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Supporting Cognition With Modern
Technology: Distributed Cognition
Today and in an AI-Enhanced Future
Sandra Grinschgl* and Aljoscha C. Neubauer

Institute of Psychology, University of Graz, Graz, Austria

In the present article, we explore prospects for using artificial intelligence (AI) to distribute

cognition via cognitive offloading (i.e., to delegate thinking tasks to AI-technologies).

Modern technologies for cognitive support are rapidly developing and increasingly

popular. Today, many individuals heavily rely on their smartphones or other technical

gadgets to support their daily life but also their learning and work. For instance,

smartphones are used to track and analyze changes in the environment, and to store

and continually update relevant information. Thus, individuals can offload (i.e., externalize)

information to their smartphones and refresh their knowledge by accessing it. This implies

that using modern technologies such as AI empowers users via offloading and enables

them to function as always-updated knowledge professionals, so that they can deploy

their insights strategically instead of relying on outdated and memorized facts. This

AI-supported offloading of cognitive processes also saves individuals’ internal cognitive

resources by distributing the task demands into their environment. In this article, we

provide (1) an overview of empirical findings on cognitive offloading and (2) an outlook

on how individuals’ offloading behavior might change in an AI-enhanced future. More

specifically, we first discuss determinants of offloading such as the design of technical

tools and links to metacognition. Furthermore, we discuss benefits and risks of cognitive

offloading. While offloading improves immediate task performance, it might also be a

threat for users’ cognitive abilities. Following this, we provide a perspective on whether

individuals will make heavier use of AI-technologies for offloading in the future and how

this might affect their cognition. On one hand, individuals might heavily rely on easily

accessible AI-technologies which in returnmight diminish their internal cognition/learning.

On the other hand, individuals might aim at enhancing their cognition so that they can

keep up with AI-technologies and will not be replaced by them. Finally, we present own

data and findings from the literature on the assumption that individuals’ personality is a

predictor of trust in AI. Trust in modern AI-technologies might be a strong determinant for

wider appropriation and dependence on these technologies to distribute cognition and

should thus be considered in an AI-enhanced future.

Keywords: technology, artificial intelligence (AI), distributed cognition, cognitive offloading, trust
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INTRODUCTION

Today, modern technologies are an indispensable part of peoples’
lives and it is hard to image living without smartphones and other
technical gadgets. Currently, around 1.3 billion smartphones
are sold worldwide per year (idc.com, 2022) and, for instance,
in Austria about 83% of individuals above 15 years own a
smartphone (KMU Forschung Austria, 2020). People are using
their technical devices for several reasons, such as staying in
contact, using the internet, taking pictures, or playing games.
Furthermore, technical devices can be used to externalize
cognitive processes, which is referred to as cognitive offloading
(Risko and Gilbert, 2016). Individuals offload cognitive processes
by, for instance, relying on navigation applications instead
relying on one’s own spatial abilities or by storing appointments
or shopping lists in their smartphones instead of memorizing
them. Also, modern technologies can be used to access up-
to-date knowledge and thus individuals do not need to rely
on outdated, internally memorized information. Indeed, the
majority of adults indicates using technical devices regularly or
even very often as external memory stores (Finley et al., 2018).
Also, empirical studies show that individuals flexibly distribute
cognitive demands between internal and external resources when
solving problems (e.g., Cary and Carlson, 2001). Distributed
cognition using modern technologies should thereby facilitate
task performance.

Besides the mentioned basic applications of a technical device,
also smart applications that are based on artificial intelligence
(AI) might be used for offloading. For instance, smart speakers
could be used to store appointments and to be reminded of them.
Due to the effortless interaction with such smart applications
distributed cognition might reach a new all-time high in the
coming years. Here, we aim at discussing this development of
distributed cognition with modern technologies. First, we give
an overview of recent findings regarding cognitive offloading.
We discuss determinants that foster the offloading of cognitive
processes in modern technologies as well as possible benefits
and risks of offloading. Second, we provide an outlook on
how distributed cognition (and thus cognitive offloading) might
change in the future–when AI-technologies are used on a daily
basis by many people–especially with regard to the educational
sector. Furthermore, we discuss whether distributed cognition
will actually increase in the future or whether people will
rather aim at enhancing their internal cognitive abilities. One
crucial factor for using AI-technologies to distribute cognition
might be peoples’ trust in these technologies. Therefore, we also
describe personality traits as potential predictors of trust in AI by
summarizing findings from the literature and presenting our own
data. Finally, we argue for more psychological research that could
support and inform the development of modern technologies.

OVERVIEW OF COGNITIVE OFFLOADING
WITH MODERN TECHNOLOGIES

While cognitive offloading comes in many different forms (e.g.,
for short term memory offloading see Meyerhoff et al., 2021;

for navigation offloading see Fenech et al., 2010), investigations
on the offloading of cognitive processes into modern technology
can be summarized into two lines of research: (1) the
determinants of cognitive offloading and (2) the consequences of
offloading behavior.

Modern technologies could be used for offloading whenever
they are available, but offloading might be applied more or less
depending on certain conditions. On the one hand, offloading
was shown to depend on external factors such as the design
of technical tools (e.g., Gray et al., 2006; Grinschgl et al.,
2020) or characteristics of the to-be-processed information (e.g.,
Schönpflug, 1986; Hu et al., 2019). Regarding tool design, studies
observed that individuals offload more cognitive processes when
the offloading process (i.e. the interaction with a technical tool)
is fast vs. associated with temporal delays (e.g., Gray et al.,
2006; Waldron et al., 2011; Grinschgl et al., 2020). Similarly,
also when interacting with technical tools requires less vs.
more operational steps offloading increases (e.g., O’Hara and
Payne, 1998; Cary and Carlson, 2001). Furthermore, Grinschgl
et al. (2020) observed that when participants performed a
task on a tablet using its touch function, they offloaded
more working memory processes than when using a computer
mouse. Regarding the characteristics of the to-be-processed
information, it was shown that offloading increases when a task
and accompanying information is more complex, relevant, or
difficult (e.g., Schönpflug, 1986; Hu et al., 2019). Additionally, a
larger amount of to-be-processed information fosters offloading
behavior (e.g., Gilbert, 2015a; Arreola et al., 2019). Overall,
these external factors suggest that the distribution of cognitive
processes on internal and external resources depends on
situational cost-benefit considerations (e.g., Gray et al., 2006;
Grinschgl et al., 2020).

On the other hand, internal factors such as individuals’
cognitive abilities and metacognitive beliefs can impact
offloading. Studies observed more offloading when one’s working
memory capacity is lower (e.g., Gilbert, 2015b; Meyerhoff et al.,
2021). Moreover, individuals commonly offload more when
they believe that their internal performance is worse (Gilbert,
2015b; Boldt and Gilbert, 2019; but see Grinschgl et al., 2021a for
conflicting results). To our best knowledge, an investigation of
other individual differences with regard to cognitive offloading is
still lacking (e.g., there is no research on the interplay between
personality and offloading).

Together, these determinants of offloading behavior
suggest that individuals do not maximally offload under all
circumstances, but instead especially the easy and fast access
to modern technology fosters offloading (e.g., Grinschgl
et al., 2020). With an increase in offloading due to modern
technologies, the question arises whether offloading is
accompanied by positive and/or negative consequences.
Cognitive offloading was shown to improve immediate task
performance by accelerating it and/or reducing errors (e.g.,
Boldt and Gilbert, 2019; Grinschgl et al., 2021b). Furthermore,
studies showed that offloading improves simultaneous secondary
task performance (Grinschgl et al., 2022) and later performance
of unrelated tasks (Storm and Stone, 2015; Runge et al.,
2019). Hence, it is assumed that cognitive offloading releases
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internal cognitive resources that can be devoted to other,
simultaneous or subsequent tasks. Furthermore, the retrieval
and storage of information using modern technologies might
help individuals to refresh their internal knowledge and thus to
act as always-updated knowledge professionals.

Importantly, cognitive offloading is also accompanied by risks.
In three experiments, Grinschgl et al. (2021b) observed a trade-
off for cognitive offloading: while the offloading of working
memory processes increased immediate task performance, it also
decreased subsequent memory performance for the offloaded
information. Similarly, the offloading of spatial processes by
using a navigation device impairs spatial memory (i.e., route
learning and subsequent scene recognition; Fenech et al.,
2010). Thus, information stored in a technical device might
be quickly forgotten (for an intentional/directed forgetting
account see Sparrow et al., 2011; Eskritt and Ma, 2014) or
might not be processed deeply enough so that no long-term
memory representations are formed (cf. depth of processing
theories; Craik and Lockhart, 1972; Craik, 2002). In addition
to detrimental effects of offloading on (long-term) memory,
offloading hinders skill acquisition (Van Nimwegen and Van
Oostendorp, 2009; Moritz et al., 2020) and harms metacognition
(e.g., Fisher et al., 2015, 2021; Dunn et al., 2021); e.g. the
use of technical aids can inflate one’s knowledge. In Dunn
et al. (2021), the participants had to answer general knowledge
questions by either relying on their internal resources or
additionally using the internet. Metacognitive judgments showed
that participants were overconfident when they are allowed to
use the internet. Similarly, Fisher et al. (2021) concluded that
searching for information online leads to a misattribution of
external information to internal memory.

To summarize, cognitive offloading is accompanied by both–
benefits and risks. While it can improve immediate task
performance, it might also be accompanied by detrimental long-
term effects. However, the investigated time-frames were rather
short (effects over hours or days). Thus, it remains unclear
how offloading might impact cognition over the lifespan (for
a discussion see Cecutti et al., 2021). While these authors see
humans’ development with modern technologies rather positive,
others pose modern technologies as a threat for humans (e.g.,
Carr, 2008; Spitzer, 2012). If distributing cognition actually is
a blessing or a threat for human cognition cannot be answered
here, but we will provide a brief outlook on how distributed
cognition might be affected by the rise of AI.

OUTLOOK ON DISTRIBUTED COGNITION
IN AN AI-ENHANCED FUTURE

As the use of many AI-technologies such as smart speakers
appears quite effortless, they might be used to easily store
appointments, take notes, retrieve up-to-date knowledge, or to
perform other cognitive tasks (e.g., calculating, navigating). AI-
technologies might thus be the “future” of distributed cognition
by replacing classical offloading tools. With this prospect, it is
important to consider how the omnipresence of AI as offloading

tools might impact human cognition and how we–as humans–
might foster a worthwhile integration of AI into our life.

To date, cognitive offloading research has shown positive and
negative consequences of using modern technology to distribute
demands on internal and external resources. However, these
studies did not target the use of AI-technologies as offloading
tools, but standard technologies such as tablets/computers
without AI applications. To our best knowledge, research
investigating distributed cognition in the context of AI is lacking.
While we see a high potential for new studies on this matter, we
also think that previous results can be transferred to the current
and future use of AI. Therefore, AI-technologies should be used
with caution as they might diminish cognitive abilities such as
learning and memory–consequences that are especially relevant
when it comes to children’s education.

Studies suggest that even young children offload cognitive
processes instead of completely relying on their internal
resources (e.g., Armitage et al., 2020; Bulley et al., 2020). Thus,
already in crucial learning phases during childhood tools are
used to distribute cognitive demands onto internal and external
resources. Such offloading behavior might increase with the ever
earlier access to modern AI-technologies in smartphones and
computers. Especially regarding education, it must be discussed
whether there should be a “ban” of cognitive offloading due
to potential detrimental effects thereof or whether students
need to learn how to properly use technical tools without
causing harm for their cognition (cf. Bearman and Luckin,
2020; Dawson, 2020). In line with these authors, we advocate to
teach students how to use technical devices so that they satisfy
their needs but to not (unintentionally) harm cognition. For
instance, students need to learn how to differentiate between
their own knowledge and externally stored knowledge, so that
the effect of inflated knowledge is avoided. Furthermore, students
should be made aware of their offloading behavior and that
they won’t be able to access their technical tools in critical
situations such as during exams. This is especially important as
a study showed that cognitive offloading was not detrimental
for long-term memory when participants were forced to
offload but also were instructed to internally memorize the
relevant information (Grinschgl et al., 2021b). Thus, offloading
is not always detrimental for building long-term memory
representations and instead detriments of offloading might
be compensated by proper learning instructions. Additionally,
modern (AI-)technologies can benefit education by providing
students with automated feedback to improve learning (Bearman
and Luckin, 2020). Hence, the availability of modern (AI)-
technologies is accompanied by both benefits and risks.

One alternative to strongly relying on AI to perform
demanding tasks, might be the enhancement of one’s own
cognition. Especially the Transhumanism movement in
philosophy proposes the enhancement of human cognition,
such as intelligence, so that we are able to solve global problems
(e.g., the climate crisis; Liao et al., 2012; Sorgner, 2020). This
enhancement should be achieved by enhancement methods such
as taking smart drugs, stimulating the brain, or modifying genes
(Bostrom and Sandberg, 2009). However, so far the effects of
most enhancement methods are at best moderate (Hills and
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Hertwig, 2011; Jaušovec and Pahor, 2017). The future might
bring new possibilities to foster human enhancement and this
might enable humans to compete with AI (for a discussion on
the implications of human enhancement and AI see Neubauer,
2021).

As human enhancement is not a promising strategy to become
smarter yet, individuals might rather rely on the available
technologies to improve their performance. As outlined before,
individuals do not rely on technical tools all the time, but the
distribution of cognitive processes onto internal and external
resources rather depends on factors such as tool design, one’s
abilities, or metacognitive beliefs. Another factor that might
strongly influence the reliance on AI might be the trust in these
technologies. In a recent review, Matthews et al. (2021) identified
trust as a major factor when it comes to human-machine
interaction and suggested that trust in AI should be systematically
investigated as humans are approaching a technology-enhanced
future. Trust can be seen as the specific beliefs about technology
and the willingness to rely on technology in risky situations
(Siau and Wang, 2018). Thus, trust might determine if and how
individuals interact with AI (see also Glikson andWoolley, 2020;
Chong et al., 2022) for distributed cognition. The question arises
whether there are individual differences when it comes to trusting
AI. An important source for individual differences might be
individuals’ personality such as the Big 5 traits (Hoff and Bashir,
2015; Matthews et al., 2021). Therefore, we briefly summarize
research investigating personality traits as potential predictors of
trust in AI and present our own data on this matter.

On one hand, several studies investigated trust regarding
specific AI-technologies. Li et al. (2020) consistently observed
correlations between openness and trust in automated driving.
While the participants showed lower trust in automated driving
with higher openness in a questionnaire, they also showed
a higher monitoring frequency, more frequent, and earlier
and longer “take overs” in an automated driving simulator.
Individuals high in openness might strive for more intellectually
demanding tasks and thus do not heavily rely on automated
systems (but see Zhang et al., 2020, for conflicting results).
Additionally, higher extraversion was related to less trust in the
questionnaire but no other effects were observed (Li et al., 2020).
In contrast, Kraus et al. (2021) did not observe a relationship
between openness and trust in automated driving, but indirect
effects of neuroticism, extraversion, and agreeableness. In a
path model, higher neuroticism was related to less affinity for
technology. A higher affinity for technology was positively related
to trust in automated driving (see also Zhang et al., 2020).
Moreover, higher extraversion and agreeableness were related
to more interpersonal trust which was related to more trust
in automated driving. These findings suggest that there is a
common factor underlying both trust in humans and trust
in automated systems (Kraus et al., 2021). Besides automated
driving, Sharan and Romano (2020) investigated trust in AI by
providing participants with suggestions from an AI-algorithm
when making decisions in a card game and found none of the
Big 5 traits correlated to any trust indicators.

Other studies assessed general trust in AI- (or related)
technologies. For instance, Chien et al. (2016) observed that

TABLE 1 | Correlations between sociodemographic data, Big 5 traits and facets,

interpersonal trust, and general trust in AI.

Trust in AI

Age −0.17*

Gender 0.04

Education 0.09

Openness −0.02

Openness–aesthetics −0.01

Openness–ideas −0.02

Agreeableness 0.02

Agreeableness–altruism 0.03

Agreeableness–concession 0.03

Conscientiousness −0.12

Conscientiousness order −0.12

Conscientiousness–self-discipline −0.11

Extraversion 0.06

Extraversion–assertiveness 0.06

Extraversion–activity 0.04

Neuroticism −0.07

Neuroticism–anxiety −0.05

Neuroticism–depression −0.08

Interpersonal trust 0.08

N = 467; for gender N = 466 because of the exclusion of one non-binary participant;

women are coded as 0, men are coded as 1; significance levels are Bonferroni-Holm

corrected; *p < 0.05.

higher agreeableness and conscientiousness were related to more
trust in automated systems, with no significant relationships
for the other Big 5 traits. Merrit and Ilgen (2008) observed
that extraversion is positively related to the propensity to trust
machines; additionally, age was negatively related to trust in
machines. In our own, exploratory study (N = 467; for details
see Supplementary Material), we assessed general trust in AI by
a 7-item questionnaire. Additionally, we measured participants
sociodemographic data (age, gender, and education), Big 5
traits and facets, and their interpersonal trust. The correlations
of these variables with general trust in AI can be found in
Table 1. In contrast to single previous studies (e.g., Chien et al.,
2016), we did not observe any relationships between trust
in AI and Big 5 traits as well as their facets. Additionally,
interpersonal trust was not related to trust in AI. We, thus,
cannot confirm the findings of Kraus et al. (2021), suggesting
trust in others and in technology are positively correlated.
However, in line with Merrit and Ilgen (2008), we observed
a negative relationship between age and trust in AI as well
as no gender effects. Older adults seem to have less trust in
AI, potentially due to less experience with these systems and
modern technology in general (but see Zhang et al., 2020, for
diverging results).

To summarize, results regarding personality traits as
predictors of trust in AI seem rather inconsistent and depend
on the targeted AI-technology (see also Schäfer et al., 2016). We
thus urge for more systematic research to identify personality
traits and other factors that might predict the trust in and
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use of AI-technologies in general but also for distributed
cognition more specifically. Besides personality, other factors
might play a major role for trusting and using AI. For instance,
the perceived usability of AI-technologies, computer anxiety,
task characteristics, transparency, or perceived intelligence
of AI might determine if and how AI-technologies are used
(for an overview and further differentiation see Glikson
and Woolley, 2020; Kaplan et al., 2021; Matthews et al.,
2021).

DISCUSSION

While smartphones and other technical gadgets are already
frequently used to distribute cognition, the rise of easy-to-
use AI-technologies might further foster the offloading of
cognitive processes. This development urges a need to investigate
consequences of using AI for distributed cognition and to
inform the public about these consequences. Although AI is
already often discussed by information scientists, politics, and
the general public, psychologists and psychological findings
are barely integrated into these discussions. We see a high
potential for psychological research to inform the public about
potentials of modern technologies but also about accompanied
risks. Moreover, identifying individuals that would easily rely
on AI (e.g., due to a high trust in these systems) could help in
specifically targeting these individuals when it comes to potential
negative consequences of heavily relying on technology. Thus, we
argue for more individual differences research to systematically
investigate which factors (e.g., personality) predict trust in and
use of AI. Growing up with modern technologies will likely
affect our cognition as well as our attitude toward technologies.
Such findings should be considered both when designingmodern
technologies and when using them in different situations (e.g.,

in private life, educational settings)–already now and in an AI-
enhanced future.
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When analyzing learning, focus has traditionally been on the teacher, but has in the

recent decades slightly moved toward the learner. This is also reflected when supporting

systems, both computer-based and more practical equipment, has been introduced.

Seeing learning as an integration of both an internal psychological process of acquisition

and elaboration, and an external interaction process between the learner and the rest

of the learning environment though, we see the necessity of expanding the vision and

taking on a more holistic view to include the whole learning environment. Specially, when

introducing an AI (artificial intelligence) system for adapting the learning process to an

individual learner through machine learning, this AI system should take into account both

the learner and the other agents and artifacts being part of this extended learning system.

This paper outlines some lessons learned in a process of developing an electronic

textbook adapting to a single learner through machine learning, to the process of

extracting input from and providing feedback both to the learner, the teacher, the learning

institution, and the learning resources provider based on a XAI (explainable artificial

intelligence) system while also taking into account characteristics with respect to the

learner’s peers.

Keywords: distributed cognition and learning, distributed situational awareness, adaptive learning, artificial

intelligence, stochastic processes

THE LEARNING SYSTEM

The Learning Environment
Ever since ancient times until today’s society with all kinds of information readily available in
an always present computer, (most) humans have understood that learning is vital. Socrates is
supposed to have stated that:

• The wiseman learns from everything and everyone.
• The ordinaryman learns from his experience.
• The fool knows everything better.

Besides the obvious advice to keep our eyes and ears open, this quote also puts the learner into an
environment that consists of more than the individual learner herself, and even more than a dual
learner—teacher relationship. Still, the learning process has been seen as a tug of war between the
learner and a teacher, where the responsibility for the learning outcome has moved from the learner
to the teacher, and in recent decades slightly back to the learner. In education, the focus is now on
learning as opposed to teaching, based upon the understanding of learning as a more active process
for the learner than the more passive attitude that may be associated with teaching.
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Learning needs to be seen as a process being executed in a
much richer environment consisting of several agents and several
cognitive artifacts (i.e., external representations of “knowledge of
the world” as books, checklists, decision support systems, and
language) (Norman, 1991).

Even though focus for ages has been a key word while studying
processes involving human activities, science exploration today
more and more sees the necessity of expanding the vision and
take on a more holistic view as for example reflected in the works
of Salomon (1997) and Hutchins (2001). Theoretical models have
moved from describing the feeling, thinking, and acting of a
single human being to incorporate as many as possible of the
agents and artifacts that combined constitute a system working
to accomplish a goal.

The unit of analysis here is the functional system consisting
of a collection of agents and artifacts and their relations to each
other. Aarset and Glomseth (2019) describe this as integrated
operations, while Hollnagel and Woods (2005) introduce the
term joint cognitive systems, where cognitive processes will occur
and be distributed. Beside the learner and the teacher, both
the learning institution, the learning resources provider (e.g.,
authors and/or publishers of textbooks), the peers for example in
a class, and some more external agents like employer, colleagues,
family, friends, and sometimes even a community who have
invested in “the smartest kid in the village” will all be part of
this environment.

What’s typical with such integrated operations are that
the different participants may have different background,
both regarding knowledge of what’s supposed to happen and
experience from similar operations, different individual goals,
and finally, sometimes surprisingly different understanding of
what’s really going on. Such differences in goals, attention,
perception, and roles to play are of course just as it should be,
but insufficient understanding of what’s really really going on,

i.e., acquired andmaintained situational awareness (Salmon et al.,
2009), may cause actions performed with the best intentions that
have adverse effect.

Therefore, it’s necessary to have a system perspective, and
incorporate the social interactions between the agents, the
interaction between the agents and the artifacts, and the means
of organizing this into a productive unit. We need to identify the
components within the system and explain the mechanisms that
coordinate this group of collaborators.

Objectives
The objective of the cognitive learning system we are analyzing
here is for one single learner to learn. That is, we don’t see this as
a group who is supposed to learn to collaborate while executing
some process later, as for example a crew operating an airplane
or a ship. For the learning process of one such single learner the
overall objective may be threefold. That is to increase the learner’s

• competence,
• confidence,
• learning ability.

Increasing the learner’s competence may according to the revised
Bloom’s taxonomy for knowledge-based learning (Bloom, 1956

and Anderson and Krathwohl, 2001) be to enable the learner
to both

• remember; find or remember information,
• understand; understanding and making sense of information,
• apply; use information in a new, but similar, situation,
• analyze; take information apart and explore relationships,
• evaluate; critically examining information and

make judgments,
• create; use information to create something new.

Furthermore, it is a goal in itself to get a learner to be confident
enough to apply what has been learned. It’s of little use to present
something worth knowing to learners if they don’t feel confident
enough to act according to it.

Finally, in a world that is constantly changing, we might say
that there is no single subject or set of subjects that will serve
a learner for the foreseeable future. The most important skill to
acquire may be learning how to learn. Therefore, it is beneficial
to improve the learner’s situational awareness with respect to her
own learning ability by for example giving feedback on how the
learner is utilizing the learning resources, compared to her peers.

During learning typical goals of typical agents in a learning
system may for example be like illustrated in Figure 1.

In addition to the different individual goals each agent should
operate within some constraints, which typically may be the time
and resources available, and the well-being of the agents in the
learning environment.

Process Flow
To illustrate the system design and the overall flow during
an integrated operation, a practical and convenient technique
is to use SADT diagrams (Marca and McGowan, 1988).
SADT sheets are a combination of activity boxes and arrows
indicating the order in which the activities are to be carried
out. An ICOM system (Input, Control, Output, Mechanism) is
distinguishing between

• Input or input data from the left of the activity box, which is
something that should be changed by or starting the activity.

• Output, which is the result of the activity.
• Control, which decides when and how the activity it to be

performed (typically within some constraints).
• Mechanism, which is identifying the agents and the artifacts

that performs the activity.

In the simplified example in Figure 2, four phases have been
identified. First, a “pre-learning phase” (preparation) that may
influence the learners’ “starting competence” and/or motivation.
The participating phase is where the learner may be in a learning
environment with (several) other agents, or quite alone with
some learning resources. Hopefully, the learner will use some
time for reflection in the pondering phase, before using her new
knowledge in a practical situation.

To illustrate what’s ideally going on in the participating phase
we may lean on the four stages identified by Kolb (1984) for
achieving effective learning. According to Kolb a learner should
progress through a cycle of the four stages:
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FIGURE 1 | Objective hierarchy during learning.

FIGURE 2 | Illustration of the different phases a learner goes through.

• having a concrete experience,
• having an observation of and reflection on that experience,
• forming abstract concepts (analysis) and

generalizations (conclusions),
• testing hypotheses in future situations, resulting in

new experiences.

Interactions
None of the above illustrations or models are well suited to
illustrate the communication between the different agents and/or
the artifacts, though. These relations may be illustrated by
introducing so-called agent-based flow charts (ABFC) (Aarset,
2014; Aarset and Glomseth, 2019).
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As the name indicates, the emphasis here is on visualizing the
connection between the different agents, between the different
agents and the artifacts, and how they relate to each other.
Admittedly, when using such agent-based flow charts it is often
more difficult to see how an activity is performed from the
beginning to the end, but it is significantly easier to see what
information each agent needs to be able to perform her activities
(functions), and what information and what result each agent
should pass on. It is also easier to see and understand when and
to which other agent(s) this result should be passed on to.

The agents and artifacts that make up the system are identified
from the mechanism inputs in the SADT sheets. There should
be constructed one agent-based flow chart for each agent (and
sometimes also for some artifacts). Each such agent-based flow
chart is constructed by listing all the activities that shall be
performed by this agent in a box placed in the middle of the
chart, e.g., standard operating procedures (SOP). Then identify
for each of these activities separately whether the agent who
is going to execute these activities needs input (information
or commands) from another agent/artifact. These inputs are
illustrated by drawing arrows from smaller boxes from each of
the relevant other agents/artifacts to the left of the main box. For
each such “reporting agent,” identify which input data she will
transfer to the agent in focus and which activity to be executed by
this “reporting agent” this “reporting” is related to.

Finally, boxes are created on the right side of the main box
for those of the other agents (or artifacts) that are to receive
something from the agent in focus. A schematic illustration of a
part of one agent-based flow chart, where the learner is the focus
agent, is shown in Figure 3.

As each input to each focus agent per definition also is an
output from another agent (or artifact), these flowcharts are
particularly useful when checking that all agents are aware of
their responsibility of what and to whom they are supposed to
report. Observe also that this is an internal analysis. No external
input from outside the learning environment, or output to this
external environment, are considered.

Distributed Situational Awareness
Still another way of understanding learning in a rich learning
environment is to follow the logic of Salmon et al. (2009)
with respect to distributed situational awareness. They view
distributed situational awareness as “the system’s collective
knowledge regarding a situation that comprises each element’s
compatible awareness of that situation.” Their model (Figure 4)
uses schema theory andNeisser’s perceptual cyclemodel (Neisser,
1976) with respect to each agent and treats distributed situational
awareness as “a systemic property that emerges from the
interaction (referred to as situational assessment transactions)
between system elements (human and non-human)” (Salmon
et al., 2009).

When performing an integrated operation as learning in a
rich learning environment, Salmon et al. (2009) will classify
the activities to be carried out by the involved agents as either
teamwork or taskwork. Teamwork is activities where the behavior
of the actors is affecting each other, or they coordinate their
behavior in relation to each other. Taskwork means activities

where the actors are performing individual activities separately
and (in part) independently of input from the other actors to
reach the system’s partial or overall objective.

We see that the models (illustrations) in Figures 1–3 above
give information which directly may be included in this model.
Figure 1 gives input to the System goals in the System factors, and
to Goals and roles in Individual factors. Figures 2, 3 give input to
System design and Procedures (also in the System factors), while
Bloom’s taxonomy provides input to both Task factors, Team
factors, Individual factors and System factors.

LEARNING

Modeling Learning
In line with Illeris (2009) learning may be understood as a
process that leads to a permanent capacity to change which is not
solely due to biological maturation or aging, and that the learner
during learning constructs mental structures (schemes) processed
within the memory function (see e.g., Piaget, 1973; Neisser, 1976;
Vygotsky, 1978). This process implies both the integration of an
external interaction process between the learner and the other
agents and artifacts in the learning environment, and an internal
psychological process of acquisition and elaboration.

Furthermore, this internal psychological process is a process of
integrated interplay between a content dimension (competence)
which concerns both what is to be learned and the learner’s
abilities (understanding, knowledge, skills, etc.), and an incentive
dimension (commitment) which provides and directs the mental
energy that is necessary for learning to take place (motivation,
emotion, volition, etc.) (Figure 5).

We prefer the headings competence and commitment instead
of Illeris’ terms content and incentive partly to be in line with
the terms from Situational Leadership Theory (SLT) (Thompson
and Aarset, 2012), which will be utilized as a basis for the
feedback approach.

To transform this model into a mathematical/statistical model
of the learning process making it possible to characterize,
evaluate, and adapt to an individual learner autonomously, all the
above (or similar) suggested models and techniques illustrated in
Figures 1–4 are necessary steps. Such a mathematical/statistical
model may form the basis for utilizing technology to improve the
learning process by giving feedback. It is convenient to illustrate
such a mathematical/statistical model by conceptual diagrams.

Conceptual diagrams illustrate a set of relationships between
variables (Hayes, 2018). An antecedent variable X may in
addition to a direct effect on a consequent variable Y also cause
variation in one (or more) mediator variable(s) M1, which, in
turn, also causes variation in Y (see Figure 6). Here, a typical
example of a mediator variable is motivation. The available
learning resources are for example directly influencing the
learning outcome. Still, they may also influence the learner’s
motivation and are therefore in addition influencing the learning
outcome indirectly.

Furthermore, the association between two variables X and Y
is said to be moderated when the effect of an antecedent variable
X on a consequent variable Y depends on a third variable (or
set of variables) M2. Here, a typical example of a moderator
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FIGURE 3 | A simplified agent-based flowchart focusing on the learner.

FIGURE 4 | Illustration of distributed situational awareness (Salmon et al., 2009).
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FIGURE 5 | An illustration of the three dimensions of learning [inspired by Illeris

(2009)].

FIGURE 6 | Conceptual diagram with mediator (M1) and moderator (M2)

variables.

variable is competence. It may for example be assumed that how
the available learning resources influence the learning outcome
depends on the learner’s initial level of competence and ability to
acquire knowledge.

The conceptual diagram in Figure 7 below illustrates the
activities in a limited time frame of a learning process, let’s call it
a learning session, where we assume that only the characteristics
competence, confidence, and learning ability change during this
time interval. Feedback to the different agents, which may lead to
a change of state or activity, will only be presented at the end of
such learning sessions.

The Learner
As stated in the objective hierarchy in Figure 1, the development
of the learner’s level of competence, confidence, and learning
ability are the key factors the learning process is intended to

improve. Factors included in the model in Figure 7 with respect
to the learner contains in addition both “telemetry” (TM) such
as sociocultural, sociodemographic, and socioeconomic factors,
personality (e.g., according to McCrae, 2018), as well as the
objective of the learner. It is assumed that these additional factors
don’t change during a learning session, and that there is a direct
effect of all these factors on the learning outcome.

All these factors are also assumed to provide an indirect
effect on the new competence, new confidence, and new learning
ability through the influence on the commitment, the chosen
learning approach, and the learner’s utilization of the learning
environment. Furthermore, it is assumed that these factors will
moderate the effect of the learning resources on the learning
pathway itself.

Influence From the Other Agents
Influence from the other agents in the learning system will take
different forms. Both the teacher and the peers are assumed to
influence the learner’s commitment, chosen learning approach,
and utilization of the learning environment. They are also both
expected to moderate the learning pathway.

The same is expected to hold for the learning resources, while
the learning institution is expected to influence the learner for
example through their organization of a study program at a
university, or an internal course in a company. The other agents
are assumed only to influence the learner’s commitment.

Commitment
The commitment of the learner is assumed to be an important
factor with respect to the learning outcome. Herzberg (1982)
suggests that motivational factors may be split in two groups.

• Motivators that give positive satisfaction, arising from intrinsic
conditions of the learning process itself (e.g., personal
growth, opportunity to do something meaningful, sense
of importance).

• Hygiene factors that do not give positive satisfaction or lead to
higher motivation, just dissatisfaction in case of their absence
(e.g., status, work conditions, vacations).

Both emotion (Um et al., 2012) and volition (Garcia et al., 1998)
are known to have a direct effect on learning and will thereby
also affect the learning outcome. Um et al. (2012) conclude
that induced positive emotions in learners both will enhance
comprehension of content and facilitate the construction of
mental models required for utilization of information in a new,
but similar, situation.

Volitional processes are defined as those thoughts and
behaviors that are directed toward maintaining one’s intention
to attain a specific goal in the face of both internal and
external distractions (Corno and Kanfer, 1993). Beside encoding
information into the long term memory store the instrumental
strategies involved during learning also include volitional
strategies to maintain the intention and the attempts to learn.
According to Corno (1993), volition plays a mediating role
between the intention to learn and the use of learning strategies.
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FIGURE 7 | Learning from the perspective of the learner.

Chosen Learning Approach
The chosen learning approach taken by the learner is also
assumed to influence the learning outcome. Sternberg (1994)
suggests that learning styles can be understood in terms of
functions, forms, levels, scope, and leanings of government.
Functions:

• Legislative; Define objective and plan strategy.
• Executive; Execute predefined strategies.
• Judicial; Evaluate/criticize objectives and/or strategies.

Forms:

• Monarchic; Direct focus on one goal at a time.
• Hierarchic; Sees whole picture and prioritize.
• Oligarchic; Sees whole picture, but doesn’t prioritize.
• Anarchic; Sees whole picture, but selects a random approach.
• Democratic; Sees whole picture, and pleases everyone.

Levels:

• Local; Bottom-up.
• Global; Top-Down.

Scope:

• Introvert; During execution.
• Extravert; During execution.

Leanings:

• Liberal; Openminded, Prefer changes.
• Conservative; Sticking to established rules.

Sternberg’s classification is debated in the literature, though, but
is still a useful starting point when searching for proxy variables
to be included in the mathematical/statistical AI model.

An alternative way of studying chosen learning approach is
to distinguish between the strategies rehearsal, elaboration, and
organization (Garcia et al., 1998). Rehearsal strategies are used
to select and encode information in a verbatim manner (e.g.,
repetition of information). Elaboration strategies are used to
make information meaningful and to build connections between
information given in the learning assignment and a learner’s
prior knowledge (e.g., mental imagery, use of mnemonics,
creating analogies, and trying to teach the information to another
person). Organizational strategies are used to construct internal
connections among the pieces of information to be learned (e.g.,
clustering related information based on common characteristics).

Furthermore, the intensity of how the learner is acting is also
assumed to affect the learning outcome.

Utilization of the Learning Environment
As long as one human mentor to each learner at all times
are probably neither possible nor desirable, the introduction
of an AI system may be a suitable alternative option. Beside
this, (electronic) learning resources hold several opportunities to
enhance both motivation and learning. This may be through an
adaptive electronic textbook to the individual learner, which both
may give the opportunity for communication within the learning
environment, and also to include immersive environments to
facilitate better, deeper learning.
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FIGURE 8 | The learning process evolving in time.

Giving a student the opportunity both to see a newly presented
detailed explanation of some concept into a larger whole, and
maybe even to observe consequences after experimenting with
this larger understanding, are desirable. Augmented reality can
do this through enhanced natural environments or situations that
offer perceptually enriched experiences.

It’s common to distinguish between three types of immersive
interfaces (Dede et al., 2017).

• Virtual Reality (VR) interfaces provide exclusive input to
our senses as response to our actions to simulate a real
world setting.

• Multiuser Virtual Environments (MUVE) interfaces provide
input from a virtual environment to digital avatars.

• Mixed Reality (MR) combine real and virtual settings, for
example by superimposing information (Augmented Reality,
AR) onto the view of a real world setting.

All three capabilities may improve learning by simulating that
learning takes place in a similar context to that in which it is
later supposed to be applied (situated learning). How the learner
is utilizing both such opportunities alone and in collaboration
with a teacher and/or peers, may be important with respect to
the learning outcome.

Updated State of the Learner
At the end of such a learning session as described here, it
is assumed that the “telemetry” (TM), the personality of the
learner and the learner’s objective, are unchanged, but that the
learner has reached a new level of competence, confidence, and
learning ability.

THE LEARNING PROCESS

The Model
The learning process may be understood as a discrete time
stochastic process (hopefully with positive drift). That is, a family

{Xt : t ∈ T} of random vectors Xt, indexed by some set T, where
each random vector will take on values from the same state
space characterizing the states of each of the agents and artifacts
involved in the learning process. The focus should primarily be
on the learning pathway, that is, how the competence, confidence,
and learning ability of the learner is developing, in conjunction
with the state of the rich extended learning environment. The AI
system providing feedback into the learning environment based
on the system state is itself a part of this learning environment.

Let’s first suggest a model for the learning process that might
be valid for a shorter time period, what we earlier called a
learning session, and describe the state space of this system (i.e.,
an identification of who and what is included in the model and
a characterization of each of the agents and artifacts) at the
beginning of time tn−1 and at the end of this time period at time
tn. This may be illustrated in the conceptual diagram in Figure 7.

The initial state of the system at time tn−1 will develop into
a new state at time tn. Then, at time tn, an AI system will give
feedback into the learning system. The state of the system will be
revised simultaneously at this time tn, and constitute the initial
state used as input to the next time interval starting at time tn.
The model within each learning session will be the same, but at
the end of each learning session the AI system will provide some
feedback into the learning system and the values of the random
vectors Xt are regularly being updated, as illustrated in Figure 8.

The state vector may be on the form as

Xt+1 = (TM, P,O, Comt, Cont, LAt, Os, LI, Ps, Te, LR, C, CLA,

ULE, Comt+1, Cont+1, LAt+1, FBt+1)

where

• TM: Characteristics of the learner.
• P: Personality of the learner.
• O: The objective of the learner.
• Comt: The competence of the learner at time t.
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• Cont: The confidence of the learner at time t.
• LAt: The learning ability of the learner at time t.
• Os: Information of “the others.”
• LI: Information from the learning institution.
• Ps: Information regarding the peers.
• Te: Information regarding the teacher.
• LR: Information regarding the available learning resources.
• C: The commitment of the learner.
• CLA: The chosen learning style of the learner.
• ULE: The learner’s utilization of the learning environment.
• Comt+1: The competence of the learner at time t+ 1.
• Cont+1: The confidence of the learner at time t+ 1.
• LAt+1: The learning ability of the learner at time t+ 1.
• FBt+1: The feedback from the AI system at time t+ 1.

The state vector must for all practical purposes be modeled as a
Markov process (Cox and Miller, 1987), but may include more
historical observations than just from one earlier time period.
Each of these elements of the state vector will be a vector itself.
The identification of significant (and available and measurable)
attributes, with respective metrics, will obviously be difficult, but
such a model may be seen as a partly ideal theoretical description
suitable as a starting point for collecting significant data.

The Observations
Generally, the goal of mathematical/statistical models are
to facilitate

• describing what’s going on,
• understanding the causes of what’s going on,
• predicting what’s going to happen,
• influencing through controlling the causes.

This requires valid, reliable, and significant measurements
through either stated or reveled preference. Therefore, the
measurements should ideally be

• operational, valid, and reliable; they should with a certain level
of precision measure what they are supposed to measure,

• complete; they should cover most of the important aspects of
the objective,

• minimal; the problem should be kept as simple as possible,
• measurable; it should be possible to assign both a probability

of the different possible outcomes and a preference between
these possibilities.

Wishing for a complete set of measurements without including
the richer learning environment than the learner—teacher duo
seems in vain. To have the opportunity to include all significant
information during a learning process is on the other hand
creating some undesirable secondary effects, especially with
respect to personal security. The protection of personal data
will introduce issues that must be handled satisfactory, both
from a legal perspective and also reflecting what kind of
information a learner may find it acceptable to share. Generally,
this should be covered when acting according to the General
Data Protection Regulation (GDPR) and the Data Protection Law
Enforcement Directive.

Information to be included in the mathematical/statistical
model with respect to the learner will vary over time
and will for all practical purposes basically contain proxy
variables, measurements just reflecting the real characteristics
(Aarset, 2014). Internal attributes as assignment marks, quizzes,
attendance, cumulative grade point average, etc. may easily be
registered and utilized, while some external attributes as extra-
curricular activities, social interaction network, personal interest,
study habits, family support, etc., may be harder both to measure,
to get access to, and to utilize within sound ethical constraints as
stated in the general data protection regulations (GDPR).

Communication through the canals available in the digital
learning system with a teacher may for example be expected
to be more directly on the subject and for some learners
relatively frequent. Direct communication with the other agents
may be less frequent, but on the other hand maybe more
continuously present in the mind of the learner. Available form
of communication between the learner and the teacher, between
the learner and the peers, and continuously updated reveled time
and form of this kind of communication should be registered.
The resources provided by the learning institution should also
be registered and included in the mathematical model, as some
characteristics of the other groups of agents.

A realization of such a (stochastic) learning process will
provide data from each learning session, basically based on
learner activity. A part of the data characterizing learner activity
may for example be as illustrated in Figure 9. Here we see a
learner who has started reading before watching a video, and then
reading again before an idle period. After the break the learner is
watching videos and an animation before taking an assessment.

Such activities occurring in the learning sessions will be
repeated several times during the realization of the learning
process as illustrated in Figure 10.

Adaptive learning is thus seen as a repeated process of
collecting data from the learning system, utilizing these data
for understanding the learner’s progress, and then repeatedly
providing feedback back into the learning system. Therefore, the
data collected from the learner activity must be augmented with
more data from the learning environment.

It is difficult to measure improvement in both competence,
commitment, and learning ability. Let’s for example assume
that we despite this difficulty choose to measure the level of
competence by the score on an assessment. Even though it may
be realistic to model this as a stochastic variable, it is for example
not at all clear which probability distribution we would prefer of
the respective probability distributions illustrated in Figure 11.
Solid line probability density:

• Expected score= 60%.
• Probability of “high score (>75%)”≈ 0.
• Probability of “low score (<50%)”≈ 0.

Dashed line probability density:

• Expected score= 63%.
• Probability of “high score (>75%)”≈ 0.1.
• Probability of “low score (<50%)”≈ 0.1.
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FIGURE 9 | An illustration of some of the activities of a learner during a learning session.

FIGURE 10 | An illustration of some of the activities of a learner during two learning sessions.

Dotted line probability density:

• Expected score= 64%.
• Probability of “high score (>75%)”≈ 0.3.
• Probability of “low score (<50%)”≈ 0.2.

There are similar issues with respect to other characteristics.

Censoring
Most learning processes will produce censored data. Learners
who feel they don’t have a satisfactory understanding of a subject
may typically fail to register for a respective exam. A class at a
university may for example have an improved average grading

compared to last year’s class, but with fewer students signed up
for the exam. Not taking this censoring into account may reward
an undesirable pedagogical approach (and the theoretical model
would produce biased estimates).

The type of censoring most commonly seen when assessing
knowledge is a sampling procedure where we only observe an
assessment Ti if Ti > Ci (i = 1, . . . , n). Generally, C1, . . . ,
Cn are assumed to be mutually independent stochastic variables
independent of T1, . . . , Tn, indicating at which knowledge level
the learners themselves feel they need to be at before registering
for a test or exam. That is, each learner is evaluating herself before
deciding to do an assessment or not. If they feel they don’t have
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FIGURE 11 | Three probability densities representing a proxy variable for

learning.

enough knowledge or understanding, some will abstain from
taking the test.

ARTIFICIAL INTELLIGENCE

Machine Learning
To repeatedly and almost continuously produce adaptive
feedback as decision support into a learning process may
require more resources than most learners have available.
With the scientific advancements of available big data and
artificial intelligence, though, several decision-makers today are
increasingly relying on machine learning to provide feedback
as decision support. Therefore, mathematical/statistical models
embedded in AI systems are introduced into the learning
environment, where AI is defined as systems performing actions,
physical or digital, based on structured or unstructured data, for
the purpose of achieving a given goal. Now is the time also to
introduce such systems to improve the learning process.

Utilizing AI also makes it possible to acquire information
“hidden” in the realizations of these stochastic processes. For
example, to group learners requiring similar adapted support
into clusters. This information provides input to the autonomous
decision support system which in turn provides feedback both
to the learners, the teachers, the educational institutions, and the
learning resource providers.

Cluster Analysis
Cluster analysis is the art of finding groups in data (Kaufman and
Rousseeuw, 1990) and has become a popular technique within
unsupervised learning as a part of machine learning (Murphy,
2012). Let O= {o1, o2, . . . , om} be a set of “objects” (here learners).
A partition divides O into subsets (clusters) O = {O1, O2, . . . ,
Ok} that satisfy Oi∩Oj = Φ (∀ i 6= j) and O1∪O2. . .∪Ok =

O. The objective is to find groups in such a way that objects in
the same group are similar, while objects in different groups are
as dissimilar as possible (Figure 12). Here, the different learners
should be grouped into clusters where all members of a cluster
will benefit from the same didactic technique.

Before any meaningful computation can be performed as part
of such unsupervised learning, though, human intervention is
called for in the following four steps;

1. selecting the attributes to characterize system states (i.e., the
agents, the agent’s behavior, and the artifacts),

2. selecting suitablemetrics to quantify the selected attributes,
3. defining so-called dissimilarities to measure the distance

between objects, objects and clusters, and between clusters,
4. selecting an algorithm to create the clusters.

The actual choice made in each of these steps will influence
the final classification and thereby the reliability and validity of
any decision support system. In many applied analyses, however,
surprisingly little attention has been put on steps 1–3.

The technique of K-medoids cluster analysis can identify
clusters in the multidimensional space spanned by characteristics
of the learner, observations of the learner’s utilization of the
learning environment, the learning environment itself, and,
specially, utilization of the learning resources. The goal is to
automatically detect patterns in data and using the uncovered
patterns to predict future outcomes of interest.

Suppose there are m learners to be clustered by means of
F characteristics as indicated in Chapter The Model above (an
augmented vector characterizing a learner, the utilization of the
learning resources, and the status of the rest of the learning
environment). Then, the data will be on the form of attributes (an
F-dimensional vector) for each object, so that the measurements
can be arranged in an (m× F) matrix, where the rows correspond
to the objects and the columns to the different variables.

X =







x11 · · · x1F
...

. . .
...

xm1 · · · xmF







This clustering will give input to the forecasting of the learning
process, which again will form the basis for feedback into the
learning system.

FEEDBACK

Introduction
Optimizing the distributed cognition in the joint cognitive
learning system requires feedback both to the learner and
to the extended learning environment. In accordance with
the conceptual model presented in Figure 7 above this
feedback should cover aspects with respect to both competence,
confidence, learning ability, and motivation of the learner as
well as a description of the state of the system itself. Presenting
feedback that is effective and appropriate at the right time to the
right agent is key for the success of an AI system and should be
adapted to the respective receiver.

Introducing new technology such as an AI system into the
learning environment may in addition to improve learning bring
about behavioral changes. The different positions of the agents
won’t change, but the roles, i.e., what people in these positions
do and how they do it, and the role relationships, i.e., with whom
they interact or how they interact, may change (Barley, 2020).
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An AI system for decision support may not just transform
what it means to be a student, but also what it means to be a
teacher. The cultural expectations about how, when, where, with
what, and with whom the role should be played may change.
The AI system should both attend and give feedback on the
interaction order, i.e., how the situated, patterned, and recurrent
ways of behaving and interacting that mark a particular context
are developing.

XAI—eXplainable Artificial Intelligence
Experience with human behavior tells us that it is not at all clear
that a learner (nor a teacher, a learning resource developer, a
learning institution, etc.) necessarily will follow advice they don’t
understand. Therefore, to be successful, such a decision support
system providing feedback to the learning system will need to
be based on what has been named XAI (eXplainable Artificial
Intelligence) (Arrieta et al., 2020).

Explainable Artificial Intelligence is artificial intelligence
where the feedback from the autonomous system, and the
reasoning behind this feedback, can be understood and
meaningfully be evaluated by humans. This is in contrasts to
the concept of the “black box” principle, where even the system
designers not necessarily can explain why an AI algorithm arrives
at a specific result. Therefore, it’s both beneficial and necessary
to present results in a “white box” setting for improving the
distributed situational awareness.

Such XAI systems will usually produce a large amount of
data. It’s easy, though, even for an AI system, to become
“overconfident” with an abundance of observations and almost
“require,” instead of suggesting, a change in behavior. It is
important to remember that even when an apparently massive
data set is available for analysis, the effective number of data
points for several important cases of interest might be quite small.
So, in what probably also are the words of Socrates: Few things are
common. Most things are quite rare.

Feedback to Acquire and Maintain
Situational Leadership
To be able to meaningfully evaluate the feedback from an
autonomous AI system, and the reasoning behind this feedback,
the agents need to acquire and maintain a satisfactory level of
situational awareness. Their situational awareness will influence
their attention and control how they act. Therefore, the feedback
from the AI system must describe the state of the system to
facilitate this acquisition and maintenance and be in accordance
with the model described in Figure 4.

The Form of the Feedback to the Learner
Suggestions of the form of the feedback to the learner
may be based on the situational approach of leadership
developed by Hersey and Blanchard (1969). The premise of
their theory is that different development level of a follower,
here a learner, requires different kind of leadership, here
feedback from the AI system. Leaning on this theory the
feedback to the learner should either be directive or supportive,
depending on the learner’s competence and commitment, i.e.,
development level.

FIGURE 12 | Example of clustering.

Hersey and Blanchard suggest four different leadership styles.

• If the learner is low in competence and high in commitment
(development level D1) the theory suggestsDirecting feedback,
i.e., high directive and low supportive.

• If the learner has some competence but low commitment
(development level D2) the theory suggests Coaching
feedback, i.e., high directive and high supportive.

• If the learner has moderate to high competence but lacking
commitment (development level D3) the theory suggests
Supporting feedback, i.e., low directive and high supportive.

• If the learner has a high degree of competence and a
high degree of commitment (development level D4) the
theory suggests Delegating feedback, i.e., low directive and
low supportive.

A popular concept in the behavioral sciences with respect
to the form of provided feedback is Nudging (Thaler and
Sunstein, 2008). Nudging is seen as a technique that suggests
positive reinforcements and indirect suggestions as ways to create
favorable behavior and good decisionmaking. This form seems to
be in accordance with Supporting feedback as defined by Hersey
and Blanchard.

Another perspective on learning in a rich extended learning
environment including an AI system is through Technopedagogy.
Technopedagogy is the pedagogical considerations uniquely
associated with the integration of digital technology (Newson,
1999). Emphasis is on tailoring technology to suit pedagogy,
rather than tailoring pedagogy to suit technology. Such digital
technology should also foster connections and facilitate for the
participants in the learning environment to connect with each
other. In such an environment, it should be easy for all agents to
engage and disengage with technology when appropriate. Cause
even though digital technology has the power to connect, digital
technology also has the power to distract.
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IRT—Item Response Theory
Most of the feedback will be to the learner. Feedback to the other
agents in the learning system may not require that much focus.
Much of the feedback created will nevertheless be presented
both to the learner and some of the other agents (maybe
simultaneously), as it also may be informative to them. In for
example Item Response Theory (IRT) both the ability level of
the learner and a characterization of the different questions
in an assessment are estimated, which constitute information
important both to the learner and to a teacher.

The objective of item response theory (IRT) is to characterize
test items and estimate the ability of an examinee (Embretson
and Reise, 2000). The basic idea is to estimate the probability that
an examinee provides a correct response to items presented in a
questionnaire. This probability of correct response is assumed to
be a function of an underlying trait or ability, θ . θ is modeled as
a stochastic variable typically depicted as ranging from −3 to 3.
Usually, the probability distribution of θ is assumed to be

θ∼N(µ, s2 = 12).

An estimate of θ to the left of the expectationµ in this probability
distribution reflects that the learner is in the lower half of the
population with respect to ability. An estimate of θ equal to the
expectation µ reflects that the learner is “an average” learner in
the population, while an estimate of θ larger than µ reflects that
the learner is in the upper half of the population with respect
to ability.

The Item Response Function (IRF) gives the probability that
a learner j with a given ability level θj will answer correctly on
item i. As θ increases, the probability of a correct response pi(θj)
increases as modeled in the following function.

pi(θj) = ci +
1− ci

1+ e−ai(θj−bi)

where

• a= Discrimination index (“slope”).
• b= Difficulty index.
• c= Lower asymptote (“guessing”).

Presenting feedback to the learning system based on IRT may be
as illustrated in Figures 13, 14.

In Figure 13 the dashed curve is representing an “easy” item
(b = −1) and the dotted curve a “difficult” item (b = 1). When
an item is represented by the dashed curve the probability of a
correct answer to this item is ≈0.80 for a learner with an ability
corresponding to a value θ = 0. For an item represented by the
dashed curve the probability of a correct answer to this item is
≈0.44 for a learner with an ability corresponding to a value θ =

0. Thus, this item is estimated to be more difficult.
In Figure 14we can see that we expect “no one” with an ability

level slightly below 0 to get the item represented by the solid
line (“large” a = 6) correct, while we at the same time expect
“everybody” with an ability level slightly better than 0 to get it
correct. (If you’re below average, you won’t make it. If you’re above
average, you’re quite certain to make it.) That is, this question

FIGURE 13 | Three examples of item response functions where a = 1

and c = 0.25.

FIGURE 14 | Three examples of item response functions where b = 0

and c = 0.25.

is probably discriminating too much, which may suggest the
teacher to revise the question.

The item represented by the dotted line is kind of “easier” for
the “not so smart,” but still difficult for the “smart ones” (“small”
a= 0.5). That is, the item is not very discriminating.

Meta Learning
Meta learning was originally introduced by Maudsley (1979)
and later used by Biggs (1985) to describe the state of being
aware of and taking control of one’s own learning. A learner
needs a sufficient high level of situational awareness to be able
to assess the effectiveness of her own learning approach and
modify it according to the demands of the learning task. Meta
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learning, being an active, internal process, also relates to learners’
attitudes, such as their belief that the way they adapt to the
learning situation is the best way for them, and that they have
the capacities and confidence to apply their knowledge. Meta
learning can also be an effective tool in assisting students to
become independently self-reflective (Biggs, 1985).

CONCLUSIONS

During the theoretical considerations while development an
XAI system to improve the learning process by adapting to the
individual learner, some lessons are learned.

It seems fundamental to see the objective of a learning process
to be to increase both the learner’s

• competence,
• confidence,
• learning ability.

This threefold objective is both important with respect to the
evaluation of a possible improvement of the learning process,
as it is suggesting that there may be new forms of feedback to
the learning system in addition to those directly connected to
improving competence.

Realizing that the complete learning environment should
include more than a learner and a teacher is also key for
success. All the resources within the rich extended learning
environment should be utilized both for establishing and
maintaining distributed situational awareness and to improve the
distributed cognition in this system to accomplish the objectives.

With these lessons learned it should be possible to introduce
an AI system into a learning process and improve the learning
process by adapting to the individual. It should be possible
to both

• improve the learning process for many learners,
• make adaptive learning more easily accessible,
• empower teachers,
• improve education management and delivery,
• offering life-long opportunities for all, making the delivery of

education more democratic.
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Using the DiCoT framework for
integrated multimodal analysis
in mixed-reality training
environments
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Eduardo Davalos and Naveeduddin Mohammed

Open Ended Learning Environments, Department of Computer Science, Institute for Software

Integrated Systems, Vanderbilt University, Nashville, TN, United States

Simulation-based training (SBT) programs are commonly employed by

organizations to train individuals and teams for e�ective workplace cognitive

and psychomotor skills in a broad range of applications. Distributed cognition

has become a popular cognitive framework for the design and evaluation of

these SBT environments, with structured methodologies such as Distributed

Cognition for Teamwork (DiCoT) used for analysis. However, the analysis

and evaluations generated by such distributed cognition frameworks require

extensive domain-knowledge and manual coding and interpretation, and the

analysis is primarily qualitative. In this work, we propose and develop the

application of multimodal learning analysis techniques to SBT scenarios. Using

these analysis methods, we can use the rich multimodal data collected in

SBT environments to generate more automated interpretations of trainee

performance that supplement and extend traditional DiCoT analysis. To

demonstrate the use of these methods, we present a case study of nurses

training in a mixed-reality manikin-based (MRMB) training environment. We

show how the combined analysis of the video, speech, and eye-tracking

data collected as the nurses train in the MRMB environment supports and

enhances traditional qualitative DiCoT analysis. By applying such quantitative

data-driven analysis methods, we can better analyze trainee activities online

in SBT and MRMB environments. With continued development, these analysis

methods could be used to provide targeted feedback to learners, a detailed

review of training performance to the instructors, and data-driven evidence

for improving the environment to simulation designers.

KEYWORDS

distributed cognition, learning analytics (LA), multimodal data, simulation based

training (SBT), mixed reality (MR), DiCoT, human performance, multimodal learning

analytics (MMLA)
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1. Introduction

Modern workplaces require workers to develop and execute

a complex combination of cognitive, metacognitive, and

psychomotor skills to achieve effective performance. With

advanced technologies that have now become widely available,

faster and more effective skill development can be achieved by

designing effective training protocols that provide learners with

multiple opportunities to train along with formative feedback to

support continual improvement with clear pathways to achieve

proficiency in their tasks. Simulation-based training (SBT)

has become a popular paradigm to implement these training

protocols. These environments provide safe and repeatable

spaces for learners to practice and develop their workplace

skills, and combined with adequate debrief and feedback

they can support training in multiple domains (Ravert, 2002;

Gegenfurtner et al., 2014).

When SBT scenarios require collaboration and feedback

among multiple agents (real and virtual), it is common to

interpret the training scenarios and trainee performance using

theories of distributed cognition (Hollan et al., 2000; Hutchins,

2000). Furthermore, many SBT environments incorporate

physical movement and embodiment, teamwork behaviors, and

domain-specific tools to aid the workers, which match with the

core tenets of distributed cognition (Kaplan et al., 2021). This

is especially the case for SBT environments that are enhanced

using mixed-reality tools, in domains such as emergency

response, collaborative and embodied learning, and healthcare

(Rosen et al., 2008; Mirchi et al., 2020; Rokhsaritalemi et al.,

2020). Techniques such as Distributed Cognition for Teamwork

(DiCoT) have been successfully applied to analyze SBT, both

for the purposes of simulation design and learner feedback

(Hazlehurst et al., 2008; Rybing et al., 2016, 2017). Traditionally,

analysis of distributed cognition with these frameworks relies

heavily on human observations by researchers and domain

experts to provide a descriptive analysis of performance in the

learning and training scenarios.

In parallel, other learning domains, such as K-12 classrooms,

have seen a transformation in personalized learning through

data-driven learner modeling and multimodal learning

analytics (Hoppe, 2017; Ochoa et al., 2017). In these learning

environments, data from student interactions are logged and

analyzed to produce insights into the learners’ cognitive,

metacognitive, and affective processes, and the impact these

processes have on their learning outcomes. While learning

analytics has been employed to analyze learner performance in

some simulation-based training domains as well, for example, in

Biswas et al. (2019), Kim et al. (2018), and Martinez-Maldonado

et al. (2020a), these applications are less common and often

rely on cognitive theories derived from traditional learning

frameworks. For learning and training in mixed reality-based

simulation environments that involve multiple agents and

combination of physical and virtual spaces, more advanced

cognitive theories, such as distributed cognition, better match

the affordances provided by the environments.

Motivated by this gap, in this paper we develop a framework

to apply a mixed quantitative + qualitative approach that

combines multimodal data analysis in the context of distributed

cognition to analyze learner behavior and performance in

SBT environments. In particular, our studies focus on a

mixed-realitymanikin-based (MRMB) environment for training

nurses to work with patients in hospital rooms. MRMB-based

simulation training provides realistic and high-fidelity scenarios

for nurses to train in. They have proven to be quite effective in

helping nurses develop and achieve proficiency in psychomotor,

cognitive, and social skills as they interact with patients and

equipment, make diagnoses, and provide interventions to

alleviate their patient’s problems (Hegland et al., 2017).

As a demonstration of our framework for tracking and

analyzing trainee behaviors and performance, we ran a

small study with nursing students in this MRMB training

environment. We have developed and applied our mixed

quantitative + qualitative methods approach to analyze the

data collected with video, audio, and eye tracking sensors. Our

computational architecture processes the raw multimodal data

streams and analyzes this data framed using the constraints and

insights derived from a qualitative analysis using the DiCoT

distributed cognition approach. The results are mapped to a

combined qualitative-quantitative representation of the nurses’

problem solving behaviors and performance, with the help of

our cognitive task model. With continued development and

refinement, results from our analysis methods can be provided

to learners as formative feedback and to instructors to help them

guide more detailed discussions during simulation debriefing.

The analysis presented in this paper supports an

investigation of two primary research questions:

1. How can multimodal learning analysis be used to support a

comprehensive analysis of distributed cognition in MRMB

simulation training environments?

2. How does temporal alignment and analysis of multiple data

modalities help us gain a deeper understanding of trainees’

actions in the context of the tasks they are performing in an

MRMB environment?

The rest of this paper is organized as follows. Section

2 presents previous work on SBT, the Distributed Cognition

framework, and an overview of multimodal data analysis

approaches applied to studying learner behaviors. Section 3

discusses our theoretical framing of the training scenarios and

analysis by combining cognitive task modeling, distributed

cognition through the DiCoT methodology, and multimodal

data analytics. Section 4 provides details of the methods we have

adopted in our study; first an overview of the MRMB-based

Nurse Training scenario, a Cognitive Task Analysis approach
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to interpreting and analyzing nurses’ actions in the training

environment and mapping them to higher level cognitive

behaviors, our adaptation of the DiCoT framework to study

nurse performance and behaviors in the training scenarios, and

a complete computational architecture to derive performance

analysis from data collected in the SBT environment. Section 5

presents details of the analyzes of the nurses’ performance and

behaviors in the case-studyMRMB-based training environment.

This is followed by a discussion of the results obtained for two

the scenarios and their broader implications in Section 6. Last,

Section 7 provides the conclusions of the paper, limitations with

the current approach, and directions for future work.

2. Background and related work

In this section, we briefly review past work in SBT,

distributed cognition, and multimodal analytics applied to

analyzing learners’ training performance and behaviors.

2.1. Simulation-based training

Simulation-based environments offer many attractive

properties for training applications; they provide controllable

and repeatable environments in which learners and trainees can

safely practice complex cognitive and psychomotor skills in rich

and dynamic scenario representations. Thus, it is not surprising

that simulation-based training has been widely adopted for a

variety of domains, and many studies have shown them to be

effective for both training and assessment (Ravert, 2002; Maran

and Glavin, 2003; Daniels and Auguste, 2013; Rybing, 2018).

In medical domains, SBT has been used since the 1950s when

the first commercial medical training manikin was released.

The manikin-based approach combined with computer-based

simulations continues to be widely utilized and studied today

(Cooper and Taqueti, 2008; Hazlehurst et al., 2008; Pimmer

et al., 2013; Rybing et al., 2017). For example, Rybing et al. (2017)

studied the use of simulation-based training for nurses in mass

causality events; Kunst et al. (2016) studied the use of manikin

simulation for mental health nursing; and Johnson et al. (2014)

found that mankin-based education was more effective than

web-based education for advanced practice nursing students.

For further information, see Cooper and Taqueti (2008) which

reviewed the history and development of manikin-based clinical

education, Al-Ghareeb and Cooper (2016) which reviews the

current state of manikin-based clinical education along with

its barriers and enablers, and Gegenfurtner et al. (2014) which

reviewed the larger context of digital simulation-based training.

In addition, the integration of simulation environments

with advanced computing resources has led to further advances

in the field. Computer-based simulations allow for automated

collection of trainee activity data, which can then be used to

evaluate their performance, and for debriefing and after-action

reviews (Ravert, 2002; Sawyer and Deering, 2013). In medical

domains, a lot of the computer-based simulation training relies

on high fidelity manikins that trainees can realistically interact

with to practice their clinical and teamwork skills (Al-Ghareeb

and Cooper, 2016). This creates mixed-reality environments,

where trainees act in a physical space, which includes real

equipment that interfaces with a digital simulation. The digital

simulation controls the patient manikin’s vital signs and overall

health manifestations. In addition, the digital simulation can

take into account trainees actions in the environment and on

the manikin, and adapt the manikin’s vital signs and responses

to these actions.

The overall goal of SBT is to help learners to develop a set

of skills that are transferable, meaning the skills acquired in the

simulation can be utilized in other simulation settings and in

real-world situations. In particular, one of the primary goals for

medical SBT is to help trainees develop skills that transfer from

the simulation environments to actual medical settings with real

patients. Application validity measures capture how well SBT

environments accomplish this transfer for a sufficiently large

population of trainees (Feinstein and Cannon, 2002).

Prior work has shown that providing formative feedback

during debrief after the simulation improves both the

application validity of the simulation, as well as the competence

and self-efficacy of the learners (Gegenfurtner et al., 2014). It is

important to note that the formative feedback provided must be

discussion and explanation focused, and not purely evaluative

in order to preserve the psychological safety of the training

environment (Kang and Min, 2019). While similar simulation

environments are also used for learner assessment (Cook et al.,

2014), our focus in this paper is on simulation-based training,

where learners must feel safe to practice and not fear that

mistakes will have long-term negative consequences (Kang and

Min, 2019; Park and Kim, 2021). Taking this into account, our

work focuses on building analysis methods designed to provide

feedback that will guide and support discussion and learning

during debrief. Our analysis methods are based on multimodal

data generated by the mixed-reality environment grounded in

the theory and practice of distributed cognition.

2.2. Distributed cognition

Traditionally, cognition is studied with the individual as

the basic unit of analysis. In essence, this classical view of

cognition views the brain of an individual as a processing

unit, which takes input from the outside world, manipulates

this information, and produces some output, often in the

form of body functions, such as movement and speech (Clark,

1997). However, this view of an individual mind as the basic

unit of cognition ignores the complex relationship between

the mind, the body, and the larger environment. The ability
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to leverage movement, tools, technology, collective wisdom,

and social structures allows humans to achieve far more than

an isolated individual mind alone can, but the traditional

view of cognition marginalizes these embodied, cultural, and

environmental components (Geertz, 1973; Hazlehurst et al.,

2008).

These limitations with classical cognition led some cognitive

scientists, such as Clark, Hutchins, Cole, and others in

the late twentieth century to begin developing alternative

systems of examining cognition (Hutchins, 1995; Clark, 1997;

Cole, 1998). One such alternative approach is Distributed

Cognition, developed by Hutchins and colleagues (Hutchins,

1991, 1995, 2000, 2006). Distributed cognition (DCog) extends

the boundaries of classical cognition from the mind of an

individual in isolation into a collective that includes the

individual’s mind, body, other people, and the environment

in which the cognition is taking place. Instead of the unit

of cognitive analysis being the individual mind, distributed

cognition treats the entire activity system as the unit of analysis,

with the goal of understanding cognition at this system level

(Hazlehurst et al., 2008; Rybing, 2018).

Hutchins argues that cognition occurs across at least three

different modalities (Hutchins, 2000). First, cognition can be

distributed across members of a social group. This can be seen as

individuals coming together to solve a problem and contribute

to a common goal. Second, cognition can be distributed between

internal and external structures. This is most evident in the use

of tools, where individuals offload some cognitive processing to

a material or environmental object, but can also have some less

apparent manifestations, such as the layout of a physical space

affecting cognition. Third, cognition can be distributed across

time, with the nature and outcomes of earlier events affecting

the nature of later events (Hutchins, 2000).

Distributed cognition is particularly relevant in analyzing

training performance and behaviors in mixed-reality,

simulation-based training. Mixed-reality SBT environments

manifest many of the characteristics of these three distributed

modalities. SBT inherently contains social structures and roles

over which cognition is distributed. When multiple learners

train simultaneously in the environment, the social distribution

and interactions can be studied explicitly, with the learners

collaborating and sharing the cognitive load and decision

making processes in the task. Even in SBT cases with only one

learner, there is a social distribution between the learner and

the instructor, with information traveling and transforming

between the instructor and student as they interact. SBT also

contains instances of cognition distributed between internal

and external structures. In mixed-reality scenarios, there is a

distribution between the learners’ minds, the physical space they

inhabit, and the digital space with accompanying interfaces that

are controlled by the simulation. In addition, many training

domains require learners to learn and operate domain-specific

tools, which also represent artifacts of distributed cognition.

Finally, SBT is necessarily temporal, as learners practice skills

that change (improve or degrade) over time. Thus, previous

practice and previous actions will affect the ways in which

learners approach current cognitive tasks.

Other studies which focus on nursing simulation-based

training have also adopted distributed cognition for their

analysis. Rybing et al. (2017) use distributed cognition to

analyze nursing students training on amass causality simulation;

Pimmer et al. (2013) contrast various cognitive theories used in

clinical learning to highlight advantages of distributed cognition;

and (Hazlehurst et al., 2008) discuss the use of distributed

cognition as a framework for medical informatics. Because

of this overlap between the distributed cognition framework

and the modeling and interpretation of learner behavior in

simulation based training in general, and in medical and nurse

training in particular, we ground our analysis methods using

Distributed Cognition as a theoretical framework.

2.3. The DiCoT analysis framework

Despite the advantages of distributed cognition as a

cognitive framework, application of the framework requires

specific methodologies that are not outlined in the original

work. Several structured qualitative analysis methodologies

have been developed for analyzing distributed cognition in

different domains and scenarios. For example, Wright et al.

(2000) proposed the Resource Model to study human computer

interaction in a team framework, Galliers et al. (2007) proposed

the Determining Information Flow Breakdown (DIB) model to

study organizational learning in response to adverse events

in medical settings, and Stanton (2014) proposed the Event

Analysis of Systemic Teamwork (EAST) framework that employs

three network models (i.e., task, social and information) to

analyze the interactions between the sound room and control

room in a submarine. Following the wide adoption of distributed

cognition models and their success in analyzing trainee

behaviors in the medical training domain (e.g., Hazlehurst et al.,

2008; Pimmer et al., 2013; Rybing et al., 2017), we adopt the

Distributed Cognition for Teamwork (DiCoT) model proposed

by Blandford and Furniss (2006).

DiCoT is a qualitative analysis framework designed to

analyze distributed cognition by breaking down a cognitive

system into five independent themes: (1) information flow,

(2) artifact and environment, (3) physical layout, (4) social

interactions, and (5) temporal evolution (Blandford and Furniss,

2006). The information flow model focuses on how information

propagates and transforms through the system. The artifact

theme follows how tools can be used to aid the cognition

of the system. The physical layout theme examines the way

in which objects and people are arranged in a space and

how that arrangement affects cognition. The social model

focuses on the relationships between people in the cognitive
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FIGURE 1

Illustration of the interactions between each of the five DiCoT

themes and how they work together to construct the entire

cognitive system.

system and the individual’s differing knowledge, skills, and

abilities. Finally, the temporal evolution model focuses on

how the system changes over time. Each of the five DiCoT

themes contributed components to our understanding the

overall cognitive processes and psychomotor skills that trainees

employed in the environment, but the themes are also highly

interconnected. Figure 1 illustrates how the themes manifest

within a cognitive system and the various ways in which

the different themes interact with one another. For example,

social roles mediate how information flows between different

individuals; physical layout mediates how information flows

between individuals and the environment; and temporal

evolution describes and mediates how these processes change

over time. By analyzing each of the themes individually and how

each theme interacts with the others, we can fully understand

the distributed cognition processes and psychomotor skills being

enacted in the system.

In order to analyze each of the themes and their interactions,

the DiCoT methodology defines several principles that describe

the ways in which each component of the system contributes

to the overall cognitive process. For example, principle 10:

Information Hubs, describes that certain artifacts in the system

are central focuses where different channels of informationmeet.

This principle is primarily related to the information flow and

artifacts and environment themes. By analyzing the different

artifacts in a distributed cognitive system and how they are

referenced for information, we can determine which artifacts

represent information hubs and how the design of those hubs

influences the overall cognition of the system. Each of the 18

principles is analyzed in a similar way, but relate to other

components of the system. All eighteen DiCoT principles are

summarized in Table 1. By analyzing the distributed cognition

system and identifying the manifestations of each of these 18

principles within the system, we can understand how each of the

5 DiCoT themes work together to construct the overall cognition

of the system. We discuss our qualitative analysis of the nurse

training simulation using DiCoT framework in Section 4.3.

2.4. Multimodal learning analysis

Learner modeling based on student performance and

behavior has been the cornerstone for adapting and

personalizing computer-based learning environments to

individual learner needs. More recently, data-driven approaches

to learner modeling based on learning analytics and machine

learning methods have become popular for capturing and

analyzing learner behaviors in complex instructional and

training domains (Hoppe, 2017). With the development of

these data-driven learning analytics techniques gives rise to

the question: What forms of data need to be collected to enable

meaningful analysis in specific learning scenarios? In traditional

computer based learning environments, typical data collection

includes interactions with the system that can be logged.

Analysis of the logged data paints a reasonable picture of the

learners’ activities in the context of the tasks they are performing

in the environment (Hoppe, 2017; Ochoa et al., 2017).

However, more recent work has begun to point out the

potential limitations of these traditional methods. By only using

logged data that is easy to collect, we may miss out on important

context and interpretation that the information sources may

provide. Therefore, we may require additional sensors to collect

such data (Ochoa et al., 2017). In other words, to aviod the so-

called streetlight effect (Freedman, 2010), researchers have begun

to consider alternative and more complex data sources, such as

physical movement, gestures, and posture captured with video;

dialogue captured using microphones; stress levels captured

with biometric sensors; and gaze and attention collected using

eye tracking devices. Data collected using these modalities

become especially important when the learning or training task

requires operations in physical or mixed-reality spaces, and

when learners work in groups to accomplish overall goals.

Combining all of the modalities of operation (e.g., activities,

communication, affective states, stress levels, and gaze) can

lead to analyzes that provide a more complete picture of

the cognitive, psychomotor, and metacognitive processes of

the learners (Blikstein and Worsley, 2016). The focus on

collection, processing, and analysis of this quantity and variety

of data has been the basis for new research and analyzes in

the field of multimodal learning analytics (MMLA) (Blikstein,

2013; Blikstein and Worsley, 2016; Worsley and Martinez-

Maldonado, 2018). These new MMLA methods have also

been applied to simulation-based training environments. For
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TABLE 1 The 18 principles of DiCoT analysis, summarized from

Blandford and Furniss (2006).

Principle name Description

1. Space and cognition The role space and spatial layout play in

supporting cognition

2. Perceptual principle Spatial representations support cognition more

than non-spatial representations, as long as there

is a clear mapping between the space and that

which the space represents

3. Naturalness principle Cognition is aided when the form of a

representation matches the properties of what it

represents

4. Subtle bodily supports Individuals often use their body to support

cognitive processes

5. Situation awareness People need to be informed of and understand

what has previously happened, what is currently

going on, and what is planned

6. Horizon of

observation

The information that can be seen or heard by a

person; closely related to and influencing situation

awareness

7. Arrangement of

equipment

The layout of equipment affects what information

people have access to, and thus their ability to

process it

8. Information

movement

Information moves around a system in a number

of ways, which all have unique functional

consequences

9. Information

transformation

Information can be represented in many forms,

and often must transform between these forms

when moving and when being processed

10. Information hubs A central focus or source where different channels

of information meet and are processed together

11. Buffering If incoming information interferes with ongoing

activities, buffering allows the information to be

held until an appropriate time where it will not

interfere

12. Communication

bandwidth

Different modalities of communication often carry

different amounts of information. For example,

face-to-face communication offers more

information than computer-mediated

communication

13. Informal

communication

Not all communication is formal, and sometimes

informal communication can carry very important

information that is not otherwise passed

14. Behavioral trigger

factors

Groups of people can operate together without an

overall plan by individually responding

appropriately to certain local trigger factors

15. Mediating artifacts People often bring artifacts into coordination to

support completion of a task

(Continued)

TABLE 1 Continued

Principle name Description

16. Creating scaffolding People often simplify their cognitive tasks by

utilizing their environment

17. Representation-Goal

Parity

When an artifact is used to represent the system’s

goal, representations closer to the goal of the user

are more powerful

18. Coordination of

Resources

Different information structures can be

coordinated to aid in cognition

example, Martinez-Maldonado et al. (2020b) examined how to

design actionable learning analytics for manikin-based nurse

training; Di Mitri et al. (2019) designed MMLA methods for

detecting mistakes during CPR training; and López et al. (2021)

studied collaborative behaviors in serious tabletop games using

MMLA methods.

In our own previous work, we have applied MMLAmethods

to analyze teamwork behaviors in simulation-based training

environments, including those that incorporate mixed-reality

components (Biswas et al., 2019; Vatral et al., 2021, 2022).

Our analyzes of learner performance and behaviors have been

based on cognitive task analysis, which is a set of methods

commonly used to describe and decompose complex problem-

solving domains into their core cognitive proficiencies (Clark

and Estes, 1996; Schraagen et al., 2000; Zachary et al., 2000).

These cognitive components describe multiple parameters that

include goal setting, planning, decision making, declarative and

procedure knowledge and execution, and situational awareness

(Militello and Hutton, 1998). The models and insights generated

from the task analysis are often critical in the design and

development of training systems for these complex domains.

2.5. Cognitive task analysis

Cognitive Task Analysis typically draws from multiple

sources. This includes a review of relevant literature, interviews

with domain experts, and observing and interpreting training

activities in the mixed reality simulation environment in terms

of their conceptual and procedural components. From this

analysis, one can build a comprehensive task-subtask hierarchy

that links high-level tasks and subtasks down to specific

observable skills and activities performed by trainees (Biswas

et al., 2019; Vatral et al., 2021). The hierarchy is designed

to support the inference of complex cognitive concepts by

analyzing observable behaviors and data. Cognitive processes

related to task execution are located at the highest level of

the task hierarchy, and each deepening level representing more
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concrete and observable manifestations of these concepts within

the task domain.

By analyzing the observable multimodal data at the lowest

levels of the hierarchy and propagating the results up to higher

levels, we can generate inferences about cognitive activities and

competencies of trainees. In this way, insights generated from

cognitive task analysis combine top-down model-driven and

bottom-up data-driven approaches. In previous work, we have

applied cognitive task analysis methods to demonstrate how

teamwork in mixed-reality SBTs can be evaluated using MMLA

(Vatral et al., 2022). In this paper, we extend this work and

further ground the MMLA analyzes methods in distributed

cognition, as described in the next section.

3. Theoretical framework

Our goal in this work is to present a framework for

combining the benefits and insights from qualitative analysis

of distributed cognition through the DiCoT methodology

and quantitative analysis through data-driven multimodal

analytics. Analysis using qualitative methods (Cognitive Task

Analysis, DiCoT) provides domain semantics to inform how

the quantitative analysis (MMLA) is performed, and in turn,

results of the quantitative analysis provide new insights into the

domain and the learner behaviors that inform a richer qualitative

analysis. We believe that by presenting an integrated qualitative

and quantitative analysis that inform and shape one another,

the strengths of each method can be amplified, thus providing

for a deeper insights than each method individually and

better feedback to learners, instructors, simulation designers,

and researchers.

Our overall theoretical framework, illustrated in Figure 2,

breaks down this cyclic combined qualitative and quantitative

analysis approach into threemajor components: DiCoT analysis,

multimodal analytics, and the cognitive task model. The

cognitive task model provides the cornerstone of the overall

framework. For our MRMB simulation environment, we frame

the task model around the set of primary tasks that define

the training or learning domain. These concepts represent the

mapping of the task domain into the overarching cognitive

processes, psychomotor skills, affective states, and collaborative

processes that are relevant to the task domain. For example,

learning and training domains typically include high level

cognitive processes such as information acquisition, problem

solving, solution construction, solution testing, and evaluation.

These processes, in a broad sense, remain invariant across

multiple domains and training scenarios. However, their

interpretation and execution may differ depending on the

training scenario and the domain under consideration.

Next, we construct the hierarchical structure by breaking

down the highest level cognitive, psychomotor, affective, and

collaboration concepts into their more domain specific sub-

components and sub-tasks using a progressive elaboration

process. The primary reason for creating the different levels of

abstraction is to ensure that variations of training scenarios,

though they may differ in their lower-level task definitions and

sub-divisions, map onto relevant higher level processes and help

define proficiency measures in the task domain.

In more detail, primary tasks are decomposed into sub-

tasks; sub-tasks are further decomposed into more fine-grained

sub-tasks; and so on until we reach a set of basic task units

that cannot be meaningfully decomposed further. We call this

basic unit an action. Each sub-task represents a constituent

requirement that is sequenced and completed to accomplish

the higher-level tasks in the layer above them. Moving toward

the lower levels of the hierarchy, the sub-tasks become more

and more domain-specific, and at the lowest levels map

onto observable actions and behaviors. For example, consider

information-acquisition as the highest-level cognitive task. In

order to acquire information, we may visit a library, search the

internet, ask a friend, and so on. The specific sub-tasks included

within the task model are limited by the domain being analyzed.

By limiting each level to sub-tasks specific to the given domain,

we follow a top-down approach to modeling and produce a task

space model of the domain.

While the modeling of the domain is approached top-down,

the interpretation of the learner actions and behaviors uses the

model in a bottom-up manner, interpreting the multimodal

data collected from the environment into lower level activities

and behaviors. We employ a variety of multimodal analysis

techniques to link from observable data back to the interpreted

actions performed by the learners. This is illustrated by the

arrow linking multimodal analytics (green) to the cognitive

task model (blue) in Figure 2. The specific analytics and

algorithmic methods utilized depend on the domain being

analyzed and the specific sensors that are available. For example,

if microphones are available, we can apply natural language

processing algorithms to convert the audio signals to semantic

information on the topic of the conversation. Similarly, if we

collect video data, then computer vision techniques can be used

to understand movement actions within the simulation space.

The design of these analytics and algorithmic methods within a

specific domain are informed by the qualitative DiCoT analysis,

as illustrated by the arrow linking distributed cognition (yellow)

to multimodal analytics (green) in Figure 2. By analyzing the

training environment using the DiCoT methodology, we can

determine important components of the task domain that

inform the categories and classes for the algorithmic models.

For example, in our nursing domain, the DiCoT analysis

revealed that there are four meaningful semantic areas in the

simulation space: left of the bed, right of the bed, foot of the

bed, and outside the room (see Section 4.3.1). Thus, we can

adopt this result from the qualitative analysis into the design

of the quantitative algorithmic methods by using the video data
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FIGURE 2

The overall theoretical framework to combine qualitative DiCoT analysis with quantitative multimodal analytics for understanding learner

behaviors in simulation-based training.

to determine when the nurses move between each of these four

semantic regions (see Section 4.4.1). As a second example, in

our nursing domain, the DiCoT analysis revealed the various

artifacts that are semantically important to information flow (see

Section 4.3.2). We can adopt this result by using the eye-tracking

gaze data and mapping the raw x-y gaze position data onto

instances where the nurse is looking at each of the semantically

important artifacts identified by the DiCoT analysis (see Section

4.4.4). In this way, we use the results of DiCoT analysis to create

algorithmicmodels that convert raw data (e.g., video, audio, etc.)

into action- and behavior-level interpretations.

Once we convert from the raw data to the action- and

behavior-level interpretations, they are mapped onto a common

timeline. As a next step, we can develop algorithms to interpret

temporal sequences of actions and behaviors, and roll them

up into upper sub-task levels. Some actions only contribute

to a single sub-task, but others may link to multiple sub-

tasks. These multiple hierarchical links in the task model add

expressivity to our task models, but may make the analysis

process more challenging because multiple inferences may

have to be made on similar action sequences using additional

context information.

We systematize this interpretation process by once again

introducing results from the qualitative DiCoT analysis of the

task environment, as illustrated by the arrow linking distributed

cognition (yellow) to the cognitive task model (blue) in Figure 2.

Results from the DiCoT analysis can provide semantic context

to the interpretation of learner actions within the environment,

and map them onto the sub-tasks to which the individual

action may contribute. For example, when analyzing a group

of participants in a restaurant, collected sensor data, such as

video analysis or accelerometers, may indicate that a specific

participant was performing the action of cutting with a knife.

This action may contribute to at least two potential disjoint

sub-tasks of interest: eating food or cooking food. However,

based on a previous DiCoT analysis of the environment, we

know that the physical layout of the restaurant strongly mediates

the interpretation of these two sub-tasks; cooking activities

occur in the kitchen, while eating activities occur primarily

in the dining room. By adding this semantic context derived

from the physical layout theme of the DiCoT analysis, we

know that we can simply look at the participant’s position in

the restaurant to disambiguate this knife cutting action. As

an extension, if we captured participant dialog and additional

video around the cutting event, we may use information flow

DiCoT theme to analyze the motivations for this action within a

given sub-task, for example, to deduce that one participant was

dividing his portion of food to share with another as part of the

eating process.

While this restaurant scenario analysis represents a

simplistic example, it demonstrates the second way in which

DiCoT is important for adding semantic context to our

computational analysis. First, DiCoT informs the design of

algorithms and models to convert raw data to action-level

interpretations. Second, DiCoT provides context-specific

disambiguation when mapping lower-level action and sub-tasks

onto high-level tasks and sub-tasks. By iterative analysis, we can

propagate learners’ activities up to the highest-levels of the task
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model to understand their cognitive, psychomotor, affective,

and collaborative behaviors.

By presenting the learners and instructors with quantitative

metrics and qualitative descriptions of learner activities at

multiple levels of the task model hierarchy, we can provide a

basis for further discussion at different levels of detail during

simulation debrief, while also tracking progress and changes in

learner behavior over time. In addition, the results generated

from this computational analysis also provide additional insights

back into semantic models of the domain and inform a richer

qualitative (DiCoT) analysis and task model construction. This

idea is illustrated by the cyclic link from the cognitive task model

(blue) to distributed cognition (yellow) in Figure 2. For example,

analysis of the data might reveal certain learner behaviors

that are not well accounted for in the current DiCoT analysis

and task models. By presenting this result back to researchers,

these analysis models can be refined and updated to contain

a more complete understanding of the task environment and

learner behaviors. This creates the loop back in our framework.

Qualitative DiCoT and task analysis methods provide domain

semantics and systematic methods for interpreting collected

learner data, and the analysis of collected learner data reveals

new insights that can be used to refine the DiCoT and task

models. In the next section, we apply our task modeling

framework combined with the DiCoT and multimodal analyzes

to our MRMB nurse training case-study.

4. Methods

In this section, we demonstrate application of our theoretical

framework to a small case study of nurses training in an

MRMB environment. We begin with a complete description of

the case study, including description of the affordances of the

simulation environment and all of the data that was collected

for the analysis. After this, we show how each of the three

components of our theoretical framework apply to interpreting

and analyzing nurses’ activities and behaviors in this domain.

First, we explain the construction and structure of the complete

cognitive task model, from the high-level abstract cognitive

tasks down to specific actions and observable data. Second,

we describe a DiCoT analysis of the training environment,

explaining each of the five themes in depth. Finally, we present

a computational architecture, based on multimodal analysis,

which tracks the raw multimodal data collected from the

training environment through the cognitive task model to

generate inferences, analytics, and performance metrics that

describe the nurses’ training behaviors within the context of the

distributed cognition system.

Following the description of each component of the

theoretical framework applied to the case study, we demonstrate

the processes of following the collected data through the

framework to generate inferences about nurse behaviors.

4.1. Case study-MRMB nurse training

The approach presented in this paper is supported by a

case study that analyzes student nurses training in an MRMB

environment. The training took place in a simulated hospital

room, which was equipped with standard medical equipment

and monitors for information display and communication of

the providers orders. The patient was represented by a high-

fidelity manikin that was exhibiting distress symptoms and

a deteriorating health state. The simulated hospital room is

displayed in Figure 3. All of the participating students were

undergraduate (BSN) level nursing students in their first

year and prior to the study had completed one semester of

coursework, which included some simulations similar to those

studied in this work. The simulations we study in this paper

were part of the students’ normal coursework requirements, and

no changes to the content of the simulations were made by

the researchers.

In more detail, the patient manikin is a SimMan 3G

advanced patient simulator from Laerdal Healthcare that

supports hands-on deliberate practice, development of decision-

making skills, and improved communication and teamwork

among learners (Laerdal Medical, 2022b). Prior to beginning the

training, the basic scenario and simulation is pre-programmed

using the Laerdal Learning Application (LLEAP) (Laerdal

Medical, 2022a). This allows the instructors and simulation

designers to set the initial state (vital signs, physical presentation,

eye and chest movements, etc.) of the manikin, as well as a

preset timeline of cue-action associations to change the state

of the manikin as time progresses and the scenario evolves.

For example, the timeline might be programmed to make the

manikin’s heart rate rise steadily if a nurse does not begin to

administer proper medication within 10 min of the start of the

training episode.

In addition to these presets created prior to training, an

instructor in a control room can modify the patient state in real-

time by interacting through the LLEAP software. The instructors

watch the simulation from behind a one-way glass partition,

allowing them to observe the nurses’ activities, conversations,

and interventions. Then, based on the nurses’ specific actions (or

lack of actions), the instructor makes real-time modifications to

the simulation on the LLEAP software. The instructor can also

talk as the patient through a microphone in the control room,

which can be heard through speakers on the manikin. In the

current study, which represented an early training exercise in

the nursing curriculum, the instructor was closely involved in

the progression of the simulation and manikin.

Three groups of eight nursing students participated in

the study over 2 days, taking turns playing their assigned

roles in each scenario. The primary participant in each

instance of the simulation was a nurse performing a routine

assessment on a hospital patient, and discovering a condition

that required immediate attention and additional interventions.
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FIGURE 3

Layout of the simulated hospital room from three viewpoints: the head camera (top-left), foot camera (bottom-left), and an abstract map

representation (right).

After diagnosing the patient’s condition and performing any

relevant immediate stabilization, the nurse was required

to call the patient’s assigned medical provider to confirm

an intervention that would alleviate the patient’s newly

discovered condition.

Students in the group who were not actively participating in

a given run of the scenario watched from a live camera feed in

a separate debriefing room. After each scenario was completed,

the instructors and the participants joined the full group in the

debriefing room, and the instructor guided a discussion-based

debriefing of the simulation. Each instance of the simulation

took between 5 and 20 min, and parameters of the patient’s

condition were changed between each run to ensure the next set

of students did not come into the scenario with full knowledge

of the condition and the required intervention.

All students who participated in the study provided their

informed consent. With this consent, we collected data using

multiple sensors: (1) video data from two overhead cameras

that captured the physical movement and activities of all agents

in the room (nurses, providers, and the manikin); (2) audio

data also from the camera videos that captured the nurse’s

dialog with the patient and the provider; (3) the simulation log

files that tracked all of the patient’s vital signs and data from

the sensors on the manikin. In addition, a few students, who

provided a second informed consent on collecting eye tracking

data, wore eye tracking glasses that allowed us to record their

gaze as they worked through the simulated scenario. The study

was approved by the Vanderbilt University Institutional Review

Board (IRB).

In this paper, we chose two of the recorded scenarios for

our case study, in both of which the primary participant wore

the eye tracking glasses. In the first scenario (S1), the fictitious

patient, Patrice Davis, is receiving an infusion of blood after a

bowel resection surgery the night prior. The patient called the

nurse stating that she is not feeling well. The goal for this training

scenario is for the nurse to assess the patient and diagnose

that the wrong blood type is being administered to the patient.

The intervention requires the nurse to stop the current infusion

and call the provider to discuss further treatment. The primary

participant in S1 was a 23 year old female nursing student.

In the second scenario (S2), the same fictitious patient,

sometime later in the day, again calls the nurse complaining of

pain in the right leg, stating that yesterday “it wasn’t bothering

me that much but today the pain is worse.” The goal of this

training exercise is for the nurse to assess the patient and

diagnose a potential deep-vein thrombosis (blood clot) in her
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right leg. The intervention requires the nurse to call the provider

for updated treatment orders and to schedule medical imaging

for the patient. The primary participant in S2 was a 24 year old

female nursing student.

4.2. Cognitive task analysis for learner
behaviors

Using the cognitive task analysis methods previously

described, we generated a comprehensive task hierarchy for the

nurse training domain. This hierarchy is illustrated in Figure 4.

At the highest level of the task model, the overall task breaks

down into three primary subtasks: (1) Information gathering, (2)

Assessment, and (3) Intervention.

Information gathering represents the processes nurses apply

to retrieve new information and monitor ongoing concepts.

This process can be further characterized as either general or

diagnostic. In general information gathering, nurses collect non-

specific patient and situational information that they use to

generate an overall mental model of the patient state. The

information collected in this phase is largely standardized for

each patient; for example, vital signs are often collected to

give a broad overview of patient health. The mental model

generated during this phase then leads the nurse to the

diagnostic information gathering phase, where the nurse collects

more pointed and specific information in service of diagnosing

a specific issue with the patient. For example, if dialogue

during the general information gathering phase reveals that

the patient is experiencing leg pain, then the nurse might

follow-up with a physical examination of the leg during the

diagnostic phase in order to gather more specific information

about the issue.

Assessment represents the processes used to synthesize

gathered information in order to construct and evaluate specific

solutions and interventions. In addition, we further decompose

assessment into intervention construction and intervention

evaluation. During construction, nurses synthesize and combine

the information gathered from the environment to generate an

intervention that represents a plan of action(s). By drawing on

their prior knowledge of patient health and clinical procedures,

and their current mental model of this specific patient

established from the gathered information, nurses differentially

construct a plan for how to help the patient.

During evaluation, similar processes are applied to

synthesize information, but this time with a further emphasis

placed on monitoring the progress of patient health over time.

Temporally, the evaluation phase typically takes place after

the nurse has already intervened in some way, and serves as a

method to verify that progress toward the intervention goals is

being achieved. The evaluation results in one of two possibilities

depending on whether progress is made: either continue the

intervention further or stop the intervention and re-assess to

establish a new plan.

Intervention represents the actions and processes that nurses

take in service of a specific goal related to patient health.

These interventions are characterized as either stabilization or

treatment procedures. During stabilization, the goal of the nurse

is to fix any immediate threats to patient health. For example,

in scenario S1 of our case study, the nurse typically turns

off the infusion of blood, so that no further harm comes to

the patient because of the incorrect blood type infusion. This

action does not actually solve the underlying problem, i.e.,

the patient requires a different blood type infusion, but rather

represents mitigation of an immediate threat before treatment

of the underlying problem can begin. As a second example,

if a patient were to stop breathing, the nurse would typically

start resuscitation procedures. Here again, these resuscitation

procedures do not fix the underlying cause of the patient’s

condition, but rather stabilizes the patient back to a point where

they are not in immediate danger so that treatment of the

underlying condition can begin.

In the treatment phase of intervention, the nurses’ actions

are in service of fixing underlying health issues that could cause

danger to the patient’s health in the future. For example, a nurse

might start administration of chemotherapy drugs for a cancer

patient. In this case, the medication is not designed to help

immediate symptoms, but is rather part of a longer term plan to

fix the underlying condition and put the cancer into remission.

During the treatment phase, nurses will either start/continue

an existing treatment order if they are aware of the patient’s

condition and a provider has prescribed the treatment. If the

nurse finds a new condition in the patient, they will contact a

provider to follow-up and get a new treatment order.

4.3. DiCoT analysis

As discussed, the DiCoT framework with its five themes:

(1) physical layout, (2) artifacts and environment, (3) social

structures, (4) information flow, and (5) temporal evolution;

provides a qualitative framework for analyzing learner activities

in the training environment. Results from this qualitative

analysis then provides the basis for analyzing the multimodal

data and inferring nurse activity and behavior information with

supporting context. Figure 5 illustrates this idea in context. In

this example, the nurse distributes her cognition across all five

of the themes:

1. Physical layout by her position on the left and right sides of

the bed;

2. artifacts and environment by her physical interactions with

the available instrumentation and patient manikin;

3. Social roles by her verbal communication with the

patient manikin;

Frontiers in Artificial Intelligence 11 frontiersin.org

35

https://doi.org/10.3389/frai.2022.941825
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Vatral et al. 10.3389/frai.2022.941825

FIGURE 4

Cognitive task model for the nursing simulation domain.

FIGURE 5

Example of the distributed cognition in the context of nurse training across the physical layout, artifacts, and social themes.

4. Information flow by her referencing of the patient chart

monitor; and

5. Temporal evolution by following the sequence of her actions

in the environment over time.

Using the five themes and 18 principles (see Table 1), we

performed a DiCoT analysis of our nurse training simulation

scenarios. We discuss our analysis for each the five themes in

greater detail next. Similar to the analysis in Rybing et al. (2016),

references to the specific principles are listed parenthetically as

they relate to the description of each theme. For example, (P1)

refers to Principle 1, i.e., Space and Cognition.

4.3.1. Physical layout theme

The complete layout of the room from three viewpoints

can be seen in Figure 3. For the remainder of the paper, when

discussing physical positions we will describe the positions in

reference to the map view shown on the right-hand side of this

figure. For example, left of the bed describes the area on the left-

hand side of the map containing the patient chart and personal

effects tray, while foot of the bed describes the area at the top of

the map containing the equipment cart and the doorway.

The overall physical layout covered in the simulation

environmentmimics the layout of a typical hospital room, where

the trained nurses apply their learned skills on real patients (P3,
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P17). In the center of the room along the back wall is the patient

bed, where the manikin is placed. To the right of the bed is a

computer monitor that displays the vital signs of the patient as

graphs (P2, P7). The default graphs and other vital displays are

large enough so that the nurse can see them from any position

in the room (P5, P6, P7), but the nurse can physically interact

with the monitor to test certain vital signs and to get more

information when she is on the right side of the bed (P1, P5,

P6, P7). To the left of the bed is a second computer monitor

that displays the patient’s chart. The information on this chart

is displayed in smaller text font, so the nurse has to be close

to the screen to read information and needs to scroll on the

screen to view all of the information. In other words, the nurse

must move to the left side of the bed to access this chart (P1,

P5, P6, P7). Past the foot of the bed, the room opens into a

larger area that contains a cart of medical supplies that may

be needed to perform clinical procedures (e.g., gloves, masks,

needles, tubing, etc.) (P7). Finally, outside of the room is a

medication dispensary; the nurses must leave the room and

walk to the dispensary to retrieve needed patient medications

(P5, P6, P7).

Given the physical arrangement of the room, we divided

the physical space of the simulation into four regions that

nurses may move between: (1) left of the bed, (2) right of

the bed, (3) foot of the bed, and (4) outside the room. As

discussed, each of these regions has available equipment and

information that the nurses can use to accomplish their goals.

Therefore, they may have to move between the regions to

achieve specific goals. At the right side of the bed, nurses

can perform clinical procedures, such as taking vital signs or

interacting with other stationary equipment (e.g., IV pump,

oxygen unit). These clinical procedures are components of the

information gathering or intervention tasks in the cognitive

task model.

At the left side of the bed, nurses can primarily perform

information gathering tasks, such as looking at the patient chart

or using the phone in the room to call medical providers.

However, when on the left side of the bed, nurses may

also cross-reference information from the vitals monitor that

is on the right side of the bed (P1). This sort of cross-

referencing is often accompanied by subtle body movements,

for example, deictic gestures that involve pointing at the

screen (P4).

The foot of the bed acts as a transition area for high-level

cognitive tasks and lower-level sub-tasks. The training nurses

enter the room through this area, establish their current goals,

their observation (P6) and their situational awareness (P7) in

relation the patient in the room. The nurses pass through

this region when moving from the left side of the bed to the

right (and vice-versa), while gathering information and making

decisions on what clinical procedures to perform (P1). They

often pick up equipment from the cart along the way (P7).

Nurses also have to pass through the foot of the bed to visit the

medication cart, or otherwise exit the room. When doing so, the

foot of the bed provides a final moment of situation awareness

before their horizon of observation shifts and they are no longer

directly viewing the room (P6, P7).

4.3.2. Artifacts and environment theme

Within the simulation environment, the actors, in particular

the nurses, utilize a variety of artifacts to support their training

activities that are outlined in our task model. The first set of

artifacts comes primarily in the form of medical equipment;

some of them appear in Figure 3, and several have been

discussed in previous sections of this paper. This equipment is

designed to mimic the look and feel of a real hospital room,

serving the primary goal of the simulation to gain transferable

skills (P17), while also providing an interface into the patient

data and a means for conducting procedures on the patient.

Therefore, the medical equipment serve primarily as mediating

artifacts (P15), which transform measurements, such as the vital

signs of the patient into textual and graphical information that

can be interpreted by the nurses (P9, P15).

Another important artifact in the simulation is the script,

which is a set of guidelines set by the instructor about the

unfolding of events in the scenario. The script outlines the initial

conditions (e.g., the patient’s condition, expected vitals at start),

as well as a set of behavioral triggers (P14) for how the scenario

should evolve given the potential actions (or lack of actions)

performed by the nurse. For example, the script might specify

that if the nurse does not begin infusingmedication within 3min

after the scenario begins, the patient’s blood pressure will drop.

These scripts’ trigger factors mediate the temporal evolution of

the simulation (P15, see Section 4.3.5)

The manikin, representing the human patient, is another

important artifact for the simulation. It provides an interface

for the instructor to construct and guide the evolution of

the scenario. The manikin is programmable; therefore, the

instructor can digitally set parameters for the patient manikin

(e.g., vital signs, movements, and conversations), which are then

physically enacted by themanikin system (P13). During dialogue

between the nurse and patient, the instructor speaks as the

patient through the manikin offering additional information

to the nurses (P10), as well as instructional scaffolding (P16),

when needed. For example, if the nurse fails to take the patient’s

temperature, the instructor might scaffold this behavior by

making a remark through the patient, such as “I also feel a chill,”

which may prompt the nurse to check for a fever by taking the

patient’s temperature. These dialogue acts can also be used by

the instructor to evaluate the nurse’s understanding and thought

processes. For example, consider the dialogue sequence from S1

shown in Table 2. In this case, the nurse has concluded that the

blood transfusion is causing the patient’s issues, but in order to

verify the nurse’s understanding, the instructor asks a clarifying

question through the manikin.
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TABLE 2 Sample dialogue from S1 demonstrating evaluation of the

nurse.

1 Nurse: I’m going to stop this infusion really quickly.

2 Patient: Why?

3 Nurse: Because when we give red blood cells, an

indication that you’re having a reaction to it

is low back pain and feeling itchy. So it

sounds like you’re having a reaction to the

blood transfusion.

4.3.3. Social structures theme

Within SBT, there are three main types of users (Rybing,

2018). First, learners (or participants) represent those who

participate in the simulation with the purpose of learning skills

or having their performance evaluated (Meakim et al., 2013).

Second, instructors (or teachers) are those who participate in

the simulation with the purpose of directing the simulation

to produce learning outcomes for the learners (Meakim et al.,

2013). Finally, confederates (or embedded participants) are

those who participate in the simulation with the purpose of

enabling or guiding the scenario in some way (Meakim et al.,

2013). The social structures of the simulation can be derived

from the three basic user types of SBT.

In our nursing case-study, each instance of the simulation

has three basic users: two students and the instructor. The

students act as learners in the simulation, one taking the role

of the primary nurse and one taking the role of the medical

provider. The instructor takes a dual role as both the teacher as

well as a confederate playing the part of the patient. The patient

is enacted through the manikin mediating artifact described in

the previous section.

4.3.4. Information flow theme

The primary goal for the nurse training in the MRMB

simulation is to collect sufficient information about the patient

(i.e., the information-gathering task) in order tomake a diagnosis

of the patient’s condition (i.e., the assessment task). Then, the

nurse has to act to alleviate the patient’s discomfort and attempt

to improve their health state; this is the intervention task. Thus,

the movement (P8) and transformation (i.e., interpretation)

(P9) of information is critical to making the correct diagnosis

and conducting the right intervention. There are four primary

sources of information in the simulation that follows the general

structure of the information-gathering sub-tasks in the task

model (Figure 4).

The first information source is the primary nurse, who

typically provides information in the form of clinical knowledge

that is previously learned during schooling and from prior

experiences. This clinical knowledge includes

• Declarative knowledge, e.g., what is the nominal range for

blood pressure?

• Procedural knowledge, e.g., how does one measure blood

pressure accurately?

• Inferred associations using prior knowledge and observed

information, e.g., given that the measured blood pressure is

greater than normal, does it explain the conditions that the

patient is experiencing?

• Diagnostic inferences, e.g., What may be the cause(s)?

It is important to note that the above is considered to be prior

information, and not included as an element of information-

gathering in the task model. Instead it is looked upon as a fixed

input to the simulation system. The nurse may be required to

recall this knowledge during the simulation, but this recall may

not require any form of enactment and interaction in terms of a

specific information gathering task within the training scenario.

Next, the patient’s electronic medical record (EMR), also

known as the patient’s chart, is an information source containing

a comprehensive history of the patient’s prior symptoms,

conditions, and treatments. The chart acts primarily as an

information hub (P10), which allows the nurse to quickly

reference the patient’s history in a comprehensive way. However,

it also plays the role of a mediating artifact (P15), since the chart

is generally divided into sections allowing the nurse to access the

relevant historical information related to the current diagnosis

task. Additionally, since the chart contains notes from previous

nurse shifts and the treatment being currently administered to

the patient, it also helps the nurse trainee to better analyze

the patient’s trajectory and current condition, and use this to

determine their goals and the tasks they need to perform (P17).

Third, the nurse is able to perform clinical procedures on

the manikin and gather information about the patient’s health

conditions. These clinical procedures take a variety of forms,

but the most common is collecting and characterizing the

patient’s vital signs. Nurses make use of the clinical equipment as

mediating artifacts (P15) to make measurements on the patient

and assess their condition. The mediating artifacts transform

measurements into textual and graphical information for easier

interpretation by nurses and other providers (P9). The output

information is aggregated and displayed on the vitals monitor

(see Section 4.3.1), which then acts as an information hub (P10).

Other clinical procedures can also be performed by the nurses as

needed. For example, if a patient is having pain in one of their

legs, as in S2, the nurse might perform a physical examination of

the patient’s leg to gain more information.

Finally, social interactions between the nurse and the patient

provide important information that is not measured directly.

The instructor speaks through the patient to provide some

of this information to the nurse(s). This information often

provides elaborations of the patient’s symptoms and additional

symptoms that are not directly measured. For example, the

patient might describe the location, severity, and history of their
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pain. These social interaction represent the discourse sub-task in

the task model.

As the simulated scenario evolves, information primarily

flows from the four information sources described above to the

nurse (P8), who then process the information (P9, P18) and

act on it (P14). When nurses enters the room, they generally

begin with a brief interaction with the patient, and this results

in information transfer about the patient’s general conditions

and symptoms from the patient to the nurses. This typically

provides an initial baseline for the nurses to check for additional

symptoms and start making diagnostic inferences (P13). Thus, it

is a component of the general information gathering sub-task in

the task model.

Next, the nurses typically take some time to reference and

review the chart, synthesizing the information that they just

heard with the patient history before returning to a more

extended dialog with the patient to extract more specific

information to support diagnostic inferences. The nurses may

ask a series of questions to the patient combining what they

saw in the chart with their clinical knowledge (P14). This

discussion is typically followed-up by one or more clinical

procedures, such as taking vital signs and performing physical

examinations. This cycle of discussion with the patient followed

by clinical procedures can then be repeated as necessary until

the nurse reaches some form of conclusion about the patient’s

condition. At a higher-level, this can also be thought of as

a cycle between the diagnostic information gathering and the

synthesize information and construct intervention sub-tasks in

the task model.

Up to this point in the simulation, nearly all of the

information has been flowing in from the other information

sources in the environment to the nurses (P8). However, once

nurses collect sufficient information to reach a conclusion, the

process reverses and the synthesized information and resulting

conclusions are provided back to the rest of the system through

their resulting actions. Common actions at this point include

explaining the situation to the patient, starting and stopping

certain treatments (e.g., medications), and calling the medical

provider to give an update and request updated treatment. These

actions and the general flow of information from the nurse to

the environment is an enactment of the intervention task in the

task model.

4.3.5. Temporal evolution theme

The simulation evolves over time in one of two possible

ways: through nurse actions or nurse inaction. The instructor

has a script artifact which outlines a set of behavioral triggers

that detail how the scenario should change (P14). Most of this

script deals primarily with triggers due to nurse inaction. For

example, the script might dictate that if the nurse does not

start medication within 5 min of the scenario starting, then the

patient’s heart rate begins to climb steadily. On the other hand,

scenario changes due to nurse actions are primarily dictated by

medical and social responses based on the judgement of the

instructor (P3). The nurses gather information to evaluate the

situation. Then, based on their evaluations, the nurses intervene

to alleviate the patient’s conditions. Based on that intervention

(or lack thereof), the instructor modifies the scenario. If the

intervention was correct, then the patient improves and the

simulation ends, but if the intervention was incorrect, then

the instructor may further decline the patient’s health and the

nurse must re-evaluate the presented information and try a new

intervention strategy. The temporal evolution of the simulation

is built primarily along this cycle of information gathering

and intervention.

4.4. Computational framework

One of the primary goals of this work is to show how

quantitative data can enhance the qualitative DiCoT analysis and

integrate this analysis with task modeling framework to better

analyze and interpret learner behaviors. To do this, we create

a computational framework that takes the raw data collected

from the different sensors, maps it onto specific features derived

from the DiCoT analysis and then interprets them using the task

hierarchy. In our case study, we perform analysis on two raw

data sources,

1. Overhead video cameras, and

2. Eye tracking glasses.

These map onto four feature modalities that form the basis

of our analyzes: (1) position, (2) action, (3) speech, and (4)

gaze. The complete computational framework is illustrated as a

block-diagram in Figure 6.

From a combination of the four feature modalities, we

construct a complete progression of activities and events on

a timeline. A complete timeline for the case study analysis of

scenario 1 is shown in Figure 9, and a similar timeline for

scenario 2 is illustrated in Figure 10. This timeline structure

forms the basis for a second level of analyzes, where information

from the extracted features across the different modalities

are combined to extract patterns. By combining the aligned

features, extracted across the different modalities, we can extract

activity information in context, and propagate the low-level

actions up the task model to generate inferences about the

nurse(s) cognitive processes and their behaviors. We provide a

descriptive account for our analyzes of each of the modalities in

the subsections that follow.

4.4.1. Position modality

The nurse’s positions in the simulated hospital room are

derived using visual object motion tracking techniques applied

to the video from the two overhead cameras. Our motion
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FIGURE 6

The overall computational architecture used for the quantitative analysis.

tracking techniques are derived from the tracking-by-detection

paradigm, which is a two stage approach to tracking Sun et al.

(2020). First, in each frame of video, deep learning-based object

detection models localize people that appear in the video frame

and represent them with bounding boxes. After this detection

step, the detections are merged together frame-by-frame into a

timeline based on a matching algorithm.

In our case studies, we use the matching cascade algorithm

originally developed in Wojke et al. (2017), and later refined

for static cameras by Fu et al. (2019). The matching

cascade algorithm matches bounding boxes and tracks between

subsequent frames based on the distance between the two

bounding boxes and approximation of the velocity of the

object in the track. In addition, the matching cascade algorithm

matches the bounding boxes iteratively based on the age of a

detection and track, leading to lower false positive rates.

However, these motion tracking techniques only produce a

track of the nurses in reference to the video frame. We need

to map these tracks into the nurses’ positions in the hospital

room as we have described in the physical layout theme of

our DiCoT framework. To accomplish this, we extend our

traditional motion tracking techniques to project the camera-

space motion tracks onto a top-down map representation of the

environment (see Figure 3, Right).

Our approach for mapping these camera-space tracks onto

this hospital room space computes a planar homography, which

associates known points in the camera-space to known points in

the map-space using rotation, translation, and scaling operators.

Given the computed homography matrix, we can project the

camera-space tracks onto the room-space for each frame of

video, using the center of the person’s bounding box as the

projected point. This results in a continuous time-series of nurse

positions in the simulation room relative to the top-down map.

Further details of this map-projection object tracking can be

found in Vatral et al. (2021).

While the continuous time-series of nurse positions in the

hospital room is a useful analysis tool, on it own, it lacks the

semantic context necessary for meaningful insights. To add this

semantic context back to the position data, we discretize the

continuous positions into four regions developed using DiCoT

analysis (see Section 4.3.1): (1) left of the bed, (2) right of bed,

(3) foot of the bed, and (4) outside the room. To perform this

discretization, we define a polygonal region on the top-down

map of the hospital room for each of the DiCoT semantic

regions. Then for each timestamp of the continuous track, we

check the polygonal region that contains the nurse’s position

and assign that label to the given timestamp. This allows us to

track in terms of time intervals of nurse positions in the different

semantic regions of the room, and when they transition between

these regions.

4.4.2. Action modality

In addition to providing position information, analysis of the

overhead camera video also provides important information and

context for the actions that the nurse performs in the training

scenario. Specifically for this case study, we annotate instances

in the video where the nurse performs an action by physically

interacting with any of the artifacts in the MRMB environment

previously identified from the DiCoT analysis.

Additional contextual information can be derived by

combining the physical activity that defines an action with

other modalities. For example, analyzing speech (see Section

4.4.3) may provide additional information about why a nurse is

performing a specific action, or how two nurses are coordinating

their actions, for example, when they are jointly performing a

procedure. Similarly, a coding of the nurses’ gaze (see Section

4.4.4) may provide additional information about how a nurse is

performing an action. In some situations, the nurse may look

at the same object that they are physically interacting with; in
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other situations, the nurse may look at a different object than the

one they are physically interacting with. As an example, while

physically examining a patient, a nurse may turn their gaze to

the vitals monitor to see how their current measurement may

match with other vital signs (e.g., blood pressure beingmeasured

and heart rate of the patient). These examples clearly illustrate

the importance of combining information across modalities

for action annotation to gain a complete understanding of the

nurses’ activities in the training environment.

To perform action annotation, we have developed a coding

schema based on the artifacts from the DiCoT analysis, which

represents all of the high-level objects that nurses physically

interact with during the simulation. These objects are primarily

medical equipment, e.g., the patient chart, the vitals monitor,

and the IV unit. They also include specific parts of the patient

that are relevant for physical examination in these scenarios,

e.g., the patient’s hands, legs, body, and head. In total, we coded

nurse actions into 13 categories for the two scenarios in our case

studies, which can be seen on the timelines for each scenario

(Figures 9, 10). The annotation recorded the action category

along with start and end timestamps with a one-half second

fidelity. Nurses were considered to be performing a given action

category if they were physically interacting with the action object

using some part of their body, typically their hands. For example,

if the nurse was holding a phone or touching the dial pad, then

they were coded as performing the phone action. Alternatively,

if the nurse’s hands were on the mouse and keyboard of the

chart computer, then they were coded as performing the patient-

chart action.

4.4.3. Speech modality

Raw speech is collected from multiple streams that include

the audio from the two overhead cameras, and each of the Tobii

eye tracking glasses. For this case study, we only analyzed audio

from the overhead camera at the head of the bed. In future

work, particularly during simulations with a greater focus on

teamwork, we intend to analyze audio by creating an egocentric

framework for each agent in the training scenario.

While raw recorded speech patterns are useful for some

tasks (e.g., emotion detection), most NLP tasks perform analysis

directly on a body of text, which requires raw audio to first be

transcribed as a preprocessing task. For the current case study,

we utilized the Otter.ai speech transcription service (Otter.ai,

2022). After transcription, the speech text is annotated (tagged)

with specific events for analysis via the BRAT Rapid Annotation

Tool (BRAT) (Stenetorp et al., 2012). Based on the task model

(see Section 4.2), we developed a tagging schema for the speech

data, which breaks down the dialogue into six speech event tags,

which are enumerated below:

1. Generic, introduction: Refers to introductory speech such

as greetings.

2. Generic, acknowledgment: Refers to generic

acknowledgments of understanding, typically used as

part of closed-loop communication patterns.

3. Information, request: Refers to the soliciting of information

from another person.

4. Information, provide: Refers to the furnishing of information

to another person.

5. Action, verbalization: Refers to the verbalization and

explanation of an action. This verbalization can occur before

an action begins, while an action is being performed, or after

an action has been completed.

6. Action, request: Refers to a request for another person to

perform an action, typically taking the form of either a

question (e.g.,Will you do this?) or a command (e.g., Do this).

Figure 7 illustrates a tagged speech snippet from Scenario

1. In this part of Scenario 1, the patient indicates that her

“lower back hurts a little bit” and she feels “just kind of

itchy all over.” These are examples of the patient providing

information to the nurse, so they are tagged as “Information,

provide.” The nurse then responds with an “Action, request”

by indicating that she (the nurse) would like to check the

patient’s vitals. The nurse then asks the instructor whether

the vital signs device is connected to the blood pressure

cuff, which is tagged as another request for information. The

instructor then responds to the nurse in the affirmative, which

is another instance of “Information, provide.” Notably, the

nurse asks “was that connected to the blood pressure cuff?”

The italicized “that” in this example is ambiguous if speech is

the only modality considered for analysis. However, applying

the vision and gaze modalities make it clear that the nurse is

referring to the device used to actually take the patient’s blood

pressure. This is an example of how multimodal approaches

can augment the information obtained from simulation-based

learning environments.

Additionally, it is important to note that there are

transcription errors in Figure 7. An important research

consideration is whether or not to correct these errors before

conducting the analysis. Human-in-the-loop transcription

corrections provide the cleanest text to feed into the language

model during analysis; however, there is a trade-off. Human-

engineered text is expensive to generate time-wise, as manually

correcting transcriptions involves reading every piece of a

transcribed block of text. With large corpora, this is infeasible.

Additionally, human-in-the-loop transcription correction

precludes online analysis, as a human would first have

to manually edit the transcription before it is used in a

downstream task. Lastly, there can be an advantage to having a

certain degree of noise in the data, as this can prevent language

models from overfitting. Contemporary language models are

traditionally trained on large corpora of canonical text. Because

speech is rarely canonical, fine-tuning a language model to

recognize spoken text is a challenge. However, this can often
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FIGURE 7

An example of dialogue from scenario 1 which has been annotated using the developed tagging schema.

be mitigated (at least in part) by injecting noise (misspellings,

for example) in the data (Cochran et al., 2022). It is for these

reasons we decided to annotate the text as-is from Otter.ai,

without manually correcting the transcriptions.

4.4.4. Gaze modality

Gaze data is collected using Tobii Glasses 3. The glasses

record multiple raw data streams including egocentric-view

video, audio, eye gaze (2D and 3D), and inertial movement

units (IMU) (Tobii Pro, 2022). The eye gaze data stream is

sampled at 50 Hz and contains 2D coordinates corresponding

to the egocentric video and 3D coordinates with respect to the

camera’s coordinate system. The egocentric video is sampled at

25 Hz in 1920x1080 resolution. The IMU sensors onboard the

glasses include an accelerometer, gyroscope, and magnetometer,

which are sampled at 100 Hz, 100 Hz, and 10 Hz, respectively.

Through the combination of all data streams recorded by the

Tobii glasses, the nurse’s experience in the simulation is logged

with high fidelity.

Given the high sampling rate and noise present in eye-

tracking data, fixation classification is a common practice in the

eye-tracking literature to pre-process raw gaze data and prepare

it for further analysis (Bylinskii et al., 2015; Liu et al., 2018). Our

initial pre-processing step applies Tobii’s Velocity-Threshold

Identification (I-VT) fixation filter to extract reliable fixation

and saccade data. The classification algorithm identifies fixations

and saccades based on the velocity of the eye’s directional shift

and a set of hyperparameters (Olsen, 2012). The default values

provided by Tobii for the I-VT fixation filter were used during

our analysis (Tobii Pro, 2012).

The final preprocessing step is to encode the fixation data

into areas of interest (AOI) sequences. Linking fixations to

AOIs bridges the gap between direct sensory output to domain-

specific content, thus providing further insight into the nurses’

attention and engagement. The temporal evolution of nurses’

visual attention is represented by AOI sequences. In this study,

AOI encoding from the fixation data is manually annotated to

11 objects of interest (OOI) that were selected based on the

DiCoT analysis (patient, provider, screen chart, paper chart,

vitals, medical tray, equipment, keyboard, instructor, one-way

mirror, ground). Each of these physical objects are treated as an

AOI and are annotated using the egocentric video. The manual

FIGURE 8

An example of fixation overlay from Scenario 2 used for manual

annotation. In this frame, the resulting AOI is “patient”.

tagging is performed through visual inspection of the egocentric

video with fixation data overlaid. In each case where the nurse

fixates on one of the AOIs, the start and end time of the fixations

are recorded. An example of the gaze overlaid on the video is

shown in Figure 8, where the red circle marks the fixation.

5. Case-study analysis

The alignment and processing of multiple data modalities

reveals new inferences about the simulation and the nurse’s

behaviors. In this section, we analyze and interpret these

integratedmultimodal timelines (Figures 9, 10) in depth for each

scenario. We provide details of the basic breakdown of nurse

actions and use the DiCoT framework to interpret these actions

in context and map them onto the task analysis hierarchy. In

addition, we compare across the two scenarios to see how the

nurses differed in their cognition and use of environmental

affordances in the MRMB environment.

5.1. Scenario 1

For scenario S1, the timeline breaks down into

approximately five high-level segments. The first segment

follows the general information gathering task established by

the task analysis model in Section 4.2. During this segment,

the nurse first enters the room and greets the patient, and then
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FIGURE 9

The complete timeline of events for scenario S1 containing annotated data from participant position, action, gaze, and speech.

moves off to the left side of the bed. In this position she begins

a period of alternating between reading the patient chart and

conversing with the patient, as indicated by her eye gaze moving

between the patient and chart monitor. The conversation here is

primarily pairs of information-request and information-provide,

indicating that the nurse is asking the patient questions to

clarify and expand on the information the nurse is reading from

the chart.

Once the nurse decides she has enough information to

build her initial mental model of this patient’s situation, the

simulation enters the second phase. This transition is marked

by the nurse moving from the left side to the right side of

the bed, as seen in the position modality around 80 s into

the scenario. As previously shown from the DiCoT analysis,

this movement between regions in the room is an important

indicator of task transitions. During this new segment, the nurse

moves to the diagnostic information gathering phase described in

the taskmodel. In this phase, the nurse increases her interactions

with the equipment and the vitals monitor. We derive this

information from the gaze, which shows movements between

equipment, the vitals monitor, and the patient. In addition, her

physical actions show interaction with the vitals monitor and the

blood pressure cuff. In this segment, we can apply information

from the DiCoT framework to provide additional context for

establishing these action as diagnostic information gathering.

Because of this movement from the left to the right side of the

bed (physical layout) and the increased interaction with clinical

equipment (artifacts and environment), we infer that the nurse is

attempting to establish and refine her diagnostic inferences from

the initial information gathering phase. She performs clinical

procedures, such as taking additional vital sign measurements

to aid her diagnostic hypothesis formation.

In this segment, we also see a reduction in dialogue, which

likely has two causes. First, specific to this scenario, much of

the information that can be obtained from the patient has

already been gathered in the previous segment. Second, the

cognitive load associated with performing clinical procedures

(e.g., when taking a blood pressure reading) is likely higher than

simply reading the patient chart. Because of this, the nurse may

focus more on the clinical task at the expense of continuing

conversations with the patient. This is especially true for novice

trainee nurses who are still learning how to perform clinical

procedures in correct and effective ways. Knowing that these

clinical tasks require higher cognitive loads and having observed

from the control room that the nurse reduced her dialogue, the

instructor likely also intentionally reduced their conversations

with the nurse during this period. The instructor may have

spoken less through the patient while these tasks were being

performed to avoid splitting the nurse’s attention, conforming

to the best practices during SBT (Fraser et al., 2015).

Around 220 s into the scenario, our video analysis shows that

the nurse begins to interact with the blood pump, which implies

a transition to the third segment of her overall task. According

to the DiCoT analysis, the blood pump is a mediating artifact,
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not an information source. Given this additional context, we can

conclude that the nurse has reached the end of her diagnostic

information gathering phase and has begun the intervention

process in this new segment. Since the nurse interacts with the

blood pump at the start of the intervention process, we can

hypothesize that the nurse has reached a diagnostic conclusion,

and suspects the blood infusion process. In other words, the

nurse suspects that the patient is being administered the wrong

blood type during infusion.

Specifically, in this segment the intervention represents the

stabilization process, which requires the nurse to stop the blood

infusion and prevent any further damage to the patient’s health

because of the infusion of the incorrect blood type. At the start

of this segment, as our video analysis shows, the nurse stops

the infusion, but the speech modality also records an action-

verbalization event. The speech analysis module interprets the

nurse telling the patient that she is turning off the blood infusion.

This is immediately followed by the patient asking “Why?,”

and the nurse follows up with a proper diagnostic explanation,

i.e., “an incorrect blood type is being infused.” This discourse

interaction, transcribed in Table 2, is an example of the dual

social role of the instructor as both the teacher evaluating the

nurse, and a confederate playing the part of the patient (see

Section 4.3.3).

It is quite reasonable for a patient to ask questions about

their condition and the treatments being administered in a real

hospital setting. The instructor plays this role as the confederate.

Indirectly, some of the questioning by the patient (i.e., the

instructor as the confederate) also serves as an evaluation of the

nurse who must explain her reasoning. This sort of evaluation

questions arise from the instructor’s role as the teacher, rather

than the confederate. Since the instructor is playing both social

roles, this discourse interaction may fulfill multiple pedagogical

roles in the simulation scenario, i.e., how the nurse conveys

diagnostic information to the patient to reassure them, and

how the nurse has combined all of her observations to make

diagnostic inferences. In this same time interval where the nurse

interacts with the blood pump and verbally explains what she is

doing, we also see her gaze moves between the equipment (the

blood pump) and the patient, which is likely part of the social

dynamics when interacting with a patient. The nurse should not

ignore the patient while performing clinical procedures, which

is exemplified here as the nurse shifting her gaze between the

patient and the blood pump.

Once the stopping of the infusion is observed in our video

analysis, the fourth segment of the simulation begins, with the

transition marked again by the nurse’s movement; this time the

movement is from the right side of the bed back to the left side.

This segment maps on to the treatment intervention phase of the

task model. Since the diagnosed issue is not one that already has

a physician prescribed treatment, the nurse calls the provider

to make them aware of the new situation, as indicated by the

phone action around 290 s into the scenario. We can see that

during the period where the nurse is using the phone, her gaze

is primarily on the chart monitor, likely because she is reading

off the patient’s information to the provider over the phone.

This is also consistent with the speech acts, where we see several

sequential information-provide acts, again likely because she is

giving the patient’s information to the provider over the phone.

During this same period, the speech also shows a few action-

request events, which correspond with the nurse requesting

that the provider come to the room to confirm the diagnosis.

Shortly after the phone call, the final segment of the simulation

begins, marked by the arrival of the provider around 390 s into

the scenario. In this segment, we again see several sequential

information-provide acts in the speech corresponding to the

nurse explaining the patient’s situation to the provider. The

nurse and the provider then look at a reference chart, which

contains information about the protocol to re-test blood type.

Finally, the two move to the foot of the bed and begin examining

the equipment cart, likely to collect the necessary equipment

to draw the patient’s blood. This marks the end of the training

scenario, and the nurse moves on to a debrief session outside of

the simulation hospital room.

5.2. Scenario 2

In scenario 2, the timeline breaks down into four high-

level segments. Once again, the first segment represents the

general information gathering task. The nurse enters the room

and moves to the left of the bed by the patient chart monitor.

During this initial movement period, there is a short sequence of

alternating information-request and information-provide speech

acts, indicating the nurse asking the patient initial questions to

learn about their general background and current condition. Just

as in S1, the initial movement to the left side of the bed is a

significant indicator of entering an information gathering phase,

as indicated by the physical layout DiCoT analysis.

This initial movement and speech is then followed by a long

period of attention strictly on the chart monitor, as seen in both

the actions and gaze, as well as the absence of any dialogue.

As shown in the information flow DiCoT analysis, this chart

monitor is a significant information hub in the room and further

supports this segment as information gathering. The absence

of dialogue here is also particularly interesting when compared

to the nurse in scenario 1, who tended to multi-task dialogue

with the patient while reading the chart. However, here we

see a different information gathering strategy of first spending

devoted time to the chart, followed by a shorter period of

information-request and information-provide acts (e.g., question

and answer) around 100 s into the scenario.

During this question and answer period, the nurse’s position

moves quickly between the foot of the bed, the right of the bed,

and back to the left of the bed, with her gaze also moving rapidly

between pieces of equipment and other artifacts in the room.
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FIGURE 10

The complete timeline of events for scenario S2 containing annotated data from participant position, action, gaze, and speech.

On its own, it is unclear what exactly the purpose of these rapid

movement and gaze changes are; however, given that this occurs

while the dialogue is primarily question and answer, which is

an information gathering task, it is likely that the movement

and gaze are also related to the information gathering. While

the nurse is using dialogue to gather information about the

patient during this period, she is simultaneously also gathering

information about the available equipment and physical layout

of the room using her movement and gaze.

At this point, the second segment of the simulation begins,

marked by the nurse moving back to the left side of the bed and

her gaze now stabilizing back on the patient and chart, around

140 s into the scenario. Like scenario 1, the second segment

represents diagnostic information gathering. Having determined

patient history and the current issue with the patient, i.e., severe

right leg pain, the nurse begins a physical examination of the

patient in order to further refine her diagnosis of the problem.

The nurse begins examining the patient’s left leg for a short

period of time, while asking the patient whether certain areas

that the nurse touches are tender. This is derived from our

analysis of nurse’s actions, which show physical interaction

with the patient’s leg, along with speech analysis which shows

sequential information-request and information-provide acts.

After this exchange, the nurse turns her gaze from the patient

back to the chart, likely because she is surprised when the leg

does not hurt to the touch. At this point, the information she

obtained from dialogue with the patient and the patient chart

does not match with the physical exam of the leg. Because of

the conflicting information, the nurse looks back on the chart

to recheck the information she previously gathered and her

diagnostic hypothesis.

After a fewmoremoments of examination and dialogue with

the patient, the patient finally speaks up and says, “It’s my other

leg that hurts.” At this point, the nurse quickly moves over to

examine the right leg, as shown in the action data. There are

several interesting points about this interaction. First, dialogue

of the patient is another manifestation of the dual social role

of the instructor. The instructor is acting as the patient in this

moment, but also providing some instructional scaffolding, e.g.,

that the nurse needs to examine the other leg. By inhabiting

this dual social role, the instructor can seamlessly introduce

the instructional scaffolding into the simulation scenario by

speaking through the patient.

Second, by combining data modalities, we gain a much

deeper understanding of the nurse’s activities in the training

scenario. Because we have the eye gaze information and see

that the nurse looks back at the chart, we interpret that the

nurse realizes that there is an issue before being corrected by the

patient. Pedagogically, this is important because it shows a level

of metacognitive awareness in the nurse which we may not have

realized otherwise. The nurse looks back on the chart to recheck

her diagnostic hypothesis because of the conflicting information

she has received that the patient’s leg does not hurt to the touch.

Without this gaze information, we may have surmised that the
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nurse had gone down a wrong path, and would need to be

corrected on her diagnostic hypothesis. However, her looking

back to study the chart and asking questions to the patient made

us realize through the analyzes that she was reconsidering her

current diagnostic hypothesis.

After examining the right leg, the training scenario

transitioned into the third segment, marked by the movement of

the nurse from the right side of the bed where she was examining

the leg back to the left side of the bed. This movement, around

220 s into the scenario, again highlights the physical layout

theme of the DiCoT analysis. In this segment, the nurse began

the intervention process. No stabilization processes are clinically

necessary in this scenario, so the nurse immediately proceeded

to treatment. Just as in S1, there was no physician prescribed

treatment, so the nurse called the provider to update them and

get a new treatment order, as indicated by the phone action.

While on the phone, the nurse’s gaze was primarily on the patient

chart, with a few instances of looking back at the patient, and

simultaneously her dialogue was a series of information-provide

acts. This gaze and speech in combination indicate that she

was reading patient information off the chart to the provider,

and filling in additional details based on her observations and

gathered information of the patient condition.

Shortly after the phone call, the scenario transitioned into

the fourth segment, marked by the entry of the provider into

the room and the nurse moving to the foot of the bed, around

290 s into the scenario. In this segment, the dialogue shows a

series of sequential information-request and information-provide

pairs, indicating that the provider was asking questions to the

nurse and the nurse was answering based on her gathered

information and assessment of the patient. During this sequence,

the provider asked whether the nurse has gathered patient vitals.

After realizing that she did not finish this task earlier, the nurse

began to interact with the equipment to complete collecting

the vital signs, as shown by the thermometer action and the

nurse’s gaze moving between equipment and the vitals screen.

The scenario finished with a short discussion about the next

steps for treatment, specifically the scheduling of a scan of the

patient’s leg, shown by the series of information-provide acts in

the speech at the end of the timeline.

5.3. Cross-scenario discussion

In this section, we combine the analysis across both

scenarios to demonstrate how the collected data supports the

DiCoT analysis presented previously. For this analysis, we will

focus on the three primary DiCoT themes which are typically

analyzed: physical layout, information flow, and artifacts and

environment. We will examine each of the three DiCoT themes

individually and how the data-driven evidence supports the

major conclusions from that theme.

To support the comparison between the contextually

different scenarios, we computed a series of marginal and

conditional distributions of the four data modalities. Figure 13

shows the marginal distribution of gaze across the entire

scenario; Figure 11 shows the distribution of gaze conditioned

on position in the room; and Figure 12 shows the distribution of

speech conditioned on position in the room. These distributions

were computed based on the modality-aligned timelines

(Figures 9, 10) by dividing the sum of the time spent on a

given modality class by the total scenario time. For example, to

compute the percentage of equipment gaze events conditioned

on being positioned on the left side of the bed, we divided the

sum of the times spent looking at equipment while on the left

side of the bed by the total time spent on the left side of the

bed. By comparing the marginal and conditional distributions

of the scenarios instead of the scenario timelines directly, we

can help reduce the temporal autocorrelation caused by the

differences between the scenario contexts. In other words, the

distributions provide a more direct comparison between the two

scenarios that does not care about the order in which nurses

completed actions, since the order is highly dependent on the

specific scenario and patient condition.

Beginning with the physical layout theme, a wealth of data

supports the roles that space and physical layout play in the

nurses’ cognition. The timeline analysis shows that both nurses

exhibit similar patterns in their movement through the physical

space. Each nurse begins by entering the room through the door

at the foot of the bed and immediately moving to the left side.

The nurses stay on the left side to gather initial information

from the chart and conversation with the patient before moving

to the right side of the bed to begin their diagnostic clinical

procedures. While the specifics of information gathering and

clinical procedures differ between the two scenarios, the general

movement patterns and associated tasks in these areas of the

room remain very similar.

Support for the roles of these spaces can also be seen through

the conditional distributions of gaze in Figure 11. For both

nurses, the percentage of gaze events focused on the chart and

the patient was higher when they were on the left side of the

bed, while the percentage focused on the vitals screen was higher

when they were on the right side of the bed. This was particularly

evident for scenario 1, where focus on the chart and vitals when

on the left side of the bed were 25 and 2.8%, respectively. It

changed to 1.9 and 18.5%, respectively when they were on the

right side of the bed.

For scenario 2, while the difference in gaze for the chart

monitor was fairly small, changing from 22.8% on the left

down to 20.0% on the right, the difference in gaze for the

vitals monitor was still quite large, with 10.5% when on

the left and jumping to 40.0% when on the right. These

differences between the left and right sides of the bed was

also supported by the speech analysis. As shown in Figure 12,

the nurses in both scenarios performed most of their dialogue

Frontiers in Artificial Intelligence 22 frontiersin.org

46

https://doi.org/10.3389/frai.2022.941825
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Vatral et al. 10.3389/frai.2022.941825

FIGURE 11

Distribution of gaze across five major object categories conditioned on the nurse’s position in the room for each scenario.
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FIGURE 12

Distribution of total speech acts conditioned on the nurse’s position in the room for each scenario.

FIGURE 13

Marginal distribution of nurse gaze across five major object categories for each scenario.

when positioned on the left side of the bed. This suggests

that the nurses’ information gathering done through dialogue

with the patient happened primarily when they were on the

left side of the bed. Together, this gaze and dialogue data

further confirmed the role of each of these spaces in the room;

the left side of the bed was primarily used for information

gathering and the right side was primarily used for providing

clinical procedures.
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For the information flow theme, data from the nurse gaze

provided significant support for three primary information

sources described in the DiCoT analysis: the chart, the patient,

and the vitals monitor. Examining Figure 13, which shows the

marginal distribution of nurse gaze over the course of the entire

scenario. It is clear that the nurses spent most of their time

looking at three primary information sources. Over 50% of the

total gaze time in both scenarios was spent looking at these

three information sources, with 56% for scenario 1 and 76.1%

for scenario 2.

The nurses used these three sources to gather, aggregate,

and synthesize information which may have been relevant to

the patient’s diagnosis and treatment. The timeline analysis

also supports the information flow theme, demonstrating the

transition from information flowing to the nurse to information

flowing from the nurse. In both scenarios, the first two timeline

segments involve the nurse gathering information. In the

first segment, this information came primarily from reading

the patient chart and conversation with the patient. In the

second segment, the information came primarily from the nurse

performing clinical activities.

At this point, the information flow in both scenarios

reversed, with the nurses now becoming the information

source and the patients and provider becoming the information

recipients. Once the nurses had transformed and synthesized the

gathered information, they reported their diagnostic inferences,

thereby becoming an information source. In both scenarios,

the nurse first provided information on her conclusions to the

patient, explaining the diagnosis and how they arrived at that

conclusion. Then the nurse provided information to the medical

provider, first in the form of general patient information over the

phone, and then in the form of explaining the diagnosis once the

provider arrived in the room.

Moving on to the artifacts and environment theme, the

gaze data again clearly supported the use of medical equipment

as the primary mediating artifact. As seen in Figure 13, the

nurses in both scenarios spent a significant portion of their

time with their gaze fixated on the equipment. In scenario

1, the equipment represented the single highest portion of

gaze activity at 28.3%. In scenario 2, the nurse looked at the

equipment for less time than in scenario 1, but still for a large

portion of the total time: 16.2%, which was third overall in

terms of the activities conducted. The difference in time here

between the two scenarios can be explained by the context of

the patient’s presenting issue; in scenario 1, the primary cause

was primarily linked to the equipment, i.e., the blood pump

infusing the wrong blood type. In scenario 2, the primary cause

was internal to the patient. The significant portion of time in

both scenarios dedicated to medical equipment is evidence of

its fundamental role in the distributed cognition analysis of the

training scenario.

Beyond these mediating artifacts, the data also supports

the use of several artifacts as information hubs, specifically

the chart and vitals monitors. As seen in Figure 13, the

nurses spend 38.2% and 49.9% of their time, respectively,

looking at these two monitors in scenarios 1 and 2. In

addition, the timeline analysis suggests that the nurses frequently

returned to these information hubs for confirmation and further

checking when they were in doubt about their conclusions. For

example, we see this behavior in scenario 2 when the nurse

looked back at the chart after her physical examination of

the patient’s left leg did not support her internal diagnostic

hypothesis. This shows that the nurses trust the information

provided by these artifacts, which support their cognitive

reasoning processes in aid of information gathering and

diagnostic reasoning.

6. Discussion

Overall, the patterns and distributions derived from our

analysis framework clearly demonstrate the effectiveness of

our approach in combining qualitative DiCoT analysis with

multimodal analytics and the task model to analyze and

interpret learner activities and behaviors in the MRMB training

simulation. Specifically, this study shows the benefits of our

cyclic analysis, with insights generated from both a forward

pass of the framework, i.e., using the qualitative analysis to

define and structure the quantitative analysis, as well as a

backward pass of the framework, i.e., using results of the

quantitative analysis to provide more detailed analysis of the

learners activities and behaviors than we could generate by

pure qualitative analysis, as proposed by the DiCoT framework.

The more in-depth information generated by multimodal

analysis benefits the two primary stakeholders: (1) learners and

instructors through debriefing and after-action reviews, and

(2) simulation designers and researchers, who can study the

effectiveness of the simulation scripts in promoting effective

learning activities. In this section, we discuss the implications

of the framework and its resulting insights for both of

these groups.

6.1. Implications for learners and
instructors

The primary goal of any simulation-based training

environment is for the trainees to learn, practice, and develop

expertise in skills that transfer to the real task environment. In

our nurse case-study, this means that the nurses develop new

knowledge and experience that supports both the psychomotor

skills and cognitive and metacognitive processes. One of

the critical components that mediates this knowledge gain,

especially for novice learners, is effective feedback mechanisms

during simulation debrief (see Section 2.1). It is the analysis

of nurse performance and the generation of relevant feedback
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linked to the performance, where our current work is most

likely to impact learners and their instructors in constructive

ways. By using our analysis framework to generate evaluations

of learner behavior, we can present these insights back to

learners and instructors during debriefing (also known as

after-action reviews) to help promote constructive discussion

among the trainees and instructor as part of a larger formative

feedback system.

This paper represents an initial step toward analyzing learner

performance and behaviors, and then generating formative

feedback, and as a result, this case-study analysis was performed

post-hoc. Therefore, no feedback was generated for learners.

However, with continued research, we hope to develop a

formative feedback framework with input and support from

the instructors to support effective learning of skills and

decision making processes. For example, at the beginning of

each scenario in our case study, the nurses both start with

talking to the patient and reading the patient chart. However,

the ways in which these two actions are sequenced differ

greatly between the two nurses. In S1, the nurse tended to

multi-task combining dialogue with the patient and reading

the chart. On the other hand, in S2, the nurse spent a long

period of time solely focused on reading the chart without

any interaction with the patient, Only after she had reviewed

the chart in some detail, did she start talking to the patient

in depth. By generating analytics about the nurses’ gaze and

speech patterns, we can highlight this difference between the

nurses and present this feedback as a discussion point during

debriefing: Was there a good reason for the difference in

approach between the two nurses? Is it not important that the

nurse to communicate with the patient sufficiently often so

patients do not feel that they are being ignored? Therefore,

some level of multi-tasking may be a useful protocol to adopt at

this stage of examining the patient and collecting information

about their situation. As a next step, we hope to get nursing

instructors and experts in as part this discussion. This will

help us generate appropriate feedback that will help learners,

and also help instructors in setting up constructive discussion

among the learners by presenting contrasting cases (Bransford

and Schwartz, 1999).

While this is only one simple example, it demonstrates

the underlying concept: analytics generated using our activity

analysis framework can be presented back to learners and

instructors to help promote meaningful discussion, especially

around topics that may be otherwise difficult to identify in

a single viewing of the scenario. The design of formative

feedback that is actionable and important for discussion

is a large research questions in itself (Jørnø and Gynther,

2018; Pardo, 2018) and is beyond the scope of this paper;

however, analysis framework we present here represents an

important first step in this direction for SBT and MRMB

training environments.

6.2. Implications for simulation designers
and researchers

Because of the cyclic nature of our analysis framework,

the insights generated from our analysis and future analytics

methods can be used to help refine the qualitative models of

the simulation system. This is of particular importance and

interest to simulation designers and researchers, as it uncovers

new insights to improve our understanding of both the given

simulation system and the science of simulation-based training

as a whole.

For example, the multimodal data analysis permits the

discovery of latent relations between different aspects of the

distributed cognition system. In our nursing case-study, this

is exemplified through the use of information hubs. The

distribution of gaze conditioned on position reveals new insights

about the use of information hubs. Initially, the DiCoT analysis

revealed the dependency of physical space as a mediator in

collection and analysis of the information provided on the

two screens as information hubs (i.e., the patient chart and

vitals). By combining the physical, artifacts, and information

flow segments of DiCoT analysis, we derived how the use of

each screen was largely mediated by the nurse’s position on the

left side of the bed near the patient chart, or on the right side of

the bed near the vitals monitor. As described in Section 5.3, we

see support for this analysis in the conditional gaze distribution,

with fixations on the vitals screen going from 2.8 to 18.5% and

10.5 to 20%, when moving from left to right of the bed in

scenarios 1 and 2, respectively.

However, based on this initial DiCoT analysis, we would

also expect fixations on the patient chart to have the opposite

relationship, decreasing significantly when moving from left to

right of the bed. However, in our case studies, the fixations

on the patient chart only significantly decreased in S1, moving

from 25% on the left to 1.9% on the right, while in S2 the

fixations on the patient chart decreased very slightly, with

22.8% on the left and 20% on the right. While it is clear that

physical layout mediates the use of these information hubs,

the data also suggests an additional latent mediating factor

is present. We hypothesize that differences in the simulation

scenarios contributed to this, with S2 requiring more references

to the patient chart than S1, probably because of the incorrect

diagnostic hypothesis the nurse initially made, but there are also

other potential explanations, such as differences in the strategies

adopted by the two nurses.

This is a simple example of a new insight generated by

the quantitative methods that can lead to additional research

to refine the qualitative models, but it also demonstrates the

overall idea of the cyclic model design. After using the system to

analyze learner data, we gain new insights that can be given back

to simulation designers and researchers to help formulate new

research questions and supporting simulation studies. We can
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iteratively update our qualitative understanding of simulation

based on learner data, leading to better analysis of the data, and

subsequent learner feedback, in the future.

7. Conclusions

In this paper, we presented an analysis of a nurse

simulation-based training environment using multimodal

learning analytics, cognitive task analysis, and distributed

cognition analysis using the DiCoT framework. We show how

the analysis of multimodal data from both qualitative and

quantitative perspectives can be combined into a common

framework for analyzing mixed-reality simulation-based

training environments, such as the nursing case study analyzed

here. While this work is still in its initial stages, the analysis

methods developed and demonstrated here suggest a great

potential for combining qualitative distributed cognition

analysis with multimodal quantitative analytics in order to

generate a more complete understanding of SBT as a whole.

The strengths of each method are amplified when used together,

and such an integrated approach can help shed new lights on

simulation-based training and generate new insights.

However, this work and the framework it presents are not

without limitations, and future work is required to address

these concerns. One of the major limitations of the presented

framework is its lack of guidance on the selection of adequate

data sources and design of the associated analysis techniques.

Since relevant data sources and analysis techniques differ widely

among SBT domains, it is difficult to create a universal guidance

on selection and design of these concepts while also keeping

the domain-generality of the presented framework. In addition,

this study was also limited by the sample size, only analyzing a

small case-study of two simulation. This small study size allowed

us to focus carefully on the design of the framework and the

specific feature of the analysis, but limits the argument for the

generalizability of the framework and the analysis results.

Future work will expand our study, both to more data

from the nurse training simulation domain, as well as to

a variety of other training domains. This expanded work

will help to mitigate both of these limitations, as it will

allow us to further validate the analysis methods across a

wide variety of participants, as well as reveal commonalities

among disparate training domains that can be used to

generate guiding principles for the selection of adequate data

sources and design of the associated analysis techniques.

In addition, these further studies will place an emphasis

on capturing data related to collaborative and teamwork

activities in these environments, helping to further develop

the distributed cognition frameworks that ground our data

analysis techniques.

To support these expanded studies, future work will also

focus on replacing the manual annotation of data used in this

study with automated AI and machine learning techniques.

Specifically, manual annotation was used in this study for the

action, speech, and gazemodalities. For actions, techniques from

video activity/action recognition will be applied to automatically

extract time segments where the nurse is performing relevant

actions (Ghadiyaram et al., 2019; Zhu et al., 2020). For speech,

tagging will be automated using pre-trained natural language

processing models, such as deep transformer models like

Google BERT (Devlin et al., 2018), which have been fine-

tuned on our specific domain. In addition, these pre-trained

language models will also be applied toward a variety of other

downstream NLP tasks, such as event detection and discourse

analysis. For gaze, computer vision techniques will be used to

automatically match the egocentric video to annotated static

camera viewpoints, allowing us automatically determine specific

objects (AOIs) that the nurse is looking at (Bettadapura et al.,

2015).

Finally, this study and its associated framework was

limited in guiding the design of formative learner feedback

mechanisms based on the analysis. While Section 6 discussed

some of the implications of the framework and its analysis on

learning and pedagogy, including the possibility of developing

formative learner feedback to support discussion sessions using

contrasting cases, the framework itself does not detail guidance

for designing learner feedback mechanisms. In addition, for this

study specifically, analysis of the case-study data was performed

post-hoc, so feedback based on the analysis could not be

generated in-time for students. Future work, will automate the

analysis methods, develop learning analytics to evaluate learner

behaviors and actions, and will focus on presenting learners with

online feedback designed to support simulation debriefing and

after-action reviews. By presenting the results of our analysis to

learners and instructors, we can get valuable feedback about the

usability of the system and what types of feedback mechanisms

might be relevant and important for these stakeholders to see in

future iterations of the system.
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The potential for Artificial Intelligence is widely proclaimed. Yet, in everyday

educational settings the use of this technology is limited. Particularly, if we

consider smart systems that actually interact with learners in a knowledgeable

way and as such support the learning process. It illustrates the fact that

teaching professionally is a complex challenge that is beyond the capabilities

of current autonomous robots. On the other hand, dedicated forms of Artificial

Intelligence can be very good at certain things. For example, computers

are excellent chess players and automated route planners easily outperform

humans. To deploy this potential, experts argue for a hybrid approach in

which humans and smart systems collaboratively accomplish goals. How to

realize this for education? What does it entail in practice? In this contribution,

we investigate the idea of a hybrid approach in secondary education. As a

case-study, we focus on learners acquiring systems thinking skills and our

recently for this purpose developed pedagogical approach. Particularly, we

discuss the kind of Artificial Intelligence that is needed in this situation, as well

as which tasks the software can perform well and which tasks are better, or

necessarily, left with the teacher.

KEYWORDS

Qualitative Reasoning, science education, systems thinking with qualitative

representations, real-world application problems, hybrid human-AI systems

Introduction

The expected added value of Artificial Intelligence was already high at its inception

(McCarthy et al., 1955). Meanwhile, impressive results have been obtained, but these

solutions are typically highly specialized (e.g., Silver et al., 2016). The realization of

Artificial General Intelligence (AGI) or strong Artificial Intelligence (e.g., Kurzweil,

2005) has not yet happened, and it may take a long time for it to happen (Marcus and

Davis, 2019). Instead of aiming for AGI, the idea of Hybrid Intelligence is being proposed

(Akata et al., 2020). Hybrid Intelligence combines human intelligence with machine

intelligence, with the goal of augmenting human capabilities as opposed to replacing

them, while simultaneously harvesting the potential of smart machines.

In the area of Intelligent Tutoring Systems, which was traditionally highly

focused on automating tutoring to the max (Wenger, 1987), such alternative hybrid

approaches are also discussed. Chou et al. (2011) report a study in which two virtual
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teaching assistants successfully aid the teacher. One assistant

focuses on evaluating student’s answers and the other

on generating hints. Baker (2016) argues that successful

automated tutoring systems do not show general (teaching)

intelligence, but rather excel in a specific capability. As

such, they emphasize the use of educational data mining

to support human-decision-making. Another example of

a hybrid approach is the work of Paiva and Bittencourt

(2020) who implemented an authoring tool that deals

with educational data from an online course to support

instructors in making pedagogical decisions. Holstein

et al. (2019) report on a study that investigates students

and teachers needs with regard to human vs. Artificial

Intelligence instruction help-signaling and help-giving.

They found that teachers desire greater real-time support

from the automated tutors, and that students emphasize

their need for help-signaling without losing face to peers.

Holstein et al. (2020) present a framework consisting of

a set of dimensions that describe how hybrid teacher/AI

adaptivity can augment performance and enhance co-learning

on instructional goals, relevant information, instructional

actions and decisions.

The examples show that the concept of Hybrid Intelligence

in education is being discovered. Additional studies and

real-life applications may help to further understand

and develop this approach. In this contribution, we

report on a case study that uses smart tutoring software

in secondary education. While Intelligent Tutoring

examples often focus on problem solving, we focus

on learning by creating qualitative representations.

Learners learn systems thinking by creating a diagram

that captures a causal understanding of how a system

works. Different from typical problem assignments, in

which case the solution amounts to a specific answer

such as a number after having performed the required

calculations, learners create and deliver a structure

consisting of a set of ingredients and relationships among

these (Spitz et al., 2021a).

The organization of this paper is as follows. Section

‘What makes a system Artificial Intelligent?’ briefly reviews

the field of Artificial Intelligence research in order to define

what we mean when we refer to an Artificial Intelligence

system. Next, we move to the case study in which learners

in secondary education acquire systems thinking skills and

the hybrid teacher-software arrangement to support that.

Section ‘The case-study: An automated intelligent systems

thinker in secondary education’ describes our recently

developed intelligent tutoring system and the accompanying

pedagogical approach that supports learners in creating

their cause-and-effect diagrams. Section ‘Teacher’s role’

discusses the role of the teacher and how it complements

and intertwines with the actions of the tutoring system.

Section ‘Conclusions and discussion’ concludes this

contribution and Section Future work highlights directions

for future research.

What makes a system Artificial
Intelligent?

It remains intriguing to observe computers solve problems

that up to then only people could solve well. Even more when

the computer solves versions of those problems that it has not

been given explicitly before. On the other hand, the ubiquitous

pocket calculator is generally not discussed as an example of

smart software, even though it outperforms most humans when

it comes to doing mathematics. What is it that characterizes

Artificial Intelligence since it came into existence in the 60s?

The reoccurring trinity

Let us start with a short historical perspective. One

inspiration for Artificial Intelligence originates from Psychology.

When the cognitivist paradigm (Lindsay and Norman, 1977)

succeeded the behaviorist paradigm (Skinner, 1974), computer

programs became fashionable as cognitive or mental models

(Gentner and Stevens, 1983). A requirement for developing

cognitive models is to make the solution generic. Instead of

being able to solve one specific example, a viable solution is

capable of solving all possible instances of the problem.

Over the years, many ingenious algorithms have been

invented (Bratko, 2012). Additionally, the importance of

adequate representations became recognized, both the formal

language (the knowledge representation language) and the

representation of substantive knowledge in it (the knowledge

base). The endeavor grew into automating miscellaneous kinds

of human expertise such as the expertise of chess players,

physicians, designers, etc. (Schreiber et al., 1993). A noteworthy

milestone was reached in 1987 when IBM’s Deep Blue II

program successfully defeated Kasparov, the then reigning chess

grandmaster. Notice that, improved hardware was also a key

enabler for this milestone (BNVKI, 2021).

The wealth of ideas and approaches is enormous (van

Harmelen et al., 2008) and the area is still advancing

(Moschoyiannis et al., 2021). This also holds for the work

on cognitive systems (Nirenburg, 2017). If, in hindsight, we

consider the overarching research agenda, it becomes apparent

that Artificial Intelligence works on three key questions (see also

Figure 1):

• How to represent? The focus here is on the development

of (semi-)formal languages, typically referred to as a

Knowledge Representation Language (KRL). Essentially a

set of interrelated concept types that together conform
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FIGURE 1

AI system characteristics. When developed, knowledge or data is

obtained from humans and/or data resources, processed and

stored into a Knowledge Base (KB). The KB adheres to a

Knowledge Representation Language (KLR) which is also the

basis for the development of the solver. When used in practice

the solver receives a case (problem situation), and deploys the

KB to develop a solution.

to a certain semantics and that can be used to store (or

represent) pieces of information.1

• What to represent? The process of selecting a certain

amount of knowledge (or information), untangling it into

elementary parts in accordance with the KRL and storing

it. The process can be executed by humans, but also (partly)

automated using software. The result is typically referred to

as the Knowledge Base (KB).

• How to reason? The development of solvers or algorithms,

often tailored toward the specifics of the KRL, and their

deployment to solve problems. Concerning the latter, the

algorithm obtains or receives information about an actual

case or problem situation and is able to draw conclusions

(solution) by relating this input to the KB and making the

appropriate inferences.

Depending on the actual implementation the appearance and

use of an Artificial Intelligence system can be highly different.

For instance, an automated agent continuously regulating some

system as opposed to a classifier that each runtime produces a

particular output.

Neural networks are also among the early ideas researched

within the context of Artificial Intelligence (McCullogh and

Pitts, 1943; Rosenblatt, 1958). With the arrival of abundant data

and significant faster hardware, neural networks are now also

well developed (LeCun et al., 2015; Goodfellow et al., 2016).

They received much attention since the computer won the game

of Go (Silver et al., 2016). Although the proclaimed potential

is also critically reviewed (Marcus and Davis, 2019). Neural

networks also adhere to the above described trinity: (i) there

1 The di�erence between data, information and knowledge is subtle.

Here we use these terms interchangeably and only make explicit

distinctions when needed.

is a representation language consisting of interconnected units

(referred to as neurons, layers, etc.), (ii) there is a body of

information stored using this representation (typically, build

from a huge set of examples), and (iii) there is an algorithm

that reasons about specific cases using this stored information.

The creation of the stored information, the “knowledge base”,

can be automated in the case of isolated, formal contexts (Silver

et al., 2017). However, for real applications the organization of

data (data wrangling) is a complex and time-consuming task,

typically performed by human experts (e.g., Kuhn and Johnson,

2019).

Truly intelligent?

As discussed above, systems referred as to Artificial

Intelligence concern three intertwined components: the

representation language, the stored content, and the reasoning.

When these components are well established, an artificial system

can be deployed in the real-world situation for which it was

developed, where it will behave according to its capacity.

A number of concerns associated with intelligent behavior

are often brought up when (thinking about) using Artificial

Intelligence in practice (e.g., Marcus and Davis, 2019; Aicardi

et al., 2020):

• Specialization. It is generally known that Artificial

Intelligence systems are highly specialized (or limited,

if one prefers) and only work well for the specifics

they were developed for. A system aiding physicians in

finding deviating spots in x-rays, will do exactly that, and

nothing else.

• Reliability and trustworthiness. Exactly when will the

system fail? Is it capable of handling all the potential cases

correctly? Can the software be trusted? Will it behave

ethically? Notice that, the software itself typically has

no clue regarding its own competence and actions, nor

its limitations.

• Transparency and explanation. Can the software

explain its reasoning? Explain how it came to a

certain result? Moreover, can the software argue why

a result or conclusion is correct or viable? In fact, the

dichotomy between effective reasoning vs. insightful

explanations thereof, is a long standing challenge in

Artificial Intelligence.

Does having these limitations make an Artificial Intelligence less

smart? Do humans not have similar limitations? Why do we

want to regard human-made computer software as intelligent in

the first place? These are difficult questions to answer. In fact,

the answers depend on the perspective taken. The categorization

of Artificial Intelligence as put forward by Russell and Peter

Norvig (2020) is helpful in this respect. Instead of emphasizing
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TABLE 1 Which intelligence do Artificial Intelligence systems need?

Pocket calculator Cognitive system Medical diagnosis Education

Thinking humanly ?

Acting humanly x ? ?

Thinking rationally x x x

Acting rationally ? ?

a particular technology or a characteristic of intelligence, their

focus is on the reference to which the solution is compared.

Consequently, multiple kinds of Artificial Intelligence research

and applications exist:

• Thinking humanly: The cognitive modeling approach.

• Acting humanly: The Turing test approach.

• Thinking rationally: The “laws of thought” approach.

• Acting rationally: The rational agent approach.

Table 1 shows examples to further illustrate this framework.

Consider the pocket calculator mentioned earlier. We can argue

that it “thinks” fully rational, following the rules of mathematics.

As such, we should acknowledge that it implements a form of

intelligence, even though it is not considered a typical Artificial

Intelligence system (among others, it misses the knowledge base

component discussed above). For any cognitive system (a system

oriented toward human skills and capabilities) it should at least

act humanly (e.g., pass the Turing test) and dependent on the

(research) goal possible also think humanly. For an application

of Artificial Intelligence supporting a physician in doing medical

diagnosis we would definitely require a fully rational thinking

machine. If the robot is also expected to interact with patients,

maybe it should also have features of acting humanly. If it

is also expected to be a pro-active and caretaking system,

an autonomous robot that acts rationally is probably wanted.

Similar arguments hold for intelligent applications in education.

Foremost, it should be a rational thinking machine that is

capable of handling the subject matter in interaction with

learners. If it is also expected to be pro-active in the class, or even

take a leading role, an autonomous rationally acting robot will be

needed. Should it also act humanly? Maybe, but such behavior

may also hamper optimal teaching behavior. After all, typical

human behavior, even that of experts, may not always be the best

solution in a challenging situation (Holstein et al., 2019).

The case-study: An automated
intelligent systems thinker in
secondary education

Let us now discuss an Artificial Intelligence system

in education. As a case-study, we focus on learners

acquiring systems thinking skills. Systems thinking is

an important skill for humans to master (e.g., NGSS,

2013), but difficult to learn (e.g., Sweeney and Sterman,

2007). We develop and investigate a new pedagogical

approach to having learners in secondary education

acquire this skill using qualitative representations

(https://denker.nu/). The approach covers K8-12 and

is linked to the curriculum in the subjects of biology,

physics, geography and economics. Table 2 gives an

overview of the main tasks involved and the distribution

among the participants (including the intelligent

software, AI-App).

For education the goal is to create smart people and

the Artificial Intelligence is used as a tool to enable that.

There are at least two reasons why qualitative representations

form an interesting set of intelligent tools for education.

Firstly, as with any representation, when used by people

representations strongly steer the development of knowledge

and insights (Davis et al., 1993). As such, having learners

construct representations is a valuable pedagogical instrument

for implementing active learning (Prain and Tytler, 2012).

Secondly, the Qualitative Reasoning community particularly

focused on explicating the implicit knowledge considered

essential for reasoning about the behavior of (physical) systems.

This resulted in an explicit vocabulary underpinning automated

reasoning. In fact, the community developed an explicit

ontology (Liem, 2013) for (automated) systems thinking.

Modern educators emphasize the importance and challenge of

supporting learners in lower and upper secondary education

in acquiring systems thinking skills (Jacobson and Wilensky,

2006; Ben-Zvi-Assaraf and Orion, 2010; Curriculum.nu,

2021). Qualitative representations can be deployed for this

purpose. Their suitability is even more profound because of

the accompanying automated reasoners, which makes them

outstanding candidates for intelligent interactive tools for

learning systems thinking.

Our approach is based on a classroom situation with on

average 30 learners and a teacher. Additionally, it includes an

intelligent software for creating qualitative representations and

a workbook to guide learners and teachers during this process.

The role the software, particularly in relation to the learner, is

described below. Section ‘Teacher’s role’ describes the role of

the teacher.
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TABLE 2 Summarizing overview of tasks, including task description, the executing agent, the resources used to accomplish the task, the output the

task delivers, and the beneficiary who uses the output.

Task description Agent Resources Output Beneficiary

Creating a knowledge-base for a

curriculum topic

Teacher Curriculum KB-norm AI-App

Creating a workbook Teacher Curriculum; KB-norm; AI-App Workbook Learner

Engaging in a dialogue to address a

knowledge deficiency

Teacher Learner request; KB-learner;

AI-App; Expert knowledge

Advanced explanation Learner

Managing the classroom and

engaging learners

Teacher Class behavior and history; Learner

characteristics

Effective learning environment Learner

Learning by creating a

representation

Learner Workbook; AI-App KB-learner AI-App; Teacher

Calling AI-App to compute system

behavior for KB-learner

Learner KB-learner; AI-App Inferred system behavior Learner

Asking for help on a knowledge

deficiency

Learner Workbook; KB-learner; Inferred

system behavior

Learner request Teacher

Finding deviating ingredients in

KB-learner (norm-based cueing)

AI-App KB-norm; KB-learner Discrepancies highlighted Learner

Typing deviating ingredients in

KB-learner (norm-based advice)

AI-App KB-norm; KB-learner; Error type

recognizer

Discrepancies error-typed Learner

Identifying and summarizing

correct, incorrect and missing

ingredients in KB-learner

AI-App KB-norm; KB-learner;

Discrepancies

Progress bar Learner

Finding discrepancies in initial

settings when calling AI-App

AI-App KB-learner; Initial settings

requirements

Advice on problem situation Learner

Finding feedback-loop in

KB-learner

AI-App KB-learner; Feedback-loop

recognizer

Feedback-loops highlighted Learner

Describing and predicting learners’

learning behavior

AI-App KB-learner; Action-Log;

Automated statistics

Overview of learners’ learning behavior Teacher

KB refers to the representations (knowledge-base) created by the teacher (KB-norm) and by the learner (KB-learner). AI-App refers to the set of algorithms implemented in the AI software.

Knowledge representation language and
reasoning (solver)

The software implements an automated intelligent systems

thinker (Bredeweg et al., 2009). It builds on research from

Artificial Intelligence known as Qualitative Reasoning (Weld

and de Kleer, 1990; Forbus, 2018). The KRL consist of ∼15

concepts to describe dynamic systems, including notions such

as entity, quantity, value, change, causality, in/equality, etc.

The KRL is logic-based and does not use any numerical

information. The main reasoning task of the solver is prediction

of system’s behavior, which includes a whole range of specific

algorithms implementing subtasks, such as influence resolution,

inequality reasoning, reasoning with assumptions, reasoning

with inheritance, etc.

To be an effective tool for learning, it is important to

acknowledge that systems thinking is a complex skill. It requires

an approach in which the skill is gradually build up. From

that perspective it is relevant to realize that the subject matter

currently taught in secondary education is also complex and

learned stepwise across multiple years as specified by the

curricula. In accordance with these constraints, the automated

systems thinker is organized such that it is able to work at

distinct levels of complexity. There are five levels in total,

roughly corresponding to the complexity needed in grade 8–12

(Bredeweg et l., 2010).

Knowledge base

As discussed in Section ‘The reoccurring trinity’, a well-

developed KB is a typical component of Artificial Intelligence

systems. In other work, we developed such KBs (e.g., Bredeweg

and Salles, 2009). However, dealing with education brings

different requirements. An important insight fromworking with

teachers has been that they have specific constraints regarding

what their learners need to learn, typically following the details

as specified in the curricula. For a smart tool to successfully

collaborate with teachers in educating learners, this tool should

be adjustable to these requirements. However, covering all the
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FIGURE 2

Poverty (Spitz et al., 2021b). Entities are People and Country, whose relationship is live in. There are seven quantities, such as health and income.

Quantities are related by positive (+) and negative (–) causal relationships. The direction of change is denoted by the δ. In this case, it is only

specified for poverty at birth, which is set to be increasing.

material present in the text books for all the subjects, and

somehow managing that a specific part of that material gets in

focus during a particular lesson, is simply not a realistic goal.

Hence, we decided to take a different approach and develop

small KBs. Each one is dedicated to a specific lesson and

accompanying learning goals, and developed in collaborating

with and as required by the teachers participating in the project

(see also Section ‘Subject matter selection and preparation’).

A small example is show in Figure 2 (Poverty, developed for

geography in grade 8). See for more examples and details

Kragten et al. (2021) and Spitz et al. (2021b).

Supporting the learners in acquiring
system thinking skills

The tool described in Sections ‘Knowledge representation

language and reasoning (solver)’ and ‘Knowledge base’

(the automated systems thinker) can be given to learners

to support them in their learning process. Essentially,

learners learn by creating their own small “knowledge base”,

mimicking the KB created by the teacher. Both the KRL

and the solver are instruments that support the learner in

doing so.

Notice, that the knowledge representation is shown

to the learner as an interactive diagram (a kind of

knowledge graph, similar as shown in Figure 2). After

its initial design and implementation (e.g., Bouwer and

Bredeweg, 2010) this diagrammatic representation has been

further developed. Currently, it depicts all the ingredients

present in the KRL, and also in the reasoning output,

and it enables the learners to interact with these. As such,

this graphical format is an important asset, because it

hides low-level details and enables learners to work at the

“content level”.

Having the graphical user interface, and the rest of the

underlying tooling [as discussed in Section ‘Knowledge

representation language and reasoning (solver)’], learners can

now independently work on assignments and successfully

complete these. However, learners may make mistakes

and potentially learn incorrect details or get stuck in

executing the assignment. Hence, the teacher has to be

alert, monitor and assess the progress of the learners, and

intervene where deemed necessary. Although maybe doable

in small classes, it does make the teaching laborious for

the teacher. To alleviate this burden, we have developed

automated reasoners to further support the learner

by providing just in-time feedback and to stimulate

learners’ self-reliance.

Norm-based cueing and advice

The KB discussed in Section ‘Knowledge base’, which is

created together with the teacher, can be used as a norm.

Our current implementation compares the learner-created

“knowledge-base” (KB-learner) with the KB created by the

teacher (KB-norm). After each manipulation executed by

the learner in the canvas a new mapping is made using

a Monte-Carlo-based heuristic approach. The engine runs

for at most 5 s and then returns the best mapping. Next,

for each discrepancy the support provides two options for
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FIGURE 3

Cueing and Advice (Spitz et al., 2021a). While creating the details

a quantity is wrongly named. Cueing highlights the erroneous

ingredient (here: Q2). Advice suggests an error. Here: Quantity:

wrong name.

FIGURE 4

Progress bar (partly shown). The status is shown for each

ingredient type at the bottom of the canvas. For instance,

“Quantities 2/3/1” tells the learner that 2 quantities have been

created, 3 need to be created in total and that 1 is currently

incorrect (shown in red). When all ingredients have been created

correctly the numbers become green, as for entities here.

feedback. Cueing: a small red circle is placed around each

deviating ingredient (Q2 in Figure 3) and a red question

mark appears on the right-hand side in the canvas. Advice:

when clicking on the question mark, a message-box appears

showing a sentence for each deviation (in Figure 3: Quantity:

Q2: wrong name?). Note that, the algorithm works domain

independent, yet learners get subject specific information. For

instance, whether they assign the correct quantities to each of

the entities.

Progress bar

Next to being informed about errors, it is also helpful for

learners to get information on the degree to which they have

accomplished the goals. This will support them in knowing what

still needs to be done and when the goal is reached, and may also

be relevant to stimulate metacognitive reflection. Our current

approach implements the idea of a progress bar (Figure 4). For

each ingredient type present in the KB-norm the bar shows (i)

how many instances of that ingredient need to be created, (ii)

how many at any given moment have been created, (iii) how

many of those created are incorrect, and (iv) when all the details

for that ingredient type are addressed (by changing font color

to green). Further research is needed to find out whether this

support is helpful and sufficient, without giving away too much.

Two further supports are available. The scenario advisor

inspects the status of the problem situation when presented to

the solver by the learner. If errors occur, the advisor will discover

these and notify the learner. Examples are, missing initial values

for quantities at the start of a causal chain and superfluous

values defined for any intermediate quantity, including incorrect

values that block possible outcomes from being inferred. The

feedback-loop identifier highlights loops after the reasoning

has delivered the simulation results. Two versions exist, positive

feedback (change is reinforced) and negative feedback (change

is reduced). The highlights are intended to help learners observe

important features in the simulated system’s behavior. They can

also be used for coaching and further instruction.

Analytics—Supporting the teacher

A learning analytics module has also been developed but not

used in practice yet. The aim is to provide the teacher descriptive

and predictive overviews, based on the progress learners make

measured by the number of correct and incorrect ingredients,

number of support agents calls, construction speed, etc.

Teacher’s role

Being an effective teacher is a serious challenge (Rosenshine,

2012). The key task is to create an environment that enables

a group of, often diverse, learners to successfully develop their

knowledge and skills. The size and complexity of this task is

currently far beyond the capabilities of any automated agent

based on Artificial Intelligence. However, a hybrid approach

can be very effective when carefully planned and arranged,

especially in specific situations. As discussed above, here we

focus on lessons in systems thinking, where on average learners

complete a lesson series about a specific topic in ∼2 h. Which

tasks does the teacher have, when using an intelligent software

in this context?
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FIGURE 5

Fragment of the poverty example (Spitz et al., 2021b). The initial situation (LHS) reads as follows: Entity people has two quantities, Income and

Poverty. Income is set to increase and has a negative influence on Poverty. Consequently, when simulated (RHS), poverty decreases as can be

inferred from the representation.

Subject matter selection and preparation

The subject matter of the lesson must be selected and

prepared by the teacher. It involves (i) selecting learning goals

for content knowledge and system thinking and thereby scoping

the learning experience as a whole, (ii) creating a qualitative

model to serve as the norm for the intelligent agent, and (iii)

writing a small instruction workbook to guide the learners

during their work (Kragten et al., 2021; Spitz et al., 2021b). If

the intended lesson already exists, because it has been created

and used before, the preparation becomes a simple selection

step, often requiring only a few modifications of the available

resources. Developing a new lesson is a more serious endeavor.

Both, the construction of the workbook and the qualitative

model (that is, the KB-norm) require advanced pedagogical and

subject matter expertise and take a certain amount of time to

create. Existing materials in terms of workbook templates and

model patterns can be used to speedup this process. Templates

and patterns also help to ensure quality.

Advanced explanation

Learners sometimes have subtle misunderstandings which

are hard to overcome using logic-based explanations. For

example, formal reasoning, as required by the learner when

working with the qualitative representation, may get intertwined

with confounding everyday concepts. This is where teachers

make a significant difference. Consider the following. In a

lesson on causes of poverty, a causal dependency represents

the notion that an “increasing income will decrease poverty”

(Figure 5). In the formal language this is represented using

a negative causal dependency: the affected quantity (poverty)

changes in the opposite direction of the causing quantity

(income). However, in everyday conversation people typically

say that “more income is good for poverty”, implying that

more income will improve the situation. We have observed

that most learners, possibly after some “going back and forth”,

will grasp the correct interpretation. Acquiring this insight is

actually a great learning experience and learners become better

system thinkers. Yet, a small minority needs more advanced

support that goes beyond the formal one. They often require

a kind of dialogue that helps them to recognize and reflect

on the misconception and guidance to revise their knowledge

(Vosniadou et al., 2001). Compared to the current state of the

technology a teacher is better at this task for two reasons. First,

the required dialogue is advanced and often infused with specific

knowledge concerning the learner involved. Second, the number

of possible misunderstandings is potentially high and their kind

is difficult to predict in advance. A teacher is typically more

flexible and more able to address unexpected misconceptions as

they occur.

Class management and learner
engagement

There is set of tasks that are concerned with class

management and keeping learners engaged. Often these tasks are

not specific for the subject matter at hand, yet important for the

learning experience to commence and ultimately be successful.

It involves tasks such as welcoming learners, inquire about their

wellbeing, ensuring a positive classroom climate, inspiring them

to organize their materials and start working, and probably

most important, keep learners engaged throughout the learning

activity. Although intelligent software can vary a lot in terms

of how motivating it is for learners, the overall tasks of class

management and learner engagement are beyond the scope of

current technology. Real time learning analytics can support

the teacher identifying students who need attention. However,

making sense of the learning analytics still needs to be done by

the teacher because they are best informed about their students’
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needs and the current situation in the classroom. Hence, these

tasks remain with the teacher.

Conclusions and discussion

Although the potential of Artificial Intelligence software is

widely proclaimed, its use in education is limited. To deploy

this proclaimed potential, we investigate the use of a hybrid

approach in which humans and intelligence software join forces

in teaching. As a case study, we focus on learners acquiring

systems thinking skills in secondary education and the new

pedagogical approach that we are developing for this purpose.

Different from typical problem solving tasks, in which case

learners produce a particular answer (e.g., a number resulting

from a calculation), learners use a knowledge representation

(language), and an accompanying solver, and learn by creating

a small knowledge base. The latter is presented to the learners as

an interactive diagram.

After briefly reviewing and clarifying our understanding of

what it takes to refer to a system as being anArtificial Intelligence

system, we discuss the tasks best performed by such intelligent

software and which tasks are best, or necessarily, given to the

teacher. The presented approach is part of ongoing research, and

both used and evaluated in real educational settings. There is a

clear added value to this hybrid-approach because both “agents”

can now excel in the tasks they are best at, which results in

improved learning (Kragten et al.2).

Artificial Intelligence systems typically have an extensive

storage of knowledge or information which they deploy when

performing the task they were developed for. We take a different

approach and work with small knowledge bases, often dedicated

to a particular topic aligned with the subject matter that the

teacher wants the learners to work on. Taking this approach is

essential. Partly, because capturing all the required knowledge

beforehand is simply not feasible. Moreover, having a dedicated

knowledge base per lesson is very helpful in fine-tuning the rest

of the interaction with the learner. Notice, that the approach is

still generic and that all the interaction between the software and

the learners is fully automated.

Being explicit is an important feature of the knowledge

representation (language) central to the approach presented

here. Firstly, because the concepts relevant to systems

thinking are all explicitly represented as unique identifiable

and tangible ingredients. This makes that learners work

directly with the notions relevant to systems thinking,

when they create their diagram and present it to the solver.

The explicitness also facilitates the automated “agents” to

directly read-off relevant information and deploy this in

2 Kragten, M., Spitz, L., and Bredeweg, B. Learning Systems Thinking

and Content Knowledge by Constructing Qualitative Representations in

Lower Secondary Education. (under review).

the interaction with the learner. As such, the problem of

“explainable Artificial Intelligence” does not apply here, on

the contrary.

Future work

Part of the steering during lessons in the classroom

currently happens via the workbook. The workbook provides

the learner textual information on the topic at hand,

and has instructions about the steps to take. Part of the

reason for having this workbook was the hypothesis that

teachers prefer text-based instruments as being part of the

overall setup. However, in the meantime experience in the

classroom has shown that these documents create a certain

amount of overhead. Teachers have requested if this can

be handled in a different way. Hence, we are currently

investigated whether the details provided in the workbook

can also be automated, for instance based on the specifics

of the knowledge base that we construct together with

the teachers.

In the ongoing project, we work with a number of schools

and their learners (K8-12). Each learner typically works with

the approach presented multiple times per school year and

over a number of consecutive years. As such, it is tempting to

investigate the notion of a learner-model as a key component

in the current set up. Having a learner-model would help

to further tune the interaction to the specific needs of each

individual student. However, the beauty of the current approach,

thus without a learner-model, is that each student gets a

fresh unbiased interaction each time. It is an open question

whether the added value of a learner model would outweigh

this benefit.
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Distributed cognition for
collaboration between human
drivers and self-driving cars

Alice Plebe*, Gastone Pietro Rosati Papini,

Antonello Cherubini and Mauro Da Lio

Department of Industrial Engineering, University of Trento, Trento, Italy

This paper focuses on the collaboration between human drivers and intelligent

vehicles. We propose a collaboration mechanism grounded on the concept

of distributed cognition. With distributed cognition, intelligence does not

lie just in the single entity but also in the interaction with the other

cognitive components in a system. We apply this idea to vehicle intelligence,

proposing a system distributed into two cognitive entities—the human and

the autonomous agent—that together contribute to drive the vehicle. This

account of vehicle intelligence di�ers from the mainstream research e�ort

on highly autonomous cars. The proposed mechanism follows one of the

paradigm derived from distributed cognition, the rider-horse metaphor: just

like the rider communicates their intention to the horse through the reins, the

human influences the agent using the pedals and the steering wheel. We use

a driving simulator to demonstrate the collaboration in action, showing how

the human can communicate and interact with the agent in various ways with

safe outcomes.

KEYWORDS

autonomous driving, distributed cognition, human-vehicle collaboration, human-

robot interaction, emergent behavior, artificial intelligence

1. Introduction

Recent developments in autonomous driving are leading to a transitional period,

where human drivers and intelligent vehicles coexist. Nowadays, more and more

commercial vehicles feature intermediate levels of automation. The presence of partially

autonomous vehicles on the streets is starting to affect the traditional driver-vehicle

interaction patterns. In fact, the addition of automation leads to a significant behavioral

change in the way humans drive; interacting with partially automated systems disrupts

the classic traffic dynamics, and it can cause unsafe interactions difficult to predict

(Flemisch et al., 2017). Hence, the research community must place at the top of its agenda

the issue of cognitive interaction between the driver and the automated system.

To date, research on vehicle intelligence has mainly addressed fully autonomous

cars. They are far from the idea of human-vehicle collaboration, because the greater

the automation, the less the human is involved in the driving task. In fact, the ideal

self-driving vehicle would dispense with the human and any form of collaboration
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with them. The account of vehicle intelligence completely

separated from the human driver has developed considerably,

also because of the ongoing evolution of deep learning.

However, the research is still far from achieving totally

driverless vehicles, and it often overlooks the importance

of mutual dependence between the human driver and

the vehicle.

We argue that new forms of collaboration between humans

and artificial agents can arise from the theoretical framework of

distributed cognition, i.e., the idea to achieve a task through the

emergent interaction of more intelligent entities. In the effort

to achieve artificial driving agents with increasingly cognitive

abilities, we see a promising direction in the idea of a distributed

cognitive system: two cognitive entities—the human and the

agent—collaborate to achieve the task of driving the vehicle.

As we will show, this framework promotes new interesting

ways to approach human-agent collaboration, leading to the

formulation of a number of “metaphores” suggesting ideal styles

of interaction.

We present a collaboration paradigm showing the

advantages of having a system with more than a single

cognitive entity. The system follows the rider-horse metaphor

to implement distributed cognition. As the horse can “read”

human’s intentions and, reciprocally, the rider can understand

animal’s intentions, we argue that autonomous vehicles might

benefit from a similar ability: the user experience would improve

if the driver could give hints to the car and feel as if the car

could “understand” their intentions. While the rider-horse

system communicates with the reins, the human communicates

with the agent using the pedals and the steering wheel. We

show the collaboration system in action on a driving simulator.

The results illustrate how the human can influence the agent’s

decision-making to obtain, for example, a lane change or an

overtake whenever possible and safe; on the other hand, the

agent can dismiss the human’s suggestion if they are dangerous

or not significant.

The following Section briefly introduces the different

accounts of cognition proposed through the years, focusing

especially on the distributed nature of cognition. Section 3

presents the main research direction pursued in autonomous

driving, which sets aside the idea of collaboration with

the human and focuses on vehicle intelligence as single

cognition. Section 4 dives into the distributed account

of vehicle intelligence and analyzes various collaboration

paradigms between humans and autonomous agents.

Section 5 presents the interaction mechanism we propose

between a human and an autonomous agent previously

developed. The section describes how the agent works

(in brief) and how the interaction mechanism is realized.

Section 6 demonstrates the system in action using a driving

simulator. Lastly, Section 7 draws the conclusion and discusses

future work.

2. Accounts of cognition

It already exists a form of intelligence capable of driving

vehicles—humans. Thus, it is reasonable to design other forms

of “vehicle intelligence” by taking inspiration from human

intelligence and cognition. Human cognition is the focus of a

vast area of research with a long-stand history. It is useful here

to briefly sketch the different accounts of cognition proposed

through the years, with special attention to the distributed

nature of cognition.

One of the core ideas of cognitive science, at the time of

its birth in 1956, is that minds and computers are exemplars of

the same class, the physical symbol system (Gardner, 1985). A

fundamental corollary of this theory is that what is possible for a

human mind—for example, driving—is possible for a computer

as well. This idea works in principle, but there is still no clear

understanding on what kind of computations the human brain

runs when, again for example, the person is driving a car.

Cognition has been characterized with a distributed

structure since the early period of physical symbol. Newell

and Simon (1972) proposed an abstract structure divided

into perceptual modules, a central information processing

system, and motor activation modules. Fodor (1983) postulated

that the mind is a collection of autonomous modules, with

independent information, communicating by input/output.

Moreover, Minsky (1986) proposed that the mind is like a

society, in which each inhabitant has their own job and

cooperates with the rest toward common goals. Rumelhart and

McClelland (1986) highlighted how cognition is distributed

over a large number of interconnected units. The “distributed”

account of cognition mentioned so far considers only a single

cognitive entity, composed of several sub-parts. However, there

is cognition beyond the individual intelligence.

The idea of distributed cognition became popular with the

work of Hutchins (1995b,a). This current of though stresses how

the highest cognitive functions imply a strong social relation

and cannot be studied in isolation (Cole and Engeström, 1993).

Hutchins founded the concept of distributed cognition on his

extended cognitive ethnography of ship navigation (Hutchins,

1995a): a ship requires a complex system made by both a

team of people and an array of technologies, all working

together. The team is organized, with precise roles for each

crew member, and the cognitive work is offloaded thanks to

aids such as instruments and charts. Hutchins further extended

his study of distributed cognition from ship navigation to

aviation—a domain closer to the focus of this paper than sea

navigation (Hutchins, 1995b). The case analyzed by Hutchins

is the management of the airplane’s speed during landing.

Speed is the most crucial factor for a safe landing. The process

involves coordination within the crew as well as interaction

with the instrumentation. Hutchins’ account of cognition has

been accepted as the best way to describe the dynamics
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and complexity of various human organizations, including

classrooms, office work, company organization, and air traveling

(Dror and Harnad, 2008).

Despite the innovation of Hutchins’ work, cognitive science

of that time was dominated by another school of though,

called 4E Cognition (Newen et al., 2018). The “4E” approach

characterizes cognition with four features: embodied, embedded,

enacted, and extended. Embodied cognition analyzes not just the

role of the mind, but also the role the body has in cognition.

Embedded cognition focuses on the integration of the cognitive

agent into an environment. Enacted cognition assumes that

knowledge is closely related to the notion of action (for example,

perception is not just something propaedeutic to an action, it is

a sort of action itself). We will not go in detail of these accounts

of cognition as they are not the focus of the discussion; it is the

last “E,” in fact, the most relevant in our context.

Extended cognition (Clark and Chalmers, 1998; Clark, 2008)

presents an even more radical account of cognition than the

one proposed by Hutchins. Extended cognition accepts as active

components of cognition all kinds of things that can help

humans think. Clark’s famous example is the notebook used

by a person suffering from memory loss. The person uses the

notebook to take note of everything they need to know. For

the person’s cognition, the notebook plays a role as crucial

and constitutive as their biological memory. Unlike Hutchins’s,

Clark’s proposal spurred a huge debate within cognitive science

(Menary, 2010), and it has become a key theoretical framework

for topics such as the Internet enhancement of cognition (Smart,

2017). However, in the context of vehicle intelligence, Clark’s

notion of extended cognition is not so apt. According to him,

the cognitive system gives equal partnership to the human mind

and the external component. This aspect is questionable when

the external part is trivially poor from the cognitive point of

view—like the notebook example—or when the external part is

a knowledge-packed resource like Wikipedia or Google.

The cooperative relation between humans and their

extended cognitive counterpart is well-represented in the

framework proposed by Poirier and Chicoisne (2008). They

present a two-dimensional conceptual space (see Figure 1) to

classify the cooperation between two entities in a cognitive

system. One axis represents the degree of cognition of the

entities, ranging from cognitive to non-cognitive. For example,

a pencil is totally non-cognitive, while humans have maximum

degree of cognition. The other axis represents the outcome

of the cooperation, which ranges from aggregate to emergent.

Aggregate means there are no cooperative or inhibitory

interactions among the parts of the system, and the task can

be achieved even when parts of the system are removed.

Emergent represents the opposite, when the parts of the system

collaborate actively to achieve a shared task. For example,

two researchers write a scientific a paper, and they agree to

split the work in half; each person writes only a specific

section of the paper without reading the rest. Only at the

FIGURE 1

Conceptual space proposed by Poirier and Chicoisne (2008) to

classify the relation between two entities in a cognitive system.

end, they merge the sections together. In this way, there is no

cognitive advantage from the cooperation, because it is a simple

aggregation of individual cognitive loads. Although the entities

have high degree of cognition, the collaboration is aggregate.

Any approach exploiting the concept of distributed cognition

should fall in quadrant 2 of this conceptual space.

In the following sections, we will analyze current approaches

to vehicle intelligence and how they relate to distributed

cognition.

3. Vehicle intelligence with
single cognition

The main research direction in autonomous driving focuses

on developing high levels of driving automation—the higher

the level, the less the human is involved in the driving task.

The Society of Automotive Engineers (SAE) defines six levels of

driving automation (SAE, 2021), summarized in Figure 2. Level

0 stands for no automation at all, i.e., traditional automobiles.

Level 1 introduces basic forms of driver assistance, such as

emergency braking. Level 2, also called partial automation, is

the form of automation currently available on recent vehicles,

and it includes systems like adaptive cruise control and lane

following. However, the human is still responsible of driving

the car and must constantly supervise the system. Level 3,

also called conditional automation, introduces a drastic shift

from the previous level. Here, the system is responsible for

driving the car and supervising the scene, while the human

is allowed to engage in other activities. These systems operate

in limited operational design domains, usually highways. Still,

emergency situations might occur where the system is not able

to proceed safely: in these cases, the system disengages from

the driving task and requires the human to resume control

of the vehicle with short time. Level 4 does not need human

supervision. The system can work even without a person

inside the vehicle. However, it still operates in limited domains.
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FIGURE 2

SAE levels of automation SAE (2021).

The operational domains usually consist of highway scenarios,

which are easier to manage with respect to urban scenarios.

Driving in urban areas presents a bigger challenge because of

multiple traffic directions, intersections, parked vehicles, traffic

lights, sidewalks, and numerous classes of vulnerable road users.

Lastly, Level 5 represents full automation—ideally, a car without

steering wheel and pedals. Here, the human driver is completely

replaced by the system, which is able to operate in any conditions

without limitations.

Most of the research effort is now put into developing

Levels 4 and 5. This research direction overlooks the idea of

collaboration between human and driving agent. The vehicle

intelligence, in this account, aims to gradually assume the role of

the driver and make the human simply a passenger not involved

in the driving task. In fact, the higher the level of autonomy,

the more the human driver is replaced by the artificial agent.

This approach to autonomous vehicles is far from distributed

cognition—there are two cognitive entities in the system, but

there is no collaboration between them. Either the agent or

the human is in charge of controlling the vehicle, and when

necessary the control passes to one another. Disengagements,

i.e., where the human must resume control of the vehicle

because the agent stops working safely, are one of the most

critical aspects of autonomous driving systems. The problem of

disengagements affects Levels 3 and 4 themost, precisely because

the collaboration between the cognitive entities in the system is

missing. In fact, the more automation is added to the system

(and the more reliable and robust the autonomy is), the human

is less likely to predict the automation failure dues to the lack

of cognitive engagement (Endsley, 2017). For this reason, Levels

3 and 4 are paradoxically less reliable than Level 2, where the

human should be constantly supervising the system (however

human beings tend to misuse Level 2 not supervising as they

should).

Level 5 of autonomy can be the solution to the conundrum

of disengagements, since the system would never require the

person to take over driving. Completely replacing human

drivers with artificial drivers is indeed desirable, but still

a challenging task. Production-level deployment of full self-

driving vehicles remains a distant future (Jain et al., 2021). On

the one hand, state-of-the-art driving agents surpass humans

in computation, responsiveness, and multitasking. On the other

hand, humans exceed automation in the capacity of detection,

context understanding, induction, and improvisation (Xing

et al., 2021). For this reason, researchers are looking at new

directions to develop Level 5 systems focusing on cognitive-

inspired approaches. To achieve an AI capable of handling

any possible (or unseen) traffic scenario, it appears more and

more necessary to develop high-level cognitive abilities similar

to humans (Wang et al., 2021). Implementing human-like

cognitive behaviors is far from easy. As discussed in Section 2,

there are countless theories trying to progress the understanding

of the mind and the brain. The current understanding of how

the brain executes complex behaviors such as driving is vague,

often controversial, and short of detail.

Given the challenges linked to Level 5 systems, a parallel

research direction looks at the concept of distributed cognition

applied to vehicle intelligence. The idea is to design systems

where the collaboration between human and agent is at the core

of the driving mechanism. This approach takes the best of both

worlds, leveraging the potential of human intelligence and the

computational power of machine intelligence.

4. Vehicle intelligence with
distributed cognition

Asmentioned in the Section 1, vehicle automation will cause

significant behavioral changes in human driving. The behavioral

change depends on the way vehicle intelligence is designed. In

the “single cognition” account reviewed in Section 3, humans

are gradually removed from the driving task. However, the
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transition from Levels 2–3 to Levels 4–5 is proceeding slowly,

forcing human drivers to interact with partially automated

systems—often without being aware that other vehicles are

controlled by artificial agents. These interactions disrupt the

classic traffic dynamics and can produce unsafe scenarios (e.g.,

disengagements) that are difficult to predict (Flemisch et al.,

2017).

The “distributed cognition” account of vehicle intelligence

approaches the problem of driver-vehicle interaction patterns

differently. Cooperative vehicle intelligence is grounded on the

idea that, in a system, knowledge does not lie solely within the

individual but rather within all entities involved in the system

(Banks and Stanton, 2017). This follows Hutchins’ account of

distributed cognition, described in Section 2. Applying this

idea to intelligent vehicles means that humans and driving

agents must collaborate actively. The driving task is achieved

only through the interaction of the two entities, because each

contributes with a different (if not complementary) set of

cognitive skills.

It is not straightforward to determine how the skills of

drivers and automated vehicles can be combined for optimal

cooperation. Researchers have proposed metaphors to extract

design concepts for ideal human-agent interaction. Marcano

et al. (2020) pinpoint four metaphors used as “blueprint” for

distributed driving systems. The first is the rider-horsemetaphor,

also called H-Metaphor (Flemisch et al., 2003). It compares the

human-agent interaction to a human riding a horse. When

riding, the human controls the horse through the reins. This

haptic interface allows the horse and the rider to “understand”

each other’s intentions. In addition, the rider can take the horse

under tight reins to exert more direct control or can use loose

reins to provide the horse with a higher degree of autonomy. The

second metaphor is the aviator instructor-student (Holzmann

et al., 2006). It describes the interaction occurring in a flying

training session between a student and an experienced aviation

pilot. The expert aviator assists the beginner either actively (by

exerting forces on the control system) to help with the execution

of maneuvers, or passively (by holding the steering control with

different forces) to approve or disapprove the student’s action.

The next metaphor is the joint-carrying of an object (Flemisch

et al., 2016). It emphasizes the collaboration between two agents

that share the same task and interact physically on the same

object. The interesting aspect is that the agents have different

perception capabilities—in the specific example, one is walking

forward and the other backwards. Yet, the information perceived

by an agent complements each other, and both are needed to

complete the task. Lastly, the parent-childmetaphor illustrates a

parent teaching a child to ride a bike (Flemisch et al., 2012). In

this metaphor, the child has control of the bike, and the parent

does not interfere while the child is performing well. If the child

starts wobbling, the parent intervenes in proportion to the risk—

the intervention should be gentle in any case, to avoid rejection

of the assistance.

All metaphors are relevant to the case proposed here, but

with various degrees. The least relevant metaphor is the parent-

child, while it is certainly true that the autonomous system

should avoid to overwhelm drivers while they are performing

well, and gently intervene if the driver leads the vehicle to an

unsafe condition. The joint-carrying metaphor describes well

one specific aspect: the different and complementary perceptions

of the scene by the driver and the system. However, it goes no

further in indicating how these differences should be reconciled.

The aviator instructor-student metaphor brings us back into

the domain of aviation, which has certain affinities with

autonomous driving, as commented in Section 2. Aeronautics

has a long history of automated procedures and human-

computer interactions. However, there are obvious differences

with respect to autonomous driving. For example, in the context

of airplanes, distributed cognition implies a distribution of roles

within the crew, while this is irrelevant in an autonomous car.

Moreover, a vehicle continuously interacts with the environment

and the other road users at close range. On the other hand, there

are lessons that can be taken from the field of aviation. As the

role of the driver becomes gradually closer to that of an airplane

pilot, a new class of errors can lead to incidents. In aviation, a

classification error occurs when the pilot assumes that the system

is working in a way that is different from the actual state of the

system. This form of error seems likely to occur within driving

automation as well—this is discussed inmore detail in Banks and

Stanton (2017, p. 15–16). It is, however, the rider-horsemetaphor

that captures in the best and most complete way the current

proposal, as we will explain in Section 5.

Reviews on driver-vehicle collaboration can be found in

Xing et al. (2021), Marcano et al. (2020), Bengler et al. (2014),

and Michalke and Kastner (2011). Works focus on key factors

like human trust and situation awareness, which influence the

design of the system. Moreover, the form of interaction defines

the control mechanism—we can distinguish between shared

control and take-over control. The type of control mechanism

determines also how to implement the steering/pedal system,

either with a coupled or uncoupled control framework.

However, not all attempts at driver-vehicle collaboration can

be considered forms of distributed cognition. Recalling the

diagram of Figure 1 proposed by Poirier and Chicoisne (2008),

there are approaches that fall outside quadrant 2, which is the

only quadrant identifying distributed cognition. Consider, for

example, low-level ADAS systems such as emergency brake

or lane departure warning: they have very low degree of

cognition. Hence, it is not possible to talk about distributed

cognition—they belong to quadrant 4. On the other hand, more

advance (cognitive) systems like overtaking assistance tends to

generate aggregate outcomes, as opposite of emergent outcomes

according to the classification of Poirier andChicoisne (2008). In

these systems, there is no overt cooperative interactions between

the human and the assistant: the assistant is either on or off,

and there is no mean of communication between the parts.
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Moreover, when the assistant is off, the human can still achieve

the driving task. Therefore, the systems are not emergent and fall

in quadrant 1.

In the next section, we will describe our implementation of

distributed cognition in an autonomous driving system.

5. Methodology

We present a collaboration paradigm between a self-

driving agent and a human driver based on the H-metaphor.

In the proposed system, just like the rider influences the

horse’s behavior using the reins, the human driver steers the

decision-making of the autonomous agent using the pedals

and the steering wheel. The system uses an uncoupled control

framework and is an example of distributed cognition applied

to vehicle intelligence. The two entities in the system are both

intelligent, both interpreting the world, and working jointly to

achieve the same task. The self-driving agent has high degree

of cognition and collaborates with the human in an emergent

way. Therefore, the proposed systems falls in quadrant 2 of the

classification space of Poirier and Chicoisne, in Figure 1.

The autonomous agent considered here has been developed

within the European H2020 project Dreams4Cars1. The agent

has the cognitive capabilities necessary to drive a vehicle

autonomously, in controlled situations, and it can be regarded

as Level 4 in the SAE definition. Note that this work focuses

on the interaction paradigm between the agent and the human,

rather than how the autonomous agent works. Here, we include

only a brief explanation of the agent to better understand the

collaboration mechanism; a detailed description of the agent

architecture is in Da Lio et al. (2020).

The sensorimotor system of the agent is designed to be

compatible with the human system. Specifically, the agent

must be capable of seeing the action possibilities latent in

the environment—dubbed affordances by Gibson (1986)—and

it has to generate the corresponding action plans in a way

similar to a human driver. An example of affordance, taken

from Gibson’s original work, is the vision of a stair; it elicits

the action of stepping, up or down, relative to the size of

the person’s legs. Another example—very close to the problem

under consideration here—is the following: “The progress of

locomotion is guided by the perception of barriers and obstacles,

that is, by the act of steering into the openings and away from

the surfaces that afford injury” (Gibson, 1986, p. 132). For a

self-driving agent, the affordances are the physically traversable

space constrained by traffic rules and space-time restrictions

from moving obstacles. The rider-horse collaboration has the

same scheme, since the horse sees the same affordable paths of

the rider, and the rider can infer the horse’s intentions.

1 https://www.dreams4cars.eu

The agent works in two phases: action priming and action

selection. During action priming, the agent detects the set of

affordances D in the navigable space and maps them onto

estimates of their salience. The salience measures how good the

corresponding action is. The actions that the agent can produce

are the set of trajectories U (i.e., time-space locations of the

vehicle) that originate from the current configuration. Since

a vehicle has two controllable degrees of freedom, the whole

space of possible actions is spanned by the specification of the

longitudinal and lateral controls. In our implementation, the

longitudinal control is the jerk j, and the lateral control is the

steering rate r (i.e., the time derivative of the steering angle).

For an instantaneous action u = 〈j, r〉, ν(u, d) represents how

good or desirable the action is in relation to the affordance d.

ν(u, d) evaluates two factors: the probability of remaining in the

specified spatial domain of the affordance d for a sufficient time;

the travel time subject to speed limits and comfort criteria. The

salience to express how good the choice of the current control

〈j, r〉 for the affordance d is the following:

sd
(

j, r
)

= sup
u∈U

{

ν(u, d)
}

. (1)

This means that the salience of the instantaneous choice 〈j, r〉

for the affordance d is the value ν(ũ, d) of the optimal action

ũ among all actions beginning with 〈j, r〉. The global salience

function can be defined as follows, where weights wd serve to

prioritize sets of affordances:

s(j, r) = max
d∈D

{

wd sd(j, r)
}

. (2)

During the second phase of action selection, the agent chooses

the motor control 〈j, r〉 corresponding to the maximum salience

and executes it.

The way the autonomous agent works is broadly inspired

by how human cognition (presumably) realizes the driving

task. Hence, it is reasonable to expect that a similar process

occurs in the mind of the human inside the vehicle the agent is

controlling. The human recognizes their own set of affordances

and computes a salience value s∗(j, r) for each action they have

in mind. We assume that the sensorial system of the vehicle is

reliable—as it is indeed in most situations—and that the system

has learned an efficient control policy in response to affordances.

Hence, is it reasonable to expect in most cases that s∗(j, r) ≈

s(j, r). For a more detailed explanation, see Da Lio et al. (2017).

However, there can be situations where the person desires a

different action or have a specific goal in mind the agent is not

aware of. With distributed cognition, the human can obtain the

desired behavior by collaborating with the agent, which is able to

interpret the human’s intention.

The human interacts with the agent by biasing the action

selection process, through the pedals and the steering wheel.

The gas/brake pedals control the longitudinal bias, and the

steering wheel controls the lateral bias. The biases influence
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FIGURE 3

Screenshot of the OpenDS simulator showing the human

biasing the agent to overtake. The scenario corresponds to

Figure 4(i), showing the a�ordances a in yellow and b in purple.

the computation of the global salience (2) by applying weights

either to sets of affordances or to individual ones. In the case

of longitudinal bias, the human can suggest the agent to drive

faster/slower by pressing the gas/brake pedal—hence, applying

a weight to the faster/slower affordances. The modified salience

function is the following:

s′(j, r) = k(g − b)j s(j, r) (3)

where g and b are the normalized gas and brake strokes,

and k is a convenient gain. In the case of lateral bias, the

human can prompt the agent to change lane to the left/right

by steering the wheel. This action weights the individual

affordances corresponding to lane change in the suggested

direction.

The presented collaboration paradigm works safely because

of distributed cognition. Since the system is composed of

two cognitive capable entities, each of them can supervise the

other and prevent wrong behaviors. For example, if the human

suggests to perform a dangerous or unfeasible maneuver, the

agent ignores the command. In fact, the agent dismisses any

action that is not affordable or for which the salience is low

or inhibited. This mechanism is one of the most critical part

in the system; Section 7.1 further analyzes its limitations and

how to resolve them. The next section provides simulations

demonstrating these safe behaviors.

6. Demonstrations

We test the collaboration mechanism in the open-source

driving simulator called OpenDS2, depicted in Figure 3. This

Section describes the outcome of five tests carried out in three

simulated scenarios. In each test, we focus on how the human

can promote various driving actions by collaborating with the

autonomous agent.

The first test scenario shown in Figure 4(i) is a two-lane

straight road where overtaking is possible and safe. In the

2 https://opends.dfki.de/

FIGURE 4

Three simulated scenarios to test the collaboration between the

agent and the human (yellow car) when other vehicles are

present (red cars). The dashed arrows show the a�ordable

actions. (i) It is possible to follow the red car or to overtake. (ii) It

is possible to follow the car on the right or the one on the left.

(iii) The only a�ordable action is to follow the car ahead.

same lane, there are the ego-vehicle and another car ahead

of it, colored in yellow and red respectively. The autonomous

agent identifies two possible affordances: to follow the red car

(affordance a in the figure), or to overtake (affordance b).

Since the leading vehicle is driving at almost the speed limit,

the agent chooses the affordance a. When the human steers

the wheel to the left, they exert a bias toward the affordances

corresponding to the left lane (justb in this example). As a result,

the salience of affordance b surpasses a, and the agent executes

the action of overtaking the red car. A second test with the same

scenario demonstrates the same outcome but with a different

form of interaction. This time, the human promotes the overtake

by pressing the gas pedal rather than steering the wheel. The

positive bias affects the weights of faster affordances, that is b.

Hence, just like before, the agent shifts from a to b and overtakes

the leading car.

In the next scenario, Figure 4(ii), there are two cars ahead

of the ego-vehicle, which occupy both lanes and travel at

the same speed. In this case, affordances a e b have the

same longitudinal control, i.e., b is not faster than a as

before. The salience of a is grater than b because the latter

discounts the cost of changing lane. Hence, the agent chooses

a. If the human steers the wheel to the left, choosing the

affordance b does not lead to any tangible speed improvement.

However, the agent understands the human’s desire and moves

to the adjacent lane and starts following the left car. Using

the same scenario, another test shows what happens if the

human tries to bias the agent using the gas pedal rather

than the steering wheel. In this case, the human bias has

no effect because there are no affordable faster actions. The

cars ahead do not allow the agent to increase the speed.

Therefore, the human request cannot be satisfied, and agent

keeps affordance a.
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The last scenario, Figure 4(iii), shows a car ahead of the ego-

vehicle and a car overtaking on the left lane. Here, affordance

b no longer exists: the car on the left prevents the agent from

changing lane. Since there are no affordable actions linked to

the left lane, when the human steers the wheel of presses the gas

pedal, there is no effect. The agent ignores the human’s request

and remains on the right lane following a. Further simulations

are available in Da Lio et al. (2022).

7. Discussion

In this paper, we have argued that vehicle intelligence can

benefit from the theoretical concept of distributed cognition.

Distributed cognition can help designing new paradigms

of collaboration between human drivers and autonomous

agents. Cooperative vehicle intelligence is grounded on the

idea that, in a system, knowledge does not lie solely

within the individual but rather within all entities involved

in the system. This research line moves away from the

mainstream development of autonomous driving, which aims

to completely remove humans from the driving task. However,

fully autonomous vehicles are still far from being achieved,

while distributed vehicle intelligence can solve at the present

time the problems caused by the disruption of classical

traffic dynamics.

We have proposed a collaboration paradigm founded upon

the rider-horse metaphor, allowing the human to influence

the decision making of the driving agent. Just like the

rider communicates their intention to the horse through

the reins, the human interacts with the agent using the

pedals and the steering wheel. If the human presses the

gas/brake pedal, they suggest the agent to drive faster/slower.

If the human steers the wheel, they suggest the agent to

change lane.

The collaboration system can support the user also in

situations where the human is normally uncertain on how to

behave. For example, the user hesitates to overtake because

they are not sure about the feasibility of the maneuver. The

user may want to drives closer to the opposite lane to see

better ahead before deciding whether to overtake. With our

collaboration mechanism, the user is not responsible to evaluate

if it is safe or not to overtake. It is the agent that performs

the evaluation and, in positive case, executes the overtake.

Therefore, there is no need anymore for the user to drive

for a moment to the center to have a clearer view of the

road, because the agent is the one responsible to check if the

overtake is feasible. Even if the user steers to the side to see

ahead, the agent will not execute the overtake if it deems the

maneuver risky (note that the perception system of the agent

differs from the human, so the agent does not actually need to

drive to the side to see better, like a human driver would do—

although there are new attempts at human-inspired perception

for autonomous vehicles; Plebe et al., 2021). This collaboration

paradigm leads to a new way of driving, and human drivers

will need some time to adjust to it. With this collaborative

style of driving, humans, and agents become responsible

for decisions at different levels: the agents take care of the

execution of safe maneuvers, and the humans decide on the

overall driving style, e.g., faster/slower, conservative/aggressive,

and such.

7.1. Limitations and future work

The distributed cognition approach works best when

the entities in the system lie close in the “cognitive” axis

of the classification space of Figure 1. In the context of

vehicle intelligence, this means that the human and the

driving agent should be capable of understanding each other’s

intentions. In other words, they should share the same

affordances. Unfortunately, this is not always the case. Fully

autonomous and reliable driving agents do not exist, yet. Hence,

unpredictable situations are still possible, where the human

detects unconventional affordances that the autonomous agent

is not aware of. For example, if the road is blocked by a tree,

an autonomous agent would stop forever; however, a human

driver could be aware that the ground on the side of the road

is “driveable” and that it is possible to bypass the blockage by

driving on the gravel. This is an affordable action that the agent

would most likely miss.

Future work is to extend the collaboration paradigm with

a “tight reins” mode—to use an expression in accordance with

the H-metaphor. With this mode, the human can apply a tight

control to make the agent accepts affordances not known before

and generate new behaviors. If the user insists on an action

that the agent is refusing to perform because not affordable

in its view, after a certain “persistence threshold”, the agent

accepts the new affordance and executes the maneuver. A

similar concept can be found in Vanholme et al. (2011) for

driving on highways. This solution would mitigate the issue

of artificial systems dangerously overriding human decisions—

an issue common also to other research domain such as

aeronautics.
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Di�erences between remote
and analog design thinking
through the lens of distributed
cognition
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Information Technology, Sankt Augustin, Germany, 2Department for Data Science and AI,
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Due to the huge surge in remote work all over the world caused by the

COVID-19 pandemic, today’s work is largely defined by tools for information

exchange as well as new complex problems that must be solved. Design

Thinking o�ers a well-known and established methodological approach

for iterative, collaborative and interdisciplinary problem solving. Still, recent

circumstances shed a new light on how to facilitate Design Thinking activities

in a remote rather than an analog way. Due to Design Thinking’s high

production of artifacts and its focus on communication and interaction

between team members, the theory of Distributed Cognition, specifically

the Distributed Cognition for Teamwork (DiCoT) framework, provides an

interesting perspective on the recent going-remote of Design Thinking

activities. For this, we first highlight di�erences of analog vs. remote Design

Thinking by analyzing corresponding literature from the recent years. Next,

we apply the DiCoT framework to those findings, pointing out implications

for practical facilitation of Design Thinking activities in an analog and remote

setting. Finally, we discuss opportunities through artificial intelligence-based

technologies and methods.

KEYWORDS

human-computer interaction (HCI), artificial intelligence (AI), distributed cognition

for teamwork, Design Thinking (DT), remote work

1. Introduction

In recent years, due to the COVID-19 pandemic, the world experienced a spike

in new digital work and new ways of learning (Brynjolfsson et al., 2020; De’ et al.,

2020; Feldmann et al., 2021). A lot of professional collaboration between individuals,

as well as their interaction with work tools, have become digitized, which affects their

work environment and thus results in behavior change within teams. This includes

video conferencing tools that have become the go-to mode of communication in team

meetings and digital whiteboards or other collaborative software tools that support
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creativity and productivity (Unger et al., 2021). With industries

shifting their focus from production to more service oriented

knowledge work, the need for innovative solutions has been

growing constantly (Brown, 2008; Kane et al., 2018). For this

purpose many industries have started thinking outside the box

and turning to previously unfamiliar disciplines to find new

ways of innovative working and problem solving. Design is one

of those disciplines and Design Thinking (from here on referred

to as DT) has become a popular framework to facilitate the

creation of innovation and to find new solutions to complex,

so called wicked problems (Buchanan, 1992). Wicked problems

are those type of problems that have, among other attributes, (a)

no definitive predefined problem formulation, (b) no stopping

rule (i.e., the problem solver can always do better), and (c) no

definitive right-or-wrong solution criteria catalog (Kunz and

Rittel, 1972). With the ongoing digitization of tools and artifacts,

such as collaboration platforms or design tools, these supporting

technologies are also becoming “smarter.” For instance, Suleri

et al. (2019) have introduced an Artificial Intelligence (AI)-

powered prototyping tool that lets designers create low-fidelity

prototypes and evolves them into mid- to high-fidelity design

drafts. Add to this the current trend of going-remote and

related discussions of a “post-pandemic workplace” (Kane et al.,

2021), we find it necessary to examine the implications of these

technological trends on DT practices. The aim of our study

is twofold: We first want to highlight and examine differences

between analog and remote DT practices. Second, we want to

assess the applicability of Distributed Cognition as a guiding

theory for researching DT practices in both, analog and remote

settings. For this reason, we look at DT and what the going-

remote means for DT practices and practitioners. Due to DT’s

high production of artifacts and its focus on communication

and interaction between team members, we use the theory

of Distributed Cognition (DCog) as a lens to examine how

interactions in the remote differ from interactions in the analog

world. Authors like Blandford and Furniss (2005), Webb (2008),

or Deshpande et al. (2016) have already looked at Distributed

Cognition as a theory to inform research on collaboration in

(agile) teams. Our research expands on this notion by examining

collaboration in DT, specifically when conducted remotely, and

what this means for Design Thinkers’ interaction with artifacts,

as well as with other individuals. We conclude by alluding to the

role of AI in these interactions and highlighting the limitations

of this paper as well as future research directions.

2. Background

In this section we present the underlying concepts behind

DT and DCog. After that, we introduce our methodological

approach to examine the differences between remote and analog

DT with respect to DCog.

2.1. Design thinking

DT, despite its growing popularity, is not a clearly defined

and universally agreed upon concept. It rather serves as an

umbrella term for a diverse conglomerate of understandings

about human-centered, agile, multi-disciplinary, and creative

ways of creating new solutions to existing problems. Scientific

literature reveals several attempts to describe attributes common

to the different DT approaches.

In its origins, DT has largely been defined by the work

of designers (see e.g., Brown 2008), but has now become

a multi-disciplinary framework—or as Lindberg et al. (2010,

p. 35) put it: “Design thinking understood as a meta-

disciplinary methodology loosens the link to design as a

profession.” Accordingly, DT has increasingly found its way into

several research and application domains and practitioners and

researchers from different fields of application have started to

embrace the “designerly ways of knowing” (Cross, 1982). For

example, Kimbell (2011, p. 295) suggests that DT de-politizises

managerial practice, in that it helps managers to “shift from

choosing between alternatives to helping them generate entirely

new concepts.” DT has also sparked the interest of psychologists

in terms of individual behavior and group dynamics. In this

vein, Liedtka (2015) point to DT’s potential to reduce cognitive

biases in decision making, for example through methodologies

that are innate to DT, like perspective-taking, working in teams,

or a strong reliance on empirical evidence. Roberts et al. (2016)

examine DT’s potential for health care, in that it can help health-

care professionals to find solutions to complex and overarching

problems, like the increase in diabetes and obesity, and help

them to bridge the gap between abstract and high-level issues

and physicians’ day-to-day work. Depiné et al. (2017) describe

the integrative nature of DT in their study about Smart Cities.

They identified DT’s potential not just for developing new

technological solutions, but also for integrating citizens needs

and concerns as an integral part of the process.

Brenner et al. (2016) understand DT as a triad of mindset,

process, and toolbox. With mindset they describe a number of

guiding principles that Design Thinkers follow, like human-

centeredness, applying divergent and convergent thinking, early

prototyping, and creating the right environment for creative

problem solving. As for process, they define an iterative five-

step loop of activities regarding problem definition, need-finding

and synthesis, ideate (i.e., idea brainstorming), prototyping, and

testing. Lastly, they describe a number of tools and methods as

the toolbox of Design Thinkers, like observation, storytelling,

personas, and empathy maps. Its lack of a clear definition,

however, can be considered being part of it strengths, because it

allows DT “to be the right thing at the right time” (Zimmerman

et al., 2007, p. 494). Brown (2008, p. 1) calls DT “a methodology

that imbues the full spectrum of innovation activities with a

human-centered design ethos.” It can be described as a “system

of spaces,” in which different types of activities take place.
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DT models usually follow a multi-stage process, in which

activities fall into different categories like exploration, ideation,

and materialization. For the purpose of this work, we follow

a five step model, for instance as in FIT (2019). The five

steps entail: Empathize, define, ideate, prototype and evaluate.

Figure 1 illustrates the iterative DT process. First, empathize

concerns activities that help the design thinker to build a

deep understanding of their target audience and their real-life

problems through interviews, desk research, or observation.

The gathered information is subsequently structured in the

define stage through thematic analysis, persona building, or

the definition of an actionable problem statements. Ideation

concerns activities that support the exploration of novel

solutions through various brain-storming techniques. Their

subsequent incarnation, usually as low-fidelity prototypes that

become more sophisticated over time, is carried out in the

prototype stage. In evaluate, design thinkers gather feedback for

the created prototypes. As indicated in the figure, DT activities

seldom follow each other in a linear fashion. They are rather

applied based on their situational necessity.

Examples of the successful application of DT are abundant.

In “Creative Confidence,” Kelley and Kelley (2013) describe

how DT has helped in the design of MRI machines for the

pediatric station of a hospital in the USA. Due to children’s

nervousness and anxiety of the sterile, small, and noisy tubes

it can be difficult for radiologists to get a readable image. By

methods of observation, interviewing, and iterative prototyping,

the design thinkers could develop a redesigned MRI machine

and an accompanying room concept that was not met with

fear or nervousness by the patients, for instance a pirate ship-

themed MRI room. Hehn and Uebernickel (2018) describe

how DT can be used for requirements engineering. In their

paper, they have analyzed projects from a data base of a Swiss-

German consultancy, which were carried out following a DT

approach. Project Falcon, for instance, was conducted over the

course of 20 months by an interdisciplinary team that was

comprised of domain experts, designers and business modeling

experts to accommodate for feasibility, desirability and viability

of the final product. Activities out throughout the project

entailed interviews, persona building, mapping out customer

journeys, focus groups, prototyping of mock-ups, user tests, and

development of the software.

The concept of co-creation is essential to Design Thinking

(Plattner et al., 2012). Consequently, a lot of design-thinkers’

work happens in collaborative settings (Kress and Schar, 2012).

Design happens as a conversation “[. . . ] with the problem that is

being addressed, withmaterials and artifacts, with our colleagues

and with ourselves” (Sirkin et al., 2012, p. 173). While often not

stated explicitly, the DT workshop in teams of three to five team

members can be found in the literature as the preferred modus

operandi of co-creative DT activities (see e.g., Brown, 2008; Levy

and Huli, 2019; Schwemmle et al., 2021). We attribute this to

at least three factors: One being that a workshop can provide a

safe space for the participants which can help spark creativity

(Daniel, 2020). The second is that workshops usually yield a

specific outcome and high output–something that is highly

valued in DT (Mueller-Roterberg, 2018). The third factor that

a DT workshop can be found especially in scientific literature

is that it is a thankful object of study for researchers. Especially

in ethnographic studies, individual and group behavior as well

as the artifacts that result from the workshops can be observed

and studied quite easily (e.g., in Levy and Huli, 2019). Over the

course of this paper, we therefore focus on interactions within

DT activities such as DT workshops.

2.2. Theory of distributed cognition

The theory of DCog was developed by Edwin Hutchins

in the 1980’s and 90’s (Hutchins, 1995a). It is an extension to

classic Cognition Theory, in that it sees cognitive processes not

limited to the individuals’ brains, but rather as being distributed

in socio-cultural systems. By this token, the processing and

the execution of cognitive tasks take place in the interaction

and coordination between individuals and their environment,

rather than isolated in an individual brain (Zhang and Norman,

1994; Hutchins, 1995a). With this, Hutchins and his colleagues

expand the “boundaries of the units of analysis” of cognition

research beyond the individual, and toward “the functional

relationships of elements that participate together in the process”

(Hollan et al., 2000, p. 175). Cognitive processes can hereby be

distributed between members of a group, between internal and

external representations, and through time (Hollan et al., 2000).

In his works, Hutchins studied so called systems of

cooperation. He identified several artifacts people use to solve

complex tasks. In commercial airline flights, for instance, flight

crews need to coordinate their tasks and cooperate in order to

successfully execute the flight plan. Hutchins propagates that the

expertise to fulfill this task resides not only in one individual

crew member, but also in the organization of the tools that the

crew members use to solve this task. Thus, no single individual

can be attributed to being the actual problem solver. Instead, the

complex interplay of many actors and artifacts contribute to the

successful achievement of the system’s goal (Hutchins, 1995b).

To enhance the understanding and analysis of DCog within

small teams, Blandford and Furniss (2005) have developed

Distributed Cognition for Teamwork (DiCoT) as a method of

analysis. They divide it into the three themes: physical layout,

which focuses on a physical as well as virtual spaces and its

objects, information flow, which mainly takes the movement and

transformation into account and lastly, artifacts. As DCog does

not focus solely on one individual, but rather “a collection of

individuals and artifacts and their relations to each other in a

particular work practice” (Rogers and Ellis, 1994, p. 123), the

DiCoT framework takes these differences into account. Thus,

far DiCoT has mostly been applied in critical systems in a real
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FIGURE 1

Design thinking process by Fraunhofer FIT (FIT, 2019).

environment, e.g., in an emergency medical dispatch (Furniss

and Blandford, 2006).

3. Method

First, to develop an understanding of current findings on

analog and remote DT and according practices, we examined

the relevant literature in the research fields of DT and Remote

Facilitation of DT. For this, we applied an approach adapted

from Mayring’s qualitative content analysis (Mayring, 2021).

We started by conducting a Google Scholar search with a

subsequent snowballing of the references that could be found

in the available literature. We chose Google Scholar as the

preferred database, because it covers a wide range of material,

including scientific papers, gray literature, technical reports, and

conference proceedings. We applied the search terms “Design

Thinking,” “Remote Design Thinking,” and “Distributed Design

Thinking.” We identified 19 articles of potential relevance, 12 of

which were journal articles or conference proceedings, six book

chapters and one extended abstract. These documents were then

distributed among the authors.

Next, each of the authors highlighted important text

segments from the selected papers individually, after which the

highlighted segments were collected and their main statement

was extracted. For instance, the text segment:

“This means that a participant in a workshop can no

longer be considered the “victim” of the spatial planning by an

architect or interior designer. She rather becomes co-creator

of the space through her interaction with spatial elements. If

people involved in Design Thinking realize this shift of power

and the active role they can take, it allows them to move from

accepting space as-is to changing or even preparing a space

based on what best suits their requirements.” (Schwemmle

et al., 2021, p. 125)

was condensed to “Participants have agency in actively

shaping the space.” In total, 114 of such text segments

were highlighted and summarized. Next, each segment was

categorized either into analog or remote, depending on whether

they related to analog or remote DT practices. Based on these

two categories, we then derived key themes of analog and remote

DT practices. With this, we identified the four themes: Creative

Collaboration, Space, Artifacts, and Information Management.

Next, we described those four themes with regard to analog and

remoteDT practices, the results of which can be found in chapter

4.1.

As we have alluded to earlier, DT usually takes place

in small teams: “Team-based working modes are an integral

part of Design Thinking. Those teams, especially in corporate

environments, are increasingly distributed between locations

over the globe” (Wenzel et al., 2016, p. 15). Team members

of the design thinking team are therefore affected by the

concept Distributed cognition when working on complex tasks

in the design thinking process. This applies e.g., for working

with artifacts: “Throughout the design-thinking process, the

team produces several tangible artifacts: empathy maps, journey

maps, storyboards, and wireframes, to name a few.” A concept

that is known as representations in DCog (Hollan et al., 2000;

Gibbons, 2016). Hence, in the next step of this paper we aim

to deeper understand and learn what DCog might provide

to deeper understand the identified themes of remote and

analog DT. For this, we drew on the DiCoT framework put

forward by Furniss and Blandford (2010), as it is especially
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suited to facilitate the application of DCog theory on teamwork

settings. We then took the categories that we inferred from

the literature review of DT and compared them side by side

to the superordinate categories (and their respective principles)

we found in Furniss and Blandford (2010). We applied the

DiCoT framework as a lens to look at the results documented in

the spreadsheet, described possible critical elements that could

occur when practicing remote DT. The results are described in

chapter 4.2. From this, we lastly derived implications for practice

when conducting DT activities remotely as opposed to analog.

4. Results

In this section we first describe the themes we found when

analyzing DT literature and present differences between remote

and analog DT practices for each theme. Further, we continue

by applying the theory of Distributed Cognition and more

specifically the DiCoT framework, to understand and frame

these differences from a DCog perspective.

4.1. Results of literature review on design
thinking

The analysis of the literature yielded four themes of

analog and remote DT practices, namely creative collaboration,

space, artifacts, and information management. The following

sections describe the findings by juxtaposing practices applied

in analogous settings with practices from digital settings. Table 1

summarizes the key findings. Especially the past 2 years have

proven to be important as remote work experienced a huge surge

due to the COVID-19 pandemic.

4.1.1. Creative collaboration

4.1.1.1. Analog

Creative collaboration between teammembers is at the heart

of DT. Creative collaboration can be influenced by intentionally

composing the DT teams with members from different

disciplines and cultural backgrounds. Due to its strong emphasis

on team-based learning, DT helps to “extend mono-disciplinary

rationales by offering a flexible meta-rationale, which counters

the restriction of admissible questions or analytical schemes

typical of mono-disciplinary thinking” (Lindberg et al., 2010, p.

35).

Collaboration and space are tightly connected with each

other. According to Schwemmle et al. (2021), collaborative

teams ’create’ the space around them, not just by replacing and

altering the elements in the space. Rather, the team members

construe meaning to the space through interaction with and

perception of the space. In this vein, the interaction of individual

team members with the space is perceived, either directly

or indirectly, by other team members, which influences the

behavior and therefore the interaction of those other team

members with the space. This type of reciprocal relationship

between individuals, space, and teams can lead the team to

perceive a space as ’their space’ or ’their home’, which might

provoke a feeling of territoriality (Brown et al., 2005) and,

in extension, a sentiment of psychological ownership for the

space (as in Dawkins et al., 2017). By distributing and placing

certain elements in the space (e.g., chairs, tables, whiteboards,

etc.), DT facilitators are able to determine the character of the

collaboration between the team members. That way, a team

can be prompted to work in a self-organized manner, instead

of a hierarchical task distribution. In addition, the creation of

a social (sub-)space might foster a positive atmosphere and

provide them with a safe-space where they can nurture their

personal relationships, rather than work on a specific task

(Schwemmle et al., 2021). This phenomenon not just holds true

for the concept of space, but also for ideas (Elsbach and Flynn,

2013) where individuals feel like they “own” ideas and show

competitive of defensive behavior as part of the “possessive self ”

(De Dreu and Van Knippenberg, 2005).

4.1.1.2. Remote

Creative collaboration in remote settings is largely

influenced by tools that mediate communication. Luther and

Bruckman (2008, p. 343) define online creative collaboration

as “[. . . ] comprising two key properties. First, people

communicate and meet each other chiefly via computer-

mediated communication. Second, they do so with the purpose

of working together to create new artifacts.” Donaldson et al.

(2021) describe several benefits of remote collaboration over an

analogous setting, like lower costs due to decreased traveling

and used up material, potentially higher retention rates due to

less effort for the team members to attend, and better scalability

of workshops due to the lack of spacial restrictions like room

sizes. However, according to Vallis and Redmond (2021), there

is a persisting inaccessibility of digital whiteboards and drawing

tools to large mainstream cohorts, which leads to the exclusion

of certain populations from the design process.

4.1.2. Space

4.1.2.1. Analog

For DT practices in an analog setting, it is important

to look at the role a physical space plays for the applied

practices. The physical space in which a DT workshop takes

place is filled with elements such as seating opportunities,

tables, flip charts or whiteboards and other physical elements to

work with (Schwemmle et al., 2021). Especially when working

together collaboratively on certain tasks people gather around

whiteboards or create sub-spaces within a room with portable

walls. But not only is space important because of its physical

elements “such as its floor plan, distances, or atmospheric cues

as perceived by the user (perceived constructed space)” but it is

also defined through what people bring with them “such as the
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TABLE 1 Key results of literature review for remote and analog Design Thinking.

Theme Remote Analog

Creative

Collaboration

• The quality of creative collaboration is highly influenced

by the attributes of the tools that mediate it.

• Low costs due to less traveling and less used-up material.

• Potentially higher retention rates due to less effort to

participate.

• Improved scalability of workshops.

• Online collaboration tools like digital whiteboards are still

inaccessible for large, mainstream cohorts.

• Collaboration extends mono-disciplinary rationales.

• It is highly influenced by the space that surrounds people.

• Creative collaboration can foster a feeling of ownership

and defensive behavior with respect to ideas or the space.

Space • Digital tool is essential part of the team’s success.

• They have no physical boundaries.

• Extended “space” by enable external cues from the

internet.

• Asynchronous and synchronous work possible

• Meetings have to be scheduled, and are. cannot happen

spontaneous.

• Physical room with physical elements (chairs, whiteboards

etc.) allows for spontaneous creation of sub-spaces.

• People “create” the room in a reciprocal interaction.

• Physical space can become a ‘home’.

Artifacts • Digital artifacts lack “materiality.”

• They lose their physical restrictions and their functional

qualities with respect to their material attributes.

• Digital artifacts can become “smart” through AI (e.g., in

situated agents).

• Designers transform ideas into “tangible representatives,”

i.e., artifacts.

• They facilitate communication and collaboration

internally and externally.

• Artifacts can guide reflective behavior.

Information

Management

• Easy to access information through the internet or

knowledge management tools.

• Asynchronous work is good for information gathering.

• Synchronous work enables discussing the value of the

gathered information.

• Mostly synchronous work.

• Information needs to explicitly made accessible and

reproducible.

• All information at hand/in the room

individual’s perception, its experiences and resulting behaviors

(reflected constructed space)” (Schwemmle et al., 2021, p.125).

Because space is constantly changing throughout the process of

iterative work, it must be understood on a behavioral level as

well (Brown, 2008). People in a designated space are not merely

caged in it, but they rather “create” space by interacting with the

physical elements in it and assigning meaning to these elements

or their arrangement. The physical space influences people but

can also be influenced by them (Sirkin, 2011; Schwemmle et al.,

2021), thus forming a reciprocal relationship as touched upon

earlier. When it comes to the atmospheric perception of space,

for DT practices it is necessary to let people feel like they have a

home. This helps to foster co-creation and inspiration as people

feel that a certain space is “their own” which “creates safety for a

team, allows identification and fosters well-being” (Schwemmle

et al., 2021, p.133).

4.1.2.2. Remote

In remote DT a variety of digital tools can be used that

set up and guide the scenery of DT activities. They provide a

digital space where a physical space is not available. This requires

having a tool to communicate during the workshop and a tool

to collaborate in a virtual space (Sirkin, 2011). Wenzel et al.

(2016, p. 16) emphasize that “the digital tool is not only a plain

functional instrument. In fact, with its usability and acceptance

it is a relevant factor for the teams’ success. Thus, making the

tool an important player among the members of a team requires

its interplay with the team’s working situation.” In consequence,

a virtual space where teams can coordinate and carry out their

work and collaborate on specific tasks and design a solution is an

essential part of the remote DT process. Additionally, a virtual

space has no physical boundaries. Especially when it comes to

innovative thinking and the creation of ideas, extending ones

space beyond the immediate surroundings using digital tools

might offer a wider perspective and inspiration (Unger et al.,

2021). Team members can access external cues such as images

or information via search engines and extend their knowledge

(Vallis and Redmond, 2021).

Along with the workshop design that might integrate single

person work time or might even schedule the process within
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an extended period of time, a virtual space holds the chance

to work on a personal scale and speed and at the same time

synchronize the teams’ progress, which is a challenge to master

(Yarmand et al., 2021). Asynchronous work however, might

lower hesitations in creative thinking such as the fear of speaking

up, etc. Nonetheless, a virtual space is a challenge when it

comes to spontaneous collaboration andmight even hinder team

members to get help in the moment they really need it (Sirkin,

2011).

4.1.3. Artifacts

4.1.3.1. Analog

The creation of and interaction with artifacts is crucial

to DT: “Design-as-practice cannot conceive of designing (the

verb) without the artifacts that are created and used by the

bodies and minds of people doing designing” (Kimbell, 2012,

p. 135). Designers transform ideas into tangible representatives

(i.e., artifacts), which not only facilitate communication

and collaboration within the team, but also with external

stakeholders and help the designers to stay in touch with the

problem-relevant environment (Lindberg et al., 2010). For Jung

and Stolterman (2010, p. 153), “design can be considered as

a process of creating meaning with proper materials based

on exploratory practice with them,” thus highlighting the

importance of physicality and tangibility of artifacts in DT.

Ghajargar and Wiberg (2018, p. 5) describe the potential for

artifacts to guide reflective behavior, with “‘reflection’ referring

to the action of reflecting on information provided, and being

informed about the consequences of an action or behavior

and to create puzzling and surprising effects”. As physical

representations of an idea, artifacts as prototypes help designers

not just to explore their solutions, but also to communicate

these solutions with the outside world. These types of artifacts,

however, do not only have a profound influence on the actors in

a design process—they also play an important role in research. In

design research and HCI the research through design approach

lets researchers examine problem spaces and create solutions

“through the construction of artifacts” by applying methods

informed by the work of designers (Zimmerman and Forlizzi,

2008, p. 42).

4.1.3.2. Remote

Due to their non-physicality and non-tangibility, digital

artifacts play somewhat of a different role in DT compared to

their analog counterparts. According to Balters et al. (2021, p.

10f), “[t]he use of artifacts (analog or digital) affects practically

every facet of the DT methodology and practice. The absence

or curtailment of artifact usage and accessibility combined

with the absence of face to-face interaction together severely

changes the quality of interaction and outcome between people

during an innovation event.” On the one hand, as digitization

progresses, artifacts (such as prototypes or work tools) lose their

materiality, or become materials without qualities, as Löwgren

and Stolterman (2004) put it. Thus, artifacts lose their physical

restrictions and their functional qualities with respect to their

material attributes. This becomes especially interesting if we

consider spatial artifacts as tools for the design process, like the

properties of a room or the furniture in it. Examining this loss

of material quality becomes increasingly important, as more and

more collaborative design happens digitally and artifacts become

digitized. On the other hand, artifacts gain certain attributes

as well, for instance, as tools are becoming increasingly smart.

AI-supported tools, so called situated, reactive or behavioral

agents are context aware, proactive (i.e., can act autonomously),

preemptive (i.e., help humans to prevent errors) and interactive

(Ghajargar and Wiberg, 2018).

4.1.4. Information management

4.1.4.1. Analog

Information gathering and processing in DT activities are

important factors to successfully running for example DT

workshops. This counts for existing knowledge as input for and

output of these activities as well. Tracing information about

design decisions throughout all phases of the DT process is

therefore key for iterative work. If information gets lost “the

evaluation of ideas is often restricted to the prototype alone

and cannot be navigated back to the original source of the

design decisions” (Gabrysiak et al., 2011, p. 221). Analog group

work is mostly synchronous, all the necessary information is

either contributed by the DT facilitator or by the team members

themselves (Schwemmle et al., 2021). It is therefore important

that all information in the room of the DTworkshop is accessible

as well as reproducible at any time (Gabrysiak et al., 2011).When

communicating the result of a DT activity, a tested prototype for

e.g., a product, the engineering team has to be aware of design

decisions made so they can take them into account in their work.

Information not transferred might lead to the end product not

being in line with the envisioned idea of the DT Team.

4.1.4.2. Remote

Remotely working in the DT phases on the one hand makes

it easy to access information, e.g., by searching for additional

information online and by using the landscape of free digital

tools that support design processes. This might help bringing

everyone on board, “when information has to be shared among

all participants–for instance, during the welcome phase of a

workshop, introducing the challenge or giving interim inputs,

and, finally, to present results to all participants and maybe even

to an external audience” (Schwemmle et al., 2021, p. 129). On

the other hand a challenge in a remote setting is to develop

a common knowledge base. Here, working asynchronously for

getting more information but synchronously for discussing the

value of it might be necessary.
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4.2. Application of DiCoT on DT

After having identified four themes in the DT literature

that highlight the differences between remote and analog DT

practices, we aim at understanding the implications of the

ongoing digitization on those practices. For this purpose, we use

DiCoT as a framework to look at our findings from a DCog’s

perspective. DiCoT has been applied as an analytical framework

for collaborative work settings before (e.g., in Hussain and

Weibel 2016). Given the highly collaborative nature of DT,

we consider this framework particularly suited for helping us

uncover why the differences between analog and remote DT

occur. Blandford and Furniss (2005) describe their themes

physical layout, information flow and artifacts. Each of their

themes is further divided into different principles, which we will

consider in the context of DT in the following.

4.2.1. Physical layout

The physical layout includes all the environmental aspects

influencing the performance of the cognitive system. Those

environmental aspects may refer to auditive, visual, or tactile

stimuli, which shape the perceptions of humans and thus have

a direct impact on their computational capabilities.

When it comes to remote DT practices space and cognition,

which are one of the principles of the physical layout, differ from

an analog setting. In the analog world, a table can be moved and

stacked with papers, thus help people to reduce complexity and

make choices. In the remote setting space is effectively infinite

and not limited to borders e.g., of a table. Artifacts that are

out of sight cease to exist, which might increase the complexity

of collaboration. Also, digital representations of information

are not easily perceived as natural (naturalness principle). Even

though digital tools try to copy the real world whenever possible,

e.g., a sticky note in real life and its representation in an online

tool are much alike, it is especially the interaction with digital

representations which differs from the interaction with analog

ones. This might provide more effort for mental transformations

to make use of those representations.

Furthermore, tools for remote collaborative work can

provide assistance when prioritizing content or tasks (e.g.,

the “bring everyone to me”-function, or the mini-map in the

collaborative online tool Miro), which in the DiCot framework

can be found in the perceptual principle.

The principle of situation awareness describes that people

need to be informed about details of a situation such as what

is planned and what is going on. Blandford and Furniss (2005,

p. 29) even state: “The quality of this situation awareness can

be influenced by how accessible the work of the team is.” In

the analog context the proximity toward the team is important,

which means one can observe or even overhear what is

happening. In a remote setting there is a lack of proximity which

might lead to less situation awareness. The digital landscape of

supporting tools for remote work also provide the opportunity

to get a better overview on what other teams work on. Especially

for interdisciplinary teams working globally this might create

perceived proximity to other teams. This also holds for the

horizon of observation which provides the team member with

an overview of everything that can be seen and heard. Even

though being present in one physical space helps by focusing

on the environment, a remote access to all information and

digital possibilities of documentation such as video recording or

chatting might broaden the horizon of observation as it can be

accessed any time and from everywhere. However, this requires

a moderation that focuses on a common understanding of the

teams’ horizon of observation. Being aware of ones surroundings

also includes the arrangement of equipment, which is key to

processing information. Here, an analog setting is limited to

the space and equipment at hand, which might be of advantage

when focusing on reducing complexity of problems. In a remote

setting, space and access to information is not limited due to

a broad range of digital tools. On the one hand, this might

help to understand complex problems and get inspired more

thoroughly, but on the other hand could lead to an overload of

information that cannot be processed anymore.

The last principle as part of the physical layout is subtle

bodily supports, which mostly comes into effect in analog DT

so far, e.g., when team members can point at things and speak

with their body. This is limited in a remote setting as it is not

the finger as part of the body pointing on things, but its digital

representation, e.g., a cursor (Sirkin, 2011).

4.2.2. Information flow

Information flow revolves around the interaction of

entities within the cognitive system. This may include the

communication between teammembers and the transformation

of information or tools that facilitate the information flow.

Looking at a remote DT workshop representations (i.e.,

physical realizations of artifacts) are different from their

analog counterparts. This has consequences for the information

management and therefore flow of information.

First, the principle of information movement seems to be

present differently within the analog than the remote setting.

Information in the analog setting can be, for example, “passing

physical artifacts; text; graphical representation; verbal; facial

expression; telephone; electronic mail; and alarms” (Blandford

and Furniss, 2005, p. 32). In the remote setting, information is

mostly provided in a two-dimensional way, e.g., an emoji on

an online whiteboard. Both, analog and remote DT activities

support information movement. Still, being online might put

a different kind of speed and complexity on information

movement, as much information can be accessed quickly and

with low effort, for instance because it easier to copy and paste

information like pieces of text, from A to B.
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The principle transformation of information describes

changes in the representation of information. One example is

filtering information, which in the DT process is an essential

part. Several artifacts, like sticky notes, are gathered, sifted and

structured and thus distilled to one key aspect which is written

on a new sticky note (so called clustering or thematic analysis).

The transformation of information can therefore be realized in

both, the analog and remote DT process. Some digital tools for

remote work even feature tracing prior steps within the process

and therefore allow asynchronous collaboration.

An important activity of DT is to channel all information

that is necessary to develop innovations, whether it is in a

physical or a digital space, so that every teammember has access

to it at any time from anywhere. The principle of information

hubs describes that information from different sources are

brought and processed together. Especially when a team makes

decisions an information hub helps to define further steps.

Elements in a physical room (e.g., whiteboards or flip charts) as

well as in a digital room (e.g., online whiteboards) can support

this decision-making process by displaying all information in

one place and therefore promote effective work. However, the

distribution of information may differ in its extent and the

ways it is provided. When a lot of information is shared at

the same time, the principle of buffering applies, which aims at

withholding information until it can be introduced without the

risk of errors or conflicts with ongoing activities.

4.2.3. Artifacts

The third topic centers around artifacts and how their

design enhances cognition of the individuals within the system.

This includes the layout of an artifact, for instance the form

of a sticky note, as well as the physical movement of it, e.g.,

hanging a sticky note on a chart or moving it. The principle

of mediating artifacts, for instance, describes those types of

artifacts that help the team to complete the task. In remote DT,

digital artifacts have different attributes as compared to haptic

ones. For example, a lot of people’s interactions with artifacts

relate back to their positioning in their immediate environment.

That means that artifacts can be used to create scaffolding—the

second principle of artifacts—for example by placing a marker

where a task was left and is to be picked up again in the

future. In digital spaces, however, Design Thinkers might lose

the perception of an artifact’s location due to the space’s lack

of physical boundaries. Also, as alluded to earlier, materiality

plays a key role in people’s interaction with those artifacts. The

absence of the tangibility of a sticky note, for instance, could

make it harder for team members to use these artifacts to their

advantage (like passing a sticky note to another team member).

Artifacts also serve a representational function in that they

create goal parity—the third principle of artifacts—between the

actors involved. Prototypes, for instance, mediate between the

contemporary and a desired future state and communicate a

DT teams vision and thought process to people external to the

team. Digital prototypes, however, do not convey the same type

of experience as haptic ones do. Practitioners should therefore

pay close attention to the way they create and use artifacts. Given

that digital prototypes are for now impossible to touch, smell, or

taste, practitioners have to rely on visual and auditive clues for

their target audience to represent the desired future state. They

should therefore rely on methods like storytelling or scribbling.

Additionally, they should pay attention to the arrangement of

artifacts on the digital spaces that they are working on. If too

many digital artifacts occupy the digital space and get pushed

outward, or if too many digital spaces are created, people might

lose awareness about their existence.

5. Discussion

5.1. Implications for practitioners

After having elaborated on the perspective of DCog analog

and remote DT practices through the lens of the DiCoT

framework, we now address specific implications for DT

practitioners when applying analog and remote DT. As the

ongoing digitization requests applying both, analog and remote

DT, differences and how they can be used efficiently have to be

considered when designing DT workshops.

As mentioned above, physical layouts in remote settings

differ from analogs ones. Space is virtually infinite, which can

lead to a feeling of being lost or overwhelmed. Practitioners

should use tools that allow them to structure the space into

working areas and assign themes to these working areas. This

could help participants of a DT workshop to better orient and

reduce the complexity of the virtual space. Functions like “Bring

to me,” where the participants’ view on a digital whiteboard

is pulled to the facilitator, can also help with streamlining

attention. In order to create a feeling of naturalness, practitioners

should use tools that allow them to create items that represent a

natural form, like a digital sticky note. They should also point

out their natural representation when they introduce the tools

to inexperienced workshop participants. This can give them a

cognitive aid and make it more effortless for them to use these

items and to feel at ease while using them. The size of the items

(e.g., a sticky note) used in the DT process can also be utilized

by Design Thinkers. Increasing the size of an item may indicate

that it is of higher importance than others. The same holds

true for the color or the shape of an item. However, in some

situations this could be counterproductive. In brainstormings,

for instance, all ideas should initially have equal weight and

importance. If certain ideas are displayed on a larger sticky

note, this could lead to a selective perception (Pronin, 2007) in

the further progress. In general, situational awareness is harder

to convey in remote settings. Hence, practitioners should be

much more descriptive in their language and explicate most
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of what they are currently doing verbally. When conducting

workshops with inexperienced Design Thinkers, this needs to be

pointed out regularly, as it creates transparency and awareness

for the other team members. Additionally, enabling participants

to independently move through spaces or rooms (e.g., break-

out rooms) promotes autonomy. Generally, tools like digital

whiteboards or video communication should be kept as simple

as possible, as switching between tools demands cognitive

resources from the participants (Skulmowski and Xu, 2022).

To ensure good information flow, practitioners should

explicate verbally when they move a digital item from one point

to the other. Team members’ attention can be focused on a

different part of the working area and they might not even be

aware, that an item was moved. Generally, for team members

who are not proficient with tools like digital whiteboards,

moving items might not be an easy task. Warm-up games in

the beginning of a workshop could help to practice this. A big

advantage of digital items is that they can be copied and pasted

virtually without effort–other than analogous ones. By copying

and pasting created items to other sections of the working area,

rather than moving them, the entire process becomes better

traceable. Also, by clustering certain information together in

information hubs and giving these hubs prominent thematic

captions, it can help practitioners to find information quicker

and easier. One of these information hubs could be an Idea

Parking Lot, where team members can “park” their spontaneous

ideas for later reuse. Creating spaces where information can be

“parked” might help the team to reduce cognitive capacities and

therefore focus on the information at hand. Yet, information is

not lost but can be introduced at a later stage.

Artifacts, as the tools that help DT practitioners to generate

and convey their ideas, can also be used to create structure. Some

tools are better developed to create ideas, while others might

be better suited for prototyping. Generally, practitioners should

think about the purpose at hand prior to the DT activity and then

chose a fitting tool. Also, artifacts can create structure, in that

they can indicate to the practitioners where in the DT process

they currently located, for instance through a Kanban board

or other visual cues. Additionally, to make up for the lack of

materiality of artifacts like prototypes, practitioners could break

through the two-dimensionality of virtual artifacts, for instance

by printing out prototypes of a web-page or by providing team

members with do-it-yourself kits like Lego Serious-Play, in order

for them to rebuild the prototype in real-life.

5.2. Future outlook and AI technologies

Finally, as practitioners in the field of computer science we

deem technologies like AI to potentially contribute to the future

of DT practices. In the following we therefore want to offer our

thoughts what AI might hold for DT practices in the future.

Especially remote DT activities hold much potential

for incorporating AI to enhance workshop and learning

experiences. For instance, Eve, a software tool that helps

designers to create low-fidelity prototypes and transition

them into mid-fidelity to high-fidelity prototypes via machine

learning was presented by Suleri et al. (2019). Such a tool

can help design thinkers, not just to learn how to prototype

faster and easier, but also to enhance cognition by distributing

difficult tasks to the software tool. Another possibility, provided

by the use of AI within the physical layout, lies within the

arrangement of equipment. Being aware of ones surroundings

and the equipment at hand might be supported by AI. For

example, an AI-based companion could help a facilitator to raise

awareness of available artifacts and could further accompany

creative processes by using those artifacts (Verganti et al., 2020).

This could also trigger behavior change, as facilitators with lower

experience have a higher level of guidance, thus can implement

new methods more easily.

For the information flow, AI could support the

transformation of information, by offering intelligent clustering

or filtering (Verganti et al., 2020). This means, the decision,

whether an information is important now or if it can be hold

up until later, called buffering, which currently has to be

made by a human intelligence could also be assisted by AI. In

addition, AI could be supportive in making those choices for

example with recommender systems. Further, AI algorithms

could also highlight the most important information to allow

information hubs.

Artifacts can already be supported by AI, e.g., with the

“stickies capture” in Miro (smart text recognition), where

analog sticky notes are automatically recognized and digitized.

Furthermore, the creation of artifacts could also be supported by

such AI powered tools, e.g., algorithms that could be included

in brainstorming activities, or while gathering information on

target groups. This could support facilitators, as well as team

members of DT activities.

Participants of DT activities need to be able to trace where,

e.g., information for personas are coming from, which might

help to minimize the risk of research biases. It is therefore

essential that algorithms, especially those that support decision

making, are transparent and explainable (Explainable AI; XAI)

(Gunning et al., 2019).

5.3. Limitations

This work has been conducted from the perspective of DT

facilitators. For future research, the perspective of teammembers

of DT activities such as workshops should be taken into account

to broaden the significance of the results for the respective

target groups. This paper aims at providing a DT facilitators

view on the changing environment, that has been caused

by the COVID-19 pandemic, rather than empirical insights.
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Thus, collecting primary data could yield further insights to

practitioner guidelines and improve the overall experience of

team members and facilitators in creative work. This may also

foster insights into team members’ appropriation of digital tools

in DT activities and how this might influence their practice.

Due to the COVID-19 pandemic, the demand for digital

tools has increased, as many companies adopted hybrid

working modes and therefore needed more and more

sophisticated tools to facilitate this change. This has accelerated

the development and improvement of various digital tools

for remote collaboration, like digital whiteboards or video

conferencing tools. Due to the high and increasing demand,

these tools grow rapidly in functionality, with providers adding

more and more features to their products, rendering remote

collaboration easier in some aspects (e.g., asynchronous work)

and more complex in others (e.g., efficient communication).

As this is a continuous process, publications differ in the

functionality in the respective tool that has been used, which

may have an impact on the user experience and feasibility of

workshops for practitioners. As the pandemic forced many

practitioners to quickly switch to a remote environment on

a day-to-day basis, recent reflective insights on findings for

remote DT might not have been published yet at the time of

this paper.

This work aimed at looking at the DT process as a whole

and not divide it into its five phases. For future research, it

may be of interest to examine how the different phases are

executed in analog and remote settings and where they differ

most with regards to interaction and distributed work. This

would be an even closer look into DT activities and might allow

for more precise practitioner guidelines. Even though there is a

lot potential for the integration of AI into DT practices, it also

holds risks as well. These may include increasing the cognitive

load (Skulmowski and Xu, 2022) and no sufficient technical

competency by team members and facilitators.

6. Conclusion

We have pointed to the potential influence that digitization

and the development toward increased remote-based work

might have on DT practices. We have analyzed scientific

literature from the relevant research areas and identified four

themes in which remote DT practices might differ from analog

ones. We have used the theory of DCog and the DiCoT

framework according to Blandford and Furniss (2005) to put

our findings in perspective and collect concrete notes for

DT practitioners when conducting remote DT workshops.

Interactions with digital tools have had an increased importance

in many workplaces, which allows us to draw the connection to

the theory of DCog. Therefore, a new light has been shed on the

relevance of corresponding theories and concepts. This allows

future research on remote work settings to take DCog closer into

account to evaluate digital tools and interactions with those.
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Explanatory machine learning
for justified trust in human-AI
collaboration: Experiments on
file deletion recommendations

Kyra Göbel1*, Cornelia Niessen1, Sebastian Seufert2 and

Ute Schmid2

1Department of Psychology, Work and Organizational Psychology Unit, Friedrich-Alexander

University of Erlangen-Nürnberg, Erlangen, Germany, 2Information Systems and Applied Computer

Science, University of Bamberg, Bamberg, Germany

In the digital age, saving and accumulating large amounts of digital data is

a common phenomenon. However, saving does not only consume energy,

but may also cause information overload and prevent people from staying

focused and working e�ectively. We present and systematically examine

an explanatory AI system (Dare2Del), which supports individuals to delete

irrelevant digital objects. To give recommendations for the optimization

of related human-computer interactions, we vary di�erent design features

(explanations, familiarity, verifiability) within and across three experiments

(N1 = 61, N2 = 33, N3 = 73). Moreover, building on the concept of

distributed cognition, we check possible cross-connections between external

(digital) and internal (human) memory. Specifically, we examine whether

deleting external files also contributes to human forgetting of the related

mental representations. Multilevel modeling results show the importance of

presenting explanations for the acceptance of deleting suggestions in all three

experiments, but also point to the need of their verifiability to generate trust in

the system. However, we did not find clear evidence that deleting computer

files contributes to human forgetting of the related memories. Based on our

findings, we provide basic recommendations for the design of AI systems that

can help to reduce the burden on people and the digital environment, and

suggest directions for future research.

KEYWORDS

distributed cognition, transactivememory, trust, forgetting, explainable AI, human-AI

partnership

Introduction

Digital data carriers such as hard drives or cloud spaces have become important

memory partners, and cognitive offloading—that is, externally saving information to

reduce information processing requirements—can be used to decrease the cognitive

demands of a task (Risko and Gilbert, 2016). However, in today’s increasingly digitized

world of work, individuals save and accumulate more digital objects in their external

memory than they actually need in the short and long run. Thus, deleting or archiving

irrelevant and outdated data files on a regular basis is important in several respects:
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It helps to reduce information overload, limits distractions,

enables working in an effective, focused, and goal-oriented

manner (Edmunds and Morris, 2000; Hair et al., 2007; Dabbish

and Kraut, 2010; Soucek andMoser, 2010; Niessen et al., 2020b),

and saves energy (Rong et al., 2016). However, often people

do not delete irrelevant files, as deleting tends to be a decision

under uncertainty, is effortful, and takes time. Therefore, people

might benefit from an AI system designed to support individuals

in deleting irrelevant digital objects in external memory (on

the computer) on a regular basis. Research has shown that

the transparency of system recommendations is important for

willingness to use such a system and trust in a system (Pu and

Chen, 2007; Wang and Benbasat, 2007; Mercado et al., 2016;

Ribeiro et al., 2016; Miller, 2018; Thaler and Schmid, 2021).

Thus, the AI system providing explanations plays a central role

in the interaction between humans and the AI system.

To investigate whether and how an explanatory interactive

AI system helps people to delete irrelevant files from

their external memory (i.e., storage device), we developed

an assistive AI system (Dare2Del) and conducted three

experimental studies focusing on the role of explanations of

Dare2Del’s recommendations for users’ attitudes (information

uncertainty, trust), behavior (deleting files) and memory

(forgetting irrelevant files). Specifically, building on the concept

of distributed cognition (Hutchins, 1995; Zhang and Patel,

2006), which proposes that cognition exists both inside and

outside the individual mind, prompting users to actively delete

irrelevant digital objects and explaining to them why might also

encourage forgetting of the related content in human memory

(Sahakyan et al., 2008; Foster and Sahakyan, 2011).

Dare2Del is been developed since 2018 with the main

intention to demonstrate how methods of explainable AI can be

combined with interactive machine learning to keep humans in

the loop in AI supported decision making (Niessen et al., 2020b;

Schmid, 2021). As domain, the identification of irrelevant digital

objects in the context of work has been selected for several

reasons. First, in work contexts, whether a file should be deleted

or not is determined by explicit laws and regulations as well

as by personal preferences. Therefore, the domain is suitable

for AI approaches which combine knowledge-based methods

and machine learning (Muggleton et al., 2018). Second, in the

context of work erroneous deletion of files might have severe

consequences in contrast to private contexts and therefore, the

domain is suitable to investigate the effect of explanatory and

interactive AI methods on trustworthiness. Third, cloud storing

of data comes with high monetary as well as environmental

costs and therefore, intelligent tools to identify irrelevant files

which can be deleted are of high practical relevance. Over

the last years, some products which support the identification

of irrelevant files have been developed, mostly in the context

of file management systems, some in the context of cloud

environments. For instance, Google Photos includes a feature

which offers suggestions to delete photos. Suggestions are based

on general characteristics such as file size, quality, unsupported

format and source. In contrast, Dare2Del can take into account

general rules (such as that invoices must be stored for 10 years)

as well as individual preferences (such as that for presentation

where a pptx exists the pdf can be deleted) which can be given

as explicit rules as well as learned from feedback given to

suggestions. The tool most similar to Dare2Del is offered by the

teaching and learning software Canvas (https://community.

canvaslms.com/t5/Canvas-Instructional-Designer/Tool-to-Iden

tify-and-Delete-Unused-Files/ba-p/276260). However, this tool

is only designed to delete unused files and empty folders directly

from Canvas.

Dare2Del has been explored by five test users who work in

the administration of a large company. They used a restricted

version of Dare2Del on a file system which has been constructed

as a mirror of their own. They used Dare2Del for a month

and the general feedback has been positive. However, we are

interested in a more controlled evaluation of Dare2Del in an

experimental setting. For this reason, a fictitious work context

had to be created which does not need specialized knowledge

(e.g., accounting). At the same time, the digital objects have

to be associated with some relevance such that erroneous

deletion would have negative consequences. We decided to use

the context of a library system where students’ theses have

to be archived as a suitable domain which is introduced in

detail below.

Our research offers the following contributions to research

on human AI collaboration: First, we provide a comprehensive

analysis of both behavioral (i.e., accepting the system’s

suggestions) and cognitive (i.e., trust and credibility building)

outcome variables. This allows us to not only identify if an

assistive system can support users to delete irrelevant files,

but also how it can help. Thus, our research also offers

possible starting points for future improvement and individual

or contextual adaptations which can help to increase deleting

behavior. This is especially important, as people often do not

delete irrelevant or obsolete digital objects in their working

and private life. If an explainable AI system can initiate and

support behavior change (i.e., lead to increased deleting of

files), this might have positive consequences for individuals’

stress levels and performance, but also for organizational

effectiveness and energy saving. Moreover, we aim to explore

underlying mechanisms of action and explain why explanations

might be beneficial and help to change behavior (i.e., lead

to increased deleting of files): We propose that explanations

reduce information uncertainty, which in turn leads to more

acceptance of the AI system’s recommendations and the deletion

of the proposed files. An understanding of these mechanisms

informs design and interventions to enhance trust, credibility

and behavior change in human-AI interaction.

Second, our research adds to the literature on distributed

cognition by testing the assumption that an action in external

memory (i.e., digital storage devices) has consequences for the
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corresponding internal mental representation. Previous research

has already shown that external memory is used to store

information outside ourselves and that this information is still

connected to our memory (Sparrow et al., 2011). However,

whether actively deleting information in the external memory

can facilitate human forgetting of the connectedmemory has not

been empirically investigated yet. To prove and extend existing

research on the theory of distributed cognition, we ask whether

deleting a digital object—especially when being convinced about

why it should be deleted—also prompts forgetting of the

corresponding memory content.

Theoretical background

The role of explanations

An essential prerequisite for cooperative interaction between

humans and AI systems is that system decisions are transparent

and comprehensible (Muggleton et al., 2018). This requirement

is most obvious in the context of machine learning, particularly

black-box systems such as deep neural networks. Consequently,

explainable AI (XAI; Miller, 2018) has been established as a new

area of research, providing methods to make the decisions of

machine-trained models more transparent. Several methods for

highlighting the relevance of input features have been developed.

For instance, visualizing the regions in an input image that had

the strongest impact on the classification decision can help to

identify overfitting (Lapuschkin et al., 2019). One of the most

well-known methods is LIME (Ribeiro et al., 2016)—a model-

agnostic method which can be applied not only to image data

but also to text. XAI methods providing information about

relevance are primarily helpful to model developers, and are

often not informative enough for domain experts and do not

provide information helpful for end-users (Schmid, 2021). For

instance, in medical diagnostics, highlighting might reveal that

a model that returns a specific tumor type was right for the

wrong reasons because the relevant information used is some

textual mark at the image border. For experts, more expressive

explanations such as rules or natural language are often more

helpful. For instance, the decision between two different severity

classes for a tumor might depend on spatial relations such as

intrusion into fat tissue or quantifications such as the number

of metastases (Bruckert et al., 2020).

Explanations serve to provide reasons for an observed

state of affairs (Keil, 2006; Asterhan and Schwarz, 2009;

Lombrozo, 2016). Often, causal explanations also serve to

justify decisions made, i.e., provide reasons why a decision

is “right” (Keil, 2006; Biran and Cotton, 2017). In the field

of recommender systems, different types of explanations, in

particular feature-based, personalized, and non-personalized

explanations, have been identified and empirically investigated

in terms of their effectiveness for recommending movies

(Tintarev and Masthoff, 2012). In the context of recommender

systems, an extensive user study demonstrated that explanations

increase willingness to use the system again and that

trust in system recommendations reduces cognitive effort

(Pu and Chen, 2007).

Distributed cognition

Distributed cognition describes the phenomenon that

knowledge exists not only inside the individual, but also in his

or her surroundings and within a more complex context—for

example, the social, physical, or digital environment (Hutchins,

1995; Zhang and Patel, 2006). These different knowledge

domains are interconnected and can influence each other not

only in individual, but also in broader collective and cultural

contexts (Hoskins, 2016; Sutton, 2016). Therefore, they benefit

from being analyzed and treated as a holistic system. Phenomena

such as saving-enhanced memory (Storm and Stone, 2015) or

the photo-taking impairment effect (Henkel, 2014; Soares and

Storm, 2022) show that our digital environments can be used to

outsource information and provide cognitive relief (Clark and

Chalmers, 1998).

Surprisingly, most basic research on human-computer

interaction has not explicitly attempted to investigate conditions

and outcomes of these cross-connections and information

transfer processes, and the ways that people use external

anchors, tools, and storage options to support and relieve their

cognitive resources are rather poorly understood (Perry, 2003).

We argue that analyzing the connections between internal

(i.e., human memory) and external (i.e., computer memory)

cognition might not only lead to a better understanding of

how the different domains are coordinated and connected; it

would also provide an important basis for recommendations on

how human-computer interaction processes can be supported.

The fact that cognitions are not only distributed, but also

connected, makes it possible to determine several starting points

for possible interventions. Interventions with respect to dealing

with large amounts of data and information overload could

start either with the user or with the computer system. For

example, a reduction in load could be achieved by deleting files,

which externally limits the amount of information, removes

potential distractors, organizes the work environment, and

therefore contributes to mental relief (Chen et al., 2012). This

could further help individuals stop distracting, task-irrelevant

thoughts, focus on their actual work tasks, and improve well-

being (e.g., Randall et al., 2014; Kluge and Gronau, 2018; Niessen

et al., 2020b; Göbel and Niessen, 2021).

In this way, the concept of distributed cognition is important

from various perspectives and provides an appropriate

framework for comprehensively examining human-computer

interactions and developing, designing, and optimizing

corresponding assistive systems.
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Development of hypotheses and
research questions

As causal explanations show that there are relevant and

intelligent considerations behind the system’s suggestions

(e.g., Keil, 2006; Biran and Cotton, 2017), we propose that

explanations make it more likely that individuals will delete the

proposed files (Hypothesis 1a). Moreover, we aim to replicate the

finding that explanations lead to more trust in the system. Trust

is defined as the willingness to rely on a technical system in an

uncertain environment (Komiak and Benbasat, 2004; Meeßen

et al., 2020) and has two components, one of which is more

emotional and affective and one of which is more cognitive.

Affective trust describes the user’s feelings while relying on the

technical system, whereas cognitive trust can be seen as the

system’s perceived trustworthiness (Komiak and Benbasat, 2006;

Meeßen et al., 2020). Both affective and cognitive trust have

been shown to have positive effects on intentions to adopt and

work with technical agents (Meeßen et al., 2020) as well as

on work outcomes and well-being (Müller et al., 2020), and

thus should be considered when evaluating such systems. In

line with previous research demonstrating that transparency

is conducive to the development of trust (e.g., Pu and Chen,

2007; Pieters, 2011; Shin, 2021), we assume that providing

explanations increases both affective and cognitive trust ratings

(Hypothesis 1b).

Another important factor in this context is credibility.

Described as the believability of information and its source

(e.g., Fogg et al., 2001), credibility has been identified as one

of the strongest predictors of trust in information systems

at work (Thielsch et al., 2018). We assume that explanations

generally increase the comprehensibility and transparency of

the system’s decisions. By providing information on why the

system’s suggestions are valid, users can better understand the

reliability of the underlying processes. This should lead to

increased credibility ratings (Hypothesis 1c).

Furthermore, explanations can reduce information

uncertainty (Van den Bos, 2009), here the lack of information

about why the system considers a file irrelevant (“why am I

getting this particular file suggested”), and thus increase the

likelihood of accepting the system’s recommendations. As

information uncertainty is often experienced negatively (e.g.,

Wilson et al., 2005) and can lead to ruminative thinking (Kofta

and Sedek, 1999; Berenbaum et al., 2008), it might also negatively

impact trust and credibility. Therefore, we not only hypothesize

that explanations directly reduce information uncertainty

(Hypothesis 1d), but also that information uncertainty in the

system’s proposals mediates the effect of explanations of the

system’s proposals on its acceptance (Hypothesis 2a), trust

(Hypothesis 2b), and credibility (Hypothesis 2c).

It has already been shown that person-situation interactions

predict how people deal with too much information in the

related field of thought control (Niessen et al., 2020a). Building

on these findings, we also assume that there are individual

differences in the extent to which explanations support

individuals’ deletion of irrelevant files, trust in the AI system

and finding the suggestions credible. Therefore, we investigated

the moderating role of conscientiousness and need for cognition

on the relation between explanations and acceptance, trust and

credibility. As a personality trait, the need for cognition refers

to people’s tendency to engage in and enjoy thinking (Cacioppo

and Petty, 1982). Individuals with a high need for cognition

seek out for information to make sense of stimuli and events.

Such individuals enjoy situations in which problem solving and

reflection are required (Cacioppo et al., 1996). Therefore, we

propose that individuals high in need for cognition have a

stronger preference for thinking about the explanations, which

helps them to delete irrelevant files (Hypothesis 3a), build trust

(Hypothesis 3b) and credibility (Hypothesis 3c) and to reduce

information uncertainty (Hypothesis 3d).

Conscientiousness is one of the Big Five personality

dimensions (Barrick and Mount, 1991; Costa et al., 1991;

Costa and McCrae, 1992). Conscientiousness includes the

will to achieve, self-motivation, and efficaciousness, but also

a dependability component that is related to orderliness,

reliability, and cautiousness. We expect that conscientious

individuals read and think about the explanations more deeply,

as they are more cautious than less conscientious individuals.

Moreover, individuals high in conscientiousness might find

the explanations helpful for achieving their work goals, as

deleting irrelevant files has positive consequences in terms

of reduced information overload, and distractions. Therefore,

we propose that conscientiousness moderates the impact of

explanations on deletion of irrelevant files (Hypothesis 4a),

building trust (Hypothesis 4b), and credibility (Hypothesis 4c),

and on reducing information uncertainty (Hypothesis 4d).

We also hypothesize that deletion is not only an action that

causes digital objects to be forgotten in external memory, but

may also support intentional forgetting of associated memory

content (Hypothesis 5; Bjork et al., 1998; Anderson and

Hanslmayr, 2014).

Sparrow et al. (2011) showed that individuals were worse at

recalling information that had been stored in external memory

than information that had not been stored on the computer.

This indicates that individuals need to be convinced that

they will not need the information designated as irrelevant in

the future in order to forget: they need to trust the system.

Numerous studies on directed forgetting (Sahakyan et al.,

2008; Foster and Sahakyan, 2011) and motivated forgetting

(for a review, Anderson and Hanslmayr, 2014) support these

assumptions. Here, we explore whether explanations can help

users not only delete irrelevant information but also forget

it in their memory. When they are informed why a file is

irrelevant, individuals can make an informed decision, and if

they accept the suggestion to delete, actually forget the file as well

(research question).
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The present research

We conducted three experiments to test our hypotheses.

Participants regularly interacted with the AI system Dare2Del

and processed deletion suggestions in all experiments. In the

first experiment, we investigated how explanations affect users’

attitudes (information uncertainty, trust), behavior (deleting

files), and memory (forgetting irrelevant files). In the second

experiment, we further enhanced the system’s transparency

and verifiability by giving users the opportunity to check the

correctness of the suggestions. In the third experiment, we

additionally varied memory processing depth of the to-be-

deleted material to further elaborate and systematize effects

on memory.

To estimate the required sample size, we conducted

multilevel power analyses for cross-level interaction effects

(Multilevel Power Tool; Mathieu et al., 2012). We elected to use

an anticipated effect size in the small-to-medium range (0.25, p

= 0.05, Power 95%) and followed parameter recommendations

from Mathieu et al. (2012) and Arend and Schäfer (2019)

and in order to conservatively estimate our sample sizes.

Moreover, Experiment 1 (https://aspredicted.org/3YN_FYC)

and Experiment 3 (https://aspredicted.org/MQT_TYG) were

preregistered on aspredicted.org. All data are publicly available

on OSF (https://osf.io/dk6en/).

Experiment 1

Method

Participants

The study was conducted with 61 undergraduates (majoring

in psychology; 49 female, 12 male) from a German university.

Mean age was 20.30 years (SD = 3.00, range 18–32).

Participation was voluntary and participants received course

credit as compensation.

Materials and procedure

The experiment was programmed with SoSciSurvey

software (with additional php elements), conducted online, and

lasted about an hour. During the experiment, participants were

in contact with the experimenter via video chat. Before starting

the experiment, demographic information (age, gender, and

occupation), need for cognition, and conscientiousness were

assessed with a questionnaire.

At the beginning of the experiment, participants were

instructed that they would be testing a library system (see

Supplementary material) at the university which digitally saves

and manages dissertations, diploma, bachelor’s, and master’s

theses (cover story). First, the participants’ main task was

to archive students’ theses. Specifically, they had to process

36 emails from students who had sent their theses along

with Supplementary information (short cover letter including

author name, name of thesis, type of thesis, publication year).

Participants then entered the important meta-information (title,

author name, type of thesis, publication year) from all 36 emails

into the digital library system and saved the email attachments

automatically by pressing the respective button. After each

email, they received brief feedback from the system that the entry

had been saved. The emails were presented in random order. To

ensure that archiving the theses always involved a comparable

workload, all titles had a similar structure and consisted of two

technical terms (e.g., “neuroticism and burnout”).

Second, participants were instructed to interact with an

assistive system (Dare2Del) that helps to keep the digital library

system tidy, without outdated or duplicate theses. The assistive

system Dare2Del was described as an automatic software that

detects irrelevant, identical and damaged files and suggests

them for deletion. Participants were explicitly advised that the

decision on whether to accept or reject the suggestion was

completely up to them. Nevertheless, they were also encouraged

to keep the archival system organized by using Dare2Del. While

processing the emails, the assistive system popped up 12 times.

Each time, a file was presented and suggested for deletion (see

Supplementary material).

We systematically varied the explanation for why the file

should be deleted: Six files were suggested without explanation,

and for six files the assistive system provided a short explanation

(three different explanations: thesis file is identical to another

and was obviously saved twice; thesis file is outdated, and

a newer version exists; thesis file was submitted at another

university and therefore should not be in the system). Also, we

systematically varied the familiarity of the files. Six of the to-be-

deleted files were thesis files that the participants had previously

saved into the archival system—that is, they had already entered

the thesis titles into the system and saved the respective

information. Six files, on the other hand, were completely new

files that had not been presented before (unfamiliar files).

After processing all emails from students and suggestions

for deletion from the assistive system, participants completed

a recognition test. The 12 thesis file names the assistive system

had suggested during the experiment (e.g., “narcissism and

loneliness”) and 12 distractors (thesis file names with slightly

modified titles; e.g., “egoism and loneliness”) were presented to

the participants in a random order. Participants were asked to

indicate whether they had processed the this exact title before or

not. In this way, we assessed whether participants could correctly

identify the original files they had dealt with before. At the end

of the experiment, participants had the opportunity to make

general comments and were then fully debriefed.

Research design

The experimental design included an explanation condition

(suggestion with explanation, coded as 1, and without

explanation, coded as 0; within-person) and need for cognition

and conscientiousness (between-person, see Figure 1). Need for
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FIGURE 1

Study model.

cognition was assessed with 33 items (e.g., “I really enjoy the

task of finding new solutions for problems”; Bless et al., 1994;

Cronbach’s Alpha= 0.92), and conscientiousness with the NEO-

PI-R (60 items; Ostendorf and Angleitner, 2004; e.g., “I work

goal-oriented and effectively”, Cronbach’s Alpha= 0.85).

Dependent variables

We assessed five dependent variables. Firstly, we recorded

whether the assistive system’s suggestion to delete the file was

accepted or not (no = 0; yes = 1). Secondly, after participants

accepted or refused the suggestion, we measured trust with two

components, namely cognitive trust (“I feel comfortable relying

on the assistive system”) and affective trust (“I trust the assistive

system completely”). The third dependent variable we measured

was credibility (“The information given by the assistive system

was credible”) and the fourth was information uncertainty (“I

feel uncertain as to why the file was suggested for deletion,

because I do not have enough information”). Trust, credibility,

and information uncertainty were answered on a 5-point Likert

scale ranging from 1 = do not agree at all to 5 = fully agree.

Finally, we assessed the hit rate of the thesis names in the

recognition test (no= 0; yes= 1).

Control variables

As control variable, we assessed the familiarity of the theses’

titles (familiar, coded as 1, files processed by the participants;

unfamiliar, coded as 0, new files not presented to participants).

To consider possible effects of practice with the task, we further

included a time variable in the model representing the position

of Dare2Del’s suggestion to delete a file (0–11). This variable

makes it possible to detect systematic changes over time.

Results

Statistical analyses

Multilevel modeling and logistic multilevel modeling were

used to conduct the within-person comparison of experimental

conditions. Multilevel modeling presents a valuable alternative

approach to traditional repeated measures analysis of variance

(RM-ANOVA), as it is more robust to violations of assumptions,

can handle missing data, and allows for testing more complex

hierarchical structures (Cohen et al., 2003). We used R software

and the packages lme4 (Bates et al., 2015) andmediation (Tingley

et al., 2014) to conduct our analyses. All models were two-

level models, with suggestions by Dare2Del with and without

explanations, familiarity of the theses’ titles, deletion decisions

and recognition of files in the final recognition test nested within

individuals at Level 2.

The continuous Level 1 (within) predictor variable

information uncertainty was centered around the person mean

(Nezlek, 2012), and the continuous Level 2 (between) predictor

variables (need for cognition, conscientiousness) were centered

around the grand mean. Dummy-coded predictor variables

were entered uncentered, as were all outcome variables for the

respective models.

We applied the two-step approach to causal mediation

analysis documented by Imai et al. (2010) and Tingley et al.

(2014): In the first step, the mediator variable is predicted by the
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predictor variable, and in the second step, the outcome variable

is predicted by the predictor and mediator variables. The final

mediation analysis is then run using quasi-Bayesian Monte-

Carlo simulations (we used 10,000 simulations each), which

is superior to previous mediation approaches as it overcomes

problems such as dependence on specific statistical models or

restrictive assumptions (cf. Imai et al., 2010; Pearl, 2014; Tingley

et al., 2014).

NLevel2was 61, the number of the participants. Due

to technical problems, we had to exclude two Level 1

datapoints, leading to an NLevel1of 730 (61 participants

× 12 deletion proposals-−2 excluded datapoints). Overall,

participants accepted about one third (36%) of the system’s

deletion proposals. In the final recall test, 48% of the files were

identified correctly. An overview of all Level 1 and Level 2

variable correlations is provided in Tables 1, 2, respectively.

Hypothesis testing

First, we tested the hypothesis that explanations lead to

higher acceptance of the assistive system’s suggestions, to

more cognitive and affective trust, more credibility, and less

information uncertainty (Hypotheses 1a–d). To do so, we

calculated (logistic) multilevel regression analyses. In line with

our expectations, the presence of explanations led to higher

acceptance of the deletion suggestions (γ = 3.96, SE = 0.31, z

= 12.63, p < 0.001). However, explanations did not increase

trust (cognitive trust: γ = −0.02, SE = 0.06, t = −0.37, p =

0.709; affective trust: γ = −0.02, SE = 0.07, t = −0.24, p =

0.814) or the credibility of the system (γ = 0.02, SE = 0.08, t

= 0.20, p = 0.840). Contrary to our expectations, explanations

for the suggestions increased rather than decreased information

uncertainty (γ = 0.21, SE= 0.09, t = 2.30, p= 0.021). However,

it should be noted that due to simultaneous testing of up to five

dependant variables, the p-value needs to be adjusted down to

0.01 (0.05/5; Haynes, 2013).

The familiarity of the files, which we added as a control

variable to our analyses to examine possible effects of different

levels of cognitive processing, led to more cognitive and

affective trust, more credibility and less uncertainty (see Table 3).

However, it did not affect acceptance of the suggestions. The

results of the time variable revealed a decrease in cognitive and

affective trust and an increase in information uncertainty over

time (see also Table 3). These findings are somewhat unexpected

and need to be further examined and discussed.

Second, we tested the mediating role of information

uncertainty with regard to acceptance of the system’s

suggestions, cognitive trust, affective trust, and credibility.

Information uncertainty did not mediate the effect of

explanations on acceptance of the deletion suggestions

(indirect effect = −0.00, 95% CI [−0.01; 0.00], p = 0.310).

However, we found indirect effects for cognitive trust (indirect

effect = −0.07, 95% CI [−0.13; −0.01], p = 0.020), affective

trust (indirect effect = −0.09, 95% CI [−0.16; −0.01], p =

0.020), and credibility (indirect effect = −0.12, 95% CI [−0.22;

−0.02], p = 0.020), but as with the results for Hypothesis 1, the

direction of effects was unexpected: Explanations created more

information uncertainty, which resulted in less cognitive trust,

less affective trust, and less credibility. Thus, Hypotheses 2a–c

were not confirmed, although they highlighted the mediating

role of information uncertainty.

In the next step, we tested whether need for cognition

(Hypotheses 3a–d) and conscientiousness (Hypotheses 4a–d)

moderated the effect of explanations on acceptance, cognitive

trust, affective trust, credibility, and information uncertainty. To

do so, we calculated cross-level interactions. However, none of

them turned out to be significant for either need for cognition

(all zs/ts < |1.14|, all ps > 0.252) or conscientiousness (all zs/ts

< |1.28|, all ps > 0.202) as a moderator. Therefore, we had to

completely reject Hypothesis 3 and Hypothesis 4. We further

investigated whether deleting a file led to subsequent forgetting.

Confirming Hypothesis 5, deleting a file was associated with a

lower recognition probability (γ =−1.69, SE= 0.19, z =−8.69,

p < 0.001).

To explore possible effects of explanations on the subsequent

accessibility of the corresponding memory traces (research

question), we calculated additional multilevel regression

analyses. The results revealed that the presence of explanations

for a suggestion to delete a thesis file was associated with a

lower probability of recognizing its title in the recognition test

(γ = −2.17, SE = 0.22, z = −9.68, p < 0.001), thus indicating

difficulties in retrieval (which corresponds to forgetting).

Additional analyses

As explanations were positively associated with deleting a

file (Hypothesis 1a), we further conducted a two-step causal

mediation analysis to test whether the act of deletion mediates

the effect of explanations on subsequent forgetting. The indirect

effect was not significant (indirect effect = −0.04, 95% CI

[−0.09; 0.01], p= 0.110), but the direct effect from explanations

on the recognition rate was again confirmed (direct effect =

−0.46, 95% CI [−0.54; −0.37], p < 0.001). Unexpectedly, time

and familiarity of files did not affect final recall rates.

In sum, as expected, explanations led to higher acceptance

of the deletion suggestions and to more forgetting of the files.

Contrary to our hypotheses, explanations did not increase

trust or credibility of the system, but increased information

uncertainty, which led to less trust. Moreover, over the course

of the experiment, trust actually decreased and information

uncertainty increased.

Experiment 2

To further explore the surprising effects of explanations on

trust, credibility, and information uncertainty, we conducted a

second experiment with two major changes. First, we assumed
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TABLE 1 Experiment 1: Means, standard deviations, and correlations of Level 1 variables.

Variable M SD 1 2 3 4 5 6 7 8

1. Familiaritya 0.50 0.50

2. Explanationa 0.50 0.50 0.00

3. Timeb 5.49 3.46 −0.05 0.05

4. Deleteda 0.36 0.48 0.02 0.59*** −0.01

5. Cognitive trust 2.31 1.03 0.12** −0.02 −0.20*** 0.16***

6. Affective trust 2.38 1.09 0.13*** −0.02 −0.18*** 0.17*** 0.80***

7. Credibility 2.82 1.22 0.16*** −0.01 −0.38*** 0.09* 0.61*** 0.64***

8. Uncertainty 3.68 1.39 −0.28*** 0.09* 0.26*** −0.09* −0.56*** −0.61*** −0.67***

9. Recognitiona 0.48 0.50 0.05 −0.50*** 0.01 −0.33*** 0.04 0.02 −0.01 −0.02

NLevel1 = 730.
aDichotomous variable: “no” coded as 0, “yes” coded as 1.
bPosition of deleting proposals (0–11).

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 2 Experiment 1: Means, standard deviations, and correlations of Level 2 and aggregated Level 1 variables.

Variable M SD 1 2 3 4 5 6 7 8 9

1. Age 20.49 3.00

2. Gendera 0.20 0.40 −0.07

3. Conscientiousness 3.72 0.34 0.03 −0.00

4. Need for cognition 3.39 0.52 0.13 0.21 0.20

5. Deletedb,c 0.36 0.18 −0.06 −0.06 0.11 −0.21

6. Cognitive trustc 2.30 0.67 −0.01 −0.01 0.28* −0.22 0.65***

7. Affective trustc 2.37 0.65 −0.04 −0.02 0.22 −0.23 0.74*** 0.91***

8. Credibilityc 2.82 0.51 −0.01 −0.04 0.12 −0.24 0.51*** 0.53*** 0.61***

9. Uncertaintyc 3.69 0.53 0.22 −0.05 −0.10 0.24 −0.69*** −0.67*** −0.71*** −0.54***

10. Recognitionb,c 0.48 0.16 −0.04 −0.06 −0.08 0.19 0.10 0.09 0.10 −0.03 0.09

NLevel2 = 61.
aFemale coded as 0, male coded as 1.
bDichotomous variable: “no” coded as 0, “yes” coded as 1.
cLevel 1 variable aggregated on the person-level.

*p < 0.05, ***p < 0.001.

TABLE 3 Experiment 1: E�ects of explanations on acceptance of deleting proposal, cognitive trust, a�ective trust, credibility, and uncertainty.

Acceptance of deleting

proposala
Cognitive trustb Affective trustb Credibilityb Uncertaintyb

Predictor Est. SE z Est. SE t Est. SE t Est. SE t Est. SE t

Constant −3.02 0.36 −8.37*** 2.53 0.11 23.87*** 2.55 0.11 23.50*** 3.37 0.11 31.99*** 3.42 0.12 28.90***

Time −0.05 0.03 −1.63 −0.06 0.01 −7.00*** −0.06 0.01 −5.88*** −0.13 0.01 −11.69*** 0.10 0.01 7.31***

Familiarity 0.20 0.22 0.90 0.22 0.06 3.73*** 0.27 0.07 4.08*** 0.34 0.08 4.37*** −0.74 0.09 −8.12***

Explanation 3.96 0.31 12.63*** −0.02 0.06 −0.37 −0.02 0.07 −0.24 0.02 0.08 0.20 0.21 0.09 2.30*

NLevel1 = 730, NLevel2 = 61.
aLogistic multilevel regression analysis.
bContinuous multilevel regression analysis.

***p < 0.001, *p < 0.05.

that the negative effects of explanations on trust, credibility, and

information security in Experiment 1 were because participants

were not able to check the explanations and suggestions in the

file system. As a result, they simply accepted the suggestions

blindly, but did not trust them, did not find the system credible,

and felt more uncertain. In Experiment 2, we provided the
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possibility to check the explanations and suggestions by looking

at the files in the folder (see Supplementary material). Therefore,

we were able to assess participants’ trust in a more objective

manner (with less checking of explanations indicating more

trust). Second, we modified the kind of explanations, so that

acceptance of the suggestion would imply definite and final

removal (in contrast to the deletion of duplicates, where one of

the original files continues to exist in the file system). Therefore,

we partly changed the explanations’ content (e.g., thesis was

submitted at a foreign university that was not part of the

literature network system).

Method

Participants

Participants were 33 undergraduates (participating in return

for course credit) at a German university (27 female, five

male, one non-binary). Mean age was 22.55 years (SD = 4.98,

range 18–40).

Materials and procedure

Thematerials and procedure for the experiment were similar

to Experiment 1, with two exceptions. First, participants had

access to the underlying file system. They could scroll through

the file list, which consisted of 50 alphabetically sorted thesis

data files, and could check whether the explanations provided by

the assistive system were appropriate (e.g., file was duplicate in

the system). The explanations were always correct and consistent

with the file system. Second, we varied the kind of explanations.

One explanation stated that the file had accidently been saved

twice, and that because of this, one copy had to be removed. The

other explanation stated that the file was erroneously in the file

system as it was submitted at a foreign university that was not

part of the literature network system, and therefore suggested

final removal.

Research design

The design was the same as for Experiment 1.

Dependent variables

In addition to the dependent variables in Experiment

1, we were able to assess an additional measure of trust,

namely, whether participants checked the validity of the

suggestions. We measured whether participants had opened

the underlying file system (no = 0; yes = 1) and how much

time the participants spent scrolling through and checking it

(in milliseconds).

Control variables

As in Experiment 1, familiarity and time were included as

control variables.

Results

Statistical analyses

We followed the same analytic strategy as Experiment 1.

NLevel2was 33, the number of the participants. NLevel1was 396

(33 participants × 12 deletion proposals). An overview of the

correlations of all Level 1 and Level 2 variables is provided in

Tables 4, 5, respectively. Overall, participants checked the file

system in 70% of all cases, and accepted about two thirds (70%)

of the system’s deletion proposals. In the final recall test, 43% of

the files were identified correctly.

Hypothesis testing

To test Hypotheses 1a–d, we again analyzed the effect of

explanations on the acceptance of deletion proposals, cognitive

trust, affective trust, checking the file system, credibility, and

information uncertainty. Results showed that when explanations

were given, participants were more likely to delete the suggested

file (γ = 0.53, SE = 0.25, z = 2.16, p < 0.05), considered the

system more credible (γ = 0.29, SE = 0.10, t = 2.89, p < 0.01),

and reported less uncertainty (γ =−0.40, SE = 0.12, t =−3.33,

p< 0.001). They did not trust the systemmore either cognitively

or affectively and there were no effects on frequency of or

time spent checking the file system. However, further analyses

indicated an increase in affective trust as well as less and shorter

periods of checking the file system over time (see Tables 6A,B).

Thus, Hypothesis 1 could only be partly confirmed. Familiarity

of files did not exhibit any effects.

In the next step, we again tested for the possible mediating

role of information uncertainty (Hypotheses 2a–c). Significant

mediation processes could be identified for all dependent

variables: Explanations generally reduced information

uncertainty, and reduced uncertainty in turn led to increased

acceptance of deletion proposals (indirect effect = 0.05, 95%

CI [0.02; 0.08], p < 0.001), more cognitive trust (indirect effect

= 0.16, 95% CI [0.06; 0.25], p < 0.001), affective trust (indirect

effect = 0.16, 95% CI [0.07; 0.26], p < 0.001), and credibility

(indirect effect = 0.18, 95% CI [0.07; 0.30], p < 0.001). No

indirect effect of information uncertainty was found for either

opening the file system (indirect effect = 0.01, 95% CI [−0.00;

0.02], p= 0.150) or time spent checking the file system (indirect

effect= 0.05, 95% CI [−0.02; 0.15], p= 0.180).

Concerning possible moderating effects of need for

cognition (Hypotheses 3a–d) on acceptance of the proposals,

cognitive and affective trust, checking the file system, credibility

and information uncertainty, we found no significant

interactions between presence of explanations and need

for cognition on credibility, all zs/ts < |1.47|, all ps > 0.142.

For conscientiousness (Hypotheses 4a–d), a significant

interaction effect with presence of explanations on information

uncertainty was found (γ = 0.87, SE= 0.35, t = 2.52, p= 0.012;

see Figure 2): People with lower (−1 SD) conscientiousness

reported less information uncertainty when an explanation was
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TABLE 4 Experiment 2: Means, standard deviations, and correlations of Level 1 variables.

Variable M SD 1 2 3 4 5 6 7 8 9 10

1. Familiaritya 0.50 0.50

2. Explanationa 0.50 0.50 0.00

3. Timeb 5.50 3.46 −0.05 0.05

4. Checkeda 0.70 0.46 0.03 −0.02 −0.07

5. Checked (time)c 6.67 4.40 0.03 −0.01 −0.10* 1.00***

6. Deleteda 0.70 0.46 −0.02 0.09 −0.04 0.17** 0.16**

7. Cognitive trust 2.94 1.32 0.01 0.06 0.07 0.02 −0.00 0.52***

8. Affective trust 3.04 1.32 0.00 0.07 0.08 0.06 0.04 0.49*** 0.87***

9. Credibility 3.66 1.31 0.03 0.11* −0.03 0.22*** 0.20*** 0.66*** 0.67*** 0.72***

10. Uncertainty 2.52 1.53 −0.01 −0.13** −0.05 −0.28*** −0.26*** −0.60*** −0.52*** −0.52*** −0.61***

11. Recognitiona 0.43 0.50 0.05 0.11* 0.36*** 0.04 0.03 −0.05 −0.04 −0.05 −0.06 0.01

NLevel1 = 396.
aDichotomous variable: “no” coded as 0, “yes” coded as 1.
bPosition of deleting proposals (0–11).
cLogarithmized, in milliseconds.

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 5 Experiment 2: Means, standard deviations, and correlations of Level 2 and aggregated Level 1 variables.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

1. Age 22.55 4.98

2. Gendera 0.16 0.37 −0.09

3. Conscientiousness 3.62 0.35 −0.14 0.20

4. Need for cognition 3.34 0.45 −0.15 0.01 0.47**

5. Checkedb,c 0.70 0.40 −0.07 0.19 0.30 0.32

6. Checked (time)c,d 6.67 3.83 −0.07 0.18 0.29 0.31 1.00***

7. Deletedb,c 0.70 0.24 −0.02 −0.01 −0.03 −0.05 0.36* 0.36*

8. Cognitive trustc 2.94 1.00 −0.14 0.16 −0.00 −0.10 0.10 0.08 0.51**

9. Affective trustc 3.04 1.04 −0.17 0.28 −0.05 −0.14 0.11 0.09 0.46** 0.94***

10. Credibilityc 3.66 0.88 −0.14 0.29 0.08 −0.03 0.36* 0.35* 0.75*** 0.67*** 0.74***

11. Uncertaintyc 2.52 1.02 −0.06 −0.13 −0.03 −0.25 −0.44* −0.43* −0.69*** −0.52** −0.50** −0.68***

12. Recognitionb,c 0.43 0.18 −0.32 −0.15 0.26 0.24 0.21 0.22 −0.06 −0.20 −0.32 −0.23 0.22

NLevel2 = 33.
aFemale coded as 0, male coded as 1.
bDichotomous variable: “no” coded as 0, “yes” coded as 1.
cLevel 1 variable aggregated on the person-level.
dLogarithmized, in milliseconds.

*p < 0.05, **p < 0.01, ***p < 0.001.

provided (simple slope = −0.70, t = −4.15, p < 0.001). For

people with higher (+1 SD) conscientiousness, no difference was

found (simple slope=−0.09, t=−0.54, p= 0.591). For all other

dependent variables, no effects were detected, all zs/ts < |1.88|,

all ps > 0.061. Therefore, Hypothesis 4 could only be confirmed

for information uncertainty.

Lastly, we tested whether explanations and the deletion

of files led to more subsequent difficulties in recognizing

the thesis titles (H5). Contrary to the results of Experiment

1, we found that explanations were associated with a

higher likelihood of subsequent recognition (γ = 0.46, SE

= 0.23, z = 2.00, p = 0.046), and deleting a file was

not related to recognition at all (γ = −0.24, SE = 0.27,

z = −0.92, p = 0.358). Therefore, Hypothesis 5 was

not supported.

Additional analyses

We tested for differences between the two kinds of

explanations. The results revealed that participants accepted

more suggestions to delete duplicates (γ = 2.43, SE = 0.46, z

= 5.26, p < 0.001) and fewer suggestions to delete files that were

erroneously in the system (γ = −0.64, SE = 0.31, z = −2.08, p
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TABLE 6A Experiment 2: E�ects of explanations on acceptance of deleting proposal, cognitive trust, a�ective trust, credibility, and uncertainty.

Acceptance of deleting

proposala
Cognitive trustb Affective trustb Credibilityb Uncertaintyb

Predictor Est. SE z Est. SE t Est. SE t Est. SE t Est. SE t

Constant 1.16 0.38 3.07** 2.71 0.20 13.58*** 2.79 0.20 13.78*** 3.54 0.19 18.87*** 2.86 0.22 13.05***

Time −0.04 0.04 −1.02 0.02 0.01 1.87 0.03 0.01 2.27* −0.01 0.01 −0.87 −0.02 0.02 −1.24

Familiarity −0.11 0.25 −0.44 0.04 0.09 0.42 0.01 0.09 0.17 0.08 0.10 0.81 −0.05 0.12 −0.40

Explanation 0.53 0.25 2.16* 0.14 0.09 1.57 0.17 0.09 1.92 0.29 0.10 2.89** −0.40 0.12 −3.33***

NLevel1 = 396, NLevel2 = 33.
aLogistic multilevel regression analysis.
bContinuous multilevel regression analysis.

***p < 0.001, **p < 0.01, *p < 0.05.

TABLE 6B Experiment 2: E�ects of explanations on checking the

system.

Checking the file

systema
Time spent checking

the file systemb,c

Predictor Est. SE z Est. SE t

Constant 4.27 2.07 2.06* 7.28 0.71 10.24***

Time −0.16 0.06 −2.44* −0.13 0.03 −3.79***

Familiarity 0.38 0.43 0.90 0.23 0.23 0.97

Explanation −0.22 0.42 −0.51 −0.04 0.23 −0.17

NLevel1 = 396, NLevel2 = 33.
aLogistic multilevel regression analysis.
bContinuous multilevel regression analysis.
cLogarithmic (originally in milliseconds).

***p < 0.001, *p < 0.05.

< 0.05) compared to files with no explanations. There was no

effect of explanations on checking the file system. However, files

with the duplicate explanation were more likely to be recognized

in the recall test than files with no explanation (γ = 0.68, SE

= 0.31, z = 2.23, p < 0.05), whereas there was no difference

between files identified as erroneously in the system and the no

explanation condition.

In sum, in this experiment, the possibility of checking why

the system suggested a thesis for deletion led not only to more

suggestions being accepted, but also to more trust over time,

credibility and information uncertainty. Explanations reduced

information uncertainty, which was in turn related to more

trust and credibility. However, in contrast to Experiment 1,

explanations also improved recall of the titles suggested for

deletion, and did not promote forgetting.

Experiment 3

The aim of Experiment 3 was to replicate the results of

Experiment 2 and investigate whether explanations promote

FIGURE 2

Experiment 2: Interaction e�ect between conscientiousness and

explanations on information uncertainty. Low and high levels of

information uncertainty represent one standard deviation below

and above the mean, respectively.

forgetting of well-known information (i.e., thesis titles). Based

on research on intentional forgetting, we assumed that an

explanation for why a file can be deleted should indicate to

participants that the memory content connected to this file can

be intentionally forgotten (“I don’t need it anymore, so I can

forget it”). In the previous experiments, however, we did not

control for whether our participants had actually remembered

the thesis titles they entered into the database. Therefore, in

this experiment, one group of participants had to learn and

remember the thesis titles.

Method

Participants

Experiment 3 was conducted with 73 undergraduates (55

female, 18 male) at a German university. Mean age was 23.14

years (SD= 3.87, range 18–36). Participation was voluntary and
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TABLE 7 Experiment 3: Means, standard deviations, and correlations of Level 1 variables.

Variable M SD 1 2 3 4 5 6 7 8 9 10

1. Familiaritya 0.50 0.50

2. Explanationa 0.50 0.50 0.00

3. Timeb 5.50 3.45 −0.05 0.05

4. Checkeda 0.71 0.45 0.04 −0.07* −0.05

5. Checked (time)c 6.59 4.22 0.04 −0.07* −0.09** 0.99***

6. Deleteda 0.68 0.47 −0.01 0.18*** 0.15*** 0.14*** 0.13***

7. Cognitive trust 2.75 1.21 −0.03 0.11** 0.21*** −0.04 −0.06 0.52***

8. Affective trust 2.84 1.22 0.02 0.12*** 0.20*** 0.02 −0.01 0.52*** 0.84***

9. Credibility 3.60 1.12 0.01 0.20*** 0.16*** 0.13*** 0.11** 0.49*** 0.52*** 0.55***

10. Uncertainty 2.87 1.44 −0.06 −0.21*** −0.22*** −0.07* −0.05 −0.55*** −0.54*** −0.56*** −0.44***

11. Recognitiona 0.49 0.50 0.06 0.09** 0.40*** 0.06 0.05 0.06 0.03 0.04 0.07 −0.07*

NLevel1 = 876.
aDichotomous variable: “no” coded as 0, “yes” coded as 1.
bPosition of deleting proposals (0-11).
cLogarithmized, in milliseconds.

*p < 0.05, **p < 0.01, ***p < 0.001.

participants received either course credit or a financial reward

(e 15) as compensation.

Materials and procedure

The experimental task was similar to that in Experiment 2

but consisted of two parts. In the learning phase, participants

(n = 32) in the learning condition were instructed to learn the

six familiar file names. To ensure that the file names had been

learned sufficiently, a recognition test with the file names as

well as six distractor names was conducted. Only if there were

no recognition errors did the main part of the experiment—

archiving theses—start; otherwise, participants had to relearn

the thesis titles and were then given a second recognition test.

In the control condition, participants (n = 41) did not learn the

file names before starting the main part of the experiment. The

materials and procedure for the main part of the experiment

were the same as in Experiment 2. However, for reasons of

consistency, we used two explanations from Experiment 1,

neither of which implied final and definitive removal in case of

deletion (thesis file is identical to another one and was clearly

saved twice; thesis file is outdated and a newer version exists).

Research design

The experimental design included an explanation condition

(with explanation, coded as 1; without explanation, coded as 0;

within-person), a learning condition (learning coded as 1, and

no learning coded as 0; between-person) and need for cognition

and conscientiousness (between-person, see Figure 1).

Dependent variables

Dependent variables and measures were the same as in

Experiment 2.

Control variables

As in Experiment 2, familiarity and time were included as

control variables.

Results

Statistical analyses

We followed the same analytic strategy as Experiments 1 and

2. NLevel2was 73, the number of the participants. NLevel1was 876

(73 participants × 12 deletion proposals). An overview of the

correlations among all Level 1 and Level 2 variables is provided

in Tables 7, 8, respectively. Overall, participants checked the file

system in 71% of all cases, and accepted about two-thirds (68%)

of the system’s deletion suggestions. In the recognition test, 49%

of the files were identified correctly. In the learning group, 76%

of the files were checked, 70% were deleted, and the overall

recognition rate was 54%. In the control group, participants

checked 68% of the files, deleted 66%, and identified 44% of the

files correctly on the final recognition test.

Hypothesis testing

Hypotheses 1a–d proposed that explanations would

lead to higher acceptance of the deletion proposals, more

trust (cognitive trust, affective trust, and less verification of

the suggestions), greater credibility, and less information

uncertainty. The results revealed that when explanations were

given, participants were more likely to delete a file (γ = 1.13, SE

= 0.18, z= 6.23, p< 0.001), trusted the systemmore cognitively

(γ = 0.23, SE= 0.06, t = 4.10, p < 0.001) as well as affectively (γ

= 0.27, SE = 0.06, t = 4.88, p < 0.001), checked the file system

less frequently (γ = −0.79, SE = 0.24, z = −3.26, p = 0.001),

spent less time checking the system (γ = −0.54, SE = 0.19,

t = −2.92, p = 0.004), considered the system more credible

(γ = 0.43, SE = 0.06, t = 7.58, p < 0.001), and reported less

information uncertainty (γ = −0.58, SE = 0.07, t = −7.50, p <

0.001). Thus, Hypothesis 1 was supported. The results did not

differ between participants who had learned the file names prior

to the experiment and those who had not. Also, the familiarity

of file names, that is, the names of files participants had
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TABLE 8 Experiment 3: Means, standard deviations, and correlations of Level 2 and aggregated Level 1 variables.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11

1. Age 23.14 3.87

2. Gendera 0.25 0.43 0.30**

3. Conscientiousness 3.71 0.39 0.10 0.03

4. Need for cognition 3.42 0.40 0.09 0.31** 0.11

5. Checkedb,c 0.71 0.36 0.14 0.20 −0.24* −0.09

6. Checked (time)c,d 6.59 3.29 0.15 0.21 −0.24* −0.09 1.00***

7. Deletedb,c 0.68 0.27 −0.03 −0.01 −0.13 −0.19 0.31** 0.32**

8. Cognitive trustc 2.75 0.87 0.08 −0.16 −0.12 −0.03 −0.00 −0.01 0.54***

9. Affective trustc 2.84 0.89 0.11 −0.12 −0.15 −0.01 0.08 0.07 0.57*** 0.91***

10. Credibilityc 3.60 0.74 0.10 0.10 0.04 −0.01 0.32** 0.32** 0.55*** 0.45*** 0.48***

11. Uncertaintyc 2.87 0.84 0.05 0.12 0.02 0.09 −0.20 −0.19 −0.63*** −0.49*** −0.49*** −0.39**

12. Recognitionb,c 0.49 0.19 −0.12 −0.07 −0.20 −0.18 0.29* 0.31** 0.03 −0.15 −0.07 −0.09 −0.03

NLevel2 = 73.
aFemale coded as 0, male coded as 1.
bDichotomous variable: “no” coded as 0, “yes” coded as 1.
cLevel 1 variable aggregated on the person-level.
d Logarithmized, in milliseconds.

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 9A Experiment 3: E�ects of explanations on acceptance of deleting proposal, cognitive trust, a�ective trust, credibility, and uncertainty.

Acceptance of deleting

proposala
Cognitive trustb Affective trustb Credibilityb Uncertaintyb

Predictor Est. SE z Est. SE t Est. SE t Est. SE t Est. SE t

Constant −0.15 0.36 −0.42 2.24 0.15 14.98*** 2.30 0.15 15.06*** 3.09 0.13 23.56*** 3.83 0.15 24.79***

Learning 0.26 0.46 0.55 0.04 0.21 0.85 −0.07 0.21 −0.33 0.04 0.18 0.15 −0.21 0.20 −1.07

Time 0.13 0.03 4.99*** 0.07 0.01 8.79*** 0.07 0.01 8.72*** 0.05 0.01 5.84*** −0.09 0.01 −7.93***

Familiarity −0.03 0.18 −0.17 −0.04 0.06 −0.76 0.08 0.06 1.48 0.03 0.06 0.48 −0.19 0.07 −2.50*

Explanation 1.13 0.18 6.23*** 0.23 0.06 4.10*** 0.27 0.06 4.88*** 0.43 0.06 7.58*** −0.58 0.07 −7.50***

NLevel1 = 876, NLevel2 = 73.
aLogistic multilevel regression analysis.
bContinuous multilevel regression analysis.

***p < 0.001, *p < 0.05.

archived themselves (learning group: learned and archived) vs.

unfamiliar files, i.e., files that already existed before participants

started working with the literature management system, had

no effect on the dependent variables (see Tables 9A,B) with one

exception: Participants reported less information uncertainty

when the to-be-deleted files were familiar.

Hypothesis 2 proposed a mediating role of information

uncertainty for the relationship between explanations and

acceptance of the deletion proposal, trust, and credibility

(Hypotheses 2a–c). As expected, we found that explanations

reduced information uncertainty, which in turn led to increased

acceptance of deletion proposals (indirect effect = 0.07, 95%

CI [0.05; 0.09], p < 0.001), cognitive trust (indirect effect =

0.23, 95% CI [0.17; 0.30], p < 0.001), affective trust (indirect

effect = 0.25, 95% CI [0.18; 0.32], p < 0.001), and credibility

(indirect effect = 0.18, 95% CI [0.12; 0.23], p < 0.001). For the

frequency of checking the explanations, a further indicator of

trust, no indirect effect was found for either opening the file

system (indirect effect = 0.00, 95% CI [−0.01; 0.01], p = 0.890)

or time spent checking the file system (indirect effect = −0.03,

95% CI [−0.13; 0.07], p= 0.569).

Need for cognition (Hypotheses 3a–d) did not moderate

the relationship between explanations and acceptance of the

proposals, trust, or information uncertainty (all zs/ts < |1.72|,

all ps> 0.087), but didmoderate the relationship with credibility

(γ = −0.31, SE = 0.14, t = −2.22, p = 0.027): Participants with

lower (−1 SD) need for cognition considered the system as more

credible when explanations where given (simple slope = 0.56, t

= 6.93, p < 0.001). For participants with higher (+1 SD) need

for cognition, the direction of the effect remained the same, but
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TABLE 9B Experiment 3: E�ects of explanations on checking the

system.

Checking the file

systema
Time spent checking

the file systemb,c

Predictor Est. SE z Est. SE t

Constant 2.41 0.77 3.15** 6.94 0.55 12.61***

Learning 1.24 1.08 1.15 0.80 0.78 1.03

Time −0.07 0.03 −1.91 −0.11 0.03 −3.91***

Familiarity 0.46 0.24 1.92 0.30 0.19 1.63

Explanation −0.79 0.24 −3.26** −0.54 0.19 −2.92**

NLevel1 = 876, NLevel2 = 73.
aLogistic multilevel regression analysis.
bContinuous multilevel regression analysis.
cLogarithmic (originally in milliseconds).

***p < 0.001, **p < 0.01.

FIGURE 3

Experiment 3: Interaction e�ect between need for cognition

and explanations on credibility. Low and high levels of need for

cognition represent one standard deviation below and above

the mean, respectively.

turned out to be weaker (simple slope= 0.30, t= 3.79, p< 0.001;

see Figure 3). Moreover, need for cognition moderated the effect

of explanations on the time participants spent checking the file

system (γ = 1.05, SE = 0.47, t = 2.24, p = 0.025). Participants

with lower (−1 SD) need for cognition checked the system for a

shorter time when an explanation was provided (simple slope=

−0.96, t = −3.66, p < 0.001), whereas there was no difference

for participants with higher (+1 SD) need for cognition (simple

slope=−0.12, t =−0.48, p= 0.632, see Figure 4). Hypothesis 3

was partly supported.

For conscientiousness (Hypotheses 4a–d), none of the

interaction effects turned out to be significant, all zs/ts < |1.90|,

all ps > 0.059. Therefore, Hypothesis 4 was not supported.

Finally, we investigated whether the deletion of files

promoted forgetting, particularly for well-known files (learning

FIGURE 4

Experiment 3: Interaction e�ect between need for cognition

and explanations on time spent checking the file system. Low

and high levels of need for cognition represent one standard

deviation below and above the mean, respectively.

condition; Hypothesis 5). However, deleting a file was not related

to recognition of file names (γ =−0.17, SE= 0.19, z =−0.90, p

= 0.368). Therefore, Hypothesis 5 had to be rejected.

Additional analyses

As in Experiment 2, explanations led to a higher hit rate for

file names (γ = 0.36, SE= 0.16, z= 2.23, p= 0.026). Nor did we

find more forgetting (lower hit rate) of file names in the learning

condition or a significant interaction between explanations and

learning conditions on the hit rates for the file names.

To further explore our data, we analyzed the variables over

the course of the experiment. The results revealed that over time,

acceptance of the system’s deletion proposals generally increased

(γ = 0.13, SE = 0.03, z = 4.99, p < 0.001). Moreover, over time,

participants trusted the system more both cognitively (γ = 0.07,

SE = 0.01, t = 8.79, p < 0.001) and affectively (γ = 0.07, SE =

0.01, t = 8.72, p < 0.001), considered it more credible (γ = 0.05,

SE= 0.01, t = 5.84, p < 0.001), felt less information uncertainty

(γ = −0.09, SE = 0.01, t = −7.93, p < 0.001), and spent less

time checking the file system (γ = −0.11, SE = 0.03, t = −3.91,

p < 0.001).

We further found a significant interaction effect between

time and explanation predicting the probability of accepting the

suggestion (γ =−0.33, SE= 0.05, z =−5.76, p < 0.001). When

participants received an explanation for the system’s suggestion,

the probability of acceptance was higher and did not change

over time (simple slope = −0.02, t = −0.61, p = 0.542).

However, when the system did not provide an explanation, in

the beginning, participants had a low acceptance rate which

increased over time (simple slope = 0.31, t = 7.12, p < 0.001).

At the end of the experiment, explanations did not play a role for

the acceptance of suggestions (see Figure 5).

Frontiers in Artificial Intelligence 14 frontiersin.org

101

https://doi.org/10.3389/frai.2022.919534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Göbel et al. 10.3389/frai.2022.919534

FIGURE 5

Experiment 3: Interaction e�ect between position of the

deleting proposal and explanations on the probability of

accepting the deleting proposal.

TABLE 10 Overview: Hypothesized e�ects of explanations on

dependent variables for Experiments 1, 2, and 3.

Experiment 1 Experiment 2 Experiment 3

Deleting filea ✓ ✓ ✓

Cognitive trust x x ✓

Affective trust x x ✓

Checking filea,b – x ✓

Credibility x ✓ ✓

Uncertainty x ✓ ✓

Recognitiona Poorer Better Better

aDichotomous variable.
bOnly assessed in Experiments 2 and 3.

In sum, the finding in Experiment 2 that explanations foster

acceptance of suggestions, trust, credibility, and information

uncertainty could be replicated. Moreover, the mediating

role of information uncertainty was confirmed. Again, we

found no effect of explanations and deletion of files on

participants’ memory.

Discussion

Successfully managing and deleting digital data at work

becomes increasingly important. In three experiments, we

investigated how individuals respond to an explanatory

interactive AI system (Dare2Del), which provides suggestions

to delete irrelevant digital objects. To identify important

parameters for the user acceptance of these suggestions, we

systematically varied several design features within and across

the experiments: The presence and kind of explanations as

well as the familiarity of the to-be-deleted files were varied

in all experiments. In Experiments 2 and 3, we additionally

provided the possibility to check the correctness of the provided

explanations in the file system. In Experiment 3, we further

tested whether it makes a difference if to-be-deleted files are

very well known. An overview of the effects of explanations on

the outcome variables for all three experiments is provided in

Table 10.

Across all experiments, our findings demonstrate a general

effectiveness of regularly prompting and supporting users

to delete irrelevant data files, as users generally complied

with these suggestions in a large number of cases, and

deleted the files. Participants deleted even more files when

they had the opportunity to check the appropriateness of

Dare2Del’s suggestions (Experiments 2 and 3). Moreover, our

results also highlight the importance of providing explanations:

Explanations increased the acceptance of the suggestions in

all three experiments. With regard to information uncertainty,

trust and credibility, it seems to play an important role whether

explanations are comprehensible and can be verified in the

system: If this possibility was provided, explanations also

decreased information uncertainty (Experiment 2, Experiment

3), resulted in higher trust (Experiment 3) and credibility ratings

(Experiment 2, Experiment 3). We assume that the absence of

significant trust effects in Experiment 2 was owed to the smaller

sample size, which was probably not able to detect the rather

small effect.

In all experiments, the familiarity of files had no impact

on the acceptance of the suggestions, information uncertainty,

trust, and credibility ratings.Moreover, it did notmatter whether

the digital objects were well-known or not (Experiment 3). One

possible explanation is that although the titles were familiar

or even well-known, participants did not know details about

the content of the documents. The lack of a reference to

the content could therefore account for the absence of the

hypothesized effects.

We also found that levels of trust, credibility, and

information uncertainty changed over time. In Experiment

1, participants surprisingly showed less trust, less credibility,

and more information uncertainty over time. We argue that

the lack of the system’s transparency (i.e., no opportunity to

verify deleting suggestions) might have been responsible for

these negative effects. However, in Experiment 3 (but not in

Experiment 2), we found an increase in trust, credibility, and a

decrease in information uncertainty over time. We also found

an increase in the acceptance of the system’s deleting suggestions

without explanations: At the beginning, these suggestions were

hardly accepted, but over time, participants gained confidence

and increasingly accepted them. We assume that over time,

participants were more familiar with the system, felt more

confident with its handling and therefore decided to follow

its suggestions more often. Whereas explanations helped to
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overcome uncertainty and build trust in the beginning, they

were replaced by experience and inherent trust and therefore no

longer needed after a certain period of interaction time.

Information uncertainty mediated effects of explanations

on accepting deleting suggestions, trust, and credibility, thus

underlining its essential role for the user’s acceptance of

the system. In contrast, person characteristics such as need

for cognition and conscientiousness seem to play a rather

minor role—although we found some effects: In Experiment

2, participants with lower conscientiousness reported less

information uncertainty when explanations were provided.

In Experiment 3, participants with lower need for cognition

considered the system as more credible and checked the system

for a shorter time when explanations were given. These effects

demonstrate that people low in conscientiousness and need

for cognition benefit more from the presence of explanations:

They are more likely to believe the system without questioning

or wanting to thoroughly check the adequacy of the deletion

suggestions. In contrast, people with high conscientiousness and

a high need for cognition may not be convinced by the rather

simple explanations we have given, feel more uncertain, and

want to check the appropriateness of the explanation on their

own (cf. Gajos and Chauncey, 2017; Ghai et al., 2021). Future

research might address this issue by systematically varying the

level of detail of the provided explanations.

Based on the concept of distributed cognition (Hutchins,

1995), we further investigated whether providing explanations

and deleting irrelevant digital objects also promoted the

forgetting of related content in human memory. Different

patterns of results emerged here: Whereas the presence of

explanations led to poorer recognition in Experiment 1, we

even found better recognition rates in Experiments 2 and 3.

We assume that this is due to the systematic design differences

between the experiments: As participants had the opportunity

to check the underlying file systems Experiments 2 and 3,

they probably studied the file names more intensively. This

higher processing depth might have strengthened subsequent

recognition and thus counteracted forgetting. Interestingly,

accepting deleting suggestions also led to impaired recognition

in Experiment 1, but we were not able to replicate these effects in

Experiments 2 and 3. The finding suggests that there might be a

connection between deleting files from external storage systems

and their related internal representations. However, this effect

vanishes, when other factors require a deeper processing of the

file names to make an informed decision as in Experiments 2

and 3.

Implications

The findings of our experiments contribute to the existing

research both theoretically and practically. First, and in line

with prior research (e.g., Pu and Chen, 2007; Mercado et al.,

2016), our results confirm that providing explanations is

an important and effective design factor, which positively

influences the interaction with assistive systems and the

acceptance of their suggestions. Within the present research,

we also show why explanations can be beneficial to follow the

system’s suggestions: Explanations can reduce information

uncertainty, and therefore lead to more trust and higher

acceptance of the presented recommendations. These findings

highlight the importance of reducing information uncertainty

to enable fast and effective decisions. However, to actually be

able to reduce information uncertainty, assistive systems and

their suggestions need to be transparent and verifiable (see

also Miller, 2018; Muggleton et al., 2018). Our experiments

provide empirical evidence to previous considerations and

strongly recommend considering comprehensibility and

transparency in the future design of interactive AI systems.

Thereby, our results suggest that the positive effects of

providing explanations for deletion suggestions can even be

extended by giving users the possibility to check whether

the suggestions are correct. This is a novel feature which is

comparably easy to implement, but could have promising

effects in terms of user’s acceptance and cooperation with

assistive systems.

Beyond that, we found no clear evidence of immediate

consequences from deleting external computer files on related

internal memory representations. Although some of our results

(Experiment 1) are in line with the distributed cognition

approach (Hutchins, 1995) and suggested a connection between

deleting and forgetting, the effect seems to be rather weak and

susceptible to many context factors (e.g., memory processing

depth, see below). Moreover, other cognitive phenomena

such as benefits of cognitive offloading (Risko and Gilbert,

2016) or saving-enhanced memory (Storm and Stone, 2015)

could come into play and prevent successful forgetting when

actually saved files should be deleted. Further research is

needed to elaborate how these phenomena interact, how

the organization of our digital work environment and

related mental representations are connected, and for whom

and when deleting files can ultimately lead to a relief of

human memory.

Strengths, limitations, and further
research

A clear strength of the present research lies is the

systematic variation of design features within and across

experiments. By successively adjusting the system’s parameters

(i.e., providing the possibility to check suggestions), we were

able to identify and elaborate the most important aspects for

successful human-computer interactions. Beyond that, we also

addressed possible underlying mechanisms and tested possible

cross-connections between the external storage of files and

related human memory.
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Nevertheless, some limitations of the current studies

should be noted. First, we only relied on student samples

in all experiments. Although using homogeneous samples

is not unusual in experimental research to keep possible

disruptive factors constant, it limits the variance and

the generalizability of the findings: We assume that

the examined person variables (need for cognition,

conscientiousness) are above average in our sample. This

may have prevented the identification of more substantial

individual differences.

Second, we tested our hypotheses using one specific

context and task across our experiments—namely deleting

files. Although this task is widely application-related as most

people save (too) many irrelevant digital objects on electronic

devices at work and in their private life, the question remains

whether our results can be generalized to other tasks and

actions. This might be especially valid for the behavioral

outcome (i.e., deleting files)—but less for trust and credibility,

as these outcomes have already been examined in relation

to explanations in different contexts (Pu and Chen, 2007;

Pieters, 2011; Shin, 2021). Moreover, in our experiments,

participants worked with Dare2Del for about an hour, which

may not have been enough time to get familiar with the

system or to develop trust and interaction routines. Thus,

our results rather reflect interaction processes when new

assistive systems are introduced than long-lasting work routines.

Future research should investigate the effects of explanations

on affective, cognitive and behavioral outcomes for a longer

time and with file systems which are much more familiar to

the participants.

The third point refers to our measurement of forgetting. It

may be that we failed to find a substantial forgetting effect also

due to a too short time interval between the main experiment

and the recognition task. We already mentioned high processing

depth as possible reason for this phenomenon. However, it may

be that dealing with a file—which is required to finalize the

deleting decision—increases its accessibility in the short term.

Nevertheless, it might still help to detach from and forget it

in the long term. Therefore, it would be interesting to explore

long-term memory effects in future studies. In addition, we

used a recognition task. Research on intentional forgetting has

shown that forgetting effects are stronger and consistent in free

recall tests but not compulsorily in recognition tests (MacLeod,

1975). Thus, future experiments might use also free recall to

investigate forgetting.

Conclusion

The present study examined interactions between humans

and interactive computer systems supporting users to delete

irrelevant data files. Results underlined the importance

of presenting explanations for the acceptance of deleting

suggestions, but also point to the need of their transparency

and verifiability to generate trust. However, we did not find

clear evidence for immediate cross-connections between

deleting computer files and human forgetting of the related

mental representations.
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How systemic cognition enables
epistemic engineering

Stephen J. Cowley and Rasmus Gahrn-Andersen*

Department of Language and Communication, University of Southern Denmark, Slagelse, Denmark

Epistemic engineering arises as systems and their parts develop functionality that

is construed as valid knowledge. By hypothesis, epistemic engineering is a basic

evolutionary principle. It ensures that not only living systems identify the di�erences

that make di�erences but also ensure that distributed control enables them to

construct epistemic change. In tracking such outcomes in human life, we stress that

humans act within poly-centered, distributed systems. Similar to how people can act

as inert parts of a system, they also actively bring forth intents and vicariant e�ects.

Human cognitive agents use the systemic function to construct epistemic novelties.

In the illustration, we used a published experimental study of a cyborg cockroach

to consider how an evoneered system enables a human subject to perform as an

adaptor with some “thought control” over the animal. Within a wide system, brains

enable the techniques to arise ex novo as they attune to the dictates of a device.

Human parts act as adaptors that simplify the task. In scaling up, we turn to a case of

organizational cognition. We track how adaptor functions spread when drone-based

data are brought to the maintenance department of a Danish utility company. While

pivoting on how system operators combine experience with the use of software,

their expertise sets o� epistemically engineered results across the company and

beyond. Vicariant e�ects emerge under the poly-centered control of brains, persons,

equipment, and institutional wholes. As a part of culture, epistemic engineering works

by reducing entropy.

KEYWORDS

distributed cognition, social organizing, simplexity, systemic cognition, radical embodied

cognitive science, pre-reflective experience, vicariance, evoneering

1. Introduction

In Europe and America, knowing is often ascribed to an organism, body, mind, or brain.

In contrast to, say, Chinese or African traditions, the individual is treated as the locus of both

know-how and reason. In making a link between anthropology and computational models,

Hutchins (1996) brings new light to how collective knowing enables to inform human agency.

In allowing cognitive distribution, he traces epistemic outcomes across systems that lack a single

locus of control. When rowing canoes across the Pacific or, indeed, bringing a ship into port,

people link up beliefs, devices, observations, and acting within culturally distributed systems.

Knowing includes—but is not generated by—individual actors. In applying the view to science,

Giere (2004) invokes how the Hubble spacecraft enabled distributed systems to bring forth

new knowledge of the universe. Like other organized knowledge, poly-centered systems enable

science to arise through what Giere (2004) calls “human cognitive agents.” In what follows, we

radicalize such views by tracking how wide systems can affect the epistemic agency of living

human beings.

Primate intelligence is predominantly social (Jolly, 1966; Humphrey, 1976) and, in the last

million years or so, hominins and eco-systems have co-evolved (Sterelny, 2007). Bodies and,

especially, brains have brought humans the extreme plasticity that sustains practices such as trade

(Ross, 2012). In Hutchins’s (1996) terms, practices inform the distributed cognitive systems that

link artifacts, language, and ways of acting. Hence, they include what Malafouris (2013, 2019)

callsmaterial engagement: in using materials such as clay, we draw upon cultural resources such
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as norms and conventions as bodily promptings enable us to

use techniques, skills, and methods. For Malafouris, “enactive

signification” arises as parameters co-function to nudge a person to

substitute one way of acting with another. Humans gain flexibility

and construct epistemic powers as they actualize social practices.

They perform roles and develop styles that create diversity that

uses a trick of vicariance or how one can “perform the same tasks

with different systems, solutions or behaviors” (Berthoz and Tramus,

2015, p. 1–2). Crucially, since vicariance serves bodies, brains, and

social activities (Cowley and Gahrn-Andersen, 2022), it creates

novelty by reducing entropy or uncertainty (usually, if not always,

by changing the parameters of a system). Vicariant effects spread

across bodily modalities, social groups, and neural organization and,

as a result, parties gain as epistemic change self-fabricates within

cognitive systems.

In pursuing how such vicariant effects are brought about,

the article begins with a “minimal” case. We describe how, in

an experimental setting, a system sets off epistemic change as a

person comes to exert “thought control” over a cockroach. Agency

links an engineered system, human-cockroach interdependencies,

pre-reflective experience, and a brain that constructs and sustains

bodily techniques. Highlighting the systemic, we emphasize how the

human adaptor uses cognition beyond the body. Later, we compare

the neural parameter setting of the cockroach experiment to how

vicariant effects spread when drones were introduced to a Danish

utility company. In both cases, people reduce entropy (uncertainty)

within wide cognitive systems as, often without knowing why,

they set off effects that serve a wider system: vicariant outcomes

thus transform both individual performance and the company

task regime.

2. Cognition—The role of “knowledge”
for systems

A distributed perspective on cognition (Hutchins, 1996; Rogers,

1997; Perry, 2013) first emerged as a counterpoint to core tenets of

orthodox cognitivism (e.g., Fodor, 1975; Marr, 1982; Searle, 1992). It

does so in that the classic cognitive view treats the organism as the

“source” of intelligent behavior. In philosophical guise, knowledge is

ascribed to sense impressions, mind, and reason; by contrast, with

cognitive science, attention falls on learning, computation, sense-

making, organism-environment coupling, etc. Turning to working

environments, Hutchins showed that, in many cases, such models are

demonstrably inadequate. There is no organismic source of cognition

in, say, navigation. Rather, people incontrovertibly draw on cultural

resources and wide systems (Wilson, 2004) to achieve epistemic

outcomes. Socially organized activity is a dynamical interplay of

agents and environments which link cognitive practices with, above

all technologies and external representation media. In a distributed

system, social practices or organizations sustain heterogeneous kinds

of processes. The distributed perspective thus applies to practices

as diverse as, say, crime scene investigation (Baber, 2010), medical

situation awareness (Fioratou et al., 2016), insight problem-solving

(Vallée-Tourangeau and Wrightman, 2010), or, indeed, how a

daughter decorously tries to quieten her mother (Cowley, 2014).

The entire cognitive system unites a myriad of parts as “inner

and external” resources co-function in diverse ways (cf. Michaelian

and Sutton, 2013, p. 10). As Hutchins (2014) came to phrase it in

theoretically oriented work, the perspective applies to all of human

cognition: it characterizes “the microprocesses of interaction across

the diverse components of these distributed and heterogeneous

cognitive systems” (Hutchins, 2014, p. 5). Yet, as Hutchins notes,

his own early work views “cognitive processes in terms of the

propagation and transformation of representations” (Hutchins, 2001,

p. 2068). Hence, proponents of the distributed perspective who retain

a traditional model of representations find themselves committed

to the “source” view of orthodox cognitivism (for a criticism, see

Hutto et al., 2014). Placing intent in the brain, they treat cognizers

as parties that propagate and transform “particular representational

states across distinct (internal and external) media” (Michaelian

and Sutton, 2013, p. 5). Whereas, Hutchins began with a focus on

representations in a literal sense (Hutchins, 1996, p. 363–364), he

later shifts to a more liberal view. Hence, far from addressing the

role of living agency in cognition – or how intent arises – later

work (Hutchins, 2020) still focuses on how externalized resources

extend how people act as they perform social roles and rely on

interactions. He explicitly suggests that “distributed cognition is not

a kind of cognition at all, it is a perspective on cognition.” His

concern is with, not explaining cognition or the role of bodies in

epistemic change, but, rather, how “participants to an interaction

coinhabit a shared environment” (2020, p. 375). Very plausibly,

Hutchins adopts the view that “interaction is the basis for the

distribution of cognitive labor” (2020, p. 377). As an ethnographer,

albeit an unorthodox one, he approaches people as social actors.

Leaving aside issues of intent, he can overlook how agency changes

and, on methodological grounds, changes in cultural operations.

Since he asks how participants contribute to procedures, he reduces

language and agency to their role in task performance. Others are

more concerned with individual responsibility (Jones, 2013) or how

looser systems depend on language, knowledge, and expertise (Perry,

2013). In seeking to deal with the tension, Baber et al. (2014), for

example, use the concept of “affordances” to allow individual control

of tools within a “person–environment–tool–object system” (p. 10).

Adopting Turvey’s (1992) view of affordance (Gibson, 1979), Baber

et al. allow for individual expertise in control:

Even if there are regions that are active under specific

conditions, the skill of the expert tool user comes from the ability

to control their activity with sufficient spare capacity to cope

with future demands and to respond to the changing context in

which they are using the tools to effect changes in the object being

worked on. (Baber et al., 2014, p. 12)

In making individual skills and expertise partly constitutive of

distributed processes, Baber et al. identified the collective-individual

tension that runs through research on distributed cognition. The

focus on outcomes can lead one to highlight, not individual doings,

but a collective effort. For instance, Hutchins reports on how

the crew of the USS Palau dealt with the issues relating to the

loss of main steam (Hutchins, 1996). He traces the outcomes

to how tightly coupled practices are structured around the well-

understood/defined task of managing how the vessel is brought to

anchor. Hutchins writes:

The safe arrival of the Palau at anchor was due in

large part to the exceptional seamanship of the bridge crew,

especially the navigator. But no single individual on the bridge
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acting alone–neither the captain nor the navigator nor the

quartermaster chief supervising the navigation team–could have

kept control of the ship and brought it safely to anchor. (p. 5)

Although Hutchins (1996) recognizes the seamanship of the

navigator, his ethnography of the supra-entity highlights interaction

and participant roles. Hence, Hutchins plays down individuals,

intents and propensities, how skills arise, or how they are selected.

This is because, in a task context, the right choices are simply

assumed. Furthermore, it is by treating a person as a social actor (not

a source of cognizing) that the distributed perspective breaks with

classic views. Later, we show how it allows emphasis on autonomy to

be replaced by a view of agency as using poly-centered and diachronic

control. Indeed, even on a standard view, this is implied where

a system:

dynamically reconfigures itself to bring subsystems into

functional coordination. Many of the subsystems lie outside

individual minds; in distributed cognition, interactions between

people as they work with external resources are as important as

the processes of individual cognition (Lintern, 2007, p. 398).

Control arises as the system co-configures its functions such

that tasks are successfully accomplished. Classically, it uses extant

equipment, routines, procedures, etc. or, as for Latour (2007), human

and non-human parts to serve as actors (“actants”). In what follows,

unlike Latour and Hutchins, we will turn to how living human bodies

function as parts of wide systems.

Starting with social actors allows a single “level of analysis”

to apply to organizations, practices, and ways of acting. Turning

from control, Hutchins (1996) identifies distributed cognition with

tightly coupled practices that, in later work (Hutchins, 2014, 2020),

are explicitly said to ground all of human cognition. He uses

what Cheon (2014) calls a “task-specification requirement” where

activity is “distributed” around a clearly specified and collectively

understood task. Such a view is exemplified by the malfunction in

the steam whistle where, for the crew, their task becomes that of

finding a functional substitute or vicariant solution to warning an

approaching sailboat of possible collision (Hutchins, 1996, p. 4). As

in Marr’s (1982) work on vision, a cognitive task is computationally

defined and, given formal description, separated from a (presumed)

implementational level. Even Hutchins (2014) retains this view in

recent work on the details of cockpit control: here too, he leaves

aside implementation to focus on actions: thus, in Weibel et al.

(2012), the use of eye-tracking data is reported. However, it serves

to pursue, for example, the meaning of the pilot’s “light touching of

the front edge of left thrust lever with the side of the pinky finger

on his right hand, bumping it lightly in the direction of reduced

thrust” (p. 112). For methodological reasons, as Gahrn-Andersen

(2021) shows, the object of study concerns how humans act as parts

of well-defined cognitive systems. In other words, given an extant

epistemic definition of the task, the whole system (e.g., practice,

organization) is viewed as a stable, supervening entity. Control draws

on predictable functionality to ensure that what is described counts as

valid knowledge. Yet, a high price is paid by starting with a systemic

whole. Human individuals become social operators in unchanging

systems. Thus, for Afeltowicz and Wachowski (2015), the approach

fails to qualify as a cognitive theory because it cannot clarify how

intent arises. Of course, the perspective has no such goal. However,

recognition of the flaw points to the interdependency of living and

non-living systems. This is prefigured by Giere (2004) who, taking the

distributed perspective to science, carefully distinguishes the human

cognitive agent from the whole system. Without this move, one risks

assuming, with Michaelian and Sutton (2013) that “expertise is not

a property of individual agents, but is built in to the constraints

of the system” (Michaelian and Sutton, 2013, p. 5). Not only does

one leave aside how intent emerges but also one replaces a whole

system’s pre-established structures and loci of control (e.g., routines)

with attention to operational shifts, systemic change, expertise and

the entangled, and highly variable workings of living human bodies.

While their functions indeed reach beyond the sum of its parts

determining proper actions, only attention to a “person-in-the-

system” (Fester-Seeger, 2021) can open up how systems generate

intent or use vicariant effects to achieve epistemic change.

Hutchins (2014) applies his perspective to all of human cognition

by comparison to the theory of extended mind. Hence, task-based

human cognition falls within the constraints of “cultural eco-

systems.” He views how agents perform –act, draw, and speak –

as “participants” in wider systems: hence as in earlier work, his

focus is collective. Indeed, an ecosystemic focus abstracts away from

actual doings and organized action. Hutchins seek to “shift the

focus from ecological assemblies surrounding an individual person

to cultural ecosystems operating at larger spatial and temporal scales”

(2014, p. 35). Of course, at a descriptive level, he recognizes that

individual participant matters (e.g., as in the case of a flight crew’s

visual attention which is structurally determined by the practice

of preparing for descent 2014, p. 44). Theoretically, however, he

emphasizes systemic stability or how existing practices are sustained.

In his terms, “the stability, resilience, or persistence of a practice

depends on the network of relations to other practices within which it

is embedded” (p. 46). Indeed, Hutchins emphasizes a “web of cultural

regularities” and, with these, the cultural practices, which sustain

them (2014, p. 47). As he notes, the perspective allows practices

to reduce contingencies to the extent that those familiar with a

relevant ecosystem will experience similar phenomena as belonging

to the same type (e.g., perceiving a line of people as a queue).

Importantly, he notes how “cultural practices decrease entropy and

increase the predictability of experience” (2014, p. 46). In this context,

even individual learning is structurally determined by ecosystemic

regularities. The perspective thus treats both individual and collective

experiences as intrinsic to the operations that guarantee systemic

reproduction. By implication, parts (e.g., workers or equipment)

and procedures are functionally replaceable. This takes us back to

our criticism of Hutchins (1996): By taking the supra-entity as

given-in-advance, he fails to interrogate how epistemic shifts occur.

Rather, his system is functionally indifferent to the substitution of

its elements and actual ways of performance. Instead of exploring

intents, systemic adjustment, change, and development, vicariance

is separated from persons and systemic dysfunction or, indeed,

significant operational change.

While a truism that human agency and power are socially

distributed, we turn to how parameters operate as events arise in

epistemic domains. Building on viewing language as distributed by

how embodiment informs agency (Blair and Cowley, 2003; Cowley,

2011, 2014), we highlight systemic interdependency. Similar to what

Giere (2004) shows for science or Vallée-Tourangeau andWrightman

(2010) for individual differences in mental arithmetic, we stress that

persons are interdependent with non-living parts of wider systems.
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As illustrated below, these prompt epistemic change in, at times,

neural organization and, at others, an organized task regime. A

wider system induces vicariant effects as persons engage with things

and each other. Each person-in-the system is a social actor (i.e., a

living being and a participant) who contributes to cascading systemic

change (in various scales). Often, epistemic change is triggered as

an agent draws on what appears as an ex novo event. Turning

to functional coordination and stability, we stress how distributed

agency (refer to Enfield, 2013) drives epistemic change. Since this has

a biosocial basis, human cognition links distributed systems to living

bodies, language-activity (or languaging) and semiotic assemblages

(Pennycook, 2017). In order to clarify how vicariant effects arise, we

bring systemic ethnography to how, in actual cases, practices unfold.

We unleash the power of tracing living human agency to how bodies

(and brains) contribute as parts of wide systems. Individual agents

draw on their embedding in larger wholes to shape traits a person’s

competencies (in the system). Hence, distributed parts enable organic

and organized parameter setting as systemic function draws on

what we call epistemic engineering. As a result, the process enables

humans to use ecosocial resources in a life history of epistemic

change. Coming to know this implicates routine performance that

unites separable systems, various control centers (e.g., brains and

computers) and modes of action.

As will be explained in section 5, our account turns from a

computational (or supra-entity) level by treating human cognition

as systemic and poly-centric. Accordingly, we play down pre-

determined cognitive tasks and views that ascribe cognition to

a single implementational source (i.e., a strictly autonomous

system). Before turning to our systemic frame (Cowley and Vallée-

Tourangeau, 2013, 2017; Secchi and Cowley, 2021; Secchi et al., 2023),

we present two case studies of epistemic engineering. These illustrate

(a) how cognitive systems require changing the loci of control and

(b) how agents, in their capacity as such, draw on vicariant effects to

affect the outcome of distributed systems.

3. The minimal case

A principle of neural re-use (Anderson, 2010) permits brains

to use a body’s life history as they construct bodies that develop as

effective performers and, indeed, participants in distributed systems.

Hence, we begin with how neural flexibility enables a person to adapt

to what we call a minimal engineered system. Similar vicariant effects

occur with, say, sensory substitution (Froese and Ortiz-Garin, 2020)

or “thought” control of a prothesis (e.g., Edelman et al., 2019). While

evoneered technology is often studied as of value in itself, less weight

has hitherto been placed on the biotech interface or how a living brain

adapts to a device. In that the results demand learned adaptation, we

extend work published elsewhere (Gahrn-Andersen and Prinz, 2021)

to highlight natural evoneering.

In the case of the cyborg cockroach, “thoughts” come to influence

an insect’s movements (Li and Zhang, 2016). Of course, this is

not literally a matter of “thinking”: rather, without knowing what

he or she is doing, a person manages input to the visual cortex

that is monitored by an EEG device. Since this transmits to the

cockroach’s antenna nerve, it sets off vicariant effects. Since a result,

the cockroach comes to resemble a cyborg in that it moves, to

an extent, under human control. The person gains a new way of

acting: he or she uses an engineered interface within a poly-centered

system. As a person-adaptor controls EEG response to a moving

cockroach on a flickering screen, the subject wills “thoughts” or, more

precisely, generates micro-electronic input. The subject learns to will

left and right movements by influencing the cockroach’s antennae

nerves. Building on work which showed that cockroach moves can

be shaped by radio transmission of joystick manipulation (Latif

and Bozkurt, 2012), Li and Zhang (2016) added the brain-to-brain

interface between EEG-output and antennae nerves. In what follows,

we report on an experimental study that involved three subjects and

three cockroaches. This vicariant enabling device allowed subjects to

learn to use “watching and willing” to nudge a moving cockroach

on an S-shaped track (refer to Figure 2). In Figure 1, we present an

engineering view of the poly-centered system.

While acting as a supra-system, experimenters merely offer

instructions and minimal training. Though part of the whole system,

they have no active role in “looking-and-willing” or thought control.

Thus, in the terms of Lintern (2007), one can ask how the whole

“dynamically reconfigures itself ” (p. 398). In so doing, we focus on

how epistemic change arises as a subject gains some control over

the cockroach. In such a case, systems and parts enable vicariant

effects as a subject masters what we call a technique. In this “minimal”

epistemic engineering, the subject (and the brain) connect: (a)

how a person assesses/manages watching-and-willing and, thus, the

adaptor’s EEG output1 and (b) how input to the antennas’ nerves

affects cockroach movements. If successful, the poly-centered system

achieves “functional coordination” between looking, neural activity,

the engineered adaptor, and the cockroach. In Lintern’s (2007) terms,

“external resources are as important as the processes of individual

cognition” (ibid).

In producing EEG output for the cockroach, a human subject

assesses cockroach moves while willing changes in cockroach

movements (refer to Figure 2). Hence, adaptors and “thoughts”

(or EEG measures) come to anticipate cockroach activity. Given

repetition and experience, the human gains techniques: in an

enlanguaged world, participants grasp the following: (1) what the task

is; and (2) what has to be done. However, since one cannot know

(in advance) what it is like to move a cyborg cockroach, techniques

can only arise ex novo. Even if much depends on what we call skills

(and can be described by theories like predictive processing), the

vicariant effects do not reduce to brain side process. It is only as part

of a brain-in-a-wide (or poly-centered) system that an engineered

system can use a “composite device” constituted by the setting (and,

ultimately, the work of the experimenters). In time, the accomplished

use of the device and cockroach brings “synergism and functionality”

to the person (Gahrn-Andersen and Prinz, 2021) who performs the

experiment. Far from reducing to learning, one gains epistemic power

(know-how) that is entirely dependent on the whole system: one

draws on interdependencies (and repetition) in coming to act with

a new kind of intent.

1 The systemmeasures “steady state visual evoked potential” as EEG response

from the visual cortex that arises in looking at the moving cockroach on a

flickering screen. The EEG system is adjusted to focus on a certain bandwidth.

Hence, what we call “looking and willing” involves a range of factors and, as

with any such system, there are issues of noise. Thus, while subjects are asked to

keep their heads still, even in the demonstration video, they track the cockroach

movement in ways that are highly visible.
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FIGURE 1

The experimental system encompasses a person, a cockroach and a steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI).

The distributed system works as the subject sends real time BCI commands to the cockroach as a person responds to a flickering image of the

cockroach. Link to original source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150667.

As Li and Zhang note, the adaptor shows “stable and continuous

high levels of accuracy in both ‘sender’ and ‘receiver’ sides” (2016, p.

15)2. Accordingly, to address the rise of synergies and functionality,

we focused on, first, the measures of cockroach sensitivity to micro-

electronic prompts (cyborg response accuracy) and, second, human

success in keeping the insect within boundaries (human success rate).

Table 1 presents selected findings from those reported in detail in the

original paper.

Although one cockroach reduces the human success rate, broadly,

human “thought” sets off high cyborg response accuracy. Tongue in

cheek, the authors mention cockroach three’s “self-willingness” or,

strictly, the role of extraneous variables. Crucially, given the human

success of about 20%, the task is not easy. Given this fact3, we

treat variability as showing, first, the scope for learning and, second,

marked individual differences. It is striking that human subject three

has the most accurate EEG classification, the best cyborg responding,

the highest success rate, and alone, some success with cockroach

three. We infer that much depends on managing how the adaptor

bridges between a human brain and the cockroach’s antennae nerves

(i.e., human-centered control of EEG input). In spite of cyborg

tendencies, the cockroach is no automaton. In contrast, humansmust

learn to use the adaptor in task-specific ways. Since these require both

motivation for success and a grasp of the problem (but not what to

2 The develop a control performance coe�cient to contrast system

performance as compared to chance (or a control). They tested the mean CPC

value of 0.616 ± 0.169 against the chance level (0.375) with a one tailed t test

and found it was highly significant, citing a t p < 0.0001 (t = 8.170).

3 Given longitudinal data, we could not track the role of “watching andwilling”

or how “noise” a�ects classification of measures. We do not attempt that here.

TABLE 1 Success in controlling cockroach moves.

Cyborg response
accuracy (%)

Human success
rate (%)

Cockroach 1 93.1 33.3

Cockroach 2 82.4 20.0

Cockroach 3 82.9 6.7

do), the techniques involve more than learning. Rather, one must ask

how an adaptor shapes vicariant effects in a novel task.

Even if training improves skills, techniques develop and, as

the success rate shows, no knack emerges. While the device sends

“instructions” to the cockroach (given high response accuracy),

human “thought” is subtle. Far from being a means to an end or a

functional tool, the engineered system empowers the subject as an

adaptor. It brings the once impossible within reach as perceptual

assessment becomes part of willing a cockroach to move. Given the

device, a brain-in-the-system synthesizes the ways of adapting (see

Figure 3). As in the classic work on Tetris, the engineered system

prompts the self-fabrication of epistemic powers (Kirsh and Maglio,

1994). In spite of the device’s novelty, the resulting techniques use

“tacit and overt controlling capacities” that allow “purposeful pre-

reflective (bio)mechanical execution” (Gahrn-Andersen and Prinz,

2021). Importantly, “willing a move” must feel like something (for

the person-in-the-system). Hence, the pre-reflective can contribute to

epistemic effects as a person with a brain-operating-in-a-wide system

sets off tacit neuronal tinkering. In the terms of Gahrn-Andersen

and Prinz (2021), the device affects a “state of being” through

“subconscious adaptation and fine tuning of neuronal circuits” (p.
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FIGURE 2

The trajectory of a cockroach moving on the S curve showing time taken. A green dot indicates a left-turn command; a red dot indicates a right-turn

command. Link to original source: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150667.

110). In short, reuse enables the brain to self-design techniques for

human control of the cockroach4.

While based on trial and error, the technique is not reducible to

the “law of effect” (Dennett, 1975). Rather, as epistemic engineering,

the brain gains functionality that acts as valid knowledge that is

oriented to, not just a stimulus, but also the adaptor-person. Within

the poly-centered system, the results attune the brain-in-the system

to watching and willing. The cockroach “part” enables reinforcement

to calibrate how a phenotype is extended by a system that couples

an engineered adaptor, neural activity, and the pre-reflective. Hence,

this constitutes natural evoneering. In the terms of Dennett’s (2017)

heuristics, the person needs more complexity than a Skinnerian

agent but not the “inner environment” of its Popperian counterpart5.

4 Gahrn-Andersen and Prinz (2021) suggest that, for the human part of

the system, the brain’s enabling activity is part of the “pre-reflective.” Since

one feels about what one sees one needs no “representations”. This is

possible, they suggest, because hierarchies of molecular coding draw on (and,

perhaps re-use) configurations of electromagnetic and cognitive patterns. The

brain may combine the use of more meaningful peripheral elements with a

computational core.

5 In Dennettian terms, Skinnerian agents link a history of reinforcement

together with planning and selection such that, in some species, culturally

Rather, the brain reuses old tricks that link distributed agency with

vicariance. Persons use wide systems such that, without knowing

what they are doing, they bring purposefulness to learning. In

Dennettian vein, one might call them Tolman agents who act with

intent (i.e., as if they were purposeful)6. Just as in acting as a

Morse operator (Cowley, 2019), the pre-reflective shapes techniques

in a person part of a wide system. As in Tetris (Kirsh and Maglio,

1994), persons-cum-brains use the feel of attending to the perceived.

Techniques use recursive trial and error to connect cognitive events

with the feeling of what happens (Damasio, 1999). As a result of

transmitted replicators sustain “o�-line” learning. Unlike Popperian agents, they

lack “models” of the world: in developing an ex novo technique, one needs

neither cultural replicators (instructions) nor a model that corresponds to an

external environment. Presumably, the novel technique arises from a (coded)

reconfiguring of neural sub-systems (or what Piaget calls accommodation) as

well as reinforcement. Importantly, one need not know that one is controlling

EEG input; change happens for a person (who can falsely believe they rely on

“thought control”).

6 The label is in Dennettian spirit. While alluding to Tolman (1932), we do not

suggest that such agents act in accordance with his theory. Simply, they use

the law of e�ect to act in ways that, seen from an intentional stance, appear

purposeful.
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actualizing practices, experimental subjects draw on brains to self-

fabricate techniques that allow for reasonable task performance.

When the engineer adds vicariant systems (e.g., a screen and

EEG device) to human-cockroach engagement, the human part of

the system can direct “input” to the adaptor (refer to Figure 1).

What is possible is transformed: natural evoneering enables a

novel technique.

Over time, the subject’s brain gives rise to techniques based on

seeing how the cockroach moves. Far from reducing to stimulus-

response or planned action, a living human subject uses “thoughts”

as attending to how the seen sets off retrojecting. The anticipative

results trigger learned parameters and EEG measures, which act as

output for a cockroach. With training and experience, humans alter

how the agency is distributed between the body, devices, and the

cockroach. The human uses the pre-reflective – or: the conscious but

not reflectively conscious – in the entirely innovative engagement

with an engineered device. Given familiarity with a cockroach-in-

the-system, the pre-reflective sets off prompts and thus vicariant

effects. Cognizing is evoneered across a brain that attunes to a

screen and EEG device as the person-adaptor gains know-how. As

a result, pre-reflective experience triggers neurophysiological events

or, loosely, “thoughts.” In such a case, we meet the challenge set by

Afeltowicz and Wachowski (2015): the emergence of intent (or the

purposeful actions of the human) uses the interdependencies of a

motivated poly-centric system. Novel behavior draws on a history

that links the pre-reflective, neural activity, use of an adaptor, and

contingent effects. The system’s world-side resources (the adaptor-

and-cyborg cockroach) use brain-side systems to shape the feeling of

what happens to grant human subjects techniques. Hence, the case of

minimal epistemic engineering relies on actualizing a social practice

whose functionality appears to an outside observer (although the

performer lacks any sense of how results are achieved).

4. Epistemic engineering in a working
environment

Next, we turn to vicariant effects that arose when drones were

introduced to a Danish utility company. Similar to the cyborg-

cockroach approach, parts use epistemic engineering within a

practical assemblage (Nail, 2017) that can be (partially) described

by distributed cognitive systems7. The changes both draw on–and

favor–vicariance as agents change both how they act and/or what

they know.While natural evoneering occurs, in this case, agents often

also gain a “grasp” of their place in changing public practices. As

shown below, this applies especially to a system operator whose work

is pivotal in the working environment. Drawing on the experience

of other tasks (i.e., of a pre-drone task regime), he brings forth

new possibilities. As a result, human participants grant systems and

parts new functionality that, in practice, constitutes valid knowledge.

They use an experience-based sense of events, or the feeling of what

happens, to actualize practices. Furthermore, they discuss the results

and use their talk to adjust later behavior, alter systemic function,

and, thus, the use of parts, materials, and a task regime. In this case,

7 Assemblage is used in translations of Deleuze and Guattari who apply the

term to characterize parts that co-function neither in ways predetermined to fit

an already-conceived design nor a random collection of things see, Nail (2017).

Where parts alignwith functions they can be described as a distributed cognitive

system.

there are no new intents. However, just as with the cockroach, the

change reduces to neither planning nor the automatization of skills.

Rather, it arises from grasping how systems can bring forth new kinds

of functionality.

4.1. Pursuing vicariance in a Danish utility
company

In Denmark, district heating supplies most urban environments

and is used by 64% of all households. With such heating, hot water is

pumped from combined heat and power plants through distributed

stations to private homes, businesses, and public institutions. After

reaching its destination (i.e., the radiators of the structure to be

heated), the “used” water returns for re-heating via a network of

pipes. While ideally closed, the system suffers from spillage and, for

this reason, companies have to add make-up water (and consume

extra energy). For this reason, to reduce, or prevent, such leakages

without changing pipes, a crucial role falls to the work of the

maintenance department. In 2016, the utility company in question

began collaborating with a provider of drones that use thermographic

cameras for leakage detection. The cameras readily detect the changes

in heat radiation from water that is pumped at around 80◦C: once the

information is identified, heat radiation from underground pipes can

be rendered “visible.”

Many different practices8 contribute to the maintenance of

the pipe network. In this context, therefore, we stress that the

introduction of drone technology has cascading consequences.

Indeed, the prominence of leakage detection has vicariant effects

across the company. To us, it appears that drone-based effects are

transforming the mission of maintaining the pipe network. For

now, we track innovation in a bundle of practices (i.e., maintaining

the pipe network) that, in return, have fed both across other

work and back into the use of drone-facilitated information in the

maintenance department. In the subtask regime that has arisen,

the use of drones (1) creates a novel task (i.e., thermographic

leakage detection); and, (2) qualifies an existing one (e.g., the

repairing of leakages) relates to the mission of maintaining the

pipes. Unplanned changes thus have far-reaching consequences

because existing work must both fulfill extant task regimes and,

at once, alter in responding to use of drone cases. Hence, drones

have become increasingly central to maintenance practice, changed

relations between employees and external contractors, and prompted

senior management to set a weekly target for dealing with drone

cases. The vicariant effects are unplanned because, rather than

integrate the drone task regime with extant practices, they have had

to be improvised. They have been brought in piecemeal both to

supplement general operations (i.e., “non-pipe related maintenance

tasks” such as the change of manhole covers) and in changing the

pipe network maintenance (e.g., the repairing of alarm threads in

certain pipe types). For ease of exposition, we now draw a comparison

with the minimal case by identifying the outward flow of vicariant

effects.

Over time, seeing the images triggers a cascade of vicariant effects

(leading to both intra-organizational change and effects on sub-

contractor operations) (see Figure 4). Under the old task regime,

8 Indeed, the utility company’s history of proving district heating goes back

to 1925.
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FIGURE 3

The experimenter (human head) designs a system with an engineered adaptor. As a whole adaptor system, the person, screen, and cockroach

co-constitutively draw on natural evoneering.

FIGURE 4

Screenshot of Teraplan.

decisions about repairing leaks drew largely on contingencies. Since

the utility company had no means of seeking out leakages, they relied

on when, for instance, a vigilant citizen found green water in their

basement (the make-up water has added green color) or if, following

a snowfall, an expert noted melted snow above an underground

heating source. Hence, drones brought a new order to their work9.

Furthermore, since they have proved both reliable and efficient,

the leakages could have potentially overwhelmed the department’s

financial, human, and other resources. As one senior manager says:

“The drones give us knowledge of leakages that it would otherwise

9 Here, we are looking beyond leakages that are automatically reported by

the alarm threads in certain pipe types. The drones have been introduced with

the purpose of spotting leakages in pipes that do not come equipped with such

threads.

take 10–15 years to gather” (Senior manager). As so often with digital

solutions, the accumulation of data demands epistemic engineering

and, at once, sets off epistemic change. Having seen that drones

bring about new functionality, senior management set the target of

addressing 5 new drone cases each week.

4.2. Drone task regime: Screening and
managing of incoming data

The utility company uses a drone service provider as a

semi-autonomous assemblage that provides images based on the

specialized software (see Figure 4). Given a technical specification,

the parts couple tightly with the company’s task regime: employees

quickly established the routines based on the classification of
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suspected leakages. The service provider package includes (a) aerial

surveillance of areas of the city and then (b) thermographic images

from the surveillance operations supplied to through licensed,

custom-built software: Teraplan. In the case of (b), the Teraplan

data are the drone provider’s extension of Google Maps to classify

the suspected leakages on a certainty scale (viz. As are most

certain, Bs less so; and Cs are call for further examination).

Furthermore, the user can turn software layers on and off (i.e., to

focus on the thermographic layer, Google Maps satellite photographs

or the utility company’s network of pipes; refer to Gahrn-

Andersen, 2020). Plotting of the suspected leakages is performed

manually by the drone operator who screens thermographic

images while using a depiction of the utility company’s network

of pipes.

For the maintenance department, Teraplan sets off vicariant

effects. Since these must be monitored and managed, the program

is shaping an unplanned task regime. In this context, the role of

the system operator takes on new importance. Above all, this is

because the role now combines extant knowledge and skills (e.g.,

knowledge of the streets of the city) with a grasp of what Teraplan

shows. Drone-based information combines with personal knowledge

that draws on the company’s own Geographical Information System

(GIS). Rather as with the cyborg cockroach, images-cum-software

demand that the system officers attune to the output of Teraplan.

Bodies function as parts of an adaptor (just as, elsewhere, a

Morse operator’s body comes to act as an adaptor, see Cowley,

2019). While we later highlight contrasts, parties close to the

software are required to develop techniques (not described here)

that, oddly, bring new understanding to the old experiences. The

resulting decision-making alters the parameters of action and, thus,

company practices. We begin with how, given the accuracy of

leakage detection, the system operator sets off epistemic engineering.

Given his grasp of how drone-based information bears on the

wide system, he has to (1) verify the leakage indicated and (2)

initiate repairing by forwarding relevant information to the sub-

contractor.

Since Teraplan indications of leakages are accurate, the

system operators developed a distinctive routine. They link the

output to professional knowledge and the utility company’s GIS

system to set off vicariant effects across the whole system (i.e.,

the rest of the maintenance department, relevant contractors,

the municipality, and private citizens). The resulting epistemic

engineering is achieved by acting in ways that favor leakage

repair: just as with the cockroach, epistemic change arises as

parts of the assemblage exert co-control. These are funneled by

how the service provider’s coders process raw data and, above

all, the system operator’s validations and decisions. In what

follows, we focus on suspected leakages that are classified as

As. While the classification has identified hundreds of successful

cases, there are also errors. For example, one A identified ground

that had been heated up by a parked bus, and in another

case, it showed clamping close to the surface as shown on the

utility company’s GIS depiction of pipes. Accordingly, the system

operator makes an experience-based assessment of each leakage:

information from Teraplan is verified by a double check or,

as a system operator says: “[The drone] doesn’t know what is

underground. The GIS [Geographical Information System] does.”

While Teraplan can show whether a suspected leakage is close

to a pipe, the GIS system adds detailed information about each

pipe’s type, dimensions, exact lengths, etc. Hence, the system

operators compare the Teraplan images with the information

from the GIS. They use personal knowledge to identify false

positives such as when increased thermographic radiation on

clampings does not show a leaking pipe. Hence, one system

operator, a smith with years of hands-on experience, stresses

the need for fine comparisons between images from the two

information systems:

As long as we have these two systems [i.e., Teraplan and

GIS] like this, it is fairly simple to work with them. Because I

also think that we need to keep ourselves from accessing this one

[i.e., the GIS] too much. In spite of it, it is a webpage which runs

constantly, and our GIS system is so massively huge, you know.

It is a way heavier system [than the drone operator’s software]

Having double-checked the Teraplan data with the GIS, the

system operator also draws on his own experience in deciding

when to authorize the utility company’s contractors to start on

any given case. As confirmation, the contractor begins with a

preliminary digging to validate the accuracy of the spot identified.

Additional measures require that a system operator or contractor

visits each suspected leak and verifies the results using a handheld

thermographic camera. However, given the precision of coding As,

this procedure has become little more than a formality. Leaving aside

work with Bs (let alone Cs), we now turn to how, in the second

part of the drone task regime, important contrasts arise with the

cockroach case. This is because, as vicariant effects fan out from the

system operators, they lose predictability: managing repairs requires

entangled links between organizational settings and, thus, care in

adapting parts of the assemblage as one manages distributed agency.

4.3. A secondary dimension of the
assemblage: How the repairs are managed

Whereas opening the drone case has become part of a routine,

the subsequent management of repairs is rather loosely structured.

Much depends on a weekly “damage meeting” [Da. Havarimøde]

where themaintenance work is organized. Themeeting enables drone

task work while also dealing with both pipe and non-pipe-related

maintenance. Each case is given status updates and, where works are

not progressing, solutions are brought forward. The logic of each

repair is roughly this: (1) the contractor applies to the municipality

for permission to dig; (2) affected customers are notified of heating

disruption; (3) once a leakage is dug free, its extension is approved

by a system operator (who might also chose to temporality close

the hole). Later, when the pipe can be replaced by contracted pipe

specialists, (4) the utility company sends out a technician to turn of

the water. In step (5), the contractor replaces a section of the pipe,

and, in (6), the utility company technician restores the flow. Next, in

(7), the digging team fills up the hole, lays new asphalt, and removes

barriers and signs. Finally, in (8), the utility company technician fills

out a “damage report” [Da. Havarirapport] that documents the works

and serves to update information in the GIS. In actual circumstances,

of course, the progression can be negatively affected by the factors

such as staff shortage, an overload of cases, or unforeseen events

(e.g., frost that makes digging difficult). In what follows, we
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present two drone cases reported at a damage meeting held on 26

March 2019:

Drone case 1:

Digging commences in week 49. 11-12-2018: Digging in week

50 because we did not manage in week 49. 18-12-2018: Digging

commences 19.12.18. 08-01-19: The digging permit [which is

temporary and issued by the municipality] has been reevoked

due to expiration. A new hearing phase has started. 15-01-2019:

hearing is ongoing 22-01-2019: hearing ongoing. 29-01-2019:

Digging permit received, commencing in week 6.05-02-2019:

Digging d.6/11. 12-02-2019: Digging. 19-02-2019: Waiting due

to parked car. 26-02-2019: Still waiting because of the car. 05-03-

2019: Waiting due to parked car. 12-03-2019: digging completes

in this week 11. Is being planned. 19-03-2019: digging finished.

26-03-19 status unknown.

Drone case 2:

Ready for [the contractor]. Contact the customer prior to

commencing. 29-01-2019: Shooting pipe [a type of pipe] 22.05-

02-2019: Expected beginning in week 7. 12-02-2019: [Manager

2] follows up with [digging contractor] in relation to the

commencing. 19-02-2019: Commencing Friday 22/2. 26-02-

2019: commencing week 9. 05-03-2019: Commencing 06.03.19

12-03-2019: A Greek in place [a term for a temporary repair

of the leakage] 12/3. Expected clearance digging week 11. 19-

03-2019: [Utility company technician] is to contact [digging

contractor] regarding eventual repositioning of the plug. On

the agenda for the supervision meeting 22/3. 26-03-2019

digging continues

Notably, the meeting focused on 18 drone cases: as was now

clear, the utility company had inadvertently caused a bottleneck.

This is because, without having any means of tracking vicariant

effects, senior management had introduced a target of five drone

cases a week. Given the unplanned nature of the process, additional

drone cases were issued to contractors on 12 March and, by

the time of the meeting, the bottleneck had been developing

for a month. Indeed, for reasons that cannot be discussed here,

the continuous addition of new drone cases led to unexpected

difficulties for, above all, the digging contractor. Subsequently, the

utility company was to react by temporally suspending its “five

leakages per week” policy. The two cases serve to illustrate the

problems and give a sense of what, precisely, is meant by saying

that drones led to epistemic engineering as systems and parts

developed functionality that, for those in the company, constitute

valid new knowledge.

In the first case, 3 months had passed in progressing from

steps 1–2 to the operational repair procedure. This was due to

two unforeseen tasks: (a) renewal of the digging permit and (b)

the need to remove a parked car which, in fact, led to a 2-month

delay before digging could begin (the reason for this was that

the company then faced issues with expired digging permits and

material and manpower shortage). Whereas, the need to reapply

for the permit is a dysfunctional element due to shoddiness and

lack of manpower, the second case is a common contingency

that, in this case, led to a serious delay. By placing a “Greek”

on the pipe, the utility company successfully completed step (3).

Yet, since more coordination (i.e., a “supervision meeting”) was

needed, an emergency ad hoc meeting was called to deal with cases

that were piling up because a contractor had fallen far behind

schedule. In this particular case, both the contractor and the utility

company had overestimated the duration of repairs, and conversely,

underestimated howmaintenance operations would be influenced by

environmental factors.

Unlike the minimal system, the utility company’s systems

are, at once, organized and deeply entangled. They arise in

a poly-centered unit that includes people with very variable

understanding. The results have the indeterminacy of systemic

assemblages (Gahrn-Andersen, 2020) that are: (1) open to social,

market, and technological change; (2) enable drones and information

to produce functionality; and (3) bind the causal, the biological

and social. As we see, drone functionality is fully entangled within

organized life: it includes, first, coders (and drone operators) who

plot useful data in Teraplan; second, it has made the system operator

who uses the software into an “adaptor” like a person with a

verifying/facilitating role. However, the assemblage must cope with

not only drone-derived data but also seemingly drone-independent

repercussions that are conceptualized around the tasks of repair.

Indeed, given poly-centered control, as in similar organizations, the

utility company uses a hierarchical structure to maintain institutional

control (e.g., through damage meetings). In clarifying how parties

manage epistemic engineering, therefore, we draw contrasts to

the minimal system. Whereas, the human-cockroach adaptor is

encapsulated, Teraplan makes the system operator into an adaptor

whose functionality disseminates. To an extent, diverse, loosely

coupled systems demand from the other human parts that they adjust

their ways of acting (and develop novel techniques). Above all, skillful

agents (the drone operator’s coders and the utility company’s system

operators) determine the company’s function and operation. Hence,

in moving from a drone-specific task regime to the maintenance

task, the task coupling becomes looser and, at times, decouples

(at least in part). In such cases, additional supervision meetings

are needed (cf. Drone case 2). In bringing order to such events,

we now consider the implications of recognizing how adaptors

set off vicariant effects. We stress that, since epistemic change is

incorporated into action, talk, and routines, human cognition can

use how intents and epistemic change arise in socially organized

wide systems (refer to Figure 5).

5. Organized humans: A systemic view

Complex systems such as toy locomotives and galaxies contrast

with the bodies that subserve human knowing. As Bateson (1979)

notes, “the toy locomotive may become a part in the mental system

which includes the child that plays with it, and the galaxy may

become part of the mental system which includes the astronomer

and the telescope (1979, p. 104).” In his terms, objects are not

thinking subsystems in larger minds but, rather, nature evolves

as observers (or knowers) use relationships. Overlooking entropy

reduction, he suggests that these arise “between two parts or

between a part at time 1 and the same part at time 2 (p. 106)”

and activate a third component such as a sensory end organ.

The receiver “responds to is a difference or a change” (Bateson,

1979). Receipt of the differences makes a difference for a system.

In parallel, for Giere (2011), there is an asymmetry of knowing
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FIGURE 5

The drone service provider (outer source) enables a system with an engineered adaptor. As a whole adaptor system, the system operator, the software

display, and professional activity set o� epistemic change.

and cognizing. As illustrated by the Hubble telescope, whereas

cognitive outputs (e.g., images from space) derive from the whole

system, only human parts can know anything. This asymmetry

is fundamental because of the clear implication that bodies use

cognitive input to create an epistemic output (differences that

makes a difference for a system and/or its parts). In Bateson’s

terms, distributed systems use “differences” or information that the

doings of living parts transform into knowledge and know-how (as

things happen). Yet, Giere leaves aside how “receiving” can prompt

coming to know. In addressing this in humans, we suggest that

knowledge arises in wide systems as living parts reduce entropy,

simplexify (Cowley and Gahrn-Andersen, 2022) and make use of

adaptor systems.

As epistemic actors, humans both receive and process

information (or perceive differences) as they exert control over the

results. In focusing on how cognition binds human understanding

with the deliverances of wide systems, we take a systemic view

(Cowley and Vallée-Tourangeau, 2013, 2017). As with the cockroach

controller or the drone system operator, epistemic change uses

systemic interdependency. Whereas, cognizing pertains to a whole

system, knowing concerns Giere’s (2004) “human cognitive agent”

or, simply, a living human being. The move resolves the collective-

individual tension noted by Baber (2010), Perry (2013), and Jones

(2013) by making artifacts and language part of a distributed agency.

As shown by Fioratou and Cowley (2009), for example, insight

problems are solved as bodies are nudged to abstract “aspects” from

lived experience. In Cowley and Vallée-Tourangeau’s (2017) terms,

primates “notice things” by drawing on what is called the principle

of cognitive separability (PCS). In noticing, we take distance from

body-world engagement as doings attune to aspects of things. In

tool use, for example, we “try” things out and, with experience,

learn from practice (Donald, 1991). Given distancing (and the PCS),

a contingency can prompt seeing a solution (Ball and Litchfield,

2017) or problem-solving can be triggered by the aesthetics of

symmetry (Steffensen et al., 2016). Positing the PCS both clarifies

epistemic outcomes and also shows the cognitive value of attending

to emplaced experience. Together with distancing, one can generate

intent and epistemic change using interactivity (Kirsh, 1997; Gahrn-

Andersen, 2019), resonating with pico-dynamics (Blair and Cowley,

2003) or striving for cognitive events (Steffensen, 2013). The PCS

links routine performance with higher cognitive functions (Cowley

and Vallée-Tourangeau, 2017). Yet, appeal to a principle leaves aside

how living parts of wider systems change parameters with epistemic

effect. After all, only some events shape techniques and only expertise

can derive useful outcomes from systemic interdependencies. It

follows that distributed systems do not just self-sustain but, just as

importantly, co-function as persons, brains, and bodies generate

epistemic change. Given distancing, attention, and emplacement,

people draw on a life history to exhibit powers associated with

what Madsen (2017) calls multi-scalar temporal cognition. In a

Mafia setting, for example, a mother may desecrate her child’s

“informer’s grave” (Neumann and Cowley, 2016). Coming to “know”

the appropriacy of such action eludes both neurophysiological or

convention-based accounts (i.e., micro- or macro-explanation).

Rather, the desecration attests to an organized domain where human

agents link the micro with the macro. As a member of the Mafia

world, the mother is concerned with neither a task nor a distributed

cognitive system. Damaging her child’s grave is inexplicable by

accounts based on either interaction history or normative social

roles. Rather, events presuppose a public space of action where wider

systems operate as constraints on neurophysiology and, thus, action:

adjustments unite public appearances (and responding to them) with

the macro-social and the bio-behavioral. Formally, one can posit the

three co-functioning dimensions (Secchi and Cowley, 2016, 2021;

Secchi et al., 2023) known as the Ms (macro, micro, and meso).

In peer review, for example, a reviewer drives epistemic change by

drawing on organized structures, individual prompts, and judgments

of what is likely to be perceived as having scientific value (Secchi
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and Cowley, 2018). Tasks and cognitive ecosystems become part of a

meso-domain–a public space of unending, structural change.

A focus on structural change privileges systemic

interdependency. As in the Mafia case, behavior is irreducible

to interaction. People simplexify or reduce entropy by drawing on

retroactive processes. They amalgamate past experiences with a

lived now both in willing cockroach movement (using techniques)

and binding Teraplan images with “knowing” the streets shown by

the GIS software. Within a meso-domain, one acts as a person in

the system (Fester-Seeger, 2021). As parts of wide and distributed

systems, in Bateson’s (1979) terms, people recognize the differences

and enact news. As Hutchins sees, they reduce entropy and, we add,

set off vicariant effects that make differences. The claim matters in

that it addresses Afeltowicz and Wachowski’s (2015) objection to

the distributed perspective. Intents can be public, multiscalar effects

that embody epistemic changes. In the cockroach experiment, an

engineered adaptor prompts an experimental subject to develop

purposeful behavior. While brain-enabled, contra Afeltowicz and

Wachowski (2015), thoughts need, not a neural mechanism, but

a special way of “looking while willing.” The brain creates novel

structures (techniques) within a wide system where a person becomes

part of an adaptor system that controls the brain-cockroach whole. In

the utility company, a system operator achieves epistemic outcomes

by retrojecting the experience of terrain onto a software display. As

an expert, he can see that Teraplan shows a bus stop that is “too far”

from the side of the road. In such a case, expertise can prompt one

to challenge evidence. Cognizing thus arises in the meso-domain of

an extended system: this is where the experimental subject makes

the cockroach turn and the system operator decides to check an

intuition at the site specified. While brain-enabled, the action is

reliant on public cues; the brain’s role is, not to control, but to grant a

sense of purpose (i.e., as in a Tolman agent). In the wide system, the

cockroach controller amalgamates changing impressions (the system

in the person) with increasingly effective action (independent of

belief). In parallel, organized routine co-functions with equipment to

form a system operator’s intuition. Furthermore, while the PCS plays

no role in the action, the techniques presuppose an enlanguaged

world (refer to Cowley and Gahrn-Andersen, 2022) where actions

make sense: this enables a person in the system to see what can be

done or grasp what one is meant to do.

Sensitivity to the moment is the hallmark of social organizing.

It allows the persons to attribute a public (or “relevant”) sense

to events and, thus, establish vicariant effects. Hence, living

systems use systemic interdependencies to shape the “outward

spread” of knowing. In the drone case, the spread affects a

range of stakeholders as persons reduce entropy through epistemic

engineering. While using routines and cultural ecosystems, parties

also develop techniques and act to simplexify. Without knowing what

they are doing (or explicit training), they alter both whole system

functions and also those of bodies and living persons. Epistemic

change can reveal what one “should” do or prompt a grasp of

the possible. Often, experience, expertise, and techniques bind with

what linguists call entrenchment (Cowley, 2017; Schmid, 2020).

The resulting judgments use, not a faculty of reason, but how

practical know-how unfolds in an enlanguaged world. Experienced

individuals gain capacities for reliable judgments and making use of

docility (Secchi, 2016). In the utility company, these qualities–not

just routine use of systems–ensured a smooth transition to drone

use in pipe maintenance. A well-organized systemic whole ensures

that drone-based information is currently driving the reorganization

of maintenance work (Gahrn-Andersen, 2020). As change spreads,

people link bodily feel and expertise to causal systems that set

off cumulative practical effects. The equipment serves, not just

directly, but also to improvise newmaterial and institutional relations

(i.e., by setting boundary conditions on sensitivity to linguistic

semiotic resources). The vicariant effects enable the teams and

individuals to (a) self-empower; (b) reorganize; (c) influence each

other; and (d) alter routines. Parties gain expertise, skills, and ways

of drawing on the system. Thus, while many new issues arise (e.g.,

reorganizing supply and budgeting needs), the drone study also

shows how resilient organizations and individuals gain from cascades

of epistemic change.

6. Epistemic engineering

Emphasis on systemic interdependencies plays down the role

of organism-centered control. Indeed, the radical potential of the

systemic view lies in bringing a constructive role to distributed

systems. As we have argued, they enable humans to generate

intents, epistemic effects, and collective knowing: often personsmake

differences using wide systems to set off vicariant effects. During

routines or practices we enact and mimic adaptor systems that

trigger epistemic change. Hence, agency and tasks are reciprocally

related. The view clarifies how wide systems contribute to social

intelligence in lemurs (Jolly, 1966; Sterelny, 2007), navigating a

ship (Hutchins, 1996), or using “thought control” over a cyborg

cockroach. In hominins, neural plasticity co-evolved with new

variation in cognitive performances: at times, we attend closely

and, at others, we distance ourselves and, given hints, gain insights

(“perhaps a bus warmed the ground”). In part, this is due, we suggest,

to the principle of cognitive separability that allows us to notice

potential value in the contingent. Indeed, without it, there would be

no flexible-adaptive tool use or amalgamation of social regularities

and irregularities. By implication, the epistemic novelty of hominins

may derive from our use of distributed agency. With the rise of

artifice, humans come to draw on, not just bodies, but also reciprocal

relations within wide systems and across practices.

In an enlanguaged world, vicariant effects contribute to intents,

routines, and practices. In the “minimal” case, a person-in-the-system

sets off epistemic change by purposefully moving a cockroach. In

the system, looking-and-willing reduces entropy as a brain adapts

to the engineered adaptor. In the utility company, epistemic change

reaches beyond techniques as drones cum Teraplan software enable a

system operator to set off a cascade of effects. In this case, epistemic

engineering prompts people to see opportunities and, over time,

figure out what to do: while requiring neural re-use and control,

the power of self-sustaining systems (and the meso-domain) lies in

generating useful knowledge. By enabling adaptor systems, we use

epistemic effects to get things right. Without any foresight, people

link entropy and the pre-reflective with the hints and nudges of an

enlanguaged world. Within interdependent and distributed systems,

vicariant effects enable epistemic change, self-empowerment, new

uses of equipment, co-creativity, and variation in routines. We,

therefore, submit thatmuch is gained from teasing apart living agency

from that pertaining to supra-systems, tasks, and routines. The

radical move allows cognitive powers to use, not only bodies, brains,

and organism-environment coupling, but how human life cycles
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serve in making differences. The biosocial resources of wide systems

can be used to ensure that distributed control sets off vicariant

effects whose parameters function to construct epistemic change. In

short, while selection filters novelty, non-linear change transforms

the knowable. By hypothesis, then, epistemic engineering is an

evolutionary principle that may well apply across the living world.
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Deep convolutional neural networks (DCNNs) have attracted considerable interest as

useful devices and as possible windows into understanding perception and cognition

in biological systems. In earlier work, we showed that DCNNs di�er dramatically

from human perceivers in that they have no sensitivity to global object shape. Here,

we investigated whether those findings are symptomatic of broader limitations of

DCNNs regarding the use of relations. We tested learning and generalization of

DCNNs (AlexNet and ResNet-50) for several relations involving objects. One involved

classifying two shapes in an otherwise empty field as same or di�erent. Another

involved enclosure. Every display contained a closed figure among contour noise

fragments and one dot; correct responding depended on whether the dot was

inside or outside the figure. The third relation we tested involved a classification

that depended on which of two polygons had more sides. One polygon always

contained a dot, and correct classification of each display depended on whether

the polygon with the dot had a greater number of sides. We used DCNNs that had

been trained on the ImageNet database, and we used both restricted and unrestricted

transfer learning (connection weights at all layers could change with training). For

the same-di�erent experiment, there was little restricted transfer learning (82.2%).

Generalization tests showed near chance performance for new shapes. Results for

enclosure were at chance for restricted transfer learning and somewhat better for

unrestricted (74%). Generalization with two new kinds of shapes showed reduced but

above-chance performance (≈66%). Follow-up studies indicated that the networks

did not access the enclosure relation in their responses. For the relation of more or

fewer sides of polygons, DCNNs showed successful learning with polygons having

3–5 sides under unrestricted transfer learning, but showed chance performance

in generalization tests with polygons having 6–10 sides. Experiments with human

observers showed learning from relatively few examples of all of the relations tested

and complete generalization of relational learning to new stimuli. These results using

several di�erent relations suggest that DCNNs have crucial limitations that derive from

their lack of computations involving abstraction and relational processing of the sort

that are fundamental in human perception.

KEYWORDS

perception of relations, deep convolutional neural networks, DCNNs, deep learning, abstract

relations, visual relations, shape perception, abstract representation

Frontiers in Artificial Intelligence 01 frontiersin.org
121

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.961595
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.961595&domain=pdf&date_stamp=2023-03-01
mailto:kellman@cognet.ucla.edu
https://doi.org/10.3389/frai.2022.961595
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2022.961595/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Baker et al. 10.3389/frai.2022.961595

1. Introduction

The perception of objects, spatial layouts, and events are crucial

tasks of intelligent systems, both biological and artificial. For these

tasks, information in reflected light affords the richest information.

Differences in material substances’ absorption and reflection of

light carry information about boundaries and shapes of objects and

surfaces, as well as their spatial location and relations, textures, and

material properties. The concentration of research effort on vision

in human and artificial systems is no accident, given the detailed

information available in reflected light, its spatial and temporal

precision, and its availability at a considerable distance from objects

and events themselves.

In human vision, research has identified specialized processes

and neural mechanisms that contribute to visual perception and

representation of objects, spatial layout, motion, and events. Among

these are processes that separate figure from ground and determine

border ownership (Rubin, 1915/1958; Koffka, 1935; Driver and

Baylis, 1996; Zhou et al., 2000), detect complete objects despite

fragmentation due to occlusion or camouflage (Michotte et al.,

1964; Kanizsa, 1979; Kellman and Shipley, 1991; Kellman and

Fuchser, in press), represent the shapes of contours, objects, and

surfaces (Wallach and O’Connell, 1953; Ullman, 1979; Marr, 1982;

Biederman, 1987; Lloyd-Jones and Luckhurst, 2002; Pizlo, 2008; Elder

and Velisavljević, 2009; Baker and Kellman, 2021), determine the

direction of motion (Adelson andMovshon, 1982), and use relational

information to perceive events (Michotte, 1954; Johansson, 1978).

All of these processes appear to involve computational processes

and dedicated neural machinery specialized to extract and represent

important structural properties of scenes and events.

A consistent hallmark of these and other aspects of human visual

processing is the importance of relations. Relations are crucially

involved in visual perception in two related but separable ways.

First, capturing important properties of the world involves relational

information in the optical input and perceptual mechanisms

that can extract it. Relevant relations as stimuli for vision

often involve considerable complexity (Johansson, 1978; Gibson,

1979; Ullman, 1979; Marr, 1982; Palmer et al., 2006; Baker

and Kellman, 2018). Second, the outputs of perception involve

explicit representations of relational properties—relations across

space, such as shape or arrangement (Koffka, 1935; Baker and

Kellman, 2018), or properties based on patterns across time,

such as causality or social intention (Heider and Simmel, 1944;

Michotte, 1954; Scholl and Tremoulet, 2000). Evidence indicates

the abstract nature of these and other perceptual representations

(e.g., Izard et al., 2009; Hummel, 2011; Baker and Kellman, 2018).

The representation of relational properties in the output allows

perceptual descriptions to subserve a wide variety of tasks and to

connect naturally to thought, action, and learning (Gibson, 1969;

Garrigan and Kellman, 2008; Klatzky et al., 2008; Kellman and

Massey, 2013).

Efforts in artificial vision have sought to develop algorithms for

extraction of information that might produce explicit representations

of contours, surfaces, spatial layout, objects, and shape (Marr, 1982).

For object recognition, these efforts have led to proposals for solving

the relevant computational tasks explicitly using information about

shape (Bergevin and Levine, 1993; Belongie et al., 2002; Pizlo, 2008;

Rezanejad and Siddiqi, 2013), local texture patterns (Lowe, 1999),

or surface feature segmentation (Shi and Malik, 2000; Shotton et al.,

2009).

Although these efforts have yielded important progress, they have

been overshadowed in recent years by results from a wholly different

approach: deep convolutional neural networks (DCNNs). DCNN

architectures have many applications, but one clear focus, and area

of conspicuous success, is in image classification. In DCNNs, object

recognition is not based on explicitly encoded contours, surfaces, or

shapes of objects present in images (Krizhevsky et al., 2012). Instead,

the networks learn to accurately classify many images depicting

various object categories from the weighted combination of the

responses of many small, local filters, the responses of which are

themselves learned.

The successes of deep networks in object recognition have

led to research questions flowing in the opposite direction from

many earlier efforts. Rather than starting with biological vision

phenomena, such as segmentation of figure from ground or

completion of partly occluded objects, and attempting to construct

computer vision models to perform these tasks, many researchers

are currently investigating similarities between deep networks trained

for object recognition and the human visual system. Node activity in

intermediate layers of deep networks correlates with activity of cell

populations in V4 (Pospisil et al., 2018) and some deep networks

have been found to be predictive of cell populations in IT (Yamins

et al., 2014). Deep networks trained for object recognition also appear

to predict human behavior in judging the similarity between objects

(Peterson et al., 2016), the memorability of objects (Dubey et al.,

2015), and the saliency of regions in an image (Kümmerer et al.,

2014).

At the same time, other research has suggested that deep

learning approaches have deep limitations. These limitations are

being studied in terms of the applicability of deep learning systems

as models of biological processing but also regarding their impact

in applications to consequential real-world tasks. Ultimately, such

inquiries may help to determine both the ways in which the

characteristics of deep learning networks are embodied in aspects of

biological vision and ways in which deep learning approaches can be

enhanced by incorporating specialized adaptations that are evident in

biological systems.

In earlier work, we reported that DCNNs that successfully classify

objects differ from human perceivers in their access to and use of

shape (Baker et al., 2018). Kubilius et al. (2016) had tested shape as

a cue for recognition and found that DCNNs can classify silhouettes

with about 40% accuracy and showed sensitivity to non-accidental

features of objects [e.g., parallel vs. converging edges (Biederman,

1987)]. In our research, we showed that DCNNs showed a clear lack

of sensitivity to global shape information. This conclusion rested on

multiple, converging tests. When texture and shape conflicted (as

in a teapot with golf ball texture), the networks classified based on

texture; glass ornaments readily recognizable by humans as animals

or objects were poorly classified by DCNNs; DCNNs showed poor

performance in classifying silhouettes of animals, and they showed

no ability to correctly classify outline shapes (Baker et al., 2018).

Examining error patterns led us to suggest a distinction between

local contour features and more global shape. DCNNs clearly access

the former but seem to have no access to the latter. We tested this

hypothesis with silhouettes of objects that DCNNs had correctly

classified, altered in two different ways in separate experiments.

Frontiers in Artificial Intelligence 02 frontiersin.org
122

https://doi.org/10.3389/frai.2022.961595
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Baker et al. 10.3389/frai.2022.961595

In one, we scrambled the spatial relations between object parts to

destroy their global shape features while preserving many of the

local edge properties present in the original stimulus. In the second,

we preserved global shape but altered local edge features by adding

serrations to the bounding contours of objects. Although human

recognition of part-scrambled objects was highly disrupted, DCNN

responses were little affected by scrambling. In contrast, the use of

local serrated edges to define overall shape had little effect on human

classifications but completely disrupted the network’s classification of

objects (Baker et al., 2018).

Subsequent work provided further evidence that DCNNs have

little or no sensitivity to global shape. Baker et al. (2020b) found

that networks they trained to discriminate squares and circles would

consistently classify as circles squares whose edges were comprised

of concatenations of curved elements. Similarly, circular patterns

made from concatenations of small corner elements were classified

as squares. These results were relatively consistent across a variety of

DCNNs (AlexNet, VGG-19, and ResNet-50), and for both restricted

and unrestricted transfer learning (Baker et al., 2020b).

These and other results pose clear contrasts with research on

human visual perception, in which shape is the primary determinant

of object recognition (Biederman and Ju, 1988; Lloyd-Jones and

Luckhurst, 2002; Elder and Velisavljević, 2009). Shape is represented

evenwhen itmust be abstracted fromdisconnected stimulus elements

(Baker and Kellman, 2018). In fact, the specific, directly accessible

local features from which shape is extracted are often not encoded

in any durable representation (Baker and Kellman, 2018) and may in

many cases be represented as statistical summaries rather than precise

records of features in particular positions (Baker and Kellman, in

press).

1.1. Motivation of the present research

It might be natural to interpret the limitations of DCNNs with

regard to global shape as deriving from the absence in these networks

of specialized shape extraction and representational processes that

have evolved and proven useful in human vision. Although we believe

aspects of that point of view are likely correct, we wondered whether

the limitations in capturing shape relations in DCNNs might be

indicative of a more general limitation regarding relations.

A basic reason for supposing that DCNNs might have a general

limitation with regard to relations involves the convolution operation

at the heart of much of DCNN processing. Convolution applied to

an image input is inherently a local process and a literal process.

The output of a convolution operator at the location of its center

is the weighted sum of image values of intensity in a neighborhood

of locations around the center. At later layers, convolution may be

applied to the values obtained by a prior convolution operation

or some kind of pooling operation, such as max pooling, which

reduces the size of the array by assigning to larger neighborhoods

the maximum value of operator outputs in that region. There is

little doubt that these operations have high utility and flexibility.

The convolutional kernels that develop through learning can assume

a vast variety of forms. Likewise, one or more fully connected

layers in a DCNN can allow the development, through changes

of weights in training, of sensitivity to a wide variety of relations

between even spatially separated locations. DCNNs can theoretically

capture an enormous number of potential relations in images,

many of which would defy easy verbal description by humans

and would never be designed in a priori attempts to capture

important properties.

Yet not all relations are created equal. There may still be

important limitations regarding most DCNNs and relations. In

particular, relations that require explicit representation or abstraction

may be problematic. This idea would fit with previously discovered

limitations regarding shape. As emphasized in classic work by Gestalt

psychologists (e.g., Koffka, 1935), shape is an abstract relational

notion. A square may be made of small green dots in particular

locations, but neither relations defined over green dots nor specific

locations are intrinsic to the idea of squareness. Any tokens will

do to define the spatial positions of parts of a square, and the

particular spatial positions do not matter. In the end, being a square

is neither local in requiring elements to occur in a particular place

nor literal in requiring green dots or any other specific kind of

local stimulus properties. What is crucial to squareness is the spatial

relations of the elements, not a concatenation of the pixel values of the

elements themselves. Research on human shape perception provides

evidence for the primacy of abstract, symbolic representations (Baker

et al., 2020a). With their roots in convolution operations, DCNNs

excel in leveraging relations of a concrete sort, involving specific

local features and color values, but they may lack mechanisms to

extract spatial relations, abstracting over the concrete properties

of elements (Greff et al., 2020); learning of this sort may require

dedicated computational machinery that separates the representation

of relations and their arguments (Hummel, 2011).

Some recent work has tested the capabilities of DCNNs to learn

visual relations, with particular consideration of their capacities to

solve same-different problems. Findings from these investigations

indicate that basic DCNNs, as well as some older well-established

DCNN architectures (e.g., AlexNet, VGG, LeNet, and GoogLeNet)

struggle with same-different tasks, while some newer networks (e.g.,

ResNets and DenseNets) perform better (Stabinger et al., 2016;

Kim et al., 2018; Messina et al., 2021). However, subsequent work

by Puebla and Bowers (2021) found that ResNet-50, a 50-layer,

enhanced version of earlier ResNets, failed to generalize same-

different relations when test images were dissimilar from training

images at the pixel level. So far, there is no compelling evidence

that deep networks learn relations such that they can apply them to

new displays.

In the present work, we aimed to test a variety of relations

in visual displays that human perceivers would notice and learn

with little effort from a small number of examples, and generalize

accurately to new examples. We attempted to replicate and further

explore the same-different relation in DCNNs and test two new

relations to look at overall characteristics of DCNNs and relational

generalization, while using human performance as a comparison.

1.2. Plan of the experiments

In Experiment 1, we investigated the learning and generalization

of same-different relations in pairs of displayed objects. In

Experiment 2, we investigated the relationship of enclosure; each

display had a dot that fell either inside or outside of the only closed

figure in the display. In Experiment 3, we tested a relationship

between color and an object property. Both deep networks and

humans were trained and tested in a two-alternative categorization

task with displays having two polygons. Whether the display fell
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into one category or the other depended on whether the polygon

with a red dot inside it had a greater or fewer number of sides

than the other polygon. For each relation, we trained DCNNs using

restricted and unrestricted transfer learning in separate studies.

After the completion of training, we tested for generalization to

members of the training set withheld during training. We then tested

for generalization with new displays that differed in some object

characteristics but embodied the same relation that had been the

focus of training. In parallel, we also carried out studies with human

observers to assess whether the relation in question could be quickly

discovered and used for classification and generalization.

2. Learning same-di�erent relations

2.1. Experiment 1a: Same-di�erent training

We first tested DCNNs’ ability to learn same-different

classifications. In this task, we placed two novel, closed contours

in a single image and tasked the network with learning to produce

a “Same” response when the shapes of both contours were the

same as each other, and a “Different” response otherwise. The

same-different task would be learnable if DCNNs can obtain a

feature description of two objects individually within an image

and then make a classification decision based on the relation

between these two feature descriptions. This differs from standard

classification tasks in which the feature descriptions themselves,

not the relations between feature descriptions, are pertinent to the

network’s classification decision.

2.1.1. Method
2.1.1.1. Network

All tests were conducted on AlexNet (Krizhevsky et al., 2012)

and ResNet-50 (He et al., 2016), pre-trained on ImageNet (Deng

et al., 2009). AlexNet is a high-performing DCNN with relatively few

convolutional layers, while ResNet-50 is a much deeper network that

represents the current state-of-the-art in feedforward DCNNs.

2.1.1.2. Training data

In each of the experiments presented in this paper, artificial

images were generated so that categorization by a DCNN required

sensitivity to the relationship being tested. Artificial images, rather

than digital images of natural scenes, were used for two reasons.

First, it would be difficult to find sufficient number and variety of

natural images, and second, it would be difficult or impossible to

assess whether classification was based on the relationship of interest,

or some other correlated, non-relational cue.

We generated 20 novel shapes by moving 10 control points

toward or away from the center of a circle, then fitting cubic splines

between these control points (see Baker and Kellman, 2018). Training

data consisted of images in which one of the 20 shapes appeared

twice in the image (“Same” trials) and in which two of the 20

shapes appeared in the image, once each (“Different” trials). In order

to prevent overfitting, we placed both shapes in random positions

within the image frame with constraints so that the two contours

did not overlap and did not touch the image boundary. Each shape

was randomly assigned one of 10 sizes, which varied between 20%

and 30% of the length of the image frame along the shape’s longest

dimension. In total, we created 10,000 “Same” and 10,000 “Different”

FIGURE 1

Sample images used during training in Experiment 1a. (Top) Two

“Same” images. (Bottom) Two “Di�erent” images.

training images. Figure 1 shows some sample “Same” and “Different”

images used in training.

2.1.1.3. Training

In order to assess whether DCNNs could learn the same-

different relation, we used two different types of transfer learning

on an ImageNet-trained AlexNet architecture. In one, we froze

all connection weights between convolutional layers in AlexNet,

allowing only the last set of connection weights between the

penultimate layer and the classification layer to update. We call this

restricted transfer learning. Restricted transfer learning tests whether

a sensitivity is already latently present from ImageNet training,

because the output or decision layer of a network is necessarily based

on some weighted combination of the activation of the 4,096 nodes in

the penultimate layer. If coding sufficient to detect the presence of two

objects of the same shape in a display had evolved in prior training

of a DCNN to classify objects, then restricted transfer learning

might learn to perform accurately this two-choice discrimination

by discovering appropriate combinations of node activations in the

penultimate layer.

The second form of transfer learning, unrestricted transfer

learning, also begins with a pre-trained network, but allows

connection weights at all layers to update during the learning of

the new classification task. Unrestricted transfer learning assesses

DCNNs’ more general capability of obtaining a particular sensitivity,

regardless of whether that sensitivity was previously present or not.

We trained with a minibatch size of 32 and an initial learning

rate of 1 × 10−5. We used 80% of our training data for training and

withheld 20% as a validation set. We trained for up to 10 epochs or

until error rates on the validation set increased six consecutive times.

For ResNet-50, based on our findings with AlexNet, we used only

unrestricted transfer learning. The training data were identical to the

data used to train AlexNet. We used a batch size of 50 and an initial

learning rate of 1 × 10−3. We began by training ResNet-50 for 10

epochs and then did a second training experiment with 70 epochs.
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2.1.2. Results
With restricted transfer learning, AlexNet reached criterion after

three epochs. Although error rates had increased six consecutive

times on the validation set, the network’s final classification accuracy

showed no evidence of sensitivity to the same-different relation.

Performance on the validation set was 54.4%, close to chance

performance for the binary classification task, and similar to accuracy

levels shown at the end of training. These results suggest that

the same-different relation is not something acquired or naturally

encoded during training on the ImageNet dataset.

With unrestricted transfer learning, AlexNet reached criterion

after 10 epochs. Compared to other transfer learning tasks that do

not require a relational comparison (Baker et al., 2020b), learning for

the same-different task was both slower and weaker, but the network

did eventually improve to 82.2% performance on the validation set,

well above chance responding.

After 10 epochs, ResNet-50 did not achieve above-chance

classification on the validation set (mean accuracy = 49.7% on the

validation set). To assess whether the network simply needed more

training iterations to achieve accurate classification, we repeated

training with 70 epochs. More extended training produced only a

modest improvement in classification accuracy, from 49.7 to 56.0%.

2.2. Experiment 1b: Generalization following
unrestricted transfer learning

When all connection weights were allowed to update, AlexNet

achieved well above chance performance on the same-different task.

Our key question here, however, involved what was learned? Did the

network learn to attach certain responses to certain images, allowing

it to achieve above-chance performance? Or did it come to classify

based on detecting sameness or difference between two objects in

each display? To test whether the network had learned the abstract

“Same” relationship or whether its accurate responses were specific

to the shapes we used during training, we generated new images with

pairs of shapes that included new shapes qualitatively similar to the

shapes used in training, and shapes qualitatively different from those

used in training. If the network had come to use the abstract relation,

its performance should generalize to new shape pairs.

2.2.1. Method
We used two generalization tests to assess the networks’

generalization of the same-different rule. First, we generated 30 new

“Same” and 30 new “Different” shapes using the same algorithm

previously used to generate the shapes used in training. As in training,

the pairs of shapes were given a random size and position in the

image frame with constraints to prevent them from overlapping and

extending out of the frame.

We also wanted to test the networks’ generalization to the same-

different relation using dissimilar shapes. For this test, we used pairs

of rectangles. We generated images with two rectangles. The ratio of

the minor to principal axis of the rectangles was randomized and

varied from 0.08:1 to 1:1. Both rectangles were placed in the image

with random size and position. In the “Same” trials, both rectangles

in the image had the same aspect ratio and differed only by size and

position. In the “Different” trials, the two rectangles differed in aspect

FIGURE 2

Example generalization test images in Experiment 1b. (Top) A “Same”

and a “Di�erent” image for the first generalization test. (Bottom) A

“Same” and a “Di�erent” image from the second generalization test.

ratio as well as by rigid 2D transformations. We generated 30 “Same”

and 30 “Different” rectangle pair stimuli. Examples of images from

both generalization tests are shown in Figure 2.

We tested both AlexNet and ResNet-50 trained with unrestricted

transfer learning on both new sets of stimuli. Because the networks

trained with restricted transfer learning never achieved above-chance

performance on the validation set, there was no reason to apply the

generalization tests to it.

2.2.2. Results
AlexNet’s performance was poor in both generalization tests. For

the test in which new shapes were generated from the samemethod as

in training, network performance fell from 82% to 58%. For the test

with rectangles, performance fell to 50%, with the network classifying

all pairs of rectangles as “Same.”

For ResNet, performance was already poor but fell fully to chance

on the generalization tests. The network trained with unrestricted

transfer learning classified 45% of the new shape stimuli correctly and

50% of the rectangle stimuli correctly.

2.3. Experiment 1c: Comparison with
humans

The results of our transfer learning experiment on DCNNs

suggests they have little ability to use the abstract same-different

relation in order to classify images. Humans’ registration of same-

different relations in perceptual arrays is rapid and automatic

(Donderi and Zelnicker, 1969). However, it is possible that our

specific paradigm does not elicit perception of sameness/difference

in humans. If this were true, then the lack of generalization we saw

in DCNNs might not point to a difference in perceptual processing

between networks and humans. We tested this by conducting the

same experiment we used on DCNNs on human participants.
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FIGURE 3

Human results in Experiment 1c. Proportion correct is shown by condition. Blue: performance in the training phase, separated into 50-trial blocks.

Orange: performance on the generalization tests. Error bars show ± one standard error of the mean.

2.3.1. Method
2.3.1.1. Participants

Six undergraduates (two female, four male, Mage = 21.0) from

Loyola University participated in this experiment as lab researchers.

All participants were naive to the purpose of the experiment before

completing it.

2.3.1.2. Design

The experiment consisted of a learning phase (150 trials) and two

generalization phases (40 trials each). The first generalization phase

tested whether classification based on sameness/difference would

generalize after learning to new shapes generated in the same way as

shapes in the learning phase. The second generalization phase tested

pairs of rectangles having the same or different aspect ratios.

2.3.1.3. Stimuli

All stimuli used in the human experiment were taken directly

from images used to train or test AlexNet in our DCNN experiment.

For the learning phase, we randomly selected 150 (75 same, 75

different) images used during transfer learning. For the generalization

tests, we randomly selected 20 same and 20 different images from the

same tests used on DCNNs.

2.3.1.4. Procedure

At the beginning of the experiment, participants were told that

they would be classifying images into two categories but that they

would not be told what defined the two categories. Their task was

to use accuracy feedback to discover how to classify images.

During the training phase, participants were shown an image

on the screen for 500ms, after which they were asked whether

the previous image belonged to Category 1 or Category 2. After

responding, participants were told whether they were correct or

incorrect and given the correct classification for the previous image.

The image was not shown again during feedback.

Following the training phase, participants completed two

generalization tests. They received no feedback during the

generalization phases but were told to continue using the same

criteria they had adopted during the training phase. In the first

generalization test, participants were shown images with the same

types of shapes they saw during training, but the actual shapes were

different. In the second generalization test, participants were shown

images of rectangles with the same or different aspect ratios.

2.3.1.5. Dependent measures and analysis

To assess learning in the learning phase, we separated trials into

three 50-trial blocks corresponding to the first, middle, and last

third of trials. Because we hypothesized that humans would readily

perceive abstract relations such as same vs. different, we predicted

that by the second 50-trial block, participants would have learned the

rule for categorizing images and should respond correctly for nearly

every image.

To assess learning in the testing phases, we simply measured

participants’ proportion correct and compared their performance

on the generalization tests with chance performance and with

performance on the final block of the learning phase.

2.3.2. Results
The results of the human experiment are shown in Figure 3.

Participants performed very well even in the first 50-trial training

block and reached ∼90% in each of the last two blocks. t-tests

confirmed that participants performed significantly better than

chance in all three training blocks [1st block: t(5) = 11.33, p < 0.001;

2nd block: t(5) = 16.60, p < 0.001; 3rd block: t(5) = 18.96, p < 0.001].

2.3.2.1. Generalization

Participants’ accuracy remained high in both generalization tests,

significantly exceeding chance levels [New Shapes: t(5) = 17.39, p <

0.001; Rectangles: t(5) = 12.48, p < 0.001]. Performance levels also

did not significantly differ between the last 50 trials of the training

phase and either of the generalization tests [New Shapes: t(5) = 1.10,

p= 0.32; Rectangles: t(5) = 1.65, p= 0.16].
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2.4. Discussion, Experiments 1a–c

Research has shown that DCNNs’ recognition of objects is

primarily driven by texture information, rather than the shape

information preferentially used by humans (Baker et al., 2018;

Geirhos et al., 2018). Whereas textures and local shape features

are composed of locally defined elements, global shape involves

relationships among spatially separated parts of object boundaries.

Considerable evidence indicates that thismore global notion of shape,

as opposed to local shape features, is not accessible to DCNNs, even

when texture is made non-informative for classification (Baker et al.,

2018, 2020b). When texture information is unavailable to DCNNs,

theymay still achieve above-chance classification accuracy using local

contour cues, but notmore global features of shape (Baker et al., 2018,

2020b).

We hypothesized that DCNNs’ insensitivity to shape may be

caused by a more general insensitivity to relational information. To

test this idea, we presented the network with a classification task with

class type defined by the relation “Same-Different.” With restricted

transfer learning, there was no indication that the network could

learn this classification. This result is perhaps not surprising, since

we did not expect that a DCNN trained for image classification

would have sensitivity to global shape. Interestingly, however, with

unrestricted transfer, AlexNet did learn to classify the trained shape

pairs as same or different (independent of their sizes and positions),

but the learning was specific to the trained shapes. Performance was

near chance for novel shapes, created through the same generative

procedure, and for rectangles. Humans trained with the same shapes

showed robust generalization in both cases.

The human visual system is highly flexible, able to represent

visual information differently depending on task and stimulus

constraints. In numerical cognition research, humans can flexibly

switch between perceiving individual objects (Piazza et al., 2011;

Cheng et al., 2021), ratios between object groups (He et al., 2009),

and objects as a texture field (Burr et al., 2017), depending on

stimulus constraints. Similarly, in shape perception, humans can

flexibly switch betweenmore local andmore global features of a shape

(Navon, 1977; Kimchi, 1998; Bell et al., 2007), although the global

percept is stronger in many cases. In contrast, DCNNs appear to be

much less flexible, making their classifications based only on a small

subset of the visual information considered by humans.

The inability of DCNNs to acquire and generalize the same-

different relation here is not a finding that arises predictably from

prior evidence of the lack of global shape encoding in DCNNs. As

mentioned, using unrestricted transfer learning, we did see evidence

of acquisition of above-chance performance with the training set.

More conceptually, the initial same-different learning task and the

first generalization task we posed to the networks could have been

accomplished to a high degree of accuracy by use of local shape

features without global shape encoding. The notion of same-different

can just as well apply to unstructured collections of local features

as to global shape. To give one example, in the amoeboid figures,

similarities in signs of local curvatures could be informative in

determining sameness (in contrast, the rectangles used in the second

generalization test may have fewer distinguishing local features;

hence all pairs were classified as “Same”). Where available, as in

the amoeboid figures, local shape information could have supported

the above chance performance on the training set in unrestricted

transfer learning. The crucial result regarding relations, however, is

that whatever was used to produce correct “Same” and “Different”

responses in training showed little or no generalization to new shapes,

indicating that whatever was learned, it was not the abstract relation

of sameness.

The idea that (somewhat) successful same-different classification

observed in training (but not in generalization) was based, not on

the relationship same-different, but on the development of sensitivity

to the co-occurrence of local features across specific shape pairs

aligns with recent work by Puebla and Bowers (2021), who found

that DCNNs could only generalize the same-different relation to

stimuli that matched training data at a pixel level. The result is

impressive, given that the positions and sizes of the shapes in each

pair were varied independently, and it underscores the massive

capacity for DCNNs to map many different feature combinations

onto discrete categories.

The fact that learning did not generalize beyond the trained set,

though, as evidenced by the lack of generalization to novel shapes,

similarly underscores a key limitation of the operation of these

DCNNs. One would expect that, following training, humans could

perform this classification on a limitless number of novel shape pairs,

provided the shapes themselves were not too complicated or the

differences between members of the pairs too subtle. With increased

complexity and sufficient training data, a network with this type

of architecture would likely be able to learn to successfully classify

a larger variety of shape pairs (up to limitations imposed by the

vanishing gradient problem), but it would still only be able to classify

novel shape pairs to the extent that they resembled pairs in the

training data.

In contrast, ResNet-50 never achieved better than near-chance

accuracy on the same-different task, even with unrestricted transfer

learning and many training epochs. It is puzzling that the deeper

network performed worse than AlexNet. Based on AlexNet’s poor

performance on the generalization tests, it seems likely that whatever

rule it was using to perform above chance in training was highly

stimulus-specific, not an abstract visual relation. One difference

between AlexNet and ResNet is that AlexNet has two fully connected

layers between the convolutional layers and the decision layer

whereas ResNet has only convolutional layers. These fully connected

layers might be important for relating widely spaced features in

an image, a process that may be important for the non-abstract

comparison furnishing above-chance performance in the training

data for AlexNet.

Issues relating to limitations of connectionist networks in

capturing or representing abstract relations have been recognized

for some time (e.g., Hummel, 2011). The architecture of DCNNs,

although more powerful than earlier connectionist approaches,

due to both hardware advances (e.g., leveraging GPUs for greater

processing power, more memory) as well as algorithmic changes

(convolutional layers, skip connections, pooling, etc.), share this

same limitation with their ancestors. That said, a more sophisticated

network might be able to exhibit some processing of relations, despite

these limitations, within a restricted domain. In fact, recent evidence

shows that activity in intermediate layers consistent withWeber’s Law

and sensitivity to the relative sizes of objects, properties that appear

to involve simple spatial relations, emerges spontaneously in DCNNs

trained for object recognition (Jacob et al., 2021). Our results show,

however, that even in this one restricted domain (same-different
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FIGURE 4

Example training images for Experiment 2a. (Top) Two “Inside” images.

(Bottom) Two “Outside” images. Category membership was

determined by the position of the small red square, either inside or

outside of a closed contour.

shape judgments on closed, 2-D contour stimuli), there was little

evidence the network could learn to classify based on relational

processing outside of the trained set.

It is possible that DCNNs could perform better for other sorts

of relational tasks. In Experiments 1a–c, we tested “Same-Different”

shape classification performance while allowing for changes in the

sizes and positions of the shapes in each comparison pair. Same-

different shape classification, while a very intuitive task for people,

might be a particularly challenging case for DCNNs. While the task

was made easier by not including rotations between the members

of a “Same” pair, the network still needed to handle considerable

variability both in the shapes themselves and their presentation

(i.e., position and size), and to learn to distinguish the features and

their relations within a single shape from those between shapes. In

Experiments 2 and 3, we consider other relational properties.

3. Learning an enclosure relation

In Experiments 2a–b, we investigated a relational property that

is perhaps a bit more constrained than abstracting sameness or

difference and applying those to novel shapes. We tested the relation

of enclosure, specifically, whether a small, locally-identifiable object

(a red dot) was inside or outside of a closed contour.

3.1. Experiment 2a: Enclosure training

A contour is closed if it has no gaps and its curvature integrates to

360◦. In humans, contour closure is a salient cue; it confers perceptual

advantages in detection (Kovacs and Julesz, 1993), search (Elder and

Zucker, 1993), and recognition tasks (Garrigan, 2012). Experiment

2 specifically aimed to test whether humans and DCNNs can learn

to classify images based on an abstract relation between a dot and a

closed contour. In one category of images (“Inside”), the dot is within

a region is surrounded by a closed contour while in the other category

(“Outside”) the dot is outside the region surrounded by the closed

contour. Each display had only one closed contour present, along

with open contours as noise fragments to eliminate certain possible

correlates of enclosure that might otherwise allowDCNNs to perform

successfully without detecting the enclosure relation.

3.1.1. Method
3.1.1.1. Network

As in Experiment 1, all tests were conducted on AlexNet and

ResNet-50 pre-trained on ImageNet.

3.1.1.2. Training data

For both image categories, we generated a closed contour by

moving 10 control points toward or away from the center of a circle

and fitting cubic splines between the control points. The shapes

were sized so that the greatest distance between two vertical or two

horizontal points was between 16.7% and 33.3% of the length of the

image frame. The contour was randomly positioned in a 227 × 227

pixel image with the constraint that the whole contourmust be within

the image frame.

In addition to the closed contour, we added 22 unclosed contour

fragments to the image in random positions. The unclosed contour

fragments were generated by forming contours in exactly the same

way as the closed contour, but selecting only 25–50% of the

full contour.

For “Inside” images, we placed a red probe dot in a random

position within the closed contour with the constraint that it could

not touch the closed contour’s border. For “Outside” images, a red

probe dot was placed somewhere in the image outside of the region

enclosed by the closed contour’s border.We constrained the positions

of the probe dots in the “Outside” images to be at least 23 pixels

away from edges of the full display because these probe positions

were unlikely for “Inside” images. We generated 1,000 “Inside” and

1,000 “Outside” images to use as training data for the DCNN. Sample

images are shown in Figure 4.

3.1.1.3. Training

As in Experiment 1, we trained AlexNet using both restricted

and unrestricted transfer learning. We trained with 90% of our

training data, withholding 10% as a validation set. All other training

parameters were the same as in Experiment 1. Training concluded

after 10 epochs or after the error rate on the validation set increased

in six consecutive trials.

Training of ResNet-50 also followed Experiment 1. We trained

for 10 epochs using unrestricted transfer learning.

3.1.2. Results
Training with restricted transfer learning ended after eight

epochs. The network’s accuracy on the validation set was 51.0% after

training, around chance levels for a binary classification task. As in

Experiment 1, the features learned through ImageNet training do not

appear to be usable for the inside/outside task.

Unrestricted transfer learning ended after 10 epochs, with an

accuracy of 74.0% on the validation set. These results align with

the findings of Experiment 1 and transfer learning in other tasks

(Baker et al., 2020b) in that performance was better with unrestricted

transfer learning.

Unlike in Experiment 1 where ResNet-50 performed much worse

than AlexNet in training, the deeper network performed significantly
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better in the inside/outside task. Performance reached 99.8% on the

validation set after 10 training epochs.

3.2. Experiment 2b: Generalization to other
enclosure tasks

Had the network learned the abstract enclosure relation? In order

to test this, we generated new stimuli in which the inside/outside

relation was unchanged, but certain irrelevant image properties

differed from the network’s training data. The first two generalization

tests we conducted tested whether changing contour properties of

the closed shape and the open contour fragments would affect the

network’s classification performance. First, we adjusted a parameter

in our generative method for producing shapes to see whether the

network generalized. Next, we changed the contours from amoeboids

to squares and parts of squares. Our final generalization test evaluated

a specific hypothesis that the network’s above-chance responding was

based on probe dot’s proximity to the closed contour boundary, not

enclosure of the probe dot. We hypothesized that if this were true,

then by making the contour bigger, network performance would fall.

3.2.1. Method
In our first generalization test, we generated shape contours by

fitting cubic splines through 16 control points moved away from

a circle’s boundary rather than the 10 control points used in our

training data. Both the closed contour and the contour fragments

were generated with 16 control points instead of 10. All other

parameters were the same as in the training data. We generated 30

“Inside” and 30 “Outside” images with the new parameter in our

generative method.

In our second generalization test, we generated shape contours

with squares instead of amoeboid shapes produced by fitting cubic

splines through control points. The squares were constrained to be

of approximately the same size as the shapes generated in training.

As in the training stimuli, open contour fragments were added by

randomly selecting 25–50% of square contours that were otherwise

matched with the closed contour. We generated 30 “Inside” and 30

“Outside” images with square contours.

In our final generalization test, we kept all parameters the same as

in training except that wemade the closed shape contour significantly

larger to increase the distance between the probe dot and the

boundary in “Inside” stimuli. We changed the closed shape’s size so

that the longest horizontal or vertical distance between any two points

on the shape’s contour was 80% of the length of one side of the image

frame rather than 16.67–33.33% as was used in the training data.

Sample images for all three generalization tests are shown in Figure 5.

3.2.2. Results
In all three generalization tests, network performance fell

considerably. For the generalization test with 16 control point

amoeboids, network performance fell from 74% to 63% for AlexNet

and from 99.8% to 76.7% for ResNet-50. For the generalization

test with square contours, network performance fell from 74% to

65% for AlexNet and from 99.8% to 59.7% for ResNet-50. For

the generalization test with larger contours, network performance

FIGURE 5

Example generalization test images for Experiment 2b. (Top) An

“Inside” and an “Outside” image for the first generalization test.

(Middle) An “Inside” and an “Outside” image from the second

generalization test. (Bottom) An “Inside” and an “Outside” image for

the third generalization test. Category membership was determined by

the position of the small, red square, either inside or outside of a

closed contour.

fell from 74% to 57% for AlexNet and from 99.8% to 60.0%

for ResNet-50.

3.3. Experiment 2c: Comparison with
humans

Once again, we found little evidence that the DCNN’s above-

chance performance in the enclosure task was due to apprehension

of the abstract inside/outside relation. Instead, DCNNs appear to be

using some kind of combination of cues about where in the image

the probe dot is positioned (independent of the location of the closed

contour) and the probe dot’s distance from contours. In Experiment

2c, we tested whether humans, when exposed to the same training

displays as networks, learned to use the abstract inside/outside

relation and if the use of this relation produced accurate responding

on generalization tests.

3.3.1. Method
3.3.1.1. Participants

Six undergraduate (three female, three male, Mage = 21.0) from

Loyola University participated in this experiment as lab researchers.

Five of the six participants were the same as in Experiment 1c. All
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FIGURE 6

Human results in Experiment 2c. Proportion correct is shown by condition. Blue: performance in the training phase, separated into 50-trial blocks.

Orange: performance on the generalization tests. Error bars show ± one standard error of the mean.

participants were naive to the purpose of the experiment before

completing it.

3.3.1.2. Design

Experiment 2c consisted of a learning phase with 150 trials

and three generalization phases with 40 trials each. The three

generalization phases were the same as those upon which the DCNNs

were tested after transfer learning.

3.3.1.3. Stimuli

All stimuli used in the human experiment were taken directly

from images used to train or test the DCNNs in Experiment 2a and

2b. We once again selected 150 (75 same and 75 different) images

used during the learning phase and 20 same and 20 different images

from the generalization tests used on DCNNs.

3.3.1.4. Procedure

The procedure was the same as Experiment 1c. The only

thing that differed was the images used during the learning and

generalization phases.

3.3.2. Results
The results of Experiment 2c are shown in Figure 6. Participants

performed significantly better in the second block of the learning

phase trials than the first [t(5) = 3.04, p = 0.03], but appear to have

reached ceiling by the second block and show little improvement

from the second block to the third [t(5) = 0.54, p= 0.61]. Participants

performed significantly better than chance in all three training blocks

[1st block: t(5) = 5.21, p = 0.003; 2nd block: t(5) = 23.63, p < 0.001;

3rd block: t(5) = 20.89, p < 0.001].

Participants showed robust generalization in all three of our tests,

performing significantly better than chance [16 control points: t(5) =

28.2, p< 0.001; Square contours: t(5) = 26.25, p< 0.001; Big contours:

t(5) = 20.44, p < 0.001]. Performance also did not significantly differ

from performance in the last block of the learning phase for any of

the three generalization tests [16 control points: t(5) = 0.94, p= 0.39;

Square contours: t(5) = 0.78, p = 0.47; Big contours: t(5) = 0.27, p

= 0.80].

3.4. Experiment 2a-c discussion

As in Experiment 1, the network was able to perform the

classification following unrestricted, but not restricted, transfer

learning. Unlike Experiment 1, however, the learning did show

some generalization to new conditions, including irregular closed

contours generated with a modified procedure (63% and 76.7% for

AlexNet and ResNet-50, respectively), and closed rectangles (65%

and 59.7%, respectively). We suspected, however, that the network

was classifying based on a simpler, more local, relationship—the

proximity of the probe dot to a part of any contour in the display.

This strategy would naturally account for classification performance

reliably above chance, but far from perfect.

To test this idea, we had the model perform the inside/outside

classification with larger closed contour shapes, creating displays

with more locations “Inside” the closed contour that were also

distant from the contour itself. Consistent with our hypothesis,

network training generalized the least in this condition (57 and

60%, for AlexNet and ResNet-50, respectively). We investigated

this idea more directly by examining the pattern of correct

and incorrect classifications for a specific image. In Figure 7, for

two stimuli (one isolated closed contour and the same closed

contour presented among open contour fragments), classification

performance is analyzed for all possible probe positions. In both

cases, for virtually all probe positions inside the closed contour,

AlexNet classified that position as “Inside.” The model’s behavior

for probe positions outside the closed contour, however, provides

more insight.

For the isolated contour, most probe positions outside the closed

contour were classified as “Inside,” and the errors make little sense
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FIGURE 7

“Inside/Outside” classification of sample images following unrestricted

transfer learning in Experiment 2. (Left column) Two sample input

stimuli are shown, including an isolated closed contour (left, top) and

the same contour presented among contour fragments, replicating

training conditions (left, bottom). In both cases, correct classification

of the image was “Inside” only if the probe dot (not shown) was

presented within the closed contour. (Middle column) Model

classification results are shown as binary images indicating the model’s

classification for various positions of the probe, with the input stimulus

superimposed (in red). White indicates probe positions classified as

“Inside;” black indicates probe positions classified as “Outside.” (Right

column) The same results are shown in the right column, but with p

(inside) indicated by grayscale values (black = 0.0, white = 1.0).

for a network sensitive to the actual spatial relationship “Inside.”

For example, it is hard to explain why a network that had learned

to encode this relationship would correctly classify a probe in the

far upper-right as “Outside,” but incorrectly classify probe positions

in the three other corners, despite being approximately the same

distance from (and not close to) the closed contour. A display

with a single, isolated, closed contour, while a useful exploratory

tool, is, however, very different from the actual displays used in the

training set.

For the closed contour presented among open contour fragments,

there was little evidence that proximity of the probe to any contour

in the display was driving “Inside” classifications. One might expect

errors at probe locations where the contour fragments “almost

close,” or where the image is particularly cluttered. However, there

is little to suggest this is the case. In Figure 7, middle panel in the

bottom row, consider the white region in the central, upper region.

Correct classifications of “Inside” are represented by the white region

approximately centered in the image, bounded by the red contour.

The other white regions represent areas misclassified as “Inside.”

The errors observed in these regions cannot be straightforwardly

explained by features of the contour fragments nearby them. In

fact, other parts of the image appear, by inspection, to have contour

fragments that more closely approximate a closed contour (e.g., on

the left side, middle).

While it is unclear what strategy the network uses for achieving

above chance classifications in the generalization conditions,

comparison with human performance strongly indicates that

any relational processing by the network is very different from

the strategy employed by humans. Humans learned quickly,

achieving near ceiling performance by trials 50–100, suggesting

that the inside/outside relationship was salient. Further, complete

generalization of learning was observed in all cases.

4. Learning higher-order relations

4.1. Experiment 3a: Network training for
higher order relations

In Experiments 1 and 2, we found that humans learn to use

perceived abstract relations to categorize images while networks

do not. The use of these relations allows human performance

to generalize to new stimuli. Networks, although they can learn

to classify training stimuli and validation displays similar to the

training stimuli, do not extract perceptual relations that allow for

generalization of a relation to other kinds of images. Both of the

previous experiments tested a simple relation between two image

features. For example, in Experiment 1, if the two shapes in the

image were the same, the image belonged to the “Same” category.

In Experiment 2, if the red dot was within the closed contour, the

image belonged to the “Inside” category. These could be called first-

order relations because they deal directly with the relation between

two properties of an image. A higher order relation would consider a

relation between two relations. In Experiment 3, we tested human and

DCNNs’ ability to classify based on one such higher-order relation.

The images we used in Experiment 3 were displays containing

two white polygons on a black background. One of the polygons

had a red dot in its center. If the polygon with a red dot had

more sides than the polygon without the dot, the image belonged

to the “More” category. If the polygon with a red dot had fewer

sides than the other, the image belonged to the “Fewer” category.

This classification requires the use of a second-order relation because

correct responding requires seeing which polygon has more sides, as

well as whether that polygon contains the dot.

4.1.1. Method
4.1.1.1. Network

As in Experiments 1 and 2, we trained and tested AlexNet and

ResNet-50, pre-trained on the ImageNet database.

4.1.1.2. Training data

Each image in our training data consisted of two polygons with

three to five sides. Images were constrained to always include two

polygons with a different number of sides. The size of the image was

227× 227 pixels. Polygons ranged in length from 22 to 42 pixels and

in orientation from 0 to 360◦. In each image, we placed a red dot at the

center of one of the two polygons. We created 10,000 images in which

the red dot was at the center of the polygon with more sides (“More”

trials) and 10,000 images in which the red dot was at the center of the

polygon with fewer sides (“Fewer” trials). Sample images are shown

in Figure 8.

4.1.1.3. Training

As in Experiments 1 and 2, we trained AlexNet using both

restricted and unrestricted transfer learning. We trained with 80%

of our training data, withholding 20% as a validation set. All other

training parameters were the same as in Experiment 1. Training

concluded after 10 epochs or after the error rate on the validation

set increased in six consecutive trials.

Training on ResNet-50 followed the same procedure

as Experiment 2.
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FIGURE 8

Sample training images for Experiment 3a. (Top) Two “Fewer” images.

(Bottom) Two “More” images. Category membership was determined

by the position of the small, red dot, placed on the polygon with either

more or fewer sides.

4.1.2. Results
Under restricted transfer learning, AlexNet trained to criterion

after three epochs and achieved a classification accuracy of

84.4% on the validation set. Under unrestricted transfer learning,

AlexNet took eight epochs to train to criterion and achieved a

classification accuracy of 99.7% on the validation set, whereas

ResNet-50 took 10 epochs to train to a final classification accuracy

of 100%.

4.2. Experiment 3b: Generalization to other
polygons

Despite testing a higher-order relation, network training in both

restricted and unrestricted transfer learning was more successful than

in either of our previous experiments. The crucial question, however,

is whether the network learned response labels for particular concrete

features of displays or whether the networks learned the abstract

relation between dot location and the relative number of sides of a

polygon. In Experiment 3b, we tested this question by generating new

test images with polygons with more sides than those to which the

network was exposed during training.

4.2.1. Method
In our generalization test, we created images with pairs of

polygons that had twice as many sides as those present in training

images.We replaced all three-sided polygons with six-sided polygons,

all four-sided polygons with eight-sided polygons, and all five-

sided polygons with ten-sided polygons. In all other respects, the

test images were identical to the training images. We produced 50

“More” images in which the dot was placed on the polygon with

more sides and 50 “Fewer” images in which the dot was placed

FIGURE 9

Sample images for the generalization test in Experiment 3b. (Left) A

“Fewer” image. (Right) A “More” image. Category membership was

determined by the position of the small, red dot, placed on the

polygon with either more or fewer sides.

on the polygon with fewer sides. Sample test images are shown

in Figure 9.

Because AlexNet trained with restricted transfer learning also

reached above-chance responding on the validation set, we tested

it on the generalization task as well as both networks trained with

unrestricted transfer learning.

4.2.2. Results
AlexNet trained with restricted and unrestricted transfer learning

had an accuracy of 51% and 50% respectively on the generalization

task. ResNet-50 trained with unrestricted transfer learning also

had an accuracy of 50% on the generalization task. When we

looked into how the networks were responding we found that the

network trained with unrestricted transfer learning classified all of the

“More” images correctly, but incorrectly classified all of the “Fewer”

images as “More.” The network trained with restricted transfer

learning did the same apart from classifying one of the 50 “Fewer”

images correctly.

4.3. Experiment 3c: Comparison with
humans

While DCNNs appear able to learn to do the Experiment 3 task

in a narrow sense, they showed no generalization whatsoever to other

shapes. Performance in the generalization test was even worse for

Experiment 3 than Experiments 1 or 2. One reason might be that

in Experiment 3, we tested a higher-order perceptual relation than

in previous experiments. In Experiment 3c, we tested humans on the

same task to see if humans are capable of learning the more abstract

relation between stimulus features required for accurate responding

in Experiments 3a and 3b.

4.3.1. Method
4.3.1.1. Participants

Twelve participants (seven female, five male, Mage = 21.0)

participated in Experiment 3c. Eight participants were recruited
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from Loyola University and completed the experiment for course

credit and four others were recruited from the University of

California, Los Angeles and completed the experiment as volunteers.

All participants were naive to the purpose of the experiment

before participating.

4.3.1.2. Design

Experiment 3c consisted of a learning phase with 150 trials and a

generalization phase with 40 trials.

4.3.1.3. Stimuli

Stimuli from the learning phase were randomly chosen from

the network training data (Experiment 3a). Stimuli from the

generalization phase were randomly chosen from the network

generalization test (Experiment 3b).

4.3.1.4. Procedure

During the learning phase, images were presented in the center

of the screen and participants were instructed to classify them into

two arbitrary categories (“Category 1” or “Category 2”) with no prior

instruction on how to categorize images. Participants were given

feedback after each trial and were told to try to discover the correct

way of classifying images.

The generalization phase was the same as the learning phase

except participants did not receive feedback after they responded.

4.3.2. Results
The results of Experiment 3c are shown in Figure 10. We found

no significant difference between the first block of the training phase

and either of the two subsequent blocks [t(12) < 1.91, p > 0.08].

Participants performed significantly better than chance in all three

training blocks [1st block: t(12) = 4.89, p < 0.001; 2nd block: t(12) =

5.91, p < 0.001; 3rd block: t(12) = 5.02, p < 0.001].

As in Experiments 1 and 2, participants’ learning during the

training phase generalized when tested with polygons with more

sides. Participants performed significantly better than chance in the

generalization task, t(12) = 4.59, p < 0.001. Performance on the

generalization task did not significantly differ from performance on

the third block of training, t(12) = 0.72, p= 0.48.

4.4. Experiment 3a–c discussion

As in Experiments 1a and 2a, the networks learned to classify

following unrestricted training. AlexNet also learned to classify well

above chance performance following restricted transfer learning.

Success in the restricted transfer learning case suggests that the

features necessary for correct classification of ImageNet exemplars

could be repurposed for the current classification task.

Still, neither restricted nor unrestricted transfer learning

generalized to a different set of polygons that could be classified by

the same rule. Specifically, the network failed to correctly classify

polygons with twice as many sides as the training set. Once again,

the data indicate that the network did not learn to classify based on a

relational property that would generalize to other objects.

The performance of the networks in this study, and to some

extent in the earlier studies, raises the interesting question of what

was learned by the DCNNs? This is both theoretically interesting

in its own right as well as relevant to distinguishing performance

that arises from relational encoding from other variables in training

displays that may allow powerful networks to exhibit behavior that

could naively be interpreted as evidence of relational encoding. In

general, it is hard to determine what properties DCNNs use in

their responses. Neural networks in general may be characterized

as carrying their knowledge in connection weights rather than in

explicitly encoded properties. Moreover, the size of contemporary

DCNNs allows for a vast array of stimulus variables to influence

responses, and even with probing of node responses at various

layers, there is no requirement that the properties captured in the

network will be intelligible to humans. With regard to the present

results, we consider one speculative hypothesis that illustrates how

the network achieved some success in training without capturing the

abstract relationship in the experiment-defined categorization task.

Consider first that the network did learn to classify the polygons in the

training set successfully, even following restricted transfer learning,

and without, apparently, developing any explicit sensitivity to each

polygon’s number of sides. If so, it could be that a local feature that

distinguishes the polygons, e.g., the internal angles of its vertices, was

used in part for the classification task. Sensitivity to a feature like

this would not be particularly surprising, given that the ImageNet

training set contains many classes of artifacts, including rigid objects,

for which the presence of vertices with specific angles might aid in

identification. Prior research suggests that DCNNs adeptly capture

local shape features (e.g., Baker et al., 2018).

In the initial training, with regular triangles, squares, and

pentagons, when the probe was close to a vertex with angle = 108◦

(regular pentagon), the answer was “yes” (more). When the probe

was close to a vertex with angle = 60◦ (equilateral triangle), the

answer was “no” (fewer). A small set of slightly more complicated

conjunctive rules allows for classification of the remaining cases

without explicitly encoding the relation more-fewer sides. This

learning would not, of course, generalize to a different set of polygons

with different internal angles.

We expected the more-fewer relationship to be salient to human

participants, leading to quick learning and full generalization. This

appeared to be the case for the majority of our participants,

who classified with >85% accuracy by the end of training and

in generalization to polygons with more sides. However, with the

added complexity of this classification, relative to Experiments 1

and 2, some participants may have found the perceptual more-

fewer judgment too challenging or applied an idiosyncratic strategy.

For example, one participant had high performance in training but

showed little generalization, a pattern of behavior consistent with

learning a complicated conjunctive rule (e.g., red dot in square +

triangle = category A, red dot in square + pentagon = category

B, etc.) that would have no utility for the different shapes. Another

participant had performance in training and generalization testing

well above chance, but below the level that would be expected had

the more-fewer rule been learned. This participant may have been

attempting to classify based on more-fewer sides, but never achieved

high performance either because the task was too difficult for them,

or perhaps due to poor attention or effort.

5. General discussion

The ability to extract abstract visual relations is crucial to

many of the most important perceptual processes in human vision,
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FIGURE 10

Human results in Experiment 3c. Blue: performance in the training phase, separated into 50-trial blocks. Orange: performance on the generalization tests.

Error bars show ± one standard error of the mean.

including encoding of shape, arrangement, and structure in scenes,

and perception of meaningful properties, such as animacy and

causality in events. The notion of abstraction has a range of possible

meanings (see Barsalou, 2003, for a useful discussion), but here, we

intend a logical sense in which an abstract visual relation is one

that involves a predicate that can be detected or represented despite

having variable arguments. In perception, this idea is implicit in

J.J. Gibson’s theorizing about the role of “higher-order variables” in

perception (e.g., Gibson, 1979), and more contemporary accounts of

abstraction in perception and cognition have emphasized this notion

(Marcus, 2001; Hummel, 2011; Kellman and Massey, 2013; Baker

et al., 2020a). For present purposes, the impact is that detecting

and utilizing abstract stimulus properties requires representations

in which the argument is distinct from the relation. For example,

a cluster of black pixels in between two clusters of white pixels is

a relation, but not necessarily an abstract relation. An alternating

ABA pattern of pixels irrespective of the pixel values would be an

example of an abstract relation. While deep convolutional neural

networks can evolve sensitivity to a vast array of possible “concrete”

relations, and these no doubt underwrite their high classification

accuracy in particular tasks, it is not clear that they have any access

to abstract relations.

In three experiments, we tested DCNNs’ ability to learn three

abstract visual relations: same-different, inside-outside, and more-

fewer. These certainly do not constitute an exhaustive test for all

abstract relations, but there are reasons to believe they give valuable

insight into DCNNs’ general capability of learning abstract relations.

First, each of the three relations we tested depends on a different

set of stimulus properties. Same-different depends on the comparison

of contours across scale and position, inside/outside depends on the

relative positions of the probe dot and a closed contour, and more-

fewer depends on the comparison of magnitudes–either a polygon’s

number of sides or the angular size of its corners. A deficiency in

processing any one of these stimulus features might account for

insensitivity to one particular abstract relation, but a deficiency in all

three relations points to a more general insensitivity to relations of an

abstract nature.

Second, the three relations we tested are generally simple and

are arguably relevant to systems that use visual information to

extract ecologically relevant information from scenes. Experiments

1 and 2 tested what we call first-order relations, or relations

between two image properties. Experiment 3 tested a second-order

relation between first-order relations. All three are likely to be

handled perceptually, given our brief exposure durations and rapid

acquisition by most participants from classification feedback alone,

and perception of relations in these cases is consistent with other

research indicating the perceptual pickup of meaningful relations in

scenes and events (Kellman and Massey, 2013; Hafri and Firestone,

2021). These relations all pick up on image features that could

be important for object recognition, the task these networks were

originally trained to perform. It is therefore reasonable to ask

whether relations involving them can be learned in ImageNet-trained

DCNNs. These are also the sorts of relations that may be useful in a

variety of contexts where meaningful descriptions of objects, spatial

layout, and events are to be acquired through visual perception.

The extraction of abstract relations as described heremay account

for discrepancies previously reported between successful DCNNs and

human processing of objects and shape. In human vision, global

shape is an abstract encoding in which relations are encoded but the

particular sensory elements that act as carriers for relations are often

transient, not surviving into more durable representations of objects

and shape (Baker and Kellman, 2018). That shape is an abstract,

configural notion accounts for the effortless recognition of similarity

of shape despite changes in size, orientation, or constituent sensory

elements. For example, a relatively small number of rectangles can

make an easily recognized giraffe provided that their relative sizes

and orientations are appropriate. Even for simple novel shapes,

the abstract relations between elements are more important than
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physical properties of the elements (Baker and Kellman, 2018). The

observed incapacity of DCNNs to classify objects based on global

shape information likely relates to the general absence of mechanisms

that can capture and generalize abstract relations.

We used two training paradigms to assess apprehension of

abstract visual relations. In restricted transfer learning, only the

weights between the last representational layer and the decision layer

weremodified by training on a new classification task. In Experiments

1 and 2, we found no improvement in DCNN classification after a

full 10 epochs using restricted transfer learning. This suggests that

no weighted combination of features learned in ImageNet training

could discriminate shapes based on sameness or enclosure. In

Experiment 3, AlexNet reached above-chance classification accuracy

with restricted transfer learning, indicating that certain features in the

image are detected using learned filters from ImageNet training and

can be used to discriminate between polygons with more sides and

polygons with fewer sides, at least up to 84% accuracy and as long as

shapes are within the distribution of polygons on which the network

is trained. One possibility is that the network is already sensitive to

local features like the angle of corners which can then be associated

with distance from the probe dot.

We also tested both AlexNet and ResNet-50 using unrestricted

transfer learning, in which all connection weights can be updated.

In unrestricted transfer learning, DCNNs can learn new features that

might be useful for a specific classification task. In all but one case,

unrestricted transfer learning allowed DCNNs to reach performance

levels significantly better than chance on the training task itself;

however, in the unrestricted transfer learning for Experiment 1,

ResNet-50 did not achieve above-chance performance even on the

training data.

Most crucial for the questions motivating the present work was

whether the networks had achieved training performance in each case

by extraction of abstract visual relations or by some other rule that

might not be intuitive to humans. We tested this by generating new

testing stimuli whose individual features differed from those upon

which the networks were originally trained, but could still be classified

by the same abstract visual relation. If the abstract relation had been

learned, then the network should have classified the new stimuli at

the same level of accuracy it had reached on the training data.

Instead, we found that both networks’ performance fell off

substantially–often to around chance levels–when presented with

new stimuli in which the same relations, if detected and used,

would have produced perfect performance. The networks’ lack of

generalization strongly suggests that their improved performance

on the training data was due to learning to classify based on a

set of stimulus features that were specific to the kinds of images

used during training (see Puebla and Bowers, 2021, for convergent

evidence). For example, in Experiment 3, theymay have learned some

conjunctive rule about the kinds of polygons used in training rather

than a rule about more or fewer sides that was divorced from the

relation’s arguments.

The lack of use of abstract visual relations was demonstrated

particularly starkly in Experiment 2, where we placed the probe dot at

all points within a single image and analyzed the network’s pattern of

responses. The network’s “Inside” responses appeared to depend very

little on the features of nearby contours or other relational properties

that are easily describable by humans.

This lack of generalization suggests that deep convolutional

networks are unable to disentangle relations from the arguments that

fill them. In other words, a network might learn to say “Same” when

two squares are on the screen, or when two circles are on the screen,

but it is doing so in a “conjunctive” manner (Hummel, 2011); the

learned relation binds the concrete stimulus features to the response,

such that the network will not automatically generalize to say “Same”

when two triangles are on the screen. Separating fillers from relations

might require symbolic computation, something that does not appear

to emerge spontaneously in the training of DCNNs.

We tested human participants with all of the relations presented

to DCNNs. In contrast to the networks, humans easily learned

all three of the abstract visual relations, often achieving ceiling

performance levels in the first 50 training examples. More

importantly, human performance was robust in generalization tests

with stimuli having features different from than the training data.

Across all three experiments, we found no significant difference

between human performance on any of the generalization tasks and

the last 50 trials in which they were training with feedback.

This difference between humans and networks points to humans’

remarkable ability to perceive and use abstract visual relations. It

has been argued that even what appear to be simple, basic visual

tasks in human visual perception involve abstraction (Kellman and

Massey, 2013; Baker and Kellman, 2018). The results presented here

show that there are alternative intelligent systems that can be very

successful at similar tasks (e.g., image classification) without human-

like sensitivity to abstract relations.

Differences between humans and DCNNs also provide a striking

example of the flexibility of human visual perception in contrast with

the relative inflexibility of processing in deep network architectures.

Whereas, humans were able to learn new visual tasks within a few

dozen trials of initial exposure, even after tens of thousands of

trials, DCNNs were incapable of learning them. Humans’ superior

flexibility is in one sense unsurprising because, unlike DCNNs,

humans are adapted to perform a variety of visual routines that

goes far beyond image classification. On the other hand, the case

of abstract visual relations is interesting because encoding relations

abstractly might crucially underpin our more general flexibility. For

example, consider the enclosure relation we examined in Experiment

2. Knowing whether a visual feature is intrinsic to an object or

merely correlates with the object can be partly determined by

whether it is enclosed by the object’s bounding contour. Binding

features to objects furnishes a great deal of flexibility in learning

about new objects, but it is hard to see how this flexibility

and transfer can be accomplished without some representation of

abstract notions such as object, boundary, figure vs. ground, etc.

Other work suggests that DCNNs do not naturally acquire such

representations, such as segmenting the image into figure and

ground when learning to classify novel objects (Baker et al., 2018,

2020b).

From the perspective of deep networks, an inability to learn

abstract visual relations might be predictive of poor performance on

a wide array of visual routines. Processes like segmenting figure from

ground (Peterson and Salvagio, 2008), completing an object behind

an occluder (Kellman and Shipley, 1991), judging the causality of an

event (Michotte, 1954), and representing the shape of objects (Koffka,

1935; Kubovy and Wagemans, 1995; Baker and Kellman, 2018) all

depend on access to abstract relations in human vision.

DCNNs may be able to learn appropriate responses in a training

set of displays, but without the ability to learn abstract relations, they

will perform them in a very different way from humans. An example
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of this can be seen in comparisons between human and DCNN shape

sensitivity. DCNNs do use some shape information (although to a

lesser extent than humans), but they use different aspects of shape

from humans (Baker et al., 2018, 2020b). These differences can lead

to surprising errors in DCNNs, as when an adversarial attack that

would be unnoticeable to humans completely changes a network’s

classification (Szegedy et al., 2013). In the same way, DCNNs might

be able to learn responses to other important visual tasks, but without

the use of relations. Consequently, we expect that DCNN learning

will in general be less robust, and vulnerable to errors that humans

would be unlikely to expect (and therefore, in high stakes domains,

potentially much more hazardous).

How might DCNNs be enhanced to retain their valuable

abilities to learn visual classifications but to also capture abstract

visual relations? This is a difficult question to answer because

the convolution operators underpinning DCNN operations may

be ill suited for the task. Recent ImageNet-trained recurrent

(Kubilius et al., 2019) and attention-based (Dosovitskiy et al., 2020)

architectures have shown better and more humanlike performance

on several tasks, but do not appear to be more sensitive to the

global shape of objects (Baker and Elder, 2022). It remains unknown

whether a new architecture paired with training data more targeted

toward apprehension of visual relations would produce the kind of

abstraction observed in humans.

In our view, a more extreme adjustment to these networks might

be needed. As argued by Hummel (2011), abstract visual relations

might require symbolic processing to separate roles from their fillers.

Animal studies have shown that many animals fail to complete same-

different tasks that depend on abstract relations (Gentner et al.,

2021). However, chimpanzees that are exposed to training with

symbolic systems are able to perform well on same-different tasks

that chimpanzees with non-symbolic training can not do (Premack,

1983).

Research into symbolic networks has demonstrated that they can

represent the spatial relations between parts to build up structural

descriptions (Hummel and Stankiewicz, 1996; Hummel, 2001) and

to generalize to novel instances of shapes based on their relations

(Kellman et al., 1999). It remains unclear how to combine symbolic

processing with deep convolutional networks. Some related work

on large artificial networks in linguistics (e.g., Vankov and Bowers,

2020; Jiang et al., 2021; Kim and Smolensky, 2021) suggests some

strategies for combining extensive associative training with symbolic

processing. In vision, capsule networks (Sabour et al., 2018) include

some relational coding and have been shown to increase configural

sensitivity in uncrowding effects (Doerig et al., 2020). Another recent

model adds external memory to a recurrent DCNN to allow for

explicit symbolic processing, resulting in rapid abstract rule learning

(Webb et al., 2021).

6. Conclusion

DCNNs are remarkably accurate image classifiers that, to

some degree, mimic human behavior and neurophysiology.

These similarities, however, distract from the fact that DCNNs

learn very different kinds of visual relations than humans.

While humans readily learn relations separable from their

arguments, we found no evidence that arguments and their

relations are separable in DCNNs. This difference is of

fundamental importance. While DCNNs have access to non-

abstract relational encoding sufficient for, e.g., human-like

performance levels of object recognition, they lack a critical

form of representation that supports more general visual perception

and reasoning.

Any apparent visual reasoning performed by a conventional

DCNN appears to rely on complex mappings among encodings

of relatively concrete stimulus properties, rather than any abstract

representation of visual information. We believe that this limitation

will become more apparent as DCNNs are trained to perform a wider

variety of human visual tasks, and may not be overcome with larger,

more complex networks. Instead, alternative architectures, possibly

ones that explicitly include symbolic computations, and/or modified

training regimes, will be needed for DCNNs to apprehend abstract

visual relations.
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