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Editorial on the Research Topic

Multimodal brain image fusion: Methods, evaluations,

and applications

Multimodal medical imaging is playing an increasingly critical role in the diagnosis

and treatment of various brain diseases like glioma, Alzheimer, ischemic stroke, epilepsy,

etc. Medical images with different modalities such as computed tomography (CT),

magnetic resonance imaging (MRI), and positron emission tomography (PET) focus on

different categories of pathological information. Medical image fusion aims to combine

the complementary information captured by different imaging modalities for better

disease diagnosis and treatment. In recent years, medical image fusion has emerged

as a very active topic with various fusion methods being proposed. In addition, the

performance evaluation and downstream applications of medical image fusion are also

attracting more and more attention. This Research Topic focuses on reporting advanced

studies related to multimodal brain image fusion, including image fusion methods,

objective evaluation approaches and specific applications in clinical problems. Twelve

of the 16 articles submitted to this Research Topic were accepted for publication after a

thorough peer-review process. A summary of the key research findings of these works is

provided from three aspects as below.

Multimodal brain image registration, fusion and
fusion quality evaluation

Image registration is the prerequisite of many medical image processing tasks such

as fusion and segmentation. Wang J. et al. proposed a medical image registration method

based on the bounded generalized Gaussian mixture model (BGGMM), which can

thoroughly describe the joint intensity vector distribution of pixels and highlight image

Frontiers inNeuroscience 01 frontiersin.org
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details. The mixture model is formulated based on a maximum

likelihood framework, and is solved by an expectation-

maximization algorithm. With regard to image fusion methods,

Wang A. et al. presented a disentangled representation-

based multimodal brain image fusion method via group lasso

penalty using an auto-encoder-based deep learning framework,

aiming to fully exploit the redundancy and complement

prior relationships among multimodal source images. A

complementary group lasso penalty was designed to promote

the disentanglement ability and ensure the complementary

feature maps of significant modality information. This study

demonstrated that the disentangled representation can improve

the interpretability of feature representation, leading to better

fusion quality. Zhang et al. proposed a local extreme map

guided multimodal brain image fusion method to improve

the feature extraction ability of the guided image filter. By

iteratively applying this local extreme map guided image filter,

the proposed method can extract multiple scales of bright and

dark features from the multimodal brain images, and integrate

these salient features into one informative fused image. In

addition, the proposed scheme can be incorporated with various

guided filters or other similar filters in pursuit of improving

their feature extraction ability. In comparison to the great

attention paid to the study of image fusion methods, few

works have explored dedicated quality assessment approaches

for medical image fusion. To address this issue, Tang et

al. proposed a novel quality assessment method for medial

image fusion based on the conditional generative adversarial

networks by adopting the mean opinion scores (MOS) of

the radiologists as the guiding condition. They demonstrated

that their proposed method outperforms several commonly-

used quality assessment metrics of image fusion, with excellent

agreement with subjective evaluations.

Applications of multimodal brain
image fusion

Multimodal medical image fusion has been verified to be

of great significance in various related high-level vision tasks

such as classification and segmentation. Yi et al. proposed a

multimodal classification architecture for the severity diagnosis

of glaucoma. The proposed method integrates fundus images

and gray scale images of the visual field as the input of the

classification model. In addition, they introduced a plug-and-

play classifier that adopts the Vision Transformer to extract the

global dependencies of images, leading to improved accuracy of

the diagnostic task. Li et al. conducted a study to investigate

the stage of bi-modal fusion based on EEG and fNIRS for the

classification task in hybrid brain-computer interfaces (BCIs).

A Y-shaped neural network that fuses the bi-modal information

in different stages was proposed. This study demonstrated that

the early-stage fusion of EEG and fNIRS have significantly

higher performance compared to middle-stage fusion and

late-stage fusion. Liu et al. introduced both pixel-level and

feature-level medical image fusion techniques for brain tumor

segmentation, aiming to achieve more sufficient utilization of

multimodal information. They presented a convolutional neural

network (CNN)-based 3D pixel-level image fusion network

to enrich the input modalities of the segmentation model

and designed an attention-based feature fusion module for

multimodal feature refinement. Xu et al. proposed a hybrid

feature extraction network for medical image segmentation

based on CNNs and Transformer. The proposed network can

integrate the advantages of Transformer in capturing global

contextual information and CNNs in extracting local features.

Additionally, a multi-dimensional statistical feature extraction

module was designed to strengthen low-dimensional texture

features and enhance the segmentation performance. Tian et al.

presented a method to combine light sheet microscopy (LSM)

data with magnetic resonance histology (MRH) of the same

specimen, with the aim of restoring the morphology of the

LSM images to the in-skull geometry. They developed an image

processing pipeline to restore the correct brain morphology of

3-dimensional cleared or stained mouse brain by registering

the cleared brain data to MRH of the same specimen. Peng et

al. introduced the minimally invasive puncture and drainage

(MIPD) surgery using mixed reality holographic navigation

technology (MRHNT) via integrating the holographic image

and the real head. By wearing mixed reality holographic

equipment, the precise location of intracranial hematomas,

tumors, ventricles, and other structures with the perspective

function can be understood, laying a theoretical foundation for

implementation in neurosurgery.

Joint analysis of multimodal data

Mononen et al. conducted a study to evaluate the

variability among tasks of magnetoencephalography (MEG)-

functional magnetic resonance imaging (fMRI) relationship

using data recorded during three distinct naming tasks

from the same set of participants. The results demonstrated

that the MEG-fMRI correlation pattern varies according

to the performed task. In addition, the electromagnetic-

hemodynamic correlation could serve as a more sensitive

proxy for task-dependent neural engagement in cognitive

tasks than isolated within-modality measures. Gallego-Rudolf

et al. characterized the impact of the ballistocardiographic

(BCG) artifact on resting-state EEG spectral properties and

compared the effectiveness of seven common BCG correction

methods to preserve EEG spectral features. They also assessed

if these methods retained posterior alpha power reactivity

to an eyes closure-opening task and compared the results

from EEG-informed fMRI analysis using different BCG

correction approaches.
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Application of Fused Reality
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Treatment of Hypertensive
Intracerebral Hemorrhage
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Objective: Minimally invasive puncture and drainage (MIPD) of hematomas was the

preferred option for appropriate patients with hypertensive intracerebral hemorrhage

(HICH). The goal of our research was to introduce the MIPD surgery using mixed reality

holographic navigation technology (MRHNT).

Method: We provided the complete workflow for hematoma puncture using MRHNT

included three-dimensional model reconstruction by preoperative CT examination,

puncture trajectory design, immersive presentation of model, and real environment

and hematoma puncture using dual-plane navigation by wearing special equipment.

We collected clinical data on eight patients with HICH who underwent MIPD using

MRHNT from March 2021 to August 2021, including the hematoma evacuation rate,

operation time, deviation in drainage tube target, postoperative complications, and

2-week postoperative GCS.

Result: The workflow for hematoma puncture using MRHNT were performed in all eight

cases, in which the average hematoma evacuation rate was 47.36±9.16%, the average

operation time was 82.14 ± 15.74 min, and the average deviation of the drainage tube

target was 5.76 ± 0.80 mm. There was no delayed bleeding, acute ischemic stroke,

intracranial infection, or epilepsy 2 weeks after surgery. The 2-week postoperative GCS

was improved compared with the preoperative GCS.

Conclusion: The research concluded it was feasible to perform the MIPD by MRHNT

on patients with HICH. The risk of general anesthesia and highly professional holographic

information processing restricted the promotion of the technology, it was necessary for

technical innovation and the accumulation of more case experience and verification of

its superiority.

Keywords: hypertensive intracerebral hemorrhage, minimally invasive puncture and drainage, mixed reality,

navigation, deviation

8

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.850179
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.850179&domain=pdf&date_stamp=2022-03-11
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:1422495819@qq.com
https://doi.org/10.3389/fnins.2022.850179
https://www.frontiersin.org/articles/10.3389/fnins.2022.850179/full


Peng et al. Fused Reality Holographic Image and Navigation Technology

1. INTRODUCTION

Stroke has become the leading cause of death in China.
Hypertensive intracerebral hemorrhage (HICH) is one of the
most serious complications of hypertension, with an incidence
of 19–48% of strokes in China, and the high disability
and mortality rates of HICH lead to a heavy social burden
(Zhou et al., 2019). At present, there is no evidence for the
optimal surgical treatment of HICH with surgical indications.
MISTIE research demonstrated the safety profile of the minimal
invasive surgery procedure revealed clot size reduction could
be achieved with similar safety to standard medical treatment
(Hanley et al., 2016, 2019).

The precise puncture of hematomas is the key to the success
of surgeries, and the methods used include the “blind” method,
which uses a freehand technique according to CT images
combined with skull anatomical marks, CT-guided (Wang et al.,
2009) and image-guided (Yang et al., 2014; Sun et al., 2016)
puncture methods and the neuronavigation system (Chartrain
et al., 2018) puncture method. However, all the above puncture
methods have shortcomings, such as inaccuracy, expensive,
non-portable, bulky hardware. It is important to find a more
convenient, visualized, rapid, and precise puncture method.

Mixed reality has been developed based on virtual
reality and augmented reality technologies. By processing
holographic images, mixed reality provides virtual images
and information in the real environment and provides
users with immersive feelings. Users can obtain real and
virtual image information at the same time by wearing
special equipment (Microsoft, HoloLens) and interact with
holographic images in the display environment according to
their own commands. With this technology, neurosurgeons
can first construct intracerebral hemorrhages and design
the puncture trajectory. During surgery, the location and
morphology of a hematoma can be observed from multiple
angles, and precise puncture can be performed with the help
of navigation.

Several studies on glioma,meningioma, intracranial aneurysm
have shown thatMR technology could implement a safe, effective,
and minimally invasive individualized operation plan, evaluate
the operation risk, and protect the tissue structure during the
operation (Kockro et al., 2016; Incekara et al., 2018; Qi et al., 2021;
Zhang et al., 2021). There are no reports on the application of
MR technology to hematoma puncture in patients with HICH. In
this research, we introduce the MIPD surgery using mixed reality
holographic navigation technology (MRHNT). We provide the
complete workflow, show the clinical data and results, shar
our practical experience in hematoma puncture using MRHNT,
and verify the accuracy and feasibility of the application of
this technology.

In this research, we introduced a precise MIPD method

in different parts of HICHs using mixed reality holographic

navigation technology (MRHNT). We provided the complete

workflow, showed the clinical data and results, shared our
practical experience in hematoma puncture using MRHNT,
and verified the accuracy and feasibility of the application of
this technology.

2. MATERIALS AND METHODS

2.1. Clinical Datae
From March 2021 to August 2021, approved by the ethics
committee of Chongqing Emergency Medical Center, HICH
patients treated with MIPD by mixed reality holographic
navigation technology were involved in this research. All
patients signed the surgical informed consent form. Partially
in accordance with the MISTIE study the inclusion criteria
were following: patients with non-traumatic (spontaneous)
ICH not due to a macrovascular cause such as an aneurysm
or AVM were involved. All patients signed the surgical
informed consent form. All patients age was 18–80 years
old with GCS score ≥14 or NIHSS score ≤6, whose ICH
remained the same size for at least 6 h after diagnostic
CT. Our surgery involved patients with both supratentorial
and supratentorial hemorrhage, with supratentorial hematoma
volume of 30–50 ml, cerebellar hematoma volume of 10–
15 ml, with brainstem hematoma volume of 5–10 ml. The
exclusion criteria were as follows: patients with cerebral
herniation due to HICH, severe cardiopulmonary disease,
or coagulopathy, other patients who cannot tolerate general
anesthesia, and patients with family members who refused
surgery by mixed reality holographic navigation technology.
We analyzed eight patients based on their preoperative and
postoperative hematoma volume, hematoma evacuation rate,
operation time, blood loss, deviation in drainage tube target
(the distance between the tip of the drainage tube and the
designed puncture trajectory target), 2-week rebleeding rate4,
postoperative complications, and preoperative and 2-week post-
operative GCS.

2.2. Preoperative CT Examination and
Design Puncture Trajectory
All patients were required to undergo head CT examination
before the operation. Patients were examined by placing
three sticky analysis markers around the puncture area. After
anesthesia, a bone nail was drilled through the hole in the
sticky marker base, and a sterilized analysis marker was
placed; these two markers were the “twin marker” and ensured
no obvious deviation in the location of the markers. CT
data were collected by a 64-slice CT scanner (Lightspeed
VCT 6, General Electric Company, USA). Image parameters
included exposure (3 mAS), thickness (5 mm), and image size
(512,512). Based on hospital PACS, DICOM format data were
imported into Medical Modeling and Design System software
for reconstruction of the head model. Three-dimensional
reconstructions were focused on the skull, hematoma, nose,
and ears during head model building. Preoperative hematoma
volume was measured by Medical Modeling and Design
System software. According to the reconstructed head model,
the puncture skull location and the hematoma target were
planned to design a puncture trajectory. The designed puncture
trajectory has the same diameter as the actual puncture
needle. The depth of the designed puncture trajectory was
also measured.
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FIGURE 1 | Dual-plane navigation puncture. (A) The head was considered a six-sided cube with horizontal, sagittal, and coronal planes. According to the hematoma

puncture trajectory designed before surgery, the puncture angle and depth were observed from two planes. (B–G) For example, a hematoma was punctured at the

basal ganglia from the temporal region, and hematoma and puncture trajectories were observed in the sagittal, coronal, and horizontal planes, respectively. (B–D)

Theoretical images of different planes. (E–G) Wearing HoloLens, images of the different planes were presented by adjusting the locations of the nose and ear.

2.3. Registration of Holographic Images
After anesthesia, three-dimensional coordinate locations data
of the calibration plate, puncture needle, and three markers in
head were captured by camera. We matched the preoperative
reconstructed head mode with the coordinate data by MAYA
software, bond location of the corresponding skull, hematoma,
nose, and ears by analysis markers and imported the matched
information into Microsoft HoloLens. The camera captured
dynamic changes in the analysis marker location of the head
and puncture needle, synchronizing holographic models with
tracking software. This procedure took∼40 min.

2.4. Dual-Plane Navigation Puncture
Innovatively, since a double-arm digital subtraction angiography
device can observe vascular morphology from two angles, we
considered the head to be a six-sided cube with horizontal,

sagittal, and coronal planes. If the puncture trajectory was
perpendicular to a plane, the other two planes could be observed
to evaluate the deviation in the puncture trajectory from the
horizontal and vertical directions. For example, when puncturing
a hematoma at the basal ganglia from the temporal region,
the puncture trajectory was perpendicular to the sagittal plane,
and we observed the vertical and horizontal deviation between
the puncture needle and the designed puncture trajectory
from the coronal plane and horizontal plane. When wearing
mixed reality holographic equipment, the three-dimensional
sense of the space will be more obvious. According to the
locations of the nose and ear, gestures such as rotation
and movement were used to adjust the plane angle and
location, and then, the image was locked. After the image
was locked, the holographic image could not change due
to gestures, making this method more convenient for the
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FIGURE 2 | Workflow of the minimally invasive puncture and drainage of hypertensive intracerebral hemorrhages by mixed reality holographic navigation technology.

(A) Patients wore three sticky analysis markers around the puncture area. (B) A bone nail was drilled through the hole in the sticky marker base, which was replaced

with sticky analysis markers, and these “twin marker” ensured no obvious deviation in the location of markers. (C) After disinfection, a sterilized analysis marker was

installed on the bone nail. (D) Three-dimensional coordinate data of the location calibration plate, puncture needle, and head were captured by a camera. (E)

Combination of a puncture needle and drainage tube. (F) Wearing HoloLens, the surgeon used MRHNT for hematoma puncture. (G) Wearing HoloLens, the surgeon

actually viewed the two planes of the image. (H) After hematoma puncture was completed, the hematoma was aspirated from the drainage tube.
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TABLE 1 | Demographic and clinical data of eight patients in the research.

Cases Age (years), Gender Hematoma location Pre-operative volume (ml) Post-operative volume (ml) HER (%) Deviation (mm)

1 69, M Temporal lobe 32.17 17.23 46.44 7.08

2 47, M Basal ganglia 33.10 12.48 62.30 5.62

3 37, M Brainstem 5.45 3.18 41.65 4.22

4 69, M Basal ganglia 30.34 18.81 38.00 6.04

5 43, M Basal ganglia 31.69 19.41 38.75 5.46

6 44, M Basal ganglia 37.22 15.32 58.84 5.87

7 44, M Brainstem 6.32 3.12 50.63 6.13

8 67, F Basal ganglia 35.22 20.34 42.25 5.66

puncture operation of both hands. We illustrated this method in
Figure 1.

2.5. Surgical Procedure
The doctor wore mixed reality holographic equipment to
observe the precise locations of the skull, hematoma, nose,
and ears, designed puncture trajectory and actual puncture
needle. According to the designed puncture trajectory, we
performed skin incision and skull drilling, performed hematoma
puncture according to the above dual-plane navigation puncture
technology, aspirated the hematoma, retained the drainage
tube, and sutured the skin. When the operator observed the
puncture needle entering the hematoma target, removed the
puncture needle, retained drainage tube, and connected with
a 10 ml syringe to aspirate until there was no longer any
fluid component of the clot. The drainage tube was tunneled
subcutaneously, and connected to closed drainage system. We
performed postoperative head CT examination, but did not inject
rtPA or other drugs in the drainage tube as in the MISTIE study,
and kept the drainage tube in low drainage for 48 h and then
removed it.We provide the complete workflow of this technology
in Figure 2.

2.6. Follow-Up Imaging and Accuracy
Assessment
Head CT examination was performed immediately or 1 day after
surgery. Postoperative hematoma volume was measured by a
non-operator, as described above. Hematoma evacuation rate
= (pre-operative hematoma volume- post-operative hematoma
volume)/pre-operative hematoma volume. Accuracy assessment
was defined as the deviation between the drainage tube and the
planned puncture hematoma target. The deviation calculation
used BLENDER2.93.3 software, which used the 3D XYZ
coordinate system to visualize the deviation between the drainage
tube and the target point (points 0, 0, and 0).

2.7. Statistical Analysis
Quantitative data were presented as means ± SDs. The paired t-
test was used to compare the difference between the preoperative
and postoperative hematoma volumes and GCS. All statistical
analyses were performed using SPSS version 21 (IBM SPSS
Statistics for Macintosh, IBM Corp). In all cases, a p < 0.05 was
considered statistically significant.

3. RESULTS

From March 2021 to August 2021,8 patients with HICHs were
treated with MIPD by mixed reality holographic navigation
technology, including five males and three females with an
average age of 52.5 ± 13.42 years (range, 37–69 years). The
hematoma was located in the basal ganglia in five cases, in the
brainstem in two cases and in the temporal lobe in one case.
Among six patients with supratentorial hematoma, four cases
of postoperative hematoma were more than 15 ml, and 1 case
was more than 20 ml, with the average post-operative hematoma
was 17.3 ml. The average hematoma evacuation rate in eight
patients was 47.36 ± 9.16 %. There were statistically significant
differences in the pre-operative and post-operative hematoma (P
= 0.002) volumes. All operations were performed under general
anesthesia, the average operation time was 82.14 ± 15.74 min,
and the average intraoperative blood loss was 36.28 ± 8.14 ml.
By double-plane MRHNT, the average deviation in the drainage
tube target was 5.76 ± 0.80 mm. There was no delayed bleeding,
acute ischemic stroke, intracranial infection, or epilepsy 2 weeks
after surgery. The average preoperative GCS was 9.25 ± 2.05,
while the 2-week postoperative GCS was 11.00 ± 2.39. The 2-
week postoperative GCS was improved, but it was not statistically
significant (P = 0.26) compared with the preoperative GCS. A
summary of demographic and clinical characteristics is provided
in Table 1.

4. TECHNOLOGY ADVANTAGES

Wearing sticky analysis markers for preoperative CT
examination could greatly shorten the time for holographic
image registration. Mixed reality holographic image technology
succeeded in creating stereoscopic sensations of the skull,
hematoma, designed puncture trajectory, and actual puncture
needle, and this immersive holographic environment was
difficult to fully express through photos or videos or even
AR technology. In addition, mixed reality holographic images
were transferred to the screen in real time, allowing observers
without experience to share the same view with the surgeon.
Innovatively, dual-plane navigation puncture technology was
used with camera monitoring, which allowed the head to move.
After adjusting the two observation puncture planes by gestures,
the holographic image was locked to avoid image changes caused
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FIGURE 3 | Case 1, a 69-year-old male patient diagnosed with HICH in the left temporal lobe. (A) Preoperative CT showed a HICH in the left temporal lobe, excluding

aneurysms, and arteriovenous malformation. (B) Postoperative follow-up CT. (C) Wearing HoloLens, the coronal, and horizontal planes were adjusted for puncture

through the ear and nose locations. (D) For fusion of the preoperative and postoperative three-dimensional reconstruction of hematomas, the preoperative hematoma

volume was 32.17 ml, the postoperative hematoma volume was 17.23 ml, and the hematoma evacuation rate was 46.44%. The length of the intracranial drainage

tube was 53.54 mm, and the deviation in the drainage tube target was 7.08 mm. HER, hematoma evacuation rate.

by gestures. We used both hands to hold the head and tail of
the puncture needle to enhance the stability of the puncture. We
observed the puncture direction with dynamic navigation from
two planes to better control the puncture deviation. We obtained
a puncture deviation of 5.76 ± 0.80 mm, which was perfectly
acceptable for a hematoma volume of ∼30 ml. Representative
cases are presented in Figures 3–5.

5. DISCUSSION

In patients with HICH, MIPD of hematomas was the preferred
option for appropriate patients. Surgery first required the
localization of the hematoma, whereas hematomas in HICH did
not require millimeter accuracy, and experienced neurosurgeons
could successfully puncture the hematoma with various
localization methods. Stereotactic devices and neuronavigation
systems seemed overqualified for hematoma localization
and were not available in many hospitals. Additionally,
neuronavigation system also has the disadvantages of expensive,
non-portable, and with bulky hardware. However, various
puncture methods mainly rely on personal experience, and
disadvantages include poor accuracy, a high failure rate, and

difficulty in ensuring the homogeneity of the puncture location,
which affects the surgical effect and increases the surgical risk.

Mixed reality technology integrates holographic image
information into the real world by a computer. The real
environment and virtual images could be spliced in the same
field of view in real time for a three-dimensional display. Owing
to advancements in holographic information transmission and
processing. Our solution of using professional software, we
take CT image and realistic environment information captured
by camera to reconstruct, match, and generate holographic
images. The method did not require additional cost or
technical complexity, other than few professional software.
This technology rendered MRHNT as much more convenient,
affordable, portable, and popular.

We acquired head information using the technology to
achieve holographic image and real head integration. By wearing
mixed reality holographic equipment, we could understand the
precise location of intracranial hematomas, tumors, ventricles,
and other structures with the perspective function, which laid a
theoretical foundation for implementation in neurosurgery. This
technology should have a promising future in medicine, but it
is still in its infancy and is in the initial stage; its application in
neurosurgery has rarely been reported (Zhang et al., 2021).
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FIGURE 4 | Case 2, a 47-year-old male patient diagnosed with HICH in the right basal ganglia. (A) Preoperative CT showed HICH in the right basal ganglia. (B)

Postoperative follow-up CT. (C) Wearing HoloLens, adjust the coronal, and horizontal planes for puncture through the ear and nose location. (D) Fusion of the

preoperative and postoperative three-dimensional reconstructions of the hematoma. The preoperative hematoma volume was 33.10 ml, the postoperative hematoma

volume was 12.48 ml, and the hematoma evacuation rate was 62.30%. The length of the intracranial drainage tube was 54.25 mm, and the deviation of the drainage

tube target was 5.62 mm. HER, hematoma evacuation rate.

In the preliminary work, our team rigidly matched the
holographic image processed by the computer with the head,
visualized the ventricular structure, intuitively guided ventricular
puncture operation, and improved the puncture accuracy
compared with that of the traditional method. Moreover, mixed
reality technology played a very helpful role in finding foreign
bodies and locating hematomas in patients with traumatic brain
injury. We reported a case of the localization of the intracranial
nail and hematoma by mixed reality technology, which helped
us to design the surgical incision rationally and avoid secondary
injury caused by blind exploration (Li et al., 2018, 2021).

There were obvious shortcomings in the previous method,
including low registration speed and rigid integration of the
hologram to the head to avoid movement of the head. In
particular, preliminary technology was not truly navigational;
when the puncture needle was drilled into the skull, it could not
be tracked.

To solve the above problems, we made several improvements
as follows. First, patients wore three sticky analysis markers
for head CT examination before the operation. We replaced
sticky analysis markers with “twin marker” to ensure no obvious

deviation in the location of markers. Then, the three-dimensional
coordinate data were captured by a camera, which could shorten
the holographic image registration time. Second, we abandoned
the rigid matching of the holographic image and head by the
eye. Alternatively, the camera captured dynamic changes in
the analysis marker location of the head and puncture needle,
synchronizing holographic images. This meant that even if the
head location changed, the holographic image would change
accordingly by analyzing the marker space distance through
the camera. Third, we observed the puncture direction from
dynamic navigation from the two planes to better control
puncture deviation.

The results of eight patients with HICHs treated with MIPD
by mixed reality holographic navigation technology revealed
that the operation time and blood loss were acceptable. The
hematoma evacuation rate was 47.36 ± 9.16%, the average of
supratentorial postoperative hematoma volume in six patients
in our research was 17.3 ml. According to the results of the
MISTIE study revealed reduction in clot size to 15 ml or less was
associated with functional improvement. Although GCS score
improved 2 weeks after surgery, this result was not comparable
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FIGURE 5 | Case 3, a 37-year-old male patient diagnosed with HICH in the brainstem. (A) Preoperative CT showed HICH in the brainstem. (B) Postoperative

follow-up CT. (C) Wearing HoloLens, the sagittal and horizontal planes were adjusted for puncture through the ear and nose locations. (D) Fusion of the preoperative

and postoperative three-dimensional reconstructions of the hematoma. The preoperative hematoma volume was 5.45 ml, the postoperative hematoma volume was

3.18 ml, and the hematoma evacuation rate was 41.65%. The length of the intracranial drainage tube was 63.42 mm, and the deviation in the drainage tube target

was 4.22 mm. HER, hematoma evacuation rate.

with MISTIE study, considering the small number of cases,
not much preoperative hematoma volume (30–40 ml), and the
absence of control group.

At present, most precise and popular of the previous methods
were neuronavigation systems. van Doormaal et al. (2019)
reported compared to the mean fiducial registration error of
conventional neuronavigation was 3.6 mm, the mean fiducial
registration error of holographic neuronavigation was 4.4 mm in
three patients. Other researches have shown that the navigation
deviation using mixed reality holographic navigation was 4–6
mm (Incekara et al., 2018; Li et al., 2018; McJunkin et al., 2018),
which was consistent with our results. We obtained a puncture
deviation of 5.76 ± 0.80 mm, which was perfectly acceptable for
a hematoma volume of∼30 ml.

To improve the puncture accuracy, we have the following
suggestions: 1. When drilling the skull, try to drill a larger
hole, and make the puncture needle coincide exactly with the
designed puncture trajectory. 2. Hold the head and tail of
the puncture needle with both hands, and adjust the puncture
direction horizontally and vertically at any time. 3. Mark the
puncture needle with depth, and determine the puncture depth
by holographic image navigation.

Our research has some limitations. At present, we have
relatively few cases, so there are not enough data to verify the
advancement of the technology. The new technology bears the
risk of general anesthesia and takes a long time for surgery,
which might make many surgeons relatively apathetic about
this technology. Improving the accuracy of the puncture also
requires the surgeon to spend much time in the model for
consistent practice.

We believe that as science and technology drive the
accelerated progress of medicine, surgical procedure will be more
simplified, and new equipment and methods will be developed to
improve puncture accuracy. Fusion with MRI images with white
matter cellulose information to design the optimal puncture
trajectory (Liu et al., 2020; Zheng et al., 2020; Zhu et al., 2021),
and accumulation of more cases experience and verification of
its superiority.

6. CONCLUSION

With MRHNT, neurosurgeons can first construct three-
dimensional model and design the puncture trajectory. During
surgery, the location and morphology of the hematoma can
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be observed from multiple angles, and precise puncture
can be performed with the help of dual-plane navigation.
The risk of general anesthesia and highly professional
holographic information processing restrict the promotion
of the technology, it is necessary for technical innovation and
the accumulation of more case experience and verification of
its superiority.
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In this paper, a method for medical image registration based on the bounded
generalized Gaussian mixture model is proposed. The bounded generalized Gaussian
mixture model is used to approach the joint intensity of source medical images.
The mixture model is formulated based on a maximum likelihood framework, and is
solved by an expectation-maximization algorithm. The registration performance of the
proposed approach on different medical images is verified through extensive computer
simulations. Empirical findings confirm that the proposed approach is significantly better
than other conventional ones.

Keywords: medical image registration, gray-level-based registration, multimodal, Gaussian mixture model,
bounded generalized Gaussian mixture model

INTRODUCTION

Image registration is an essential part of computer vision and image processing (Visser et al.,
2020), which is widely used in medical image analysis and intelligent vehicles (Zhu et al., 2013,
2017, 2021a,b, 2022). Medical image analysis is the basis for judging the patient’s condition in
future intelligent diagnosis and treatment or auxiliary diagnosis and treatment (Weissler et al.,
2015; Yang et al., 2018). More importantly, image registration sets the stage for subsequent image
segmentation and fusion (Saygili et al., 2015; Zhu et al., 2019). Current clinical practice typically
involves printing images onto radiographic film and viewing them on a lightbox. The computerized
approach offers potential benefits, particularly by accurately aligning the information in different
images and providing tools to visualize the composite image. A key stage in this process is the
alignment or registration of the images (Hill et al., 2001).

The premise of image registration is that there is a same logical part between the reference image
and the floating image (Gholipour et al., 2007; Reaungamornrat et al., 2016). Image registration
realizes transformation by determining the space coordinate transformation between two image
pixels, which enables the corresponding region on the reference image to coincide with the floating
image in space (Zhang et al., 2019). This means that the same anatomical point on the human
body has the same spatial position (the same position, angle and size) on two matched images
(Gefen et al., 2007).

There are two medical image registration methods: feature-based registration and gray-level-
based registration (Sengupta et al., 2021). The feature-based registration method does not directly
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utilize the gray-level information of the image. It is based
on abstracting the geometric features (such as corners, the
center of the closed region, edges, contours, etc.) that remain
unchanged in the image to be registered. The parameter
values of the transformation model between the images to be
registered are obtained by describing the features of the two
images, respectively, and establishing the matching relationship
(Huang, 2015). The image registration based on this feature has
advantages of less computation and faster registration speed,
and it is robust to changes of gray image scale. However, its
registration accuracy is usually not as high as that of gray-level-
based image registration (Li et al., 2020; Ran and Xu, 2020).

In the gray-level-based medical image registration method,
a similarity measure function between images is established
through the gray information of the entire image (Yan et al.,
2020). The transformation model parameters between images
are obtained by maximizing and minimizing the value of the
similarity measure function (Zhang et al., 2019). The gray-level-
based image registration algorithm uses all the gray information
of the image in the registration process. Therefore, the precision
and robustness of the obtained transformation model are higher
than the feature-based image registration (Frakes et al., 2008).
The commonly used gray-level-based image registration methods
are sequential similarity detection algorithm (SSDA), cross-
correlation, mutual information, and phase correlation (Gupta
et al., 2021). Based on the traditional algorithms, Yan et al.
(2010) extracted a fast and effective algorithm, SSDA. Anuta
(1970) proposed an image registration technique using Fourier
transform for cross-correlation image detection and calculation
to improve speed performance of registration. Evangelidis and
Psarakis (2008) offered a modified version of the correlation
coefficient as a performance criterion for image approval.
Zheng et al. (2011) proposed a cross-correlation registration
algorithm based on image rotation projection to avoid rotation
and interpolation steps in image registration, reducing data
dimension and computational complexity. For image registration
using mutual information as a similarity measure, Pluim et al.
(2000) combined image gray level with spatial image information
and added image gradient into the algorithm, which successfully
solved the problem of finding the global optimal solution in
the registration process. A direct image registration method
using mutual information (MI) as an alignment metric was
proposed by Dame and Marchand (2012). A set of two-
dimensional motion parameters can be estimated accurately
in real time by optimizing the maximum mutual information.
Lu et al. (2008) proposed a new joint histogram estimation
method, which utilizes Hanning’s windowed since approximation
function as a kernel function of partial volume interpolation.
Orchard and Mann (2009) utilized the maximum likelihood
clustering method of the joint strength scatter chart. The expected
probability of the cluster is modeled as a Gaussian mixture
model (GMM), and the expectation-maximization (EM) method
is utilized for achieving solution in iterative algorithm. Sotiras
et al. (2013) emphasized the technology applied to medical
images and systematically presented the latest technology. The
paper provided an extensive account of registration techniques
in a systematic manner. Pluim et al. (2004) compared the

performance of mutual information as a registration measure
with that of other f -information measures. An important
finding is that several measures can potentially yield significantly
more accurate results than mutual information. Klein et al.
(2007) compared the performance of eight non-rigid registration
optimization methods of medical images. The results show
that the Robbins–Monro method is the best choice in most
applications. With this approach, the computation time per
iteration can be lowered approximately 500 times without
affecting the rate of convergence. However, the distribution range
of GMM is (−∞,+∞), and so the method could not process the
target information in a fixed area.

In the field of computer vision, image pixel values are
distributed over a limited area of [0, 255]. Therefore, the bounded
generalized Gaussian mixture model (BGGMM) is used to model
the image (Nguyen et al., 2014), which can more thoroughly
describe the joint intensity vector distribution of the image pixels
and highlight the details of the image. The BGGMM has good
robustness at the same time. Therefore, based on the BGGMM,
this paper models both single-modality and multimodal image
registration and then solves the model under the framework
of maximum likelihood estimation (Zhu and Cochoff, 2002).
Experimental verification results on a large number of image
data sets show that compared with the existing gray-level-
based medical image registration algorithm based, the image
registration accuracy of the proposed method is improved.

PROBLEM FORMULATION

Suppose that two different medical images are registered, one
medical image represents the reference image, denoted by A,
and the other represents the floating image, denoted by B.
These two different medical images come from different sensors.
Therefore, each pixel position x in the space of two medical
images corresponds to a pixel value, and we use the joint intensity
vector to represent the intensity value of the two images at the
position. Here, Ix can be expressed as:

Ix = [Ax; Bx] (1)

Among them, Ax and Bx, respectively, represent the pixel
value of the reference image and the floating image at the pixel
position x. In order to realize the registration of two images, it
is necessary to assign N registration parameters to each image to
describe the spatial transformation of the image. θ can represent
the set of all registration parameters. Then, the joint intensity
vector of the registration image after employing registration
parameters can be re-expressed as Iθx .

The bounded generalized Gaussian mixture model (BGGMM)
is used to describe the distribution of the joint intensity. The
probability distribution of the joint strength vector is:

p(Iθx |ρ) =
M∑

m=1

τmBG(Iθx |um, σm,3m) (2)

Where ρ = {um, σm,3m, τm}is the model parameters,
M represents the number of bounded generalized Gaussian
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(BGG) distribution components in the mixture model, um,
σm and 3m, respectively, represent the mean, covariance, and
shape parameters of the m-th BGG distribution component.
τmrepresents the weight of the distribution component in
the mixture model and satisfies the condition τm ≥ 0 and∑M

m = 1 τm = 1. BG(.) represents a BGG distribution, i.e.,

BG(Iθx |um, σm,3m) =
T(Iθx |um, σm,3m)H(Iθx |�m)

∫∂m T(Iθx |um, σm,3m)dx
(3)

Which ∂m represents a bounded support area, and the
distribution T(Iθx |um, σm,3m) is written as

T(Iθx |um, σm,3m) = α(3m) exp

−β(3m)

∣∣∣∣∣ Iθx − um
σm

∣∣∣∣∣
3m
 (4)

and

H(Iθx |�m) =

{
1, if Iθx belongs to ∂m

0, otherwise
(5)

α(3m) =
3m
√
0(3/3m)

2σm0(1/3m)
√
0(1/3m)

, β(3m) =

[
0(3/3m)

0(1/3m)

]3m/2

(6)
Where 0(·) is the gamma function.
Therefore, X represents the number of pixels, and the log-

likelihood function of image registration is:

L(ρ) =
X∑
x

log p
(
Iθx |ρ

)
(7)

In the framework of maximum likelihood, the hidden variable
zxm that is introduced to the model indicates the category of the
cluster that Iθx belongs to, that is, it belongs to the m-th (BGG)
distribution component. Therefore, the log-likelihood function
of the model can be written as:

L(ρ) =
X∑
x

log p
(
Iθx, zxm |ρ

)
(8)

PARAMETERS ESTIMATION

Density Estimation
According to the above model, the EM algorithm is used to
estimate various parameters involved in the model. The EM
algorithm is mainly divided into two steps, step E and step M.

Step E: Q
(
ρ, ρt

)
= E

[
L(ρ)

∣∣Iθx, ρt ]
Step M: ρt+1

= max
ρ

Q
(
ρ | ρt

)
Here t represents the t-th iteration. The final model

parameters can be determined by iterating these two steps.
In step E, the probability that Iθx belonging to the m-th cluster

is given:

η (zxm) = p
(
zxm|Iθx, ρ

)
=

τmBG
(
Iθx |um, σm,3m

)∑M
m=1 τmBG

(
Iθx |um, σm,3m

) (9)

Where
∑M

m = 1 η (zxm) = 1. Using the posterior distribution
η (zxm) and the current parameters ρ(t)

Q
(
ρ, ρt

)
= E

[
L(ρ)

∣∣Iθx , ρt ]

=

X∑
x=1

M∑
m=1

η (zxm)

[
log τm + logT

(
Iθx |um, σm,3m

)
+

logH
(
Iθx |�m

)
− log ∫

∂
T
(
Iθx | um, σm,3m

)
dx

]
(10)

At step M, the parameters ut + 1
m , σt + 1

m , 3t + 1
m , τt + 1

m at the
time (t+1) are updated by the maximizing equation (10). The
results are as follows:

ut+1
m =

∑X
x=1 η (zxm)

(∣∣Iθx − utm
∣∣3t

m−2 Iθx + Rm
)

∑X
x=1 η (zxm)

∣∣Iθx − utm
∣∣3t

m−2
(11)

Where Rm represents:

Rm =
∑O

o=1 sign
(
utm − Som

) ∣∣Som − utm
∣∣3m−1 H (Som|�m)∑O

o=1 H (Som|�m)
(12)

In formula (12), when x ≥ 0, sign(x) is equal to 1, otherwise it
is equal to 0. Som ∼ T

(
Iθx
∣∣ utm, σtm,3t

m
)

represents the random
variable in the probability distribution T

(
Iθx
∣∣ utm, σtm,3t

m
)

, o
is the number of random variables Som. Note that O is a large
integer, and O = 106 is taken in this paper.

σt+1
m =

3t
mβ
(
3t

m
)∑X

x=1 η (zxm)
∣∣Iθx − utm

∣∣3t
m∑X

x=1 η (zxm) (1+ Gm)


1
3tm

(13)

Where Gm represents:

Gm

=

∑O
o=1

[
−1+3t

mβ
(
3t

m
) ∣∣Som − utm

∣∣3t
m
(
σtm
)−3t

m
]
H (Som|�m)∑O

o=1 H (Som|�m)

(14)

Under the condition that other parameters are fixed, use
the Newton-Raphson method to estimate 3m. Each iteration
needs to solve the first and second derivatives of Q

(
ρ, ρt

)
with

respect to parameter 3m. The next iteration value of 3m can be
expressed as:

3t+1
m = 3t

m −
∂Q

(
ρ, ρt

)
∂3m

[
∂Q2 (ρ, ρt)
∂32

m
+ ϑ

]−1

|3m=3t
m

(15)
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Where ϑ is the scale factor, and the derivative of Q
(
ρ, ρt

)
with

respect to3m is given by:

∂Q
(
ρ, ρt

)
∂3m

= −

X∑
x=1

η (zxm)

[
f
(
Iθx | um, σm,3m

)
−
∫∂ T

(
Iθx | um, σm,3m

)
f
(
Iθx | um, σm,3m

)
dx

∫∂ T
(
Iθx | um, σm,3m

)
dx

]
(16)

Where:

f
(
Iθx | um, σm,3m

)
=

 1
3m
+

3BG
(

1
3m

)
− 3BG

(
3
3m

)
232m


− BG (3m)

∣∣∣∣∣ Iθx − um
σm

∣∣∣∣∣
3m

log

∣∣∣∣∣ Iθx−umσm

∣∣∣∣∣− BG (3m) ×

1
2

log
0
(

3
3m

)
0
(

1
3m

) + BG
(

1
3m

)
− 3BG

(
3
3m

)
23m

 ∣∣∣∣∣ Iθx − um
σm

∣∣∣∣∣
3m

(17)

∫
∂
T
(
Iθx | um, σm,3m

)
f
(
Iθx | um, σm,3m

)
dx

≈
1
O

O∑
o=1

f
(
Som

∣∣ utm, σtm,3t
m
)
H (Som | �m ) (18)

The second derivative of Q
(
ρ, ρt

)
with respect to3m is:

∂Q2 (ρ, ρt)
∂32

m
= −

X∑
x=1

η (φxm)

 g
(
Iθx | um, σm,3m

)
+

(
∫∂ T

(
Iθx | um,σm,3m

)
f
(
Iθx | um,σm,3m

)
dx
)2

(∫∂ T(Iθx | um,σm,3m )dx)
2 −

∫∂ T
(
Iθx | um,σm,3m

)[
f 2(Iθx | um,σm,3m

)
+g
(
Iθx | um,σm,3m

)]
dx

∫∂ T(Iθx | um,σm,3m )dx


(19)

Where,

g
(
Iθx | um, σm,3m

)
=
∂f
(
Iθx | um,σm,3m

)
∂3m

=

[
−1
32

m
−

3BG
(

1
3m

)
234

m
−

3BG
(

1
3m

)
33

m
+

9BG
(

3
3m

)
234

m
+

3BG
(

3
3m

)
33

m

]
− β (3m)

∣∣∣ Iθx−umσm

∣∣∣3m(
log

∣∣∣ Iθx−umσm

∣∣∣)2
− (20)

β (3m)×


1
2 log

0
(

3
3m

)
0
(

1
3m

) + BG
(

1
3m

)
−3BG

(
3
3m

)
23m

+

−BG
′
(

1
3m

)
+9BG

′
(

3
3m

)
233

m


2

∣∣∣ Iθx−umσm

∣∣∣3m
− β (3m)×

[
1
2 log

0
(

3
3m

)
0
(

1
3m

) + BG
(

1
3m

)
−3BG

(
3
3m

)
23m

]
∣∣∣ Iθx−umσm

∣∣∣3m
log

∣∣∣ Iθx−umσm

∣∣∣

∫
∂
T
(
Iθx | um, σm,3m

)
[
f 2
(
Iθx | um, σm,3m

)
+ g

(
Iθx | um, σm,3m

)]
dx

≈
1
O

[ O∑
o=1

f 2 (Som ∣∣ utm, σtm,3t
m
)
+ f

(
som

∣∣ utm, σtm,3t
m
)]

H (som | �m ) (21)

Finally, update the estimate of the prior probability τt+1
m that

can be expressed as:

τt+1
m =

1
X

X∑
x=1

η (zxm) (22)

Motion Parameters Estimation
Optimize the corresponding parameter θ by deriving the result of
Q
(
ρ, ρt

)
to θ as 0:

∂Q
(
ρ, ρt

)
∂θ

= 0 (23)

In order to find the appropriate model movement parameter
θ to satisfy the equation (23), introduce a small movement
increment θ̃ and replace θ with as the estimated parameter.
The following is obtained by using approximate linear space
transformation:

Iθ+θ̃
x = Iθx +

∂Iθ
T

x
∂θ

θ̃ (24)

Incorporate formula (23) into formula (24) and the following
can be obtained:{ X∑

x=1

[ M∑
m=1

η (zxm)3mβ(3m)
∂Iθx
∂θ

(
σt+1
m
)−1 ∂Iθx

T

∂θ

]}
θ̃

= −

X∑
x=1

[ M∑
m=1

η (zxm)3mβ(3m)
∂Iθx
∂θ

(
σt+1
m
)−1

(
Iθx − ut+1

m

)]
(25)

The optimization of the registration parameters can be
achieved by solving the movement increment θ̃ in equation (25).

Implementation
In summary, the proposed image registration algorithm based on
the BGGMM is shown in Algorithm 1 and Figure 1. This paper
regards M BGG distribution components in the joint intensity
scatter plot of the registered image as M clusters, uses the k-mean
method to find the cluster centers and compares parameter
initialization of the BGGMM model. This paper initializes
3m = 2. Secondly, this paper also utilizes multi-resolution image
registration, and the resolutions are set [0.1 0.2 1], respectively.
The image is first registered at low resolution and then high
resolution, and the registration result at each resolution can be
used as the next resolution registration. Therefore, the calculation
time can be reduced, and the algorithm convergence can be
accelerated in the iterative process of the proposed algorithm.
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FIGURE 1 | Flowchart of medical image registration.

The EM algorithm is first used to estimate the BGGMM
model parameter ρ on the joint intensity scatter plot. After the
optimal BGGMM model parameter ρ is estimated for T1 times,
the motion adjustment is performed. This paper introduces a
small movement increment and iterates T2 times to update
the motion parameters, ensuring the optimal parameters are
obtained. Finally, iterate repeatedly until convergence to achieve
image registration.

Algorithm 1: Description of algorithm for medical image registration based on
BGGMM.

Input: reference image A, floating image B, the number of clusters M of
the BGGMM, the number of iterations T1, T2
Output: BGGMM model parametersρ, motion parameters θ

Initialization: k-mean initializes BGGMM model parameters ρ

for each scale do

Get the I
′

x under the resolution image

I
′

x applies motion parameters to get Iθ
′

x

while not converged do

for T1 iterations do

Update BGGMM model parameter ρ (step E and M)

end for

for T2 iterations do

Move increment θ̃

Update exercise parameters

Apply updated motion parameters to I
′

x

end

end while

end for

EXPERIMENT

The computer environment of experiments in this paper is
Intel(R) Core (TM) i5-7300HQ CPU @ 2.50 GHz with 8 GB
RAM, while the operating system is 64-bit Windows 10.0. All
simulations are implemented using MATLAB R2020b.

The mutual information method (MI) (Lu et al.,
2008), the enhanced correlation coefficient (ECC)

(Evangelidis and Psarakis, 2008) and the ensemble registration
approach (ER) (Orchard and Mann, 2009) are compared
to evaluate the performance of the proposed method. The
average pixel displacement (PAD) (Li et al., 2016) is used as
a registration error to objectively measure the performance
of different approaches. In the successful registration
case, the value of the PAD is zero. The larger the PAD,
the more significant deviation and the lower registration
accuracy. If PAD is greater than 3, the registration is
considered to have failed.

MURA (Rajpurkar et al., 2017) and Altas (Yu and Zheng,
2016) public image data sets are used to verify the performance
of these methods. Details about two image datasets and
experiments are reported, as shown in Table 1, where
the bold values indicate the best results. The t-test is
used to test the significance of the difference between the
PAD results of the BGGMM method and the other three

TABLE 1 | The pad results of image registration on public data sets.

Method/dataset Public dataset

MURA images Atlas images

MI 1.9162 0.7168

ECC 8.1494 10.7606

ER 6.5182 9.1342

Proposed method 0.2271 0.6801

The bold values indicated the best results.

TABLE 2 | The t-test results of the pad results of BGGMM versus other image
registration methods on public data sets.

Database Method p-value

MURA BGGMM MI 0.132

ECC 0.000

ER 0.000

Atlas BGGMM MI 0.034

ECC 0.001

ER 0.000
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registration methods in image registration on public data
sets. P < 0.05 means the difference is statistically significant,
and the comparison results are summarized in Table 2.
Both in the MURA and Atlas data sets, the PAD results

of the BGGMM method were minor, and the differences
were statistically significant compared to the PAD results of
the ECC and ER methods (P < 0.05). In the MURA data
set, the difference between the PAD results of the BGGMM

FIGURE 2 | One slice of the MURA dataset. (A) Finger, (B) Hand, (C) Forearm, and (D) Shoulder.

FIGURE 3 | The registration results of four methods in four skeleton images of MURA dataset. (A) Initialization. (B) BGGMM. (C) ECC. (D) (ER). (E) MI.
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method and the MI method was not statistically different
(P > 0.05). However, in the Atlas dataset, the PAD results
of the BGGMM method were smaller than those of the
MI method, and the difference was statistically significant
(P < 0.05).

Musculoskeletal Radiographs Dataset
The proposed approach is tested on an ensemble of MURA
images. The test set is from the Large Dataset for Abnormality
Detection in Musculoskeletal Radiographs (MURA) project’s
training data set. One slice of this dataset is depicted in Figure 2.

FIGURE 4 | PAD of different methods under different noise levels and different displacements in MURA dataset. (A) PAD under different noise levels on Finger image.
(B) PAD under different displacement on Finger image. (C) PAD under different noise levels on Hand image. (D) PAD under different displacement on Hand image.
(E) PAD under different noise levels on Forearm image. (F) PAD under different displacement on Forearm image. (G) PAD under different noise levels on Shoulder
image. (H) PAD under different displacement on Shoulder image.
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The initial image to be registered is generated by random
translation and rotation transformation, and the pixel and angle
transformation parameters ranges are [–20, 20] and [–10, 10],
respectively. This paper sets M = 6, that is, the number of
BGG distribution components in the initial model is 6. The
MURA dataset included 12,173 patients, 14,863 studies, and
40,561 multi-view radiographs. Each study belonged to one of the
seven standard upper limb radiology study types: fingers, elbows,

forearms, hands, humerus, shoulders, and wrists. Each study was
manually marked as normal or abnormal by the radiologist.

The PAD values of the MURA dataset are summarized in
the first column of Table 1. The average registration error
of the proposed BGGMM method is significantly lower than
other methods. The BGGMM method is more advantageous in
edge retention and information content of source images. The
registration results of the four methods are shown in Figure 3,

FIGURE 5 | Brain slice images from the Atlas dataset. (A) MR-T1, (B) MR-T2, (C) MR-PD.

FIGURE 6 | The registration results of four methods in the brain images of Altas dataset.

FIGURE 7 | PAD of BGGMM, ECC, ER, and MI methods under different noise levels and different displacements. (A) PAD of different methods under different noise
levels. (B) PAD of different methods under different displacements.
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which register the source image and transform the image with
rotation and translation. In these four methods, registration is
performed to the source image, and rotation, translation and
transformation is performed to the image. Figure 3A shows the
source image and the image to be registered.

With different noise levels, Gaussian noise is used as the
independent variable in finger images of the experiment, and
the noise level increases incrementally to test the performance
of BGGMM. The mean value of Gaussian noise is 0, and
the variance ranges from 0 to 0.04. As shown in Figure 4A,
the excellent registration performance of several comparison
algorithms can be observed. Among them, the registration error
of the ER algorithm is the largest. The registration error of
the BGGMM algorithm is lower than other methods under
different noise levels.

The registration performance of the algorithm on Finger
images is also tested under different displacement situations,
as shown in Figure 4B. The displacement is added by moving
the image t pixels horizontally and vertically, where the change
range of t is 0–30, that is, the variation of the horizontal axis
in Figure 4B. It is not difficult to see that the registration
performance of this algorithm is better than other algorithms
under different displacements. Among them, the ECC algorithm
has poor anti-displacement interference, which is regarded as a
registration failure. The ER algorithm has a good registration
effect under the condition of small displacement. The BGGMM
algorithm has the best performance when the change in
displacement is large. Similarly, Figures 4C–H show the PAD
value of different methods on Hand images, Forearm images,
and Shoulder images under different noise levels and different
displacements. The proposed method has the lowest registration
error and the best registration performance.

Altas Dataset
Altas dataset is a multimodal dataset that includes more than
13,000 MRI and CT images of patients with brain diseases.
Among them, MRI images have images with T1, T2, and PD
weights. At the same time, it also includes the lesion images
of patients with different lesion times. The image in which
the MRI has T1, T2, and PD weights is selected, as shown in
Figure 5. The initial image to be registered is generated by
random translation and rotation transformation, and the pixel
and angle transformation parameters ranges are [–20, 20] and
[–10, 10], respectively. This paper sets M = 6, that is, the number
of BGG distribution components in the initial model is 6.

The PAD values of Altas dataset are summarized in the second
column of Table 1. The average registration error of the proposed
BGGMM method is significantly lower than other methods.
The BGGMM method has an advantage in preserving the edge
information of the source image. The registration results of the
four methods are shown in Figure 6. In these four methods, two
different modality images are used to register separately.

The registration performance of BGGMM, ECC, and ER
methods is tested under different Gaussian noises. According
to the registration results in Figure 7A, the comparison of
registration effects under different Gaussian noises can be
obtained. The mean value of Gaussian noise is 0, and the variance

ranges from 0 to 0.04. Among them, the registration error of the
ECC algorithm is the largest. The PAD value of other algorithms
mentioned above in this experiment is greater than 3, which is
regarded as registration failures. The BGGMM algorithm has the
lowest PAD value and has good registration performance.

As shown in Figure 7B, the displacement is added by moving
the image t pixels horizontally and vertically, where the change
range of t is 0–30. When the displacement changes considerably,
the error generated by the ER algorithm becomes larger and
exceeds the effective range. As the change in displacement
increases, the PAD value of our BGGMM algorithm is still
unaffected, always maintaining a low level and performing better
among the four algorithms.

CONCLUSION

A medical registration method based on a BGGMM is proposed
in this paper. Firstly, a BGGMM is applied to model the joint
intensity vector distribution of the medical image. The proposed
approach then formulates the model as an ML framework and
estimates the parameters of models applying an EM algorithm.
The experimental results indicate that the proposed BGGMM
significantly improves registration performances on medical
images compared with benchmark methods. The effect of this
method is more pronounced when dealing with source images
with more interference information and larger offsets. In the
future, the research on medical image fusion will be carried
out based on BGGMM image registration, which will provide
convenience for medical image analysis.
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Glaucoma is an optic neuropathy that leads to characteristic visual field defects. However,

there is no cure for glaucoma, so the diagnosis of its severity is essential for its prevention.

In this paper, we propose a multimodal classification architecture based on deep learning

for the severity diagnosis of glaucoma. In this architecture, a gray scale image of the

visual field is first reconstructed with a higher resolution in the preprocessing stage,

and more subtle feature information is provided for glaucoma diagnosis. We then use

multimodal fusion technology to integrate fundus images and gray scale images of the

visual field as the input of this architecture. Finally, the inherent limitation of convolutional

neural networks (CNNs) is addressed by replacing the original classifier with the proposed

classifier. Our architecture is trained and tested on the datasets provided by the First

Affiliated Hospital of Kunming Medical University, and the results show that the proposed

architecture achieves superior performance for glaucoma diagnosis.

Keywords: glaucoma, computer-aided diagnosis, multimodal fusion, classification, multi-layer perceptron

INTRODUCTIONS

Glaucoma is amajor eye health problem that leads to irreversible visual impairment (Mirzania et al.,
2020). Because glaucoma initially tends to affect marginal vision and may still be asymptomatic
until the middle stage, most patients are not treated in time, and further damage can occur (Yang
et al., 2020). Thus, the detection and especially the severity classification of glaucoma is beneficial
for ophthalmologists to analyze the condition of patients and develop follow-up treatment plans.

Fundus images, optical coherence tomography (OCT), and visual field are used as public data
in the clinic. OCT can accurately evaluate the thickness of the retinal nerve fiber layer (RNFL)
by tomography technology (Bowd et al., 2022). Fundus images reflect the vascular status of the
eyes by contrast agent injection, and Chan et al. (2014) demonstrated that mono fundus images
can provide an equal diagnostic accuracy for glaucomatous optic neuropathy evaluation when
compared to stereoscopic images. The gray scale image of the visual field manifests the defect of the
patient’s visual field by brightness transformation (Wroblewski et al., 2009). Compared with OCT,
fundus images and visual fields are easier to obtain and can be directly used to diagnose glaucoma
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(Wroblewski et al., 2009; Chan et al., 2014). The diagnosis of
pathological images is crucial but time-consuming and laborious;
thus, reliable computer-assisted diagnosis (CAD) of glaucoma
has continued to expand in the recent years (Zheng et al.,
2019). The diagnostic approaches by the above technologies for
glaucoma can be divided into two categories. One is the single-
path method, of which the input is single type data. For example,
Wroblewski et al. (2009) used support vector machines (SVMs)
to provide a valid clinical diagnosis of glaucoma based solely on
visual field data. Escamez et al. (2021) developed a classifier for
predicting glaucoma eyes based on peripapillary retinal nerve
fiber layer (RNFL) thicknesses measured with OCT. The other
is a multimodal fusion image, which is a combination of two or
more types of data. For instance, Bizios et al. (2011) and Chen
et al. (2019) employed multimodal fusion approaches to diagnose
glaucoma by integrating OCT and visual field data and OCT and
fundus images.

Nevertheless, there are at least three problems to be resolved.
First, the inferior resolution of the common gray scale of the
visual field affects the feature extraction of convolutional neural
networks (CNNs) in the task of glaucoma diagnosis. Second, the
majority of studies focused on employing a single type of data to
simply diagnose health and glaucoma, whereas the diagnosis of
glaucomatous severity is more significant for ophthalmologists
(Rajendrababu et al., 2021). Third, some studies using CNNs to
capture features still had difficulty meeting the requirements of
accuracy in practical diagnostic tasks. The main reason is that
each convolution kernel of CNNs focuses only on the feature
information of itself and its boundary while lacking the ability to
model some long-range dependencies in glaucoma images (Yao
et al., 2021).

To address these challenges, we propose a multimodal
classification architecture based on deep learning for the severity
classification of glaucoma. In this architecture, first, the gray
scale image of the visual field is reconstructed with a higher
resolution in the preprocessing stage, which is conducive to
the feature extraction of the proposed architecture. Second, the
fundus image and reconstructed visual field gray scale image are
integrated to obtainmultimodel information for the classification
task and then transferred into CNNmodels for feature extraction.
Third, we construct an efficient classifier to address the limitation
of CNNs. This adopts the multilayer perceptron (MLP) of vision
transformer (Dosovitskiy et al., 2020) (ViT) to further extract
global sequence information and can be directly connected after
CNNs to replace its original classifier. The main contributions of
this paper are as follows:

• A multimodal classification architecture based on deep
learning is constructed for the task of severity classification
of glaucoma. The gray scale image of the visual field is
reconstructed with a higher resolution in the preprocessing
stage, in which a more subtle gray scale division unit is
modeled to provide more detailed feature information in the
glaucoma diagnosis task.

• The proposed architecture fuses the fundus image and visual
field gray scale image as the input to providemore information
for the feature extraction of the network. This architecture

realizes a 4-classification of glaucoma to present its severity,
which is more convenient for ophthalmologists.

• To offset the limitation of CNNs, we propose a plug-and-play
classifier which adopts the multilayer perceptron (MLP) of
ViT to extract the global dependencies of images. Meanwhile,
the proposed classifier can easily replace the original classifier
of CNNs and significantly improve the accuracy of the
diagnostic task.

BACKGROUND AND RELATED WORKS

In this section, the latest progress of deep learning and its
application in the field of glaucoma diagnosis are reviewed.

Development of Deep Learning
In the recent years, deep learning algorithms, especially CNNs,
have made significant progress. The introduction of ImageNet
(Krizhevsky et al., 2017) provided an initial explanation for
the conception of deep learning. Subsequently, Simonyan and
Zisserman (2014) and Iandola et al. (2017) proposed visual
geometry group (VGG) and SqueezeNet, respectively; they
increased the depth of the network while keeping the perception
field unchanged and improving the performance of the networks.
Meanwhile, He et al. (2016) and Huang et al. (2016) introduced
functional modules such as residual and dense modules to
enhance the performance of CNNs. Due to these improvements,
CNNs are widely applied in the field of CAD. However, CNNs
lack the ability to model the global dependencies of images
because of their inherent limitations. Recently, transformer
(Vaswani et al., 2017), which is capable of modeling long-
range sequence features, attracted tremendous attention in the
computer vision field. Dosovitskiy et al. (2020) introduced a
transformer into the image task and successfully used embedded
2-dimensional (2D) image patches as an input sequence to
achieve comparable representation with CNNs. Therefore, to
obtain better performance in the task of glaucoma diagnosis, it
will be of greater significance to combine transformer to offset
the limitations of the CNN model.

Deep Learning for Glaucoma Diagnosis
Many deep learning algorithms have been employed in the fields
of glaucomatous classification (Gour and Khanna, 2020; Wang
et al., 2020; Singh et al., 2021). Raja et al. (2020) used a CNN
to segment the retinal layer based on OCT data and calculate
the cup-to-disk ratio (CDR). This achieved 94.6% accuracy in
the glaucoma prediction task. Li et al. (2019) employed visual
field data collected from hospitals to identify glaucoma, and the
accuracy reached 87.6%. Kim et al. (2018) and Guo et al. (2020)
diagnosed and localized fundus images by VGG16 and UNet++

networks to classify glaucoma and achieved an accuracy of 91.2%
and an area under the curve (AUC) of 90.1%, respectively.
Bajwa et al. (2020) and Ibrahim et al. (2022) both proposed
a two-stage framework: the former detected and located optic
disks on fundus images and then classified them as healthy
or glaucoma; the latter preprocessed glaucoma disease data by
normalization and the mean absolute deviation method in the
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FIGURE 1 | Diagram of proposed architecture.

TABLE 1 | Distribution of dataset.

Normal

(class 0)

Early

(class 1)

Intermediate

(class 2)

Terminal

(class 3)

Quantity Original 87 171 79 165

augmented 174 171 158 165

first stage and trained a deep learningmodel through the artificial
algae optimization algorithm later. They achieved an AUC of
87.4% and an F1 score of 98.15%.

Different from the above works, Bizios et al. (2011) used a
multimodal fusion approach to diagnose glaucoma by fusing
OCT and standard automated visual field data and improved
the AUC by 3.3% compared with single data. Chen et al. (2019)
employed residual UNet to segment enhanced OCT and fundus
images and then integrated the extracted features, achieving an
accuracy rate of 96.88%. Kang et al. (2020) fused cup-to-disk and
retinal nerve fiber layer features for the diagnosis of glaucoma. In
the work of Liu et al. (2014), the limitation of the performance of
a single modality was overcome by integrating patient personal
data, major ocular image features, and important genome SNP
features. This approach obtained the best AUC compared with a
single modality.

MATERIALS AND METHODS

The workflow of the proposed multimodal classification
architecture is shown in Figure 1 and has three parts: input, CNN
model, and classifier. First, the fundus image and reconstructed
gray scale image of the visual field are fused into a multimodal
fusion image, which are preprocessed and then sent into the
CNN model. Second, as the feature extraction backbone of our
architecture, the CNNmodel uses four ordinary CNNs to extract
the feature information of the input image. These CNNs are
pretrained by transfer learning technology to adapt to the task

of small-scale datasets. Finally, the global dependencies of the
feature maps are extracted by the proposed classifier to offset the
limitations of the CNNs.

Input
Datasets
The dataset of this paper is provided by the First Affiliated
Hospital of Kunming Medical University. It contains 502 fundus
images and 502 visual field reports from 274 individuals, and both
eyes of each individual were used in the study. Fundus images and
visual field reports were acquired by a Topcon fundus camera
TRC-50DX and Intelligent Video Surveillance (ISV) automatic
computerized perimetry, and each image was labeled by two
professional physicians. The datasets were rated from class 0 to 3
based on the severity of glaucoma, representing normal (n= 87),
early (n= 171), intermediate (n= 79), and terminal glaucoma (n
= 165), respectively. Related information of the dataset is listed
in Table 1. Meanwhile, to overcome the challenges of training on
imbalanced data by CNNs, we augmented normal eyes from 87
to 174 and intermediate glaucoma from 79 to 158 through data
augmentation technology and balanced the ratio of all categories
of data to ∼1:1:1:1. Finally, 1,336 images of the two types of data
were applied to our deep learning architecture. The data sample
is depicted in Figure 2.

Preprocessing
The preprocessing consists of two parts: data augmentation and
normalization, and improving the resolution of the visual field
gray scale image by reconstructing gray scale units.

Augmentation and Normalization
As shown in Table 1, the distribution of each category in the
dataset is severely imbalanced, which may skew the diagnosis
of CNNs toward more data-intensive types. To address this
problem, we use data augmentation technology such as rotation,
flipping, brightness, and contrast adjustment to form a dataset
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with the sample number of each category being almost equal.
Meanwhile, to make the data more suitable for the pretraining of
CNNs based on ImageNet, of which the default input resolution
is 224 × 224, the images are resized to 224 × 224 pixels by
bilinear interpolation.

Reconstruction of Visual Field Gray Scale Images
As depicted in Figure 3A, the gray scale image of the visual field
is constructed based on the numerical value map, and each gray
scale value in the image is represented by a gray scale unit. In the
ordinary gray scale image, due to its low resolution (each gray
scale unit represents a value with a span of 5 dB) (Figure 3B),
much information is lost in the training process of CNNs, thus
affecting the ability of CNNs to extract subtle features. In this
paper, to solve this problem, a more subtle gray scale unit and
corresponding gray scale image are established in which the gray
scale unit is divided into 1 dB to retain the subtle features of the
gray scale image (Figure 3C).

Multimodal Fusion
In this paper, the proposed multimodal classification architecture
fuses fundus images and visual field gray scale images through
an image concatenation approach and then transfers it into the
CNN model to capture sufficient feature information. This is
different from other studies. For instance, Chen et al. (2019) input
images into CNNs for extracting features and then fused the
extracted features to diagnose glaucoma. Such a fusion method
changes the extracted features during the fusion, so the fused
feature information is not reliable. Our proposed architecture
fuses multimodal images before training, avoiding the mutual
interference of features while improving the performance of
glaucoma diagnosis.

CNN Model
Here, four CNNs (VGG 19, SqueezeNet, ResNet 50, and
DenseNet 121) are adopted to extract the primary features of the

fusion image in the proposed architecture. The details are shown
in Figure 4.

VGG
Visual geometry group has a very systematic architecture. With
the deepening of the network, the size of the input image is
gradually compressed, but the number of convolution kernels
is constantly increasing to explain the reduction in image size.
Briefly, abundant 3 × 3 convolutional kernels are accumulated
to replace the macrokernels to enhance the depth and width of
the network. Thus, the higher the number of activation functions,
the richer the extracted features and the stronger the recognition
ability of the classification task.

SqueezeNet
SqueezeNet replaces the 3 × 3 convolutional kernel with
abundant 1 × 1 kernels to reduce the computational cost and
accelerate the training process of CNNs, with approximate results
of AlexNet on the ImageNet dataset. The network is widely
employed for large-scale datasets due to its light weight and
high efficiency.

ResNet
Different from VGG, ResNet solves the degradation problem of
deep networks by connecting the residuals of feature mapping
from one layer to the subsequent through residual connections
on its basis. Researchers can train deeper networks to improve
task representation by solving ill-posed problems.

DenseNet
DenseNet, based on ResNet’s theory, connects one layer to
all subsequent layers by skipping connections, achieving dense
skip connections. With further architectural transformations,
the internal representation of DenseNet becomes significantly
different from ResNets.

One key aspect is the use of network name suffixes in
Figure 4. Roughly speaking, the number of layers in the network

FIGURE 2 | Samples of different severities.
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FIGURE 3 | (A) Gray scale images of visual field. (B) Ordinary gray scale units. (C) New gray scale units.

is represented as “19,” “50,” and “121.” As you can see, the
layers of the selected networks range from relatively shallow
to extremely deep. This is intentional, as it leads to more
architectural diversity.

Classifier
As the classifiers of CNNs are usually composed of a fully
connected layer or maxpooling functions (Figure 5A), they lack

the ability to model the long-range dependencies of glaucoma
images. Therefore, we propose an effective classifier replacing
the originals to offset their limitation in this paper, which is
constructed by the MLP of ViT. As mentioned above, ViT can
extract the global dependencies, and inspired by (Melas-Kyriazi,
2021), such an ability can be realized by its multilayer perceptron
(MLP) alone, so it is employed in our classifier. Figure 5B shows
an overview of this module.
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FIGURE 4 | Backbone of proposed architecture.

First, the input feature map Xin ∈ R
H×W×C is sent into a 1

× 1 convolutional layer to extract local features and change the
dimension to match the next layer. The output of this layer is

X1 ∈ R
H×W×C′

, where (H, W) is the resolution of the initial
image, C is the number of initial dimensions, and C ′ is the
number of convoluted dimensions.

Second, a patch embedding process including image reshaping
and image patch compression is performed. The feature map
X1 is reshaped into an N sequence of flattened 2D patches
Xi
p (Equation 1):

Xi
p = P× P× C , i ∈ {1, 2, · · · , N} (1)

where (P, P) is the resolution of each image patch, and N =

H×W/P2 is the generating number of image patches. Then, Xi
p is

compressed into aD-dimensional embedding space by a trainable
linear projection for the MLP layer (Equation 2).

X2 =
[

X1
PE;X

2
PE; · · · ;X

N
P E

]

+ Epos (2) (2)

where E ∈ R(P2×C′)×D is the embedding projection of the patch,
Epos ∈ R

N×D is the positional embedding, and X2 is the encoded
image sequence.

Third, the processed data sequence X2 is transferred into the
MLP layer (Equations 3, 4).

X2′ = Dropout(Gelu(FC(X2)) (3)

X3 = Dropout(FC(X2′)) (4)

where Gelu and Dropout are activation functions used to prevent
network overfitting and improve training accuracy. FC is a
fully connected layer which transforms the convolution output
of the two-dimensional feature map into a one-dimensional
vector.

Finally, the output of the MLP layer is subsequently
rearranged to the initial size of the input image Xout ∈

R
H×W×C(Eq. 5), and the glaucoma category is predicted by

a classifier.

Xout = rearrange(X3, (hw)(p1p2 c) → c(hp1)(wp2)) (5)
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FIGURE 5 | Comparison of classifier structures: (A) classifier structure of CNNs; (B) our classifier structure.

TABLE 2 | Comparison of performances before and after reconstructed gray scale image.

Ordinary gray image Reconstructed gray scale image

Accuracy F1 score Kappa Jaccard Recall Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 0.772 0.753 0.690 0.623 0.772 0.793 0.779 0.724 0.652 0.793

Vgg 19 0.757 0.749 0.674 0.613 0.757 0.882 0.880 0.842 0.788 0.882

ResNet 50 0.797 0.795 0.729 0.665 0.797 0.918 0.918 0.890 0.849 0.918

DenseNet 121 0.790 0.787 0.720 0.659 0.790 0.888 0.889 0.849 0.803 0.888

Average* 0.779 0.771 0.703 0.640 0.779 0.870 0.866 0.826 0.773 0.870

*Average = average value of above four CNNs.

TABLE 3 | Results of fundus images.

Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 0.696 0.662 0.595 0.528 0.696

Vgg 19 0.704 0.692 0.604 0.559 0.704

ResNet 50 0.687 0.682 0.581 0.534 0.687

DenseNet 121 0.716 0.707 0.622 0.559 0.716

Average 0.701 0.686 0.600 0.545 0.701

Evaluation Criteria
To evaluate the effectiveness of the proposedmethods, we employ
the accuracy, Jaccard score, Kappa score, recall, and F1 score.
Accuracy indicates the proportion of the correct sample number
in the total sample number. Recall represents the number of
samples predicted to be positive out of the total number of
true positive samples. The F1 score is the ratio of accuracy to
recall. The Jaccard score evaluates the similarity and diversity of

samples. The Kappa score assesses the consistency between the
predicted classification results and actual results, and we employ
it to evaluate the efficiency of multiclassification architectures.

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

Jaccard score =
TP

TP+ FP+ FN

F1 Score =
2 • precision • recall

precision+ recall

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Pe =
(TP+FN)(TP+ FP)+(TN+ FN) (TN+ FP)

(TP+ TN+ FP+ FN)2

Kappa score =
Accuracy− Pe

1− Pe
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TABLE 4 | Results of multimodal fusion.

CNN model Class no. Acc AUC Spec Sen F1 Kappa Avg.Acc Avg.F1 Avg.AUC

SqueezeNet1_1 Class 0 0.948 0.965 1.0 0.930 0.909 0.873 0.896 0.895 0.931

Class 1 0.926 0.866 0.743 0.990 0.839 0.792

Class 2 0.948 0.955 0.969 0.942 0.896 0.816

Class 3 0.970 0.939 0.879 1.0 0.935 0.916

VGG 19 Class 0 0.956 0.970 1.0 0.940 0.921 0.890 0.911 0.910 0.956

Class 1 0.948 0.900 0.800 1.0 0.889 0.856

Class 2 0.956 0.971 0.942 1.0 0.914 0.885

Class 3 0.963 0.924 0.848 1.0 0.918 0.894

ResNet 50 Class 0 0.971 0.980 0.900 1.0 0.947 0.927 0.918 0.919 0.953

Class 1 0.934 0.887 0.923 0.936 0.842 0.801

Class 2 0.934 0.963 0.848 0.978 0.897 0.848

Class 3 0.971 0.929 1.0 0.964 0.923 0.857

DenseNet 121 Class 0 0.971 0.980 0.900 1.0 0.947 0.928 0.918 0.920 0.939

Class 1 0.929 0.871 0.920 0.930 0.821 0.777

Class 2 0.907 0.963 0.848 0.936 0.857 0.788

Class 3 0.950 0.946 0.862 0.973 0.877 0.846

where TP is true positive, indicating the number of images
correctly classified by the classification algorithm; FN is false
negative, indicating the number of images incorrectly classified
into other categories by the classification algorithm; TN is true
negative, indicating that the classification algorithm correctly
classifies non-category images into other categories; and FP
is false-positive, indicating that the classification algorithm
incorrectly classifies non-category images into such categories.

EXPERIMENT AND DISCUSSION

In this section, the experimental setup of our study is introduced.
Then, four experiments are conducted to present the effectiveness
of our architecture. Finally, the results are shown and discussed
in detail.

Experimental Setup
The experiments are conducted on a server equipped with an
NVIDIA GeForce RTX 2060Ti graphic processing unit (GPU)
and 16 GB of random-access memory. The compiler is PyCharm,
the programming language is Python, and the experimental
framework is PyTorch.

In this paper, the adaptive momentum estimation (Adam)
optimizer is chosen to update the parameters of the proposed
architecture, CrossEntropy Loss is set as the Loss function, and
the learning rate is 0.0001. The epochs are set as 60, and the
batch size is set as 8. Based on our newly constructed dataset, the
proportion of the training set and testing set is set as 8:2; that is,
1,068 fundus and gray scale images are used as the training set,
and 268 fundus and gray scale images are used as the testing set.

Experimental Results and Discussion
Comparison of Reconstructed Visual Field Gray

Scale Images
In this section, to prove the superiority of the visual field gray
scale image being reconstructed at higher resolution proposed

TABLE 5 | Ablation experiment of data augmentation.

Augmentation Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 No 0.814 0.811 0.740 0.689 0.814

Yes 0.896 0.895 0.862 0.812 0.896

Vgg 19 No 0.735 0.720 0.620 0.590 0.735

Yes 0.911 0.910 0.881 0.836 0.911

ResNet 50 No 0.762 0.762 0.663 0.644 0.762

Yes 0.918 0.919 0.889 0.852 0.918

DenseNet 121 No 0.812 0.812 0.736 0.699 0.812

Yes 0.918 0.920 0.889 0.854 0.918

in this paper, we conduct experiments on ordinary gray images
and newly reconstructed gray scale images based on the proposed
architecture. Meanwhile, evaluation criteria are employed to
present the whole performance of the proposed multimodal
classification architecture. The results are listed in Table 2.

Table 2 indicates that the results of using the reconstructed
gray scale image are more effective than the common gray scale
image. The results of the proposed architecture are enhanced
by 9.1, 9.6, 12.3, 13.3, and 9.1% in terms of average accuracy,
F1 score, Kappa score, Jaccard score, and recall, respectively,
compared with the results of common gray scale images. In
particular, the accuracy of this task is enhanced by 12.1% by
ResNet50. With these satisfying results, we draw the conclusion
that the diagnostic architecture benefits from the reconstruction
of the visual field gray scale image at higher resolution.

Comparison of Multimodal Fusion
In this section, two experiments are designed to present the
effectiveness of multimodal fusion. The fundus image is first
individually inputted to the proposed architecture, and then,
the fundus image and the reconstructed gray scale image of the
visual field are integrated into the multimodal fusion image and
sent into the diagnostic architecture. The results are shown in
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FIGURE 6 | Results of four classes on confusion matrix (left) and receiver operating characteristic (ROC) curves (right) for SqueezeNet1_1, VGG 19, ResNet 50, and

DenseNet 121.
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FIGURE 7 | Comparison of multimodal fusion and single path.

Tables 3, 4. Finally, we compare Tables 2–4 to verify the ability
of multimodal fusion in the severity diagnosis of glaucoma.

By comparing Tables 2–4, the results of multimodal fusion
data are better than single-path data: the accuracy of the above
four CNNs achieves 89.6, 91.1, 91.8, and 91.8% in Table 5,
and the average accuracy with 91.1% is higher than in Table 2

(reconstructed gray scale image) with 87.0% and Table 3 (fundus
image) with 70.1%. The proposed architecture is enhanced by
4.5% in terms of the average F1 score compared with the results of
the reconstructed gray scale image and 22.5% of the fundus image
and improves by 5.4 and 28% in terms of the average kappa score.
These results suggest that the proposed multimodal classification
architecture is capable of superior diagnosis for glaucoma severity
than a single type of data.

To further present the improvements of the proposed
architecture, the classification results of each class are detailed
in Table 4. We calculate the confusion matrix, AUC (Figure 6),
and values for all the evaluation criteria including accuracy
(Acc), sensitivity (Sen), specificity (Spec), Kappa score, and
F1-score. Every CNN represents unique performance in the
testing of glaucoma data. For instance, using DenseNet 121 led

TABLE 6 | Ablation experiment of proposed classifier.

Accuracy F1 score Kappa Jaccard Recall

SqueezeNet 1_1 0.889 0.890 0.853 0.811 0.889

SqueezeNet 1_1+Classifier 0.901 0.900 0.868 0.820 0.901

Vgg 19 0.864 0.863 0.818 0.765 0.864

Vgg 19+Classifier 0.911 0.911 0.881 0.837 0.911

ResNet 50 0.882 0.883 0.851 0.847 0.882

ResNet 50+Classifier 0.924 0.924 0.897 0.862 0.924

DenseNet 121 0.913 0.911 0.886 0.844 0.913

DenseNet 121+Classifier 0.939 0.939 0.917 0.889 0.939

to the highest level of ordered pairs of (i) average accuracy
and (ii) average F1-score of 91.8 and 91.2%, respectively,
but its average AUC was lower than those of VGG 19
and ResNet 50.

To describe this comparison more clearly, the histograms
of Tables 2–4 are shown in Figure 7, in which each evaluation
metric of different CNNs (SqueezeNet1_1, VGG 19, ResNet 50,

Frontiers in Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 93947237

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yi et al. A Multimodal Classification Architecture of Glaucoma

FIGURE 8 | Receiver operating characteristic curves of each subcategory for 4-category classification deep CNN.
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TABLE 7 | Comparison of analogous approaches.

Accuracy AUC Kappa spec Sen

Bizios et al. (2011) 0.9539 0.978 – – –

Chen et al. (2019) 0.9688 0.99 – 1.000 0.9167

Liu et al. (2014) – 0.869 – – –

Ours 0.975 0.992 0.942 0.992 0.957

and DenseNet 121) is compared. Based on Figure 7, the same
conclusion as above can be drawn.

Ablation Study

Ablation Study of Data Augmentation
In this section, we conduct an ablation experiment to prove the
effectiveness of data augmentation technology. The results are
shown in Table 5.

Table 5 compares the performance with or without data
augmentation, and apparent improvements are obtained in
all evaluation criteria. These results demonstrate that data
augmentation technology has strong ability in the task of
glaucoma classification.

Ablation Study of Proposed Classifier
In this section, we conduct an ablation experiment to prove the
effectiveness of the proposed classifier, and the results are shown
in Table 6.

In this section, 5-fold cross-validation is used to evaluate
the performance of the proposed classifier in the above CNNs.
Table 6 lists the average results of the conducted experiments,
which demonstrates that various evaluation metrics of these
CNNs are improved to different degrees with the proposed
classifier. Furthermore, our classifier can be flexibly plugged
into common CNNs to integrate global features of images to
enhance the performance in the diagnosis of glaucoma. The same
conclusion can be drawn on the combination of multimodal
classification architecture and the classifier.

To present the efficiency of the proposed classifier more
clearly, we use the ROC curve to describe the results of each
class in Figure 8. The AUC value can effectively measure the
performance of the algorithm, which is defined as the area
under the ROC curve. According to Figure 8, the AUC values
of normal, early glaucoma, intermediate, and terminal glaucoma
are improved to different degrees by each algorithm with the
proposed classifier.

Comparison of Analogous Approaches
To prove the superiority of the proposed multimodal
classification architecture over analogous approaches (Bizios
et al., 2011; Chen et al., 2019), we compare the results for the
same diagnosis task.

Table 7 shows that the proposed architecture
achieves the best results with 0.975 in terms of average
accuracy in the classification task of normal and
glaucoma. This further demonstrates the advantage of
the proposed multimodal classification architecture in
glaucoma diagnosis.

CONCLUSION AND OUTLOOK

In this paper, we proposed a multimodal classification
architecture based on deep learning for glaucoma severity
diagnosis. The advantages of the framework are as follows: (1)
More subtle gray scale units and corresponding gray scale images
are reconstructed to address the limitation that the inferior
resolution of common visual field gray scale images affects
feature extraction in the task of glaucoma diagnosis. (2) Fundus
images and reconstructed gray scale images of the visual field are
fused as multimodal fusion images for the severity classification
of glaucoma. Through experiments, we precisely distinguished
the severity of glaucoma as normal, early, intermediate,
and terminal by the proposed architecture, which yielded a
significant contribution in clinical diagnosis. Meanwhile, we
can see that the architecture based on the multimodal fusion
image performs much better than the single-path architecture,
which means that the multimodal fusion input improves the
classification ability of the architecture. (3) We proposed a plug-
and-play classifier to offset the CNNs’ limitation of extracting
global sequence information. This significantly improved the
architecture’s function of feature extraction. Experimental results
demonstrated that with our classifier, regardless of what network
is chosen as the architecture’s backbone, the performance of the
architecture is enhanced significantly.

There are many glaucoma patients worldwide, and the
detection of the severity is very difficult, which results in a heavy
burden and consumes considerable time for ophthalmologists.
The proposed diagnosis architecture designed for the severity
classification of glaucoma can be very convenient. In the future,
we will collect more valid data such as OCT and try to integrate
the retinal nerve fiber layer into our architecture to better classify
the severity of glaucoma.
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Complementary and redundant relationships inherently exist between multi-modal

medical images captured from the same brain. Fusion processes conducted on

intermingled representations can cause information distortion and the loss of

discriminative modality information. To fully exploit the interdependency between source

images for better feature representation and improve the fusion accuracy, we present

the multi-modal brain medical image fusion method in a disentangled pipeline under

the deep learning framework. A three-branch auto-encoder with two complementary

branches and a redundant branch is designed to extract the exclusive modality

features and common structure features from input images. Especially, to promote the

disentanglement of complement and redundancy, a complementary group lasso penalty

is proposed to constrain the extracted feature maps. Then, based on the disentangled

representations, different fusion strategies are adopted for complementary features and

redundant features, respectively. The experiments demonstrate the superior performance

of the proposed fusion method in terms of structure preservation, visual quality, and

running efficiency.

Keywords: deep learning, image fusion, medical brain image, disentangled representation, group lasso penalty

1. INTRODUCTION

Medical image fusion is an important branch of information fusion tasks. Typical types of
medical images include Magnetic Resonance Imaging (MRI),Computed Tomography (CT), and
Positron Emission Tomography (PET). MRI images are of high resolution and provide precise
information about soft tissue, CT images provide dense structures like bones, and PET images
assess the functions of organs and tissue. The objective of medical image fusion is to combine
the complementary and redundant features from multi-modal medical images into one composite
image with all the significant information, thus facilitating the process of clinical diagnosis. Image
fusion methods can be generally divided into traditional ones and deep learning-based ones.

Traditional multi-scale transform (MST) based image fusion methods are popular in the
community as the MST tools are able to simulate the human visual system to analyze the image,
as well as to extract geometry structure and details of the image. Commonly adopted MST tools
include discrete wavelet transform(DWT) (Ben et al., 2005), shift-invariant shearlet transform (Luo
et al., 2016), and contourlet transform (Yang et al., 2010). Fused images with good quality can be
obtained through the appropriate manual design of activity level measurements and fusion rules
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on the extracted features. However, to get better fusion
performance, the manual design of fusion rules tends to
become more and more complex, which results in higher
computation costs.

Compared to the traditional methods, deep learning-based
methods have been demonstrated with the great ability to
automatically extract hierarchical and representative features of
different abstraction levels. The typical deep learning model used
for image fusion is Convolutional Neural Networks (CNN). Liu
et al. (2017) applied CNN in image fusion, where the CNN
predicts the importance of each pixel of source images. With
the output decision map, source images are combined to get the
fused image. Li et al. (2018) adopted the VGGNet pre-trained on
the ImageNet dataset to extract the features from high frequency
coefficients, which can effectively reflect the regions with
abundant information. While these methods partially depend on
the CNN and extra manual processes are required. To realize
the end-to-end image fusion process, some unsupervised CNN-
basedmethods andGenerative adversarial Network (GAN) based
methods are proposed subsequently (Huang et al., 2020; Ma
et al., 2020; Xu and Ma, 2021; Guo et al., 2022; Xu et al.,
2022). As an example for each category, Xu and Ma (2021)
adopted both subjectively defined features and deep features
to measure the activity level of input images, then adaptive
weights can be assigned to loss functions to adjust the similarity
between the fused image and each source image; Ma et al.
(2020) proposed the DDcGAN which establishes the adversarial
relationships between a generator and two discriminators to
introduce abundant information from the source images of
both modalities. Another popular pipeline for image fusion
is to fuse the deep features extracted from an auto-encoder
which has great feature extraction and image reconstruction
abilities (Li and Wu, 2018; Li et al., 2020; Jian et al., 2021).
Even though state-of-the-art performance has been achieved,
the above methods leverage the same feature representation
for different modalities to design the fusion rule or directly
fuse the multi-modal features in an intermingled way, thus
they cannot fully exploit the prior knowledge of complementary
and redundant contained in multi-modal images. Redundant
information is the common type of features such as structure
and shape, while complementary information represents the
most unique characteristics belonging to one specific modality,
which is hierarchical and hard to represent by hand-crafted
features. Thereby, fusion operations conducted on intermingled
representations can cause the degradation of discriminative
features and the introduction of distorted information.

The criteria for learning good representations discussed in
Bengio et al. (2013) show that one of the important points is
to disentangle the variable features for the explanatory factors.
If exclusive representations can be obtained for multi-modal
images to separate the complementary and redundant features,
then the more interpretable representations can improve the
accuracy of the fusion decision. Recently, some work has
researched the disentanglement representations for image fusion.
Xu et al. (2021) disentangled the features of infrared and
visible images into attribute and scene modality, for each the
weighted average fusion rule is adopted. Luo et al. (2021) believed

that all kinds of paired source images share the private and
common features, and proposed a general framework for image
fusion that takes advantage of contrastive learning for better
disentanglement. In the above two studies, the attribute and
private features are exactly the complementary ones, while the
scene and common features are the redundant ones. Both of
them have alleviated the pressure of designing appropriate fusion
strategies and achieved good fusion performance. However, there
still exist some problems: (1) In Xu et al. (2021), the attribute
modality is compressed into a vector, resulting in the loss of
spatial information and lack of interpretability. Thereby, the
weighted-average fusion rule on the attribute representation
leads to blur results and information distortion. (2) Xu et al.
(2021) force the infrared and visible attribute distribution
close to a prior Gaussian distribution, while Luo et al. (2021)
minimize the cosine similarity among private and common
representations. Both of them lack the consideration of the
importance of features in the local position of both source images,
thus weakening the ability of disentangled representations to
present the most meaningful information.

In order to achieve a more robust and controllable fusion
decision, we aim to incorporate the explicit constraints on
the deep feature maps extracted by the encoder. In the field
of machine learning, feature selection is an important stage
to reduce the data dimension and determine the relevant
features for a specific learning task. Recently, sparsity-inducing
regularization techniques are widely adopted in feature selection
methods to filter out the irrelevant features from multiple
heterogeneous feature descriptors (Zhao et al., 2015). Li et al.
(2019) proposed an adaptive sparse group lasso penalty on the
clustered genes to select the biologically significant genes. To
control the attention response and restrain the noisy information,
Wang and Guo (2021) applied sparse regularization on the
computed attention maps. Considering the redundancy may
exist among features, Wang et al. (2021) proposed using Group
lasso to prevent the selection of redundant features which may
have high correlations with other features. Inspired by these
studies, we think the learning process of complementary and
redundant representations can also be realized through the
regularization techniques on the extracted feature maps to filter
out the complementary features from the redundant ones.

Based on the above considerations, we propose a disentangled
representation based brain image fusion method via group lasso
penalty. A three-branch auto-encoder with two complementary
branches and one redundant branch is designed to deal with
the unique modality characteristics and common structure
information inherent in the multi-modal source images. In
the training stage, the auto-encoder should be able to
reconstruct both source images conditioned on the extracted
complementary features and redundant features. For effective
disentangled representation learning, a complementary group
lasso penalty is proposed to restrain the redundant information
in the complementary features, promoting the complementary
encoders to learn the most discriminative information. In
the fusion stage, different fusion strategies are adopted for
complementary and redundant features respectively. Then, the
fused image can be obtained by reconstructing from the fused
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features. To sum up, the contributions of the proposed method
are as follows:

• A disentangled representation based brain image fusion
method is proposed to fully exploit the redundancy
and complement prior relationships among multi-modal
source images.

• A complementary group lasso penalty is designed to promote
the disentanglement ability and ensure the complementary
feature maps of significant modality information.

• Comparison experiments conducted on MRI-CT and MRI-
PET fusion tasks with state-of-the-art deep learning-based
methods demonstrate the superior fusion performance of the
proposed method quantitatively and qualitatively.

The remaining part of the article is organized as follows. Section 2
briefly introduces the definition of group lasso penalty. Section 3
describes the proposed method in detail. The experiment results
are shown in Section 4. The conclusion and an outlook of future
study is presented in Section 5. The implementation code of the
proposed model will be available on our project page.

2. GROUP LASSO PENALTY

In 2006, Yuan (2006) proposed the group lasso penalty in a linear
model, which aims to select the grouped explanatory variables for
the accurate prediction of a regression problem. Given a response
variable y ∈ RN , a feature matrix X ∈ RN×P, and a coefficient
vector β ∈ RP, where P is the number of feature variables and
N is the number of observation values, the objective of the group
lasso estimation model is defined as follows:

argmin
β∈Rp

1

2
‖y− Xβ‖22 + λ

L
∑

l=1

√
pl‖βl‖2. (1)

Here, the first term is the loss function and the second term is the
group lasso penalty. P feature variables are further divided into L
sub groups, each group contains pl variables, βl is the coefficient
sub vector corresponding to the lth group (l = 1, 2, ..., L), λ ≥ 0 is
a tuning parameter, ‖ · ‖2 is the L2 norm. Group lasso penalty is
able to exploit the group structure of variables and promote the
selection of the most relevant feature variables, thus simplifying
a model, avoiding overfitting, and enhancing the interpretability
of a model.According to the context and requirements of a
specific task, the loss function, grouping situation, and λ can be
adjusted. Inspired by the effectiveness of the group lasso penalty
in selecting significant features, we consider the feature vectors
of different pixel positions in a feature map can be regarded
as a feature waiting to be penalized, and a task like an image
reconstruction can be regarded as the loss function in Equation 1.
The difference is that the penalty in Equation 1 is imposed on the
coefficients, while in this paper, the penalty is directly imposed
on the extracted feature maps to filter out the redundant features
from the complementary ones, thus promoting the accuracy of
disentangled representations.

3. FRAMES AND METHODS

In this section, a detailed description of the disentangled
representation based image fusion framework is given first. Then,
the design of the loss functions and the adopted fusion strategies
are described, respectively.

3.1. Overall Framework
The aim of the proposed method is to separate the
complementary features from the redundant features for
each modality, thus improving the interpretability of feature
representation and the fusion accuracy. The overall framework
of the proposed method is illustrated in Figure 1, which includes
a training stage (Figure 1A) and a fusion stage (Figure 1B). The
training stage is to train an auto-encoder to learn disentangled
representation and image reconstruction ability, while the fusion
stage is to get the fused image through fusing the disentangled
representations. We denote that the input source images from
two different modalities as I1 and I2, respectively. Since the
complementary features contain the discriminative modality
information and the redundant features contain the common
structure information, two complementary encoders EnC1 and
EnC2 is used to extract the unique information, respectively,
and one shared redundant encoder EnR is designed to map the
structure information into a common space.

In the training stage, I1 and I2 are encoded by the
three encoders to get complementary and redundant features,
respectively as follows:

{C∗,R∗} = {EnC∗(I∗),EnR(I∗)}, ∗ ∈ {1, 2}, (2)

where C∗ and R∗ are the complementary and redundant features
of I∗. Then, the input images should be able to be reconstructed
from the combined features as follows:

˜I∗ = DeS(C∗ + R∗), ∗ ∈ {1, 2}, (3)

where ˜I∗ is the reconstructed version of I∗. Besides, as the
complementary features are expected to represent the most
unique modality information and determine the appearance of
an image, the output image should be as similar as possible to the
input source image which provides the complementary features.
The process is described as follows:

˜I12 = DeS(C1 + R2),

˜I21 = DeS(C2 + R1),
(4)

where ˜I12 is the reconstructed image I1 conditioned on C1 and
R2, while ˜I21 has a similar definition. To achieve good image
reconstruction ability, Mean Square Error (MSE) and Structural
Similarity (SSIM) (Wang et al., 2004) are adopted as the image
reconstruction loss. Only using the shared-weight strategy in EnR
cannot guarantee the disentanglement, we adopted two kinds of
constraints to improve the disentangled representation learning:
a complementary group lasso penalty term and a redundant
consistency constraint term, which are introduced in Section 3.2.
The former is adopted to restrain the growth of redundant
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FIGURE 1 | The overview of the proposed method: (A) the training stage; (B) the fusion stage. The encoder-decoder architecture contains two complementary

encoders EnC1 and EnC2, one redundant encoder EnR and one shared decoder DeS. The extracted complementary and redundant features of the two source images

are denoted as C∗ and R∗(∗ ∈ 1, 2), and each of them is of size H×W × V.

information in the extracted complementary feature maps, while
the latter is designed based on the assumption that the multi-
modal images captured in the same scene should share as much
structure information as possible.

In the fusion stage, the complementary and redundant
features are extracted from source images firstly as in the training
stage, while before combining them, different fusion strategies
(Section 3.3) are defined for them. After obtaining the fused
complementary and redundant feature (Cf and Rf ), they are
added together and input to DeS to get the final fused image If
as follow:

˜If = DeS(Cf + Rf ). (5)

The input images are assumed as gray scale images. If the
input is an RGB image, it is first converted into YCbCr color
space, and the Y(luminance) component is used for fusion. After
getting the gray scale fused image, it is combined with Cb and
Cr(chrominance) components and inversely converted into the
RGB fused image.

As for the network architecture, in each encoder, there are
three 3 × 3 convolutional blocks with ReLU activation, except
for the first one, each followed by a Batch Normalization layer.
The weights of the first three layers in VGG-19 (Simonyan
and Zisserman, 2015) are used to initialize the complementary
and redundant encoders, as VGG-19 is a well-trained feature
extractor that can relieve the training pressure. The architecture
of the decoder is symmetric as the encoder, while in the output
layer, Sigmoid is adopted as the activation function to constrain

the value between [0,1]. Detailed information about the network
is shown in Table 1.

3.2. Loss Function
1) Complementary group lasso penalty term: The extracted
feature maps are considered with the size of H ×W × V , where
H, W, and V correspond to the height, width, and channel
dimensions, respectively. Each 1× 1×V vector in position (x, y)
is treated as a feature waiting to be penalized. We denote the
features of I1 and I2 extracted by the complementary encoder in
position (x, y) as C1(x, y) and C2(x, y). To determine the type of a
feature, the similarity between C1(x, y) and C2(x, y) is computed
by cosine similarity as follows:

r(x, y) =
C1(x, y) · C2(x, y)

‖C1(x, y)‖2‖C2(x, y)‖2
, (6)

The high similarity means the information is redundant, on the
contrary, complementary. The importance φ∗ of a feature is
measured based on the L1 norm and average operator in a local
block around C∗(x, y) as follow:

φ∗(x, y) =

∑r
i=−r

∑r
j=−r Ĉ∗(x+ i, y+ j)

(2r + 1)2
, (7)

where Ĉ∗(x, y) is the L1 norm of C∗(x, y) computed as follows:

Ĉ∗(x, y) = ‖C∗(x, y)‖1. (8)
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TABLE 1 | The architecture of encoder and decoder.

Layer Size Stride
Channel Channel

Activation Normalization
(input) (output)

Encoder

Conv1 3 x 3 1 1 64 ReLU /

Conv2 3 x 3 1 64 64 ReLU Batch

Conv3 3 x 3 1 64 128 ReLU Batch

Decoder

Conv1 3 x 3 1 128 64 ReLU Batch

Conv2 3 x 3 1 64 64 ReLU Batch

Conv3 3 x 3 1 64 1 Sigmoid /

Conv means the convolutional block with activation and normalization layer.

Then, a complementary Group lasso penalty Lc is proposed to
restrain the redundancy and promote complement in C1 and C2:

Lc =

W×H
∑

i=1

(ω1‖C1(x, y)‖2 + ω2‖C2(x, y)‖2), (9)

where ω1 and ω2 are defined in the form of a Sigmoid function
as follows:

ω1 =
1

1+ exp(k(φ2(x, y)− φ1(x, y)))
,

ω2 = 1− ω1.

(10)

In Equation (10), k is the parameter that controls the shape of the
function and is defined based on the similarity:

k =
1

r2(x, y)
. (11)

The smaller the similarity between C1(x, y) and C2(x, y) is,
the larger the k is. Then, the shape of the sigmoid function
becomes steeper.

Figure 2 shows the function of ω1 in Equation 10. The
smaller the similarity is, the closer the weight assignment is to
choose-max, on the contrary, close to average-weighting. Then,
the weight value is further determined by the φ∗(x, y). When
Equation 9 is going to be minimized in an iteration if φ1(x, y)
is much larger than φ2(x, y), which means C1(x, y) is much
more important than C2(x, y). At this time, φ1(x, y) − φ2(x, y)
is a positive value, and ω1 tends to become zero. Then, less
penalty is imposed on C1(x, y), while C2(x, y) is greatly penalized
and filtered out from the complementary feature maps. On the
contrary, C1(x, y) is greatly penalized. If C1(x, y) is similar to
C2(x, y), it means they share a lot of redundant information,
and φ1(x, y) − φ2(x, y) becomes close to zero. Thereby both of
them are equally penalized and gradually pushed intoR1(x, y) and
R2(x, y). Finally, the complementary feature maps should contain
the most significant modality characteristics.

2) Redundant consistency constraint term: As the multi-
modal medical images are captured from the same brain, they
must contain redundant information like structure and shape. It
is expected that both R1 and R2 maintain a similar information.
However, the multi-modal medical images provide an unequal

amount of information, and they show their own biases toward
some specific parts of the brain. Moreover, a shared EnR is
adopted to extract the redundant feature, thus R1 and R2 cannot
be the same. Compared to constraining the similarity of the
extracted features, the redundant consistency constraint term Lr
is conducted on the reconstructed results of R1 and R2 as follows:

Lr = ‖DeS(R1)− DeS(R2)‖1, (12)

3) Image reconstruction loss:The image reconstruction loss is to
enforce the output images to have high reconstructed precision
with the input images, thus ensuring that the auto-encoder has
both good feature extraction and image reconstruction ability.
The image reconstruction loss Lrec is defined based on pixel loss
LMSE and SSIM (Wang et al., 2004) LSSIM is as follows:

LMSE = ‖I1 − ˜I1‖2 + ‖I1 − ˜I12‖2 + ‖I2 − ˜I2‖2 + ‖I2 − ˜I21‖2,

LSSIM = (1− SSIM(I1,˜I1))+ (1− SSIM(I1,˜I12 ))

+ (1− SSIM(I2,˜I2))+ (1− SSIM(I2,˜I21 )),

Lrec = λSSIMLSSIM + LMSE,

(13)

where λSSIM is the parameter to balance the pixel loss and
SSIM loss.

Thus, the overall loss is defined as follows:

L = Lrec + λrLr + λcLc, (14)

where λr and λc are the parameters to control the tradeoff of Lr
and Lc.

3.3. Fusion Strategy
The complementary features are exclusive for each modality,
here, three kinds of fusion strategies are considered, including the
addition strategy, max-selection strategy, and L1-norm strategy.
Their impact on the results is compared in Section 4. The
addition strategy is formulated as follows:

Cf (x, y) = C1(x, y)+ C2(x, y), (15)

The max-selection strategy preserves the features of higher
magnitude and is formulated as follows:

Cf (x, y) =

{

C1(x, y), C1(x, y) ≥ C2(x, y),

C2(x, y), C2(x, y) < C1(x, y).
(16)
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FIGURE 2 | The shape of the function of ω1.

The L1-norm strategy is designed based on the importance of
each pixel position to adjust the information preservation degree
of each source image. The L1-norm of complementary feature
maps is computed as Equation 8 and is treated as the activity level
measurement A∗(x, y), ∗ ∈ {1, 2}, then, the L1-norm strategy is
formulated as follows:

Cf (x, y) = µ1 × C1(x, y)+ µ2 × C2(x, y), (17)

where

µ1 =
A1(x, y)

A1(x, y)+ A2(x, y)
,

µ2 = 1− µ2.

(18)

The redundant information is mapped to the same space,
thereby, a simple average strategy is adopted as follows:

Rf =
R1(x, y)+ R2(x, y)

2
. (19)

The final fused image is reconstructed by decoding the added Cf

and Rf .

4. EXPERIMENTS AND ANALYSES

In this section, we compare the proposed method with several
typical deep learning-based image fusion methods on MRI-CT

and MRI-PET image fusion tasks. First, the ablation study is
conducted on the proposed complementary group lasso penalty
term to verify its effectiveness. Then, the comparative study is
conducted qualitatively and quantitatively. Finally, the time cost
comparison of different methods is also conducted.

4.1. Experimental Settings
The training and testing dataset is built on the Harvard medical
dataset (Summers, 2003), providing a brain image with a size
256×256. The slices with effective information are selected and
there are a total of 180 pairs of MRI-CT images and 260
pairs of MRI-PET images. Considering that the number of the
image is limited, when in the training phase, 10-fold verification
experiments are performed and all the input images are randomly
cropped into image patches of size 120×120, as well as randomly
flipped and rotated. The setting of parameters are as follows: the
batchsize is 8, the learning rate is 1e-4, and the size of a local block
to measure the importance of a feature is 3, thus r is defined as
1. The other parameters like λSSIM , λr , and λc are set as 1,000,
10, and 10. The proposed method was implemented in Pytorch,
and all experiments are conducted on a platform with Intel Core
i7-6850K CPU and GeForce GTX 1080Ti GPU.

In the testing phase, the proposed method is compared with
6 deep learning-based methods, including CNN based methods
EMFusion (Xu and Ma, 2021), U2Fusion (Xu et al., 2022), GAN
based method DDcGAN (Ma et al., 2020), auto-encoder based
method IFSR (Luo et al., 2021), DRF (Xu et al., 2021), and
SEDR (Jian et al., 2021). All the code of the comparison methods
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are publicly available and the parameter settings are set according
to the reference paper. Besides, the proposed method takes three
different fusion strategies for the complementary features and
they are also compared, which are denoted as proposed-add,
proposed-max, and proposed-l1, respectively. For the proposed
method, the average results of the quantitative evaluations and
their corresponding variances of the 10 groups of the multi-
fold verification experiments are presented in the table. The
other comparison methods are also tested on the 10 groups
respectively and the average values and variances of the 10 groups
are computed.

4.2. Objective Metrics
Eleven objective metrics are adopted to conduct a comprehensive
evaluation, including standard deviation (SD), spatial frequency
(SF) (Ma et al., 2019), normalized mutual information
(QMI) (Hossny et al., 2008), nonlinear correlation information
entropy (QNCIE) (Qiang et al., 2005), gradient-based fusion
performance (QG) (Xydeas and Pv, 2000), a multiscale scheme
based metric (QM) (Wang and Liu, 2008), Piella’s Metric
(QS) (Piella and Heijmans, 2003), multi-scale structural
similarity (MSSSIM) (Ma et al., 2015),the sum of the correlations
of differences (SCD) (Aslantas and Bendes, 2015), Chen-Blum
Metric (QCB) (Chen and Blum, 2009), and visual information
fidelity based method (VIFF) (Han et al., 2013). Among them,
SD reveals the distribution of gray levels and reflects the contrast
of an image. SF measures the vertical and horizontal gradients,
reflecting the changes in texture. QMI measures the amount
of information transferred from source images to the fused
images. QNCIE reveals the nonlinear correlation between source
images and fused images. QG measures the amount of edge
information transferred from source images to the fused images,
while QM measures the amount of multi-scale edges. Both QS

and MSSSIM reflect the structural similarity between source
images and fused image, as well as quantifying the perceived
distortion, while the former is edge-dependent and the latter
is conducted based on multi-scale decomposition. SCD reveals
how the complementary information is obtained by the fused
image from source images. QCB and VIFF are human perception
inspired metrics. QCB measures the similarity between source
images and fused images based on the characteristics of a human
visual system such as contrast and masking phenomenon, while
VIFF measures the effective visual information contained in the
fused image based on the natural scene statistics theory. A larger
value of all the mentioned metrics corresponds to a good fusion
performance.

4.3. Ablation Study
In this section, we verify the effectiveness of the complementary
group lasso penalty term Lc. The proposed method trained
without Lc is denoted as the proposed method without Lc,
and the fusion evaluation is conducted based on the addition
strategy. In Figure 3, the extracted feature maps of one MRI-
CT sample and one MRI-PET sample is presented. It can
be seen that the proposed method without Lc provides the
redundant and complementary features (Figures 3B,C) quite
similar to the source images, but with different pixel intensity,

which means a relatively weak disentanglement ability. On the
contrary, Lc is able to promote the disentanglement and extract
the complementary features with sharper details (Figure 3E).
From the fused results in Figures 3F–I, the edge and texture
of (Figures 3F,H) are a bit blur, and (Figure 3H) loses a
lot of MRI information. We also present the corresponding
quantitative evaluation in Tables 2, 3. Lc is able to improve
the performance on almost all the metrics. In the MRI-
PET task, proposed without Lc achieves the best QCB, which
reveals that the fused results should have good visual contrast,
while the results of the rest metrics show that there is
much loss of details and structural information. The ablation
study demonstrates the function of Lc to better exploit the
complementary and redundant relationships among multi-
modal images.

4.4. Qualitative Evaluation
Two typical pairs of MRI-CT images and two typical pairs of
MRI-PET images are presented in Figures 4, 5, respectively.
MRI images depict accurate and abundant soft tissue, CT
images provide dense structures with less distortion, and
PET images provide a detailed function of focus of infection
and metabolism information. From the visual results, it can
be seen that the fused images of DDcGAN show a lot of
distorted information in Figures 4C,N, and it almost loses all
the MRI information in Figures 5C,N. This is caused by the
instability of GAN, and it is inappropriate for the adopted
loss function to represent the information of MRI as gradients
only. The fused images of IFSR, U2Fusion, and SEDR lose
much saliency of soft tissue and dense structures and present
a low contrast on the whole. DRF provides relatively blurred
results and loses a lot of sharp details. Besides, the color
of the PET image is severely distorted in its fused results.
Among these methods, U2Fusion measures the amount of
gradient in each source image to assign the weights of the loss
function, realizing the adaptive control of similarity between
fused images and source images. However, such assignments
are conducted evenly on the whole image, thus leading to
the degradation of image contrast. SEDR maps both source
images into the same space, ignoring the unique modality
information. Fusion operations on such features can lead to
loss of significance. IFSR and DRF all take into account
the disentanglement, however, they lose the consideration of
the corresponding relationship of source images in different
positions. Moreover, DRF compresses the modality information
into a vector, which can cause the distortion of spatial
information. On the whole, EMFusion and the proposed method
taking different fusion strategies can all provide the fused
image with abundant details and clear edges. EMFusion is able
to enhance the PET information with MRI details, while the
proposed method can show the CT and MRI information with
higher brightness.

4.5. Quantitative Evaluation
The quantitative results of MRI-CT and MRI-PET fusion tasks
are presented in Tables 4, 5. From the average values, DDcGAN
obtains the best SD and SF in the MRI-CT task, which means
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FIGURE 3 | The illustration of visualized feature maps and fused results without and with complementary group lasso penalty term Lc. (A) source images; (B) the

redundant features of the proposed method without Lc; (C) the redundant features of the proposed method; (D) the complementary features of the proposed method

without Lc; (E) the complementary features of the proposed method; (F,H) the fused results of the proposed-add without Lc; (G,I) the fused results of the

proposed-add.

the fused results a higher dispersion degree of the gray value and
many details of high frequency. However, SD and SF can only
reflect the quality of the fused image itself and fails to measure
the information transferred from source images, meanwhile,
Figures 4C,N contains much distorted information. SEDR is

able to achieve the best QMI and QNCIE in the MRI-CT fusion
task, which reveals the fused image shows a higher correlation
with both source images. But it shows weaker performance on
MRI-CT tasks, as Figures 4H,S shows that the image contrast
is degraded. EMFusion shows the best performance on QG, QS,
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TABLE 2 | The quantitative evaluation of the proposed method (addition strategy) without and with Lc on the MRI-CT dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

proposed-add 80.38 ± 2.12 25.41 ± 1.30 0.78 ± 0.02 0.81 ± 0.00 0.68 ± 0.02 0.14 ± 0.01 0.65 ± 0.23 0.91 ± 0.01 1.12 ± 0.09 0.54 ± 0.19 0.43 ± 0.01

without Lc

proposed-add 84.92 ± 2.64 27.23 ± 0.27 0.80 ± 0.01 0.81 ± 0.00 0.72 ± 0.01 0.16 ± 0.02 0.82 ± 0.01 0.91 ± 0.01 1.37 ± 0.10 0.66 ± 0.01 0.45 ± 0.03

The results of the proposed method are shown as average± variance of 10-fold verification experiments.

TABLE 3 | The quantitative evaluation of the proposed method (addition strategy) without and with Lc on the MRI-PET dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

proposed-add 80.20 ± 1.75 26.19 ± 1.78 0.65 ± 0.01 0.81 ± 0.00 0.62 ± 0.02 0.17 ± 0.02 0.76 ± 0.02 0.91 ± 0.01 1.36 ± 0.05 0.58 ± 0.01 0.52 ± 0.01

without Lc

proposed-add 89.28 ± 1.21 34.41 ± 0.55 0.76 ± 0.01 0.81 ± 0.00 0.77 ± 0.00 0.51 ± 0.08 0.80 ± 0.01 0.94 ± 0.00 1.65 ± 0.03 0.50 ± 0.01 0.59 ± 0.00

The results of the proposed method are shown as average± variance of 10-fold verification experiments.

FIGURE 4 | Experiments results of the proposed method with six deep learning-based methods on two typical MRI and CT image pairs. (A,L) MRI images; (B,M) CT

images; (C,N) fused results of DDcGAN; (D,O) fused results of EMFusion; (E,P) fused results of IFSR; (F,Q) fused results of U2Fusion; (G,R) fused results of DRF;

(H,S) fused results of SEDR; (I,T) fused results of proposed-add; (J,U) fused results of proposed-max; and (K,V) fused results of proposed-l1.
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FIGURE 5 | Experiments results of proposed method with six deep learning-based methods on two typical MRI and PET image pairs. (A,L) MRI images; (B,M) PET

images; (C,N) fused results of DDcGAN; (D,O) fused results of EMFusion; (E,P) fused results of IFSR; (F,Q) fused results of U2Fusion; (G,R) fused results of DRF;

(H,S) fused results of SEDR; (I,T) fused results of proposed-add; (J,U) fused results of proposed-max; (K,V) fused results of proposed-l1.

TABLE 4 | The quantitative evaluation of different comparison methods on the MRI-CT dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

DDcGAN 88.13 ± 0.89 32.40 ± 0.57 0.58 ± 0.01 0.80 ± 0.00 0.57 ± 0.01 0.17 ± 0.00 0.25 ± 0.01 0.71 ± 0.00 1.24 ± 0.02 0.23 ± 0.01 0.25 ± 0.00

EMFusion 80.36 ± 0.59 20.76 ± 0.30 0.81 ± 0.01 0.81 ± 0.00 0.72 ± 0.01 0.16 ± 0.00 0.81 ± 0.00 0.89 ± 0.00 1.20 ± 0.05 0.67 ± 0.02 0.42 ± 0.01

IFSR 68.91 ± 0.46 19.81 ± 0.42 0.67 ± 0.01 0.81 ± 0.01 0.54 ± 0.01 0.11 ± 0.01 0.62 ± 0.00 0.89 ± 0.01 1.01 ± 0.03 0.34 ± 0.00 0.40 ± 0.00

U2Fusion 58.77 ± 0.38 21.06 ± 0.29 0.68 ± 0.01 0.81 ± 0.00 0.67 ± 0.01 0.13 ± 0.00 0.34 ± 0.00 0.89 ± 0.01 0.76 ± 0.03 0.28 ± 0.00 0.35 ± 0.01

DRF 75.42 ± 0.70 9.58 ± 0.14 0.51 ± 0.01 0.80 ± 0.00 0.22 ± 0.01 0.11 ± 0.00 0.22 ± 0.00 0.74 ± 0.00 1.19 ± 0.08 0.18 ± 0.00 0.31 ± 0.01

SEDR 63.78 ± 0.68 20.75 ± 0.35 0.81 ± 0.01 0.81 ± 0.00 0.56 ± 0.02 0.14 ± 0.00 0.32 ± 0.01 0.87 ± 0.00 0.85 ± 0.05 0.24 ± 0.00 0.36 ± 0.01

Proposed-add 84.92 ± 2.64 27.23 ± 0.27 0.80 ± 0.01 0.81 ± 0.00 0.72 ± 0.01 0.16 ± 0.02 0.82 ± 0.01 0.91 ± 0.01 1.37 ± 0.10 0.66 ± 0.01 0.45 ± 0.03

Proposed-max 80.48 ± 2.62 30.23 ± 1.05 0.80 ± 0.01 0.81 ± 0.00 0.74 ± 0.01 0.21 ± 0.03 0.82 ± 0.01 0.88 ± 0.01 1.16 ± 0.07 0.68 ± 0.01 0.41 ± 0.04

Proposed-l1 81.59 ± 2.49 29.28 ± 1.43 0.81 ± 0.02 0.81 ± 0.00 0.75 ± 0.01 0.22 ± 0.01 0.82 ± 0.01 0.88 ± 0.01 1.20 ± 0.10 0.68 ± 0.00 0.41 ± 0.04

The evaluation is shown as average± variance of testing results on 10-group image pairs, which the proposed method adopts for 10-fold verification experiments.
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TABLE 5 | The quantitative evaluation of different comparison methods on the MRI-PET dataset.

Methods
Objective metrics

SD SF QMI QNCIE QG QM QS MSSSIM SCD QCB VIFF

DDcGAN 57.93 ± 0.23 22.93 ± 0.14 0.53 ± 0.00 0.81 ± 0.00 0.53 ± 0.01 0.16 ± 0.01 0.57 ± 0.00 0.80 ± 0.00 0.67 ± 0.00 0.34 ± 0.00 0.35 ± 0.00

EMFusion 75.97 ± 0.11 32.03 ± 0.06 0.68 ± 0.00 0.81 ± 0.00 0.77 ± 0.00 0.42 ± 0.02 0.91 ± 0.00 0.91 ± 0.00 1.02 ± 0.01 0.62 ± 0.00 0.46 ± 0.00

IFSR 69.21 ± 0.15 25.29 ± 0.09 0.60 ± 0.00 0.81 ± 0.00 0.63 ± 0.00 0.15 ± 0.01 0.80 ± 0.00 0.92 ± 0.00 1.17 ± 0.02 0.55 ± 0.00 0.51 ± 0.00

U2Fusion 72.90 ± 0.07 26.05 ± 0.05 0.64 ± 0.00 0.80 ± 0.00 0.63 ± 0.00 0.17 ± 0.00 0.70 ± 0.01 0.89 ± 0.00 1.29 ± 0.00 0.60 ± 0.01 0.51 ± 0.00

DRF 71.40 ± 0.65 12.76 ± 0.09 0.46 ± 0.00 0.80 ± 0.01 0.34 ± 0.00 0.10 ± 0.00 0.46 ± 0.00 0.74 ± 0.00 0.82 ± 0.02 0.38 ± 0.00 0.36 ± 0.00

SEDR 84.47 ± 0.10 31.01 ± 0.06 0.76 ± 0.00 0.81 ± 0.00 0.73 ± 0.00 0.34 ± 0.01 0.84 ± 0.00 0.92 ± 0.00 1.52 ± 0.02 0.57 ± 0.00 0.55 ± 0.00

Proposed-add 89.28 ± 1.21 34.41 ± 0.27 0.76 ± 0.01 0.81 ± 0.00 0.77 ± 0.00 0.51 ± 0.08 0.80 ± 0.01 0.94 ± 0.00 1.65 ± 0.03 0.50 ± 0.01 0.59 ± 0.00

Proposed-max 86.84 ± 1.16 35.24 ± 0.49 0.72 ± 0.12 0.81 ± 0.00 0.70 ± 0.11 0.39 ± 0.20 0.77 ± 0.13 0.87 ± 0.08 1.31 ± 0.21 0.54 ± 0.02 0.49 ± 0.07

Proposed-l1 88.72 ± 2.17 36.05 ± 1.43 0.72 ± 0.15 0.81 ± 0.00 0.70 ± 0.14 0.38 ± 0.09 0.74 ± 0.06 0.86 ± 0.07 1.36 ± 0.17 0.52 ± 0.04 0.49 ± 0.06

The evaluation is shown as average± variance of testing results on 10-group image pairs, which the proposed method adopts for 10-fold verification experiments.

TABLE 6 | Time cost comparison.

Methods DDcGAN EMFusion IFSR U2Fusion DRF SEDR Proposed

Image size 256× 256 256× 256 256× 256 256× 256 256× 256 256× 256 256× 256

Time cost 0.589s 0.448s 2.499s 0.086s 1.176s 0.900s 0.037s

and QCB in the MRI-PET task. Compared to other methods,
EMFusion makes use of the MRI images to enhance the details of
chrominance channels in PET images, instead of only fusing the
luminance channel separately from the chrominance channels.
Thus, EMFusion is capable of presenting high-quality color
information with clear gradients. The proposed method which
adopts different fusion strategies is able to achieve the best
results on QM , MSSSIM, SCD, and VIFF in both tasks, and
it also shows second-best performance on the most of the
rest metrics. By comparing the three different fusion strategies
on complementary features quantitatively and qualitatively, the
addition strategy is good at showing more texture details as
it directly combines all the information together. Thereby,
it can also maintain the integral structure in both MRI-CT
and MRI-PET tasks. The L1-selection strategy shows better
performance in MRI-CT as it can adaptively assign the fusion
weights. Max-selection can preserve the position with strong
pixel intensity, however, it cannot avoid the loss of information
to some degree. From the variance, the proposed method
shows larger fluctuation than other methods on SD and SF.
We assume this is because the content of training images in
different folds of dataset can affect the generalization ability of
a neural network to some degree. Besides, SD and SF evaluate
the image quality by measuring the statistical features of the
fused image, without considering the source image. To make a
comprehensive assessment, the two metrics should be combined
with the rest metrics which reflect the transfer ability of the
fusion methods. In general, the proposed method presents a
good ability in transferring edge details and preserving structural
information, able to provide images with good visual quality.
Such advantage is attributed to the disentanglement of redundant

and complementary features, which makes the fusion process
more accurate.

4.6. Time Cost Comparison
The running efficiency of a method is an important index to
measure the performance as well. The average running time of
different methods on all the test MRI-CT and MRI-PET image
pairs is presented in Table 6. All methods are conducted on
the same platform with Intel Core i7-6850K CPU and GeForce
GTX 1080Ti GPU. From the time cost comparison, the proposed
method is the most efficient than other comparison methods.

5. CONCLUSION

In this article, a disentangled representation based brain
image fusion method is proposed. A three-branch auto-
encoder architecture is designed to fully explore the significant
features and correlations benefit of image fusion tasks, dealing
with the unique modality characteristics. Based on the prior
knowledge of complementary and redundant relationships, a
complementary group lasso penalty is proposed for effective
disentangled representation learning, which is able to separate
the discriminative modality information from the structure
information. The disentangled representations show better
interpretability to allow simple fusion strategies and improve
the precision of fusion results. The experiments on MRI-CT
and MRI-PET fusion tasks demonstrate the effectiveness of the
proposed method in retaining structure and details, as well as
presenting good visual quality.

Nevertheless, the proposed method only focuses on the fusion
of gray-scale images, and the chrominance channels of PET

Frontiers in Neuroscience | www.frontiersin.org 11 July 2022 | Volume 16 | Article 93786151

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Brain Image Fusion

images are kept and directly combined with the fused gray-scale
images, which leads to the degradation of texture information.
In the future, how to embed the chrominance channels into a
disentangled framework should be considered.
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Multimodal medical image fusion (MMIF) has been proven to effectively

improve the efficiency of disease diagnosis and treatment. However, few

works have explored dedicated evaluation methods for MMIF. This paper

proposes a novel quality assessment method for MMIF based on the

conditional generative adversarial networks. First, with the mean opinion

scores (MOS) as the guiding condition, the feature information of the two

source images is extracted separately through the dual channel encoder-

decoder. The features of different levels in the encoder-decoder are

hierarchically input into the self-attention feature block, which is a fusion

strategy for self-identifying favorable features. Then, the discriminator is used

to improve the fusion objective of the generator. Finally, we calculate the

structural similarity index between the fake image and the true image, and

the MOS corresponding to the maximum result will be used as the final

assessment result of the fused image quality. Based on the established MMIF

database, the proposed method achieves the state-of-the-art performance

among the comparison methods, with excellent agreement with subjective

evaluations, indicating that the method is effective in the quality assessment

of medical fusion images.

KEYWORDS

attention mechanism, conditional, generative adversarial networks, image quality
assessment, medical image fusion

Introduction

As the population aging becomes familiar, and the vulnerability of the human
brain to physical, chemical, and viral attacks, the incidence of brain diseases such
as intracranial tumors, intracranial infectious diseases, and cerebrovascular diseases is
gradually increasing, which has seriously threatened human health and wellbeing (Chen
et al., 2022; Gottesman and Seshadri, 2022). There are many medical imaging modalities
for clinical diagnosis and treatment of brain diseases, including computed tomography
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(CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), and so on. Different imaging methods
always have their unique advantages in attracting clinicians
to choose (Liu et al., 2019; Cauley et al., 2021; Preethi and
Aishwarya, 2021). For example, CT could superbly display
the histological structure of the skull and the density changes
in the brain parenchyma, while MRI could faithfully restore
the essential features of the nervous or soft tissue. Generally,
it is difficult for medical experts to identify the necessary
information from a single modality of brain images to ensure the
reliability of clinical diagnosis (Townsend, 2008). Additionally,
some early work found that radiologists could effectively
improve the diagnostic accuracy if they can analyze imaging
results of more than two modalities at the same time (Li and
Zhu, 2020). From a technical point of view, multimodal medical
image fusion (MMIF) just meets this clinical need. Therefore,
recently, MMIF has received attention and extensive exploration
by researchers (Li et al., 2020; Ma et al., 2020; Liu et al.,
2021).

The purpose of MMIF is to complement the image
in different modalities to obtain better image expression,
quality, and information perception experience (Azam et al.,
2022; Liu et al., 2022). The fused images may contain both
anatomical structure and tissue metabolism information
(e.g., image fusion of CT and MRI), which improves the
applicability of image-based diagnosis or assessment of
diseases, thereby simplifying diagnosis. At present, many
high-quality MMIF methods have been proposed (Arif
and Wang, 2020; Wang K. P. et al., 2020; Duan et al.,
2021; Ma et al., 2022; Xu et al., 2022). Madanala and Rani
(2016) proposed a two-stage fusion framework based on
the cascade of discrete wavelet transform (DWT) and
non-subsampled contour transform (NSCT) domains,
realizing the combination of spatial domain and transform
domain. Inspired by the Tchebichef moments’ ability to
effectively capture edge features, Tang et al. (2017) used the
Tchebichef moments energy to characterize the image shape,
and thus designed an MMIF method based on the pulse
coupled neural network (PCNN). However, the performance
evaluation of these MMIF models and fused images has not
been fully explored.

Normally, the higher the image quality, the more features
and information human observers can receive or perceive
through the image. As the ultimate observers and beneficiaries
of the fused images, medical experts, although they subjectively
evaluate the fused images as the most direct and reliable
solution, it will be a very time-consuming and labor-intensive
task, and it is not very useful in practical applications. Hence,
objective image quality assessment (IQA) is very necessary
(Liu et al., 2018; Shen et al., 2020; Wang W. C. et al.,
2020). Some existing objective quality assessment studies
include deblocking images, screen content images, multiple
distorted images, and noisy images, etc. (Gao et al., 2008;

Min et al., 2019; Liu et al., 2020; Meng et al., 2020). For
instance, in early work, Wang et al. (2004) developed structural
similarity (SSIM) index based on the subjective perception of
image structure information, which achieved a breakthrough
in the objective evaluation of image quality. Kang et al.
(2014) used deep learning techniques to accurately predict
the quality of images without reference images, and their
method greatly improved the performance and robustness of
the algorithm. On the premise of highlighting the important
detection objects, Lei et al. (2022) fuses multiple features of
the images at the pixel level and designed an IQA method
of main target region extraction and multi-feature fusion.
However, among these IQA methods, they are proposed for
general use in the field of image fusion, not specifically
for MMIF. Note that the quality assessment of medical
fusion images includes information fidelity, contrast, grayscale
tolerance, and region of interest (ROI). In clinical practice,
the ROI usually refers to the lesion area. And, the ROI
has a great influence on the results of IQA, which is the
most different from the natural image (Du et al., 2016a;
Cai et al., 2020; Chabert et al., 2021). As a result, there is
an urgent need for a dedicated objective IQA method for
medical fusion images.

We discussed with radiologists and found that the quality
of a medical fusion image mainly depends on its impact
on disease diagnosis. That is, the medical fusion image
retains disease-relevant information in the ROI, it will be
acceptable and will be given a higher subjective evaluation
score. To this end, we propose a novel medical fusion
image quality assessment method that uses the radiologist’s
mean opinion scores (MOS) as the constraint on conditional
generative adversarial networks (GANs). Concretely, the
method firstly extracts the feature of different depths from
MOS and two input source images with the aid of dual-
channel encoder-decoder. Next, under the supervision of
the attention mechanism, we fuse the feature information
hierarchically, and generate the fused image through the up-
sampling algorithm. Then, the discriminator (D) differentiates
the source of the fused images to improve the generator (G)
performance. Finally, we calculate the SSIM of the fake image
and true image, and the constrain value corresponding to
the maximum value of SSIM as the evaluation result. The
experimental results show that the proposed method is superior
to the previous IQA algorithms, and the objective results
obtained are more consistent with the subjective evaluation
of radiologists.

The content of this paper is arranged as follows. In
see section “Methodology,” the proposed method is mainly
introduced from four aspects: Encoder-Decoder, G, D,
and objective function. The details of the experiments
are presented in see section “Experiments.” See section
“Discussion and conclusion” contains the discussion and
conclusion of this paper.
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FIGURE 1

The overall architecture of our proposed method.

Methodology

The structure of our proposed model based on conditional
generative adversarial network is shown in Figure 1, and the
details are described below.

Dual-channel encoder-decoder

Among the existing multimodal medical images,
each image has its unique imaging method and the
advantage of displaying different human tissue. Therefore,
accurately extracting the latent and deep key features
of each modality image will be extremely conducive the
image fusion (Ma et al., 2019). Besides, we also hope that
MOS, the gold standard for image quality assessment,
can participate in the feature extraction process of model
learning images, in other words, learning the non-
linear mapping relationship between MOS and fused
images. To achieve this vision, we develop a dual-channel
encoder-decoder structure.

First of all, we encapsulate three convolutional blocks,
each of which contains two sets of convolutional layers, batch
normalization (BN) layers, and activation layers. Specifically, the
filter, stride, and padding of each convolutional layer are 3 × 3,
1, and 1, respectively. BN operation can effectively accelerate

the network training as well as alleviate the problem of over-
fitting. Thus, we append such operation after each convolutional
layer. Considering that the image encoding process is important
to learn image features and image fusion, we use a more
comprehensive activation algorithm: Lleaky Rectified Line Unit
(LeakyReLU). Then, we added max pooling operation instead
of average pooling operation after each convolutional block.
The reason is that the model should perform some specific
feature selection under the constraints of MOS to learn more
recognizable features. Each feature map output through the
pooling operation is fed to the self-attention fusion block (SA-
FB) separately, and more details will be explained in the next
section. For the decoder, seven groups of deconvolution layer,
BN layer, and Rectified Line Unit (ReLU) activation function
layer complete the up-sampling operation of the feature maps.
Finally, a reconstructed image of size 128 × 128 is obtained. It
is worth noting that during the decoding operation, there is no
feature map as output.

Perform the concatenating operation on the image of two
different modalities (MIi, i = 1, 2) and the corresponding MOS
of their fused image, and the result is named MIimos, and then
input into two encoder-decoders, respectively. The feature map
after the pooling layer is represented as Fij, then the j-th feature
map for the i-th modality can be marked as:

Fij = ConvB(MIimos)j (1)
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where ConvB(•) means the operation process of the j-th
convolution block. The integer value range of j is one to three
as only three convolution blocks are established in the encoding
process. Here, sum of absolute difference is employed as the loss
function for single modality image restoration, as defined by the
following equation:

LED =
∑
i

∑∣∣MIi − M̂Ii
∣∣ , i = 1, 2 (2)

Where M̂Ii refers to the original modal image restored by
the decoder, and i represent the two modal images input to the
dual-channel encoder-decoder, respectively.

Generator architecture

It is generally known that image fusion is the operation of
synthesizing two or more images into one image, preserving
the most representative features of each modality. To avoid
the impact on image feature learning, independent of the
dual-channel encoder-decoders, we design a feature fusion
method based on the self-attention (SA) mechanism, as shown
in Figure 1. Different levels of features contain different
image information, for example, shallow features mean contour
information while deep features represent texture information.
For the three-level of feature Fij yielded in the encoder, we
develop the SA-FB to complete the fusion hierarchically. The
structure diagram of SA-FB is shown in Figure 2.

In particular, the first SA-FB has only two inputs (i.e., Fij),
and the fusion feature Fsa is null. We do not carry out any
feature selection operations (such as taking extreme values)
during inputting, but directly feed the initial features F1j and
F2j to SA after concatenating, and SA will sign weights to the
features. Such setting can replace the manual feature selection
algorithm, thus avoiding the loss of important information. SA
is a variant of the attention mechanism from Sergey and Nikos
(2017). It could coarsely estimate the foreground region to find
prominent features that are in favor of later search. At the same
time, it also reduces the dependence on external information,
and is better at capturing the internal relevance of features.
Immediately after, we adopt a convolution layer at the end of
the SA. The convolution kernel size is set to 1 × 1 with stride
1 for adapt the output feature map weights. The output of this
convolutional layer is concatenated with Fsa, and further input
to a new convolution layer with a filter size of 3× 3, and stride 1.
In the end, a feature output Fsa+1 that has undergone a complete
SA-FB is obtained, and can be expressed as:

Fsa+1 = safb(Fij, Fsa), (i = 1, 2, j = 1, 2, 3) (3)

where safb(•) is a series of operations of SA-FB. It should be
mentioned that each convolution layer in the first three SA-FB is
followed by BN layer and LeakyReLU as an activation function,
which is similar to the encoder. The max pooling operation also

appends after each SA-FB. The SA-FB in the up-sampling stage
eliminates the pooling operation and changes the activation
function to ReLU. On the basis of MOS as the condition to
extract two modal image features, the G generates a fused image
with 128 × 128. The parameters of the G are only renewed by
the following loss function:

Lfusion =
1
N

N∑
n=1

∣∣ytrue − ŷ
∣∣
1 (4)

where ytrue means the fused image with the corresponding MOS
and the ŷ represents the fused image produced by the G. N
is the total number of generations, and n represents the n-th
generation. When training G, minimize the following objective
function:

LG = Vmos
G (G,D) = EMI1,MI2∼PdataM

[log(1− D(MI1,MI2, (G(MI1,MI2 |mos ))))] + αLfusion (5)

where PdataM represents the distribution of MI1 and MI2,
respectively, and EMI1,MI2∼PdataM represents the expectation of
G(MI1,MI2 |mos ). α is a weight hyperparameter and is set to
100 during training.

To sum up, we restrict the generator based on MOS
conditional information, and achieve the goal of generating
image content. This is similar to that the generator analyzes the
fused image by simulating the human visual system (HVS) and
learns the non-linear mapping relationship between MOS and
image. That is, the generator simulates a radiologist to assess the
quality of the fused image, there by producing a fused image that
matches the quality of MOS (i.e., G has learned the evaluation
experience of radiologist).

To evaluate the quality of the fused image FI12, first of all its
original two modal images FI1 and FI2 should be input and then
generate the fusion image FIfake by G. Where 1 and 2 represent
two modal images, respectively. We have created five fake MOS
(MOSk = 0.2k, k ∈ [1, 5], k ∈ Z) as the conditional constraints
G, so the FIfake can be renewed to FIfake,k, which represents
the fused image generated under the five constraints. Finally,
the SSIM between FI12 and FIfake,k is calculated, and the MOS
corresponding to the optimal value is taken as the assessment
result, as follows:

Q = max SSIM(FI12,G(FI1, FI2 |MOS k)) (6)

Discriminator architecture

The discriminator needs to determine whether the
generated image conforms to the real data distribution, so its
structure is much simpler than the generator. In the proposed
method, the input of the D is the generated fusion image or
the original fusion image, all of which are 128 × 128 in size,
and down-sampling is implemented using the discriminator
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FIGURE 2

The diagrammatic sketch of SA-FB.

block (DB). Each DB consists of a convolution layer with a filter
size of 3 × 3, stride of 2 and padding of 1, and followed by BN
processing. The LeakyReLU is used as the activation function
for each block. The image passes through four DB in sequence,
and after each DB, the size of the feature map becomes a quarter
of that before input. An independent convolutional layer with
convolution kernel 3 × 3 and stride 1 is appended to the last
DB, and the final obtained feature map is 6 × 6. At last, the
discriminator will judge the authenticity of the result. We apply
mean square error (MSE) as the loss function to optimizing the
parameters of the D. Further, the objective function of D can be
reformulated as:

LD = Vmos
D (G,D) = Eytrue∼Pdata [logD(ytrue

|mos )]EMI1,MI2∼PdataM [log(1− D(G(MI1,MI2 |mos )))] (7)

where Pdata represents the distribution of ytrue and Eytrue∼Pdata
represents the expectation of ytrue .

Total objective loss function

As shown in Figure 1, we use MOS as a condition to limit the
content of the image generated by G, and D determines whether
the distribution of the generated fused image is true or false. G
and D are trained against each other, and finally achieve the goal
of Nash Equilibrium. Therefore, the optimization process of the
whole network can be expressed by Eq. 8:

Lall = min
G

max
D

V(G,D)+ βLED (8)

where V(G,D) can be obtained by Eqs. 5 and 7, respectively. β

is a weight hyperparameter and is set to 20 in this experiment.

Experiments

Dataset

Image quality assessment has been developed in full
swing in many fields and has made substantial progress.

But, in the past period, the short-lived time of the MMIF
algorithm has resulted in few research dedicated to the
quality assessment of medical fusion images. In order to
enable the medical image fusion algorithm to restore the
brain structure more accurately and reflect tissue metabolic
information more objectively, meeting the needs of clinical
diagnosis, based on our previous work (Tang et al., 2020),
we construct a special multimodal medical image fusion
image database (MMIFID) with subjective evaluation of
radiologists. Particularly, this work uses brain images from
the AANLIB dataset, provided by Harvard Medical School
and accessible online. The image size is 256 × 256, which
can be browsed directly on the online web page. Most
importantly, since image registration is completed for each
combination of different modal images, it is one of the
most widely used datasets. We selected 120 pairs of images
in the AANLIB dataset and fused the images through ten
image fusion algorithms. Figure 3 shows examples of results
generated by ten fusion algorithms. Consistent with our
previous work (Tang et al., 2020), radiologists subjectively
evaluated the quality of the fused image and gave a
score (1 is the lowest and 5 is the highest), and finally
obtained the MOS.

Evaluation metrics

To comprehensively evaluate the performance of the
proposed method, that is, the consistency of the model’s
assessment of the fused image quality with the MOS score,
we adopted four commonly used performance metrics:
Spearman Rank-order Correlation Coefficient (SRCC),
Kendall Rank-order Correlation Coefficient (KRCC),
Pearson Linear Correlation Coefficient (PLCC), and Root
Mean Square Error (RMSE). To sum up, the higher SRCC,
KRCC and PLCC value and lower RMES value mean better
model performance. Note, the model is evaluated at the
end of each training epoch, and the final model is the
checkpoint model with the best evaluation performance
within 200 epochs.
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FIGURE 3

An example of fused images generated by ten different MMIF algorithms. Algorithms include (A) discrete Tchebichef moments and pulse
coupled neural network (DTM-PCNN) (Min et al., 2019), (B) convolutional sparse representation (CSR) (Liu et al., 2016), (C) pulse-coupled neural
network with modified spatial frequency based on non-subsampled contourlet transform (PCNN-NSCT-SF) (Das and Kundu, 2012), (D) guided
filtering (GFF) (Li et al., 2013), (E) cross-scale coefficient selection (CSCS) (Shen et al., 2013), (F) union Laplacian pyramid with multiple features
(LAP-MF) (Du et al., 2016b), (G) Laplacian pyramid and sparse representation (LP-SR) (Liu et al., 2015), (H) parameter-adaptive pulse-coupled
neural network (PA-PCNN) (Yin et al., 2019), (I) pulse coupled neural network using the multi-swarm fruit fly optimization algorithm
(PCNN-MFOA) (Tang et al., 2019), and (J) reduced pulse-coupled neural network (RPCNN) (Das and Kundu, 2013).

Comparison methods

The results are compared with those of the state-of-the-
art (SOTA) image fusion quality metrics, which are listed as
follows:

Mutual Information (QMI) (Hossny et al., 2008): As an
objective method for evaluating image fusion performance, this
method can measure the features and visual information from
the input initial image and the fused image. The MI method we
adopted is optimized by Hossny et al. (2008).

Non-linear Correlation Information Entropy (QNCIE)
(Wang and Shen, 2004): Wang et al. propose a method based
on non-linear correlation measures. This method evaluates
the performance of image fusion algorithms by analyzing
the general relationship between the source image and
the fused image.

Gradient based fusion metric (QG) (Xydeas and Petrovic,
2000): This performance metric measures the amount of
visual information transmitted from the source image to
the fused image.

Ratio of spatial frequency error (QrSFe) (Zheng et al., 2007):
This is a new metric based on extended spatial frequencies,
and its original intention is to guide the algorithm to obtain a
better fusion image.

The metric proposed by Yang et al. (2008) (QY ):
According to the structural similarity between the
source image and the fused image, this method treats

redundant regions and complementary / conflicting
regions, respectively.

A metrics based on edge preservation (QEP) (Wang and Liu,
2008): An image fusion metric method is proposed based on the
perspective of edge information preservation.

A metric based on an absolute image feature measurement
(QP) (Zhao et al., 2007): Based on phase congruency and its
moments, a pixel-level image fusion performance metric is
defined, which provides an absolute measure of image features.

Table 1 shows the performance of the above methods on our
MMIFID, and the last row is the performance of the method
proposed in this paper. Generally, SRCC, KRCC, and PLCC

TABLE 1 Comparison of quality assessment performance of
different models.

Methods SRCC KRCC PLCC RMSE

QMI 0.2545 0.3604 0.2772 0.3804

QNCIE 0.2647 0.3608 0.2920 0.4093

QG 0.2488 0.3322 0.2444 0.2791

QrSFe 0.1801 0.2076 0.3126 0.2872

QY 0.1884 0.2400 0.2503 0.4002

QEP 0.0960 0.1275 0.2235 0.2970

QP 0.1093 0.1216 0.0803 0.3007

Proposed 0.8259 0.7426 0.8197 0.1709

The bold values are the results of our proposed method, which achieves the best
performance.
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can measure the agreement between MOS and the objective
scores, while RMSE can calculate its absolute error. Thus, the
higher the SRCC, KRCC, and PLCC values, the better the quality
evaluation metrics. The smaller the RMSE, the higher accuracy
of the assessment. From Table 1, we can observe that the
proposed method outperforms all SOAT methods. Furthermore,
it can also be noticed that our proposed metrics are obviously
better than these methods, which especially highlights that the
quality assessment methods for medical images differ from
natural images. Therefore, it is necessary to explore the special
indicators for the quality evaluation of medical fusion images.

Ablation experiment

As we know, image fusion can be divided into two
categories: early fusion and late fusion. The early fusion fuses the
image directly together and then carries on the process of feature
extraction and selection, while the late fusion allows the images
to go through the process of feature extraction and selection,
respectively, and then perform image feature fusion. Therefore,
our two ablation experiments are to downgrade the proposed
method to the early fusion and late fusion model, named
Early-FM and Late-FM, respectively. Specifically, Early-FM first
concatenates F1, F2 and MOS, and then completes feature
learning through the single-channel encoder-decoder structure
(e.g., we use the single-channel encoder-decoder to replace dual-
channel encoder-decoder). The features output by the third
convolutional block will be used to generate the fused image.
Different from Early-FM, the Late-FM first concatenates the
images of the two modalities and their respective MOS, and then
inputs them to the dual-channel encoder-decoder, respectively,
to complete feature learning. The third convolution block of
the two channels outputs features, and the fused features are
obtained by fusion operation. Finally, G generates the fused
image. For the third ablation experiment, we eliminated the SA
mechanism in SA-FB, and the rest of the structure is consistent
with the proposed method, which is marked as proposed w/o
SA. We train the Early-FM, Late-FM and the proposed w/o SA
based on the same method applied in the proposed method and
tabulate their test performances in Table 2.

Two main conclusions can be drawn from the experimental
results. First, the performance results of both Early-FM and

TABLE 2 Comparative results of ablation experiments.

Methods SRCC KRCC PLCC RMSE

Early-FM 0.7077 0.6208 0.6779 0.2425

Late-FM 0.7288 0.6427 0.6833 0.2417

Proposed w/o SA 0.7825 0.7113 0.7867 0.2020

Proposed w SA 0.8259 0.7426 0.8197 0.1709

The bold values are the results of our proposed method, which achieves the best
performance.

Late-FM are worse than those of the hierarchical fusion strategy
we designed (i.e., the proposed method without or with SA).
More concretely, the results comparison between Early-FM
and proposed method are notably improved by 11.82% for
SRCC, 12.18% for KRCC, and 14.18% for PLCC, while the
RMSE decreased by 7.16%. For Late-FM, the proposed method
also improves SRCC, KRCC, and PLCC by 9.71, 9.99, and
13.64%, respectively, while reducing RMSE by 7.08%. It is
conceivable that the unnecessary noise in the early fusion will
affect the quality of the fused image, and the late fusion may lose
important details of the image. Thus, the obtained results are not
pleasing. Second, the performance of the proposed method with
SA as guidance is better than that without SA, which means that
with the assistance of the SA mechanism, the process of model
learning features is superior.

Discussion and conclusion

Multimodal medical image fusion, as a way to express
multimodal diagnostic information at the same time, has
gradually gained attention in the field of medical imaging.
However, the diagnostic information that a radiologist can
perceive is not only related to the amount of initial image
information contained in the fused image, but also to the
quality of the fused image. Therefore, the quality assessment
of MMIF plays an increasingly important role in the field
of image processing and medical imaging diagnosis. At the
same time, it has also aroused the interest of many scholars
in the industry.

As MMIF is gradually gaining recognition in the medical
field, quality assessment of fused images has also developed
vigorously as an emerging field. An excellent objective
assessment method can not only achieve the purpose of image
quality control, but also guide the optimization of image fusion
algorithms, so as to find the best algorithm for image fusion
of different modalities. For instance, a certain algorithm can
achieve very good results for image of MRI and CT, but it is
not suitable for image fusion of MRI and SPECT, and maybe
another algorithm should be more suitable. Unfortunately, most
of existing IQA research methods are based on natural images,
and it is difficult to achieve satisfactory performance for medical
fusion images (see section “Comparison methods”). On the basis
of previous work, we augmented the medical image database,
MMIFID, which takes the doctor’s MOS as the gold standard
for subjective evaluation. The image content generated by G is
constrained by MOS as a condition, and the non-linear mapping
relationship between subjective evaluation and fused image
is learned. The experimental results show that the objective
evaluation results obtained from the model can match the
subjective evaluation values well. In addition, compared with
other IQA algorithms, we found that the proposed method
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outperforms the SOTA methods. Finally, we enumerate the
potential limitations of this work as follows: (1) Although the
database we built, as far as we know, is the largest multimodal
medical image fusion database with MOS. However, it may still
be a challenge for training GANs. In the future, we will continue
to work on expanding the database. (2) Currently, the images
contained in MMIFID are brain data, and we hope to add other
body parts to the database in the future. (3) This work uses SSIM
to calculate and obtain the final fusion image quality evaluation
results, which may affect the accuracy of assessment to a certain
extent. It would be better if the final evaluation result could
also be directly assigned by GANs. Future, we will continue
to explore the impact of fusing two modalities image through
different methods, and design another novel IQA algorithm
based on the idea of no reference.
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Brain tumor segmentation in multimodal MRI volumes is of great significance

to disease diagnosis, treatment planning, survival prediction and other relevant

tasks. However, most existing brain tumor segmentation methods fail to make

su�cient use of multimodal information. The most common way is to simply

stack the original multimodal images or their low-level features as the model

input, and many methods treat each modality data with equal importance

to a given segmentation target. In this paper, we introduce multimodal

image fusion technique including both pixel-level fusion and feature-level

fusion for brain tumor segmentation, aiming to achieve more su�cient and

finer utilization of multimodal information. At the pixel level, we present a

convolutional network named PIF-Net for 3D MR image fusion to enrich

the input modalities of the segmentation model. The fused modalities can

strengthen the association among di�erent types of pathological information

captured by multiple source modalities, leading to a modality enhancement

e�ect. At the feature level, we design an attention-based modality selection

feature fusion (MSFF) module for multimodal feature refinement to address

the di�erence among multiple modalities for a given segmentation target.

A two-stage brain tumor segmentation framework is accordingly proposed

based on the above components and the popular V-Net model. Experiments

are conducted on the BraTS 2019 and BraTS 2020 benchmarks. The

results demonstrate that the proposed components on both pixel-level and

feature-level fusion can e�ectively improve the segmentation accuracy of

brain tumors.

KEYWORDS

brain tumor segmentation, medical image fusion, pixel-level fusion, feature-level

fusion, convolutional neural networks

1. Introduction

Automatically and accurately segmenting brain tumor areas from multimodal

magnetic resonance imaging (MRI) scans can provide crucial information about tumors

including shape, volume, and localization. Based on these information, quantitative

assessment of lesions can be carried out, which is of great significance to disease
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diagnosis, treatment planning, survival prediction, and other

relevant tasks. Most existing brain tumor segmentation studies

are concentrating on gliomas since they are the most common

brain tumors in adults. However, due to the factors like the

variety of tumor size, shape and position, the fuzzy boundaries,

and the difference in intensity distribution of MRI data obtained

by different devices, the accurate segmentation of brain tumors

is always a very challenging task (Zhao et al., 2018).

Owing to the good ability in capturing high-resolution

anatomic structure of tissues, MRI is mostly used in brain

tumor segmentation. Commonly-used MRI modalities for

brain tumor segmentation include T1-weighted (T1), contrast-

enhanced T1-weighted (T1c), T2-weighted (T2), and fluid

attenuated inversion recovery (Flair). Figure 1 gives an example

of multimodal MRI volumes for brain tumor segmentation,

which comes from the dataset released by the Brain Tumor

Segmentation (BraTS) challenge (Menze et al., 2015), an

annual event held by the Medical Image Computing and

Computer Assisted Intervention (MICCAI). The segmentation

label (i.e., ground truth) provided by physicians is also shown

in Figure 1. The green, red, and yellow regions indicate edema

(ED), necrosis and non-enhancing tumor (NCR/NET), and

enhancing tumor (ET), respectively. In the BraTS challenge,

the segmentation performance is evaluated on three partially

overlapping sub-regions of tumors, namely, whole tumor (WT),

tumor core (TC), and enhancing tumor (ET). The WT is

the union of ED, NCR/NET, and ET, while the TC includes

NCR/NET and ET. We can see from Figure 1 that different

pathological features of tumors are captured by MRI data of

different modalities.

In recent years, various brain tumor segmentation methods

have been proposed. Traditional image segmentation methods

based on threshold, region, and pixel clustering are difficult

to achieve good results in this task due to its high complexity

as mentioned above (Liu et al., 2014). The performance of

machine learning approaches based on hand-crafted features

and classifiers like support vector machines and random forests

is still limited in most cases. In the last few years, deep learning-

based methods have emerged as the trend in this field due

FIGURE 1

An example of multimodal MRI volumes for brain tumor segmentation. The green, red, and yellow regions in the ground truth indicate edema

(ED), non-enhancing tumor and necrosis (NCR/NET), and enhancing tumor (ET), respectively.

to their obvious advantages on segmentation accuracy (Bakas

et al., 2018). Some methods adopt a 2D or 3D patch-based

manner, in which convolutional networks are applied to predict

the class of the center voxel (Havaei et al., 2017; Kamnitsas

et al., 2017; Zhao et al., 2018). However, these methods tend

to ignore the correlation among different patches within a

large receptive field. To better address the global contextual

information, the encoder-decoder architectures represented by

U-Net (Ronneberger et al., 2015) and V-Net (Milletari et al.,

2016) have become more and more popular in brain tumor

segmentation (Wang et al., 2017; Li et al., 2019a; Zhang et al.,

2020a; Zhou et al., 2020).

As brain tumor segmentation in MRI is essentially a

multimodal image segmentation problem, the joint utilization of

multimodal information plays a critical role in this task (Zhang

et al., 2022). However, we argue that most existing methods

do not pay enough attention to this issue and the utilization

of multimodal information is not sufficient. In existing brain

tumor segmentation methods, the most common way of using

multimodal MR images is to simply stack them or their low-

level features as the model input (Cao et al., 2021; Chen

et al., 2021; Valanarasu et al., 2021; Wang et al., 2021; Zhang

et al., 2021b). In addition, as mentioned above, MR images

with different modalities reflect different pathological features

(Chen et al., 2021; Wang et al., 2021), so their importance

to a given segmentation target should be different. However,

many methods fail to take this difference into consideration in

their segmentation models and there is a lack of refinement for

multimodal features, which will have an adverse effect on the

segmentation performance.

In this paper, we address the above problems via the

multimodal image fusion technique at both the pixel level and

the feature level. For one thing, we adopt pixel-level image

fusion to enrich the input modalities of the segmentation

model and the fused modalities can strengthen the association

among different types of pathological information captured by

multiple source modalities. For another, we embed an attention-

based feature fusion module into the segmentation network to

refinemultimodal features for better segmentation performance.
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Specifically, the main contributions of this work are summarized

into four points:

1. To make use of multimodal information more sufficiently

for brain tumor segmentation, we introduce the multimodal

image fusion technique including both pixel-level fusion and

feature-level fusion into the segmentation task.

2. We present a pixel-level image fusion network (PIF-Net)

to fuse 3D multimodal MR images, aiming to enrich the

input modalities of the segmentation model. This is actually a

modality enhancement approach since the fused modalities

obtained by the PIF-Net can effectively combine the

pathological information from multiple source modalities.

3. To address the difference among multiple modalities for

a given segmentation target, we design an attention-

based modality selection feature fusion (MSFF) module for

multimodal feature refinement and it is embedded into the

segmentation network for performance improvement.

4. We propose a two-stage brain tumor segmentation

framework based on the PIF-Net, the MSFF module and

the V-Net. Experimental results on the BraTS 2019 and

BraTS 2020 benchmarks demonstrate the effectiveness of the

proposed pixel-level and feature-level fusion approaches for

brain tumor segmentation.

The rest of this paper is organized as follows. Section

2 introduces the related works. In Section 3, the proposed

method is presented in detail. The experimental results and

discussion are given in Section 4. Finally, we conclude the paper

in Section 5.

2. Related work

2.1. Brain tumor segmentation

Many automatic brain tumor segmentation methods have

been proposed in recent years. They can be roughly divided into

two categories (Havaei et al., 2017): the generative model-based

methods and the discriminative model-based methods. The

generative model-based methods require domain-specific prior

knowledge about the appearance characteristics of tumorous

and healthy tissues, but they are challenging to characterize due

to the complexity of brain tissues. The discriminative model-

based methods treat brain tumor segmentation as a pattern

classification problem for the voxels in MRI volumes and they

have become the mainstream in this field owing to the rapid

development of machine learning techniques. Popular hand-

crafted features used in brain tumor segmentation include local

histograms (Goetz et al., 2014), structure tensor eigenvalues

(Kleesiek et al., 2014), texture features (Subbanna et al., 2013),

and so on, while typical shallow learning models such as support

vector machines and random forests are frequently adopted in

brain tumor segmentation (Bauer et al., 2011; Meier et al., 2014;

Pinto et al., 2015).

In the last few years, deep learning has rapidly achieved

the dominance in brain tumor segmentation owing to the

significantly improved performance. Some early methods adopt

a patch-based classification manner by utilizing convolutional

networks to predict the class of the center voxel of a 2D or

3D image patch. Havaei et al. (2017) proposed a two-pathway

architecture to extract features with 2D convolutional kernels of

different sizes. They also explored three cascade architectures in

which the output of the first network with larger input size is

supplemented as an additional source for the second network

to extract information of multiple scales simultaneously. The

DeepMedic (Kamnitsas et al., 2017), a well-known 3D brain

tumor segmentation model proposed by Kamnitsas et al., also

adopts a dual pathway architecture that uses patches of different

sizes as the network input, aiming to incorporate both local and

larger contextual information. In addition, the dense training

scheme is employed in Kamnitsas et al. (2017) to address the

relationship among neighboring patches. Zhao et al. (2018)

integrated fully convolutional neural networks (FCNNs) and the

conditional random field (CRF) into a unified framework for

brain tumor segmentation. In their method, features are also

extracted from receptive fields of different sizes.

The above patch-based classification methods can’t fully

consider the correlation among neighboring patches and the

range of the receptive field is always limited, although some

improved strategies are adopted. To address this problem, the

encoder-decoder semantic segmentation architectures such as

U-Net (Ronneberger et al., 2015), 3D U-Net (Çiçek et al.,

2016), and V-Net (Milletari et al., 2016) have become more

and more popular in brain tumor segmentation. Myronenko

(2018) proposed a segmentation method that won the first place

in the BraTS 2018 challenge by adding an variational auto-

encoder (VAE) branch into an encoder-decoder architecture

to obtain an additional regularization to the encoder part. To

alleviate the issue of class imbalance, some methods apply a

cascaded architecture to decompose the original multi-label

segmentation problem into multiple binary segmentation sub-

problems. Wang et al. (2017) cascaded three CNNs to realize

the segmentation of three tumor areas including WT, TC and

ET. Zhang et al. (2020a) proposed a task-structured brain

tumor segmentation network to address the task-modality

and task-task relationship simultaneously. Zhou et al. (2020)

proposed a one-pass multi-task network with cross-task guided

attention for brain tumor segmentation, which integrates the

multiple segmentation sub-tasks into one deep model. Li et al.

(2019a) proposed a multi-step cascaded network that takes the

hierarchical topology of the brain tumor sub-structures into

account and segments the sub-structures from coarse to fine.

However, it is worth noting that current study on brain

tumor segmentation does not pay enough attention to the joint

utilization of multimodal MR images, which is in fact a key
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issue in this multimodal image segmentation task (Zhang et al.,

2022). The most common way of using multimodal MR images

is to simply stack them or their low-level features as the model

input (Cao et al., 2021; Chen et al., 2021; Valanarasu et al.,

2021; Wang et al., 2021; Zhang et al., 2021b). In addition,

many methods treat each modality data with equal importance

to a given segmentation target (Chen et al., 2021; Wang

et al., 2021). These factors motivate us to introduce image

fusion technique including both pixel-level fusion and feature-

level fusion into the brain tumor segmentation framework for

better performance.

2.2. Pixel-level medical image fusion

The purpose of pixel-level medical image fusion is

to integrate the complementary information contained in

multimodal medical images by generating a composite fused

image, which is expected to be more suitable for human

or machine perception. A variety of medical image fusion

methods have been proposed over the past few decades and

most of them are developed under a “decomposition-fusion-

reconstruction” three-phase framework (Li et al., 2017; Liu et al.,

2020b). Specifically, the source images are first decomposed

into a transform domain and the decomposed coefficients from

different source images are then fused. The fused image is

finally reconstructed based on the fused coefficients. Multi-

scale transform (MST) and sparse representation (SR) are two

main categories of image decomposition that are widely used in

medical image fusion (Liu et al., 2015, 2016, 2019, 2021; Du et al.,

2016; Yang et al., 2016; Li et al., 2017; Zhang et al., 2018; Zhu

et al., 2018; Yin et al., 2019).

However, most previous works in medical image fusion

focus on the 2D image fusion problem, while methods for

3D image fusion were rarely studied (Yin, 2018). Using 2D

fusion methods to tackle 3D medical images slice by slice

independently neglects the correlation among adjacent slices

and thereby tends to lose spatial contextual information of

volumetric data. Wang et al. (2014) proposed a 3D multimodal

medical image fusion method based on the 3D discrete shearlet

transform (3D-DST) and designed a global-to-local strategy to

fuse the decomposed coefficients. Yin (2018) introduced the

tensor sparse representation (TSR), which is a high-dimensional

extension of 2D SR, for 3D medical image fusion. Nevertheless,

in these methods, the source images are treated equally in

the fusion framework with identical decomposition approach

and isotropic fusion strategy. As a result, the characteristics of

different source modalities are not fully considered, leading to

the loss of important modality information.

Recently, deep learning has emerged as an active direction

in the field of image fusion (Liu et al., 2018; Zhang et al., 2021a)

and somemedical image fusion methods based on deep learning

models like CNNs and generative adversarial networks (GANs)

have been proposed (Liu et al., 2017, 2022; Liang et al., 2019;

Ma et al., 2020a, 2022; Zhang et al., 2020b; Tang et al., 2021; Xu

and Ma, 2021; Xu et al., 2022). By optimizing the loss functions

that are specially designed based on the characteristics of source

modalities, the deep learning-based methods have advantages

over conventional MST-based and SR-based fusion methods

on preserving modality information. However, the above deep

learning-based methods are generally developed for 2D image

fusion. In this work, we present a CNN-based 3D medical image

fusion approach and introduce it for brain tumor segmentation

by enriching the input modalities. In fact, current study on pixel-

level medical image fusion is mostly devoted to pursuing good

visual quality for physician observation and high evaluation

results on objective metrics of image fusion, while very few

study focuses on the application of image fusion to some

specific clinical machine vision problems such as classification,

detection and segmentation. Therefore, this work is also of high

significance from the viewpoint of medical image fusion.

3. The proposed method

3.1. Overview

Figure 2 shows the schematic diagram of the proposed brain

tumor segmentation framework. It consists of two stages to

achieve the segmentation result of WT, TC, and ET areas. The

two stages share a similar architecture that is composed of a

PIF-Net to enrich the input modalities of the segmentation

model via pixel-level fusion, an MSFF module to refine the

mutlimodal features via feature-level fusion, and a V-Net

(Milletari et al., 2016) with the encoder-decoder structure to

obtain the segmentation result. The target of the first stage

is to segment the WT area, while the second stage aims to

identify the TC and ET areas. Since the TC and ET areas

are included in the WT area, the segmentation result of the

first stage is used to locate the input region of the second

stage, which is helpful to alleviate the class imbalance issue.

The sliding window-based approach introduced in Lyu and

Shu (2020) is adopted to determine the input region of the

second stage, namely, the window that contains the maximum

number of tumor voxels is selected. In addition, considering

that the peritumoral edema are mainly highlighted in T2 and

Flair modalities, we only use T2 and Flair as the input source

modalities in the first stage. The PIF-Net is used to generate

their fused modality, which is denoted as T2-Flair. These three

modalities (i.e., T2, Flair and T2-Flair) are fed together to the

subsequent MSFF module in the first stage. In the second stage,

all the four source modalities (i.e., T1, T1c, T2, and Flair) are

adopted as the original input. The PIF-Net is applied to obtain

two additional fused modalities, which are the fusion of T1c

and T2 (denoted as T1c-T2), and the fusion of T1c and Flair

(denoted as T1c-Flair). We mainly choose the T1c modality for
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FIGURE 2

The schematic diagram of the proposed brain tumor segmentation framework.

FIGURE 3

The architecture of our PIF-Net for 3D multimodal MR image fusion.

fusion because it is known to be very effective in detecting the TC

and ET areas. By contrast, the T1 modality provides relatively

less information for segmenting brain tumors and it generally

plays an auxiliary role in this task (Bakas et al., 2018; Ma and

Yang, 2018). Thus, the input of the MSFF module in the second

stage contains six modalities in total. The final segmentation

result is achieved by combining the results obtained at two

stages together.

3.2. PIF-Net

Considering the high computational cost andmemory usage

of 3D convolutional networks, we design a relatively plain

network architecture as shown in Figure 3 for 3D pixel-level

image fusion. Note that this is likely to be the first work on CNN-

based 3D medical image fusion to our knowledge, as mentioned

in Section 2.2. The PIF-Net contains two branches for feature
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TABLE 1 Detailed parameter configuration of the PIF-Net.

Layer Ks Ss Ps Ic Oc A

Conv1 3× 3× 3 1 1 1 32 ReLU

Conv2 3× 3× 3 1 1 1 32 ReLU

Conv3-1 3× 3× 3 1 1 32 32 ReLU

Conv3-2 3× 3× 3 1 1 32 32 /

Addition / / / 32 32 ReLU

Conv4-1 3× 3× 3 1 1 32 32 ReLU

Conv4-2 3× 3× 3 1 1 32 32 /

Addition / / / 32 32 ReLU

Conv5-1 3× 3× 3 1 1 64 64 ReLU

Conv5-2 3× 3× 3 1 1 64 64 /

Addition / / / 64 64 ReLU

Conv6 3× 3× 3 1 1 64 32 /

Conv7 3× 3× 3 1 1 32 1 /

Sigmoid / / / 1 1 /

Weighted average / / / 1 1 /

Ks , Ss , Ps , Ic , Oc , and A denote the kernel size, stride, padding size, number of input

channels, number of output channels, and activation operation, respectively.

extraction from two sourcemodalities. Each branch is composed

of a 3 × 3 × 3 convolutional layer and a 3D residual (denoted

as Res3D) block that contains two 3 × 3 × 3 convolutional

layers using the skip connection. The feature maps obtained

from two branches are then concatenated and fed to another

Res3D block. Two 3 × 3 × 3 convolutional layers are further

applied to reduce the number of channels to 1 and a sigmoid

operation is conducted to reconstruct a weight mask. Finally,

the fused modality is reconstructed by performing the weighted

average calculation based on the mask and source images. It is

worth noting that the fused image can also be reconstructed

directly from the fused feature maps without using a weight

mask. However, since the voxels in the meaningless background

regions have zero-valued intensity in each source modality,

a direct regression tends to cause inappropriate non-zero

predictions in these regions, which will affect the fusion

quality. The voxel-wise weighted average strategy adopted

can effectively avoid this problem and we experimentally

found that it can produce good fusion results. The detailed

parameter configuration of the network architecture is given

in Table 1.

The definition of loss function is a key issue in deep learning-

based image fusion methods as it determines the preservation of

modality information from source images. In this work, the loss

function of our PIF-Net is formulated as

Lpif = Lpixel + αLssim, (1)

where Lpixel and Lssim indicate the pixel loss and the structural

similarity loss, respectively. α is the regularization parameter

that balances these two terms, and it is experimentally set to

450 in our method. The pixel loss is designed to preserve the

intensity information, which is often related to the lesions(e.g.,

edema) that have very high or low intensity in some MRI

modalities. It is defined as

Lpixel = ||F− S1||
2
F + β||F− S2||

2
F , (2)

where S1 and S2 denote the source images, and F denotes the

fused image. β is the trade-off parameter and || · ||2F denotes the

tensor Frobenius norm. The structural similarity loss is adopted

to extract anatomic structure information from source images

and it is defined as

Lssim = γ (1− SSIM(F, S1))+ (1− SSIM(F, S2)), (3)

where SSIM(·, ·) represents the 3D structural similarity measure

and γ is the trade-off parameter.

The parameters β and γ are set according to the specific

characteristics of fusion problems. In the first stage, for the

fusion of T2 and Flair images, β and γ are both set to 1 since

these two modalities have relatively similar pathological and

structural information. In the second stage, let S1 and S2 denote

the T1c and T2/Flair images, respectively. Considering that the

T2/Flair image contains more lesion information regarding the

edema area, we increase the weight of T2/Flair images in Lpixel.

Meanwhile, since the T1c image captures more tissue structures

in the TC and ET areas, a larger weight is assigned to the T1c

image in Lssim. In our method, we set both β and γ to 2 for the

fusion of T1c and T2/Flair images.

The PIF-Net is trained based on the training set released by

the BraTS challenge 2019. The training set contains 335 cases of

multimodal MRI volumes and four modalities (i.e., T1, T1c, T2,

and Flair) are provided in each case. The original volumes of size

155 × 240 × 240 are cropped into patches of size 80 × 80 × 80

by the sliding window technique to enlarge the scale of the

training set. The learning rate is fixed as 10−4 during the training

process and the Adam optimizer is adopted to train the network.

Figure 4 shows an example of fusion results obtained by the

PIF-Net. The results of two representative 3D medical image

fusionmethods 3D-DST (Wang et al., 2014) and TSR (Yin, 2018)

are also provided for comparison. The results of T2 and Flair

fusion and T1c and Flair fusion are given at the first and second

rows in Figure 4, respectively. It can be seen that the PIF-Net

achieves higher fusion quality than the other two methods on

the tumor areas, especially for the T1c and Flair fusion, in which

the 3D-DST and TSR methods fail in preserving the edema

information contained in the Flair images well, while the PIF-

Net simultaneously preserve important modality information

from both two source images.
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FIGURE 4

An example of fusion results obtained by di�erent 3D medical image fusion methods.

FIGURE 5

The architecture of our MSFF module for multimodal feature refinement.

3.3. MSFF module

TheMSFFmodule is designed to refine the features extracted

from multimodal MRI volumes for subsequent segmentation.

Inspired the selective kernel network (SKNet) for multi-scale

feature extraction (Li et al., 2019b), an attention-based feature

fusion module is presented to adaptively adjust the weights of

the features from different modalities. The architecture of our

MSFF module is shown in Figure 5. Let M1,M2, . . . ,MN ∈

R
L×H×W×1 denote the input multimodal MRI volumes that

involve both the original source modalities and the fused

modalities obtained by the PIF-Net, where N is total number

of input modalities. A 3 × 3 × 3 convolutional layer is

firstly performed on each input volume for feature extraction.

The obtained features are denoted as U1,U2, . . . ,UN ∈

R
L×H×W×C , where L × H × W denotes the size of the 3D

feature map and C denotes the number of feature maps. In our

method, C is set to 16. The features from different sources are

firstly merged via an element-wise summation as

U =

N
∑

i=1

Ui. (4)

Then, we embed the global information by a channel-wise

global average pooling (GAP) operation to get a feature vector
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s ∈ R
1×1×1×C . Specifically, the c-th element of s is calculated as

sc = 8GAP(Uc) =
1

L×H ×W

L
∑

i=1

H
∑

j=1

W
∑

k=1

Uc(i, j, k). (5)

Further, a compact feature z ∈ R
1×1×1×C/r is generated by

a 1 × 1 × 1 convolutional layer for channel reduction, which is

actually equivalent to a fully connected layer. The ratio factor r

is set to 4 in our model. Next, we adopt N parallel channel up-

scaling convolutions with kernel size of 1× 1× 1 to reconstruct

N C-dimensional vectors t1, t2, . . . , tN ∈ R
1×1×1×C . This

is actually the excitation operation used in the SENet (Hu

et al., 2018). Subsequently, a channel-wise softmax calculation is

performed on each element across all theN vectors (indicated by

the purple frame) to obtain the attention vectors s1, s2, . . . , sN ∈

R
1×1×1×C . Specifically, the c-th element of si is calculated as

si,c =
eti,c

N
∑

j=1
etj,c

, (6)

where ti,c denotes the c-th element of ti, i ∈ {1, 2, . . . ,N}, c ∈

{1, 2, . . . ,C}.

Finally, the fused feature V ∈ R
L×H×W×C is calculated by

a channel-wise weighted average over the source features using

the attention weights as

V =

N
∑

i=1

si · Ui. (7)

According to a recent survey on attention mechanism (Guo

et al., 2022), the attention mechanism used in our MSFF module

belongs to the branch attention, which can be viewed as a

dynamic branch selection mechanism and typically used in a

multi-branch architecture. In the proposed method, to be more

specific, the attention mechanism can be regarded as a kind of

modality attention, aiming to extract features from multimodal

MR images more effectively.

3.4. Segmentation loss

The loss function used for training the segmentation model

is defined as

Lseg = Ldice + λLbce, (8)

where Ldice and Lbce denote the dice loss and the binary cross

entropy (BCE) loss, respectively, as

Ldice = 1−

2
N
∑

i=1
pigi

N
∑

i=1
p2i +

N
∑

i=1
g2i + ε

, (9)

Lbce = −
1

N

N
∑

i=1

[gi log pi + (1− gi) log(1− pi)], (10)

where gi ∈ G is the ground truth binary volume, pi ∈ P is the

network prediction, and N denotes the number of voxels. The

parameter ε is a small constant to avoid dividing by 0. The Dice

loss is known to be capable of alleviating the class imbalance

issue (Milletari et al., 2016), while the BCE is the mostly used

loss function for binary classification or segmentation. In brain

tumor segmentation, the union of these two losses is a common

way as it can combine their complementary advantages. The

parameter λ controls the trade-off between these two losses and

it is experimentally set to 0.5 in our method.

4. Experimental results and
discussion

4.1. Data and implementation details

The BraTS 2019 and BraTS 2020 benchmarks (Menze

et al., 2015) are adopted to demonstrate the effectiveness

of the proposed method. The multimodal MRI data in a

BraTS benchmark is divided into three parts: a training set, a

validation set and a testing set. Only the training set releases the

segmentation label (i.e., ground truth) annotated by experts to

the public. The validation set is used to adjust model training

and theMRI data is available, but the label is not provided. Users

must upload their segmentation results to the organizer’s sever

at https://ipp.cbica.upenn.edu/ to obtain the evaluation results.

Both data and label in the testing set are not available to users.

In our experiments, just as most previous studies in this field, we

adopt the training set for model training and validation, while

use the validation set for performance evaluation. In particular,

the BraTS training set is further divided into two parts: 80%

samples are used for network training and the remaining 20%

samples are used as a validation set to guide the training process.

The BraTS 2019 training dataset includes 335 cases, while BraTS

2020 has a larger one comprising 369 cases. These multimodal

MRI data have been skull-striped, re-sampled, and co-registered.

Each case contains MRI data of four modalities (i.e., T1, T1c, T2,

and Flair) and each volume is of size 155× 240 × 240.

For data pre-processing and augmentation, the popular z-

score normalization approach is applied to each MRI volume,

namely, the data is subtracted by the mean and divided by the

standard deviation of the non-zero region. The training volume

is randomly cropped into patches of size 128× 192× 160 before

fed to the network in the first stage. For each volume, the patch of

size 128×128×128 that containsmaximum tumor voxels is used

for training in the second stage. Moreover, in both two stages,

the intensity of each volume is randomly shifted by a value in

[−0.1σ , 0.1σ ] (σ denotes the standard deviation) and randomly
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FIGURE 6

Impact of the parameters α and λ on the model performance.

scaled by a factor in [0.9, 1.1]. In addition, a random flipping

along each axis is applied with a probability of 50%.

Our network is implemented in PyTorch and trained on

two NVIDIA TITAN RTX GPUs. The Adam optimizer is used

for updating weights. The learning rate is progressively decayed

using the following rule:

l = l0 × (1−
i

N
)0.9, (11)

where l0 is the initial learning rate, i is an epoch counter andN is

the total number of the epochs. We experimentally set l0 to 10
−4

and N to 300.

The labels provided by the BraTS benchmark include the

ED, NCR/NET and ET, while the evaluation of segmentation

accuracy is performed on three partially overlapping regions:

WT (ET + NCR/NET + ED), TC (ET + NCR/NET) and ET,

as mentioned in Section 1. In our experiments, we adopt

the region-based training strategy, which directly optimizes

these three sub-regions instead of individual labels, since

its effectiveness has been widely verified in brain tumor

segmentation (Isensee et al., 2020). For post-processing, we also

adopt a frequently-used approach that the ET is replaced by the

NCR/NET when its volume is less than 500 voxels to remove

possible false predictions on ET (Isensee et al., 2020; Lyu and

Shu, 2020; Zhang et al., 2020a). Two popular objective metrics

including the Dice score and the Hausdorff distance (%95) are

used to evaluate the segmentation accuracy.

4.2. Parameter analysis

The loss functions in our method contain several trade-off

parameters such as α, β , γ , and λ. The principle for determining

the values of β and γ has been detailed in Section 3.2. In this

subsection, we analyze the effect of the parameters α and λ on

the segmentation performance of the proposed method. The

parameter α is used to balance the pixel loss and the structural

similarity loss, and these two terms should have relatively close

values so that both of them can have sufficient contribution.

Based on the experimental observations, we set α to 150, 300,

450, 600, and 750 to study its impact. The corresponding

results are shown in the first two sub-figures in Figure 6. It

can be seen that the proposed method can obtain relatively

stable performance when α is set between 150 and 750, and

in particular between 300 and 600. Based on these results, we

set α to 450 by default in our experiments. The parameter λ

controls the balance between the dice loss and the BCE loss in the

segmentation model. Similarly, we set λ to 0.1, 0.3, 0.5, 0.7, 0.9 to

analyze its effect on the model performance. The corresponding

results are given in the last two sub-figures in Figure 6. We can

see that the setting of 0.5 can result in the best performance

in most cases, so the parameter λ is set to 0.5 by default in

our method.

4.3. Ablation study of the proposed
method

In this subsection, an ablation study is conducted to evaluate

the effectiveness of our PIF-Net and MSFF module in the

proposed method. Specifically, the following four models are

considered in this study:

- OURS w/o PIF-Net&MSFF: Removing the PIF-Net and the

MSFF module simultaneously from the proposed brain tumor

segmentation framework. In each stage, only the V-Net is

remained for segmentation. This is the original baseline for

our method.

- OURS w/o PIF-Net: Removing the PIF-Net from the

proposed brain tumor segmentation framework. The MSFF

module is embedded before the V-Net to realize multimodal

feature refinement for segmentation in both stages.

- OURS w/o MSFF: Removing the MSFF module from

the proposed brain tumor segmentation framework.

The PIF-Net is used to generate the fused modalities

as the additional input of the segmentation model in

both stages.

- OURS: The complete model proposed in this work.

The evaluation results on the BraTS 2019 and BraTS 2020

benchmarks are listed in Tables 2, 3, respectively. method
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TABLE 2 Objective evaluation results for the ablation study of the proposed method on the BraTS 2019 validation sets.

Tumor region Metrics OURS w/o PIFnet &MSFF OURS w/o PIFnet OURS w/o MSFF OURS

WT Dice 0.8635 0.8771 0.8832 0.8942

Hausdorff 7.1211 7.7784 7.1654 5.3490

TC Dice 0.7788 0.8065 0.8045 0.8142

Hausdorff 15.7345 10.1822 14.4599 10.8988

ET Dice 0.7682 0.7698 0.7692 0.7710

Hausdorff 9.1385 5.3155 6.4719 5.8548

Average Dice 0.8035 0.8178 0.8190 0.8265

Hausdorff 10.6647 7.7587 9.3657 7.3675

Bold values indicate the best-performing scores on each metric (each row in the tables) among all the four models.

TABLE 3 Objective evaluation results for the ablation study of the proposed method on the BraTS 2020 validation sets.

Tumor region Metrics OURS w/o PIFnet &MSFF OURS w/o PIFnet OURS w/o MSFF OURS

WT Dice 0.8678 0.8725 0.8878 0.8950

Hausdorff 11.5732 9.6274 7.8896 5.3117

TC Dice 0.8025 0.8153 0.8139 0.8178

Hausdorff 11.6728 10.4340 10.9337 9.4285

ET Dice 0.7631 0.7730 0.7678 0.7745

Hausdorff 6.9469 5.9442 7.1674 4.4715

Average Dice 0.8111 0.8203 0.8232 0.8291

Hausdorff 10.0643 8.6685 8.6636 6.4039

Bold values indicate the best-performing scores on each metric (each row in the tables) among all the four models.

generally has a better a slightly better performance for BraTS

2020 than performance for BraTS 2020 than BraTS 2019, which

is mainly because the BraTS 2020 benchmark contains more

training samples in the training set, with additional 34 samples

in comparison to the BraTS 2019 benchmark. The comparison

between OURS and OURS w/o PIFnet&MSFF demonstrates

that the utilization of our PIF-Net and MSFF module can

significantly improve the performance (1.8% to 2.3% in terms

of the mean Dice score, and 3.3 to 3.7 in terms of the mean

Hausdorff distance) over the baseline model. The comparison

between OURS w/o MSFF and OURS w/o PIF-Net&MSFF

(as well as the comparison between OURS and OURS w/o

PIF-Net) verifies the effectiveness of the PIF-Net in improving

the segmentation accuracy. The comparison between OURS

w/o PIF-Net and OURS w/o PIF-Net&MSFF (as well as the

comparison between OURS and OURS w/o MSFF) shows

that the MSFF module is also beneficial for the segmentation

performance. Some segmentation results obtained byOURSw/o

PIF-Net&MSFF, OURS w/o PIF-Net, OURS w/o MSFF, and

OURS are visualized in Figure 7. It can be seen that the complete

model can generally obtain more accurate segmentation

results than the baseline methods when compared to the

ground truth.

An interesting observation we can obtain from Tables 2,

3 are that the improvements achieved by the PIF-Net and

the MSFF module have their characteristics on different sub-

regions. Specifically, for the WT area, the PIF-Net is more

effective in improving the segmentation accuracy than theMSFF

module. On the other hand, for the TC and ET areas, the MSFF

module is more helpful in comparison to the PIF-Net. This

phenomenon can be observed from the comparison between

OURS w/o PIF-Net and OURS w/o MSFF. The results shown

in Figure 7 also verify this point. By referring to the ground

truth, we can see that OURS w/o MSFF generally obtains

more accurate results for the ED area (shown in green) than

OURS w/o PIF-Net, while OURS w/o PIF-Net performs better

for the NCR/NET and ET areas (shown in red and yellow).

We provide an explanation to this observation as follows. The
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FIGURE 7

Examples of brain tumor segmentation results obtained by di3�erent methods in the ablation study. The green, red, and yellow regions indicate

edema (ED), non-enhancing tumor and necrosis (NCR/NET), and enhancing tumor (ET), respectively.

segmentation of WT is mainly based on the ED area that can be

effectively captured in the T2 and Flair volumes. The modality

characteristics on the ED area in T2 and Flair volumes are

generally close, so the requirement of multimodal feature fusion

or selection is not very urgent. By contrast, the pixel-level image

fusion achieved by the PIF-Net can enrich the input modalities

for the segmentation model and this modality enhancement

approach can also be viewed as a data augmentation method

to some extent, which tends to be relatively more effective for

WT segmentation as only two source modalities are used. In

comparison to WT, the segmentation of TC and ET is more

difficult due to the factors like smaller size, more irregular

shape, etc. As a result, more modalities are typically required in

TC and ET segmentation. In such a situation, the refinement

of multimodal features achieved by the MSFF module is of

higher significance. Therefore, the segmentation of TC and ET

benefits more from the MSFF module. Nevertheless, it is worth

noting that our PIF-Net and MSFF module both improve the

segmentation accuracy of all the three sub-regions, just with

different extents.

4.4. Comparison with other methods

In this subsection, we compare the proposed method

with some existing brain tumor segmentation methods, which

are mainly included in the proceedings of BraTS 2019-2021

challenges and generally have good performance. Tables 4, 5

report the evaluation results of different methods on BraTS 2019

and BraTS 2020 validation sets, respectively. For the comparison

methods, the results reported in the original publications are

adopted since the benchmarks used are exactly the same. In

addition, the results obtained by a single model instead of multi-

model ensemble are used for the sake of fair comparison. In each

case, the best score is indicated in bold and the second best score

is underlined.We can observe from Tables 4, 5 that the proposed

method achieves very competitive performance among all the

methods. ForWT and TC regions, the proposed method obtains

the highest Dice scores on both BraTS 2019 and BraTS 2020

validation sets. Our method achieves 0.8265 and 0.8291 in terms

of the mean Dice score on these two datasets, which are both in

the second place among all the methods. It is worth mentioning
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TABLE 4 Objective evaluation results of di�erent brain tumor segmentation methods on the BraTS 2019 validation sets.

References WT TC ET Average

Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff

Xu et al. (2019) 0.8930 6.9640 0.8070 7.6630 0.7590 4.1930 0.8197 6.2733

Baid et al. (2019) 0.8700 13.3600 0.7700 12.7100 0.7000 6.4500 0.7800 10.8400

González et al. (2019) 0.8882 8.1231 0.7833 7.5618 0.7231 4.9132 0.7982 6.8660

Lorenzo et al. (2019) 0.8904 - 0.7511 - 0.6634 - 0.7683 -

Ahmad et al. (2019) 0.8518 9.0083 0.7576 10.6744 0.6230 8.4683 0.7441 9.3837

Abraham and Khan (2019) 0.8605 - 0.7108 - 0.6323 - 0.7345 -

Bhalerao and Thakur (2019) 0.8527 8.0793 0.7091 9.5708 0.6668 7.2700 0.7429 8.3067

Yan et al. (2019) 0.8600 40.3100 0.7300 10.4000 0.6600 18.5300 0.7500 23.0800

Iantsen et al. (2019) 0.8700 8.3500 0.7900 9.5800 0.6700 7.8200 0.7767 8.5833

Astaraki et al. (2019) 0.8700 5.9000 0.8100 7.1600 0.7100 6.0200 0.7967 6.3600

Cao et al. (2021) 0.8938 7.5050 0.7875 9.2600 0.7849 6.9250 0.8221 7.8967

Wang et al. (2021) 0.8889 7.5990 0.8141 7.5840 0.7836 5.9080 0.8289 7.0303

Valanarasu et al. (2021) 0.8760 8.9420 0.7392 9.8930 0.7321 6.3230 0.7824 8.3860

OURS 0.8942 5.3490 0.8142 10.8988 0.7710 5.8548 0.8265 7.3675

Bold and underlined values indicate the best scores and second best scores on each metric (each column in the tables) among all the methods.

TABLE 5 Objective evaluation results of di�erent brain tumor segmentation methods on the BraTS 2020 validation sets.

References WT TC ET Average

Dice Hausdorff Dice Hausdorff Dice Hausdorff Dice Hausdorff

Jun et al. (2020) 0.8780 6.3000 0.7790 11.0200 0.7520 30.6500 0.8030 15.9900

Liu et al. (2020a) 0.8823 6.4900 0.8012 6.6800 0.7637 21.3900 0.8157 11.5200

Messaoudi et al. (2020) 0.8413 - 0.6804 - 0.6537 - 0.7251 -

Sun et al. (2020) 0.8920 - 0.7880 - 0.7230 - 0.8010 -

Cirillo et al. (2020) 0.8926 6.3900 0.7919 14.0700 0.7504 36.0000 0.8116 18.8200

Pang et al. (2020) 0.8811 18.0901 0.7605 29.0570 0.7538 34.2391 0.7985 27.1287

Sundaresan et al. (2020) 0.8900 4.4000 0.7700 15.3000 0.7700 29.4000 0.8100 16.3667

Ballestar and Vilaplana (2020) 0.8300 12.3400 0.7700 13.1100 0.7200 37.4200 0.7733 20.9567

McHugh et al. (2020) 0.8810 6.7200 0.7890 10.2000 0.7120 40.6000 0.7940 19.1733

Ma et al. (2020b) 0.8794 - 0.7731 - 0.7040 - 0.7855 -

Cao et al. (2021) 0.8934 7.855 0.7760 14.5940 0.7895 11.0050 0.8196 11.1513

Wang et al. (2021) 0.8900 6.4690 0.8136 10.4680 0.7850 16.7160 0.8295 11.2177

Zhang et al. (2021b) 0.8800 6.9500 0.7400 30.1800 0.7000 38.6000 0.7733 25.2433

OURS 0.8950 5.3117 0.8178 9.4285 0.7745 4.4715 0.8291 6.4039

Bold and underlined values indicate the best scores and second best scores on each metric (each column in the tables) among all the methods.

that the performance of proposed method may be slightly

inferior to some latest state-of-the-art methods. However, the

main purpose of this work is to verify the effectiveness of the

proposed pixel-level and feature-level image fusion approaches

for brain tumor segmentation. The segmentation model and

loss function adopted in this work are both plain while popular

approaches (i.e., the original V-Net and the BCE-and-Dice-

based loss) in 3D medical image segmentation. By introducing

some advanced architectures and loss functions, we believe that

the segmentation performance can be further improved.

5. Conclusion

In this paper, we mainly introduce pixel-level and feature-

level image fusion techniques for MRI-based brain tumor

segmentation, aiming to achieve more sufficient and finer

utilization of multimodal information. Specifically, we present

a CNN-based 3D pixel-level image fusion network named

PIF-Net to enrich the input modalities of the segmentation

model and design an attention-based feature fusion module

named MSFF for multimodal feature refinement. A two-stage

Frontiers inNeuroscience 12 frontiersin.org

74

https://doi.org/10.3389/fnins.2022.1000587
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2022.1000587

brain tumor segmentation framework is accordingly proposed

based on the PIF-Net, the MSFF module and the V-Net.

Experimental results on the BraTS 2019 and BraTS 2020

benchmarks show that the proposed components on both

pixel-level and feature-level fusion can effectively improve

the segmentation accuracy of all the three tumor sub-regions

including whole tumor, tumor core and enhancing tumor.

The pixel-level image fusion network in this work is trained

independently to the segmentation model. Future work may

concentrate on integrating image fusion and segmentation into

a unified network for better feature learning to further improve

the segmentation performance.
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Medical image segmentation has important auxiliary significance for clinical

diagnosis and treatment. Most of existing medical image segmentation

solutions adopt convolutional neural networks (CNNs). Althought these

existing solutions can achieve good image segmentation performance, CNNs

focus on local information and ignore global image information. Since

Transformer can encode the whole image, it has good global modeling

ability and is e�ective for the extraction of global information. Therefore, this

paper proposes a hybrid feature extraction network, into which CNNs and

Transformer are integrated to utilize their advantages in feature extraction.

To enhance low-dimensional texture features, this paper also proposes

a multi-dimensional statistical feature extraction module to fully fuse the

features extracted by CNNs and Transformer and enhance the segmentation

performance of medical images. The experimental results confirm that the

proposed method achieves better results in brain tumor segmentation and

ventricle segmentation than state-of-the-art solutions.

KEYWORDS

medical image segmentation, deep learning, convolutional neural network,

transformer, neural network

1. Background

Medical image segmentation is not only an important step in medical image analysis,

but also an indispensable part of computer-aided diagnosis and pathology research.

With the continuous development of computer vision in recent years, convolutional

neural networks (CNNs), especially fully convolutional networks (FCNs), have made

breakthroughs in the applications of medical image segmentation. For example, they

have been applied to brain Magnetic Resonance Imaging (MRI) (Li et al., 2021), multi-

organ segmentation, and cardiac ventricle (Moeskops et al., 2016; Hesamian et al., 2019).
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FCNs enable end-to-end image semantic segmentation and

have evolved many variants during development, U-Net

(Ronneberger et al., 2015), V-Net (Milletari et al., 2016),

3D U-Net (Çiçek et al., 2016), Res-UNet (Xiao et al.,

2018), density-unet (Li et al., 2018), Y-Net (Mehta et al.,

2018), etc. have been specially proposed for image and

volume segmentation according to various medical imaging

modalities. Existing CNN-based methods have good image

segmentation performance. Due to the limitation of convolution

kernel size, each convolution kernel only focuses on local

information. Therefore, it is difficult for these existing methods

to generate any long-distance dependencies when performing

image segmentation tasks. The ability to construct global

contextual information is crucial for intensive prediction tasks

during medical image segmentation.

To effectively address the issues on global contextual

information, Transformer (Vaswani et al., 2017; Dosovitskiy

et al., 2020) was proposed to handle the issues in sequence-

to-sequence prediction. It uses a completely attention-based

encoder-decoder architecture, which is completely different

from CNN-based methods. A one-dimensional sequence is

taken as input, so Transformer has a powerful modeling

ability, not only in constructing global context information. The

powerful capability, works well for downstream tasks in the case

of large-scale pre-training.

Transformer has been widely used in medical image

segmentation, but it only focuses on building global context

information at all stages. Therefore, its ability to obtain local

information is weakened, and the lack of detailed location

information encoding reduces the distinguishability between

background and target. Various CNN architectures such as U-

Net provide a way to extract low-level visual information, which

can well compensate for the spatial details of Transformer’s

local information.

FIGURE 1

The proposed medical image segmentation method based on multi-dimensional statistical features.

Therefore, considering the above-mentioned advantages,

some studies integrated CNNs and Transformer. For example,

TransUNet (Chen et al., 2021), first used CNNs to extract

local features, and then applied Transformer to global context

modeling. This architecture not only establishes a self-

attention mechanism, but also reduces the loss of local feature

resolution brought by Transformer, making it have better image

segmentation accuracy. However, TransUNet is only a simple

integration of CNNs and Transformer, and there are some

shortcomings in practical applications.

The low-dimensional image texture features mainly

include structural features and statistical features. The

image information contained in these features plays an

important role in semantic segmentation. Chen et al. (2018)

proposed the DeepLabv3+ model by adding an encoder to

the DeepLabv3 (Chen et al., 2017) model to achieve the

extraction and fusion of both shallow and deep image features.

Li et al. (2020) proposed an edge preservation module to

enhance low-dimensional edge features, effectively improving

the performance of semantic segmentation. However, the

above methods are all applied to shallow features or low-

dimensional edge features. Although low-dimensional statistical

features play an importance role in grasping global image

features, only a small percent of existing solutions try to

analyze them.

Therefore, this paper proposes a hybrid feature extraction

network based on CNNs and Transformer. The proposed

network can not only utilize the Transformer’s ability

to construct global contextual information, but can

also use the CNN’s ability to capture local information.

Additionally, in order to use the statistical image features,

this paper designs a multi-scale statistical feature extraction

module to extract statistical image features to improve

segmentation performance.
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FIGURE 2

The proposed hybrid network consisting of CNNs stages and Transformer stage.

2. Related work

2.1. Semantic segmentation network

In the past few years, CNNs have been used as the

main framework for various computer vision tasks, especially

in semantic segmentation. The mainstream medical image

segmentation methods use the encoder-decoder structured FCN

and U-Net. U-Net++ (Zhou et al., 2018) designs more dense

skip connections based on U-Net. Res-UNet (Xiao et al., 2018)

introduces a residual module in ResNet (He et al., 2016), and

designs a deeper network for feature extraction.

In the past 2 years, Vision Transformer (ViT) (Dosovitskiy

et al., 2020) has demonstrated its powerful modeling capability

in computer vision tasks. ViT splits the source image into

patches and uses these patches to perform self-attention

operations. The Swin Transformer (Liu et al., 2021) uses the

shift idea to calculate the attention of different windows and

layer the corresponding feature maps. MedT (Valanarasu et al.,

2021) improves gated self-attention and applies Transformer to

medical image segmentation.

Some recent solutions try to use the advantages of CNN

and Transformer by integrating the two architectures as a new

backbone network. The CMT (Guo et al., 2022) block consists of

a depthwise convolution-based local perception unit and a light-

weight transformer module. CoAtNet (Dai et al., 2021) fuses the

two frameworks based on MBConv and relative self-attention.

TransUNet (Chen et al., 2021) first fuses the U-shape structure

of Transformer and U-Net and applies Transformer to medical

image segmentation.

2.2. Statistical features

Statistical features as low-dimensional texture features play

a key role in improving semantic segmentation performance.

Many existing solutions exploit the texture information of

statistical features. Simonyan et al. (2013) applied Fisher vector

layers to enhance features using handcrafting.Wang et al. (2016)

first proposed learnable histograms for semantic segmentation

and object detection. Zhu et al. (2021) proposed a texture

FIGURE 3

The proposed Texture Statistics Extraction Module. It is used to

extract statistics at di�erent stages.

enhancement module and a pyramid texture extraction module

to extract image texture features for the enhancement of

semantic segmentation performance.

3. Method

3.1. Semantic segmentation network

A medical image segmentation method is proposed based

on multi-dimensional statistical features as shown in Figure 1.

This method integrates CNNs and Transformer into the feature

extraction network, and designs a texture statistics extraction

module (TSEM) for the extraction and fusion of multi-

dimensional statistical features.

3.2. Hybrid network

The proposed hybrid feature extraction network aims to

utilize the advantages of CNNs and Transformer to achievemore
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TABLE 1 Comparison of segmentation metrics on BraTS2018.

BraTS2018
WT TC ET Average

Dice HD Dice HD Dice HD Dice HD

Myronenko 90.40 4.483 85.90 8.278 81.40 3.805 85.90 5.500

U-Net++ 88.96 5.327 84.65 8.535 79.49 4.285 84.36 6.049

CENet 89.53 5.271 84.31 8.493 79.95 4.379 84.60 6.193

D. Zhang 89.60 5.733 82.40 9.270 78.20 3.567 83.40 6.190

TransUNet 90.25 4.390 87.19 5.539 80.41 3.731 85.95 4.553

Proposed 90.45 4.923 86.96 5.327 81.53 3.279 86.31 4.510

Bold font represents the best result.

TABLE 2 Comparison of segmentation metrics on medical

segmentation decathlon.

Cardiac Dataset IoU Dice HD

U-Net 90.07 93.86 1.7414

U-Net++ 90.55 94.38 1.7197

CENet 90.23 94.17 1.7682

TransUNet 90.67 94.54 1.7300

Proposed 91.30 94.86 1.6772

Bold font represents the best result.

accurate segmentation tasks. As shown in Figure 2, the proposed

hybrid network is divided into five stages.

Stem is the first stage. CNNs and Transformer alternate

in the remaining four stages. At the beginning of each stage,

downsampling is applied to decrease feature map size and

increase the number of channels. Additionally, the proposed

network refers to the residual connection of ResNet and

performs shortcuts at each stage.

Specifically, stem as the first stage contains two layers

of simple 3×3 convolution. CNNs stage is the second stage,

because the feature map is too large at this moment and not

suitable for using Transformer in global feature extraction. The

CNNs stage uses a Depthwise Separable Convolution block

(DSConv) (Howard et al., 2017) to reduce the amount and

size of model parameters. There is a 1×1 convolution layer

before and after DSConv to change the feature map size and

the number of channels. The third stage is the Transformer

stage, which extracts global features after CNNs. The proposed

network adopts a lightweight multi-head self-attention.

In the original self-attention module, the input X ∈

R
C×H×W is linearized to query Q ∈ R

n×dk , key K ∈ R
n×dk ,

and value V ∈ R
n×dv , where n = H × W is the number of

patches, d, dk, dv represent input, key, and value’s dimension.

The self-attention output is obtained by the following formula.

Atten (Q,K,V) = Softmax

(

QKT

√

dk

)

V (1)

In order to reduce the overhead, the proposed network uses

a k×k depthwise convolution with a stride of k to reduce the

dimensions of K, V , ie K′ = DSVConv (K) ∈ R

n
k2
×dk and

V ′ = DSVConv (V) ∈ R

n
k2
×dv , so the lightweight attention

output is obtained by the following formula.

Atten (Q,K,V) = Softmax

(

QK′T

√

dk

)

V ′ (2)

The CNNs and Transformer operations in the second and

third stages are repeated in the subsequent fourth and fifth

stages. Additionally, each stage is repeated L times. Stages 1 to

5 of the proposed network are were repeated 2, 2, 4, 2, and 8

times, respectively.

3.3. Texture statistics extraction module

The image texture information contains local structural

features and global statistical properties. For poorly visualized

images, the global statistical features are more suitable for

segmentation. To effectively utilize statistical image features, a

texture statistics extraction module (TSEM) is proposed. TSEM

extracts statistical image features by encoding feature maps, as

shown in Figure 3.

Given an input feature map X ∈ R
C×H×W , the input is

divided into three branches for multi-scale feature encoding.

One branch is first processed by global average pooling to obtain

channel average features, and then multiplied with the input

feature map X ∈ R
C×1×1 to obtain the final output feature map.

Another branch first average pooling on one channel to obtain

the feature map X ∈ R
1×H×W , and then multiplies it with the

input feature map X ∈ R
C×H×W to obtain the output feature

map. The last two input feature maps are multiplied to obtain

the output feature map of this module.
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FIGURE 4

Comparison of the proposed method and other state-of-the-art methods on BraTS2018.

FIGURE 5

Comparison of the proposed method and other state-of-the-art methods on the Cardiac Dataset.
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3.4. Loss function

To achieve the end-to-end training effect, a fusion loss

function Lfusion is used to optimize the proposed method in the

training process, training segmentation prediction and ground

truth (GT). The loss function uses BCEDiceLoss, which is

composed of binary cross entropy loss (BCELoss) and dice loss.

The formula is given as follows:

Lfusion =
∑

(

0.5 ∗
(

−y log
(

ŷ
)

−
(

1− y
)

log
(

1− ŷ
))

+

(

1−
2|y ∩ ŷ|
∣

∣y
∣

∣+
∣

∣ŷ
∣

∣

))

(3)

Where y represents GT and ŷ represents the network

prediction result.

4. Experiments

4.1. Datasets

To verify the effectiveness of the proposed method,

BraTS2018 (Menze et al., 2014; Bakas et al., 2017, 2018) and

the cardiac segmentation dataset in the medical segmentation

(Antonelli et al., 2022) decathlon are used as training and

testing datasets in the experiments. The BraTS2018 dataset

has 285 annotated brain tumor magnetic resonance imaging

(MRI) cases, and each case has four different modalities,

namely Flair, T1, T1ce, and T2. This dataset needs to segment

three different brain tumor regions, which are Whole Tumor

(WT), Tumor Core (TC), Ehance Tumor (ET). The decathlon

TABLE 3 Comparison of the model size and flops cost.

Model Input size Parameter(M) FLOPS(G)

U-Net 3, 224, 224 39.40 55.84

U-Net++ 3, 224, 224 9.34 34.65

TransUNet 3, 224, 224 105.32 38.52

MedT 3, 224, 224 1.60 21.24

Proposed 3, 224, 224 37.25 15.24

Bold font represents the best result.

cardiac segmentation dataset contains 20 annotated mono-

modal MRI cases, and this dataset requires the segmentation of

the left atrium.

4.2. Experimental details

The model frameworks in this paper are all implemented

based on Pytorch. The image size and batch size of the input

BraTS2018 dataset are 240*240 and 8, respectively. The image

size and batch size of the input cardiac dataset are 320*320 and 8,

respectively. Four Tesla P100 GPUs were used in training. Adam

(Kingma and Ba, 2014) is the optimizer used in this paper, and all

parameters are set as default. The initial learning rate and weight

decay for model training are 1e-3 and 1e-5, respectively.

4.3. Comparative experiments

To verify the efficiency of the proposed model framework,

three most common metrics used in medical image

segmentation, IoU score, Dice score and Hausdorff score

(HD) are used. The corresponding formulas are given:

IoU =
Y ∩ Ŷ

Y ∪ Ŷ
(4)

Dice =
2
∣

∣

∣
Y ∩ Ŷ

∣

∣

∣

|Y| +
∣

∣

∣
Ŷ
∣

∣

∣

(5)

Where Y represents GT and Ŷ represents the network

prediction result.

H(A,B) = max

(

max
a∈A

{

min
b∈B

∥

∥a− b
∥

∥

}

, max
b∈B

{

min
a∈A

∥

∥b− a
∥

∥

})

(6)

Where A =
{

a1, a2, ..., ap
}

,B =
{

b1, b2, ..., bq
}

represents

the pixels of the prediction result and GT. ‖·‖ represents the

norm between A and B.

This paper conducts comparative experiments with state-

of-the-art image segmentation frameworks on the BraTS2018

and cardiac segmentation datasets. These frameworks include

TABLE 4 Ablation experiment results on BraTS2018.

BraTS2018
WT TC ET Average

Dice HD Dice HD Dice HD Dice HD

C-C-C-C 88.31 5.322 86.32 5.531 80.68 4.293 85.10 5.049

T-T-T-T 88.15 5.514 86.19 6.681 80.64 4.450 84.99 5.548

C-T-C-T 89.04 5.357 86.91 5.554 80.91 3.315 85.32 4.742

Proposed 90.45 4.923 86.96 5.327 81.53 3.279 86.31 4.510

Bold font represents the best result.
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FIGURE 6

Visual results of ablation experiments on BraTS2018.

FIGURE 7

Performance comparison before and after adding TSEM.

2D CNN, 3D CNN segmentation frameworks (Ronneberger

et al., 2015; Myronenko, 2018; Zhou et al., 2018; Gu et al.,

2019; Zhang et al., 2020) and partial Transformer segmentation

framework (Chen et al., 2021). The corresponding experimental

results obtained by each method are shown in Tables 1, 2, and

the visualized results are shown in Figures 4, 5. The number of

parameters and computation cost are compared, as shown in

Table 3.

According to the comparison results, the proposed

segmentation framework obtains better scores and achieves

a more significant performance improvement compared

with state-of-the-art segmentation models. The proposed

segmentation model achieves an average Dice of 86.31% on

the BraTS2018 dataset and an average Dice of 94.86% on the

medical segmentation decathlon, which are better than other

state-of-the-art segmentation models.
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According to the visualized results shown in Figure 4,

the proposed method significantly improves the refinement of

tumor and its texture features by using TSEM. Compared

with other state-of-the-art, the model developed based on the

integration of CNNs and Transformer has achieved better results

in the context feature extraction and statistical feature fusion,

and provides a reference for medical image segmentation of

brain tumors and hearts. According to Table 3, the proposed

method also has the lowest flops.

4.4. Ablation experiments

In order to further verify the importance and practical

contribution of the backbone network used in this paper and the

designed modules, the relevant ablation experiments are carried

out. The index comparison of ablation experiments is shown in

Table 4, and the experimental results are shown in Figures 6, 7.

This paper uses a fully convolutional layer as the Baseline for

segmentation, and then replaces the backbone network blocks

one by one for experiments. The experiments cover the full

convolution network of C-C-C-C, the full transformer network

of T-T-T-T, the hybrid network of C-T-C-T, and the TSEM

is finally. The corresponding indicator values are shown in

Table 4. The proposed module can improve the segmentation

performance of baseline to a certain extent. After adding TSEM

to the baseline, the corresponding improvement is the most

obvious.

According to Table 4, the average Dice of the full

Transformer is slightly lower than the result of the full

CNN. The C-T-C-T result of the integration of CNNs

and Transformer is significantly improved, confirming the

effectiveness of the proposed hybrid network. After adding

TSEM, the corresponding performance is further improved, the

Dice of WT is increased by 1.41%, and the average Dice is

increased by 0.99%.

Figure 6 shows the visualized brain tumor segmentation

results obtained by each method in ablation experiments.

After the backbone network becomes a hybrid network, the

segmentation performance is further improved. After adding

the texture statistics extraction module, the brain tumor

edges after segmentation are significantly better, and the

involved edges regions are closer to the actual situation

compared with the segmentation result obtained by the

hybrid network.

To further verify the role of TSEM, an intermediate

experimental procedure is added. As shown in Figure 7, the

area of interest in the feature map is concentrated and accurate

after adding TSEM. Before adding TSEM, the feature map

is mainly concentrated in the segmented area. Therefore, the

proposed TSEM is conducive for the network to paying more

attention to the segmented area and can effectively improve

segmentation results.

5. Conclusion

This paper proposes a medical image segmentation method

based on multi-dimensional statistical features. It consists of

a hybrid feature extraction network and a multi-dimensional

statistical feature extraction module. The hybrid feature

extraction network is composed by CNNs and Transformer,

and the lightweight processing is adopted to adapt to practical

application scenarios. The multi-dimensional statistical feature

extraction module is used to strengthen low-dimensional image

texture features and enhance medical image segmentation

performance. Experimental results show that the proposed

medical image segmentation method achieves excellent results

on brain tumor and heart segmentations.
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Multi-modal brain image fusion targets on integrating the salient and

complementary features of di�erent modalities of brain images into a

comprehensive image. The well-fused brain image will make it convenient for

doctors to precisely examine the brain diseases and can be input to intelligent

systems to automatically detect the possible diseases. In order to achieve the

above purpose, we have proposed a local extreme map guided multi-modal

brain image fusion method. First, each source image is iteratively smoothed

by the local extreme map guided image filter. Specifically, in each iteration,

the guidance image is alternatively set to the local minimum map of the

input image and local maximum map of previously filtered image. With the

iteratively smoothed images, multiple scales of bright and dark feature maps

of each source image can be gradually extracted from the di�erence image of

every two continuously smoothed images. Then, the multiple scales of bright

featuremaps and base images (i.e., final-scale smoothed images) of the source

images are fused by the elementwise-maximum fusion rule, respectively, and

the multiple scales of dark feature maps of the source images are fused by

the elementwise-minimum fusion rule. Finally, the fused bright feature map,

dark feature map, and base image are integrated together to generate a

single informative brain image. Extensive experiments verify that the proposed

methodoutperforms eight state-of-the-art (SOTA) image fusionmethods from

both qualitative and quantitative aspects and demonstrates great application

potential to clinical scenarios.

KEYWORDS

multi-modal brain images, image fusion, imageguidedfilter, local extrememap, bright

and dark feature map

1. Introduction

With the development of the medical imaging techniques, patients are often

required to take multiple modalities of images, such as computed tomography (CT),

magnetic resonance (MR) image, positron emission tomography (PET), and single-

photon emission computed tomography (SPECT). Specifically, CT image mainly

captures dense structures, such as bones and implants. MR image can capture soft-tissue
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information clearly, such as muscle and tumor. PET image can

help reveal the metabolic or biochemical function of tissues

and organs and SPECT image can visualize the conditions of

organs, tissues, and bones through delivering a gamma-emitting

radioisotope into the patient. Then, through observing all these

captured medical images, the doctors can precisely diagnose the

possible diseases. However, accurately locating the lesions and

diagnosing the corresponding diseases from multiple modalities

of images are still complex and time-consuming for the doctors.

Therefore, the image fusion technique can be applied to merge

the salient and complementary information of the multi-modal

images into a single image for better perception of both doctors

and intelligent systems (Yin et al., 2018; Liu et al., 2019,

2022a,b,c,d; Xu and Ma, 2021; Wang et al., 2022).

In recent years, many methods have been proposed for the

task of multi-modal image fusion. Generally, these methods

can be divided in two categories, i.e., spatial-domain image

fusion methods and transform-domain methods (Liu et al.,

2015, 2018; Zhu et al., 2018, 2019; Yin et al., 2019; Xu

et al., 2020a; Zhang et al., 2020). Specifically, the spatial-

domain image fusion methods first decompose the source

images into multiple regions, and then integrate the salient

regions together to generate their fusion image (Bai et al.,

2015; Liu et al., 2017, 2018, 2020; Zhang et al., 2017). The

fusion images of these methods often yield unsatisfactory effect

due to their inaccurate segmentation results. The transform-

domain methods are more popular in the field of image fusion.

These methods first convert the source images into a specific

domain, then fuse the salient features in this domain, and finally

generates the fusion image by converting the fused features

back to the image domain (Liu et al., 2015; Xu et al., 2020a;

Zhang et al., 2020). The fusion images of these methods are

usually more suitable for human to perceive, but might suffer

from the blurring effect (Ma et al., 2019a). Moreover, with

the fast development of deep-learning techniques, many deep-

learning (mainly convolutional neural network, CNN) based

image fusion methods have been proposed (Liu et al., 2017;

Li and Wu, 2018; Ma et al., 2019b; Wang et al., 2020; Zhang

et al., 2020). These methods adopt CNN to extract the deep

convolutional features, then fuse the features of the source

images by a feature fusion module, and finally reconstruct

the fused features as their fusion images. Even though these

deep-learning based methods have achieved great success in

the field of image fusion, many of these methods would

generate fusion images of low contrast or having other kinds

of defects.

Amongst the transform-domain methods, the guided image

filter (He et al., 2012) demonstrates to be a state-of-the-art

(SOTA) edge-preserving image filter, and has been widely used

in the field of image fusion (Li et al., 2013; Gan et al., 2015).

But in these methods, the guided image filter is often used

to refine the decision map or weight map rather than used

to extract salient features due to its relatively weak ability in

feature extraction. Therefore, in this study, we aim to improve

the feature extraction ability of the guided image filter, and based

on our improved guided filter to further develop a multi-modal

brain image fusion method.

To be specific, we have developed a local extreme map

guided image filter, which consists of a local minimum map

guided image filter and a local maximum map guided image

filter. The developed local extreme map guided image filter is

able to more effectively smooth the input image as compared to

the original image filter guided by the input image itself, then

the features extracted from the difference image of the smoothed

image and input image by our filter will be naturally more

salient than those extracted by the original image filter guided

by the input image itself. Through extending the local extreme

map guided filter to multiple scales, we propose a local extreme

map guided image filter based multi-modal brain image fusion

method. Specifically, we first apply the local extrememap guided

image filter iteratively on each source image to extract their

multi-scale bright and dark feature maps. Then, the multi-scale

bright feature maps, multi-scale dark feature maps, and the base

images of the multi-modal brain images are fused, respectively.

Finally, the fused bright feature map, dark feature map, and base

image are integrated together to generate our fused brain image.

The contributions of this study can be concluded in

three parts:

• Wepropose a new scheme to improve the feature extraction

ability of the guided image filter, i.e., using two guided

image filters with a local minimum map and a local

maximummap, respectively, as their guidance images. This

scheme can be incorporated with various guided filters or

other similar filters in pursuit of improving their feature

extraction ability.

• Based on the local extreme map guided image filter, we

further propose an effective image fusionmethod for fusing

multi-modal brain images. Moreover, the proposedmethod

can be easily adapted to fuse other modalities of images

while achieving superior fusion performance.

• Extensive experiments verify that our method performs

comparably to or even better than eight SOTA image fusion

methods (including three conventional methods and five

deep learning based methods) in terms of both qualitative

and quantitative evaluations.

The rest of this paper is organized as follows. In

Section 2, the constructed local extreme map guided

image filter and the proposed multi-modal brain

image fusion method are elaborated, respectively.

Then, the experimental results and discussions are
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FIGURE 1

Flowchart of our proposed local extreme map guided multi-modal brain image fusion method. (Note that the dark feature maps in this figure

have been illustrated as their absolute feature maps in order to properly visualize the dark features).

made in Section 3. Finally, this study is concluded in

Section 4.

2. Proposed method

The overall structure of the proposed method is illustrated

in Figure 1. The major procedures of the proposed method

include: First, the two multi-modal brain image are iteratively

smoothed by the local extreme map guided filter, respectively.

Then, different scales of bright and dark feature maps are

extracted, respectively, from the two multi-modal brain images,

and the two smoothed brain images in the last iteration

are taken as their base images, respectively. Afterwards, each

scale of bright feature maps of the two brain images and

each scale of dark feature maps of the two brain images

are fused by selecting their elementwise maximum values

and their elementwise minimum values, respectively. Further,

the fused multi-scale bright feature maps and dark feature

maps are integrated as a single bright feature map and

a single dark feature map, respectively, and the two base

image are fused as their elementwise maximum values as

well. Finally, the fusion image is generated by integrating

the fused bright feature map, dark feature map, and base

image together. In the following subsections, the local extreme

map guided image filter and our proposed image fusion are

elaborated, respectively.

2.1. Local extreme map guided image
filter

In the guided image filter based image fusion methods (Li

et al., 2013; Gan et al., 2015), the guided image filter was often

used to adjust the decision maps or weight maps for fusing the

feature maps of input images rather than directly extracting the

salient feature maps from the input images, due to its limited

feature extraction ability. Therefore, in this study, we focus on

improving the feature extraction ability of the guided image filter

by designing appropriate guidance images.

In the official demonstration of guided image filter (He

et al., 2012), the input image is smoothed under the guidance

of the input image itself to approach the edge preserving effect.

However, in this way, the feature map generated by subtracting

the filtered image from the input image is usually not salient

enough for the task of image fusion. In order to enhance the
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feature map, we have modified the guidance image from the

input image to its local extreme maps, so that the salient features

of the input image can be largely suppressed and accordingly

these salient features can be effectively extracted from the

difference image of the input image and filtered image. The

detailed construction method of our local extreme map guided

image filter is described as follows.

First, the input image is filtered under the guidance of the

local minimum map of the input image as:

I′f = guidedfilter (I, Imin, r) , (1)

where guidedfilter denotes the guided filter (He et al., 2012). I

and Imin are the input image and guidance image, respectively. r

denotes the size of the local window for constructing the linear

model between input image and guidance image. Moreover, Imin

denotes the local minimum image of I. Under the guidance of

the local minimum map, the salient bright features could be

sufficiently removed from the input image. Specifically, Imin can

be solved by the morphological erosion operation as:

Imin = imerode (I, se) ,

where imerode (·) denotes the morphological erosion operator.

se denotes the structuring element of flat-disk shape, radius of

which is denoted by k.

Then, I′
f
is further filtered under the guidance of its local

maximum map as:

If = guidedfilter
(

I′f , Imax, r
)

, (2)

where I′
f
and Imax are the input image and guidance image,

respectively, and Imax denotes the local maximum image of I′
f
.

Under the guidance of the local maximummap, the salient dark

features could be further removed from the finally filtered image.

Similar to the solution of Imin, Imax can be efficiently solved by

the morphological dilation operation as:

Imax = imdilate
(

I′f , se
)

,

where imdilate (·) denotes the morphological dilation operator.

In order to conveniently introduce the following image

fusionmethod, we denote by leguidedfilter (·) the function of our

constructed local extrememap guided image filter [composed by

Equations (1) and (2)], then smoothing an image with the local

extreme map guided image filter can be expressed as:

If = leguidedfilter (I, se, r) , (3)

where r and se correspond to the parameters in Equations (1)

and (2).

As is known, there exist both bright features and dark

features in an image, such as the bright person and the dark

roof in Figure 2A. Through sequentially smoothing the input

image guided by the local minimum map and local maximum

map, respectively, both the salient bright and dark features will

be removed from the input image and a well-smoothed image

will be obtained. Then, the salient features of the input image

can be obtained by subtracting the filtered image If from the

input image I according to Equation (4), and the positive part

of (I − If ) corresponds to the bright features, and the negative

part corresponds to the dark features.







Fb = max
(

I − If , 0
)

Fd = min
(

I − If , 0
) , (4)

where Fb and Fd denote the bright feature map and dark feature

map of I, respectively.

A demonstration example of the proposed local extreme

map guided image filter performed on an infrared image

is illustrated in Figure 2. In this figure, we have compared

the smoothed images (see Figures 2B–E), respectively, by the

original guided image filter, single local minimum map guided

filter, single local maximummap guided filter, and our complete

extreme map guided filter, and also compared the feature

maps extracted from their difference images with respect to

the original infrared image in Figure 2A. It can be seen from

Figures 2B–E that the smoothed image by our extreme map

guided filter has suppressed more salient features (textural

details) compared to those of the original guided filter, single

local minimum map guided filter, and single local maximum

map guided filter. Accordingly, the salient features (see

Figures 2I,M) extracted by our extreme map guided filter are far

more than those extracted by the original guided filter, single

local minimum map guided filter, and single local maximum

map guided filter. Moreover, intensities of our extracted feature

maps are much higher than those of feature maps extracted by

the other three filters. Overall, the results in this figure suggest

that our constructed local extreme map guided filter is able

to extract the input image’s bright and dark features well and

significantly outperforms the original guided filter, single local

minimum map guided filter, and single local maximum map

guided filter.

Naturally, the local extreme map guided image filter can be

extended to multiple scales by iteratively applying the image

filter guided with local minimummap and that guided with local

maximum map on the input image I according to Equation (5).

Iif = leguidedfilter
(

I
(i−1)
f

, sei, ri

)

, (5)

where i denotes the current scale of the guided filter, and i is

increased from 1 to n one by one. Ii
f
denotes the ith-scale filtered

image and especially I0
f
is the original input image I. sei and ri

denote the structuring element and size of the local window at

the ith scale, respectively.

Accordingly, different scales of bright and dark features can

be simultaneously extracted from the difference image of every

Frontiers inNeuroscience 04 frontiersin.org

90

https://doi.org/10.3389/fnins.2022.1055451
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2022.1055451

FIGURE 2

Demonstration example of the local extreme map guided image filter (Toet, 2017). (A) Original infrared image. (B) Image smoothed by the image

filter guided by the input image itself. (C) Image smoothed by single local minimum map guided image filter. (D) Image smoothed by single local

maximum map guided image filter. (E) Image smoothed by our local extreme map guided image filter. (F–I) Bright feature maps extracted from

the di�erence images of (B–E) and (A), respectively. (J–M) Dark feature maps extracted from the di�erence images of (B–E) and (A), respectively

(Note that the dark feature maps in this figure have been illustrated as their absolute feature maps in order to properly visualize the dark features).

two continuously filtered images according to Equation (6).







Fb,i = max
(

Ii−1
f

− Ii
f
, 0

)

Fd,i = min
(

Ii−1
f

− Ii
f
, 0

) . (6)

Finally, the last scale of filtered image is taken as the base

image of I, as expressed in Equation (7).

Ibase = Iif . (7)

2.2. Local extreme map guided image
fusion

In this study, we aim to fuse two multi-modal brain images

(denoted by I1 and I2). According to the feature extraction

method introduced in the previous subsection, we can well

extract the multi-scale bright feature maps (denoted by F
j
b,i
) and

dark feature maps (denoted by F
j
d,i
) of each input image Ij, and

simultaneously obtain their base images (denoted by I
j
base

). j

denotes index of the input image, and is ranged from 1 to 2.

Then, the detailed procedures for fusing two multi-modal brain

images are introduced as follows.

As the high-frequency features of high intensities are

usually corresponding to the salient sharp features in the

image, thus we fuse each scale of bright feature maps of the

two multi-modal brain images by selecting their elementwise-

maximum values and fuse each scale of dark feature maps of

the two multi-modal images as their elementwise-minimum

values as:






F
fuse
b,i

= max
(

F1
b,i
, F2

b,i

)

F
fuse
d,i

= min
(

F1
d,i
, F2

d,i

) , (8)

Like other feature extractors, the proposed local extreme

map guided image filter cannot extract the entire bright and

dark features from the source images either, thus we have

enhanced the fused bright and dark features by multiplying

each scale of fused bright feature map and dark feature map by

an information-amount related weight. Further, the enhanced

bright feature maps and dark feature maps are integrated,
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respectively. The above two procedures can be mathematically

expressed as:















F
fuse
b

=
n
∑

i=1
wb,i · F

fuse
b,i

F
fuse
d

=
n
∑

i=1
wd,i · F

fuse
d,i

, (9)

where wb,i denotes the weight of the ith scale of bright feature

map and wd,i denotes the weight of the ith scale of dark feature

map. Generally, the feature map with more information should

be assigned to a large weight, thus wb,i and wd,i are set according

to the entropy of F
fuse
b,i

and F
fuse
d,i

, respectively, as:















wb,i =
eb,i

min
j

(

eb,j
)

wd,i =
ed,i

min
j

(

ed,j
)

, (10)

where eb,i denotes the entropy of F
fuse
b,i

and ed,i denotes the

entropy of
(

−F
fuse
d,i

)

. In this way, the minimum weight, i.e.,

weight of feature map with the lowest entropy, will be 1,

and weights of other scales of feature maps will all be higher

than 1. Accordingly, most scales of bright and dark feature

maps will be enhanced to some degree according to their

information amount.

As for the low-frequency base images, we directly fuse them

by computing their elementwise-maximum values according

to Equation (11). In this manner, most basic information of

the multi-modal medical images will preserved into the final

fusion image.

I
fuse
base

= max
(

I1base, I
2
base

)

. (11)

Finally, the fusion image can be generated by combining

the fused bright feature map, dark feature map, and base image

together as expressed in Equation (12). In this way, our fused

image can not only preserve as much as basic information of

the multi-modal source images, but also well enhance the salient

sharp features of the multi-modal source images.

Ifuse = F
fuse
b

+ F
fuse
d

+ I
fuse
base

. (12)

2.3. Parameter settings

In our method, there are mainly three parameters, including

the scale number n, the size of the local window ri in the

guided image filter, and the radius of the structuring element ki

in the morphological erosion and dilation operations. In order

to balance the time cost and fusion effect of the multi-modal

brain images, n is set to five in this study, i.e., n = 5. As

for ri and ki, we keep them same with each other, i.e., ki =

ri, in in each iteration i of local extreme map guided image

filtering. Moreover, in order to effectively extract the salient

image features, we set ri = 2×i+1 where i is gradually increased

from 1 to n in this study. The extensive experimental results

verify the above settings are effective for fusing the multi-modal

brain images.

3. Experimental results and
discussions

In order to verify the effectiveness of the proposed image

fusion method, we have compared it with eight representative

image fusion methods on three commonly used multi-modal

brain image datasets (Xu and Ma, 2021). The detailed

experimental settings, implementation details, results, and

discussions are introduced in the following five subsections.

3.1. Experimental settings

At first, we take 30 pairs of commonly used multi-modal

brain images from http://www.med.harvard.edu/aanlib as our

testing sets, including 10 pairs of CT and MR brain images, 10

pairs of PET and MR images, and 10 pairs of SPECT and MR

images. The three used datasets have been shown in Figures 3–5,

respectively. In particular, the spatial resolution of the images in

the three datasets are all 256× 256.

Second, we have compared our method with eight SOTA

image fusion methods, including the discrete wavelet transform

based method (DWT) (Li et al., 1995), the guided-filter based

method (GFF) (Li et al., 2013), the Laplacian pyramid and sparse

representation base method (LPSR) (Liu et al., 2015), the unified

image fusion network (U2Fusion) (Xu et al., 2020a), the GAN

based method (DDcGAN) (Ma et al., 2020), the general CNN

based image fusion network (IFCNN) (Zhang et al., 2020), the

enhanced medical image fusion network (EMFusion) (Xu and

Ma, 2021), and the disentangled representation based brain

image fusion network (DRBIF) (Wang et al., 2022). Moreover,

in order to verify the efficacy of the guidance of local extreme

maps, we have also added our method without the guidance of

local extreme maps (denoted by LEGFF0) for comparison.

At last, qualitative evaluation heavily depends on the

subjective observation which is inaccurate and laborious, thus

11 commonly-used quantitative metrics are further used to

objectively compare the 10 methods’ performance. The 11

quantitative metrics are spatial frequency (SF) (Li and Yang,

2008), average absolute gradient (AbG), perceptual saliency

(PS) (Zhou et al., 2016), standard deviation (STD), entropy

(E), Chen-Blum Metric (QCB) (Chen and Blum, 2009), visual

information fidelity (VIFF) (Han et al., 2013), edge preservation

metric (Qabf) (Xydeas and Petrovic, 2000), gradient similarity

metric (QGS) (Liu et al., 2011), weighted structural similarity

metric (WSSIM) (Piella and Heijmans, 2003), and multi-

scale structural similarity (NSSIM) (Ma et al., 2015). Among
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FIGURE 3

Ten pairs of images in the CT-MR image dataset.

FIGURE 4

Ten pairs of images in the PET-MR image dataset.

FIGURE 5

Ten pairs of images in the SPECT-MR image dataset.

these metrics, SF, AG, PS, and STD quantify the amount

of details reserved in the fusion image, E measures the

intensity distribution of the fusion image, QCB measures

the amount of the preserved contrast information of the

fusion image compared to the source images, VIFF measures

the information fidelity of the fusion image with respect

to the source images, Qabf measures the amount of the

preserved edge information of the fusion image compared to

the source images, QGS measures the gradient similarity of

the fusion image and the corresponding source images, and

WSSIM and NSSIM both measure the structural information

of the fusion image preserved from the source images.

Overall, the 11 selected metrics can quantitatively evaluate

the fusion images of different image fusion methods from

various aspects, and the larger values of all the 11 metrics

indicate the better performance of the corresponding image

fusion method.

3.2. Implementation details

Among the 10 comparison methods, IFCNN and DRBIF

can be directly used to fuse color images, and the other eight

fusion methods can only fuse gray-scale images directly. Thus,

DWT, GFF, LPSR, U2Fusion, DDcGAN, EMFusion, LEGFF0,

and our method can be directly applied to fuse the pair of gray-

scale CT and MR images in the CT-MR image dataset. As for

fusing images in the PET-MR and SPECT-MR image datasets,

the color image (PET or SPECT image) is first transformed from

the RGB color space to the YCbCr color space. Then, these
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FIGURE 6

Comparison example on the CT-MR image dataset. (A,B) are the original CT image and MR image, respectively. (C–L) are the fusion results of

DWT, GFF, LPSR, U2Fusion, DDcGAN, IFCNN, EMFusion, DRBIF, LEGFF0 , and our method, respectively.

eight methods fuse the Y channel of the color image and the

gray-scale MR image together. Finally, the fused color image is

generated by concatenating the fused gray-scale image and Cb

and Cr channels of the original color image, and transforming

the fused image in the YCbCr color space back to the RGB

color space. Moreover, most quantitative metrics are designed

to quantify the quality of gray-scale fusion images. Thus, during

computing the quantitative metric values on the PET-MR and

SPECT-MR image datasets, we covert the color source image and

the corresponding color fusion image to the YCbCr color space

and take their Y channels to compute the metric value of this

color fusion image. Finally, code of our proposed method will be

released on https://github.com/uzeful/LEGFF.

3.3. Qualitative evaluation results

In this subsection, the 10 image fusion methods are

evaluated by the qualitative method, i.e., comparing their fusion

results through visual observation. Specifically, we have shown

three comparison examples of the 10 image fusion methods in

Figures 6–8, respectively.

Figure 6 shows a set of fusion results of the 10 image

fusion methods on the CT-MR image dataset. It can be seen

from Figure 6C that the fusion image of DWT demonstrates

severe blocking effect around the head. Figures 6D,F reflect

that the fusion images of GFF and U2Fusion are of relatively

low contrast. Figure 6G shows that the background of the

DDcGAN’s fusion image becomes gray and leads to low-contrast

effect. It can be seen from Figures 6I,K that EMFusion and

LEGFF0 fail to integrate the textures of soft tissues in the

skull region of the original MR image into their fusion images.

Figure 6J shows that DRBIF fails to integrate several parts of

skull region of the original CT image into its fusion image.

Finally, the fusion images of LPSR, IFCNN, and our method

in Figures 6E,H,J achieve the best visual effect among all the

fusion images, i.e., having better contrast and integrating the

salient textures of the originalMR image andCT image into their

fusion images.

Figure 7 shows a set of fusion results of the 10 image fusion

methods on the PET-MR image dataset. It can be seen from

Frontiers inNeuroscience 08 frontiersin.org

94

https://doi.org/10.3389/fnins.2022.1055451
https://github.com/uzeful/LEGFF
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2022.1055451

FIGURE 7

Comparison example on the PET-MR image dataset. (A,B) are the original PET image and MR image, respectively. (C–L) are the fusion results of

DWT, GFF, LPSR, U2Fusion, DDcGAN, IFCNN, EMFusion, DRBIF, LEGFF0 , and our method, respectively.

Figure 7C that the intensities of the bottom part of DWT’s fusion

image are significantly lower than that of the original MR image

in Figure 7B. Figure 7E shows that the intensities of the bottom

right of LPSR’s fusion image are slightly lower than that of the

original MR image in Figure 7B. The fusion results of U2Fusion

and DDcGAN in Figures 7F,G have much lower contrast than

those of other methods. Figure 7H shows that the color style of

IFCNN’s fusion image is significantly changed as compared to

that of the original PET image in Figure 7A. Figures 7J,K show

that DRBIF and LEGFF0 fail to integrate some dark features

of the MR image into their fusion images. Overall, the fusion

images of GFF, EMFusion, and our method in Figures 7D,I,L

integrate most salient features of the original PET and MR

images into their fusion images, but contrast of EMFusion’s

fusion image is a little lower than that of GFF’s fusion image

and ours.

Figure 8 shows a set of fusion results of the 10 image fusion

methods on the SPECT-MR image dataset. We can see from

Figure 8C that the fusion image of DWT loses a few textures

around the center regions of the two eyes. It can be seen from

Figures 8D,E that GFF and LPSR only integrate a few details

of the bottom skull region of the original MR image into their

fusion images. The fusion image of U2Fusion and DDcGAN

in Figures 8F,G still have the defect of lower contrast and gray

background. The fusion image of IFCNN in Figure 8H is of low

contrast compared to the original SPECT and MR images in

Figures 8A,B. Figure 8J shows that the color style of DRBIF’s

fusion image is significantly different from that of the original

SPECT image in Figure 8A and DRBIF fails to integrate a

few bright features of the original MR image into its fusion

image due to its relatively high intensity. Figure 8K shows that

LEGFF0 fails to integrate many bright features of the original

MR image into its fusion image. Overall, the fusion images of

DWT, EMFusion, and our method in Figures 8C,I,L exhibit the

best visual effects among all the fusion images, but the salient

features integrated in our fusion image are more complete than

those integrated in the fusion images of DWT and EMFusion.

The three comparison examples could verify that the

proposed method can effectively fuse the salient bright and dark

features of the multi-modal brain images into a comprehensive

fusion image, and outperforms the eight SOTA image fusion

methods according to the visual comparison results. Moreover,
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FIGURE 8

Comparison example on the SPECT-MR image dataset. (A,B) are the original SPECT image and MR image, respectively. (C–L) are the fusion

results of DWT, GFF, LPSR, U2Fusion, DDcGAN, IFCNN, EMFusion, DRBIF, LEGFF0 , and our method, respectively.

through visually comparing the fusion results of LEGFF0 and

our method, it could be verified that the incorporation of

the local extreme map guidance is critical for improving the

feature extraction ability and feature fusion ability of the guided

image filter.

3.4. Quantitative evaluation results

The quantitative metric values of the eight image fusion

methods are first calculated according to their fusion results

on each dataset, then the average metric values of the

eight methods on each dataset are listed in Tables 1–3,

respectively. In each table, the values in the bold, underline,

and italic fonts indicate the best, second-best and third-best

results, respectively.

It can be seen from Table 1 that the proposed method has

achieved the best performance on two metrics (i.e., VIFF and

NSSIM), obtained second-best performance on three metrics

(i.e., PS, QGS, and WSSIM), ranked the third place on the

STD metric on the CT-MR image dataset. To be specific, the

largest VIFF and NSSIM values and second-largest QGS and

WSSIM values of our method suggest that our fusion images

have preserved relatively more edge and structural information

from the original CT and MR images than the fusion images

of other methods. The second-largest PS value and the third-

largest STD value of our method indicate that the fusion images

of our method have slightly more textural details than those

generated by the other eight comparison methods. Since in our

method the base images of the source images are fused as their

elementwise-maximum values, thus intensity distribution of our

fusion images might be not that uniform along the gray-scale

space leading to relatively lower E and QCB values. Besides

our method, LPSR has achieved the best performance on three

metrics (i.e., SF, PS, and QCB) and the second performance on

twometrics (i.e., STD andMSSIM) and IFCNN has achieved the

best performance on three metrics (i.e., AbG, QGS, andWSSIM)

and the second performance on three metrics (i.e., SF, QCB,

and Qabf). Overall, consistent to the qualitative comparison

results, the quantitative evaluation results in Table 1 shows

LPSR, IFCNN, and our method perform slightly better than the

other seven methods on fusing the CT and MR images.
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TABLE 1 Quantitative evaluation results on the CT-MRI dataset.

Metrics
Methods

DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

SF 33.6948 28.4859 35.7214 22.6498 21.2063 34.0565 21.8423 29.4565 31.3377 32.8535

AbG 16.6486 12.8718 14.7253 12.7615 13.8349 16.7553 11.7355 14.5474 12.8055 15.1338

STD 69.4181 62.5530 86.7440 55.0136 63.6475 76.6713 76.1188 83.2861 89.8708 84.8222

QPS 41.6377 35.8390 47.8699 30.9477 29.9360 43.2325 35.6807 42.0657 44.8173 44.9017

E 5.0467 4.3135 3.7990 4.6787 4.9987 4.2717 4.5214 4.3620 3.1752 4.2705

QCB 0.5436 0.6598 0.7074 0.2906 0.1683 0.6843 0.6699 0.6562 0.6603 0.6342

VIFF 0.3539 0.2733 0.4280 0.3185 0.2002 0.4256 0.3992 0.4318 0.4539 0.4800

Qabf 0.5538 0.7319 0.7394 0.6503 0.5934 0.7598 0.7247 0.7461 0.7821 0.7170

QGS 0.8796 0.8521 0.9000 0.8088 0.7776 0.9135 0.8053 0.8580 0.8766 0.9054

WSSIM 0.7113 0.8245 0.8178 0.3525 0.1931 0.8456 0.8088 0.8266 0.8139 0.8415

MSSIM 0.8731 0.8460 0.9395 0.8736 0.6584 0.9384 0.8819 0.9095 0.8926 0.9505

TABLE 2 Quantitative evaluation results on the PET-MRI dataset.

Metrics Methods

DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

SF 33.5860 35.0668 34.5411 10.0922 6.2573 33.4545 29.6977 28.2939 34.7476 38.0866

AbG 22.2784 22.6448 22.4732 7.2796 4.5950 22.9097 20.2215 18.6718 21.5265 25.0111

STD 68.8455 74.7923 73.3129 27.8267 24.9354 72.8165 68.6928 72.6768 80.3887 79.2849

QPS 36.7423 40.6313 39.2959 13.9280 10.4126 38.0456 34.6725 35.4353 41.2365 42.5936

E 4.8620 4.9216 4.8230 4.6586 4.9882 5.1515 5.3884 5.4553 4.5049 4.8948

QCB 0.5747 0.5968 0.6075 0.3435 0.2272 0.5997 0.5989 0.3475 0.5683 0.6145

VIFF 0.4784 0.4248 0.4926 0.1779 0.0446 0.4969 0.4018 0.4702 0.4403 0.5175

Qabf 0.6443 0.7340 0.7070 0.4017 0.3277 0.7118 0.7171 0.6761 0.7346 0.7392

QGS 0.8905 0.9256 0.9123 0.7595 0.7164 0.9142 0.9015 0.8954 0.9128 0.9344

WSSIM 0.6754 0.7170 0.7027 0.3623 0.1611 0.7098 0.7052 0.6569 0.6708 0.7201

MSSIM 0.9238 0.9003 0.9463 0.6364 0.3814 0.9387 0.8983 0.9216 0.8817 0.9436

Table 2 shows that our method has achieved the best

performance on eight metrics (i.e., SF, AbG, PS, QCB, VIFF,

Qabf, QGS, and WSSIM) and the second-best performance on

twometrics (i.e., STD andMSSIM). As addressed previously, the

E metric value of our method is relatively lower than those of

other methods, due to our usage of the elementwise-maximum

strategy for fusing the base images. Overall, the quantitative

evaluation results on the PET-MR image dataset suggest our

method significantly outperforms the other nine methods by a

large margin in particular on fusing the PET and MR images.

This conclusion is also consistent to the visual comparison

results from Figure 7.

Finally, it can be seen from Table 3 that our method has

ranked the first place on six metrics (i.e., SF, AbG, QCB, Qabf,

WSSIM, and MSSIM), ranked the second place on the QPS,

VIFF, and QGS metrics, and ranked the third place on the STD

metric. Besides, DRBIF have obtained the best performance on

five metrics (i.e., STD, QPS, E, VIFF, and QGS) and the second

place on three metrics (i.e., SF, AbG, and MSSIM). These results

suggest the fusion images of our method and DRBIF have more

textural details and persevered more structural information

from the original SPECT and MR images compared to those

of the other eight methods. Moreover, the quantitative results

in Tables 1–3 indicate that our method with the local extreme

map guidance significantly outperforms that without the local

extreme map guidance. Thus, the incorporation of the local

extreme map guidance is effective for fusing the multi-modal

medical images.

Besides, in order to test the efficiency of our proposed

method, we have compared the average time cost of eachmethod

on the SPECT-MRI image dataset. All methods were evaluated

on the same computation platform with Intel Core i7-11700K

CPU and NVIDIA GeForce RTX 3090 GPU. The evaluation

results have been listed in Table 4. It can be seen from Table 4
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TABLE 3 Quantitative evaluation results on the SPECT-MRI dataset.

Metrics Methods

DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

SF 16.4700 16.4841 16.6859 8.0194 6.4764 15.6082 13.2987 17.1988 14.7571 18.5201

AbG 11.4319 11.0090 11.3386 5.7527 4.9230 11.7558 9.6794 12.7670 9.0886 13.4389

STD 40.8780 46.4581 47.2084 24.2069 39.5366 42.6516 42.9472 64.6827 49.2280 48.9651

QPS 21.4775 23.2906 23.4398 12.5464 12.7030 20.3133 18.7972 26.1537 21.7281 24.3273

E 4.4663 4.2638 4.4474 4.5896 5.6676 5.1628 5.2005 5.7996 4.3966 4.9760

QCB 0.5633 0.5926 0.5858 0.3456 0.2249 0.5838 0.5807 0.3706 0.5380 0.6000

VIFF 0.4749 0.4230 0.4873 0.2327 0.2141 0.4814 0.4411 0.7241 0.4531 0.5646

Qabf 0.5656 0.6269 0.6137 0.3996 0.2824 0.6860 0.6461 0.6501 0.5976 0.6866

QGS 0.9194 0.9332 0.9368 0.8646 0.8368 0.9353 0.9184 0.9461 0.8984 0.9411

WSSIM 0.6371 0.6509 0.6546 0.4302 0.2113 0.6512 0.6425 0.5305 0.5936 0.6548

MSSIM 0.9299 0.8973 0.9411 0.7797 0.5437 0.9475 0.9372 0.9496 0.8949 0.9556

TABLE 4 Time cost comparison.

Methods DWT GFF LPSR U2Fusion DDcGAN IFCNN EMFusion DRBIF LEGFF0 Ours

Time costs 0.0077 0.1035 0.0021 0.3019 0.7935 0.0391 0.1323 0.0997 0.0401 0.1230

that LPSR and DWT run much faster than the other methods.

As for our method, it costs about 0.1230 s to fuse a pair of

multi-modal brain images, and it is slightly faster than three

deep learning based methods including U2Fusion, DDcGAN,

and EMFusion. Therefore, in term of time cost evaluation, the

proposed method is relatively time-efficient as compared to the

other nine comparisonmethods. Moreover, in order to verify the

generalization ability of our method, we have apply it to fuse

other modalities of images, including the multi-focus images,

infrared and visual images, multi-exposure images, and green-

fluorescent and phase-contrast protein images. Figure 9 shows

that our method can well integrate the salient features of each

pair of source images into the corresponding fusion images.

Thus, the good fusion results in Figure 9 can verify the good

generalization ability of our method for fusing other modalities

of images. Overall, both qualitative and quantitative evaluation

results indicate that ourmethod performs comparably to or even

better than eight SOTA image fusion methods and owns good

generalization ability.

3.5. Limitations and future prospects

Even though the experimental results validate the advantages

of our image fusion method, there still exist several limitations

in our method. At first, our local extreme map guided image

filter is constructed on the basis of the guided image filter,

thus the feature extraction ability of our filter will be inevitably

impacted by that of the original guided image filter. Second,

compared to LEGFF0 (which uses the original guided filter

solely for feature extraction and image fusion), the time cost

of our image fusion method increases by a large margin due

to iterative calculation of local extreme maps. In future, with

the development of guided image filter, performance of our

image fusion method can be further boosted by incorporating

more advanced guided image filter. Moreover, integrating the

local extreme map guidance and the deep-learning frameworks

is another way to simultaneously improve the performance

and efficiency of the local extreme map guided image fusion

methods. Finally, the proposed image fusion method does not

contain the image denoising and registration procedures, thus

before applying our method in the clinical scenarios the pair of

multi-modal source images should be denoised and aligned first.

4. Conclusion

In this study, we propose an effective multi-modal brain

image fusion method based on a local extreme map guided

image filter. The local extreme map guided image filter can

well smooth the image, thus it can further be used to

extract the salient bright and dark features of the image.

By iteratively applying this local extreme map guided image

filter, our method is able to extract multiple scales of bright

and dark features from the multi-modal brain images, and

integrate these salient features into one informative fusion

image. Extensive experimental results suggest that the proposed

method outperforms eight SOTA image fusion methods from
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FIGURE 9

Our fusion results on other modalities of images. (A) Shows a pair of multi-focus images (Nejati et al., 2015). (B) Shows a pair of visual and

infrared images (Toet, 2017). (C) Shows a pair of over- and under-exposed images (Xu et al., 2020b). (D) Shows a pair of green-fluorescent and

phase-contrast protein images (Tang et al., 2021). (E–H) are the fusion results of (A–D), respectively.

both qualitative and quantitative aspects and it demonstrates

very good generalization ability to fuse other modalities

of images. Therefore, the proposed method exhibits great

possibility to apply in the real clinical scenarios.
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Different neuroimaging methods can yield different views of task-

dependent neural engagement. Studies examining the relationship between

electromagnetic and hemodynamic measures have revealed correlated

patterns across brain regions but the role of the applied stimulation or

experimental tasks in these correlation patterns is still poorly understood.

Here, we evaluated the across-tasks variability of MEG-fMRI relationship using

data recorded during three distinct naming tasks (naming objects and actions

from action images, and objects from object images), from the same set of

participants. Our results demonstrate that the MEG-fMRI correlation pattern

varies according to the performed task, and that this variability shows distinct

spectral profiles across brain regions. Notably, analysis of the MEG data

alone did not reveal modulations across the examined tasks in the time-

frequency windows emerging from the MEG-fMRI correlation analysis. Our

results suggest that the electromagnetic-hemodynamic correlation could

serve as a more sensitive proxy for task-dependent neural engagement in

cognitive tasks than isolated within-modality measures.

KEYWORDS

multimodal data, data fusion, fMRI, MEG, picture naming, clustering, correlation
patterns
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Introduction

Functional magnetic resonance imaging (fMRI) and
magnetoencephalography (MEG) are widely used non-invasive
neuroimaging methods that both have their own strengths.
FMRI measures hemodynamic modulations resulting from
multiple neural and vascular phenomena, and yields an accurate
three-dimensional map of brain activity with a good spatial
resolution. However, its temporal precision is modest due
to the sluggishness of the hemodynamic response. MEG
measures the magnetic field elicited by electric activity, and
possesses a temporal resolution in the millisecond scale.
The distribution of cortical activity yielded by MEG is
relatively smooth.

Thus, depending on the importance of the spatial and
temporal aspects of brain activity to the research question
at hand, either method may be the preferred option. It has
also been proposed that combining MEG and fMRI would
allow one to obtain accurate spatiotemporal maps of brain
activity (Dale et al., 2000; Henson et al., 2010). Such approaches
have, for example, utilized fMRI to spatially constrain the
MEG source-level estimates, either explicitly (Matchin et al.,
2019) or in a probabilistic manner (Cottereau et al., 2015;
Wang and Holland, 2022). Another principle that has been
applied to combine electrophysiological and hemodynamic
signals is to use the MEG or electroencephalography (EEG)
based individual measures of neural activity to model the fMRI
response instead of common regressors across subjects, leading
to increased statistical power (Renvall et al., 2012a; Iannaccone
et al., 2015). In this effort, various kinds of computational
analyses have been applied to obtain more comprehensive
spatiotemporal accounts than can be afforded by MEG or
fMRI data alone. In some instances, machine-learning based
classification analyses have been conducted separately for MEG
and fMRI data to obtain maximally accurate temporal and
spatial accounts of neural phenomena (Brandman and Peelen,
2017). Computational models have been applied to identify
electrophysiological correlates of behavioral processes which,
in turn, have been used to model the trial-level variability
within fMRI signals (Pisauro et al., 2017). Some studies have
further utilized representational similarity analyses across MEG
and fMRI data to accomplish spatially and temporally detailed
characterization of neuronal activity (Cichy et al., 2014, 2016;
Leonardelli and Fairhall, 2022). Generative models have also
been utilized to capture the state transitions in both fMRI
and MEG resting-state networks (Jiang et al., 2022). In a
clinical setting, fusion of distinct neuroimaging measures, such
as MEG and fMRI, is increasingly being used to improve
the ability to distinguish between patient groups and control
participants (Calhoun and Sui, 2016). Together, these reports
demonstrate the versatile ways that MEG and fMRI can be
merged to obtain spatiotemporally detailed accounts of neural-
level processing.

In order to use electrophysiological and hemodynamic
measures together in a principled manner, it is important
to understand the relationship between the different types
of measures. Numerous neuroimaging studies have therefore
attempted to deepen this understanding. Initially, the emphasis
was on how electrophysiological and hemodynamic techniques
would allow the identification and localization of neural
responses to the same types of stimuli (Sanders et al.,
1996; Stippich et al., 1998). Subsequently, the focus has
been more on identifying electrophysiological phenomena
that correlate with the blood-oxygen-level dependent (BOLD)
fMRI signal. In general, such studies have revealed robust
and spectrally systematic correlation patterns between neural
and hemodynamic activity (Logothetis et al., 2001; Mukamel
et al., 2005; Scheeringa et al., 2011). However, it has also
been shown that the correlation between electrophysiological
measures and the BOLD signal varies across brain regions
(Conner et al., 2011; Kujala et al., 2014). Moreover, comparisons
between large-scale networks derived from MEG and fMRI have
indicated a complex frequency-specific relationship between
fMRI and the electrophysiological connectivity (Hipp and
Siegel, 2015; Liljeström et al., 2015b). Furthermore, studies
examining the MEG and fMRI signals in identical experimental
settings from the same subjects have revealed systematic
functional differences between the electrophysiological and
BOLD responses (Liljeström et al., 2009; Vartiainen et al., 2011).
Accordingly, it is commonly accepted that when integrating the
temporally and spatially accurate views of neural processing
from MEG and fMRI, it is crucial to consider the complex nature
of the origins of hemodynamic fluctuations (Logothetis, 2008;
Ekstrom, 2010; Lauritzen et al., 2012; Whitman et al., 2013).

One aspect that has received less attention in combining
MEG and fMRI measures both for obtaining detailed
spatiotemporal accounts as well as investigating neurovascular
coupling has been the role of the applied stimulation or
experimental tasks themselves. Naturally, a broad range of
stimuli from different sensory modalities as well as various
kinds of cognitive experiments have been applied. However, the
main goal in those explorations has been to induce detectable
signals in different neural systems across the cortex and to
develop approaches that maximize the association between
the two signal types (Lankinen et al., 2018), not to examine
how the different stimuli and tasks might influence the joint
modulation of electrophysiological and hemodynamic signals.
Yet, it has been shown that the local neural and hemodynamic
signals can be partially decoupled (O’Herron et al., 2016),
and that the relationship between electrophysiological and
hemodynamic signals depends on the correlation between
the local inputs (Butler et al., 2017), effects that could cause
variability in the MEG-fMRI correlations across stimuli and
tasks. In the present study, we sought to explicitly utilize the
inherently complex relationship between BOLD fluctuations
and modulations of electrophysiological brain activity as well
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as the possible task-induced variability in this relationship to
track and dissociate the neural engagement of different brain
regions across distinct cognitive tasks. We asked whether any
differences in neural processing related to distinct picture
naming tasks could be highlighted through MEG-fMRI fusion
as compared to isolated within-modality measures. Specifically,
we investigated the variability of MEG-fMRI correlation
patterns across three naming tasks (naming objects and actions
from action images, and objects from object images) using a
dataset where MEG and fMRI data were recorded from the same
participants in identical experiments (Liljeström et al., 2009).
The correlation patterns were obtained by first computing the
MEG-fMRI correlation separately for each brain region, time
window and frequency band, and by then applying variance
minimizing hierarchical clustering to find clusters of similarly
correlated brain areas. The approach allows the grouping of
both task-invariant and task-dependent correlation patterns
across brain regions regardless of their spatial adjacency.
We predicted that our approach would reveal both types of
correlation patterns and, critically, facilitate identification
of neural engagement that could not be detected using one
imaging modality alone.

Materials and methods

Subjects

Magnetoencephalography and fMRI data were collected
from 10 healthy (nine right-handed, one ambidextrous), native
Finnish-speaking subjects (four females, six males; ages 20–
33 years). Informed consent was obtained from all subjects, in
agreement with a prior approval of the Local Ethics Committee
(Hospital District of Helsinki and Uusimaa). The subjects did
not report any neurological disorders, and all had normal or
corrected-to-normal vision. All methods were conducted in
accordance with the guidelines of the Finnish National Board
on Research Integrity.

Experimental design

The task was to silently name pictures of objects or actions
presented as simple black line art on a gray background. There
were two categories of drawings. In the first category, an
action performed with an object was depicted, whereas in the
second category, a single object was shown. To achieve the
same visual complexity as in action images the object images
were constructed from the action images by dissolving the
action figures into non-meaningful lines in the background.
The experiment consisted of three different cognitive tasks:
Object naming from object images (100 trials), action naming

from action images (100 trials), and object naming from action
images (100 trials). The experiment had a blocked design
with 10 stimuli of the same task presented within each 30-
s block. Each image was shown for 300 ms at 1.8–4.2 s
intervals. Each block started with an instruction indicating
the task for the block. The task blocks were separated by
21-s rest blocks. The experiment was divided into two runs,
with different sets of stimuli in the two runs (150 images per
run, 50 per task). The experimental design was identical in
MEG and fMRI leading to two matched runs per subject. The
order of the three naming conditions was randomized in both
runs and silent naming was used to avoid muscular artifacts.
A complete description of the experiment can be found in
Liljeström et al. (2009). The design permits identification of
effects that are related to the naming task (comparing action
naming to both object naming conditions) and to the picture
type (comparing object-only images to both action image
conditions). Behaviorally, (overt) object naming from action
images leads to longer reaction times than for naming objects
from object images or actions from action images (Liljeström
et al., 2015a), indicating that increased effort or additional
processing is required when naming objects from action images
compared to the two other tasks. It is therefore of interest also to
compare the object naming from action image condition to the
other tasks.

Functional magnetic resonance
imaging data collection

The MRI data were collected at the Advanced Magnetic
Imaging Centre (Aalto University) with a Signa VH/i 3.0 T MRI
scanner (GE Healthcare, Chalfont St Giles, UK). Anatomical
MRIs were acquired using a T1-weighted 3D spoiled gradient-
echo sequence. Functional MRI data were collected using a
single-shot gradient-echo planar imaging sequence (TR 3 s,
TE = 32 ms, FA = 90, slice thickness 3 mm, in-plane resolution
either 3 mm × 3 mm, or 3.4 mm × 3.4 mm). The first five
functional volumes were discarded from the analysis.

Magnetoencephalography data
collection

Magnetoencephalography data recordings were conducted
using a 306-channel whole-head device (Elekta Oy, Helsinki,
Finland) in a magnetically shielded room. The data were
bandpass filtered to 0.03–200 Hz and sampled at 600 Hz. The
temporal extension of the Signal Space Separation method
(Taulu and Simola, 2006) was applied in order to suppress
contributions from external artifacts. Eye movements were
monitored with electro-oculogram (EOG).
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Functional magnetic resonance
imaging and
magnetoencephalography data
analysis

The overview of the analysis pipeline including key formulae
for the conducted computations is presented in Figure 1.
First, to facilitate the across-subjects evaluation of MEG-fMRI
correlation, the data of each subject were transformed to
an average brain via a surface-based transformation (Fischl
et al., 1999) using Freesurfer 5.3 (Fischl, 2012). Before the
transformation, the individual fMRI data were realigned to the
first volume and susceptibility artifacts caused by movements
were corrected for using SPM8 (Wellcome Department of
Cognitive Neurology, London, UK). The mean image of the
functional series was used for co-registering the fMRI data with
the individual anatomical images. For each vertex in the average
brain, the fMRI values of a spatially matching voxels were then
taken to represent the fMRI activity at the cortical surface level.

The vertex-level data were averaged within 188 parcels
covering the entire cortical surface (see e.g., Figure 3). This
parcellation was based on the automatic anatomic parcellation
of the human cortical gyri and sulci consisting of 144 parcels
(Destrieux et al., 2010) that was subsequently computationally
modified to form a parcellation that would be more suitable for
the analysis of MEG data. Specifically, the parcellation scheme
was obtained by applying a PCA algorithm implemented in
MNE-python (Gramfort et al., 2013) for splitting parcels defined
by the automatic anatomical labeling scheme of the cortical
surface (Destrieux et al., 2010). The splitting yields parcels that
are relatively symmetrical and small enough to be relatively
homogeneous with respect to local activations. Notably, the
splitting was based solely on the anatomical information without
utilizing functional data, leading to a parcellation that is less
optimized (Thirion et al., 2014) but more generalizable to
multiple datasets. While the exclusively anatomical parcellation
obtained via splitting the original parcels using spatial PCA
does not ensure an exact alignment between MEG and fMRI
responses and the parcels, it allows better separation of
responses that are spatially distinct than when using the original
Destrieux atlas. From the entire parcellation consisting of 188
parcels, regions that are prone to artifacts or signal loss in
either of the imaging methods (anterior parts of the frontal lobe,
deepest parts of the medial surface, and inferior parts of the
temporal lobe) were omitted. The set of parcels used in the final
analysis consisted of 70 parcels per hemisphere.

In the fMRI analysis the goal was to determine, for each
fMRI run and experimental condition, the BOLD signal change
with respect to rest within each parcel. This was accomplished
by first high-pass filtering the parcel-level representation of
the fMRI data in SPM8 with a cut-off frequency of 1/510 Hz.
Baseline effects were removed using a rest block (6 volumes)
that preceded each stimulus block (11 volumes), thus removing

slow drifts taking place during the scanning runs. For each fMRI
block and parcel, the data were averaged across the collected
11 volumes. The data were then normalized by subtracting the
mean activity across all blocks and tasks from the block and
task specific values, and by dividing these values by the standard
deviation of the whole run’s data. The normalization was done
separately for each subject to remove inter-subject differences in
signal scales and means. Subsequently, within each run, blocks
of each task were averaged per participant. For the correlation
analysis, we thus obtained a total of 20 fMRI values per task (10
participants, 2 runs).

Magnetoencephalography data estimates were obtained for
the same parcels in six different frequency bands: Theta (4–
7 Hz), alpha (8–13 Hz), low beta (15–21 Hz), high beta (23–
29 Hz), low gamma (36–46 Hz), and high gamma (54–90 Hz),
from 100 to 800 ms with respect to stimulus presentation.
The gamma-band analyses were conducted in two separate
bands to avoid including 50 Hz line noise into the estimates.
The estimation was done using event-related Dynamic Imaging
of Coherent Sources (Laaksonen et al., 2008), a beamforming
technique in the time-frequency domain. Here, only data from
the 204 gradiometers were used. In the estimation, a surface-
based grid consisting of 5,122 points was first created in the
average brain with MNE (Gramfort et al., 2014) and transformed
to each individual’s anatomy using Freesurfer 5.3 (Fischl, 2012).
Brain activity estimates for each task and block were then
computed for each grid point in the six different frequency
bands, in 22 partially overlapping 200-ms time-windows (33-
ms time difference between two successive time-windows). The
200-ms window length was chosen as it was the shortest length
that allowed the accurate estimation of data covariance and
thus brain activity given the signal-to-noise ratio (SNR) and
number of trials across experimental tasks within the present
dataset (see, e.g., Brookes et al., 2008). This window length is
likely to be sufficiently short for exploring the sustained neural
phenomena in higher-order cortical regions but could be sub-
optimal for determining the temporally intricate early processes
within the visual hierarchy. A baseline value was computed
from the prestimulus interval −200 to 0 ms, separately for each
block and grid point. Trials in which the amplitude of either the
vertical or the horizontal EOG exceeded 150 µV were rejected.
The parcel-level values were obtained by calculating, in each
grid point, the difference between the post-stimulus values and
the corresponding baseline values (divided by the same baseline
values) and computing the average across all these baseline
relative changes within each parcel. The parcel values were
normalized separately for each subject, run and frequency band.
This was done similarly as for the fMRI data, by subtracting the
average activity across all blocks and tasks from the block and
task specific values, and by dividing these values by the standard
deviation of the data from the entire run. The run-level data
were then obtained by averaging the block-specific data within
each run. Similarly to the fMRI data, we thus obtained a total
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FIGURE 1

An outline of MEG and fMRI analysis pipelines, displaying the most important steps and their order. Gray boxes show essential normalizations
that aim to equalize the measures obtained with the two modalities.

of 20 MEG values per task (10 participants, 2 runs) for the
correlation analysis.

Correlation analysis and clustering

We computed a vector of MEG-fMRI correlation estimates
for each parcel using Spearman’s rank correlation (see Figure 2).
Within a parcel, separate correlations were computed for all

tasks, time intervals and frequency bands (3 tasks, 22 time-
windows, 6 frequency bands: in total 396 MEG-fMRI correlation
estimates per parcel). Each of these estimates was computed
based on 20 MEG and 20 fMRI observations (10 subjects and
2 runs). We applied an agglomerative (merging) hierarchical
clustering algorithm on our Spearman’s rho value vectors to
find clusters of similarly correlated regions. For this, we used
the Ward minimum variance method (Ward, 1963) that aims
to minimize the within-cluster variance, leading to a clustering
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where correlation patterns inside a cluster are as similar as
possible [function linkage(. . .,“ward”) in Matlab]. Information
about hemispheres was not passed to the clustering algorithm.
Ward’s method measures Euclidean distances between cluster
centroids during its merging steps. The clustering algorithm
produces a hierarchical cluster tree structure that describes the
merging process. The leaves of the tree can be reordered without
changing the structure itself. The optimal leaf order is such
that the similarities of adjacent leaves are maximized [function
optimalleaforder() in Matlab]. The final clustering allows for
visual comparison of the correlation patterns across the three
tasks and different frequency bands.

To evaluate the possible differences in correlations across
the tasks, we estimated the 99% confidence limits for each
task across the identified clusters, separately for left and right-
hemisphere parcels, using bootstrapping (Efron, 1979). The
bootstrapping was conducted by re-sampling the data 10,000
times, by computing the new MEG-fMRI correlation values for
each sample, and by estimating the 99% confidence limits for

each task from the obtained distribution. In the re-sampling,
80% of the data were randomly selected at each round. In this
evaluation, we only considered those clusters and frequency
bands in which at least one of the three tasks showed significant
MEG-fMRI correlation (p < 0.05, Bonferroni-corrected over
time points).

To compare a joint analysis approach and a more
conventional approach utilizing a single brain imaging method
alone, we also evaluated the differences in the MEG activity
patterns between the tasks with paired t-tests (p < 0.05,
Bonferroni-corrected over time points) for the identified
clusters. This analysis was performed with the same temporal
and spectral resolution as the MEG-fMRI correlation analysis
and was, thus, only applicable to MEG; fMRI lacks the temporal
resolution that would be needed for comparison of fMRI activity
and MEG-fMRI correlation modulations. The comparison was
therefore restricted to MEG activity and MEG-fMRI correlation
patterns. Potential differences in the temporal-spectral aspects
of the findings between the two approaches would reveal

FIGURE 2

Matrix of correlations between MEG and fMRI for the three experimental conditions (separated with thick white vertical lines). Each
condition-related submatrix is divided into six frequency bands: Theta, alpha, low beta, high beta, low gamma, and high gamma, from left to
right (columns separated by thin vertical gray lines). Each frequency band consists of a sequence of 22 time points (sub-columns). All 140 brain
regions (70 per hemisphere) are displayed on the y-axis, ordered with respect to the optimal leaf order of a cluster tree. This leads to a solution
where distances between similarly behaving brain regions are minimized. The brain regions (rows) are divided into 17 clusters (C1–C17,
separated by horizontal thin gray lines; see Figure 3 for visualization of the areas on MRI). The clustering is the same for all three conditions. The
color indicates the MEG-fMRI correlation strength (–1. . .+1), see scale on the right.
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unique results that can be achieved only with one of the
approaches, but not both.

Results

Clustering of correlation patterns

For clustering purposes, a matrix was constructed (see
Figure 2), where each row lists the MEG-fMRI correlation
values across the different frequency bands, time points and
tasks. The clustering algorithm enables identification of clusters
in which all three tasks behave similarly, but also clusters
in which the tasks behave differently. In Figure 2, the rows
are reordered according to a full cluster tree so that similar
rows are close to each other. The ordering reveals salient
MEG-fMRI correlation patterns, with consistent negative and
positive correlation patterns across brain regions. The selected
clustering consists of 17 clusters (Figure 3), chosen based on
an appropriate level of spatial separation across parcels. With
a smaller number of clusters, functionally distinct brain regions
remain in larger shared clusters, whereas with a larger number
of clusters single parcels start to form clusters by themselves.

Accordingly, with a smaller set of clusters, regions with
functionally distinct activity profiles would be merged together,
whereas with a larger set of clusters individual parcels with
very similar activity profiles would be segregated into distinct
clusters. In general, the clusters were spatially concentrated,
indicating that close-by regions show more similar MEG-fMRI
correlation patterns than regions that are further apart. The
clustering (Figure 3) agreed well with the known functional
division of cortical processing related to picture naming,
revealing, e.g., components representing both lower (C8) and
higher-order (C16) visual, speech related motor/premotor (C5
and C7), and perisylvian language related processing (C9).
In particular, lower-order regions involved in the basic visual
processing formed clusters (C8, C11, C16, and C17) that did
not include any higher-order cortical areas, whereas the clusters
containing higher-order regions generally represented distinct
neural functions associated with different cortical lobes and also
with more fine-grained differences (e.g., separation of inferior
vs. superior frontal cortices and lateral vs. medial cortical
structures). Many of the identified clusters (C1, C4, C8, C9,
C11, C12, C15, and C17) showed marked symmetry across
the hemispheres, but temporal, central and inferior frontal
cortical areas (e.g., C2, C5–C7, and C13–C14) critically involved

FIGURE 3

Clustering of brain regions. Level 17 of a clustering tree (used in the analyses). The deep medial and anterior frontal areas plotted in light gray
were omitted from the analysis. Clusters are ordered according to the optimal leaf order and marked with labels C1–C17 (cf. Figure 2).
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in picture naming tended form clusters exclusively within
individual hemispheres.

Magnetoencephalography-functional
magnetic resonance imaging
correlation differences between tasks

For the clusters, we determined significant differences
in MEG-fMRI correlation spectra between experimental
conditions, across multiple frequency bands and time-windows
(see Table 1 and Figure 4). We focused on identifying effects
where one of the conditions differed from the other two
conditions: (i) naming actions differed from both object naming
conditions (different tasks; Figure 4, rectangles with solid
orange line), (ii) naming objects from object pictures differed
from naming objects or actions from action pictures (different
images; Figure 4, rectangles with dotted black line), and (iii)
naming objects from action pictures differed from both naming
objects from object pictures and naming actions from action
pictures (different reaction times; Figure 4, rectangles with solid
gray line). Correlations were examined separately for parcels
within each hemisphere.

Modulations of MEG-fMRI correlation across-tasks were
detected predominantly in the left hemisphere. Different picture
types elicited distinct correlation patterns in the occipital and
parietal cortex, within the alpha and gamma frequency bands
(left-hemisphere clusters C1, C3, and C13; see Figure 5A
and Table 1). Between different naming tasks, correlations
differed along the central sulcus and the posterior temporo-
parietal cortex, mainly in the left hemisphere (left-hemisphere
clusters C5, C6, and C10 and right-hemisphere cluster C2),
particularly in the gamma-range. Distinct correlation patterns
for the condition in which the participants named objects from
action images as compared to the other two categories were
observed exclusively in the left hemisphere and included brain
regions within the posterior temporo-parietal cortex (cluster
C10) as well as within the occipital cortex (clusters C11 and
C17), with contributions from the theta band as well as low and
high gamma-bands.

Task-invariant
magnetoencephalography-functional
magnetic resonance imaging
correlation patterns

Figures 5B Shows the correlation patterns for two clusters
within the occipital cortex (clusters C16 and C17). Parcels in
the left-hemisphere cluster C17, covering the middle occipital
cortex, and those in the right-hemisphere cluster C16, covering
the medial and lateral parts of the occipital cortex, showed a

significant negative MEG-fMRI correlation at low frequencies,
but not in the gamma-range.

Magnetoencephalography activation
vs.
magnetoencephalography-functional
magnetic resonance imaging
correlation

Across the 17 identified clusters, the time-frequency
windows in which MEG-fMRI correlation showed task-
dependent modulation were highly distinct from the time-
frequency windows in which MEG activity was modulated
(Figure 6). Modulation of correlation was observed mainly
in early time-windows (<500 ms), whereas modulations of
activity (with band-limited power as measure) were exclusively
detected more than 500 ms after stimulus onset. In the frequency
domain, the MEG activity modulations were concentrated to
the theta, alpha and (low and high) beta bands, whereas
the MEG-fMRI correlation effects also showed a prominent
contribution of gamma-band neural activity. No significant
MEG-fMRI correlation effects were detected in the high beta
band. Significant differences in activation were detected between
object naming from object vs. action images, as well as for
object naming from object images vs. action naming from
action images; however, no differences were observed between
object vs. action naming from action images (Figure 7). These
effects were particularly prominent within the left hemisphere,
predominantly in clusters with parcels in the parietal lobe. No
significant effects of MEG signal changes were detected between
object and action naming from identical images, in contrast to
the MEG-fMRI correlation analysis which identified several left-
hemisphere clusters in which action naming differed from the
other two conditions (C2, C5, C10, and C13, Figure 5).

Discussion

We have shown that correlation between MEG and fMRI
contains information that distinguishes between the three
naming tasks. This finding aligns with observations that have
demonstrated trial and stimulus dependent variability in the
relationship between electrophysiological and hemodynamic
activity within the visual cortex (O’Herron et al., 2016; Butler
et al., 2017). Furthermore, our results demonstrate that the
time-frequency windows in which the MEG-fMRI correlation
patterns differ between the tasks are distinct from the windows
showing task effects in a separate MEG-based analysis of
modulation of neural activity. Interestingly, the differences in
the correlation patterns between tasks were typically observed
in markedly transient time-windows, highlighting the dynamic
nature of the neural phenomena dissociating the different
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TABLE 1 Significant effects detected with the given clusters, frequency bands, and significant time intervals.

Cluster Hemisphere and primary location Frequency band Time (ms) Confidence interval

Correlation patterns specific to object images

C1 Left, superior parietal cortex High gamma 300–600 99.9%

C3 Left, inferior parietal cortex and precuneus Alpha 200–430 99.9%

C13 Left, cuneus and anterior frontal cortex Alpha 100–370 99.9%

Correlation patterns specific to action naming

C2 Right, superior temporal and inferior parietal cortex Low gamma 100–300 99%

C5 Left, inferior precentral gyrus Low gamma 230–430 99.9%

C6 Left, pre- and postcentral gyrus Low gamma 300–500 99.9%

C10 Left, posterior temporo-parietal cortex Low beta 200–470 99.9%

Correlation patterns specific to naming objects from action images

C10 Left, posterior temporo-parietal cortex Low gamma 230–430 99%

C11 Left, precuneus and occipital pole High gamma 200–400 99%

High gamma 300–500 99.9%

C17 Left, middle occipital cortex Theta 330–570 99%

As significances are computed over 200-ms time-windows, it determines the lower bound for the size of significant time window. The correlation significance is Bonferroni corrected
(p = 0.05) over 22 time-windows.

FIGURE 4

Magnetoencephalography-Functional magnetic resonance imaging correlation patterns divided into clusters (row labels) and hemispheres (left
and right panels). The three rows in each cluster show correlation between fMRI and MEG for the three experimental conditions: from top to
bottom, object naming from object images, action naming from action images and object naming from action images, over time in the different
frequency bands (column labels). Significant correlations (p = 0.05, Bonferroni-corrected over the 22 time points) are marked as thicker parts of
stripes. Rectangles indicate areas where the 99% confidence intervals of one condition do not overlap those of the other two conditions.
A salient difference between naming tasks (naming actions vs. objects) is denoted by an orange rectangle, a difference between two picture
types (action vs. object stimulus) is indicated by a dotted black rectangle, and a difference specific to naming objects from action images vs. the
other two tasks with a gray rectangle. A rectangle is shown only when there is also a significant MEG–fMRI correlation inside the rectangle.
Clusters C3, C5-C7, and C10 have parcels only in the left hemisphere (blank gray bars in the right-hemisphere).
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FIGURE 5

Magnetoencephalography-functional magnetic resonance imaging correlation as a function of time. For each cluster, the top row shows the
correlation spectra for all tasks (naming object from action pictures in gray; naming actions in orange; and naming objects from object pictures
in dotted black), and the bottom row the 99% confidence intervals for the three tasks (correspondingly gray, orange and a striped black pattern).
In the correlation spectra, the colored squares indicate time instances at which the correlation is significant (p = 0.05, Bonferroni-corrected over
time). (A) Task-dependent instances: One task shows significant correlation and differs from the other two tasks (non-overlapping confidence
bounds) at a given time. White areas between the confidence intervals of experimental conditions indicate time instances of significantly
different MEG-fMRI correlation between two or more conditions (p = 0.01, uncorrected). (B) Task-invariant instances: Clusters 16 and 17
suggest consistent negative correlation between MEG and fMRI at lower frequencies, among all experimental conditions, in the occipital cortex.
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FIGURE 6

Temporo-spectral uniqueness and overlap in modulation of rhythmic activity and MEG-fMRI correlation. Timing with respect to picture
presentation is plotted on the x-axis, and the different frequency bands on the y-axis. Time-frequency windows that showed differences
between the conditions only for MEG band-limited power (light gray), only for MEG-fMRI correlation (dark gray) or both (black). Values averaged
across all contrasts.

picture naming conditions also at the level of MEG-fMRI
correlations. Notably, such correlation differences were not
specific to any frequency bands but extended to a wide
range of distinct oscillations (theta, alpha, beta, and gamma).
On the other hand, task-invariant correlations especially in
the theta- and alpha-bands tended to be more sustained,
attesting to the distinct nature of task-dependent vs. task-
invariant correlation patterns. From amongst the 17 identified
clusters, nine showed significant differences between the three
experimental conditions whereas no differences were observed
in the other clusters covering, in particular, more anterior lateral
frontal areas and primary visual cortices. Significant differences
were observed for all contrasts in the parietal cortex, with more
superior effects for different images and more inferior effects
for different tasks and conditions with different reaction times.
Differences in the MEG-fMRI correlation patterns were also
observed for different images in the anterior medial frontal
cortex and for different tasks in the post- and precentral gyri.
Notably, the involvement of the parietal cortex was detected
also in the analyses focusing on the MEG and fMRI activity,

whereas the role of the anterior medial frontal cortex and the
post- and precentral gyri in dissociating the different naming
conditions was not observed in these studies (Liljeström et al.,
2008, 2009). Our results thus illustrate that the multimodal
correlations yield novel information about the task-dependent
neural engagement that cannot be detected using one imaging
method alone.

Detection of neural engagement using
multiple neuroimaging methods

Task-dependent processing in neural circuits is a complex
phenomenon that is supported by a wide range of mechanisms
involving, e.g., electric, metabolic, and neurotransmitter activity
(Singh, 2012). Measuring any of these processes yields one
particular view of the full activity of the circuit. As it is not
feasible to simultaneously record all possible processes related
to the engagement of a circuit, its full activity remains a variable
that may be estimated using specific proxies. As individual
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FIGURE 7

Significant results in the MEG activation analysis for each cluster. For each cluster the number of significant time-frequency bins are indicated as
the percentage of all possible time-frequency bins (in total 132 bins from 6 frequency bands and 22 time-windows). The bars are color-coded
according to the lobe to which the majority of the parcels belong to. The clusters are ordered according to the total percentage of significant
time-frequency bins in all tasks (left and right- hemispheres separately). Note that there were no significant differences between neural activity
during Object naming from action images and action naming, whereas for the other two contrasts where the stimulus contents were different
multiple clusters showed significant differences.

proxies are noisy and give incomplete information, it may not
be possible to accurately estimate the full brain activity in
a region. Thus, the observed activation patterns determined
by an individual proxy may not reveal any observable brain
activity even if the neural circuit, in reality, participates in
task-dependent processing. The same holds when the goal is
to determine differences between levels of neural engagement
between different experimental conditions.

It has been proposed that the complexity of the human brain
coupled with the incomplete measurements make multimodal
data fusion critical for identifying detailed, individual-level
properties of brain anatomy and function (Calhoun and Sui,
2016). Multimodal data-fusion based approaches have proven
particularly useful for combining genetic mapping with other
measures in the study of brain disorders (Purcell et al., 2009;
Pearlson et al., 2015) as well as for evaluating the variability of
brain anatomy and function in healthy subjects (Hardoon et al.,
2009; Le Floch et al., 2012; Renvall et al., 2012b; Salmela et al.,
2016) and predicting the subjects’ age (Engemann et al., 2020).
So far, fusion of different neuroimaging data-types has been
applied for identifying (in individual brain regions), e.g., the
neural underpinnings of the BOLD response (Scheeringa et al.,

2011; Kujala et al., 2014), also at the laminar level (Scheeringa
et al., 2016; Warbrick, 2022), the effects of anatomical properties
on functional data (Sepulcre et al., 2009; Schwarzkopf et al.,
2012), or the effects of GABAergic inhibition on fMRI and
MEG responses (Muthukumaraswamy et al., 2009; Kujala et al.,
2015). While it has been proposed that by combining the
temporally/spectrally and spatially sensitive measures of neural
engagement provided by MEG and fMRI one could obtain a
spatiotemporally accurate picture of brain activity (Dale et al.,
2000), such data fusion has rarely been applied. Moreover,
this type of combination has typically been used only in the
primary sensory and motor neural systems (Schulz et al., 2004;
Whittingstall et al., 2007; Stevenson et al., 2012; Renvall et al.,
2012a; Cichy et al., 2014). Recently, similarity-based fusion
methods combining MEG and fMRI have proven useful in
learning relationships between visual objects and how they are
represented within the visual system (Cichy et al., 2016) as well
as within the semantic system (Leonardelli and Fairhall, 2022).
In cognitive tasks, the improvement of SNR through group-level
analysis (increased amount of data) may be limited by notable
inter-subject variability, leading to a failure to detect the true
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engagement of neural circuits, even when multiple proxies are
combined.

In the present study, we aimed to develop and apply a
data-fusion based approach that would explicitly utilize the
inter-subject and inter-block variability in combining different
measurements (MEG and fMRI) to build a more sensitive
and accurate picture of the neural engagement. Specifically,
we used the correlation between MEG estimates of induced
activity in different time-frequency windows and BOLD-fMRI
estimates of hemodynamic activity to determine the neural
circuits that are engaged in a distinct manner in three picture
naming tasks. The MEG and fMRI proxies of neural activity
can occasionally show salient negative or positive correlation
when the brain activity is strong enough to be detected. In
areas where one imaging method yields only noise and the
other a good signal, task-wise correlations cannot be significant.
To detect activity in a neural circuit, our approach requires
that there is a causal connection between the engagement of
the circuit and the two proxies (MEG and fMRI). Notably,
unlike in typical neuroimaging studies, the sensitivity of the
approach to detect neural engagement is in fact increased
if the subjects or the blocks show considerable variability,
given that the assumption of causality is met. In general,
our approach as well as other approaches that profit from
such variability are likely to be beneficial in cases where the
SNR is low and where there is large individual variance in
elicited neural processes. Hence, this type of approaches should
prove useful in detecting neural engagement particularly in
cognitive tasks.

Multimodal correlation as a spatially,
temporally and spectrally unique view
on neural engagement during picture
naming

In the present study, we applied the developed MEG-
fMRI correlation based method to a picture naming data set
that had been previously analyzed separately using traditional
MEG (evoked responses) and fMRI group-level statistical
approaches for identification of neural activity related to
different naming tasks (action vs. object naming) (Liljeström
et al., 2009) as well as identification of task-relevant functional
networks (Liljeström et al., 2015a). Several studies have shown
a negative correlation between MEG and fMRI at lower alpha
and beta frequencies, and a positive correlation within the
gamma frequency range, especially in low-level sensory cortices
(Logothetis et al., 2001; Mukamel et al., 2005; Scheeringa et al.,
2011). In higher-level cortical regions and in cognitive tasks
this relationship is more variable (Conner et al., 2011; Kujala
et al., 2014). Moreover, analysis of functional networks has
indicated a complex frequency-dependent relationship between
MEG- and fMRI-derived networks that varies across-tasks

(Liljeström et al., 2015b). In the present study, we observed task-
invariant negative correlations between MEG and fMRI within
the alpha and beta frequency bands in occipital and parietal
regions, in line with previous studies (Logothetis et al., 2001;
Scheeringa et al., 2011).

Our main goal was, however, to utilize the variability
in the relationship between MEG and fMRI and identify
clusters that manifested a task-varying relationship in MEG
and fMRI correlation. This correlation-based approach revealed
significant differences between the conditions in which the
activation based analysis had not done so. Within the left
parieto-temporal junction, along the central sulcus, and the
inferior frontal cortex, the correlation pattern was different
between the action naming condition and the two object
naming conditions. In contrast, MEG activation analysis either
with induced responses in the present study, or previously
with evoked responses (Liljeström et al., 2009), did not reveal
significant differences between action and object naming from
identical images. These effects demonstrate that the correlation-
based analysis can reveal neural engagement in functionally
relevant circuits that are not detected in conventional activation-
based analyses.

The most notable new insights revealed by the present
approach were the spectral and temporal patterns of
electrophysiological activity. For example, the correlation
patterns differed in the parieto-occipital cortex for the
conditions where the stimulus content was different. In the
present analysis of the modulation of induced activity, effects
were detected in late time-windows (>500 ms), whereas
the correlation patterns revealed differences primarily in
notably earlier intervals (200–400 ms). These findings suggest
that the modulation of alpha/beta activity is distinct for
different stimulus contents, a finding that could not be inferred
from traditional analysis of MEG activation; the results also
demonstrate that these early differences are linked with the
BOLD activity that is measured in those cortical regions.
Secondly, the correlation-based analysis revealed, in contrast
to analysis of MEG induced activity, prominent effects in the
gamma-band. This suggest that the present multimodal analysis
may help reveal the role of high-frequency neural activity
in cognitive processing that is often difficult to detect with
non-invasive techniques.

Detection of cortical activity using
clustering of
magnetoencephalography-functional
magnetic resonance imaging
correlation patterns

In the present study, we computed the correlation between
individual-level, run-wise MEG and fMRI recordings of the
same experimental conditions from the same subjects. The goal
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was to develop an approach that would utilize the correlation
between the two distinct proxies (MEG and fMRI) of brain
activity to enhance the sensitivity of detecting the engagement of
neural circuits in cognitive processing. The approach thus aims
to capture effects related to the stimulus- and state-dependent
input correlations and differences in the propagation of vascular
dilation between neural columns (O’Herron et al., 2016; Butler
et al., 2017) that would manifest as differences in the MEG-
fMRI correlation patterns across experimental tasks. It should,
however, be noted that our approach does not directly tell
whether the circuit is more or less engaged during a task; the
correlation-based measure can only reveal that the relationship
between the applied proxies has changed. For example, our
two proxies (MEG and fMRI) can be negatively or positively
correlated, without indicating whether the amount of activity
in the circuit has increased or decreased compared to the
other conditions. In areas where one imaging method reveals
only noise and the other detectable cortical activation, the
task-wise correlations should not be significant. Our clustering
approach corresponds to a conditioning which enforces the
method to consider only those correlations that are related to
the performed cognitive tasks. In the optimal situation, both
proxies would have similar temporal granularity but, due to the
highly integrative nature of the fMRI signal, precise temporal
information was present only in the MEG signals. Nonetheless,
we can track and utilize the temporal information in the MEG
signals to dissociate even subtle effects in the integrative fMRI
signals and, thereby, discover also small differences between
cognitive tasks.

Spatially, our clustering-based analysis was designed to
identify robust, large-scale effects in the correlation patterns
that were specific to the given three naming tasks. Thus,
the clustering results may not necessarily obey conventional
knowledge about the locations of task-relevant functional brain
regions. The reason is that the clustering is constructed using
a very limited set of tasks. If these tasks do not distinguish
between certain brain regions, then those regions will fall into
the same cluster. Moreover, if the spatial extent of a cluster
is too large, even a relatively strong signal may be masked by
other contradicting signals or noise originating from the same
cluster. If a cluster is too small, weak but significant signals may
disappear as the region of activation has been split into parts.
Some of the clusters are necessarily non-informative because
none of the brain regions—including inactive regions—are left
out in a clustering process.

In our study, we let the method cluster both hemispheres
together. Thus, it is also possible that in some cases weaker,
interesting signals might have been masked by stronger signals
from the other hemisphere. Such a scenario could be avoided
by conducting separate clustering for each hemisphere; however,
this might hide some of the inter-hemispheric effects that were
detected with the present approach.

Conclusion

We introduced a correlation-based data-fusion analysis
pipeline that utilizes two proxies of brain activity to enhance
sensitivity for detecting the engagement of neural circuits
in cognitive processing. Our results demonstrate that the
approach discovers spatially, spectrally, and temporally
unique task-specific information on cortical processing during
picture naming. Multimodal data fusion based on correlations
between electromagnetic and hemodynamic activity can thus
reveal task-dependent neural engagement that may not be
detected using the proxies of brain activity offered by one
imaging method alone.
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Introduction: Electroencephalographic (EEG) data quality is severely

compromised when recorded inside the magnetic resonance (MR)

environment. Here we characterized the impact of the ballistocardiographic

(BCG) artifact on resting-state EEG spectral properties and compared the

effectiveness of seven common BCG correction methods to preserve EEG

spectral features. We also assessed if these methods retained posterior

alpha power reactivity to an eyes closure-opening (EC-EO) task and

compared the results from EEG-informed fMRI analysis using different BCG

correction approaches.

Method: Electroencephalographic data from 20 healthy young adults were

recorded outside the MR environment and during simultaneous fMRI

acquisition. The gradient artifact was effectively removed from EEG-fMRI

acquisitions using Average Artifact Subtraction (AAS). The BCG artifact was

corrected with seven methods: AAS, Optimal Basis Set (OBS), Independent

Component Analysis (ICA), OBS followed by ICA, AAS followed by ICA,

PROJIC-AAS and PROJIC-OBS. EEG signal preservation was assessed by

comparing the spectral power of traditional frequency bands from the

corrected rs-EEG-fMRI data with the data recorded outside the scanner. We

then assessed the preservation of posterior alpha functional reactivity by

computing the ratio between the EC and EO conditions during the EC-EO

task. EEG-informed fMRI analysis of the EC-EO task was performed using

alpha power-derived BOLD signal predictors obtained from the EEG signals

corrected with different methods.

Results: The BCG artifact caused significant distortions (increased absolute

power, altered relative power) across all frequency bands. Artifact

residuals/signal losses were present after applying all correction methods.

The EEG reactivity to the EC-EO task was better preserved with ICA-

based correction approaches, particularly when using ICA feature extraction
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to isolate alpha power fluctuations, which allowed to accurately predict

hemodynamic signal fluctuations during the EEG-informed fMRI analysis.

Discussion: Current software solutions for the BCG artifact problem offer

limited efficiency to preserve the EEG spectral power properties using this

particular EEG setup. The state-of-the-art approaches tested here can be

further refined and should be combined with hardware implementations to

better preserve EEG signal properties during simultaneous EEG-fMRI. Existing

and novel BCG artifact correction methods should be validated by evaluating

signal preservation of both ERPs and spontaneous EEG spectral power.

KEYWORDS

simultaneous EEG-fMRI, ballistocardiographic artifact, EEG signal preservation, EEG-
informed fMRI, EEG spectral analysis

1 Introduction

Simultaneous Electroencephalography and functional
Magnetic Resonance Imaging (EEG-fMRI) records the
electrophysiological and hemodynamic correlates of human
brain activity non-invasively, aiming to combine the strengths
of both modalities (Huster et al., 2012; Laufs, 2012; Scrivener,
2021; Ebrahimzadeh et al., 2022). EEG measures the sum of
extracellular currents generated by the synchronous activity
of large populations of neurons, using electrodes attached
to the subject’s scalp (Schomer and da Silva, 2011), while
fMRI quantifies changes in cerebral blood oxygenation,
blood flow and blood volume that result from neurovascular
coupling responses mediated by astrocytes, blood vessels, and
neurons and therefore, represents an indirect correlate of
neuronal activity (Huettel et al., 2004; Figley and Stroman,
2011). Simultaneous EEG-fMRI recording aims to better
understand the complex dynamics underlying brain function
by combining EEG’s temporal resolution and fMRI’s spatial
resolution (Mulert and Lemieux, 2010; Scrivener, 2021;
Ebrahimzadeh et al., 2022). Simultaneous EEG-fMRI also
opens the possibility of directly studying interactions between
electrophysiological and hemodynamic responses (Jorge et al.,
2014) which cannot be achieved when signals are recorded
independently (Mulert and Lemieux, 2010; Jorge et al., 2014;
Ebrahimzadeh et al., 2022).

The major challenge of simultaneous EEG-fMRI recording
is the presence of artifacts that compromise the data quality
of both modalities (Ives et al., 1993; Mulert and Lemieux,

Abbreviations: EEG-fMRI, simultaneous EEG-fMRI; GA, gradient
artifact; BCG, ballistocardiographic; AAS, average artifact subtraction;
OBS, Optimal Basis Set; ICA, Independent Component Analysis;
PROJIC, PROJection onto Independent Components; IFE, Independent
component analysis Feature Extraction; EC-EO, eyes closure-opening;
rs, resting-state.

2010). EEG hardware may produce distortions and signal
loss in MRI due to electromagnetic noise generated by the
EEG amplifier (Krakow et al., 2000), B0 field inhomogeneities
produced by magnetic susceptibility of EEG electrodes (Krakow
et al., 2000; Mullinger et al., 2008), and B1 field attenuation
produced by EEG leads (Luo and Glover, 2011; Klein et al.,
2015). Image distortions can be avoided by using adequate
electrode materials and placing the EEG amplifier inside
a radiofrequency containment system, efficiently preserving
MRI data quality at 3T (Krakow et al., 2000; Mullinger
et al., 2008; Laufs, 2012). On the other hand, the magnetic
resonance (MR) environment severely compromises EEG
data quality (Ives et al., 1993; Lemieux et al., 1999). Two
main artifacts contaminate the EEG data during simultaneous
EEG-fMRI recordings: The gradient artifact (GA) and the
ballistocardiographic (BCG) artifact. The GA results from
induced currents over the EEG electrodes and leads that are
produced by magnetic flux variations due to the gradients
switching during image acquisition (Allen et al., 2000). Since
the properties of the GA depend entirely on the MR sequence,
these are highly stable over time and across individuals.
Therefore, Average Artifact Subtraction (AAS) approaches
(Allen et al., 2000) combined with hardware synchronization
between EEG and fMRI equipment (Mandelkow et al.,
2006) have proven to be effective in completely removing
the GA.

The BCG artifact is a large-amplitude artifact that results
from the induced currents caused by cardiac related movement
of the EEG sensors when the subject is inside a strong
magnetic field (Allen et al., 1998; Yan et al., 2010). The largest
BCG artifact peak is typically observed ∼200 milliseconds
after the QRS-wave recorded on the electrocardiogram (Allen
et al., 1998). The artifact mainly spans cardiac harmonic
frequencies ranging between 1 and 15 Hz, overlapping
with the frequency of neural oscillations captured by EEG
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(Debener et al., 2008). Given its large variability between
and within individuals, the BCG artifact represents a major
challenge for EEG-fMRI. Several signal processing tools have
been developed to deal with the BCG artifact and reduce
its contribution from the recordings while preserving EEG
signal properties (Bullock et al., 2021; Ebrahimzadeh et al.,
2022). As summarized in Bullock et al. (2021) the most
popular BCG correction approaches include Average Artifact
Subtraction (AAS); (Allen et al., 1998), Optimal Basis Set
(OBS); (Niazy et al., 2005), Independent Component Analysis
(ICA); (Srivastava et al., 2005) and the combination of these:
OBS-ICA (Debener et al., 2006) and AAS-ICA (Mayeli et al.,
2021). Some other methods have also been recently proposed
including the PROJIC-AAS and PROJIC-OBS methods (Abreu
et al., 2016). Even though there have been studies comparing
these methods, most of such studies have been based on
assessing artifact reduction by comparing the amplitude of
the artifact waveform (Mullinger et al., 2013b; Marino et al.,
2018) or the reduction of its spectral components from the
EEG signals before and after applying artifact correction
(Abreu et al., 2016; Bullock et al., 2021). Although assessing
artifact removal is important when validating BCG correction
methods, the ultimate goal is to preserve the integrity of
the functional properties of EEG signals. However, there are
actually less studies focusing on signal preservation than
artifact reduction (Marino et al., 2018; Bullock et al., 2021).
Importantly, most of these studies have focused on evaluating
the preservation of event related responses obtained from
task paradigms (Debener et al., 2006; Assecondi et al., 2010;
Vanderperren et al., 2010), where the high number of epochs
used for averaging significantly increases the signal-to-noise
ratio of the signals, as compared to continuous recordings
(Schomer and da Silva, 2011). With a growing number of
alternatives proposed to deal with the BCG artifact, there is a
tremendous need to evaluate the efficiency of these methods
to also preserve the spectral properties of spontaneous EEG
oscillations recorded during resting-state and task paradigms,
and to address the impact of BCG artifact residuals/EEG
signal loss on multimodal data analysis results (Marino
et al., 2019; Bullock et al., 2021). Therefore, the aim of this
work was to characterize the impact of the BCG artifact
on spontaneous EEG spectral power and to compare the
effectiveness of the most commonly used BCG correction
methods to remove the artifact while preserving underlying
EEG signals. Specifically, we evaluated the spectral profile of
resting-state EEG signals recorded during EEG-fMRI before
and after BCG artifact correction, as compared to the spectral
power of the EEG data recorded outside the scanner. We
then assessed whether the functional reactivity of posterior
EEG alpha power to a simple eyes closure-opening task was
preserved after BCG removal and evaluated how the choice of
BCG correction method affected the results from EEG-informed
fMRI analysis.

2 Materials and methods

2.1 Participants

EEG and MRI data were collected from 20 healthy male
individuals (mean age = 26 years; SD = 3.8 years) who were all
graduate students from the Universidad Nacional Autónoma
de México, campus Juriquilla (UNAM) community. Before
enrolling participants into the study, the research protocol
was explained to them both verbally and via an informed
consent form. A psychologist with experience applying
neuropsychological tests (JG) administered the Spanish version
of the MINI International Neuropsychiatric Interview (Sheehan
et al., 1997; Ferrando et al., 1998). Only cognitively healthy
individuals who did not have diagnosis of any neurological or
psychiatric disease or history of substance abuse were invited
to participate in the study. As a last filter, participants were
asked to fill in a brief checklist to corroborate the presence of
counter-indications to perform the MR protocol. Individuals
that fulfilled the requirements to be included in the sample
and agreed to participate in the experiment signed the consent
form and were recruited for the study. This research project was
conducted in accordance with the principles of the Declaration
of Helsinki for experiments involving human participants and
was approved by the Bioethics Committee of the Instituto de
Neurobiología, UNAM.

2.2 EEG data acquisition

Both EEG and MRI data were acquired in a single session
lasting around 2.5 h. EEG data were recorded using a GES
400 MR system equipped with a 32-channel MR-compatible
EEG cap (Electrical Geodesics Inc., Eugene, OR, USA). The
sampling rate was 1000 Hz and Cz was used as the reference
electrode. Electrode impedances were measured before starting
the outside EEG recordings and all sensors were adjusted to keep
impedance values below 50 k-ohms. A silk mesh was placed over
the electrode cap and bandages were used to reduce electrode
movement and improve EEG data quality (Ives et al., 1993;
Bénar et al., 2003). Electrocardiogram (ECG) data was recorded
using MR-compatible patch electrodes. The active electrode was
placed over the heart (slightly to the left of the sternum bone)
and the reference electrode was placed over the medial end of
the left collarbone.

Electroencephalographic data were first recorded outside
the MR environment, with the participant lying down in supine
position, same as inside the MR-scanner. The outside EEG
recording protocol consisted of 2 min of eyes-closed resting-
state (Outside rs-EEG), 2 min of eyes-open EEG (not used in
this study) and 2 min of an eyes closure-opening task (Outside
EEG EC-EO) consisting of 20-s blocks, starting with eyes-closed.
After the outside EEG recording, the participant was taken into
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the MR room. Once the participant was inside the scanner,
EEG leads were carefully examined in search for loops and
oriented in a straight line parallel to the B0 magnetic field, to
reduce EEG artifacts and the risk of radiofrequency-induced
heating of the sensors (Yan et al., 2009; Chowdhury et al.,
2015; Assecondi et al., 2016). Sandbags and tape were used to
minimize electrode leads movement and soft pads were placed
between the receiving coil and the subject’s head to reduce
participant’s movement (Bénar et al., 2003; Bullock et al., 2021;
Ebrahimzadeh et al., 2022). The EEG amplifier was placed next
to the bed of the scanner behind the 400 Gauss magnetic
field iso-intensity line, in accordance with the safety guidelines
provided by the vendor. Lights and ventilation systems were
turned off during the entire session, to avoid further artifacts
in the EEG signal (Mullinger et al., 2013a; Nierhaus et al.,
2013; Rothlübbers et al., 2015). Due to our facility regulation
protocols, the helium cooling pump remained active for all of
the recordings.

After ensuring the participant was feeling comfortable
inside the scanner, we recorded 2 min of eyes-closed EEG
(Inside rs-EEG) without image acquisition. We then began the
simultaneous EEG-fMRI protocol, which consisted of 10 min of
eyes-closed resting-state (rs-EEG-fMRI) and 4 min of the eyes
closure-opening (EEG-fMRI EC-EO) task.

2.3 MRI data acquisition

Brain magnetic resonance images were obtained with a
Discovery MR750 3.0T scanner (General Electric, Milwaukee,
WI, USA), equipped with a 32-channel array head coil. Blood-
oxygen level-dependent (BOLD) contrast images were acquired
for the rs-EEG-fMRI and EEG-fMRI EC-EO conditions using an
echo-planar reconstruction (spatial resolution = 4 × 4 × 4 mm3

voxels, TR = 2000 ms, TE = 40 ms). High resolution
structural sagittal T1-weighted images (spoiled gradient-
recalled sequence; resolution of 1 × 1 × 1 mm3 voxels;
TR = 8.1 ms; and TE = 3.2 ms) were collected following the
simultaneous EEG-fMRI recordings, after the EEG cap was
removed from the participant’s head.

2.4 EEG preprocessing and BCG
artifact removal

The Outside rs-EEG, Inside rs-EEG, rs-EEG-fMRI, Outside
EEG EC-EO and EEG-fMRI EC-EO data were preprocessed
separately following the same pipeline, with the exception of the
artifact removal steps that were added to correct the gradient
(rs-EEG-fMRI, EEG-fMRI EC-EO) and the BCG (inside rs-
EEG, rs-EEG-fMRI, EEG-fMRI EC-EO) artifacts from the data
acquired inside the MR-environment.

The GA removal was the first preprocessing step for
the rs-EEG-fMRI and the EEG-fMRI EC-EO datasets and

was implemented directly in the Net Station software
(Electrical Geodesics Inc., Eugene, OR, USA). We applied
AAS by averaging the signals aligned with the event markers
automatically generated by the hardware synchronization
between the EEG amplifier and the MR scanner clock, using
a sliding-window consisting of 5 TR volumes to generate the
template. The rest of the preprocessing for all datasets was
performed using customized scripts calling EEGLAB (Delorme
and Makeig, 2004) and MATLAB (The MathWorks, Inc.,
Natick, MA, USA) functions. EEG data from all conditions
(.mff files) were imported into MATLAB following the EEGLAB
data structure by using the MFFmatlabIO plugin. Only data
from the eighteen 10–20 system electrodes (Fp1, Fp2, F3,
F4, F7, F8, Fz, C3, C4, P3, P4, Pz, T3, T4, T5, T6, O1, O2;
Cz was used as reference) were considered for the analysis.
Channel locations were set using the corresponding Geodesic
Sensor Net template from EEGLAB. Continuous EEG data
were band-pass filtered (1–50 Hz) and then segmented into
2-s epochs. EEG signals were visually inspected, and epochs
containing high amplitude artifacts related to the subject’s
movements or blinks were rejected. Additionally, in the case
of the Inside rs-EEG, rs-EEG-fMRI and EEG-fMRI EC-EO
datasets we corrected the BCG artifact using one of seven
methods: (1) AAS, (2) OBS, (3) ICA, (4) OBS followed by ICA,
(5) AAS followed by ICA, (6) PROJIC-AAS, and (7) PROJIC-
OBS. The detection of QRS peaks and the implementation
of the AAS and OBS-based correction approaches (Iannetti
et al., 2005; Niazy et al., 2005) were performed using the
EEGLAB FMRIB plug-in provided by the University of Oxford
Centre for Functional MRI of the Brain. A constant delay of
210 milliseconds between the cardiac event markers and the
main BCG peak was assumed for all AAS and OBS-based
methods, which is the default value in the FMRIB plugin (Allen
et al., 1998). For OBS-based corrections, the four principal
components that explained most of the artifact’s waveform
variance were automatically selected and regressed-out from
the data. ICA was implemented using EEGLAB’s runica
algorithm. A variable number of artifact-related independent
components (ICs) were manually selected for each subject,
based on criteria suggested in previous studies (Srivastava
et al., 2005; Debener et al., 2006, 2008; Iannotti et al., 2014).
Specifically, we removed ICs displaying all three of the following
features: (1) time-series with rhythmic peaks that followed the
ECG trace, (2) increased power showing multiple peaks at
cardiac-related frequencies, and (3) topographical distribution
of power showing either left-right or anterior-posterior
polarity inversion. PROJIC-AAS and PROJIC-OBS methods
were implemented using the code provided by Abreu et al.
(2016). Both methods rely on applying the same functions
from the FMRIB plugin, but in this case the AAS and OBS
corrections are applied on the ICs timeseries before retrieving
the original EEG time series by multiplying the EEG activations
∗ mixing matrix W−1, in contrast to applying the correction

Frontiers in Neuroscience 04 frontiersin.org

120

https://doi.org/10.3389/fnins.2022.951321
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-951321 December 19, 2022 Time: 14:15 # 5

Gallego-Rudolf et al. 10.3389/fnins.2022.951321

directly on the sensor timeseries as with the regular AAS
and OBS approaches. For both PROJIC approaches, we used
the recommended default parameters, with the only major
difference that we used the same ICs we manually selected
for the ICA approach, rather than using the PROJIC-ICA
automatic selection of the BCG-related components (which
failed to accurately identify the BGC-related ICs for many
subjects).

2.5 Data analysis

2.5.1 Eyes-closed resting-state EEG
To evaluate the impact of the BCG artifact on EEG spectral

power and to test if resting-state EEG spectral properties
could be preserved after artifact correction, we compared the
absolute and relative power from the corrected rs-EEG-fMRI
signals vs. the Outside rs-EEG. The first available twenty-two
(minimal number of clean epochs available per subject), 2-s
non-overlapping clean epochs from the Outside rs-EEG and
rs-EEG-fMRI conditions for each subject were selected for
quantitative analysis. We computed the fast Fourier transform
of the signals and then calculated the absolute and relative power
across traditional EEG frequency bands (Schomer and da Silva,
2011), defined as follows: Delta = 1–3 Hz, Theta = 4–7 Hz,
Alpha = 8–12 Hz, Slow beta = 13–17 Hz, Fast beta = 18–30 Hz,
and Gamma = 31–50 Hz.

To obtain a qualitative measure of the BCG artifact
contribution to each frequency band and visualize the variability
across subjects before and after artifact correction, we calculated
the percentage change in absolute power from the rs-EEG-fMRI
relative to the outside rs-EEG [(rs-EEG-fMRI power/outside rs-
EEG power) ∗100] −100, for each electrode of each subject.
For the statistical analysis, we used one-way repeated measures
ANOVAs to compare the log-transformed absolute power and
the relative power values of the corrected rs-EEG-fMRI and
the Outside rs-EEG. Each frequency band was considered
independently. Bonferroni correction for multiple comparisons
was applied to the p-values of the post-hoc test between the
Outside rs-EEG and the seven corrected versions of the rs-
EEG-fMRI data. Adjusted p-vales below 0.05 were considered
to be significant. To discard the contribution of GA residuals
and further validate our results, we repeated our analysis
using the Inside rs-EEG instead of the rs-EEG-fMRI data
(Supplementary material).

In addition to the absolute and relative spectral power
analysis, we tested the reliability of the estimates of the
individual alpha peak frequency and alpha center of gravity
from the power spectrum of the resting-state signals collected
during EEG-fMRI. Following the methods and using the code
provided by Corcoran et al. (2018), we employed an automated
approach based on applying a Savitzky–Golay filter (Klimesch
et al., 1990) to calculate each individual’s alpha peak frequency

and center of gravity. We set the band-pass filter from 1 to
40 Hz and looked for the alpha peak in the range between
7 and 13 Hz. We set a value of 11 for the Savitzky–Golay
filter frame width and a k = 5 for the polynomial order. For
the statistical comparison, we used one-way repeated measures
ANOVAs to compare the individual alpha peak frequency and
center of gravity estimates from the corrected rs-EEG-fMRI
and the Outside rs-EEG (Supplementary material). We applied
Bonferroni correction to account for multiple comparisons and
considered adjusted p-vales below 0.05 to be significant. Once
again, we repeated our analysis using the Inside rs-EEG instead
of the rs-EEG-fMRI data (Supplementary material).

2.5.2 Eyes closure-opening task EEG data
Given that the posterior alpha power reactivity to the

eyes closure-opening task is one of the most prominent and
consistent features observed in human EEG recordings (Berger,
1929; Barry et al., 2007; Klimesch et al., 2007; Barry and De
Blasio, 2017), we selected this task to evaluate if alpha power
functional reactivity was preserved in the EEG-fMRI signals
corrected using different BCG removal approaches. The first
available twenty, 2-s non-overlapping EEG epochs from the
eyes-closed and eyes-open blocks of the Outside EEG EC-EO
and the EEG-fMRI EC-EO conditions were selected for each
subject and submitted to fast Fourier transform, as implemented
previously. Besides the seven BCG correction methods used
before, an eighth method consisted of using ICA as a feature
extraction tool (IFE), aiming to isolate alpha power activity
related to the task. In this case, instead of removing the ICs
associated with the BCG artifact we only retained components
with a time-series that showed clear alpha activity during
the EC blocks, a peak around 10 Hz in its power spectrum,
and a topographical distribution showing higher alpha power
in posterior electrodes. To estimate a quantitative difference
between the two physiological states, we calculated a ratio
by using the signal from occipital O1 and O2 electrodes and
dividing the alpha power of the EC over the EO condition (EC-
EO alpha power ratio). We performed the statistical analysis on
the EC-EO alpha power ratio values rather than the raw eyes-
open and eyes-closed alpha power values given that absolute
and relative alpha power is highly variable across individuals
(Shaw, 2003). To assess signal preservation, a one-way repeated
measures ANOVAs was performed to compare the EC-EO alpha
power ratio between the Outside EEG EC-EO and the EEG-
fMRI EC-EO corrected with different methods (AAS, OBS, ICA,
OBS-ICA, AAS-ICA, PROJIC-AAS, PROJIC-OBS, and IFE).
As before, Bonferroni-correction for multiple comparisons was
applied to the p-values of the post hoc comparisons, and adjusted
p-values > 0.05 were considered as significant.

2.5.3 EEG-informed fMRI analysis
Functional magnetic resonance imaging data preprocessing

and analysis was performed using the FSL software (Jenkinson

Frontiers in Neuroscience 05 frontiersin.org

121

https://doi.org/10.3389/fnins.2022.951321
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-951321 December 19, 2022 Time: 14:15 # 6

Gallego-Rudolf et al. 10.3389/fnins.2022.951321

et al., 2012). Preprocessing included motion correction, slice
timing (interleaved acquisition) correction, brain extraction,
spatial smoothing using a Gaussian kernel (full-width-half-
maximum = 6 mm), high-pass temporal filtering (cutoff
frequency = 0.01 Hz), and registration to each subject’s
structural image followed by spatial normalization to the
Montreal Neurological Institute standard space (MNI ICBM-
152 template) using linear transformations with seven and
twelve degrees of freedom, respectively. EEG-informed fMRI
first-level analysis was performed using alpha power fluctuations
to derive a BOLD signal predictor for each subject. To generate
the predictors, we selected either the O1 or O2 channel
timeseries (selected on an individual basis to obtain the best
available predictor) and calculated the alpha band absolute
power for each 2-s epoch. The values corresponding to epochs
that were eliminated due to excessive movement or eye-related
artifacts were replaced using a simple interpolation method
(taking the average of the previous and following epoch). The
resulting time series (60 timepoints) were convolved with a
gamma hemodynamic response function in the GLM tool of
FSL’s FEAT to generate the BOLD signal predictors. We focused
on the negative contrast, as our hypothesis was that alpha power
fluctuations would be negatively correlated with BOLD signal.
We first conducted this analysis on the full sample (n = 20),
though no significant associations were found between the
predictors and the BOLD signal using any method, due to
some individuals that did not show any associations between
the signals in the first-level analysis. We therefore repeated the
analysis after removing these 5 individuals, which corresponds
to the data presented here.

To assess the impact of BCG artifact residuals on preserving
the EEG functional reactivity for multimodal integration, the
EEG-informed fMRI analysis was repeated using the alpha
power predictors derived from the same EEG signals, corrected
using each method. Second-level analyses were performed using
permutation-based inference (Nichols and Holmes, 2002) with
threshold-free cluster enhancement to account for multiple
comparisons (Smith and Nichols, 2009) as implemented by FSL’s
randomize function. Group-level statistical parametric maps
obtained from the EEG-informed fMRI analyses were compared
with conventional fMRI analysis results, performed using the
task design to build the hemodynamic response predictor.

2.6 Data/code availability statement

All the data used in this study is available on an open data
repository: “Simultaneous EEG-fMRI dataset,” Mendeley Data,
V1, doi: 10.17632/crhybxpdy6.1 (Gallego-Rudolf et al., 2022).
All the preprocessing and analysis steps in this study used a
combination of existing documented functions from MATLAB
v.18b (The MathWorks, Inc., Natick, MA, USA) and EEGLAB
v.14.1.2b (Delorme and Makeig, 2004) software packages.

EEG-informed fMRI was conducted using the FSL software
(Jenkinson et al., 2012). Statistical analysis was performed in
R Studio, using R v.4.1.1 (R Core Team, 2022) and ggplot2
(Wickham, 2016) was used to generate the plots.

3 Results

3.1 Resting-state–BCG artifact
reduction and preservation of EEG
spectral features

Given that the GA is entirely dependent on the properties of
the MR sequence, having an adequate synchronization between
the EEG and MRI hardware and using the AAS approach
allowed to effectively remove the GA from the signals of all
participants. The first panel of Figure 1 shows the comparison
between the average power spectrum across all electrodes from
all subjects from the Outside rs-EEG (black), the rs-EEG-
fMRI data before GA correction (blue) and the rs-EEG-fMRI
data after GA and before BCG artifact correction (red). The
rest of the panels from Figure 1 show the group average
power spectra for the Outside rs-EEG (black, same for all
panels), the rs-EEG-fMRI before BCG artifact correction (red,
same for all panels) and its corrected version (green) using
each BCG correction approach. The main contribution of
the BCG artifact to the power spectrum can be observed as
a generalized increase in spectral power, more pronounced
in the theta and slow beta range (red power spectrum). In
general ICA-based approaches (ICA, but specially OBS-ICA
and AAS-ICA) performed better in reducing the BCG-induced
absolute power increases, partially retrieving the characteristic
shape of the eyes-closed rs-EEG spectrum. The number of
components removed for each method (mean; SD; range)
was 9.2; 1.8; 6–12 for ICA, 4.8; 1.2; 3–7 for OBS-ICA and
5.7; 1.4; 3–8 for AAS-ICA. Supplementary Figure 1 shows
that similar results were obtained when calculating the power
spectrum from the Inside rs-EEG, instead of the rs-EEG-fMRI
data.

Figure 2 shows the percentage change in power of the rs-
EEG-fMRI relative to the Outside rs-EEG, after correcting the
rs-EEG-fMRI signal with different BCG removal approaches.
Each matrix corresponds to a particular method and frequency
band and shows all electrodes (rows) for every subject
(columns). As can be observed, a considerable increase in power
across all bands was present in the uncorrected rs-EEG-fMRI
data, with theta and slow beta being the most affected frequency
bands. Again, ICA, OBS-ICA and AAS-ICA correction methods
were more efficient in suppressing the contribution of the BCG
artifact, by reducing the BCG-induced power increase especially
in the delta, theta, and alpha bands. However, even when
using ICA–based corrections, artifact residuals remained for
most subjects, particularly in the fast beta and gamma bands.
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FIGURE 1

Average power spectrum (and standard deviation) computed from the resting-state eyes-closed EEG signal of all electrodes from all subjects.
The first panel shows the Outside rs-EEG (black) and the rs-EEG-fMRI data before (blue) and after (red) GA correction. The rest of the panels
show a comparison between the Outside rs-EEG (black line, repeated in all panels), the rs-EEG-fMRI after GA removal but before BCG artifact
correction (red line, repeated in all panels) and its corrected version (green) after using one of seven BCG correction methods: Average Artifact
Subtraction (AAS), Optimal Basis Set (OBS), Independent Component Analysis (ICA), OBS-ICA, AAS-ICA, PROJection onto Independent
Components (PROJIC)-AAS or PROJIC-OBS. ICA-based corrections performed better in reducing the BCG artifact contribution and preserving
the spectral profile of rs-EEG-fMRI signals, though power remained higher compared to the Outside rs-EEG.

Moreover, we also observed decreases in power compared to the
outside rs-EEG, reflecting potential EEG signal losses produced
during artifact correction.

The statistical analysis comparing the absolute power across
the six frequency bands is shown in Figure 3. Significant
statistical differences were found between the power of the
Outside rs-EEG and the rs-EEG-fMRI for all frequency bands
(delta F3.46,65.67 = 61.34, p < 0.001; theta F3,56.98 = 165.68,
p < 0.001; alpha F2.89,54.87 = 141.33, p < 0.001; slow beta
F2.97,56.36 = 239.32, p < 0.001; fast beta F2.98,56.55 = 96.57,
p < 0.001; gamma F2.58,48.94 = 82.62, p < 0.001), regardless
of the BCG correction method employed. Very similar results
were obtained for the Inside rs-EEG data (Supplementary
Figures 2, 3).

Even though the BCG-induced power increase across
frequency bands remained significant after artifact correction,
qualitatively the rs-EEG-fMRI data showed that the individual
power estimates computed after applying ICA-based correction
approaches displayed a more similar distribution compared
to the Outside rs-EEG values. Therefore, we also analyzed
the relative power of each frequency band and compared
the Outside rs-EEG vs. the corrected versions of the rs-EEG-
fMRI data (Figure 4). Delta relative power was significantly
decreased, while slow beta remained significantly increased
across all correction methods (F2.9,55.18 = 79.33, p < 0.001;
F2.48,47.11 = 65.84, p < 0.001). Theta relative power from the
ICA, OBS-ICA and AAS-ICA approaches was not significantly
different compared the Outside rs-EEG, which was the case

for all other methods (F2.79,52.93 = 32.11, p < 0.001), but in
contrast only these approaches showed significant differences
in the alpha relative power compared to the Outside rs-
EEG (F1.92,36.49 = 14.16, p < 0.001). The only method
in which fast beta relative power was different from the
Outside rs-EEG was ICA (F3.03,57.56 = 17.51, p < 0.001)
and for gamma relative power there were significant increases
observed in the ICA, OBS-ICA, and AAS-ICA approaches
(F2.69,51.17 = 62.02, p < 0.001). Once again, we found
very similar results when using the Inside rs-EEG data
(Supplementary Figure 4).

The analysis of the individual alpha peak frequency and
center of gravity revealed that, even with fewer electrodes with
sufficient quality for the estimation of these parameters in the
rs-EEG-fMRI condition (Supplementary Table 1), there were
no significant differences in the estimations of the alpha peak
frequency and center of gravity when comparing the corrected
(and uncorrected) rs-EEG-fMRI against the Outside rs-EEG
data (Supplementary Figure 5).

3.2 Eyes closure-opening
task–preservation of EEG functional
reactivity

We then focused on evaluating if EEG functional reactivity
to the EC-EO task could be preserved after BCG artifact
removal. Figure 5 shows the group average power spectrum
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FIGURE 2

Percentage change (colorbar) in the absolute power of each frequency band of the rs-EEG-fMRI data before and after BCG artifact removal,
relative to the Outside rs-EEG. Each matrix shows all electrodes (rows) for each subject (columns). A negative percentage indicates lower
absolute power in the rs-EEG-fMRI compared to the outside rs-EEG. ICA-based corrections performed better in reducing the BCG artifact
contribution and preserving the rs-EEG-fMRI spectral profile (especially for delta, theta, and alpha bands), though artifact residuals and/or
absolute power decreases were evident for most subjects, across all frequency bands.

from the O1 electrode, obtained from the EEG signals
collected during the eyes-closed (green) and eyes-open (red)
conditions. For the Outside EEG EC-EO spectrum, a clear
distinction between the two physiological states is observed as

a higher-amplitude alpha power peak in the absolute power EC
EEG spectrum, compared to the EO spectrum. This difference
is completely masked by the BCG artifact. Although the
difference between the two conditions was never as evident
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FIGURE 3

Results of the repeated measures ANOVAs comparing the average absolute power of all electrodes from all subjects between the Outside
rs-EEG and the rs-EEG-fMRI data corrected using each of the seven BCG correction methods. Each frequency band was analyzed separately.
The asterisks indicate significant statistical differences (padj < 0.05) between the corrected rs-EEG-fMRI and the Outside rs-EEG data. A
generalized increase in absolute power across all frequency bands was observed for the data recorded simultaneously with fMRI, which
remained significant after applying all BCG correction methods. Note that PROJIC-AAS and PROJIC-OBS were abbreviated as P-AAS and
P-OBS, respectively.

FIGURE 4

Results of the repeated measures ANOVAs comparing the average relative power of all electrodes from all subjects between the Outside rs-EEG
and the rs-EEG-fMRI data corrected using each of the seven BCG correction methods. Each frequency band was analyzed separately. The
asterisks indicate significant statistical differences (padj < 0.05) between the corrected rs-EEG-fMRI and the Outside rs-EEG data. Relative power
was altered across all frequency bands for the data recorded simultaneously with fMRI. Some correction approaches rescued relative power for
some frequency bands, but the overall spectral power profile remained altered across all BCG correction methods. Note that PROJIC-AAS and
PROJIC-OBS were abbreviated as P-AAS and P-OBS, respectively.

as for the Outside EEG EC-EO data, the use of ICA, or the
combination of OBS-ICA and AAS-ICA allowed to partially
retrieve the difference between EC and EO states. The number

of components removed per each method (mean; SD; range) was
9.6; 1.3; 8–11 for ICA, 6.7; 1.4; 4–10 for OBS-ICA and 5.8; 1.2;
4–8 for AAS-ICA. The rest of the correction approaches failed
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FIGURE 5

Group average power spectrum (with standard deviation) of the O1 electrode during the eyes-closed (EC; green) and eyes-open (EO; red)
conditions of the EC-EO task. A comparison is shown between the spectra obtained from the Outside EEG EC-EO and the EEG-fMRI EC-EO
data, before and after removing the BCG artifact with each correction method. ICA-based approaches performed better in retrieving the
difference between EC and EO conditions (reflected as higher alpha power for the EC condition), though the difference was still attenuated
when compared to the data acquired outside the scanner.

to retrieve a clear distinction in the alpha band between the two
conditions.

This was confirmed by the statistical analysis shown in
Figure 6, comparing the ratio obtained from dividing the
alpha power of the EC condition by the alpha power of the
EO condition. BCG artifact residuals resulted in a significant
decrease in the alpha power ratio for all correction methods
(F2.77,38.75 = 35.52, p = > 0.001). The only approach that
allowed to retrieve an EC-EO power ratio that was not
statistically different from the Outside EEG EC-EO data was
the ICA feature extraction of the alpha power, indicating this
strategy retrieved the functional reactivity of posterior alpha
oscillations (Figure 6). The number of retained ICs related to
alpha activity for the ICA feature extraction approach (mean;
SD; range) was 2.1; 0.6; 1–3.

3.3 EEG-informed fMRI–impact of BCG
artifact residuals on multimodal
analysis

To evaluate if the BCG artifact biased multimodal data
analysis results, we performed EEG-informed fMRI analysis
using alpha power fluctuations derived from the EEG-fMRI
EC-EO condition to generate the BOLD signal predictors.
EEG predictors were obtained from the same EEG-fMRI EC-
EO signals corrected with one of the eight approaches (AAS,
OBS, ICA, OBS-ICA, AAS-ICA, PROJIC-AAS, PROJIC-ICA,
and IFE). The results were compared to those obtained with
conventional fMRI analysis, using the task design to build
the hemodynamic response model (positive contrast). Figure 7
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FIGURE 6

Results of the repeated measures ANOVAs comparing the eyes closure-opening (EC-EO) alpha power ratio calculated from O1 and O2
electrodes for the Outside EEG EC-EO and the EEG-fMRI EC-EO signals corrected with each BCG approach or Independent component
analysis Feature Extraction (IFE). The asterisks indicate significant statistical differences (padj < 0.05) between the EEG-fMRI EC-EO and the
Outside EEG EC-EO data. IFE was the only method that did not show significant differences in the EC-EO alpha power ratio when compared to
the data recorded outside the scanner. Note that PROJIC-AAS and PROJIC-OBS were abbreviated as P-AAS and P-OBS, respectively.

displays the statistical parametric maps obtained using the task
design and each of the EEG-derived predictors. As expected,
in the task design predictor maps we observed BOLD signal
increases during the EO condition and decreases during the EC
condition within occipital and parietal cortices. BOLD signal
changes were accurately predicted by EEG signals, as observed
in the maps from the EEG-derived predictor generated after
using IFE to extract alpha power fluctuations. Importantly, BCG
residuals/signal loss that remained after implementing all the
tested BCG correction approaches biased the results of the EEG-
informed fMRI analysis, obscuring the associations between
alpha power and BOLD signal fluctuations.

4 Discussion

In this study we aimed to characterize the impact of
the BCG artifact on spontaneous EEG spectral power and to
compare some of the most popular available BCG correction
approaches. Our main focus was to assess the preservation of
resting-state EEG spectral properties by statistically comparing
the absolute and relative power changes in the EEG data
simultaneously acquired with fMRI (corrected with different
methods) with respect to the uncorrected data and the
data obtained outside of the MR environment. We further
investigated whether the functional information from EEG
spectral power could be retrieved regardless of the presence of
BCG artifact residuals, by evaluating the alpha power reactivity
to an EC-EO task. Finally, we wanted to assess how the selection
of the BCG artifact correction method influenced the results
from EEG-informed fMRI analysis. Although several studies
have previously compared different BCG correction methods to

assess artifact reduction and signal preservation (Debener et al.,
2006; Vanderperren et al., 2010; Marino et al., 2018; Bullock
et al., 2021), ours is one of the few studies that: (1) Focus on
the preservation of spontaneous brain oscillations rather than
ERPs, (2) Characterize the impact of BCG artifact removal using
seven state-of-the-art methods by using a specific task paradigm
to test the functional reactivity of a particular spontaneous brain
rhythm (alpha oscillations), and (3) Provide a direct side-by-
side comparison of the impact of using different BCG correction
approaches prior to multimodal EEG-informed fMRI analysis.

The uncorrected rs-EEG-fMRI showed a marked increase in
absolute power across all frequency bands, more pronounced
within the theta and slow beta bands. Relative power was
also severely distorted, making uncorrected EEG signals
unusable for any analysis purposes. We found that, even
though a clear reduction of the artifact was observed on
the power spectra of our rs-EEG-fMRI data, none of the
BCG artifact removal approaches tested (AAS, OBS, ICA,
OBS-ICA, AAS-ICA, PROJIC-AAS, PROJIC-OBS) entirely
preserved the spectral profile of EEG signals, due to both
artifact residuals and induced EEG signal losses. Overall, in
line with previous reports (Srivastava et al., 2005; Debener
et al., 2006; Mayeli et al., 2021), we found better results
with ICA-based approaches, especially when used after AAS
or OBS, as compared to the conventional AAS and OBS
and PROJIC approaches. Additionally, large variability in the
artifact correction outcomes was observed, with some subjects
even showing decreased absolute power compared to their
outside rs-EEG, which may be reflecting EEG signal losses
after the artifact correction procedure (Ullsperger and Debener,
2010; Marino et al., 2018). To our surprise, the estimation
of the individual alpha peak frequency and center of gravity
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FIGURE 7

Corrected threshold-free cluster enhancement voxel-wise group-level statistical maps obtained from the EC-EO task fMRI data analysis (n = 15)
using either the task design or the EEG alpha power fluctuations to generate the blood-oxygen level-dependent (BOLD) signal predictors used
in the general linear model. For the conventional fMRI analysis (task design), the map shows the voxels that displayed a positive association with
the model (higher BOLD signal in EO vs. EC conditions). For the EEG-informed fMRI analyses, the maps show the voxels where the BOLD signal
exhibited a significant negative association with the EEG alpha power derived BOLD signal predictor. A comparison is shown between the maps
obtained using the predictors derived from the same EEG signals, corrected using each BCG correction method or IFE. Only IFE preserved the
negative relationship between alpha power fluctuations and the BOLD signal, providing very similar maps to those obtained from the
conventional fMRI analysis. The color scale shows the 1-p statistical values with a threshold set at p < 001.

were preserved even in the uncorrected rs-EEG-fMRI data,
suggesting that such features can be successfully extracted
from EEG data recorded inside the MR environment. We
replicated this finding on the Inside rs-EEG data, supporting
the robustness of this approach (Klimesch et al., 1990;
Corcoran et al., 2018) and suggesting that these features
may be extracted from simultaneous EEG-fMRI studies,
and could potentially be used as features for integrative
analysis.

The severe distortions observed in the absolute and relative
spectral power highlight the huge impact BCG artifact residuals
have on the resting-state EEG signals and demonstrate that
artifact residuals remain after applying all the tested BCG
correction methods, impairing the preservation of spontaneous
EEG signal properties, as opposed to what is observed in
event related potential studies (Debener et al., 2006; Assecondi
et al., 2010; Vanderperren et al., 2010). We were also interested
in investigating if, despite the generalized distortions of the
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power spectrum, functional information from task-reactive
spontaneous EEG signals could be retrieved. We selected our
task considering that alpha power reactivity to eyes closure-
opening is one of the most robust phenomena observed in
human EEG (Berger, 1929; Adrian and Matthews, 1934; Barry
and De Blasio, 2017) and that it is the most commonly
used paradigm on simultaneous EEG-fMRI resting-state studies
(Goldman et al., 2002; Moosmann et al., 2003; Munck and
Maurits, 2006; de Munck et al., 2007). We found that the
occipital alpha rhythm reactivity to the EC-EO task was
retrieved when using IFE and, to a lesser extent, with the
OBS-ICA, and AAS-ICA–based corrections. However, neither
the AAS, OBS, ICA or the PROJIC-AAS and PROJIC-OBS
approaches preserved a clear distinction between EC and EO
states.

Considering the potential implications of our findings, we
then evaluated how the choice of the BCG correction method
impacted the generation of EEG alpha power derived BOLD
signal predictors used for EEG-informed fMRI analysis. Only
the data processed using IFE of the alpha rhythm showed a clear
significant inverse relation between alpha power and the BOLD
signal from the occipital and parietal cortices, yielding similar
statistical parametric maps to those obtained with conventional
fMRI analysis (Figure 7), and those reported in previous alpha
power EEG-informed fMRI studies (Goldman et al., 2002;
Laufs et al., 2003; Moosmann et al., 2003; de Munck et al.,
2007). None of the seven BCG removal methods tested here
allowed to preserve the EEG alpha fluctuations to the same
extent, and no statistical associations with the BOLD signal
were observed in the EEG-informed fMRI analysis. These results
provide compelling evidence that BCG artifact residuals and/or
EEG signal losses related to the artifact removal procedure
severely impair data quality and mask the functional association
between EEG alpha power and occipito-parietal BOLD signal,
hampering our interpretations from multimodal EEG-fMRI
integrative analyses (Goldman et al., 2002; Scrivener, 2021;
Warbrick, 2022).

Overall, our results demonstrate that state-of-the-art BCG
artifact correction approaches still have important limitations.
Our work highlights the need for refining and standardizing
existing methods, and to develop novel approaches to deal
with the BCG artifact to fully benefit from the advantages
provided by simultaneous EEG-fMRI. We also highlight the
need to validate current and novel approaches by evaluating
the preservation of spontaneous EEG brain rhythms and their
impact on multimodal integrative analyses. We demonstrated
that IFE was effective to rescue the alpha rhythm reactivity to the
eyes closure-opening task, though future studies should design
specific paradigms to test the reactivity of other brain rhythms.

Regarding new software implementations, interesting
proposals have arisen among the EEG-fMRI community. Given
that the delay between the ECG and the BCG peak may vary
over time (Oh et al., 2014), the adaptative OBS method was

proposed to improve the results obtained with conventional
OBS, by adjusting the variable delay between the QRS peak
and the main BCG artifact peak (Marino et al., 2018). Another
set of promising alternatives are the machine learning-based
approaches that employ different data learning algorithms
to better identify and classify the BCG artifact (Abolghasemi
and Ferdowsi, 2015; McIntosh et al., 2021; Ebrahimzadeh
et al., 2022; Lin et al., 2022). Even with the development of
new signal processing tools that allow to better characterize
and correct the BCG artifact, it has become evident that the
solution for the BCG artifact problem must come not from
software but most likely from hardware-based approaches, that
incorporate additional elements or change the configuration
of the EEG-fMRI setup to measure and/or reduce the artifact
during data acquisition (Ullsperger and Debener, 2010; Jorge
et al., 2014; Ebrahimzadeh et al., 2022). Promising examples
include modified EEG caps containing a reference adapting
layer (Xia et al., 2014) or carbon-based wire loops (van der
Meer et al., 2016) that record electrode motion and use this
information to better model and subtract the BCG artifact
from the data, and also modifications in the materials for
electrodes and leads as well are their geometrical configuration
(Chowdhury et al., 2015; Assecondi et al., 2016).

Our study also contributes to the field by providing a
simple, easy-to-implement workflow to characterize the impact
of the BCG artifact and assess the efficiency of BCG artifact
removal methods to reduce the artifact and preserve EEG
spectral properties, which may be useful when attempting to
validate novel BCG artifact correction approaches in resting-
state EEG data or implementing an EEG-fMRI protocol in a new
facility. Also, by making our dataset available to the scientific
community we hope to incentivize other groups to participate in
EEG-fMRI research and take advantage of these data to explore
and validate novel BCG removal approaches, aiming to increase
the collective effort to solve this 30-year-old problem in the field
of simultaneous EEG-fMRI.

4.1 Study limitations

The present study has many strengths as it is one of the few
works characterizing the preservation of spectral properties of
resting-state EEG and EEG reactivity to a task after BCG artifact
correction, and its impact on multimodal EEG-informed fMRI
analysis. We carefully selected a sample of young healthy adults
to assess EEG data quality. Although the number of subjects was
relatively small (N = 20), it is much higher than many previous
studies assessing EEG data quality during simultaneous EEG-
fMRI experiments. Additionally, we validated and replicated
our main findings in the rs-EEG-fMRI data by also analyzing
the data recorded inside the scanner without fMRI acquisition.
Overall, we found very similar results, supporting the idea that
GA residuals do not influence our results from the EEG-fMRI
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data and showing that there was a consistent pattern between
the results obtained from two independent sets of data from the
same subjects, further supporting our conclusions.

Several limitations should also be considered. For practical
reasons, the outside-EEG was always recorded before the
inside-EEG and simultaneous EEG-fMRI for all subjects. Not
counterbalancing the conditions may bias EEG quantitative
measures if the subject’s mental state has changed due to
vigilance fluctuations or fatigue. However, given that in this
study the time between conditions was relatively short (around
15 min between outside and inside scanner EEG recordings)
we do not expect this to significantly affect our findings.
Additionally, only male subjects were included in this study,
which impacts the generalizability of our results and poses
the need of replicating these findings in a cohort of female
participants. Although we put great effort into matching the
experimental conditions across subjects, we also acknowledge
that our results may be influenced by the subject’s head position
relative to the B0 magnetic field and the amount of movement
during the recordings (Debener et al., 2008; Yan et al., 2010;
Mullinger et al., 2013b), both of which increase the within
and between-subject variability in the BCG artifact spectral
profile.

Inconsistent results as compared to other studies may be
attributed to differences in methodologies, such as the use of
low-impedance, conductive paste EEG caps in other studies
(Debener et al., 2008; Vanderperren et al., 2010; Mullinger
et al., 2013b; Arrubla et al., 2014), which may have some
advantages over high-impedance caps as the one used here, but
also differ in terms of the length and geometrical arrangement
of the EEG wires and placement of the EEG amplifier relative
to the B0 magnetic field (Chowdhury et al., 2015; Assecondi
et al., 2016). Our data also suggest that cardiac signal recording
using conventional ECG montages is not ideal for EEG-fMRI
studies, and therefore other measurements of cardiac activity (or
ideally scalp measurements of the BCG artifact itself) should
be used, given that low quality ECG data may result in a
poor estimation of the QRS-peak, which impacts the efficiency
of the BCG artifact correction process (Iannotti et al., 2014).
Another aspect to consider is that the parameter tunning for
each BCG correction approach may dramatically influence
the results. Both AAS and OBS were implemented using a
fixed delay between the QRS events and the BCG amplitude
peak (210 ms) which actually has been proved to be very
variable within and between individuals (Yan et al., 2010;
Marino et al., 2018). The number of principal components
used to implement the OBS-based correction approach was
kept constant for all subjects, while some studies have shown
that optimizing parameters for each subject improves the
results from the artifact correction process (Abreu et al., 2016;
Marino et al., 2018). The parameters used here were selected
to match the default options of the fMRIB toolbox, which
are also the parameters typically used in many EEG-fMRI

studies. We should therefore keep in mind that there may be
room for improving the artifact correction procedure by fine-
tuning these parameters (Marino et al., 2018). For ICA–based
corrections, the ICs corresponding to the BCG artifact were
manually selected. Although we used standard criteria to select
the artifact-related components this generates a potential bias,
and future studies should try using automatic or semi-automatic
independent component selection algorithms. It is also very
plausible that having a higher number of electrodes would
improve the spatial characterization of the artifact, facilitating
the selection of components and improving signal preservation.
The most recent PROJIC approaches (Abreu et al., 2016)
might significantly improve by adjusting different parameters
on an individual subject basis. Here we used the recommended
parameters across all individuals, and therefore this question
should be addressed in future studies.

Finally, we evaluated the preservation of EEG functional
properties only by focusing on posterior alpha power reactivity
to the EC-EO task. Although we demonstrated that ICA
feature extraction allowed to retrieve the associations between
alpha power and hemodynamic signals, future studies are
needed to evaluate if other spontaneous brain rhythms can
be preserved, especially considering that lower frequencies are
even more affected by the BCG artifact harmonic frequencies,
and that higher frequencies have a much lower amplitude
compared to the artifact waveforms. To tackle this question,
other study designs need to be implemented to evaluate the
reactivity of these particular rhythms (i.e., cognitive tasks,
spontaneous activity recording in other natural physiological
states such as sleep).

5 Conclusion

Overall, our study provides strong evidence that the most
commonly used BCG correction methods have important
limitations and were not able to entirely preserve the
spectral power features of resting-state eyes-closed EEG
activity (excepting for the individual alpha peak frequency
and center of gravity), nor the functional reactivity of
EEG signals to a simple EC-EO task, using this particular
EEG-fMRI setup. Importantly, the EEG signal distortions
compromised the results from integrative multimodal data
analysis, evidencing the imposed difficulty of reliably studying
the relationship between spontaneous electrophysiological
activity and hemodynamic brain responses without optimal
EEG data quality. ICA feature extraction allowed to preserve
EEG oscillations related to the EC-EO task and to obtain reliable
predictors for EEG-informed fMRI analysis. Future studies
assessing novel or adapted hardware and software strategies
to deal with the BCG artifact are needed and should be
validated by assessing the preservation of EEG signal properties
as the main concern.
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Restoring morphology of light
sheet microscopy data based on
magnetic resonance histology
Yuqi Tian, James J. Cook and G. Allan Johnson*

Department of Radiology, Duke University School of Medicine, Durham, NC, United States

The combination of cellular-resolution whole brain light sheet microscopy

(LSM) images with an annotated atlas enables quantitation of cellular features

in specific brain regions. However, most existing methods register LSM data

with existing canonical atlases, e.g., The Allen Brain Atlas (ABA), which have

been generated from tissue that has been distorted by removal from the

skull, fixation and physical handling. This limits the accuracy of the regional

morphologic measurement. Here, we present a method to combine LSM

data with magnetic resonance histology (MRH) of the same specimen to

restore the morphology of the LSM images to the in-skull geometry. Our

registration pipeline which maps 3D LSM big data (terabyte per dataset) to

MRH of the same mouse brain provides registration with low displacement

error in ∼10 h with limited manual input. The registration pipeline is optimized

using multiple stages of transformation at multiple resolution scales. A three-

step procedure including pointset initialization, automated ANTs registration

with multiple optimized transformation stages, and finalized application of

the transforms on high-resolution LSM data has been integrated into a

simple, structured, and robust workflow. Excellent agreement has been seen

between registered LSM data and reference MRH data both locally and

globally. This workflow has been applied to a collection of datasets with varied

combinations of MRH contrasts from diffusion tensor images and LSM with

varied immunohistochemistry, providing a routine method for streamlined

registration of LSM images to MRH. Lastly, the method maps a reduced set

of the common coordinate framework (CCFv3) labels from the Allen Brain

Atlas onto the geometrically corrected full resolution LSM data. The pipeline

maintains the individual brain morphology and allows more accurate regional

annotations and measurements of volumes and cell density.

KEYWORDS

mouse brain imaging, magnetic resonance histology, light sheet microscopy, cross-
modality registration, tissue clearing
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1. Introduction

Combining mesoscopic structural information of the brain
and histology at the cytoarchitectural scale has been a focus in
recent years to reveal the bridge between tissue morphological
alternations and disease (Casanova et al., 2009; Vemuri and Jack,
2010; Zhang et al., 2012), brain insult (Tuor et al., 2014; Fornito
et al., 2015; Weishaupt et al., 2016) and aging (Eylers et al., 2016;
Schmitz et al., 2018). There is clear evidence that morphological
disruptions underlie brain dysfunctions at both the meso- and
microscopic scale; for example the corpus callosum volume
reduction in autism (Egaas et al., 1995; Hardan et al., 2000;
Tepest et al., 2010; Loomba et al., 2021) and neuronal death
following ischemic insult (Weishaupt et al., 2016). Merging
structural changes in specific brain regions at the mesoscale
with corresponding quantitative cellular measurements at the
microscopic scale will open an entirely new window into
understanding the brain.

Diffusion tensor imaging (DTI) provides particularly unique
insight into brain morphology and connectivity (Fornito et al.,
2015). However, extension of DTI to more basic studies in the
mouse is challenging because the mouse brain @ 435 mg is about
3,000 times smaller than the human brain. Through a series of
innovations, the Duke Center for in vivo Microscopy (CIVM)
has extended the spatial resolution of magnetic resonance
imaging (MRI)/DTI by more than 500,000 times that of routine
clinical scans in perfusion fixed post mortem specimens (e.g.,
MRH) (Johnson et al., 1993; Johnson et al., 2007). Recent work
has pushed the resolution of DTI to 15 × 15 × 15 µm3

and accelerated the acquisition with compressed sensing, which
enables routine acquisition of high-resolution multidimensional
whole mouse brain images (Wang et al., 2018a; Johnson et al.,
2019, 2022). These high-fidelity mesoscale MRH data now
enable correlation between the MRH metrics and the tissue
cytoarchitecture.

The development of tissue clearing and LSM have allowed
neuroscientists to routinely image whole cleared mouse
brains at cellular resolution (Erturk et al., 2012). Continued
innovation in clearing (SHIELD) (Park et al., 2019) and
immunohistochemistry (SWITCH) (Murray et al., 2015) has
enabled staining of varied cell types (neuron, oligodendrocyte,
microglia), structural proteins (myelin) and pathologies (a-beta
and tau proteins).

Merging MRH and LSM data from the same specimen will
capture the best of both. MRH with DTI is a non-destructive
and multi-contrast imaging method which preserves accurate
brain morphology since the scanning can be done with the
brain in the skull. DTI with high angular sampling provides
maps of whole brain connectivity (Johnson et al., 2019). Multiple
scalar images provide exquisite tissue contrast differentiating
brain subunits. Post processing pipelines can exploit these
multi-contrast images to automatically label more than 300
different sub-regions (Johnson et al., 2022). LSM provides

cellular resolution but requires the removal of the brain from
the skull and tissue clearing, which induces tissue swelling.
Dissection of the brain from the skull frequently results in tissue
loss or tearing (Figure 1). Labeling is not always as uniform
as one might hope. Mapping LSM to MRH restores the tissue
geometry and allows automated labeling of the sub-regions in
the LSM data.

Finally, the most common method for labeling cleared brain
images (Kutten et al., 2016; Goubran et al., 2019; Tappan et al.,
2019; Perens et al., 2021) involves registration to the Allen
Brain Atlas which has been constructed from 2D serial sections
acquired at 100 µm intervals averaged from∼1,600 young adult
C57BL/6J mice (Wang et al., 2020). Mapping the cleared brain
images from another strain at a different age to the ABA may
obscure regional volume changes that might be important image
phenotypes for the study.

Our long-range goal is development of the infrastructure
to support routine, comprehensive morphologic phenotyping
of the mouse brain using combined MRH and LSM to map
the genetic impact on cells and circuits. Those familiar to
registration methods will appreciate that registration of images
into a common space requires recognition of the challenges
that are unique to the task and adapting the code to those
challenges. Those challenges are: (1) The sources of contrast in
MRH and LSM are wildly different. (2) Each modality has many
different contrasts, e.g., 11 different scalar images in MRH and
even greater number of contrasts in immune histochemistry for
LSM. (3) The geometric distortion in the LSM data can exceed
40% and there is frequent tissue loss. (4) The data volumes are
large approaching a terabyte for a single specimen. In this paper
we have addressed a these challenges, developed a process for
optimizing the software, and highlighted some of the limitations
in combining MRH/LSM of the same brain routine.

2. Materials and methods

2.1. MRH histology and LSM

All animal procedures were conducted under guidelines
approved by the Duke Institutional Animal Care and Use
Committee. Specimens were perfusion fixed using an active
staining method that has been described in detail previously
(Johnson et al., 2019). Warm saline to flush out blood
was perfused through a catheter in the left ventricle. This
was followed by a formalin/Prohance (Gadoteridol) mixture
titrated to reduce the spin lattice relaxation time (T1) of the
tissue enabling accelerated scanning. The MRH scanning was
performed on a 9.4T vertical bore magnet with a Resonance
Research Inc. (Billerica, Md) gradient coil yielding peak
gradients up to 2,500 mT/m. The scanner is controlled by
an Agilent console running VnmrJ 4.0. The acquisition was
accelerated using compressed sensing (Wang et al., 2018b;
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FIGURE 1

Distortion and tissue tearing in light sheet microscopy (LSM) compared to magnetic resonance histology (MRH). A comparison between LSM
images of a mouse brain stained with NeuN (A,C,E,F) and a diffusion weighted MRH image of the same specimen (B,D,G,H) highlights some of
the challenges and opportunities. Red arrows indicate the tissue tearing. Purple arrows indicate the swelling (specimen 200316). Scale bar:
1 mm.

Johnson et al., 2019). Diffusion tensor images were acquired
using a protocol described in detail in Johnson et al. (2022). The
protocol employed a Stesjkal Tanner spin echo sequence with
b-values of 3,000 s/mm2, 108 angular samples spaced uniformly

on the unit sphere, a compression factor of 8 × yielding a
large (252 GB) 4D volume with isotropic resolution of 15 µm.
A baseline (b0) image was acquired after every 10th angular
sample, yielding 18 baseline volumes. These volumes were
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averaged together to create a template to which all other
volumes were registered (ANTs) to correct for residual eddy
currents. A MATLAB script produced a diffusion weighted
image (DWI) by averaging the 108 diffusion images together.
The 4D data volume was processed through DSI Studio1 using
both the DTI and GQI algorithms (Yeh et al., 2010) which yields
eleven different scalar images (see Supplementary Table 3).
We explored the use of the following DTI scalar images to
drive the registration: axial diffusivity (AD), diffusion weighted
(DWI), fractional anisotropy (FA) and radial diffusivity (RD).
Two scalar data sets (DWI and FA) were used to registered
labels to the MRH volumes (and thence to the LSM) using the
Small Animal Multivariate Brain Analysis (SAMBA) an pipeline
described fully in Anderson et al. (2019).

Five specimens from Johnson et al. (2022) were included in
this study. They are summarized in Table 1. Specimen 200316,
a 90 day male C57/B6 mouse was used as a reference atlas. It
provides a modified version of the Common Coordinate Frame
(CCFv3) from the Allen Brain Atlas (Wang et al., 2020). The
CCFv3 defines regions of interest (ROIs) for 461 structures.
Many of these structures are so small that reliable alignment
is challenging. The reduced CCFv3 (rCCFv3) is a set of 180
labels/hemisphere generated by combining some of the regions
in CCFv3 that are too small to transfer accurately in the
registration pipeline. The full summary of the rCCFv3 can be
found in Johnson et al. (2022).

Following the MRH scans, the brains were removed from
the skulls and sent to LifeCanvas Technology2 for tissue clearing
and LSM imaging. The brains were cleared using SHIELD (Park
et al., 2019) and stained using SWITCH (Murray et al., 2015) and
scanned on a selective plane illumination microscope (SPIM)
yielding three channel whole brain images at a resolution of
1.8 × 1.8 × 4.0 µm. Each of the three channels yields a nearly
isotropic volume at a different wavelength of ∼ 300GB. The
aggregate dataset for one specimen (MRH and 3 channels of
LSM) is typically ∼ 1 TB. Table 1 lists immuno histochemistry
stains that were used to test the pipeline.

2.2. Multiple stages of the workflow

Initial attempts at registration with popular registration
algorithms (Avants et al., 2008; Klein et al., 2010) were
particularly unsuccessful in cerebellum and olfactory bulb both
of which are prone to significant distortion after removal from
the skull (Figure 2). Our workflow employs an initial manual
initialization followed by an automated multistep registration
based on ANTs (Avants et al., 2008). The manual initialization
is applied to all specimens to correct the most challenging
distortions. It uses sparse landmarks (15∼20) with many

1 https://dsi-studio.labsolver.org/

2 https://lifecanvastech.com/

concentrated in olfactory bulb and brain stem where the tissue
distortion in the LSM are the greatest. Landmarks are placed in
pairs, on both LSM and MRH. The landmark locations are 4
landmarks on olfactory bulbs, 2–3 landmarks on vessels on both
sides between cortex and striatum, 3 landmarks on cerebellum,
2 landmarks on dentate gyrus, 2 landmarks on hippocampus
and 2 landmarks on brain stem (as shown in Supplementary
Figures 5B, D). The second automated step is described in detail
below.

2.3. Quantitative loss function

The goal of registration is to transform the image of interest,
M i.e., the image that is being moved (the LSM volume) into
the space defined by the fixed reference image F (MRH volume).
Our pipelines use a series of transforms applied successively with
a loss function to evaluate each stage of transformation. For a
single transform stage n, the transformation Tn can be obtained
from optimizing the loss function:

Ln (M, F) = S(Tn◦M, F) (1)

in which S is the similarity between F and transformed M.
Common similarity metrics include mutual information (MI),
cross correlation (CC), mean square error (MSE), which capture
how well the two images are matched based on the joint
histogram or signal intensities. Since we may use these metrics
during registration, using the same metric repetitively for
evaluation is unacceptable. At the same time, MSE, CC, global
MI etc., by their intensity-based or histogram-based principles
will not generate a stable predictability map between LSM
and MRH due to the wildly different contrasts. The further
explanation can be seen with the MI equation in the section
“2.4 Optimization and validation.” Therefore, we need to devise
a different loss function.

The initialized LSM data is warped to MRH space with
a combination of registration steps built on ANTs (Avants
et al., 2008). Our workflow encompasses multiple types of
registration, and each type has different settings of metrics for
optimization and multi-resolution coarse-to-fine refinement.
The loss function should evaluate the cumulative consequences
of each of these steps. We devised a loss function based on a
large group (50–200) of fiducials to optimize the pipeline and
evaluate its stability (see Table 1). We emphasize that these
fiducials were used only in the evaluation of our pipeliness and
are not required for routine use. These fiducials were generated
by an experienced researcher on five different specimens (see
Table 1) and consisted of matched pairs of points in MRH
and LSM. Assuming the composite transform generated from
our workflow is T, applying T to the fiducials in the space
of LSM transforms these fiducials to the MRH space. The
distance between one MRH fiducial (rmr) and its corresponding
transformed LSM fiducial (T(rlst)) in the space of MRH is
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TABLE 1 Test specimens for combined magnetic resonance histology (MRH)/light sheet microscopy (LSM) registration.

Specimen Strain/Age Fiducial NeuN Syto MBP IBA1 AutoF

191209 C57/90 d 175 X X X

200302 C57/90 d 50 X X X

200316 C57/90 d 200 X X X

190108 BXD89/111 d 52 X X X

200803 BXD89/687 d 51 X X X

FIGURE 2

The failure of existing registration algorithms in the cerebellum and olfactory bulb. (A,B) DWI; (C,D) NeuN image after registration; (E,F) overlaid
DWI/NeuN (specimen 191209). The left hand column shows the result of Elastix (Klein et al., 2010) with rigid and b-spline registration and
default settings. The registration errors in the olfactory bulb and brain stem are reduced but the errors in the dentate gyrus and cerebellum are
significant (arrows in panel E). The right hand column shows the result of ANTs (Avants et al., 2008) with affine and SyN and default settings.
There is a reasonable overlap in the dentate gyrus but significant mismatch in the cerebellum and olfactory bulb (arrows in panel F).

regarded as displacement from ground truth, and the average
displacement i.e., L2 norm is used as the loss score, i.e.

L2 =
∑n

i = 1 (rmr,i−T(rlst,i))
2

n
(2)

2.4. Optimization and validation

The registration transform can be separated into linear and
non-linear stages. To reduce the computation, a complicated
registration should start from the linear transforms to adjust

the position, orientation, and scaling of the moving image
to coarsely and globally match the fixed and moving images.
Then, application of non-linear transforms will deform the grid
to locally match the fine details of fixed and moving images.
From the popular options of non-linear transforms, we choose
b-spline and symmetric diffeomorphic normalization (SyN)
registration methods based on their efficiency on large datasets
with complicated geometry.

B-spline relies on the control points to adjust local transform
until reaching the minima of the loss function. The curve
defined by b-spline is a conjunction of multiple polynomial
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curves which only depends on a local group of the control
points. Based on the zero-order parametric continuity of
B-spline, changing one control point will only influence the
local neighborhood on the grid instead of propagating further.
Therefore, b-spline can generate localized deformations flexibly
and is computationally efficient when dealing with many control
points. The conventional b-spline method applies free-form
deformation to the image. In this study, the reversal form of the
deformation is also required when transforming images between
the fixed and moving spaces. Hence, we adopt the b-spline with
the explicit symmetry i.e., b-spline Syn (Tustison and Avants,
2013) in the actual practice.

SyN, as a representation of diffeomorphic algorithms,
generates voxel-wise transformation based on symmetrical
and invertible displacements and velocity fields. SyN is
implemented on the Insight ToolKit platform and based on
Large Deformation Diffeomorphic Metric Matching (LDDMM)
principles. As an improvement, it develops the symmetry
between the fixed and moving images, i.e., instead of
maximizing the similarity between T◦M and F, SyN maximizes
the similarity between ϕ1 (m, t)M and ϕ2

(
f , 1− t

)
F, in which

t ∈ [0, 1], m and f are the respective identity positions of M and
F, and ϕ1, ϕ2 are the respective correspondence maps from M
to F, and from F to M. Based on the backward and forward
symmetry, t = 0.5. The optimization problem is then based on
the equation:

E (F,M)

= inf
ϕ1

inf
ϕ2

∫ 0.5

t = 0
{||υ1 (x, t)||2L + ||υ2 (x, t)||2L}dt

+S�(|F (ϕ1 (0.5))−M (ϕ2 (0.5))|) (3)

to minimize both the pixel displacement and the difference
between F (ϕ1 (0.5)) and M (ϕ2 (0.5)), in which υ1 and υ2 are
velocity fields in the opposite directions, S� is the similarity
measurements across the whole x surface. The advantage of
SyN is the low computational cost and the preservation of
the image topology.

An additional factor influencing the registration is the
selection of the similarity metrics. The most common
similarity metrics include cross correlation (CC) and mutual
information (MI).

A common definition of CC is

CC (F,M) =

∑
i,j (Fi,j − F)(Mi,j −M)√∑

i,j
(
Fi,j − F

)2
√∑

i,j
(
Mi,j −M

)2
(4)

CC is very sensitive to significant rotation and scale changes
and any intensity difference, which limits its performance
on cross modality registration evaluation, but including local
neighborhood CC into the optimization penalty may still help
with matching the contours of cross modality images.

MI defined by:

MI (F,M) = H (M)−H (M | F) = H (M)+H (F)

−H (FM) =
∑
m∈M

∑
f∈F

p(f ,m)log
p(f ,m)

p
(
f
)
p(m)

(5)

originates from information theory and measures how
much information of one image can be predicted correctly
from another image which is already known. In this
equation, H is the entropy, p(f, m) is the joint probability
density function of the fixed reference atlas F and the
moving image M that is being mapped into that reference,
and p(f) and p(m) are the marginal probability density
functions of F and M.

MI is commonly used for cross-modality registration
because it is based on intensity probability distribution instead
of pure intensity. However, for registering MRH and LSM, only
employing MI may be risky. As shown in Figure 1, e.g., DWI
and NeuN, in regions like cerebellum and olfactory bulbs, the
intensity of gray matter in DWI is relatively low while in NeuN is
high; meantime, in the central parts of the brain and the cortex,
the intensity in DWI is relatively high while in NeuN is low.
With the definition of MI, the joint histogram of F and M is
scattered and the MI in this case is low, with the minimum being
0 which means no mutual information between two images. MI
is a good measurement for Image F,M when the joint histogram
of F and M consists of one or multiple condensed distributions,
but may not be a good similarity measurement for MRH+LSM
as the local contrast distribution is wildly different. Therefore,
if the loss function calculated by MI is high, we do not know
whether it is induced by the geometric mismatch because of the
failed registration, or just the local contrast difference between
MRH and LSM.

Table 2 describes the steps for optimizing the registration
between an MRH and LSM. In our initial tests we used the DWI
and Syto16 images from specimen 191209, because they both
present abundant landmarks with some similarities, though
the contrasts are different. In later studies, we used DWI
and NeuN because NeuN and Syto16 have similar contrast
and the NeuN stain from LifeCanvas was more consistent.
Table 2 lists multiple stages starting with the global alignment
progressing to local higher resolution details. At each stage
multiple variations of the ANTs modules appropriate for that
task are compared. We refer to a collection as a “pipe” e.g.,
P1_01 is one combination of ANTs modules to perform global
registration. The pipe with the lowest L2 norm is chosen for the
final pipeline. The output of this pipe is the starting point for
the next stage. The Syto LSM image was initialized using the
coarse (20 point) landmark initialization correcting the large
distortions in brainstem and olfactory bulb. The optimization
described in Table 2 was performed on data that had been
down sampled to 45 µm to allow a broad search of parameters.
In each stage, we employ the multi-resolution method, which
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TABLE 2 Pipeline optimization pyramid @ 45 µ m resolution.

Experiments Optimization composition Score

Stage 1
Global

To optimize the combination of multiple transforms

P1_01 Affine (Default) + Syn (Default) 0.3467

P1_02 Affine (Default) + B-spline Syn (Default) + Syn (Default) 0.303

P1_03 Rigid (Default) + Affine (Default) + Syn (Default) 0.4269

P1_04 Rigid (Default) + Affine (Default) + B-spline Syn (Default) + Syn (Default) 0.3644

P1_05 Affine (Default) + B-spline Syn (Default) 0.3333

P1_06 B-spline Syn (Default) + Syn (Default) 0.3131

Stage 2
Similarity

To optimize the similarity metrics

P2_01 Affine (MI) + B-spline Syn (CC) + Syn (MI) 0.303

P2_02 Affine (MI) + B-spline (CC) + Syn (CC) 0.3606

P2_03 Affine (MI) + B-spline (MI) + Syn (MI) 0.3385

P2_04 Affine (MI) + B-spline (MI) + Syn (CC) 0.3752

P2_05 Affine (CC) + B-spline (CC) + Syn (MI) 0.3186

Stage 3
B-spline

To tune the multiresolution setting in b-spline stage

P3_11 --shrink-factor 10--smoothing 5 0.332

P3_12 --shrink-factor 1--smoothing 5 0.323

P3_13 --shrink-factor 1--smoothing 1 0.326

P3_21 --shrink-factor 10× 1--smoothing 2× 1 0.280

P3_22 --shrink-factor 10× 1--smoothing 10× 2 0.285

P3_23 --shrink-factor 10× 1--smoothing 10× 10 0.350

P3_24 --shrink-factor 2× 1--smoothing 2× 1 0.308

P3_31 --shrink-factor 10× 5× 1--smoothing 3× 2× 1 0.277

P3_32 --shrink-factor 10× 5× 1--smoothing 10× 5× 1 0.312

P3_33 --shrink-factor 10× 5× 1--smoothing 10× 10× 10 0.383

P3_34 --shrink-factors 3× 2× 1--smoothing 3× 2× 1 0.300

P3_41 --shrink-factor 10× 7× 4× 1--smoothing 1× 1× 1× 1 0.274

P3_42 --shrink-factor 10× 7× 4× 1--smoothing 4× 3× 2× 1 0.268

P3_43 --shrink-factor 10× 7× 4× 1--smoothing 10× 7× 4× 1 0.362

P3_44 --shrink-factor 10× 7× 4× 1--smoothing 10× 10× 10× 10 0.495

P3_45 --shrink-factor 4× 3× 2× 1--smoothing 4× 3× 2× 1 0.278

P3_51 --shrink-factor 9× 7× 5× 3× 1--smoothing 9× 7× 5× 3× 1 0.292

P3_52 --shrink-factor 9× 7× 5× 3× 1--smoothing 5× 4× 3× 2× 1 0.355

Stage 4
B-spline distance

To tune b-spline spline distance

P4_00 Spline distance default to 26 0.268

P4_01 Spline distance = 10 0.341

P4_02 Spline distance = 40 0.268

P4_03 Spline distance = 60 0.268

Stage 5
Syn

Tuning the multiresolution setting in SyN stage

(Continued)
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TABLE 2 (Continued)

Experiments Optimization composition Score

P5_01 --smoothing 3× 2× 1× 0--shrink 4× 3× 2× 1 0.2679

P5_02 --smoothing 10× 7× 4× 1--shrink 10× 7× 4× 1 0.3543

P5_03 --smoothing 10× 7× 4× 1--shrink 4× 3× 2× 1 0.3084

P5_04 --smoothing 1× 1× 1× 1--shrink 4× 3× 2× 1 0.2703

P5_05 --smoothing 0× 0× 0× 0--shrink 4× 3× 2× 1 0.2637

P5_06 --smoothing 0× 0× 0× 0--shrink 6× 4× 2× 1 0.2626

P5_07 --smoothing 0× 0× 0× 0--shrink 10× 7× 4× 1 0.2625

P5_08 --smoothing 0× 0× 0× 0× 0--shrink 20× 15× 10× 5× 1 0.2633

P5_09 --smoothing 3× 2× 1× 0--shrink 10× 7× 4× 1 0.2656

Specimen is 191209-1-1. The steps and parameters for the pipes that were tested are summarized for each stage. For each stage only the parameters to be optimized will change, and one
optimal pipe will be selected among the pipes within one stage. The aim of the pipeline initialization is to select an optimal registration variables for certain contrasts in MRH/LSM. The
pipeline optimization has been performed using one specimen. The application to additional specimens and contrast combinations has been demonstrated in Supplementary Table 2.

initially performs the registration at a lower resolution with
fewer control points and then samples the control points to
a higher resolution following convergence of the loss function
without consuming large computing resources.

The optimization pyramid (Table 2) includes:

◦ Stage 1 focuses on optimizing large global details. Each pipe
employs linear registration (rigid and affine) followed by
non-linear registration (b-spline syn and syn). Each pipe
uses the same default parameters. In stage 1, P1_02 i.e.,
Affine (Default) + B-spline Syn (Default) + Syn (Default)
yielded the lowest loss score so its output served as the
input for stage 2.
◦ Stage 2 focuses on similarity metrics, i.e., mutual

information or cross correlation.
◦ Stage 3 adjusts the b-spline multi-resolution settings with

number of layers, shrink factors (i.e., down-sampling) and
smoothing sigmas (i.e., the radius of Gaussian filter).
◦ Stage 4 adjusts the b-spline distance, an additional

parameter in b-spline syn.
◦ Stage 5 alters the synmulti-resolution settings with different

number of layers, shrink factors and smoothing sigmas.

The pipe with the lowest L2 norm is labeled in
green at each stage.

2.5. Registration validation

Registration with the five specimens was evaluated using
the fiducials recorded in Table 1. The use of fiducials facilitates
the comparison of different pipes and image combinations
explained in the section “3.1 Optimization of pipes” and
“3.2 Pipeline performance with varied image combinations.”
Supplementary Figure 5 shows the dense collection of fiducials
used to optimize the pipes (specimen: 191209). We performed
an initial evaluation on specimen 200316 with an equally dense

set of fiducials. At this point, it was clear that a sparser set would
be adequate for validation in the other specimens.

The precision of a given registration was measured using
Imaris3 which allows one to load multiple 3D volumes of
different spatial resolution as layers. Vascular landmarks were
identified using the three-plane view. Imaris allows one to toggle
between an LSM image and a companion MRH image while
interactively moving a 3D cross hair. One initially identifies a
vessel in cross section in the LSM and moves the plane until
one encounters a bifurcation. At this point the 3-dimensional
coordinates are recorded. The process is repeated in the
MRH and the Euclidean distance is measured. Supplementary
Figure 3 shows the magnified cross section of a vessel in the
NeuN image. The plane of the vessel cross section was adjusted
until the bifurcation was evident and a fiducial was marked. The
RD image provides high contrast for the same vessel where the
same vessel bifurcation is visible.

2.6. Data and code availability

We have made the data for experiments 1–3
available under creative commons by NC-SA at https:
//civmimagespace.civm.duhs.duke.edu/login.php/client/4.
The data is stored in H5 format to enable interactive
examination using Neuroglancer.4 Reviewers can log in
with the following credentials. Viewers will remain anonymous.
cr371@duke.edu
Password: mrmicroscopy

The code is available in github.5 The code provided
is implemented in Perl and bash (which are available on
windows/macos) and based on Ants.6

3 https://imaris.oxinst.com/products/imarisessentials

4 https://github.com/google/neuroglancer

5 https://github.com/YuqiTianCIVM/MRH_LSM_registration

6 https://github.com/ANTsX/ANTs
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When applying this method, please follow the
procedures described in the accompanying instructions
for installation and in the method section. The processing
time will depend on the computing resource. Please use
a high-performance computing resource paired with high
memory and page faulting, especially if the input data
is hundreds of GB.

3. Results

3.1. Optimization of pipes

Figure 3A plots the rank ordered L2 norm for each pipe.
Visual comparison are provided in Figures 3B–I. Figures 3B, F,
the starting point for all the comparisons shows the initialization
using ∼20 manual landmarks. The comparison between a
45 µm pipe that is less accurate (e.g., p2_02, L2 = 0.361) and
the optimal pipe @ 45 µm e.g., (p3_42, 0.268), is shown in
Figures 3C, D, G, H. The improvement is evident (see white
arrows in Figure 3G).

The parameters derived from Stages 1–3 had significant
impact on the L2 norm. Changing the b spline distance and
Syn in Stages 4 and 5 had less impact so the default settings
were used in P3_042 as the starting point for experiments
conducted with the full resolution (15 µm data) outlined in
Table 3. The variable of interest for this stage of optimization
is the shrink factor. This last stage is more nuanced depending
on compute time and the combination of LSM/MRH contrasts
(e.g., DWI/Syto, FA/NeuN) which is discussed in more detail
in the section “3.2 Pipeline performance with varied image
combinations.” The optimization @ 15 µm is started from
pipe P6_01, which has the same registration setting with the
optimal pipe @ 45 µm (P3_042). Table 3 demonstrates that
the shrink factor has an enormous impact on compute time
but the L2 norm remains relatively unchanged. Inspection of
the results shows more subtle impact of the shrink factor.
P6_01H overfits the data and is 27 times slower. P6_07H
does not overfit and it can be executed in a modest time.
Comparison between the best pipe at 45 µm (P3_042) and
P6_07H optimized on 15 µm is shown in Figures 3D, E, H,
I.

The L2 norm is also shown separately for the cerebellum
(CB), olfactory bulb (OB), central section of the brain (C),
and brain stem (BS). Each region poses unique challenges to
the algorithm. The contrast is very high between the white
matter and the intensely stained granular cell layer in the
cerebellum in both the NeuN and Syto images, and there is
comparable strong contrast in the DWI. Thus, the L2 norm
for this cerebellar region converges to a low value for all the
pipes. In the central part of the brain, the dentate gyrus, fimbria,
and corpus callosum all provide unambiguous landmarks and
fine tuning the pipeline leads to gradual improvement in the

score. The olfactory bulb shows a similar effect, but the score
does not converge to as low a-value. This may be because the
olfactory bulb is one of the most distorted regions of the brain,
and there are frequent tissue tears (e.g., the top red arrow in
Figure 1). Finally, the brain stem is the most challenging region
for registration as evidenced by high L2 norm and the high
variability between different pipes. The cause of this is again
evident on inspection of the sagittal LSM and MRH imaged
in Figures 1C, 2D, F. The spinal cord in the LSM is grossly
misplaced from its natural position forcing the algorithm into
large displacements.

The transform obtained from the 15 µm registration
was applied to the full resolution LSM data through the
python interface of 3D Slicer, in the order of their generation.
The time to apply transforms to full resolution LSM data
(∼300GB) was∼2 h.

3.2. Pipeline performance with varied
image combinations

The registration success depends on the similarity between
the anatomical features that are evident in the fixed and
moving volumes. The initial work described above varied
the pipes while registering Syto16 to DWI using specimen
191209-1-1. This section of the manuscript uses a fixed pipe
(p6_07H) to explore the success of several specific combinations
of LSM/MRH images in another specimen (200316) to
demonstrate the approach more broadly. The DTI pipeline
produces eleven different scalar images, each highlighting
different diffusion properties (see Supplementary Table 3).
The anatomic landmarks in the LSM vary widely depending
on the immunohistochemistry used. There are an enormous
number of combinations. Figures 4A–F show representative
comparisons derived from specimen 200316 to help justify the
comparisons we chose. The auto fluorescence (AutoF) image
(Figure 4A) is frequently used to drive registration to the
AutoF image in the ABA. NeuN (Figure 4B) and Myelin basis
protein (i.e., MBP, Figure 4C) are of particular interest to our
work in aging. The DWI (Figure 4D) is created by averaging
all the (registered) diffusion weighted images producing high
contrast to noise with many anatomic landmarks throughout
the volume. Cortical layer definition and contrast in the
dentate gyrus are particularly high in this volume. There
are strong similarities between NeuN (Figure 4B) and DWI
(Figure 4D). The FA image (Figure 4E) is a logical choice
as it highlights white matter. The RD image (Figure 4F) is a
putative marker of myelin integrity that might map well to the
MBP.

3.2.1. Comparison of p6_03H and p6_07H
Two pipes were chosen for more careful comparison:

p6_03H and p6_07H. Because of the similarities between NeuN
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FIGURE 3

Demonstration of the range of results derived from the varied pipes. (A) Shows the L2 norm for the pipes listed in Tables 2, 3 registering Syto16
to DWI (specimen 191209). (B) Shows that the initialization results in reasonable alignment in the central slice. But (F) shows that initialization
fails in the distal slices in the cerebellum. (C,D,G,H) Show results at 45 µm with L2 norms of 0.361 using pipe P2_02. There are still significant
errors in the cerebellum (arrows in panel G). (D,H) With pipe P3_42 performs better with a lower L2 norm of 0.268. Finally, a comparison of
panels (D,H) (@ 45 µm) and (E,I) (@ 15 µm) with pipeline P6_07_H demonstrates the utility of performing the registration using the higher
resolution data. The cerebellar slice in panels (F–I) highlights a frequent problem i.e., loss of the parafloculoss from handling. The broken
symmetry in the data gives rise to asymmetric misalignment (arrows in panels C,D,H).

and DWI, this combination was chosen to evaluate these two
pipes in three different specimens. Supplementary Figure 1 and
Supplementary Table 1 summarize the comparison. P6_03H
is faster than p6_07H and for one specimen (191209) yielded
a lower L2 norm. The resulting volumes were imported into
Imaris to allow interactive review of the relative success
of the registration across the entire volume. Supplementary
Figure 1 demonstrates that p6_03H yields consistent subtle
misregistration in the dentate gyrus that is absent in p6_07H.

3.2.2. Relative success of multiple
combinations

Supplementary Table 2 summarizes an exhaustive
comparison of p6_07H across five specimens with 15 different
pairs of images. Specimen 200316 with the largest number
(200) of fiducials was run twice with different initializations.
Specimens 190108 and 191209 are from the BXD series
providing a strain with different anatomy than the B6.
Comparison of the L2 norms between specimens is not
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TABLE 3 Optimization of pipeline @ 15 µ m resolution.

Pipeline Composition Score Time

Stage 6

P6_01_H --shrink-factor
10× 7× 4× 1

0.2419 3 d 17 h

P6_02_H Coarser affine
--shrink-factor
30× 21× 12× 1

0.2834 6 d 12 h

P6_03_H --shrink-factor
30× 21× 12× 3

0.2147 2 h 29 m

P6_04_H --shrink-factor
30× 21× 12× 1

0.2544 6 d 12 h

P6_05_H --shrink-factor
40× 28× 16× 4

0.2232 2 h 43 min

P6_06_H --shrink-factor
20× 14× 8× 2

0.2314 18 h 12 m

P6_07_H --shrink-factor
10× 7× 4× 2

0.2382 10 h 29 m

The shrink factors in the b-spline and SyN stages are the main variables to be optimized.

appropriate since each specimen has a different set of fiducials.
This highlights some of the limitations in using fiducials
as a quantitative metric for comparison of the quality of a
registration. The precision of fiducial pairs will be biased by
the reader placing the pairs. This results in a lower (nonzero)
level which will vary between specimens that is dependent on
the reader/fiducial e.g., an average error of 135 µm for the
NeuN/DWI combination for specimen 200803 with 51 fiducials
and 235 µm for specimen 191209 with 175 fiducials. However,
comparison of the L2 norms across the different registration
combinations within a specimen can provide useful insight into
which pairs provide the best registration. For example, mapping
MBP to RD is one of the least successful combinations. Mapping
NeuN to DWI or Syto to DWI yields one of the lower L2 norms
for all the specimens. The duplicate comparison for specimen
200316 highlights the stochastic nature of the registration with
a 12% difference in the L2 norm (NeuN+DWI) between the two
runs, but the relative scores of varied combinations of mapping
remain unchanged.

One of the more surprising results is the success of the
AutoF/DWI combination. Supplementary Figure 2 shows the
results of registration using the pipe p6_07H with two image
combinations: AutoF to DWI and NeuN to DWI with specimen
200316. The transforms generated with the AutoF to DWI
registration was then applied to the NeuN. The registered pairs
(NeuN to DWI) for both transforms were interactively reviewed
in Imaris to discern areas in which the transforms differed. The
target image (DWI) is displayed in yellow, and the moving image
(NeuN) is displayed in green. In Supplementary Figure 2A
(NeuN to DWI) there are subtle errors in alignment in the
cerebellum that are not evident in the autoF/DWI pair. Yet the
internal structures e.g., the dentate gyrus seem to be comparable.
Comparison of the moving images C) NeuN or D) AutoF,

highlight the high contrast granular layer in the NeuN image
and the relatively flat contrast in the AutoF image. The high
contrast in this granular layer dominates the registration since
the NeuN stain in the outer edge of the brain is nonexistent.
Registration using the AutoF is more successful since the
contrast in the cerebellum is quite flat. This highlights one of
the most challenging aspects of this task i.e., the registration of
two volumes with completely different sources of contrast.

The NeuN/DWI combination has become our standard
method since many of our planned studies require insight into
neuronal density. Landmark comparison of the vessels in the
NeuN to DWI registration was undertaken using Imaris as
described in the section “2.5 Registration validation” to gauge
the quality of registration away from the edges. The process was
executed on 11 different vessels spread throughout the brain.
The mean displacement was 22± 14 µ m.

3.3. Volume corrections to LSM

The most common way of delineating brain regions on an
cleared brain image is via registration to an atlas (Kutten et al.,
2016; Tappan et al., 2019; Perens et al., 2021) or registration
of the atlas to the volume under study (Goubran et al., 2019).
The most commonly used atlas is the ABA i.e., the CCFv3 3D
template constructed from a population of 1,675 young adult
B6 brains using AutoF (Wang et al., 2020). In Figure 5, we
used our MRH atlas to estimate the regional volume changes
in the LSM images from tissue swelling in specimen 190108.
This specimen (111 day BXD 89) is representative of our broader
interest- understanding the genetic basis for age related changes
in the BXD family (Ashbrook et al., 2021). We registered the
NeuN to DWI for specimen 190108 using the final registration
pipeline. Labels were registered to the DWI of specimen
190108 from our reference B6 atlas (200302) using our MRH
registration pipeline (Anderson et al., 2019). The transform that
was generated was inverted to transform the labels on the DWI
back to the uncorrected NeuN volume. Figures 5A, B shows
the NeuN volume before and after correction, respectively. Note
the changes in the width is larger than the change in length
highlighting the nonuniform distortion. This is even more
apparent in Figures 5C, D which shows a sagittal cross section
before and after correction.

Figure 6 summarizes the change in volume for the 50
largest regions of interest. We have used the reduced set
of labels (rCCFv3) defined in Johnson et al. (2022). The
nomenclature is consistent with CCFv3. The magnitude and
variability are significant. The olfactory bulb (OB) is nearly
80% larger in the uncorrected data while the corpus callosum
(cc) is ∼10% smaller. The problem is compounded when
comparing specimens as the differential swelling varies, and
it varies considerably between different clearing methods.
These variations must impact the shape of the structures.
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FIGURE 4

Light sheet microscopy of different stains and MRH of different contrasts. (A) Auto fluorescent, (B) NeuN, (C) MBP, (D) DWI, (E) FA, (F) RD scale
bar is 2 mm (specimen 200316).

Supplementary Figure 4 demonstrates the impact on the non-
uniform distortion on the hippocampus, a region of particular
interest in age related neurodegeneration (Sabuncu et al., 2011;
Katabathula et al., 2021). Supplementary Figure 6 demonstrates
the variability of deformation in 30 brain regions across multiple
specimens.

4. Limitations

Registration of LSM to the MRH of the same specimen
improves the geometric accuracy over existing methods of
registration to the Allen Brain Atlas as demonstrated in
Figure 6. But there are limitations. While the MRH data are
acquired with the brain in the skull they are not a perfect
match to the in vivo scan. Ma et al. (2005, 2008) have compared

in vivo and ex vivo scans. They are significant with volume
difference between in vivo and ex vivo (out of skull) varying
from +60% (fimbria) to −79% (ventricles). The majority of
this difference arises from removing the brain from the cranial
vault. Our images have been acquired with the brain in the skull
which reduces this problem. But the ventricles are collapsed
and there may be shrinkage due to fixation. Inspection of the
data before skull stripping has demonstrated no measurable
separation of the brain surface from the skull so the shrinkage
from fixation is limited. But ventricle distortion remains a
limitation. An additional source of uncertainty arises from
the transfer of the label from our canonical MRH atlas to
any new MRH data using our SAMBA pipeline (Anderson
et al., 2019). The accuracy and precision of the pipeline are
dependent on the tuning parameters of the pipeline and the
morphologic differences between the unknown specimen to
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FIGURE 5

Distortion correction of the LSM data by registration to the MRI
of the same specimen (190108). (A) Surface rendering of
uncorrected LSM volume and (B) corrected LSM volume. The
scale bar is 2 mm. (C) Midsagittal section of the labels on the
LSM data before correction; (D) midsagittal section after
correction: the scale bar in panels (C,D) is 2 mm. The distortion
is present both within the plane of section and across the plane
making it difficult to define identical planes. The highlighted
edges in panel (C) are an interpolation artifact.

which labels are mapped and the canonical atlas. We are
confronted with the fact that the atlas is constructed from
a B6 as is the ABA. But the tests performed in validating
the atlas included a systematic variation of inputs using a

synthetic model with varied anatomy and a real world source
of variation based on a model of stroke causing significant
volume changes in several structures in the brain. With
appropriate selection of the SAMBA registration parameters
ROC analysis showed area under the curve (AUC) better than
0.99.

5. Discussion

This work was initiated to enable combined analysis of cells
and circuits from MRH and LSM in the same specimen. We have
developed a method to register the LSM images which allow
us to count cells to MRH, which maintains brain morphology
inside the skull more closely approximating that in a live animal.
Transferring labels from the MRH to the corrected LSM data
allows us to measure regional cell densities with much greater
accuracy than previous methods.

We addressed several challenges in correcting the significant
and irregular distortion in the LSM; registration between
fundamentally different images with significant differences in
contrast; registration of very large volumes (300 GB). We have
employed an initialization involving ∼ 20 landmarks followed
by pipeline with multiple stages of transformations and metrics
to minimize a user customized L2 norm score.

From the optimization, we selected the registration
workflow with a combined consideration on accuracy and time.
The optimized workflow (pipeline p6_07) takes an average
of 7.5 h on a computer with 2 64-core processors and 2TB
RAM with page faulting, with the L2 norm of 135 µm.
The workflow shows robustness in multiple specimens. Our
approach takes advantage of the high spatial and contrast
resolution in the MRH images to provide internal landmarks
the drive the registration locally across the whole brain which
is evident from the small mean displacement (∼22 µm) of
fiducials, which are picked at the junctures of vessels in
both MRH and LSM.

As both MRH and LSM include varied contrasts (Figure 4),
we did experiments to find the best combination of different

FIGURE 6

Bar plot of ratio of the volume before and after registration. The regions are ranked by the ROI volume. The ratio is obtained by
Vbefore reg−Vafter reg

VMR
.

The abbreviations of the regions are based on rCCFv3 (Johnson et al., 2022) with a labeling convention consistent with CCFv3.
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diffusion scalar images and immunohistochemistry with LSM.
A surprising conclusion is that registrations between DWI and
AutoF or NeuN are similarly good. The practical consequence
for our use is that we will not have to acquire an AutoF
image freeing up a channel in the LSM for a more useful
cytoarchitectural measure i.e., NeuN.

Multiple groups have developed methods for automated
labeling of 3D optical images from cleared mouse brains
(Kutten et al., 2016; Perens et al., 2021). These approaches
rely on the Allen Brain Atlas as the reference (Wang et al.,
2020). We are interested in mapping the age-related changes
across multiple strains (for both genders). Registration of
these data to the young adult male C57 that is the core of
the ABA could obscure the morphologic changes of interest.
Renier et al. (2016) used MRI of a fixed mouse brain
to measure the degree of distortion from tissue processing
with iDisco but their MRH images were of a half brain
taken with a relatively low contrast gradient echo out of
the skull. Labeling relied on mapping the autofluorescence
image to the ABA. The MRI was not used in this step.
Goubran et al. (2019) have developed a pipeline that is
similar to that which we report here. Our work differs
from their approach in four ways. Our dMRI protocols
acquire data @ 15 µm vs 200 µm i.e., a difference in
voxel volume of 2370 X with the commensurate challenge
of larger image arrays. As demonstrated in Figures 3E, I,
registration with the full resolution MRH (15 µm) makes
a difference. Supplementary Table 2 provides an excellent
starting point for evaluation of many of the alternatives.
Finally, our pipeline takes advantage of a truly isotropic
3D MRH atlas of the brain in the skull to which rCCF3
labels have been mapped. Our approach provides an efficient
method for segmenting brain regions in LSM data mapped
in the MRH space of the same specimen which will allow
quantitative study of cytoarchitecture e.g., cell density along
with connectivity. The contrast study also would be a fruitful
area for the further work. For example, a broader study could
consider synthesizing synthetic contrast from combinations
of scalar dMRI images that might contain complementary
information or using machine learning to transferring the
contrast from LSM to MRH to reduce the registration
difficulty due to different contrast distributions (Sedghi et al.,
2021). Artificial intelligence may well provide new avenues to
improve the registration quality and efficiency (Fu et al., 2020;
Sedghi et al., 2021).
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Introduction:Many research papers have reported successful implementation

of hybrid brain-computer interfaces by complementarily combining EEG and

fNIRS, to improve classification performance. However, modality or feature

fusion of EEG and fNIRS was usually designed for specific user cases, which

were generally customized and hard to be generalized. How to e�ectively

utilize information from the two modalities was still unclear.

Methods: In this paper, we conducted a study to investigate the stage

of bi-modal fusion based on EEG and fNIRS. A Y-shaped neural network

was proposed and evaluated on an open dataset, which fuses the bimodal

information in di�erent stages.

Results: The results suggests that the early-stage fusion of EEG and fNIRS

have significantly higher performance compared to middle-stage and late-

stage fusion network configuration (N = 57, P < 0.05). With the proposed

framework, the average accuracy of 29 participants reaches 76.21% in the

left-or-right handmotor imagery task in leave-one-out cross-validation, using

bi-modal data as network inputs respectively, which is in the same level as the

state-of-the-art hybrid BCI methods based on EEG and fNIRS data.

KEYWORDS

EEG, fNIRS, hybrid-BCI, modality fusion, motor imagery

1. Introduction

Brain–computer interfaces (BCIs) are communication systems that utilize control

signals generated by the brain to interact with the surrounding environment

without the participation of the peripheral nervous system and muscles (Nicolas-

Alonso and Gomez-Gil, 2012). These years have witnessed thriving progress in

the field of BCI. Motor imagery (MI) is one of the common paradigms in BCI

research (Kaiser et al., 2011), which is accomplished by imagining performing the

given task (Jeannerod, 1995), such as grabbing (Herath and Mel, 2021), lifting

(Kasemsumran and Boonchieng, 2019), and so on. MI-BCIs are widely used to

aid patients with motor function impairments caused by stroke (Ang et al., 2010),

amyotrophic lateral sclerosis (Lulé et al., 2007), spinal cord injury (Cramer et al.,

2007), and so on, either for daily-life assistance or rehabilitative training. Since motor

imagery tasks induce event-related desynchronization and synchronization (ERD/ERS)
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in EEG (Jeon et al., 2011), various feature extraction algorithms

have been designed to detect ERD/ERS activities in EEG (Kee

et al., 2017; Selim et al., 2018; Sadiq et al., 2019; Dagdevir and

Tokmakci, 2021). However, due to its nonstationary nature,

EEG is considered as bio-signals of extremely low signal-

to-noise ratio with spatial ambiguity and distortion (Hallez

et al., 2007). EEG feature extraction process, which is highly

dependent on prior knowledge, is challenged by its high time

complexity, imposing the risk of information loss (Zhang

et al., 2018, 2021). Many researchers turned to deep learning

methods for EEG feature extraction. For example, Schirrmeister

et al. (2017) proposed an end-to-end learning network called

ConvNets that was able to learn the spectral power modulation

of different frequency bands and produce accurate spatial

mapping for learned features. Lawhern et al. (2018) proposed

a compact convolutional neural network to accurately decode

EEG recorded from various paradigms.

The low spatial resolution characteristic of EEG leads to

challenges in the accurate localization of cortical activation

sources despite the fact that EEG signals are themost widely used

bio-signals in BCIs (Liu et al., 2021). Due to its disadvantage

in spatial resolution, some researchers attempted to incorporate

the information from functional near-infrared spectroscopy

(fNIRS) data to improve the performance of BCIs (Pfurtscheller,

2010; Fazli et al., 2012; Buccino et al., 2016). fNIRS measures

oxygenated and deoxygenated hemoglobin (HbO and HbR)

using near-infrared light (Fazli et al., 2012). On the one hand,

the fusion of EEG and fNIRS has technical support because

the electrophysiological signal and the inner edge light signal

are not affecting each other. On the other hand, fNIRS-based

BCIs are most commonly of the active type, where users

react purposefully and independently (Khan and Hong, 2017).

Therefore, plenty of mental tasks exploit fNIRS signals to assess

brain status, which have proven to be effective in previous

studies (Hong et al., 2015). Yin et al. introduced joint mutual

information (JMI) to combine features and optimize BCIs,

which was used to classify MI tasks with different strengths and

speeds when clenching a fist. JMI reached an accuracy of 89 ±

2% with 1–5% improvement compared to using EEG or fNIRS

alone. Al-Shargie et al. applied canonical correlation analysis

to decode EEG-fNIRS and maximized the correlation between

EEG and fNIRS to classify the influence of psychological stress

on the prefrontal cortex (Al-Shargie et al., 2017). Sun et al.

used tensor fusion and p-order polynomial fusion with deep

learning technologies, which improved the accuracy at the cost

of increased computational complexity and reduced the stability

(Sun et al., 2020).

There are relatively mature methods and a relatively clear

consensus for dealing with multimodal fusion problems in the

field of computer vision. Depending on those methods, the

researchers combined features in the early or late stage to achieve

the best results. For example, Aygün et al. (2018) adapted

various fusion methods, which were previously used in video

recognition problems, to solve the brain tumor segmentation

problem and conducted the related experiments in the BRATS

dataset in the early, middle, and late fusion methods. A Y-shape

network is widely used in tasks with multimodal inputs. The

multimodal models usually have their own encoders on each

modality. For example, the image encoder and the language

encoder form a twin tower structure model that is used for loss

calculation in CLIP, which is a training structure of language–

image multimodal fusion (Radford et al., 2021). Lan et al. (2019)

used a Y-shaped network to combine two encoders with the

path of one decoder and extract more information from raw

data. As a result, the Y-shape network is extremely helpful for

data reconstruction and multimodal fusion. However, in the

field of biomedical signal processing, there is no consensus on

the processing of physiological signals from different modalities.

Fusion of EEG and fNIRS information is conducted mostly

arbitrarily at the feature level, which has been proven to be

suitable for several specific user cases. When and how to

effectively combine the bimodality data is still unclear. This

study conducted experiments on an open dataset. A compact

Y-shaped ANN architecture has been proposed and validated

to investigate the EEG-fNIRS fusion methods and strategies.

The main framework of EEGNet is used in the EEG processing

branch, which is a proven successful framework for EEG data

analysis. As the temporal resolution of fNIRS is low andminimal

frequency information is present, only the second and third

modules of EEGNet are used in the fNIRS processing branch.

The results suggest that neural networks with EEG-fNIRS

features integrated at an early stage demonstrated statistically

higher accuracy. The final classification accuracy of the proposed

method reaches 76.21%, which is at the same level compared

to the state-of-the-art on the investigated open dataset in

discriminating left and right motor imagery.

This article is organized as follows. In the “Materials

and methods” section, the dataset is briefly introduced, and

the preprocessing method and the proposed framework are

demonstrated in detail. In the “Results” section, the results

are presented. In the “Discussion” section, an in-depth

discussion is presented. In the “Conclusion” section, conclusions

are presented.

2. Materials and methods

2.1. Datasets

Shin et al. released two publicly available datasets of EEG-

fNIRS multimodal, which were Dataset A, left-hand motor

imagery and right-hand motor imagery, and Dataset B, mental

arithmetic and relax imagery (Shin et al., 2017). The primary

focus of this study was MI classification, and Dataset A was

used to conduct a series of experiments and analyze further in

this study.
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For Dataset A, there were 29 participants (14 men and

15 women), all of whom had minimal experience with motor

imagery experiments. In the experiment, a black arrow pointing

to the left or right was shown in the middle of the screen for

the first 2 s. Then, the arrow disappeared and a fixed black

cross was shown on the screen for 10 s. All the participants

were instructed to perform kinesthetic motor imagery at a

speed of approximately 1 repetition per s, such as imagining a

designated hand opening and closing as if they were grasping a

ball, followed by a rest period of 10–12 s. Finally, there were 30

trials for each task of each participant. Common spatial pattern

(CSP) features of EEG data and the mean and slope values of

fNIRS signals were extracted from the data as features. A sliding

window was used to conduct 10× 5-fold cross-validation on the

unimodal data and bimodal data, respectively, with window size

set to 3 s, step size set to 1 s, and the range of sliding window set

to between 5 s before the cue and 20 s after the cue. sLDA was

used as a classifier to classify data between left and right motor

imagery tasks.

In their article, the average classification accuracy of the 10

× 5-fold cross-validation under each window was considered

as the classification accuracy of this window. In addition, the

maximum classification accuracy among all the windows was

regarded as the final classification accuracy for each participant.

The highest classification accuracy of EEG-only was about 65%,

and the highest classification accuracy of unimodal classification

was HbO-fNIRS, which was approximately 57% according to the

resulting figure.

2.2. Pre-processing

For dataset A, the EEG was recorded using a BrainAmp

EEG amplifier, with the sampling rate set to 200Hz in the

original dataset. First, the data were downsampled from 200

to 128Hz, and the channels related to EOG were removed for

later analysis. Then, the EEG data were re-referenced to the

common average reference. A band-pass filter with a frequency

range of 8–25Hz was applied to remove noise, leaving the µ-

band and low-β band data unmodified. Since we wanted to focus

on channels related to the sensorimotor cortex and maintain

the correspondence with fNIRS optical channels, eight relevant

electrodes were chosen around the sensorimotor cortex, namely,

FCC5 h, FCC3 h, CCP5 h, CCP3 h, FCC4 h, FCC6 h, CCP4 h,

and CCP6 h (shown in Figure 1). The amplitude of the signals

was normalized to [−1, 1] for subsequent processing.

The sampling rate of the fNIRS signal was set to 10Hz in

the original dataset. First, the data were up-sampled from 10Hz

to 128Hz to be consistent with EEG data (Abtahi et al., 2020).

We chose eight optical channels (6 emitters and 6 detectors with

3-cm optrode separation) around the sensorimotor cortex, i.e.,

FC3-FC5, FC3-FC1, C5-C3, C1-C3, FC4-FC2, FC4-FC6, C2-C4,

and C6-C4 (shown in Figure 1), whose positions corresponded

to the selected EEG channel locations, to ensure spatial

consistency of the recorded data. The modified Beer–Lambert

lawwas used to convert the raw light intensity data to the relative

oxyhemoglobin and deoxyhemoglobin concentrations. Then, a

band-pass filter with a frequency range of 0.01–0.1Hz was used

to remove the effect of physiological noises such as heartbeat,

breath, and other artifacts.We extracted 10 s data during the task

period, and data from 5 s to 2 s before the visual cue were used

to remove the baseline. Finally, the amplitude of the signals was

normalized to [−1, 1] for subsequent processing.

2.3. Fusion network

The basic network structure is inspired by the EEGNet

(Lawhern et al., 2018). The original EEGNet is composed

of three modules. The first module is a temporal-domain

convolution layer through which the time-frequency features

of the signals are constructed. The kernel size is set to (1,

fs//2), where fs is the sample rate of signals, and the sign //

denotes the rounding operation. The second module is depth-

wise convolution through which spatial filters are generated

and more task-related channels are selected by the convolution

kernel, where the kernel size is set to (Nchan, 1), where Nchan

denotes the number of EEG channels. Average pooling is used

to down-sample the feature dimension. The third module is

a separable convolution layer, which consists of depth-wise

convolution and pointwise convolution.

In this study, we followed EEGNet architecture with three

complete modules for EEG data. For fNIRS, we only used

the second and third modules since the fNIRS signals did not

contain much information in the frequency domain due to

the low sampling rate, and the features are mostly extracted

from the time domain. At the end of the Y-shaped network, a

SoftMax layer was used as a classifier to generate the outputs.

The complete network architecture is shown in Figure 2.

In the literature, one of the commonly used fusion methods

is the concatenation of features from each modality (Baltrusaitis

et al., 2019). The network architecture is shown in Figure 2. In

this study, three similar networks are proposed to investigate

the effect of fusing bimodal features in different stages, i.e.,

before depth-wise convolution (referred to as E_0_Net and

E_1_Net, please see Figure 2A), before separable convolution

(referred to as M_0_Net and M_1_Net, please see Figure 2B),

and before flatten layer (referred to as L_0_Net and L_1_Net,

please see Figure 2C), where E, M, and L represent early stage

fusion, middle-stage fusion, and late-stage fusion, respectively,

and numbers 0 or 1 represent concatenation fusion performed

at the depth-dimension or the channel-dimension. In this study,

to maintain the integrity of the original design of EEGNet, the

proposed network used the same hyperparameters as proposed

in the original EEGNet paper (Lawhern et al., 2018); only the

kernel size of the first layers in EEG branch was tuned as we had
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FIGURE 1

The placement of EEG electrodes, fNIRS sources, and fNIRS detectors.

a very limited number of trials in the investigated open dataset

and a larger kernel size created more parameters to be learned.

We tried kernel sizes of (1, 34), (1, 44), (1, 54), and (1, 64) to

perform temporal-domain convolution on EEG data to have the

best model performance during the training process.

Table 1 summarizes the number of network parameters

with different fusion strategies. The numbers of neural network

parameters for different fusion methods are similar, except for

M_0_Net. For the open dataset used in this study, the amount

of data from a single participant in one particular type of

task is too small when using networks with a large number

of parameters. Therefore, the use of a lightweight network can

alleviate overfitting to a certain extent.

2.4. Model training

Early stopping is a form of regularization that prevents

overfitting by stopping the iteration number. When training

error decreases quickly, we hope that the model continues to be

trained and that the generalization losses have a higher chance

of being “repaired”. In this study, we used an early stopping

criterion that assumes that overfitting does not begin until the

error decreases slowly. The algorithm is shown in Equations

(1) and (2), referred to from Prechelt (2012). In this study, we

did not use a validation dataset and we used an early stopping

strategy to reduce jitter.

Pk = (t) 1000·(

∑t
t′=t−k+1 Etr

(

t′
)

k·mint
t′=t−k+1

Etr
(

t′
)−1) (1)

Pk (t)<α (2)

where k is the training strip, Etr is the training error, and α is

the threshold value. When Pk(t) is less than α, we think that it is

time to stop. In this study, k is 10 and α is 0.001.

Due to the limitation in the amount of data, for each

participant, there were only 30 trials for eachmotor imagery task

in the open dataset. A data augmentation method designed for

long-interval EEG-fNIRS hybrid BCI applications was used to

expand the size of the dataset. Due to the limitation in response

time of fNIRS signals, the time intervals between experiment

tasks were more than 10 s. Therefore, data augmentation can be

achieved by repetitively sampling sub-trials from a single trial.

In this study, two training strategies were adopted. For

training Strategy A, the window size was set to a 3-s time

window, and the step size was set to 3 s. Then, each 10-s trial

was divided into 3 sub-trials without overlapping. Therefore,

the number of trials for each participant from one task was

expanded to 90 trials and was used for neural network training.

All the sub-trials were randomly shuffled before the train-test

segmentation of data. The data were then randomly divided into

an 80% training set and a 20% testing set. The proposed neural
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FIGURE 2

(A) The network architecture of early stage fusion, which is referred to as E-0-Net and E-1-Net in the following contents, depends on whether

the concatenation was performed on the 1st or 2nd dimension. (B) The network architecture of middle-stage fusion, which is referred to as

M-1-Net and M-0-Net in the following contents. (C) The network architecture of late-stage fusion, which is referred to as L-1-Net and L-0-Net

in the following content.
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TABLE 1 The number of all parameters.

Method Number of parameters

E_0_Net 3,792

E_1_Net 3,792

M_0_Net 8,880

M_1_Net 4,172

L_0_Net 4,176

L_1_Net 4,176

networks either were trained for 500 epochs or met the early

stopping criteria.

For training Strategy B, we used leave-one-out cross-

validation for each participant. The voting method was used to

train the network with the idea of decision fusion. We divided

each trial with a window size of 3 s and a step size of 1 s. Each

trial was divided into 8 sub-trials. In the training set and testing

set, two overlapping sub-trials from the same trial did not appear

at the same time. The data from the open dataset were further

expanded without the training set leakage. During the training

process, all data were randomly shuffled. The proposed neural

networks were either trained for 500 iterations or met the early

stopping criteria.

2.5. Voting mechanism

Ensemble learning is one of the most popular research topics

(Wozniak et al., 2014). It extracts a set of features through a

diversity of projections on data using multiple machine learning

algorithms and performs various transformations of features.

Then, various classification algorithms are used to generate

prediction results based on the extracted features. Information

from the abovementioned results is integrated to achieve better

performances than information obtained from any stand-alone

algorithm (Dong et al., 2020). For classification tasks, the voting

method is often used to improve the final results (Zhou, 2012).

One of the commonly used voting combinations is the majority

voting combination, where the predicted results of most are

considered as the final output. The voting algorithm is shown

in Equation (3).

ŷ=

{

1, n
ŷi
>n

ŷ0

0, n
ŷi
<n

ŷ0

(3)

where n
ŷi
is the number of test samples with its predicted results

being 1. n
ŷ0

is the number of test samples with its predicted

results being 0, and ŷ is the final predicted result of this trial.

In this study, we used a sliding window of 3 s with a step

size of 1 s. Therefore, each trial is divided into 8 sub-trials. Then,

a leave-one-out cross-validation scheme was used to test the

model performance for each actual trial after data augmentation

from each participant. The predicted results of the majority

voting combination of 8 sub-trials were the final prediction

results of one trial.

3. Results

3.1. Data augmentation

Deep convolutional neural networks have achieved

outstanding performance in many areas, which is driven by

improvements both in computational power and the availability

of large datasets. However, it is extremely difficult to acquire

or collect large datasets for lots of application fields, such

as datasets of physiological signals. If a small dataset was

used to train a model with a large number of parameters,

overfitting would happen, resulting in poor generalization

performance. In the related studies on computer vision,

overfitting can be alleviated by data augmentation, such as

geometric transformation, random cropping, feature space

manipulation, adversarial training, and so on, to improve the

model performance and expand its limited dataset (Shorten and

Khoshgoftaar, 2019).

In the dataset investigated in this study, there were only 30

trials in each task for each participant in this open dataset, and

each trial is 10 s long. Data augmentation was used in the model

generation to improve the model performance. The data from

one trial of 10 s were truncated to three trials as 0–3 s, 3–6 s, and

6–9 s without overlap. Through the augmentation process, the

original dataset was expanded to three times its original size.

We selected unimodal data (EEG-only and HbO-only)

without data augmentation from different time windows using

themethod from the original dataset study (Shin et al., 2017) and

chose the average accuracy of all participants among different

time windows as average accuracy for statistical analysis. The

CSP algorithm was used to extract features from augmented

EEG data, the mean and slope features were extracted from

HbO-fNIRS, and sLDA was used as a classifier to generate a

classification model. The highest classification accuracy of left-

right motor imagery classification with only EEG data (referred

to as EEG-only in the following content) was 66.09%, and

the highest classification accuracy of left-right motor imagery

classification with only HbO data (referred to as fNRIS-only

in the following content) was 54.31%, which were similar to

the results of the original study. After data augmentation, the

highest average accuracy for EEG-only reached 69.25% and for

fNIRS-only reached 58.33%. The average accuracy improved

for both EEG-only and fNIRS-only. It can be seen from

Figure 3 that the classification accuracy of 65.52% of participants

improved for EEG and that 72.41% of participants improved for

fNIRS compared with the original data. This method of data

augmentation not only expands the dataset but also improves

the classification performance.
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FIGURE 3

(A) The scatter plot of classification accuracy of each participant based on EEG signals before and after data augmentation. (B) The scatter plot

of classification accuracy of each participant based on the fNIRS signal before and after data augmentation.

FIGURE 4

The PSD analysis of EEG signal. The PSD analysis of sub09 is shown above the horizontal dashed line and that of sub25 is shown below the

horizontal dashed line.

Similarly, we used artificial neural networks to classify EEG

and fNIRS data from different tasks. The average accuracy

of all participants is 65.00%. Sub01, sub09, sub16, sub25,

sub26, and sub27 demonstrated good classification performance

using EEG data with a classification accuracy of more than

80%. Participants with top model classification performance

(sub09 and sub25) were analyzed with power spectral density

(PSD) (shown in Figure 4). Clear EEG power lateralization

was identified both before data augmentation and after data

augmentation. The proposed method of data augmentation

can maintain the original temporal-spatial characteristic in the

EEG data.

For fNIRS-HbO, the average accuracy of the lightweight

network of all participants is 63.13%. Sub09, sub19, sub20,

sub21, sub24, and sub29 were able to demonstrate good

classification performance using fNIRS, with the classification

accuracy reaching more than 70%. We used the cerebral oxygen

exchange (COE, where COE value = HbO – HbR) (Naseer

and Hong, 2015) as input and selected the participants with

the top performances (sub20 and sub21) for temporal-domain

analysis. As shown in Figure 5, before data augmentation, clear

lateralization of the COE values can be identified in both left-

hand and right-hand motor imagery tasks: the COE values

of the left channels were significantly higher than that of the

right channels during the left-hand motor imagery, and COE

values of the right channels were significantly higher than

that of the left channels during the right-hand motor imagery,

which was consistent with the results presented in the literature

(Asahi et al., 2004; Hétu et al., 2013). At the same time, data

augmentation with a sliding window of 3 s with a 1 s step size

also demonstrated similar lateralization characteristics, as shown

in Figure 5. The proposed data augmentation method did not

Frontiers inNeuroscience 07 frontiersin.org

155

https://doi.org/10.3389/fnins.2022.1062889
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.1062889

FIGURE 5

The temporal-domain analysis of the fNIRS signal. The temporal-domain analysis of sub20 is above the horizontal dashed line, and that of sub21

is below the horizontal dashed line.

FIGURE 6

The model training loss (sub09 as an example) varies with the

number of epochs under di�erent network architectures.

disturb the temporal-spatial characteristics of original fNIRS

data and maintained good consistency.

3.2. Model generation

As shown in Figure 6, model training loss varied with the

number of iterations under different network architectures. It

was clear that the value of training loss reduced as the number

of epochs increased. In addition, the convergence speed was the

lowest when fNIRS-only data were used for model generation,

which required 150 epochs before convergence. However, for

EEG-only data, the convergence speed was faster than fNIRS-

only data, and the training reached convergence within 50

epochs. The model converged faster with a bimodal fusion

network than with a single-modality network.

3.3. Test results

Due to the obvious temporal characteristic difference

between EEG and fNIRS, we attempted different sizes of kernels

(parameters used for temporal-domain convolution) during the

comparison of fusion results at different stages. We divided the

results into four groups at different stages, namely, (1, 34), (1,

44), (1, 54), and (1, 64). In Table 2 for different kernel sizes, the

classification accuracies of the two methods of early stage fusion

were significantly higher than that of other fusion methods.

In addition, the accuracies of the two early fusion methods

were both within the range of 69–70%. For middle-stage

fusion methods, the classification accuracies ranged from 65 to

66%. For late-stage fusion methods, the classification accuracies

ranged from 62 to 63% (see Figure 7). Since none of these results

conformed to a normal distribution, the Wilcoxon signed-rank

test was adopted to investigate the statistical significance. Table 2

summarizes the results of the significance analysis of different

fusion methods. We observed that p-values between early stage

fusion and middle-stage fusion or for late-stage fusion were all

below 0.05 regardless of the kernel size, which represents the

statistical significance of the performance difference between

the early stage fusion method and other stage fusion methods.
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TABLE 2 Statistical analysis results between the di�erent fusion methods.

HbO Kernel size Early-mid (N = 57) Early-late (N = 57) Mid-late (N = 57) Dim_0-Dim_1 [E-M] (N = 28)

P-values (1,34) 0.0007 0.0011 0.3550 0.0566

(1,44) 0. 0003 0.0013 0.7033 0.2801

(1,54) 0.0007 0.0007 0.5872 0.2864

(1,64) 2.8884 0.0001 0.2066 0.2594

HbR Kernel size Early-mid (N = 57) Early-late (N = 57) Mid-late (N = 57) Dim_0-Dim_1 [E-M] (N = 28)

P-values (1,34) 0.0024 0.0014 0.5217 0.0540

(1,44) 0.0033 0.0045 0.3226 0.0257

(1,54) 0.0025 0.0034 0.6294 0.3470

(1,64) 0.0062 0.0008 0.4265 0.0809

FIGURE 7

(A) The average classification accuracy of all participants using EEG-HbO in di�erent fusion strategies. (B) The average classification accuracy of

all participants using EEG-HbR in di�erent fusion strategies.

The performance of early stage fusion was significantly higher

than late-stage fusion. We also optimized the proposed bimodal

fusion network to achieve the best classification performance

further. We further optimized the size of the pooling layer

and the number of convolution filters to optimize the model

performance. For the pooling layer, we searched from (1, 4) to

(1, 16), with (1, 4) as the step size and four options in total.

Other hyperparameters were still the same as in the original

paper of EEGNet. The optimal parameters are shown in Table 3.

In addition, the optimal average accuracy was 71.60% and the

standard deviation was 1.42% using EEG-HbO with E-N-0. The

optimal average accuracy was 71.21%, and the variance was

1.88% using EEG-HbR with E-N-0.

3.4. Ablation analysis

The proposed fusion network architecture consisted of

a temporal convolution layer, spatial convolution layer, and

separable convolution layer, where the temporal convolution

layer learned the time-frequency feature of each channel, the

spatial convolution layer selected and extracted the spatial

pattern of interesting channels, and separable convolution layer

extracted global joint features and facilitated the design of

a relatively lightweight network for small datasets. Feature

fusion was conducted in these three modules, through which

early fusion, middle fusion, and late fusion were configured

and investigated. Ablation analysis was conducted to further

explore the significance of multimodal fusion.We conducted the

ablation experiments based on training strategy A and training

strategy B, respectively.

First, we optimized the proposed bimodal fusion network

to achieve the best classification performance. For training

strategy A, we can conclude that, when using EEG-only,

the average accuracy of all participants was 65.00% and the

standard deviation was 2.11% using EEGNet with the same

hyperparameters related to EEG in the bimodal process.

When using HbO-fNIRS, the average accuracy was 63.13%

and the standard deviation was 0.57% using ANN (consists

of spatial convolution layer and separable convolution layer)
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TABLE 3 Parameter table.

Block Layer #filters Size Activation Options

1 Conv2D 8 (1, 54) Padding

2 DepthwiseConv2D 2∗8 (8, 1)

Activation ELU

AveragePool2D (1, 4) for EEG+Hbo /(1, 16) for EEG+Hbr

Dropout P= 0.2

3 SeparableConv2D 2∗8 (1, 8) padding

Activation ELU

AveragePool2D (1, 16)for EEG+Hbo /(1, 12)for EEG+Hbr

Dropout P= 0.2

FIGURE 8

The comparison between unimodality and bimodality. A P-value

of <0.05 and the performance of bimodal fusion is significantly

superior to that of unimodality.

with the same hyperparameters related to HbO in bimodal

process. When using HbR-fNIRS, the average accuracy was

62.43% and the standard deviation was 1.08% using ANN

with the same hyperparameters related to HbR in a bimodal

process. The average accuracy was 71.60% using EEG-HbO

with E-N-0. The average accuracy was 71.21% using EEG-

HbR with E-N-0. Statistical analysis was performed by using

the Wilcoxon signed-rank test to compare the performance of

unimodality with that of bimodality. As shown in Figure 8,

it was found that P-values were below 0.05, and a P-value

of below 0.05 was regarded as statistically significant. The

results are summarized in Figure 8, which demonstrated a

consistent and significant model performance improvement,

with the introduction of the other modalities. Multimodal fusion

can complement advantages of each modality and improve

classification performance significantly.

3.5. Voting results

In this study, we divided each trial into 8 overlapping sub-

trials and used the majority voting method to achieve the final

result of each trial. We used training strategy B to train networks

and used the same hyperparameter to perform 500 epochs. As

shown in Figure 9, during the leave-one-out analysis, the average

accuracy without the voting mechanism was 72.13% and the

standard deviation was 0.1391, while the average accuracy with

the voting mechanism was 76.21% and the standard deviation

was 0.1611.

4. Discussion

Bimodal fusion methods demonstrated higher performance

than that of unimodal data, whether using traditional machine

learning methods with feature extraction classification schemes

or deep learning methods with an end-to-end learning process.

The heterogeneity between EEG and fNIRS data does exist;

however, the heterogeneity is not as high as we thought based

on the signal sources. In addition, incorporating special methods

for bimodal fusion boosts BCI performance.

The classification results of the proposed Y-shape model

are summarized in Figure 7, which contains conditions with

different types of fNIRS data (Hbo vs. Hbr) and different kernel

sizes on the first layers of the EEG branch. Figure 7A showed the

fusion of EEG andHbo, and Figure 7B showed the fusion of EEG

and Hbr. According to the consistent performance of the two

types of fNIRS information, models with an early fusion of EEG

and fNIRS data have better classification accuracy than those of

other stages, regardless of the size of the kernel and fNIRS data

type. Comparing two types of fNIRS data, models with Hbo as

input demonstrated higher resilience of model hyperparameter

than the models using Hbr as input, although these two types

of information were inherently correlated by the mechanism

of blood supply in the human brain. Hbr data might be more
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FIGURE 9

Using a leave-one-out analysis scheme, the average accuracy of each participant with the voting mechanism.

sensitive to subtle changes in brain activities, which introduced

more irrelevant activities other than motor imagery.

The common analysis for fNIRS signals was limited to

the temporal-domain features such as the mean value, slope,

peak, and so on, due to the low sampling rate. However,

these features might not be informative enough to reflect the

overall and detailed characteristics of fNIRS signals. Thus,

the resultant information loss deteriorated the classification

performance. We noticed that the classification accuracy of

each participant with temporal convolution was lower than

that without temporal convolution in fNIRS models using deep

learning methods, which is consistent with our prior knowledge

of fNIRS signals. In addition, the classification accuracies using

deep learning methods for fNIRS signals (HbO-only, 63.13%)

were better than that using traditional machine learning with

handcrafted features and a predefined learning model (HbO-

only, 58.33%), which demonstrated the superiority of the deep

learning methods in the field of BCI research.

The average accuracy for the EEG-only model was 66.09%

using traditional machine learning techniques, and for the HbO-

only model, the average accuracy was 54.31% without data

augmentation. With data augmentation, the highest average

accuracy for EEG-only was 69.25%, and for the HbO-only

model, the highest average accuracy was 58.33%. With data

augmentation combined with deep learning methods, the

highest average accuracy for the EEG-only model was 65.00%,

and the HbO-only model was 63.13%. Therefore, the size of

the dataset had a great impact on the classification performance

of left-vs.-right MI tasks. An effective data augmentation

method was able to boost model performance and improve

generalization. The data augmentation method we propose in

this study is valid and effective, especially for long recording

interval paradigms when integrating EEG and fNIRS data.

Based on the classification results from different networks,

it was clear that the early fusion techniques demonstrated

significant positive impacts on the bimodal MI classification.

A slight decreasing trend was observed with early, middle,

and late fusion methods, respectively (shown in Figure 7 and

Table 2). Although all three of these networks were feature-

level fusion, the difference in model performance might be

a compound effect of the heterogeneity of data, the level of

feature (high-level features vs. low-level features), and bimodal

co-adapted learning. Early stage fusion of bimodal data might

have added additional constraints on the learning process and

subsequently regularized the two feature extraction branches

in the Y-shaped network. It seemed that early fusion could

mitigate the loss of information. In previous studies in computer

vision, it was suggested that multimodal data with higher

heterogeneity tend to have better performance in late-fusion

models, while multimodal data with low heterogeneity tend

to perform better in the early fusion in the field of medical

image (Ramachandram and Taylor, 2017; Mogadala et al., 2021;

Yan et al., 2021). The heterogeneity of EEG and fNIRS might

not be as high as we expected since they were able to be

fused in the temporal domain, although these two types of

data were recorded from completely different signal sources.

However, this phenomenon was preliminarily observed and

validated with only one open dataset due to limited access to

bimodal BCI datasets of EEG and fNIRS; further analysis with

more datasets should be done in the future. In addition, it was
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interesting that no statistically significant difference was found

between middle-stage fusion and late-stage fusion, which might

be caused by insufficient complementary features. The temporal-

spatial feature of EEG and the spatial feature of fNIRS were

extremely important.

In the dataset investigated in this study (Shin et al., 2017),

there were only 30 trials for each task of each participant. The

major limitation in the amount of data severely limited the

scale of the neural network as well as the final classification

performance. Future studies should be done to validate the

conclusions in this study with a large bimodal EEG-fNIRS

dataset. In addition, compared to the classification results in the

literature, the proposed framework showed the same level of

performance compared to that of the state-of-the-art methods

(ours at 76.21 vs. 78.59% in the literature) (Kwak et al., 2022).

More advanced learning techniques should be investigated to

further improve the performance of the proposed network.

5. Conclusion

In this study, bimodal fusion methods of EEG and fNIRS

were investigated with an open dataset. Compact Y-shaped ANN

architectures are proposed and validated to investigate EEG-

fNIRS fusion methods and strategies. The main framework of

EEGNet is used in the proposed network. The results suggested

that networks with EEG-fNIRS features integrated at an early

stage demonstrated statistically higher accuracy compared to

the other fusion methods in motor imagery classification tasks,

which partially suggested that the heterogeneity of EEG and

fNIRS might be relatively low despite the fact that these

two types of signals were acquired from different sources.

With the proposed framework, the final classification accuracy

of the proposed method reached 76.21%, which was at the

same level compared to the state-of-the-art on an EEG-fNIRS

hybrid BCI open dataset in discriminating left and right

motor imagery.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: 10.1109/TNSRE.2016.2628057.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

YL conceived and designed the experiments, analyzed the

experimental data, and wrote the manuscript. XZ conceived the

experiments, guided the experiments, and participated in this

study in the process of manuscript drafting and revision. DM

gave some valuable suggestions and participated in this study as

a consultant in the process of manuscript revision. All authors

contributed to the article and approved the submitted version.

Funding

This study was supported in parts by the National Key

Research and Development Program of China under Grant

2022YFF1202900, the National Natural Science Foundation of

China under Grant 82102174, and the China Postdoctoral

Science Foundation under Grant 2021TQ0243.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abtahi, M., Bahram Borgheai, S., Jafari, R., Constant, N., Diouf, R., Shahriari,
Y., et al. (2020). Merging fNIRS-EEG brain monitoring and body motion capture
to distinguish Parkinsons disease. IEEE Transac. Neural Syst. Rehabil. Eng. 28,
1246–1253. doi: 10.1109/TNSRE.2020.2987888

Al-Shargie, F., Tang, T. B., and Kiguchi, M. (2017). Assessment of mental
stress effects on prefrontal cortical activities using canonical correlation
analysis: an fNIRS-EEG study. Biomed. Opt. Expr. 8, 2583. doi: 10.1364/BOE.8.
002583

Frontiers inNeuroscience 12 frontiersin.org

160

https://doi.org/10.3389/fnins.2022.1062889
https://doi.org/10.1109/TNSRE.2016.2628057
https://doi.org/10.1109/TNSRE.2020.2987888
https://doi.org/10.1364/BOE.8.002583
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.1062889

Ang, K. K., Guan, C., Chua, K. S. G., Ang, B. T., Kuah, C., Wang, C., et al. (2010).
“Clinical study of neurorehabilitation in stroke using EEG-based motor imagery
brain-computer interface with robotic feedback,” in 2010 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10,
5549–5552.

Asahi, S., Okamoto, Y., Okada, G., Yamawaki, S., and Yokota, N. (2004).
Negative correlation between right prefrontal activity during response inhibition
and impulsiveness: A fMRI study. Eur. Arch. Psychiatry Clin. Neurosci. 254,
245–251. doi: 10.1007/s00406-004-0488-z

Aygün,M., Sahin, Y. H., and Ünal, G. (2018). Multi Modal Convolutional Neural
Networks for Brain Tumor Segmentation arXiv preprint 1–8. arXiv:1809.06191.

Baltrusaitis, T., Ahuja, C., and Morency, L. P. (2019). Multimodal machine
learning: a survey and taxonomy. IEEE Transac. Pattern Anal. Mach. Intell. 41,
423–443. doi: 10.1109/TPAMI.2018.2798607

Buccino, A. P., Keles, H. O., and Omurtag, A. (2016). Hybrid EEG-fNIRS
asynchronous brain-computer interface for multiple motor tasks. PLoS ONE, 11,
1–16. doi: 10.1371/journal.pone.0146610

Cramer, S. C., Orr, E. L. R., Cohen, M. J., and Lacourse, M. G. (2007). Effects of
motor imagery training after chronic, complete spinal cord injury. Exp. Brain Res.
177, 233–242. doi: 10.1007/s00221-006-0662-9

Dagdevir, E., and Tokmakci, M. (2021). Optimization of preprocessing stage
in EEG based BCI systems in terms of accuracy and timing cost. Biomed. Signal
Process. Control 67, 102548. doi: 10.1016/j.bspc.2021.102548

Dong, X., Yu, Z., Cao, W., Shi, Y., and Ma, Q. (2020). A survey on ensemble
learning. Front. Comput. Sci. 14, 241–258. doi: 10.1007/s11704-019-8208-z

Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K. R., et al.
(2012). Enhanced performance by a hybrid NIRS-EEG brain computer interface.
NeuroImage, 59, 519–529. doi: 10.1016/j.neuroimage.2011.07.084

Hallez, H., Vanrumste, B., Grech, R., Muscat, J., De Clercq, W., Vergult, A.,
et al. (2007). Review on solving the forward problem in EEG source analysis. J.
NeuroEng. Rehabil. 4, 46. doi: 10.1186/1743-0003-4-46

Herath, K., and Mel, W. (2021). Controlling an anatomical robot hand using the
brain-computer interface based on motor imagery[J]. Adv. Hum. Comput. Interact
2021, 1–15. doi: 10.1155/2021/5515759

Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., et al.
(2013). The neural network of motor imagery: An ALE meta-analysis. Neurosci.
Biobehav. Rev. 37, 930–949. doi: 10.1016/j.neubiorev.2013.03.017

Hong, K. S., Naseer, N., and Kim, Y. H. (2015). Classification of prefrontal
and motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92.
doi: 10.1016/j.neulet.2014.12.029

Jeannerod, M. (1995). Mental imagery in the motor context. Special Issue:
the neuropsychology of mental imagery. Neuropsychologia, 33, 1419–1432.
doi: 10.1016/0028-3932(95)00073-C

Jeon, Y., Nam, C. S., Kim, Y. J., and Whang, M. C. (2011). Event-
related (De)synchronization (ERD/ERS) during motor imagery tasks:
implications for brain-computer interfaces. Int. J. Indus. Ergon. 41, 428–436.
doi: 10.1016/j.ergon.2011.03.005

Kaiser, V., Kreilinger, A., Müller-Putz, G. R., and Neuper, C. (2011). First steps
toward a motor imagery based stroke BCI: New strategy to set up a classifier. Front.
Neurosci. 5, 86. doi: 10.3389/fnins.2011.00086

Kasemsumran, P., and Boonchieng, E. (2019). EEG-based motor imagery
classification using novel adaptive threshold feature extraction and string
grammar fuzzy k-nearest neighbor classification. J. Comput. 30, 27–40.
doi: 10.3966/199115992019043002003

Kee, C. Y., Ponnambalam, S. G., and Loo, C. K. (2017). Binary and multi-class
motor imagery using Renyi entropy for feature extraction. Neural Comput. Appl.
28, 2051–2062. doi: 10.1007/s00521-016-2178-y

Khan, M. J., and Hong, K. S. (2017). Hybrid EEG-FNIRS-based eight-command
decoding for BCI: Application to quadcopter control. Front. Neurorobot. 11, 6.
doi: 10.3389/fnbot.2017.00006

Kwak, Y., Song,W-. J., and Kim, S-. E. (2022). FGANet: fNIRS-Guided Attention
Network for Hybrid EEG-fNIRS Brain-Computer Interfaces. IEEE Transac. Neural
Syst. Rehabil. Eng. 30, 329–339. doi: 10.1109/TNSRE.2022.3149899

Lan, H., Jiang, D., Yang, C., and Gao, F. (2019). Y-Net: a hybrid deep learning
reconstruction framework for photoacoustic imaging in vivo. ArXiv Preprint
ArXiv:1908, 00975.

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung,
C. P., Lance, B. J., et al. (2018). EEGNet: A compact convolutional neural
network for EEG-based brain-computer interfaces. J. Neural Eng. 15, 1–30.
doi: 10.1088/1741-2552/aace8c

Liu, Z., Shore, J., Wang, M., Yuan, F., Buss, A., Zhao, X., et al. (2021). A
systematic review on hybrid EEG/fNIRS in brain-computer interface. Biomed.
Signal Process. Control 68, 102595. doi: 10.1016/j.bspc.2021.102595

Lulé, D., Diekmann, V., Kassubek, J., Kurt, A., Birbaumer, N., Ludolph,
A. C., et al. (2007). Cortical plasticity in amyotrophic lateral sclerosis:
Motor imagery and function. Neurorehabil. Neural Repair 21, 518–526.
doi: 10.1177/1545968307300698

Mogadala, A., Kalimuthu, M., and Klakow, D. (2021). Trends in integration of
vision and language research: a survey of tasks, datasets, and methods. J. Artif.
Intell. Res. 71, 1183–1317. doi: 10.1613/jair.1.11688

Naseer, N., and Hong, K. S. (2015). fNIRS-based brain-computer interfaces: A
review. Front. Hum. Neurosci. 9, 1–15. doi: 10.3389/fnhum.2015.00003

Nicolas-Alonso, L. F., and Gomez-Gil, J. (2012). Brain computer interfaces, a
review. Sensors 12, 1211–1279. doi: 10.3390/s120201211

Pfurtscheller, G. (2010). The hybrid BCI. Front. Neurosci. 4, 30.
doi: 10.3389/fnpro.2010.00003

Prechelt, L. (2012). Early stopping—But when? Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 7700 LECTU, 53–67. doi: 10.1007/978-3-642-35289-8_5

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al.
(2021). Learning transferable visual models from natural language supervision.
arXiv [Preprint]. Available online at: http://arxiv.org/abs/2103.00020

Ramachandram, D., and Taylor, G. W. (2017). Deep multimodal learning. IEEE
SIgnal Process. Magaz. 34, 96–108. doi: 10.1109/MSP.2017.2738401

Sadiq, M. T., Yu, X., Yuan, Z., Zeming, F., Rehman, A. U., Ullah, I., et al.
(2019). Motor imagery EEG signals decoding by multivariate empirical wavelet
transform-based framework for robust brain-computer interfaces. IEEE Access, 7,
171431–171451. doi: 10.1109/ACCESS.2019.2956018

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,
Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with convolutional
neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38,
5391–5420. doi: 10.1002/hbm.23730

Selim, S., Tantawi, M. M., Shedeed, H. A., and Badr, A. (2018). A CSP/AM-
BA-SVM Approach for Motor Imagery BCI System. IEEE Access, 6, 49192–49208.
doi: 10.1109/ACCESS.2018.2868178

Shin, J., Von Luhmann, A., Blankertz, B., Kim, D. W., Jeong, J., Hwang, H. J.,
et al. (2017). Open Access Dataset for EEG+NIRS Single-Trial Classification. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 25, 1735–1745.
doi: 10.1109/TNSRE.2016.2628057

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on Image
Data Augmentation for Deep Learning. Journal of Big Data, 6(1).
doi: 10.1186/s40537-019-0197-0

Sun, Z., Huang, Z., Duan, F., and Liu, Y. (2020). A Novel Multimodal
Approach for Hybrid Brain-Computer Interface. IEEE Access, 8, 89909–89918.
doi: 10.1109/ACCESS.2020.2994226

Wozniak, M., Graña, M., and Corchado, E. (2014). A survey of
multiple classifier systems as hybrid systems. Information Fusion, 16, 3–17.
doi: 10.1016/j.inffus.2013.04.006

Yan, X., Hu, S., Mao, Y., Ye, Y., and Yu, H. (2021). Deep multi-
view learning methods: A review. Neurocomputing, 448, 106–129.
doi: 10.1016/j.neucom.2021.03.090

Zhang, X., Yao, L., Sheng, Q. Z., Kanhere, S. S., Gu, T., Zhang, D.,
et al. (2018). Converting Your Thoughts to Texts: Enabling Brain Typing
via Deep Feature Learning of EEG Signals. 2018 IEEE International
Conference on Pervasive Computing and Communications, PerCom 2018.
doi: 10.1109/PERCOM.2018.8444575

Zhang, X., Yao, L., Wang, X., Monaghan, J., Mcalpine, D., Zhang, Y., et al. (2021).
A survey on deep learning-based non-invasive brain signals: recent advances
and new frontiers. Journal of Neural Engineering, 18(3). doi: 10.1088/1741-2552/
abc902

Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms (1st ed.).
Chapman and Hall/CRC. doi: 10.1201/b12207

Frontiers inNeuroscience 13 frontiersin.org

161

https://doi.org/10.3389/fnins.2022.1062889
https://doi.org/10.1007/s00406-004-0488-z
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1371/journal.pone.0146610
https://doi.org/10.1007/s00221-006-0662-9
https://doi.org/10.1016/j.bspc.2021.102548
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1016/j.neuroimage.2011.07.084
https://doi.org/10.1186/1743-0003-4-46
https://doi.org/10.1155/2021/5515759
https://doi.org/10.1016/j.neubiorev.2013.03.017
https://doi.org/10.1016/j.neulet.2014.12.029
https://doi.org/10.1016/0028-3932(95)00073-C
https://doi.org/10.1016/j.ergon.2011.03.005
https://doi.org/10.3389/fnins.2011.00086
https://doi.org/10.3966/199115992019043002003
https://doi.org/10.1007/s00521-016-2178-y
https://doi.org/10.3389/fnbot.2017.00006
https://doi.org/10.1109/TNSRE.2022.3149899
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1016/j.bspc.2021.102595
https://doi.org/10.1177/1545968307300698
https://doi.org/10.1613/jair.1.11688
https://doi.org/10.3389/fnhum.2015.00003
https://doi.org/10.3390/s120201211
https://doi.org/10.3389/fnpro.2010.00003
https://doi.org/10.1007/978-3-642-35289-8_5
http://arxiv.org/abs/2103.00020
https://doi.org/10.1109/MSP.2017.2738401
https://doi.org/10.1109/ACCESS.2019.2956018
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1109/ACCESS.2018.2868178
https://doi.org/10.1109/TNSRE.2016.2628057
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/ACCESS.2020.2994226
https://doi.org/10.1016/j.inffus.2013.04.006
https://doi.org/10.1016/j.neucom.2021.03.090
https://doi.org/10.1109/PERCOM.2018.8444575
https://doi.org/10.1088/1741-2552/abc902
https://doi.org/10.1201/b12207
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Provides a holistic understanding of brain 

function from genes to behavior

Part of the most cited neuroscience journal series 

which explores the brain - from the new eras 

of causation and anatomical neurosciences to 

neuroeconomics and neuroenergetics.

Discover the latest 
Research Topics

See more 

Frontiers in
Neuroscience

https://www.frontiersin.org/journals/Neuroscience/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Multimodal brain image fusion: Methods, evaluations, and applications
	Table of contents
	Editorial: Multimodal brain image fusion: Methods, evaluations, and applications
	Multimodal brain image registration, fusion and fusion quality evaluation
	Applications of multimodal brain image fusion
	Joint analysis of multimodal data
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note

	Application of Fused Reality Holographic Image and Navigation Technology in the Puncture Treatment of Hypertensive Intracerebral Hemorrhage
	1. Introduction
	2. Materials and Methods
	2.1. Clinical Datae
	2.2. Preoperative CT Examination and Design Puncture Trajectory
	2.3. Registration of Holographic Images
	2.4. Dual-Plane Navigation Puncture
	2.5. Surgical Procedure
	2.6. Follow-Up Imaging and Accuracy Assessment
	2.7. Statistical Analysis

	3. Results
	4. Technology Advantages
	5. Discussion
	6. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Medical Image Registration Algorithm Based on Bounded Generalized Gaussian Mixture Model
	Introduction
	Problem Formulation
	Parameters Estimation
	Density Estimation
	Motion Parameters Estimation
	Implementation

	Experiment
	Musculoskeletal Radiographs Dataset
	Altas Dataset

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	A Multimodal Classification Architecture for the Severity Diagnosis of Glaucoma Based on Deep Learning
	Introductions
	Background and Related Works
	Development of Deep Learning
	Deep Learning for Glaucoma Diagnosis

	Materials and Methods
	Input
	Datasets
	Preprocessing
	Augmentation and Normalization
	Reconstruction of Visual Field Gray Scale Images
	Multimodal Fusion


	CNN Model
	VGG
	SqueezeNet
	ResNet
	DenseNet

	Classifier
	Evaluation Criteria

	Experiment and Discussion
	Experimental Setup
	Experimental Results and Discussion
	Comparison of Reconstructed Visual Field Gray Scale Images
	Comparison of Multimodal Fusion
	Ablation Study
	Ablation Study of Data Augmentation
	Ablation Study of Proposed Classifier

	Comparison of Analogous Approaches


	Conclusion and Outlook
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	A Disentangled Representation Based Brain Image Fusion via Group Lasso Penalty
	1. Introduction
	2. Group Lasso Penalty
	3. Frames and Methods
	3.1. Overall Framework
	3.2. Loss Function
	3.3. Fusion Strategy

	4. Experiments and Analyses
	4.1. Experimental Settings
	4.2. Objective Metrics
	4.3. Ablation Study
	4.4. Qualitative Evaluation
	4.5. Quantitative Evaluation
	4.6. Time Cost Comparison

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Medical image fusion quality assessment based on conditional generative adversarial network
	Introduction
	Methodology
	Dual-channel encoder-decoder
	Generator architecture
	Discriminator architecture
	Total objective loss function

	Experiments
	Dataset
	Evaluation metrics
	Comparison methods
	Ablation experiment

	Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion
	1. Introduction
	2. Related work
	2.1. Brain tumor segmentation
	2.2. Pixel-level medical image fusion

	3. The proposed method
	3.1. Overview
	3.2. PIF-Net
	3.3. MSFF module
	3.4. Segmentation loss

	4. Experimental results and discussion
	4.1. Data and implementation details
	4.2. Parameter analysis
	4.3. Ablation study of the proposed method
	4.4. Comparison with other methods

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	A medical image segmentation method based on multi-dimensional statistical features
	1. Background
	2. Related work
	2.1. Semantic segmentation network
	2.2. Statistical features

	3. Method
	3.1. Semantic segmentation network
	3.2. Hybrid network
	3.3. Texture statistics extraction module
	3.4. Loss function

	4. Experiments
	4.1. Datasets
	4.2. Experimental details
	4.3. Comparative experiments
	4.4. Ablation experiments

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Local extreme map guided multi-modal brain image fusion
	1. Introduction
	2. Proposed method
	2.1. Local extreme map guided image filter
	2.2. Local extreme map guided image fusion
	2.3. Parameter settings

	3. Experimental results and discussions
	3.1. Experimental settings
	3.2. Implementation details
	3.3. Qualitative evaluation results
	3.4. Quantitative evaluation results
	3.5. Limitations and future prospects

	4. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	The relationship between electrophysiological and hemodynamic measures of neural activity varies across picture naming tasks: A multimodal magnetoencephalography-functional magnetic resonance imaging study
	Introduction
	Materials and methods
	Subjects
	Experimental design
	Functional magnetic resonance imaging data collection
	Magnetoencephalography data collection
	Functional magnetic resonance imaging and magnetoencephalography data analysis
	Correlation analysis and clustering

	Results
	Clustering of correlation patterns
	Magnetoencephalography-functional magnetic resonance imaging correlation differences between tasks
	Task-invariant magnetoencephalography-functional magnetic resonance imaging correlation patterns
	Magnetoencephalography activation vs. magnetoencephalography-functional magnetic resonance imaging correlation

	Discussion
	Detection of neural engagement using multiple neuroimaging methods
	Multimodal correlation as a spatially, temporally and spectrally unique view on neural engagement during picture naming
	Detection of cortical activity using clustering of magnetoencephalography-functional magnetic resonance imaging correlation patterns

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Preservation of EEG spectral power features during simultaneous EEG-fMRI
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 EEG data acquisition
	2.3 MRI data acquisition
	2.4 EEG preprocessing and BCG artifact removal
	2.5 Data analysis
	2.5.1 Eyes-closed resting-state EEG
	2.5.2 Eyes closure-opening task EEG data
	2.5.3 EEG-informed fMRI analysis

	2.6 Data/code availability statement

	3 Results
	3.1 Resting-state–BCG artifact reduction and preservation of EEG spectral features
	3.2 Eyes closure-opening task–preservation of EEG functional reactivity
	3.3 EEG-informed fMRI–impact of BCG artifact residuals on multimodal analysis

	4 Discussion
	4.1 Study limitations

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Restoring morphology of light sheet microscopy data based on magnetic resonance histology
	1. Introduction
	2. Materials and methods
	2.1. MRH histology and LSM
	2.2. Multiple stages of the workflow
	2.3. Quantitative loss function
	2.4. Optimization and validation
	2.5. Registration validation
	2.6. Data and code availability

	3. Results
	3.1. Optimization of pipes
	3.2. Pipeline performance with varied image combinations
	3.2.1. Comparison of p6_03H and p6_07H
	3.2.2. Relative success of multiple combinations

	3.3. Volume corrections to LSM

	4. Limitations
	5. Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Early-stage fusion of EEG and fNIRS improves classification of motor imagery
	1. Introduction
	2. Materials and methods
	2.1. Datasets
	2.2. Pre-processing
	2.3. Fusion network
	2.4. Model training
	2.5. Voting mechanism

	3. Results
	3.1. Data augmentation
	3.2. Model generation
	3.3. Test results
	3.4. Ablation analysis
	3.5. Voting results

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Back cover



