 165) or NEUROD1 (median = 156) subtypes, which was consistent with previous report (12, 15) and suggested that the degree of NE differentiation may contribute to the evolution of molecular subtypes. Representative images of IHC staining for NE differentiation markers are shown in Figure 4.




Figure 2 | Representative Images of Immunohistochemical Staining in Primary Small Cell Lung Cancer Tumors Positive for One Single Molecular Subtype Marker. Scale bar: 100 μM. Only the tumors with appreciable nuclear staining were considered positive for subtype markers. ASCL1, achaete-scute homologue 1; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein 1.






Figure 3 | The Pie Chart and Venn Diagram for Subtype Distribution of Primary Small Cell Lung Cancer Tumors. (A) A pie chart illustrating the number and percentage of each dominant molecular subtype tumor (total = 124). Fourteen tumors were excluded in this analysis because of detachment during immunohistochemical staining and a dominant marker is defined as the marker with the highest H-score. (B) Venn diagram illustrating that most SCLC tumors were positive for multiple molecular subtype markers. ASCL1, achaete-scute homologue 1; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein 1.






Figure 4 | Representative Images of Immunohistochemical Staining for Neuroendocrine Differentiation Markers of Primary Small Cell Lung Cancer Tumors. Scale bar: 100 μM. Cytoplasmic staining of tumor cells was considered positive for SyN and CgA, and tumors with membrane staining were considered positive for CD56. SyN, Synaptophysin; CgA, Chromogranin A.





Relationship of Molecular Subtypes to Clinicopathologic Features and Survival Outcome in FFPE Cohort

To investigate the relationship between molecular subtypes and clinicopathologic factors, we compared patients’ characteristics in the SCLC tumors grouped by dominant subtype markers in FFPE cohort (Table 2). We did not observed any significant correlation between molecular subtypes and age, gender, smoking history, or pathological stage (all P > 0.05), and there were no statistical differences in preoperative chemotherapy, postoperative treatment strategy, and postoperative chemotherapy cycle among SCLC subtypes (all P > 0.05). However, we found that SCLC molecular subtypes were closely related with the risk of brain metastasis (P = 0.035), liver metastasis (P = 0.033), and bone metastasis (P = 0.033), respectively. Specifically, more patients whose tumors of the ASCL1 subtype had significantly increased risks of either brain (P = 0.011) or bone (P = 0.037) metastasis than those of the YAP1 subtype. Pairwise comparison analyses also found that the incidence of liver metastasis (P = 0.048) in tumors of the NEUROD1 subtype was more prevalent compared to tumors of the YAP1 subtype.


Table 2 | Comparison of baseline clinicopathologic characteristics among molecular subtypes of primary SCLC tumors in FFPE cohort.



Next, we investigated whether SCLC molecular subtypes determined by IHC might have potential impacts on patients’ survival. What stood out was that the OS (P = 0.007) and DFS (P < 0.001) in patients classified into the YAP1 subtype significantly prolonged compared to the remaining subtypes. Figure 5 and Table 3 detailed the specific survival time of patients with distinct subtypes. A relatively better survival was observed in patients whose tumor of the POU2F3 subtype. The corresponding 3-year OS was 82.4% for YAP1subtype and 68.9% for POU2F3 subtype. Inferior prognosis were obtained in patients classified into NEUROD1 and ASCL1 subtypes, with comparable 3-year OS of about 48.9% and 50.1%, respectively. In addition, Kaplan-Meier analyses revealed that the lower level of combined NE score indicated a better OS than did the higher group (P = 0.085). Collectively, these results reveal that molecular subtype is a predictive indicator in human primary SCLC and suggested that molecular subtype is associated with degree of NE differentiation.




Figure 5 | Survival Comparison among Dominant Molecular Subtypes determined by Immunohistochemical Staining of Primary Small Cell Lung Cancer. A total of 124 patients were utilized to perform Kaplan-Meier analyses, and fourteen tumors were excluded in this analysis because of detachment during immunohistochemical staining. ASCL1, achaete-scute homologue 1; NEUROD1, neurogenic differentiation factor 1; POU2F3, POU class 2 homeobox 3; YAP1, yes-associated protein 1.




Table 3 | Survival comparison of molecular subtypes determined by immunohistochemical staining in primary small cell lung cancer tumors.





Univariate and Multivariate Analyses: Combining Clinicopathologic Variables and Molecular Subtypes

To investigate whether the prognostic correlation of SCLC molecular subtypes was affected by other clinicopathologic factors in this cohort, univariate and multivariate Cox’s regression analyses were performed and the results were summarized in Table 4. Univariate analyses showed that metastasis occurred in brain (HR = 3.243, P = 0.000), lung (HR = 2.453, P = 0.024), liver (HR = 7.566, P = 0.000), bone (HR = 2.365, P = 0.015), and adrenal (HR = 3.626, P = 0.009) were predictors of inferior OS. Patients received adjuvant chemotherapy less than 4 cycles (HR = 0.340, P = 0.000) also had a significantly worse OS. In addition, the survival analyses for DFS as functions of the smoking history (HR = 2.258, P = 0.043), brain metastasis (HR = 4.503, P = 0.000), lung metastasis (HR = 3.661, P = 0.000), liver metastasis (HR = 4.108, P = 0.000), bone metastasis (HR = 4.206, P = 0.000), and adjuvant chemotherapy less than 4 cycles (HR = 0.515, P = 0.015) showed a significant correlation with disease progression.


Table 4 | Univariate and multivariate analyses for prognostic significance of clinical features and molecular subtypes in patients with primary small cell lung cancer.



Next, clinicopathologic variables with P value less than 0.1 in univariate analyses as well as molecular subtypes were included in a multivariate Cox proportional-hazards regression model. Multivariate analyses revealed that molecular subtype classification was an independent prognostic factor significantly influenced on OS (HR = 0.599, P = 0.005) and DFS (HR = 0.640, P = 0.008), respectively. We also found several clinical factors, such as smoking history, brain metastasis, lung metastasis, and liver metastasis, were strongly correlated with inferior survival outcome. Together, these results reveal that the molecular subtype classification determined by IHC could be a reliable biomarker for stratifying SCLC patients into different survival outcome.



The Expression Correlation of Immunologic Indicators in Tumors With Single Subtype Markers of Primary SCLC

In order to explore the associations of tumor immune microenvironment in tumors with single subtype markers, we performed IHC for immune-inhibitory receptors (FoxP3, PD1, PDL1, and CTLA4) as well as immune-promoting receptor (CD8), and then quantified their staining results according to corresponding evaluation methods. We also assessed the expression levels of three proteins (E-Cadherin, N-Cadherin, TGFβ1) associated with tumor progression by IHC score. Representative images of IHC staining in primary SCLC tumors positive for these proteins are shown in Figure 6. Using their corresponding original H-scores, we compared the correlations between these proteins and available single subtype markers by Pearson correlation coefficient (Table 5). The results revealed that ASCL1 expression levels had a significantly correlation with infiltrating levels of CD8+ T cells (r = -0.229, P = 0.011), FoxP3+ Treg cells (r = 0.380, P = 0.000), PD1+ T cells (r = -0.255, P = 0.005) and CTLA4+ T cells (r = 0.260, P = 0.005). In SCLC tumors with distinct subtype markers, the correlations were not all the same. NEUROD1 expression levels had a strongly correlation with infiltrating levels of PDL1+ tumor (r = -0.200, P = 0.035). POU2F3 expression levels positively correlated with infiltrating levels of CTLA4+ T cells (r = 0.302, P = 0.001). YAP1 expression levels positively correlated with the levels of CTLA4+ T cells (r = -0.200, P = 0.036). The IHC scores of either ASCL1 or NEUROD1 were strongly and positively associated with the levels of TGFβ1, respectively, which has been reported to prevent immune cells from entering tumors by inducing fibrosis (16). We did not observed obvious associations of these four subtype markers with indicators involved in epithelial-mesenchymal transition (E-Cadherin and N-Cadherin). Collectively, these results suggested that the protein levels of these four subtype markers in SCLC cancer cells are interacted with its tumor immune microenvironment.




Figure 6 | Representative Images of Immunohistochemical Staining for Indicators Related to Cancer Immunity of Primary Small Cell Lung Cancer Tumors. Two immunohistochemical staining images with different scanning resolutions were selected for each immune-related marker (upper image: 20×, lower image: 40×). Scale bar: 100 μM. Only the lymphocytes with appreciable membrane staining were considered positive for CD8, PD1, PDL1, and CTLA4, and samples positive for FoxP3 were defined as appreciable nuclear staining observed in lymphocytes. Tumors with membrane staining were considered positive for E-Cadherin, N-Cadherin, and TGFβ1. Extracellular staining for TGFβ1 was also considered to be positive. FoxP3, forkhead box P3; CTLA4, cytotoxic T lymphocyte antigen 4; PD1, programmed cell death 1; PDL1, programmed cell death ligand 1; TGFβ1, transforming growth factor beta 1.




Table 5 | The expression correlation of immunologic indicators in tumors positive for single subtype marker of primary small cell lung cancer.






Discussion

A classification of SCLC tumors based on differential expression of transcription regulators for molecular subtypes has emerged as an evolving area of investigation, which probably may paving the way for potentially personalized therapeutic approaches for this deadly form of lung cancer. Whether SCLC molecular subtypes are associated with different metastatic organ-tropisms and distinct patients outcomes, as well as the complex interplay between each transcription factors and immune infiltration remained unclear. In the present study, we ascertained the differential expression of ASCL1, NEUROD1, POU2F3, YAP1 on a large number of surgically resected SCLC tumors both on RNA and protein levels and then performed an evaluation of the prognostic value between dominant subtype markers, followed by an examination on differential expression in several cell surface proteins, including CD8, FoxP3, PDL1, CTLA4, etc.

We observed comparable distributions of ASCL1 and NEUROD1 subtypes both on mRNA and protein level, respectively. The slight disagreement in distributions of POU2F3 and YAP1 subtypes might originated from a possibilities of a clonal selection for a dominant transcription factor during tumor expression (17), as well as the inclusion of more combined SCLC histology samples in FFPE cohort, which was reported containing more POU2F3 and YAP1 expression specimens (12). As reported by Taofeek (18), we confirmed that molecular subtypes determined by IHC were an independent indicator for survival outcome in primary SCLC patients, and the best survival benefit of SCLC tumors had an YAP1 subtype, followed by POU2F3 and ASCL1 subtypes, which exhibited consistent tendency in mRNA and protein levels. Meanwhile, brain and bone metastasis were less prevalent in patients classified into YAP1 subtype than those with ASCL1 subtype, respectively, and liver metastasis was decreased in YAP1 subtype than NEUROD1 subtype. The prognosis of NEUROD1 subtype on mRNA and protein level remained inconsonant and fuzzy due to a minor subset of tissues. In particular, the usefulness of NE differentiation between molecular subtypes as an indicators was evaluated and suggested that tumors with POU2F3 and YAP1 subtypes were relevant to lower combined NE phenotype, whereas ASCL1 and NEUROD1 subtypes were relevant to higher combined NE phenotype, suggesting the possibility of at least two different cells of origin. We also observed that the combined NE score tended to be higher in the group with a worse prognosis, which is in accordance with the observation of the study by Hamanaka (19). Consistently, we observed that CTLA4, represented inhibited immune regulators, was negatively correlated with YAP1 expression, while positively correlated with POU2F3 and ASCL1 expression, respectively. Besides, several proteins, including CD8+ T cells, FoxP3+ T cells and PD1+ T cells, exhibited a significant correlation with ASCL1 expression, which suggested that there is a theoretically possibility for a administration of combined immunotherapy based on ASCL1 expression, as supported by a evidence of immunosuppression.

The non-NE sutype, featured by YAP1 and POU2F3 expression, has contributed to the heterogeneity of SCLC tumors by accumulated evidence. YAP1 was disclosed to be associated with decreased drug sensitivity in cell lines (10, 20) and POU2F3 expression represented a distinct profile subset of SCLC arising from or recapitulating the differentiation of the tuft cells (9). In addition, YAP1 subtype cell lines are consistently mesenchymal, while the POU2F -subtype cell lines have a epithelial signature (20). Sun et al. reported that increased YAP1 expressions, were indicators of prolonged survival in lung cancer and esophageal cancer, whereas were related to a poorer prognosis in gastric cancer and pancreatic cancer (21). Taofeek et al. revealed that, compared with the other three subtypes, YAP1 subtype of SCLC harbored a better outcome for OS and PFS, which may account for the enrichment of high interferon-γ and T-cell-inflamed gene expression profile (18). However, insignificantly statistical difference for OS or DFS were observed between the four subtypes due to minor cases in their study. YAP1 subtype also acquired the longest survival period in this research and YAP1 expression determined by IHC was negatively associated with the expression of CTLA4, an important molecule in inhibiting T cell activity. Recently, a discovery by McColl used wildtype RB1 mutation status as a surrogate marker of YAP1 expression and revealed that wildtype RB1 was associated with significantly shorter OS and PFS compared to patients with mutant RB1, in which with an obvious decreased chemo-refractory SCLC tumors (10). Since RB1 status was not detected in our study, we were curious to scrutiny this apparently discrepancy of their study and found that nearly half of RB1 expression did not co-express YAP1 both in cell lines and tumors, which may explain the reverse trend towards survival of YAP1 expression.

Recently, a few studies has been investigated the distribution pattern and prognostic value of ASCL1 expression in SCLC tumors at the protein level by IHC, yielding to a broader range of 42.5-80% for ASCL1 expression and a significant tendency of prolonged OS for ASCL1 negative group (22–24). Herein, the destructive effect of ASCL1 subtype on OS and DFS were also obtained both in mRNA and protein levels. Additionally, binary group comparisons indicated that the risk of distant metastasis in ASCL1 subtype was 2.262 times higher than non-ASCL1 subtype. The tumor-promoting effect of ASCL1 expression in our study was consistent with previous observations in lung adenocarcinoma, in which ASCL1-positive is accompanied with a poor immune cell infiltration based on both transcriptomic and IHC analyses, thereby mediates its cell-proliferation effect and primarily resistant to immunotherapy (25, 26). This pattern of immunosuppressive phenomenon were also observed and were significantly correlated with elevated levels of FoxP3+ T cells, CTLA4+ T cells, PD1+ T cells, accompanied with reduced level of CD8+ T cells, which suggested that there is a theoretically possibility for inferior prognosis of this subtype.

As an additional phenomenon, the H-scores of ASCL1 and NEUROD1 showed positively association with the level of TGFβ1 in SCLC specimens. TGFβ1, an isoform of TGFβ, has been reported to have bi-directional roles in cancer progression (27) as well as exert suppressive and pleiotropic effects on the immune system, including the regulation of T cells, natural killer cells, and macrophages (28). It has been reported that TGFβ-mediated apoptosis was suppressed due to the epigenetic silencing of TGFβ type II receptor (TβRII) by high level of EZH2, leading to an up-regulation of ASCL1 in a Smad-dependent manner followed by an accelerated proliferation of SCLC cells in vivo and vitro (29), which is in accordance with the inferior prognosis of ASCL1 positive patients and the significant correlation between ASCL1 and TGFβ1 in our analyses. However, the expression of EZH2, TβRII and Smad were not detected concurrently. Stimulation by the addition of NEUROD1 to the primary cultured pancreatic acini also facilitates endocrine trans-differentiation towards insulin positive cells along with the increasing expression of EGR and TGFβ (30). Further exploration of the role and mechanisms of TGFβ in response to the ASCL1 and NEUROD1 activation are needed in the future.

This study not only an evaluation on the prognostic role in molecular subtypes of SCLC in two independent cohorts, but also a description of the discrepant immune microenvironment among single subtype markers at the protein level, based on a substantial numbers of surgically resected SCLC specimens. Nevertheless, there are still some limitations in this retrospective study, including the common disadvantage of incompletely tumor tissue in TMAs, the different selection of antibodies, the evaluation criteria of protein expression and the unavoidable bias of various treatment regimens. An integrated analyses of prognostic association between molecular subtypes and tumor immune microenvironment on genetic level is warranted in the future to provide more comprehensive information of SCLC. In conclusion, this reproducible categorization and consensus nomenclature begun to shed light on our in-depth understanding of the molecular features and distinct prognosis of SCLC, which may provides insights into screening differential drug sensitivities, building a reliable and valuable molecular subtype drivers to assign SCLC patients to each of the clinical trials and eventually determine their unalloyed prognostic and therapeutic value.



Conclusion

Molecular subtypes determined by IHC could be an powerful, economical, and practical biomarker for independently stratifying SCLC patients into differential prognosis.
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Fibroblast activation protein (FAP) is a cell surface propyl-specific serine protease involved in the regulation of extracellular matrix. Whilst expressed at low levels in healthy tissue, upregulation of FAP on fibroblasts can be found in several solid organ malignancies, including non-small cell lung cancer, and chronic inflammatory conditions such as pulmonary fibrosis and rheumatoid arthritis. Their full role remains unclear, but FAP expressing cancer associated fibroblasts (CAFs) have been found to relate to a poor prognosis with worse survival rates in breast, colorectal, pancreatic, and non-small cell lung cancer (NSCLC). Optical imaging using a FAP specific chemical probe, when combined with clinically compatible imaging systems, can provide a readout of FAP activity which could allow disease monitoring, prognostication and potentially stratify therapy. However, to derive a specific signal for FAP any sequence must retain specificity over closely related endopeptidases, such as prolyl endopeptidase (PREP), and be resistant to degradation in areas of active inflammation. We describe the iterative development of a FAP optical reporter sequence which retains FAP specificity, confers resistance to degradation in the presence of activated neutrophil proteases and demonstrates clinical tractability ex vivo in NSCLC samples with an imaging platform.
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Introduction

Fibroblast activation protein-α (FAP) is a type II transmembrane glycoprotein which is a member of the serine protease family (1). FAP is minimally expressed by fibroblasts in health, but is highly expressed by activated fibroblasts which can be found in the stroma of epithelial tumours (2, 3). Furthermore, there is increasing evidence of the role of FAP in additional fibroproliferative conditions such as idiopathic pulmonary fibrosis, hepatic fibrosis, rheumatoid arthritis and myocardial infarction (4–7). Within tumours, FAP promotes tumour growth by promoting angiogenesis and ECM remodelling (8) and facilitates the progression of tumours by supressing the anti-cancer immune response (9, 10). High FAP expression is associated with poor survival, high recurrence rates and more advanced stage in several cancers, including oral squamous cell carcinoma, ovarian cancer, pancreatic ductal adenocarcinoma and non-small cell lung cancer (NSCLC) (11–15). Specifically in NSCLC, FAP expression has been associated with a higher peripheral neutrophil and lymphocyte count ratio and worse overall survival (16).

FAP has both endopeptidase activity (cleaving post proline peptide bonds of non-terminal amino acids) and exopeptidase activity (cleaving peptide bonds of terminal amino acids) (17) and is upregulated in vitro by TGF-β and IL-1β (18). Closely related peptidases include the dipeptidyl peptidases (DPPs), which have exopeptidase activity, and prolyl endopeptidase [PREP or prolyl oligopeptidase (POP)], which has endopeptidase activity (19). DPP-IV is highly expressed in many tissues (20), and PREP is a closely related peptidase which in the past has been used interchangeably with FAP (21, 22). As PREP has also been found to be present in the membrane of fibroblasts and is distinctive over FAP, selectivity is crucial (23).

Prior studies investigating FAP as an optical probe target focussed on near infrared (NIR) fluorophores where signal can be detected with minimal intrinsic tissue autofluorescence. Li et al. designed an activatable NIR fluorescent probe (ANPFAP) for FAP which was composed of the NIR dye Cy5.5 and the quencher dye QSY21 which were linked by a peptide sequence which is cleaved specifically by FAP (KGPGPNQC) (24). In murine tumour models the probe had a higher signal in FAP expressing tumours, but the study did not demonstrate selectivity over PREP. Although not developed as an imaging optical agent for in vivo use, Bainbridge et al. describe a FAP specific sequence for assaying circulating FAP, demonstrating a sequence with specificity over PREP (25).

Fluorescent probes are now being used in humans for detection of enzymatic activity in combination with technologies such as optical endomicroscopy (26, 27), and FAP presents an attractive target as there is significant upregulation in NSCLC (28). Optical imaging confers the advantages of a non-ionising source with high resolution imaging with dynamic readouts. When combined with endomicroscopy, this dynamic imaging method could allow for local monitoring of the FAP activity in patients through therapy.

This work aims to develop a FAP specific probe for use in humans with NSCLC that is specific over PREP and DPP-IV, resistant to degradation in areas of active inflammation and compatible with novel endomicroscopy platforms. We demonstrate development of a FAP specific probe that allows for both detection of fluorescence changes and fluorescence lifetime changes in NSCLC ex vivo, when used with an optical endomicroscopy platform.



Materials and Methods


Ethics Statement

Healthy volunteer blood was obtained following informed consent and the study was approved by Lothian Regional Ethics Committee (REC) (REC No: 20-HV-069) prior to enrolment in the studies. Cancer tissue was obtained following approval by NHS Lothian REC and facilitated by NHS Lothian SAHSC Bioresource (REC No: 15/ES/0094). All participants provided written informed consent. NSCLC tissues lung samples were collected from patients undergoing surgical resection with curative intent.



Chemical Synthesis

Details of the chemical synthesis are provided in the Supplementary Methods.



Probe Reconstitution

FAP1Li-FAM and FAP1DLi-FAM were reconstituted in DMSO to a stock solution of 10 mM and aliquots stored at -20°C. Fresh aliquots were reconstituted in the required buffer for each experiment. All other probes were water soluble and were reconstituted to 1 mM in deionised water and stocks frozen at -20°C.



Recombinant Enzyme Reconstitution

Recombinant human enzymes [rhFAP (R&D Systems), rhPREP (R&D Systems) and rhDPPIV (Biolegend)] were stored in stocks at -70°C and diluted as required to be used at final concentration of 0.1 µg/ml. Enzymes were aliquoted upon receipt from the supplier and new stocks made from a fresh aliquot as required. Stocks were made at [4x] and control substrates of Z-Gly-Pro-AMC and H-Gly-Pro-AMC (Bachem) were used to confirm activity for each new stock of enzyme.



Assessment With Recombinant Enzymes

Assays were undertaken in triplicate in blackened 384 well plates on ice prior to spectral reads. All solutions were diluted in TRIS buffer (25 nM Tris, 250 nM NaCl, pH 7.5). Probes were used at 5 µM and inhibitors (namely Talabostat (also referred to as Val-boroPro), Merck) at 10 µM, unless otherwise stated. All wells contained a final volume of 20 µl to include buffers, inhibitors (if used), substrates and recombinant human enzymes (at a concentration of 0.1 µg/ml unless otherwise stated). This equates to molarity concentrations of 1.16 micromolar for FAP, 1.23 micromolar for PREP and 1.16 micromolar for DPP-IV. Plates were sealed with an optical plate sealer (Biolegend) and were read in a preheated spectrophotometer (Synergy Biotek) in monochromator-based mode at 380/460 nm for control substrates and 480/530 nm for synthesised FAP probes.



Assessment on Neutrophil Lysate

Neutrophils were isolated from peripheral blood of healthy volunteers by discontinuous percoll gradients, as previously described (29). Cells were resuspended in PBS (at 10 million cells/ml) and stimulated with 1 µM calcium ionophore, then lysed with 1% Triton-X-100. Lysate was used at 1:1 dilution for experiments, replacing recombinant enzymes in the assay as described above, with PBS as the buffer.



Assessment on Cancer Associated Fibroblasts (CAFs)

CAFs were isolated from NSCLC patient samples as previously described (28). Briefly, tissue samples were minced with forceps and incubated for an hour in prewarmed RPMI media (Gibco) containing collagenase IV [2 mg/ml] (Sigma) and DNase [0.2 mg/ml] (Sigma). Samples were spun at 350 g for 5 minutes and red blood cells were lysed from samples using RBC lysis buffer (BioLegend) in 10 ml for 10 minutes. Following a further spin at 350 g for 5 minutes, cells were seeded in culture flasks in DMEM containing 10% FCS, 1% Penicillin-Streptomycin, 1% L-Glutamine and 10% Insulin Transferrin Selenium (ITS). 24 hours after seeding, non-adherent cells were washed from the flasks. Cells were maintained by standard cell culture methods and by passage 2, the predominant cell type was CAFs, assessed by flow cytometry markers and morphology. CAFs between passage 4-9 were used to assess FAP probes and confirmed to be FAPhi by flow cytometry.

CAFs were seeded into 96 well plates in a 100 µl media (complete DMEM as described above) at a density of 1x105 cells/ml to form a confluent monolayer within 24 hours. Wells containing cells had media removed and then were washed before buffer (DPBS) +/- inhibitors were added with the imaging probes. Immediately after adding imaging probes, the plate was transferred to the prewarmed spectrophotometer as above and read at 480/530 nm for one hour.

For imaging, CAFs were seeded in glass bottom chambers (Ibidi), grown, and fixed with 4% paraformaldehyde for 20 minutes at 4°C. Following three washes, cells were permeabilised with 0.2% Triton X-100, quenched with ammonia chloride (50mM) for 5 minutes and blocked with 1% BSA. FAP antibody at 1:100 (AF3715, R&D systems) was incubated overnight at 4°C, washed, incubated with secondary antibody (goat anti-sheep) conjugated to Alexa Fluor 633 (1:1000) and Alexa Fluor 488 Phalloidin 5 µL/250 µL (A12379, Life Technologies) for 1 hour and finally incubated with DAPI (D1306, Life Technologies) in the dark for 5 minutes. Images were taken on Leica SP5 confocal microscope (Leica Microsystems, Wetzlar, Germany) using dedicated laser excitation at 405 nm, 488 nm and 633 nm.



Flow Cytometry

Cells collected in suspension (CAFs or neutrophils) were stained with a live/dead marker Zombie UV (1:1000, Biolegend) for 30 min at room temperature in DPBS (Gibco). Cells were then washed and stained with an anti-FAP-APC antibody (1:20, R&D Systems) for 20 mins at 4°C in DPBS supplemented with 2% FCS. After washing cells were fixed in a 1:1 solution of fixation buffer (Biolegend) and DPBS with 2% FCS overnight at 4°C before data acquisition on a LSR6Fortessa analyser (BD Biosciences). Flow cytometry data was then analysed using FlowJo version 10.7.1. Compensation was carried out using single stain control UltraComp eBeads (Invitrogen) and isotype control samples were stained using iso-anti-FAP-APC (1:20, R&D Systems). FAP expression was determined by gating on singlet, live cells and then looking at anti-FAP-APC signal compared to the isotype control.



Fluorescence and Lifetime Imaging

For imaging solutions, varying concentrations of rhFAP were prepared in blackened eppendorfs and FAP3 to a final concentration of 5µM added and imaged as below. For biological specimens, NSCLC patient tissue samples from surgical resection were used fresh or snap frozen and stored at -80°C until required. Small fragments (approx. 4mm3) incubated at 37°C in a 96 well plate in phenyl-red free DMEM (Gibco) containing 10% FCS, 1% Penicillin-streptomycin and 1% L-Glutamine. For the tissue fragments to be used as inhibitor controls, we added Talabostat at a dilution of 1:1000. Samples were then imaged using a clinically approved fluorescence lifetime imaging system used in conjunction with an imaging fibre (30) providing a 400 x 400 µm field of view. The imaging system incorporates a pulsed supercontinuum laser source, in this case tuned for excitation at 488 nm, with an achromatic confocal laser scanning system and a time-resolved spectrometer. This spectrometer contains a 512 channel single photon avalanche diode (SPAD) sensor (31) allowing for the rapid collection of time resolved spectral fluorescence lifetime data. Fluorescence intensity and lifetime images were collected using an image resolution of 160 x 160 pixels over a 498 – 570 nm spectral range with an exposure time of 13 µs per pixel. This led to an imaging rate of ~3 frames per second.

For each condition, the tumour samples were imaged using a fibre placed at the surface of the tissue (baseline), and then again at 10-minute intervals following the additions of equimolar concentrations of probe +/- Inhibitor. For imaging solutions, the fibre was held within the solution and imaged every 5 minutes. Each condition and time-point data for both fluorescence intensity and lifetime were collected. Imaging sequences had non-relevant frames removed, and the entire field of view was analysed. Analysis was undertaken using a bespoke software suite utilising the rapid lifetime determination (RLD) method (32). The RLD method utilises two-time bins for reduced data load and high-speed analysis whilst retaining reasonable lifetime approximation for single exponential decays. Whilst the sample analyses are likely multi-exponential in character the lightweight RLD algorithm provides a good approximation to the intensity weighted average lifetime observed, providing sufficient discrimination of sample type. Data had background subtraction, lightfield normalisation and an intensity threshold (of 20 counts) applied through all sequences. Intensity data are provided as relative units (RU) and lifetime as nanoseconds (ns).




Results and Discussion


Optimizing Fragment for FAP Specificity

As starting point for our study, a peptide sequence previously published within a FAP optical reporter was synthesised (GPGPNQ), which had been determined to be FAP specific over DPP-IV but had not been assessed against PREP (24). We synthesised the reported peptide sequence but for FRET pairing we utilised a Carboxyfluorescein (FAM) fluorophore with a Methyl Red quencher (Figure 1A) as an alternative to Cy5.5/QSY21. The peptide sequence was synthesized by Fmoc solid-phase peptide synthesis on ChemMatrix resin using Oxyma/DIC as the coupling combination. FAM was incorporated at the N-terminal of the peptide after an ethylenglycol unit, and Methyl Red was added at the side chain of a Lys residue at the C-terminal. All probes were purified and characterized by RP-HPLC and MALDI TOF MS (ESI for details). Assessment of this probe (termed FAP1Li-FAM) sequence against the recombinant enzymes FAP and PREP demonstrated endopeptidase activity through PREP as well as FAP (Figures 1C, D), which was independently demonstrated by Bainbridge et al. (25) for the same sequence. Confirming previous reports, DPP-IV did not cleave the probe (Figure 1E) signifying absent exopeptidase activity as the proline residues are not in terminal positions. For inhibition we used Talabostat, also known as Val-boroPro, which is a non-selective inhibitor of dipeptidyl peptidases (DPPs), including DPP-IV, DPP-8, DPP-9, fibroblast activation protein (FAP), and prolyl endopeptidase. The IC50 (nmol/l) for DPP-IV, FAP and PREP are 4, 390 and 560 respectively (33). Talabostat successfully abrogated the signal (Figure 1D).




Figure 1 | FAP1 probes with recombinant human enzymes rhFAP, rhPREP and rhDPPIV to assess endo and exopeptidase activity. (A) The structure of FAP1Li-FAM; (B) The structure of FAP1DLi-FAM; (C) Each probe (at 5µM) incubated with rhFAP with and without the inhibitor Talabostat (Tal). FAP1Li-FAM is cleaved rapidly by rhFAP, FAP1DLi-FAM shows lower rate of cleavage and Talabostat inhibits both probes; (D) Probes (5µM) with rhPREP demonstrating cleavage of FAP1Li-FAM and FAP1DLi-FAM, although FAP1Li-FAM is cleaved more rapidly. Talabostat inhibits cleavage of both probes by rhPREP; (E) Probes (5µM) with DPP-IV, demonstrating no activity. Representative plots shown, n=3 for each experiment, run in triplicate.



The construct has Gly-Pro repeats susceptible to PREP cleavage, therefore modifications to block the endopeptidase action by the second proline were made with D-proline and D-asparagine (GPGpnQ) to try and confer a uniquely FAP cleavable probe (FAP1DLi-FAM structure shown in Figure 1B). This demonstrated partial reduction in activity in the presence of PREP (Figure 1D), but also demonstrated that FAP activity was significantly reduced (Figure 1C). Further iterations were assessed against FAP1Li-FAM and FAP1DLi-FAM activity to assess cleavage efficacy.

Whilst there was an improvement in the specificity, FAP1DLi-FAM still demonstrated PREP cleavage so additional compounds were synthesised to overcome this. Shorter versions with modified sequences were synthesised, and the amino acid prior to proline altered in six iterations (structures shown in Figure 2A), as it had been previously reported that such modification can introduce FAP specificity (25). At the carboxy-terminus of the peptide, two replicates of bisethyleneglycol and D-lysine were added to ensure both solubility and stability against proteases (34). These six different compounds were then reassessed with recombinant human enzymes (Figures 2B–D). Insertion of Ala (FAP2AAla) demonstrated cleavage by PREP and FAP activity was absent, and the insertion of D-Tyr also resulted in loss of FAP activity. The iterations containing D-Ala, D-Ser, D-Thr and β-Ala in the position prior to proline all demonstrated FAP specificity over PREP, however, with reduced signal that may preclude clinical translation. Assessment against DPP-IV confirmed no iterations had introduced exopeptidase activity (Figure 2D). As the clinical setting requires rapid optical readout, two further iterations containing D-Ser (FAP3 and FAP-sp) were made inspired by FAP2CD-Ser results, which demonstrates FAP specificity (Figures 2B, C) without PREP cleavage whilst displaying the strongest signal compared to the other iterations (Figure 2E). Comparison with the FAP1Li-FAM compound demonstrated a low signal (Figure 2F), and this served as a comparison to additional compounds.




Figure 2 | Iterations of probe FAP2 to determine a sequence specific for FAP over PREP. (A) The structure of FAP2 probes and the different variations in the amino acid X; (B) Assessment of the probes (5µM) against rhFAP showing relative intensity and Talabostat (Tal) inhibiting cleavage. FAP2CD-Ser shows highest rate of cleavage; (C) Assessment of the probes (5µM) against rhPREP showing iteration FAP2AAla is cleaved by rhPREP; (D) Assessment of the probes against DPP-IV (5µM) showing none of the iterations are cleaved; (E) Comparison of the relative fluorescence intensity of each probe iteration at 60 minutes; (F) Comparison of FAP1Li-FAM with FAP2CD-Ser showing the signal intensity of FAP1 is higher within 90 minutes. Representative images, n=3, mean RFU plotted in bar graph and error bars show standard deviation.





Improvement of Signal-to-Noise

Using the D-Ser iteration we increased the peptide chain to include Asn to derive a novel sequence (FAP3: Lys(MethylRed)-Val-(D)Ser-Pro-Asn-Gln-Gly-Lys(5-FAM)-[Peg2-(D)Lys]3-NH2) or with Ser (FAP-sP) and to act as a comparator (structures shown in Figures 3A, B). FAP-sP was previously reported by Bainbridge to be utilised as a serum FAP detection probe (25). Both sequences demonstrated FAP specificity (Figure 3C) with improved signal characteristics which were further confirmed by MALDI-TOF analysis (Supplementary Figure S1). Testing also confirmed no cleavage by PREP or DPP-IV for either compound (Figures 3D, E).




Figure 3 | FAP3 assessment against FAP-sP demonstrates FAP specificity. (A) The structure of FAP3; (B) The structure of FAP-sp; (C) Assessment of FAP3 and FAP-sP (all 5µM) when compared to prior iterations.; (D) rhPREP assessment demonstrating no rhPREP cleavage for FAP3 or FAP-sP; (E) DPPIV assessment demonstrating no exopeptidase activity. Representative plots, n=3 for each experiment run in triplicate.





Assessment of Probe in Biological Environments

To assess whether the sequence had sufficient robustness for clinical translation we assessed whether; i) the probe remains intact in areas of low FAP but high protease activity, and ii) the imaging probe can detect physiological levels of FAP. To ensure specificity is maintained in an inflamed environment the probe was assessed against activated neutrophils as these are one of the most predominant leucocyte cell subtypes in cancer (35). Neutrophils were confirmed to be negative for FAP (Figure 4A, gating strategy Supplementary Figure S2). FAP3 was stable in the presence of neutrophil lysate, however, FAP-sP was cleaved (Figure 4B) in a non-FAP dependent manner. Subsequent analysis by MALDI-TOF revealed all FAP-sP probe was cleaved by activated neutrophil lysate, but FAP3 remained intact (Supplementary Figures S3A, B). The mechanism causing cleavage/degradation of FAP-sP remains unclear and may include additional proteases from activated neutrophils acting on the substrate, however this provides additional confidence for FAP3 as it remains intact.




Figure 4 | FAP3 and FAP-sP probes assessed on activated neutrophil lysate and cancer associated fibroblasts (CAFs). (A) Flow cytometry confirmed that neutrophils are FAP negative; (B) Assessment of FAP3 and FAP-sP in activated neutrophil lysate demonstrated cleavage of FAP-sP, including in the presence of Talabostat (Tal), but no cleavage of FAP3; (C) Cancer associated fibroblasts in culture (brightfield, 200µm scale bar) and antibody stained for FAP (red), DAPI (blue) and phalloidin (green), scale bar 100µm; (D) Flow cytometry confirmed CAFs are FAP positive; (E) Enzyme kinetics of using varying concentrations of substrate FAP3 in presence of rhFAP; (F) When incubated with CAFs FAP3 (5µm) was cleaved and signal was abrogated in the presence of Talabostat; representative plot on left and sum of n=3 with calculation of velocity in RFU/min shown on right.; (G) FAP3 demonstrates no activity for other recombinant enzymes (MMPs) likely to be present in NSCLC. n=2 for neutrophil lysate testing and MMP testing, n=3 for CAF testing, each experiment run in triplicate. Representative images shown *p < 0.05.



Cancer associated fibroblasts were isolated and cultured from NSCLC patient samples (Figure 4C) and confirmed to be FAP expressing (Figure 4D, gating strategy Supplementary Figure S4), in line with our previous work (28). FAP3 was incubated with increasing concentrations of substrate (Figure 4E), which demonstrated a KM value of 2.168 (SE +/- 0.3736) µM and Vmax of 109.5 (SE +/-7.119) RFU/min. For FAP3 this equates to a kcat of 0.081236 (+/-0.005281) min-1 and a kcat/KM ratio of 3.747x104 M-1min-1. FAP3 was cleaved by FAP+CAFs, with inhibition of signal when co-incubated with Talabostat (Figure 4F). Finally, to ensure stability in the presence of other matrix remodelling proteases found to be upregulated in NSCLC, FAP3 was assessed against a panel of MMP’s including MMP 2,9,13 demonstrating no activity (Figure 4G). Therefore, FAP3 is a FAP specific sequence over PREP, DPP-IV and MMP’s, that can detect FAP within physiological levels and remains resistant to non-specific inflammatory cell degradation.



Fluorescence Lifetime Imaging (FLIM) of NSCLC Tissue

Label free optical imaging modalities have the potential to characterize lung cancer using both optical endomicroscopy and fluorescence lifetime imaging (FLIM) systems (36). Here we used a clinically approved fluorescence and FLIM imaging system (31) which was compatible with bronchoscopy, where a fibre can be passed through the working channel to access tumours and lung parenchyma (Supplementary Figure S5). FLIM imaging utilizes the exponential decay rate of the photon emission from the fluorophores (fluorescence lifetime) to create the image, which provides additional data over fluorescence intensity alone. This system is entering clinical trials and can simultaneously measure fluorescence intensity and lifetime based imagery.

To assess the ability of the system to detect both fluorescence intensity and lifetime changes over time, varying concentrations of rhFAP were incubated with 5µM FAP3 and imaged for up to 40 minutes (Supplementary Figure S6). Increases in both fluorescence intensity and lifetime were demonstrated, within 5 minutes, over time showing the capability of the FLIM imaging modality to track changes in these parameters in relevant concentrations and timeframes. As the concentration of rhFAP increased, a corresponding increase in both fluorescence intensity and lifetime was observed.

Next, to assess if using FAP3 we could detect FAP specific cleavage (measured by a change in fluorescence intensity or lifetime) in biological samples we utilized ex vivo lung cancer specimens including two adenocarcinomas, two squamous cell carcinoma and one adenosquamous carcinoma. Representative images showing the intensity and FLIM measurements taken from the imaging system are shown in Figure 5A and the change in FLIM and intensity over time for this sample are shown in Figure 5B, further showing the increasing signals with time, related to the presence of FAP. All tumours demonstrated a baseline intrinsic autofluorescence signature that was used to track relative changes against the presence of probes (Supplementary Figure S7). Across all samples there was an increase in fluorescence intensity and a change to a longer lifetime signature following the addition of FAP3 over time, both of which were abrogated by the inhibitor Talabostat. Summation of the data demonstrated significant FAP dependent increase in both intensity and longer lifetime across all samples (Figure 5C). Assessing the data on a per cancer basis (Supplementary Figure S7) there are two interesting features to note - the FLIM signature of the intact probe becomes the dominant signature irrespective of the intrinsic autofluorescence signature and secondly, the rate of change varies amongst the different samples (CR68 and CR126 demonstrate maximum change within 10 minutes). This was most apparent for CR126 where the addition of the probe resulted in demonstration of immediate changes in FLIM ahead of the detectable fluorescence intensity increase for the same sample (Supplementary Video 1). Together, this demonstrates FAP3 can detect FAP specific activity in NSCLC using both changes in fluorescence intensity and lifetime and the higher rate of cleavage indicates presence of a higher concentration of FAP. The tracking of these dynamics was made possible by the high acquisition speed of the imaging system.




Figure 5 | Fluorescence lifetime imaging in NSCLC tissue using FAP3 probe and a clinically approved FLIM system. (A) Representative images showing the change in fluorescence intensity and lifetime after 488nm excitation of a NSCLC tumor tissue sample over time when incubated with FAP3 at 5µM, with lowest panel demonstrating the late time point with presence of the inhibitor Talabostat; (B) Representative plots showing the change in intensity and fluorescence lifetime over 40 mins on a NSCLC tissue sample; (C) Aggregate analysis across 5 NSCLC samples at 40 minutes demonstrating a significant increase in fluorescence lifetime and intensity, with inhibition in the presence of Talabostat. N=5, analysis by paired t-test, *p < 0.05, **p < 0.01.






Conclusions

We have developed an optical imaging probe capable of FAP imaging within physiological levels in NSCLC patient derived cancer associated fibroblasts and demonstrated changes in fluorescence intensity and lifetime in several patient samples using an imaging system undergoing clinical translation. Furthermore, we have demonstrated specificity over PREP, a closely related endopeptidase to FAP, DPP-IV and MMPs and demonstrated stability in highly proteolytic conditions by testing against activated neutrophils. We have therefore developed a FAP specific optical imaging probe which has potential applications in imaging of NSCLC as well as other FAP mediated inflammatory conditions.
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Introduction

Circulating tumor DNA (ctDNA) testing may identify patients at high risk for recurrence following chemoradiation (CRT) for locally advanced non-small cell lung cancer (LA-NSCLC). We evaluated the feasibility of ctDNA testing on a readily available commercial fixed-gene panel to predict outcomes in patients with LA-NSCLC.



Methods

Plasma of 43 patients was collected at CRT initiation (pre-CRT), completion (post-CRT1), quarterly follow up for 12 months (post-CRT2, 3, 4, 5 respectively) after CRT, and at disease progression. ctDNA analysis was performed using InVisionFirst®-Lung to detect mutations in 36 cancer-related genes. ctDNA clearance was defined as absence of pre-CRT variants at post-CRT1. Patients without detectable pre-CRT variants or no post-CRT1 samples were excluded.



Results

Twenty eight of 43 patients (65%) had detectable variants pre-CRT. Nineteen of 43 patients (44%) had detectable pre-CRT variants and post-CRT1 samples and were included in analysis. Median age at diagnosis was 65 years (43-82), and most patients had stage IIIB disease (10/19, 53%). Two patients died from non-cancer related causes before post-CRT2 and were excluded from further analysis. All three patients who did not clear ctDNA had tumor relapse with a median time to relapse of 74 days (30-238), while 50% (7/14) of those who cleared ctDNA have remained disease free. Progression free survival was longer in patients who cleared ctDNA compared to those who did not (median 567 vs 74 d, p = 0.01).



Conclusions

Although it is feasible to use ctDNA testing on a limited gene panel to identify patients with LA-NSCLC who are at high risk for disease recurrence following CRT, further studies will be necessary to optimize these assays before they can be used to inform clinical care in patients with lung cancer.
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Introduction

Lung cancer remains the leading cause of cancer deaths worldwide (1). Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses (2). Approximately 27% of patients with NSCLC present with locally advanced disease (3), which is typically managed with concurrent chemoradiotherapy (CRT) (4). The PACIFIC trial showed improved overall survival in this patient population with the addition of consolidation durvalumab. However, a substantial proportion of patients with locally advanced NSCLC still recur with metastatic disease despite receiving CRT and consolidation durvalumab with curative intent (5). Additionally, a subset of patients may be cured by CRT alone without the need for consolidation durvalumab (6), which is associated with a 30.5% grade three or higher adverse event rate (5). Prognostic biomarkers therefore have the potential to identify patients who are likely to benefit from treatment intensification or de-escalation.

Tumor cells release circulating tumor DNA (ctDNA) into the bloodstream (7), and it is possible to identify mutations relevant for tumor development, progression, and resistance to therapy through ctDNA analyses. Additionally, the utility of ctDNA testing in informing prognosis in patients with early stage and locally advanced NSCLC (LA-NSCLC) has previously been described (8, 9). Since ctDNA testing has the potential to identify patients at high risk for recurrence following completion of concurrent CRT for LA-NSCLC, it may help identify patients that are likely to benefit more from escalation of treatment intensity (10). Past studies with ctDNA have, however, used large fixed hybrid gene capture panels that require prior knowledge of genomic alterations in a tumor (9, 10). Since this approach requires upfront sequencing of a tumor and construction of customized gene panels, its large-scale clinical application is limited. Here, we investigate the feasibility of using a commercial fixed gene panel based ctDNA testing approach, which does not require a priori knowledge of a tumor’s genomic profile, to predict outcomes in patients with locally advanced NSCLC. Based on results from previous studies, we hypothesized that outcomes in patients with locally advanced CRT are poorer when treatments fail to clear variants detected through pre-treatment ctDNA testing.



Materials and Methods

Patients with histologically confirmed NSCLC with stage II or III NSCLC, who were not surgical candidates, and were eligible for curative intent treatment with concurrent chemotherapy and radiation were eligible for participation in this study. Patients were staged by the AJCC 8th edition TNM system. Patients receiving induction or consolidation chemotherapy and consolidation immune checkpoint inhibitors (ICIs) were also included. Progression following CRT was defined based on imaging, and when required, a biopsy at the discretion of the treating provider.

Plasma for ctDNA testing was collected within 2 weeks of CRT initiation (pre-CRT), CRT completion (post-CRT1), quarterly follow up appointments for 12 months (post-CRT2, 3, 4, and 5 respectively) after CRT completion, and at the time of disease progression (PD) (Figure 1 and Supplementary Table). All samples were collected with informed consent in accordance with the Declaration of Helsinki of 2013. Twenty mL of blood was collected in cell-free DNA blood collection (Streck) tubes. Tubes were labeled with specimen ID, subject ID, collection date and time point and shipped to Inivata (7020 Kit Creek Road, Suite 140, Research Triangle Park, NC 27560). ctDNA analysis was performed using the InVisionFirst®-Lung panel, to detect the presence of single nucleotide variations, insertions, deletions, and copy number alterations in 36 cancer-related genes, which are frequently altered in lung cancer (Supplementary Figure 1). Full assay details have been described previously (11–13). In brief, 36 cancer related genes were sequenced using gene-specific primers designed for hotspots and entire coding regions of interest. Next generation sequencing libraries were prepared from 2,000–16,000 amplifiable copies of the genome using a two-step PCR amplification process incorporating replicate and patient-specific barcodes and Illumina sequencing adaptors. Samples were pooled to generate a library of 12nM. 1.8 pM libraries were sequenced on the Illumina NextSeq 500, with sequencing files analyzed using Inivata’s proprietary Somatic Mutation Analysis (ISoMA) and FUSP pipelines.




Figure 1 | Study Schema of ctDNA collection, imaging, and follow up. Plasma for ctDNA was collected at the time of chemoradiotherapy initiation (pre-CRT), at completion of chemoradiotherapy (post-CRT1), and at quarterly follow up appointments for 12 months (post-CRT2,3,4, and 5 respectively), as well as at the time of disease progression (PD) if it occurred. A subset of patients received consolidation immune checkpoint inhibitors (IO). Imaging was performed every three months following completion of CRT.



Clearance of ctDNA was defined as the absence of non-germline pre-CRT variants at post-CRT1. Germline mutations were defined as a mutation allelic frequency (AF) greater than 40% detected at all time points (14, 15). Patients without detectable pre-CRT variants or no post-CRT1 samples were excluded from analysis. Maximum, mean, and median AF for all mutations detected in a sample were described, at each time point. All studies were undertaken in compliance with ethical principles established in the International Conference on Harmonization Good Clinical Practice and the Declaration of Helsinki. The study was approved by the Washington University in St. Louis Institutional Review Board. All statistical analyses were performed using GraphPad Prism (San Diego, CA; RRID : SCR_002798).



Results

A total of 43 patients were prospectively enrolled between September 2017 and October 2019. Ten patients were enrolled from Institut Gustave Roussy and 33 patients from Washington University School of Medicine in St. Louis. Twenty eight of 43 patients (65%) had detectable variants on pre-CRT ctDNA testing. Nineteen of 43 patients (44%) had detectable pre-CRT variants and post-CRT1 samples collected and were included in the final analysis (Figure 2). In this cohort of 19 patients (Table 1), the median age at diagnosis was 65 years (range 43 - 82). The majority of patients were smokers (16/19, 84%), male (12 of 19, 63%), and were diagnosed with stage IIIB disease (10 of 19, 53%). Nine patients (47%) were diagnosed with squamous cell carcinoma, seven (37%) with adenocarcinoma, and three (16%) with poorly differentiated or NSCLC not otherwise specified. All 19 patients received weekly carboplatin and paclitaxel chemotherapy. Ten of 19 (53%) received no consolidation ICIs, while 8 (42%) patients received an ICI (6 patients received durvalumab and 2 received atezolizumab).




Figure 2 | Flow Diagram of Patient Disposition: 43 patients were prospectively enrolled. 28 of 43 patients (65%) had detectable variants at time of chemoradiotherapy (CRT) initiation (pre-CRT). 19 of 43 patients (44%) had detectable variants at pre-CRT and had samples collected at completion of CRT (post-CRT1) and were included in final analysis. 2 of 19 patients (one who cleared ctDNA, one who did not) died from non-cancer related causes before the first visit post completion of CRT (post-CRT2) and were excluded from analysis on clearance. Of the 17 patients who were included in analysis of ctDNA clearance and disease progression (PD), 14 (82%) had clearance of ctDNA, with 7 having PD and 7 remaining free from progression. All 3 patients who did not clear ctDNA had PD.




Table 1 | Baseline Characteristics.



A median of two mutations per sample (range 1-5) were detected with a median mean AF of 0.53% (range 0.05-16.28%) in pre-CRT samples. 100% (46 of 46) of mutations in the cohort of interest were non-synonymous. In pre-CRT samples from the 19 patients included in the final analysis, mutations in TP53 were the most frequently detected (17/19, 89%), followed by mutations in PIK3CA (5/19, 26%), CDKN2A (4/19, 21%), and EGFR (3/19, 16%) (Figure 3).




Figure 3 | Distribution of Mutations Detected at Initiation of Chemoradiotherapy. Distribution of mutations detected at the initiation of chemoradiotherapy (pre-CRT), in patients with post-CRT1 samples collected (n = 19 patients).



Two of 19 patients died from non-cancer related causes (myocardial infarction, acute respiratory distress syndrome) before post-CRT2 and were excluded from further analysis (1 cleared ctDNA, another did not). Three patients failed to clear ctDNA at post-CRT1 and 14 patients cleared ctDNA. All the 3 patients that failed to clear eventually progressed with a median time to progression of 74 days (range 30-238). In contrast, 7 of the 14 patients that cleared ctDNA at post-CRT1, remained disease free at the time of this analysis with a median follow-up of 469 days (range 130-710). The median time to progression in the seven patients who cleared ctDNA and later progressed was 217 days (range 53-587 days). In all patients who cleared ctDNA, the median PFS was 567 days, compared to a median PFS of 74 days in patients who did not clear (p = 0.01) (Figure 4). Of the 24 patients who did not have complete biomarker data, 1 died from non-cancer related causes before post-CRT2 and 2 patients were lost to follow up. Of the remaining 21 patients, 10 had disease progression (median time to progression 182 days, range 29 - 522) and 11 have not (median follow up 453 days, range 147 – 1099).




Figure 4 | ctDNA clearance and freedom from progression. (A) Chi-Square table of ctDNA clearance and disease progression (PD). Two of 19 patients died of non-cancer related causes before post-CRT2 and were excluded from analysis of disease progression, leaving 17 patients. (B) Kaplan-Meier graph of progression free survival (PFS) in patients who cleared ctDNA (n = 14) versus those who did not (n = 3), using the Mantel Cox log rank test.



Of the 14 patients who cleared ctDNA, one patient’s consolidation therapy status was unknown, leaving 13 with known consolidation status in this group. Six of 13 patients who cleared ctDNA received consolidation ICIs, of which two had disease progression, with four remaining free from progression. In the seven of 13 patients who cleared ctDNA and did not receive consolidation ICIs, five had had disease progression, with two remaining progression free.

In the 14 patients who cleared ctDNA at post-CRT1, the pre-CRT median mean AF was 0.71% (range, 0.06 - 16.28%), with a median maximum AF of 0.90% (0.06 - 51.95%). In the seven of 14 patients that cleared ctDNA and later progressed, the median mean AF at pre-CRT was 2.11% (0.06 - 16.28%), with a median maximum AF of 2.80% (0.06 - 51.95%). In the seven of 14 patients that cleared and have not progressed, the median mean AF at pre-CRT was 0.52% (0.10 - 2.33%), and the median maximum AF was 0.63% (0.10 - 2.35%). There was no statistically significant difference in mean or maximum AF at pre-CRT in patients who progressed versus those who did not progress (p >0.05) (Figure 5). In the three patients who did not clear at post-CRT1, the pre-CRT median mean AF was 0.54% (0.26 - 0.72%) and the median maximum AF was 1.27% (0.47 - 1.61%). At post-CRT1, the median mean AF was 0.26% (0.11 - 1.89%) and the median maximum AF was 0.42% (0.17 - 5.55%).




Figure 5 | Mean and Max Allelic Frequency in Patients at CRT initiation who Cleared ctDNA, Stratified by Progression. (A) Schematic representation of a patient’s (WSH108) pre-CRT sample. Allelic frequency (AF) for each mutation detected in the sample was used for determining maximum and mean AF values. Each of these values across patients who progressed vs. did not progress were compared in the cohort of patients clearing ctDNA using a Student’s t-test, as depicted in (B, C) ns, not significant.



New variants (non-pre-CRT1) were observed in eight (42%) of patients during follow-up with a median AF of 0.32% (range 0.03 - 15.14%). Of the eight patients with new mutations, six progressed and two did not. Of the seven of 14 patients who cleared ctDNA that later progressed, three had new mutations with a median AF of 0.07% (range 0.03 - 0.46%). In the three patients that did not clear ctDNA, all patients demonstrated new mutations at post-CRT1 or later, in addition to the pre-CRT mutations, with a median AF of 3.66% (range 0.17 - 15.14%) in the new variants.



Discussion

To our knowledge, this is the first study utilizing commercially available ctDNA testing on a limited gene panel, instead of customized patient-specific gene panels, to show that detection of residual ctDNA following concurrent CRT in patients with locally advanced NSCLC is associated with a poor prognosis. All patients that failed to clear ctDNA following CRT in our analysis demonstrated disease progression. In addition, time to progression was much shorter in patients that failed to clear ctDNA, compared to patients that cleared ctDNA and eventually progressed (median 74 days vs 217 days). Furthermore, half the patients that cleared ctDNA following CRT continue to remain disease free at the time of this reporting.

Clearance of ctDNA following treatment, whether surgical or CRT, has been associated with improved prognosis in several other studies including lung cancer (10, 16–18). These studies however, used customized gene panels, the design of which required a priori tumor sequencing. In the study by Moding et al., which utilized personalized profiling by deep sequencing (CAPP-Seq) ctDNA analysis of 65 patients receiving CRT for locally advanced NSCLC, patients with undetectable ctDNA following CRT had improved outcomes relative to those with detectable ctDNA, regardless of whether they received consolidation ICI (10). Patients with detectable ctDNA following CRT who received consolidation ICIs had significantly improved outcomes than those who did not receive an ICI. The results from these studies, in addition to ours, support ctDNA clearance as a predictive biomarker in patients with locally advanced NSCLC. While previous studies have demonstrated the prognostic value of ctDNA clearance using customized gene panels, our study suggests that it could be feasible to utilize commercially available gene panels for the same purpose, but systematic testing through well-designed clinical trials are needed to further evaluate this.

The advantage of utilizing such commercial gene panel tests is that they are easy to incorporate into clinical practice and are not associated with the challenges and high costs associated with upfront tumor sequencing and design of customized gene panels. However, the successful translation of assays that utilize ctDNA sequencing on a limited gene panel to the clinic will require addressing certain crucial limitations that we identified in our analysis. For instance, the limited sequencing space and number of genes included on limited panels can potentially misclassify patients not clearing ctDNA as having cleared ctDNA. In this regard, the 65% of patients with mutations detected post-CRT in our study could be erroneously low due to the decreased sensitivity of our limited gene sequencing platform. Additionally, as is the limitation with all ctDNA assays that lack sequencing data from tumor tissue or peripheral blood mononuclear cells, it is difficult to distinguish tumor derived ctDNA from DNA originating from clonal hematopoiesis of indeterminate potential (CHIP).

Nevertheless, despite these limitations, the most commonly detected mutations in our study were in genes that are frequently mutated in lung cancer, which supports the conclusions reported. Mutations in TP53, PIK3CA, CDKN2A, KRAS, and EGFR were the most commonly detected, which is similar to known frequencies of mutations in lung cancer from tumor biopsies (19–22). Eight of the 17 patients (47%) had new emerging variants, defined as not present in the pre-CRT samples, with six of these patients (75%) developing relapse. It is possible that some of these variants were present in the pre-CRT and post-CRT1 samples, but at a level of detection that is lower than the limit of detection for the assay, leading to the possible misclassification of these patients into the “ctDNA cleared” category. We anticipate that advances in ctDNA sequencing technology in the near future may help address these limitations of liquid biopsies and improve the performance of this assay. Since it is also possible that such emerging variants could have been acquired by a tumor during the course of treatment, assays with fixed panels comprising of several frequently mutated genes in lung cancer may have an inherent advantage over assays using customized panels guided by tissue sequencing for identifying patients with emerging variants early in the course of their treatment, which may potentially be used for treatment changes.

The findings of our study are best viewed as exploratory given the limited sample size. Apart from the small sample size, the lack of longitudinal post-CRT variant data at all time points for all participants, and the fact that only a limited number of patients received consolidation immunotherapy in our study, which is currently the standard of care - limited our ability to investigate whether ctDNA clearance has the ability to identify patients most likely to benefit from immunotherapy.

In summary, results from this study demonstrate that it is feasible to employ ctDNA testing utilizing an “off the shelf” gene panel assay to identify LA-NSCLC patients who are at high risk for disease recurrence following CRT. Our results suggest that the failure to clear ctDNA after CRT is a poor prognostic factor for early progression. However, this approach is not without certain limitations that can potentially be circumvented by advances in sequencing technology, utilizing matched peripheral blood cell sequencing, and using expanded gene panels. Whether such assays can be used to inform clinical practice merits future investigation. Prospective validation of our results in larger studies is necessary before these findings can be translated to the clinic.
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Background

Rapid tumor growth inevitably results in energy stress, including deficiency of glutamine, a critical amino acid for tumor cell proliferation. However, whether glutamine deficiency allows tumor cells to use lipid droplets as an energy resource and the mechanism underlying this potential regulation remain unclear.



Methods

We purified lipid droplets from H322 and H358 human non-small-cell lung cancer (NSCLC) cells under glutamine deprivation conditions and performed immunoblotting to determine the binding of choline kinase (CHK) α2 to lipid droplets. Immunofluorescence was used to quantify lipid droplet numbers and sizes. Immunoprecipitation and immunoblotting were performed to examine AMPK activation and CHKα2 phosphorylation. Cellular fatty acid levels, mitochondrial acetyl coenzyme A and ATP production, and cell apoptosis and proliferation were measured. Immunohistochemical analyses were performed to determine the expression levels of ACC pS79 and CHKα2 pS279 in tumor specimens from NSCLC patients. The prognostic value of ACC pS79 and CHKα2 pS279 was assessed using the Kaplan-Meier method and Cox regression models.



Results

Glutamine deficiency induces AMPK-mediated CHKα2 S279 phosphorylation, which promotes the binding of CHKα2 to lipid droplets, resulting in recruitment of cytosolic lipase ATGL and autophagosomes and subsequent lipolysis of lipid droplets to sustain tumor cell survival and proliferation. In addition, the levels of ACC pS79 and CHKα S279 were much higher in human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other. Notably, ACC pS79 and CHKα pS279 expression levels alone were associated with poor prognosis of NSCLC patients, and combined values of both phosphorylation levels were correlated with worse prognosis of the patients.



Conclusion

CHKα2 plays a critical role in lipolysis of lipid droplets in NSCLC. ACC pS79 and CHKα2 pS279 alone or in combination can be used as prognostic markers in NSCLC.





Keywords: non-small-cell lung cancer, lipid metabolism, choline kinase, phosphorylation, prognostic biomarker



Introduction

In recent years, lung cancer-related mortality has shown a significant upward trend worldwide (1), and non-small-cell lung carcinoma (NSCLC) has become the most common pathological type of lung cancer and the leading cause of death among male malignant tumors (2). Rapid growth of tumors, including NSCLC, inevitably induces energy stress. How NSCLC cells reprogram cellular metabolism, especially lipid metabolism, to support tumor cell survival and growth remains largely unclear.

Choline kinase (CHK), which has CHKα (encoded by CHKA) and CHKβ (encoded by CHKB) isoforms, catalyzes choline to phosphorylcholine. Phosphorylcholine is used for the production of phosphatidylcholine, a main component of the phospholipid bilayer of biological membranes (3). Aberrant upregulation of CHKα expression and elevated levels of its catalytic product phosphorylcholine are detected in a variety of tumors, and CHKα has been shown to play an indispensable role in tumor cell proliferation (4, 5). Of interest, our recent studies demonstrated that CHKα2 possesses noncanonical functions and is involved in hydrolysis of lipid droplets in glioblastoma cells. Under glucose deficiency conditions, AMP-activated protein kinase (AMPK)-mediated CHKα2 phosphorylation at S279 results in KAT5-induced CHKα2 K247 acetylation. Acetylated CHKα2 acts as a protein kinase and phosphorylates PLIN2/3, lipid droplet membrane proteins. PLIN2/3 phosphorylation leads to degradation of these proteins by Hsc70-mediated autophagy, thereby promoting lipid droplet lipolysis and fatty acid oxidation for ATP production and brain tumor cell growth (6). However, whether this regulation also occurs in NSCLC cells under other energy stresses, such as a limited supply of glutamine, which is a critical amino acid for mitochondrial functions and cellular reducing resources (7), remains unclear. In addition, the dynamic regulation between glutamine and lipid droplet metabolism and the importance of this mutual regulation in NSCLC cells have not yet been explored.

In this study, we demonstrated that glutamine deprivation induced AMPK-dependent phosphorylation of CHKα in NSCLC cells. This phosphorylation was indispensable for CHKα to bind to lipid droplets and initiate the lipolysis of lipid droplets for NSCLC cell survival and proliferation.



Methods


Specimen Source

Frozen tissues were acquired from 158 pairs of patients with adenocarcinoma/squamous cell carcinoma of the lung who had undergone radical tumor resection in the Department of Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Sciences, and complete follow-up information was collected. The tissues were collected and extracted with the informed consent of the patients. The project was authorized by the Ethics Committee of the National Cancer Centre/Cancer Hospital, Chinese Academy of Medical Sciences and the Ethics Committee of Peking Union Medical College. Table 1 summarizes the clinical features of the patients.


Table 1 | Patient characteristics (N = 316).





Cell Culture

HEK 293T, H322 and H358 lung adenocarcinoma cells were obtained from ATCC. HEK 293T and H322 cells grew in DMEM with 10% fetal bovine serum and 1% penicillin streptomycin. H358 cells grew in RPMI 1640 with 10% FBS and 1% penicillin streptomycin. The cells were cultured in 5% CO2 at 37°C in a humidified incubator.



Lentivirus Production and Infection

shRNA targeting the target gene and packaging plasmids were cotransfected into HEK 293T cells using Lipofectamine 3000 transfection reagent. Forty-eight hours later, the virus was harvested and centrifuged. When tumor cells reached 50%-60% confluency, the cells were infected with the concentrated virus and then screened with puromycin treatment. The following shRNA sequences were employed: control shRNA (GCTTCTAACACCGGAGGTCTT), CHKα2 shRNA #1 (TTCTTTCTGAGCTTGTTCG), and CHKα2 shRNA #2 (GTGTTACTTGCAGGTACTTTG).



IHC

Immunohistochemical (IHC) analysis was performed as described previously (8). The tumor tissue was fixed with paraformaldehyde, embedded in paraffin, and then sliced into sections. The constructed tissue microarray section was stained with antibodies against ACC pS79 and CHKα2 pS279 (9). The immunohistochemical streptavidin-biotin complex (SABC) method was used for the experimental operation. The quantitative scoring of stained tissue sections is presented here with some minor modifications based on previous publications (10). Five nonrepeating fields were randomly selected for each section under high magnification, and Image-Pro Plus 6.0 was used for immunostaining intensity analysis. The yellow–brown area in the immunohistochemical staining image was selected and defined as the area of interest (AOI). The “yellow–brown” color in the image to be measured reflected the amount of corresponding protein expression, and the cumulative absorbance value was calculated by the software to represent protein expression.



Immunoblotting and Immunoprecipitation Analysis

Proteins were extracted from all NSCLC cell lines treated with and without glutamine deprivation using cell lysis buffer supplemented with cocktail (535142, Sigma, St. Louis, MO, USA). Cell concentrations were quantified using a BCA protein analysis kit (Thermo Fisher Scientific, MA, USA) as described previously (11). Protein electrophoresis was performed with an 8%-12% SDS-PAGE gel according to the molecular weight of the target protein, and then, the proteins in the gel were transferred to a polyvinylidene fluoride (PVDF, Millipore, MA, USA) membrane. Primary antibodies were incubated overnight at 4°C. After incubation with secondary antibody (diluted at 1:5,000) for 1 h, washing was carried out. BeyoECL Plus (Beyotime Biotechnology, Shanghai, China) was used for development and signal detection using an enhanced chemiluminescence system (Pierce, USA).

The cell extract was immunoprecipitated with the specified antibody. After incubation overnight at 4°C, agarose beads were added and incubated for another 3 hours. The immune complexes were washed 3 times with lysis buffer, and then, immunoblot analysis was performed with the corresponding antibodies as described above.



Lipid Drop Staining

Lipid droplets were isolated as described previously (6). BODIPY was diluted with DMEM (2 μM) and incubated with the cells before and after treatment at 37°C under dark conditions for 15 minutes. After 3 washes, the cells were fixed in 4% paraformaldehyde at room temperature for 1 hour. Then, the cells were photographed under a laser confocal microscope, and the number of lipid droplets and the percentage of the area occupied by lipid droplets were quantitatively analyzed.



Measurement of ATP Levels

Cellular ATP levels were measured using a colorimetric/fluorimetric kit (BioVision) according to the manufacturer’s instructions as described previously (12).



Apoptosis Analysis

Apoptosis levels were measured using the TUNEL System (Promega) according to the manufacturer’s instructions as described previously (13).



Measurement of Cellular Acetyl-CoA Levels

Cell acetyl-CoA levels were measured before and after treatment using the acetyl-CoA fluorometric kit (BioVision) as per the manufacturer’s instructions as described previously (14).



Determination of Cellular Free Fatty Acids

Cellular free fatty acids were measured using a free fatty acid quantitative colorimetry/fluorescence kit (Biovision) according to the manufacturer’s instructions as described previously (15).



Statistical Analysis

Data were analyzed using the SPSS 13.0 software package. Data are expressed as the mean ± standard deviation and were compared between two groups by t tests. Differences between multiple groups were analyzed by ANOVA, and correlations were identified by regression analysis. p<0.05 was defined as a significant difference.




Results


Glutamine Deprivation Induces the Binding of CHKα2 to Lipid Droplets and Subsequently Promotes CHKα2-Dependent Lipid Droplet Lipolysis in NSCLC Cells

To examine whether extracellular glutamine levels regulate lipid droplet metabolism in NSCLC cells, we cultured H322 human NSCLC cells in medium deprived of glutamine. Glutamine deprivation substantially reduced the cellular numbers and sizes of lipid droplets (Figure 1A). Immunoblotting analyses of purified lipid droplets from H322 and H358 human NSCLC cells revealed that glutamine deprivation induced the binding of a small fraction of CHKα2 in the cytoplasm to lipid droplets (Figure 1B). In addition, glutamine deprivation induced the binding of adipose triglyceride lipase (ATGL) and the autophagic protein Beclin1 to lipid droplets (Figure 1C) and decreased triglyceride (TG) levels in H322 cells (Figure 1D), indicating the hydrolysis of lipid droplets by lipase and autophagy. Notably, depletion of CHKα2, which reduced its binding to lipid droplets, decreased the association of ATGL and Beclin1 with lipid droplets upon glutamine deprivation (Figure 1C). Consistent with this finding, CHKα2 depletion blocked the glutamine deprivation-induced decrease in lipid droplets and TG levels (Figure 1D). These results indicated that glutamine deprivation induces the binding of CHKα2 to lipid droplets and subsequently promotes CHKα2-dependent lipid droplet lipolysis in NSCLC cells.




Figure 1 | Glutamine deprivation induces the binding of CHKα2 to lipid droplets and subsequently CHKα2-dependent lipid droplet lipolysis in NSCLC cells. (A) H322 cells were stimulated with glutamine deprivation with or without expression of CHKα2 shRNA for 6 h. Representative images of lipid droplets are shown (left panel). Immunoblotting with the indicated antibodies was performed (right panel). Scale bar: 10 μm. (B) CHKα2 expression in whole cell lysate (WCL), cell cytoplasm (Cyto), and lipid droplets (LD) was examined by stimulating H322 and H258 cells with glutamine deprivation for 6 h. (C) H322 cells with or without CHKα2 shRNA expression were stimulated with glutamine deprivation for 6 h. Expression levels of the indicated proteins were detected in WCL or purified lipid droplet samples. (D) H322 cells with or without expression of CHKα2 shRNA were stimulated with glutamine deprivation for 6 h. The number and area of lipid droplets were quantified after staining of cells using BODIPY, and relative TG levels were counted. Data represent the mean ± SD of 3 independent experiments. ns, not significant; **P < 0.01; ***P < 0.001.





Glutamine Deprivation-Induced and AMPK-Mediated CHKα2 S279 Phosphorylation Promotes the Binding of CHKα2 to Lipid Droplets

Glucose deprivation induced AMP-activated protein kinase (AMPK)-dependent CHKα2 S279 phosphorylation. To determine whether AMPK is involved in the glutamine deficiency-regulated association of CHKα2 with lipid droplets, we performed coimmunoprecipitation assays and showed that glutamine deprivation induced an interaction between endogenous AMPKα1 and endogenous CHKα2 (Figure 2A). In addition, glutamine deprivation enhanced CHKα2 S279 phosphorylation, which was abrogated by treatment with the AMPK inhibitor Compound C or expression of the CHKα2 S279A mutant (Figure 2B). The inhibition of AMPK by Compound C was reflected by its inhibition of acetyl-CoA carboxylase (ACC) pS79, a known substrate phosphorylation by AMPK. As expected, Compound C treatment blocked the binding of CHKα2 to lipid droplets, whereas treatment with the AMPK activator A769662 induced the association of CHKα2 with lipid droplets even in the absence of glutamine deprivation (Figure 2C). Consistent results showed that AMPKα1 and α2 deficiency in mouse embryonic fibroblasts (MEFs) (Figure 2D) or CHKα2 S279A mutation (Figure 2E) in both H322 and H358 cells abrogated glutamine deprivation-induced recruitment of CHKα2 to lipid droplets. These results indicated that glutamine deprivation-induced and AMPK-mediated CHKα2 S279 phosphorylation promotes the binding of CHKα2 to lipid droplets.




Figure 2 | Glutamine deprivation-induced and AMPK-mediated CHKα2 S279 phosphorylation promotes the binding of CHKα2 to lipid droplets. (A) H322 cells were stimulated with glutamine deprivation for 6 h. Immunoprecipitation with AMPKα1 antibody and immunoblotting analyses with the indicated antibodies were performed. (B) H322 cells expressing WT-Flag-CHKα2 or Flag-CHKα2 S279A were treated with or without 5 μM Compound C for 6 h, followed by stimulation with glutamine deprivation for 6 h. Flag-CHKα2 protein was immunoprecipitated, and immunoblotting analyses with the indicated antibodies were performed. (C) H322 cells were treated with 5 μM Compound C or 0.5 mM A769662 for 6 h and stimulated with glutamine deprivation for 6 h. The lipid droplets were purified and normalized to cell numbers. Immunoblotting analyses were performed with the indicated antibodies. (D) AMPKα1α2-deficient MEFs were stimulated by glutamine deprivation for 6 h before lipid droplet purification. Immunoblotting analyses were performed with the indicated antibodies. (E) The indicated cells expressing WT-Flag-CHKα2 or Flag-CHKα2 pS279A were stimulated with glutamine deprivation for 6 h. Lipid droplets were purified and normalized to cell numbers. Immunoprecipitation of whole cell lysates was performed with an anti-Flag antibody.





CHKα2 Promotes Lipid Droplet Lipolysis and Survival of NSCLC Cells

Lipid droplet lipolysis plays a critical role in energy production to sustain cellular activities and the survival of tumor cells (16). Depletion of endogenous CHKα2 and reconstituted expression of RNA interference-resistant (r) wild-type (WT) Flag-rCHKα2 or the Flag-rCHKα2 S279A mutant in H322 cells showed that the CHKα2 S279A mutant strongly inhibited glutamine deprivation-induced decrease of the numbers (Figure 3A) and size (Figure 3B) of lipid droplets and TG levels (Figure 3C). In addition, CHKα2 S279A expression reduced glutamine deprivation-increased cellular fatty acid levels (Figure 3D) and aggravated the decrease in acetyl-coenzyme A (Figure 3E) and ATP (Figure 3F) levels in H322 cells. Correspondingly, CHKα2 S279A expression exacerbated glutamine deprivation-induced cell proliferation (Figure 3G) and apoptosis (Figure 3H). These results indicated that CHKα2 promotes lipid droplet lipolysis and the survival of NSCLC cells.




Figure 3 | CHKα2 promotes lipid droplet lipolysis and survival of NSCLC cells. (A–C) Quantitative analyses of lipid droplet numbers, areas and relative TG levels in the endogenous CHKα2-depleted H322 cells expressing Flag-rCHKα2 WT or S279A were performed. (D–F) Cellular fatty acids and levels of mitochondrial acetyl-CoA and ATP were measured in the endogenous CHKα2-depleted H322 cells with Flag-rCHKα2 WT or S279A expression. (G, H) Cell numbers were counted, and TUNEL analyses were performed to measure cell death in the endogenous CHKα2-depleted H322 cells with Flag-rCHKα2 WT or S279A expression. ***P < 0.001.





ACC pS79 and CHKα2 pS279 Levels Are Positively Correlated With Poor Prognosis of NSCLC Patients

To determine the clinical relevance of AMPK phosphorylation- and CHKα2-mediated lipid droplet lipolysis with NSCLC progression, we performed immunohistochemistry (IHC) analyses of NSCLC specimens (N=316), which included tissue samples of lung adenocarcinoma (LUAD) (N=158, Figure 4A) and lung squamous cell carcinoma (N = 158, Figure 4B), and adjacent non-neoplastic tissues. We showed that ACC pS79 and CHKα2 pS279 were mainly localized in the cytoplasm of NSCLC tissues. In addition, the expression levels of ACC pS79 and CHKα2 pS279 were much higher in the NSCLC tissues than in the adjacent non-neoplastic tissues (Figures 4A, B). In addition, the expression levels of ACC pS79 and CHKα2 pS279 in LUAD and LUSC specimens were positively correlated with each other (Figure 4C).




Figure 4 | ACC pS79 and CHKα2 pS279 levels are positively correlated with poor prognosis in NSCLC patients. (A, B) Representative IHC staining of ACC pS79 and CHKα2 pS279 in LUAD, LUSC, and adjacent non-tumor tissues (left panel). The expression levels of ACC pS79 and CHKα2 pS279 in the NSCLC and adjacent non-tumor tissues were quantified (right panel). (C) The correlations between the expression levels of ACC pS79 and CHKα2 pS279 in LUAD (left panel) and LUSC (right panel) specimens were calculated. (D) Analysis of the expression levels of ACC pS79, CHKα2 pS279, and combined ACC pS79 and CHKα2 pS279 with the prognosis of LUAD patients was performed. (E) Analysis of the expression levels of ACC pS79, CHKα2 pS279, and combined ACC pS79 and CHKα2 pS279 with the prognosis of LUSC patients was performed.



We next examined the relationship between the expression levels of ACC pS79 and CHKα2 pS279 and the clinical aggressiveness of NSCLC and showed that the levels of ACC pS79 and CHKα2 pS279 were not statistically correlated with patient sex, age, or tumor size (P > 0.05, Table 2). Notably, both ACC pS79 and CHKα2 pS279 expression levels were associated with pathological type, lymph node metastasis and advanced TNM stage (P < 0.05, Table 2). In addition, high levels of ACC pS79 and CHKα2 pS279 were positively correlated with poor prognosis of patients with LUAD (Figure 4D) and LUSC (Figure 4E). In line with this finding, the combined expression levels of ACC pS79 and CHKα2 pS279 were also inversely correlated with the survival time of the patients with LUAD (Figure 4D) and LUSC (Figure 4E).


Table 2 | Correlation analyses of ACC pS79 and CHKα2 pS279 expressions with clinic-pathological characteristics.



Univariate Cox regression analyses revealed that high expression levels of ACC pS79, CHKα2 pS279, and combined ACC pS79 and CHKα2 pS279 were associated with a shorter overall survival time in patients with LUAD and LUSC (Table 3). Notably, the combined expression values of ACC pS79 and CHKα2 pS279 in LUAD (hazard ratio [HR]: 11.55; 95% confidence interval [CI], 4.86-27.44) were a better prognostic predictor than ACC pS79 (HR: 4.71; 95% CI, 2.65-8.39) or CHKα2 pS279 (HR: 6.62; 95% CI, 3.68-11.90) alone. Similarly, the combined expression values of ACC pS79 and CHKα2 pS279 in LUSC (HR; 10.05; 95% CI, 5.12-19.73) were also a better prognostic predictor than ACC pS79 expression (HR; 3.87; 95% CI, 2.39-6.25) or CHKα2 pS279 expression (HR: 6.98; 95% CI, 4.11-11.83) alone.


Table 3 | Univariate and multivariate Cox regression analyses of risk factors associated with overall survival.



Consistent with the results from univariate Cox regression analyses, the multivariate analysis of patients with NSCLC showed that the levels of ACC pS79 or CHKα2 pS279 (HR: 4.531; 95% CI, 2.562-8.04 for ACC pS79 in LUAD; HR: 3.766; 95% CI, 2.332-6.081 for ACC pS79 in LUSC; HR, 6.392; 95% CI, 3.579-11.415 for CHKα2 pS279 in LUAD; HR: 6.878; 95% CI, 4.053-11.670 for CHKα2 pS279 in LUSC) were also independent prognostic markers for NSCLC. In addition, the combined expression values of ACC pS79 and CHKα2 pS279 exhibited a better prognostic value than each phosphorylation alone (HR: 10.966; 95% CI, 4.671-25.744 in LUAD and HR: 11.460; 95% CI, 5.627-23.339 in LUSC). These results indicated that the levels of ACC pS79, CHKα2 pS279, or combined ACC pS79 and CHKα2 pS279 are independent prognostic factors for patients with NSCLC (Table 3).




Discussion

Tumor cells, including NSCLC cells, not only actively synthesize lipids for cell growth and proliferation but also initiate lipid droplet lipolysis to counteract energy stress with less characterized mechanisms (17–19). We revealed that glutamine deficiency induces AMPK-dependent CHKα2 S279 phosphorylation. This phosphorylation promotes the binding of CHKα2 to lipid droplets. CHKα2 S279 phosphorylation resulted in recruitment of cytosolic lipase ATGL and autophagosomes and subsequent lipolysis of lipid droplets to sustain tumor cell survival and proliferation. In addition, the levels of ACC pS79 and CHKα2 S279 were much higher in the human NSCLC specimens than in their adjacent normal tissues and positively correlated with each other. Importantly, ACC pS79 and CHKα2 pS279 expression levels alone were associated with poor prognosis of NSCLC patients, and combined values of both phosphorylation levels exhibited a better prognostic value.

Metabolic enzymes can possess noncanonical functions, which are critical for tumor progression (20–26). CHKα2 is a metabolic enzyme originally defined as a phosphocholine kinase for PC production and is overexpressed in tumor cells. Our recent studies revealed that CHKα2 can act as a protein kinase to phosphorylate PLIN2/3 and initiate lipid droplet lipolysis for tumor growth. Given that disruption of canonical CHKα2 functions inevitably affects choline phosphorylation and normal cell proliferation, targeting the moonlighting functions of CHKα2 to promote lipolysis can be exploited to mitigate tumor progression. Our findings that CHKα2 plays a critical role in lipolysis of lipid droplets in NSCLC suggest an attractive strategy to target the protein kinase activity of CHKα2 for NSCLC treatment.
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Background

Lung adenocarcinoma (LUAD) is one of the most predominant subtypes of lung cancer. The gut microbiome plays a vital role in the pathophysiological processes of various diseases, including cancers.



Methods

In the study, 100 individuals were enrolled. In total 75 stool and blood samples were analyzed with 16s-rRNA gene sequencing and metabolomics (30 from healthy individuals (H); 45 from LUAD patients). In addition, 25 stool samples were analyzed with metagenomics (10 from H; 15 from LUAD). The linear discriminant analysis (LDA) effect size (LefSe) and logistic regression analysis were applied to identify biomarkers’ taxa and develop a diagnostic model. The diagnostic power of the model was estimated with the receiver operating characteristic curve (ROC) by comparing the area under the ROC (AUC). The correlation between biomarker’s taxa and metabolites was calculated using the Spearman analysis.



Results

The α and β diversity demonstrated the composition and structure of the gut microbiome in LUAD patients were different from those in healthy people. The top three abundance of genera were Bacteroides (25.06%), Faecalibacterium (11.00%), and Prevotella (5.94%). The LefSe and logistic regression analysis identified three biomarker taxa (Bacteroides, Pseudomonas, and Ruminococcus gnavus group) and constructed a diagnostic model. The AUCs of the diagnostic model in 16s-rRNA gene sequencing and metagenomics were 0.852 and 0.841, respectively. A total of 102 plasma metabolites were highly related to those three biomarkers’ taxa. Seven metabolic pathways were enriched by 102 plasma metabolites, including the Pentose phosphate pathway, Glutathione metabolism.



Conclusions

In LUAD patients, the gut microbiome profile has significantly changed. We used three biomarkers taxa to develop a diagnostic model, which was accurate and suitable for the diagnosis of LUAD. Gut microbes, especially those three biomarkers’ taxa, may participate in regulating metabolism-related pathways in LUAD patients, such as the pentose phosphate pathway and glutathione metabolism.
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Introduction

Lung cancer (LC) is one of the most commonly diagnosed malignancies and the leading origin of disease-related mortality throughout the world (1). It was estimated that, in 2020, more than 2.2 million new cases were diagnosed as LC, and over 1.8 million people died of LC globally (2, 3). According to histopathological differences, LC could be divided into Non-small cell lung cancer (NSCLC) and Small cell lung cancer (SCLC). Lung adenocarcinoma (LUAD) is one of the most predominant subtypes of NSCLC, accounting for approximately 40% of cases of LC (3). Surgery, chemotherapy, targeted therapy, and immunotherapy are the main treatments for LC and are developing continuously, which have greatly improved the long-term survival rate of LC patients (4, 5). However, the 5-year survival rate of LC patients is still less than 20% (6, 7). To make matters worse, nearly 75% of LC patients are in the advanced stage at the initial visit, and for these the 5-year survival rate is only 2.8%-14.6% (6, 7). Therefore, it is urgent to identify the underlying mechanisms, diagnostic biomarkers, and therapeutic targets of LC, which is helpful for the diagnosis and therapy of LC.

The intestinal tract is the main place for digestion and absorption. It is also an important endocrine and immune organ, playing a crucial role in maintaining the normal physiological function of the body (8). In the past decade, one inspiring finding in medicine was the vital role that the gut microbiome played in the pathophysiological processes of various diseases, such as neurodegenerative diseases, metabolic diseases, immune and inflammatory diseases, mental diseases, and cancer (9–11). The gut microbiome refers to the microbial community living in the intestine, including bacteria, fungi, protozoa, and viruses, counting over ten times the number of total host cells (12). In the long-term evolution process, the gut microbiome and the host have formed a mutually beneficial symbiotic relationship: on the one hand, the gut microbiome obtains nutrients necessary for survival from the host; on the other hand, it could exert a variety of biological functions to contribute to the host digest and absorb nutrients, activate and stabilize the immune system (12, 13).

In recent years, a novel viewpoint, “Gut-lung axis”, was proposed, which means the long-distance cross-talk between lung and intestine (14). Numerous studies have shown that the gut microbiome could influence lung homeostasis and susceptibility to lung diseases by regulating the metabolic, endocrine, and immune system (15). Although few kinds of research have been reported on the characteristics of the gut microbiome in LC patients, similar acknowledgments have been achieved. Compared with healthy individuals, the evenness and richness of the gut microbiome in LC patients have changed significantly, with a decrease in the relative abundance of beneficial bacteria and an increase in harmful bacteria (16). In addition, studies have demonstrated that the changes in the composition and structure of the gut microbiome also evidently affect the therapeutic effects of LC patients (17, 18).

In the study, we collected 60 stool samples from LUAD patients. Then, the stool samples were subjected to 16s-rRNA gene sequencing or metagenomics to investigate the gut microbiome profile in LUAD and construct a diagnostic model for LUAD. Next, we predicted the functions of the gut microbiome through bioinformatics and found the gut microbiome enriched several metabolic-related pathways. Finally, we verified the results by metabonomics.



Materials and Methods


Patients

The study was permitted by the ethics committee of Guangfu hospital. In the study, 100 participants were collected, including 40 healthy individuals (H) and 60 LUAD patients. All participants were from Guangfu hospital and signed relevantly informed consent. Among them, 30 healthy individuals and 45 LUAD patients were analyzed with 16s-rRNA gene sequencing and metabonomics; the others with metagenomics. The basic information of all subjects was presented in Table 1.


Table 1 | The basic information of all participants.



Patients were diagnosed as LUAD according to the TNM staging system (8th edition) and judged by two pathologists. The inclusion and exclusion criteria were as follows:

Inclusion criteria: 1) 18 ≤ Age ≤ 75 years; 2) Pathological diagnosis or cytological diagnosis; 3) The patients have never been treated, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy; 4) KPS ≥ 60 and ECOG ≤ 2; 5) Life expectancy ≥ 6 months.

Exclusion criteria: 1) With other acute and chronic diseases influencing the composition of the gut microbiome, such as metabolic diseases, mental illness, other cancers; 2) Women were in pregnancy or breastfeeding; 3) Abnormal blood test, including white blood cell < 4*109/L, neutrophils < 2*109/L, hemoglobin < 100 g/L, platelet < 100 g/L, Hemobilirubin > 1.5 ULN (upper limit of normal value), ALT, AST > 2.5 ULN, and serum creatinine >1.5 ULN; 4) Treated with antibiotics in the past 3 months.



Stool and Blood Sample Collection

Fecal samples were collected using Fecal Collection Kit (Beyotime, China). DNA was extracted from fecal samples with E.Z.N.A. ®Stool DNA Kit (Omega, USA) and eluted with 50 μL of elution buffer, and stored at −80°C.

Blood samples of 5 mL were gathered from a subject with an anticoagulation tube (Ethylene Diamine Tetraacetic Acid) and then centrifuged at 3500 rpm (15 min, 4°C). The supernatant was collected as the plasma samples and stored at − 80°C.



16s-rRNA Gene Sequencing

Seventy-five stool samples (30 H; 45 LUAD) were analyzed with 16s-rRNA gene sequencing. The primers that targeted the V3-V4 region of 16s-rRNA gene were as follows:

	341F: 5′-CCTACGGGNGGCWG- CAG-3′;

	805R: 5′-GACTACHVGGGTATCTAATCC-3′.



As described previously (19), PCR amplification was performed. The PCR products were then purified and quantified with AMPure XT beads (Beckman Coulter Genomics, USA) and Qubit (Invitrogen, USA), respectively. The size and quantity of the PCR products were evaluated using the Library Quantification Kit (Kapa Biosciences, USA), and to develop the amplicon pools following the manufacturer’s recommendations, which were applied for sequencing with the Illumina NovaSeq platform (Illumina, USA). Then, 250 bp paired-end reads were generated and merged to raw reads with FLASH. The high-quality clean tags were produced through screening raw reads using the fqtrim (v0.94). Then, we removed repeated sequences and chimeric sequences with Vsearch software (v2.3.4) and DADA2. The features were classified at 99% identity using QIIME2. Taxonomy determination was carried out with SILVA and NT-16S. The alpha (α) diversity, including Shannon and Simpson index, was calculated with QIIME2. Also, the beta (β) diversity was acquired with QIIME2 and presented with Principal coordinate analysis (PCoA) based on Bray–Curtis dissimilarity and Principal Component Analysis (PCA). The functional prediction was based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and performed with PICRUSt (v1.1.2).



Metagenomics

A total of 25 stool samples (10 H; 15 LUAD) were subjected to metagenomics. The DNA extraction and PCR amplification were as 16s-rRNA gene sequencing. The metagenome was fragmented, tagged, and quantified to generate the pooled library and paired-end reads. Then, low-quality paired-end reads were removed, and high-quality paired-end reads were mapped to the human genome to filter out chimeric sequences. The left high-quality paired-end reads were aligned using IGC bowtie2 (v 2.3.0) and mapped to metaphlan2 to perform species annotation. The α and β diversity, as well as functional prediction, were explored as 16s-rRNA gene sequencing.



Plasma Metabolic Profiling

The methanol precipitation method was used for metabolite extraction. Firstly, 200 μL plasma was mixed with 400 μL methanol, vortexed for 60 s, sonicated for 10 mins, and incubated for 1 h to precipitate protein. Then, samples were centrifuged at 12000 g (10 mins, 4°C), and vacuum concentration drying. Next, 150 μL 2-chlorophenylalanine and 50 μL 80% methanol solution were added to the tube. All the operations are performed on ice.

The mixed liquids were filtrated to generate samples for the analysis of HPLC-MS. Detailed conditions for HPLC-MS analysis were reported in Supplementary Material. The peaks identification, peaks filtration, and peaks alignment were performed with XCMS (Version 3.7.1, https://xcmsonline.scripps.edu/) to obtain mass to charge ratio (m/z), retention time (rt), and intensity. Metabolite identification was performed with HMDB (Human Metabolome Database; http://www.hmdb.ca) and KEGG (Kyoto Encyclopedia of Genes and Genomes; https://www.kegg.jp) via matching mass, MS/MS information, and rt. The functional enrichment analysis of metabolites was based on MetaboAnalyst (Version:5.0; https://www.metaboanalyst.ca/).



Statistical Analysis

Wilcoxon rank-sum test and Chi-square test were used for group comparison between two groups. The evenness and richness of the gut microbiome were assessed by the α diversity. The extent of the similarity of fecal microbial communities was assessed by the β diversity. With Galaxy online platform (http://huttenhower.sph.harvard.edu/galaxy/), Linear discriminant analysis (LDA) effect size (LEfSe) was applied to determine biomarker’s taxa. The cut-off value was the log value> 3.0 and Wilcoxon rank-sum test: P< 0.01. The biomarker’s taxon at the genus level was subjected to the logistic regression analysis to develop a diagnostic model. The diagnostic power of the model was estimated with the receiver operating characteristic curve (ROC) by comparing the area under the ROC (AUC) and the calibration plots. The correlation between the two indexes was calculated using the Spearman analysis. The canonical correspondence analysis (CCA) was performed to investigate the effect of clinical parameters on the distribution of the gut microbiome.

In metabonomics analysis, if a variable is missing in more than 80% of samples in each group, it should be eliminated; if the variable is missing in below 80% of all samples, the missing data should be replaced with the minimum value. The way for batch normalization was the total peak area normalization method; the standardization method was Par-scaling. After data processing, using the SIMCA-P (Version: 11.5), multivariate statistical analyses were executed, including the unsupervised analysis method: PCA, and supervised analysis methods: partial least-squares discrimination analysis (PLS-DA) and orthogonal partial least-squares discrimination analysis (OPLS-DA). In OPLS-DA, we calculated variable importance in projection (VIP). The differential metabolites were defined as FDR (False discovery rate) <0.05; Log2FC (Fold change) >1; VIP> 1. Functional enrichment analysis of metabolites was implemented with MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml). Benjamini–Hochberg procedure was used to calculate the FDR value.




Results


16s-rRNA Gene Sequencing


The Assessment of the α and β Diversity

A total of 6,043,552 raw reads were acquired from 75 stool samples (30 H; 45 LUAD). In all, 9716 features were identified (7073 ± 112 features/sample). To characterize the diversity of the bacterial community, we assessed the α diversity for each sample. As shown in Figure 1A, the Shannon (P<0.001) and Simpson (P<0.001) indexes of the LUAD groups were significantly lower than that of the H group. In addition, we also took advantage of the Observed species, ACE, and Chao1 index to reflect the α diversity and got similar results (Supplementary Figure 1A). The curve of each sample in rarefaction analysis based on the Shannon index approached saturation, suggesting the sequencing depth was enough (Supplementary Figure 1B). To measure the extent of the similarity of fecal microbial communities, we presented the β diversity with PCA and PCoA analysis. In PCA and PCoA analysis, samples in different groups displayed significantly tighter clustering (Figures 1B, C).




Figure 1 | The assessment of the α and β diversity. (A) The α diversity was evaluated by Shannon and Simpson index. (B) The β diversity was evaluated by PCA analysis. (C) The β diversity was evaluated by PCoA analysis. H, healthy individuals; LUAD, Lung adenocarcinoma; PCA, Principal Component Analysis; PCoA, Principal coordinate analysis.





Taxonomy Comparison of the Gut Microbiome

Then, we analyzed the composition and structure of the gut microbiome at phylum, class, order, family, and genus levels. There were 19 and 22 phyla identified in the H and LUAD groups at the phylum level, respectively (Figure 2A). The top three abundant phyla in the LUAD group were Firmicutes (48.67%), Bacteroidetes (32.92), and Proteobacteria (12.61) (Figure 2B). Compared to the H group, the abundance of Bacteroidetes (P= 0.044), Proteobacteria (P= 0.003), Cyanobacteria (P= 0.006), and Acidobacteria (P< 0.001) were increased, whereas that of Firmicutes (P< 0.001), and Tenericutes (P< 0.001) were decreased (Figure 2C and Supplementary Table 1).




Figure 2 | Taxonomy comparison of gut microbiome. (A) 19 and 22 phyla were identified in H group and LUAD group, respectively. (B) The distribution of top 10 phyla in two groups. (C) Differential phyla between two groups. (D) 320 and 475 genera were identified in H group and LUAD group, respectively. (E) The distribution of the top 10 genera in two groups. (F) Differential genera between two groups. *P < 0.05, **P < 0.01, ***P < 0.001.



At genus levels, 475 genera were found in the LUAD group and 320 in the H group (Figure 2D). In the LUAD group, the most abundant genus was Bacteroides (25.06%), followed by Faecalibacterium (11.00%) and Prevotella (5.94%) (Figure 2E). There were significant differences in the proportion of 42 genera between the H and LUAD groups (Figure 2F and Supplementary Table 1).



The Influence of Clinical Parameters on the Distribution of Gut Microbiome

To explore the influence of clinical parameters on the distribution and structure of the gut microbiome, we implemented CCA analysis, which could reflect the overall relationship between two groups of variables. The CCA analysis revealed that Carcinoembryonic antigen (CEA), Body Mass Index (BMI), and metastasis had a significant effect on the distribution of the gut microbiome (Figure 3).




Figure 3 | The CCA analysis revealed the influence of clinical parameters on the distribution and structure of the gut microbiome. CCA, The canonical correspondence analysis; CEA, Carcinoembryonic antigen; BMI, Body Mass Index.





Identification of Biomarker’s Taxa and Construction of a Diagnostic Model

For investigating the biomarker’s taxa between those two groups, we performed LefSe analysis. As shown in Figure 4A, at genus levels, seven floras were markedly enriched in the LUAD group, including Bacteroides, Phenylobacterium, Sphingomonas, Ralstonia, Brevundimonas, Pseudomonas, and Ruminococcus gnavus group. Then, we applied the logistic regression analysis to further analyze those seven genera and screen out three genera as the biomarker’s taxa (Bacteroides, Pseudomonas, and Ruminococcus gnavus group) to construct a diagnostic model for LUAD. The diagnostic formula was presented as follows.






Figure 4 | Identification of biomarker’s taxa and construction of a diagnostic model. (A) The LefSe analysis identified taxa meeting thresholds: P < 0.01 and LDA > 3. (B) The ROC of the diagnostic model. (C) The ROC of three biomarker’s taxa. (D) The calibration plot of the diagnostic model. LsfSe, Linear discriminant analysis (LDA) effect size; ROC, The receiver operating characteristic curve; AUC, the area under the ROC.



To evaluate the accuracy of the model, we depicted the ROC and the calibration plots. The AUC of the model was 0.852 (Figure 4B), more excellent than that of Bacteroides (0.767), Pseudomonas (0.781), and Ruminococcus gnavus group (0.746) (Figure 4C). In addition, the calibration plot demonstrated that the model curve and ideal curve could fit well (Figure 4D).




Metagenomics

Next, we analyzed 25 fecal samples (H: 10; LUAD: 15) with metagenomics to confirm the results of 16s-rRNA gene sequencing. In line with previous findings, the Shannon (P= 0.005) and Simpson (P= 0.004) indexes in the LUAD group were decreased (Figure 5A). Moreover, we also pictured the PCA and PCoA analysis. The results were presented in Figures 5B, C. At the phylum level, the top three most abundant bacteria in the LUAD group were Firmicutes, Bacteroidetes, and Proteobacteria (Supplementary Figure 2A). At genus levels were Bacteroides, Faecalibacterium, and Prevotella (Supplementary Figure 2B). We also analyzed the composition of the gut microbiome at a species level, and the results were presented in Supplementary Figure 2D.




Figure 5 | Validation of the diagnostic model with Metagenomics. (A) The α diversity is evaluated by Shannon and Simpson index. (B) The β diversity was evaluated by PCA analysis. (C) The β diversity was evaluated by PCoA analysis. (D) The ROC of the diagnostic model. (E) The ROC of three biomarker’s taxa. (F) The calibration plot of the diagnostic model.



We developed a diagnostic model with three indicator species (Bacteroides, Pseudomonas, and Ruminococcus gnavus group). Herein, we extracted the abundance of those three bacteria to validate the diagnostic model. Similar to previous results, the abundance of Bacteroides (P< 0.001), Pseudomonas (P= 0.037), and Ruminococcus gnavus group (P= 0.048) in the LUAD group were enhanced (Supplementary Figure 2C). As a result, the AUC in metagenomics was 0.841 (Figure 5D), higher than that of those three genera (Bacteroides: 0.812, Pseudomonas: 0.786, and Ruminococcus gnavus group: 0.770) (Figure 5E). The calibration plot was presented in Figure 5F.



Functional Properties of the Gut Microbiome

We predicted the functional properties of the gut microbiome with PICRUSt (v1.1.2) in both 16s-rRNA gene sequencing and metagenomics. There were 99 and 84 pathways identified between H and LUAD groups in 16s-rRNA gene sequencing and metagenomics, respectively (Wilcoxon rank-sum test: FDR< 0.05, Supplementary Figures S3A, B). Among them, 34 pathways were overlapping (Supplementary Figure 3C). Furthermore, most of those pathways were metabolic-related pathways. Then, we sought the relation between 34 pathways and 3 indicator species with the Spearman analysis, which demonstrated several pathways were highly related to those three genera (Supplementary Figure 3D).



Plasma Metabolic Profiling

In functional annotations of gut microbiota, we found numerous metabolic-related pathways were closely associated with gut microbiota, hinting that gut microbiota may function via regulating host metabolism in LUAD patients. Therefore, to prove the results, we investigated the plasma metabolic profiling of LUAD patients. A total of 1174 metabolites were determined, including 732 in positive ionization mode and 442 in negative ionization mode. Multivariate statistical analyses (PCA, PLS-DA, and OPLS-DA) were performed to obtain a global overview of the differences in metabolites between the two groups. As can be seen in Figures 6A–C, samples in different groups were well distinguished and clustered. Subsequently, we identified 96 differential metabolites with the cut-off value: FDR< 0.05; Log2FC> 1; VIP> 1 (Figure 7A), and 4 metabolic pathways enriched by them, including Pentose phosphate pathway (P< 0.001), Glutathione metabolism (P= 0.012), Tyrosine metabolism (P= 0.037), and Arginine and proline metabolism (P= 0.042) (Figure 7B).




Figure 6 | Multivariate statistical analyses to reveal the difference in plasma metabolic profiling between the H and LUAD groups. (A) Unsupervised analysis method: PCA. Supervised analysis methods: (B) PLS-DA and (C) OPLS-DA. PLS-DA, Partial least-squares discrimination analysis; OPLS-DA, Orthogonal partial least-squares discrimination analysis.






Figure 7 | Differential metabolites and functional enrichment analysis. (A) 96 differential metabolites between H and LUAD group. (B) The metabolic pathways are enriched by 96 differential metabolites. (C) The metabolic pathways enriched by metabolites are highly related to the three biomarkers’ taxa. FDR, False discovery rate; VIP, Variable importance in projection; FC, Fold change.





Correlation Analysis Between Plasma Metabolism and Biomarker’s Taxa

For further exploring the correlation between plasma metabolism and gut microbiome, we performed the Spearman analysis. The thresholds were set as |cor|> 0.40 and P< 0.05. The results showed that 102 plasma metabolites were highly related to three biomarkers’ bacteria (Supplementary Table 2), among which, 72 plasma metabolites were differential metabolites between the H and LUAD groups. Furthermore, functional enrichment analysis indicated that seven metabolic pathways were enriched by 102 plasma metabolites, such as the Pentose phosphate pathway (P< 0.001), Glutathione metabolism (P< 0.001), Glycine, serine, and threonine metabolism (P= 0.004), Valine, leucine, and isoleucine biosynthesis (P= 0.024), Ascorbate and aldarate metabolism (P= 0.024), Nicotinate and nicotinamide metabolism (P= 0.031), and Histidine metabolism (P= 0.039) (Figure 7C).




Discussion

The study found that the profile of gut microbiota and the plasma metabolic profiling in LC patients were significantly different from those in healthy individuals. Moreover, the Spearman analysis showed that gut microbes were highly related to multiple plasma metabolisms, meaning that gut microbes may participate in regulating metabolism-related pathways in LUAD patients. Gut microbes are an essential part of the intestinal microenvironment (8). They interact with host cells in several ways. For example, they provided the pathogen-associated molecular patterns (PAMPs) linking to Toll-like receptors on the surface of the intestinal epithelial cells to activate innate-adaptive immunity (20, 21). Thereby, the immune cells secrete antimicrobial peptides, inflammatory factors, and immunoglobulins to regulate the immune response (20, 22). Moreover, regulating the production of metabolites is also a vital way that commensal bacteria function (23). For instance, gut microbes could modulate the production of short-chain fatty acids, which can enter the lung tissue through blood circulation and affect the differentiation and maturation of immune cells in lung tissue (23, 24).

Previously, a study reported that in LC patients, the composition and structure of the gut microbiome had a significant change. The diversity of intestinal flora in LC patients was significantly lower than that in healthy people (16, 24). At the same time, the relative abundance of beneficial bacteria such as Bifidobacterium and Lactobacillus decreased significantly, and the relative abundance of harmful bacteria such as Enterobacter and Streptococcus increased significantly (16, 24). In addition, the changes in relative abundance of the gut microbiome were closely related to tumor markers, such as CEA. Meanwhile, the gut microbiome could influence the therapeutic effect of LC. Patients undergoing immunotherapy with a high response rate of immunotherapy had high microbial diversity and a proportion of beneficial bacteria (18, 25). Furthermore, after being treated with the antibiotic, the homeostasis of intestinal flora was destroyed, and the diversity of intestinal flora decreased, leading to a low response rate (25). Although emerging evidence demonstrated the linking of the gut microbiome to LC and cancer therapy, their detailed role in LC has not been fully explicated.

In the study, we investigated the gut microbiota profile in LC patients with 16s-rRNA gene sequencing and metagenomics. Consistent with the previous findings, we found the Shannon and Simpson index in LUAD groups was significantly lower than that of the H group, indicating that the richness and evenness of the bacterial community in LUAD patients were lower than in healthy individuals. Moreover, the PCA and PCoA analysis demonstrated that the similarity of fecal microbial communities of LUAD patients was significantly different from that of healthy individuals. In LUAD patients, the top three abundant phyla were Firmicutes, Bacteroidetes, and Proteobacteria. The top three abundant genera were Bacteroides, Faecalibacterium, and Prevotella, which were in line with the study reported by Zhang et al. (16) We identified three genera (Bacteroides, Pseudomonas, and Ruminococcus gnavus group) as the biomarkers’ taxa with logistic regression analysis and constructed a diagnostic model. The AUCs of the diagnostic model were > 0.80 in both 16s-rRNA gene sequencing and metagenomics. Additionally, the calibration plots demonstrated consistency between the prediction by the model and the actual observation. All data suggested that the established diagnostic model is suitable for the diagnosis of LUAD. Bacteroides are the most common bacteria in healthy individuals, and the abundance of Bacteroides in LC patients is enhanced (16), which was confirmed by our findings. In the human body, Bacteroides are like a double-edged sword. On the one hand, they can protect the intestinal mucosal barrier, maintain intestinal homeostasis, mediate carbohydrate metabolism and induce T lymphocyte-dependent immune response (26, 27). On the other hand, it can also lead to immune escape, the production of endotoxin, and local inflammation in the intestine. Accumulating evidence has illustrated that Bacteroides were closely associated with the tumorigenesis and development of cancers (28–30). For example, Bacteroides could promote colon cancer progression via inducing the stemness of colon cancer cells and activating RHEB/mTOR signaling pathway (29). In addition, Bacteroides could also increase the expression of cyclooxygenase 2 and the release of prostacyclin 2 to induce local inflammation of intestinal mucosa and regulate the survival and proliferation of tumor cells (30). Up to now, no research has reported the specific effect of Bacteroides on lung cancer, so a lot of research is still needed to explore the role and mechanism of Bacteroides on lung cancer. Pseudomonas is a Gram-negative, opportunistic, bacterial pathogen associated with a wide range of infections. Cancer patients are more vulnerable to invasive infection, due to ulcerative lesions in mucosal surfaces and immune suppression (31). The infection of Pseudomonas could increase E-cadherin expression in colon cancer to promote cancer development (32). In the study, we found that the abundance of Pseudomonas in LUAD patients was ascending, especially in patients at TNM stage III/IV (Supplementary Figure 4). However, many studies reported that Pseudomonas could secret multiple substances (Cyclodipeptides, Phenazine-1-carboxamide, Fucoxanthinol, etc.) to anti-cancer by inducing the apoptosis of cancers (33–35). Thence, it remains a depth exploration. Ruminococcus gnavus is an anaerobic Gram-positive bacterial pathogen that can be found in the gastrointestinal tract of animals and humans (36). It could stimulate intestinal mucosal inflammation, activate local immunity, and regulate bile acid metabolism (36–38). Plus, orally administered Ruminococcus gnavus may enhance regulatory T-cell counts and short-chain fatty acids production (39). However, up to now, there has been no research reporting the role of Ruminococcus gnavus on LC.

We identified 34 overlapping differential pathways in 16s-rRNA gene sequencing and metagenomics. Those 34 pathways were the main metabolic-related pathways and highly related to the three biomarkers’ taxa, hinting that those three biomarkers’ taxa may participate in the regulation of host metabolism. For testing this conjecture, we analyzed the plasma metabolic profiling of LUAD patients. Between the H and LUAD groups, 96 differential metabolites were determined, mainly involved in four metabolic pathways. Then, we performed the Spearman analysis and found 102 plasma metabolites were closely associated with the three biomarkers’ taxa. Moreover, those 102 plasma metabolites significantly enriched seven metabolic pathways. Interestingly, two metabolic pathways (Pentose phosphate pathway, Glutathione metabolism) were significantly enriched in each part of the study, suggesting that gut microbes, especially those three biomarkers’ taxa, play a vital role in pentose phosphate pathway and glutathione metabolism. Pentose phosphate pathway, beginning with glucose 6-phosphate, is a way of oxidative decomposition of glucose and a branch from glycolysis (40). Unlike glycolysis, the Pentose phosphate pathway does not supply energy. Instead, it mainly provides NADPH and ribose 5-phosphate (R5P), which is critical for managing DNA damage response, metabolism, proliferation, and metastasis of cancer cells (40, 41). In LC, studies showed that regulating the Pentose phosphate pathway could contribute to LC cells’ growth and invasion (42, 43). The Spearman analysis revealed that nine metabolites in the Pentose phosphate pathway were highly related to three biomarker’s taxa, including alpha-D-Glucose 6-phosphate, 2-Deoxy-D-ribose 1-phosphate, 2-Deoxy-D-ribose 5-phosphate, D-Ribose, D-Glyceraldehyde 3-phosphate, D-Ribulose 5-phosphate, D-Glycerate, beta-D-Glucose 6-phosphate, and 6-Phospho-D-gluconate. In addition, nine metabolites in Glutathione metabolism were also highly associated with three biomarker’s taxa, such as glutathione, glutamate, and cysteine. Previous research has proved that Bacteroides could influence the homeostasis of host health and the production of glutathione (44, 45). Glutathione is a ubiquitous anti-oxidant involved in anti-oxidation, exogenous detoxifying substances, maintaining cysteine levels, maturation of protein iron-sulfur clusters, and regulation of redox signal-related transcription factors (46, 47). Glutathione plays a dual role in tumor cells: at normal levels, glutathione could clear carcinogens maintaining normal cell survival; excessive glutathione protects and promotes cancer cell proliferation, metastasis, and resistance to chemotherapeutic drugs (46–49). Animal experiments revealed that intestinal flora could regulate glutathione metabolism in mice, and this regulation can promote the production of oxidants and promote intestinal endothelial cell abscission and local inflammation (50). In LC, glutathione could affect the growth, metastasis, survival, and drug sensitivity of cancer cells. Glutamate was a product of the metabolism of glutathione (51–54). A study showed that the level of glutamate in lung cancer was down-regulated (55). Furthermore, glutamate suppressed tumor growth and prolonged survival of mice with LC (56).

Limitations: 1. We only used 45 LUAD patients to develop a diagnostic model and verified it with 15 LUAD patients. Therefore, a large-scale clinical trial was needed. 2. All data were obtained from costly and time-consuming omics technology, leading to hardly any popularization in clinical applications. Hence, a simple and efficient detection method is still needed. 3. In the study, we excluded individuals with other acute and chronic diseases influencing the composition of the gut microbiome, which may lead to selection bias. 4. No basic experiments were conducted to investigate the specific role of gut microbiota, and further investigation is demanded. 5. Due to only using healthy individuals as the control group and lack of other types of cancer, Whether the three biomarkers’ taxa were specific for LUAD patients still requires further investigation.



Conclusion

In conclusion, in this study, we investigated the composition and structure of the gut microbiome in LUAD patients with 16s-rRNA gene sequencing and screened out the taxa of three biomarkers to construct a diagnostic model, which was confirmed with metagenomics. The ROC demonstrated the model was accurate. Then, we predicted the potential functions of the gut microbiome in LUAD patients and verified the results with plasma metabonomics. Gut microbes may participate in regulating metabolism-related pathways in LUAD patients, such as the pentose phosphate pathway and glutathione metabolism.
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Background

Qi et al. recently proposed a nomogram to reveal the prognostic value of peripheral blood inflammatory indexes (named Risk) and predict overall survival (OS) in limited-stage small cell lung cancer (LS-SCLC). However, it hasn’t undergone external application so far. This study aimed to verify the role of Risk as a prognostic variable of OS and apply the nomogram externally.



Methods

We used a retrospective analysis of clinical data of 254 patients diagnosed as LS-SCLC in Shanxi Cancer Hospital from January 2015 to December 2018 to apply Qi’s nomogram externally. We also performed subgroup analysis to explore the predictive value of Risk. The model was evaluated in terms of discrimination (the area under the ROC curve (AUC ROC) and calibration (calibration plots).



Results

The prognosis of patients with low-Risk was significantly better than those with high-Risk in our cohort (p<0.01). The AUC of 1-, 2-, and 3-year OS was 0.644, 0.666, and 0.635, respectively. The calibration curve showed a nearly ideal calibration-slope of 1-, 2-, and 3-year OS (1.00 (0.41-1.59), 1.00 (0.54-1.46) and 1.00 (0.43-1.57), respectively).



Conclusion

The external application of nomogram added Risk for predicting OS in LS-SCLC patients showed a moderate-to-good performance using a cohort with different case-mix characteristics. The external application confirmed the predictive value of Risk and the usefulness of the nomogram for the prediction of OS.





Keywords: small cell lung cancer, immune and inflammatory, prognoses prediction, overall survival, external application



Introduction

Lung cancer remains the leading cause of cancer mortality in China and worldwide (1, 2). Small cell lung cancer (SCLC), accounting for approximately 15% of all lung cancer, has a poor prognosis because of its very aggressive clinical course and early metastasis. Limited stage small cell lung cancer (LS-SCLC) makes up almost 40%, with a median overall survival (OS) of 20 months (3, 4). The early accurate prediction of patients’ prognoses is significant for making the most favorable treatment decisions. At present, the standard treatment for LS-SCLC is the combination of chemotherapy, thoracic radiotherapy, and prophylactic cranial irradiation (PCI) (3). Although immunotherapy has become the new standard of first-line treatment for extensive-stage SCLC (ES-SCLC), the additional benefit for LS-SCLC is not clear (3–5).

For years, cumulative studies have confirmed the predictive role of clinical variables on prognosis, remarkably immune and inflammatory response, which has been considered one of the main prognostic predictors in several solid tumors (6–9). Recently Qi et al. proposed a nomogram to estimate the additional benefit of Risk, an inflammation-related prognostic scoring system, in predicting prognosis for LS-SCLC (10). They found lower pretreatment neutrophil-to-lymphocyte ratio (NLR) and systemic inflammation index (SII) were significantly associated with better prognosis. In contrast, lower baseline platelet counts, lymphocyte counts, and albumin were indicators of worse OS. Further, they formulated Risk based on the optimal inflammation indexes by the LASSO-Cox model and grouped patients into low-Risk and high-Risk with “0” as a cutoff value. Compared with high-Risk, patients with low-Risk tend to have a longer survival time, with a median OS of 36.5 and 17.7 months (P < 0.001). Add Risk to nomogram, a remarkable improvement in predictive accuracy was observed compared with clinical factors alone. The Qi’s study showed that systemic inflammation index was a routine, low-cost, and readily available serum biomarker indicating poor prognosis, and the nomogram containing Risk could achieve a better prognosis prediction of LS-SCLC. However, it has not been externally applied so far.

This study aimed to perform an external application of Qi’s prediction model, verify the predictive value of Risk, and evaluate the nomogram’s applicability in a single center with different case-mix characteristics.



Materials and Methods


Patient Population

This retrospective observational external application cohort study was carried out in patients pathologically diagnosed as SCLC in Shanxi Cancer Hospital from January 2015 to December 2018. Inclusion criteria were similar to the original study (10). All patients have been reassessed as LS-SCLC by the Veterans Administration Lung Study Group (VALG) staging standard (2017 NCCN guidelines), and all patients received concurrent or sequential chemoradiotherapy. The cases analyzed in the study were complete, and we didn’t use padding techniques to deal with the missing data. We reviewed clinical data, treatment records, and follow-up through the electronic medical record system or by contacting the patients directly. The last follow-up ended on August 20, 2020. This study received ethical approval from the Ethics committee of Shanxi Provincial Cancer hospital (No. 202102). As this was a retrospective study and all information related to the patient’s identity was hidden, the Ethics Committee waived informed consent. This study follows the ethical criteria of the Declaration of Helsinki.



Data Collection

The inflammatory variables included in Risk and relevant clinicopathological characteristics in the nomogram were collected. The calculation formulas of platelet-to-lymphocyte ratio (PLR), NLR, and SII were the same as those in the original study (10). The nomogram estimated the predicted probability of 1-, 2-, and 3-year OS rates by calculating the total points for each patient. The observed 1-, 2-, and 3-year OS rates were derived from follow-up data in our study cohort.



Statistical Analyses

Baseline characteristics in Qi’s and external application cohorts were described as counts (n) and percentages and compared using the Chi-square test. A P-value of <0.05 was considered statistically significant. Replicate codes in the original study to construct Risk. The cutoff values of inflammatory variables were determined by the package “maxstat” of R software based on OS. The selection of optimal prognostic factors was performed by the package “glmnet” of R software. The multicollinearity among variables was assessed by variance inflation factors (VIFs). A cutoff value was adopted to dichotomize the total cohort into high-Risk and low-Risk groups. Differences in OS between Risk groups were estimated in the subgroup analysis. A P < 0.05 indicated statistical significant.

The total score for each patient was calculated based on the weight of each factor in the original nomogram and was used to depict the receiver-operating characteristics (ROC) curves. The Discrimination of the nomogram was evaluated by Harrell’s concordance index (C-index) or the area under the receiver-operating characteristics (AUROC) curves. The value of AUC ranged from 0.5 (random chance) to 1.0 (perfect discrimination), and higher AUC indicated higher prediction accuracy. Then the calibration curve was plotted to visually assess the calibration of the nomogram by comparing the predicted survival probabilities with the observed survival probabilities. A close to 45-degree calibration indicated a perfect prediction model.

All statistical analyses in this article were performed using R statistical software (version 3.6.3).




Results


Characteristics of Patients

This study included 254 LS-SCLC patients based on the inclusion and exclusion criteria. The median values of platelet, lymphocyte, albumin, NLR, PLR, and SII were 264 × 109/L (range = 41-717 ×109/L), 1.77× 109/L (range = 0.59-4.02 × 109/L), 42.5 × 109g/L (range = 30-51.9 × 109g/L), 2.52 (range = 0.7-22.68),159.99 (range = 18.14-590.16), and 686.49 (range = 57.69-8074.23), respectively. The median age was 60 years (range 28-76 years). The median follow-up time was 20.57 months, far less than the time in the original study (55.9 months). One hundred fifty-six deaths (61.4% of the 254 totals) had been observed during follow-up, similar to the original cohort (60.8%). The median OS was 22.2 months, less than the Qi’s cohort (25.7). The 1-, 2-, 3-year OS rates were 76.1%, 45.6% and 36.2%, respectively. Table 1 shows the baseline characteristics of LS-SCLC patients in Qi’s and external application cohort. Compared with Qi’s cohort, patients in the external application cohort showed a higher proportion of males (82.7% vs. 72.8%, P=0.005) and smokers (77.2% vs. 69.5%, P=0.038). The percentages of both the T and N stages also had statistical differences(P<0.001). Overall, our patients tend to have more advanced T and N stages. The treatment methods varied the most. Our patients received less PCI (21.7% vs. 38.6%, P<0.001) and significantly more sequential chemoradiotherapy (73.2% vs. 19.8%, P<0.001) than Qi’s cohort.


Table 1 | Baseline characteristics of the external application and Qi’s cohorts.





Construction of Risk

Due to the different laboratory instruments used in the two hospitals, the range of reference values may be different. Varying the optimal cutoff value of each inflammatory variable is required. We copied the methods in the original article to determine the optimal cutoff values of these inflammatory markers, as shown in Table 2. We incorporated these variables into a least absolute shrinkage and selection operator (LASSO)-Cox regression model to define Risk’s prognostic scoring system (Figure 1). Risk = -0.5548*Platelet + 0.5171*Lymphocyte –0.2172*Albumin + 0.0715*NLR -0.2019*PLR +0.5411*SII. Consistent with the original article, all VIF values <5 (Table 3) indicate no collinearity among these variables. Using the cutoff value of 0.098 identified by Maxstat, we classified patients as low-Risk and high-Risk groups. The baseline characteristics in low-Risk and high-Risk were similar(all P>0.05), as shown in Table 4.


Table 2 | The cutoff value of inflammation-related factors in external application cohorts.






Figure 1 | Construction of the Risk by the least absolute shrinkage and selection operator (LASSO) model in the application cohort.




Table 3 | VIF of inflammation-related factors in external application cohorts.




Table 4 | Baseline characteristics of low-risk group and high-risk group.





Application of Risk

Compared with the high-Risk group, patients in the low-Risk group had significantly better prognoses. The low-Risk group had a 1-, 2- and 3-year OS of 82.0%, 51.9%, and 40.6%, while the high-Risk group had a 1-,2-,3- year OS of 55.4%, 23.9%, and 20.5%, respectively. Within the study period, a total of 156 deaths occurred, 111(59.4%) in the low-Risk group and 45(78.9%) in the high-Risk group. The subgroup analysis confirmed the good prognostic capacity of Risk (Figure 2). The forest plot showed each subgroup’s OS and HRs of low-Risk vs. high-Risk. The high-Risk group remained associated with poor prognosis in most subgroups except female and no-smoking, with the HRs ranging from 1.717 to 4.175(all P<0.05).




Figure 2 | Forest plot depicting the hazard ratios (HRs) of low-Risk and high-Risk in the subgroup analysis of overall survival (OS). ECOG, Eastern Cooperative Oncology Group performance score; CT cycles, chemotherapy cycles; PCI, prophylactic cranial irradiation.





Application of Nomogram

We assessed the predictive performance of the nomogram in terms of discrimination and calibration. ROC-curve analysis showed that the AUCs of 1-, 2-, and 3-year OS rates were 0.644, 0.666, and 0.635 (Figure 3). We constructed a calibration plot based on the observed probability of a 1-, 2-, and 3-year OS against the predicted 1-, 2-, and 3-year OS from the nomogram. In calibration curve analyses, the nomogram showed a nearly ideal curve for the 1-, 2-, and 3-year OS of LS-SCLC patients, with a slope of 1.00 (0.41-1.59), 1.00 (0.54-1.46), and 1.00 (0.43-1.57), respectively (Figure 4).




Figure 3 | The area under the receiver operating characteristic (ROC) curve (AUC) of the nomogram to predict 1-, 2-, and 3-year overall survival (OS) for small cell lung cancer (SCLC) patients.






Figure 4 | The calibration curve of the nomogram for predicting SCLC patients’ 1-, 2-, and 3- year survival probability.






Discussion

In this study, we have conducted an external application of the Qi’s nomogram to verify the predictive value of Risk and assess the nomogram’s broad applicability. The results showed that Risk could be used as an independent predictor to distinguish prognosis in LS-SCLC patients. The nomogram showed a moderate-to-good performance in another hospital center with different inpatient characteristics.

Several studies have highlighted the value of system immune-inflammation and nutritional parameters in the prognosis prediction for SCLC patients (6, 11–13). Qi et al. formulated a prognostic scoring system called Risk by integrating multiple inflammatory factors, which could more genuinely reflect the complex immune state of the human body compared to a single factor (10). However, due to the different laboratory instruments and reference values applied in the two hospitals, it’s inappropriate to copy the formula in the original article. In this study, we recalculated the cutoff value of PLT, LYM, NLR, PLR, ALB, SII, and reconstructed a Risk using the original methods. The results concluded that the Risk allows distinguishing two groups of patients with different OS, independently from other known prognostic factors, using a threshold of 0.098. The forest plot showed Risk remained a strong predictor of survival in almost all subgroups. The differences in the female and no-smoking subgroups were not statistically significant, which may be due to the small sample size. Following the initial results, Risk was a negative prognostic indicator, and high Risk was associated with an unfavorable prognosis in our cohort.

We found significant differences in clinicopathological features and treatment methods when comparing the baseline characteristics between the external application cohort and the Qi’s cohort. The median OS of patients in our study was shorter than that described in the Qi cohort (22.2 vs. 25.7month). The proportion of receiving PCI in our cohort was significantly lower than that in Qi’s cohort. Treatment choices in the two centers varied dramatically, with almost the opposite ratio. There were also between-group differences in other variables, such as gender, smoke, T stage, and N stage. Various factors, including the economic level, medical resources, public health policies, social habits, and environmental risks, may cause the differences. However, this is the inherent character of real-world population data.

A great deal of research is being devoted to developing new prediction models (12, 14, 15), and external application is lacking. Even if a model is well performed in the developing cohort, its performance deteriorates when applied to a different population, partly because of the potential overfitting and the shift of patient distribution (demographics, clinicopathological characteristics, treatment methods) (16, 17). Inappropriate clinical treatment decisions might be made based on an inaccurate or incorrect prediction model. Independent external application is therefore essential to mitigate institutional bias and ensure the accuracy and reliability of the prediction model before clinical use. Suppose we could further extend the model’s excellent performance to a new cohort from a different center. In that case, the application value of the model in the real world will be significant.

Data obtained in our study indicate a moderate-to-good predictive ability despite the differences mentioned earlier between cohorts of patients. Due to the short follow-up time (20.6months), we evaluated the performance of the nomogram by predicting 1-, 2-, and 3-year OS rates, rather than 1-, 3-, and 5-year OS rates in the original study. We assessed the predictive ability in terms of discrimination and calibration. The discrimination ability of the nomogram in the external application cohort, as measured by the AUC, showed a slight decrease compared to that in the original study. The AUC values of 1-, 2-, and 3-year OS rates were 0.644, 0.666, and 0.635 in our cohort, and the AUC values of 1-, 3-, and 5-year OS rates were 0.717, 0.735, and 0.719 in the original cohort. It’s not surprising that we observed a performance decline in this study. Compared to the original cohort, significantly different baseline characteristics and treatment methods of the external application cohort would affect the nomogram’s discriminative performance. Patients in our cohort were more often male, smokers, and had more advanced T and N stages. Our patients received less PCI and more sequential chemoradiotherapy. One controversy in the original nomogram was that sequential chemoradiotherapy was a favorable factor in the prognosis of patients. However, in our study, it was associated with poor OS. Yet now, the additional benefit of sequential chemoradiotherapy remains unclear for LS-SCLC patients. The above reasons may cause the reduced discrimination of the nomogram in our cohort. Though the discrimination of the nomogram is a little lower than that in the original study, it still had a good predictive ability. The calibration plot of the nomogram in the external application cohort showed a good correlation between the prediction and actual observation for 1-, 2-, and 3-year OS rates, with a calibration slope and intercept of 1.00 and 0.

The nomogram is easily implemented in clinical practice to estimate individualized risk by entering three factors: PCI (Yes, No), Treatment (sequential chemoradiotherapy, concurrent chemoradiotherapy), and Risk (high, low). Our external application study results indicated the nomogram could achieve modest discrimination and ideal calibration. It may be a readily valuable tool to predict LS-SCLC prognosis.

A major limitation in this study was that the median follow-up time in our cohort was 20.6 months, shorter than the 55.9 months in the original cohort. So we did not analyze the 5-year OS prediction due to data limitations. Secondly, the strict selection criteria limited the external application cohort. Last, this was a single-center retrospective study; more external application from other centers with diverse inpatients is needed to assess the applicability of nomograms in the real world.



Conclusion

The nomogram proposed by Qi et al. was successfully applied in a different population, as it showed clinical meaningful discrimination and accuracy. The Risk could be a strong serum marker in the prognosis prediction of LS-SCLC. Further application in other centers is needed to test the clinical utility of the nomogram.
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Background

Effective biomarkers for early diagnosis of lung cancer are needed. Previous studies have indicated positive associations between abnormal circulating cytokines and the etiology of lung cancer.



Methods

Blood samples were obtained from 286 patients with pretreatment lung cancer and 80 healthy volunteers. Circulating cytokine levels were detected with a Luminex assay and enzyme-linked immunosorbent assay (ELISA). Urine samples were obtained from 284 patients and 122 healthy volunteers. CXC chemokine ligand 14 (CXCL14) expression in tumors and nontumor regions of lung tissues from 133 lung cancer cases was detected by immunohistochemical (IHC) staining and immunofluorescence (IF) staining of formalin fixed paraffin-embedded (FFPE) tissues.



Results

Compared with healthy volunteers, a 65.7-fold increase was observed in the level of CXCL14 in the plasma of lung cancer patients, and a 1.7-fold increase was observed in the level of CXCL14 in the urine of lung cancer patients, achieving a 0.9464 AUC (area under the curve) value and a 0.6476 AUC value for differentiating between lung cancer patients and healthy volunteers, respectively. Stromal CXCL14 expression was significantly associated with advanced pathologic stage (P<0.001), pathologic N stage (P<0.001), and recurrence and metastasis (P=0.014). Moreover, multivariate analysis suggested stromal CXCL14 expression as an independent predictor of DFS and OS.



Conclusions

Our study demonstrates that CXCL14 might serve as a potential diagnostic and prognostic biomarker in patients with lung cancer.



Impact

CXCL14 might serve as a potential diagnostic and prognostic biomarker in patients with lung cancer.





Keywords: lung cancer, CXCL14, biomarker, diagnosis, early detection



Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide, with 2.21 million new cases and 1.80 million deaths in 2020 (1). At present, the 5-year survival rate of lung cancer patients is only 19%, among which 57% of lung cancer is diagnosed at an advanced stage, and the 5-year survival rate is only 5% (2). As a malignant tumor with high incidence and mortality, early detection of lung cancer is very important. At present, low-dose computed tomography (LDCT) is widely used to screen people with an elevated risk of developing lung cancer and has been shown to effectively reduce lung cancer mortality by at least 20% (3–5). However, the high false positives of LDCT incur unnecessary treatment, increased cost, and negative psychosocial consequences (6–8). Effective biomarkers need to be discovered to refine the existing screening methods and help in making clinical decisions and eventually improve lung cancer outcomes.

Oncogene activation along with persistent inflammation activates transcription factors (NF-κB, STAT3, HIF1α) in tumor cells, resulting in the secretion of chemokines, cytokines, and prostaglandins to recruit inflammatory cells (9). On the one hand, inflammatory cells, such as activated neutrophils and macrophages, are capable of producing reactive oxygen species that bind to and damage DNA in proliferating cells to promote carcinogenesis (10). On the other hand, inflammatory cells consistently produce chemokines and cytokines to gather more of their kin in the tumor microenvironment, exacerbating DNA damage, which may lead to an uncertain clinical outcome (11, 12).

Previous studies have indicated positive associations between abnormal circulating cytokines and the etiology of lung cancer. For instance, an elevation in serum interleukin-6 and interleukin-8 is detected at the time of diagnosis in patients with lung cancer (13). Serum levels of C-reactive protein (CRP), serum amyloid A (SAA), soluble tumor necrosis factor receptor 2 (sTNFRII), and monokines induced by gamma interferon (CXCL9/MIG) are associated with a prospective risk of lung cancer (14). There are also several studies that have investigated the correlation between cytokines and the prognosis of lung cancer. A previous study demonstrated that increased pretreatment serum macrophage colony-stimulating factor (M-CSF) levels indicated poor survival in patients with nonsmall cell lung cancer (15). Allin et al. found that elevated circulating levels of CRP are associated with poor prognosis in several solid cancer types, including lung cancer (16).

Considering the unmet need for reliable lung cancer biomarkers and the relationship between cytokines and the diagnosis and prognosis of lung cancer, we used a multiple Luminex assay to detect abnormal plasma cytokines in patients with lung cancer and assessed the diagnostic and prognostic performance of the selected protein in subsequent research.



Materials and Methods


Study Population

Patients with lung cancer and healthy controls who donated blood and/or urine samples were recruited at Tianjin Medical University Cancer Institute and Hospital from August 2015 to December 2017. Patients with pathologically or histologically confirmed lung cancer (prior to any anticancer treatment) and who were not simultaneously diagnosed with other malignant diseases were included in this study. Among all the subjects, 286 patients and 80 healthy controls donated blood samples, and 284 patients and 122 healthy controls donated urine samples; 84 patients donated both blood and urine samples. Human blood and urine samples were collected after an informed consent form was signed.

A total of 133 paraffin-embedded pathological non-small cell lung cancer (NSCLC) and normal lung tissue slides were collected from the Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital. Patients with pathologically confirmed nonsmall cell lung cancer undergoing radical surgical resection without preoperative treatment were included. Age, gender, smoking history, cancer stage and death date were collected retrospectively through the medical record registration system.

The Tianjin Medical University Cancer Institute and Hospital ethics committee approved this study (approval number: bc2016014, bc2018009, bc2019091). The study methodologies conformed to the standards set by the Declaration of Helsinki.



Collection and Preparation of Blood and Urine Samples

Fasting blood was collected in BD Medical System Vacutainer K (2) EDTA plastic tubes and centrifuged at 400 g for 10 minutes at 4°C. Plasma was collected and stored at -80°C for further usage.

Morning urine (20-30 ml) was centrifuged at 5000 g for 40 minutes at 4°C. The urinary supernatants were diluted with phosphate buffer, pH 7.5, and then, the urinary protein was fixed on 22 μm nitrocellulose membranes (Millipore, Bedford, MA) via vacuum filtration and stored at -80°C.

For urinary protein extraction, the nitrocellulose membrane was cut into pieces and dissolved in acetone containing 0.5% ammonium bicarbonate with vigorous vortexing. Then, the solution was incubated at 55°C for 60 min and vigorously vortexed every 20 min. Urinary protein was precipitated at 4°C followed by centrifugation at 12000 r/min for 15 min. The protein precipitate was dried at room temperature and redissolved in lysis buffer containing 100 mM Tris, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% Triton X-100, and 0.5% sodium deoxycholate, and the protein concentration was detected using a Pierce BCA assay (Thermo Fisher Scientific, Waltham, MA, USA). The urinary protein solution was stored at -80°C.



Screening of Cytokines Using the Multiplex Luminex System

The levels of 20 cytokine molecules were measured using a Luminex-based bead array: FABP4, IL-19, CCL28, CXCL6, CCL20, CCL7, CXCL13, BMP-10, MICB, CCL26, IL-36B, BMP-2, IL-6, IL-1A, IL-1B, GDNF, CXCL9, CXCL14, CCL22 and S100A9. A Magnetic Luminex® Assay (R&D Systems, Minneapolis, Canada) was used following the manufacturer’s instructions for the detection of multiple cytokines in the plasma. Briefly, plasma, standards, and microparticles were incubated in a 96-well plate that was precoated with cytokine-specific antibodies. The immobilized antibodies were able to bind the cytokines of interest after 2 h of incubation. Then, the plate was washed, and incubation with a biotinylated antibody cocktail specific to the cytokines of interest was performed for 1 h. A second wash was performed to remove the unbound biotinylated antibodies. Furthermore, a streptavidin-phycoerythrin conjugate was added to each well to bind to the biotinylated antibodies. After a final wash, the microparticles were resuspended in buffer and assessed using a Luminex® 200™ Analyzer (R&D systems, Minneapolis, MN, Canada).



Enzyme-Linked Immunosorbent Assay

The CXCL14 level in plasma and urine was assayed using commercially available sandwich enzyme-linked immunosorbent assay kits, Human CXCL14/BRAK DuoSet ELISA and DuoSet ELISA Ancillary Reagent Kit 2(Lot DY866&DY008, R&D Systems). The sensitivity limit of the CXCL14 assay was 31.25 to 4000 pg/ml. Then, 100 µl plasma or 100 µg urinary protein was added to each well. The analyses were performed according to the manufacturer’s instructions.



Immunohistochemical Staining

FFPE tissue slides were dehydrated and rehydrated. Then, antigen retrieval was carried out by high-pressure heating. The slides were incubated with anti-CXCL14 antibody (1:200, Lot Ab137541; Abcam, Cambridge, UK) overnight at 4°C. After incubation with secondary antibody (Origene, Rockwell, USA) for 1 h at room temperature, the sections were exposed to DAB substrate (Origene, Rockwell, USA) and counterstained with hematoxylin (Solarbio, Beijing, CN).

Slides were scored by two impartial technicians for overall staining intensity and the percentage of cells stained. The proportion scores ranged from 0 to 4 (0, none; 1, 1~25%; 2, 26~50%; 3, 51~75%; and 4, >75%), and the intensity scores ranged from 0 to 3 (0, none; 1, weak; 2, intermediate; and 3, strong). These scores were added to obtain a final score ranging from 0, 2 to 7. Cases scoring 0, 2~4 were considered to have low expression; cases scoring 5~7 were considered to have high expression (17).



Immunofluorescence Staining of FFPE Slides

FFPE tissue slides were dehydrated and rehydrated. Then, antigen retrieval was carried out by high-pressure heating. The cells were blocked in PBS with 2% BSA and 0.3% Triton for 1 hour with gentle shaking. Then, the slides were incubated with anti-CXCL14 antibody and Anti-pan Cytokeratin antibody (1:200, Lot ab137541 and ab27988; Abcam, Cambridge, UK) overnight at 4°C. After incubation with secondary antibody (Lot 715-585-150 and 711-545-152; Jackson ImmunoResearch, USA) for 2 h at room temperature, mountant with DAPI was added.



Statistical Analyses

Statistical analysis was performed using SPSS 25.0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA). Receiver operating characteristic (ROC) curves were employed to display the cut-off between sensitivity and specificity for biomarkers able to differentiate between patients and healthy controls. A Mann-Whitney U test was applied to explore differences between different groups. Correlation analysis was performed with Fisher’s exact test. Univariate and multivariate survival analyses were performed using the Cox proportional hazards regression model. Survival curves were obtained using the Kaplan-Meier method. All the tests were two-sided, and differences were considered statistically significant when P<0.05.




Results


Screening of Elevated Plasma Inflammatory Factors in Patients With Lung Cancer

Plasma samples from 19 healthy volunteers and 36 lung cancer patients were detected with a Luminex assay to identify differentially expressed inflammatory factors (Table S1). Compared with healthy controls, the levels of CXCL14, CXCL13 and CCL20 were increased in the plasma of patients with lung cancer (Figure 1). The AUCs of CXCL14, CXCL13 and CCL20 in the screening group were 0.9956, 0.8392 and 0.7924, respectively (Figure S1). Therefore, we preliminarily suggested that CXCL14 could be used as a candidate diagnostic marker for lung cancer.




Figure 1 | Screening of cytokines using the multiplex Luminex System. Heat map showing the expression level of 20 cytokines in the plasma of 36 patients with lung cancer and 19 healthy controls.





The Expression Level of CXCL14 in Plasma and Diagnostic Effect Evaluation

We included 286 patients with lung cancer and 80 control subjects for blood tests, with 184 (64.3%) men and 102 (35.7%) women (Table S2). The median age was 60 years (range 25-81 years); 168 were smokers, while 118 people never smoked. A total of 202 adenocarcinomas, 52 squamous cell carcinomas, 13 small cell carcinomas, and 19 other carcinoma types were included. There were 137 patients with stage I lung cancer, 39 patients with stage II, 71 patients with stage III, and 39 patients with stage IV. The staging was based on the eighth edition of the TNM classification for lung cancer.

Plasma samples from lung cancer patients and healthy volunteers were assessed using an ELISA. The median CXCL14 concentration in the plasma of lung cancer patients was 2053.46 pg/ml and that in healthy volunteers was 31.25 pg/ml. Compared with healthy volunteers, plasma CXCL14 levels were 65.7 times higher in lung cancer patients. The plasma CXCL14 level in lung cancer patients was significantly increased (Figure 2A, P<0.0001). ROC curve analysis showed that plasma CXCL14 achieved an AUC of 0.9464 (95% confidence interval [CI], 0.9209–0.9719) at a cutoff point of 746.0 pg/ml for diagnosis of lung cancer, with 87.4% sensitivity and 85.0% specificity (Figure 2B). Further, Plasma level of CXCL14 were also significantly increased in patients with stage I lung cancer (Figure 2C, P<0.0001). ROC curve analysis showed that plasma CXCL14 achieved an AUC of 0.9353 [95% confidence interval (CI), 0.9034–0.9672] at a cutoff point of 840.3 pg/ml for diagnosis of stage I lung cancer, with 81.02% sensitivity and 92.5% specificity (Figure 2D). And we enrolled 57 patients with benign pulmonary nodule and tested the plasma CXCL14 concentration. Histological types included inflammation, hamartoma, tuberculosis, sclerosing pneumocytoma, sclerosing dngioma, fibrotic nodules, liomyoma and alveolar epithelial hyperplasia (Table S5). The plasma CXCL14 concentration was slightly higher in patients with lung cancer than in patients with BPNs (Benign pulmonary nodules), but the difference was not significant (cancer vs benign: 2053.46 vs 1611.06 pg/ml, median, P=0.209). The AUC for the plasma CXCL14 concentration to distinguish patients with lung cancer from patients with BPN was 0.5527 (95% CI, 0.477 to 0.6283), with 47.20% sensitivity and 78.95% specificity at the cut-off value of 2253.0 pg/ml (Figure S3).




Figure 2 | Plasma CXCL14 as a diagnostic biomarker in distinguishing lung cancer patients from control subjects. (A) Comparison of the CXCL14 concentration (determined by ELISA) in plasma between control subjects (n=80) and lung cancer patients (n=286) in a retrospective cohort. P<0.0001 determined by Mann–Whitney U tests. (B) ROC analysis of the diagnostic efficiency of CXCL14 in control subjects versus lung cancer patients in a retrospective cohort (AUC=0.9464, 95% CI: 0.9209–0.9719). (C) Comparison of the CXCL14 concentration (determined by ELISA) in plasma between control subjects (n=80) and stage I lung cancer patients (n=137) in a retrospective cohort. P<0.0001 determined by Mann–Whitney U tests. (D) ROC analysis of the diagnostic efficiency of CXCL14 in control subjects versus stage I lung cancer patients in a retrospective cohort (AUC=0.9353, 95% CI: 0.9034–0.9672). Scatter diagrams present the median values with interquartile ranges.





Correlation Between CXCL14 Expression in the Plasma of Lung Cancer Patients and Clinicopathologic Features

We assessed correlations between the CXCL14 level in plasma and the clinicopathological features of lung cancer patients. There was no significant difference in plasma CXCL14 based on sex (male: 1971.32 pg/ml, female: 2092.14 pg/ml, P=0.793), age (≤65 yrs: 2149.06 pg/ml, >65 yrs 1824.33 pg/ml, P=0.712), or smoking history (nonsmokers: 1711.00 pg/ml, smokers: 2232.81 pg/ml, P=0.411) (Table S2). There was a significant difference in plasma CXCL14 level among different histology subtypes (adenocarcinoma: 1647.88 pg/ml, squamous cell carcinoma: 2012.00 pg/ml, SCLC: 2886.00 pg/ml, other malignant types: 2776.21 pg/ml, P=0.009). Plasma CXCL14 levels were especially lower in adenocarcinoma than in SCLC (P=0.009) and other malignant types (P=0.001). Patients with early-stage lung cancer had lower plasma CXCL14 levels than patients with lung cancer at later stages (stage I: 1452.40 pg/ml, stage II: 1898.00 pg/ml, stage III: 2231.00 pg/ml, stage IV: 2661.62 pg/ml, P=0.041).



The Expression Level of CXCL14 in Urine and Diagnostic Effect Evaluation

We also included 284 patients with lung cancer and 122 control subjects for urine tests, with 158 (55.6%) men and 126 (44.4%) women (Table S3). The median age was 60 years (range 28-81 years); 136 were smokers, while 124 people never smoked. A total of 219 adenocarcinomas, 47 squamous cell carcinomas, 2 small cell carcinomas, and 16 other carcinoma types were included. There were 158 patients with stage I lung cancer, 48 patients with stage II, 53 patients with stage III, and 25 patients with stage IV. The staging was based on the eighth edition of the TNM classification for lung cancer.

Urine samples from lung cancer patients and healthy volunteers were assessed using an ELISA. The median CXCL14 concentration in the urine of lung cancer patients was 561.13 pg/ml and that in healthy volunteers was 326.16 pg/ml. Compared with healthy volunteers, urine CXCL14 levels were 1.7 times higher in lung cancer patients. The urine CXCL14 level in lung cancer patients was increased (Figure 3A, P<0.0001). ROC curve analysis showed that urine CXCL14 achieved an AUC of 0.6476 (95% confidence interval [CI], 0.5934–0.7091) at a cutoff point of 564.8 pg/ml for diagnosis of lung cancer, with 50.0% sensitivity and 78.69% specificity (Figure 3B). Further, urine level of CXCL14 were also increased in patients with stage I lung cancer (Figure 3C, P<0.0001). ROC curve analysis showed that urine CXCL14 achieved an AUC of 0.647 (95% confidence interval [CI], 0.5829–0.7111) at a cutoff point of 888.7 pg/ml for diagnosis of stage I lung cancer, with 39.24% sensitivity and 90.16% specificity (Figure 3D).




Figure 3 | Urinary CXCL14 as a diagnostic biomarker in distinguishing lung cancer patients from control subjects. (A) Comparison of the CXCL14 concentration (determined by ELISA) in urine between control subjects (n=122) and lung cancer patients (n=284) in a retrospective cohort. P<0.0001 determined by Mann–Whitney U tests. (B) ROC analysis of the diagnostic efficiency of urinary CXCL14 in a retrospective cohort of control subjects versus lung cancer patients (AUC=0.6476, 95% CI: 0. 0.5934–0.7091, P<0.0001). Scatter diagrams present the median values with interquartile ranges. (C) Comparison of the CXCL14 concentration (determined by ELISA) in urine between control subjects (n=122) and stage I lung cancer patients (n=158) in a retrospective cohort. P<0.0001 determined by Mann–Whitney U tests. (D) ROC analysis of the diagnostic efficiency of CXCL14 in control subjects versus stage I lung cancer patients in a retrospective cohort (AUC=0.647, 95% CI: 0.5829–0.7111). Scatter diagrams present the median values with interquartile ranges.





Correlation Between CXCL14 Expression in the Urine of Lung Cancer Patients and Clinicopathologic Features

We assessed correlations between the CXCL14 level in urine and the clinicopathological features of lung cancer patients. There was no significant difference in urine CXCL14 level among different histology subtypes (adenocarcinoma: 516.78 pg/ml, squamous cell carcinoma: 569.22 pg/ml, SCLC: 1624.59 pg/ml, other malignant types: 580.77 pg/ml, P=0.691), smoking history (nonsmokers: 627.68 pg/ml, smokers: 485.40 pg/ml, P=0.574) (Table S3), or urine CXCL14 level among different stages (stage I: 506.23 pg/ml, stage II: 629.87 pg/ml, stage III: 569.22 pg/ml, stage IV: 346.12 pg/ml, P=0.389). There was a significant difference in urine CXCL14 based on sex (male: 474.09 pg/ml, female: 602.98 pg/ml, P=0.048), age (≤65 yrs: 463.54 pg/ml, >65 yrs 769.05 pg/ml, P=0.049). In addition, 84 patients donated both blood and urine samples. Then we conducted correlation analysis on CXCL14 levels between blood and urine samples. The results proved that there was no significant correlation between them (Figure S2, P=0.661).



CXCL14 is Differentially Expressed in the Stromal and Tumor Compartments of Lung Cancer

We included 94 males (71%) and 39 women (29%) in this analysis (Table 1). The average age was 59.4 years (range 40-82 years). There were 27 patients in stage I, 29 in stage II, and 77 patients in stage III. Immunohistochemical staining and immunofluorescence staining showed that CXCL14 was mainly expressed in the cytoplasm (Figures 4A, B). The percentages of high CXCL14 expression in stromal fibroblasts and cancer cells were 57% (69/121) and 29.3% (39/133), respectively. Among these patients, 25 showed high expression in both compartments, 44 showed high expression in only in stromal fibroblasts, and 14 showed high expression only in cancer cells. These data suggest that CXCL14 is differentially distributed in stromal fibroblasts and cancer cells.


Table 1 | Correlation between CXCL14 expression in tissue and clinicopathological characteristics of lung cancer patients.






Figure 4 | CXCL14 expression in lung cancer tissues. (A) Representative images of immunohistochemical staining of CXCL14 in normal lung tissue and lung cancer tissues; magnification, ×20 (left) and ×40 (right). (B) Representative images of immunofluorescence staining of CXCL14 in normal lung tissue and lung cancer tissues. The left column shows the cell nuclei in blue (DAPI); the next column shows the presence of CXCL14 in green; the third column shows the cancer cells in red (pancytokeratin), and the final column shows a merged image of the three channels.





Associations of CXCL14 Expression in Tissue With Clinicopathologic Characteristics

To explore the clinical relevance of CXCL14 in lung cancer, associations between clinicopathological characteristics and epithelial or stromal CXCL14 expression were analyzed (Table 1). Stromal CXCL14 expression was significantly associated with advanced pathologic stage (P<0.001), pathologic N stage (P<0.001), and recurrence and metastasis (P=0.014). However, cancer cell CXCL14 expression was not correlated with any clinicopathological characteristics of the patients.



Associations of CXCL14 Expression in Tissue With PFS and OS

The mean follow-up time for these patients was 43.5 months (range 1–119 months). Kaplan–Meier plots showed that the 10-year OS rates and the 10-year DFS rates were 37.6% and 51.1% of all patients, respectively. The 10-year OS rates for patients with low and high CXCL14 expression in stromal fibroblasts were 63.5% and 20.3% (χ2 =23.07, P <0.001), respectively, and the 10-year DFS rates were 65.4% and 44.9% (χ2 =4.95, P =0.026), respectively (Figures 5A, B). However, no significant association was observed between CXCL14 expression in cancer cells and 10-year DFS (χ2 =1.35, P =0.245) or 10-year OS (χ2 =1.71, P =0.191) (Figures 5C, D). Multivariate analysis using the Cox proportional hazard model showed that variables associated with OS and PFS included pathologic N stage, recurrence and metastasis, and CXCL14 expression level in stromal fibroblasts (Table S4).




Figure 5 | Associations of CXCL14 expression in tissue with PFS and OS. (A, B) Kaplan-Meier analysis of overall survival and disease-free survival of lung cancer patients with stromal CXCL14 expression. (C, D) Kaplan-Meier analysis of overall survival and disease-free survival of lung cancer patients with tumor CXCL14 expression.






Discussion

Chemokines are small signaling proteins (8-10 kDa) produced by all cell types in the body, which function by inducing directional chemotaxis of nearby reactive cells and regulating homeostasis and inflammation of the local environment (18). By recruiting different immune cells into the tumor microenvironment, chemokines can directly and indirectly affect cancer progression and patient outcomes (19). CXCL14 is one of the chemokines whose function is quite obscure. It was initially identified as a highly expressed chemokine in breast and kidney tissues (BRAK) and is a member of the CXC chemokine family located on human chromosome 5 q31 (20). The effect of CXCL14 on tumor growth depends on the cell type expressing the factor. In colorectal, head and neck cancers and hepatocellular cell carcinoma, CXCL14 suppresses tumor progression and is correlated with better survival. However, in pancreatic and breast cancer, high stromal CXCL14 expression is associated with increased invasiveness, leading to poor survival in patients (21).

In our study, we used plasma samples to further confirm CXCL14 expression in a cohort of lung cancer patients. We discovered significantly elevated CXCL14 levels in the plasma of patients with lung cancer. Plasma CXCL14 predicts the diagnosis of lung cancer with an AUC of 0.9464 at a cutoff point of 746.0 pg/ml. This cutoff point provides 87.4% sensitivity and 85.0% specificity, which indicates that plasma CXCL14 can be used as a potential diagnostic marker for lung cancer. But the plasma CXCL14 concentration was slightly higher in patients with lung cancer than in patients with BPNs (Benign pulmonary nodules), and the difference was not significant (cancer vs benign: 2053.46 vs 1611.06 pg/ml, P=0.209). It will take a long time to enroll patients with benign pulmonary diseases in a cancer hospital. And the small sample of benign patients may lead to deviance of the above results. In the future, we will recruit more benign patients to optimize our study.

Interestingly, we also tested urine samples from 284 patients with lung cancer and 122 control subjects. The median CXCL14 concentration in the urine of lung cancer patients was 561.13 pg/ml and that in healthy volunteers was 326.16 pg/ml. Compared with healthy volunteers, urinary CXCL14 levels were increased 1.7 times. The urinary CXCL14 level in lung cancer patients was higher than that in healthy volunteers. ROC curve analysis showed that urinary CXCL14 predicted the diagnosis of lung cancer with an AUC of 0.6476 (95% confidence interval [CI], 0.5934–0.7091) at a cutoff point of 564.8 pg/ml. This cutoff point provided 50.0% sensitivity and 78.69% specificity. Urinary CXCL14 levels were correlated with sex (male: 474.09 pg/ml, female: 602.98 pg/ml, P=0.048) and age (≤65 yrs: 463.54 pg/ml, >65 yrs 769.05 pg/ml, P=0.049). Consistent with the results in plasma, CXCL14 levels were also higher in the urine of lung cancer patients than in the control group. But we conducted correlation analysis on CXCL14 levels between blood and urine samples. The results proved that there was no significant correlation between them(P=0.661).

Based on the above results, we assume that when a tumor develops in the body, CXCL14 is secreted into the blood to play a corresponding role, resulting in increased tumor-related chemokine levels in peripheral blood. Urine is produced by glomerular filtration of blood flowing through the kidney. Blood with an increased CXCL14 level results in urine with the same chemokine increase. Unfortunately, our results do not support this assumption, further sample capacities may be needed to test this hypothesis. However, no studies have been conducted to demonstrate the level of CXCL14 and its clinical role in a large cohort of urine samples from patients with lung cancer.

Although much effort has been made to search for specific cancer biomarkers, few have successfully been adapted for clinical applications. Clinical validation of an autoantibody panel test for lung cancer demonstrated a sensitivity and specificity of 36-39% and 89-91% respectively in three cohorts (22). A previous test for pan-cancer early detection combined NGS analysis of ctDNA in blood with a large panel of protein biomarkers and showed a specificity of 99% and sensitivity of 59% for lung cancer in 104 patients (23). Our study suggests that the plasma CXCL14 level may be a potential marker to assist lung cancer diagnosis with relatively satisfying sensitivity and specificity.

Using IHC, CXCL14 expression was evaluated in both tumor and stromal tissues. CXCL14 expression in tumor tissues was not significantly correlated with histological type, age, sex or pathological stage. However, CXCL14 expression in stromal tissues was significantly correlated with pathological stage, pN stage, recurrence and metastasis. In addition, CXCL14 is an independent prognostic biomarker. Patients with higher stromal CXCL14 had shorter PFS (P<0. 001) and OS (P<0. 001). These results are consistent with the latest findings reported by Xiaoqin Ji et al, who also analyzed CXCL14 expression in lung cancer tumors and stromal tissue and found a significant correlation between CXCL14 expression and pathological staging in stromal tissue only (24). Similarly, in a study by Elin Sjoberg et al., the expression of CXCL14 in breast cancer tissue and tumor tissue was analyzed, and only the expression of CXCL14 in the stroma was related to pathological stage and was an independent marker of breast cancer-specific and recurrence-free survival (25). They also discovered that CXCL14 secreted by surrounding fibroblasts increases the expression of mesenchymal markers and induces epithelial‐mesenchymal transition (EMT) and metastasis (26). In prostate cancer, CXCL14-producing fibroblasts can also enhance proliferation and migration in vitro and angiogenesis in vivo (27). Therefore, we assumed that increased CXCL14 secretion by fibroblasts in the microenvironment promoted tumor metastasis, resulting in poor prognosis. Meanwhile, in lung cancer cells, CXCL14 is usually perceived to be downregulated (28). Re-expression or overexpression of CXCL14 in lung cancer cells can suppress tumor growth in vivo in an autocrine or paracrine manner (29, 30). CXCL14 may have specific functions in different cell types.

This study has some limitations. First, the sources of blood and urine samples were not the same patients, which may result in a certain degree of bias. Second, the demographic characteristics of the healthy controls did not completely match those of the lung cancer patients. The age range of healthy controls was too wide and included more elderly people. Third, we used a retrospective cohort to confirm the diagnostic effect of CXCL14, which is not enough for a single biomarker. A larger, prospective validation still needs to be conducted. Additionally, the mechanism of high stromal CXCL14 as a negative prognostic factor remains to be investigated.

Overall, the level of CXCL14 in plasma can be used as a marker for early diagnosis of lung cancer at a cutoff point of 746.0 pg/ml. And the level of CXCL14 in urine can be used as a marker for early diagnosis of lung cancer at a cutoff point of 564.8 pg/ml. High expression of CXCL14 in stroma may be a prognostic factor for lung cancer in predicting poor overall survival and disease-free survival. This protein has great potential as a diagnostic and prognostic marker in lung cancer.
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Supplementary Figure 2 | Correlation analysis of CXCL14 in plasma and urine. Pearson correlation analysis of CXCL14 in plasma and urine in 84 patients (P=0.661).

Supplementary Figure 3 | (A) Comparison of the CXCL14 concentration (determined by ELISA) in plasma between benign patients (n=57) and lung cancer patients (n=286) in a retrospective cohort. P=0.209 determined by Mann–Whitney U tests. (B) ROC analysis of the diagnostic efficiency of CXCL14 in benign patients versus lung cancer patients in a retrospective cohort (AUC=0.5527, 95% CI: 0.477 to 0.6283).
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Backgrounds

Epidermal growth factor receptor (EGFR) mutation profiles play a vital role in treatment strategy decisions for non–small cell lung cancer (NSCLC). The purpose of this study was to evaluate the predictive efficacy of baseline 18F-FDG PET/CT-based radiomics analysis for EGFR mutation status, mutation site, and the survival benefit of targeted therapy.



Methods

A sum of 313 NSCLC patients with pre-treatment 18F-FDG PET/CT scans and genetic mutations detection were retrospectively studied. Clinical and PET metabolic parameters were incorporated into independent predictors of determining mutation status and mutation site. The dataset was randomly allocated into the training and the validation sets in a 7:3 ratio. Three-dimensional (3D) radiomics features were extracted from each PET- and CT-volume of interests (VOI) singularly, and then a radiomics signature (RS) associated with EGFR mutation profiles is built by feature selection. Three different prediction models based on support vector machine (SVM), decision tree (DT), and random forest (RF) classifiers were established. Furthermore, nomograms for estimation of overall survival (OS) and progression-free survival (PFS) were established by integrating PET/CT radiomics score (Rad-score), metabolic parameters, and clinical factors. Predictive performance was assessed by the receiver operating characteristic (ROC) analysis and the calibration curve analysis. The decision curve analysis (DCA) was applied to estimate and compare the clinical usefulness of nomograms.



Results

Three hundred thirteen NSCLC patients were classified into a training set (n=218) and a validation set (n=95). Multivariate analysis demonstrated that SUVmax and sex were independent indicators of EGFR mutation status and mutation site. Eight CT-derived RS, six PET-derived RS, and two clinical factors were retained to develop integrated models, which exhibited excellent ability to distinguish between EGFR wild type (EGFR-WT), EGFR 19 mutation type (EGFR-19-MT), and EGFR 21 mutation type (EGFR-21-MT). The SVM model outperformed the RF model and the DT model, yielding training area under the curves (AUC) of EGFR-WT, EGFR-19-WT, and EGFR-21-WT, with 0.881, 0.851, and 0.849, respectively, and validation AUCs of 0.926, 0.805 and 0.859, respectively. For prediction of OS, the integrated nomogram is superior to the clinical nomogram and the radiomics nomogram, with C-indexes of 0.80 in the training set and 0.83 in the validation set, respectively.



Conclusions

The PET/CT-based radiomics analysis might provide a novel approach to predict EGFR mutation status and mutation site in NSCLC patients and could serve as useful predictors for the patients’ survival outcome of targeted therapy in clinical practice.





Keywords: non-small cell lung cancer, PET-CT, radiomics, nomogram, EGFR mutation, survival prognosis



Introduction

Lung cancer is the leading cause of cancer-related death worldwide. Each year, approximately 1.6 million people die of lung cancer, and its five-year survival rate ranges from 4% to 17% (1). Histologically, non-small cell lung cancer (NSCLC) is the most frequent pathological subtype, which accounts for about 85% of the cases. Although early-stage lung cancer patients have a higher postoperative survival rate, treatments of advanced NSCLC show a relatively low response rate and significant toxicity (2). With the advance of precision medicine and personalized treatments, targeted therapy of NSCLC plays an increasingly important role as a rising star and was demonstrated to effectively improve the survival prognosis of lung adenocarcinoma patients with EGFR gene mutations (3). A series of previous studies (4, 5) have shown that patients with EGFR mutations exhibited longer overall survival (OS) and progression-free survival (PFS) than those with EGFR-WT when receiving tyrosine kinase inhibitors (TKIs) therapies. Additionally, regarding the most common sensitive mutations include exon 19 deletion (19DEL) and exon 21L858R, previous studies have demonstrated that patients with 19DEL mutations may have a greater survival benefit after TKIs treatment than those with 21L858R missing mutations (6, 7). Therefore, NSCLC therapies underwent an innovative transformation when it was realized that the mutant status of epidermal growth factor receptor (EGFR) directly affected the effectiveness of EGFR TKIs. It is critical to identify the molecular profiling of EGFR status in advanced NSCLC prior to individualized targeted therapy.

At present, clinical gene mutation detection usually uses tissue or cytological specimens, which has some disadvantages, such as trauma, difficulty in sampling, high cost, and unavoidable temporal and spatial heterogeneity of tumors (8). Analysis of circulating cell-free tumor DNA (ctDNA) is considered to be another emerging method for assessing EGFR mutation status (9). However, studies have shown that the ctDNA test has a relatively high false negative rate in clinical application, and the price is relatively high (10, 11). Therefore, there is an urgent need to develop noninvasive, simple, rapid, and reliable methods for gene mutation detection.

Radiomics is an emerging field in which a large number of quantitative imaging features are extracted from medical images to identify those most closely related to clinicopathologic, molecular, and genetic characteristics with the purpose of improving the diagnostic and prognostic accuracy (12). Although a series of works (13–15) have been reported to explore the potential relation between EGFR mutation status and radiomic features derived from CT images, only a few studies using PET/CT have been reported in this field. In the molecular imaging, it is often based on visual analysis or conventional parameters, maximum standardized uptake value (SUVmax), e.g., resulted in unideal predictive performance. Nevertheless, there is a lack of related researches integrating radiomics features with conventional semantic features. Moreover, previous studies mainly focused on the differentiation between EGFR-WT and EGFR-MT without involving the identification of specific mutation sites (EGFR-19-MT or EGFR-21-MT).

Therefore, the purpose of this study was to investigate whether radiomics features extracted from the same volume of interest (VOI) of PET and CT images combined with metabolic indexes and clinicopathological parameters could be used to predict EGFR mutation profiles and mutation site based on a tri-classification method. Furthermore, we intended to predict survival benefits of NSCLC patients treated with TKIs.



Materials and Methods


Patient Selection

This study was approved by the institutional review committee of Harbin Medical University Cancer Hospital. Given the retrospective nature of the study design and the anonymity of patient information, the informed consent requirement was waived. A total of 313 histologically proven NSCLC patients were retrospectively enrolled who underwent pretreatment 18F-FDG PET-CT scans in our hospital between January 2013 and June 2018. Inclusion criteria were as follows (1): pathologically confirmed NSCLC (2); PET-CT scans performed within one month prior to surgery or biopsy (3); no history of any antitumor therapy before scanning (4); no history of other malignancies (5); a single lesion with a maximum diameter ≥ 1 cm. Exclusion criteria were as follows (1): no genetic test for EGFR or unavailability of genetic test results (2) none or low FDG metabolism of pure ground-glass nodules (3) incomplete clinical data (4) difficulty in tumor margin delineation. Clinic-pathological information was obtained through clinical medical record retrieval, including age, gender, pathological stage, location, adenocarcinoma predominant subtype, carcinoembryonic antigen (CEA), smoking history and tumor size. Metabolic data including SUVmax, mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) were also recorded. The dataset was randomly assigned in a 7:3 ratio to the training cohort and validation cohort. Study design and patient allocation are shown in Figure 1. All cases in the training cohort were used to train the classification model, while cases in the validation cohorts were used to independently evaluate the model’s performance.




Figure 1 | Study design and patient allocation.





EGFR Mutation Detection

Specific gene mutation information is confirmed by performing genetic testing on tumor tissue samples obtained by surgical resection or biopsy by an experienced physician. The mutation sites of four exons (exon 18-21) in the coding region of the EGFR gene were detected by real-time PCR. If any exon mutation was identified, the tumor was classified as EGFR-MT, otherwise considered as EGFR-WT.



Image Acquisition

All patients fasted for more than 6 hours before scanning, and were tested blood glucose levels, which were kept below 11.0 mmol/L. The image acquisition was performed using the discovery VCT 64 PET/CT system (GE Healthcare, Milwaukee, USA). A 3.78 MBq/kg dose of FDG was administered intravenously. Approximate one hour later, whole-body CT scanning was performed with a standardized protocol consisting of 120 kV, 140 mA, and 3.75 mm slice thickness. Then, for PET, the images acquisition time was 2 minutes per bed position. Image reconstructions were performed based on the 3D ordered subset expectation-maximization algorithm (2 iterations and 17 subsets).



Image Analysis, Tumor Segmentation and Radiomics Feature Extraction

The PET/CT images were analyzed by two radiologists blinded to the clinical and pathological results, (Reader 1, M.W and Reader 2, M.P with 15- and 20-years’ experience in the interpretation of PET/CT images, respectively). The metabolic parameters were measured by drawing a region-of-interest (ROI) on the axial PET image based on a threshold of 40% of SUVmax using commercial software (PET VCAR; GE Healthcare, USA). Any disagreement was resolved by consensus. SUVmax was defined at the highest value on one pixel with the highest counts within the ROI (16).

The overview of radiomics workflow is displayed in Figure 2. Axial PET and CT digital imaging and communications in medicine images obtained from the picture archiving and communication system were applied for tumor segmentation. The tumor lesion was delineated separately on axial PET and CT images using LIFEx software (open-source software; www.lifexsoft.org/index.php). All 3D segmentation was first delineated automatically by means of a fixed threshold of 40% of the SUVmax, which were corrected by a radiologist manually afterward, blinded to surgical and pathological results.




Figure 2 | The workflow of our study. (A) image acquisition; (B) tumor masking; (C) feature extraction; (D) feature selection; (E) model construction; (F) nomogram generation.



We adopted three steps to preprocess the PET and CT images prior to feature extraction (17). Firstly, we resampled all images to a uniform voxel size of 1 mm × 1 mm × 1 mm using linear interpolation to minimize the influence of different layer thicknesses. Secondly, based on the gray-scale discretization process (bin width for CT = 25, bin width for PET = 0.1), we convert the continuous image into discrete values. Finally, we use the Laplacian of Gaussian and wavelet image filters to eliminate the mixed noise in the image digitization process in order to obtain low- or high-frequency features. Radiomics features were extracted from each PET-derived volume of interest (VOI) and CT-derived VOI by applying dedicated AK software (Artificial Intelligence Kit; GE Healthcare), which is in compliance with image biomarker standardization initiative guidelines (18). A total of 2074 radiomics features were extracted from each VOIs (1037 for CT, 1037 for PET) including (i) 198 for first-order feature, (ii) 14 for shape feature, (iii) 264 for gray level co-occurrence matrix (GLCM) feature, (iv) 176 for gray level size zone matrix (GLSZM) feature, (v) 176 for graGy level run length matrix (GLRLM) feature, (vi) 55 for neighborhood gray tone difference matrix (NGTDM) feature, (vii) 154 for gray level dependence matrix (GLDM) feature.



Feature Selection

After the radiomics features extraction, Z-score normalization was done on each radiomics feature. In addition, the same preprocessing procedure was also applied to the testing set. The dataset was randomly assigned to either the training set or test set in 7:3 ratios. Intra- and inter-class correlation coefficients (ICCs) were calculated to assess the intra- and inter-observer reproducibility, and those radiomics signatures with ICC lower than 0.80 were excluded due to the poor reproducibility. Specifically, Reader 1 and Reader 2 drew the VOIs of 60 cases (20 EGFR-WT NSCLCs, 20 EGFR-19-MT NSCLCs and 20 EGFR-21-MT NSCLCs) of CT images and PET images randomly selected from the whole cohort. Reader 1 repeated the segmentations two weeks later. ICC greater than 0.80 indicated good agreement of feature extraction. The VOI segmentation for the remaining cases were performed by Reader 1.

The feature selection was carried out by using a stepwise selection method. Firstly, univariate logistic regression analysis was utilized to select features with P < 0.05 for the subsequent analysis. Secondly, multivariate logistic regression analysis was applied to choose features closely related to different EGFR status. The P-in and P-out of multivariate logistic analysis were 0.05 and 0.10, respectively. Finally, a subset of the most informative features was retained using the least absolute shrinkage and selection operator (LASSO) method.



Machine Learning Model

Based on clinical variables, PET metabolic parameters, and PET/CT-derived radiomics features, three different machine learning classifiers were applied to develop a comprehensive model for differentiating between EGFR-WT, EGFR-19-MT, and EGFR-21-MT, respectively. A support vector machine (SVM) model was built bused on the selected optimal feature subsets of the training dataset. The hyper-parameters of the SVM model were automatically selected by the search method. The kernel, gamma and C were “rbf”, 0.1 and 0.1, respectively. Similarly, two other models using RF and DT classifiers were also established.



Construction of Radiomics Nomograms

For patients receiving TKIs targeted therapy, all the clinical prognostic factors (including EGFR mutation site, gender, smoking status, pathological stage, location, histologic subtype, CEA, age and tumor size) and PET metabolic parameters (SUVmax, SUVmean and TLG) were evaluated by univariate analysis using the Kaplan-Meier approach. Statistically significant variables were analyzed for the multivariate Cox forward stepwise regression model to select independent predictors of OS and PFS. Cox regression models were utilized to select the most useful predictive features associated with patients’ survival outcomes. A PET/CT radiomics score (Rad-scores) was calculated for each patient by a linear combination of selected features weighted according to their respective coefficients, and corresponding nomograms were established by integrating the independent prognostic indicators as well as the Rad-score to assess survival benefit. To assess the clinical usefulness of the nomograms, C-index was calculated to evaluate the performance of the models, calibration curve analysis and DCA were performed for estimating and comparing the clinical usefulness of nomograms.



Treatment, Follow Up and Survival Analysis

All patients with EGFR mutation type received first-line EGFR-TKI therapy and routine follow-up after treatment. The endpoints of this study were PFS and OS. PFS is defined as the time interval from treatment to recurrence or progression of the disease. OS is defined as the time interval from treatment to death. Survival curves were drawn using the Kaplan-Meier approach and compared using the log-rank test. Censored data were removed and all remaining data were used for survival analysis.



Statistical Analysis

Univariate analysis (chi-square test or Mann-Whitney U test) was performed by using SPSS software (Version 25.0, IBM). The predictive performance of the machine learning models was determined by the receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated. The “RMS” package was used to create the nomogram (19). All statistical analyses of this study were performed using R 3.5.1 and Python 3.5.6. A double-tailed P value less than 0.001 indicated statistical significance.




Results


Clinical Characteristics of Patients

A total of 313 NSCLC patients were enrolled in this study according to preset inclusion criteria, including 149 males and 164 females, with an average age of 59.21 ± 8.24 years (range 34–78). The sample included 102 cases of EGFR- 21-MT, 79 cases of EGFR-19-MT and 132 cases of EGFR-WT. The baseline information of all patients is displayed in Table 1. There were no significant differences between the training and validation sets in terms of age (P = 0.2244), TLG (Total Lesion Glycolysis) (P = 0.9373), tumor size (P = 0.0747), smoking history (P = 0.3849), pathological stage (P = 0.0675), tumor location (P = 0.4201) and carcinoembryonic antigen (CEA) level (P = 0.4076). Gender, Smoking history, SUVmax and SUVmean were significantly different between different EGFR mutation status in univariate logistic regression analysis in Supplementary Table 1. Multivariate logistic regression analysis revealed that only gender (EGFR-21-MT: OR =0.167, 95% CI [0.085-0.328], P < 0.001; EGFR-19-MT: OR =0.287, 95% CI [0.124-0.664], P < 0.001) and SUVmax (EGFR-21-MT: OR =1.186, 95% CI [1.122-1.253], P < 0.001; EGFR-19-MT: OR =1.330, 95% CI [1.241-1.424], P < 0.001) were independent predictors of EGFR mutation status and mutation site profiles in NSCLC patients in Supplementary Table 2.


Table 1 | Demographic information and clinicopathological characteristics of selected patients with NSCLC.





Survival Outcome

As of December 31, 2020, 163 of 181 populations had been successfully followed up regarding the OS and PFS in the nomograms-predicted set. The overall death rate was 48.47% (79/163) and the overall progression rate was 56.44% (92/163), respectively. The median OS of all populations was 25 months (range, 1-84 months), particularly 20 months (range, 1-59 months) for the EGFR-19-MT patients and 24 months (range, 2-84 months) for the EGFR-21-MT patients (log-rank test, P < 0.001). The median PFS of the patients was 21 months (range, 1-63months), particularly 16 months (range, 1-46 months) for the EGFR-19-MT patients and 20 months (range, 0.5-49 months) for the EGFR-21-MT patients (log-rank test, P < 0.001). The multivariate Cox regression analysis demonstrated that SUVmax and mutation site were independent prognostic indicators of both OS (HR=1.210 (95% CI) and 0.024 (95% CI), P< 0.001) and PFS (HR=1.001 (95% CI) and 0.026 (95% CI), P < 0.001). The corresponding survival curves were displayed in Supplementary Figures 1–4.



Intra and Inter-Observer Reproducibility of Feature Extraction

The intra-observer ICC ranged from 0.809 to 0.914, and inter-observer ICC ranged from 0.758 to 0.900, therefore, an ideal intra- and inter-observer reproducibility of feature extraction was demonstrated in our study.



Feature Extraction and Selection

A total of 2632 radiomics features were extracted from each VOIs (1316 for CT, 1316 for PET), and 14 radiomics features were filtered, which consisted of six CT-derived radiomics features and eight PET- derived radiomics features. The radiomic features and corresponding coefficients are listed in Supplementary Table 3.



Performance of Different Prediction Models

The ROC analysis demonstrated clinical usefulness of the SVM model, which is superior to the DT model and RF model. All results regarding diagnostic efficacy were displayed in Table 2 and the ROC curves were demonstrated in Figure 3. The AUC values of the SVM model in preoperative prediction of EGFR-WT, EGFR-21-MT and EGFR-19-MT were 0.881, 0.851 and 0.849, respectively in the training cohort, 0.926, 0.805, and 0.859, respectively in the validation cohort. The AUC values of the DT model in preoperative prediction of EGFR-WT, EGFR-21-MT and EGFR-19-MT were 0.881, 0.851 and 0.849, respectively in the training cohort, 0.926, 0.805 and 0.859, respectively in the validation cohort. The AUC values of the RF model in preoperative prediction of EGFR-WT, EGFR-21-MT and EGFR-19-MT were 0.881, 0.851 and 0.849, respectively in the training cohort, and 0.926, 0.805 and 0.859, respectively, in the validation cohort.


Table 2 | The predictive performance (area under the curve) of three classifiers in Training set and Validation set.






Figure 3 | The predictive performance of models. The ROC of SVM model in training set (A) and validation set (B). The ROC of DT model in training set (C) and validation set (D). The ROC of RF model in training set (E) and validation set (F).





Construction and Validation of Radiomics Nomogram

Among clinical parameters, SUVmax and mutation sites proved to be independent predictors of OS and PFS, which was integrated into the nomogram’s development in Supplementary Tables 4–7. Radiomics features for calculating PET/CT Rad-scores of OS and their importance were displayed in Table 3. Radiomics features for calculating PET/CT Rad-scores of PFS and their importance were displayed in Table 4.


Table 3 | Radiomic characteristics and significance of PET/CT radiomic scores (Rad-scores) used to calculate OS.




Table 4 | Radiomic characteristics and significance of PET/CT radiomic scores (Rad-scores) used to calculate PFS.



For estimation of OS, the C-indexs of the clinical nomogram in the training and validation sets were 0. 65 and 0.62, respectively. The C-index of the Integrated nomogram in the training set and validation set were 0.80 and 0.83, respectively. For estimation of PFS, the C-index of the clinical nomogram in the training and validation sets were 0.67 and 0.67, respectively. The C-index of the integrated nomogram in the training and validation sets were 0.80 and 0.82, respectively. The integrated nomogram outperformed the radiomics nomogram and the clinical nomogram. Nomograms were shown in Figure 4. The diagnostic performance of nomograms is shown in Table 5. The corresponding calibration curve and decision curve are displayed in Figures 5, 6.




Figure 4 | The Integrated model for OS (A) and PFS (B) prediction based on rad-score and clinical factors (mutation site, SUVmax). The Radiomics model for OS (C) and PFS (D) prediction based on rad-score. The Clinical model for OS (E) and PFS (F) prediction based on clinical factors (mutation site, SUVmax).




Table 5 | Prognostic nomogram performance.






Figure 5 | Calibration curve of the integrated model (A), radiomics model (B) and clinical model (C) for OS estimation in the training set. Calibration curve of the integrated model (D), radiomics model (E) and clinical model (F) for OS estimation in the validation set. Calibration curve of the integrated model (G), radiomics model (H) and clinical model (I) for PFS estimation in the training set. Calibration curve of the integrated model (J), radiomics model (K) and clinical model (L) for PFS estimation in the validation set.






Figure 6 | Decision curve of the nomograms for OS (A) and PFS (B) in the training set. Decision curve of the nomograms for OS (C) and PFS (D) in the validation set.






Discussion

In summary, there are two highlights of our study. Firstly, we developed the first-of-its-kind PET/CT-derived radiomic signature based on the three-classification approach, which demonstrated excellent clinical usefulness in predicting EGFR mutation status. The radiomic signature successfully stratified NSCLC patients into EGFR-WT, EGFR-19-MT and EGFR-21-MT subgroups. Secondly, radiomics nomograms incorporating the radiomics signature were successfully established, demonstrating the incremental value of the radiomics signature to the conventional clinico-pathological factors for individualized survival estimation.

In this study, we firstly explored the potential association between PET metabolic parameters and the EGFR mutation profiles. Our findings demonstrated that there was a significant difference in SUVmax between EGFR-WT, -19-MT and -21-MT patients. Similarly, in a previous study conducted by Lv et al. (20) confirmed that 18F-FDG PET/CT metabolic parameters’ values were significantly lower in EGFR-MT than in EGFR-WT NSCLCs. Another previous study also reported that EGFR-MT lung adenocarcinomas have relatively lower 18F-FDG uptake in comparison with EGFR-WT tumors (21), and SUVmax of patients EGFR-21-MT was higher than that of EGFR-19-MT (22). The possible reasons are explained as follows: EGFR mutation was correlated with low tumor metabolic activity of NSCLCs on 18F-FDG PET/CT. Several researchers considered that EGFR-TKIs could accelerate the glucose uptake of tumor cells. Specifically, tumor cells with high glucose metabolism levels have abundant glucose uptake. Thus, they have less demand for EGFR-TKIs compared to low metabolic tumor cells. As a result, the incidence of EGFR-MT in NSCLCs with high SUVmax is relatively lower (23). Our results are in line with such conclusions. However, different from other acceptable notions, Results from Lee et al. (24) and Minamimoto et al. (25). Indicated that no significant difference was found regarding the SUVmax between the EGFR-WT and EGFR-MT patients, suggesting that SUVmax was not an independent predictor for EGFR mutation. Previous studies conducted by Kanmaza et al. (26) and Ko et al. (27) demonstrated that a higher SUVmax was associated with an EGFR mutation. As a result, these conflicting results demonstrated that 18F-FDG uptakes may not be a dependable marker for predicting EGFR mutation status. The possible reasons for these discrepant findings can be attributed by the patient baseline demographics of the enrolled patients, the small study sample size number of patients in our study, and the complex tumor microenvironment.

Although a significant relationship between the tumor glucose metabolism level depicted on PET images and EGFR mutation profiles has been reported in several works (22, 28, 29), traditional PET-derived semiquantitative indexes show insufficient ability to be widely used in clinical practice. It has been demonstrated that SUVmax as a single pixel value only yield moderate AUC for differentiating EGFR-WT from EGFR-MT, whereas TLG as a volumetric measurement of glucose metabolism level has not demonstrated more satisfactory performance either. Thus, our study established a comprehensive prediction model based on 18F-FDG PET/CT radiomics analysis to provide additional value in optimizing the predictive performance for EGFR mutation profiles in patients with NSCLC.

Radiomics, as an emerging field, has greatly promoted the diagnostic and prognostic accuracy. Currently, radiomics for determining gene mutation status in patients with NSCLC based on PET/CT images were reported in several studies (29–31). In a previous study, Zhang et al. (32) developed radiomics model to assess the predictive power of pre-therapy 18F-FDG PET/CT-based radiomic features for EGFR mutation status in NSCLC. However, firstly, it was carried out on a relatively small sample size (two hundred and forty-eight patients). Secondly, the area under the curve values analysis for predicting EGFR mutation status displayed limited discrimination performances (with AUC equal to 0.79 in the training set, and 0.85 in the validation set). Thirdly, advanced radiomics features were not extracted for all patients for technical reasons (only 47 PET and 45 CT radiomic features). In contrast, multiple machine learning classifiers were utilized to identify predictive radiomic features, and the SVM model yielded a training AUC of 0.881, 0.851 and 0.849 in EGFR-WT, EGFR-19-WT and EGFR-21-WT, respectively, whereas a validation AUC of 0.926, 0.805 and 0.859, respectively in the current study, which might provide higher diagnostic performance.

The current study was applied relatively larger sample size, higher-order features and advanced radiomics analysis methods, as well as high-dimensional radiomics signatures extracted up to 2632. Li et al. (33) developed radiomics model through an integrated analysis of 115 NSCLC patients with somatic mutation testing to investigate the feasibility of quantitative and qualitative features extracted from PET-CT in evaluating EGFR mutation status in NSCLC patients. Only a total of 38 radiomic features quantifying tumor morphological, grayscale statistic, and texture features were extracted from the primary PET/CT images. A radiomic signature based on both PET and CT radiomic features outperformed individual radiomic features, the PET or CT radiomic signature. Additionally, a combined radiomic signature with clinical factors exhibited a further improved performance in EGFR mutation status differentiation in NSCLC. In the present study, we also constructed the different classifiers based on integrated radiomic features derived from PET, CT and metabolic parameters to further improve the diagnostic ability.

Furthermore, in terms of predicting EGFR gene mutations in NSCLC, few studies involve predicting the certain EGFR mutation site (EGFR-19-MT or EGFR-21-MT) using PET-CT. The study of Zhang et al. (34) have validated that only one PET radiomics feature demonstrated significant but low predictive ability (AUC = 0.661) for differentiating EGFR-19-MT from EGFR-21-MT. Compared with the above study, our prediction model can distinguish EGFR-WT, EGFR-19-MT and EGFR-21-MT in one stop, and shows good discrimination performance.

Regarding strengths of the present work, our results not only predicted EGFR mutation status and mutation site, but also predicted patient survival outcomes, which have scarcely been investigated. In clinical practice, although the tumor, node, and metastasis (TNM) staging system are commonly applied to evaluate the survival prognosis of malignant tumors, we have to admit that this method still has many inevitable shortcomings in the prognostic assessment of lung cancer (35). In fact, the survival period of patients at the same stage may differ. Thus, a one-size-fits-all strategy based on TNM is not applicable in all situations. Novel methods of prognostic assessment are urgently needed to achieve precision treatment. In this study, we supplied clinicians with an easy-to-use method for predicting survival outcomes in NSCLC patients receiving targeted therapy by constructing a radiomics nomogram that exhibited excellent performance, with high c-indexes in the validation set. Furthermore, with the inclusion of clinic-pathological variables in a single nomogram, the prediction performance was further improved, which could allow for better decision-making for NSCLC patients. In the present study, we found that SUVmax and mutation site were independent predictors of the survival period, suggesting their clinical usefulness in the long-term management of NSCLC patients receiving TKIs. Our data provided concordant results to previous study that SUVmax can provide some evidence for survival prognosis (36). On the basis of this fact, we guess that the higher the level of glucose metabolism, the more aggressive tumor cell growth is, and the poorer the patient’s survival prognosis is (37). Yang et al. demonstrated that gender was an important prognostic risk factor in NSCLC patients receiving TKI therapy, which is inconsistent with our findings, possibly due to differences in the inclusion of the study population (38).

Although this study has obtained satisfactory results, there are still several limitations: Firstly, patient selection bias might exist due to the retrospective nature. Thus, a prospective validation might provide sufficient evidence for further clinical application. Secondly, cases from a single center and relatively small sample size may impair the portability of the prediction model. It is necessary to conduct multi-center research to enhance the generalization ability of the model. Thirdly, only lung adenocarcinoma was included in this study. The predictive ability of our model in other lung cancer types is needed to be validated. Fourth, as for the delineation of the lesions, a semi-automatic segmentation method is used. The more time-consuming approach should be explored in the future.



Conclusion

In conclusion, this study demonstrated that the pre-treatment PET/CT-based radiomics features exhibited excellent performance for the prediction of EGFR mutation profiles in lung adenocarcinoma. Furthermore, we provided an easy-to-use approach to predict the survival outcome of patients receiving targeted therapy, which can be very useful in the clinical practice to guide individualized molecular targeted therapy.
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Objective

Methylation of the promoters of SHOX2 and RASSF1A are potentially informative biomarkers for the diagnosis of early lung adenocarcinoma (LUAD). Abnormal methylation of SHOX2 and RASSF1A promoters may promote the occurrence and facilitate the progression of LUAD.



Materials and Methods

We selected 54 patients with early LUAD and 31 patients with benign lung nodules as a NJDT cohort and evaluated their DNA methylation and mRNA sequencing levels. The DNA methylation sequencing, mRNA sequencing, and clinical data for patients with LUAD were obtained from The Cancer Genome Atlas, and served as a TCGA cohort. We evaluated the diagnostic potential of a SHOX2 and RASSF1A combined promoter methylation assay for detection of early LUAD in the NJDT cohort. Then we explored the promoter methylation levels of SHOX2 and RASSF1A and their gene expression between normal and tumor samples at different stages in both cohorts. Pathways enriched between tumor and normal samples of methylation-positive patients in the NJDT cohort were analyzed.



Results

In the NJDT cohort, the sensitivity of the combined promoter methylation assay on tumor samples was 74.07%, the sensitivity on paired tumor and paracancerous samples was 77.78%, and the specificities in both contexts were 100%. The combined promoter methylation-positive patients had clinicopathologic features including older age, larger tumors, deeper invasion, and higher Ki-67 expression. In both cohorts, SHOX2 expression increased and RASSF1A expression decreased in tumor samples. The promoter methylation level of SHOX2 and RASSF1A was significantly higher in tumor samples at stage I-II than that in normal samples. The promoter methylation levels of these two genes were both negative associated with their expression in early tumor samples. In the NJDT cohort, methylation-positive patients of both individual SHOX2 and RASSF1A assays exhibited upregulation of folate acid metabolism and nucleotide metabolism in tumor samples. The SHOX2 methylation-positive and RASSF1A methylation-positive patients showed the downregulation of pathways related to cell proliferation and apoptosis and pathways involved in DNA repair, cell growth and cell adhesion, respectively.



Conclusion

The combined promoter methylation assay for SHOX2 and RASSF1A can be used for screening and diagnosis of early LUAD, with good sensitivity and specificity. The promoter methylation levels of SHOX2 and RASSF1A were associated with their abnormal mRNA expression, and affected DNA instability, cell proliferation, apoptosis and tumor microenvironment in patients with LUAD.





Keywords: DNA methylation detection, shox2, RASSF1A, early lung adenocarcinoma, folate acid metabolism, DNA instability, tumor microenvironment



1 Introduction

According to the World Health Organization (WHO), lung cancer is the leading cause of cancer death worldwide, with a morbidity rate of 11.4% and a mortality rate of 18.0% (1). In China, lung cancer has the highest incidence among malignant tumors (2). Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer (NSCLC), and accounts for ~40% of lung cancer cases. The surgical resection of the early-stage NSCLC offers a favourable prognosis, with 5-year survival rates of 70-90% (stage I), while most patients (approx. 75%) have advanced disease at the time of diagnosis (stage III/IV) and their survival remains poor (3). As sequencing techniques have developed, abnormal DNA methylation patterns have been found in various tumors, and are considered to be important causes of cancers (4). Methylation is often present in highly and moderately duplicated DNA sequences and plays a key role in chromosomal instability (5, 6). Promoter hypermethylation of tumor suppressor genes is usually associated with gene silencing (7). DNA methylation is involved in tumor formation in the early stages of carcinogenesis (8). In addition, DNA methylation is relatively stable over time and can be detected noninvasively in blood, urine, saliva and other body fluids. Therefore, more and more methylation biomarkers are being developed for early screening and diagnosis of tumors (9).

The detection of methylation patterns in Short Stature Homeobox 2 (SHOX2) and Ras-association domain family member 1A (RASSF1A) have been preliminarily used for the diagnosis of lung cancer. By comparing the methylation of SHOX2 in lung cancer and normal tissues, ninety-six percent (53 out of 55) of matched pairs showed a higher methylation level in tumor tissues (10). The promoter region of RASSF1A is hypermethylated in 63% of NSCLC cell lines, but not in normal epithelial cells (11). In BALF, the sensitivity of the SHOX2 and RASSF1A combined promoter methylation assay for NSCLC reached 71.5-83.2% and the specificity achieved 90.0-97.4% (12, 13). Moreover, the diagnostic value of the combined promoter methylation detection assay of SHOX2 and RASSF1A for early LUAD has not been fully developed, and the mechanism by which the hypermethylation of SHOX2 and RASSF1A contributes to LUAD occurrence and progression remains to be elucidated. Here we evaluated the significance of promoter methylation of SHOX2 and RASSF1A in the diagnosis of early LUAD. Then we analyzed methylation data from different cohorts and we explored mechanisms of hypermethylated SHOX2 and RASSF1A, leading to tumorigenesis and progression of LUAD.



2 Patients and Methods


2.1 The Recruitment Patients and Samples in the NJDT Cohort

A total of 54 patients with early LUAD and 31 patients with benign lung nodules who underwent surgeries in Nanjing Drum Tower Hospital from January 2017 to January 2018 were recruited (NJDT cohort). All patients had signed informed consent for dominating their samples. Preoperative computed tomography (CT) scan results of all patients indicated pulmonary nodules, and postoperative pathological diagnosis indicated LUAD or benign lung tumors (pulmonary atypical adenomatous hyperplasia, pulmonary fibrosis nodules, and pulmonary inflammatory pseudotumors). The matched samples of tumor, paracancerous (distance from tumor less than 1 cm) and normal lung tissue (distance from tumor more than 5 cm) were collected from each patient with LUAD. The matched samples of nodule, perinodular (distance from nodule less than 1 cm) and normal lung tissue (distance from tumor more than 5 cm) were collected from each patient with benign lung nodules. No patients received ablative therapy, chemotherapy, or radiation therapy before surgery. The sample collection and research were approved by the Ethics Committee of Nanjing Drum Tower Hospital.



2.2 Sample Examination in the NJDT Cohort


2.2.1 Pathological Evaluation

Formalin-fixed paraffin-embedded (FFPE) samples of patients with LUAD and patients with benign lung nodules were collected. The paraffin-embedded samples were cut into pathological sections, stained by hematoxylin and eosin (HE), and examined by two pathologists. The samples were graded and classified according to TNM Stage Groupings in the Eighth Edition proposed by International Association for the Study of Lung Cancer (IASLC) and the 2015 World Health Organization (WHO) Classification of Tumors of the Lung, Pleura, Thymus and Heart. In view of the high heterogeneity of lung adenocarcinoma, the major histological classification of each sample was determined by the dominant component. The clinicopathological data of the patients are shown in Table 1.


Table 1 | The clinicopathologic characteristics of patients with LUAD and pulmonary benign nodules in the NJDT cohort.





2.2.2 DNA Extraction and Bisulfite Treatment

Genomic DNA (gDNA) was extracted from FFPE samples using E.Z.N.A FFPE DNA Kit (Omega, Shanghai, China) according to the manufacturer’s instructions. The gDNA was treated with the EZ DNA Methylation Kit (Zymo Research, Beijing, China), according to the manufacturer’s instructions. This technique involves treating methylated DNA with bisulfite, which converts unmethylated cytosines into uracil, while, methylated cytosines remain unchanged during the treatment.



2.2.3 Methylation Detection and Analysis

The commercial SHOX2 and RASSF1A Methylation Detection Kit (Tellgen, Shanghai, China) for lung cancer was used to detect the methylation levels of CpG islands (CGIs) in the SHOX2 and RASSF1A promoter regions (13). Methylated SHOX2 and RASSF1A DNA plasmids were used as controls. A Roche LightCycler 480 II Real-time PCR System was used for quantitative real-time PCR (qPCR). The result interpretation of qPCR was carried out according to manufacturer’s instructions. An amplification curve of the FAM fluorescence signal with a smooth “S” shape and a threshold cycle (CT) < 35 indicated a positive result for RASSF1A methylation [RASSF1A_met (+)]; CT ≥ 35 indicated a negative result for RASSF1A methylation [RASSF1A_met (-)]. An amplification curve of the VIC fluorescence signal with a smooth “S” shape and a CT < 32 indicated a positive result for SHOX2 methylation [SHOX2_met (+)]; a CT ≥ 32 indicated a negative result for SHOX2 methylation [SHOX2_met (-)]. Either a positive RASSF1A or positive SHOX2 methylation result indicated a positive combined methylation result [combination_met (+)]; when both the RASSF1A and SHOX2 methylation results were negative, the result of the combined methylation test was negative [combination_met (-)].



2.2.4 Immunohistochemical Detection Interpretation

The tumor, paracancerous and normal FFPE samples in the NJDT cohort were cut into pathological sections and evaluated by immunohistochemistry (IHC). The IHC analyses were performed using rabbit anti-human polyclonal antibodies against Ki-67 (Thermo Fisher Scientific, catalog # MA5-14520, RRID AB_10979488), TTF-1 (Thermo Fisher Scientific, catalog # PA5-78209, RRID AB_2736758), Napsin A (Thermo Fisher Scientific, catalog # PA5-60970, RRID AB_2644471) as primary antibodies, and the goat anti-rabbit polyclonal antibody as the secondary antibody. Known positive sections were used as positive controls, and sections treated by PBS instead of primary antibody were used as negative controls. The IHC results were evaluated according to the staining intensity and percentage of positive tumor cells, (1) Napsin A IHC results were interpreted as follows (14): ① Based on the percentage of positive cells, 0 point for no positive cells, 1 point for the percentage of positive cells < 25%, 2 points for percentage of positive cells between 25% and 49%, and 3 points for percentage of positive cells ≥ 50%; ② Based on the staining intensity, 0 point for no staining, 1 point for light yellow staining, 2 points for moderate yellow staining, 3 points for brown staining. The product of ① and ② was regarded as the immunohistochemical score (IHCS). An IHCS < 3 was interpreted as Napsin A negative. An IHCS≥3 was interpreted as Napsin A positive. (2) Ki-67 IHC results were based on percentage of positive cells (15): a percentage of positive cells <10% indicated Ki-67 negative; a percentage of positive cells ≥10% indicated Ki-67 positive. (3) TTF-1 IHC results were based on staining intensity (16): staining with no color or light yellow indicated TTF-1 negative; staining with moderate yellow or brown indicated TTF-1 positive.



2.2.5 mRNA Library Construction and Sequencing

The FFPE tumor and paired normal samples of 45 patients were selected from 54 patients with LUAD for mRNA sequencing. The percentage of tumor cells in these samples should be more than 80%. Among the patients, 25 out of 45 were tested positive for SHOX2 promoter methylation and 18 out of 45 were tested positive for RASSF1A promoter methylation. Total RNA from samples was extracted using miRNeasy FFPE kit (QIAGEN). Ribosomal RNA was depleted using KAPA Stranded RNA-seq Kit with RiboErase (HMR) (KAPA Biosystems). Library preparations were performed with KAPA Stranded RNA-seq Library Preparation Kit (Roche). Library concentration was determined by KAPA Library Quantification Kit (KAPA Biosystems), and library quality was accessed by Agilent High Sensitivity DNA kit on Bioanalyzer 2100 (Agilent Technologies), which was then sequenced on Illumina HiSeq NGS platforms (Illumina). The amount of sequencing data for each sample was 30M.



2.2.6 mRNA Sequencing Data Analysis

The high-quality reads generated were aligned to the human reference genome (UCSC hg19) with hisat2 software. Then, guided by the Ensembl gene-annotation file, cuffdiff software (part of cufflinks) was used to reveal the expression profile of the mRNAs in terms of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values. The FPKM values were used to for the analysis of gene expression and enriched pathways. The Gene Set Enrichment Analysis (GSEA) algorithm was used to analyze differentially enriched pathways between tumor and matched normal tissues in SHOX2_met (+) and RASSF1A_met (+) groups, respectively (17, 18). The enrichment pathways were sorted by nom P-value and normalized enrichment score (NES), and a false discovery rate (FDR) value was determined. When |NES| > 1, nom P-value < 0.05, and FDR < 25%, the enriched pathways were significantly different between the tumor and normal samples.




2.3 Data Acquisition and Analysis of the TCGA Cohort

DNA methylation sequencing data from 465 LUAD samples and 31 normal samples were downloaded from the TCGA (https://portal.gdc.cancer.gov/). The beta values (β) were used to indicate the methylation level of methylated cytosine-guanine (CpG) dinucleotides. The mRNA sequencing data (HTSeq-FPKM) of 526 LUAD samples and 59 normal samples were also downloaded. The only CGI in the promoter region of SHOX2 contains six CpG sites, including cg01557547, cg04532033, cg06156376, cg16703882, cg18899952 and cg25694447. The only CGI in the promoter region of RASSF1A contains eleven CpG sites, including cg00777121, cg04743654, cg06172942, cg08047457, cg12966367, cg13872831, cg21554552, cg24859722, cg25486143 and cg25747192. The average normalized levels of the CpG sites in the promoter region were calculated as the CGI levels of SHOX2 and RASSF1A, respectively.



2.4 Workflow

The workflow of this study is demonstrated in Figure 1,




Figure 1 | Flowchart of the study protocol. LUAD, early lung adenocarcinoma; FFPE, Formalin Fixed and Paraffin Embedded tissues; ROC, Receiver operating characteristics; CGIs, CpG islands; SHOX2_met (+), positive results of SHOX2 promoter methylation assay; RASSF1A_met (+), positive results of RASSF1A promoter methylation assay.






3 Statistical Analysis

The statistical analyses were conducted with R software (version 4.0.2), GraphPad Prism software (version 6.0) and SPSS software (version 19.0). Receiver Operating Characteristics (ROC) curves were constructed to explore the diagnostic ability of the combined promoter methylation assay of SHOX2 and RASSF1A for early LUAD patients and calculate the specificities (SPs), and sensitivities (SEs). The DeLong test was used to evaluate the area under curves (AUC). The independent t-test was used for the comparison of continuous clinical variables and the Chi-square test or Fisher’s exact test was used to compare discontinuous clinical variables between combination_met (+) and combination_met (-) groups. Wilcoxon test was used to compare the methylation level between normal and tumor samples at different stages. Spearman correlation analysis was used to compute the correlation between methylation levels and gene expression in both cohorts. The multiple hypothesis test with the Benjamini-Hochberg method was used to control false discovery rate (FDR). All statistical tests were two-sided, and P values less than 0.05 were considered statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001).



4 Results


4.1 The Diagnostic Value of the SHOX2 and RASSF1A Combined Promoter Methylation Assay for Patients With LUAD in the NJDT Cohort

The SHOX2 and RASSF1A combined promoter methylation assay was performed on samples from 54 patients with early LUAD and 31 patients with benign lung nodules. The positive cases of the individual SHOX2, individual RASSF1A and combined promoter methylation assays were shown in the supplementary table (Supplementary Table 1). For the tumor samples from patients with LUAD, the sensitivity of the SHOX2 promoter methylation assay was slightly higher than that of RASSF1A, while the AUC of the SHOX2 and RASSF1A combined promoter methylation assay was significantly higher than those of individual SHOX2 and RASSF1A assays, respectively (DeLong test, P < 0.05) (Table 2; Figure 2A). The individual SHOX2 and RASSF1A assays were also sensitive to paracancerous samples of LUAD. 4/54 patients with LUAD were positive in paracancerous samples but negative in tumor ones detected by the individual SHOX2 assay. 5/54 patients with LUAD were positive in paracancerous samples but negative in tumor ones detected by the individual RASSF1A assay (Supplementary Figure 1). The tumor and matched paracancerous (T&P) samples were evaluated by the combined promoter methylation assay. The result was considered positive if either the tumor sample or the paracancerous sample was positive. The combined assay had higher sensitivity on T&P samples than on tumor samples from LUAD patients, and its AUC was significantly higher than those of individual SHOX2 and RASSF1A assays, respectively (DeLong test, P < 0.05) (Table 2; Figure 2B). In addition, the specificities of the individual and combined assays were all 100% for LUAD patients in the NJDT cohort.


 Table 2 | The sensitivities and specialties of SHOX2, RASSF1A and the combined promoter methylation assays on patients in the NJDT cohort.






Figure 2 | ROC analysis of SHOX2, RASSF1A and the combined promoter methylation assays on patients in the NJDT cohort. (A) ROC analysis of SHOX2, RASSF1A, and the combined promoter methylation assays of tumor samples in the NJDT cohort. T_RASSF1A: RASSF1A methylation assay on tumor samples; T_SHOX2: SHOX2 methylation assay on tumor samples; T_Combination: The combined promoter methylation assay of SHOX2 and RASSF1A on tumor samples; (B) ROC analysis of SHOX2, RASSF1A, and the combination methylation assays on tumor and matched paracancerous (T&P) samples in the NJDT cohort. T&P _RASSF1A: RASSF1A methylation assay on tumor and matched paracancerous samples; if either kind of samples were positive, the results were considered positive; T&P_SHOX2: SHOX2 methylation assay on tumor and matched paracancerous samples; if either kind of samples were positive, the results were considered positive; T&P_Combination: The combined promoter methylation assay of SHOX2 and RASSF1A on tumor and matched paracancerous samples; if either kind of samples were positive, the results were considered positive.





4.2 Comparison of Clinicopathological Characteristics of Patients Identified as Methylation Positive or Negative by the Combined SHOX2 and RASSF1A Promoter Methylation Assay

We compared the clinicopathological features between LUAD patients identified as combination_met (+) or combination_met (-) by the combined promoter methylation assay from the NJDT cohort (Supplementary Table 2; Supplementary Figure 2). The patients in the combination_met (+) group were characterized by older age (Independent t-test, P < 0.05), larger tumor size (Independent t-test, P < 0.05), invasive adenocarcinoma subtype (Fisher’s exact test, P < 0.05), and advanced TNM stages (Fisher’s exact test, P < 0.05) (Table 3). None of the 3 patients with Stage 0 LUAD were classified as combination_met (+). In the Stage IA group, 72% of the patients were classified as combination_met (+), while the percentage classified as combination_met (+) in the Stage IB and II groups were 100% and 86%, respectively. In patients with early LUAD from Stage 0 to Stage II, the positive rates of the SHOX2 and RASSF1A methylation assay increased significantly along with progression of disease stage. As the pathological subtype progressed from AIS to MIA to IPA, the percentage of combination_met (+) cases also significantly rose (Fisher’s exact test, P < 0.05). In addition, we evaluated Ki67, TTF-1, and Napsin A expression in LUAD samples by IHC analysis (Figure 3). The combination_met (+) group had more patients with positive Ki67 expression by IHC than those in the combination_met (-) group (Chi-square test, P < 0.05), but TTF-1 and Napsin A did not show the phenomenon (Chi-square test, P > 0.05) (Table 3).


Table 3 | Clinicopathologic characteristics between patients of combination_met (+) and combination_met (-) groups in the NJDT cohort.






Figure 3 | Immunohistochemical staining for Ki-67, Napsin A, and TTF1 expression in early LUAD samples from the NJDT cohort. Positive results (×400) of Ki-67(A), Napsin A (C), TTF1 (E) expression FFPE samples of early LUAD by IHC analysis. Negative results (×400) of Ki-67 (B), Napsin A (D), and TTF1 (F) expression FFPE samples of early LUAD by IHC analysis.





4.3 Changes and Correlation Between Promoter Methylation and mRNA levels of SHOX2 and RASSF1A in Both Cohorts

The DNA methylation and mRNA sequencing data from the TCGA cohort were used to explore changes and correlation between promoter methylation and mRNA levels of SHOX2 and RASSF1A (Supplementary Tables 3, 4). The promoter CGI levels of SHOX2 in LUAD samples at Stage I and II were significantly higher than those of normal samples (Wilcoxon test, P < 0.05), but samples at Stage III and IV showed no significance (Wilcoxon test, P > 0.05) (Figure 4A). While, the promoter CGI levels of RASSF1A maintained high at all stages of the disease (Wilcoxon test, P < 0.001) (Figure 4A). The expression of SHOX2 was significantly higher in tumor samples at Stage I-II than that in normal samples, but there was a negative correlation between SHOX2 expression and its promoter methylation level in tumor samples at Stage I (Spearman correlation, P < 0.05) (Figure 4C). The expression level of RASSF1A was significantly lower in tumor samples at all stages than that in normal samples, and the promoter methylation level of RASSF1A seemed negatively correlated with its expression in tumor samples at Stage I, but there was no significant difference (Spearman correlation, P > 0.05) (Figure 4E).




Figure 4 | Changes and correlation between promoter methylation and mRNA levels of SHOX2 and RASSF1A in both cohorts (A) Comparison of the promoter CGI levels of SHOX2 (left) and RASSF1A (right) between normal samples and tumor samples at Stage I-IV from the TCGA cohort; (B) Comparison of the promoter methylation CT values of SHOX2 (left) and RASSF1A (right) betwwen normal samples and tumor samples at Stage 0-II from the NJDT cohort. The CT values which were not detected within 40 cycles (>40) were calculated as 40 in the normal samples; (C) Comparison of the expression (FPKM values) of SHOX2 (left) and RASSF1A (right) between normal samples and tumor samples at Stage I-IV from the TCGA cohort; (D) Comparison of the expression (FPKM values) of SHOX2 (left) and RASSF1A (right) between normal samples and tumor samples at Stage 0-II from the NJDT cohort; (E) Correlation between promoter CGI levels and mRNA levels of SHOX2 (left) and RASSF1A (right) in tumor samples at Stage I from the TCGA cohort; (F) Correlation between the promoter methylation CT values and mRNA levels of SHOX2 (left) and RASSF1A (right) in tumor samples from the NJDT cohort.



In the NJDT cohort, the promoter methylation CT values of both SHOX2 and RASSF1A in tumor samples at Stage I and II were significantly lower than those in normal samples (Wilcoxon test, P < 0.05) (Figure 4B). Compared with normal samples, the SHOX2 expression showed a slight increase in tumor samples at Stage I (Wilcoxon test, P > 0.05) and a slight positive correction with the CT values (Spearman correlation, P > 0.05) (Figures 4D, F). The expression of RASSF1A in tumor samples at Stage I was significantly lower than that in normal samples and showed a significantly positive correction with CT values (Wilcoxon test, P < 0.05) (Figure 4D, F). Therefore, the promoter methylation of both SHOX2 and RASSF1A in early tumor samples were negative associated with their expression, respectively.



4.4 KEGG Pathways Enrichment Analysis Between Normal and Tumor Samples in Methylation Positive Groups From the NJDT Cohort

In order to explore biological pathways that might be influenced by hypermethylation of SHOX2 and RASSF1A in promoter regions, we performed KEGG pathway enrichment analysis by GSEA on the mRNA sequencing data from NJDT cohort (Supplementary Table 5). Compared with normal samples, SHOX2_met (+) tumor samples exhibited upregulation of two specific pathways related to folate metabolism (one carbon pool by folate) and DNA metabolism (homologous recombination) (Figure 5A). While, enriched pathways including vasoconstriction (vascular smooth muscle contraction, calcium signaling pathway), cell apoptosis and differentiation (TGF beta signaling pathway), signal transduction (neuroactive ligand receptor interaction), and water and salt metabolism (aldosterone regulated sodium reabsorption) were specifically downregulated in SHOX2_met (+) tumor samples. Meanwhile, RASSF1A_met (+) samples exhibited upregulation of two specific pathways which were related to folate metabolism (one carbon pool by folate) and cytosine synthesis (alanine aspartate and glutamate metabolism) (Figure 5B). While, enriched pathways of vasoconstriction (vascular smooth muscle contraction, calcium signaling pathway, regulation of actin cytoskeleton), gene transcription (WNT Signaling Pathway), cell differentiation and apoptosis (MAPK signaling pathway), signal transduction (neuroactive ligand receptor interaction), cell adhesion (cell adhesion molecules CAMs, tight junction, gap junction) and lipid metabolism (PPAR signaling pathway, adipocytokine signaling pathway) were significantly downregulated in RASSF1A_met (+) tumor samples. In the NJDT cohort, methylation-positive tumor samples of both individual SHOX2 and RASSF1A assays showed common upregulation of folate metabolism and nucleotide metabolism and common downregulation of vasoconstriction, cell apoptosis and differentiation, and nutrition metabolism involved in tumor microenvironment.




Figure 5 | Enrichment of KEGG pathways analyzed by GSEA between LUAD and matched normal samples of SHOX2_met (+) and RASSF1A_met (+) groups in the NJDT cohorts (A) The significant upregulated pathways and top 5 downregulated pathways of SHOX2_met (+) LUAD samples; (B) The significant upregulated pathways and top 5 downregulated pathways of RASSF1A_met (+) LUAD samples.






5 Discussion

NSCLC makes up about 85% of newly diagnosed lung cancer cases, and LUAD is the most common type of new NSCLC, accounting for about 40%. Traditional screening methods for NSCLC include sputum cytology, chest radiography, and computed tomography (CT) (19). However, among the small pulmonary nodules detected by imaging, up to 96% are benign nodules. Developing effective genetic biomarkers to distinguish malignant from benign nodules will be very beneficial for accurate diagnosis and improved treatment (20). With the advancement of epigenetic research, the mechanisms by which epigenetic modifications, including DNA methylation, are involved in cancer pathogenesis and becoming better understood (21). SHOX2 and RASSF1A methylation tests have diagnostic specificity and sensitivity in peripheral blood, alveolar lavage fluid, and tissue biopsy from lung cancer patients (12, 13), but their potential for screening and diagnosis of patients with early LUAD remains unclear.

In the present study, we examined matched tumor, paracancerous tissue, and normal samples from 54 patients with LUAD. We found that SHOX2 or RASSF1A promoter methylation tests are sensitive and specific for early LUAD, but the diagnostic efficacy of individual gene methylation assays was not high. For tumor samples, nearly twenty-three percent (9 out of 40) of combination_met (+) patients were positive in both individual assays. While, the rest (31 out of 40) combination_met (+) patients were only positive in one individual assay (Supplementary Figure 1). Therefore, the detection of both two genes can compensate the sensitive range of each other to some extent. Since there were only 3 patients with Stage 0 in the NJDT cohort, and their combined promoter methylation assays were all negative, the diagnostic potential of the combined promoter methylation assay for patients with Stage 0 remains unclear. Nevertheless, the sensitivity of the combined promoter assay was improved when it was applied on paired tumor and paracancerous samples instead of on tumor samples alone. This phenomenon was only seen in LUAD patients, but not in patients with benign lung nodules. We suggest that hypermethylation often precedes tumor formation and may be present in both tumor area and the vicinity. However, in the early stage of lung adenocarcinoma, the tumor is still in the initial stage with small size, and the hypermethylation of some focal cells has not been completely formed. Due to the limitation of location and volume of sampling, unmethylated tumor cells were collected and resulted in false positive error. While, the positive rates of the vicinity made up for this loss. It also indicates that the combined assay can be used to improve the detectable rates of early LUAD for those BALF and sputum samples, in which only paracancerous cells were obtained.

Subsequently, we analyzed the clinicopathological features of patients with early LUAD in different groups. In the NJDT cohort, as the age and clinicopathologic stage increased, the percentage of methylation-positive patients increased. As disease stage increased from Stage 0-II, or as LUAD progressed from AIS to MIA to IPA, promoter methylation levels of SHOX2 or RASSF1A increased gradually. We also found that the expression of Ki-67 positively correlates with the combined promoter methylation level of SHOX2 and RASSF1A. This is clinically relevant, as the 3-year survival rate of patients with high expression of Ki-67 is lower than that of those without Ki-67 expression. In primary lung cancer, high Ki-67 expression is associated with increased proliferation cancer cells (22), poor disease-free survival rates, and is significantly correlated with brain metastasis (23). This suggests that patients who tested positive by the combined methylation assay, may have rapid tumor progression and need aggressive treatments, despite perhaps having early-stage LUAD. Additionally, patients who were negative by the combined methylation assay may have the disease with relatively slow tumor cell proliferation.

SHOX2 is considered to be an oncogene in many published reports (24–27). We found higher levels of promoter methylation and gene expression in tumor samples, and the levels were associated negatively. This may indicate that promoter hypermethylation of SHOX2 regulates its expression to a certain extent, but it is not the only regulatory mode, and there may be other ways leading to the upregulation of SHOX2 in tumor samples. Furthermore, analysis on the TCGA cohort demonstrated that the methylation level of SHOX2 has not significantly risen at Stage III-IV. It may suggest that SHOX2 promoter hypermethylation is a biomarker for early LUAD but not for advanced LUAD. On the other hand, RASSF1A is considered to be a tumor suppressor gene (26, 28–30). In both cohorts, the promoter methylation level of RASSF1A were higher in tumor samples at all stages than those in normal samples, but its expression was lower. It seems that promoter hypermethylation and expression of RASSF1A can be used as biomarkers for early and advanced LUAD.

Although, the functions of SHOX2 and RASSF1A in some cancer contexts have been reported, the role of SHOX2 and RASSF1A in the occurrence and development of LUAD remain to be explored. In the NJDT cohort, compared with the matched normal samples, both the SHOX2_met (+) and RASSF1A_met (+) tumor samples had upregulation of pathways, which may be related to tumor DNA hypermethylation and instability. These positive samples were in a hypermethylated state, and the hypermethylation of these two genes was the embodiment of the hypermethylated of the whole genome. However, the hypermethylation of these two genes directly or indirectly affected the upstream and downstream carcinogenic pathways including apoptosis, DNA repair, and cell metabolism. In the meanwhile, SHOX2_met (+) tumor samples showed the downregulation of TGF beta signaling pathway, which is related to inhibiting tumor growth by triggering the cell stagnation and apoptosis, in the early stage of tumor formation (31). It is reported that SHOX2 can restrain the expression of bone morphogenetic protein 4 (Bmp4) (32), and Bmp4 indirectly inhibits the expression of RUNX family transcription factor 2 (RUNX2) (33). Therefore, the increase of SHOX2 in tumor samples indirectly leads to the upregulation of RUNX2. RUNX2 plays an important role in regulating cell and vascular growth and differentiation mediated by transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) (34). In addition, the overexpression of SHOX2 can enhance its functions of downregulating p53 activity, activating NF-κB to promote tumorigenesis and drug resistance and inhibiting apoptosis in lung cancer cells (35). In summary, SHOX2 regulates the proliferation, apoptosis and metastasis of LUAD cells, and may facilitate pro-tumor biological processes. RASSF1A_met (+) samples showed downregulation of several important pathways, which were involved in DNA repair, gene transcription, cell adhesion, cell differentiation and apoptosis. The RASSF1A protein has an ataxia telangiectasia mutated (ATM) phosphorylation site, which helps to regulate phosphorylation of DNA damage checkpoints and participates in the regulation of genomic stability (36, 37). The loss of RASSF1A enhances TLR-driven NF-κB activation and induces inflammatory DNA damage (38). RASSF1A deletion reduces the expression of β-catenin and E-cadherin, leading to tumor cell migration and invasion (39). In addition, RASSF1A is also linked with MAPK signaling pathway. Currently, there are conflicting reports on the interaction between RASSF1A and MAPK. It has been suggested that RASSF1A competitively binds to MST2 in the RAF-1-MST2-inhibiting complex, thereby enhancing the activity of RAF-1 and the Ras-MAPK pathway (38, 40). It has also been reported that high expression of RASSF1A can inhibit the activation of extracellular regulated protein kinases 1/2 (ERK1/2) and reduce the activity of the RAS-MAPK pathway (41). While, our results suggested that decreased expression of RASSF1A in LUAD samples were related to downregulation of the Ras-MAPK pathway. However, there is no doubt that RASSF1A promoter hypermethylation reduces RASSF1A mRNA expression, which directly affects its function in the Ras-MAPK pathway, and is one of the important factors leading to LUAD progression (42).



Conclusion

In conclusion, the methylation levels of CGIs in SHOX2 and RASSF1A promoter regions are increased in early-stage disease, and may be useful as diagnosis biomarkers of early LUAD. SHOX2 and RASSF1A promoter methylation was associated with abnormal folic acid metabolism and DNA instability, which may affect DNA replication and repair, apoptosis and tumor immunity. However, due to the limited number of patients in the NJDT cohort, the diagnostic potential of the combined SHOX2 and RASSF1A promoter methylation assay in early LUAD is still incomplete. Another limitation of this study was that we only analyzed the CGIs in the promoter regions of two genes, and our study lacks the exploration of non-promoter and gene-body CGIs which can also affect gene expression. Therefore, the influence of abnormal methylation of these two genes on their mRNA expression needs to be further discussed, and the mechanisms of their participation in LUAD occurrence and development merits further evaluation. We hope that our research will facilitate the screening and diagnosis of early-stage LUAD patients and provide knowledge of tumorigenesis mechanisms and drug development.
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Supplementary Figure 1 | The interaction of positive cases of the individual SHOX2 and RASSF1A promoter methylation assays. T_RASSF1A: RASSF1A promoter methylation assay on tumor samples; T_ SHOX2: SHOX2 promoter methylation assay on tumor samples; P _ RASSF1A: RASSF1A promoter methylation assay on the matched paracancerous samples; P_ SHOX2: SHOX2 promoter methylation assay on the matched paracancerous samples.

Supplementary Figure 2 | Presentation of clinicopathologic data and detection results of patients in combination_met (+) and combination_met (-) groups from the NJDT cohort. T_RASSF1A: RASSF1A promoter methylation assay on tumor samples; T_SHOX2: SHOX2 promoter methylation assay on tumor samples; T_Combination: The combined promoter methylation assay of SHOX2 and RASSF1A on tumor samples; T&P _RASSF1A: RASSF1A methylation assay on tumor and matched paracancerous samples; T&P_SHOX2: SHOX2 methylation assay on tumor and matched paracancerous samples; T&P_Combination: The combined promoter methylation assay of SHOX2 and RASSF1A on tumor and matched paracancerous samples; SHOX2_ct: the promoter methylation CT values of SHOX2 detected by qPCR; RASSF1A_ct: the promoter methylation CT values of RASSF1A by qPCR.



References

1. Sung, H, Ferlay, J, Siegel, RL, Laversanne, M, Soerjomataram, I, Bray, F, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. (2021) 71(3):209–49. doi: 10.3322/caac.21660.

2. Zheng, RS, Sun, KX, Zhang, SW, Zeng, HM, Zou, XN, Chen, R, et al. [Report of Cancer Epidemiology in China, 2015]. Zhonghua Zhong Liu Za Zhi (2019) 41:19–28. doi: 10.3760/cma.j.issn.0253-3766.2019.01.005

3. Blandin, KS, Crosbie, PA, Balata, H, Chudziak, J, Hussell, T, and Dive, C. Progress and Prospects of Early Detection in Lung Cancer. Open Biol (2017) 7:170070. doi: 10.1098/rsob.170070

4. Klutstein, M, Nejman, D, Greenfield, R, and Cedar, H. DNA Methylation in Cancer and Aging. Cancer Res (2016) 76:3446–50. doi: 10.1158/0008-5472.CAN-15-3278

5. Ehrlich, M. DNA Methylation in Cancer: Too Much, But Also Too Little. ONCOGENE (2002) 21:5400–13. doi: 10.1038/sj.onc.1205651

6. Eden, A, Gaudet, F, Waghmare, A, and Jaenisch, R. Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. SCIENCE (2003) 300:455. doi: 10.1126/science.1083557

7. Yang, B, Guo, M, Herman, JG, and Clark, DP. Aberrant Promoter Methylation Profiles of Tumor Suppressor Genes in Hepatocellular Carcinoma. Am J Pathol (2003) 163:1101–7. doi: 10.1016/S0002-9440(10)63469-4

8. Si, JG, Su, YY, Han, YH, and Chen, RH. Role of RASSF1A Promoter Methylation in the Pathogenesis of Ovarian Cancer: A Meta-Analysis. Genet Test Mol Biomarkers (2014) 18:394–402. doi: 10.1089/gtmb.2014.0022

9. Roy, D, and Tiirikainen, M. Diagnostic Power of DNA Methylation Classifiers for Early Detection of Cancer. Trends Cancer (2020) 6:78–81. doi: 10.1016/j.trecan.2019.12.006

10. Schneider, KU, Dietrich, D, Fleischhacker, M, Leschber, G, Merk, J, Schaper, F, et al. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors. BMC Cancer (2011) 11:102. doi: 10.1186/1471-2407-11-102

11. Burbee, DG, Forgacs, E, Zochbauer-Muller, S, Shivakumar, L, Fong, K, Gao, B, et al. Epigenetic Inactivation of RASSF1A in Lung and Breast Cancers and Malignant Phenotype Suppression. J Natl Cancer Inst (2001) 93:691–9. doi: 10.1093/jnci/93.9.691

12. Ren, M, Wang, C, Sheng, D, Shi, Y, Jin, M, and Xu, S. Methylation Analysis of SHOX2 and RASSF1A in Bronchoalveolar Lavage Fluid for Early Lung Cancer Diagnosis. Ann Diagn Pathol (2017) 27:57–61. doi: 10.1016/j.anndiagpath.2017.01.007

13. Zhang, C, Yu, W, Wang, L, Zhao, M, Guo, Q, Lv, S, et al. DNA Methylation Analysis of the SHOX2 and RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis. J Cancer (2017) 8:3585–91. doi: 10.7150/jca.21368

14. Yang, X, Liu, Y, Lian, F, Guo, L, Wen, P, Liu, XY, et al. Lepidic and Micropapillary Growth Pattern and Expression of Napsin A can Stratify Patients of Stage I Lung Adenocarcinoma Into Different Prognostic Subgroup. Int J Clin Exp Pathol (2014) 7:1459–68. doi: 10.1007/s13277-015-3478-z

15. Kim, CH, Lee, HS, Park, JH, Choi, JH, Jang, SH, Park, YB, et al. Prognostic Role of P53 and Ki-67 Immunohistochemical Expression in Patients With Surgically Resected Lung Adenocarcinoma: A Retrospective Study. J Thorac Dis (2015) 7:822–33. doi: 10.3978/j.issn.2072-1439.2015.05.02

16. Kim, JH, Kim, HS, Kim, BJ, Han, B, Choi, DR, and Kwon, JH. Prognostic Impact of TTF-1 Expression in Non-Squamous Non-Small-Cell Lung Cancer: A Meta-Analysis. J Cancer (2018) 9:4279–86. doi: 10.7150/jca.26830

17. Subramanian, A, Tamayo, P, Mootha, VK, Mukherjee, S, Ebert, BL, Gillette, MA, et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50. doi: 10.1073/pnas.0506580102

18. Canzler, S, and Hackermuller, J. multiGSEA: A GSEA-Based Pathway Enrichment Analysis for Multi-Omics Data. BMC Bioinf (2020) 21:561. doi: 10.1186/s12859-020-03910-x

19. Aberle, DR, Adams, AM, Berg, CD, Black, WC, Clapp, JD, Fagerstrom, RM, et al. Reduced Lung-Cancer Mortality With Low-Dose Computed Tomographic Screening. N Engl J Med (2011) 365:395–409. doi: 10.1056/NEJMoa1102873

20. Patz, EJ, Pinsky, P, Gatsonis, C, Sicks, JD, Kramer, BS, Tammemagi, MC, et al. Overdiagnosis in Low-Dose Computed Tomography Screening for Lung Cancer. JAMA Intern Med (2014) 174:269–74. doi: 10.1001/jamainternmed.2013.12738

21. Nebbioso, A, Tambaro, FP, Dell'Aversana, C, and Altucci, L. Cancer Epigenetics: Moving Forward. PLoS Genet (2018) 14:e1007362. doi: 10.1371/journal.pgen.1007362

22. Myong, NH. Thyroid Transcription Factor-1 (TTF-1) Expression in Human Lung Carcinomas: Its Prognostic Implication and Relationship With Wxpressions of P53 and Ki-67 Proteins. J KOREAN Med Sci (2003) 18:494–500. doi: 10.3346/jkms.2003.18.4.494

23. Bubb, RS, Komaki, R, Hachiya, T, Milas, I, Ro, JY, Langford, L, et al. Association of Ki-67, P53, and Bcl-2 Expression of the Primary non-Small-Cell Lung Cancer Lesion With Brain Metastatic Lesion. Int J Radiat Oncol Biol Phys (2002) 53:1216–24. doi: 10.1016/S0360-3016(02)02861-4

24. Palanca-Ballester, C, Rodriguez-Casanova, A, Torres, S, Calabuig-Farinas, S, Exposito, F, Serrano, D, et al. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) (2021) 13:3016. doi: 10.3390/cancers13123016

25. Teng, Y, Loveless, R, Benson, EM, Sun, L, Shull, AY, and Shay, C. SHOX2 Cooperates With STAT3 to Promote Breast Cancer Metastasis Through the Transcriptional Activation of WASF3. J Exp Clin Cancer Res (2021) 40:274. doi: 10.1186/s13046-021-02083-6

26. Li, N, Zeng, Y, and Huang, J. Signaling Pathways and Clinical Application of RASSF1A and SHOX2 in Lung Cancer. J Cancer Res Clin Oncol (2020) 146:1379–93. doi: 10.1007/s00432-020-03188-9

27. Valenti, MT, Serafini, P, Innamorati, G, Gili, A, Cheri, S, Bassi, C, et al. Runx2 Expression: A Mesenchymal Stem Marker for Cancer. Oncol Lett (2016) 12:4167–72. doi: 10.3892/ol.2016.5182

28. Keller, M, Dubois, F, Teulier, S, Martin, A, Levallet, J, Maille, E, et al. NDR2 Kinase Contributes to Cell Invasion and Cytokinesis Defects Induced by the Inactivation of RASSF1A Tumor-Suppressor Gene in Lung Cancer Cells. J Exp Clin Cancer Res (2019) 38:158. doi: 10.1186/s13046-019-1145-8

29. Dammann, RH, Richter, AM, Jimenez, AP, Woods, M, Kuster, M, and Witharana, C. Impact of Natural Compounds on DNA Methylation Levels of the Tumor Suppressor Gene RASSF1A in Cancer. Int J Mol Sci (2017) 18:2160. doi: 10.3390/ijms18102160

30. Pankova, D, Jiang, Y, Chatzifrangkeskou, M, Vendrell, I, Buzzelli, J, Ryan, A, et al. RASSF1A Controls Tissue Stiffness and Cancer Stem-Like Cells in Lung Adenocarcinoma. EMBO J (2019) 38:e100532. doi: 10.15252/embj.2018100532

31. Batlle, E, and Massague, J. Transforming Growth Factor-Beta Signaling in Immunity and Cancer. IMMUNITY (2019) 50:924–40. doi: 10.1016/j.immuni.2019.03.024

32. Puskaric, S, Schmitteckert, S, Mori, AD, Glaser, A, Schneider, KU, Bruneau, BG, et al. Shox2 Mediates Tbx5 Activity by Regulating Bmp4 in the Pacemaker Region of the Developing Heart. Hum Mol Genet (2010) 19:4625–33. doi: 10.1093/hmg/ddq393

33. Yu, L, Liu, H, Yan, M, Yang, J, Long, F, Muneoka, K, et al. Shox2 is Required for Chondrocyte Proliferation and Maturation in Proximal Limb Skeleton. Dev Biol (2007) 306:549–59. doi: 10.1016/j.ydbio.2007.03.518

34. Huang, J, Chang, S, Lu, Y, Wang, J, Si, Y, Zhang, L, et al. Enhanced Osteopontin Splicing Regulated by RUNX2 is HDAC-Dependent and Induces Invasive Phenotypes in NSCLC Cells. Cancer Cell Int (2019) 19:306. doi: 10.1186/s12935-019-1033-5

35. Yang, L, Zhou, Y, Li, Y, Zhou, J, Wu, Y, Cui, Y, et al. Mutations of P53 and KRAS Activate NF-kappaB to Promote Chemoresistance and Tumorigenesis via Dysregulation of Cell Cycle and Suppression of Apoptosis in Lung Cancer Cells. Cancer Lett (2015) 357:520–6. doi: 10.1016/j.canlet.2014.12.003

36. Rajabi, H, Hata, T, Li, W, Long, MD, Hu, Q, Liu, S, et al. Correction: MUC1-C Represses the RASSF1A Tumor Suppressor in Human Carcinoma Cells. ONCOGENE (2019) 38:7278. doi: 10.1038/s41388-019-1038-5

37. Donninger, H, Schmidt, ML, Mezzanotte, J, Barnoud, T, and Clark, GJ. Ras Signaling Through RASSF Proteins. Semin Cell Dev Biol (2016) 58:86–95. doi: 10.1016/j.semcdb.2016.06.007

38. Schmidt, ML, Hobbing, KR, Donninger, H, and Clark, GJ. RASSF1A Deficiency Enhances RAS-Driven Lung Tumorigenesis. Cancer Res (2018) 78:2614–23. doi: 10.1158/0008-5472.CAN-17-2466

39. Bao, Y, Liu, X, Liu, Y, Wang, S, and Wu, B. Ras-Association Domain Family 1 (RASSF1A) Gene Regulates Progression, Migration and Invasion of Bladder Cancer. Surg Oncol (2019) 30:63–71. doi: 10.1016/j.suronc.2019.05.009

40. Romano, D, Nguyen, LK, Matallanas, D, Halasz, M, Doherty, C, Kholodenko, BN, et al. Protein Interaction Switches Coordinate Raf-1 and MST2/Hippo Signalling. Nat Cell Biol (2014) 16:673–84. doi: 10.1038/ncb2986

41. Ram, RR, Mendiratta, S, Bodemann, BO, Torres, MJ, Eskiocak, U, and White, MA. RASSF1A Inactivation Unleashes a Tumor Suppressor/Oncogene Cascade With Context-Dependent Consequences on Cell Cycle Progression. Mol Cell Biol (2014) 34:2350–8. doi: 10.1128/MCB.01506-13

42. Kilili, GK, and Kyriakis, JM. Mammalian Ste20-Like Kinase (Mst2) Indirectly Supports Raf-1/ERK Pathway Activity via Maintenance of Protein Phosphatase-2A Catalytic Subunit Levels and Consequent Suppression of Inhibitory Raf-1 Phosphorylation. J Biol Chem (2010) 285:15076–87. doi: 10.1074/jbc.M109.078915




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Gao, Yang, He, Wang, Liu, Hu, Ge, Ding and Ye. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




ORIGINAL RESEARCH

published: 11 July 2022

doi: 10.3389/fonc.2022.899987

[image: image2]


The Deubiquitinase USP13 Maintains Cancer Cell Stemness by Promoting FASN Stability in Small Cell Lung Cancer


Juhong Wang 1,2, Weihao Lin 1,2, Renda Li 1,2, Hong Cheng 1,2, Sijin Sun 1,2, Fei Shao 3, Yannan Yang 1,2, Lin Zhang 1,2, Xiaoli Feng 4, Shugeng Gao 1, Yibo Gao 1,2,3* and Jie He 1,2*


1 Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 2 State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3 Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 4 Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China




Edited by: 

Paul Takam Kamga, Université de Versailles Saint-Quentin-en-Yvelines, France

Reviewed by: 

Wei Yang, Cedars Sinai Medical Center, United States

Ren-Wang Peng, Bern University Hospital, Switzerland

*Correspondence: 

Yibo Gao
 gaoyibo@cicams.ac.cn 

Jie He
 hejie@cicams.ac.cn

Specialty section: 
 This article was submitted to Cancer Metabolism, a section of the journal Frontiers in Oncology


Received: 19 March 2022

Accepted: 20 June 2022

Published: 11 July 2022

Citation:
Wang J, Lin W, Li R, Cheng H, Sun S, Shao F, Yang Y, Zhang L, Feng X, Gao S, Gao Y and He J (2022) The Deubiquitinase USP13 Maintains Cancer Cell Stemness by Promoting FASN Stability in Small Cell Lung Cancer. Front. Oncol. 12:899987. doi: 10.3389/fonc.2022.899987



USP13 is significantly amplified in over 20% of lung cancer patients and critical for tumor progression. However, the functional role of USP13 in small cell lung cancer (SCLC) remains largely unclear. In this study, we found that the deubiquitinase USP13 is highly expressed in SCLC tumor samples and positively associated with poor prognosis in multiple cohorts. In vitro and in vivo depletion of USP13 inhibited SCLC cancer stem cells (CSCs) properties and tumorigenesis, and this inhibitory effect was rescued by reconstituted expression of wide type (WT) USP13 but not the enzyme-inactive USP13 mutant. Mechanistically, USP13 interacts with fatty acid synthase (FASN) and enhances FASN protein stability. FASN downregulation suppresses USP13-enhanced cell renewal regulator expression, sphere formation ability, and de novo fatty acids biogenesis. Accordingly, we found FASN expression is upregulated in surgical resected SCLC specimens, positively correlated with USP13, and associated with poor prognosis of SCLC patients. More importantly, the small molecule inhibitor of FASN, TVB-2640, significantly inhibits lipogenic phenotype and attenuates self-renewal ability, chemotherapy resistance and USP13-mediated tumorigenesis in SCLC. Thus, our study highlights a critical role of the USP13-FASN-lipogenesis axis in SCLC cancer stemness maintenance and tumor growth, and reveals a potential combination therapy for SCLC patients.
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Introduction

Small-cell lung cancer (SCLC) is a neuroendocrine (NE), early metastatic, rapidly progressing and therapy-resistant lung cancer, with 5-year survival of 15%–30% for limited-stage disease, and less than 1% for patients with extensive-stage disease according to the Veteran Affairs Lung Group staging criteria (1–3). Although the sequencing results have provided a better understanding of the signaling pathways in SCLC, most recurrent genetic events are not directly linked to obvious regulatory network. Recently, proteomic analyses revealed other putative vulnerabilities that eventually led to the identification of improved therapeutic strategies (4–6), suggesting the importance of identifying targetable proteins that directly contribute to tumor development or drug resistance. Cancer stem cells (CSCs) in SCLC play a central role in tumorigenesis, metastasis, drug resistance and recurrence (7–9). Convincing evidences demonstrated that substantial post-translational heterogeneity exists within cancer cells can affect characteristics of cancer cell stemness (10–12). Therefore, the exploration of intracellular important post-translational regulatory signaling pathways can provide a promising targetable strategy for tumor treatment.

Protein ubiquitination, post-translational modification that regulates all kinds of cellular biological processes, is counteracted upon deubiquitylation by deubiquitinating enzymes (DUBs). DUBs played crucial role in CSC maintenance and differentiation through the regulation of core stem cell transcription factors (SCTFs), such as Oct4, Nanog, and the stem cell surface marker CD133 along with cancer cell sphere formation ability (13–16). In more than one hundred DUBs, ubiquitin-specific proteases (USPs) subfamily is the largest and the most widely studied member. USP13, as an important deubiquitinase member belongs to USPs subfamilies, has been revealed as a potential therapeutic target for its significant role in tumor progression. USP13 gene is amplified in human lung cancer and clinical samples of non-small cell lung cancer (NSCLC) showed tumor exhibited high USP13 level compared with adjacent normal tissues (17). Accordingly, USP13 depletion attenuated cell proliferation in NSCLC. Moreover, a recent study has shown USP13 was an important target of intrinsic insensitivity to afatinib in EGFR‐mutant NSCLC. Genetic or pharmacological inhibition of USP13 could sensitize EGFR‐mutant NSCLC to EGFR inhibition (18). Although USP13 plays vital role in tumor progression and drug resistance in NSCLC, its precisely biological functions and the regulatory mechanisms in SCLC remain undiscovered.

CSCs are highly reliant on elevated lipogenesis, which is reflected by the upregulation of master enzymes of lipogenesis, such as fatty acid synthase (FASN), ATP-citrate lyase (ACLY) and several fatty acid desaturases, including SCD1 and fatty acid desaturase 1 and 2 (FADS1 and FADS2) (19–22). Previous studies have reported that disorder of lipid metabolism or overactivated lipogenesis pathways are associated with tumor progression and treatment options in SCLC (23, 24). Pharmacological inhibition of lipogenic pathway significantly decreased viability of SCLC cell lines (25). Therefore, targeting lipid metabolism is regarded as a novel strategy against tumor cells, or even CSCs in SCLC.

In this present report, we determined to investigate the contribution of USP13 to SCLC progression. We found ectopic expression of USP13 promotes SCLC stemness and lipogenesis in a FASN-dependent manner, which provides a druggable vulnerability for SCLC patients.



Materials and methods


Cell Lines and Cell Culture Conditions

The human small cell lung cancer cell lines NCI-H1048 and NCI-H69, the multidrug-resistant cell line NCI-H69AR, and the human embryonic kidney cell line HEK-293T were purchased from ATCC. H446, H69 and H69AR cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS, Corning). H1048 cells were cultured in DMEM:F12 (Gibco) supplemented with 10% FBS, 0.005 mg/ml insulin (Sigma), 0.01 mg/ml transferrin (Gibco), 30 nM sodium selenite (Sigma), 10 nM hydrocortisone (Sigma), 10 nM beta-estradiol (Sigma) and 4.5 mM L-glutamine (Gibco). HEK-293T cells were cultured in DMEM (Gibco) supplemented with 10% FBS. Penicillin-streptomycin solution (10,000 U/mL) (Gibco) was added to the prepared culture medium with a 1:100 dilution. Cells were cultured in a humidified incubator at 37°C with 5% CO2.



Lentivirus Packaging and Stable Cell Line Construction

Short hairpin RNA (shRNA) and wild-type plasmids were constructed by SyngenTech company (Beijing). Then, HEK-293T cells were transfected with the recombinant plasmids and packaging plasmids (pLP1, pLP2 and pLP/VSVG; Thermo Fisher Scientific) using Lipofectamine 3000 according to the instructions (Thermo). Forty-eight hours later, lentivirus particles were collected and stored at -80°C. The shRNA sequences used for knockdown were as follows: USP13-shRNA-1 5'-TGATTGAGATGGAGAATAA-3'; USP13-shRNA-2 5'-GCACGAAACTGAAGCCAAT-3'; FASN-shRNA 5'-CCTACTGGATGCGTTCTTCAA-3'.

For stable cell line construction, cells were infected with lentivirus in culture medium supplemented with 5 μg/ml polybrene (Sigma) for 24 hours. The effectively transfected cells were selected with the corresponding antibiotics. The gene expression efficiency was determined by immunoblot analyses.



RNA Extraction and Quantitative RT–PCR Analysis

Total RNA was extracted using RNA-Quick Purification Kit (ES-RN001, YISHAN Biotechnology) according to the manufacturer’s protocol. Purified RNA was used to generate cDNA with TransScript All-in-One First-Strand cDNA Synthesis SuperMix (TransGen Biotech, AT341-01). qRT–PCR was performed with PerfectStart Green qPCR SuperMix (TransGen Biotech, AQ601-01) on an ABI 7900HT Real-Time PCR Thermocycler (Life Technologies). Relative mRNA expression was determined using the 2-ΔΔCt method, and actin was used as an endogenous reference. The following primers were used: FASN forward 5′- CAACTCACGCTCCGGAAA-3′, reverse 5′-TGTGGATGCTGTCAAGGG-3′; actin forward 5′-ATCAAGATCATTGCTCCTCCTGAG-3′, reverse 5′-CTGCTTGCTGATCCACATCTG-3′.



Immunoblotting and Immunoprecipitation Assays

Cells were lysed in RIPA buffer (89901, Thermo) containing proteinase and phosphatase inhibitor cocktail (78442, Thermo). Then, the cell lysates were quantified with a BCA protein assay kit (Thermo) according to the manufacturer’s protocol. Equal amounts of protein from cell lysates were separated by SDS-PAGE and performed immunoblotting according previous description (26).

Cells were lysed in IP lysis buffer (87787, Thermo) containing proteinase and phosphatase inhibitor cocktail and rotated at 4 °C for 30 min. After centrifugation, the cell lysates were incubated overnight with indicated antibodies or normal IgG at 4 °C with rotary agitation. Protein A/G agarose beads (sc-2003, Santa Cruz Biotechnology) were added to the lysates and incubated for an additional 3 hours at 4 °C. Beads were washed three times with IP lysis buffer and boiled for 10 min in 1.5% SDS buffer. Whole cell lysates and immunoprecipitates were analyzed by immunoblot assay.

Antibodies that recognize USP13 (ab99421, 1:1000 dilution), Nanog (ab109250, 1:1000 dilution) and Oct4 (ab19857, 1:1000 dilution) were purchased from Abcam. Antibodies against FASN (3180, 1:1000 dilution), HA (3726, 1:1000 dilution), ubiquitin (3933, 1:1000 dilution) and CD133 (64326, 1:1000 dilution) were purchased from CST. Antibody against β-actin (A1978, 1:5000 dilution) was purchased from Sigma. Normal rabbit IgG (2729, 1:5000 dilution) and secondary antibodies, including anti-rabbit IgG HRP-linked antibody (7074, 1:3000 dilution) and anti-mouse IgG HRP-linked antibody (7076, 1:3000 dilution), were purchased from CST.



Protein Half-Life Detection

For the FASN protein half-life determination, H1048 cells expressing specific plasmids were treated with 100 µg/ml cycloheximide (CHX, HY-12320, MedChem Express) for different periods of time. The cells were collected, and immunoblot analyses were performed with an anti-FASN antibody.



Immunofluorescence Analysis

H1048 cells were cultured on coverslips and then fixed in 4% paraformaldehyde for 20 min, followed by permeabilization with 0.1% Triton X-100 (in PBS) for 5 min. After washing with PBS, cells were blocked with 5% BSA for 1 hour at room temperature. Cells were then incubated with the indicated primary antibodies at 4°C overnight. After washing with PBS three times, the cells were incubated with secondary antibodies for 1 hour at room temperature and stained with DAPI (Invitrogen) by using ProLong™ Gold Antifade Mountant with DAPI (P36935, Invitrogen). The immunofluorescent staining was observed using a confocal microscope (Olympus).

Antibody that recognizes USP13 (sc-48357, 1:200) was purchased from Santa Cruz Biotechnology. Antibody against FASN (3180, 1:200) was purchased from CST. Anti-mouse IgG (H+L) F(ab’)2 Fragment (Alexa Fluor 488 Conjugate) (4408, 1:1000 dilution) and anti-rabbit IgG (H+L) F(ab’)2 Fragment (Alexa Fluor 555 Conjugate) (4413, 1:1000 dilution) were purchased from CST.



LC–MS/MS Analysis

USP13 was immunoprecipitated from H1048 cells and separated by SDS–PAGE gel. Proteins in-gel were digested overnight in 12.5 ng/μl trypsin in 25 mM NH4HCO3. The peptides were extracted three times with 60% ACN/0.1% TFA and dried completely in a vacuum centrifuge. LC–MS/MS analysis was performed on a Q Exactive mass spectrometer (Thermo Scientific) coupled to an Easy nLC instrument (Thermo Fisher Scientific) for 60 min.

MS analysis was performed using the MASCOT engine (Matrix Science, London, UK; version 2.2) embedded in Proteome Discoverer 1.4 (Thermo Electron, San Jose, CA.) against the UniProt Human database and the decoy database. MS data were searched against the UniProt database (https://www.uniprot.org/). The cutoff of the global false discovery rate (FDR) for peptide and protein identification was set to 0.01. LC–MS/MS was performed by Shanghai Applied Protein Technology Co., Ltd (Shanghai, China).



Extreme Limiting Dilution Assay (ELDA)

H1048 or H69 cells were seeded into 96-well ultralow attachment plates (Corning) in DMEM/F12 (Gibco) supplemented with B27 (Gibco), 20 ng/mL epidermal growth factor (Gibco), and 20 ng/mL basic fibroblast growth factor (PeproTech) according previous description (27). After 7 days, the number of positive (sphere formation) wells in each group were uploaded and calculated in the ELDA website (28). The images were observed using an inverted fluorescence microscope (Olympus).



Measurement of Cellular Cholesterol and Triglyceride Levels

The indicated cells were seeded in 6 cm plates and incubated at 37°C with 5% CO2 in an incubator. Until appropriate confluence, cellular cholesterol and triglyceride levels were extracted and determined using Cholesterol Quantitation Kit (MAK043, Sigma) and Triglyceride Quantification Kit (MAK266, Sigma) according to the manufacturer’s protocol, respectively. Cholesterol and triglyceride levels were normalized to the protein concentration.



CD133+ Cells Sorting

H1048 or H69 cells were digested and separated into a single-cell suspension with PBS, then adjusted to a density of 1×107 cells/ml, and subsequently incubated with APC-conjugated anti-CD133 antibody (1:100 dilution) (397906, Biolegend) on ice for 30 min in the dark. Following two washes with PBS, cells were resuspended in 500 µl PBS and subjected to isolation by flow cytometry (BD, LSRII). Negative control was determined by using equal amounts of APC-conjugated immunoglobulin G (IgG) (M1310G05, Biolegend)-stained cells.



Animal Studies

BALB/c nude mice (4–6 weeks old, female, 14–16 g) were purchased from Beijing HFK Bioscience Co. Ltd. and housed under specific pathogen-free and controlled conditions (25–27, 45–55% humidity, 12 h day/night cycle). The study was approved by the Institutional Animal Care and Use Committee (IACUC) of the National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and the methods were carried out in accordance with the approved guidelines.

The cells were subcutaneously injected into the flanks of mice to establish a xenograft tumor. When the size of tumors reached approximately 100 mm3, animals were randomly divided into four groups and intraperitoneally injected with 10 mg/kg etoposide (S1225, Selleckchem), or 8 mg/kg TVB-2640 (#S9714, Selleckchem), or etoposide (10 mg/kg) and TVB-2640 (8 mg/kg) combination, or 0.9% saline as control. Tumor length (a) and minor diameter (b) were monitored once a week, and tumor size was calculated using the following formula: volume=a×b2/2.



Patients and Tissue Samples

SCLC samples with paired normal lung tissues were collected from patients who underwent radical resections at the Cancer Hospital of the Chinese Academy of Medical Sciences (Beijing, China) from January 2011 to January 2015. Surgically resected tissues have been pathologically diagnosed and stained with Mayer’s hematoxylin and eosin (HE). After embedding into paraffin, tissue microarray (TMA) was then prepared by Superbiotek, Inc. Ethics approval was granted by the Committee for the Ethics Review of Research Involving Human Subjects of the Cancer Hospital of the Chinese Academy of Medical Sciences. Table 1 summarized the clinical features of the patients.


Table 1 | Clinical characteristics of 90 SCLC patients.





Immunohistochemical (IHC) Analysis

Immunohistochemistry analyses were performed as previously described (29). Briefly, the human SCLC TMA slide was deparaffinized, rehydrated, autoclaved in 10 mM sodium citrate (pH 6.0) for 30 min to unmask antigens, and then incubated with primary antibodies against USP13 (ab99421, 1:200, Abcam), FASN (3180, 1:200, CST), Nanog (ab109250, 1:100, Abcam), or Oct4 (2750, 1:200, CST) at 4°C overnight. The slides were then incubated with secondary antibody, followed by chromogen diaminobenzidine (DAB) staining for signal amplification and detection. The IHC scores were assessed by two independent authors blinded to the treatment groups. IHC scoring was based on the percentage of positive cells and the staining intensity, as previously described (30).



Oil-Red O Staining

Oil Red O staining was performed on cryosections (6-10 µm) in thickness. In brief, the slides were fixed with formaldehyde, washed with 60% propylene glycerol, and then stained with 0.5% Oil Red O (Sangon Bio) in propylene glycerol for 10 min at 60°C. After staining, the slides were rinsed, counterstained with hematoxylin and mounted in glycerin. The red lipid droplets were visualized by microscopy.



Public Dataset

Public dataset GSE60052 were downloaded from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) database.



Statistical Analysis

Statistical analyses were conducted with a two-tailed unpaired Student’s t test. Each experiment was carried out in at least triplicate, and all data are expressed as the mean ± SD. Kaplan–Meier analysis and log-rank tests were applied for survival analysis (31). The correlation between USP13 and FASN levels was analyzed using a Pearson correlation coefficient. P values < 0.05 were considered to be significant. Differences that are statistically significant are labeled with *(p < 0.05), **(p <0.01), or ***(p < 0.001). Statistical analyses were performed by using GraphPad Prism (Version 9).




Results


USP13 Is Overexpressed in SCLC and Predicts Poor Clinical Outcomes of SCLC Patients

To identify the important role of deubiquitinase USP13 in the clinical features of SCLC, we analyzed the mRNA expression of USP13 in the published profile GSE60052. Overall survival analysis of USP13 in SCLC patients showed that USP13 was prognostically detrimental (Figure 1A), which indicated further necessary research of USP13. We then collected tumor tissues and the paired peripheral normal lung tissues which were surgically resected from patients diagnosed with SCLC. Immunohistochemical (IHC) analyses revealed that the expression of the USP13 protein was increased in SCLC tissues compared with normal lung tissues (Figures 1B, C). Next, we found that USP13 was significantly upregulated in the tissues of SCLC patients with lymph node metastasis (Figure 1D). Moreover, compared to patients evaluated as stage I, patients in stage II or stage III overexpressed USP13 (Figure 1E). Consistent with the previous analysis, Kaplan–Meier survival analysis demonstrated that high USP13 levels were correlated with poor overall survival of SCLC patients (Figure 1F). Collectively, these results demonstrated that USP13 is overexpressed in SCLC and predicts poor clinical outcomes.




Figure 1 | USP13 is overexpressed in SCLC and predicts poor clinical outcomes. (A) Kaplan-Meier analysis of overall survival curves from a public dataset (GSE60052) for SCLC patients with low or high USP13 expression. p values are calculated using a log-rank test (two-tailed). (B, C) Immunohistochemical analysis of USP13 in SCLC tumor specimens (T) and their adjacent normal tissues (N). Representative IHC images are shown (B). IHC scores of USP13 expression were calculated (C). Scale bars: 500 µm. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. ***p < 0.001. (D) The expression of USP13 in SCLC patients with or without lymph node metastasis is shown. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. **p < 0.01. (E) USP13 expression levels are shown in SCLC patients of different cancer stages. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. ***p < 0.001. (F) The Kaplan–Meier method with a two-tailed log-rank test was used to plot survival curves for SCLC patients with high and low USP13 expression.





Catalytically Active USP13 Promotes SCLC CSC-like Properties and Rumor Growth

As CSCs contribute to tumorigenesis, we examined the role of USP13 in SCLC stemness maintenance. The expression of stemness-related factors Oct4 and Nanog was dramatically decreased after depletion of USP13 with two different short hairpin RNAs (shRNAs) in H1048 and H69 cells (Figure 2A), which indicated an important role of USP13 in stemness maintenance. Consistently, silencing USP13 significantly inhibited sphere formation ability (Figure 2B, Supplementary Figure 1A). Conversely, forced expression of WT USP13 but not the catalytically inactive USP13 (C345A) mutant significantly promoted Oct4 and Nanog expression (Figure 2C) and sphere formation ability (Figure 2D, Supplementary Figure 1B). CD133+ cells are widely considered to be SCLC stem-like cells (32). To validate the expression levels of USP13 in SCLC CSCs, we enriched CD133+ subpopulations from H1048 cells with an anti-CD133 antibody. As shown in Figure 2E and Supplementary Figure 1C, USP13 expression level in CD133+ subpopulation was substantially higher than that in the CD133- subpopulation. Together, these results support a critical role of USP13 which depends on its catalytic function in promoting SCLC stemness.




Figure 2 | USP13 promotes SCLC CSC-like properties and tumor growth. (A) Immunoblot analyses of H1048 (left) and H69 (right) cells with or without USP13 depletion were performed with the indicated antibodies. (B) Left: ELDA was performed in H1048 cells with or without USP13 knockdown. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 μm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (C) Immunoblot analyses of H1048 (left) and H69 (right) cells with or without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression were performed with the indicated antibodies. (D) Left: ELDA was performed in H1048 cells with or without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 μm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. ns, not significant. **p < 0.01. (E) CD133- and CD133+ subpopulations of H1048 cells were sorted. Immunoblot analyses were performed with the indicated antibodies. (F) Tumor formation in immunodeficient mice transplanted with H1048 cells with or without USP13 depletion, or shUSP13 cells combined with reconstituted expression of WT HA-rUSP13 or catalytically inactive HA-rUSP13 (C345A) mutant. Tumor sizes and volumes were measured and calculated (n=5 per group). Data represent the means ± SD of five mice per group. Two-tailed student’s t-test was used. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001. (G, H) IHC staining of mouse tumor tissues was performed with the indicated antibodies. Representative images are displayed (G), and IHC scores were calculated (H). Scale bars: 100 μm. Data represent the means ± SD of triplicate samples. Two-tailed student’s t-test was used. ns, not significant. ***p < 0.001.



We next determined the role of USP13 in tumor growth by subcutaneously injecting H1048 cells with or without USP13 depletion, or USP13 depletion combined with WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression (Supplementary Figure 1D) in mice. The results showed that mice inoculated with USP13-deficient cells evidently formed smaller tumor masses than those inoculated with control cells, and this reduction was abrogated by reconstituted expression of shRNA-resistant WT USP13 but not the catalytically inactive USP13 (C345A) mutant (Figure 2F). Moreover, IHC staining analysis in tumor tissues showed that Nanog and Oct4 expression decreased after USP13 depletion, and this decrease was rescued by reconstituted expression of WT USP13 but not catalytically inactive USP13 (C345A) mutant (Figures 2G, H). Hence, our data strongly indicated that USP13 promotes SCLC tumor growth.



USP13-Dependent FASN Expression Promotes SCLC Stemness and Lipogenesis

To verify mechanisms involved in USP13 regulated SCLC stemness, immunoprecipitation (IP) was performed with an anti-USP13 antibody and mass spectrometry (MS) were used to identify proteins that interacts with USP13. MS analysis revealed 2 unique peptides identical to FASN (Supplementary Figure 2A), which is a critical enzyme for the synthesis of palmitate (precursor of cholesterol and triglyceride) from acetyl-CoA and malonyl-CoA and contributes to CSC maintenance (33). We confirmed the interaction between endogenous USP13 and FASN by the co-immunoprecipitation (Co-IP) of H1048 cell lysates (Figure 3A). Consistently, USP13 and FASN were shown to interact physically by immunofluorescence (IF) analyses (Figure 3B). To determine the importance of USP13 in the regulation of FASN, we then analyzed FASN expression with or without USP13 depletion or overexpression. As shown in Figures 3C, D, USP13 downregulation decreased (Figure 3C), whereas USP13 overexpression increased FASN protein levels (Figure 3D) without affecting FASN mRNA levels (Supplementary Figure 2B). To detect the role of USP13-FASN axis in regulating cancer stemness and lipogenesis in SCLC, we stably depleted FASN after WT USP13 reconstitution in USP13 knockdown cells. USP13 depletion in SCLC cells decreased the expression levels of Oct4 and Nanog (Figure 3E), reduced the sphere formation ability (Figure 3F) and cellular cholesterol and triglyceride levels (Figure 3G). In contrast, overexpression of reconstituted WT USP13 in SCLC increased Oct4 and Nanog expression (Figure 3E), promoted sphere formation ability (Figure 3F) and increased cellular cholesterol and triglyceride levels (Figure 3G). Importantly, the effects of USP13 on SCLC cancer stemness maintenance and lipogenesis were abrogated by FASN depletion (Figures 3E–G). In addition, IHC analysis and oil red O staining of tumor tissues indicated that USP13-dependent FASN expression increases lipogenesis (Supplementary Figures 2C, D). These results indicated USP13 promotes cancer stemness and lipogenesis mainly through FASN.




Figure 3 | USP13-dependent FASN expression promotes SCLC stemness and lipogenesis. (A) Immunoprecipitation and immunoblot analyses were performed with the indicated antibodies in H1048 cells. (B) Immunofluorescence analyses were performed with the indicated antibodies in H1048 cells. DAPI was used for nuclear staining. Scale bars: 20 μm. (C, D) FASN expression levels were detected in H1048 (top) or H69 (bottom) cells with or without USP13 depletion (C) or overexpression (D) by immunoblot analyses with an anti-FASN antibody. (E) H1048 cells with or without USP13 shRNA expression, or USP13 depletion reconstituted expression of WT HA-rUSP13 with or without FASN depletion were analyzed by immunoblotting with the indicated antibodies. (F) Left: ELDA was performed in H1048 cells with or without USP13 shRNA expression, or USP13 depletion combined with reconstituted expression of WT HA-rUSP13 with or without FASN depletion. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 μm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. ***p < 0.001. (G) Cellular triglyceride levels (left) and cholesterol levels (right) in H1048 cells with or without USP13 shRNA expression, or USP13 depletion combined expression of reconstituted expression of WT HA-rUSP13 with or without FASN depletion were determined. Data shown are the mean ± S.D. (n=3). Two-tailed student’s t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001.





USP13 Inhibits Polyubiquitylation-Dependent FASN Degradation

As a deubiquitinase, we hypothesized that endogenous USP13 could regulate FASN stability. We treated USP13 knockdown cells with the proteasome inhibitor MG-132 and found that inhibition of FASN expression by USP13 depletion was clearly blocked by MG-132 treatment in H1048 and H69 cells (Figure 4A). To determine whether USP13 stabilizes the FASN protein through deubiquitination, we first examined FASN protein turnover by using cycloheximide (CHX) and traced the protein levels. Indeed, the FASN protein was gradually degraded with CHX treatment. As anticipated, the FASN protein half-life was decreased after depletion of USP13 (Figure 4B), while ectopic WT USP13 but not catalytically inactive USP13 (C345A) mutant expression largely increased FASN stability (Figure 4C). Moreover, we found that depletion of USP13 enhanced the ubiquitination level of endogenous FASN (Figure 4D). In contrast, forced expression of WT USP13 but not the catalytically inactive USP13 (C345A) mutant reduced the ubiquitination of FASN (Figure 4E). Overall, our experiments indicate that USP13 promotes FASN protein stability by decreasing polyubiquitination of FASN and thus prevents its degradation through the proteasome pathway.




Figure 4 | USP13 inhibits polyubiquitylation-dependent FASN degradation. (A) H1048 (upper) and H69 (lower) cells expressing two different USP13 shRNAs were treated with MG132 (50 μM) for 8 hours. Immunoblot analyses were performed with the indicated antibodies. (B) H1048 cells with or without USP13 depletion were treated with CHX (100 µg/ml) for the indicated periods of time. FASN expression levels were analyzed with an anti-FASN antibody (upper) and quantification of FASN levels relative to β-actin expression levels (lower) were performed. (C) H1048 cells with or without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression were treated with CHX (100 µg/ml) for the indicated periods of time. Immunoblot analyses were performed with the indicated antibodies (left). Quantification of FASN expression levels relative to β-actin expression levels is shown (right). (D) H1048 cells expressing two different USP13 shRNAs or a control shRNA were treated with MG132 (50 μM) for 8 hours. Immunoprecipitation and immunoblot analyses were performed with the indicated antibodies. (E) H1048 cells with or without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression were treated with MG132 (50 μM) for 8 hours. Immunoprecipitation and immunoblot analyses were performed with the indicated antibodies.





FASN is Positively Correlates with USP13

To determine the clinical significance of FASN expression, we performed IHC analyses of SCLC tissue specimens. IHC staining showed FASN was highly upregulated in SCLC tissues than in the paired adjacent normal tissues (Figures 5A, B). More importantly, the expression of FASN was stage-dependent (Figure 5C). In addition, patients with high FASN expression had shorter survival duration than those with low FASN expression (Figure 5D). Consistent with previous results, FASN protein expression levels were positively correlated with USP13 expression levels (Figure 5E). These results strongly suggested that USP13-stabilized FASN expression promotes clinical aggressiveness of SCLC.




Figure 5 | FASN is positively correlates with USP13. (A, B) Representative images (A) of IHC staining for FASN protein on tissue microarray (TMA) composed of SCLC tumor specimens (T) with their adjacent normal tissues (N). IHC score (B) was calculated. Scale bars: 100 μm. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. ***p < 0.001. (C) FASN expression levels are shown in SCLC patients of different cancer stages. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. ***p < 0.001. (D) Kaplan-Meier plots of the overall survival time of 90 SCLC patients with low or high expression levels of FASN. p values are calculated using a log-rank test (two-tailed). (E) The correlation between USP13 and FASN expression in an SCLC tissue microarray was analyzed using a two-tailed Pearson correlation coefficient.





FASN Inhibition Attenuates SCLC Lipogenesis, Self-Renewal Properties, Chemotherapy Resistance and USP13-Dependent Tumorigenesis

Since FASN is a key enzyme involved in USP13-promoted cancer stemness, we further examined whether FASN inhibitor could be a favorable treatment strategy. TVB-2640, a highly potent and selective FASN inhibitor, was designed to reduce hepatic fat in nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (34, 35). More importantly, with compelling support as an oncology therapeutic drug, TVB-2640 was the first highly selective FASN inhibitor to enter clinical studies (36). We found that TVB-2640 treatment decreased cellular cholesterol and triglyceride levels and reduced sphere formation ability in a dose- and time-dependent manner in both H1048 and H69 cells (Figures 6A–D, Supplementary Figures 3A, B). Given that FASN expression is associated with chemoresistance (37), targeting lipid metabolism might be a new potential therapy for SCLC patients with acquired drug-resistance. We subcutaneously injected multi-drugs resistant H69AR cells into mice (38), then treated with VP16 (etoposide) or TVB-2640 for monotherapy, or concurrent therapy with VP16 and TVB-2640. Consistent with previous study (38), tumors in the VP16 treatment group displayed slight shrinkage (Figure 6E). Importantly, TVB-2640 treatment dramatically suppressed tumor growth (Figure 6E). In addition, the group treated with both VP16 and TVB-2640 showed an improved better response than the group treated with TVB-2640 alone (Figure 6E), indicated synergistic treatment effect. IHC staining analysis confirmed that lipogenesis inhibition by TVB-2640 repressed SCLC stemness features, reflected by decreased Nanog expression, and in combination with classical chemotherapeutics induced a dramatic synergistic effect (Supplementary Figure 3C). To further study whether TVB-2640 treatment can reverse USP13-mediated tumor formation, we subcutaneously injected H1048 cells with or without USP13 depletion, or H1048 USP13-depleted cells with reconstituted expression of shRNA-resistant WT USP13 with or without TVB-2640 treatment. Consistent with previous result, USP13 depletion dramatically suppressed tumor growth, and forced overexpression of WT HA-rUSP13 rescued the decreased tumor volume (Figure 6F). Importantly, TVB-2640 treatment can significantly reduce the tumorigenesis caused by USP13 overexpression. Together, these data show that the FASN inhibitor TVB-2640 can be used as a potential chemotherapy combination anti-SCLC drug.




Figure 6 | FASN inhibition attenuates SCLC lipogenesis, self-renewal properties, chemotherapy resistance and USP13-dependent tumorigenesis. (A) Triglyceride (left) and cholesterol (right) levels were measured in H1048 cells treated with the FASN inhibitor TVB-2640 at the indicated doses for 72 hours. DMSO was used as the vehicle control. Data represent the means ± SD of triplicate samples. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (B) Triglyceride (left) and cholesterol (right) levels were measured in H1048 cells after 50 μM FASN inhibitor TVB-2640 treatment for the indicated periods of time. Data represent the means ± SD of triplicate samples. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (C, D) Left: ELDA was performed in H1048 (C) and H69 (D) cells with or without FASN inhibitor TVB-2640 treatment at the indicated dose. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 μm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001. (E) Nude mice were subcutaneously injected with H69AR cells and intraperitoneally injected with indicated drugs when the size of the tumor reached approximately 100 mm3. Tumor sizes and volumes were measured and calculated (n=5 per group). Data represent the means ± SD of five mice per group. Two-tailed student’s t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001. (F) H1048 cells with or without USP13 depletion, or shUSP13 cells combined with reconstituted expression of WT HA-rUSP13 were subcutaneously injected into nude mice and then with or without TVB-2640 treatment. Tumor sizes and volumes were measured and calculated (n=5 per group). Data represent the means ± SD of five mice per group. Two-tailed student’s t-test was used. ns, not significant. ***p < 0.001.






Discussion

The molecular function of USP13 in tumorigenesis has been controversial in different cancers according to previous studies. USP13 was first found to deubiquitinate tumor suppressor protein PTEN in human breast cancer cells, which indicated a tumor-suppressing role for USP13 (39). However, further studies revealed that USP13 may have context-dependent functions in cancer development by interacting with different substrates to regulate protein stability. USP13 gene is amplified in serious ovarian cancers and specifically deubiquitinates and thus upregulates two key metabolic key enzymes, ATP citrate lyase (ACLY) and oxoglutarate dehydrogenase (OGDH). As a consequence, USP13 overexpression is correlated with poor clinical outcome (40). In lung and ovarian cancer cells, USP13 deubiquitinates and stabilizes MCL1, a key member of the anti-apoptotic BCL-2 family. Pharmacological inhibition of USP13 with spautin-1 significantly inhibits tumor growth and increases tumor cell sensitivity to BH3 mimetic inhibitors, which suggests that targeting USP13 may be a valuable strategy for cancer treatment (41). As a highly expressed protein in glioma stem cells (GSCs), USP13 maintains GSC self-renewal abilities by stabilizing the critical transcription factor c-Myc (42). Consistently, we found that USP13 plays an oncogenic role to maintain SCLC stemness and tumorigenic potential, which is dependent on its catalytic activity. Importantly, USP13 expression is positively correlated with cancer progression and predicts poor survival of SCLC patients. Further mechanistic studies revealed that USP13 interacts with and stabilizes FASN by reducing FASN polyubiquitination, suggesting a putative target for SCLC treatment.

Previous studies have shown that cancer cells reprogram lipogenic metabolism in response to the massive demand for macromolecules and bioenergy (43, 44), and that increased expression of FASN is a prominent feature (45). In KRAS signaling active lung adenocarcinomas, FASN is a primary responder that induces elevated lipogenesis which mediated by the ERK pathway. Inhibition of FASN by cerulenin blocked proliferation of KRAS-driven lung cancer cells, indicating a promising role of lipid metabolism in tumor treatment (46). Subsequent studies in EGFR mutated non‐small cell lung cancer confirmed that FASN-associated fatty acid metabolic pathway upregulation was the main principal for tyrosine kinase inhibitor (TKI)‐resistant EGFR mutated NSCLC growth (47). In our studies, FASN was induced by the stemness-related deubiquitinase USP13 in SCLC, implying that lipogenesis can augment the self-renewal property, and that effectively inhibiting FASN activity may provide an alternative treatment. Although FASN inhibitors, including C75, C93, GSK837149A, Orlistat and TVB-3166, have demonstrated preclinical antitumor activity in cancer cell lines and xenograft models (45, 48), none of these compounds have been tested in cancer patients due to side effects. Therefore, we selected the FASN inhibitor TVB-2640, which has a favorable tolerability profile and entered a phase II clinical trial (36), as treatment strategy for SCLC. Our results showed that accompanied by decreased triglyceride and cholesterol levels, TVB-2640 significantly suppressed self-renewal ability of SCLC. Further in vivo animal studies revealed TVB-2640 sensitized chemotherapy-resistant tumor cells to etoposide treatment and inhibited USP13-dependent cancer stemness and tumor growth, suggesting a crucial role of lipogenic pathway in SCLC proliferation and drug resistance. Previous research has identified that MEK5/ERK5 dual kinase axis supporting SCLC survival heavily relies on the mevalonate pathway, which controls cholesterol synthesis (25). Corroborative evidence has shown that mutated FASN, which may affect dimer formation or enzyme activity, occurs in SCLC patients and indicates a better prognosis in those who have received chemotherapy (49). These results support that abnormal expression of proteins involved in lipogenic pathways synergistically promotes cancer cell survival, which provides a more efficacious strategy for treatment of SCLC. Finally, the clinical significance of FASN expression in our cohort was evidenced by its positive association with SCLC patient clinical stage and poor overall survival.



Conclusions

In this study, we showed that USP13 promotes SCLC stemness and lipogenesis by inhibiting proteasome-dependent FASN degradation. Pharmacological inhibition of FASN with the small molecule TVB-2640 impaired self-renewal and tumor growth ability of SCLC.
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Supplemental Figure 1 | USP13 promotes SCLC CSC-like properties: (A) Left: ELDA was performed in H69 cells with or without USP13 knockdown. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 μm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. ***p < 0.001. (B) Left: ELDA was performed in H69 cells with or without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 μm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. ns, not significant. ***p < 0.001. (C) CD133- and CD133+ subpopulations of H69 cells were sorted. Representative cell fractions were separated by flow cytometry sorting (upper). Immunoblott analyses were performed with the indicated antibodies (lower). (D) Immunoblot analyses were performed in H1048 cells with or without USP13 depletion, or shUSP13 cells combined with reconstituted expression of WT HA-rUSP13 or catalytically inactive HA-rUSP13 (C345A) mutant the indicated antibodies.


Supplemental Figure 2 | USP13-dependent FASN expression promotes SCLC stemness and lipogenesis: (A) H1048 cells were immunoprecipitated with anti-USP13 antibody and analyzed by mass spectrometry. The selected FASN peptide identified by mass spectrometry analyses was shown. (B) Relative mRNA level of FASN was detected in H1048 cells with or without USP13 depletion (top) or overexpression (bottom). Data shown are the mean ± S.D. (n=3). ns, not significant.(C, D) IHC staining of FASN with anti-FASN antibody and the oil red O staining were performed by using tumor tissues as described in Figure 2F. Representative images are displayed (C). IHC scores (D, top right) and oil red O-stained areas (D, bottom right) were calculated. Scale bars: 100 μm. Data represent means ± SD of triplicate samples. Two-tailed student’s t-test was used. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001.


Supplemental Figure 3 | FASN inhibition attenuates SCLC lipogenesis: (A) Triglyceride (left) and cholesterol (right) levels were measured in H69 cells based on FASN inhibitor TVB-2640 treatment with indicated dose for 72 hours. DMSO was used as control vehicle. Data represent means ± SD of triplicate samples. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (B) Triglyceride (left) and cholesterol (right) levels were measured in H69 cells after 50uM FASN inhibitor TVB-2640 treatment for the indicated periods of time. Data represent means ± SD of triplicate samples. Two-tailed student’s t-test was used. ***p < 0.001. (C) IHC staining of Nanog expression and the oil red O staining were performed with mouse tumor tissues. Representative images are displayed (left). IHC scores (top right) and oil red O-stained areas (bottom right) were calculated. Scale bars: 100 μm. Data represent the means ± SD of triplicate samples. Two-tailed student’s t-test was used. ns, not significant. *p < 0.05, **p < 0.01.
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Background

Circulating microRNAs (ct-miRs) are promising cancer biomarkers. This study focuses on platform comparison to assess performance variability, agreement in the assignment of a miR signature classifier (MSC), and concordance for the identification of cancer-associated miRs in plasma samples from non‐small cell lung cancer (NSCLC) patients.



Methods

A plasma cohort of 10 NSCLC patients and 10 healthy donors matched for clinical features and MSC risk level was profiled for miR expression using two sequencing-based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra- and inter-platform variations were examined by correlation and concordance analysis. The MSC risk levels were compared with those estimated using a reference method. Differentially expressed ct-miRs were identified among NSCLC patients and donors, and the diagnostic value of those dysregulated in patients was assessed by receiver operating characteristic curve analysis. The downregulation of miR-150-5p was verified by qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation at the tissue level.



Results

The intra-platform reproducibility was consistent, whereas the highest values of inter-platform correlations were among qPCR-based platforms. MSC classification concordance was >80% for four platforms. The dysregulation and discriminatory power of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with normal samples.



Conclusion

Overall, our studies provide a large performance analysis between five different platforms for miR quantification, indicate the solidity of MSC classifier, and identify two noninvasive biomarkers for NSCLC.





Keywords: liquid biopsy, circulating microRNAs, high-throughput platforms, lung cancer, microRNA signature classifier, miR-150-5p, miR-210-3p, profiling



Introduction

MicroRNAs (miRs) are a class of small (18 to 22 nt) non-coding RNAs with known roles in gene regulation (1–3). miRs can be released from cells into the extracellular space and have been detected in all tested biological fluids (1–5). Circulating miRs (ct-miRs) are either stored in particles (exosomes, microvesicles, and apoptotic bodies) or associated with RNA-binding proteins or lipoproteins, which prevent their degradation (3–5). The stability, abundance, and variety of ct-miRs made them attractive candidates as non-invasive biomarkers for diagnosing, predicting, and monitoring diseases like cancer (6–8), and increasing attention is being paid to their role in lung carcinogenesis (9–16).

In our institution, the use of ct-miRs for the early detection of lung cancer has been assessed as a complementary diagnostic tool in the context of low-dose computed tomography (LDCT) screening in large retrospective cohorts (12, 13). These studies led to the development of a plasma miR signature classifier (MSC) based on reciprocal ratios of 24 plasma miRs able to stratify individuals undergoing lung cancer screening into three levels (high, intermediate, and low) according to the risk of developing lethal lung cancer (13, 14). As assessed in samples collected from smokers within the randomized Multicenter Italian Lung Detection trial, a large retrospective validation study, MSC resulted in a sensitivity, specificity, positive predicted value, and negative predictive value of 87, 81, 27, and 99% (13). The utility of the classifier was also recently assessed, thanks to the prospective BioMILD screening trial on 4,119 high-risk volunteers, where MSC-positive participants had a 2-fold higher risk to develop lung cancer within the fourth year of screening than MSC-negative participants, independently of the low-dose computed tomography (LDCT) result (14). The risk level given by MSC reflects microenvironment-related changes associated to lung cancer development and aggressiveness. In detail, the miRs composing the classifier were found to be associated to an immunosuppressive phenotype of specific immune cell subsets, such as neutrophils, macrophages, and lymphocytes (15).

Several high-throughput platforms, based on quantitative reverse transcription PCR (qPCR) or on sequencing (miR-Seq), have been routinely used to quantify miRs in human plasma. However, there is poor consensus on the optimal methodology for the successful clinical application of ct-miR biomarkers (17–21). Pre-analytical and analytical conditions are a major source of variation in results, but many challenges remain in terms of the reliability of ct-miR quantification methods (17–21). In 2014, the “microRNA quality control study” (miRQC) systematically evaluated 12 available miR platforms across a variety of samples including human universal reference RNA, human brain RNA, and human serum samples (17). The expression level of 196 common miRs was considered. Although no platform was consistently superior to the others, there was substantial variability in performance assessments. Only two miRs (3%) were differentially expressed (DE) by all platforms; about half of the miRs (48%) were concordant for half of the platforms. Since the miRQC study, newer platforms have emerged. Nonetheless, most recent studies report similar findings when comparing the different platforms for profiling low-copy number miRs in human biological fluids (plasma/serum) or extracellular vesicles (18–21).

A few reports have compared ct-miR abundance using multiple high-throughput technologies in defined clinical subgroups. Only one study has reported the use of multiple platforms (Toray 3D Gene System from Toray Systems, nCounter from Nanostring Technologies, and QIAseq from Qiagen) to profile cell-free and extracellular-derived miR fractions from non‐small cell lung cancer (NSCLC) patients and healthy donors (20). The patients’ cohort was however heterogenous and not age-matched with the control group, preventing the interpretation of differential expression between NSCLC patients and healthy control samples for different ct-miR fractions and platforms (20). In addition, to the best of our knowledge, none of the previous studies has challenged the ability of different platforms to correctly classify individual samples according to a clinically relevant ct-miR signature.

To address these issues, we determined the miR profile of plasma samples from 10 stage IV NSCLC patients and 10 healthy heavy smokers matched for age, sex, smoking status, and MSC classification assessed with the gold-standard method (13, 14), using five well-established high-throughput methods. Three of them, Taqman OpenArray/Taqman OpenArray Advanced from Thermo Fisher Scientific and miRCURY LNA from Qiagen, were qPCR-based. The remaining two, EdgeSeq from HTG Molecular and QiaSeq miRNA Library from Qiagen, were next generation sequencing (NGS)-based. EdgeSeq allows the assessment of 2,083 human miR transcripts directly from plasma, without extraction, through quantitative nuclease protection, whereas QiaSeq is a true discovery platform enabling the capture of the whole miRNome profile.

The aims of this cross-platform comparison were assessment of intra- and inter-platform reproducibility, agreement in correctly classifying samples according to the MSC classifier, and identification and validation of putative cancer-associated ct-miRs.



Materials and Methods


Characteristics of the Participants

Blood was collected from stage IV NSCLC patients and heavy smoker healthy individuals, as controls, with no history of cancer or other diseases. Patients and controls were classified, according to their class of risk, based on the reference MSC test generated from the ratios of 24 plasma miRs (12–14). The test was performed, as previously described, using a Custom RT and Pre‐amplification Pools with TaqMan MiR Assays (Thermo Fisher Scientific, Waltham, MA, USA) (12–14). The clinical characteristics and MSC scores of the participants to the study are listed in Table 1. Only individuals belonging to high and low risk were included in the study. There was no significant difference in sex, age, smoking history, and nationality between the participants (p > 0.05).


Table 1 | Clinicopathological features of the analyzed cohort.





Plasma Preparation and RNA Extraction

Blood samples, collected in P100 tubes (BD Bioscience, San Jose, CA, USA), were separated within 2 h of collection into plasma aliquots by two centrifugations of 1,600g for 10 min and stored at -80° until assayed. Total RNA was extracted from 200 μl of plasma using the automatic nucleic acid extractor Maxwell 48 (Promega, Madison, WI, USA), eluted in nuclease-free water, and stored at –80°C. Exogenous synthetic miRs (ath-miR-159a, cel-miR-39-3p, UniSp2, UniSp4, UniSp5, and UniSp6) (Thermo Fisher Scientific and Qiagen, Hilden, Germany) were added as spike-in controls during sample processing to minimize the loss of the specific RNA template and to monitor the extraction efficiency.



ct-miR Profiling and Quality Controls

The Taqman OpenArray Human microRNA panel (OAC as Open Array “Classic” assay) (Thermo Fisher Scientific) is a fixed-content panel containing validated human TaqMan miR assays derived from Sanger miRBase release v.14. In total, 754 human miRs are amplified in each sample together with 16 replicates each of 4 internal controls (ath-miR159a, RNU48, RNU44, and U6 rRNA). In brief, according to the manufacturer’s instructions, separate reverse transcription (RT) and pre-amplification reactions were performed on all samples using MegaPlex Pools A (v2.1) and B (v3.0) primer pools, which reverse-transcribe and pre-amplify specific miRs. The pre-amplified products were diluted before mixing with TaqMan OpenArray Real-Time PCR Master Mix and loaded onto a 384-well TaqMan OpenArray loading plate.

The Taqman OpenArray Human Advanced MicroRNA Panel (OAA) (Thermo Fisher Scientific) is also a fixed-content panel containing 754 well-characterized human miR sequences from the Sanger miRBase release v.21. The internal controls are ath-miR-159a and cel-miR-39-3p. Preparation of poly(A) tailing and adapter ligation reactions were performed, according to the manufacturer’s instructions, on all samples before RT and set-up of qPCR in a 384-well TaqMan OpenArray loading plate. The OAC and OAA products were automatically loaded from the 384-well plates onto the OpenArray plates using the AccuFill System (Thermo Fisher Scientific), and the qPCR reactions were carried out on a QuantStudio 12K Flex Real Time PCR system (Thermo Fisher Scientific). Quality controls were performed on raw data to control for batch effects and outliers. The distribution of raw Ct/Crt, AmpScore, and CqConf values of the exogenous spike-in ath-miR-159a was evaluated. Plate images were manually inspected for every sample in every run to control for evaporation, bubbles, or oil leakage. The fluorescence of ROX, a passive dye in the qPCR reagent mix, was controlled to confirm that each well was correctly loaded. Wells with a ROX signal above 1,000 were included.

The miRCURY LNA miRNome PCR Panels (miRCURY) (Qiagen) is a system based on universal RT, followed by qPCR amplification with locked nucleic acid (LNA)-enhanced primers designed for miR detection using SYBR tracking dye. In each sample, a total of 752 unique human miRs based on Sanger miRBase release 21 are profiled using miRNA ready-to-use PCR human panels I and II following the manufacturer’s instruction. The PCR panels also include three small RNA reference genes (U6, SNORD38B, and SNORD49A) and three miR reference genes (miR-103-3p, miR-191-5p, and hsa-miR-423-5p), all found on panel I. Panel I also contains qPCR assays for the 5 synthetic RNAs in the RNA Spike-in Kit (cel-miR-39-3p, UniSp2, UniSp4, UniSp5, and UniSp6). After RT, qPCR reactions were carried out on a QuantStudio 12K Flex Real Time PCR system. To control for run-to-run variations, interplate calibration was performed using the six interplate calibrators, UniSp3 miR, as per the manufacturer’s instruction. After the calibration of each plate, the data were merged to obtain a unique data matrix.

The QiaSeq miRNA Library (QiaSeq) (Qiagen) is a discovery platform which captures all small RNA sequences and uses unique molecular indices (UMIs) to enable an unbiased and accurate miRNome-wide quantification of mature miRs by NGS technology. Briefly, the preparation of small RNA libraries was performed according to the manufacturer’s procedures. The quality and concentration of libraries were determined using Qubit™ DNA HS Assay Kit on a Qubit fluorometer (Thermo Fisher Scientific), while the library size was assessed using Agilent High Sensitivity D1000 ScreenTape on a 4200 TapeStation, (Agilent Technologies, Santa Clara, CA, USA). The libraries were sequenced on a NextSeq 500 System (Illumina, San Diego, CA, USA). Raw sequences were analyzed using the Qiagen Online Data Analysis Center with default settings, and 1,823 unique miRs were selected for the subsequent analysis.

In the EdgeSeq miR Whole Transcriptome Assay (EdgeSeq) (HTG Molecular Diagnostics, Inc., Tucson, AZ, USA), frozen plasma samples were shipped to HTG to carry out the multiplexed nuclease protection assay, sequencing, quality controls, and primary analysis of the data. The assay, which allows the assessment of miRs directly, without extraction, is based on probes containing sequences complementary to 2,083 specific miRs (miRBase v20) and flanking sequences for downstream amplification. It includes five negative process control probes to the plant gene: “ANT” (Aintegumenta, NM_119937). Probes that successfully hybridize to their cognate miR in the sample are protected from nuclease digestion, amplified with the addition of barcodes, and then sequenced on automated HTG EdgeSeq sequencer system. This study was executed at HTG Molecular in the VERI/O Laboratory following VERI/O processes and procedures. Data are provided as a data table of raw counts, QC raw, and log2CPM (counts per million).



Data Import and Processing

All statistical and bioinformatic analyses were performed using the R statistical program v. 3.6.1. For the three qPCR-based panels, text files were downloaded from the QuantStudio 12K Flex and were imported in R as data tables. The expression matrices in qPCRset format were created for every dataset using the HTqPCR R package (22). Filtering on detection was performed according to the manufacturers’ suggested thresholds: Crt ≦ 28, AmpScore > 1, and CqConf > 0.8 for OAC and OAA panels; Ct ≦ 35 and AmpScore > 1 and CqConf > 0.8 for miRCURY panels I + II. If miRs did not reach the thresholds, they were set to 40 and considered as “undetected”. Since different miRbase versions were used to design the platforms, we downloaded the platform annotations from each manufacturer’s website and, using the mature sequence identifier, we converted miR names to miRbase version 21. For qPCR-based platforms, data were normalized using the global median normalization method with the median values of detectable miRs. For QiaSeq, primary analysis was performed with the GeneGlobe online software (https://geneglobe.qiagen.com/sg/analyze/). Raw counts were normalized using the trimmed mean of M-value (TMM) method (23) implemented in the edgeR package (24) considering that only the UMI counts had more than 10 counts mapping in at least 30% of samples. For EdgeSeq, raw counts were corrected by background subtraction of the maximum value of the five ANT probes. In addition, control miRs were removed, and miRs with negative counts after the background correction were set to 0 for the subsequent normalization performed using the TMM method (23).



Guanine-Cytosine Content Evaluation

Guanine–cytosine (GC) content was calculated for detected and undetected miRs common to all platforms (n = 488). The percentage of GC was calculated as the sum of G and C present in every miR sequence divided by the length of the sequence and multiplied by 100. Differences between detected and undetected miRs in each platform were assessed with Wilcoxon rank-sum test.



Correlation and Concordance Analysis

Three samples deriving from a patient and two healthy subjects were profiled twice each using, depending on the platform, ether independent RNA extractions of the same plasma or duplicate aliquots of crude plasma (Figure 1). The concordance and correlation coefficient (CCC) was calculated using the ΔCt/Crt and log2(CPM) values on pairs of technical replicates for each platform with the epi.ccc function of epiR package (https://cran.r-project.org/web/packages/epiR/epiR.pdf). Hierarchical clustering was performed using Euclidean distance and Ward method.




Figure 1 | Graphical representation of ct-miR profiling in non‐small cell lung cancer (NSCLC). The plasma samples of ten stage IV NSCLC cancer patients and ten healthy heavy smoker donors were quantified for miR expression by five different high-throughput platforms—three qPCR-based (lower-left panels, boxed in red) and two next-generation sequencing-based (lower-right panels, boxed in green). Three samples were tested in duplicate and are marked with an asterisk.





MSC Algorithm

The plasma-based MSC test analyzes the reciprocal levels of 24 ct-miRs (listed in Supplementary Table S1) by qPCR. The expression values of these miRs were determined by gold-standard methodology. Briefly, the Multiplex Pools Protocol on custom-made microfluidic cards (Thermo Fisher Scientific) containing the 24 miRs spotted on duplicates was used as described (14, 15). To remove the batch effect, a ratio-based approach, using the gold-standard methodology as reference array, was first adopted (25). In detail, the normalized data of the 24 miRs from each platform were scaled by the arithmetic mean of the reference array. The fixed MSC algorithm (26) was then applied to the 24 scaled miR profile obtained for each sample in each platform, taking into account the single values. The MSC risk scores were compared with those calculated in the same samples by the gold-standard methodology (Table 1). Cohen’s kappa was used to assess the agreement between platforms for MSC classes.



Differential Expression Analysis and Concordance Rate Between Platforms

Differential expression analysis was carried out on normalized data using the linear modeling approach implemented in the limma package (27). Nominal p-values were corrected for multiple testing using the Benjamini–Hochberg false discovery rate (FDR). DE ct-miRs were selected according to an FDR <0.1 in all the platforms. We then assessed the pairwise concordance of fold changes (FC) between platforms (platform X vs. platform Y). Four qualitative evaluations were assigned to each comparison: compressed, opposite, overestimate, or concordant (28). When the compared FC were in the same direction but the ratio of X/Y was greater than or equal to 2, a value of “compressed” was assigned. Similarly, if the FC ratio of X/Y is less than or equal to 0.5, the comparison was deemed “overestimate”. FC ratios between these values were named “concordant”. When two FC values were not in the same direction and either of them was greater than 2 or less than 0.5, the comparison was determined to be “opposite”. Concordance rates were calculated by number of miRs with “concordant” and “overestimate” calls divided by the total number of analyzed miRs which were in common and expressed in all the platforms.



Individual qPCR Assays

Single qPCR reactions were performed using TaqMan MicroRNA Assays (hsa-miR-150-5p and hsa-miR-93-5p, Thermo Fisher Scientific) according to the manufacturer’s instructions. Briefly, total RNA (3 µl) was reverse-transcribed, and the resulting cDNA was used (2.5 µl) for the pre-amplification reaction. The pre-amplified cDNA was diluted 1:12, and 0.10 µl of the product was used to perform the qPCR amplification reaction using the corresponding miR assay primers and TaqMan Universal PCR Master Mix no AmpErase UNG, according to the manufacturer’s instructions. The PCR reaction conditions were as follows: enzyme activation at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 s, and annealing/extension at 60°C for 60 s. The amplification was performed in 384-well plates with QuantStudio 12K Flex Real Time PCR system (Thermo Fisher Scientific) assembled using the Janus automated workstation (PerkinElmer, Waltham, MA) from 96-well plates. Each qPCR analysis was done in triplicate, and data were acquired through QuantStudio 12K Flex v.1.2.3; the obtained mean Ct values were exported for statistical analysis. miR-93-5p was identified as a reference housekeeper by all the platforms using the selectHKgenes function with Vandesompele method (29) of SLqPCR R package (https://bioconductor.org/packages/release/bioc/html/SLqPCR.html) calculated on filtered raw data of each platform. The expression levels of miR-150-5p were then normalized according to the DCt method (30) using the Ct mean values of the endogenous control.



External Validation

External validation was performed in The Cancer Genome Atlas (TCGA) dataset. Raw count values for the TCGA miR-seq data of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were downloaded from the Genomic Data Commons data portal (https://portal.gdc.cancer.gov/). The LUAD project included 519 primary solid tumors, 2 recurrent tumors, and 46 normal samples from adjacent tumor tissues; the LUSC project included 478 primary solid tumors and 45 normal samples (31, 32). TCGA raw count values, samples, and patients’ annotations were obtained using the TCGABiolinks package (33). miRs with less than 10 counts expressed in more than 50% of samples were filtered out. Raw counts were then normalized with the TMM method implemented in the edgeR package (23, 24). Differential expression between tumor and normal tissue was performed using the limma/voom method (27). Nominal p-values were corrected for multiple testing using the Benjamini–Hochberg FDR.



ROC Curves

Receiver operating curves (ROC) with area under the curve (AUC) calculation were used to determine the diagnostic value of miRs in distinguishing between plasma from healthy controls and NSCLC patients (34). ROC curves were obtained by plotting sensitivity against specificity using the ROC function of pROC R package (34). An area greater than 0.5 under the curve suggests the diagnostic potential of each ct-miR candidate.




Results


Study Design and ct-miR Expression Profiling

A total of 20 human specimens were employed for this study, which included plasma from NSCLC patients (n = 10) and healthy subjects (n = 10) matched for age, sex, smoking status, and MSC risk score (Table 1). Three plasma, one derived from a patient and two from healthy subjects, were in duplicate, bringing the total number of analyzed samples to 23 (Figure 1). RNA derived from these samples was profiled by the following four high-throughput technological platforms: Taqman OpenArray Human miR and Taqman OpenArray Human Advanced miR Panels (Thermo Fisher Scientific), miRCURY LNA miR miRNome PCR Panels (Qiagen), and QiaSeq miRNA Library (Qiagen) (Figure 1). The fifth platform, EdgeSeq miR Whole Transcriptome Assay (HTG Molecular Diagnostics), employed crude blood plasma instead (Figure 1). The starting material for the duplicates was a second aliquot of either crude plasma (for EdgeSeq platform) or RNA independently extracted (for all remaining platforms). Their inclusion was required to assess intra-platform repeatability as described below. The presence and detection of miRs by platform and sample is reported in Supplementary Table S2. The number of common miRs detectable by all platforms was 488 (Supplementary Figure S1A and Supplementary Table S2). For each platform, the average number of ct-miRs detected after normalization and filtering in the different samples ranged from 236 for EdgeSeq platform to 806 for QiaSeq (Supplementary Figure S1B). By considering only the 488 commonly detected miRs, average detection ranged from 120 to 323 (Figure 2A). As shown in Supplementary Figure S1C, the influence of GC content had no or little impact on the detection rate. The 488 common miRs included a list of 26 miRs (named super_core in Supplementary Table S2) highly expressed in all plasma samples as indicated by the empirical cumulative distribution curves of their expression quantiles (Supplementary Figure S1D).




Figure 2 | ct-miR detection and correlation and concordance analysis across duplicates and platforms. (A) Boxplots representing the number of detected ct-miRs in each platform, calculated after normalization and filtering, with respect to the 488 common miRs. (B) Grouped bar plots showing the concordance and correlation coefficient calculated among the three duplicates in each platform for the 488 common miRs. The vertical bars indicate the 95% confidence interval of the correlation. The horizontal dotted line represents the threshold of the minimum correlation value, 0.8. The black, gray, and light gray bars refer to technical duplicates from three plasma samples. (C) Correlation heat map showing the agreement between the five platforms. Spearman correlation was calculated on the samples’ z-scores of each platform considering the 488 miRs common to all platforms. Hierarchical clustering was performed using Euclidean distance and Ward linkage.





Intra-platform Repeatability and Inter-platform Comparison

To evaluate the intra-platform repeatability, we calculated for each platform the Lin’s CCC between the ct-miR profiles of duplicate samples. CCC between duplicates was >0.8 for all platforms considering either the 488 common miRs (Figure 2B) or the total number of available miRs (Supplementary Figure S2). Pairwise scatterplots for duplicates are displayed in Supplementary Figure S2. These results demonstrate intra-platform consistency and no significant differences among the different technologies. We then calculated Spearman’s correlation coefficients between pairs of samples within and between platforms. Hierarchical clustering of the correlation matrices showed that each platform produced very homogenous and highly correlated data (Figure 2C). Within each platform, we did not observe any separate cluster of tumor and normal samples. This suggests that, independently of the platform, most of the ct-miRs are uninformative to distinguish the two groups. We did instead observe clustering according to the profiling platform, indicating that the variability explained by the technological approach is higher than the biological variability. An unsupervised hierarchical clustering algorithm was carried out on Spearman’s correlation coefficients calculated between the pair of platforms for each of the 488 common miRs. Four major clusters were identified according to different levels of correlation (Figure 3A). Cluster 1 comprised 17% of miRs displaying the lowest inter-platform correlation for all pairs of platforms. Cluster 3 included 32% of miRs that had low expression levels in all platforms and that were highly correlated when comparing qPCR-based platforms but were negatively correlated between NGS- and qPCR-based platforms. Cluster 2 included 35% of miRs and showed a heterogenous pattern of correlation. A first subset of miRs showed a positive correlation in all comparisons, whereas a second subset showed negative correlations when the comparisons were against OAA, indicating that the expression of these ct-miRs is inconsistent specifically for this platform. Finally, cluster 4 included 15% of miRs that were highly expressed in all platforms and showed a high inter-platform correlation. EdgeSeq did not correlate with any other platforms since many of the 488 miRs showed an expression value of 0 in all samples. miRs belonging to each cluster are reported in Supplementary Table S3. The Spearman correlation coefficients among the six platforms shown in the right boxplot of Figure 3A indicate that the highest inter-platform reproducibility was observed between qPCR-based platforms (miRCURY, OAC, and OAA). For each pair of comparisons between platforms, we counted the number of ct-miRs above increasing correlation cutoffs (Figure 3B). We confirmed that, independently of the correlation cutoff, the comparison between qPCR-based platforms returned the highest number of correlated ct-miRs, especially for OAC vs. miRCURY. Comparisons including EdgeSeq showed the lowest number of correlated ct-miRs due to the lower detection rate of EdgeSeq compared with the other platforms.




Figure 3 | Correlation analysis between each pair of platform and concordance assessment for the miR signature classifier (MSC). (A) The correlation heat map shows how the different platforms correlate with respect to the expression values of the 488 common miRs. The median pairwise Spearman’s correlation values are shown also as boxplots in a black box (right corner). The colored bars on the top and bottom of the heat map (violet- to yellow-colored gradient) define the median-normalized expression values of each platform. Four functional groups are identified and defined according to different levels of correlation (1, scarce; 2, intermediate; 3, both positive (red) and negative correlation (blue); 4, high). The black vertical bars represent the miRs with an expression value of 0 in EdgeSeq platform that do not correlate. (B) Curves showing the number of ct-miRs correlated above increasing correlation cutoffs for each pairwise comparison between platforms. (C) Bar plots displaying the percentage of concordance in assigning the label miR risk classifier MSC—high or MSC—low compared with the reference platform (Custom-made Microfluidic Cards, Thermo Fisher) used to calculate the clinical validated score.





Cross-Platform Concordance in the Assignment of a Clinical Validated miR Risk Score

Our cohort consisted of subjects equally distributed within high and low risk (Table 1) in both classes (NSCLC and controls) as previously assessed by the gold-standard methodology. MSC algorithm was adopted to classify each sample according to the expression profiles of the 24 ct-miRs (Supplementary Table S1) determined in each platform. The classification of each sample (including duplicates from two subjects) for each platform is displayed in Supplementary Table S4A. All qPCR-based platforms and QiaSeq displayed a classification highly concordant to the original assessment by the gold-standard method (Figure 3C and Supplementary Table S4A). The same results were obtained by computing Cohen’s kappa statistics as pairwise measure of similarity when each platform was confronted to the reference (Supplementary Table S4B). A lower fidelity was displayed by EdgeSeq when compared with the reference (Supplementary Tables S4A, B). Except for EdgeSeq, all other platforms correctly classified all samples from MSC-low individuals, whereas the situation was more heterogeneous for MSC-high individuals (Supplementary Table S4A). Overall, OAA, miRCURY, and QiaSeq were the three platforms with 91% of correctly classified samples, followed by OAC (82%) and EdgeSeq (59%) (Figure 3C and Supplementary Table S4A). These results demonstrate that the classification obtained by the standard protocol could be replicated with a good agreement using at least two qPCR-based technologies and one sequencing technology.



Differential ct-miR Modulation in NSCLC Patients Compared to the Healthy Control Group

To evaluate the differential expression concordance among platforms, we identified DE ct-miRs between NSCLC patients and healthy donors for each platform. The number of miRs that passed the detection filter and were available for the contrast differed among platforms: 689 for QiaSeq, 337 for miRCURY, 305 for OAC, 269 for OAA, and 246 for EdgeSeq. Among the 488 miRs measured by all platforms, those commonly detected were over 80% for qPCR technologies, were 50% for EdgeSeq, and dropped to 44% for QiaSeq. In total, 100 miRs were altogether detected by all platforms, 164 by all but EdgeSeq, which presented the lowest number of ct-miRs passing the detection filters. The results of the DE analysis for all platforms are presented in Supplementary Table S5. For each platform, we evaluated the number of DE ct-miRs at varying FDR thresholds, ranging from 0.25 to 0.01 (Supplementary Figure S3A). On average, the miRCURY platform gave the highest number of DE ct-miRs, followed by OAC, QiaSeq, and EdgeSeq. No DE ct-miRs were identified for OAA at any FDR threshold. At the usual FDR <0.05, the miRCURY platform gave 43 DE ct-miRs, followed by QiaSeq (n = 5) and EdgeSeq (n = 1). No DE ct-miRs were found for OAC and OAA at an FDR <0.05. Considering a stringent FDR of 0.01, only QiaSeq identified two DE ct-miRs. We next evaluated the intersection between the lists of DE ct-miRs identified for each platform at different FDR thresholds (Supplementary Figure S3B). At FDR <0.01, no DE ct-miRs were shared between two or more platforms. At FDR <0.05, one ct-miR was identified by three platforms and two by two platforms. At increasing FDR, the number of shared DE ct-miRs across platforms increased. Since the selection of DE ct-miRs by different FDR cutoffs influences the comparison of the platforms, we evaluated the correlation of the t-statistics to assess whether at least the direction of the modulation was concordant across platforms (Supplementary Figure S3C). All pairwise comparisons between platforms showed positive correlation values, indicating that, on average, the trend of modulation of ct-miRs between lung cancer patients and healthy donors was similar between platforms. However, only OAC vs. miRCURY and QiaSeq vs. miRCURY had correlation values higher than 0.5.

To select ct-miRs DE in at least four platforms, we therefore applied an FDR cutoff of 0.1. Volcano plots representing the results of the DE analysis between lung cancer patients and healthy controls at an FDR <0.1 are shown in Figure 4A. At a threshold of FDR <0.1, we detected 27 DE ct-miRs on OAC, 6 on QiaSeq, 97 on miRCURY, 1 on EdgeSeq, and none on OAA, corresponding to 4.3, 0.5, 5.2, 0.8, 0.4, and 0% of miRs available for the contrast. A Venn diagram displaying the intersection between the lists of significantly up- or downregulated ct-miRs in each platform is shown in Figure 4B. Among upregulated ct-miRs, at FDR <0.1, one was common to OAC, miRCURY, and QiaSeq platforms, whereas 16 were commonly detected on two of them. The downregulated ct-miRs included 1 miR shared by miRCURY and QiaSeq and 1 common to the four platforms (miR-150-5p, FDR <0.05 in miRCURY, QiaSeq, and EdgeSeq; FDR <0.1 in OAC).




Figure 4 | Significantly dysregulated ct-miRs in non‐small cell lung cancer (NSCLC) patients compared with healthy donors and fold change concordance evaluation. (A) Volcano plots showing DE ct-miRs between lung cancer patients and healthy donors. The x-axis shows the log2 fold change. The y-axis shows the –log10 of the false discovery rate. A false discovery rate of <0.1, represented by a horizontal dashed line, is used to select DE ct-miRs. The up- and downregulated ct-miRs in lung cancer patients are highlighted in red and blue, respectively. (B) Venn diagram reporting the intersection of the ct-miRs significantly upregulated (red) and downregulated (blue) in lung cancer patients across the platforms. (C) Stacked bar plots showing the concordance in fold changes between platform pairs expressed in percentage of miRs. The four indices—”compressed”, “opposite”, “overestimated”, and “concordant”—are described in “Materials and Methods”.





Fidelity of Fold Change Across Platforms and Experimental Validation of miR-150-5p

We selected all ct-miRs identified as DE in at least one platform and evaluated the fold change concordance between platforms as defined in the “Materials and Methods” section. As shown in Figure 4C, the highest rate of concordant miRs was found between OAC and miRCURY, followed by either OAC or miRCURY compared with QiaSeq. The percentage of miRs displaying fold changes in the opposite direction increased when the comparisons were done against EdgeSeq and OAA. miR-142-3p was the concordant upregulated ct-miR across OAC (FDR <0.1), miRCURY (FDR <0.05) and QiaSeq (FDR <0.1) in the plasma of NSCLC patients compared with healthy subjects. The ct-miRs concordantly and significantly upregulated in at least two platforms were as follows: miR-590-3p, miR-766-3p, miR-103a-3p, miR-98-5p miR-296-5p, miR-191-5p, and miR-24-3p (OAC and miRCURY) and let-7f-5p (QiaSeq and miRCURY). Except for miR-142- 3p and miR-98-5p, absent from EdgeSeq, all others belonged to the 488 miRs present on all platforms. The majority was included in cluster 2, whereas miR-590-3p and miR-191-5p were in cluster 4 (Figure 3A and Supplementary Table S3). The only ct-miR downregulated in cancer patients compared with donors, miR-150-5p (cluster 4, Figure 3A and Supplementary Table S3), was significantly DE in four platforms (Figure 5A). A trend toward significance (nominal p-value = 0.008) was also observed in the fifth platform (OAA) (Figure 5A). To further investigate the robustness of differences in the abundance of miR-150-5p, individual qPCR assays were performed. By ranking the 26 ct-miRs detected in all samples and platforms according to their average rank across platforms (Supplementary Table S6), it was shown that hsa-miR-93-5p is the most stable ct-miR in the cohort and was selected as the normalizer for the single assay. The results confirmed that the relative normalized expression of miR-150-5p in the plasma of NSCLC patients was significantly lower than in healthy donors (Figure 5A).




Figure 5 | ct-miR differential expression and validation. (A) Boxplots reporting the differences in the expression values of miR-150-5p between non-small cell lung cancer (NSCLC) patients and healthy donors in all platforms. Single-assay validation test of miR-150-5p after normalization to the reference miR-93-5p is reported. All p-values were obtained using limma, except for the single assay where unpaired two-tailed t-test was applied. (B) Venn diagram showing the intersection of AUC values above 0.7, calculated on normalized miR values of all the platforms. (C) Receiver operating characteristic (ROC) curves of miR-150-5p (orange) and miR-210-3p (blue) obtained by comparing the two groups of lung cancer patients and healthy donors. The area under the ROC curve is above 0.7 for both miRs in all the platforms and even for miR-150-5p in the validation single assay.





Discrimination of NSCLC Patients and Controls by Receiver Operating Characteristic Curves

To assess the translation of differential expression into diagnostic power, we evaluated the ability of ct-miRs to discriminate NSCLC patients from controls using a ROC curve analysis. Overall, OAA and OAC showed the highest number of potentially diagnostic ct-miRs, followed by QiaSeq, miRCURY, and EdgeSeq (Supplementary Figure S4A). The performance of the platforms in identifying diagnostic ct-miRs varied according to the AUC cutoff selected but, in general, decreased rapidly at increasing values of AUC. At AUC >0.8, miRCURY was the best-performing platform, followed by OAC, QiaSeq, OAA, and EdgeSeq. At AUC >0.9, miRCURY was again the top-ranking platform with 7 diagnostic ct-miRs, followed by QiaSeq, OAC, EdgeSeq, and OAA. We next compared the lists of ct-miRs with AUC above a certain threshold (Supplementary Figure S4B). For AUC >0.8, only one ct-miR was shared by at least four platforms. Upon increasing the AUC to 0.9, no shared ct-miRs were found for four and five platforms and only one for at least two or three platforms. The correlation of AUC values showed a poor consistency between platforms, with correlation values ranging from a minimum of -0.267 for OAA vs. QiaSeq to a maximum of 0.407 for miRCURY vs. QiaSeq (Supplementary Figure S4C). The intersections between miRs with an area under ROC curve (AUC) value above or equal to 0.7 are shown with a Venn diagram in Figure 5B. Two ct-miRs, miR-150-5p and miR-210-3p, were in common to all the platforms. Although miR-210-3p upregulation in NSCLC was statistically significant only in QiaSeq (FDR <0.1), it displayed the same trend of modulation in the other platforms (data not shown). As shown in Figure 5C and Supplementary Table S7, the AUC value of miR-150-5p, including the single-assay qPCR results, ranged from 0.95 for QiaSeq [95% confidence interval (CI): 0.87–1] to 0.83 for miRCURY (95% CI: 0.64–1). The AUC for miR-210-3p ranged from 0.87 for OAC (95% CI: 0.7–1) to 0.71 for miRCURY (95% CI: 0.49–0.94). These results indicate that all platforms can detect the discriminatory power between NSCLC patients and healthy donors of these two ct-miRs, even if the accuracy is platform dependent.



Validation of miR-150-5p and miR-210-3p as Potential Biomarkers in Tissues

To further explore the role of miR-150-5p and miR-210-3p as potential biomarkers even for NSCLC tissues, the TCGA miR sequencing data for tumors and normal tissues of patients affected by LUAD and LUSC were analyzed. The results shown in Figures 6A, B indicated that the trend of dysregulation of these two miRs at the tissue level agreed to that observed in plasma. In comparison with normal tissues, the downregulation of miR-150-5p was however higher for LUSC than LUAD (Figure 6A). In contrast, miR-210-3p was significantly upregulated in both histologies (Figure 6B). ROC curve analysis was performed to evaluate the diagnostic value of the two miRs at the tissue level. As shown in Figures 6C, D, they appeared to represent valuable diagnostic markers. The miR-210-3p AUC values were high in both LUAD and LUSC cohorts at 0.98 and 0.99, respectively (Figure 6D), whereas those for miR-150-5p had higher AUC in LUSC (0.84) than in LUAD (0.61) (Figure 6C). The related data corresponding to AUCs are summarized in Supplementary Table S7.




Figure 6 | miR-150-5p and miR-210-3p expression and predictive value at tissue level in The Cancer Genome Atlas (TCGA) dataset. (A) Downregulation of miR-150-5p. (B) Upregulation of miR-210-3p. The upper and lower boxplots in (A, B) refer, respectively, to lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) compared with normal lung samples in the TCGA cohort. The log2 (fold change) values for the magnitude of difference are as follows: -0.56 (LUAD vs. normal) and -1.45 (LUSC vs. normal) for miR-150-5p; 5.02 (LUSC vs. normal) and 4.46 (LUSC vs. normal) for miR-210-3p. The P-value by unpaired two-tailed Student’s t-test are as follows: **P ≤ 0.01; ***P ≤ 0.001. (C) Receiver operating characteristic (ROC) curves for miR-150-5p. (D) ROC curves for miR-210-3p. LUADs are displayed in the upper boxplots, and LUSC are in the lower boxplots of (C, D).






Discussion

We here analyzed the miR profiles of the plasma fluids of 10 NSCLC lung cancer patients and 10 healthy donors by using five different high-throughput platforms that are among the most commonly used commercially available technologies.

Each platform was assessed for performance parameters (intra-platform reproducibility, detection rate, and inter-platform correlation), for MSC classification concordance, and for the ability to detect differences between biological groups (e.g., healthy individuals and patients). The ct-miR detection rate was more similar across qPCR technologies. QiaSeq exhibited the highest miR counts in all sample groups, indicating that it is a true discovery technology that greatly expands miR repertoire detection and allows the identification of novel miRs. In contrast, EdgeSeq, directly performed on crude human plasma specimens without RNA extraction, displayed the lowest sensitivity. The intra-platform reliability, assessed by calculating pairwise concordance correlation coefficients between duplicates, was very high for all platforms except for OAA which had slightly lower CCC values. The results from the inter-platform reproducibility are consistent with those of previous studies, indicating that the overlap between different technologies is small (17–21). Our clustering analysis demonstrated that the correlation between ct-miRs depends on the platform and on the expression level of the miRs. The highest inter-platform reproducibility was observed between the qPCR-based platforms miRCURY, OAC, and OAA. EdgeSeq, which displayed a very high number of miRs with an expression value of 0 after background correction, had the lowest number of miRs, showing a low inter-platform correlation. It is the only technology that performs direct miR-targeted sequencing without RNA extraction procedures, and the results probably reflect the lower sensitivity for the quantification of low-abundance miRs as already reported (19). However, for specific highly expressed ct-miRs such those in cluster 4, it showed an inter-platform correlation comparable with the other platforms. Our study pinpoints the challenges inherent to the choice of a downstream detection technology for ct-miR profiling in a clinical setting and advises the use of a dual-platform approach to overcome the limitations of single platforms. If cost will prevent this approach, the aim of the experiment should be considered. At a discovery stage, unbiased high-throughput screens of miRs like that offered by QiaSeq small-RNA sequencing could be recommended. High-throughput qPCR technique by miRCURY or OAC could be also a good option for discovery as well as for more focused studies. Regardless of the platform used, putative biologically relevant miR biomarkers should be further validated by an independent technology. Except for EdgeSeq, concordance of MSC classification to the gold-standard assay was high for all other platforms, in particular, for OAA, miRCURY, and QiaSeq, establishing that the classifier could be reproducibly implemented in other multiplexed platforms.

Despite the fact that many studies investigating plasma miRs in patients with NSCLC provide evidence of the potential value of ct-miRs as non-invasive biomarkers, uncertainties remain regarding the clinical validity and utility of dysregulated ct-miRs for lung cancer diagnosis, prognosis, and prediction of response to treatment (35, 36). There are many reasons underlying the variability among published studies, including the use of different technologies and platforms, as also shown here, and heterogeneity of clinical cohorts. Indeed a recent multicentric study in the context of the EU network CANCER-ID reported low concordance among the miR results obtained by comparing two hybridizations (Toray 3D and nCounter), one sequencing (QiaSeq), and two qPCR (miRCURY and two-tailed qPCR) on biological samples composed of cell-free and extracellular-derived miR fractions from NSCLC patients (n = 27) and healthy control samples (N = 20) (20). In addition, no common DE ct-miRs among cancer patients and donors were detected by the different quantification technologies. This result could be related to the composition of the NSCLC cohort which included different stages of the disease before and during systemic treatment or radiotherapy as well as before and after surgery and to the control cohort not age-matched with that of the patients (20).

Though smaller, our NSCLC cohort was properly matched with healthy heavy smoker donors and allowed the detection of differential ct-miR expression between cancer patients and controls. The ability to detect statistically significant DE ct-miRs was platform dependent. However, when we disregarded the statistical significance and we focused on the direction of the modulation, we observed that most of the ct-miRs were concordant, except for EdgeSeq and OAA that displayed a high number of discordant DE ct-miRs. Finally, all platforms identified miR-150-5p and miR-210-3p as the best circulating biomarkers able to discriminate NSLC patients from healthy donors. Of note is the fact that since these two groups were matched for MSC test results, we can speculate that miR-150-5p and miR-210-3p are diagnostic markers independent of the MSC test result.

They were also confirmed at the tissue level, where the same trend of significant differences was observed in comparison with healthy tissue. miR-150-5p was also validated in the same plasma samples using single-assay qPCR, which is considered the gold-standard method for expression quantification.

miR-150-5p plays a critical role in the development of lymphoid and myeloid lineages in both mice and humans and has been observed to be dysregulated in solid and hematological malignancies where, depending on the context, it can exert concogenic or oncosuppressor functions (37, 38). Several lines of evidence point to its downregulation in different human cancers, like head and neck squamous carcinoma, cholangiocarcinoma, prostate, and hepatocellular carcinoma (39–42), supporting the tumor suppressor role of miR-150-5p. In addition, it was found downregulated in non-neoplastic diseases like advanced heart failure, critical illness, and sepsis (43, 44). The results on the expression and role of miR-150-5p in NSCLC are however conflicting since both oncogenic and tumor suppressor functions have been reported (37, 45–48). Its expression level, as detected in tissues by in situ hybridization, negatively correlates with metastasis, including lymph node and distant metastasis, at the time of diagnosis (45). The follow-up data indicate that patients with a low expression of miR-150-5p have a poor progression-free survival rate and a poor overall survival rate compared with those with high miR-150-5p expression (45). Conversely, as assessed by qPCR, the expression of miR-150-5p was found at levels significantly more elevated in NSCLC in comparison with that in non-tumor tissues (46). At the circulating level, once again, either up- and downregulation in plasma or serum of different cohorts of NSCLC patients in comparison with healthy donors was reported (49, 50). By profiling blood plasma miRs in NSCLC patients and healthy individuals using the miRCURY platform with the LNA qPCR Serum/Plasma Panel, the upregulation of miR-210 and the downregulation of miR-150-5p were observed for both pre-miR and mature miR levels (49). Our results agree with the above-described studies but contradict the finding indicating that the plasma levels of miR-150 and miR-210, among a panel of 12 candidate miRs, were both significantly upregulated in the plasma of NSCLC patients compared with healthy controls (50). As previously mentioned, several parameters like differences in research design, populations and specimens, and experimental methods can be relevant for inconsistencies from study to study. In addition, normalization of expression is a common challenge of miR studies in biological fluids in the absence of stable normalizers. Therefore, the function of miR-150-5p in NSCLC warrants further investigations. Nonetheless, it is worth to point out that, in our study, by applying distinct normalization strategies for data derived from small RNA sequencing, high-throughput qPCR methods, and individual qPCR assay, miR-150-5p was found to be coherently downregulated in plasma samples from NSCLC patients by five different miR profiling platforms, starting from different materials (RNA and crude plasma) and further validated by a single assay.

The role of miR-150-5p downregulation in the early diagnosis of lung tumor development is further supported by recent findings in chronic obstructive pulmonary disease, often associated with comorbidities and an increased risk of cancer, in a large-scale collection of samples from patients without cancer at baseline but with follow-up data (51–54). An increasing number of new strategies for therapeutic miR approaches are currently being pursued to restore the level of downregulated miRs and regain their tumor suppressor function (55). miR-150-5p activity as tumor suppressor has been related to its ability to inhibit wingless (Wnt)-β-catenin signaling pathway, closely associated with NSCLC progression, by targeting known activators like glycogen synthase kinase 3 beta interacting protein, β-catenin, and high mobility group AT-hook 2 (45, 56) as well as to reduce the matrix metalloproteinase 14 (MMP14) levels, whose overexpression correlates with a poor prognosis in NSCLC patients (47–57). The regulation of miR-150-5p is complex, and several long noncoding RNAs or circular RNAs can promote NSCLC cell growth and metastasis through sponging miR-150-5p (58–62).

At difference to miR-150-5p, miR-210-3p has been unambiguously described as a promising biomarker for NSCLC lung cancer due to its upregulation at the tissue, plasma, and serum levels and to its discriminatory accuracy in patients versus healthy controls (10, 12, 63–71). Investigations into the effects of miR-210 on lung cancer cell behavior as well as into the specific mechanisms underlying the role of miR-210 in the pathogenesis of NSCLC have been performed. It has been shown to regulate proliferation and apoptosis by targeting the transcriptional regulator SIN3A (69), a tumor suppressor gene for NSCLC cells (70). In addition, exosomal miR-210-3p derived by cancer stem cells targets fibroblast growth factor receptor-like 1 to elicit a pro-metastatic phenotype (71).

In conclusion, our study provides a comparison of ct-miRs, relevant in NSCLC, using widely used high-throughput platforms. We could show that the correlation between ct-miRs depends on both the type of platform and the miRs expression levels. Indeed a high inter-platform correlation was observed for ct-miRs profiled in qPCR-based platforms and, for all platforms, within highly expressed ct-miRs. Concordance of MSC classification among most miR detection technologies with the “gold-standard” method established that the classifier could be successfully implemented in other multiplex platforms. Finally, we here demonstrate, for the first time, that the decreased abundance of miR-150-5p and the increased abundance of miR-210-3p in the plasma of lung cancer patients is independent of the detection technology. Both miRs display promising attributes and constitute attractive circulating biomarkers for NSCLC cancer detection. Larger and prospective studies composed of patients with different NSCLC histological cancer subtypes and at different stages of the disease are needed to confirm their significance.
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Supplementary Figure 1 | (A) Venn diagram reporting the intersection of the miRs present on all platforms, highlighting the 488 in common. (B) Boxplots representing the number of detected ct-miRs in each platform with respect to those present in each platform. (C) Boxplots reporting the percentage of GC in detected (pink) and undetected (blue) ct-miRs for each platform. P-value calculation by Wilcoxon rank-sum test. (D) Comparison of the empirical cumulative density function for each platform of the expression quantiles of the 26 ct-miRs detected in all samples and in all five platforms.

Supplementary Figure 2 | Scatterplot of duplicate profiles derived from three plasma samples (#1, NSCLC patient; #2 and #3, donors) calculated on normalized and filtered data in each platform. The platforms from top to bottom are OAC, OAA, miRCURY, EdgeSeq, and QiaSeq.

Supplementary Figure 3 | Comparison of differential expression results across platforms. (A) Number of DE ct-miRs in each platform according to different false discovery rate (FDR) thresholds. (B) Number of DE ct-miRs shared by at least 2, 3, 4, and 5 platforms according to different FDR thresholds. (C) Pairwise scatter plots of the t-statistic values obtained from the differential expression analysis performed for each platform. Pearson’s correlation coefficients and significance are reported. ***p-value is <0.001, **p-value is <0.01, and *p-value is <0.05.

Supplementary Figure 4 | Comparison of area under the curve (AUC) values of ct-miRs across platforms. (A) Number of ct-miRs in each platform with AUC values above increasing cutoffs. (B) Number of ct-miRs shared by at least 2, 3, 4, and 5 platforms according to increasing AUC thresholds. (C) Pairwise scatter plots of AUC values for the classification of lung cancer patients and healthy donors. Pearson’s correlation coefficients and significance are reported. ***p-value is <0.001, **p-value is <0.01, and *p-value is <0.05.
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Background

Despite advances in prognosis and treatment of lung adenocarcinoma (LADC), a notable non–small cell lung cancer subtype, patient outcomes are still unsatisfactory. New insight on novel therapeutic strategies for LADC may be gained from a more comprehensive understanding of cancer progression mechanisms. Such strategies could reduce the mortality and morbidity of patients with LADC. In our previous study, we performed cDNA microarray screening and found an inverse relationship between inhibitor of DNA binding 2 (Id2) expression levels and the invasiveness of LADC cells.



Materials and Methods

To identify the functional roles of Id2 and its action mechanisms in LADC progression, we successfully established several Id2-overexpressing and Id2-silenced LADC cell clones. Subsequently, we examined in vitro the effects exerted by Id2 on cell morphology, proliferation, colony formation, invasive, and migratory activities and examined in vivo those exerted by Id2 on cell metastasis. The mechanisms underlying the action of Id2 were investigated using RNA-seq and pathway analyses. Furthermore, the correlations of Id2 with its target gene expression and clinical outcomes were calculated.



Results

Our data revealed that Id2 overexpression could inhibit LADC cells’ migratory, invasive, proliferation, and colony formation capabilities. Silencing Id2 expression in LADC cells reversed the aforementioned inhibitory effects, and knockdown of Id2 increased LADC cells’ metastatic abilities in vivo. Bioinformatics analysis revealed that these effects of Id2 on cancer progression might be regulated by focal adhesion kinase (FAK) signaling and CD44/Twist expression. Furthermore, in online clinical database analysis, patients with LADC whose Id2 expression levels were high and FAK/Twist expression levels were low had superior clinical outcomes.


Conclusion

Our data indicate that the Id2 gene may act as a metastasis suppressor and provide new insights into LADC progression and therapy.






Keywords: FAK, inhibitor of DNA binding protein 2, lung adenocarcinoma, metastasis, twist



Introduction

Among the most common cancers globally, lung cancer constitutes the foremost cause of cancer mortality. Within the United States, in 2022, lung cancer accounted for an estimated 12.3% of new diagnoses of cancer and >21% of all deaths due to cancer (1). Patients diagnosed as having lung cancer exhibit unsatisfactory outcomes, and such outcomes are generally ascribed to difficulties in early detection; advanced-stage lung cancer is diagnosed in >75% of patients (2). Despite the potential of low-dose computed tomography for earlier diagnosis, this modality remains challenging for the general population. For patients who have received a lung cancer diagnosis, overall 5-year survival is still less than 19% (1). The most crucial factor for patient survival is metastasis; however, the molecular aspects of metastasis have not been completely defined (3). Non–small cell lung cancer (NSCLC) constitutes 85% of all cases of lung cancer; in addition, nearly 50% of NSCLC cases are lung adenocarcinoma (LADC) (4). Although numerous studies have been conducted on LADC progression, the molecular mechanisms of this type of cancer are not clearly understood (5).

We previously used cDNA microarray analysis to screen a panel of LADC cells with different invasive capacities to identify potential genes associated with LADC metastasis (6). We successfully identified several candidate invasive suppressor genes from the aforementioned cell line model and demonstrated their roles and the corresponding molecular mechanisms in the NSCLC cell metastatic process (7,8). A differentially expressed invasion-associated gene selected in the cDNA microarray assay was inhibitor of DNA binding 2 (Id2), the expression of which had a negative correlation with the invasiveness of the cell lines. The inhibitor of DNA binding (Id) protein family is reportedly involved in numerous developmental and cellular processes as well as in carcinogenesis (9–11). In this protein family, four members (Id1–4) have been found in mammals (12). Because they lack the basic DNA-binding domain, Id proteins can heterodimerize with basic helix–loop–helix (bHLH) transcription factors and then inhibit their binding to DNA (13,14).

Recently, numerous studies have demonstrated that the Id protein family plays roles in cell cycle control, cancer development, angiogenesis, and apoptosis in a variety of human cancers (15–18). Relevant studies have indicated that Id2 might be dysregulated in tumor progression in several cancer types, such as prostate, breast, colon and rectal, head and neck, and central nervous system cancers (19–23). However, Id2 was reported to play different roles in different cancer cells (24). In prostate cancer cells, constitutive expression of Id2 could promote aggressive phenotypes (25). By contrast, Id2 expression had a negative correlation with a poorly differentiated breast cancer phenotype (26). Additionally, Id2 was found to suppress prometastatic transcriptional programs in human melanoma cells (27). Research executed recently has demonstrated that Id2 might serve as a prognostic marker for patients diagnosed as having small-cell lung cancer or having poorly differentiated tumors in NSCLC (22,28). Because the roles of Id2 differ depending on the cancer type, the determination of how Id2 affects LADC progression and metastasis is an urgent need.

In the present study, we successfully established several Id2-overexpressing and Id2-silenced LADC cell lines. Then, we clarified the roles of Id2 in LADC metastasis and tumor progression in vitro and in vivo. We demonstrated that Id2 overexpression could inhibit LADC cells’ migratory, invasive, proliferation, and colony-formation capabilities. Silencing Id2 expression in LADC cells could also reverse the aforementioned inhibitory effects. Furthermore, in vivo metastasis assays demonstrated that nodules significantly increased in number in mice that received tail-vein injections of Id2-silenced cells compared with those that received control cells. RNA sequencing and pathway analysis suggested that Id2 serves as an invasion suppressor gene in LADC and is highly influential in the progression and metastasis of LADC through CD44/Twist axis and focal adhesion pathway regulation. In addition, LADC patients with high Id2 expression levels have superior clinical outcomes. All these efforts extend our understanding of how the Id2 gene affects LADC progression and metastasis; this understanding is critical for the development of LADC treatment strategies in the future for clinical application.



Materials and methods


Cell line and culture conditions

We previously established the human CL1-5 and CL1-0 cell lines of LADC (of which CL1-5 has higher invasive capabilities) (6). We cultured all mentioned cell lines, including NCI-H322M and NCI-H1299 (ATCC CRL-5803), in RPMI-1640 medium (Invitrogen, Inc., Waltham, MA, USA) containing 10% heat-inactivated fetal bovine serum (FBS; Invitrogen) and 1% penicillin-streptomycin (both from Invitrogen) and kept the culture in a 5% CO2 humidified atmosphere at 37°C. For subculturing, 0.1% trypsin–0.05% EDTA (Sigma-Aldrich, St. Louis, MO, USA) was employed to dissociate the cells from the culture plates. Cells were subcultured every 3 days up to passage 10.



Plasmid formation and stable cell establishment

Using TRIzol reagent (Invitrogen), we isolated total RNA from CL1-0 cells for full-length Id2 cDNA cloning. Moreover, we applied SuperScript II reverse transcriptase (Invitrogen) and oligo-dT primers to execute the reverse transcription of first-strand cDNA. Id2 coding region amplification was executed through a polymerase chain reaction (PCR). Into the pcDNA3.1-V5-His TOPO vector (Invitrogen; pcDNA3.1-Id2), the amplified product was subsequently cloned. Lipofectamine 2000 transfection reagents (Invitrogen) were used to transfect purified pcDNA3.1-Id2 or pcDNA3.1 plasmid into CL1-5 cells in accordance with the manufacturer protocol to further establish the vector control or CL1-5/Id2-overexpressing stable cells. Stably overexpressed transfectants were selected using Geneticin (G418; Merck, Darmstadt, Germany). The shNC negative control and shID2 (shID2-284 and shID2-528) plasmids were purchased from Biotools Co., Ltd. (New Taipei, Taiwan). To establish CL1-0/Id2-knockdown or negative control stable cells, Lipofectamine 2000 reagents were used to transfect shID2 or shNC plasmids into CL1-0 cells, and stable cell clones were isolated through Geneticin selection.



Real-time quantitative reverse transcription PCR

The cells were homogenized, and TRIzol reagent (Invitrogen) was applied to execute total RNA extraction from the tested cell lines in accordance with the manufacturer protocol. To examine the Id2 or candidate gene mRNA expression levels in the tested cell lines, reverse transcription (RT)-PCR was implemented with SYBR Green as described previously (4). All primers used for SYBR Green real-time RT-PCR were listed in Supplementary Table 1.



Western blot analysis

Through Western blot analysis, Id2 expression levels were examined after Id2 expression plasmid transfection or knockdown in the tested cells. The detailed procedures were performed as previously described (7). Primary antibodies specifically against Id2 (ab166708; 1:1,000) were purchased from Abcam. For gel loading, the internal control comprised an anti-glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH, GT239; 1:10,000) antibody (GeneTex, Inc. Irvine, CA, USA). The membranes were first incubated with the primary antibodies. Subsequently, Tris-buffered saline and Tween 20 solution (Abcam) was applied to wash the membranes three times, after which they were incubated with horseradish peroxidase–conjugated secondary antibodies (Santa Cruz Biotechnology, Inc., Dallas, TX, USA). Signals were detected using enhanced chemiluminescence (ECL, GE Healthcare, Piscataway, NJ, USA).



Immunofluorescence staining

We cultured the tested cells on 12-mm glass coverslips, followed by fixing them for 15 min in 4% paraformaldehyde (Thermo Fisher Scientific, Inc., Carlsbad, CA, USA), permeabilizing them, and staining them. The cellular actin filaments were stained using TRITC-conjugated phalloidin (Sigma-Aldrich). The detailed procedures were performed as previously described (8). A fluorescent microscope (Leica DM2000, Germany) was used to examine and photograph the cells.



Cell proliferation assay

Cell proliferation capabilities were evaluated through trypan blue exclusion and thiazolyl blue tetrazolium bromide (MTT) assays. The cells were seeded for 24, 48, 72, and 96 h at 5 × 104 cells/well in the trypan blue exclusion assay. Subsequently, the cells were counted with trypan blue solution (Sigma-Aldrich). A hemocytometer was used to count the living cells under an inverted light microscope. The MTT assay was executed by seeding the cells at 3 × 103 cells/well into 96-well plates. After various culturing durations, the MTT assay was performed to examine cell proliferation activity in accordance with manufacturer protocols (Sigma-Aldrich).



Colony formation assay

The cells’ anchorage-dependent colony formation activity was determined by seeding them at 300 cells/well into six-well plates in RPMI-1640 medium. Every 2–3 days, the culture medium was changed. After 7–10 days, the medium was removed; subsequently, the cells were fixed and stained with 0.05% crystal violet (Sigma-Aldrich). Furthermore, the cells’ anchorage-independent growth was determined by precoating the six-well plates with 0.7% agarose in RPMI-1640 and then seeding the cells at 3,000 cells/well in 0.35% agarose/RPMI-1640 with 10% FBS. Every 2–3 days, the culture medium was changed. The plates were subjected to a 4–5-week incubation process executed in 5% CO2 at 37°C, followed by staining with crystal violet for 30-60 min. An inverted light microscope was employed to count colonies larger than 0.8 mm. Two independent experiments in triplicate were performed for the colony formation assays.



Cell migration and invasion assays

The migratory capabilities of the tested cells were evaluated using the previously described wound healing approach (29). A light microscope was used to count cells that migrated into the cell-free zone at indicated times (T = 0 and 8 h). A Transwell assay with Matrigel-coated transwell filters (BD Biosciences, Franklin Lakes, NJ, USA) and modified Boyden chambers (pore size: 8 μm; Corning Costar, Cambridge, MA, USA) was used to assess cell invasiveness as previously described (29). After 18 h of incubation at 37°C, the cells were fixed for 10 min in methanol (Sigma-Aldrich) and then stained at room temperature for 30 min with 10% Gemisa Stain solution (Sigma-Aldrich). A light microscope (200× magnification) was employed to quantify the cells detected to be attached to the lower surfaces of the polycarbonate filters. All aforementioned experiments were executed in triplicate.



In vivo metastasis assay

A previously described procedure for the in vivo tail-vein metastasis assay was used (8). In brief, 6-week-old SCID mice (provided by the National Laboratory Animal Center, Taiwan, n = 5 per group) received lateral tail-vein injections of a single-cell suspension of 106 CL1-0/vector (CL1-0/shNC) or CL1-0/Id2-knckdown (CL1-0/shID2) cells in 0.1 mL of PBS. Ten weeks postinjection, the lungs of the mice were removed after the mice were sacrificed through carbon dioxide anesthesia. A mouse was placed in a 1-liter volume chamber and used a CO2 flow rate of 0.5 liters per minute. The method was following the suggestions of AVMA Guidelines for the Euthanasia of Animals (2020 Edition) (30). Subsequently, the derived lungs were weighed before being fixed in 10% formalin (Thermo Fisher Scientific). A dissecting microscope was employed to count the number of metastatic nodules. Hematoxylin and eosin (H&E) staining was then executed on 4-μm-thick sections of embedded tissues for histological analysis. The Laboratory Animal Center, National Taiwan University College of Medicine, approved all in vivo experiments (IACUC number: 20140034).



RNA sequencing analysis

The sequencing library was prepared using purified RNA with a TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, CA, USA) in accordance with the manufacturer instructions. In brief, oligo(dT)-coupled magnetic beads were used to purify 1 μg of total RNA into an mRNA sample. At a high temperature, the sample was then fragmented into pieces. Then, random primers and reverse transcriptase were used for first-strand cDNA synthesis. After the generation of double-stranded cDNA and adenylation of the 3′ ends of the DNA fragments, an AMPure XP system (Beckman Coulter, Beverly, MA, USA) was used to ligate and purify the adaptors. To execute library quality assessments, the Agilent Real-Time PCR and Bioanalyzer 2100 systems were employed. Subsequently, an Illumina HiSeq 4000 platform was used to sequence the qualified libraries, for which Genomics, BioSci & Tech Co. (New Taipei City, Taiwan) generated 150-bp paired-end reads. RNAseq data are publicly available on NCBI’s Sequence Read Archive (SRA) database (Bio-project: PRJNA778932).



Bioinformatics analysis

The Trimmomatic program (version 0.39) was used to remove the low-quality bases and sequences from the adapters in the raw data (31). In addition, Bowtie2 (version 2.3.4.1) was used to align the filtered reads with the reference genomes as previously described (32). Moreover, the user-friendly software RSEM (version 1.2.28) was employed to quantify the transcript abundance (33). For the identification of differentially expressed genes, EBSeq (version 1.16.0) was executed (34). Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses among gene clusters were implemented in an R package called ClusterProfiler (version 3.6.0) (35–37).



Statistical analysis

The data of all experiments (which were executed in triplicate) were subjected to analysis of variance (Microsoft Excel) for significance testing. Results are presented as mean ± standard deviation (SD). For survival analysis, The Cancer Genome Atlas (TCGA) was used to derive Id2, FAK, and Twist mRNA profiles in 502 patients with LADC. Disease-free survival and mRNA expression data were downloaded from the cBio portal (38). The summed target-gene mRNA expression levels represented the risk score of a patient. Patients were classified into a group of high or low expression, with the median risk score being the threshold value. Both the high- and the low-expression groups’ survival curves were analyzed and compared through Kaplan–Meier analysis and a log-rank test, respectively. Two-sided statistical tests were performed, and significance was indicated by P < 0.05.




Results


Association of Id2 expression with cancer cell invasion

We previously identified associations between the expression levels of several hundred genes and the invasive capabilities of lung cancer cells (6). We established a panel of human LADC cell lines exhibiting various invasive abilities and screened it using cDNA microarray analysis. By analyzing the genes considered in this study, we found the microarray signal of Id2 to be inversely associated with cell invasive ability (Figure 1A). To confirm the microarray analysis results, we performed qRT-PCR analysis, wherein we measured Id2 mRNA expression levels in various NSCLC cell lines. The qRT-PCR results indicated higher Id2 mRNA expression in the CL1-0 cells (which are less invasive) compared with that in the CL1-5 cells (which are highly invasive; Figure 1B). In addition, Id2 expression in the other tested cell lines (e.g., H1299 and H322M) was low. Protein expression levels of Id2 were also higher in the CL1-0 cells than in the other lung cancer cells (Figure 1C).




Figure 1 | NSCLC cell invasion was negatively correlated with Id2 expression. (A) Id2 mRNA expression levels in a cell line model of LADC (microarray analysis, left panel). CL1-5 cells exhibited greater invasive abilities than did CL1-0 cells (right panel). (B) Id2 mRNA expression evaluated through qRT-PCR and (C) protein levels evaluated in Western blot analysis in different NSCLC cells. Real-time RT-PCR assays used TATA-binding protein as an internal control. All experiments were executed in triplicate. Loading control in Western blots: GAPDH.





Suppression of LADC cell progression in vitro through Id2 overexpression

We established stably constitutive Id2-expressing CL1-5 cell clones to elucidate the influence of Id2 expression on LADC progression. We executed qRT-PCR and Western blot analyses to determine Id2 mRNA and protein expression, respectively, in the stable cell lines (Figures 2A, B). A single clone (ID2 S6) and a mixed clone (ID2 Mix) that highly expressed Id2 in the CL1-5 cells were isolated for further study. To investigate whether the cellular morphology was changed after Id2 overexpression, the cellular F-actin filaments were stained using TRITC-conjugated phalloidin. The CL1-5/Id2-overexpressing stable cells exhibited an epithelial-like morphology compared with the parental CL1-5 and vector control (Mock) cells, which showed the mesenchymal-like morphology with more filopodia (Figure 2C and Supplementary Figure 1). In the wound healing assay, the migratory abilities of the highly expressed Id2 transfectants (ID2 S6 and ID2 Mix) were considerably diminished relative to the mock control cells’ migratory abilities (Figure 2D; P < 0.05). Furthermore, the invasive capabilities of the ID2 S6 and ID2 Mix cells were significantly inferior to those of the CL1-5 and mock control cells (Figure 2E; P < 0.05). We performed a cell proliferation essay to exclude the possibility that Id2 inhibited LADC cell migration and invasion by blocking proliferation. Figure 2F indicates that only after 72 h did the Id2 transfectants significantly diminish proliferation activity relative to the CL1-5 and mock control cells (P < 0.05). The significantly reduced Id2 transfectant colony formation compared with the mock control cells indicates that Id2 inhibits anchorage-dependent and anchorage-independent growth (Figures 2G, H; P < 0.05).




Figure 2 | Overexpression of Id2 suppressed highly invasive LADC cells’ aggressive properties. (A) mRNA expression of Id2 in transfected CL1-5 cells measured using qRT-PCR. The control cells (Mock) were pcDNA3.1 vector transfectants. Internal control: TBP. (B) Expression of Id2 protein in the transfectants, measured through Western blot analysis with an antibody against Id2; loading control: GAPDH. *, non-specific band. (C) Representative images of stably expressing Id2 or control vector cells; morphology and immunofluorescence staining of endogenous F-actin. Red arrows indicate the filopodia of cells; scale bar, 20 μm. (D) Scratch wound healing assays for assessing Id2 transfectant cell migratory ability. Eight hours after wound affliction, the cells migrating to the cell-free zone were counted. Data are presented as mean ± SD and represent three independent experiments. *P < 0.05 versus mock control. (E) Transwell assays were used to evaluate mock, Id2, and CL1-5 transfectant invasiveness in three independent experiments. *P < 0.05 versus mock control. (F) Trypan blue exclusion assay for examination of mock, Id2, and CL1-5 transfectant proliferation activity. *P < 0.05 versus mock control. Assays of (G) anchorage-dependent as well as (H) anchorage-independent colony formation were also executed in mock, Id2, and CL1-5 transfectants. *P < 0.05 versus the mock control.





Rescue of LADC cell aggressiveness by Id2 knockdown

To further investigate how Id2 downregulation affects LADC cell function, we analyzed CL1-0 cells with stably transfected shNC (control) and two specific Id2 shRNA plasmids (shID2-284 and shID2-528). Figures 3A, B indicates that the Id2 mRNA and protein expression levels in these Id2-knockdown cells decreased substantially relative to those in the shNC-transfected CL1-0 cells. shID2-528 is more effective than shID2-284 in decreasing the ID2 protein expression in lung cancer cells. The morphology of the Id2-knockdown cells was examined, revealing elongated, spindly, and dispersed CL1-0/shID2-528 cells; relative to the control cells, this morphology was more similar to mesenchymal cells (Figure 3C). Therefore, the expression levels of numerous epithelial and mesenchymal markers were examined by Western blot analysis. As shown in Supplementary Figure 2, the expression levels of E-cadherin (CDH1) were repressed whereas the expression of N-cadherin (CDH2) and Vimentin (VIM) were enhanced after Id2 depletion. In addition, Id2 knockdown (CL1-0/shID2-284 and CL1-0/shID2-528) significantly increased the proliferation activities as well as the anchorage-dependent and -independent growth capabilities of the CL1-0 cells relative to the control cells (Figures 3D–F; P < 0.05). Moreover, the migratory and invasive activities of the CL1-0/shID2-528 cells relative to the control cells were significantly increased (Figures 3G, H; P < 0.05). However, the CL1-0/shID2-284 cells and control cells (CL1-0/shNC) had nearly the same migration abilities but significantly increased invasiveness in the CL1-0/shID2-284 cells (Figure 3H; P < 0.05). To assess in vivo whether Id2 can inhibit the metastasis of lung cancer, mice received tail-vein injections of the CL1-0/shID2-528 cells, and metastatic pulmonary nodule formation on the surface of the lung was examined after 14 weeks. Similar to what we observed in vitro, more pulmonary nodules were observed in the mice receiving the CL1-0/shID2-528 cells than in those receiving the CL1-0/shNC control cells (Figures 3I, J, 20 ± 4.67 vs. 6.4 ± 1.31 nodules; P = 0.05). H&E staining was performed to assess the morphology of the metastatic lung nodules. (Figure 3J). According to these results, Id2 is involved in inhibiting metastasis in LADC cells.




Figure 3 | Knockdown of Id2 expression promoted in vitro and in vivo lung adenocarcinoma cell aggressiveness. (A) qRT-PCR and (B) Western blot analysis executed to determine mRNA and protein expression levels, respectively, of Id2 in CL1-0/Id2-knockdown (shID2-284 and shID2-528) and control (shNC) transfected cells. Internal or loading control: GAPDH. (C) Representative Id2-knockdown or shNC cell images revealing their morphology and endogenous F-actin immunofluorescence staining. Red arrows indicate the filopodia of cells; scale bar, 20 μm. (D) MTT assay was performed to assess Id2-knockdown and shNC cell proliferation. *P < 0.05 versus shNC control. (E) anchorage-dependent and (F) anchorage-independent colony formation assays were also performed in Id2-knockdown and shNC cells. *P < 0.05 versus shNC control. (G) Migratory and (H) invasive capabilities of Id2-knockdown and shNC cells, respectively. *P < 0.05 versus shNC control. (I) In vivo tail-vein metastasis assay of Id2 expression in cancer metastasis. Red arrows indicate tumor nodules; scale bar, 1 cm. (J) Histological confirmation through H&E staining. Five mice per group were selected for metastatic tumor nodule counting (P = 0.05); scale bar, 50 μm.





Id2 downstream target-gene identification through RNA sequencing analysis

To characterize how Id2 inhibits the invasion and metastasis of LADC cells, differentially expressed genes between the Id2-knockdown transfectant (CL1-0/shID2-528) and CL1-0/shNC control cells were identified through RNA sequencing analysis. The expression levels of 1,746 genes in total exhibited at least twofold changes between the CL1-0/shID2-528 and CL1-0/shNC control cells. Among them, 1,154 genes were upregulated and 592 were downregulated after Id2 knockdown. The potential Id2-associated molecular mechanisms of differentially expressed genes were assessed using KEGG pathway analysis. Table 1 lists the five top significant pathways, which included focal adhesion and proteoglycan in cancer pathways. To confirm the data from the RNA sequencing analysis, we first determined the focal adhesion- and proteoglycan-related gene expression levels in Id2-knockdown transfectant (CL1-0/shID2-528) and CL1-0/shNC control cells by using SYBR Green qRT-PCR. As illustrated in Figure 4 and Supplementary Table 2, Id2 knockdown significantly increased the mRNA expression levels of ras homolog family member A (RhoA), focal adhesion kinase (FAK), megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1), and rho-associated protein kinase (ROCK) (P < 0.05). In addition, Twist family bHLH transcription factor 1 (Twist 1) and CD44, which are involved in the proteoglycan-related pathway, were significantly increased under Id2 knockdown (P < 0.05). However, compared with the control cells, in the knockdown cells, Id2 knockdown could significantly reduce F-box and leucine-rich repeat protein 14 (FBXL14) and homeobox D10 (HOXD10) expression (P < 0.05).


Table 1 | KEGG pathway enrichment analysis.






Figure 4 | Downstream target genes regulated by Id2 knockdown. mRNA expression levels of (A) FAK, (B) RhoA, (C) ROCK, (D) MLC1, (E) FBXL14, (F) CD44, (G) Twist, and (H) HOXD10 target genes in Id2-knockdown cells and shNC control cells were measured using qRT-PCR. Internal control: GAPDH. Data (means ± SDs) were collected from three independent experiments. *P < 0.05 versus shNC control.





LADC survival prediction by using Id2 plus FAK-Twist-gene signature

To elucidate how Id2 is clinically relevant to patients with LADC, we further analyzed the genetic data of 502 patients with LADC derived from TCGA. Our analysis (log-rank test) results revealed that the group with highly expressed Id2 had longer overall survival (P = 0.017; Figure 5A). Additionally, the group with high Id2 expression plus low FAK expression had the longest overall survival (log-rank test, P = 0.029; Figure 5B). Furthermore, relative to the other groups, in the group with high Id2 expression plus low Twist expression, the observed overall survival was significantly longer (log-rank test, P = 0.017; Figure 5C). For the high- and low-risk groups with these three gene signatures, the Kaplan–Meier survival curves were separable and revealed a significantly unfavorable survival rate only in the group with both high FAK and high Twist expression and the group with low Id2 expression (log-rank test, P = 0.038; Figure 5D).




Figure 5 | Effects of the expression of Id2 and its target genes on overall survival in patients with LADC. Kaplan–Meier curves and log-rank test results derived for overall survival with respect to the expression of (A) Id2, (B) Id2 and FAK, (C) Id2 and Twist, and (D) a combination of the three genes Id2, FAK, and Twist. Significance was reached when P < 0.05.






Discussion

As the most prominent lung cancer type, NSCLC constitutes the prominent cause of deaths related to cancer globally (1). Of patients who have been diagnosed as having NSCLC, nearly 30% have early-stage disease, for which curative surgery is executed. However, within 5 years, NSCLC relapses for up to 40% of patients (39). To find genes that affect the acquisition of metastatic phenotypes in LADC cells, we used a cDNA microarray to screen this model cell line, detecting dozens of genes associated with invasiveness (6). The expression of the Id2 candidate gene had a negative correlation with cell line invasiveness. To date, many studies have investigated the functions of Id proteins in tumorigenesis in various cancers; however, Id2’s function in cancer is still unclear (11). Even though evidence indicates that Id2 exhibits different functions in various cancer types, its function in lung cancer requires further investigation. Accordingly, we executed the study reported herein to identify and characterize the roles of Id2 in LADC progression and metastasis. Our data reveal higher Id2 expression in human LADC CL1-0 cells with low invasiveness than in CL1-5 cells with high invasiveness. This result suggests that Id2 is a putative invasion suppressor in LADC. After the achievement of constitutive Id2 expression in the CL1-5 cells, the invasive and migratory capabilities of these Id2-overexpressing cell clones were significantly reduced relative to those of the parental CL1-5 and mock control cells. In addition, Id2 overexpression could inhibit lung cancer cells’ proliferation and colony formation.

We reduced gene overexpression’s artificial effect on cell physiology and behavior by establishing an Id2-silenced cell line model; we executed this process because of the frequent inactivation of the tumor suppressor genes in lung cancer (40). Our data reveal that Id2 knockdown could significantly increase the CL1-0 cells’ proliferation, migratory, invasive, and colony formation capabilities. Id2-silenced CL1-0 cells also exhibited a mesenchymal-like morphology. Whether Id2 can affect the mesenchymal‐to‐epithelial transition (MET)/epithelial‐to‐mesenchymal transition (EMT) processes in lung cancer cells through Twist regulation requires further investigation; however, our data at least demonstrate that Id2 knockdown increased the mRNA expression of Twist. Furthermore, in the animal model, Id2-silenced cells increased nodule formation in vivo. All the aforementioned results are consistent with our prediction that Id2 is an invasion suppressor in LADC. Notably, although two Id2-specific shRNAs significantly reduced Id2 mRNA and protein expression levels, they demonstrated different characteristics in terms of regulation of LADC cell functions. As shown in Figure 3B, shID2-528 is more effective than shID2-284 in decreasing the ID2 protein expression in lung cancer cells. shID2-284 could significantly increase colony formation, cell proliferation and invasion in lung cancer; however, it exhibited few effects on cell migratory capabilities. By contrast, shID2-528 significantly affected all the tested functions of lung cancer cells in vitro and in vivo. This little discrepancy might be due to the different inhibitory efficiency between these two shRNAs, and different levels of ID2 inhibition lead to differences in cellular functions.

To further investigate the correlation of Id2 with clinical outcomes, the gene expression data of 502 patients with LADC derived from TCGA were analyzed. The results indicate that patients with LADC with high Id2 expression levels would have superior clinical outcomes. Our data are consistent with those reported by a previous study that analyzed another database using the Kaplan–Meier plotter (41). Additionally, our results suggest that the Id2 plus FAK-Twist gene signature could predict survival in patients with LADC. Previous study demonstrated that high nuclear expression of ID2 predicts poor prognosis of NSCLC patients with poorly differentiated tumors (22). However, the increased expression of cytoplasmic ID2 was associated with better prognosis in small cell lung cancer patients (28). Whether the different subcellular localizations of ID2 could affect its function in lung cancer cells needs to be investigated in the further studies.

Cancer-related death in humans often occurs because of metastasis. During cancer cell migration, FAK is known to control actin assembly and disassembly and affect cell adhesion dynamics (42). FAK is a cytoplasmic tyrosine kinase that has roles in cell adhesion structure and cytoskeletal remodeling (43,44). The Rho-GTPase pathway plays a critical role in FAK-mediated actin assembly through the stimulation of actin cytoskeleton rearrangement (45). Among the three Rho-GTPases, RhoA can specifically promote the development of stress fiber and focal adhesion. Additionally, FAK, RhoA, and its downstream ROCKs contribute to cell constriction and pseudopodia formation, which are required for cell migration (46,47). Our results show that knockdown of Id2 increased FAK/RhoA expression and the corresponding downstream effectors ROCK1 and MLC. Additional investigations are required to delineate the detailed signaling cascade involved in Id2-mediated actin reorganization.

The bHLH transcription factor Twist is a major EMT regulator, and high Twist expression levels have been associated with cell metastasis, migration, angiogenesis, and drug resistance (48–50). Recent reports have demonstrated that Twist1 was degraded through polyubiquitination mediated by F-box and leucine-rich repeat protein 14 (FBXL14) (51–53). CD44 is a cancer stem cell marker, in addition to being associated with cancer progression and being involved in an EMT-like process in tumor cells (49,54). For instance, stimulation of CD44 in breast cancer cells was demonstrated to activate Twist expression, thus regulating the EMT phenotype through lysyl oxidase activation (55). The present results demonstrate that Id2 knockdown reduced FBXL14 expression and upregulated Twist expression. We propose this regulation might happen partly through CD44 augmentation. Dysregulation of microRNAs is observed in various types of cancers. Furthermore, miR-10b, induced by Twist, has been found to function as an oncogenic microRNA involved in the metastasis and invasion of tumors in various cancers, which have a downstream major mediator, namely the tumor suppressor gene HOXD10 (56–58). Our results signify that upregulation of Twist under Id2 knockdown may lead to HOXD10 reduction and probably block or reduce its tumor suppressor activities. Whether miR-10b is involved in this regulation in lung cancer cells requires further investigation.



Conclusions

In summary, although Id2’s comprehensive functions in LADC progression have not yet been clarified, the present study demonstrated that Id2 might suppress metastasis in the progression of LADC. We hypothesize that this effect of Id2 occurs at least partially by inhibiting the FAK-related pathway and CD44/Twist axis (Supplementary Figure 3). This proposed mechanism of function of Id2 in lung cancer needs to be validated experimentally in further studies. All the efforts in the present study not only extend our knowledge about the functional roles of the Id2 gene in LADC progression and metastasis but also indicate that the Id2 gene is a strong prognostic factor in patients with LADC. An enhanced understanding of Id2-regulated signaling pathways and molecules is critical for developing novel and more effective treatment strategies for future LADC therapies.
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Background

About170 chemical modifications to RNAs have been identified, which significantly affect gene expression. Dysregulation of RNA modifications induced by abnormal expression or mutations in RNA modifiers might result in cancer. The most frequent RNA modifications are N6-methyladenosine (m6A), 5-methylcytosine (m5C), and N7-methylguanosine (m7G). Lung cancer is the leading cause of cancer-related deaths globally. The present study aimed to investigate whether the expression of the m7G-related genes is linked to lung cancer cases with lung adenocarcinoma (LUAD), which accounts for about 40% of lung cancer cases.



Methods

A total of 12 m7G-related differentially expressed genes (DEGs) were identified in LUAD patients by The Cancer Genome Atlas (TCGA). The least absolute shrinkage and selection operator (LASSO) Cox regression method was used to build a four-gene risk model. Then, LUAD patients in the TCGA cohort were divided into low- and high-risk groups based on their risk scores for subsequent molecular and clinical research.



Results

Compared to the low-risk group, the high-risk group had a decreased overall survival (OS) (P=0.047). The risk score and stage were independent factors for predicting the OS of LUAD (P=0.0004 and P<0.0001, respectively). Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses based on the two groups showed that the DEGs were metabolically and hormonally related. The high-risk group showed a higher mutation rate and lesser immune cell infiltration, especially in TP53, KRAS, and MET. The expression level of PD-L1 and CTLA4 was high in the high-risk group (P<0.05). The high-risk group is more sensitive to anti-cancer therapy with lower IC50 and higher immunophenoscore (IPS).



Conclusions

In this study, we developed a novel LUAD stratification model based on m7G-related genes that successfully predicts the prognosis of LUAD patients and serves as a guide for clinically personalized treatment.





Keywords: m7G, lung adenocarcinoma, prognosis, immunity, mutation



Introduction

Lung cancer is one of the most common types of cancer. As a leading cause of cancer mortality worldwide, several investigations have been conducted to manage the disease, including early diagnosis, advanced instruments, and improved treatments (1). Lung cancer is a heterogeneous tumor classified into different histological subtypes, including adenocarcinoma, squamous carcinoma (commonly referred to as non-small cell lung cancer), and small cell lung cancer. Comprehensive biological research has improved our understanding of this disease and contributed to the development of medications, such as targeted therapy and immunotherapy, ushering in a new era of precision medicine (2). Despite significant advances, several issues, from the mechanism to effective therapies, need to be resolved. In addition to oncogene activation, epigenetic factors, such as DNA methylation, chromatin architecture, histone modifications, and noncoding RNA regulation, play a role in lung cancer development (3). Most eukaryotic cells go through a range of biological processes known as co-transcriptional or post-transcriptional modifications. A recent study indicated that mRNA translation modulation plays a critical role in cancer progression (4). In tRNA, >90 distinct modified nucleosides have been identified; N7-methylguanosine (m7G) is one of the most conserved molecules (5). Protein synthesis is regulated by tRNA modification, essential for correct codon identification and reading frame preservation. Moreover, dysregulated tRNA modification has been linked to mitochondrial illnesses, neurological disorders, and cancer (6). Sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming energy metabolism, and evading immune destruction are among the eight hallmarks of cancer in the multistep development of human tumors (7). Furthermore, some studies have shown that tRNA modification dysregulation may have an impact on all these processes. For example, the overexpression of tRNA alters the tRNA expression landscape and boosts cellular metabolic activity and proliferation rates in vitro (8). The whole-exome sequencing technology has provided a wealth of knowledge about genes and diseases, and another study found that tRNAGluUUC and tRNAArgCCG were elevated in the metastatic breast cancer cell lines, suggesting that it could boost the translational efficiency of disease-promoting genes, leading to a pro-metastatic state (9). A recent next-generation sequencing study discovered a group of tRNAs that can distinguish between normal and breast cancer samples as well as favorable prognosis from poor prognosis, implying them as putative cancer prognostic indicators (10). Some studies demonstrated that m7G promotes the translation of specific cell cycle regulatory and carcinogenic mRNAs enriched in the corresponding m7G-tRNA cognate codons, preventing ribosome pausing and ribosome collision-mediated translation inhibition (11). The RNA methyltransferase complex METTL1/WDR4 (methyltransferase like 1; ortholog of Trm8/WD repeat domain 4) catalyzes the m7G modification of a subset of tRNAs that are upregulated in certain malignancies (12). The levels of METTL1/WDR4 and m7G tRNA modifications are increased in human intrahepatic cholangiocarcinomas (ICCs), and cell cycle promoting mRNAs, such as those encoding cyclin A2, cyclin D2, CDK6, CDK8, and oncogenic mRNAs such as epidermal growth factor receptor (EGFR), were most translationally affected by m7G tRNAs (13). Currently, several studies are underway to uncover new fascinating cancer functioning secrets. However, the specific mechanism underlying lung cancer is yet to be elucidated. Herein, we conducted a comprehensive investigation to compare the expression levels of these m7G-related genes in normal and lung adenocarcinoma (LUAD) samples, to further analyze the prognostic significance and interaction between m7G and tumor microenvironment (TME), and to provide directions for future research.



Materials and methods


Dataset collection and procession

The m7G regulators were collected from previously published studies (Supplemental Files m7G gene) and the GSEA website (http://www.gsea-msigdb.org/). The dataset of RNA sequencing (RNA-seq) data and corresponding clinical features of patients were obtained from the TCGA databases (https://portal.gdc.cancer.gov/repository). The workflow is shown in Figure 1.




Figure 1 | Workflow diagram. Specific workflow of data analysis.





Identification of m7G-related regulators with differential expression

Herein, we retrieved 29 m7G-related genes from The Cancer Genome Atlas (TCGA) dataset. Differentially expressed genes (DEGs) with |log2FC| > 0.5 and false discovery rate (FDR)< 0.05 were identified using the “limma” program. The expression of all these m7G-related genes is shown in the heatmap. The Search Tool for the Retrieval of Interacting Genes (STRING) (https://string-db.org/) was used to create protein-protein interaction (PPI) networks for the m7G-related genes, which were then visualized by Cytoscape. In order to determine the central elements, we identified the top five hub genes from the PPI network via the MCC technique in the Cytohubba plugin.



Development of the m7G-related gene prognostic model

Unsupervised consensus clustering was performed to cluster the tumor samples into subgroups based on the expression matrix of m7G regulators using the ConsensusClusterPlus R package to identify the m7G regulator-mediated subtypes. Clustering was performed using the following parameters: number of repetitions = 50; pItem = 0.8 (resampling 80% of any sample); pFeature = 1 (resampling 80% of any protein); clustering algorithm = k means method. We created a heatmap of differentially expressed m7G-associated genes and clinical characteristics based on this clustering method. To narrow down the putative genes and build a predictive model, researchers used the least absolute shrinkage and selection operator (LASSO) Cox regression model (R package “glmnet”). Subsequently, the m7G-related DEGs and their coefficients were retained, and the penalty parameter (λ) was determined using the minimum criteria. The risk score was calculated after centralization and standardization (applying the “scale” function in R) of TCGA expression data, and the risk score formula was as follows: Risk Score =   : X: coefficients, Y: gene expression level). Next, we employed Cox regression analysis to evaluate the correlation between each gene and survival status in the TCGA cohort to assess the prognostic value of the DEGs. To prevent omissions and for further studies, we set the P-value at 0.2. Thus, genes with P-values< 0.05 were extracted for survival analysis using the online tool (http://kmplot.com/analysis/), and we calculated an immunologic infiltration score for these genes in LUAD. The data were obtained from UCSC (https://xenabrowser.net/). The R package of “psych” (version 2.1.6) was used to calculate the immunological score for each oncogene.



Independent prognostic analysis of the model

The TCGA LUAD patients were classified into low- and high-risk subgroups based on the median risk score, and the overall survival (OS) was compared between the two subgroups using Kaplan-Meier analysis. The “prcomp” function in the “stats” R package was used for principal component analysis (PCA) based on the risk model-associated gene signature. A 1-, 2-, and 3-year receiver operator characteristic (ROC) curve study was conducted using the “survival” and “timeROC” R packages. Univariate and multivariable Cox regression models were used to analyze the risk score and clinical parameters, such as age and stage.



Functional enrichment analysis of DEGs based on the model

According to the median risk score, LUAD patients in the TCGA cohort were divided into two categories. Selective criteria (|log2FC| ≥ 1 and FDR< 0.05) were used to identify the DEGs between the subgroups derived from the risk model. The “clusterProfiler” software was used to conduct the GO enrichment analysis, and the web tool Enrichr was used to conduct Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis based on these DEGs (https://maayanlab.cloud/Enrichr/).



Estimation of TME and mutation between the subgroups

The tumor mutation burden (TMB) score for each patient was generated using the somatic mutation data of LUAD patients collected from the TCGA database. The TMB was compared between the two groups, and the survival probability was combined with the risk level. The Estimation of Stromal and Immunological Cells in Malignant Tumors using Expression Data (ESTIMATE, https://bioinformatics.mdanderson.org/estimate/index.html) platform was used to compute the stromal, immune, and ESTIMATE scores of samples in the TCGA database, which were validated in multiple ways. To further examine the mechanism of immunotherapy, we compared the expression of immune-checkpoint-related genes, including PD-L1 and CTLA4, and evaluated the tumor immune dysfunction and exclusion (TIDE) score to identify the patients who would benefit from immune checkpoint inhibitor (ICI). The TIDE score was acquired after uploading the gene expression file as the instruction, and the immunophenoscore was computed via The Cancer Immunome Atlas (https://tcia.at/) (14). To determine the proportion of invading immune cells and analyze the efficiency of immune-related pathways, single-sample Gene Set Enrichment Analysis (ssGSEA) was carried out using the “gsva” software package. Furthermore, the immune cell proportion score for each group was compared to predict the efficacy of immunotherapy. The drug sensitivity was evaluated using the “pRRophetic” R package and the concentration that inhibited 50% of cellular growth (IC50).



Statistical analysis

For DEG analysis, the “limma” R package was utilized, and the Pearson’s chi-square test was employed to evaluate the differences in the composition. Next, we employed the Kaplan-Meier (K-M) method with a two-sided log-rank test to compare the patient OS between subgroups. To assess the risk model’s independent predictive efficiency, we used univariate and multivariate Cox regression models. The immune cell infiltration and immunological pathway activation were assessed using the Mann-Whitney test. All statistical studies were carried out using the R programming language (v4.1.2).




Results


Identification of DEGs between normal and tumor tissues

The expression data of 29 m7G-related genes in 59 normal and 535 LUAD tissues were extracted from the TCGA database, and 12 DEGs that met the criteria (|log2FC| > 0.5 and FDR< 0.05) were identified: DCPS, EIF4E1B, EIF4E3, EIF4G3, LARP1, LSM1, METTL1, NCBP1, NCBP2, NCBP2L, NSUN2, and WDR4. Among these, EIF4E3 was downregulated, and all the others were upregulated in tumor specimens. The RNA expression of these genes was presented as heatmaps in Figure 2A. To further explore the interactions of these m7G-related regulators, we conducted a PPI analysis. A total of 28 nodes and 118 edges were detected in the network when the minimum required interaction score for the PPI analysis was set at 0.4 (Figure 2B). In Figure 2C, the correlation network containing all the m7G-related genes was presented; EIF4E1B, EIF4E2, EIF4E, NCBP1, and NCBP2 were identified as hub genes. Figure 2D shows the mutations of m7G regulators based on the TCGA LUAD cohort of different datasets.




Figure 2 | Expression of the 29 m7G-related genes and the interactions among the genes. (A) Heatmap of the m7G-related genes between the normal (N, brilliant blue) and the tumor tissues (T, red). P-values are shown as *P < 0.05, **P < 0.01; ***P < 0.001; green represented low expression, while red represented high expression. (B) Correlation network of the m7G-related genes (red line: positive correlation; blue line: negative correlation. The intensity of the colors reflected the strength of the relevance). (C) PPI network showed the interactions of the m7G-related genes (the bigger and deeper the circle is, the most important gene it might be). (D) Comparison of mutation data among different datasets via cBioPortal.





Tumor classification and comparison based on DEGs

To explore the connections between the expression of the 12 m7G-related DEGs and LUAD, a consensus clustering analysis was conducted with all LUAD in the TCGA cohort. After increasing the clustering variable (k) from 2 to 10, we found that the intragroup correlations were the highest, and the intergroup correlations were lowest when the value of k = 2. The TCGA cohort of LUAD could be divided into two clusters based on 12 DEGs (Figure 3A). The heatmap displayed the gene expression profile and the clinical features, such as tumor stage, age (≤60 or > 60 years), and survival status (alive or dead). No significant difference was observed in the clinical features between the two clusters (Figure 3B). The overall survival (OS) time was also compared between the two clusters, but no obvious differences were detected (P = 0.374, Figure 3D). We also examined the expression of these DEGs and mutation rate between the two clusters (Figures 3C, E). The m7G-related genes in cluster 1 were underexpressed compared to cluster 2, while the mutation rates were reversed. Thus, whether both the expression and mutational status of these genes can affect the prognosis need further experimental and clinical investigations.




Figure 3 | (A) Tumor classification based on the m7G-related DEGs. LUAD patients were grouped into two clusters according to the consensus clustering matrix (k = 2). (B) Heatmap and the clinicopathological characteristics of the two clusters are classified by these DEGs. (C) Comparisons of the expression levels of the differently expressed m7G-related genes between the two clusters. (D) K-M OS curves for the two clusters. (E) Comparisons of the mutation status in differently expressed m7G-related genes between the two clusters.





Development of a prognostic gene model in the TCGA cohort

The gene expression levels of 482 LUAD samples were submitted for primary screening of survival-related genes using univariate Cox regression analysis. To avoid omission, we set the criteria to 0.2 and included LARP1 and NCBP2L in the risk model development (Figure 4A). The 4-gene signature was built according to the optimum λ value employing LASSO Cox regression analysis. The risk score was calculated as follows: risk score = (0.001013 × LARP1 exp.) + (-0.715684 × NCBP2L exp.) + (0.068453 × WDR4 exp.) + (0.059285 × NCBP1 exp.). Next, we analyzed these extracted gene signatures in LUAD and found that overexpression was related to a poor survival outcome (Figures 4B–D) and a lower immunologic infiltration score in LUAD via the UCSC dataset (Figures 4E–G).




Figure 4 | Clinical signature of the extracted m7G-related genes for risk model. (A) Univariate Cox regression analysis of m7G-related genes for risk model. (B–D) K-M survival analyses for OS among LUAD stratified by gene expression level. (E–G) Immune score of m7G-related genes for the risk model in LUAD, the relationships between immune score and expression were all negative.



Patients were divided into low- and high-risk subgroups based on the median score calculated by the risk score formula (Figure 5A). The clinal parameters between the two groups are summarized in Table 1, and no significant differences were detected in the clinical features between the two groups. PCA showed that patients with different risks were well-separated into two groups (Figure 5B). Patients in the high-risk group had more deaths and shorter survival time than those in the low-risk group (Figures 5C, D, P = 0.047). A time-dependent receiver operating characteristic (ROC) analysis was applied to evaluate the sensitivity and specificity of the prognostic model. Consequently, the area under the ROC curve (AUC) was 0.616 for 1-year, 0.624 for 2-year, and 0.619 for 3-year survival (Figure 5E), confirming the sensitivity of the risk model.




Figure 5 | Construction of the risk signature in the TCGA cohort. After Four candidate genes obtained by LASSO regression, the risk score is computed base on these genes. (A) Distribution of patients based on the risk score. (B) PCA plot for LUAD in the entire TCGA dataset based on the risk level. (C) Survival status of each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the dotted line). (D) Survival analysis for OS in the low- and high-risk groups. (E) ROC curves demonstrated the predictive efficiency of the risk score.




Table 1 | Comparison of clinical parameters between the low-risk and the high-risk groups.





Independent prognostic value of the risk model

Univariate and multivariable Cox regression analyses were used to evaluate whether the risk score derived from the gene signature model could serve as an independent prognostic factor. The univariate Cox regression analysis indicated that both the risk score and stage were independent significant prognostic factors predicting poor survival in the TCGA cohorts (hazard ratio (HR) = 2.1213, 95% confidence interval (CI): 1.4017-3.2102; HR = 2.7619, 95% CI:1.9922−3.8291, respectively; Figure 6A). And they were further proved by multivariate analysis (Figure 6B). Combined with the P-value of univariate analysis, age was not included in multivariate analysis. In addition, we generated a heatmap of clinical features (Figure 6C) and found that the age and the survival status of the patients were equivalent between the low- and high-risk subgroups (Table 1).




Figure 6 | Univariate and multivariate Cox regression analyses for the risk score. (A) Univariate analysis for the TCGA cohort (stage: the degree of tumor stage). (B) Multivariate analysis for the TCGA cohort. (C) Heatmap (green: low expression; red: high expression) for the connections between clinicopathological features and the risk groups. We divided stages I and II as group 1 and the remaining as group 2.





Functional analyses based on the risk model

The “limma” R package was used to extract DEGs, and FDR< 0.05 and |log2FC | ≥ 1 criteria were applied to further investigate the variations in gene functions and pathways between the risk model subgroups. In the TCGA cohort, 128 DEGs were identified between the low- and high-risk groups. In the high-risk group, 83 genes were upregulated, while 45 genes were downregulated. These DEGs were then used for gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The findings revealed that DEGs were primarily enriched in functional categories and pathways linked to hormones and metabolism (Figure 7).




Figure 7 | Functional analysis based on the DEGs between the two-risk groups in the TCGA cohort. (A) Bar graph for GO enrichment (the taller bar means more genes are enriched, and the intensity of the color means the differences were obvious; q-value is the adjusted p-value). (B) Circle diagram for KEGG pathways enrichment.





Comparison of the mutations and immune activity between subgroups

The comparison of the mutations between the subgroups showed a higher TMB in the high-risk group than the low-risk group, as well as some oncogenes, including KRAS; also, the survival probability in high TMB was better, especially for those with a low-risk level (Figure 8). Reportedly, m7G could reshape the microenvironment, especially the immune cell infiltration (15). Combined with functional analyses, we further compared the enrichment scores of 16 types of immune cells and the activity of 13 immune-related pathways between the low and high-risk groups employing ssGSEA. In the TCGA cohort (Figures 9E, F), the high-risk subgroup had lower infiltration of immune cells, including dendritic cells (DCs), induced DCs (iDCs), neutrophils, and macrophages, than the low-risk subgroup. Regarding the immune-related pathways, the scores of inflammation-promoting and MHC-class I cells were higher in the high-risk group, while the type II interferon (IFN) response was lower (Figures 9E, F). Compared to the low-risk group, the mutation state of oncogenes, including EGFR and MET, was significantly different in the high-risk group, indicating their potential role in predicting the efficacy of target therapy. In addition to the well-known predictors for ICIs, newly identified predictors, such as TIDE, are frequently employed and strongly advised for evaluating the immune response and immune evasion. Also, the expression of PD-L1 and CTLA4 was higher in the high-than the low-risk group (Figures 9A–C). Furthermore, we compared the degree of stromal cell infiltration (stromal score) across three unique patterns. As an immune desert, high-risk patients had higher stromal scores compared to low-risk patients, indicating that high-risk LUAD had more nontumor components, such as immune cells and stromal cells, indicating a higher tumor purity (Figure 9D).




Figure 8 | Comparison of immunity and genetic characteristics between high- and low-risk score groups based on the TCGA LUAD cohort. (A, B) Comparison of the mutation status between low- (green box) and high-risk (red box) groups in the TCGA cohort. (C) Tumor mutation burden between the two groups and patients with high risk had high burden. (D) Comparison of the survival probability with different levels of tumor mutational burden. (E) The survival probability with different levels of tumor mutational burden and risk score.






Figure 9 | Comparison of immunity characteristics between high- and low-risk score groups based on the TCGA LUAD cohort. (A) comparison of the tumor immune dysfunction and exclusion between the low- and high-risk groups indicated a better immune response in the high-risk group. (B, C) Comparison of the immune checkpoints between low- and high-risk groups; the expression of PD-L1 and CTLA-4 was higher in the high-risk group. (D) Immune score comparison between the two groups to estimate the difference in the immune microenvironment. (E, F) Enrichment scores of 16 types of immune cells and 13 immune-related pathways between low- and high-risk groups in the TCGA. *P < 0.05; **P < 0.01; ***P < 0.001.





Prediction value in anticancer therapy

In the current study, TIDE was significantly elevated in the low-risk group, indicating that immunotherapy was less effective (16), which was consistent with the immunophenoscore (IPS) analyses (Figures 10A–D). Owing to the shortage of PD-L1 in predicting the efficacy of immunotherapy, whether our model could be better in prediction is to be explored. The results demonstrated a crucial role of m7G in mediating the clinical response to ICI treatment by the impact on TMB, immune cell infiltration, immunogenicity, and checkpoint expressions. These features might provide insights into the m7G-regulated immune microenvironment in LUAD and identify numerous potential immunotherapeutic targets. Regarding common drug sensitivity, including the chemotherapy and target therapy, we found that high-risk group was significantly more sensitive to Gemcitabine, Docetaxel, Paclitaxel, Crizotinib, Erlotinib, Gefitinib, and Rapamycin than the low-risk group (Figures 10E–L). Moreover, Rapamycin is an mTOR inhibitor, which was in agreement with a previous study, wherein METTL1 accelerated proliferation and autophagy through the AKT/mTORC1 signaling cascade (17).




Figure 10 | (A–D) represented immunophenoscore of LUAD to predict response to anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1) antibodies, and the high-risk group seemed to be better in immunotherapy; (E–L) indicated the comparison of the drug sensitivity between low- and high-risk score groups, the lower the IC50, the more the sensitivity. *P < 0.05; **P < 0.01; *** P < 0.001.






Discussion

m7G is a methyl group added to the seventh N of RNA guanine, increasing the RNA stability (18). The dysregulation of tRNA underlies cancer development and is associated with a high metabolic and proliferative status, resulting in dysregulation of biological and pathological functions (19). Currently, the underlying mechanisms of m7G modification in cancer are not understood comprehensively; thus, we investigated the potential value of the m7G-related genes in diagnostic and therapeutic strategies for LUAD.

Herein, the mRNA expression of these 29 m7G-related genes in control and cancer samples was elevated. The two groups formed by the consensus clustering analysis of DEGs did not exhibit any statistically significant differences in survival time. In order to elucidate the function of these DEGs, we used Cox univariate and LASSO Cox regression analysis to develop a four-gene risk model. Based on the model’s score, the data were divided into low- and high-risk groups. The survival rates were better in the low- than the high-risk group. In both univariate and multivariate studies, the risk score was determined as an independent factor, and the ROC curve indicated its sensitivity. Functional investigations indicated that the DEGs between the two subgroups were associated with metabolic pathways, and some of the DEGs were implicated in cancer transcriptional dysregulation. We also examined the genetic features of high- and low-risk individuals and found that the high-risk group had a greater rate of somatic mutations in multiple genes, including TP53, KRAS, and MET.

Tumorigenesis is the process wherein a tumor begins and grows outside the limits of an organ or tissue. The effects of RNA on writers, readers, and erasers may contribute to or avoid certain cancer traits. Accumulating evidence shows that RNA changes and the enzymes involved in their deposition, clearance, and detection, play diverse roles in various malignancies (20). In a recent study, METTL1 or WDR4 knockdown in mouse embryonic stem cells resulted in a poor self-renewal capacity and a disrupted differentiation program, demonstrating its physiological role in mammalian systems. (12). In addition to physiology, m7G plays a critical role in cancer. Also, m7G methyltransferase WD repeat domain 4 (WDR4) expression was abnormal in various malignancies and was linked to OS and immune infiltration, according to a pan-cancer investigation (21). Other studies demonstrated that another component of the tRNA m7G methyltransferase complex, methyltransferase-like 1 (METTL1), was upregulated in some malignancies, such as hepatocellular carcinoma and lung adenocarcinoma, and was associated with poor patient prognosis and resistance to chemotherapy (22, 23). Another study showed high METTL1 and WDR4 expression levels in lung cancer, facilitating m7G tRNA modification, altering mRNA translation, and boosting lung cancer development and invasion (24). In the current study, we verified that the DEGs, METTL1, and WDR4, were upregulated in the TCGA cohort. Moreover, WDR4 was extracted for risk model construction. Its high expression was related to poor outcomes in LUAD across the K-M survival curve, indicating its role in cancer, especially lung adenocarcinoma. In the current analysis, eIF4E3 was downregulated in LUAD compared to the normal samples. A model indicated that eIF4E3 acted as a tissue-specific tumor suppressor, repressing oncogenic transformation, and cancer could be driven by the loss of the suppressive activity of eIF4E3 (25). Another gene, the La-related protein 1 (LARP1), has been shown to interact with 3000 mRNAs linked to cancer pathways, including post-transcriptionally controlled mTOR which was frequently dysregulated in cancer, promoting cell motility, invasion, and anchorage-independent growth. (26). Furthermore, interaction with the 3’-untranslated regions (3’-UTRs) stabilized BCL2, encouraging ovarian cancer growth and chemotherapy resistance (27). In lung adenocarcinoma, we found that high expression levels of LARP1 are correlated with poor survival and nuclear cap-binding protein 1 (NCBP1). Interestingly, NCBP1 is required for capped RNA synthesis and intracellular translation, and has recently been discovered to interact with NCBP3 to induce CUL4B expression, promote lung cancer cell growth, wound healing, migration, and epithelial-mesenchymal transition (28). Although several studies discovered the link between the sophisticated molecular roles of tRNA alterations, selective mRNA translational, control, and human cancer, a few underlying molecular pathways are functionally related to specific tRNAs and the network changes in human cancer (11). In the present study, we evaluated the role of the m7G regulator in lung adenocarcinoma. The K-M and ROC curves demonstrated that the risk model based on these regulators performed adequately, although an in-depth analysis is required.

The functional analysis of the DEGs between the risk subgroups in the TCGA cohort revealed that some genes were enriched in the hormone and metabolism-related functional categories and pathways, implying that they may regulate some hormone-related cancers, such as prostate cancer. Prostate cancer development, growth, and metastasis depend initially on androgens. The study indicated that two major pathways involved in prostate cancer progression, PI3K/Akt/mTOR, and Ras/MAPK, intersect at the eukaryotic transcription initiation factor eIF4E. Furthermore, phosphorylation of eIF4E increased the rate of translation of oncogenic mRNAs, increasing tumorigenicity and promoting resistance to chemotherapy and endocrine therapy (29). While METTL1 also shared this mechanism, it boosted A549 cell growth and colony formation by inhibiting autophagy via the Akt/mTOR pathway (23). In addition to hormone-related tumors, several factors, including inactivating mutations in tumor suppressors (TP53) and activation of oncogenes (EGFR or MYC) in this study, provided clinical insights into m7G in lung cancer. A recent study showed that WDR4 and WDR4-related m7G methylation levels were upregulated in addition to the common mechanisms of epithelial-mesenchymal transition, activation of G2/M cell cycle transition, and apoptosis inhibition. Another study showed that MYC triggered WDR4 transcription, thereby stabilizing and initiating the translation of CCNB1 mRNA, which in turn increased PI3K and AKT phosphorylation and decreased P53 protein levels (30). In the high-risk group, a high mutation rate of KRAS and MYC was detected, which could be an orientation for further mechanism and treatment-related studies or extract patient benefits from target therapy.

Several physiological and pathological processes, including the maturation of immune cells and immune response, are influenced by RNA methylation (18). As stated previously, m7G-related genes are associated with immune infiltration, while the current findings indicated that the low-risk group has a high level of immune cell infiltration, especially in different types of DCs that are antigen-presenting cells with critical roles in the initiation and regulation of both innate and adaptive immune responses. DCs also improve immunization and tolerance by presenting antigens to T cells and sending immunomodulatory signals via cytokines (31). In the TME, before forming T cell responses, DCs needed to receive, process, and display tumor-associated antigens on MHC molecules and offer co-stimulation and soluble factors (32). Another study showed that RNAs with methylation modifications inhibited DC activation, and the higher the level of modification, the fewer cytokines and activation factors. This alteration suppressed the potential of RNA to activate DCs (33). Next, we extracted the single risk model-related genes for immune score analyses; the high gene expression was correlated with a low score. Additionally, most immune-related pathways did not exhibit significant differences except for the inflammation promotion, MHC class I, and type II IFN response. JAK-STAT signaling pathway was activated by type II IFN and exerted critical roles in both innate and adaptive immunity (34). Moreover, type II IFN was not involved in the development of cancer immunotherapy treatments due to its ability to prevent tumor growth (35). Also, the immune scores were significantly higher in the low-risk group than the high-risk group and reflected a better outcome, while the high-risk group indicated immune escape.

Many studies have focused on the prevention and early detection of cancer and anticancer therapy. However, the intricate mechanism restricts therapeutic efficiency. Also, RNA misregulation may play a role in the cancer process, including anticancer drug resistance. Typically, tRNA overexpression in malignancies can block apoptosis by binding to cytochrome-c and limiting caspase activation, resulting in castration-resistant prostate cancer (CRPC) (19). The eukaryotic translation initiation factor eIF4E is increased in 30% of cancers, including the M4/M5 subtypes of acute myeloid leukemia. Furthermore, in leukemic blasts, a therapeutic study targeting eIF4E exhibited clinical efficacy and related molecular responses, but only 2/11 patients had disease progression (36). Thus, we questioned whether finding some biomarkers to enhance efficiency or a biomarker for predicting immunotherapy efficacy would be beneficial. In this study, we assessed the correlations between PD-L1 and CTLA4 with m7G regulators and found that the expression levels were higher in the high-risk group. As described previously, m7G influences the immune cells and immune responses, and those who tolerated immunotherapy had more methyltransferases in lung cancer treatment (37). The immune checkpoint and TIDE indicated that the high-risk group could benefit from immunotherapy. In addition, the drug sensitivity analyses might guide drug therapy. Taken together, the current findings suggested that m7G regulators or the risk model could be employed as a prognosis assessor as well as a biomarker for LUAD patients who would benefit from anticancer therapy, although additional investigations are essential.



Conclusions

In conclusion, this study demonstrated the importance of m7G modification in LUAD and emphasized the vital role of m7G modification in shaping the heterogeneity and complexity of the tumor microenvironment. Furthermore, the risk signature score based on four m7G-related genes constituted an independent risk factor for predicting OS. Notably, the current findings have created a new gene signature for predicting the prognosis of LUAD patients. They also orient new studies into the links between m7G-related genes and the LUAD microenvironment, improving the understanding of the mechanism and drug discovery.
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Introduction

As the long-term prognosis of esophageal cancer (EC) is improving, concerns of a second primary malignancy (SPM) have increased. However, research on lung cancer as the SPM after EC is limited. Therefore, we aimed to explore the prognostic factors and clinical treatment decisions of patients with second primary lung cancer following esophageal cancer (SPLC-EC).



Materials and methods

We identified the data of 715 patients with SPLC-EC from the Surveillance, Epidemiology, and End Results (SEER) database during 1975 to 2016. We established a nomogram through Cox regression modelling to predict the prognosis of patients with SPLC-EC. We determined the association between factors and cancer-specific mortality using the Fine-Gray competing risk model. Then, we performed survival analysis to evaluate the benefits of different treatment methods for overall survival (OS).



Results

The multivariate analysis indicated that sex, insurance recode, age, surgery and chemotherapy 0for first primary malignancy (FPM), primary site, stage, and surgery for SPM were independent prognostic factors for OS. Using concordance indices for OS, the nomogram of our cohort showed a higher value than the SEER historic-stage nomogram (0.8805 versus 0.7370). The Fine-Gray competing risk model indicated that surgery for FPM and SPM was the independent prognostic factor for EC-specific mortality (P=0.016, hazard ratio [HR] = 0.532) and LC-specific mortality (p=0.016, HR=0.457), respectively (p<0.001). Compared to the patient group having distant metastasis, patients with localized and regional metastasis benefitted from undergoing surgery for SPM (P<0.001, P<0.001, respectively). For patients without surgery for SPM, radiotherapy (P<0.001) and chemotherapy (P<0.001) could improve OS.



Conclusions

Surgery remains the mainstay for managing SPLC-EC, especially for localized and regional tumors. However, chemotherapy and radiotherapy are recommended for patients who cannot undergo surgery. These findings can have implications in the treatment decision-making for patients with SPLC-EC.
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Introduction

With the advancements in medicine, the survival of patients with malignant tumors has improved in the United States (1, 2). The incidence rate of second primary malignancy (SPM) of all cancers is 18% (3, 4). Previous studies reported that approximately one in 12 patients with cancer develop an SPM—lung cancer being the most common (5–7).

Clinical decision-making regarding the treatment of two adjacent, primary malignancies is complex. The long-term survival of patients with esophageal cancer (EC) has improved; consequently, research regarding EC complicated with an SPM is increasing (8–11). Lung cancer develops most commonly as an SPM after EC; however, only a few studies have documented second primary lung cancer (SPLC) following esophageal cancer (SPLC-EC) (4–7, 12). Although the mortality of patients with SPM is >50%, SPMs are not recommended to be treated conservatively solely based on the malignancy history (5, 13). Therefore, studies analyzing prognostic factors and treatment decisions for SPMs are crucial.

Nomograms of the Cox regression model and Fine–Gray competing risk model of SPLC-EC patients were established to forecast the prognosis and to analyze the relationship between treatment and cancer-specific mortality via the Surveillance, Epidemiology, and End Results (SEER) database (7, 14–16). Our research aims to provide evidence regarding prognostic factors and treatment decisions for patients with SPLC-EC.



Patients and methods


Patients

We conducted a retrospective review of patients with SPLC-EC based on the publicly available SEER Program (www.seer.cancer.gov) SEER*Stat Database which collected information regarding to the demographics, characteristics, and follow-up of the American approximately 30% cancer patients. Data from the database “Incidence-SEER 18 Regs Custom Date (with additional treatment fields), Nov 2018 Sub (1975–2016 varying)” was extracted and screened for SPLC-EC cases. Patients with an unknown age at diagnosis and primary malignancies other than esophageal and lung cancers were excluded. We have acknowledged and signed the SEER data use agreement (ID: 19628-Nov2019). The study did not require approval of the ethics review board.



Statistical analysis and variables

We analyzed the enumeration and measurement data via SPSS V.26.0 (IBM Corp., Armonk, NY, USA). Statistical significance was set at P<0.05. The primary endpoint was overall survival (OS). We used the OS data and follow-up status of SPLC. We used univariate and multivariate analyses to establish the Cox proportional hazards regression model to estimate the potential predictors related to OS. Variables in this study are sex (female and male), race (black, white, and others), insurance recode (additional commercial health insurance, only basic health insurance or unknown), and characteristics for FPM and SPM (age, primary site, pathological type, grade, SEER historic stage, surgery, radiation, and chemotherapy).



Nomogram model establishment, calibration, and external validation

A nomogram was drawn using the results of multivariate analysis, which uses the “rms” software package in R software V.4.0.3 (The R Foundation for Statistical Computing, Vienna, Austria) to integrate all independent prognostic factors and predicted 6-month, 1-year, and 3-year OS rates. The study uses Harrell’s C-index to assess the predictive power of the nomogram. The accuracy of this rule was verified through 1000 iterations of bootstrap resampling. The accuracy of the nomogram was established by net reclassification index calculations. In addition, the area under the receiver operating characteristic curve (AUC) was used to estimate survival predictions for 6-months, 1-year, and 3-years.



Competing risk analysis

We set ending events and competitive events and used competitive risk models to estimate the potential predictors of these events. This model uses the “cmprsk” R software package to calculate independent prognostic factors when the outcome event and competitive event occur and draws a curve between the prognostic factors and the incidence of different events.



Subgroup analysis of treatment

We used Kaplan–Meier curves to compare the OS between patients undergoing surgery for SPM and first primary malignancy (FPM) and SEER historic stage for SPM. This study verified the conclusions of two subgroup analyses via log-rank tests. Further, subgroup survival analyses were performed by Cox regression modeling of the data from patients undergoing radiotherapy and chemotherapy.




Results


Patient characteristics

We identified 3426 patients with second primary esophageal cancer diagnosed between 1975 and 2016 from the SEER database. Of them, the number of cases of lung cancer (SPLC) was the largest among SPMs (715 patients [20.87%]). The remaining SPMs included 427 patients (12.46%) with mouth, nose, and throat cancer; 401 patients (11.70%) with prostate cancer; 271 patients (7.91%) with gastric cancer; and 105 patients (3.06%) with breast cancer.

This study included data of 715 SPLC-EC patients, including 533 men (74.5%) and 182 women (25.5%). The characteristics of SPLC-EC patients are summarized in Table 1. The median ages at diagnosis of FPM and SPM were 66 and 69 years, respectively. SPMs were localized in 229 patients (32.0%), regional in 134 patients (18.7%), distant in 195 patients (27.3%), and unknown in 157 patients (22.0%). Surgery for SPM was performed in 191 patients (26.7%); 524 patients (73.3%) did not undergo surgery. Radiotherapy for SPM was performed in 271 patients (37.9%) and was not performed in 444 patients (62.1%); 252 patients (35.2%) underwent chemotherapy for SPM and 463 patients (64.8%) did not.


Table 1 | Characteristics and Variables of SPLC-EC Patients Associated with OS According to the Cox Proportional Hazards Regression Model.





Cox regression model and nomogram

Multivariate analysis indicated that sex (P=0.045, hazard ratio [HR]=1.212, 95% confidence interval [CI] 1.004–1.463), insurance recode (P=0.008, HR=1.273, 95% CI 1.065–1.522), age at FPM diagnosis (P=0.005, HR=1.261, 95% CI 1.071–1.485), surgery for FPM (P=0.009, HR=0.782, 95% CI 0.650–0.941), chemotherapy for FPM (P=0.007, HR=0.786, 95% CI 0.660–0.936), primary site of SPM (P<0.001; main bronchus vs. upper lobe, P<0.001, HR=0.498, 95% CI 0.350–0.707; main bronchus vs. lower lobe, P=0.006, HR=0.598, 95% CI 0.415–0.863), SEER historic stage of SPM (P<0.001; distant stage vs. localized stage, P<0.001, HR=0.392, 95% CI 0.310–0.495; distant stage vs. regional stage, P<0.001, HR=0.568, 95% CI 0.441–0.733), and surgery for SPM (P<0.001, HR=0.444, 95% CI 0.345–0.572) were the independent prognostic factors for OS.

The predictive nomogram was plotted for OS rates at 6	-months, 1-year, and 3-years considering the above-mentioned factors (Figure 1). The C-index for OS was 0.8805 (95% CI 0.8473–0.9138), which was higher than that for SEER historic stage (0.7370, 95% CI 0.6877–0.7862). The calibration curves of the nomogram model and the SEER historic-stage model were plotted (Figures 2A–F). Compared with the SEER historic-stage model, the calibration curves of the nomogram demonstrated a higher accuracy in classification capability for predicting OS rates at 6-months, 1-year, and 3-years. Further, compared with the SEER historic stage, reclassification accuracy of the nomogram model for OS rates at 6-months, 1-year, and 3-years increased by 52.053% (95% CI 36.525%–69.486%), 56.397% (95% CI 40.794%–74.501%), and 72.111% (95% CI 48.774%–99.999%), respectively. Furthermore, the AUCs were plotted to assess the predictive power of the nomogram and the SEER historic-stage models (Figures 2G–I). The AUCs for OS rates indicated that the predictive ability of the nomogram we constructed was significantly stronger than that of the SEER historic stage (6-month OS: nomogram AUC=0.728 vs. SEER historic stage AUC=0.639, P=0.007; 1-year OS: nomogram AUC=0.743 vs. SEER historic stage AUC=0.644, P=0.003; 3-year OS: nomogram AUC=0.770 vs. SEER historic stage AUC=0.640, P=0.013; respectively).




Figure 1 | Nomogram predicting the 6-month, 1-year, and 3-year OS rates of patients with second primary lung cancer in esophagus cancer. The nomogram summed the points identified on the scale for each variable. FPM, first primary malignancy; SPM, second primary malignancy; OS, overall survival.






Figure 2 | Calibrations of the nomograms and stage for predicting survival rates (A–F). The x-axis represents the nomogram-predicted survival rates, whereas the y-axis represents the actual survival rates. All predictions lie within a 10% margin of error (within the dashed lines). (A) Calibration of the nomogram for predicting the 6-month OS rate. (B) Calibration of the nomogram for predicting the 1-year OS rate. (C) Calibration of the nomogram for predicting the 3-year OS rate. (D) Calibration of the stage for predicting the 6-month OS rate. (E) Calibration of the stage for predicting the 1-year OS rate. (F) Calibration of the stage for predicting the 3-year OS rate. Comparison of the AUCs of the nomogram and SEER historic stage for predicting survival rates. The blue lines represent nomogram predicted survival rates, whereas the red lines represent SEER historic stage predicted survival rates. AUCs of the two models predict OS rates at 6 months (G), 1 year (H) and 3 years (I). OS, overall survival; AUC, area under the curve; SEER, Surveillance, Epidemiology, and End Results.





Ending event-based regulation and competing risk model

In the ending event-based analysis, 254 patients (35.5%) died from SPLC, 255 patients (35.7%) died from FPM, and 206 patients (28.8%) had other endpoint events (Table 1). Therefore, we established a Fine–Gray competing risk model to analyze prognostic factors related to specific causes of death in patients with SPLC-EC (Figures 3A, B). We set lung cancer-specific mortality as the final event and esophageal cancer-specific mortality as the competitive event. The Fine–Gray proportional sub-distribution risk model indicated that surgery for SPM was an independent risk determinant for lung cancer-specific mortality in SPLC-EC patients (P=0.016, HR=0.457, 95% CI 0.325–0.642). Surgery for FPM was an independent risk factor for esophageal cancer-specific mortality (P=0.016, HR=0.532, 95% CI 0.397–0.713).




Figure 3 | (A) Esophageal CSM in patients undergoing esophageal surgery; (B) Lung CSM in patients undergoing pulmonary surgery. Kaplan–Meier curves of overall survival in patients undergoing surgery for SPM; (C) Surgery not performed for FPM; (D) Surgery performed for FPM; (E) Localized SEER historic stage; (F) Regional SEER historic stage. CSM, cancer-specific mortality; FPM, first primary malignancy; SPM, second primary malignancy; SEER, Surveillance, Epidemiology, and End Results.





Survival benefits of differential treatment after SPLC diagnosis

A subgroup analysis of surgical treatment status found that after FPM diagnosis, 285 patients (39.86%) underwent cancer-directed surgery, while 430 patients (60.14%) did not undergo surgery (Table 2). Among those who underwent surgical treatment, 135 patients (47.4%) underwent re-operation after SPM diagnosis (group 1; average survival months: 38.510; median survival months: 21; 95% CI 18.233–23.767). The average and the median survival times of the 150 SPM patients (52.6%) who did not undergo re-operation (group 2) were 14.439 and 8 months, respectively (95% CI 5.871–10.129). Among patients who did not undergo surgery after an FPM diagnosis, 56 patients (13%) underwent surgery after an SPM diagnosis (group 3; average survival months: 28.777; median survival months: 14; 95% CI 9.391–18.609). The average and the median survival of the 374 patients (87%) who did not undergo surgery for either FPM or SPM (group 4) was 12.830 months and 7 months, respectively (95% CI 5.716–8.284). The Kaplan–Meier curves and log-rank tests were applied to compare the four groups (group 1 versus group 2: P<0.001; group 3 vs. group 4: P<0.001; respectively) in survival (Figures 3C, D).


Table 2 | Surgery for SPM Associated with Overall Survival for SPLC-EC Patients in Surgery for FPM and SEER Historic Stage for SPM of Subgroup According to the Kaplan-Meier Subsistence Analysis.



Another subgroup analysis of surgery for SPM also used the Kaplan–Meier method. We divided the cohort into distant, localized, and regional groups based on the SEER historic stage (Table 2). In the localized group, both the average and median survival times of patients who underwent surgery for SPM were significantly longer than those of patients who did not (average: 44.437 versus 22.945 months; median: 25 vs 13 months; log-rank test: P<0.001). In the regional group, the average survival time of patients who underwent surgery for SPM was significantly longer than that of patients who did not (43.44 vs 14.379 months); however, the median survival time was longer in patients who did not undergo surgery (21 versus 11 months; log-rank test: P <0.001). The log-rank test for the distant group showed no statistical significance in survival times between patients who underwent surgery and patients who did not (P =0.271). Further, we used Kaplan–Meier curves to illustrate the impact of surgery on survival at different cancer stages (Figures 3E, F).

To analyze prognostic differences in radiotherapy and chemotherapy for SPM, a Cox proportional hazard regression model was applied. After SPLC diagnosis, the cohort was split into the surgery (524 patients, 73.3%) and non-surgery groups (158 patients, 26.7%). Among patients of the SPM group with surgery, radiotherapy and chemotherapy were not statistically significant in the Cox regression model (P=0.778, P=0. 944, respectively). While radiotherapy and chemotherapy for patients of the SPM group without surgery were statistically significant (P<0.001, HR=0.660, 95% CI: 0.544–0.802; P<0.001, HR=0.657, 95% CI 0.535–0.808; respectively) (Table 3).


Table 3 | Radiotherapy and chemotherapy associated with OS for SPLC-EC patients in surgery for SPM according to the Cox proportional hazards regression model.






Discussion

As the incidence of SPM increases, research on the monitoring of, prognosis of, and treatment decisions for SPM has become significant (2, 3, 6). This large-scale cohort study found that the independent prognostic factors for OS of patients with SPLC-EC were sex, insurance recode, age at FPM diagnosis, surgery for FPM, chemotherapy for FPM, primary site of SPM, SEER historic stage of SPM, and surgery for SPM. We first established an interactive nomogram for patients with SPLC-EC that displayed a comparatively better prognostic discrimination and predictive accuracy for OS rates than the SEER historic stage. Competing risk models suggested that surgery is the preferred treatment for patients having SPLC-EC without distant metastasis. Further, radiotherapy and chemotherapy were shown to provide survival benefits to patients who cannot undergo surgery. These results may guide clinicians in the diagnosis and treatment of patients with SPLC-EC.

Surgery is a momentous treatment for lung cancer (17–19). For first primary lung cancer, Donington et al. (20) reported that the gold standard treatment for early stage (I/II) was lobectomy. In addition, Martini et al. (21) and Naruke et al. (22) reported that patients with N2-3 had reached 5-year OS at around 30% by systematic radical mediastinal lymphadenectomy. For SPLC, Song et al. (23) reported that patients who underwent surgery obviously had improved long-term survival (P<0.001, HR=0.36, 95% CI 0.30–0.44), reporting 3-year OS rates of 66.0%. However, the role of surgery in patients with SPLC-EC remains unclear. In this study, surgery was an independent prognostic determinant of OS (P<0.001, HR=0.444, 95% CI 0.345–0.572). According to our established nomogram (Figure 1), surgical performance for both primary cancers had a significant effect in survival, especially for patients with SPLC. The competitive risk model also confirmed that in the two ending events, lung and EC-specific mortality, surgery was strongly negatively correlated with cancer-specific death (P=0.016, HR=0.457, 95% CI 0.325–0.642 and P=0.016, HR=0.532, 95% CI 0.397–0.713, respectively). Subgroup analysis showed that compared with non-surgical patients, surgery can prolong the survival (log-rank test, P<0.001), especially for patients with localized and regional malignancies (both P<0.001). Even if patients with SPLC-EC underwent surgery twice, the survival effect was still excellent (log-rank test, P<0.001). Thus, active surgery is associated with favorable long-term survival.

Chemotherapy and radiotherapy play significant roles in lung cancer management (24–27). Bradley et al. (28) reported that concurrent chemotherapy and radiotherapy is the standard treatment for locally advanced lung cancer. Zukin et al. (29) reported that chemotherapy is extremely important for OS of patients with advanced lung cancer (progression-free survival: HR=0.46, P<0.001; OS: HR=0.62, P=0.001). Burdett et al. (30) and Le Chevalier et al. (31) reported that neoadjuvant and adjuvant chemotherapy had improved the 5-year OS of patients with primary lung cancer by 6% and 4%, respectively. However, the efficacy of radiotherapy and chemotherapy in patients with SPLC-EC remains uncertain. Multivariate analysis in this study found that radiotherapy and chemotherapy for SPLC had statistically significant OS rates (P<0.001, HR=0.706; P<0.001, HR=0.699, respectively). Similar results about the radiotherapy and chemotherapy were found in the subgroup analysis of patients who did not undergo surgery (P<0.001, HR=0.715; P<0.001, HR=0.657; respectively). Therefore, patients with SPLC-EC may benefit from radiotherapy and chemotherapy.

Sex is considered a significant variable affecting lung cancer prognosis (32–34). Wisnivesky et al. (35) reported that among lung cancer patients, the 5-year relative survival rates of men were lower than that of women (38% vs. 46%; P<0.0001). For patients with SPLC, Song et al. (23) reported that the 3-year OS rates and multivariate analysis of OS for men were worse than those for women (30.4% vs. 42.8%, P<0.001; log-rank test, P=0.004, HR=1.28). This study also revealed sex as a prognostic determinant for SPLC-EC patients (P=0.045, HR=1.212, 95% CI 1.004–1.463).

Likewise, age is another recognized important risk contributor for lung cancer (36, 37). Owonikoko et al. (38) reported that the older the lung cancer patients, their 5-year OS rates decreased (aged ≤69 years: 15.5%, aged 70–79 years: 12.3%, aged ≥80 years: 7.4%, respectively; P<0.0001). Song et al. (23) further reported that the SPLC patients aged ≤ 64 years had better 3-year OS rates than patients aged >65 years (39.3% vs. 33.6%, P=0.024, HR=1.18). Similarly, our study also found that age at FPM diagnosis ≥65 years is a poor prognostic determinant (P=0.005, HR=1.261) for patients with SPLC-EC. This might be attributed to worse physical conditions, poor tolerance to treatment, and worsening cancer stages in older patients.

This large-scale retrospective cohort study had few limitations. First, the study spanned a long duration (1975–2016), was retrospective in nature, and had selection bias. Second, potential confounders, such as concrete methods of surgery, chemotherapy, radiotherapy, and reason for treatment selection, were unmeasured and thus not reported in the SEER database, which may have influenced the results. Lastly, cigarette-smoking data are not recorded in the SEER database, we could not study its impact on the prognosis of SPLC-EC. Future research should address the above-mentioned deficiencies, which would alleviate the conditions of patients with SPLC-EC.



Conclusion

In our study, an interactive nomogram based on independent prognostic factors was established, and its prediction for OS was comparatively better than that of the SEER historic stage of patients with SPLC-EC. Fine–Gray competing risk models identified surgery as the preferred treatment option for patients with SPLC-EC, especially those with localized and regional malignancy. When patients with SPLC-EC cannot undergo surgery, chemotherapy and radiotherapy are strongly recommended. These findings may guide the treatment decisions for patients with SPLC-EC in the future.
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Non-small cell lung cancer (NSCLC) is a major cause of death in those with malignant tumors. To achieve the early diagnosis of NSCLC, we investigated serum-derived Piwi-interacting RNA (piRNA) of extracellular vesicles to filter diagnostic biomarkers for NSCLC. High-throughput sequencing from cancerous tissues and adjacent noncancerous tissues in patients with NSCLC was first applied to recognize candidate piRNAs as diagnostic biomarkers. These screened piRNAs were further validated in 115 patients (including 95 cases in stage I) and 47 healthy individuals using quantitative real-time PCR (qRT-PCR). We showed that piR-hsa-164586 was significantly upregulated compared with paracancerous tissues and extracellular vesicles from the serum samples of healthy individuals. Moreover, the area under the curve (AUC) value of piR-hsa-164586 was 0.623 and 0.624 to distinguish patients with all stages or stage I of NSCLC, respectively, from healthy individuals. The diagnostic performance of piR-hsa-164586 was greatly improved compared with the cytokeratin-19-fragment (CYFRA21-1). Additionally, piR-hs-164586 was associated with the clinical characteristics of patients with NSCLC. Its expression was associated with the age and TNM stage of patients with NSCLC, indicating that it can serve as an effective and promising biomarker for the early diagnosis of NSCLC.
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Introduction

Lung cancer is the leading cause of cancer-related mortality worldwide (1, 2). Non-small cell lung cancer (NSCLC) accounts for about 80%–85% of all lung cancers (3). Squamous cell carcinoma (SC) (4) and adenocarcinoma (AC) (5) are the two main pathological types of NSCLC (6), and AC is the most frequent type of NSCLC (7). Most patients are already at an advanced stage when they are diagnosed, and the 5-year survival rate is very unsatisfactory, the global five-year survival rate is only about 5% (8, 9). Due to the lack of assessment of prognostic factors, patients may not receive more optimal treatment, which increases early mortality. However, biomarkers can solve these problems, since genetic changes may precede obvious histopathological changes. Owing to the lack of effective diagnostic biomarkers, histopathological biopsy technique is still the most accurate method for the diagnosis of NSCLC (10). However, this method is invasive and may cause a series of complications, including tissue and blood vessel injury, hemorrhage, and tumor cell implantation and metastasis (11–14). Existing clinical protein-type tumor markers are not sensitive and specific enough (15), so there is an urgent need to discover new tumor markers to compensate for the shortcomings of existing methods and further improve the diagnostic performance of the existing tumor markers. Exosomes are nanovesicles secreted by cells, and they contain lipids, proteins, and nucleic acids (16). After they are released into the extracellular environment, they can be detected in blood, urine, and saliva (17). Some molecules, such as proteins and piRNA loaded by extracellular vesicles, can stably exist in the circulatory system and participate in cell-to-cell communication (18). The emerging roles of genes in cancer diagnosis are played by piwi-interacting RNAs (piRNAs), a novel class of small non-coding RNAs (sncRNAs) with a length of 24–31 nucleotides (nt) that bind to the PIWI protein family and play a regulatory role at the gene level (19), such as silencing transcriptional genes, maintaining germline and stem cell performance,and regulating translation and mRNA stability. Previous studies have shown that piRNAs are dysregulated in different types of cancer, and some of them are tumor-specific (20). Recent studies have shown that piRNAs in extracellular vesicles are not only stable in circulation but can also be effective biomarkers for cancer diagnosis and screening (21). However, it remains unknown whether piRNA derived from serum extracellular vesicles can be used as a clinical biomarker for NSCLC.

In this study, we conducted a series of experiments to explore novel serum-derived piRNAs of extracellular vesicles as biomarkers for the diagnosis of NSCLC. First, differently expressed and upregulated piRNAs were screened out from the sequencing results of cancerous and paracancerous tissues of patients with NSCLC. Then, we verified them in serum-derived extracellular vesicles and constructed receiver operating characteristic (ROC) curves to analyze the diagnostic effects of piRNAs in extracellular vesicles. Finally, we assessed their performance as an indicator of the postoperative prognosis of the patients and correlated their expression level with the clinical characteristics of patients with NSCLC. Our research showed that piR-hsa-164586 of extracellular vesicles can be used as a novel biomarker for diagnosing NSCLC.



Materials and methods


Subjects

From March 2021 to September 2021, 162 individuals were enrolled at the Affiliated Hospital of Qingdao University, including 115 patients with NSCLC and 47 healthy individuals. All of the patients in this study received a diagnosis of NSCLC by histopathological examination, and tumor staging was determined in accordance with the Eighth Edition American Joint Committee on Cancer (AJCC) Cancer Staging Manual (22). None of the patients had received radiotherapy or chemotherapy before peripheral venous blood collection, and they had no other diseases. Furthermore, 29 pairs of serum samples from patients with NSCLC before and one week after surgery (13 men and 16 women, mean age of 61.0 years) were collected. All of the samples were collected with the informed consent of the patients, and this study was approved by the Ethics Committee of Qingdao University Medical Department.



Isolation and identification of extracellular vesicles

Exosomes were extracted and isolated by the Hieff™ Quick extracellular vesicle isolation kit (for serum/plasma) (Yeasen Biotechnology, Shanghai, China) from each 1-ml serum sample. Specifically, each serum was centrifuged at 10,000×g for 20 min at 4°C to remove cell debris, and then centrifuged at 10,000×g for 60 min at 4°C to collect extracellular vesicles. Finally, extracellular vesicles were resuspended in Phosphate Buffered Saline (PBS) (Coolaber, Shanghai, China) for subsequent analysis. Exosomes were identified in three experiments.



Transmission electron microscope analysis

The morphology of extracellular vesicles was observed through TEM. First, 5 µl of extracellular vesicles suspension was added to the Formvar-carbon sample loaded with copper net; then, we placed the copper mesh on 50 µl of 1% glutaraldehyde for 5 min; finally, negative staining was performed, and electron microscope images were taken at 80 kV.



Nanoparticle-tracking analysis

The particle size and concentration of extracellular vesicles were measured by using nanoparticle-tracking analysis (NTA) at Viva Cell Biosciences with ZetaView PMX 110 (Particle Metrix, Meerbusch, Germany) and the corresponding Zeta View 8.04.02 software. The isolated samples of extracellular vesicles were appropriately diluted with 1× PBS buffer (Biological Industries, Shanghai, China) to measure the particle size and concentration. NTA measurements were recorded and analyzed at 11 positions. The Zeta View system was calibrated using 110 nm polystyrene particles. The temperature was maintained around 23°C and 30°C.



Western blot analysis

A suspension of extracellular vesicles (400 µl) was prepared by using RIPA Lysis Buffer with 1% PMSF (Meilun, Dalian, China). Then, 80 ng of extracted protein from extracellular vesicles was separated by 10% SDS-PAGE and transferred to PVDF Western blotting membranes (Sigma-aldrich,Mannheim,Germany). After blocking with 5% skim milk for 2 h, the membranes were incubated with primary antibodies at 4°C overnight and then incubated with secondary antibodies (1:8,000, Abclonal, Wuhan, China) for 2 h at room temperature. We used a protein imager (Amersham, Boston, US), to visualize protein bands. Primary antibodies included CD9 (1:1,000, Abcam, ab254175, MA, Cambridge, UK), CD81 (1:1,000, Abcam, ab109201, MA, Cambridge, UK), and TSG101 (1:1,000, Abcam, ab83, MA, Cambridge, UK).



RNA extraction, reverse transcription, and real-time quantitative PCR

Each 400 µl serum extracellular vesicle suspension was prepared for RNA extraction as described in what follows. Exosomal RNA was extracted using TRIZOL reagent (Takara, Dalian, China), and reverse transcription was performed with an miRNA 1st Strand cDNA Synthesis Kit (Nanjing Novozan Biotechnology, Nanjing, China). The quality and purity of each sample isolated from extracellular vesicles were measured using a Bio-DROP spectrophotometer (Bio-Tek, Vermont, US) and agarose gel electrophoresis (Figures S1A, B). qRT-PCR was performed using miRNA Universal SYBR qPCR Master Mix (Nanjing Novozan Biotechnology, Nanjing, China). Reverse transcription was performed on a T100TM Thermal Cycler (Bio-Rad, California, US). qRT-PCR analysis was performed on a CFX Connect TM Real-Time System (Bio-Rad, California, USA). The relative expression level of genes was evaluated using the 2−△CT [2-(CtpiRNA-CtU6)] method (23). U6 was used as an internal control (18). Each sample was analyzed in triplicate. The primers used in the experiment are shown in Table 1.


Table 1 | qPCR primer sequence.





CYFRA21-1 measurement

For measuring serum CYFRA21-1 concentration, we used a chemiluminescence method. The range of the reference values of serum CYFRA21-1 was 0–3.3 ng/ml.



Statistical analysis

GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA) and SPSS 26.0 (IBM, Eningen, Germany) were used for statistical analysis. The Kolmogorov–Smirnov test was used to evaluate the normality of the distribution. The t-test or one-way ANOVA was performed on those values conforming to a normal distribution, while those that did not conform to a normal distribution were compared using the Mann–Whitney rank-sum test. The ROC curve and the corresponding AUC were obtained using a logistic regression analysis model combined with pathological diagnosis to determine the cutoff value. The results of the numerical representation methods were expressed as the mean ± standard deviation. All tests were two-tailed, and p <0.05 was considered statistically significant.




Results


Exosomal piR-hsa-164586 is significantly upregulated in NSCLC patients

To identify piRNAs with imbalanced expression, we performed high-throughput sequencing on cancerous and adjacent tissues from NSCLC patients and performed microarray analysis (Figures 1A, B). As shown in Figure S2A and Table S1, we found that eight types of piRNAs were significantly upregulated. These eight most differentially expressed piRNAs were further verified to be regulated in serum extracellular vesicles by qRT-PCR. The upregulation of piR-hsa-164586 expression levels was statistically significant was found between patients and healthy individuals (Figures S2B–I). The Gene Ontology (GO) enrichment analysis identified the function of these differentially regulated genes (Figure 1C). Among these genes, binding was the most common relevant molecular function.




Figure 1 | Sequencing analysis of piRNAs in cancerous and adjacent noncancerous tissues of NSCLC. (A) Hierarchical cluster and (B) Correlation Plot analysis of differential piRNAs betweencarcinoma tissues and para-carcinoma tissues of NSCLC patients (C) GO analysis (SOl, para-carcinoma tissues; SO2, carcinoma tissues).





Isolation of extracellular vesicles from clinical serum

Isolated extracellular vesicles from the serum of patients with NSCLC and healthy individuals were analyzed by TEM, NTA, and Western blotting. As shown in Figures 2A, B, extracellular vesicles presented a typical tea tray-like structure, and the measured particle sizes were concentrated between 50 and 100 nm. The specific marker proteins (CD9, CD81, and TSG101) were also detected and enriched in the extracellular vesicles (Figure 2C).




Figure 2 | Identification of extracellular vesicles isolated from serum (A) the morphological characteristics of extracellular vesicles was observed by transmission electron microscope (TEM) (B) the diameter distribution and intensity of extracellular vesicles were analyzed through nano particle tracking analysis (NTA) (C) Extracellular vesicles specitic marker proteins (CD9, CD81 and TSG101) were detected by Western blotting.





Verification of the stability of piRNAs from extracellular vesicle of serum

In clinical application, the stability of tumor markers is the key factor in tumor screening. Here, we verified the stability of piR-has-164586 from extracellular vesicles of serum samples. First, we tested whether piR-hsa-164586 was enriched in serum extracellular vesicles. We separately detected the expression levels of piRNA in extracellular vesicles and extracellular vesicle-depleted suspension (EDS). We found that the expression levels of piRNAs in extracellular vesicles were much higher than those in EDS (p <0.05; Figure 3A). Subsequently, the suspensions of extracellular vesicles were treated with RNase A, but this treatment did not have a significant effect on piRNA expression of extracellular vesicles (p >0.05; Figure 3B). After storing the suspension of extracellular vesicles at room temperature for different time periods (0 h, 12 h, 24 h, and 48 h), the expression of piRNA was measured. As shown in Figure 3C, the expression of piRNA from extracellular vesicles did not change with time (p >0.05).




Figure 3 | Evaluation of the stability of piR-164586 of extracellular vesicle in serum samples (A) Expression level of piR-hsa-164586 in extracellular vesicles (EV) and extracellular vesicles depleted suspension (EDS); (B) qRT-PCR analysis of the expression level of piR-hsa-164586 in extracellular vesicles with or without RNase A treatment; (C) Expression level of piR-hsa-164586 of extracellular vesicles stored at room temperature for different times (0h, 12h, 24h and 48h) (ns, no significance; *p≤0.05).





Diagnostic efficacy of piRNAs from serum extracellular vesicles for NSCLC

In addition, the expression level of piR-hsa-164586 in extracellular vesicles taken from serum samples was significantly upregulated in patients with NSCLC compared with healthy individuals (Figure 4A).




Figure 4 | Serum-derived piR-hsa-164586 of extracellular vesicles is a potential biomarker for NSCLC patients. (A) qRT-PCR analysis the expression level of piR-hsa-164586 of extracellular vesicles in patients with stage of NSCLC (n = 95), all stage of NSCLC (n = 115) and healthy persons (n = 47). (*p < 0.05,**p < 0.01); (B, C) ROC curve analysis for piR-hsa-164586 of extracellular vesicles in distinguishing stageor all stage of NSCLC from healthy individuals.



To evaluate the diagnostic efficacy of piR-hsa-164586 from extracellular vesicles on NSCLC, the ROC curves were drawn for analysis. Given that serum biomarker CYFRA21-1 is widely used in clinical practice as a control (24), we evaluated the diagnostic value of CYFRA21-1 and piR-hsa-164586 of extracellular vesicles for stage I NSCLC patients. As shown in Figure 4B, the AUCs of CYFRA21-1 and piR-has-164586 were 0.506 (95% confidence interval [CI], 0.395–0.617) and 0.623 (95% CI, 0.527–0.720), respectively. The AUC of the combination of piR-hsa-164586 and CYFRA21-1 was 0.645 (95% CI, 0.550–0.741), with a sensitivity of 0.541 and a specificity of 0.603.

Likewise, when all stages of NSCLC were compared with healthy individuals, the AUC of piR-hsa-164586 was 0.624 (95% CI, 0.530–0.718), with a sensitivity of 0.523 and a specificity of 0.601. For the combination of piR-hsa-164586 and CYFRA21-1, the AUC was 0.642 (95% CI, 0.550–0.734), with a sensitivity of 0.535 and a specificity of 0.606 (Figure 4C).



Evaluation of piR-hsa-164586 of extracellular vesicles from serum on postoperative prognostic performance

Serum samples from 29 patients were taken before surgery and one week after surgery. The results showed that the expression level of piR-hsa-164586 after surgery was significantly lower than that before surgery (Figure 5A, p <0.05). in particular, those with high expression showed a significant downward trend, and 72.41% of the 29 patients showed a downward trend (Figure 5B). The ROC curve was used to evaluate the diagnostic performance of piR-hsa-164586 for the postoperative prognosis of patients, and the AUC was 0.679, with a sensitivity of 0.588 and a specificity of 0.588 (Figure 5C).




Figure 5 | Comparison of the expression of piR-hsa-164586 of extracellular vesicles in preoperative and postoperative serum samples of NSCLC patients.(ns, no significance; *p < 0.05). (A) The relative expression of piR-hsa-164586 of extracellular vesicles before and after operation; (B) The percentage of decreased expression of piR-hsa-164586 in postoperative samples is 72.41% (C) ROC curve analysis of postoperative prognostic performance of NSCLC patients(SN, sensitivity; SP, specificity).





Correlation between piRNAs of extracellular vesicles from serum and clinical characteristics of patients with NSCLC

Given that the intention of this study was to examine patients who had not received any chemotherapy or radiotherapy, patients in stage IV were not included in this study. Based on the TNM stage, we divided the serum samples into stages I–III. As shown in Figure S3A, the expression level of piRNAs of extracellular vesicles in the serum of cancer stage I patients was significantly higher than that of the healthy group, whereas that in stage III and IV patients did not show this trend. When the three groups were compared, it became clear that the expression of piR-hsa-164586 was correlated with TNM (Table 2). Lymph node metastasis is also critical to cancer progression (25). As shown in Figure S3B, the expression of piRNAs in patients without lymph node metastasis was dramatically higher than that in healthy controls, but there was no such difference in patients with lymph node metastasis.


Table 2 | Correlation between piR-hsa-164586 levels (2ΔCT) and clinical characteristics of patients with NSCLC (Mean+Standard Deviation).



Furthermore, smoking is currently considered the highest risk factor for NSCLC (26).To further explore whether piRNA-hsa-164586 of extracellular vesicles from serum can have predictive effects in NSCLC patients, we explored the relationship between piR-hsa-164586 and clinically relevant characteristics. The age, gender, tumor pathological subtypes, lymph node metastasis, tumor TNM staging, and smoking status of patients were all taken into consideration. As shown in Figures S3C, D, age and gender were not related to the expression of piRNAs (when comparing between each set of two groups). However, when three groups were compared, the expression of piR-hsa-164586 was found to be correlated with age (Table 2). The expression of piR-hsa-164586 showed no significant difference between the two pathological types (Figure S3E). Based on whether they smoked or not, we divided all of the patients into two groups; there was no difference in the expression of piRNA between these two groups (Figure S3F).

Lung, breast, liver, gastric, and colorectal cancers are the top five cancers related to death in the world (27, 28). Based on the above experiment, we also explored the expression of piRNAs of extracellular vesicles from serum in four other cancers with higher incidence after collecting small sample sizes for each type of cancer, including liver cancer (LC) (29), gastric cancer (GC) (30), breast cancer (BC) (31), and colorectal cancer (CRC) (32). We showed that piR-hsa-164586 was significantly overexpressed in NSCLC, LC, and GC, while there were no differences between BC, CRC, and healthy individuals (Figure S4A).




Discussion

The inefficiency of existing tumor markers is the main reason for the low survival rate of cancer. This means there is an urgent need to discover new, highly sensitive, and specific markers for the early diagnosis of cancer. Exosomes are disc-shaped vesicles that can be secreted by almost all cell types. The various components they carry can be used as biomarkers for disease diagnosis (33–35). Recently, it has been increasingly shown that piRNAs exist stably in the body fluids and have the potential to become biomarkers for the diagnosis of malignant tumors (36–39). However, the diagnostic potential of piRNAs of extracellular vesicles from serum for NSCLC has not yet been reported. Hence, the current study investigated whether serum-derived piR-hsa-164586 may have the potential as a diagnostic marker for NSCLC. In this study, we first isolated extracellular vesicles from serum using a polymer precipitation kit and further identified and analyzed their surface characteristics using TEM, NTA, and Western blot. Extracellular vesicle preparations were confirmed to be positive for the endosomal marker TSG101 and other vesicle-associated proteins (such as CD9 and CD81) and negative for the non-extracellular vesicle marker calnexin (Figure S5). Subsequently, we screened out piR-hsa-164586 using high-throughput sequencing and then verified its expression level in cancer patients and healthy individuals by qPCR. The results of the study demonstrated that the expression level of piR-hsa-164586 in patients with NSCLC was significantly higher than that in healthy individuals. Surprisingly, we also found that piR-hsa-164586 of extracellular vesicles was increased significantly in patients with early-stage NSCLC. However, the distribution of sample size between patients with NSCLC and healthy subjects is unbalanced, and the sample size of healthy subjects is about 41% of that of patients with NSCLC, which may amplify the detection of differences, emphasizing statistical differences that are not clinically relevant. In addition, the uneven distribution of confounding factors (such as gender and age) among different subgroups of participants also causes some interference to the results, but the population included in this study is basically the same in terms of age and gender, as shown in Table S2. However, more confounding factors need to be excluded for further evidence. Therefore, there is still a long way to go for piR-hsa-164586 to be applied in clinical practice, and more studies are needed in the future.

Diagnostic performance is the most important indicator of tumor markers. Therefore, we further analyzed the diagnostic performance of piR-hsa-164586 of extracellular vesicles in stage I and all stages of NSCLC patients by ROC curve analysis (Tables S3, S4). We found that independent piR-hsa-164586 had a relatively good performance in differentiating patients with NSCLC from healthy individuals compared with CYFRA21-1 (0.493). The AUC of piR-has-164586 was 0.624 (sensitivity, 0.523; specificity, 0.601). Meanwhile, in the current study, piR-hsa-164586 of extracellular vesicles showed a sensitivity of 0.535 and a specificity of 0.587 in stage I NSCLC patients.

Stability is the prerequisite for the clinical application of tumor markers (40–42). First, we verified that piRNA was enriched in extracellular vesicles of serum instead of EDS. Next, we verified the stability of piRNAs in extracellular vesicles from serum. The results confirmed that the expression of piRNA did not decrease significantly even though extracellular vesicles were treated with RNase A. In addition, the expression level of piRNA in extracellular vesicles was not significantly affected by long-term storage at room temperature. These results are consistent with previous research results (43). All these results indicate that piRNAs are stable in extracellular vesicles from serum, which lays the foundation for further research.

We also compared the piRNA expression in extracellular vesicles from the serum of patients with NSCLC before and after surgery. The results showed that the expression level of piR-hsa-164586 significantly decreased after the operation, indicating that piR-hsa-164586 may have a certain predictive effect on the prognosis of surgical patients.

Finally, we correlated the piR-hsa-164586 of extracellular vesicles with the clinical characteristics of patients with NSCLC, such as age, gender, pathological subtype of cancer, lymph node metastasis, TNM staging of tumor, and smoking. Experimental results showed that the expression level of piR-hsa-164586 of extracellular vesicles from serum was related to TNM staging and age of NSCLC patients. The expression of piR-hsa-164586 was significantly upregulated in stage I without lymph node metastasis. These results indicate that piR-hsa-164586 can predict the diagnosis of patients with early stages of NSCLC.

The molecular mechanisms of piRNAs that exert function are largely unclear. A previous study has shown that piR-hsa-211106 inhibits the progression of lung adenocarcinoma and enhances chemotherapy sensitivity by pyruvate carboxylase (44). piRNAs also work by interacting with piwi proteins and recruiting methyltransferases. For instance,piR-651 could promote cell proliferation and migration and inhibit apoptosis in breast cancer by facilitating DNMT1-mediated PTEN promoter methylation (45). More recently, piRNA can participate in the occurrence and development of tumors by regulating m6A RNA methylation (46). These findings expand our understanding of the regulatory role of piRNA in cancer. We will explore the specific mechanism of piR-hsa-164586 affecting the occurrence and development of NSCLC in the next step.

Our research has certain limitations. First, the sample size was small, particularly for verifying the expression of piR-hsa-164586 in NSCLC and other cancers, so it is necessary to verify piRNAs of extracellular vesicles in a larger population. Second, we only discussed piR-hsa-164586 of extracellular vesicles as a potential biomarker for NSCLC, and the mechanisms involved have not been analyzed through functional experiments. Thus, we will perform further experimental validation to explore the potential role of piR-hsa-164586 of extracellular vesicles as a diagnostic biomarker for NSCLC and to explore the mechanisms associated with NSCLC.



Conclusions

In this study, we discovered that piR-hsa-164586 was enriched in the extracellular vesicles of the serum of NSCLC patients. Hence, it may be a noninvasive, stable, and convenient biomarker for human NSCLC diagnosis, prognosis, and particularly prediction of postoperative outcomes. Liquid biopsy is the trend of tumor diagnosis in the future, as it can not only make up for the deficiency of the existing diagnostic methods but also provide new research ideas based on existing research. As research progresses, the diagnosis of tumors tends to become more accurate.
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Background

Lung adenocarcinoma (LUAD) is the most common respiratory globallywith a poor prognosis. Lipid metabolism is extremely important for the occurrence and development of cancer. However, the role of genes involved in lipid metabolism in LUAD development is unclear. We aimed to identify the abnormal lipid metabolism pathway of LUAD, construct a novel prognostic model of LUAD, and discover novel biomarkers involved in lipid metabolism in LUAD.



Methods

Based on differentially expressed genes involved in lipid metabolism in LUAD samples from The Cancer Genome Atlas (TCGA), abnormal lipid metabolism pathways in LUAD were analyzed. The lasso penalized regression analysis was performed on the TCGA cohort (training set) to construct a risk score formula. The predictive ability of the risk score was validated in the Gene Expression Omnibus (GEO) dataset (validation set) using Kaplan-Meier analysis and ROC curves. Finally, based on CRISPR gene editing technology, hematopoietic prostaglandin D synthase (HPGDS) was knocked out in A549 cell lines, the changes in lipid metabolism-related markers were detected by western blotting, and the changes in cell migration were detected by transwell assay.



Results

Based on the differential genes between lung cancer tissue and normal tissue, we found that the arachidonic acid metabolism pathway is an abnormal lipid metabolism pathway in both lung adenocarcinoma and lung squamous cell carcinoma. Based on the sample information of TCGA and abnormally expressed lipid metabolism-related genes, a 9-gene prognostic risk score was successfully constructed and validated in the GEO dataset. Finally, we found that knockdown of HPGDS in A549 cell lines promoted lipid synthesis and is more invasive than in control cells. Rescue assays showed that ACSL1 knockdown reversed the pro-migration effects of HPGDS knockdown. The knockdown of HPGDS promoted migration response by upregulating the expression of the lipid metabolism key enzymes ACSL1 and ACC.



Conclusion

The genes involved in lipid metabolism are associated with the occurrence and development of LUAD. HPGDS can be a therapeutic target of a potential lipid metabolism pathway in LUAD, and the therapeutic target of lipid metabolism genes in LUAD should be studied further.
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Introduction

Lung cancer is the most common cancer in the world (1), and its incidence is increasing every year. It is the leading cause of cancer-related mortality, making it a major global health problem (2). Adenocarcinoma is the most common histological subtype of lung cancer in both men and women (3). Even although the development of treatment strategies and new drug discoveries in recent years have resulted in prolonged survival of lung adenocarcinoma (LUAD).However, its five-year survival rate is only 15%. Recent studies have suggest that more than half of patients have missed the targetable gene alterations period that can improve their survival rate (4). Therefore, the discovery of specific early detection markers and therapeutic targets is the key to improving the survival rate of patients with LUAD (5, 6).

Lipid metabolism, including uptake, storage, and lipogenesis, occurs in various types of cancers, such as pancreatic, hepatic, and colorectal cancer, and affects tumor resistance and therapeutic efficacy (7–10). Previous studies on lipid metabolism showed that patients with higher lung cancer having high levels of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL), and low-density lipoprotein receptor (LDLR) have better survival rates (11, 12). Compared with the control group, the levels of some lipid metabolism-related products in the serum of patients with nonsmall-cell lung cancer (NSCLC) were significantly increased (13). The activity of cancer cells is accompanied by a large consumption of ATP, and fatty acid oxidation (FAO) can help generate ATP by coordinating the activation of lipid anabolism (14). Therefore, elucidating the underlying lipid metabolism-related mechanisms of LUAD will help to increase clinical treatment and thus prolong the survival of patients.

Hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D2) is a σ class glutathione transferase, which was discovered 40 years ago (15–17)HPGDS is involved in the arachidonic acid metabolic pathway, and catalyzes the production of prostaglandin D2 (PGD2) (18). HPGDS is associated with some pulmonary inflammatory diseases (19, 20). It is also associated with pancreatic tumors and testicular germ cell tumors (21, 22). HPGDS plays an important role in the occurrence and development of lung cancer, however, its catalytic product, PGD2, has been confirmed to be a mast cell-derived anti-angiogenic factor for lung cancer (23). Therefore, the relationship between HPGDS and lung cancer should be further revealed.

In this study, we used bioinformatics to analyze the characteristics of lipid metabolism-related genes in lung cancer, and found differential lipid metabolism pathways between lung cancer and normal tissues. Risk signatures of lipid metabolism-related genes were established and validated in external datasets. In the process, the recurring appearance of HPGDS was intriguing. Finally, we performed cell biology experiments to demonstrate that the knockdown of HPGDS promoted adipogenesis and increased the migration of lung cancer cells.



Materials and methods


Datasets and genes involved in lipid metabolism

LUAD and lung squamous cell carcinoma (LUSC) gene expression patterns and clinical data were collected from The Cancer Genome Atlas (TCGA), wherein the LUAD dataset included 516 tumor samples and 59 paracancerous tissues, while the LUSC dataset included 501 tumor samples and 108 paracancerous tissues. The Gene Expression Omnibus (GEO) was searched for microdata on the mRNA expression. GSE72094 is a LUAD dataset composed of 442 samples, based on the GPL15048 platform, for external validation of the risk score. GSE74777 is a LUSC dataset based on the GPL17586P platform, containing 107 samples, which were used as an external validation for LUSC. Based on the method described by of Deng et al, we downloaded the lipid metabolism-related genes from the Molecular Signature Database (version 7.0) (24).



Screening and functional enrichment of lipid metabolism-related differential genes

R “Limma” (R.4.1.0) was applied to identify differentially expressed genes (DEGs) between tumor tissue and normal tissue with a false discovery rate FDR <0.05 and |log2FC| ≥2 for the assessment of the involvement of significantly different genes in lipid metabolism. Functional enrichment analysis of GO and KEGG was performed using by DAVID (V.6.8 https://david.ncifcrf.gov/tools.jsp).



Protein-protein interaction network and subcluster analysis

The PPI of DEGs was predicted using the STRING online platform (http://string-db.org/). Hub genes were calculated with reference to the “Degree” algorithm in the cytohub plugin in Cytoscape (v.3.8.2) and the visualization was calculated.



Construction and validation of the prognostic risk score

Based on the lasso algorithm, the prognostic risk scoring formula was constructed with the TCGA dataset as the training set, and the GSE72094 and GSE74777 datasets were used as the external validation datasets for LUAD and LUSC, respectively. Independent prognostic factors were identified by multivariate Cox regression analysis using the survival R package. The patients were assigned to the high- and low-risk groups in accordance the median risk score, and Kaplan-Meier analysis was performed to plot overall survival (OS) and ROC curves in order to assess the prognostic power of the risk score.



Gene set enrichment analysis

To explore the underlying molecular mechanisms of prognostic risk score and HPGDS, we applied the Gene Set Enrichment Analysis(GSEA)of the underlying molecular mechanisms (25, 26). C2, C5, and C6 were searched to identify the oncogenic signatures of KEGG pathways, biological processes, cellular components, molecular functions and dysregulation(P < 0.01,FDR < 0.05).



Plasmid construction

The 20-nt target DNA sequences preceding a 5,-NGG PAM sequence in the genomic HPGDS and ACSL1 were selected for generating a single guide RNA (sgRNA) for the SpCas9 targets by using the CRISPR design website (https://design.synthego.com/#/). Homo sapiens HPGDS and ACSL1 sgRNA were cloned into the lentiCRISPR v2 vector at the site of BsmBI with sgRNA forward CACCGGCCTCATCTTATGCAAGACT and reverse AAACAGTCTTGCATAAGATGAGGCC, forward CACCGGAAGAGTACGCACGTACTGT and reverse AAACACAGTACGTGCGTACTCTTCC. Definitively, to confirm the DNA sequence, the DNA was successfully cloned, after which the plasmid was sequenced and aligned (BGI, Chongqing, China).



Cell culture and transfection

A549 (human non-small cell lung cancer line) was sourced from the American Type Culture Collection (ATCC) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, vol/vol, Biological Industries) and 1% penicillin/streptomycin (Invitrogen, Grand Island, NY, USA). The cell line was cultured at 37°C under a 5% CO2 atmosphere. sg-HPGDS, sg-negative control (sg-Con), and sg-ACSL1 plasmids were transfected into A549 cells with the TurboFect Transfection Reagent (Thermo Scientific, Waltham, MA, USA) in accordance with the manufacturer’s instructions. Briefly, the cells with 80% confluence were transfected using the Turbofect reagent in the DMEM medium and selected by puromycin (Invitrogen, San Diego, CA, USA) treatment (1μg/mL) for 4 days after transfection for 48 h. The cells were cultured supplementary with a complete medium until all cells survive.

The sg-HPGDS transfection efficiency was determined from the genomic sequence after cell collection. Briefly, the genomic DNA was extracted with the TIANamp Genomic DNA Kit (TIANGEN BIOTECH, Beijing, China). Genomic DNA was amplified with polymerase chain reaction (PCR), using the following primer (sense): ATACACAAAGAAACTAAGAACTGG, and antisense: ATTCTGTGTGTTCTCTATGCACC. The PCR product was sequenced and aligned (BGI, Chongqing, China). The sg-ACSL1 transfection efficiency was determined by Western blotting. To obtain HPGDS and ACSL1 double knockout cell lines, based on the sg-HPGDS cell lines, the sg-ACSL1 plasmids were transfected into the cells with the Transfection Reagent according to the manufacturer’s instructions.



Transwell assay

To confirm the effect of HPGDS, ACSL1 on A549 cells migration, a total of 1×105 sg-Con, sg-HPGDS, sg-ACSL1, sg-HPGDS and sg-ACSL1 double knockout cell lines diluted in DMEM without FBS were plated into the Transwell chamber (Corning), which was plated in a 24 well plate containing 600 μL of the complete medium. After 24 h, the cells that had migrated to the bottom of the membrane were fixed with 4% paraformaldehyde for 30 min, after which the membrane was stained with 0.1% crystal violet (Sangon Biotech, Shanghai, China). Eight fields were captured randomly under a microscope (Wetzlar, Germany). Crystal violet was eluted with 600 μL of 33% acetic acid, and the OD value was measured at 570 nm.



Western blot analysis

Western blotting analysis was performed as described previously (27). Briefly, the cells were lysed with 1% SDS lysis buffer containing protease inhibitor cocktail and phosphatase inhibitor cocktail (Apexbio, Houston, USA). The protein concentration was determined by using a BCA protein assay reagent kit (Thermo Scientific). The protein content (18 μg) was separated by SDS-PAGE gels and transferred onto PVDF membranes (Millipore, Billerica, MA, USA). The PVDF membranes were blocked overnight by 5% fat free milk in TBST at 4°C, followed by incubation at 4°C for 12 h with primary antibodies for anti-β-actin (1:5000) (Sigma), anti-β-Tubulin (1:5000) (TransGen Biotech), anti-ACSL1 (1:1000) (Cell Signaling Technology), ACC (1:1000) (Cell Signaling Technology), HK2 (1:1000) (Cell Signaling Technology), ACAA1 (1:1000) (Cell Signaling Technology), E-cadherin (1:1000) (Bioworld), N-cadherin (1:1000) (Bioworld), Twist1 (1:1000) (Cell Signaling Technology), respectively. The membranes were washed with TBST and incubated for 1.5 h with the corresponding HRP-conjugated secondary antibodies. The bands were visualized with ECL reagents (Merck, Billerica, MA, USA). The western blots were analyzed with the Image Lab Software (BIO-RAD, USA), and the program included an application with protein gels; the image exposure time to was set to 16 s.




Results


Prognostic differential genes associated with lipid metabolism in lung adenocarcinoma

Based on the TCGA dataset, we analyzed the differential genes of lung adenocarcinoma, among which 1301 genes showed differential expression, including 840 upregulated genes and 461 downregulated genes (Figure 1A). Univariate COX prognostic analysis of all genes identified 2416 genes with prognostic significance (Figure 1C; Supplementary Table 1). Following the method of Zheng et al. (24), we obtained a total of 776 lipid metabolism-related genes from the molecular signature database (version 7.0), KEGG and Reactome databases. After the further intersection with 1301 differential genes and 2416 prognostic genes, we finally found got 12 prognostic differences in lung adenocarcinoma expressed genes, and they were also associated with lipid metabolism (Figure 1B).




Figure 1 | (A) Differentially expressed genes (DEGs) between LUAD and normal tissues in TCGA dataset. (B) Intersection of DEGs, lipid metabolism-related genes and prognostic genes in TCGA. (C) Univariate COX analysis of 12 key lipid metabolism genes (P<0.05).





Functional enrichment analysis

Further enrichment analysis of 45 genes showed that most of their biological processes were related to redox processes, lipid metabolism processes and lipoxygenase pathways, and were mainly located in the cytosol, endoplasmic reticulum membrane and lipid granules. It is also involved in iron ion binding, heme binding and oxidoreductase activity (Supplementary Figure 1A). The most relevant metabolic pathways are arachidonic acid metabolism and peroxisome proliferators-activated receptor (PPAR) signaling pathway (Supplementary Figure 1B). more over, 45 lipid metabolism-related differential genes were used to draw the PPI network map (Supplementary Figure 1C), and the top ten hub genes, (Supplementary Figure 1D) namely PPARG, ALOX15, ALOX5, PTGIS, PTGES, HPGDS, PLA2G1B, ALOX15B, CYP27A1, and CAV1 were visualized and calculated using Cytoscape.



Construction of a prognostic risk score based on the TCGA cohort

Twelve genes were further analyzed by LASSO-Cox regression analysis. A 9-gene signature was constructed based on the optional λ value. The risk score is defined as Risk score = (−0.0797) *CYP4B1 + (0.1527) * KLF4 + (−0.1243) * DPEP2 + (−0.0165) * PTGDS + (−0.0057) * CYP27A1 + (−0.1551) * ACSS3 + (−0.0444) * HSD17B13 + (−0.0213) * HPGDS + (0.0381) * FA2H (Figures 2A, B).The TCGA cohort samples were divided into low- and high-risk groups according to the median cut-off value of the risk score (Figure 2C), and the Kaplan-Meier analysis showed that this risk grouping was effective in distinguishing between the good and poor prognosis groups. In other words, the OS of the low-score group in LUAD was statistically better than that of the high-score group (P<0.05) (Figure 2D). Time-dependent receiver operating characteristic (ROC) curves constructed to test the accuracy of the prognostic model, and the area under the curve (AUC) was 0.696 for 1 year, 0.675 for 3 years, and 0.646 for 5 years (Figure 2E). As shown in Supplementary Figure 2, these 12 genes have independent survival predictive power.




Figure 2 | (A) LASSO regression analyses of the 12 OS-related genes. (B) Cross-validation for tuning the parameter selection in the LASSO regression. (C) The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the dotted line). (D) Kaplan-Meier analysis for the OS of patients in the high- and low-risk groups. (E) The AUC of the prediction of 1-, 2-, and 3-year survival rates of LUAD.





Validation of prognostic models in the GEO cohort and gene set enrichment analyses

Patients with LUAD from the GEO dataset were involved in the validation of the risk model. Based on prognostic information from 442 patients enrolled in GSE72094, patients in the GEO cohort were divided into low- and high-risk groups based on the median risk score of the TCGA cohort, similar to the TCGA cohort. Kaplan-Meier analysis showed that overall survival was higher in the low-risk group than in the high-risk group (P < 0.01), regardless of whether the optimal cutoff (Figure 3A), median (Figure 3C), or quartile (Figure 3D). Due to incomplete 5-year survival data for patients in GSE72094, only an AUC of 0.0.67 at 1 year and 0.6 at 3 years was validated (Figure 3B).




Figure 3 | (A) Kaplan-Meier analysis applied for the evaluation of the risk scoring formula in the GSE72094 dataset, while considering the optimal cut-off value for grouping by P<0.05. (B) ROC curve in the validation set. (C) Grouped by median (P < 0.05). (D) Grouped by quartile (P < 0.05).



To elucidate the underlying molecular mechanisms of risk scoring, we performed a GSEA comparison between high-risk and low-risk groups in the 442 patients in the data GSE72094. In the low-risk group, four oncological features of base excision repair, cell cycle, mismatch repair, and p53 signaling pathway, and a lipid metabolism feature of glyoxylate and dicarboxylate metabolism were enriched. In the high-risk group, the enriched KEGG pathway mainly focused on various cardiac disease associations (including dilated cardiomyopathy, virtual myocarditis, and cardiac muscle contraction, etc.). However, no significant enrichment was found in the oncological features (Supplementary Figure 3).



Combining the TCGA-LUSC dataset to identify HPGDS as a key lipid metabolism gene

As previously described, we performed differential analysis on TCGA data of lung squamous cell carcinoma (TCGA-LUSC) (Figure 4A; Supplementary Figure 4A) (LogFC = 2, FDR <0.05), and extracted genes related to lipid metabolism. A total of 542 upregulated genes and 830 downregulated genes was found in lung squamous cell carcinoma, including 12 and 35 genes related to lipid metabolism, respectively (Figures 4B, C). To further select the lipid metabolism-related genes with prognostic significance and to avoid the unreproducibility of a single dataset, we performed a univariate COX regression analysis on the above 47 important genes in the LUSC dataset GSE74777. The results showed that HPGD, B4GALNT1, HPGDS, LPL, SGMS2, SLC44A4, and MFSD2A were prognostically significant lipid metabolism-related genes (Figure 4D). Moreover, we also performed routine bioinformatics analysis of GO, KEGG and PPI for these 47 important genes (we consider count<20% as invalid enrichment). In terms of GO, they were enriched in two biological processes, oxidation-reduction process and lipid metabolic process, and were mainly located in the cytosol, extracellular exosome and endoplasmic reticulum membrane. However, related molecular functions were not enriched. Additionally, the results showed that the main pathway enrichments were metabolic pathways and arachidonic acid metabolism (Supplementary Figure 4B, Supplementary Table 2). Subsequently, we drew the PPI map of these 47 genes (Supplementary Figure 4C), and further analyzed the Hub genes among them using Cytoscape (v 3.8.0). The results showed that the top ten genes were PPARG, HPGDS, ALOX5, FABP4, CYP27A1, ALOX15B, PLA2G1B, LPL, CYP4F3 and PTGIS (Figure 4E). Notably, HPGDS simultaneously appeared in the HUB gene of the previous TCGA-LUAD dataset, the lasso regression prognostic model, the HUB gene of the TCGA-LUSC dataset, and the prognostic gene of LUSC (Figure 4F).




Figure 4 | (A) Differentially expressed genes between LUSC and normal tissues in the TCGA dataset. (B) Upregulated lipid metabolism differential genes in tumor tissues. (C) Lipid metabolism differential genes downregulated in the tumor tissues. (D) Univariate COX analysis of key lipid metabolism genes (P<0.05). (E) Top10 hub genes were identified based on the PPI network map. (F) Recurrence of HPGDS in LUAD and LUSC.





Monogenic GSEA for HPGDS

To explore the underlying molecular mechanism of HPGDS, we performed a GSEA comparison between groups with different HPGDS expression. In terms of the KEGG pathway, the high expression group was enriched in lysosome, whereas proteasome was enriched in the low expression group (Figure 5A). Moreover, 15 oncological signatures including HOXA9, STK33, MTOR, RPS14, PGF, CSR, and YAP1 were enriched in the high expression group; however, no significantly enriched oncological signatures were found in the low expression group (Figure 5B). GO terms focused on ribosomal and mitochondrial function correlations. These enriched KEGG pathways and GO terms revealed molecular alterations in the HPGDS high expression group and were closely associated with metabolism. The results of GSEA are shown in Supplementary Table 3.




Figure 5 | Single-gene GSEA analysis of HPGDS. (A) Enriched KEGG pathway. (B) Abundant tumor features.





Knockout of HPGDS is associated with lipid metabolism in lung adenocarcinoma

Using CRISPR gene editing technology, we obtained the HPGDS knockout A549 cell line (Appendix 1). We examined differential expression of lipid metabolism-related proteins by western blotting. Compared with non-knockout cells, the expression of ACSL1, ACC, ACAA1, and HK2 was significantly increased after HPGDS knockout, which indicated that HPGDS knockout promoted lipid biosynthesis, and HPGDS can be associated with lipid metabolism (Figure 6A).




Figure 6 | (A) Western blotting of the expression of lipid metabolism-related markers in normal control A549 cell line (NC) and HPGDS knockout A549 (sgHPGDS) group. (B)Knockdown of HPGDS promotes the EMT related markers of A549. (C) Knockdown of HPGDS enhances the migration of A549 cells. ***P<0.001.





Knockdown of HPGDS enhances lung adenocarcinoma migration

As shown in Figure 6B, the knockdown of HPGDS resulted in a decrease in E-cadherin and an increase in N-cadherin and TWIST1. Moreover, the migratory ability of A549 cells was examined using a transwell assay. A549 cells in the HPGDS knockout group were much higher than those in the control group (Figure 6C). These results INDICATED the role of HPGDS in the malignant progression of LUAD.



Knockdown of HPGDS promoted migration by upregulating the expression of the lipid metabolism key enzyme ACSL1 and ACC

Rescue assays indicated that ACSL1 knockdown reversed the pro-migration effects of HPGDS knockdown. The knockdown of HPGDS promoted migration response by upregulating the expression of the lipid metabolism key enzymes ACSL1 and ACC (Figure 7).




Figure 7 | (A, B) Knockdown of HPGDS promoted migration by upregulate the expression of the lipid metabolism key enzyme ACSL1 and ACC, but not for HK2 and ACAA1. ns (no sense) P > 0.05, *P < 0.05, ***P < 0.001.






Discussion

The clinical efficacy of LUAD is not optimistic because owing to its extremely poor prognosis (28). Diagnostic biomarkers of LUAD and molecules should be identified for new therapeutic targets. Increased lipid uptake, storage, and lipogenesis occur in many cancers and increase tumor malignancy (29–31). Genes involved in lipid metabolism play a role in lipid metabolism reprogramming and drug resistance in tumors, making them potential targets for cancer therapy (32, 33). In this study, we aimed to discover potential biomarkers and therapeutic targets by identifying genes involved in lipid metabolism and their expression associated with prognosis in patients with LUAD, supplemented by biological experimental evidence.

Radiotherapy and chemotherapy for tumors have been developed vigorously in recent years. However, the 5-year survival rate of LUAD is still unsatisfactory (34–36). Risk score establishment based on bioinformatics analysis of RNA-sequencing data is an efficient approach, which classifies patients for rationally individualized and targeted treatment. Even though the risk models for the tumor microenvironment, immune cell infiltration, and energy metabolism of LUAD have been reported (37–39), we constructed a 9-gene prognostic risk model based on CYP4B1, KLF4, DPEP2, PTGDS, CYP27A1, ACSS3, HSD17B13, HPGDS, and FA2H, which was validated by an external dataset.

For a comprehensive understanding of the lipid metabolism process in lung cancer, we repeated the analysis pipeline of LUAD in the LUSC set, and in its results, the recurring appearance of HPGDS garnered our attention (Supplementary Figures 1D, 2A and Figure 4E). Presently, tumor studies on HPGDS are limited, and many studies report them as tumor suppressor genes (22, 40). In recent years, most studies on tumors are related to bioinformatics; however, they lack experimental verification (22, 40–44). Therefore, we used CRISPR technology to knock out HPGDS in the A549 cell line. The detection of lipid metabolism pathways showed that the knockout of HPGDS promoted lipid synthesis. Besides, the knockdown of HPGDS promoted migration of A549 relative to the control group. The knockdown of HPGDS promoted migration response by upregulating the expression of the lipid metabolism key enzymes ACSL1 and ACC, but not for HK2 and ACAA1. Interestingly, the arachidonic acid metabolic pathway is an aberrant metabolic pathway in both LUAD and LUSC tissues. HPGDS happens to be involved in the arachidonic acid metabolic pathway as a σ class glutathione transferase (16).

Even though lipid metabolism pathways in lung cancer are widely studied (45–47), this study is different because it focused on the abnormal lipid metabolism pathways in patients with LUAD and established a more reliable prognostic risk score. We performed biological experiments and confirmed that HPGDS can promote the migration of A549 by upregulating the expression of key lipid metabolism enzymes ACSL1 and ACC, but not HK2 and ACAA1. This study will provide a good theoretical guide for further research on LUAD. However, the present study has some limitations. For example, the bioinformatics analysis of this study included lung squamous cell carcinoma; however, no biological experiments were performed, which will be a part of our follow-up work. In addition, there are insufficient biological experiments on HPGDS to completely explain how HPGDS leads to malignant changes in LUAD by affecting lipid metabolism pathways. Finally, our risk scoring formula also lacked validation on a large cohort.

To conclude, we investigated the abnormal lipid metabolism pathway of lung adenocarcinoma by bioinformatics and performed biological experiments to prove that HPGDS can lead to malignant changes by altering the lipid metabolism of lung adenocarcinoma. Therefore, the molecular mechanism underlying HPGDS regulating the lipid metabolism pathway in lung adenocarcinoma should be further studied.
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Objective

This study aimed to detect circulating tumor cells (CTCs) and circulating tumor-derived endothelial cells (CTECs) in patients with advanced lung cancer, for describing the distribution characteristics of CTC and CTEC subtypes, exploring the correlation between CTC/CTEC subtypes and novel prognostic biomarkers.





Methods

A total of 52 patients with advanced lung cancer were enrolled in this study. Using the subtraction enrichment-immunofluorescence in situ hybridization (SE-iFISH) system, CTCs and CTECs derived from these patients were identified.





Results

Based on cell size, there were 49.3% small and 50.7% large CTCs, and 23.0% small and 77.0% large CTECs. Triploidy, tetraploidy, and multiploidy varied in the small and large CTCs/CTECs. Besides these three aneuploid subtypes, monoploidy was found in the small and large CTECs. Triploid and multiploid small CTCs and tetraploid large CTCs were associated with shorter overall survival (OS) in patients with advanced lung cancer. However, none of the CTECs subtypes showed a significant correlation with patient prognosis. In addition, we found strong positive correlations (P<0.0001) in the four groups including triploid small cell size CTCs and multiploid small cell size CTECs, and multiploid small cell size CTCs and monoploid small cell size CTECs. Furthermore, combined detection of the specific subtypes, including triploid small CTC and monoploid small CTEC, triploid small CTC and triploid small CTEC, and multiploid small CTC and monoploid small CTEC, were associated with poor prognosis in advanced lung cancer.





Conclusions

Aneuploid small CTCs are associated with the outcome of patients with advanced lung cancer. In particular, the combined detection of triploid small CTCs and monoploid small CTECs, triploid small CTCs and triploid small CTECs, and multiploid small CTCs and monoploid small CTECs has clinical significance for predicting prognosis in patients with advanced lung cancer.
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1 Introduction

The global incidence of lung cancer is increasing, and it has become the leading cause of cancer-related deaths. Approximately 2.09 million new cases and 1.76 million deaths occur from lung cancer each year (1). However, early screening for lung cancer remains challenging, with 57% of lung cancers diagnosed when cancer metastasizes outside the lung (1–3). Despite substantial development in the oncological management of late-stage lung cancer, its prognosis remains poor. The five-year survival at all stages of non-small cell lung cancer (NSCLC) is only 19% (4, 5). The five-year survival rate of patients at different stages varies greatly: 68%-92% for stage I patients, 53%-60% for stage II patients, 13%-36% for stage III patients, and only 0%-10% for stage IV patients (6). Therefore, new strategies for prognosis assessments of advanced NSCLC are urgently needed.

To date, various biomarkers have been found to play important roles in diagnosis, relapse prediction, and drug resistance evaluation in advanced lung cancer, including circulating tumor cells (CTCs), cfDNA, extracellular matrix-associated components, soluble immunological biomarkers, miRNAs, tumor mutation burden, and genetic markers (7–13). CTCs are one of the most prominent biomarkers in the dynamic assessment of cancers and have been used by the FDA in prognostic cancer assessments since 2004. CTCs, which are considered to spread from the tumor into the peripheral blood, leading to metastasis (14), have been studied by researchers worldwide. Characterization of CTCs is considered to be closely related to emerging tumor subclones, influencing treatment response and prognosis. Recently, Kong et al. tested the genomic heterogeneity of CTC in lung and breast cancer and found CTCs genes are more similar to the metastatic tumor compared with the primary tumor (15). Lim et al. found that intratumor heterogeneity of CTCs predicted the risk of recurrence in NSCLC (16). These two studies revealed the significance of CTC heterogeneity in tumor metastasis and prognosis. Furthermore, many researchers have reported the importance of CTCs as biomarkers for prognosis, diagnosis, and drug resistance in cancer (17–22).

With the continuous progress of detection technology, various”cellular circulating tumor markers”, such as circulating tumor endothelial cells (CTECs), have been identified and require further research (17). CTECs are identified as being CD31+, where CD31+ is widely used to detect endothelial cells, whereas CTCs are identified as being CD31- (23). CTECs decrease in number after operations in esophageal and lung cancers, correlating with reductions in tumor growth (24). In addition, Lei et al. reported that the combined detection of specific CTC and CTEC heteroploid subtypes significantly helped with obtaining higher sensitivity and specificity in identifying malignant nodules in patients with early-stage NSCLC (25). As an important heterogeneity of tumor cells identified by chromosome, aneuploids are considered to play an important role in CTC and CTEC studies (26, 27). Aneuploid quantification of CTCs is a useful tool for tumor progression and metastasis, and the prediction and evaluation of therapeutic efficacy (28). For instance, Ye et al. found that triploid and small CTCs were more aggressive in liver cancer (28); while Li et al. stated that the different ploidies of chromosome 8 were closely related to both sensitivity and resistance to paclitaxel- or cisplatin-based chemotherapy in advanced gastric cancer patients (29). Lin et al. also discussed the significant versatile cellular role of aneuploid CTECs in tumor neovascularization and cancer metastasis (30). Furthermore, several studies have demonstrated that aneuploid CTCs and CTECs may exhibit a functional interplay in tumor angiogenesis, progression, metastasis, and response to therapy (31)—an important novel direction.

In this study, we enrolled patients with late‐stage lung cancer. We aimed to identify CTCs and CTECs in the peripheral blood, conduct subclass analyses of CTCs and CTECs, find a correlation between CTC and CTEC subtypes, and search for prognostic biomarkers.




2 Materials and methods



2.1 Patient enrollment and specimen collection

A total of 52 patients who were diagnosed with advanced lung cancer between June 2019 and October 2019, and underwent various treatments at Peking University Cancer Hospital were enrolled in this study. Eligibility criteria for patient recruitment included: (1) histological confirmation as lung cancer; (2) being considered as having stage IIIA to IV lung cancer; (3) availability of complete basic information, including age, sex, histology data, TNM stage, and follow-up data; and (4) no diagnosis of any other severe diseases. The exclusion criteria were as follows: (1) having a history of malignancies other than lung cancer within the last five years. Peripheral blood samples (7.5 mL) were collected from the 52 patients before treatment. After the blood samples were collected, they were processed within 24 hours. Each patient provided written informed consent, and this study was approved by the Institutional Ethics Committee of Peking University Cancer Hospital (IRB approval number: 2020KT65). This study was conducted in accordance with the principles of the Declaration of Helsinki.




2.2 Subtraction enrichment of CTC and CTEC

To identify CTCs and CTECs, we performed subtraction enrichment and immunostaining fluorescence in situ hybridization (SE-iFISH) on the samples. All the experiments were performed in accordance with the manufacturer’s instructions and investigators’ modifications. Cell enrichment was performed using the subtraction enrichment method. A 7.5mL blood sample was centrifuged at 600 × g for 5 min, and all the deposited cells were immediately loaded onto 3mL of anon-hematopoietic cell separation matrix (Cytelligen, San Diego, CA, USA). The abovementioned mixture was then centrifuged again at 400 × g for 5 min, depleting the red blood cells. Next, the abovementioned supernatants were incubated with anti-leukocyte antibody (CD45) immunomagnetic beads at 25°C for 15 min, and the separation matrix was used again, followed by centrifuging at 400 × g for 5 min. Subsequently, the solution was magnetically separated, and the magnetic beads were then removed from the supernatant. The bead-free solution was centrifuged at 500 × g for 2 min, and the cells were mixed thoroughly with 100μL of cell fixative. Finally, the cell mixture was smeared on coated CTC slides and dried overnight for subsequent iFISH processing.




2.3 iFISH

The samples thus obtained were then processed according to the manufacturer’s instructions and investigators’ modifications (Cytelligen, San Diego, CA, USA). The samples were subjected to the Vysis Centromere Probe (CEP8) Spectrum Orange (Abbott molecular, Abbott Park, Illinois,USA) for 4 hours, followed by incubation with Alexa Fluor 594-conjugated monoclonal anti-CD45 antibodies (Cytelligen, San Diego, CA, USA) and Cy5-conjugated monoclonal anti-CD31 antibodies (Cytelligen, San Diego, CA, USA) at 1: 200 dilution for 30 minutes at room temperature. Finally, 4-6-diamidino-2-phenylindole (DAPI; Life Technologies, Carlsbad,California, USA) was used to stain the nuclei. Stained cells were observed and counted under a fluorescence microscope. At least two pathologists performed CTC and CTEC counting for DAPI+, CD45-, and CD31-/+ cells, identified chromosome 8 aneuploidy under fluorescence, and conducted subclasses according to cell size and ploidy. Based on our previous study (32), CTCs or CTECs ≤5 µm in size (approximately the size of a white blood cell [WBC] or less) were considered small cell size CTCs or CTECs, whereas those>5 µm in size were considered large cell size CTCs or CTECs.




2.4 Isolation and identification of aneuploid CTCs and CTECs

CTC identification criteria were as follows (Figures 1A–F): DAPI+, CD45-, CD31-, and the identification of chromosome 8 aneuploidy. CTEC identification criteria were as follows (Figures 1G–L): DAPI+, CD45-, CD31+, and the identification of chromosome 8 aneuploidy.




Figure 1 | CTC and CTEC detection. Image representations of different sizes and ploidies of CTCs/CTECs from patients with advanced lung cancer. (A–F) CTCs are DAPI+/CD45-/CD31-/CEP8+. (G–L) CTECs are DAPI+/CD45-/CD31+/CEP8+. (A–C) Small CTCs including triploid small CTC (A), tetraploid small CTC (B), and multiploid small CTC (C). (D–F) Large CTCs including triploid large CTCs (D), tetraploid large CTCs (E), and multiploid large CTCs (F). (G–I) Small CTECs including monoploid small CTECs (G), triploid small CTECs (H), tetraploid small CTECs (I). (J–L) Large CTECs including triploid large CTECs (J), tetraploid large CTECs (K), and multiploid large CTECs (L).



With the detection of chromosomal 8 aneuploidy and cell size, we could achieve further subclassification of CTCs and CTECs. Using the general size of WBCs as the threshold, CTCs/CTECs were identified as either small (≤ 5 µm; Figures 1A–C, G-I) or large (>5 µm; Figures 1D–F, J–L). On detection of chromosomal 8 aneuploidy, CTCs were further divided into triploid (Figures A, D), tetraploid(Figures B, E), and multiploid (Figures C, F) subtypes, and CTECs were further divided into monoploid (Figure G), triploid (Figures H, J), tetraploid (Figures I, K), and multiploid (Figure L) subtypes.




2.5 Statistical analyses

All statistical analyses were performed using GraphPad Prism 7.0 and IBM SPSS Statistics software version 23.0. Correlations between CTCs and CTECs were calculated and analyzed using chi-square tests. Overall survival (OS) was defined as the duration from the treatment initiation till death. Kaplan-Meier survival plots for OS were generated based on whether CTC/CTEC numbers were more or less than the median of CTC/CTEC numbers. Log-rank tests were used to compare survival curves, and hazard ratio (HR) values were also shown at the same time. The possible significant predictors of OS were then enrolled into a multivariable Cox regression Model, identifying independent significant predictors of OS. All P values were two-sided, and P < 0.05 was defined as statistically significant.





3 Results



3.1 Distribution of CTC and CTEC subtypes in the advanced lung cancer patients

The study included 52 patients with advanced lung cancer. The characteristics of the patients are presented in Table 1. In total, 37 (71%) male and 15 (29%) female patients were included in this study, with a median age of 63 years, and an average age of 63 years (ranging from 36–78 years). For the pretreatment clinical stage, nine (17.3%) and 43 (82.7%) patients were stage III and IV, respectively.


Table 1 | Characteristics of patients (n=52).



In our study of 52 patients, we found 491 CTCs in our patient cohort, including 249 (50.7%) small CTCs and 242(49.3%) large CTCs (Figure 2A). In addition, total, small, and large CTCs were detected in 90.4% (47/52), 84.6% (44/52), and 75% (39/52) of the patients, respectively (Table 2). The heteroploid features of CTCs are shown in Figures 2B–D. Triploidy accounted for the largest proportion of small CTCs (74.3%), followed by tetraploidy (20.1%) and multiploidy (5.6%); however, multiploidy accounted for the largest proportion of large CTCs (69.4%), followed by tetraploidy (15.3%) and triploidy (15.3%).




Figure 2 | Proportion of different sizes and aneuploid CTCs/CTECs (A) Proportion of small and large CTCs. (B) Proportion of heteroploid subtypes of total CTCs. (C) Proportion of heteroploid subtypes of small CTCs. (D) Proportion of heteroploid subtypes of large CTCs. (E) Proportion of small and large CTECs. (F) Proportion of heteroploid subtypes of total CTECs. (G) Proportion of heteroploid subtypes of small CTECs. (H) Proportion of heteroploid subtypes of large CTECs.




Table 2 | CTC and CTEC detection (n=52).



As for CTECs, we found 139 CTECs in our patient cohort, including 32 (23.0%) small CTECs and 107 (77%) large CTECs (Figure 2E). Total, small, and large CTECs were detected in 67.3% (35/52), 23.1% (12/52), and 57.7% (30/52) of patients, respectively (Table 2). Monoploidy accounted for the highest proportion of small CTECs (48.5%); however, multiploidy accounted for the highest proportion of large CTECs (89.7%) (Figures 2F–H).




3.2 CTC/CTEC subtypes and OS

To further investigate the role of CTCs in prognosis, we analyzed the correlation between the heteroploid subtypes of small/large cell size CTCs and OS in patients with advanced lung cancer. Based on the median value of CTCs, we found that patients with triploid small CTCs>1, multiploid small CTCs>0, and tetraploid large CTCs>0 had shorter OS than patients with triploid small CTCs ≤ 1, multiploid small CTCs=0 and tetraploid large CTCs=0 (Figures 3A, C, E); However, patients with tetraploid small CTC>0, triploid large CTC>0, and multiploid large CTC>1 had no differences with tetraploid small CTCs=0, triploid large CTCs=0, and multiploid large CTCs ≤ 1 (Figures 3B, D, F). In summary, CTC heteroploidy subtypes that were detected using the SE-iFISH system, including triploid and multiploid small CTCs, together with tetraploid large CTCs, correlated with the prognosis of advanced lung cancer.




Figure 3 | Survival analysis. (A) Patients with triploid small CTCs>1 had shorter OS compared to those with triploid CTCs ≤ 1 (P < 0.05). (B) Tetraploid small CTC subtypes were not correlated with OS (P > 0.05). (C) Patients with multiploid small CTCs>0 had shorter OS compared to those with multiploid CTCs=0 (P < 0.05). (D) Triploid large CTC subtype was not correlated to OS (P > 0.05). (E) Patients with tetraploid large CTCs>0 had shorter OS compared to those with tetraploid CTCs=0 (P < 0.05). (F) Multiploid small CTC subtype was not correlated to OS (P > 0.05).



We also studied the relationship between CTEC subtypes and OS in patients with advanced lung cancer. However, none of the aneuploid CTEC subtypes were significantly related to OS (Figures 4A–F).




Figure 4 | Survival analysis. (A–F) No CTEC subtypes were correlated to the OS of patients with advanced NSCLC (P > 0.05).






3.3 Relationships between numbers of CTC and CTEC subtypes

Next, we analyzed whether the CTC subtypes associated with OS (Figures 3A, C, E) were correlated with the CTEC subtypes in advanced lung cancer. As shown in Table 3, four groups, including triploid small cell size CTCs and monoploid/triploid small cell size CTECs, and multiploid small cell size CTCs and monoploid/triploid small cell size CTECs, had extremely strong positive correlations (P<0.0001). The relationships between these CTC and CTEC subtypes (P<0.0001) are described in Figure 5A–D.


Table 3 | Correlations between CTC subtypes and CTEC subtypes in advanced lung cancer.






Figure 5 | Correlation between CTC and CTEC subtypes, and survival of combined detection of CTC and CTEC subtypes with univariable analyses. (A–D) Correlations in four groups including triploid small CTC and monoploid small CTEC (A), triploid small CTC and triploid small CTEC (B), multiploid small CTC and monoploid small CTEC (C), and multiploid small CTC and triploid small CTEC (D). (E–H) Survival analyses in four groups including triploid small CTC≤1 and monoploid small CTEC=0 vs. triploid small CTC> 1 and/or monoploid small CTEC>0 (E), triploid small CTC≤1 and triploid small CTEC=0 vs. triploid small CTC> 1 and/or triploid small CTEC>0 (F), multiploid small CTC=0 and monoploid small CTEC=0 vs. multiploid small CTC>0 and/or monoploid small CTEC>0 (G), multiploid small CTC=0 and triploid small CTEC= 0 v s . multiploid small CTC>0 and/or triploid small CTEC> 0 (H).



Based on the abovementioned results, we examined whether the combined detection of CTC and CTEC subtypes is important in determining the prognosis associated with advanced lung cancer. The combined detection of triploid small CTCs and monoploid small CTECs, triploid small CTCs and triploid small CTECs, and multiploid small CTCs and monoploid small CTECs (P<0.05) could also predict prognosis in advanced lung cancer (Figures 5E–H). Patients with triploid small CTCs>1 and/or monoploid small CTECs>0 had shorter OS than did patients with triploid small CTCs ≤ 1 and monoploid small CTECs=0 (P=0.0185, Figure 5E). Patients with triploid small CTCs>1 and/or triploid small CTECs>0 had shorter OS than did patients with triploid small CTCs ≤ 1 and triploid small CTECs=0 (P=0.0217, Figure 5F). Patients with multiploid small CTCs>0 and/or monoploid small CTECs>0 had shorter overall survival than patients with multiploid small CTCs=0 and monoploid small CTECs=0 (P=0.0018, Figure 5G). However, OS of patients with multiploid small CTCs>0 and/or triploid CTECs>0 was not different from that of patients with multiploid small CTCs=0 and triploid small CTEC s=0 (P=0.1131, Figure 5H). Furthermore, we noticed that these three combined detections had a better effect in predicting prognosis, which had smaller p-values than did detecting small CTC subtypes independently (Table 4). Taking the combined detection of triploid small CTCs and monoploid small CTECs for instance, the p-value for detecting triploid small CTCs independently was 0.0288; however, the p-value for the combined detection of triploid small CTCs and monoploid small CTECs was only 0.0185, indicating better detection efficiency of the combined detection.


Table 4 | Survival analyses of CTC subtypes, CTEC subtypes, and combinations of CTC and CTEC subtypes.






3.4 Combined detection of CTCs and CTECs by multivariable Cox regression analyses for OS

According to the results, the combined detections of three groups (Group 1: triploid small CTCs ≤ 1 and monoploid small CTECs=0 vs. triploid small CTCs>1 and/or monoploid small CTECs>0; Group 2: triploid small CTCs ≤ 1 and triploid small CTECs=0 vs. triploid small CTCs>1 and/or triploid small CTECs>0; and Group 3: multiploid small CTCs=0 and monoploid small CTECs=0 vs. multiploid small CTCs>0 and/or monoploid small CTECs>0) showed a significant difference in OS by univariable analysis. Furthermore, we analyzed these groups in OS by the multivariable Cox regression analyses, revealing that combined detection of group 1 (hazard ratio: 0.47, 95% CI: 0.225-0.981; P<0.05), group 2 (hazard ratio: 0.429, 95% CI 0.204-0.903, P<0.05), and group 3 (hazard ratio: 0.312, 95% CI: 0.144-0.676, P<0.05) were significant independent predictors for longer OS, respectively (Table 5; Figure 6).


Table 5 | Multivariable cox regression analyses for OS in the groups of combinational CTC and CTEC subtypes.






Figure 6 | Survival of combined detection of CTC and CTEC subtypes multivariable cox regression analyses in three groups (A–C) including triploid small CTCs≤1 and monoploid small CTECs=0 vs. triploid small CTCs>1 and/or monoploid small CTECs>0 (A), triploid small CTCs≤ 1 and triploid small CTECs=0 vs. triploid small CTCs>1 and/or triploid small CTECs>0 (B), and multiploid small CTCs=0 and monoploid small CTECs=0 vs. multiploid small CTCs>0 and/or monoploid small CTECs>0 (C).



In summary, an overall flowchart of this study is shown in Figure 7.




Figure 7 | The overall flowchart.







4 Discussion

In this study, we explored the relationship between CTC and CTEC subtypes in patients with advanced lung cancer and attempted to identify prognostic biomarkers of this disease. Using the SE-iFISH method, we found that the detection rates of CTCs and CTECs were as high as 90% and 67%, respectively. Regarding the distribution of CTC and CTEC subtypes, we distinguished CTCs and CTECs in two dimensions, namely, heteroploid characteristics of chromosome 8 and cell size. Then, we further studied these CTC/CTEC subtypes and the prognosis of advanced lung cancer patients.

Hiroaki et al. showed that tumor cells undergoing epithelial-to-mesenchymal transition (EMT) were smaller in size than those without EMT characteristics (33). Wang et al. found that the majority of CTCs that were Vimentin+ (a marker for mesenchymal cells) were small in size and demonstrated different features from CTCs that were Vimentin- (34). Chen et al. found that the sizes of circulating tumor cell clusters can be used to track therapeutic resistance and prognosis in advanced gastric cancer (35). PD-L1+ aneuploid CTECs could exhibit resistance to immunotherapy in advanced NSCLC (31). In addition, the size of CTCs and clinical characteristics, such as cancer metastasis and progression (36), and post-surgical recurrence (37) were found to be relevant. These studies revealed that small cell size CTCs with more malignant behavior are associated with tumor progression and poor prognosis. Therefore, in this study, we did a subclassification of CTCs/CTECs into small cell size (≤white blood cell (WBC)) and large cell size (>WBC). We found that small CTCs accounted for 50.7% of the total CTCs, while large CTCs accounted for 49.3%; however, small CTECs accounted for only 23% of the total CTECs, and large CTECs accounted for 77% of the total CTECs.

Through the CellSearch system, Krebs et al. found 21% of positive CTCs (at baseline of > 2 CTCs) in the total cases of lung cancer patients (n=101) with IIIa to IV stages lung cancer and 32% of positive CTCs in NSCLC cases with stage IV lung cancer (n=60) (38). With the CellSearch system, Juan et al. also used two CTCs as a baseline and found that 24% of patients (n=37) had positive CTCs in the NSCLC patients who received chemotherapy (39). Using the SE-iFISH method, Ge et al. found that 92% of lung cancer patients (24/26) showed positive CTCs at a baseline of one CTC (40); Ye et al. reported that 92.9% (79/85) of lung cancer patients had positive CTCs (28). In our previous study, 88% and 94% of patients with resectable NSCLC were positive for total circulating aneuploid cells (CACs) in pre- and post-surgery, respectively (32). In the present study, we found that CTCs were identified in 90.4% (47/52) of lung cancer patients with advanced stage. Since the heterogenicity and high frequency of CTCs in these lung cancers, we analyzed the role of the size and aneuploid subtypes of CTCs/CTECs in the prognosis of these patients. In our previous study on early-stage lung cancer, small CACs accounted for only 18% of the total CACs (32). Furthermore, in our study on advanced lung cancer, small CTCs accounted for 50.7% of all CTCs. In addition, we found that small CTECs only accounted for 23% of all CTECs, and mainly comprised monoploid (16/32) and triploid (10/32) CTECs.

Chromosomal instability mainly leads to chromosome aneuploidy, which is a common feature in solid tumors and the causes of aneuploidy contain kinetochore–microtubule attachments and dynamics, centrosome number, spindle assembly checkpoint, and chromosome cohesion (26, 27). Several studies clarified the relationship between subtypes of aneuploidy CTCs and clinical characteristics, diagnosis, prognosis, and drug resistance (29, 31, 32, 37, 41, 42). Herein, aneuploidy CTCs/CTECs including monoploidy, triploidy, tetraploidy, and multiploidy subtypes were also identified. Triploid and multiploid small CTCs, together with tetraploid large CTCs were found to associate with the prognosis of advanced lung cancer.

CTCs are used in the diagnosis, prognosis evaluation, efficacy evaluation, drug resistance and recurrence monitoring, and precision treatment target screening of various tumors. CTCs have shown important clinical application value and have become a hot topic in tumor research (43–45). In addition, with the continuous development of CTC detection technology, another “cellular circulating tumor marker” (that is, CTECs) has been preliminary studied (30, 31, 42). Among the endothelial cells that constitute the tumor vascular system, most are tumor-derived endothelial cells that express a high level of CD31. These endothelial cells also exhibit cytogenetic abnormalities in aneuploid chromosomes. A previous study on the CTEC karyotype illustrated that normal endothelial cells are strictly diploid, whereas tumor endothelial cells (TECs) contain multiple chromosomal aneuploidies. Tumor-derived endothelial cells, which have the dual characteristics of malignant tumors and an endothelial vascularization ability, are endothelialized cancer cells. These cells enter the circulation from blood vessels to become CTECs, and this migration may play an important role in the formation of new blood vessels in metastatic tumors, thus having important clinical significance (30, 46, 47).

SE-iFISH is a detection technology that can identify target cells from peripheral blood cells by combining the detection of tumor marker expression on the surface of tumor cells and chromosomal aneuploidy. Therefore, comprehensive co-detection of aneuploid CTCs (CD31-) and CTECs (CD31+) using SE-iFISH was performed simultaneously in our study (25). In this way, high specificity (with respect to detecting CTCs/CTECs by iFISH) was ensured by distinguishing between aneuploidy and specific markers in the target cells. Based on this SE-iFISH system, we found that some CTC subtypes (triploid and multiploid small CTCs and tetraploid large CTCs) could be biomarkers for shorter OS; however, CTEC subtypes did not exhibit this characteristic.

Lin et al. hypothesized that aneuploid CTECs and CTCs cross-talk and influence each other in the circulation, leading to cancer metastasis and progression in some way (30). Lei et al. found that the combined detection of aneuploid CTECs and CTCs could be a good biomarker for the diagnosis of early-stage lung cancer (25). Therefore, we further investigated whether CTC and CTEC subtypes were related in patients with advanced lung cancer. According to our results, Pearson correlation tests confirmed significantly positive correlations in four groups, including triploid small cell size CTCs and monoploid/triploid small cell size CTECs, and multiploid small cell size CTCs and monoploid/triploid small cell size CTECs (P<0.0001). In addition, we found that the combined detection of three pairs of related CTC and CTEC subtypes (including triploid small CTC and monoploid small CTEC, triploid small CTC and triploid small CTEC, and multiploid small CTC and monoploid small CTEC) helped predict poor OS, even better than small CTC detection alone.

Recently, Lin reported that aneuploid TECs are generated from the “cancerization of stromal endothelial cells” and “endothelialization of carcinoma cells” in the hypoxic tumor microenvironment. Both of these processes are deeply involved in hypoxia-triggered epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT) (30), which might be the reason why CTECs play important roles in predicting prognosis. Furthermore, CTECs are TECs that flow into the peripheral circulation, and CTCs have been widely reported to be associated with tumor EMT, which may explain why the numbers of CTCs and CTECs were closely correlated in our study (33, 34).

Unlike single detection of CTCs, synchronous and combined detection of CTCs and CTECs plays an important role in the evaluation of tumor prognosis. In addition, the combined detection of CTCs and CTECs also has research potential in clinical applications, such as tumor diagnosis and real-time monitoring of curative effect prediction and recurrence, which may provide effective technical support for individualized, accurate diagnosis and treatment of patients. However, the role of these aneuploid malignant cells in tumor formation and metastasis requires further study.




5 Conclusion

Triploid and multiploid small CTCs are good prognostic biomarkers for advanced lung cancer. Moreover, combined detection of small CTC and small CTEC heteroploid subtypes can predict OS in advanced lung cancer, and it showed better detection efficiency than that of individualized detection alone.
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