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Editorial on the Research Topic

Generalized uncertainty relations: existing paradigms and new
approaches

Introduction

This volume brings together a series of papers on the Research Topic of
Generalized Uncertainty Relations (GURs). These works are chosen to provide
a broad and timely overview of the current status of this important field,
some 30 years after its initial development, including both phenomenological
applications and foundational issues. Critical analyses of unsolved problems are also
presented.

Scope and aims of the project

Our aim is to collect, in a single volume, a series of works that are representative of the
current state of the art, and which, with the benefit of nearly three decades of hindsight, can
contribute to the ongoing critical assessment of the field; itsmethods,models and techniques.
We hope, therefore, that this modest collection will serve as a valuable resource and point of
reference for future researchers, and, perhaps, even a small but significant mile stone in the
development of the GUR research program.

After 30 years, we face the question: quo vadis generalized uncertainty principle?
(Bosso et al., 2023) A further aim of this project is to stimulate debate about the future
direction of GUR research, in particular, regarding the suitability of the current widely-
used approach, of implementing modified relations via modifications of the canonical
Heisenberg algebra. Despite nearly 30 years of effort, it remains unclear whether thismethod
is conceptually and mathematically self-consistent, or whether new methods and techniques
for studying GURs must be found.
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For this reason,we present a variety of perspectives. Somepapers
in this volume explore the implications of traditional modified
commutator models, while others present purely phenomenological
analyses. The latter may be expected to hold, regardless of
which mathematical formalism is used to describe the GURs,
whereas the former are more model-specific, in general. Some
papers explore well known GURs, such as the generalized
uncertainty principle (GUP) and extended uncertainty principle
(EUP), while others present new forms of modified relations, based
on different physical assumptions. Still others explore alternative
mathematical formalisms for theGUPandEUP, and investigate their
phenomenological consequences.Whatever the research interests or
perspectives of the individual reader, we hope that they will find
something of interest to them here.

Call for papers

The non-gravitational interactions of microscopic particles
are governed by the laws of quantum mechanics and so obey
Heisenberg’s uncertainty principle. This may be derived rigorously
from the canonical quantum formalism or introduced, heuristically,
via the Heisenberg microscope thought experiment. Extending the
thought experiment argument to include the effects of gravitational
attraction between particles and/or a background dark energy
density leads to generalized uncertainty relations, which contain
additional non-Heisenberg terms, but how to embed these within
an extended quantum formalism remains an open problem in
fundamental physics.

Two of the most widely studied relations, proposed in the
phenomenological quantum gravity literature, are the generalized
uncertainty principle (GUP) and extended uncertainty principle
(EUP). The GUP incorporates the effects of attractive gravity and
implies a minimum length scale of the order of the Planck length,
whereas the EUP accounts for the effects of repulsive vacuum energy
and implies a minimum momentum of the order of the de Sitter
momentum. This is the momentum a canonical quantum particle
would have if its de Broglie wavelength were of the order of the
de Sitter radius, which is comparable to the present day radius of
the Universe. Expanding the Heisenberg microscope argument to
include the effects of canonical gravity and dark energy implies the
extended generalized uncertainty principle (EGUP) which predicts
the existence of both aminimum length and aminimummomentum
scale in nature.

For almost three decades the most common method used to
construct generalizations of the Heisenberg uncertainty principle
has been to introduce modified commutation relations. These
then lead, directly, to modified uncertainty relations, via the
standard Schrödinger-Robertson relation. Unfortunately, despite its
widespread use, this approach remains fraught with difficulties
and modified commutator models lead to several well known
pathologies, including:

(a) Violation of the equivalence principle,
(b) Reference-frame dependence of the “minimum” length,
(c) Violation of Lorentz invariance in the relativistic limit,
(d) The inability to construct sensible multi-particle states, known

as the soccer ball problem.

This strongly motivates new approaches to the field, as well as
critical analyses of traditional models, or their possible refinements,
which aim to address these vital issues head-on.

In this Research Topic, we seek papers exploring all approaches
to generalized uncertainty relations and their phenomenological
implications. We aim to provide a broad overview the subject
including summaries of the major approaches presented, to date,
in this important field, as well as summaries of non-standard
approaches based on new models.

Though many studies focus on the familiar GUP, EUP and
EGUP formulae, which include position and linear momentum, we
especially welcome explorations of generalized uncertainty relations
for time, energy, angular momentum, quantum mechanical spin,
and entropy, motivated by quantum gravitational phenomenology.
Proposals for new relations, which have not yet been explored in the
existing literature, are alsowarmlywelcomed, andwill be considered
without prejudice.

Published papers

1. Dark matter as an effect of a minimal length, Bosso et al.
2. Generalized uncertainty principle and burning stars, Moradpour

et al.
3. Weak equivalence principle in quantum space, Gnatenko and

Tkachuk.
4. Comments on the cosmological constant in generalized uncertainty

models, Bishop et al.
5. The Generalized Uncertainty Principle and higher dimensions:

Linking black holes and elementary particles, Carr.
6. Generalized uncertainty relations from finite-accuracy

measurements, Lake et al.
7. Problems with modified commutators, Lake and Watcharapasorn.
8. New deformed Heisenberg algebra from the μ-deformed model of

dark matter, Gavrilik et al.
9. Dimensionally-dependent uncertainty relations, or why we

(probably) won’t see black holes at the LHC, even if large extra
dimensions exist, Lake et al.

Author contributions

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

Acknowledgments

Our sincere thanks to Claudio Bogazzi at Frontiers Publishing,
for proposing this project, and to Lindsay Downie and Diogo
Prata, for their patience in seeing it through to a successful
completion. Thanks also to the National Astronomical Research
Institute of Thailand, for assistance with the necessary funding, and,
in particular, to Dr. Utane Sawangwit, for the generous contribution
from his research grant. Finally, our heartfelt and sincere thanks to
all the contributing authors, for devoting their valuable time, and

Frontiers in Astronomy and Space Sciences 02 frontiersin.org5

https://doi.org/10.3389/fspas.2023.1246781
https://www.frontiersin.org/articles/10.3389/fspas.2022.932276/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.936352/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.936352/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.950468/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.950468/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.978898/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1008221/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1087724/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1118647/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1133976/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1155667/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lake et al. 10.3389/fspas.2023.1246781

efforts. Needless to say, without them, this project would not have
been possible.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Bosso, P., Luciano, G. G., Petruziello, L., and Wagner, F. (2023). 30 years in: quo
vadis generalized uncertainty principle? Class. Quantum Gravity. doi:10.1088/1361-
6382/acf021

Frontiers in Astronomy and Space Sciences 03 frontiersin.org6

https://doi.org/10.3389/fspas.2023.1246781
https://doi.org/10.1088/1361-6382/acf021
https://doi.org/10.1088/1361-6382/acf021
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Comments on the cosmological
constant in generalized
uncertainty models

Michael Bishop1*†, Joey Contreras2*†, Peter Martin2*† and
Douglas Singleton2*†

1Mathematics Department, California State University Fresno, Fresno, CA, United States, 2Physics
Department, California State University Fresno, Fresno, CA, United States

The existence of a small, non-zero cosmological constant is one of the major

puzzles in fundamental physics. Naively, quantum field theory arguments would

imply a cosmological constant which is up to 10,120 times larger than the

observed one. It is believed a comprehensive theory of quantum gravity

would resolve this enormous mismatch between theory and observation. In

this work, we study the ability of generalized uncertainty principle (GUP)

models, which are phenomenologically motivated models of quantum

gravity, to address the cosmological constant problem. In particular, we

focus on how these GUP models may change the phase space of QFT, and

how this affects the momentum space integration of the zero-point energies of

normal modes of fields. We point out several issues that make it unlikely that

GUP models, in their current form, would be able to adequately address the

cosmological constant problem.

KEYWORDS

generalized uncertainty principle, cosmological constant, minimal length, vacuum
energy density, quantum vacuum

1 Introduction

A theory of quantum gravity, although not yet a reality, has been advertised as being

able to solve many of the ills of classical general relativity, such as the singularities that

occur in black hole and cosmological solutions (Penrose, 1965; Hawking and R Ellis,

1973). Quantum gravity is also supposed to resolve some of the issues surrounding the

results of applying quantum field theory in a curved space-time such as what happens to a

black hole at the end of evaporating via Hawking radiation (Hawking, 1975), and what

happens to the information stored in a black hole due to this evaporation (Susskind and

Lindesay, 2005).

The puzzle we address in this work is the apparent mismatch between the observed

cosmological constant and the theoretically calculated cosmological constant—a

conundrum known as the cosmological constant problem. This cosmological constant

problem has been known for a long time. A nice relatively recent review of the issue is

reference (Weinberg, 1989). The problem is that having a cosmological constant, Λ, is
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equivalent to having a constant energy density, ρvac, as a source in

the Einstein field equations. The relationship is (using the units

and notation of (Weinberg, 1989))

ρvac �
Λ

8πG
. (1)

The subscript vac comes from quantum field theory where

one obtains a constant vacuum energy density by adding up all

the energy zero modes of vacuum quantum fields. The zero

modes are given by 1
2 Zωp � 1

2Ep � 1
2

�������
�p
2 +m2

√
, and summing

these up to get the vacuum energy density yields

ρvac � ∫ d3p

2π( )3
1
2

�������
�p
2 +m2

√
� 1
2
∫pc

0

4π

2π( )3 dp p2
�������
p2 +m2

√
≈

p4
c

16π2 .
(2)

Note that p � | �p|, we use these notations interchangeably

throughout the rest of the paper. Since the integral is divergent,

we cut off the dp integration at some scale pc, which is usually

taken to be the Planck scale, pc ~ (8πG)−1/2. Using (2) gives ρvac ≈
2 × 1071 GeV4. In contrast, the measured vacuum energy density

(Zyla et al., 2020) is about ρvac ≈ 10–47 GeV4. The difference

between the theoretically calculated ρvac from (2) versus

experimentally measured ρvac is a difference of 118 orders of

magnitude. This massive discrepancy is the cosmological

constant problem. Even if one lowers the cut off scale to the

QCD scale of ΛQCD ~ 200 MeV, where we think we fully

understand QFT, one still gets a disagreement between theory

and experiment of 41 order of magnitude. Some drastic change in

our understanding of either QFT, general relativity, or both is

needed to resolve this puzzle.

2 Generalized uncertainty principle
and quantum gravity

One of the proposed resolutions to the cosmological constant

problem is a theory of quantum gravity, a catch-all solution to all

open problems in fundamental theoretical physics. In this work,

we utilize the phenomenological generalized uncertainty

principle (GUP) approach to quantum gravity. The GUP

approach to quantum gravity is a bottom up approach [in

contrast to the more top down approaches to quantum

gravity such as superstring theory (Polchinski, 1998) or loop

quantum gravity (Rovelli, 2008)]. There is a vast amount of

literature on GUP, with a few of the important representative

papers being (Veneziano, 1986; Amati et al., 1987; Gross and

Mende, 1987; Gross and Mende, 1988; Amati et al., 1988; Amati

et al., 1989; Amati et al., 1990; Maggiore, 1993; Garay, 1995;

Kempf et al., 1995; Adler and Santiago, 1999; Scardigli, 1999;

Adler et al., 2001). After this original burst of work on GUP there

were various other works, a sample of where can be found in

references (Myung et al., 2007; Zhu et al., 2009; Chemissany et al.,

2011; Das and Mann, 2011; Sprenger et al., 2011; Ali et al., 2015;

Anacleto et al., 2015; Garattini and Faizal, 2016) which further

developed this area of research. There are also some very recent

works (Tamburini and Licata, 2020; Fadel and Maggiore, 2022)

which deal with the algebraic and physical structure of spacetime

in connection with GUP.

The basic idea is that quantum gravity should modify the

standard position and momentum commutator of canonical

quantum mechanics from [x̂i, p̂j] � iδijZ to

[X̂i, P̂j] � iδijZf(x,p); with f (x, p) representing the effects of

quantum gravity. The capital X and P indicate that the position and

momentum operators are changed from their canonical form. A

common example that we will refer to often in this work is the

modified commutator of (Kempf et al., 1995) of the form

X̂i, p̂j[ ] � iδijZ 1 + β| �p|2( ) . (3)

In this model the position and momentum as given by

X̂i � iZ 1 + β| �p|2( ) z

zpi
and p̂i � pi , (4)

i.e., the position operator is modified but the momentum

operator is not. The constant β is a phenomenological

parameter that characterizes the scale at which quantum

gravity effects become important. Conventionally, it is thought

β should be of the Planck scale i.e. β ~ l2Pl
Z2
with lPl being the Planck

length. A full analysis of the system in Equations 3, 4 is given in

reference (Kempf et al., 1995), but for our purposes we recall two

important results for this particular GUP model:

• Equations 3, 4 have a minimum length of Δ| �x| � Z
��
β

√
at Δ| �p| � 1�

β
√

• In order for position and momentum operators to be

symmetric i.e. (〈ψ|pi)|ϕ〉 = 〈ψ|(pi|ϕ〉) and (〈ψ|xi)|ϕ〉 =

〈ψ|(xi|ϕ〉), the scalar product of this model needs to be

given by

〈ψ|ϕ〉 � ∫∞

−∞
d3p

1 + β| �p|2ψ
p p( )ϕ p( ). (5)

The modification of the scalar product as given by (5) is for

three dimensions, but in n dimensions one still has the same

modifying factor for the momentum integration, namely dnp

1+β| �p|2.
More generally, for a modified position operator of the form

X̂i � iZf | �p|2( ) z

zpi
, (6)

the scalar product must take the form

〈ψ|ϕ〉 � ∫∞

−∞
dnp

f | �p|2( )ψp p( )ϕ p( ) . (7)

These results from (5) and (7) will become important in the

next section.
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3 GUP and its effects on vacuum
energy calculations

3.1 Vacuum energy in KMM GUP

The main issue we want to examine is how GUP affects the

calculation of the vacuum energy and cosmological constant as

laid out in (1), (2), and the surrounding discussion. One of the

earliest and most impactful works dealing with the cosmological

constant problem in the context of GUPs is the work by Chang

et al. (Chang et al., 2002). In their work, the authors calculate how

the GUP, as defined by (3) and (4), modifies Liouville’s theorem

and the phase space volume, i.e. dnx dnp, in n spatial dimensions.

The modified phase space found in (Chang et al., 2002) for the

GUP from (3) and (4) is

dnx dnp

1 + β| �p|2( )n . (8)

The volume in (8) is integrated out (∫dnx → V). Upon

quantization, the claimed phase space volume from (Chang

et al., 2002) becomes

V dnp

2π( )n 1 + β| �p|2( )n . (9)

Recall we are using units with Z = 1 as consistent with

reference (Weinberg, 1989). Thus, to compare 9) with the result

in (Chang et al., 2002), one should replace the factor 2π by 2πZ in

the denominator above. Using the result in (9) for three spatial

dimensions, the calculation of ρvac via 2) changes to

ρvac � ∫ d3p

2π( )3 1 + β| �p|2( )3 12
�������
�p
2 +m2

√

� 1
2
∫∞

0

4π

2π( )3 dp
p2

�������
p2 +m2

√
1 + β| �p|2( )3 .

(10)

Since the integrand of (10) isO( 1
| �p|3) at large momentum, it is

convergent and does not need to have the dp integration capped

as in (2). One can integrate (10) exactly for any m (Chang et al.,

2002); for the sake of simplicity, when m = 0 (10) becomes

ρvac m � 0( ) � 1

16π2β2
. (11)

If one takes β to be of the Planck scale, then the result from

(11) still leaves the GUP modified vacuum energy to be about

118 orders of magnitude larger than the measured vacuum

energy of ρvac ≈ 10–47 GeV−4. In fact, by comparing 2) and 11)

and using dimensional analysis, one finds that β ~ p−2
c . Thus,

using the GUP cutoff factor of 1
(1+β| �p|2)3, while making ρvac finite,

still leaves ρvac much too large which fails to resolve the

cosmological constant problem. One has only replaced the “by

hand” cutoff in (2) with the functional cutoff of (10). This failure

of the GUP, defined by (3) and (4), to address the cosmological

constant puzzle was already noted in (Chang et al., 2002).

However, there may be an additional problem with the

integration over the momentum in (10): it appears to disagree

with the momentum integration from (Kempf et al., 1995), as

given by the definition of the scalar product in (5) or more

generally in (7). In the momentum space integration in (5), there

is only one factor of (1 + β| �p|2) in the denominator, as compared

to the denominator of (10), which has three factors of (1 + β| �p|2).
If one only had one factor of (1 + β| �p|2) in the denominator of

(10), as implied by (5), then the integrand would go asO(| �p|) and
would thus diverge.

The derivation of the phase space volume carried out in

(Chang et al., 2002) that gave the result in (8) is long, but straight

forward, so it is hard to see any problem with this result. On the

other hand, having a momentum space volume that has a factor

of (1 + β| �p|2)−n for the dnp integration would then violate the

symmetry of the position operator which is the requirement that

led to (5); that is if the momentum integration in (10) is correct

then this would imply (〈ψ|xi)|ϕ〉 ≠ 〈ψ|(xi|ϕ〉).
One potential solution to the difference in the integration

factors between 5) and 9) could be to reconsider the spatial/

volume calculation. In the transition from (8) to (9), it is

assumed that the real spatial volume with GUP is the same as

without GUP, that is, ∫dnx = V. The introduction of a minimal

length may change the calculation of volumes in some way. If

one could argue the n − 1 factors of (1 + β| �p|2) should go with

the dnx integration, this would leave the correct single factor of

(1 + β| �p|2) to go with the dnp integration. This would resolve

the discrepancy between 5) and (8). Ordinarily, all the factors

of (1 + β| �p|2) should fall under the dnp integration, but in the

GUP given by (3) and (4) one can see that the position

operator becomes dependent on the momentum. We

suggest that in spherical coordinates every length r should

carry with it a factor of (1 + β| �p|2)−1. The n dimensional

version of the GUP modified phase space given in (8)

should be written as

dnx

1 + β| �p|2( ) n−1( )
⎛⎜⎜⎝ ⎞⎟⎟⎠ dnp

1 + β| �p|2( )⎛⎝ ⎞⎠
� rn−1drdΩ

1 + β| �p|2( ) n−1( )
⎛⎜⎜⎝ ⎞⎟⎟⎠ dnp

1 + β| �p|2( )⎛⎝ ⎞⎠ .

(12)

For low energy/momentum, where β| �p|2 ≪ 1, the length will

not change much, but for high energy/momentum, where

β| �p|2 ≫ 1, the length is reduced. This way, the modified

momentum integration from the requirement of symmetry of

the position and momentum operators as given in (5) and the

GUP modified phase space of (8) now agree.

If the momentum space integration is now given by one

factor of (1 + β| �p|2), as implied by (12), rather than n factors as

implied by (9) or (10), then not only does the GUP of Equations
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3, 4 not solve the cosmological constant puzzle, as already

acknowledged in (Chang et al., 2002), but the cosmological

constant is not even finite. In the next subsection, we will

investigate a different GUP, which does give a finite

cosmological constant and examine to what extent this

different GUP can address the cosmological constant problem.

3.2 Alternative GUP and the associated
vacuum energy

From the generalized modified position operators of (6) and

the associated modified momentum integration in (7), one can

see that the integrand for ρvac will be of order O( | �p|3
f(| �p|)). Thus,

f(| �p|) must have a dependence of | �p|5 or higher for the integral
to be finite. One such GUP that meets this requirement is given in

the recent paper (Bishop et al., 2021) which has modified

operators in three spatial dimensions of the form

Xi � iZ cosh2 | �p|
pM

( )zpi ; Pi � pipM

| �p| tanh
| �p|
pM

( ) . (13)

From (6), we see that (13) implies f(| �p|) � cosh2(| �p|
pM
). Thus,

the GUP in (13) implies a vacuum energy density of

ρtanhvac � ∫ d3 p

2π( )3 cosh2 | �p|
pM

( )
1
2

���������
�P( )2 +m2

√

≈
1
2
∫∞

0

4π

2π( )3 dp
p2pM tanh

p

pM
( )

cosh2 p

pM
( )

(14)

which has an integrand that exponentially decays with

momentum. In (14) we set the rest mass equal to zero (m =

0), and used | �P| � | �p|pM

| �p| tanh(| �p|
pM
) � pM tanh( p

pM
). One can

evaluate the last expression exactly and this yields a finite answer

ρtanhvac � p4
M ln 2( )
4π2

. (15)

Thus, with this GUP model we do get a finite vacuum

energy density while maintaining symmetry of the position

and momentum operators. In contrast the GUP model given

by Equations 3, 4, has an infinite vacuum energy density

when only one power of 1 + β| �p|2 (as argued in this work) is

used in the denominator of the vacuum energy density (10).

Even for the GUP models like that in (13), where the vacuum

energy density is finite, the end conclusion is essentially the

same as for the vacuum energy density in (2) which is

obtained via a “by-hand” cutoff: both go as momentum to

the fourth power. Comparing the vacuum energy densities

from (2), (11), and (15), they all have essentially the same

form, with different notations for the momentum scale cut-

off. Thus, whether the vacuum energy is infinite and cut-off

“by-hand” or is finite due to using a GUP like (13), both these

models are equally ineffective at addressing the cosmological

constant problem.

4 Summary and conclusions

In this work, we have examined how the GUP may alter the

calculation of the vacuum energy density and the related

cosmological constant. In standard QFT, which was reviewed

in Introduction section, the vacuum energy diverges and must be

cut-off as in (2), which leads to a quartic dependence of the

vacuum energy density on the cut-off.

GUP models with their associated minimal length scales

provide a potential avenue to calculate a finite vacuum energy

density. Having a minimal length implies a maximum energy-

momentum which cuts off the divergence in the standard

vacuum energy density given in (2). An early work (Chang

et al., 2002) led to a finite vacuum energy density given by (10)

and (11). However, one of our points was to argue that the

calculation of the vacuum energy given in (Chang et al., 2002)

by (10) is inconsistent with the requirement that the position

and momentum operators are symmetric in GUP models such

as (Kempf et al., 1995). This symmetry requirement leads to an

integration over momentum as given in (5) for the GUP from

Equations 3, 4 or for a more general modified position as in

(7). Although, if one takes only a single factor of 1 + β| �p|2 in
the momentum integration used to calculate ρvac, then one

finds that the vacuum energy density from the GUP is not

finite, which conflicts with the results of (Chang et al., 2002)

which has n factors of 1 + β| �p|2. Alternatively, one can

preserve the symmetry of the position and momentum

operators, but then the vacuum energy density is infinite

for some GUPs like 3) and (4). In the present work, we

argued for the latter option, because when arriving at the

momentum integration measure of (10), one had to integrate

out the spatial volume, as is done in going from (8) to (9).

However, the implication is that one is treating the spatial

volume the same as in a theory with no minimal length. In

order to take into account the minimal length of the GUP, n −

1 of the n factors of 1 + β| �p|2 should correspond to the volume

integration to take into account the minimal length, leaving

one factor to go with the momentum integration.

In a larger sense, GUPs may not be able to resolve the

cosmological constant problem. We presented an GUP model

13) where the integrand in the vacuum energy density decayed

exponentially and led to a finite integral. However, this led to the

same quartic momentum behavior as the in “by-hand” cutoff of

(2) which were all essentially the same up tomultiplicative factors

of order one. Regardless, the end result for all the models is more

or less the same.

There may be a way for a GUP model to address the

cosmological constant problem by requiring the function
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f(| �p|), which gives the modification for the position operator,

take negative values for some range of | �p|. All the GUP

functions discussed here (i.e. 1 + βp2 or cosh (p/pM)) were

positive definite. In integrating the momentum from 0 up to

the QCD scale of ΛQCD ~ 200 MeV, one already had a huge

disagreement between the observed and theoretically

calculated vacuum energy density. To compensate for this

already large disagreement, a GUP function that is negative

for some range of | �p| beyond the QCD scale is needed to cancel

out the positive contribution from the low momentum part of

the integration. This is reminiscent of the supersymmetry

approach to the cosmological constant problem where the

positive bosonic contribution to the vacuuum energy density

is canceled by the negative fermionic contribution. Note, that

requiring f(| �p|) to be negative is similar to a parity

transformation �x → − �x but is an unusual parity

transformation in that it is not discrete but rather changes

continuously as momentum increases. In any case, this may

provide a fruitful new avenue for addressing the cosmological

constant problem with GUPs.
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Owing to the development of String Theory and Quantum Gravity, studies of

quantized spaces described by deformed commutation relations for operators

of coordinates and operators of momenta have receivedmuch attention. In this

paper, the implementation of the weak equivalence principle is examined in the

quantized spaces described by different types of deformed algebras, among

them the noncommutative algebra of canonical type, Lie type, and the

nonlinear deformed algebra with an arbitrary function of deformation

depending on momenta. It is shown that the deformation of commutation

relations leads to the mass-dependence of motion of a particle (a composite

system) in a gravitational field, and, hence, to violation of the weak equivalence

principle. We conclude that this principle is recovered in quantized spaces if one

considers the parameters of the deformed algebras to be different for different

particles (bodies) and to be determined by their masses.

KEYWORDS

minimal length, quantized space, deformed Heisenberg algebra, weak equivalence
principle, parameters of deformed algebras

1 Introduction

String Theory and Quantum Gravity predict the existence of a minimal length [see,

for instance, (Gross and Mende, 1988; Maggiore, 1993)]. This, one of the most important

suggestions of these theories, follows from the generalized uncertainty principle (GUP)

ΔX≥
Z

2
1
ΔP + βΔP( ), (1)

where β is a constant which is called the parameter of deformation. Notations ΔX, ΔP are

used for position andmomentum uncertainties. The inequality Eq. 1 leads to the existence

of a minimal value of ΔXwhich is determined by the parameter β and reads ΔXmin � Z
��
β

√
.

One can obtain the generalized uncertainty principle (1) by considering a quadratic

deformation of the commutation relations for the operator of coordinate and the operator

of momentum

X, P[ ] � iZ 1 + βP2( ). (2)

Relation (2) can be generalized as

X,P[ ] � iZF
��
β

√
|P|( ), (3)
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where F( ��
β

√ |P|) is a function, which is called the deformation

function, β is a constant, β ≥ 0, F(0) = 1.

For the invariance of the deformed commutation relation (3)

upon reflection (X→ −X, P→ −P) and for preserving of the time-

reversal symmetry the deformation function has to be even, so

that F � F( ��
β

√ |P|). Also from Eq. 3 it follows that the

deformation function has to be dimensionless, therefore a

dependence of F on the dimensionless product
��
β

√ |P| is

considered. In (Masłowski et al., 2012) the results of studies

of the minimal length in the context of the deformed algebra (3)

are presented and the answer to the question regarding what

functions F( ��
β

√ |P|) lead to the minimal length is found.

Historically the first deformed algebra was proposed by

Snyder in 1947 (Snyder, 1947). The algebra is well studied

[see, for instance, (Romero and Zamora, 2008; Mignemi,

2011; Lu and Stern, 2012; Gnatenko Kh. P. and Tkachuk V.

M., 2019b)]. In the nonrelativistic case the Snyder algebra reads

Xi, Xj[ ] � iZβ XiPj −XjPi( ), (4)
Xi, Pj[ ] � iZ δij + βPiPj( ), (5)

Pi, Pj[ ] � 0. (6)

Also, a three-dimensional algebra leading to the minimal length

was proposed by Kempf [see, for instance, (Kempf et al., 1995;

Kempf, 1997; Sandor et al., 2002; Menculini et al., 2013;

Gnatenko Kh. and Tkachuk V. M., 2019a)]

Xi,Xj[ ] � iZ
2β − β′( ) + 2β + β′( )βP2

1 + βP2
PiXj − PjXi( ), (7)

Xi, Pj[ ] � iZ δij 1 + βP2( ) + β′PiPj( ), (8)
Pi, Pj[ ] � 0, (9)

where β, β′ are constants. Here the minimal length is determined

by the parameters of deformation, it reads ΔXmin � Z
�����
β + β′

√
.

The most simple algebras leading to space quantization (i. e.

the existence of a minimal length and minimal area), are

noncommutative algebras of canonical type. In this algebras

the commutators for coordinates and momenta are equal to

constants

Xi, Xj[ ] � iZθij, (10)
Xi, Pj[ ] � iZ δij + σ ij( ), (11)

Pi, Pj[ ] � iZηij, (12)

where θij, σij, ηij are elements of constant antisymmetric matrixes

[see, for example, (Djemai and Smail, 2004; Alavi, 2007; Bastos

and Bertolami, 2008; Bertolami and Queiroz, 2011)].

Modification of the commutation relations in the form (10)-

(12) leads to both a minimal length and a minimal momentum

[see, for instance, (Gnatenko Kh. P. and Tkachuk V. M., 2018b)].

Another type of deformed algebra describing features of the

spatial structure at the Planck scale is the noncommutative

algebra of Lie type. It is characterized by the following

commutation relations

Xi, Xj[ ] � iZθkijXk. (13)

Here θkij are the parameters of noncommutativity which are

constants (see, for instance, (Lukierski and Woronowicz, 2006;

Daszkiewicz and Walczyk, 2008; Lukierski et al., 2018)).

So, different deformed algebras, which describe features of

the spatial structure at the Planck scale were proposed. These

algebras can be divided into algebras of canonical type,

noncommutative algebras of Lie type, and nonlinear deformed

algebras (commutators for coordinates and momenta that are

equal to a nonlinear function of coordinates and momenta). We

would like to note that the status of the minimal length in the

frame of all the algebras is the same. The minimal length

indicates the min linear range in which a particle can be localized.

It is important to mention that a modification of the

commutation relations for coordinates and momenta leads to

violations of the fundamental laws and principles of physics,

among them the weak equivalence principle. This principle is

also known as the Galilean equivalence principle or universality

of free fall, and is a restatement of the equality of gravitational

and inertial mass. According to the weak equivalence principle,

the kinematic characteristics, such as the velocity and position of

a point mass in a gravitational field do not depend on its mass,

composition and structure and are determined only by its initial

position and velocity.

The equivalence principle was examined in the context of a

noncommutative algebra of canonical type in (Bastos et al., 2011;

Gnatenko, 2013; Saha, 2014; Bertolami and Leal, 2015; Gnatenko

Kh. and Tkachuk V., 2017b, Gnatenko Kh. and Tkachuk, V.

2018a). The weak equivalence principle in noncommutative

phase space was studied in (Bastos et al., 2011; Bertolami and

Leal, 2015; Gnatenko Kh. and Tkachuk V., 2017b, Gnatenko Kh.

and Tkachuk, V. 2018a). The authors of (Bertolami and Leal,

2015) concluded that the equivalence principle holds in the

quantized space in the sense that an accelerated frame of

reference is locally equivalent to a gravitational field, unless

the parameters of noncommutativity are anisotropic (ηxy ≠
ηxz). In the paper (Lake et al., 2019) generalized uncertainty

relations that do not lead to the violation of the equivalence

principle were presented. GUP models that do not require

modified commutation relations, have also been proposed in

(Bishop et al., 2021).

In this paper we study the weak equivalence principle in the

context of different deformed algebras leading to space

quantization. We show that the motion of a particle (a body)

in a gravitational field in quantized space depends on its mass

and composition. The weak equivalence principle is violated in

quantized space. It is important that space quantization leads to a

great violation of the weak equivalence principle if one considers

the parameters of the deformed algebras to be the same for
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different particles (bodies). We conclude that in the context of

different algebras (algebras with arbitrary deformation function

depending on momentum, noncommutative algebras of

canonical type, and noncommutative algebras of Lie type) the

weak equivalence principle is recovered in the case when the

parameters of deformation are different for different particles

and are determined by their masses.

The paper is organized as follows. In Section 2 the weak

equivalence principle is studied in the space with GUP. It is

shown that the deformation of the commutation relations

leads to a great violation of the weak equivalence principle.

We find a condition on the parameter of deformation in

which the weak equivalence principle is preserved. Section 3

is devoted to studies of the motion of a particle in a

gravitational field in a noncommutative phase space of

canonical type. The way to recover the weak equivalence

principle in the space is proposed. Section 4 is devoted to

studying a quantized space with Lie algebraic

noncommutativity. It is shown that the weak equivalence

principle is recovered due to the relation of the parameters of

the noncommutative algebra with mass. Conclusions are

presented in Section 5.

2 The weak equivalence principle in a
quantized space with a nonlinear
deformed algebra and the parameters
of deformation

Let us examine the motion of a particle in a gravitational field

in one-dimensional space characterized by a deformed algebra

(1D) with an arbitrary function of deformation dependent on

momenta (3). We study the following Hamiltonian

H � P2

2m
+mV X( ), (14)

where m is the mass of the particle, V(X) corresponds to the

gravitational potential. Note that in Eq. 14 we consider the

inertial mass (mass in the first term) to be equal to the

gravitational mass (mass in the second term).

In the classical limit Z → 0 on the basis of Eq. 3 we find the

deformed Poisson brackets

X, P{ } � F
��
β

√
|P|( ). (15)

The definition of the brackets reads

f, g{ } � F
��
β

√
|P|( ) zf

zX

zg

zP
− zf

zP

zg

zX
( ). (16)

So, using Eq. 16, one can write the equations of motion of a

particle in the gravitational field in the deformed space as follows

_X � X,H{ } � P

m
F

��
β

√
|P|( ), (17)

_P � P,H{ } � −m zV X( )
zX

F
��
β

√
|P|( ). (18)

From Eqs. 17, 18 it follows that the motion of a particle in a

gravitational field in the space (3) depends on its mass. So, the

deformed relation (3) leads to violation of the weak equivalence

principle. Moreover, the GUP (3) causes a great violation of the

weak equivalence principle (the value of the Eötvös parameter is

many orders larger then that obtained experimentally). Let us

show this by considering the motion of two particles in a uniform

gravitational field V(X) = −gX, where g is the gravitational

acceleration. On the basis of Eqs. 17, 18 one can write

_X
b( ) � P b( )

mb
F

��
β

√
|P b( )|( ), (19)

_P � mbgF
��
β

√
|P b( )|( ). (20)

So, up to the first order in β we find

€X
b( ) � g + 3F′ 0( )g

��
β

√
mb|υ| + 2F′′ 0( ) − F′ 0( )( )2( )gβm2

bυ
2,

(21)
where mb is the mass of a particle labeled by index b (b = (1, 2)),

F′(x) = dF/dx, F′′(x) = d2F/dx2. The notation υ is used for the

velocity of motion in the gravitational field V(X) = −gX in the

ordinary space (i. e. the space with β = 0).

So, up to the first order in β the Eötvös parameter for particles

with masses m1, m2 reads

Δa
a

�
2 €X

1( ) − €X
2( )( )

€X
1( ) + €X

2( )

� 3F′ 0( )|υ|
��
β

√
m1 −m2( ) + 2F′′ 0( ) − F′ 0( )( )2( )υ2β

× m2
1 −m2

2( ).
(22)

To estimate the value of Eq. 22 let us put Z
��
β

√ � lP � ���
ZG

√
/

��
c3

√
(lP is the Planck length, c is the speed of light, G is the

gravitational constant). So, we have

Δa
a

� 3F′ 0( ) |υ|
c

m1 −m2( )
mP

+ 2F′′ 0( ) − F′ 0( )( )2( ) υ2
c2

×
m2

1 −m2
2( )

m2
P

,
(23)

with mP � ��
Zc

√
/

��
G

√
being the Planck mass (Gnatenko and

Tkachuk, 2020).

Note that for m1 = 1 kg, m2 = 0.1 kg in the case of

deformation function F( ��
β

√ |P|) � 1 + βP2 form Eq. 23 we

obtain great violation of the weak equivalence principle

Δa/a ≈ 0.1 which has not been seen experimentally

(Gnatenko and Tkachuk, 2020). From the tests of the weak

equivalence principle it follows that this principle holds with

high accuracy. For instance, on the basis of the Lunar Laser

Ranging experiment it is known that the equivalence

principle holds with precision Δa/a = ( − 0.8 ± 1.3) · 10−13
(Williams et al., 2012). Similar results were obtained from the
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laboratory torsion-balance tests of the weak equivalence

principle for Be and Ti in which Δa/a = (0.3 ± 1.8) · 10−13
and Δa/a = ( − 0.7 ± 1.3) · 10–13 for Be and Ti or Al (Wagner

et al., 2012). The MICROSCOPE space mission aims to test

the principle with accuracy 10−15 (Touboul et al., 2017).

It is important to mention that we have obtained a great

violation of the weak equivalence principle in a space with

GUP assuming that parameter of deformation β is the same

for different particles. Let us consider a more general case in

which the parameter of deformation is different for different

particles. We use notation βb for the parameter of

deformation corresponding to a particle with index b. The

weak equivalence principle can be recovered in a space with

GUP, if we assume that βb is determined by the mass of a

particle as ��
βb

√
mb � γ � const, (24)

where the constant γ is the same for different particles and does

not depend onmass (Quesne and Tkachuk, 2010; Tkachuk, 2012;

Gnatenko and Tkachuk, 2020).

Taking into account Eq. 24, we find that the Eötvös

parameter written up to the first order in β is equal to zero

Δa
a

� 3F′ 0( )|υ|
��
β1

√
m1 −

��
β2

√
m2( ) + 2F′′ 0( ) − F′ 0( )( )2( )υ2

× β1m
2
1 − β2m

2
2( ) � 0.

(25)
Also, considering the parameter of deformation to be

dependent on mass according to

β � γ2

m2
, (26)

(this expression follows from Eq. 24), the equations of motion of

a particle in a gravitational field Eqs. 17, 18 read

_X � P

m
F γ

|P|
m

( ), (27)
_P

m
� −zV X( )

zX
F γ

|P|
m

( ). (28)

On the basis of Eqs. 27, 28 we have that the equations forX and P/

m do not contain mass. Therefore, the solutions X(t), P(t)/m of

these equations also do not depend on mass. So, the weak

equivalence principle is recovered due to the assumption Eq.

24 (Tkachuk, 2012; Gnatenko and Tkachuk, 2020).

Let us also study the weak equivalence principle in the more

general three-dimensional case of deformed (3D) algebras.

Namely, let us consider the following commutation relations

Xi,Xj[ ] � G P2( ) XiPj −XjPi( ), (29)
Xi, Pj[ ] � f P2( )δij + F P2( )PiPj, (30)

Pi, Pj[ ] � 0. (31)

The algebra Eqs. 29–31 is a generalization of the well known

Snyder Eqs. 4–6 and Kempf Eqs. 7–9 algebras. The functions

G(P2), F(P2) and f(P2) in Eqs. 29–31 have to satisfy the relation

f F − G( ) − 2f′ f + FP2( ) � 0, (32)

(here f′ = zf/zP2) which follows from the Jacobi identity

(Frydryszak and Tkachuk, 2003).

From the classical limit of Eqs. 29–31 we obtain the following

Poisson brackets

Xi,Xj{ } � G P2( ) XiPj −XjPi( ), (33)
Xi, Pj{ } � f P2( )δij + F P2( )PiPj, (34)

Pi, Pj{ } � 0. (35)

Let us study the weak equivalence principle in the quantized

space represented by Eqs. 33–35. Considering a particle in a

gravitational field V(X) with Hamiltonian

H � ∑
i

P2
i

2m
+mV X( ), (36)

and taking into account the deformation of the Poisson brackets

Eqs. 33–35, we find the following equations of motion

_Xi � Pi

m
f P2( ) +m∑

j

zV X( )
zXj

G P2( ) XiPj −XjPi( ), (37)

_Pi � −m zV X( )
zXi

~f βP2( ) −m∑
j

zV X( )
zXj

F P2( )PiPj. (38)

On the basis of dimensional considerations the functions

f(P2), F(P2), G(P2) can be rewritten as f(P2) � ~f(βP2), F(P2) �
β~F(βP2) and G(P2) � β ~G(βP2), where ~f(βP2), ~F(βP2) and
~G(βP2) are dimensionless functions. Taking this into account,

and considering the condition Eq. 26, one can rewrite the

equations of motion of a particle in a gravitational field as follows

_Xi � Pi′~f γ2 P′( )2( ) + γ2 ∑
j

zV X( )
zXj

~G γ2 P′( )2( )
× XiPj′ −XjPi′( ), (39)

_Pi′ � −zV X( )
zXi

~f γ2 P′( )2( ) − γ2 ∑
j

zV X( )
zXj

~F

× γ2 P′( )2( )Pi′Pj′,
(40)

where Pi′ � Pi/m. It is important that Eqs. 39, 40 do not depend

on mass. So, the weak equivalence principle is preserved in

quantized space Eqs. 33–35 if the relation of the parameter of

deformation with mass Eq. 26 is satisfied (Gnatenko and

Tkachuk, 2020).

It is also important to mention that the relation Eq. 26 gives a

possibility to preserve the additivity property of the kinetic

energy in a space with GUP and to solve the problem of the

significant effect of the GUP on the kinetic energy of a

macroscopic body [for details see (Gnatenko and Tkachuk,

2020)].
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3 Influence of noncommutativity of
coordinates and noncommutativity
of momenta on the motion in a
gravitational field

Let us study the motion of a particle in a uniform

gravitational field in the context of a noncommutative algebra

of canonical type (2D)

X1, X2[ ] � iZθ, (41)
Xi, Pj[ ] � iZδij, (42)
P1, P2[ ] � iZη, (43)

where the parameters of noncommutativity θ, η are constants

and i, j = (1, 2). In the classical limit we obtain the following

deformed Poisson brackets

X1, X2{ } � θ, (44)
Xi, Pj{ } � δij, (45)
P1, P2{ } � η. (46)

Let us examine the motion of a particle in a gravitational

field in the space Eqs. 44–46 and find the way to preserve the

weak equivalence principle (Gnatenko, 2013; Gnatenko Kh.

and Tkachuk V., 2017b, Gnatenko Kh. and Tkachuk, V.

2018a). The equations of motion of a particle with mass m

in a uniform gravitational field with Hamiltonian

H � P2
1

2m
+ P2

2

2m
−mgX1, (47)

read

_X1 � X1, H{ } � P1

m
, (48)

_X2 � X2, H{ } � P2

m
+mgθ, (49)

_P1 � P1, H{ } � mg + η
P2

m
, (50)

_P2 � P2, H{ } � −ηP1

m
. (51)

In Eq. 47 one considers the field directed along the X1 axis.

Note that in the two-dimensional case the noncommutative

algebra of canonical type Eqs. 41–43 is rotationally invariant,

so the results and conclusions we obtain, considering this

particular case, can be generalized to the case of the arbitrary

direction of the field.

The solution of Eqs. 48–51 with initial conditions X1(0) =

X01, X2(0) = X02, _X1(0) � υ01, _X2(0) � υ02 is the following

X1 t( ) � mυ01
η

sin
η

m
t + m2g

η2
− m2gθ

η
+ mυ02

η
( ) 1 − cos

η

m
t( )

+X01,

(52)

X2 t( ) � m2g

η2
− m2gθ

η
+ mυ02

η
( )sin η

m
t − mυ01

η
1 − cos

η

m
t( )

−mg

η
t +mgθt +X02.

(53)
The obtained expressions Eqs. 52, 53 depend on mass, if we

assume that the parameters of noncommutativity θ, η are the

same for different particles. In this case the weak equivalence

principle is violated in the noncommutative phase space of

canonical type. The way to solve this problem is to consider,

as in the previous section, that the parameters of

noncommutativity are dependent upon mass (Gnatenko Kh.

and Tkachuk V., 2017b).

The trajectory of a particle in the uniform gravitational field

depends on mθ and η/m. So, if these values do not depend on

mass then the weak equivalence principle is recovered. So, let us

consider the following conditions

θm � γ � const, (54)
η

m
� α � const, (55)

where γ, α are the same for different particles. Taking into

account Eqs. 54, 55, the trajectory Eqs. 52, 53 transforms to

X1 t( ) � υ01
α

sin αt + g

α2
− gγ

α
+ υ02

α
( ) 1 − cos αt( ) +X01, (56)

X2 t( ) � g

α2
− gγ

α
+ υ02

α
( )sin αt − υ01

α
1 − cos αt( ) − g

α
t + γgt

+X02.

(57)
The trajectory of a particle in the gravitational field Eqs. 56,

57 is determined by its initial coordinates and velocities and does

not depend on its mass. So, the weak equivalence principle is

recovered in the noncommutative phase space of canonical type

due to the relations Eqs. 54, 55 (Gnatenko Kh. and Tkachuk V.,

2017b).

It is worth also mentioning that for η → 0 the expressions

Eqs. 52, 53 reduce to the well known result for the trajectory of a

particle in a uniform gravitational field in ordinary space, X1(t) =

gt2/2 + υ01t + X01, X2(t) = υ02t + X02. At the same time, the

noncommutativity of the coordinates affects the relation between

the momenta and velocities, such that

P1 � m _X1, P2 � m _X2 +mgθ( ). (58)

In the case when the parameter of coordinate noncommutativity

is inversely proportional to the mass on the basis of Eq. 58 we

obtain that the momentum P2 is proportional to mass, as it is in

ordinary space P2 � m( _X2 + γg).
In the more general case of a particle in a nonuniform

gravitational field V(X1, X2) with Hamiltonian

H � P2
1

2m
+ P2

2

2m
+mV X1, X2( ), (59)
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The equations of motion read

_X1 � X1, H{ } � P1

m
+mθ

zV X1, X2( )
zX2

, (60)

_X2 � X2, H{ } � P2

m
−mθ

zV X1, X2( )
zX1

, (61)

_P1 � P1, H{ } � −m zV X1, X2( )
zX1

+ η
P2

m
, (62)

_P2 � P2, H{ } � −m zV X1, X2( )
zX2

− η
P1

m
. (63)

To obtain Eqs. 60–63 we take into account Eqs. 44–46. From

Eqs. 60–63 we can conclude that the weak equivalence principle

is violated, if the parameters of noncommutativity are the same

for different particles. In the case when the conditions on the

parameters of noncommutativity Eqs. 54, 55 hold, introducing

the notation Pi′ � Pi/m, we can write

_X1 � P1′ + γ
zV X1, X2( )

zX2
, _X2 � P2′ − γ

zV X1, X2( )
zX1

, (64)

_P1′ � −zV X1, X2( )
zX1

+ αP2′, _P2′ � −zV X1, X2( )
zX2

− αP1′. (65)

Eqs. 64, 65 depend on the parameters γ and α and do not depend

on mass. As a result, Xi = Xi(t), Pi′ � Pi′(t) also do not depend on
mass. So, conditions Eqs. 54, 55 give a possibility to preserve the

weak equivalence principle also in the case of motion in a

nonuniform gravitational field (Gnatenko Kh. and Tkachuk

V., 2017b).

It is worth noting that in this section we consider the two-

dimensional case of the noncommutative algebra of canonical

type Eqs. 41–43, because it is rotationally-invariant. In the three-

dimensional noncommutative phase space of canonical type one

faces the problem of rotational symmetry breaking. A 3D algebra

which is rotationally invariant and equivalent to the

noncommutative algebra of canonical type was proposed in

(Gnatenko K. P. and Tkachuk V. M., 2017a). It is important

to mention that to recover the weak equivalence principle in the

context of this algebra the idea to relate the parameters of

noncommutativity with mass has to be considered [for details

see (Gnatenko, 2018)].

4 Weak equivalence principle in
noncommutative space of Lie type

Let us also study the motion of a composite system in a

gravitational field in a space with a noncommutative algebra of

Lie type and examine the weak equivalence principle. We

consider the following algebra

Xi, Xj{ } � θ0ijt + θkijXk, (66)
Xi, Pj{ } � δij + �θ

k

ijXk + ~θ
k

ijPk, Pi, Pj{ } � 0, (67)

where i, j, k = (1, 2, 3), θ0ij, θ
k
ij,

�θ
k
ij,

~θ
k

ij are the parameters of

noncommutativity, that are antisymmetric in their lower indexes

θ0ij � −θ0ji, �θkij � −�θkji, ~θ
k

ij � −~θkij (Miao et al., 2011).

From the Jacobi identity it follows that the parameters θ0ij, θ
k
ij,

�θ
k
ij,

~θ
k

ij can not be arbitrary. In the particular case when

θ0kl � −θ0kγ �
1
κ
, θ0lγ �

1
κ
, (68)

θlkγ � −θklγ � ~θ
l

kγ � −~θklγ �
1
~κ
, (69)

the noncommutative algebra of Lie type reads

Xk,Xγ{ } � − t
κ
+ Xl

~κ
, Xl, Xγ{ } � t

κ
− Xk

~κ
, (70)

Xk,Xl{ } � t

κ
, Pk, Xγ{ } � Pl

~κ
, (71)

Pl, Xγ{ } � −Pk

~κ
, Xi, Pj{ } � δij, (72)

Xγ, Pγ{ } � 1 Pm, Pn{ } � 0, (73)

[see (Miao et al., 2011)]. Choosing

θ0lγ � −θ0kγ �
1
κ
, θlkγ � −θklγ �

1
~κ
, (74)

~θ
l

kγ � −~θklγ �
1
~κ
, (75)

�θ
l

kγ � −�θklγ �
1
�κ
, (76)

We obtain the following noncommutative algebra

Xk,Xγ{ } � − t
κ
+ Xl

~κ
, Xl, Xγ{ } � t

κ
− Xk

~κ
, (77)

Xk,Xl{ } � 0, Pk, Xγ{ } � Xl

�κ
+ Pl

~κ
, (78)

Pl, Xγ{ } � Xk

�κ
− Pk

~κ
, Xi, Pj{ } � δij, (79)

Xγ, Pγ{ } � 1, Pm, Pn{ } � 0, (80)

[see (Miao et al., 2011)].

The equations of motion of a particle with mass m in a

gravitational field V = V(X1, X2, X3) with Hamiltonian H � P2

2m +
mV(X1, X2, X3) in a space with a noncommutative algebra of Lie

type read

_Xi � Pi

m
+ �θ

k

ij

PjXk

m
+ ~θ

k

ij

PjPk

m
+m θ0ijt + θkijXk( ) zV

zXj
, (81)

_Pi � −m zV

zXi
−m �θ

k

ijXk + ~θ
k

ijPk( ) zV

zXj
. (82)

The equivalence principle is recovered if the following

conditions are satisfied (Gnatenko, 2019)

θ0 b( )
ij mb � γ0ij � const, θk b( )

ij mb � γkij � const, (83)
~θ
k b( )
ij mb � ~γkij � const, �θ

k b( )
ij � �θ

k

ij. (84)
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The constants γ0ij, γ
k
ij, ~γ

k
ij are the same for different particles,

γ0ij � −γ0ji, γkij � −γkji, ~γkij � −~γkji. Taking into account (83), (84)

and using the notation Pi′ � Pi/m the equations of motion of a

particle in an arbitrary gravitational field can be rewritten as

_Xi � Pi′ + �θ
k

ijPj′Xk + ~γkijPj′Pk′ + γ0ijt + γkijXk( ) zV

zXj
, (85)

_Pi′ � − zV

zXi
− �θ

k

ijXk + ~γkijPk′( ) zV

zXj
. (86)

The obtained Eqs. 85, 86 do not contain mass. So, conditions

Eqs. 83, 84 give a possibility to recover the weak equivalence

principle in a space characterized by a noncommutative algebra

of Lie type Eqs. 66, 67.

5 Discussion

The idea to describe features of the spatial structure at the

Planck scale (the existence of a minimal length) with the help of

deformed algebras has been considered. Deformed algebras of

different types have been studied. Among them are deformed

algebras with arbitrary functions of deformation that depends on

momenta (these algebras are generalizations of the nonrelativistic

Snyder and Kempf algebras), algebras with noncommutativity of

the coordinates and noncommutativity of the momenta of

canonical type, and noncommutative algebras of Lie type. The

implementation of the weak equivalence principle has been

examined in the quantized spaces described by these

deformed algebras.

We have shown that, considering the parameters of the

deformed algebras to be the same for different particles

(different bodies), one faces the problem of violation of the

weak equivalence principle. In this case the motion of a

particle in a gravitational field in quantized space depends on

its mass and composition. Even in the case of equality between

the gravitational and the inertial masses of a body the Eötvös

parameter is not equal to zero. Besides space quantization leads

to great violation of this principle which should have been seen

experimentally (see Eq. 23). To solve this problem the

dependence of the parameters of the deformed algebras on

mass has been considered. We have shown that if the

parameters of the deformed algebras for coordinates and

momenta are related to the particle mass the weak

equivalence principle is preserved in noncommutative phase

spaces of canonical type, in spaces with Lie algebraic

noncommutativity, and in spaces with an arbitrary function of

deformation dependent on momenta. In addition, the same

relations for the parameters of deformation (parameters of

noncommutativity) on mass give a possibility to recover the

properties of the kinetic energy (its additivity and independence

of compositions) and to solve the problem of the great effect of

the minimal length on the motion of macroscopic bodies which is

well known in the literature as the soccer-ball problem

(Gnatenko and Tkachuk, 2020, Gnatenko Kh. and Tkachuk,

V. 2017b; Gnatenko, 2019).
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In this work, we consider the implications of a phenomenological model of

quantum gravitational effects related to a minimal length, implemented via the

generalized uncertainty principle. Such effects are applied to the

Bekenstein–Hawking entropy to derive a modified law of gravity through

Verlinde’s conjecture. Implications on galactic scales, and in particular on

the shape of rotational curves, are investigated, exploring the possibility to

mimic dark matter-like effects via a minimal length.

KEYWORDS

minimal length, dark matter, rotational curves, entropic force, gravity

1 Introduction

Dark matter (DM) is one of the dominant components in the energy budget of the

Universe. Evidence for its existence ranges from galaxy clusters, rotational curves of

galaxies, and gravitational lensing all to the cosmic microwave background (CMB)

(Freese, 2009; Drees and Gerbier, 2012; Arbey and Mahmoudi, 2021). However,

effects related to DM have not been observed on the scale of the solar system,

whereas they become significant on galactic and intergalactic scales. Nonetheless, the

nature of DM remains one of the most debated problems in physics up to this day. Several

proposals and speculations concerning DM have been put forward, among which are

MACHOs, WIMPs, axions, sterile neutrinos, and modified Newtonian dynamics

(MOND) (Freese, 2009; Drees and Gerbier, 2012; Arbey and Mahmoudi, 2021; Oks,

2021). In this work, we propose an alternative explanation for DM. Specifically, we argue

that the phenomenology related to DM can be partially described in terms of quantum

gravitational effects.

The development of a theory of quantum gravity (QG) is an open problem in physics.

Several candidate theories have been proposed, and numerous thought experiments have

shaped the expected features of such a theory. However, none could have been directly

tested due to current experimental and technological limitations. For this reason,

phenomenological approaches have become some of the main tools to tackle the

problem of QG (Magueijo, 2006; Ali et al., 2011; Hamma and Markopoulou, 2011;

Dos Santos et al., 2013; Feller and Livine, 2016; Danshita et al., 2017; Haine, 2018; van de

Kamp et al., 2020) (see Addazi et al. (2022) for a recent review). Such approaches usually

consider the implications of features of a full QG theory on lower energy scales, possibly
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accessible to current experiments and observations. Among such

features, a common one is the existence of a fundamental

minimal length. Such a minimal length strongly opposes the

traditional Heisenberg uncertainty principle of quantum

mechanics, which should be properly modified approaching

the QG scale. The set of models corresponding to a modified

uncertainty relation is collectively referred to as the generalized

uncertainty principle (GUP) (Maggiore, 1993a; Maggiore, 1993b;

Maggiore, 1994; Kempf et al., 1996; Kempf, 1997; Scardigli, 1999;

Scardigli and Casadio, 2003; Ali et al., 2011; Pikovski et al., 2012;

Bosso et al., 2017; Scardigli et al., 2017; Bosso, 2018; Kumar and

Plenio, 2018; Gnatenko and Tkachuk, 2019; Luciano, 2021a;

Bosso, 2021; Bosso and Luciano, 2021; Das and Fridman,

2021; Giardino and Salzano, 2021; Gomes, 2022). Such models

are inspired from candidate theories of quantum gravity, such as

string theory and loop quantum gravity, in which an effective

minimal observable length appears in scattering experiments or

as a structural feature of space-time. The phenomenological

implications are then accounted for in terms of a minimal

uncertainty in position or non-commutativity of space-time.

The commutator corresponding to one of the most common

GUP models can be cast as (Kempf et al., 1996; Bosso, 2021):

xi, pj[ ] � iZ δij + β p2δij + 2pipj( )[ ] , (1)

where xi and pj are the position and momentum operators,

respectively, β ≡ β0/(MPc)2, where β0 is a dimensionless

parameter, and MP � ����
Zc/G

√
is the Planck mass. Such a

model implies a modification of the uncertainty relation

between the position and momentum, as found using the

Schrödinger–Robertson relation and thus leads to a minimal

uncertainty in the position. For example, in the one-dimensional

case, the modified uncertainty relation reads (Kempf et al., 1996):

ΔxΔp≳ Z 1 + 3βΔp2[ ]. (2)

In this study, we propose how minimal length

phenomenology can give rise to features similar to DM on

galactic scales. Specifically, we deduce effects from GUP that

contribute to the flatness of rotational curves. Such effects are

obtained as a consequence of the modifications to the

Bekenstein–Hawking entropy through the holographic

principle, induced by GUP (Cai et al., 2008; Zhu et al., 2009;

Awad and Ali, 2014; Giardino and Salzano, 2021; Buoninfante

et al., 2022; Das et al., 2022). Therefore, we obtain corrections to

the corresponding entropic force due to the presence of a

minimal length. Based on Verlinde’s conjecture (Verlinde,

2011), such a modified entropic force turns out as a modified

Newton’s law of gravity, thus providing a basis to study the

implications of a minimal length on gravitational systems.

Specifically, we require the holographic principle to hold, that

is, we consider spherically symmetric surfaces of area A = 4πR2

separating points in space. Such surfaces behave as the natural

place to store information about particles that are inside the

surfaces and that can move from one side to another. In this way,

the information about the location of particles is stored in

discrete bits on the surfaces. This naturally leads to the

assumption that the number Nb of bits on the screens can be

approximated with the number of particles Np enclosed by the

surfaces, that is, Nb ~ Np = N. Then, the total number N of bits of

the system, which is measured by its entropy S, can be naturally

assumed to be proportional to the surface area A, that is, N ~ S ~

A. The total energy E of the system inside the surfaces is

distributed on such bits and is related to the surface

temperature by the equipartition theorem (or the GUP-

modified version thereof). Such energy can be written in

terms of the uniformly distributed mass M inside the surface

as E = Mc2. It should be noticed that the aforementioned

reasoning can in principle be applied to any mass

distribution, as long as one defines a proper holographic

screen of radius R containing the whole distribution.

It turns out that a distance dependence for the GUP

parameter β0 must be assumed to provide a reasonable

mechanism to study minimal length effects on rotational

curves of galaxies. Such dependence has been proposed in

other works as well (see, for e.g., Ref. Ong (2018)) and

suggested by the different estimations of the GUP parameter

in tabletop experiments, where β0 > 0 (Pikovski et al., 2012; Bosso

et al., 2017; Scardigli et al., 2017; Kumar and Plenio, 2018; Das

and Fridman, 2021), and in astrophysical/cosmological

observations, where β0 < 0 (Jizba et al., 2010; Ong, 2018;

Buoninfante et al., 2019; Nenmeli et al., 2021; Das et al., 2022;

Jizba et al., 2022) (see also Luciano (2021b) for a recent review).

The article is structured as follows: in Section 2, a

modification to the equipartition theorem due to GUP is

introduced; in Section 3, a modified Newton’s law of gravity is

derived from the GUP-modified equipartition theorem and the

Bekenstein–Hawking entropy; in Section 4, we summarize our

results and include some final remarks.

2 GUP-modified equipartition
theorem

One of the reasons to introduce DM is the flatness of galactic

rotational curves, which deviate from the behavior predicted

based on Kepler’s model considering only luminous matter. In

particular, Kepler’s laws predict that the orbital velocities for stars

outside the bulge decrease as the square root of the distance from

the center, v(R)∝ 1/
��
R

√
. The observation that the orbital

velocities are approximately independent of the distance from

the center, v(R) ∝ const., even at distances comparable with the

galactic radius and beyond, suggests that either Newton’s law of

gravity does not hold at such scales, or that non-visible matter,

present in galaxies, affects stellar dynamics. As mentioned in

Introduction, here we will consider the former, with the intent of

studying the implications of a minimal length on galactic
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rotational curves. Specifically, following Verlinde (2011), we

introduce the gravitational force F as an entropic force, which

is given as:

FΔx � TΔS , (3)

where Δx � ηλC � η Z
mc is the displacement from the source of a

test particle in terms of its Compton wavelength λC,m is the mass

of the test particle, η is the modification factor (η = 1 if no

modification), T is the effective temperature at a given radius, and

ΔS = 2πkB is the minimal change in entropy, as stated by the

information theory (Adami, 2004), with kB being the Boltzmann

constant. The effective temperature T can be expressed in terms

of energy E of a thermodynamical system via the equipartition

theorem. In our case, we assume that the mass of the system is

contained within a sphere of radius R. However, when a minimal

length is introduced considering the effects of GUP on statistical

mechanics, the equipartition theorem presents some corrections.

To see this, we first notice that the GUP-modified density of

states in three spatial dimensions reads as (Das and Fridman,

2021),

g ε( ) � V 2m( )3/2ε1/2
4π2Z3

1 − 75
4
βmε( ) , (4)

where V is the volume of the system and ε is the single particle

energy. Since the results in Das and Fridman, (2021) are valid up

to order β, the density of states presented previously, and its

consequences are understood to hold up to the same order. We

anticipate that the volume V will cancel out in our considerations

and does not affect the results. Furthermore, it is worth

mentioning that GUP is not expected to modify the value of

geometrical quantities such as volumes or areas. Since GUP is a

phenomenological model of quantum mechanics including a

minimal uncertainty in position, GUP only affects the

precision with which particles are localized, and therefore

the precision with which geometrical quantities are

determined, not their actual value. Returning to the

expression mentioned previously, it is worth noticing that

it reduces to the standard density of states for β → 0, and that

such a result is quantum in nature since it is based on the

quantum energy spectrum of a particle in a box. In the

classical limit ε − μ ≫ T, where μ is the chemical potential,

and assuming no particles are added or removed from the

system, μ = 0, the Bose–Einstein and Fermi–Dirac

distributions reduce to

fBE,FD ε( ) � 1

exp ε−μ
kBT
( ) ∓ 1

≈ f ε( ) � exp − ε

kBT
( ) , (5)

where the − and the + signs refer to the Bose–Einstein and

Fermi–Dirac distributions, respectively. The limit on the right

hand side of Eq. 5 is the Maxwell–Boltzmann distribution.

To proceed further, we compute the number of particles in

the system by considering the following ensemble average using

the GUP-modified density of states from Eq. 4 and the classical

limit for the particle distribution in Eq. 5. We then obtain

N � ∫∞
0

g ε( )fBE,FD ε( ) dε ≃ V 2m( )3/2
8π3/2Z3

kBT( )3/2

× 1 − 225
8

βm kBT( )[ ] ,

(6)

where the additional term with β represents the GUP correction

to the number of particles in the system, given the temperature T

of the system and the mass of the constituent particles m. The

energy of the system is obtained in a similar manner as the

number of particles in the system from Eq. 6. In this case, we find

E � ∫∞
0

εg ε( )fBE,FD ε( ) dε ≃ 3V 2m( )3/2
16π3/2Z3

kBT( )5/2

× 1 − 375
8

βm kBT( )[ ] .

(7)

The aforementioned formula represents the thermal energy

of a system in three spatial dimensions. We can recast the

expression for the thermal energy in a more familiar form by

combining Eqs 6, 7 to obtain the GUP-modified equipartition

theorem, which reads as

E � ns
2
NkBT 1 − 75

4
βm kBT( )[ ] , (8)

in ns-spatial dimensions.We are going to use this expression with

ns = 1, since the only relevant spatial degree of freedom in the

system contributing to the entropic force is the radial one. We

can then find an expression of the temperature T as a function of

the energy E up to the first order in β, that is,

T ~
2E
kBN

+ β
75mE2

kBN2
. (9)

Since this expression is derived from a quadratic equation,

two solutions in principle are allowed. However, only the

solution with the minus sign is considered since it is the only

one which returns the standard case as β→ 0. For the case of the

entropic force, the energy in Eq. 9 is not simply the thermal

energy of particles in a given volume but the total energy of the

system in that volume.

3 GUP-modified law of gravity

As shown in Verlinde (2011), one can derive Newton’s law of

gravity as an entropic force. The same procedure is applied here,

with the difference that one includes GUP corrections

everywhere they apply. A similar consideration has been

discussed in Sheykhi (2020), where a Tsallis entropy

modification to the Bekenstein–Hawking (BH) entropy has

been used to derive the modified law of gravity. Such an

entropy can be modified by GUP through the holographic
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principle as well (Awad and Ali, 2014; Das et al., 2022). It can

then be written as

S � c3kB
8ZG

A +
��������
A2 − βpA

√
− βp

2
[

× ln 1 − 2
βp

A +
��������
A2 − βpA

√( )( )] , (10)

where A is the area of the horizon and βp = 12πZ2β. Such a

modification implies a deformation of the temperature of the

system. To see this, first, we notice that the total number N of bits

of information on the surface of the holographic horizon can be

expressed in terms of the horizon entropy as follows (Verlinde,

2011):

N � 4S
kB

. (11)

Thus, substituting Eq. 11 and Eq. 10 in Eq. 9, we get

T � 2ZGE

kBc
3A

+ β0
6πZ3GE

kBM
2
pc

5A2 1 + ln 2 − M2
pc

2A

3πZ2β0
( )( )⎡⎣

+75Z
2G2mE2

kBM
2
pc

8A2
⎤⎦ .

(12)

It is worth noticing that the temperature T depends on the

area A of the holographic horizon and the total energy E of the

system. These quantities are related to the radius R of the horizon

and the mass M contained within that radius through A = 4πR2

and E = Mc2, respectively. The temperature from Eq. 12,

expressed in terms of R and M, and the aforementioned Δx
and ΔS are substituted in Eq. 3, where the GUP-modified

Compton wavelength with η � 1 + β0
m2

M2
p
(Carr et al., 2020) is

considered. Up to leading orders in β0, we obtain the GUP-

modified law of gravity, which is

F � GmM

R2 + β0
3Z2GmM

4M2
pc

2R4 1 + ln 2 − 4M2
pc

2R2

3Z2β0
( )( )⎡⎣

+75ZG
2m2M2

8M2
pc

3R4 − Gm3M

M2
pR

2
⎤⎦ .

(13)

Using the expression for the centripetal force F � mv2

R at

radius R, we can then find the GUP-modified rotational velocity,

which is

v �

���������������������������������������������������������
GM

R
+ β0

3Z2GM
4M2

pc
2R3

1 + ln 2 − 4M2
pc

2R2

3Z2β0
( )( ) + 75ZG2mM2

8M2
pc

3R3
− Gm2M

M2
pR

⎡⎣ ⎤⎦
√√

.

(14)

The test particle, of mass m, can in principle be anything,

from a subatomic particle to a large star. However, when a

composite system is considered, GUP effects are reduced by

the number n of constituents (Amelino-Camelia, 2013). In the

present case, this amounts to replacing the modification

parameter β0 by the reduced parameter scaling with the

square of the inverse number of constituents, that is, β0 → β0/

n2. It should be noted that n corresponds to the number of

constituent particles of the test mass which is different from N,

introduced in Eq. 6, which corresponds to the number of bits of

information on the holographic screen.

The last term in Eq. 13 that dominates at galactic distances,

compared to other correction terms, can be easily verified.

Therefore, Eq. 13 can be rewritten as

F ≃
GmeffM

R2
, (15)

where we have defined an effective gravitational mass

meff � m[1 − β0
n2

m2

M2
p
]. We notice that this implies a potential

GUP-induced violation of the weak equivalence principle, since

meff ≡ mg ≠ m ≡ mi, where mg is the gravitational mass and mi is

the inertial mass (see also Casadio and Scardigli, (2020)). Since in

our framework β0 < 0, we have mg > mi, which might partially

justify the higher galaxy rotation velocities with respect to

standard cosmological predictions.

From Eq. 14, the GUP-modified velocity for large distances is

given as

v ≃

��������������
GM

R
1 − β0

n2
m2

M2
p

⎡⎣ ⎤⎦
√√

with β0 < 0 . (16)

We point out here that other terms in Eqs 13, 14 dominate at

smaller scales, where the GUP effects are significantly smaller.

Furthermore, it is worth noticing that, due to the scaling of the

modification parameter in Eq. 16, the mass of a star orbiting with

velocity v is scaled by the number of fundamental constituents.

Assuming that such constituents correspond to the elements in

the plasma (mostly electrons and protons for a typical main

sequence star), the quantity m/n is of the order of the proton

mass regardless of the actual values ofm and n. Such assumption

will be considered in the following estimations.

It turns out that a distance dependence of the GUP parameter

β0 must be assumed to properly describe the flatness of rotational

curves of galaxies. In fact, as can be noticed from Eq. 16, a

constant GUP parameter simply shifts the orbital velocity at any

given radial position by a constant factor. The assumption that

the GUP parameter β0 takes a distance dependence is compatible

with the fact that similar effects are not observed at the solar

system scale, at which Kepler’s laws hold, while effects usually

associated with DM tend to become relevant approaching

galactic and intergalactic scales. This suggests that the GUP

parameter β0 must be distance-dependent since DM effects

appear to be distance-dependent. Such an assumption is also

supported by Ong (2018) and the difference between estimations

of the quadratic GUP parameter in tabletop experiments, where

β0 > 0 (Pikovski et al., 2012; Bosso et al., 2017; Scardigli et al.,

2017; Kumar and Plenio, 2018; Das and Fridman, 2021), and in

astrophysical/cosmological observations, where β0 < 0 (Jizba

et al., 2010; Ong, 2018; Buoninfante et al., 2019; Nenmeli
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et al., 2021; Das et al., 2022; Jizba et al., 2022). We propose

different models of a distance-dependent β0:

• Model 1: β0(R) � γ R
Rp,

• Model 2: β0(R) � γ R2

Rp2,

• Model 3: β0(R) � γ ln(1 + R
Rp), and

• Model 4: β0(R) � γ 2
π arctan( R

Rp),

where γ < 0 is a constant parameter and Rp ~ 1ly is the scale

at which effects, associated with DM, become significant. We

consider a toy model galaxy with the following matter

distribution (Freeman, 1970):

ρ R( ) � ρ0e
− R
Rd , (17)

where we chose ρ0 = 2 × 10–19 kg/m3 for the central density and

Rd = 16,000 ly for the galaxy scale parameter. We use the matter

distribution from Eq. 17 to obtain the mass of the galaxy within a

certain radius M(R), used in Eq. 16, to obtain Figure 1.

From Figure 1, we can see that the model which best

describes the flatness of rotational curves is model 1, since the

Compton correction term dominates at large distances, and the

linear model 1 renders it constant. As for the natural logarithm

and arc tangent models, they require a much higher peak for the

rotational velocities in order to explain the flatness of the curves.

Since observations of rotational curves of galaxies show no

significant discrepancy from standard Newton’s theory up to

about the peak of the curve, such models are not able to fit the

observations. The quadratic model 2 can potentially constitute a

good description for a different choice of the parameters γ and

Rp. Since models 2 and 4 do not describe the DM effects

satisfactorily, we are left with models 1 and 2. For these

models, we can consider the two different parameters γ and

Rp as only one parameter γ/Rp and γ/Rp2 for models 1 and 2,

respectively. The values for these parameters, which were used to

obtain the aforementioned graphs, are γ/Rp = −1.9, ×, 1033 ly−1

and γ/Rp2 � −3.6 × 1027 ly−2 for models 1 and 2, respectively.

These values constitute upper bounds for such parameters,

namely, |γ/Rp| ≤ 1.9 × 1033 ly−1 and |γ/Rp2|≤ 3.6 × 1027 ly−2,
respectively.

4 Conclusion

Newton’s law of gravity can be derived as an entropic force

through the holographic principle (Verlinde, 2011). In the

present work, we have revised the derivation considering the

influence of GUP. Specifically, we have considered the influence

of GUP on the temperature T in the equipartition theorem, the

Bekenstein–Hawking entropy, and the Compton wavelength.

The GUP-corrected law of gravity has then been used to

provide an explanation for the flatness of the rotational curves

of galaxies. Specifically, alongside the proposed DM content in

galaxies, we proposed that GUP effects can contribute to the

observed shape of rotational curves. In the case that the GUP

parameter β0 remains constant, the rotational curves of

galaxies only get magnified by a constant factor. Therefore,

for GUP to effectively influence the rotational curves, we

argued that the GUP parameter must be distance-dependent.

This claim is directly supported by the work from Ong (2018)

and indirectly by a comparison of positive bounds of

quadratic GUP parameters estimated from laboratory

experiments (Pikovski et al., 2012; Bosso et al., 2017;

Scardigli et al., 2017; Kumar and Plenio, 2018; Das and

Fridman, 2021) and negative bounds estimated from

astrophysical/cosmological observations (Jizba et al., 2010;

Ong, 2018; Buoninfante et al., 2019; Nenmeli et al., 2021; Das

et al., 2022; Jizba et al., 2022).

We have proposed different models concerning the distance

dependence for the GUP parameter β0 and introduced a new

scale parameter Rp at which GUP effects start to contribute to the

shape of the rotational curves of galaxies. Here, we note that the

GUP length scale need not be of the order of the Planck length ℓp

but can be any intermediate length scale
��
β0

√
ℓp between the

electroweak and Planck scales, determined by the GUP

parameter β0. For the cases of models 1 and 2, we introduce

parameters γ/Rp and γ/Rp2, respectively, since we cannot obtain

bounds for γ and Rp separately. Models 3 and 4 were found to be

inadequate to explain the observed DM effects, and there would

also be no possibility to combine parameters γ and Rp in a similar

fashion as for models 1 and 2.

Models 1 and 2 constrain the newly defined parameters to |γ/

Rp| ≤ 1.9 × 1033 ly−1 and |γ/Rp2|≤ 3.6 × 1027 ly−2, respectively.
However, these models can explain the flatness of rotational

curves of galaxies only up to an extent. For example, we notice

that for model 1 the rotational velocities would remain constant

for R→∞, while for model 2 they would diverge for R→∞ for

FIGURE 1
Galactic rotational curves for different models of R-
dependence of β0.
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any values of the parameters. Furthermore, the approximations

used to obtain Eqs 12, 13 break down at sufficiently large R.

The contribution of GUP effects to the shape of rotational

curves of galaxies should be determined, once more information

on the exact nature of particle DM and its abundance in galaxies

is known. Furthermore, the feature of a distance-dependent GUP

parameter, leading toward a partial explanation of galactic

rotational curves, can be considered a possible additional

structure of models of quantum mechanics with a minimal

length having astrophysical and cosmological consequences.

Finally, it is worth exploring the correspondence between our

results and those presented by Ong (2018), Gnatenko and

Tkachuk, (2019), and Gnatenko and Tkachuk, (2020), which

still exhibit the possibility of a mass-dependent GUP parameter.
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Generalized uncertainty principle
and burning stars

H. Moradpour*, A. H. Ziaie*, N. Sadeghnezhad* and A. Ghasemi

Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), University of Maragheh,
Maragheh, Iran

Gamow’s theory of the implications of quantum tunneling for star burning has

two cornerstones: quantum mechanics and the equipartition theorem. It has

been proposed that both of these foundations are affected by the existence of a

non-zero minimum length, which usually appears in quantum gravity scenarios

and leads to the generalized uncertainty principle (GUP). Mathematically, in the

framework of quantum mechanics, the effects of the GUP are considered as

perturbation terms. Here, generalizing the de Broglie wavelength relation in the

presence of a minimal length, GUP corrections to the Gamow temperature are

calculated, and in parallel, an upper bound for the GUP parameter is estimated.

KEYWORDS

quantum gravity, minimal length, generalized uncertainty principle, Gamow theory,
stellar formation

Introduction

In the first step of star burning, its constituents must overcome the Coulomb barrier to

participate in nuclear fusion (NF). This means that when the primary gas ingredients have

mass m and velocity v, then using the equipartition theorem, one gets

1
2
mv2 � 3

2
KBT≥Uc r0( ), (1)

whereKB denotes the Boltzmann constant, the subscript c inUc(r0) indicates the Coulomb

potential, and correspondingly, Uc(r0) � ZiZje2

r0
denotes the maximum of the Coulomb

potential between the ith and jth particles located at a distance r0 from each other

(Prialnik, 2000). In this article, Kelvin (K) is the temperature unit. Finally, we reach

T≥
2ZiZje2

3KBr0
≃ 1 · 1 × 1010

ZiZj

r0
, (2)

for the temperature required to overcome the Coulomb barrier. Therefore, NF happens

whenever the temperature of the primary gas is comparable to Eq. 2, which clearly shows

that, for the heavier nuclei, NF happens at higher temperatures. On the contrary, for the

temperature of gas with mass M and radius R, we have (Prialnik, 2000)

T ≈ 4 × 106
M

M⊙
( ) R⊙

R
( ), (3)
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where M⊙ and R⊙ are the Sun mass and radius, respectively.

Clearly, T and T are far from each other, meaning that NF cannot

cause star burning (Prialnik, 2000). Therefore, NF occurs if a

process reduces the required temperature (2). In fact, we need a

process that decreases Eq. 2 to the values comparable to Eq. 3.

Quantum tunneling lets particles pass through the Coulomb

barrier, which finally triggers star burning, meaning that

quantum tunneling allows NF to occur at temperatures lower

than T (Prialnik, 2000). Indeed, if the distance between particles

(r0) becomes of the order of their de Broglie wavelength

(r0 ≃ Z
p ≡ λQ where Q implies that we are in the purely

quantum mechanical regime), then quantum tunneling

happens and simple calculations lead to (Prialnik, 2000)

T≥
2ZiZje2

3KBλQ
≃ 9 · 6 × 106Z2

i Z
2
j

m
1
2

( ) ≡ T, (4)

instead of Eq. 2 for the temperature required to launch star

burning. λQ can also be obtained by solving p2

2m � Uc(r0)|r0�λQ
which gives (Prialnik, 2000)

λQ � Z2

2mZiZje2
, (5)

meaning that quantum tunneling provides a platform for NF in

stars (Prialnik, 2000). As an example, for hydrogen atoms, one

can see that quantum tunneling leads to T ≃ 9 · 6 × 106 K

(comparable to (3)) as the Gamow temperature at which NF

is underway. Based on the above argument, it is expected that any

change in p affects λQ and, thus, these results.

It is also useful to mention here that the quantum tunneling

theory allows the above process because the tunneling probability

is not zero. Indeed, quantum tunneling is also the backbone of

Gamow’s theory of the α decay process (Gamow, 1928). Relying

on the inversion of the Gamow formula for α decay, which gives

the transmission coefficient, a method has also been proposed for

studying the inverse problem of Hawking radiation (Völkel et al.,

2019).

The backbone of quantum mechanics is the Heisenberg

uncertainty principle (HUP),

ΔxΔp≥
Z

2
, (6)

where x and p are ordinary canonical coordinates satisfying [xi,

pj] = iZδij. It has been proposed that, in quantum gravity

scenarios, the HUP is modified such that (Kempf et al., 1995;

Kempf, 1996)

ΔXΔP≥
Z

2
1 + β0ł

2
p

Z2
ΔP( )2⎛⎝ ⎞⎠, (7)

called the GUP, where lp denotes the Planck length and β0 is

the dimensionless GUP parameter. X and P are called

generalized coordinates, and we work in a framework in

which Xi = xi, and up to the first order, we have Pi � pi(1 +
β0ł

2
p

3Z2
p2) and [Xi, Pj] � iZ(1 + β0ł

2
p

Z2
P2)δij (Das and Vagenas,

2008; Motlaq and Pedram, 2014). Moreover, the GUP

implies that there is a non-zero minimum length

(ΔX)min � 


β0

√
łp. Indeed, the existence of a non-zero

minimum length also emerges even when the gravitational

regime is Newtonian (Mead, 1964), a common result with

quantum gravity scenarios (Hossenfelder, 2013). More studies

on quantum gravity can be traced to earlier studies (Lake et al.,

2019; Lake et al., 2020; Lake, 2021; Lake, 2022). There have

been various attempts to estimate the maximum possible

upper bound on β0 (Zhu et al., 2009; Chemissany et al.,

2011; Das and Mann, 2011; Sprenger et al., 2011; Pikovski

et al., 2012; Husain et al., 2013; Ghosh, 2014; Jalalzadeh et al.,

2014; Scardigli and Casadio, 2015; Bosso et al., 2017; Feng

et al., 2017; Gecim and Sucu, 2017; Bushev et al., 2019; Luciano

and Petruzziello, 2019; Park, 2020; Aghababaei et al., 2021;

Feleppa et al., 2021; Mohammadi Sabet et al., 2021), and

among them, it seems that the maximum estimation for the

upper bound is of the order of 1078 (Scardigli and Casadio,

2015). The implications of GUP on stellar evolution

(Moradpour et al., 2019; Shababi and Ourabah, 2020) and

the thermodynamics of various gases (Chang et al., 2002;

Fityo, 2008; Wang et al., 2010; Hossenfelder, 2013; Motlaq

and Pedram, 2014; Moradpour et al., 2021) have also been

studied.

Indeed, the existence of a minimal length leads to the

emergence of the GUP (Hossenfelder, 2013), and it affects

thermodynamics (Chang et al., 2002; Fityo, 2008; Wang et al.,

2010; Hossenfelder, 2013; Motlaq and Pedram, 2014;

Moradpour et al., 2021) and quantum mechanics (Kempf

et al., 1995; Kempf, 1996), as P can be expanded as a

function of p. This letter deals with the GUP effects on star

burning facilitated by quantum tunneling. Loosely speaking,

we investigate the effects of a minimal length on T (the Gamow

temperature).

TABLE 1 Some bounds on the GUP parameter β0.

Measurement/experiment β0 Refs.

Modified mass-temperature relation 1078 Scardigli and Casadio (2015)

Light deflection 1078 Scardigli and Casadio (2015)

Pulsar PRS B 1913 + 16 data 1071 Scardigli and Casadio (2015)

Solar system data 1069 Scardigli and Casadio (2015)

GW150914 1060 Feng et al. (2017)

Dresselhaus interaction 1051 Aghababaei et al. (2021)

Landau levels 1050 Das and Vagenas (2008)

Sagnac effect 1049 Feleppa et al. (2021)

Rashba effect 1046 Aghababaei et al. (2021)
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GUP corrections to the tunneling
temperature

To proceed further and in the presence of the quantum

features of gravity, we introduce the generalized de Broglie

wavelength as

λGUP ≡
Z

P
. (8)

It is obvious that, as β0 → 0, one obtains P → p and thus λGUP

→ λQ, which is the quantum mechanical result. Indeed, up to

first order in β0, we have λGUP � λQ(1 − β0 l
2
p

3λ2Q
), and the thermal

energy per particle with temperature T is (Motlaq and

Pedram, 2014)

〈K〉 � 〈 P
2

2m
〉 � 3

2
KBT − 3

β0ł
2
p

Z2
mK2

BT
2. (9)

Mathematically, one should find the corresponding de Broglie

wavelength by solving the following equation:

P2

2m
� Uc r0( )

∣∣∣∣∣∣∣∣r0�λGUP. (10)

Inserting the result into

3
2
KBT − 3

β0ł
2
p

Z2
mK2

BT
2 ≥Uc r0( )

∣∣∣∣∣∣∣∣∣r0�λGUP, (11)

one can finally find the GUP corrected version of Eq. 4.

Now, inserting λGUP into Eq. 10 and then combining the

results with Eq. 11, we find

T±
GUP �

Z2 1 ±

















1 − 8β0l

2
pmKBT/Z2

√( )
4β0KBl

2
pm

. (12)

in which Eq. 4 has been used for simplification. To estimate the

magnitude of l2pmKBT/Z2, we consider the hydrogen atom for

which m ~ 10–27 kg. Now, since lp ~ 10–35 m, KB ~ 10−23 m2kg
s2K ,

Z ~ 10−34 m2kg
s , and T ~ 106 K, one easily finds

l2pmKBT/Z2 ~ 10−46. Moreover, because the effects of the GUP

in the quantum mechanical regime are small (Hossenfelder,

2013), a reasonable basic assumption could be that

β0l
2
pmKBT/Z2 ≪ 1. Indeed, if β0 ≪ 1046, then we always have

β0l
2
pmKBT/Z2 ≪ 1 meaning that i) we can Taylor expand our

results and ii) 1046 is an upper bound for β0, which is comparable

to those found in previous works (Das and Vagenas, 2008;

Scardigli and Casadio, 2015; Feng et al., 2017; Aghababaei

et al., 2021; Feleppa et al., 2021) summarized in Table 1.

Expanding the above solutions (12) and bearing in mind that

the true solution should recover T at β = 0, one can easily find that

T−
GUP is the proper solution leading to

T−
GUP � T 1 + 2β0

l2pmKBT

Z2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (13)

up to first order in β0. Hence, because it seems that β0 is positive

(Das and Vagenas, 2008; Scardigli and Casadio, 2015; Feng et al.,

2017; Aghababaei et al., 2021; Feleppa et al., 2021), one can

conclude that T<T−
GUP.

Conclusion

Motivated by the GUP proposal and the vital role of the HUP

in quantummechanics and, thus, the quantum tunneling process

that facilitates star burning, we studied the effects of the GUP on

the Gamow temperature. In order to determine this, the GUP

modification to the de Broglie wavelength was addressed, which

finally helped us to find the GUP correction to the Gamow

temperature and also estimate an upper bound for β0 (1046),

which agrees well with those found in previous works (Das and

Vagenas, 2008; Scardigli and Casadio, 2015; Feng et al., 2017;

Aghababaei et al., 2021; Feleppa et al., 2021).

Finally, based on the obtained results, it may be expected that

the GUP also affects the transmission coefficients (Gamow’s

formula) (Gamow, 1928; Hossenfelder, 2013; Völkel et al.,

2019), meaning that the method of Völkel et al. (2019) will

also be affected. This is an interesting topic for future study

because Hawking radiation is a fascinating issue in black hole

physics (Wald, 2001).
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The Generalized Uncertainty
Principle and higher dimensions:
Linking black holes and
elementary particles

B. J. Carr*

Queen Mary University of London, London, United Kingdom

Black holes play an important role in linking microphysics with macrophysics,

with those of the Planck mass (MP ~ 10−5 g) featuring in any theory of quantum

gravity. In particular, the Compton-Schwarzschild correspondence posits a

smooth transition between the Compton wavelength (RC ∝ 1/M) below the

Planck mass and the Schwarzschild radius (RS ∝ M) above it. The duality

between RC and RS implies a form of the Generalized Uncertainty Principle

(GUP) and suggests that elementary particlesmay be sub-Planckian black holes.

The simplest possibility is that the ADMmass has the formM + βM2
P/M for some

constant β and this model can be extended to charged and rotating black holes,

clearly relevant to elementary particles. Another possibility is that sub-Planckian

black holesmay arise in loop quantum gravity and this explicitly links black holes

and elementary particles. Higher dimensions may modify both proposals. If

there are n extra dimensions, all with the same compactification scale, one

expects RS∝M1/(1+n) below this scale but RC depends on the form of the higher-

dimensional wave-function. If it is spherically symmetric, then RC ∝ M−1, so

duality is broken and the Planck mass is reduced, allowing the possibility of TeV

quantum gravity. If the wave-function is pancaked in the extra dimensions, RC∝
M−1/(1+n) and so duality is preserved but the Planck mass is unchanged.

KEYWORDS

Generalized Uncertainty Principle, Compton-Schwarzschild correspondence, black
holes, higher dimensions, elementary particles

1 Introduction

Whatever final theory amalgamates relativity theory and quantum mechanics, it

is likely to involve two features: 1) what is termed the Black Hole Uncertainty

Principle (BHUP) correspondence; and 2) the existence of extra dimensions on

sufficiently small scales. Both features are expected to become important at the

Planck length, RP ~ 10−33 cm, and possibly on much larger scales. It is striking that

black holes are involved in both these features and indeed there are many other ways

in which these objects provide a link between macrophysics and microphysics (Carr,

2018).
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As regards feature (1), the duality under the transformation

M → M2
P/M between the Compton wavelength for a particle of

mass M, RC = Z/(Mc), and the Schwarzschild radius for a black

hole of mass M, RS = 2GM/c2, suggests a unified Compton-

Schwarzschild expression with a smooth minimum in the (M, R)

plane. This implies that elementary particles may in some sense

be sub-Planckian black holes. This proposal goes back to the

1970s, when it was motivated in the context of strong gravity

theories.

As regards feature (2), if there are n extra spatial dimensions

compactified on some scale RE, then RS scales as R
1/(1+n) for R <

RE, leading to the possibility of TeV quantum gravity and black

hole production at accelerators if RC scales as M−1 for R < RE.

However, the higher-dimensional Compton wavelength depends

on the form of the (3 + n)-dimensional wavefunction and in some

circumstances one might expect RC ∝ M−1/(1+n) for R < RE. This

preserves the duality between RC and RS but TeV quantum

gravity is precluded. Nevertheless, the extra dimensions could

still have consequences for the detectability of black hole

evaporations and the enhancement of pair-production at

accelerators on scales below RE.

The plan of this paper is as follows. Section 2 discusses the

BHUP correspondence in general terms. Section 3 applies the

correspondence to black holes in Loop Quantum Gravity (LQG),

this being the first historical study of this kind. Section 4 then

considers the simplest application of the BHUP correspondence:

the‘M + 1/M’ Schwarzschild model and its extension to charged

and rotating black holes. Higher-dimensional black holes are

discussed in Section 5 and some concluding remarks about the

connection between particles and black holes are made in

Section 6.

2 The Black Hole Uncertainty
Principle correspondence

A key feature of the microscopic domain is the (reduced)

Compton wavelength for a particle of rest mass M, with the

region R < RC in the (M, R) diagram of Figure 1 being regarded as

the “quantum domain”. A key feature of the macroscopic domain

is the Schwarzschild radius for a body of massM, with the region

R < RS being regarded as the “relativistic domain”. The Compton

and Schwarzschild lines intersect at around the Planck scales,

RP �
�����
ZG/c3√

~ 10−33cm, MP �
�����
Zc/G√

~ 10−5g, (1)

and divide the (M, R) diagram into three regimes, which we label

quantum, relativistic and classical. There are several other

interesting lines in the figure. The vertical line M = MP marks

the division between elementary particles (M < MP) and black

holes (M > MP), since the size of a black hole is usually required

to be larger than the Compton wavelength associated with its

mass. The horizontal line R = RP is significant because quantum

fluctuations in the metric should become important below this

(Wheeler, 1955). Quantum gravity effects should also be

important whenever the density exceeds the Planck value,

ρP = c5/(G2Z) ~ 1094 g cm−3, corresponding to the sorts of

curvature singularities associated with the big bang or the

centres of black holes. This implies R<RP(M/MP)1/3, which
is well above the R = RP line for M ≫ MP, so the shaded region

specifies the ‘quantum gravity’ domain.

The Compton and Schwarzschild lines transform into one

another under the transformation M → M2
P/M, which

suggests some connection between elementary particles and

black holes. This relates to what is termed “T-duality” in string

theory and maps momentum-carrying states to winding states

(Zwiebach, 2009). Although the Compton and Schwarzschild

boundaries correspond to straight lines in the logarithmic plot

of Figure 1, this form presumably breaks down near the Planck

point due to quantum gravity effects. One might envisage two

possibilities: either there is some form of critical point at the

Planck scale, so that the separation between particles and

black holes is maintained (Isi et al., 2013), or there is a smooth

minimum, as indicated by the broken line in Figure 1, so that

the Compton and Schwarzschild lines merge (Carr et al.,

2016). Which alternative applies has important implications

for the relationship between elementary particles and black

holes.

One way of smoothing the transition between the Compton

and Schwarzschild lines is to invoke some form of unified

expression which asymptotes to the Compton wavelength and

Schwarzschild radius in the appropriate regimes (Carr, 2015).

The simplest such expression would be

RCS � βZ

Mc
+ 2GM

c2
, (2)

FIGURE 1
Division of (M, R) diagram into classical, quantum, relativistic
and quantum gravity domains. The boundaries are specified by the
Planck density, Compton wavelength and Schwarzschild radius.
From Carr (2018).
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where β is a dimensionless constant. In the super-Planckian

regime, this becomes

RS′ � 2GM
c2

1 + β

2
MP

M
( )2[ ] M≫MP( ), (3)

with the second term corresponding to a small correction to the

usual Schwarzschild expression. In the sub-Planckian regime, it

becomes

RC′ � βZ

Mc
1 + 2

β

M

MP
( )2[ ] M≪MP( ), (4)

with the second term corresponding to a small correction to the

usual expression for the Compton wavelength. More generally,

one might consider any unified expression RC′ (M) ≡ RS′(M)
which has the asymptotic behaviour βZ/(Mc) for M ≪ MP

and 2GM/c2 for M ≫ MP.

An expression of the form (3) arises in the quantum

N-portrait model of Dvali et al. (Dvali et al., 2011), which

regards a black hole as a weakly-coupled Bose-Einstein

condensate of gravitons. From holographic considerations, the

number of gravitons in the black hole isN ≈ M2/M2
P and one can

then argue that the black hole radius is (Frassino et al., 2016)

RCS ≈
2GM
c2

1 + β

2N
( ) M>MP( ), (5)

which is equivalent to Eq. 3. An expression of the form (4) also

arises in the context of the Generalized Uncertainty Principle

(GUP). This is because it can be argued that the Uncertainty

Principle should be modified to the form (Adler, 2010)

Δx � Z

Δp
+ α

R2
P Δp

Z
, (6)

where α is a dimensionless constant. The first term represents the

uncertainty in the position due to the momentum of the probing

photon and leads to the usual expression for the Compton

wavelength if one substitutes Δx → R and Δp → cM. The

second term represents the gravitational effect of the probing

photon and is much smaller than the first term for Δp ≪ cMP.

Variants of Eq. 6 are also motivated by string theory (Veneziano,

1986; Witten, 1996), non-commutative quantum mechanics

(Gross and Mende, 1988; Amati et al., 1989; Yoneya, 1989;

Konishi et al., 1990; Scardigli, 1999), general minimum length

considerations (Maggiore, 1993a; Maggiore, 1993b; Maggiore,

1994), polymer corrections in the structure of spacetime in LQG

(Ashtekar et al., 2003a; Hossain et al., 2010) and some

approaches to quantum decoherence (Kay, 1998).

The GUP is usually restricted to the sub-Planckian domain

(M <MP). However, if we rewrite Eq. 6 using Δx→ R and Δp→
cM even in the super-Planckian regime, we obtain a revised

Compton wavelength which applies for all M:

RCS � Z

Mc
+ α

GM

c2
. (7)

This resembles Eq. 2 except that the constant is associated

with the second term. This suggests that there is a different kind

of positional uncertainty for an object larger than the Planck

mass, related to the size of a black hole. This is not unreasonable

since the usual Compton wavelength is below the Planck length

here and also an outside observer cannot localize an object on a

scale smaller than its Schwarzschild radius. This is termed the

Black Hole Uncertainty Principle (BHUP) correspondence (Carr,

2015) or the Compton-Schwarzschild correspondence when

discussing an interpretation in terms of extended de Broglie

relations (Lake and Carr, 2015).

Strictly speaking, Eqs 2, 7 are consistent only if α = 2 and

β = 1 but that would leave no free parameter at all. Therefore

an interesting issue is whether one should associate the free

constant in RCS with the 1/M term, as in Eq. 2, or the M term,

as in Eq. 7. Here we adopt the former approach, on the

grounds that the expression for the Schwarschild radius is

exact, whereas there is some ambiguity in the meaning of the

Compton scale. However, for comparison with the GUP

literature, we still need to identify an effective value of α

and a simple rescaling of the relationship between Δx and R

suggests α = 2/β. Another approach is to identify Δp with 1/M

rather than M for M > MP and Eq. 6 then equates α and β

directly. One might even argue that Δp has the form (M + 1/

M)−1, in which case Δx ~ 1/M and Δp ~ M in the particle case

(M < MP) and Δx ~ M and Δp ~ 1/M in the black hole case

(M > MP). This would be consistent with the extended de

Broglie relations (Hawking, 1974; Lake and Carr, 2015).

FIGURE 2
Hawking temperature (in Planck units) from Eq. 3 and surface
gravity argument as a function of M/MP for β = 1 (bottom), β = 0.5
(middle) and β = 0.1 (top). Also shown on the right is the Adler
prediction. From Carr et al. (2016).
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In the standard picture, one can calculate the black hole

temperature from the Uncertainty Principle by identifying it with

a multiple η of Δp. This gives (Hawking, 1974)

kT � ηcΔp � ηZc

Δx
� ηc2M2

P

2M
, (8)

which is precisely the Hawking temperature if we take η = 1/(4π).

If one adopts the GUP but assumes the usual black hole size, one

obtains the Adler form (Chen and Adler, 2003)

kT � ηMc2

α
1 ±

�������
1 − αM2

P

M2

√⎛⎝ ⎞⎠. (9)

The negative sign gives a small perturbation to the standard

Hawking temperature

kT ≈
ηM2

Pc
2

2M
1 − αM2

P

4M2
[ ] M≫MP( ) (10)

at largeM. However, the solution becomes complex whenM falls

below
��
α

√
MP, corresponding to a minimum mass, and it then

connects to the positive branch of Eq. 9. This form is indicated by

the curve on the right of Figure 2.

Eq. 9 is inconsistent with the BHUP correspondence since

this also modifies the relationship between the black hole radius

Δx and M. If we adopt Eq. 3 instead, then the surface gravity

argument gives a temperature

kT � M2
Pc

2

4πM 2 + βM2
P/M2( )

≈

M2
Pc

2

8πM
1 − β

2
MP

M
( )2[ ] M≫MP( )

Mc2

4πβ
1 − 2

β

M

MP
( )2[ ] M≪MP( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (11)

This is plotted in Figure 2 and is very different from the Adler

form. As M decreases, the temperature reaches a maximum of

around TP and then goes to zero as M → 0.

An important caveat is that Eq. 6 assumes that the two

uncertainties add linearly. On the other hand, since they are

independent, it might be more natural to assume that they add

quadratically (Carr et al., 2011):

Δx �
�������������������
Z/Δp( )2 + αR2

PΔp/Z( )2√
. (12)

We refer to Eqs 6, 12 as the linear and quadratic forms of the

GEP, respectively. The latter corresponds to a unified expression

RCS �
��������������������
βZ/Mc( )2 + 2GM/c2( )2√

, (13)

where we have we have again introduced β. This leads to the

approximations

RS′ ≈
2GM
c2

1 + β2

8
MP

M
( )4[ ] M≫MP( ) (14)

and

RC′ ≈
βZ

Mc
1 + 2

β2
M

MP
( )4[ ] M≪MP( ). (15)

These might be compared to the exact expressions in the linear

case, given by Eqs 3, 4. As we now show, a model inspired by

LQG permits the existence of a black hole whose horizon size has

precisely the form (13).

3 Loop black holes

Loop Quantum Gravity is based on a canonical quantization

of the Einstein equations, written in terms of the Ashtekar

variables. One feature of this is that area is quantized, with its

smallest possible value being

Amin � 4π
�
3

√
γR2

P, (16)

where γ is the Immirzi parameter and of order 1. The quantity ao
≡ Amin/8π, together with the dimensionless polymeric parameter

δ, determines the deviation from classical theory.

One version of LQG, using the mini-superspace

approximation, gives rise to cosmological solutions which

resolve the initial singularity problem (Bojowald, 2001;

Ashtekar et al., 2003b; Bojowald, 2005). Another version gives

the loop black hole (LBH) solution (Modesto, 2010) and this

replaces the singularity in the Schwarzschild solution with

another asymptotically flat region. The metric depends only

on the combined dimensionless parameter ε ≡ δγ, which must

be small, and can be expressed as

ds2 � −G r( )c2dt2 + dr2

F r( ) +H r( ) dθ2 + sin2 θdϕ2( ) (17)

with

G r( ) � r − r+( ) r − r−( ) r + rp( )2
r4 + a2o

, F r( ) � r − r+( ) r − r−( )r4
r + rp( )2 r4 + a2o( ).

(18)
Here r+ = 2GM/c2 and r− = 2GMP2/c2 are the outer and inner

horizons, respectively, and rp ≡
����
r+r−

√ � 2GMP/c2, where M is

the black hole mass and

P ≡
�����
1 + ε2

√ − 1�����
1 + ε2

√ + 1
≈ ε2/4≪ 1 (19)

is called the polymeric function. In the limit r → ∞ one has

G r( ) → 1 − 2GM
c2r

1 − ε2( ), F r( ) → 1 − 2GM
c2r

, (20)

whereM ≡ M(1 + P)2 is the ADMmass (i.e. the mass measured

as r → ∞). The function H(r) in Eq. 17 is not r2 (as in the

Schwarzschild case) but
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H r( ) � r2 + a2o
r2

0 R ≡
������
r2 + a2o

r2

√
. (21)

Here R is the physical radial coordinate, in the sense that the

circumference function is 2πR. As r decreases from infinity to

zero, R first decreases from infinity to a minimum value of
���
2a0

√
at r � ��

a0
√

and then increases again to infinity. In particular, the

value of R associated with the outer event horizon is

RS′ �

�����������������
2GM
c2

( )2

+ aoc2

2GM
( )2

√√
. (22)

This corresponds to Eq. 13 if β = aoc
2/G. The important

physical implication of Eq. 21 is that central singularity of the

Schwarzschild solution is replaced with another asymptotic

region, so the collapsing matter bounces and the black hole

becomes part of a wormhole. The fact that a purely geometrical

condition in LQG implies the quadratic version of the GUP

suggests some deep connection between general relativity and

quantum theory. The duality between the two asympotic spaces

also suggests a link between elementary particles with M ≪ MP

and black holes with M ≫ MP (Modesto and Premont-Schwarz,

2009), which is clearly relevant to the theme of this paper.

The temperature implied by the black hole’s surface gravity is

T∝
GM

R′2
S

∝ M−1 M≫MP( )
M3 M≪MP( ).{ (23)

However, if one calculates the temperature using the GUP

expression for Δp, one obtains

kT ≈

ηZc3

2GM
1 − β2

8
MP

M
( )4[ ] M≫MP( )

ηMc2

β
1 − 2

β2
M

MP
( )4[ ] M≪MP( ).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (24)

This is similar to Eq. 11 but inconsistent with Eq. 23 in the

sub-Planckian regime. The source of the discrepancy is that there

are two asymptotic spaces—one on each side of the wormhole

throat—and the temperature is different in these. Observer only

detect radiation from the horizon on their side of the throat, so

the inner horizon with respect to r =∞ corresponds to the outer

horizon with respect to r = 0 (Carr et al., 2011). For

M<
���
β/2

√
MP, T ∝ M3 in our space and T ∝ M in the other

space, which explains the predictions of Eqs 23, 24. For���
β/2

√
MP <M<P−2 ���

β/2
√

MP, T ∝ M−1 in our space and T ∝
M in the other space. ForM>P−2 ���

β/2
√

MP, T∝M−1 in our space

and T ∝ M−3 in the other space.

4 Carr-Mureika-Nicolini approach

This section describes a particular interpretation of the linear

version of the BHUP correspondence, described in my work with

Mureika and Nicolini (Carr et al., 2016), in which the Arnowitt-

Deser-Misner (ADM) mass is taken to be

MADM � M 1 + β

2
M2

P

M2
( ). (25)

This is equivalent to Eq. 3 and we noted a possible connection

with the energy-dependent metric in the “gravity’s rainbow”

proposal (Magueijo and Smolin, 2004) and with the QFT

renormalization of mass in the presence of stochastic metric

fluctuations (Camacho, 2003). Putting Z = c = 1, the

Schwarzschild radius for the modified metric is

RS′ � 2MADM

M2
P

≈ 2M/M2
P M≫MP( )

β/M M≪MP( ){ (26)

and the temperature is kT � M2
P/(8πMADM), corresponding to

Eq. 11. This is not the only black hole metric allowed by the GUP.

This is illustrated by the discussion of LQG in Sec. 3 but there

could be other relevant solutions in GR itself. However, Eq. 25

gives the simplest such solution.

The black hole luminosity in this model is L � ξ−1M−2
ADM

where ξ ~ tP/M3
P, so the mass loss rate decreases when M falls

belowMP and the black hole never evaporates completely. There

are two values of M for which the evaporation time (τ ~ M/L) is

comparable to the age of the Universe (t0 ~ 1017s). One is super-

Planckian, Mp ~ (t0/ξ)1/3 ~ 1015g, this being the standard

expression for the mass of a PBH evaporating at the present

epoch. The other is sub-Planckian,M** ~ β2 (tP/t0)MP ~ 10−65β2 g,

although the mass cannot actually reach this value at the present

epoch because the black hole is cooler than the CMB temperature

for M < MCMB ~ 10−36β g. This leads to effectively stable relics of

this mass.

It is interesting to consider observational constraints on

the parameter β and these are discussed in Carr et al. (2022).

Within the GUP context, these only arise in the microscopic

domain and a variety of mechanical oscillator experiments

imply α < 4 × 104 (Pikovski et al., 2012; Bushev et al., 2019). A

similar bound arises from the AURIGA gravitational bar

detector (Marin et al., 2014). Since β = 2/α, both bounds

corresponding to a lower limit β > 10–4. Within the context of

the BHUP correspondence, there are also constraints in the

macroscopic domain from measuring the gravitational force

between 100 mg masses with mm separation (Westphal et al.,

2021) and these imply β < 106. Clearly these limits still allow

a wide range of values for β. One might also constrain β by

observations on astrophysical scales but in this domain the

effects of the Extended Uncertainty Principle, in which

Δx Δp ~ 1 + (δx)2 rather than 1 + (δp)2, becomes more

relevant (Mureika, 2019).

Recently we have extended this work, together with Heather

Mentzer, to charged and rotating black holes (Carr et al., 2020),

since this is clearly relevant to elementary particles. The standard

Reissner-Nordström (RN) already exhibits features of the GUP-
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modified Schwarzschild solution. This is because the RN metric

has an outer (+) and inner (-) horizon at

r± � M

M2
P

1 ±

����������
1 − αeM

2
Pn

2

M2

√⎛⎝ ⎞⎠ ≈

2M

M2
P

1 − γM2
P

M2( ) +( )

2γ
M

1 + γM2
P

M2( ) −( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(27)

where ne is the black hole charge, γ ≡ αen
2/4 with αe ≈ 1/137 being

the electric fine structure constant, and the last expression applies

for a black hole which is far from extremal (M≫
��
αe

√
nMP). The

form of the outer and inner horizons for different values of n are

shown by the upper and lower parts of the solid curves in

Figure 3, respectively. There are two asymptotic behaviors: the

outer horizon correponds to Eq. 2 but with a negative value of β;

the inner horizon resembles the Compton expression and it

asymptotes to the Compton wavelength itself for n = 16, this

being the integer part of
����
2/αe

√
.

For each n, the two horizons merge on the line r = GM (lower

dotted curve) at the minimum value ofM. This corresponds to a

sequence of “extremal” solutions (shown by the dots in Figure 3)

with a spectrum of masses
��
αe

√
nMP. For given n, there are no

solutions with M less than this since these would correspond to

naked singularities. In particular, n could be at most the integer

part of 1/
��
αe

√
(i.e. 11) for a Planck-mass black hole. As in the

GUP case, the temperature of the RN solution reaches a

maximum and then goes to zero as M tends to the limiting

value
��
αe

√
nMP. Onemight want to associate elementary particles

only with extremal solutions (since they are stable) but these

states all have masses in the range (0.1–1)MP, which is too large.

Also even extremal black holes may discharge through the

Schwinger mechanism (Schwinger, 1951).

The (standard) Compton line intersects the outer black hole

horizon, as required if one wants a smooth connection between

particles and black holes, at the mass

M � MP�������
2 − αen2

√ ≈
MP���������

2 − n2/137√ . (28)

(This is also termed the self-completeness condition (Isi et al.,

2013).) For n = 0, the intersect is MP/
�
2

√
but it increases with n

and tends to MP as n →
���
137

√
(middle curve). This implies a

constraint n ≤ 11 on the charge of a self-complete RN black hole.

The Compton line still intersects the inner horizon for���
137

√
< n<

���
274

√
, but these solutions penetrate the r < RP region.

One can extend this model to the GUP-modified RN

solutions by replacing M with MADM given by Eq. 25.

Providing n<
�����
2β/αe

√
for fixed β, the outer horizon behaves as

in the GUP-Schwarzschild case, with a continuous transition

between the gravitational (rCS ∝ M) and Compton (rCS ∝ M−1)

scaling. Also, r+ has a minimum and r− has a maximum at

M � Mcrit ≡
���
β/2√

MP, r± �
��
2β

√
±

��������
2β − n2αe

√[ ]RP. (29)

This is indicated by the curves on the left of Figure 4. In

principle, the particle-like black holes can have arbitrarily low mass

in this case. However, it is unclear that these solutions are candidates

for stable particles since none of them are extremal, this possibility

arising only in the limit nmax � �����
2β/αe

√
. For larger values of n, the

form of the solutions changes, as indicated by the curves on the right

of Figure 4. These represent super-Planckian black holes on the right

(similar to the standard RN case with an extremal solution at the

smallest value of M) and sub-Planckian particles on the left, with a

mass gap in between. Equivalently, for a given value of n, there is a

critical value of β = n2αe/2 below which the solutions bifurcate and

become separated by a mass gap.

The Kerr metric exhibits similar behaviour but there is a

critical spin (nZ) rather than a critical charge. The extremal case

corresponds to the spectrum of masses
�
n

√
MP, while the self-

completeness condition corresponds to

M � MP

�����
1 + n2

2

√
. (30)

This allows all values of n, whereas n could not exceed [1/ ��
αe

√ ] �
11 in the RN case. In the GUP Kerr case, an expression similar to

Eq. 29 still applies and there is a change in the form of the

solutions for n > 2β.

FIGURE 3
The solid curves show the outer and inner horizons for a
standard RN black hole with n = 5, 11, 16 (left to right). For each n,
the horizons meet at the extremal mass on the line r � M/M2

P

(green dotted) and are bounded from above by the
Schwarzschild radius rS � 2M/M2

P (black dotted line). The Compton
curve is shown by the dashed line and the inner horizon
asymptotes to this for n = 16. Solutions with 11 < n < 16 penetrate
the sub-Planckian RN regime. From Carr et al. (2020).
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5 Higher-dimensional black holes

The black hole boundary in Figure 1 assumes there are

three spatial dimensions but many theories suggest that the

dimensionality could increase on small scales. Although the

extra dimensions are often assumed to be compactified on the

Planck length, there are also models in which they are much

larger. For example, the model of Arkani-Hamed et al. (1998)

has n extra spatial dimensions, all compactified on the same

scale RE. If we assume that the standard expression for the

Compton wavelength (RC ∝M−1) still applies, then the masses

with Compton and Schwarzschild scales RE are

ME ≡
Z

cRE
≃ MP

RP

RE
, ME′ ≡

c2RE

G
≃ MP

RE

RP
. (31)

For R < RE, the gravitational potential generated by a mass

M is

Vgrav � GDM

R1+n , (32)

where GD is the higher-dimensional gravitational constant and

D = 4 + n is the total number of spacetime dimensions. For R >
RE, one recovers the usual form, Vgrav = GM/R with G � GD/Rn

E.

Thus the effective gravitational constants at large and small scales

are different.

Eq. 32 implies that the usual expression for the Schwarzschild

radius no longer applies for masses belowME′ . If the black hole is
assumed to be spherically symmetric in the higher-dimensional

space, one has (Kanti, 2016)

RS ≃ RE
M

ME′
( )1/ n+1( )

. (33)

Therefore the slope of the black hole boundary in Figure 1

becomes shallower for M<ME′ , as indicated in Figure 5A.

The intersect with the Compton line then becomes

RP′ ≃ R2
PR

n
E( )1/ 2+n( )

, MP′ ≃ M2
PM

n
E( )1/ 2+n( )

, (34)

so MP′ ≪MP and RP′ ≫RP for RE ≫ RP.

In principle, the lowering of the Planck mass could permit

the possibility of TeV quantum gravity and the production of

small black holes at the Large Hadron Collider (LHC), with

their evaporation leaving a distinctive signature (Dimopoulos

and Landsberg, 2001; Anchordoqui et al., 2002; Giddings and

Thomas, 2002). If the accessible energy is Emax ≈ 10 TeV, then

the extra dimensions can be probed for

RE > 10−18+30/n cm ≃
1012 cm n � 1( )
10−3 cm n � 2( )
10−14 cm n � 7( ).

⎧⎪⎨⎪⎩ (35)

FIGURE 4
Outer (solid) and inner (dash-dot) horizon size for GUP-RN black hole with β = 2. Left: Outer (top) and inner (bottom) horizons for n = 10 (red),
n= 16 (blue) and n=23 (black). The dashed/dotted lines show the usual Schwarzschild/Compton scales. The inner horizon is nearly asymptotic to the
Comptonwavelength at largeM for n = 16. There is a discontinuity when n reaches 23, this being close to an extremal solution. Right: Outer (top) and
inner (bottom) horizons for n = 23 (black), n = 25 (blue) and n = 30 (black). The horizons in this case have amaximum value ofM on the left and a
minimum value on the right. There are no black holes between these values. From Carr et al. (2020).
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Clearly, n = 1 is excluded on empirical grounds but n = 2 is possible.

One expects n = 7 in M-theory, so it is interesting that RE must be of

order a Fermi in this case. One could also consider a scenario with a

hierarchy of compactification scales, Ri = αi RP with α1 ≥ α2 ≥. . .. ≥
αn≥ 1, such that the dimensionality progressively increases as one goes

to smaller scales (Carr, 2013). This situation is represented in

Figure 5B. There is still no evidence for the extra dimensions

(ATLAS collaboration, 2016), which suggests that either they do

not exist or they have a compactification scaleREwhich is so small that

MP′ exceeds the energy attainable by the LHC

Another possible reason for the non-detection of accelerator

black holes is that the M dependence of RC is also affected by the

extra dimensions. Lake and myself have argued that the effective

Compton wavelength depends on the form of the (3 + n)-

dimensional wavefunction (Lake and Carr, 2019). If this is

spherically symmetric in all the dimensions, then one has RC ∝
M−1 (as usually assumed). However, if the wave function is pancaked

in the extra dimensions andmaximally asymmetric, then we find RC
∝ M−1/(1+n). This implies that the duality between the Compton

wavelength and the Schwarzschild radius persists in the higher

dimensional case but that there is no accelerator production of black

holes. Thus the constraint on RE given by Eq. 35 no longer applies.

This scenario is illustrated in Figure 5C for extra dimensions

compactified on a single length scale RE and in Figure 5D for a

hierarchy of length scales, when the extra dimensions help to

smooth the minimum. The latter case resembles the smooth

minimum in Figure 1, which suggests that higher dimensions

might themselves underlie the BHUP correspondence.

The above discussion of higher-dimensional black holes has

assumed that the simple power-law forms for RS and RC apply all

the way to their intersect at the (modified) Planck scale. However,

the BHUP correspondence suggests that they should be unified in

some way, which would smooth the minima in Figure 5. This

raises the issue of the form of the GUP and BHUP

correspondence in the higher-dimensional case. If the

Compton wavelength preserves its 3-dimensional form, one

might expect the generalized Compton wavelength to become

RC′ � Z

Mc
1 + M

MP′
( ) n+2( )/ n+1( )⎡⎢⎣ ⎤⎥⎦ R<RE( ), (36)

so that RC′ becomes RS′ at largeM. If duality between RS and RC is

preserved in the higher-dimensional case, one might expect

RC′ � Rp

MP

M
( )1/ 1+n( )

1 + M

MP′
( )2/ n+1( )⎡⎢⎣ ⎤⎥⎦ R<RE( ) (37)

However, the literature on this gives different results (Koppel

et al., 2017; Knipfer et al., 2019).

FIGURE 5
Modification of the Schwarzschild line and Planck scales in the (M, R) diagram for extra compact dimensions associated with (A) a single length
scale or (B) a hierarchy of length scales (B) if the Compton scale preserves its usual form. (C) and (D) are the corresponding diagrams if the duality
between the Compton and Schwarzschild expressions is preservd. From Lake and Carr (2019).
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Finally, if we interpret the Compton wavelength as marking

the boundary in the (M, R) diagram below which pair-production

rates becomes significant, we might expect the presence of

compact extra dimensions to affect pair-production rates at

high energies. Specifically, pair-production above the energy

scale MEc
2 ≡ Zc/RE, should be enhanced relative to the 3-

dimensional case. Indeed, there is tentative evidence that this

is a generic feature of higher-dimensional theories (He, 1999;

Eboli et al., 2000).

6 Linking black holes and elementary
particles

The suggestion that there could be a fundamental link between

elementary particles and black holes goes back to the 1970s, when it

was motivated in the context of strong gravity theories (Sivaram and

Sinha, 1977). Various arguments supported this suggestion: 1) both

hadrons and Kerr-Newman black holes are characterised by three

parameters (M,J,Q); 2) both have a magnetic dipole moment and a

gyromagnetic ratio of two but no electric dipole moment; 3) Regge

trajectories and extreme Kerr solutions have the same relationship

between angular momentum and mass (J ~ M2); 4) when classical

black holes interact, their surface area can never decrease, which is

analogous to the increase in cross-sections found in hadron

collisions.

Of course, elementary particles cannot be black holes with

normal gravity, since their Compton wavelength is much larger

than their Schwarschild radius, as illustrated in Figure 1. The

early models therefore assumed that gravity becomes stronger by

a factor of GF/G ~ (MP/mp)2 ~ 1038 on the hadronic scale. This

requires the existence of a massive spin-2 meson and corresponds

to a short-range force. If the hadronic resonances are extremal

black holes, their mass and spin should satisfy GFm2
h � J,

corresponding to a Regge slope of (1Gev)−2, and they should

have a spectrum of masses Mn ~ n1/2 GeV (Oldershaw, 2010).

The current proposal—explored in more detail in work with

Mureika and Nicolini (Carr et al., 2022)—is prompted by the

Generalized Uncertainty Principle and the duality between the

Compton and Schwarzschild expressions under the

transformation M → M2
P/M, so the context is somewhat

different. Also elementary particles are regarded as sub-

Planckian black holes under normal gravity rather

conventional black holes under strong gravity However, there

is a link with strong gravity because the force between two

masses, while still obeying the inverse-square law, is much

enhanced for M<
��
β

√
MP.

Extending the BHUP correspondence to charged black holes

adds important insights. Although the Reissner-Nordstrom itself has

a nearly Planckian mass and therefore cannot represent an

elementary particle, adding a GUP term introduces sub-

Planckian solutions. This explains why the charge cannot exceed�����
2β/αe

√
≈ 1 for β ~ 10–2, as observed for elementary particles.

Similar considerations apply for spinning black holes. However,

these solutions only correspond to extremal black holes if themass is���
β/2

√
MP, which is too large for an elementary particle (given the

allowed range of β).

These considerations must be modified if there are extra

dimensions on small scales. Although there is some uncertainty

in the modifications to the GUP in this case, Figure 5 shows that

the extra dimensions themselves smooth the Compton-

Schwarzschild transition. Furthermore, the black hole mass

may be shifted down towards the hadron scale, the effective

strength of gravity being increased by the extra dimensions.

However, the higher-dimensional analysis has not yet been

extended to the charged and rotating black holes. Extra

dimensions may also play an important role in amalgamating

general relativity and quantum theory, with higher-dimensional

relativity permitting a classical-type interpretation of some

quantum anomalies.
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In this short note we show how the Generalised Uncertainty Principle (GUP) and
the Extended Uncertainty Principle (EUP), two of the most common generalised
uncertainty relations proposed in the quantum gravity literature, can be derived
within the context of canonical quantum theory, without the need for modified
commutation relations. A generalised uncertainty principle-type relation naturally
emerges when the standard position operator is replaced by an appropriate Positive
Operator Valued Measure (POVM), representing a finite-accuracy measurement
that localises the quantum wave packet to within a spatial region σg > 0. This
length scale is the standard deviation of the envelope function, g, that defines
the positive operator valued measure elements. Similarly, an extended uncertainty
principle-type relation emerges when the standard momentum operator is
replaced by a positive operator valued measure that localises the wave packet
to within a region ̃σg > 0 in momentum space. The usual generalised uncertainty

principle and extended uncertainty principle are recovered by setting σg ≃ √ℏG/c3,
the Planck length, and ̃σg ≃ ℏ√Λ/3, where Λ is the cosmological constant.
Crucially, the canonical Hamiltonian and commutation relations, and, hence,
the canonical Schrödinger and Heisenberg equations, remain unchanged. This
demonstrates that generalised uncertainty principle and extended uncertainty
principle phenomenology can be obtained without modified commutators, which
are known to lead to various pathologies, including violation of the equivalence
principle, violation of Lorentz invariance in the relativistic limit, the reference frame-
dependence of the “minimum” length, and the so-called soccer ball problem for
multi-particle states.

KEYWORDS

generalised uncertainty relations, generalised uncertainty principle, extended uncertainty
principle, finite-accuracy measurements, POVM

1 Introduction

In canonical quantum mechanics the Heisenberg uncertainty principle (HUP)
implies a fundamental trade-off between the precisions of position and momentum
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measurements. 1 It can be introduced heuristically, via the famous
Heisenberg microscope thought experiment, giving (Heisenberg,
1927; Heisenberg, 1930)

Δxi Δpj ≳
ℏ
2
δi

j, (1.1)

or derived rigorously from the canonical quantum formalism, yielding
(Isham, 1995; Rae, 2002)

Δψx
i Δψpj ≥

ℏ
2
δi

j. (1.2)

The inequality in Eq. 1.2 is exact and, unlike the heuristic uncertainties
Δxi and Δpj in Eq. 1.1, Δψxi and Δψpj represent well-defined standard
deviations of the probability distributions |ψ(x)|2 and |ψ̃ℏ(p)|

2,
respectively, where themomentum space representation of the particle
wave function is given by the ℏ-scaled Fourier transform of its position
space representation:

ψ̃ℏ (p) = (
1
√2πℏ
)

3
∫ψ (x)e−

i
ℏ
p.xd3x. (1.3)

We emphasise the scale-dependence of the canonical quantumFourier
transform, which is often neglected in standard treatments, by
introducing the subscript ℏ. Eq. 1.2 is obtained by combining the
Schrödinger-Robertson relation for arbitrary Hermitian operators, Ô1
and Ô2 (Robertson, 1929; Schrödinger, 1930),

ΔψO1 ΔψO2 ≥
1
2
|⟨ψ| [Ô1, Ô2] |ψ⟩|, (1.4)

with the canonical position-momentum commutator,

[x̂i, p̂j] = iℏδ
i
j �̂�. (1.5)

In recent years, thought experiments in quantum gravity research
have suggested the existence of generalised uncertainty relations
(GURs). By reconsidering Heisenberg’s 1927 gedanken experiment,
and accounting for the gravitational interaction between the massive
particle and the probing photon, we obtain the generalised uncertainty
principle (GUP),

Δxi ≳ ℏ
2Δpj

δi
j[1+ α0

2G
ℏc3
(Δpj)

2], (1.6)

where α0 is a numerical constant of order unity (Maggiore, 1993; Adler
and Santiago, 1999; Scardigli, 1999). By minimising the right-hand
side with respect to Δpj, the GUP implies the existence of a minimum
position uncertainty of the order of the Planck length, lPl = √ℏG/c3 ≃
10−33 cm.

Reconsidering Heisenberg’s arguments in the presence of
a constant dark energy density ρΛ = Λc2/(8πG) ≃ 10–30 g.cm−3

(Riess et al., 1998; Perlmutter et al., 1999), or, equivalently, an
asymptotically de Sitter background with minimum scalar curvature
of the order of the cosmological constant, Λ ≃ 10–56 cm−2 (Ade et al.,

1 In classical error analysis the term “precision” is used to refer to the statistical
spread of the results whereas the term “accuracy” refers to the discrepancy
between the measured value of a quantity and its true value. In keeping with this
general usage, we use the term precision to refer to the quantum mechanical
uncertainty and accuracy to refer to the width of the error bars associated with
each individual measurement.

2014; Betoule et al., 2014), gives the extended uncertainty principle
(EUP),

Δpj ≳
ℏ

2Δxi δ
i
j [1+ 2η0Λ(Δxi)2] , (1.7)

where η0 is of order one (Bolen and Cavaglia, 2005; Park, 2008; Bambi
and Urban, 2008). The EUP implies the existence of a minimum
momentum uncertainty of the order of the de Sitter momentum,
mdSc = ℏ√Λ/3 ≃ 10

−56 g . cm s−1. This is physically reasonable since it
is the minimum momentum that a canonical quantum particle can
possess, when its wave function is localised within the asymptotic de
Sitter horizon, which is comparable to the present day radius of the
Universe rU(t0) ≃ ldS = √3/Λ ≃ 10

28 cm.
Combining both effects yields the extended generalised

uncertainty principle (EGUP),

ΔxiΔpj ≳
ℏ
2
δi

j[1+ α0
2G
ℏc3
(Δpj)

2 + 2η0Λ(Δxi)2], (1.8)

which implies the existence of both minimum length and momentum
scales in nature (Bolen and Cavaglia, 2005; Park, 2008; Bambi
and Urban, 2008). Like their forebearer Eq. 1.1 all three relations
Eqs 1.6–1.8 are heuristic in nature and it remains an open problem
how to rigorously derive GURs from within a modified quantum
formalism.

Perhaps the simplest way to obtain the GUP, EUP or EGUP, given
Eq. 1.4, is to modify the canonical position-momentum commutator
Eq. 1.5 and it is clear that a modification of the form

[x̂i, p̂j] = iℏδ
i
j �̂� ↦ [X̂

i, P̂j]

= iℏδi
j(�̂� + α0

2G
ℏc3
(P̂j)

2 + 2η0Λ (X̂
i)2) (1.9)

gives rise to an EGUP-type uncertainty relation, at least when
both ⟨P̂j⟩ψ = 0 and ⟨X̂i⟩ψ = 0 (Kempf et al., 1995). Here, we use
capital letters to denote modified operators, which generate modified
commutators, and lower case letters to denote their canonical
quantum counterparts. However, the assumption above is problematic
since, even if both ⟨P̂j⟩ψ = 0 and ⟨X̂i⟩ψ = 0 in a given frameof reference,
a simple shift of coordinate origin or a Galilean velocity boost of the
observer alters the numerical value of the associated Schrödinger-
Robertson bound:

ΔψX
iΔψPj ≥

ℏ
2
δi

j{1+ α0
2G
ℏc3
[(ΔψPj)

2 + ⟨P̂j⟩
2
ψ
]

+ 2η0Λ [(ΔψX
i)2 + ⟨X̂i⟩2ψ]} . (1.10)

This leads immediately to the reference frame-dependence of the
(supposedly invariant) minimum length. In fact, the situation is even
worse since even a redefinition of the position-coordinate origin alters
the value of the bound on the right-hand side. This gives rise to a
coordinate-dependent “minimum” length, which is clearly unphysical,
and which strongly suggests that GUR models based on modified
commutation relations are not mathematically self-consistent (Lake,
2020; Lake et al., 2023).

In addition, the modified position-momentum commutator
Eq. 1.9 implies a modification of the canonical Heisenberg equation,
which immediately gives rise to mass-dependent accelerations for
quantum particles, violating the equivalence principle (Tawfik and
Diab, 2014; Tawfik and Diab, 2015). Such models also violate Lorentz
invariance in the relativistic limit and suffer from the so-called
soccer ball problem, so that sensible GUP-compatible multi-particle
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states cannot be defined (Hossenfelder, 2013; Amelino-Camelia,
2017) 2.

The heuristic, model-independent nature of the gedanken
experiments that lead to the relations Eqs. 1.6–1.8, together with
the pathologies displayed by modified commutator models, motivate
us to consider alternative ways to generate GUP, EUP, and EGUP
phenomenology,withoutmodifying the canonicalHeisenberg algebra.
In this paper, we consider one way in which such a scheme can
be implemented from within the canonical quantum formalism.
The physical basis of the model is the notion of a finite-accuracy
measurement and these are represented mathematically by the
construction of appropriate POVM. Roughly speaking, since errors
add in quadrature for independent random variables, finite-accuracy
measurements of position and momentum with detection “sweet
spots” of width σg ≃ lPl and σ̃g ≃mdSc, respectively, give rise to the
GUP and EUP, to first order in the relevant Taylor expansion. These
individual relations may then be combined to give the EGUP.

2 GUR from finite-accuracy
measurements described by POVM

In this section, we show that GUP, EUP and EGUP-type
uncertainty relations can be derived in an effective model, where
position and momentum measurements in canonical quantum theory
are not perfectly accurate, and are described by POVM, rather than
perfect projective measurements.

Let us begin by replacing the usual position-measurement
operator, x̂, with POVM elements corresponding to the result x:

Êx ≔ ∫g(x
′ − x) |x′〉〈x′|d3x′, (2.1)

where g(x′ − x) is any normalised function, ∫|g(x′ − x)|2d3x′ = 1. These
elements satisfy the relations Ê†xÊx ≥ 0 and ∫ Ê†xÊxd

3x = �̂�, as required,

2 In Amelino-Camelia (2017) an ingenious solution to the soccer ball problem was
proposed. In this approach, the generalised momentum operators of a given
modified commutator model are defined to be the generators of “generalised
spatial translations.” The unitary transformation Û(X) ≔ exp[(i/ℏ)X.P̂], which acts
non-trivially only on the X̂i operators, is required to leave the modified [X̂i, P̂j],
[X̂i, X̂j] and [P̂i, P̂j] algebras, as well as the multi-particle Hamiltonian of the
model, Ĥ, invariant. This defines the “generalised translation symmetries” of the
system and, when these symmetries hold, the corresponding Noether charge
for an N-particle state is represented by the operator P̂Total ≔∑

N
I=1
̂Pi, where

[P̂Total,Ĥ] = 0. The usual law of linear momentum addition therefore holds for
multi-particle states but a different non-linear addition law, derived ultimately
from the notion of spatial locality, holds for transfers of momentum between
individual particles, due to the interactions specified by Ĥ. Unfortunately for
GUP models, in the example system considered in Amelino-Camelia (2017),
the definition of the generalised spatial translations required to maintain the
linear addition law also requires one of the position-momentum commutators
to equal zero, i.e., [X̂i, P̂i] = 0, for some i. In this case there is no Heisenberg
uncertainty principle, let alone a GUP, even though a minimum length scale l still
appears in the model via the position-position commutator, e.g., [X̂1, X̂2] = ilX̂1.
This illustrates a general point, that it is by no means certain whether a particular
modified momentum operator, corresponding to a particular modification of
the canonical Heisenberg algebra, and, hence, a particular form of the GUP, is
compatible with a linear addition law derived via Amelino-Camelia’s procedure.
Therefore, although this procedure represents a useful criterion for defining
physically viable GUP models, it is clear that arbitrary deformations of the
canonical Heisenberg algebra are not consistent with the existence of a linear
momentum addition law and that further work is required to determine which
models truly suffer from a soccer ball problem and which ones do not. Though
some GUP models may be free from this pathology, a great many could still
be afflicted by it.

so that Eq. 2.1 defines a standard POVM in canonical quantum
mechanics (Nielsen and Chuang, 2000). From here on, we refer to g
as the “envelope function” of the measure. For spherically symmetric
functions the envelope is centred on the value x, and, for the sake
of concreteness, we may imagine |g(x′ − x)|2 as a three-dimensional
Gaussian distribution with mean x and standard deviation σg .

Finite-accuracy position measurements, conducted on an
arbitrary state |ψ⟩, then give rise to the first and second order
moments

〈Ex〉ψ = ∫x〈ψ|Ê
†
xÊx|ψ〉d

3x = 〈x〉g + 〈x〉ψ,

〈E2
x〉ψ = ∫x

2〈ψ|Ê†xÊx|ψ〉d
3x = 〈x2〉g + 〈x

2〉ψ, (2.2)

where ⟨xn⟩ f ≔ ∫x
n | f(x)|2 d3x with f(x) = g(x) or ψ(x). Since

|g(x′ − x)|2 is a normalised function centred on x′ = x, ⟨x⟩g = 0, and
the corresponding variance is given by

(ΔψEx)
2 = (Δψx)

2 + σ2
g , (2.3)

where σg ≔ σi
gei and σi

g denotes the width of |g|2 in each
coordinate direction xi. By spherical symmetry, σi

g = σg for
all i, and we may rewrite Eq. 2.3 in terms of the individual
components as

(ΔψEi)
2 = (Δψx

i)2 + σ2
g , (2.4)

where we have used the shorthand notation ΔψEi ≡ ΔψExi .
In like manner, finite-accuracy momentum measurements may be

introduced via the operators

�̂�p ≔ ∫ ̃g(p
′ − p) |p′〉〈p′|d3p′, (2.5)

where ∫| ̃g(p′ − p)|2dp′ = 1, but it is important to note that there is no
intrinsic relation between the functions g and ̃g, which may be chosen
independently for a given POVM model. Nevertheless, if both |g|2

and | ̃g|2 represent Gaussian distributions, which is perhaps the most
natural choice for an envelope function, then g and ̃g are related via a
Fourier transform,

̃g(p′ − p) = ∫g(x′ − x)e
i
β
(x′−x).(p′−p)d3x′, (2.6)

where the new action scale β ≠ ℏ is given by

β≔ 2σgσ̃g, (2.7)

and σ̃g is the standard deviation of | ̃g|2. However, it is equally important
to note that there is nothing fundamental about the relation Eq. 2.6.
Unlike the ℏ-scaled Fourier transform relating the position and
momentum space representations of the quantum wave function,
Eq. 1.3, the β-scaled transform relates the “envelope functions” of the
model.

Finite-accuracy momentum measurements, conducted on an
arbitrary state |ψ⟩, then give rise to the first and second order
moments

〈𝔼p〉ψ = ∫p〈ψ|�̂�
†
p�̂�p|ψ〉d

3p = 〈p〉g + 〈p〉ψ,

〈𝔼2p〉ψ = ∫p
2〈ψ|�̂�†p�̂�p|ψ〉d

3p = 〈p2〉g + 〈p
2〉ψ, (2.8)
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where ⟨pn⟩ f ≔ ∫p
n | ̃f(p)|2 d3p with ̃f(p) = ̃g(p) or ψ̃ℏ(p). Since

| ̃g(p′ − p)|2 is normalised and centred at p′ = p, ⟨p⟩g = 0, and

(Δψ𝔼p)
2 = (Δψp)

2 + σ̃2
g , (2.9)

where σ̃g ≔ σ̃gje
j and σ̃gj denotes the width of | ̃g|2 in each momentum

space direction pj. Again employing spherical symmetry, σ̃gj = σ̃g for
all j, Eq. 2.9 may be rewritten in terms of the individual components
as

(Δψ𝔼j)
2 = (Δψpj)

2 + σ̃2
g , (2.10)

where we have again used the shorthand Δψ𝔼j ≡ Δψ𝔼pj
.

To obtain a GUP-type relation from Eq. 2.4 we simply take the
square root, Taylor expand the right-hand side to first order, and
substitute for Δψxi from the HUP Eq. 1.2. Likewise, an EUP-type
relation is obtained from Eq. 2.10 by taking the square root, Taylor
expanding to first order, and substituting for Δψpj. Next, using the
substitutions

σg ≔√2α0 lPl, σ̃g ≔√6η0 mdSc, (2.11)

where

lPl ≔√ℏG/c3, mdSc≔ ℏ√Λ/3, (2.12)

immediately gives

ΔψX
i ≳ ℏ

2Δψpj
δi

j[1+ α0
2G
ℏc3
(Δψpj)

2], (2.13)

ΔψPj ≳
ℏ

2Δψx
i δ

i
j [1+ 2η0Λ(Δψx

i)2] , (2.14)

where we have relabelled ΔψEi ≡ ΔψXi and Δψ𝔼j ≡ ΔψPj, for
convenience.These expressions are formally analogous to the heuristic
relations, Eqs. 1.6, 1.7, respectively, but with Δpj and Δxi on the right
replaced by the well-defined standard deviations Δψpj and Δψxi.

This proves that GUP- and EUP-type relations can be derived
rigorously, from within the canonical quantum formalism, but a
remaining criticism of the formulae above is that the uncertainties
on the right-hand sides of Eqs 2.13, 2.14 are not equivalent to the
uncertainties on the left. Indeed, according to the POVM model, Δψpj
and Δψxi are not operationally observable quantities.They arise only in
the limits σg → 0 and σ̃g→ 0, respectively, inwhich bothEqs 2.13, 2.14
reduce to the standard HUP Eq. 1.2. This objection can be overcome,
however, by first substituting for Δψxi from Eq. 1.2 in Eq. 2.4 and
then again for Δψpi from Eq. 2.10. This gives rise to an uncertainty
relation between the observable standard deviations, ΔψEi ≡ ΔψXi and
Δψ𝔼j ≡ ΔψPj. It is straightforward to show that, taking the square root,
Taylor expanding to first order, and neglecting the final term of order
σgσ̃g ≃ lPl.mdSc, this relation reduces to

ΔψX
iΔψPj ≳

ℏ
2
δi

j[1+ α0
2G
ℏc3
(ΔψPj)

2 + 2η0Λ(ΔψX
i)2]. (2.15)

Therefore, the EGUP can be rigorously derived within the canonical
quantum formalism. The GUP and EUP proper then arise as limits of
this more fundamental relation.

We stress that, in this model, ΔψEi ≡ ΔψXi and Δψ𝔼j ≡ ΔψPj
represent the physically observable precisions, obtained from
generalised position and momentum measurements with finite

accuracies σg > 0 and σ̃g > 0. By contrast, the canonical Hamiltonian
is determined by the canonical (projective) position and momentum
operators, x̂ and p̂, via Ĥ = p̂2/(2m) +V(x̂), where the former obey the
canonical Heisenberg algebra: [x̂i, p̂j] = iℏδ

i
j �̂�, [x̂

i, x̂j] = 0, [p̂i, p̂j] = 0.
This leaves the canonical Heisenberg and Schrödinger equations
unchanged and neatly evades the pathologies that afflict modified
commutator models (Lake, 2020; Hossenfelder, 2013; Tawfik and
Diab, 2014; Tawfik and Diab, 2015; Lake et al., 2023).

3 Discussion

We have shown that the three most common GURs studied in the
quantum gravity literature, the GUP, EUP, and EGUP, can be derived
from within the formalism of canonical quantum mechanics. A GUP-
type uncertainty relation is obtained when the standard (projective)
position operator is replaced by an appropriate POVM, representing
finite-accuracy measurements with error bars of width σg > 0 in real
space. In like manner, an EUP-type relation is obtained from finite-
accuracy measurements with error bars of width σ̃g > 0 in momentum
space. These can be combined to give a relation that is formally
analogous to the EGUP and the standard EGUP is recovered by setting
σg ≃ lPl, the Planck length, and σ̃g ≃mdSc, where mdS = (ℏ/c)√Λ/3 is
the de Sitter mass.

Thiswork suggests thatGUP, EUP, andEGUPphenomenology can
be understood in a physically intuitive way, as a simple and natural
outcome of finite-accuracy measurements. Such measurements are
capable of generating all three GURs and the same phenomenology
is obtained, at the level of the uncertainty relations, regardless of
whether the limits (ΔψX

i)
min
= σg and (ΔψPj)min

= σ̃g are fundamental,
or merely effective, as an outcome of an imperfect measurement
scheme.

We propose that this should give pause for thought to the GUP
community. If modified commutators are not necessary for GUP
phenomenology, and, after nearly 30 years of research, we are no
closer to resolving the pathologies that have afflicted these models
since they were first proposed in the mid-1990s, then serious attempts
should be made to find alternative mathematical structures that give
rise to GURs. These should be capable of generating, via rigorous
derivation, the uncertainty relations predicted by model-independent
gedanken experiments, but without the problems associated with
modified commutation relations.

In this paper, we have proposed one suchmodel, within the context
of canonical quantum theory. Another, more radical, alternative is
to consider additional quantum mechanical degrees of freedom, not
present in the canonical theory, which are capable of describing
quantum fluctuations of the background geometry. Such a model
was proposed in a recent series of works (Lake, 2019; Lake et al.,
2019; Lake et al., 2020; Lake, 2021a; Lake, 2021b) and shares many
features with the model described here, including the existence of a
new action scale that relates the accuracies of generalised position and
momentum measurements, β≔ 2σgσ̃g ≃ 10

−61ℏ (*). The fundamental
difference between the two models is the existence of new degrees of
freedom in the latter. From this, it follows that the new action scale β
implies a modified de Broglie relation of the form p′ = ℏk+ β(k′ − k),
where, here, p′ denotes the observable momentum. Heuristically, the
non-canonical term β(k′ − k) can be interpreted as an additional
momentum “kick,” transferred to the canonical wave function by
a quantum fluctuation of the background. The interested reader is
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referred to (Lake, 2020; Lake, 2019; Lake et al., 2019; Lake et al., 2020;
Lake, 2021a; Lake, 2021b; Lake et al., 2023) for further details.

At first glance, this more radical alternative has nothing to do
with the POVM approach described here. It requires extra degrees
of freedom associated with the quantum state of the background
geometry, contrary to the POVM formalism, which remains entirely
within the context of canonical quantum theory. It follows from
Stinespring’s dilation theorem (Stinespring, 1955; Paulsen, 2003),
however, that the two formalisms are equivalent if we assume the
particular values, σg ≃ lPl and σ̃g ≃mdSc, and hence the relation (*)
above. The POVM picture results from tracing out the x′ (p′) degrees
of freedom associated with quantum fluctuations of the background
and the x′ (p′) degrees of freedom appear as a consequence of dilating
the POVM.

The POVM approach describes a quantum measurement of finite
accuracy. The minimum resolution of the measurement may be due
to technical limitations, or it can reflect the fact that the minimum
length and momentum scales are fundamentally related. We postulate
that in a universe with both fundamental and technological limitations
to measurement accuracy, the complete description of a realistic
quantum measurement should be a POVM extension of the model
presented in (Lake, 2019; Lake et al., 2019). We expect that this
would give rise to two additional contributions to the position and
momentum variances, i.e., σ2

g + σ
2
h and σ̃2

g + σ̃
2
h, respectively, where

g is the fundamental smearing function that models the quantum
indeterminacy of space-time, and h is the envelope function of a
realistic detector. In the limit σh ≫ σg , σ̃h ≫ σ̃g, which corresponds to
all present-day measurements, the latter are expected to dominate the
former.
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The purpose of this paper is to challenge the existing paradigm on which
contemporary models of generalised uncertainty relations (GURs) are based, that
is, the assumption of modified commutation relations. We review an array of
theoretical problems that arise in modified commutator models, including those
that have been discussed in depth and others that have received comparatively
little attention, or have not been considered at all in the existing literature, with the
aim of stimulating discussion on these topics. We then show how an apparently
simple assumption can solve, or, more precisely, evade these issues, by generating
GURs without modifying the basic form of the canonical Heisenberg algebra. This
simplicity is deceptive, however, as the necessary assumption is found to have
huge implications for the quantisation of space-time and, therefore, gravity. These
include the view that quantum space-time should be considered as a quantum
reference frame and, crucially, that the action scale characterising the quantum
effects of gravity, β, must be many orders of magnitude smaller than Planck’s
constant, β∼10–61 × ℏ, in order to recover the present day dark energy density. We
argue that these proposals should be taken seriously, as a potential solution to the
pathologies that plague minimum length models based on modified commutators,
and that their implications should be explored as thoroughly as those of the existing
paradigm, which has dominated research in this area for almost three decades.

KEYWORDS

generalised uncertainty relations, generalised uncertainty principle, extended uncertainty
principle, modified commutation relations, minimum length, minimum momentum,
quantum geometry, quantum gravity

1 Introduction

Thought experiments in quantum gravity suggest the existence of generalised uncertainty
relations (GURs) (Maggiore, 1993; Adler and Santiago, 1999; Scardigli, 1999; Bolen and
Cavaglia, 2005; Bambi and Urban, 2008; Park, 2008) and two of the most widely studied
GURs are known as the generalised uncertainty principle (GUP) and the extended uncertainty
principle (EUP). These may be written as

Δxi ≳ ℏ
2Δpj

δi
j[1+ α0

2G
ℏc3
(Δpj)

2], (1.1)

and

Δpj ≳
ℏ

2Δxi δ
i
j [1+ 2η0Λ(Δxi)2] , (1.2)

respectively, where α0 and η0 are numerical constants of order unity. The GUP implies the
existence of a minimum length scale of the order of the Planck length (Maggiore, 1993;
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Adler and Santiago, 1999; Scardigli, 1999) whereas the EUP implies a
minimum momentum scale of the order of the de Sitter momentum
(Bolen and Cavaglia, 2005; Bambi and Urban, 2008; Park, 2008) For
later convenience, we define the Planck and de Sitter scales as

lPl ≔√ℏG/c3 ≃ 10
−33cm, mPl ≔√ℏc/G ≃ 10

−5g,

ldS ≔√3/Λ ≃ 10
28cm, mdS ≔ (ℏ/c)√Λ/3 ≃ 10

−66g, (1.3)

where Λ ≃ 10−56cm−2 is the cosmological constant (Betoule et al.,
2014; Aghanim et al., 2021). Assuming both minimum length and
momentum scales suggests the extended generalised uncertainty
principle (EGUP),

ΔxiΔpj ≳
ℏ
2
δi

j[1+ α0
2G
ℏc3
(Δpj)

2 + 2η0Λ(Δxi)2], (1.4)

but Eqs. 1.1–1.4 are heuristic and it remains an open problem how to
derive the GUP, EUP and EGUP rigorously, from a modified quantum
formalism.

Until recently, the only method considered in the existing
literature was to modifiy the canonical commutation relations such
that (Tawfik and Diab, 2014; Tawfik and Diab, 2015)

[x̂i, p̂j] = iℏδ
i
j �̂� ↦ [X̂

i, P̂j] = iℏδ
i
jF(P̂, X̂) , (1.5)

which gives rise to GURs via the Schrödinger-Robertson relation
(Robertson, 1929; Schrödinger, 1999) Throughout this work we
use capital letters to denote modified operators, that give rise to
modified commutators, and lower case letters to denote their canonical
quantum counterparts. Unfortunately, this apparently reasonable
assumption has been shown to give rise to a variety of pathologies
(Hossenfelder, 2013; Hossenfelder, 2014; Tawfik and Diab, 2014).
These strongly suggest that modified commutator models are not
mathematically self-consistent (Lake, 2020; Lake et al., 2023).

In this paper, we review six fundamental problems encountered by
GUR models based on modified commutation relations.

1. Violation of the equivalence principle,
2. Violation of Lorentz invariance in the relativistic limit,
3. The ‘soccer ball’ problem for multi-particle states,
4. The reference frame-dependence of the ‘minimum’ length,
5. The background geometry is not quantum,
6. The mathematical inconsistency of modified phase space volumes.

The first three of these have been discussed at length in the
literature (see, for example (Hossenfelder, 2013; Hossenfelder, 2014;
Tawfik and Diab, 2014) and references therein) and we review them
only briefly.The fourth andfifthproblemswere discussed previously in
(Lake, 2020) but, to the best of our knowledge, have not been discussed
elsewhere. The sixth and final problem raised in this short review has,
surprisingly, not been considered before. Nonetheless, we argue that it
represents the most serious objection yet raised against the modified
commutator paradigm.

We review each problem, sequentially, in Sections 2.1–2.6. In
Section 3, we consider the relative importance of each, and ask
whether or not such problems could instead be viewed as features,
rather than bugs, of a viable extension of canonical quantum
mechanics. An alternative model, that circumvents these issues
without the use of modified commutation relations, is reviewed in
Section 4. Our conclusions are summarised in Section 5.

2 Problems with modified
commutators

2.1 Violation of the equivalence principle

In canonical quantum mechanics (QM), the Heisenberg equation
for the time evolution of an arbitrary Hermitian operator Ô is

d
dt

Ô (t) = i
ℏ
[Ĥ, Ô] +(∂Ô

∂t
)

H
, (2.1)

where Ĥ = p̂2/(2m) +V(x̂). For the position operator x̂i(t) this gives

d
dt

x̂i (t) =
p̂i

m
, (2.2)

where right-hand side follows from the formof the canonical position-
momentum commutator, [x̂i, p̂j] = iℏδ

I
j�̂�. From Eq. 2.2, it follows that

the acceleration of the position expectation value of a quantumparticle
is independent of its mass:

âi = 1
m

dp̂i

dt
= d2x̂i

dt2
. (2.3)

For the generalised operators X̂i and P̂j satisfying the modified
commutator

[X̂i, P̂j] = iℏδ
i
jG(P̂) , (2.4)

the Heisenberg equation for X̂i(t) is

d
dt

X̂i (t) = P̂i

m
G(P̂) , (2.5)

so that, for G(P̂) ≠ 1, the particle experiences a mass-dependent
acceleration:

Âi = 1
m

dP̂i

dt
= 1

G(P̂)
[

[

d2X̂i

dt2
− P̂i

m

dG(P̂)
dt
]

]
. (2.6)

Although there is no universally agreed upon formulation of the
equivalence principle (EP) for quantum systems (Paunkovic and
Vojinovic, 2022), it is clear that such acceleration violates any sensible
definition of the EP in the quantum regime, and, crucially, no
experimental evidence has yet been found to support its existence.

This argument assumes that the generalisedHamiltonian takes the
form Ĥ = P̂2/(2m) +V(X̂) and that a well defined Heisenberg picture
exists in the generalised theory, but both of these are reasonable
assumptions. Similar analyses demonstrate that the EP is also violated
in models with modified commutators characterised by the functions
G(X̂) and G(X̂, P̂). It is therefore impossible to obtain the GUP, EUP,
or EGUP from modified commutator models without violating the
founding principles of classical gravity and, most likely, any viable
generalisation of the these principles that includes the quantum realm
(Paunkovic and Vojinovic, 2022).

2.2 Violation of Lorentz invariance

We recall that the canonical Heisenberg algebra is simply an ℏ-
scaled representation of the shift-isometry algebra of Euclidean space
and of space-like slices of flat space-time in the relativistic limit, i.e., it
is the translation subgroup of the full Poincaré group that characterises
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the symmetries of Minkowski space, including translations, Lorentz
boosts and rotations. Therefore, any modification of the Heisenberg
algebra implies the violation of translational symmetry unless we
choose to interpret it as a manifestation of a modified de Broglie
relation. In this case, the physical momentum p is a nonlinear function
of the wavenumber k, but the latter may still be identified with the
shift-isometry generator of the background space, k̂ ≡ d̂x.

Unfortunately, both these scenarios lead to inconsistencies. In
the first, in which we interpret the modified Heisenberg algebra
as a manifestation of broken translation invariance, one faces a
problem in defining the classical limit of the theory. Implementing
a canonical quantisation scheme {O1,O2}PB = limℏ→0

1
iℏ
[Ô1, Ô2] and

requiring the correspondence principle (Rae, 2002) to hold implies
an equivalent modification of the canonical Poisson brackets. This
violates Galilean invariance, even for classical macroscopic systems,
and, hence, Poincaré invariance in the relativistic limit. To date,
no evidence for the breaking of Poincaré invariance, including shift
invariance, has been found, although bounds on the symmetry
breaking parameters have been determined from a wide range of
experiments (Gupta et al., 2022).

In the second scenario, one encounters problems related to
the nonlinearity of p(k), where p = (p0,−p) and k = (k0,−k) denote
the relativistic 4-momentum and its corresponding wave number,
respectively. (From here on, we neglect space-time indices for the sake
of notational convenience.) When p(k) is nonlinear it is unclear if
we should require the physical momentum p or wave number k, also
known as the pseudo-momentum, to transform under the Poincaré
group. Choosing the wave number as the Lorentz invariant quantity,
the Lorentz transformations become nonlinear functions of k and the
transformation of the sum k1 + k2 is no longer equal to the sum of
the transformations of k1 and k2, individually. Likewise, choosing p
as the Lorentz invariant variable, which is physically more reasonable,
a similar problem occurs and the transformation of p1 + p2 is no longer
equal to the sum of the individual transformations of p1 and p2. Each
case requires the definition of a new nonlinear addition law, either
for the pseudo-momenta, or for the physical momenta, respectively
(Hossenfelder, 2013).

In the latter case, the new sum rule for the physical momenta
is independent of the chosen inertial frame, by construction, but a
new problem is created. If the nonlinear composition function has a
maximum at the Planck momentum, as implied by consistency with
the GURs generated by the modified de Broglie relation, then the
sum of momenta will never exceed this maximum value. The Planck
momentum, mPlc ≃ 10

5 g cm−1, is large for fundamental particles with
rest masses m≪mPl but very small for macroscopic objects with
rest masses M≫mPl, which may easily exceed it at ordinary non-
relativistic velocities. The problem of reproducing a sensible multi-
particle limit when choosing the physical momentum to transform
under modified (nonlinear) Lorentz transformations is known as the
‘soccer ball problem’ (Hossenfelder, 2013; Hossenfelder, 2014). This
will be considered in more detail in the following section, in which we
outline a recently proposed solution (Amelino-Camelia, 2017), and its
critique.

From the remarks above it is clear that the introduction of
nonlinear de Broglie relations p(k) in non-relativistic QM requires
that p = (p0,−p) must be a nonlinear function of k = (k0,−k) in the
relativistic limit. This makes Lorentz violation unavoidable unless one
introduces a new nonlinear composition law, either for the pseudo-
momentum k, or the physical momentum p(k). However, this leads

to new problems, and it is not clear whether sensible multi-particle
limits of such theories exist (Hossenfelder, 2013; Hossenfelder, 2014).
In Section 2.3 we argue that, despite valiant attempts (Amelino-
Camelia, 2017), the soccer ball problem has not, in fact, been solved.
This shows that a sensible relativistic limit of an arbitrary GUR
model cannot be obtained by introducing a nonlinear composition
law for Lorentz boosts, and one is left with Lorentz violation as the
only possible outcome of such theories. Though not absolutely ruled
out experimentally, the parameters characterising such violations are
severely constrained by observations (Pérez de los Heros and Terzić,
2022).

Nonetheless, this does not necessarily mean that GURs imply
Lorentz violation. The problem, here, is the derivation of GUP- and
EUP-type relations from the assumption of a modified Heisenberg
algebra. In Section 3 we show how the GUP, EUP and EGUP can be
derived from an alternative mathematical structure, which leaves the
canonical Heisenberg algebra unchanged except for a simple rescaling
of the form ℏ→ ℏ+ β, andwhich, therefore, is compatiblewith Lorentz
symmetry in the relativistic regime.

2.3 The soccer ball problem

A brief overview of the soccer ball problem was given in the
previous section, in connection with the issue of Lorentz violation,
and we will not repeat it here. Instead, we focus on the main
proposal for a solution of the problem (Amelino-Camelia, 2017) and
show that, unfortunately, this is not compatible with general GUR
models.

In (Amelino-Camelia, 2017) an ingenious solution to the soccer
ball problem was proposed by Amelino-Camelia, who argued that
the common formulation of the problem was, in fact, “a case
of mistaken identity”. In his proposal, the generalised momentum
operators of a given modified commutator model are considered
as the generators of ‘generalised’ spatial translations, by definition.
This requires the unitary operator Û(X) ≔ exp[(i/ℏ)X.P̂] to leave
the modified [X̂i, P̂j], [X̂

i, X̂j] and [P̂i, P̂j] commutators, as well as
the multi-particle Hamiltonian of the model, Ĥ≔∑N

I=1P̂
2
I /(2mI) +

V(X̂1, X̂2,…X̂N), where the subscript I labels the particle number,
invariant.

Amelino-Camelia’s key observation was that, if these invariances
hold in a given model, then the corresponding Noether charge for
an N-particle state is represented by the operator P̂Total ≔∑

N
I=1
̂PI,

which automatically commutes with the Hamiltonian: [P̂Total,Ĥ] = 0.
The usual law of linear momentum addition then holds for multi-
particle states but a different nonlinear addition law, derived from the
notion of spatial locality, holds for transfers of momentum between
individual particles, due to the interactions specified by Ĥ. In general,
this requires the interaction potential V(X̂1, X̂2,…X̂N) to be carefully
chosen so that ∑N

I=1∂V/∂XI = 0, but this was shown to be possible
in a specific example model containing two particles with equal
masses,mA =mB =m, interacting in a 2-dimensional plane (Amelino-
Camelia, 2017).

Unfortunately for GUP models, in the example system considered
in (Amelino-Camelia, 2017), the definition of generalised spatial
translation required to maintain the linear addition law for multi-
requires the relation [X̂i, P̂i] = 0 to hold, for some i ∈ {A,B}, for both
particles. In this case, there is no Heisenberg uncertainty principle, in
at least one of the spatial dimensions, let alone a GUP, even though
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a minimum length-scale l still appears in the model via the position-
position commutator, [X̂1

I , X̂
2
I ] = ilX̂

1
I .

This illustrates a more general point: it is by no means certain
that a particular modified momentum operator, corresponding to
a particular modification of the canonical Heisenberg algebra,
and, therefore, a particular form of GUR, is compatible with
a linear addition law for multi-particle states, derived via the
procedure outlined in (Amelino-Camelia, 2017). In our view, this
is not a weakness of Amelino-Camelia’s method, which successfully
demonstrates that certain classes of modified commutator models do
not, in fact, suffer from a soccer ball problem after all. Instead, it is
an inherent weakness of models that seek to derive the GUP, EUP
or EGUP from modified commutation relations. In this respect, the
analysis given in (Amelino-Camelia, 2017) still represents a huge step
forward in understanding this problem, and we may apply Amelino-
Camelia’s procedure to any prospectiveGUPmodel based onmodified
commutators, using it to rule out the ones that give rise to these kinds
of inconsistencies in the multi-particle limit.

In summary, although consistency with Amelino-Camelia’s
procedure represents a useful criterion for identifying physically
viable theories, it is clear that arbitrary deformations of the canonical
Heisenberg algebra are not consistent with the existence of a linear
momentum addition law for multi-particle states. Further work is
therefore needed to determine which GUR models truly suffer from a
soccer ball problem and which ones do not. Though some GUP-type
models may be free from this pathology, it is likely that a great many
are still afflicted by it. It is therefore clear that the soccer ball problem
has not been resolved, in general, for arbitrary GUP, EUP or EGUP
models based on modified commutation relations.

2.4 Reference frame-dependence of the
‘minimum’ length

In their pioneering and hugely influential work (Kempf et al.,
1995), Kempf, Mangano and Mann (KMM) gave the first truly
rigorous treatment of modified commutator models, showing how
they can be derived from the Hilbert space structure of a modified
quantum formalism. Their key observation was that modified
commutators correspond to modified phase space volumes. For
example, the commutator

[X̂i, P̂j] = iℏδ
i
j (1+ αP̂

2) �̂�, (2.7)

where α = α0(mPlc)
−2 and α0 is a dimensionless constant of order one,

which leads to the GUP-type relation

ΔψX
iΔψPj ≥

ℏ
2
δi

j (1+ α[(ΔψP)
2 + ⟨P̂⟩2ψ]) , (2.8)

corresponding to a modified normalisation condition and a modified
resolution of the identity of the form

〈P|P′〉 = (1+ αP2)δ3 (P−P′) , ∫|P〉〈P| d3P
(1+ αP2)

= �̂�. (2.9)

Similarly, the commutator

[X̂i, P̂j] = iℏδ
i
j (1+ ηX̂

2) �̂�, (2.10)

where η = η0l
−2
dS and η0 is a dimensionless constant of order unity,

which leads to the EUP-type relation

ΔψX
iΔψPj ≥

ℏ
2
δi

j (1+ η[(ΔψX)
2 + ⟨X̂⟩2ψ]) , (2.11)

corresponding to the modified phase space structure

〈X|X′〉 = (1+ ηX2)δ3 (X−X′) , ∫|X〉〈X| d3X
(1+ ηX2)

= �̂�. (2.12)

In general, introducing a modified momentum space volume
G(P)−1d3P (G(P) ≠ 1) yields a GUP-type relation, though in this
case the position space representation is not well defined, whereas
introducing a modified position space volume G(X)−1d3X (G(X) ≠ 1)
yields an EUP-type relation, although the momentum space
representation is not well defined. For an EGUP-type relation,
characterised by the function G (X,P) ≠ 1, neither the position nor
momentum space representations are well defined and one must
instead introduce a generalised Bargman-Fock representation (Kempf,
1997).

To illustrate the problems with these type of constructions, we
will focus on the most famous example, proposed in the original
KMM paper (Kempf et al., 1995), i.e., the GUP-type relation Eq. 2.8.
It is straightforward to show that Eq. 2.8 implies the existence of
a ‘minimum’ position uncertainty, (ΔψX

i)
min

, and a corresponding
critical value of the momentum uncertainty, (ΔψPj)crit, of the form

(ΔψX
i)

min
= ℏ√α(1+ α〈P̂〉2ψ), (ΔψPj)crit = 1/√α(1+ α〈P̂〉

2
ψ).
(2.13)

The problem with these expressions is that, while the standard
deviations on the left-hand sides should be manifestly frame-
independent, the quantities on the right are not, since ⟨P̂⟩2ψ is not
invariant under Galilean velocity boosts.

To show this more concretely, let us consider the action of the
unitary operator (Lake, 2020)

̃U (P′) |P〉 = √ 1+ αP2

1+ α(P−P′)2
|P−P′〉. (2.14)

This generates Galilean velocity boosts, which remain consistent with
the modified momentum space volume Eq. 2.9, and reduces to the
canonical boost operator Û(p′)|p〉 = |p− p′〉when α = 0. Its action on
the moments of the generalised momentum operator,

P̂j = ∫Pj|P〉〈P|
d3P
(1+ αP2)

, (2.15)

gives

P̂n↦ ̃U (P′) P̂n ̃U† (P′) = (P̂+P′)n, (2.16)

for n ∈ ℕ, and it is straightforward to demonstrate that this leaves ΔψPj
unchanged. The modified commutator Eq. 2.8 then transforms as

[X̂i, P̂j] ↦ ̃U (P′)[X̂
i, P̂j] ̃U† (P′) = iℏδi

j (1+ α(P̂+P
′)2) �̂�, (2.17)

which leads to P′-dependence of the corresponding uncertainty
principle. Since ΔψPj is invariant, it is clear that this must be due to
the P′-dependence of ΔψXi.

Next, let us denote the boosted position uncertainty as ΔψX′i (P′),
so that ΔψX′i (0) ≡ ΔψXi, where ΔψXi is the position uncertainty given
in Eq. 2.8. We then have

ΔψX
′i (P′) ≥ ℏ

2ΔψPj
δi

j (1+ α[(ΔψP)
2 + (⟨P̂⟩ψ +P

′)2]) . (2.18)
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Hence, even if ψ(P) is symmetric in the original frame of observation,
such that ⟨P̂⟩ψ = 0, the minimum position uncertainty seen by an
observer moving with relative velocity V′ = P′/m is

(ΔψX
′i)

min
(P′) ≃ ℏ√α(1+ αP′2

2
). (2.19)

For |P′| ≪ 1/√α ≃mPlc the boost-dependent term is, of course, very
small, but its presence clearly violates the Galilean boost invariance
that emerges from the low velocity limit of Lorentz invariance. Its
presence is therefore at odds with the founding principles of both
special and general relativity, even for one-particle states. Analogous
reasoning demonstrates the frame-dependence of the ‘minimum’
momentum implied by the EUP-type relation Eq. 2.11, which is no
longer invariant under spatial translations.

Though it is possible that boost and/or translation invariance may
be broken due to quantum effects on the geometry of spacetime, we
note that there is, intrinsically, nothing quantum mechanical about
the physical space background of the KMM model. The geometry
remains classical but its symmetries are unknown, as is the exact form
of the classical metric, gij(X), to which they correspond. In Section 2.5
and Section 2.6, we consider the implications of both these points
and argue that they lead to further inconsistencies in the modified
commutator paradigm.

2.5 The background geometry is not
quantum

In the existing literature, there are many references to the
‘quantum’ geometry obtained by introducing modified phase space
volumes, as in the KMM model (Kempf et al., 1995). This motivates
a class of so-called nonlocal gravity models that, it is claimed, follow
from the ‘quantum gravity’ corrections implied by GURs. In this
section, we examine the link betweenmodified commutation relations
and the proposed nonlocality of the background geometry, and find
that this claim does not hold up to scrutiny. Instead, we find that
the background geometry implied by modified phase space volumes
is certainly ‘classical’, in the sense that it does not admit quantum
superpositions of states, but that, unlike classical geometries proper,
it is not well defined by an appropriate class of symmetries or a metric
function, gij(X). These latter considerations are dealt with in detail in
Section 2.6.

Much of the literature on nonlocal gravity models is motivated
by the observation that modified momentum space volumes, such as
those leading to theGUP-typemodel proposed in (Kempf et al., 1995),
can be obtained by actingwith an appropriate nonlocal operator on the
position space representations of the canonical QM eigenfunctions,
⟨x|x′⟩ = δ3 (x− x′) and ⟨x|p⟩ = (2πℏ)−3/2eip.x/ℏ. A simple example is the
operator el

2Δ, where l is a fundamental length scale, usually identified
with the Planck length, and Δ is the Laplacian. For convenience, we
rewrite this in the spectral representation as

̂ζ = e−Ĥ0Δt/ℏ, (2.20)

where Ĥ0 = p̂
2/2m is the canonical free particle Hamiltonian and

Δt = 2m l2/ℏ is the characteristic time scale associated with l and the
particle mass m. The operator ̂ζ reduces to el

2Δ in the wave mechanics
picture but we may use Eq. 2.20 to define its action directly on the

canonical eigenstates, |x⟩ and |p⟩, instead of the eigenfunctions, ⟨x|x′⟩
and ⟨x|p⟩.

This may not seem, at first, like an important distinction, but it is
crucial to recognise that |x⟩ and ψ(x) have dimensions of (length)−3/2

whereas ⟨x|x′⟩ and |ψ(x)|2 have dimensions of (length)−3. Therefore,
the position eigenfunction has the dimensions of a probability density,
whereas the position eigenvector has the dimensions of a quantum
probability amplitude. This matters because probability densities,
including the Dirac delta, are inherently classical in nature, even when
they are derived from an underlying quantum mechanical amplitude.
It is elementary to rewrite any classical probability distribution as
the square of a complex distribution, ρ(x) ≡ ρψ(x) = |ψ(x)|

2, but this
does not imply that it is quantum mechanical in origin. Furthermore,
even if it is quantum mechanical in origin, measurements that
depend on |ψ(x)|2 alone destroy all phase information, and are
operationally indistinguishable from outcomes that depend only on
classical probabilities (i.e., those based on incomplete information
about the system) (Isham, 1995).

Because of this, delocalising the canonical eigenfunctions, rather
than the eigenstates, maps classical point charges to classical charge-
densities of nonzero volume, but does not introduce a genuine
quantum state, i.e., a vector in a complex Hilbert space, corresponding
to the quantum state of the background geometry. Though it is not
very flattering to state it in this way, applying the operator el

2Δ to
δ3 (x− x′) blows up classical point-masses to classical golf balls or
grapefruits, but does not achieve much else. Furthermore, it is not at
all clear whether a classical geometry, in which each zero-dimensional
point has somehow been blown up to the size of a three-dimensional
grapefruit (or Planck volume), is really a well defined object. In the
final subsection, Section 2.6, we will argue that modified phase space
volumes cannot be consistently defined in a physical geometry, but,
before that, we consider the action of ̂ζ on ⟨x|x′⟩ and ⟨x|p⟩ in more
detail and show, explicitly, that the nonlocal geometry generated by
this action is classical.

In the usual approach to nonlocal geometry models, the braket
⟨x| ̂ζ|x′⟩ is used to define a set of generalised basis vectors, |X⟩ and |P⟩,
such that

⟨x| ̂ζ|x′⟩ = eσ
2Δ⟨x|x′⟩ = ( 1

√2πσ
)

3
e−(x−x

′)2/2σ2

≡ ⟨X|X′⟩ = ( 1
√2πσ
)

3
e−(X−X

′)2/2σ2
, (2.21)

and

⟨x| ̂ζ|p⟩ = eσ
2Δ⟨x|p⟩ = ( 1

√2πℏ
)

3
e−p

2/2σ̃2
eip.x/ℏ

≡ ⟨X|P⟩ = ( 1
√2πℏ
)

3
e−P

2/2σ̃2
eiP.X/ℏ, (2.22)

where we have rewritten σ ≡ l and defined σ̃ ≡ ℏ/√2l, for later
convenience. In other words, the nonlocal operator ̂ζ maps the Dirac
delta to a finite-volume Gaussian of width σ via

̂ζ :〈x|x′〉 = δ3 (x− x′) ↦ 〈X|X′〉 = ( 1
√2πσ
)

3
e−(X−X

′)2/2σ2
, (2.23)

and Eq. 2.22 shows its corresponding action on the plane wave
⟨x|p⟩ = (2πℏ)−3/2eip.x/ℏ. Consistency then requires the |P⟩ eigenstates
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to satisfy the modified normalisation condition and modified
resolution of the identity

〈P|P′〉 = eP
2/2σ̃2

δ3 (P−P′) , ∫|P〉〈P|e−P
2/2σ̃2

d3P = �̂�. (2.24)

Expanding eP
2/2σ̃2

to first order generates the GUP-type relation of
the KMM model (Kempf et al., 1995), but the full expressions differ
nonperturbatively.

It is then claimed that the link betweenGURs and nonlocal gravity
is provided by the semi-classical approach (Nicolini and Niedner,
2011; Lake, 2022a) in which the classical curvature of space-time is
sourced by the expectation value of the energy-momentum operator
for the quantummatter fields, ⟨T̂μν⟩ψ. In the weak field limit, the semi-
classical field equations reduce to Poisson’s equation, with the square
of the wave function as a source term, neglecting the subdominant
dark energy contribution (Møller, 1962; Rosenfeld, 1963; Kelvin et al.,
2020),

∇2Φ = 4πGm|ψ|2. (2.25)

It is then noted that the zero-width limit of the wave function,
ΔψX→ 0, yields a delta function source,

lim
ΔψX→0
|ψ|2 = δ3 (X−X′) . (2.26)

The standard procedure, therefore, is to substitute the limiting value
Eq. 2.26 into Eq. 2.25 and, interpreting the former as the position
eigenfunction of a quantum mechanical wave function, to act on it
with the nonlocal operator eσ

2Δ. On this basis, it is often claimed that
GURs imply nonlocal gravity and, furthermore, that the latter arises
from ‘quantum’ corrections to the classical geometry. There are two
main problems with this interpretation. First, that in the semi-classical
approach onwhich it is based the geometry is still classical and, second,
that δ3 (X−X′) is a limiting value of |ψ|2 (notψ), which is operationally
indistinguishable from a classical finite-density mass distribution.

We stress, again, that the action of the nonlocal operator on
a Dirac delta source term blows up a classical point mass into a
classical blob of finite density. If the blow up is sufficiently strong, in
some sense, the classical matter fluid acquires an effective equation
of state which makes it stiff enough to resist gravitational collapse,
curing the ‘singularity problem’ (Nicolini, 2012), but this has nothing
to do with any quantum properties, either of the matter, or of the
background geometry.The claim that theGURs imply nonlocal gravity
is therefore somewhat inaccurate. Instead, it is more accurate to
claim that classical nonlocal gravity models, such as those defined
by Eq. 2.21 and Eq. 2.22, or similar constructions, and modified
commutatormodels, such as theGUP- and EUP-type relations defined
by Eq. 2.9 and Eq. 2.12, respectively, stem from the same underlying
assumptions, that is, assumed modifications of the classical phase
space volumes, over which both classical densities and quantum
mechanical amplitudes (wave functions) must be integrated.

In both cases, the number of degrees of freedom remains the same
as in the corresponding local theory and no new quantum degrees
of freedom, capable of corresponding to the quantum state of the
geometry, are introduced. Thus, although the background geometry
of modified commutator models is ‘nonlocal’, in some sense, it is not
nonlocal due to quantum effects. Furthermore, it is by no means clear
whether such ‘classical nonlocality’ is well defined. We address this
point, in detail, in the following section.

2.6 Mathematical inconsistency of modified
phase space volumes

In the standard prescription,GURs requiremodified commutators
and modified commutators require modified phase space volumes,
yielding a one-to-one correspondence between the two. For example,
for the KMMGUP-typemodel, this relation is as follows (Kempf et al.,
1995):

[X̂i, P̂j] = iℏδ
i
j (1+ αP̂

2) �̂� ⇔ P̂j = ∫Pj|P〉〈P|
d3P
(1+ αP2)

. (2.27)

In this section, we explore a number of subtle points that, although
implicit in the construction above, and others like it, have not been
explicitly considered in the existing literature.

To begin, we note that models of this form are based on a
canonical quantisation procedure that maps classical Poison brackets
to commutators, {xi,pj}PB↦

1
iℏ
[X̂i, P̂j], and classical Hamiltonians

to quantum Hamiltonians, H = |p|2/(2m) +V(x) ↦ Ĥ = |P̂|2/(2m) +
V(X̂). Next, we recall that the phase space of classical mechanics,
on which these maps are defined, is a symplectic manifold, and,
furthermore, that symplectic geometry is a notoriously ‘loose’ form
of geometry. Unlike the more familiar Riemannian geometry, which
corresponds to our experience of everyday life, symplectic structures
do not carry any notion of distance, but volumes can be defined
through the introduction of an appropriate symplectic 2-form
(Frankel, 1997; Nakahara, 2003).

Defining a new symplectic 2-form defines a new volume element,
but this in no way disturbs the symplectic structure of classical
Hamiltonian systems (Frankel, 1997; Nakahara, 2003). When the
canonical quantisation procedure is applied, this symplectic structure
is taken over, unchanged, by the corresponding quantum theory.
Hence, if the volume element in the classical phase space is, say,
(1+ αP2)−1d3xd3P, the phase space volume in the corresponding
quantum theory is, simply, (1+ αP2)−1d3P. It is then assumed
that the quantum state vector can be expanded in the ‘usual’
form, except for the modification of the volume element, |ψ〉 =
∫ψ(P)|P〉(1+ αP2)−1d3P, without issue. But is this really the
case?

To answer this question, we must consider the meanings of the
symbols P and P̂, appearing in Eq. 2.27, carefully. This is more
difficult than it seems, since it is seldom explicitly stated, in the
existing GUP literature, what exactly these symbols represent. The
most probable reason for this is that, of course, everyone already
‘knows’ what they mean: P is a momentum space displacement
vector and P̂ is its vector operator counterpart. The former may be
written as

P = Pje
j (X) = PXe

X (X) + PYe
Y (X) + PZe

Z (X) , (2.28)

where (X,Y,Z) denote global Cartesian coordinates and
(eX(X),eY (X),eZ(X)) denote the tangent vectors, to the linesX = const,
Y = const, and Z = const, at any point X ∈ ℝ3 in physical space. P̂ is
then constructed in like manner, by replacing the components Pj with
the operators P̂j, defined in Eq. 2.27.

The problems with this construction are as follows.

1. Global Cartesian coordinates only exist in Euclidean space
(Frankel, 1997; Nakahara, 2003),

2. Euclidean space is a Riemannian geometry, not a symplectic
geometry,
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3. It therefore possesses a metric, gij(X) = ⟨ei(X),ej(X)⟩, which
generates both a notion of distance, dL = √gij(X)dXidXj, and a
notion of volume, dV = √gd3X, where g(X) = det gij(X) is the
determinant of the metric,

4. In the global Cartesians the metric of Euclidean space is
δij = ⟨ei(X),ej(X)⟩, since ei(X) = ei (X′) for all X,X′ ∈ ℝ3 and i ∈
{X,Y,Z}, giving det δij(X) = 1,

5. This gives rise to the distance element L = √X2 +Y2 +Z2 and the
volume element dV = dXdYdZ,

6. The corresponding magnitude of the momentum vector Eq. 2.18
is P = √P2

X + P
2
Y + P

2
Z and the volume element in momentum space

is d ̃V = dPXdPYdPZ, since the tangent space is isomorphic to the
physical Euclidean space (Frankel, 1997; Nakahara, 2003),

7. Neither of these expressions are flexible.

Unlike volume elements derived from symplectic 2-forms, the
Euclidean volume element is fixed by the underlying geometry, as
well as the chosen coordinate system. The tangent space geometry
in which the momentum vector P is defined is also fixed, and,
in global Cartesians, the lines of constant X, Y and Z lie parallel
to the trajectories for which PX , PY and PZ are conserved.
Thus, for the coordinates assumed in the relation ΔψX

iΔψPj ≥
ℏ
2
δi

j(1+ α[(ΔψP)
2 + ⟨P̂⟩2ψ])Eq. 2.8, which is derived from themodified

phase space structure Eq. 2.27, i.e., i, j ∈ {X,Y,Z}, where (X,Y,Z)
denote global Cartesians, the volume element of physical space is
fixed as dXdYdZ and the corresponding momentum space volume is
dPXdPYdPZ .

Put simply, if (X,Y,Z) represent global Cartesian coordinates
in physical space, (PX ,PY ,PZ) represent global Cartesians in the
conjugate momentum space. This leads to a contradiction, indicating
the inconsistency of modified phase space volumes like the one
outlined above. If we assume that the subscripts i and j in ΔψXi

and ΔψPj refer to global Cartesian coordinates, then the momentum
space integration measure is simply d3P. Conversely, if we abandon
this assumption and define P2 such that P2 ≡ P2 = ∑3

j=1P
2
j , without

specifying the coordinates (X1,X2,X3), we are faced with an even
bigger problem: in this case, we cannot make any physical predictions
at all!

As stated in the Introduction, we believe that this constitutes
the most serious criticism of the modified commutator/modified
phase space paradigm yet formulated in the literature. It has
immediate real world implications since, to the best of our knowledge,
existing experimental bounds on the GUP parameter α have all
been obtained by adopting two contradictory assumptions: 1) that
the GUP arises from a modified commutation relation, and 2)
that the modified commutation relation holds for the uncertainties
ΔψXi and ΔψPj where i, j ∈ {X,Y,Z} refer to global Cartesian
coordinates (Pikovski et al., 2012; Bosso et al., 2017; Kumar and
Plenio, 2018; Girdhar and Doherty, 2020; Cui et al., 2021; Sen et al.,
2022).

In Section 4, we show how to derive the GUP, EUP and
EGUP for Cartesian uncertainties, without introducing modified
commutation relations or phase space volumes.The newmodel avoids
the inconsistencies inherent in these models, in an almost trivial
way, but is found to have exceedingly nontrivial implications for the
quantisation of the background geometry. Before that, in Section 3,
we consider whether the problems outlined here might instead be
considered as `features’, rather than `bugs’, of modified commutator
models.

3 Bug or feature?

It could be argued that a number of the problems discussed above
represent features, rather than bugs, of the modified commutator
paradigm. For example, it is widely accepted that some kind of
breakdown of the EP and/or Lorentz invariance must occur due
to quantum gravitational effects. Therefore, it may be regarded
as unsurprising that minimum length models based on modified
commutators generate both as amatter of course. From this viewpoint,
such features acquire the status of ‘smoking guns’, i.e., predictions of
new physics in the low-energy regime that any self-consistent model
of high-energy quantum gravity must successfully reproduce.

These are strong claims, and, here, we argue that such claims
require strong motivations, which are currently lacking in existing
models. Furthermore, it is necessary to prove beyond doubt
that such modifications of the canonical formalism do not give
rise to internal inconsistencies, even within their domain of
applicability.

As an analogy, there are an infinite number of ways to break the
Poincaré group symmetries of Minkowski space, but only one of these
gives rise to a self-consistent limit in the non-relativistic regime, i.e.,
the Galilean group of Euclidean space, with time as a parameter. By
contrast, arbitrary violations of Poincaré symmetry do not give rise
to well-defined geometries of any kind. Similarly, the breaking of a
given symmetry, or equivalence, in a physical theory, is not the same
as introducing a well-motivated generalisation of the original model.
Since there are an infinite number of ways to break anything, why
should this or that violation be preferred? Is the resulting model self-
consistent? Below, we briefly consider the ‘bug or feature’ argument for
each of the problems raised in Sections 2.1–2.6.

1. Violation of the EP: That the EP must break down due to quantum
gravity effects is certain, but this is so for a very simple reason -
the standard EP, as formulated in general relativity, is an inherently
classical concept. It concerns the equivalence between classical
gravity and classical accelerated frames of reference, which, by
definition, excludes the concept of quantum superposition. In
the quantum gravitational regime, we expect classical geometries
to be replaced by quantum superpositions of geometries, and
classical accelerated frames of reference to be replaced by quantum
superpositions thereof, but is this the same as simply breaking
the equivalence between the existing classical concepts? While it
is possible, and even likely, that an appropriate course-graining
over such superpositions could give rise to discrepancies with the
existing classical theory, it is by no means clear what form these
ought to take. In the absence of any indication from a specific
model in the UV sector, we argue that the prediction of mass-
dependent accelerations, in a classical background `geometry’,
without a well-defined symmetry group, should be treated with
extreme caution.1 Nonetheless, it must be admitted that this
remains a theoretical possibility, which cannot be excluded a priori,
at the present time.

2. Violation of Lorentz invariance: Similar arguments can be made
regarding the violation of Lorentz invariance in the relativistic
limit. We expect the quantisation of the geometric background

1 We recall that modifications of the canonical Heisenberg algebra imply the
violation of Galilean symmetries.
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to introduce space-time superpositions, generalising the classical
concept of a sharp space-time point and, with it, the concept of a
sharply-defined classical frame of reference, whether accelerated
or inertial, to include superpositions. But this is not the same as
simply breaking Lorentz symmetry in a still-classical background,
especially when it is not clear whether the broken symmetry
group corresponds to a well-defined geometry or not. In general,
deforming an algebra of group generators does not yield a
well-defined group, and, hence, the resulting operators do not
correspond to a well-defined geometry. It is not analogous to
the shift from relativistic space-time to non-relativistic space-
plus-time, but a far more ambiguous procedure. Nonetheless, it
must again be admitted that an appropriate course-graining over
superpositions in the low-energy limit of quantum gravity may, in
fact, violate Lorentz invariance in a way predicted by some classes
of modified commutator models.

3. The soccer ball problem: It must also be admitted that the partial
resolution of the soccer ball problem, presented in (Amelino-
Camelia, 2017), provides a potential way out of the problems
above. In this approach, the issue of the background geometry
is moot, since the generalised momentum operators of the
modified commutation relation are required to generate modified
(non-Galilean) symmetries of the Hamiltonian. They may then
be regarded as the symmetry generators of a modified (non-
Euclidean) geometry, by definition. However, this places severe
constraints on the form these generators may take, and, as shown
in Section 2.3, not all such modifications are compatible with
the existence of the GURs suggested by quantum gravity thought
experiments. Therefore, at present, it is not clear whether this
problem should be regarded as a bug, or a feature, of modified
commutator models.

4. The reference frame dependence of the minimum length: The
situation is different in the case of the reference frame dependence
of the minimum length (momentum) scale, predicted by the GUP
(EUP). This clearly represents a mathematical inconsistency of
modified commutator models, since a mere shift in the coordinate
origin, or Galilean velocity boost v→ v′ ≪ c, radically alters the
values of the position and/or momentum uncertainties of the
quantum wave packet. The standard measure of the statistical
variance of a random variable, (ΔO)2 = ⟨O2⟩ − ⟨O⟩2, is constructed
to be manifestly invariant under such transformations. If this
invariance no longer holds in modified commutator models, it
is unclear how to measure the spread of the wave function in a
coordinate-independent way. This undoubtably counts as a ‘bug’.

5. The background geometry is not quantum: We may also ask if
the classically nonlocal background geometry of the KMM model
(Kempf et al., 1995), and others like it, could emerge from a
more fundamental underlying quantum theory? Theoretically, the
answer is again ‘yes’, but the same could be said of any (totally
arbitrary) modification of the canonical quantum formalism.
The most important point here is that, at present, no concrete
proposal for such a model has been presented in the GUP
literature (Hossenfelder, 2013; Tawfik and Diab, 2014; Tawfik
and Diab, 2015). It had been hoped that the nonlocal operator,
Eq. 2.20, provided such a link, between the coarse-grained classical
structure and an underlying probabilistic (i.e., quantum) model,
but this assumption was debunked in Section 2.5. The confusion
in the literature stemmed from a confusion between classical
probability densities and quantum probability amplitudes. The

status of this problem, therefore, resembles that of problems
1–2. Theoretically, the classically nonlocal geometry produced
by the action of Eq. 2.20 may emerge from an appropriate
coarse-graining over quantum probability amplitudes, but no
concrete mathematical structure, able to reproduce this, has been
discovered.

6. The mathematical inconsistency of modified phase space volumes:
In the Introduction, we claimed that this, deceptively simple
argument, represents the most serious objection yet raised to
the modified commutator paradigm. In short, it is certainly not
a feature, but a bug, since it represents a serious mathematical
inconsistency of such models. In light of this, the previous five
points raised above may be considered moot, since only one
inconsistency is required to render a physical theory untenable. It
is therefore of the utmost importance to establish whether or not
this objection can be circumvented in some way.

4 Deriving the GUP, EUP and EGUP
without modified commutators

It is straightforward to show that the GUP and EUP can be
obtained, at least approximately, from far more ‘natural’ looking
expressions, in which the variances of independent random variables
add linearly. For example, let us consider the simplest scenario in
which the back reaction of the wave function on the geometry
is considered negligible, so that the latter undergoes quantum
fluctuations which are independent of ψ(x).

In this case, (Δxψ)
2 denotes the variance of the canonical

probability density |ψ(x)|2, where x ∈ ℝ3 are the possible measured
values of the particle’s position in classical three-dimensional space.
These are the canonical quantum degrees of freedom. In order to
describe quantum fluctuations of the background we must introduce
new degrees of freedomwhich are capable of describing superpositions
of geometries, as expected in a viable theory of quantum gravity
(Marletto and Vedral, 2017; Lake et al, 2019).

The additional fluctuations in the measured position of the
particle, due to quantum fluctuations of the geometry in which
it ‘lives’, may be described by an additional variance, (Δgx

′)2.
This denotes the variance of the non-canonical probability density
|g (x′ − x)|2, where |x′ − x| quantifies the size of the fluctuation,
i.e., the degree to which the measured position of the particle is
perturbed by the quantum nature of the background. (For simplicity,
we may imagine |g (x′ − x)|2 as a three-dimensional Planck-width
Gaussian distribution.) This corresponds to a new composite wave
function, Ψ(x,x′), which describes the propagation of a quantum
particle in a quantum background, rather than a fixed classical
geometry:

Ψ(x,x′) = ψ (x)g(x′ − x) . (4.1)

The possible measured positions of the particle are then given by the
values of x′ ∈ ℝ3, rather than x, and g (x′ − x) may be interpreted as
the quantum probability amplitude for the coherent transition x↦ x′
in a smeared superposition of geometries (Lake et al., 2019; Lake et al.,
2020). From here on, we refer to g as the ‘smearing function’. The total
variance for a position measurement in the smeared space is then,
simply

(ΔΨx′i)2 = (Δψx
′i)2 + (Δgx

′i)2. (4.2)
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Setting Δx′g ≃ lPl, taking the square root of Eq. 4.2 and Taylor
expanding to first order then yields the GUP. However, in this case,
the relevant uncertainties are well defined, as the standard deviations
of probability densities, unlike the heuristic uncertainties given in
Eq. 1.1.

A similar construction in momentum space,

Ψ̃(p,p′) = ψ̃ (p) ̃g(p′ − p) , (4.3)

yields

(ΔΨp′j )
2 = (Δψp

′
j )

2 + (Δgp
′
j )

2. (4.4)

Setting Δp′g ≃mdSc, taking the square root of Eq. 4.4 and Taylor
expanding to first order then yields the EUP. Again, the relevant
uncertainties are well defined, as the standard deviations of the
probability densities |ψ̃(p)|2 and | ̃g(p′ − p)|2, unlike the heuristic
uncertainties in Eq. 1.2.

But what, exactly, are the functions ψ̃(p) and ̃g(p′ − p)? How are
they related to ψ(x) and g (x′ − x)? In canonical QM, ψ̃(p) is the ℏ-
scaled Fourier transform of ψ(x) and, to emphasize this point, we
rewrite it with an appropriate subscript as

ψ̃ (p) ≡ ψ̃ℏ (p) = (
1
√2πℏ
)

3
∫ψ (x)e−

i
ℏ
p.xd3x. (4.5)

The canonical de Broglie relation p = ℏk ensures that the exponent
is independent of Planck’s constant, but ℏ necessarily appears in
this expression through the normalisation constant √2πℏ−3. This is
because |ψ⟩ represents the state of a canonical quantum particle and
ℏ sets the (action) scale at which quantum effects become significant
in canonical quantum matter (Rae, 2002).

However, were we to assume, likewise, that ̃g(p′ − p) is given by
the canonical ℏ-scaled Fourier transformof g (x′ − x), wewould obtain
the expression Eq. 4.4 with Δgp′ ≃mPlc not Δgp′ ≃mdSc! This leads
to an EUP-type expression with a ‘minimum’ momentum equal to the
Planckmomentum and, hence, aminimum energy equal to the Planck
energy, a minimum energy density equal to the Planck density, etc.,
which is clearly at oddswith empirical data.Therefore, wemust instead
assume a decomposition of the form

̃g(p′ − p) ≡ ̃gβ (p
′ − p) = ( 1

√2πβ
)

3

∫g(x′ − x)e−
i
β
(p′−p).(x′−x)d3x′,

(4.6)

with β ≠ ℏ. It is straightforward to show that, in order to recover both
the GUP Eq. 1.1 from Eq. 4.2 and the EUP Eq. 1.2 from Eq. 4.4, we
must set

Δgx
′i = σg ≔√2α0lPl, Δgp

′
j = σ̃g ≔√6η0mdSc, ∀i, j, (4.7)

together with

β≔ 2σgσ̃g. (4.8)

For α0, η0∼O(1), this gives

β = 2√
ρΛ

ρPl
ℏ ≃ 10−61 × ℏ, (4.9)

where ρΛ = Λc2/(8πG) ≃ 10–30 g cm−3 is the dark energy
density (Riess et al., 1998; Perlmutter et al., 1999) and
ρPl = c

5/(ℏG2) ≃ 1093 g cm−3 is the Planck density. Taken together,
Eq. 4.5 and Eq. 4.6 are equivalent to imposing the modified de Broglie
relation,

p = ℏk+ β(k′ − k) , (4.10)

where the non-canonical term can be understood, heuristically, as
the additional momentum ‘kick’ imparted to the canonical quantum
state, by a fluctuation of the background (Lake et al., 2019; Lake et al.,
2020).

Eq. 4.2 and Eq. 4.4 can also be recovered, with the appropriate
minimum values Eq. 4.7, from the canonical-type braket
constructions

(ΔΨXi)2 = 〈Ψ|(X̂i)2|Ψ〉 − 〈Ψ|X̂i|Ψ〉2, (4.11)

(ΔΨPj)
2 = 〈Ψ|(P̂j)

2|Ψ〉 − 〈Ψ|P̂j|Ψ〉
2, (4.12)

where we have relabelled ΔΨx′i ≡ ΔΨXi and ΔΨp′j ≡ ΔΨPj, for the sake
of notational convenience. The appropriate generalised operators, X̂i

and P̂j, representing position and momentum measurements in the
smeared superposition of geometries, are given by

X̂i ≔ ∫x′i|x,x′〉〈x,x′|d3xd3x′, (4.13)

P̂j ≔ ∫p
′
j |pp
′〉〈pp′|d3pd3p′, (4.14)

where |x,x′⟩ ≔ |x⟩ ⊗ |x′⟩ and the basis |pp′⟩ is entangled,

|pp′〉 ≔( 1

2π√ℏβ
)

3

∫∫|x,x′〉e−
i
ℏ
p.xe−

i
β
(p′−p).(x′−x)d3xd3x′. (4.15)

(We emphasize this by not writing a comma between p and p′.)
However, the position and momentum space bases may be

symmetrized, such that |x,x′⟩ ↦ |x,x′ − x⟩ and |pp′⟩ ↦ |p,p′ − p⟩,
by means of an appropriate unitary transformation (Lake et al.,
2020). Formally, this is analogous to the unitary transformation
defined in (Giacomini et al., 2019), which is intended to represent
a switch between quantum reference frames (QRFs), but with the
substitution β↔ ℏ. This implies that, in the quantum mechanical
‘smeared space’ defined by our model, each ‘smeared point’ may be
considered as a QRF, whose quantum uncertainties are controlled
by the quantum of action for geometry, β, rather than that for
canonical quantum matter, ℏ (Lake, 2021a; Lake, 2021b; Lake,
2022b).

At first glance, the introduction of a second quantisation scale
for geometry appears to contradict a rather large body of existing
literature which claims that Planck’s constant is unique. A closer
look at this literature, however (for example, see (Sahoo, 2004;
Deser, 2022) and references therein), shows that only quantisation
schemes of the form p = ℏk, p′ = ℏ′k′, with ℏ′ ≠ ℏ, where p and
p′ refer to the momenta of different species of material particles,
are ruled out by existing no-go theorems. The crucial mathematical
difference between these models and the modified de Broglie
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relation Eq. 4.10 is the presence of relative variables, k′ − k, in the
latter. Physically, this is directly related to our treatment of the
composite matter-geometry system as a QRF, in which the relative
variable x′ − x describe quantum fluctuations of the smeared spatial
points (Lake et al., 2019; Lake et al., 2020). This physical picture
leads directly to a well-defined EGUP since Eqs. 4.2 and 4.4, 4.7
and 4.11, 4.12 can also be combined, directly, to give (Lake et al.,
2020):

ΔΨXiΔΨPj ≳
ℏ
2
δi

j[1+ α0
2G
ℏc3
(ΔΨPj)

2 + 2η0Λ(ΔΨXi)2]. (4.16)

Crucially, it is straightforward to show that the smeared space
position and momentum operators Eqs. 4.13-4.14 obey the following
commutation relations:

[X̂i, P̂j] = i (ℏ+ β)δ
i
j�̂�, (4.17)

[X̂i, X̂j] = 0, [P̂i, P̂j] = 0. (4.18)

Since these are just a rescaled version of the canonical Heisenberg
algebra, with ℏ↦ ℏ+ β, we obtain the ‘expected’ quantum gravity
phenomenology, i.e., the GUP, EUP and EGUP Eq. 4.16, without
introducing any of the pathologies associated with standard
modified commutator models (Lake, 2019; Lake, 2020). The physical
interpretation of this rescaled algebra is subtle and the interested
reader is referred to the more in-depth and complete works (Lake,
2020; Lake et al., 2020) for further details.

Thepricewe have to pay for this neat solution is the introduction of
a second quantisation constant for geometry, β≪ ℏ, which is directly
related to the dark energy scale. With this in mind, we note that
the product of the position and momentum uncertainties in smeared
space, ΔΨXiΔΨPj in the EGUP Eq. 4.16, is minimized when (see
(Lake et al., 2019) for details):

Δψx
′i = √ℏ

2
Δgx
′i

Δgp
′
i
, Δψp

′
j = √
ℏ
2

Δgp
′
j

Δgx
′j . (4.19)

For the minimum values given by Eq. 4.7 this yields

ΔΨX ≃ lΛ ≔√lPlldS ≃ 0.1mm, cΔΨP ≃mΛc2 ≔√mPlmdSc
2 ≃ 10−3eV,

(4.20)

where we have neglected to label dimensional indices. The
corresponding energy density is

EΨ ≃
cΔΨP
(ΔΨX)3

≃
mΛc
l3Λ
≃ Λc4

G
≃ ρΛc2, (4.21)

so that any field which minimizes the smeared-space uncertainty
relations must, necessarily, possess an energy density comparable
to the present day dark energy density, ρΛ ≃ 10

–30 g cm−3. In this
scenario, the immense difference between the matter and geometry
quantisation scales may be regarded as ‘fundamental’, while the
immense difference between the Planck density and the observed
vacuum density is an emergent phenomenon, stemming, ultimately,
from the quantum properties of space-time (Lake et al., 2019;
Lake et al., 2020; Lake, 2021a).

5 Discussion

In the first part of this paper we outlined six major pathologies
that afflict models of generalised uncertainty relations (GURs) based
on modified commutation relations. The first two of these, namely,
violation of the equivalence principle and violation of Lorentz
invariance in the relativistic limit, have been addressed at length in
the existing literature (Hossenfelder, 2013; Hossenfelder, 2014; Tawfik
and Diab, 2014) and we summarised them only briefly. The third,
the so-called soccer ball problem for multi-particle states, has also
been considered in detail and a would-be solution was proposed in
(Amelino-Camelia, 2017). Though ingenious, and valid within its
domain of applicability, we showed that the solution put forward in
(Amelino-Camelia, 2017) does not apply, in general, to arbitrary GUR
models based on modifications of the canonical Heisenberg algebra.
The fourth and fifth problems, the reference frame-dependence of
the would-be ‘minimum’ length and the inherently classical nature
of the background geometry in modified commutator models, were
considered previously in (Lake, 2020), but have not, to the best of
our knowledge, been addressed elsewhere. Finally, we argued that
there is, in fact, a sixth problem that appears in modified commutator
models, which, remarkably, has not been considered at all the existing
literature.

This problem is nothing less than the mathematical inconsistency
of the modified phase space volumes from which modified
commutators, and hence GURs, are usually derived. The essence of
the problem is that the position-space coordinates Xi, corresponding
to the quantum uncertainty ΔXi, are assumed to represent global
Cartesians, Xi ∈ {X,Y,Z}. The associated distance and volume
measures in real space are then given by L = √X2 +Y2 +Z2 and
̃V= dPXdPYdPZ , respectively.This immediately rules out the existence

of modified X-space volumes and, hence, modified algebras leading to
EUP-type uncertainty relations. Likewise, ifXi ∈ {X,Y,Z} forma global
Cartesian coordinate system in real space then the conjugatemomenta
Pj ∈ {PX,PY,PZ}, corresponding to the quantum uncertainty ΔPj, must
form a global Cartesian coordinate system in momentum space.
The associated distance and volume measures are P = √P2

X + P
2
Y + P

2
Z

and ̃V = dPXdPYdPZ . This immediately rules out the existence of
modified P-space volumes and, hence, modified algebras leading
to GUP-type uncertainty relations. To make matters worse, the
usual approach in the literature is to assume the validity of the
standard X- and P-space distance measures while simultaneously
adopting modified volume forms. This procedure is mathematically
inconsistent.

If, instead, we choose to abandon the assumption that Xi and Pj
label global Cartesians in position and momentum space, respectively,
we are facedwith the following very difficult question:what, exactly, do
they represent? This question is exceedingly difficult because, unless
it can be answered concretely, abstract mathematical expressions
of the form ΔXiΔPj ≥ (ℏ/2)δ

i
jG(X̂, P̂) cannot be used to make any

valid physical predictions. We believe that this deceptively simple
observation represents the most serious objection to the modified
commutator paradigm yet raised in the literature and that, taken
together, the six pathologies described herein ought to signal the
‘death knell’ of modified commutatormodels.Though some have been
discussed only recently, all six were inherent in suchmodels from their
conception nearly three decades ago, and appear no closer to being
solved today than they were in the mid-1990s. Indeed, substantial
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evidence now suggests that at least some of these pathologies cannot
be consistently resolved.

We believe that this, accumulated evidence, should strongly
motivate the GUR research community to seek alternative
mathematical structures which are capable of generating the same
phenomenology, without the inconsistencies, ambiguities, and
headaches associated with modified commutation relations. To this
end we outlined one such formalsim, originally proposed in a series
of works coauthored by one of us (Lake, 2019; Lake et al., 2019;
Lake, 2020; Lake et al., 2020; Lake, 2021a; Lake, 2021b; Lake, 2022a;
Lake, 2022b; Lake et al., 2023), in the second part of this paper.
Whether, ultimately, this model has anything to do with physical
reality, or not, is perhaps less important than what is demonstrates:
that GUP, EUP and EGUP phenomenology can be obtained without
assuming modified commutation relations of a non-Heisenberg type.
This demonstrates, by means of an explicit example, the logical
independence of GURs and modified algebras. The latter certainly
do imply the former (though not, as we have seen, in a self-consistent
formulation) whereas the former do not, in fact, require them.This is a
common misconception in the existing literature, in which these two
distinct mathematical structures are often conflated. There is no one-
to-one correspondence between GURs and modified commutation
relations and the two are not logically equivalent. This opens up an
intriguing and exciting possibility, namely, that other mathematical
structures, not yet discovered, are also capable of generating GURs
without modified commutators. Potentially, these may tell us a great
deal about the structure of low-energy quantum gravity and, hence,
about the possible structure of a unified theory. We implore the
phenomenological research community to search for them, earnestly,
and to explore their implications as thoroughly as they have explored
the implications of modified commutation relations, over the past
quarter of a century.
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We present a simple gedanken experiment in which a compact object traverses
a spacetime with three macroscopic spatial dimensions and n compact
dimensions. The compactification radius is allowed to vary, as a function of
the object’s position in the four-dimensional space, and we show that the
conservation of gravitational self-energy implies the dimensional dependence
of the mass-radius relation. In spacetimes with extra dimensions that are
compactified at the Planck scale, no deviation from the four-dimensional
result is found, but, in spacetimes with extra dimensions that are much
larger than the Planck length, energy conservation implies a deviation from
the normal Compton wavelength formula. The new relation restores the
symmetry between the Compton wavelength and Schwarzschild radius lines
on the mass-radius diagram and precludes the formation of black holes
at TeV scales, even if large extra dimensions exist. We show how this
follows, intuitively, as a direct consequence of the increased gravitational
field strength at distances below the compactification scale. Combining these
results with the heuristic identification between the Compton wavelength
and the minimum value of the position uncertainty, due to the Heisenberg
uncertainty principle, suggests the existence of generalised, higher-dimensional
uncertainty relations. These relations may be expected to hold for self-
gravitating quantum wave packets, in higher-dimensional spacetimes, with
interesting implications for particle physics and cosmology in extra-dimensional
scenarios.
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1 Introduction

For over 40 years, models with compact extra dimensions have
attracted a great deal of attention in the theoretical physics literature.
Much of this interest was motivated by superstring theory, which
is only consistent in ten spacetime dimensions (Green et al., 1988a;
Green et al., 1988b), requiring six space-like dimensions to be curled
up on scales that make them inaccessible to current high-energy
experiments. Theoretically, the compactification scale may be as low
as the Planck length, placing it forever beyond the reach of terrestrial
particle physics, but models with effective compactification scales
as high a millimetre have also been proposed (Antoniadis et al.,
1998; Arkani-Hamed et al., 1998). Prior to the start-up of the Large
Hadron Collider (LHC), in 2010, interest in the phenomenology
of higher dimensional models reached an all-time high. It peaked
again following beam upgrades in 2015, but, since then, has been in
decline.

In the heady days of the late nineteen-nineties and the
first 2 decades of the 21th century, it was hoped, and, indeed,
argued persuasively in the scientific literature, that the TeV scale
experiments soon to be conducted at CERN would enable the direct
detection of compact dimensions with length scales down to ∼10−19

m. It was claimed that these, so-called ‘large’ extra dimensions,
could induce the formation of microscopic black holes (Arkani-
Hamed et al., 1999; Bleicher et al., 2011; Khachatryan et al., 2011;
Kiritsis and Taliotis, 2011; Bellagamba et al., 2012; Mureika et al.,
2012; Park, 2012; Alberghi et al., 2013; Nicolini et al., 2013; Taliotis,
2013; Torres et al., 2013; Winstanley, 2013; Belyaev and Calmet,
2015; Hou et al., 2015; Sokolov and Pshirkov, 2017), also known as
primordial black holes (PBH), in reference to their cosmic cousins
(Carr, 2005; Carr and Kuhnel, 2020; Carr et al., 2021; Green and
Kavanagh, 2021; Escrivà et al., 2022; Friedlander et al., 2022). These
claims even attracted considerable attention in the popular press
(American Physical Society, 2008; NASA, 2008; New York Times,
2008; BBC, 2013; Huffington Post, 2014; Forbes, 2016).

The argument behind this assertion was straightforward and
reasonable. It is well known that the radius of an uncharged and
non-spinning (Schwarzschild) black hole depends, not only on
its mass, but also on the dimensionality it of the spacetime it
inhabits. The higher-dimensional Schwarzschild radius varies as
RS ∝M

1
1+n , where n is the number of space-like extra dimensions,

over and above the three Hubble scale dimensions that make up
the macroscopic Universe (Weinberg, 2008). Thus, assuming that
the usual mass-dependence of the Compton wavelength, RC ∝M−1,
remains unchanged in the presence of the compact space, the
intersection between RS and RC occurs close to the critical values

Rcrit = (
ℏG4+n

c3
)

1
2+n
, Mcrit = (

ℏ1+nc1−n

G4+n
)

1
2+n
. (1)

For n ≥ 0, these expressions serve as the definitions of the
Planck length, and mass, respectively (Horowitz, 2012). Since,
in spacetimes with n compact dimensions, the four-dimensional
Newton’s constant is related to its higher-dimensional counterpart,
and to the compactification radius RE, via (Maartens and Koyama,
2010)

G4+n = G4R
n
E, (2)

it follows that, for sufficiently large RE, the mass-energy needed
to create a black hole may be brought within the TeV range of the
LHC.

More recently, new phenomenological models have been
proposed, in which the possible dimensional dependence of the
Compton wavelength has been explored (Lake and Carr, 2016;
Carrr, 2018; Lake and Carr, 2018; Carr, 2022), via so-called black
hole–uncertainty principle (BHUP) correspondence, which is also
referred to as the Compton–Schwarzschild correspondence in the
literature (Carr et al., 2011; Carr et al., 2015; Carr, 2016; Lake and
Carr, 2015; Singh, 2017; Singh, 2018; da Silva and Silva, 2022).
This modification alters the intersection with the Schwarzschild
radius, and is capable of restoring complete symmetry to the (M,R)
diagram, pushing the threshold for black hole formation back
up to the four-dimensional Planck mass, MPl = √ℏc/G4. However,
despite the various arguments used to justify these models (Lake
and Carr, 2016; Carrr, 2018; Lake and Carr, 2018; Carr, 2022), the
proposed dimensional dependence lacks a clear physicalmotivation.
In this work, we motivate them in a more direct way, by outlining
a clear physical mechanism that is capable of altering the mass-
radius relation of any compact object, including that of fundamental
particles.

The structure of this paper is as follows. In the main body of
the work, Sec. II, we present a simple gedanken experiment in a
hypothetical Universe with three macroscopic spatial dimensions
and n compact extra dimensions. The compactification radius is
allowed to vary as a function of position in the four-dimensional
subspace, which is divided into three regions. In the first region, the
extra dimensions are compactified at the four-dimensional Planck-
scale, RPl = √ℏG/c3, while in the third they are compactified at
a much larger radius, RE > RPl. The second region, in which the
compactification scale grows monotonically, interpolates smoothly
between the other two. We then consider a compact object, which
passes from region 1 to region 3, and impose the conservation of
gravitational self-energy. Roughly speaking, since gravity becomes
stronger on scales RPl < R < RE, as we move through region 2, the
radius of the object must increase, in order to keep its gravitational
self-energy constant. Furthermore, since rest mass is conserved
during this transition, it follows that the mass-radius relation must
be modified.

In this study, we perform explicit calculations by assuming that
the gravitational potential of the object can be approximated by the
weak field (Newtonian) limit. However, despite this, our analysis
correctly reproduces well-known results for strongly-gravitating
objects, such as higher-dimensional black holes and neutron stars,
up to numerical factors of order unity, which is consistent with
the non-relativistic approximation. This gives us confidence in the
method, whichwe then extend to the study of fundamental particles,
for which the non-relativistic approximation is undoubtedly
valid.

We verify that, beginning with an effectively four-dimensional
black hole in region 1, we obtain the correct (order of magnitude)
expression for the higher-dimensional Schwarzschild radius in
region 3. This gives us confidence in our procedure, which we
note is agnostic to the initial mass-radius relation of the object.
We then consider a fundamental particle, by beginning instead
with the standard formula for the Compton wavelength, and obtain
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an effective, higher-dimensional Compton radius, in the third
region. Its implications for the (non-) formation of black holes
at the LHC, as well as for the quantum mechanical uncertainty
relations of self-gravitating wave packets in higher-dimensional
spacetimes, are briefly discussed. We summarise our conclusions,
and consider the prospects for future work on this model, in
Sec. III.

2 The gedanken experiment

Let us assume, for simplicity, that the compact object we
consider is spherically symmetric. In region 1, its internal energy is,
therefore

E =Mc2 − α4
G4M

2

R
, (3)

where α4 is a numerical constant determined by the mass profile
of the sphere, M(r). For example, α4 = 3/5 for a sphere of uniform
density and should be of order unity for all non-pathological profiles
(Weisstein et al., 1973). Here, R denotes the effective macrosopic
radius of the object and Eq. 3 holds for all R ≳ RE = RPl. We note
that distances below this scale cannot be probed directly, by either
black holes or fundamental particles, due to the intersection of
the Compton wavelength and Schwarzschild radius lines near the
Planck point on the (M,R) diagram (Lake and Carr, 2015; Carr,
2016).

Requiring E ≤ 0, which implies a bound state, yields

R ≤ α4
G4M
c2
. (4)

For α4 = 2, we then recover the condition

R ≤ RS (M) =
2G4M

c2
, (5)

where RS is the four-dimensional Schwarzschild radius. Thus, if
Eq. 5 is satisfied, the object is a black hole in the first region.
For α4 = 9/4, an analogous condition implies violation of the
Buchdahl inequality (Buchdahl, 1959) and the sphere may be
viewed as a compact star undergoing collapse. Conversely, for E > 0,
R > (9/4)G4M/c

2, the object is stable against its own self-gravity.
Setting R = RC, where

RC (M) =
ℏ

Mc
(6)

is the standard Compton radius (Rae and Napolitano, 2015), Eq. 3
implies that a fundamental particle is stable against gravitational
collapse (E > 0) when

M ≲MPl, RC (M) ≳ RPl, (7)

where

RPl = √
ℏG4

c3
≃ 10−35 m, MPl = √

ℏc
G4
≃ 10−8 kg. (8)

Equation 7 justifies our previous assertion that Eq. 3 holds, for
R ≳ RPl, when the extra dimensions are compactified at the
(four-dimensional) Planck scale. For fundamental particles, this

corresponds to the region M ≲MPl, whereas, for black holes, it
corresponds to

M ≳MPl, RS(M) ≳ RPl. (9)

The intersection of the standard Compton line and the four-
dimensional Schwarzschild line near the Planck point then
precludes the existence of any fundamental object with R(M) ≲ RPl.

In the third region, the internal energy of the object is given by
Eq. 3, for R > RE, where RE > RPl is the compactification radius, but
by

E =Mc2 − α4+n
G4+nM

2

R1+n (10)

for RPl ≤R ≤ RE. Here,R denotes the (4+ n)-dimensional radius in
region 3 and α4+n is a numerical constant determined by the mass
profile of the object in the higher-dimensional space. For simplicity,
we assume that all n extra dimensions are compactified on the same
scale.The relation between G4 and the higher-dimensional Newton’s
constant, G4+n, is given by Eq. 2 (Maartens and Koyama, 2010).

By choosing appropriate values of α4+n, we may recover
the (4+ n)-dimensional analogues of the Buchdahl bound
(Burikham et al., 2015; Burikham et al., 2016) and the
Schwarzschild radius (Horowitz, 2012), from the energy conditions
E < (>)0. In any number of dimensions, the Buchdahl radius is
proportional to the Schwarzschild radius, and, neglecting numerical
factors of order unity, the latter may be written as

RS (M) ≃ (
G4+nM

c2
)

1
1+n
≃ (RS (M)R

n
E)

1
1+n . (11)

where RS(M) again denotes the four-dimensional Schwarzschild
radius, as in Eq. 5.

Let us now consider a non-relativistic, self-gravitating sphere,
with arbitrary mass-radius relation, passing from region 1 to region
3. Furthermore, let us assume that, whatever its mass-radius relation
in the four-dimensional space of the first region, the sphere remains
small enough to be effectively (4+ n)-dimensional in the third.Thus,
in region 1, its radius in the three macroscopic spatial dimensions is
R(M) ≳ RPl and, in region 3, its higher-dimensional radius satisfies
RPl ≲R(M) ≲ RE. If its internal energy remains unchanged, energy
conservation then implies

R (M) ≃ (R (M)Rn
E)

1
1+n . (12)

again ignoring numerical factors of order unity, which is consistent
with the non-relativistic approximation. Note that we again use the
calligraphic font, R, to denote radii in (4+ n) dimensions, and the
normal font R to denote four-dimensional radii.

Substituting R(M) ≃ RS(M) 5) into (12), we recover the correct
expression for the higher-dimensional Schwarzschild radius,RS(M)
(11).Next, we note that, ifRPl <RS(M) < RE, thenRPl < RS(M) < RE.
It follows, immediately, that RS(M) > RS(M). This result can be
understood intuitively as follows. Since, in the third region, the
gravitational force is stronger than in the first on scales R < RE,
the radius of the black hole can neither decrease, nor remain the
constant, without increasing its internal energy. If this energy is
conserved, the black hole must increase in size and the (4+ n)-
dimensional Schwarzschild radius, RS(M), must be larger than the
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four-dimensional radius, RS(M). The relation between the two is
fixed, by energy conservation, according to Eq. 11,

Clearly, we may repeat a similar argument for stable compact
objects obeying the four-dimensional Buchdahl bound in region
1. The same compact spheres then obey the higher-dimensional
Buchdahl bound in region 3. Hence, although the argument
presented above is simple and heuristic, it allows us to recover
the same relations (to within an order of magnitude) as those
obtained by exactly solving the gravitational field equations in
(4+ n)-dimensional spacetime (Horowitz, 2012; Burikham et al.,
2015; Burikham et al., 2016).

However, its greatest advantage is that is agnostic to the mass-
radius relation of the compact object. We may therefore apply it to
fundamental particles, as well as to black holes and conventional
fluid spheres. Thus, substituting R(M) = RC(M) ∝M−1 6) into
Eq. 12, we obtain the higher-dimensional Compton wavelength,

RC (M) ≃ (RC (M)R
n
E)

1
1+n ≃ R*(

MPl

M
)

1
1+n
. (13)

where

R* = (RPlR
n
E)

1
1+n , (14)

so that RPl < R* < RE. It may be verified that the (4+ n)-
dimensional Compton and Schwarzschild lines intersect at the point
(M,R) ≃ (MPl,R*), so that the production of PBHs still requires
energies of the order of the Planck energy (Lake and Carr, 2016;
Carrr, 2018; Lake and Carr, 2018; Carr, 2022).

This result also be understood, intuitively, in the same way as
our heuristic derivation of the higher-dimensional Schwarzschild
radius. Namely, if the rest mass of the particle remains constant as it
traverses the path from region 1 to region 3, its radius cannot remain
constant, or decrease, without increasing its gravitational binding
energy. Therefore, if its total internal energy remains constant, its
radius must expand as it enters the higher-dimensional region, in
which gravity is stronger, on scalesR < RE, than in four-dimensional
space. Clearly, this relation must also hold for particles that were
always confined to region 3.

To aid visualisation, a schematic representation of the gedanken
experiment set up is given in Figure 1. In Figure 2A, the key
length and mass scales of the standard scenario, corresponding to
Eq. 1, are depicted on the (M,R) diagram, while the key scales for
our scenario are depicted in Figure 2B. The important difference
between the two scenarios is that the former does not account
for the self-gravitational energy of the particle, whereas the latter
does, to within the accuracy permitted by the non-relativistic, weak-
field approximation, which we also apply to micro-black holes.
Maintaining this approximation, we may apply the usual, heuristic
identification between the Compton wavelength formula and the
limiting values of the Heisenberg uncertainty principle (HUP),

(ΔX)min ≃RC (M) , (ΔP)max ≃Mc, (15)

giving

ΔX ≳ R*(
MPlc
ΔP
)

1
1+n
. (16)

We recall that, for ΔP ≳Mc, fundamental particles have sufficient
energy to undergo pair-production, in interactions that conserve

FIGURE 1
Schematic illustration of the three-part universe in our gedanken
experiment. To enable the schematic representation of
(3+n)-dimensional space, neglecting the time dimension of the
(4+n)-dimensional spacetime, the three large dimensions are
depicted as a two-dimensional plane and the n compact directions
are depicted as a single extra dimension, extending into the
z-direction of the diagram. Furthermore, since Planck-sized extra
dimensions do not contribute correction terms, either to the
higher-dimensional Schwarzschild radius, or to the Compton
wavelength, we neglect them in this illustration. Hence, the region on
the far left-hand side represents (3+n)-dimensional space, with n
dimensions compactified at the Planck scale, while the region on the
far right-hand side represents a space with three large dimensions and
n extra dimensions, compactified on some scale RE > RPl. The central
region interpolates smoothly between the two, so that the
gravitational radius of the compact body changes, according to the
following scheme: In region 1 (left), the extra dimensions are
compactified at the (four-dimensional) Planck scale and both black
holes and fundamental particles are effectively four-dimensional, even
in the presence of the higher-dimensional space. In region 3 (right),
the compactification radius is much larger than the Planck length and
all objects are effectively (4+n)-dimensional, on scales smaller than
the compactification radius. Conservation of energy implies that,
whatever the mass-radius relation of the object in the first region,
R(M), its radius in the third region, R(M), must be larger: R(M) > R(M).
This is due to the increased strength of the gravitational field in higher
dimensions. For black holes, RS ∝M in region 1 and RS ∝M

1
1+n in

region 3. Applying the same logic to the gravitational radius of
fundamental particles, RC ∝M−1 in region 1, yielding RC ∝M−

1
1+n in

region 3, due to the conservation of gravitational self-energy.

the relevant quantum numbers (Peskin and Schroeder, 1995;
Donoghue et al., 2014), yielding the limits in Eq. 15. These, in turn,
correspond to the dimensionally-dependent uncertainty relation,
Eq. 16.

Equation 16 may be expected to hold for self-gravitating wave
packets, on scales R < RE, in spacetimes with compact extra
dimensions. By contrast, on scales R > RE, or when RE ≃ RPl, the
standard HUP,

ΔX ≳
RPlMPlc

ΔP
, (17)

still holds, where we have rewritten ℏ = RPlMPlc.
Finally, before concluding this section, we note that, although

Eq. 16 represents a form of generalised uncertainty principle,
which is valid for self-gravitating objects in higher-dimensional
spacetimes, this is not the same as the ‘generalised uncertainty
principle’ (GUP), commonly referred to in the quantum gravity
literature (see, for example (Adler et al., 2001; Maziashvili, 2006;
Xiang and Wen, 2009; Lake et al., 2019; Sakalli and Kanzi, 2022;
Lake et al., 2023), and references therein). In fact, the derivation of
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FIGURE 2
Figure 2A (left panel) shows the standard Compton line, RC ∝M−1, and the Schwarzschild radius lines for n = 0, n = 1, n = 2 and n = 3. These lines

intersect near the higher-dimensional Planck point, (M,R) = ((M2
PlM

n
E)

1
2+n , (R2

PlR
n
E)

1
2+n ) ), where RPl and MPl denote the four-dimensional Planck scales,

RE > RPl is the compactification radius, and ME = ℏ/(REc) <MPl is the associated mass scale. The points of intersection are equivalent to the critical scales
shown in Eq. 1, due to Eq. 2; Figure 2B (right panel) shows the modified scenario, in which we account for the increased self-gravity of the quantum
particle in the presence of the extra dimensions, yielding RC ∝M−

1
1+n . The Compton and Scwarzschild lines now intersect at the point (M,R) = (MPl,R*),

where R* is defined in Eq. 14. The restored symmetry of the mass-radius diagram precludes the formation of black holes at TeV scales, even if large
extra dimensions exist. These figures are reproduced from (Lake and Carr, 2018), with permission.

Eq. 16 is based on two fundamental assumptions, namely, a) that the
gravitational self-energy of the quantum wave packet is conserved
in the presence of extra dimensions, and b) that the standard HUP
holds in their absence.

By contrast, the usual GUP is derived, via a gedanken
experiment in four-dimensional spacetime, by considering the
gravitational interaction between a measured particle and a probing
photon. This gives rise to a correction term, to the position
uncertainty Δx, which is proportional to the effective four-
dimensional Schwarzschild radius of the wave packet,RS ≃ G4Δp/c3,
yielding

Δx ≳ ℏ
2Δp
+

2G4

c3
Δp, (18)

where α again denotes a numerical constant of order unity.
Assuming, instead, that the GUP (18) holds in a four-dimensional
Universe, in place of the HUP (17), we may expect a unification of
the Compton and Schwarzschild lines, of the form

RC/S ≃
ℏ

2Mc
+

2G4

c2
Mc, (19)

as predicted by the so-called BHUP correspondence, mentioned in
the Introduction (Carrr, 2018; Lake and Carr, 2018; Carr, 2022; Lake
and Carr, 2016; Carr et al., 2011; Carr et al., 2015; Carr, 2016; Lake
and Carr, 2015; Singh, 2017; Singh, 2018; da Silva and Silva, 2022).
Combing these expressions with the arguments presented above
yields even richer phenomenology: rather than simply restoring
symmetry to the (M,R) diagramhigher dimensions, itmay provide a
way to unify the Compton and Schwarzschild lines, even in higher-
dimensional spacetimes. Such an analysis lies outside the scope of
the present, preliminary study, and is left to a future work.

3 Discussion

We have presented a simple gedanken experiment in a
hypothetical spacetime with three macroscopic spatial dimensions

and n compact extra dimensions. The compactification radius was
allowed to vary as a function of spatial position, in the four-
dimensional submanifold, which is divided into three regions. In the
first region, the extra dimensions are Planck-scale, while in the third
they are compactified at a much larger radius. The second region, in
which the compactification scale grows monotonically, interpolates
smoothly between the other two.We considered a spherical compact
object that traverses a path from region 1 to region 3, and imposed
the conservation of gravitational self-energy.

If the object is a black hole in the first region, withR∝M, energy
conservation alone yields the correct expression for the higher-
dimensional Schwarzschild radius, R∝M

1
1+n , in the third. However,

this procedure is agnostic to the mass-radius relation of the object.
Hence, considering a fundamental particle instead of a black hole, we
instead imposed the standard formula for the Compton wavelength,
R∝M−1, in the first region. Conservation of energy then implies the
existence of a higher-dimensional Comptonwavelength,R∝M−

1
1+n ,

in the third region. Clearly, this relation must also hold for particles
that have always been confined to region 3.

The new relation restores the symmetry between the
Compton and Schwarzschild lines on the mass-radius diagram,
in higher-dimensional spacetimes, and precludes the formation
of black holes at TeV scales, even if large extra dimensions
exist. We have shown how this follows, intuitively, as a direct
consequence of the increased gravitational field strength at
distances below the compactification scale. Combining these results
with the usual, heuristic identification between the Compton
wavelength and the minimum position uncertainty allowed by the
Heisenberg uncertainty principle, ΔX ≳ RC (ΔP ≲Mc), suggests
the existence of generalised, higher-dimensional uncertainty
relations.

Indeed, the possible dependence of the uncertainty relations on
the dimensionality of the spacetime has already been explored in
the literature, in the context of the so-called black hole-uncertainty
principle (BHUP) correspondence (Lake and Carr, 2016; Carrr,
2018; Lake and Carr, 2018; Carr, 2022). If the usual uncertainty
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relation-Compton wavelength correspondence is still required to
hold, in a higher-dimensional context, then the dimensional-
dependence of the Compton wavelength is also (theoretically)
necessary.

The difference between this and previous work is that, here, we
present a clear physical argument for why this change should occur,
and show, explicitly, that the effects of self-gravitation on quantum
wave packets are precisely those required to maintain the, up to
now conjectured, higher-dimensional BHUP correspondence. This
is also known as the Compton-Schwarzschild correspondence, in
some of the previous literature (Carr et al., 2011; Carr et al., 2015;
Carr, 2016; Lake and Carr, 2015; Singh, 2017; Singh, 2018; da Silva
and Silva, 2022).

In the present, preliminary analysis, we assumed throughout
that the gravitational potential of the compact sphere can be well
approximated by theNewtonian regime.Though this is undoubtedly
a limitation of the current work, we were still able to recover, to
within numerical factors of order unity, the well-known expressions
for relativistic objects, such as higher-dimensional black holes and
neutron stars (Burikham et al., 2015; Burikham et al., 2016). This
strongly suggests that the dimensionally-dimensional uncertainty
relations, which we derive for self-gravitating wave packets, are
robust, since the weak field approximation is undoubtedly valid for
fundamental particles.

As extensions of the current analysis, we should consider
relativistic corrections, as well as the incorporation of modified
uncertainty principles, obtained from the quantum gravity
literature, such as the generalised uncertainty principle (GUP)
(Adler et al., 2001; Maziashvili, 2006; Xiang and Wen, 2009;
Lake et al., 2019; Sakalli and Kanzi, 2022; Lake et al., 2023),
extended uncertainty principle (EUP), and extended generalised
uncertainty principle (EGUP) (Bolen and Cavaglia, 2005; Bambi
and Urban, 2008; Park, 2008). Furthermore, in order to consistently
incorporate the latter, we must also consider the conditions for the
formation of gravitational bound states, in higher dimensions, in
the presence of a positive cosmological constant (Burikham et al.,
2015; Burikham et al., 2016).

Previous studies suggest that these modifications may give
rise to a unified description of the Compton and Schwarzschild
radii, linking the properties of black holes and fundamental
particles in higher-dimensional scenarios (Lake and Carr, 2016;
Carrr, 2018; Lake and Carr, 2018; Carr, 2022). The present
work represents a small, preliminary step towards understanding
the physical mechanism behind this potentially important
correspondence, which may have important phenomenological
implications for black holes, cosmology, and high-energy
particle physics, beyond the non-production of PBH at TeV
scales.
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A Corrigendum on

Dimensionally-dependent uncertainty relations, or why we (probably)
won’t see micro-black holes at the LHC, even if large extra dimensions
exist

by Lake MJ, Liang S-D and Watcharapasorn A (2023). Front. Astron. Space Sci. 10:1155667. doi:
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In the published article, there were three errors. Equations 11–13 contained typos, which
caused them to be mathematically incorrect.

Corrections have been made to Section 2: Equation 11 previously stated

RS (M) ≃
G4+nM

c2
≃ (RS (M)RE)

1
1+n . (1)

The corrected formula is given as follows:

RS (M) ≃ (
G4+nM

c2
)

1
1+n
≃ (RS (M)R

n
E)

1
1+n . (2)

Equation 12 previously stated

R (M) ≃ (R (M)RE)
1

1+n . (3)

Frontiers in Astronomy and Space Sciences 01 frontiersin.org68

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1198444
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1198444&domain=pdf&date_stamp=2023-05-05
mailto:matthewjlake@narit.or.th
mailto:matthewjlake@narit.or.th
mailto:stslsd@mail.sysu.edu.cn
mailto:stslsd@mail.sysu.edu.cn
mailto:anucha@stanfordalumni.org
mailto:anucha@stanfordalumni.org
https://doi.org/10.3389/fspas.2023.1198444
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198444/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198444/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198444/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198444/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198444/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1198444/full
https://doi.org/10.3389/fspas.2023.1155667
https://doi.org/10.3389/fspas.2023.1155667
https://doi.org/10.3389/fspas.2023.1155667
https://doi.org/10.3389/fspas.2023.1155667
https://doi.org/10.3389/fspas.2023.1155667
https://doi.org/10.3389/fspas.2023.1155667
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Lake et al. 10.3389/fspas.2023.1198444

The corrected formula is given as follows:

R (M) ≃ (R (M)Rn
E)

1
1+n . (4)

Equation 13 previously stated

RC (M) ≃ (RC (M)RE)
1

1+n ≃ R*(
MPl

M
)

1
1+n
. (5)

The corrected formula is given as follows:

RC (M) ≃ (RC (M)R
n
E)

1
1+n ≃ R*(

MPl

M
)

1
1+n
. (6)

The authors apologize for these errors and state
that they do not change the scientific conclusions of

the article in any way. The original article has been
updated.
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New deformed Heisenberg
algebra from the μ-deformed
model of dark matter

A. M. Gavrilik1*, I. I. Kachurik2 and A. V. Nazarenko1

1Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine, 2Khmelnytskyi National University,
Khmelnytskyi, Ukraine

Recently, the μ-deformation-based approach to modeling dark matter, which
exploits μ-deformed thermodynamics, was extended to the study of galaxy halo
density profile and of the rotation curves of a number of (dwarf or low brightness)
galaxies. For that goal, μ-deformed analogs of the Lane–Emden equation (LEE)
have been proposed, and their solutions describing density profiles obtained.
There are two seemingly different versions of μ-deformed LEEwhich possess the
same solution, and sowe deal with their equivalence. From the latter property we
derive new, rather unusual, μ-deformed Heisenberg algebra (HA) for the position
and momentum operators, and present the μ-HA in few possible forms (each
one at μ→ 0 recovers usual HA). The generalized uncertainty relation linked
with the new μ-HA is studied, along with its interesting implications including
the appearance of the quadruple of both maximal and minimal lengths and
momenta.

KEYWORDS

deformed BEC model of dark matter, deformed lane-emden equation, deformed
heisenberg algebra, generalized uncertainty relation, maximal/minimal length
uncertainty

1 Introduction

The suggestion of the existence of minimal nonzero (uncertainty of) length linked with
generalized uncertainty principle (GUP) or relation (GUR) has been advanced in the context
of string theory and quantum gravity (Gross and Mende, 1988; Amati et al., 1989; Adler
and Santiago, 1999; Scardigli, 1999; Maziashvili, 2006), see also (Chang et al., 2011) and the
reviews (Garay, 1995;Hossenfelder, 2013). It was shown to follow frommodified or deformed

Extension (Kempf et al., 1995) of the Heisenberg algebra (HA). It is worth to mention
that the concept of maximum observable momenta can play as well important role, see,
e.g., (Ali et al., 2009). Such a quantity was predicted, in particular, within the doubly special
relativity theory suggesting rather simple (with terms linear and quadratic in momentum)
modification of the right hand side of commutators (Magueijo and Smolin, 2002; Magueijo
and Smolin, 2005). Further it became clear that besides such a minimal extension of the
original HA, a lot of generalizations are possible, suggesting diverse ways to generalize
(or deform) the HA. As a tools to classify diverse forms of deformed HA, the concept of
deformation function(s) is of importance, see, e.g., (Saavedra and Utreras, 1981; Jannussis,
1993; Gavrilik et al., 2010; Dorsch and Nogueira, 2012; Maslowski et al., 2012; Gavrilik and
Kachurik, 2016a). Clearly, the choice of such function must determine the corresponding
GUR. As usual, most of the authors deal with position-momentum commutation relations
of deformed HA that involve particular function of X, p and deformation parameter(s) in
its right hand side (Jannussis, 1993; Dorsch and Nogueira, 2012; Maslowski et al., 2012).
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It is also possible that both the right and left hand sides of defining
commutation relation are appropriately deformed (Gavrilik and
Kachurik, 2012), although such approach may be overlapping with
the case of standard commutator and the terms containing XP
and PX in its right-hand side as it was considered in (Quesne and
Tkachuk, 2007).

In the present paper, a special form of deformed HA will
be derived in the context of the so-called μ-deformation based
approach aimed to model (Gavrilik et al., 2018; Gavrilik et al., 2019)
basic properties of dark matter that surrounds dwarf galaxies, and
its consequences analyzed.

The case of GUR related with the minimal (ΔX)min is the
best known and well studied one. In relation with this, due to
the conjugated roles of position and momentum, the concept of
(ΔP)min has appeared. As it was demonstrated in (Kempf, 1997), a
single theory—single extended or generalized HA (GHA) and the
corresponding GUR do exist which can jointly accommodate the
both special quantities, (ΔX)min and (ΔP)min.

Then, an interesting question arises whether it is possible that
the opposite concept of maximal uncertainties for the momentum
and/or the position does exist. Quite recently, it was shown in
some papers that such a possibility indeed can be realized (Pedram,
2012; Perivolaropoulos, 2017; Bensalem and Bouaziz, 2019; Skara
and Perivolaropoulos, 2019; Hamil and Lutfuoglu, 2021; Bensalem
and Bouaziz, 2022; Pramanik, 2022). Moreover, as a generalization
of the already mentioned unified treatment of A. Kempf, in
the work (Perivolaropoulos, 2017) of L. Perivolaropoulos, it was
explicitly shown that one can provide a theory (based on appropriate
generalization of HA) which incorporates the whole quadruple of
(ΔX)min, (ΔP)min, (ΔP)max, and (ΔX)max.

Usual treatments in the most of papers are in a sense model-
independent, implying a kind of universality. That means, physical
meaning of (ΔX)min, (ΔP)min, (ΔP)max, and (ΔX)max is rather
universal and depends on Planck length or its inverse, i.e., Planck
energy scale (Planck mass).

On the contrary, our treatment is based on (related with) special
deformedHAdeduced in the framework of particularmodel of dark
matter. It is remarkable that all the four quantities: (ΔX)min, (ΔP)min,
(ΔP)max, and (ΔX)max do appear. So it is clear and natural that the
physical meaning of this quadruple is tightly linked with physics of
the model, i.e., with properties of the halo of DM hosted by dwarf
galaxies.

For our case (connection with DM) some motivation was due
to the work (Perivolaropoulos, 2017), since therein the cosmology-
related uncertainty relation was explored, along with clear meaning
of maximal length: as suggested in (Perivolaropoulos, 2017), this
quantity can be naturally interpreted as cosmological horizon.

The uncertainty relation in its initial form due to Heisenberg
is linked with the standard commutation relation and is shared by
different states. Unlike, for all the deformed versions of HA, explicit
dependence of GUR on particular state does appear—for deformed
oscillators this was noticed in the pioneer papers (Biedenharn, 1989;
Macfarlane, 1989). In our present paper, just this fact/property is in
the focus and exploited to full extent.

Unlike the approach perceived in (Harko, 2011) and some other
papers also exploring galaxy rotation curves with the use of the well-
known Lane–Emden equation (LEE), in our line of research we deal
with the (μ-)Bose-condensate model of dark matter (Gavrilik et al.,

2018), and with such tool as μ-deformed analogs (Gavrilik et al.,
2019) of LEE. In general, as it is well-known, deformation of an
object under study is not unique, and in (Gavrilik et al., 2019) we
encountered two different possible forms of μ-deformed LEE, with
the corresponding different sets of solutions, one of which being the
deformed function sinμ(kr)/(kr). In the present work, the third form
of LEE will be introduced that nevertheless possesses the indicated
solution as well. Just from the requirement of equivalence of two
seemingly different deformed versions of LEE, the new μ-deformed
HA can be deduced and its basic properties and consequences
explored.

Thepaper is structured as follows. In Section 2, some basics of μ-
deformation and μ-deformed calculus are presented. In Section 3.1
we describe relevant deformed analogs of LEE and, from the
condition of their equivalence, obtain the μ-analog of HA which
is the central object of this work. The corresponding GUR which
involves the parameter μ is derived, and its main properties are
explored in Section 3.2, including the appearance of minimal and
maximal uncertainties of both position andmomentum. Section 3.3
is devoted to discussion of implications of these quantities for dark
matter. The paper is ended with concluding remarks.

2 Deformed functions and calculus

2.1 Basis functions

The so-called μ-bracket of a number or operator X,

[X]μ ≡
X

1+ μX
; [X]μ→ X, if μ→ 0, (1)

and the related μ-deformed oscillator have been introduced
3 decades ago in (Jannussis, 1993). More recently, there appeared
some papers (Gavrilik et al., 2010; Gavrilik and Mishchenko, 2012;
Gavrilik et al., 2013) in which the μ-deformation based approach
was initiated and developed.

For our purposes we define the μ-deformed trigonometric
function (see (Gavrilik et al., 2013; Gavrilik et al., 2019) and
references therein) as

sinμx =
∞

∑
n=0
(−1)n x2n+1

[2n+ 1]μ!
, cosμx =

∞

∑
n=0
(−1)n x2n

[2n]μ!
, (2)

where [n]μ! = [1]μ [2]μ… [n]μ. Clearly, at μ→ 0 one recovers
customary sine and cosine.

For our purposes, we introduce the μ-deformed analogs of
spherical Bessel functions, namely,

j(μ)0 (x) =
sinμx

x
, y(μ)0 (x) =

cosμx
x
. (3)

At μ = 0 these reduce to the familiar Bessel functions.
The physical motivation for introducing these functions is two-

fold: the first one in Eq. (3) describes the density profile of the
dark matter halo and also leads to the rotation curves within the
μ-deformed extension (Gavrilik et al., 2019) of the Bose-condensate
model, while both functions, taken jointly, are of importance
for constructing the representation space of the position and
momentum operators, see Sections 3.1–3.2 below.
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FIGURE 1
Basic μ-deformed trigonometric (A, B) and spherical (C, D) functions.

Since the applied deformation concerns mainly the basic
trigonometric functions, let us study sinμx and cosμx in
detail. Contracting the corresponding series to the Gaussian
hypergeometric function, we can then represent them in the analytic
form

sinμx = I(x,μ) sinφ (x) , cosμx = I(x,μ)cosφ (x) (4)

where

I(x,μ) ≡ (1+ μ2x2)−
1+μ
2μ , φ (x) ≡

1+ μ
μ

arctan(μx) . (5)

Therefore, in the case of μ-deformation, the main trigonometric
identity is written as follows:

sin2
μx+ cos

2
μx = I

2 (x,μ) , I(x,μ) ≤ 1. (6)

The behavior of the μ-deformed trigonometric and spherical
functions is shown in Figure 1.

In principle, it is possible to express the deformed trigonometric
functions in terms of the μ-deformed exponential function. The μ-
analogs of exponential and logarithmic functions are

eμ (x) = (1− μx)
− 1+μ

μ , lnμ (x) =
1
μ
(1− x−

μ
1+μ ), (7)

which give us the known functions at μ→ 0− due to the asymptotic
formulas:

e (x) = lim
n→∞
(1+ x

n
)

n
, ln (x) = lim

n→∞
n(x1/n − 1) . (8)

Note that the μ-deformed functions exhibit a non-trivial
property at μ > 0:

(eμ (x))
n = eμ(

1− (1− μx)n

μ
),

lnμ (x
n) =

1− (1− μlnμ (x))
n

μ
.

(9)

Focusing on the problems with spherical symmetry, we need to
define an inner product ⟨f|g⟩ in terms of which the real functions
u1(x) = j

(μ)
0 (x) and u2(x) = y

(μ)
0 (x) become orthonormal on finite

interval x ∈ [0; R(μ)]:

〈 f|g〉 = ∫
R(μ)

0
f* (x)g (x) wμ (x) dx, 〈ui|uj〉 = δi,j, (10)

where the asterisk means complex conjugation; the Latin indexes i,
j run from 1 to 2.

For the orthogonality of sinφ and cosφ on the interval
φ ∈ [0; π], we constitute ad hoc

wμ (x) dx =
2
π

x2I−2 (x,μ) dφ (x) , π = φ(R(μ)) , (11)

and obtain

wμ (x) =
2(1+ μ)

π
x2(1+ μ2x2)

1
μ , R(μ) = 1

μ
tan

μπ
1+ μ
, (12)

where R(μ) coincides with the first zero of sinμx.
Expanding these as.

wμ (x) =
2
π
x2[1+ (1+ x2)μ+(x2 + x4

2
)μ2 +O(μ3)] , (13)

R(μ) = π− πμ+(π+ π3

3
)μ2 +O(μ3) , (14)

We see that the known quantities are restored at μ = 0.
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TABLE 1 The μ-deformed derivatives.

f(x) D(μ)x f(x)

1 xn [n]μxn−1

2 eμ(px) peμ(px)

3 lnμ(x) (1+ μ− μ2)−1x−2+
1

1+μ

4 sinμ(x) cosμ(x)

5 cosμ(x) −sinμ(x)

6 j(μ)0 (x)
1+μ
1−μ

y(μ)0 (x) −
1−μ2x2

(1−μ)x
j(μ)0 (x)

7 y(μ)0 (x) − 1+μ
1−μ

j(μ)0 (x) −
1−μ2x2

(1−μ)x
y(μ)0 (x)

2.2 Deformed differential calculus

We would like to define the μ-deformed derivative D(μ)x with
respect to the positive variable x, and its inverse. Let the functions
f(x) and ϕ(x) admit expansion in the Taylor series and satisfy the
relation

D(μ)x f (x) = ϕ (x) . (15)

The actions of D(μ)x and antiderivative (D(μ)x )
−1

are respectively
given as.

ϕ (x) = d
dx
[ f (x) − x−

1
μ∫

x

0
f′ (s) s

1
μ ds] , (16)

f (x) = μx ϕ (x) +∫
x

0
ϕ (s) ds+ f (0) , (17)

Were the prime means ordinary differentiation.
We see that ϕ(x) = f′(x) at μ→ 0 due to vanishing (s/x)1/μ

for s < x. By definition, the derivative D(μ)x lowers the exponent
of the monomial xn by one, namely, D(μ)x xn = [n]μx

n−1. However,
the operator D(μ)x violates the Leibniz rule: D(μ)x ( f(x) g(x)) ≠
g(x)D(μ)x f(x) + f(x)D(μ)x g(x).

The μ-deformed derivatives of some functions are collected
in Table 1. To derive expressions 4–7, we have used the known
auxiliary integrals:

∫ sinp−1 x
{
{
{

sin ((p+ 1)x)

cos ((p+ 1)x)

}
}
}

dx = 1
p
sinp x
{
{
{

sin (px)

cos (px)

}
}
}
. (18)

On the base of relations 4–5 (not 6–7) in Table 1, we define the
Hermitian momentum operator ̂P as

̂P = − i
x
D(μ)x x, (19)

so that ⟨ui| ̂P|ui⟩ = 0, and ⟨u1| ̂P|u2⟩ = ⟨u2| ̂P
*|u1⟩ = i (see Eq. 10),

using the imaginary unit i. This operator will play an important role
in the study of the deformed Heisenberg algebra further on.

To demonstrate the action of ̂P on some functions, note that
̂Pxn = −i[n+ 1]μx

n−1 for n ≥ 0, and then

̂Pψp (x) = pψp (x) , ψp (x) =
eμ (ipx)

x
. (20)

In addition, we consider the radial part Δ(μ)r of μ-deformed
Beltrami–Laplace operator and its inverse (up to the additive
constant C ∼ f (0)).

Δ(μ)r f (r) ≡ 1
r2

D(μ)r (r2D
(μ)
r f (r)) , (21)

(Δ(μ)r )
−1

f (r) = μ2r2 f (r) + (1+ μ)∫
r

0
f (s) s ds

−
1− μ

r
∫

r

0
f (s) s2 ds+C. (22)

It is easy to verify for positive n that

Δ(μ)r rn = [n]μ ⋅ [n+ 1]μ rn−2;

(Δ(μ)r )
−1

rn = rn+2

[n+ 2]μ ⋅ [n+ 3]μ
, C = 0.

(23)

We also verify that

(Δ(μ)r )
−1

j(μ)0 (r) + j
(μ)
0 (r) = 0, C = −j(μ)0 (0) , (24)

by the use of the integrals

∫cosp−1 x
{
{
{

sin ((p+ 1)x)

cos ((p+ 1)x)

}
}
}

dx = 1
p
cosp x
{
{
{

−cos (px)

sin (px)

}
}
}
. (25)

3 Deformed Heisenberg algebra and
uncertainty principle

3.1 Deformed equations and Heisenberg
algebra

Here we are going to present the equations of somemodels using
deformed differential calculus. The main model for us, from which
the deformed Heisenberg algebra will follow, is described by the
deformation of the Lane–Emden equation (LEE) for finite density
function ρ(r) in the two possible formulations.

(Δ(μ)r ρ (r) + k2)ρ (r) = 0, (26)

(D(μ)r D(μ)r + gμ (r)
2
r
D(μ)r + hμ (r)k

2)ρ (r) = 0, (27)

Where

gμ (r) =
1

1− 2μ
(1−

1− μ
1+ μ

μ2k2r2),

hμ (r) =
1+ 2μ
1− 2μ
− 2μ2 1− μ2k2r2

(1+ μ)(1− 2μ)
.

(28)

Note that the version Eq. 26 of μ-deformed LEE was already
dealt with earlier in (Gavrilik et al., 2019), whereas the version in
Eq. 27 is completely new, unpublished one. As seen, gμ(r) → 1 and
hμ(r) → 1 at μ→ 0.

It is important that, due to the special form of gμ(r) and hμ(r),
these two μ-deformed versions of LEE have the same physical
solution j(μ)0 (kr) (along with y(μ)0 (kr)) at μ < 0.5, whichmeans that the
two versions are equivalent. To display this equivalence we have to
explicitly transform Eq. 26 into Eq. 27. Setting kr ≡ x for simplicity,
we assume the permutation rule asD(μ)x x = σ(x) xD(μ)x + λ(x), apply it
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twice to the operator D(μ)r r2 D(μ)r of the μ-Laplace operator in Eq. 21,
and find the functions σ(x) and λ(x). Then, the equivalence of Eq. 26
and Eq. 27 is seen, with the non-trivial commutation relation:

σ (x) xD(μ)x −D
(μ)
x x = −λ (x) , (29)

σ (x) = 1

√hμ

= [
(1− 2μ)(1+ μ)
1+μ(3+2μ3x2)

]
1/2

,

λ (x) =
2gμ

(1+σ)hμ
=

1+ μ− (1−μ)μ2x2

μ[2+ μ(1+ μ2x2)]
(1−σ) .

(30)

As result, we have come to the new (μ-deformed) generalization
of Heisenberg algebra.

The functions λ(x) and σ(x) are real for 0 < μ < 0.5, tend to 1 at
μ→ 0, and are shown in Figure 2. We have 0 ≤ σ(x) ≤ 1, while the
maximum of λ(x) is determined by λ(0) and is equal to

λmax (μ) =
1+ μ
(2+ μ)μ

(1−√
(1− 2μ)(1+ μ)

1+ 3μ
). (31)

Although the function λ(x) has a tail in negative values for

x > xmax (μ) =
1
μ
√

1+ μ
1− μ
, (32)

as shown in Figure 2, consideration of the problem over finite
interval of x ∈ [0; R(μ)] with R(μ) ≤ xmax(μ) for μ ∈ (0;0.5]
guarantees a positive value of λ(x). Therefore, R(μ) varies between
Rmin ≃ 2.886 and Rmax = 2√3 ≃ 3.464, and it is the minimum
positive number that satisfies the condition sinμR(μ) = 0 (see
Eq. 12).

It seems to be of interest to consider, elsewhere, the quantum-
mechanical problem of the propagation of a particle, viewed as a
spherical waveΨ(r) in a space curved due to μ-deformation.Without
specifying the boundary condition, it can be formulated as follows:

̂P2Ψ (r) = k2Ψ (r) , (33)

where the momentum operator Eq. 19 for x = r is used. Let
us remark again that the operator D(μ)r in ̂P is a pseudohermitian
one, see e.g., (Mostafazadeh, 2002; Bagchi and Fring, 2009; Gavrilik
and Kachurik, 2016b; Gavrilik and Kachurik, 2019), but the
“sandwiching” η−1D(μ)r ηwith η = r transforms it intoHermitian form
as in Eq. 33.

In view of the definition Eq. 19 of the momentum operator, we
formulate our μ-deformed Heisenberg algebra:

σ (x) x ̂P− ̂P x = iλ (x) . (34)

In what follows, we will focus on the study of the uncertainty
principle (relation) which follows from the algebra Eq. 34.

3.2 Generalized uncertainty principle

Denoting the standard deviations as

Δx = √〈x2〉 − 〈x〉2, ΔP = √〈 ̂P2〉 − 〈 ̂P〉2, (35)

we proceed to the analysis of the generalized uncertainty relation
(GUP)

ΔxΔP ≥ 1
2
|⟨[x, ̂P]⟩|, (36)

where the commutator is taken from Eq. 34.
To gain insight into the general properties of Eq. 36 for the μ-

deformed Heisenberg algebra Eq. 34, let us combine Eq. 34 with its
Hermitian conjugate to obtain

[(1+ σ (x))x, ̂P] = 2iλ (x) . (37)

Applying Eq. 36 to this commutation relation, we get

Δ [(1+ σ)x] ΔP ≥ ⟨λ (x)⟩. (38)

Taking into account that 1 ≥ σ(x) > 0 for μ < 0.5 in the left hand
side, we come to the GUP

ΔxΔP ≥ 1
2
⟨λ (x)⟩. (39)

To evaluate the averages, we specify the states similarly to
quantum ones. So, let us consider a normalized mixed state |ξ⟩ for
ξ ∈ [0;2π) in a Hilbert space basis Eq. 3 endowed with the inner
product from Eq. 10:

|ξ〉 = cosξ|u1〉 + sinξ|u2〉. (40)

Here u1(x) = j
(μ)
0 (x) and u2(x) = y

(μ)
0 (x) as before.

In fact, the mixed state |ξ⟩ represents a general solution to
the μ-deformed LEE, given by Eq. 26 and Eq. 27. Since the μ-
deformed LEE is formulated for the local density of matter and,
therefore, basically differs from the complex-valued Schrödinger
equation, it is natural to describe its solution from Eq. 40 in terms
of real-valued functions. Although the state |0⟩ for ξ = 0, such
that ⟨x|0⟩ = j(μ)0 (x), serves to describe the finite DM distribution in
(Gavrilik et al., 2019), the case ξ ≠ 0 admits the contribution of the
cuspidal distribution y(μ)0 (x) at x→ 0.

Thus, we define the mean:

〈(…)〉 = 〈ξ| (… )|ξ〉 (41)

for fixed ξ ∈ [0; 2π] and 0 < μ < 0.5.
In contrast to quantum mechanics, Eq. 41 suggests to evaluate a

mean of someoperator (…) in the basis generated by the μ-deformed
LEE. There is no mathematical incorrectness in choosing basis
functions coinciding with physical distributions. Only in turning
to an interpretation, does one face the averaging (of powers) of
the distribution function itself (this also happens in multifractal
analysis).

The necessary matrix elements are given by.

〈ξ| f (x) |ξ〉 = A f (μ) −B f (μ)cos (2ξ) +C f (μ) sin (2ξ) , (42)

〈ξ| f (x) |ξ+ π/2〉 = B f (μ) sin (2ξ) +C f (μ)cos (2ξ) , (43)

{{{{
{{{{
{

A f

B f

C f

}}}}
}}}}
}

= 1
π
∫

π

0

{{{{
{{{{
{

1

cos(2φ)

sin(2φ)

}}}}
}}}}
}

f (X(φ)) dφ,

X(φ) = 1
μ
tan

μφ
1+ μ
.

(44)

Frontiers in Astronomy and Space Sciences 05 frontiersin.org74

https://doi.org/10.3389/fspas.2023.1133976
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Gavrilik et al. 10.3389/fspas.2023.1133976

FIGURE 2
Functions σ(x) (A) and λ(x) (B) in a wide range of variable x and at fixed μ.

It is immediately seen that

〈 ̂P〉 = 〈ξ| ̂P|ξ〉 = −i〈ξ|ξ+ π/2〉 = 0,

〈 ̂P2〉 = 〈ξ| ̂P2|ξ〉 = −〈ξ|ξ+ π〉 = 1,
(45)

Therefore, the standard deviation ΔP = 1 is fixed for the set of states
{|ξ⟩}.

On the other hand, let us introduce the functions

Δx(ξ,μ) ≡ √⟨ξ|x2|ξ⟩ − (⟨ξ|x|ξ⟩)2, Λ(ξ,μ) ≡ ⟨ξ|λ (x) |ξ⟩, (46)

which represent the averages Δx and ⟨λ(x)⟩, respectively.
Thus, in the basis of the μ-deformed spherical waves, one has

ΔP = 1, and it is required that

Δx(ξ,μ) ≥ 1
2
Λ(ξ,μ) . (47)

This relation can be analyzed with the help of Figure 3A.
Let us introduce the auxiliary momentum variance, accounting

for Eq. 47:

δP(ξ,μ) =
Λ(ξ,μ)

2Δx(ξ,μ)
≤ 1. (48)

We see that δP (ξ,μ) ≤ ΔP = 1 and δP (ξ,μ) Δx (ξ,μ) = Λ(ξ,μ)/2 by
definition. The behavior of δP (ξ,μ) is shown in Figure 3B.

The admissible domain of variety of the running values of Δx and
ΔP is shown in Figure 4.We see that the black and pink curves are in
antiphase regime, as it should be. For comparison, the violet curve
describes the change in the deviation Δx according to the hyperbolic
law in accordance with the standard Heisenberg algebra.

3.2.1 Alternative approach
To confirm the validity of Eq. 39 for the algebra Eq. 34 non-

linear in x, it is worth to develop an alternative calculation scheme
applicable to variousways of writing the commutator for x and ̂P. For
instance, there is a possibility to rewrite relation Eq. 34 in equivalent
form as

[x, ̂P] = i
2λ (x)

1+ σ (x)
+

1− σ (x)
1+ σ (x)

{x, ̂P} , (49)

where {x, ̂P} ≡ x ̂P+ ̂Px is anticommutator.

To analyze the GUP given by Eq. 36 for this commutation
relation, we assume that the brackets ⟨(…)⟩ mean the quantum
average over the state defined by the real wave function in the
coordinate representation. Then, the action of the operator i ̂P on
such a state results in a real-valued expression, what immediately
yields

|⟨[x, ̂P]⟩| = 2⟨
λ (x)

1+ σ (x)
⟩−⟨

1− σ (x)
1+ σ (x)

{x, i ̂P}⟩, (50)

when the positive first term on the right hand side dominates the
second one.

In view of the inequality |⟨Â ̂B⟩| ≤ |⟨Â⟩| |⟨ ̂B⟩|, we split the last
term as

|⟨
1− σ (x)
1+ σ (x)

{x, i ̂P}⟩| ≤ ⟨
1− σ (x)
1+ σ (x)

⟩ |⟨{x, i ̂P}⟩|, 0 ≤ σ (x) ≤ 1.

(51)

At this stage, we obtain

|〈[x, ̂P]〉| ≥ 2⟨
λ (x)

1+ σ (x)
⟩−⟨

1− σ (x)
1+ σ (x)

⟩ |〈{x, i ̂P}〉|. (52)

To evaluate |⟨{x, i ̂P}⟩|, we introduce the operators δx = x− ⟨x⟩
and δ ̂P = ̂P− ⟨ ̂P⟩, where the hat over ̂P distinguishes the operator δ ̂P
from the function δP in Eq. 48. Then one gets

〈{x, i ̂P}〉 = 2i〈x〉〈 ̂P〉 + 〈{δx, iδ ̂P}〉. (53)

Due to the Cauchy–Schwartz inequality |⟨Â ̂B⟩|2 ≤ |⟨Â2⟩| |⟨ ̂B2⟩|,
the following estimate holds:

|⟨{δx, iδ ̂P}⟩| ≤ 2ΔxΔP. (54)

Since the dark matter flux is assumed to be absent in the halo,
one can put ⟨ ̂P⟩ = 0, which is confirmed by our direct calculations.
Combining, we have the estimate

|⟨[x, ̂P]⟩| ≥ 2⟨
λ (x)

1+ σ (x)
⟩− 2⟨

1− σ (x)
1+ σ (x)

⟩ ΔxΔP. (55)

Substituting it into Eq. 36 and accounting for ⟨1⟩ = 1, we arrive
at.

ΔxΔP ≥ 1
2
〈λ(x)〉W, (56)

〈(… )〉W ≡
〈W (x) (…)〉
〈W (x)〉

, W (x) = 1
1+ σ (x)

, (57)
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FIGURE 3
(A): Position deviation Δx (ξ,μ) versus mean ⟨λ(x)⟩ = Λ(ξ,μ), which are computed in the state |ξ⟩ at fixed μ (B): Limiting momentum deviation
δP (ξ,μ) = Λ/(2Δx) versus Δx (ξ,μ). Turning points of the pink banana-like curve are A (0.51;0.85), B (1.05;0.4). Grey line corresponds to δP = 1/(2Δx).

FIGURE 4
Dependence of the lower limit deviations Δx (ξ,μ) and δP (ξ,μ) on the
state labeled by ξ at μ = 0.18. The running deviations Δx and ΔP satisfy
the GUP ΔxΔP ≥ Λ/2 and vary in the ranges
Δx (ξ,μ) ≤ Δx ≤ R (μ = 0.18) ≃ 2.89 and δP (ξ,μ) ≤ ΔP ≤ 1.

Where the new mean ⟨(…)⟩W with additional convex weighting
function W(x) arises.

For a given function W(x) we get

〈λ(x)〉W = 〈λ (x)〉 +
〈δW (x)δλ (x)〉
〈W (x)〉

, (58)

where ⟨δW(x)δλ(x)⟩ is a covariance between the convex function
W(x) and concave λ(x), and it determined by deviations like
δf(x) = f(x) − ⟨f(x)⟩.

Since the function σ(x) (and W(x)) changes only slightly over
the interval x ∈ [0; R(μ)] in Figure 2A, it can be approximated by
a constant close to σ(0) when calculating integrals. This provides
δW(x) → 0 and numerically leads to expressions:

⟨
λ (x)

1+ σ (x)
⟩ ≃
⟨λ (x)⟩

1+ ⟨σ (x)⟩
, ⟨ 1

1+ σ (x)
⟩ ≃ 1

1+ ⟨σ (x)⟩
, (59)

when we use ⟨(…)⟩ = ⟨ξ|(…)|ξ⟩ in the range 0 < μ < 0.5.
This circumstance leads again to Eq. 39 for the states |ξ⟩, that is

just Eq. 47.
Note that the appearance of the mean Eq. 57 is associated with

the initial Eq. 49 for the commutation relation. In other cases, we
may only encountermeans of type Eq. 59, where it would be justified
to use the estimate 1 ≥ ⟨σ(x)⟩.

3.3 Application to dark matter

Let us remind the connection between the operators in terms of
the dimensionless variable x = kr and the operators of the physical
radial coordinate r and the momentum ̂Pr:

r = x
k
, ̂Pr = ℏk ̂P, (60)

where k is the parameter of Eqs 26 and 27 and has the dimension of
inverse length; the operator ̂P is given by Eq. 19.

The most successful results of paper (Gavrilik et al., 2019) for
describing the dark matter halo of dwarf galaxies based on the μ-
deformed Lane–Emden equation were obtained in the following
range of parameters:

μ = 0.151…0.18, k = 0.17…2.64 kpc−1. (61)

Using the turning points A ((Δx)min; (δP)max) and
B ((Δx)max; (δP)min) for fixed μ as in Figure 3B, we relate extreme
physical values Δr and ΔPr with dimensionless ones Δx and δP as.

Δr = Δx[ k
1 kpc−1
]
−1

kpc, (62)

ΔPr = δP [
k

1 kpc−1
]× 6.394× 10−27 eV

c
. (63)

The calculation results are collected in Table 2. Therein, we
present the obtained data for five dwarf galaxies (from the eight
ones given inTable 1 of (Gavrilik et al., 2019)), because just for these
galaxies the μ-deformation based description of the rotation curves
is most successful with respect to earlier approaches, as it provides
the best agreement with observational data (certainly better then
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TABLE 2 The parameters for the darkmatter halos of dwarf galaxies.

Galaxy μ k, kpc−1 (Δr)max, kpc (Δr)min, kpc (ΔPr)max , 10
–27eV/c (ΔPr)min, 10

–27eV/c

M81dwB 0.18 2.64 0.398 0.193 14.38 6.75

DDO 53 0.18 0.97 1.082 0.526 5.28 2.48

IC 2574 0.179 0.17 6.18 3.0 0.926 0.435

NGC 2366 0.178 0.37 2.84 1.38 2.02 0.946

HO I 0.151 1.27 0.830 0.402 6.98 3.33

if one uses the profile from the usual Bose-condensate model of
DM being the solution of non-deformed Lane–Emden equation as
in (Harko, 2011), or uses the famous Navarro–Frenk–White profile
(Navarro et al., 1997)).

Of course, the remaining three galaxies can also be considered,
but the choice of five ones is both sufficient, trustful, and best suited
for our treatment and conclusions.

Note that both the Lane–Emden equation and its μ-deformed
extensions determine the distribution function ρ(r) of the matter,
not the wave function of single particle. Therefore, the mean Eq. 41
is a quadratic form in the distribution, related here with |0⟩ which
differs by a multiplicative constant defining ρ(0) (Gavrilik et al.,
2019). Generally speaking, the state |0⟩ may not determine the
turning points of a banana-like curve in the (Δx,δP) plane in
Figure 3B, along with the extreme values of the deviations Δr
and ΔPr . Nevertheless, the mathematically correct mean Eq. 41
can be used to obtain new additional information about dark
matter, even by means of considering the moments ⟨ρn⟩ of the
distribution similarly to multifractal analysis. Besides, the extreme
deviations set the limits for the fluctuations of physical quantities at
ξ = 0.

Without a deep study of the structure of averages here, let us
analyze the physical consequences of the data inTable 2. We see that
in the non-relativistic theory themomentum deviation ΔPr =mΔυr ,
where m is the particle mass, Δυr is the deviation of particle
radial velocity υr . Since the original work (Gavrilik et al., 2019) was
using bosons with m ∼ 10–22 eV/c2, we obtain from Table 2 that
Δυr ∼ 10

−5c in units of the speed of light c. Moreover, deviation of
the kinetic energy ΔEK =m(Δυr)

2/2 can be used to determine the
effective temperature of dark matter, namely, Teff = (ΔPr)

2/(2m) ∼
10−32 eV. This value is much smaller than the critical temperature
of the Bose–Einstein condensation, as it should be in such a
paradigm.

Due to the GUP given by Eq. 39, we relate the temperature Teff
of the spherical layer in the vicinity of ⟨r⟩ to its width 2Δr:

(Δr)2 Teff ≥
ℏ2

8m
⟨λ⟩2. (64)

This formula holds for a macroscopic system of finite volume
when Δr does not exceed the radius of the system, and it shows
that a smaller domain may have a higher temperature, and vice
verse.

It is worth to note that the mean ⟨λ⟩ in Eq. 64 takes values in the
limited interval ⟨λ⟩ = Λ(ξ,μ) ∈ [Λmin,Λmax], where the positive Λmin
and Λmax depend on μ (see Eq. 46; Figure 3A). For μ = 0.18, we have
Λmin ≃ 0.818 and Λmax ≃ 0.875.

4 Concluding remarks

In this work we have studied unusual consequences of the
new (μ-deformed) generalization of the Heisenberg algebra Eqs 29
and 34 which is special as it was derived within the extension
of Bose-condensate dark matter model based on μ-deformation.
From the generalized algebra we obtained non-trivial GUR that
generates minimal and maximal uncertainties of both positions
(minimal/maximal lengths) and momenta. The obtained GUR is
strictly dependent on the states (labeled by ξ) of the system, and such
dependence was exploited to full extent.

In Table 2, the galaxies M81dwB and IC 2574 look as the two
“extreme” cases. Namely, for the latter we have the largest (Δr)max
and (Δr)min, while for the former these quantities show smallest
values. Clearly, the situation concerning (ΔPr)max and (ΔPr)min is
quite opposite. Noteworthy, the value of μ (strength of deformation)
for M81dwB and IC 2574 is almost the same. The relations Eq. 62,
63 show the defining role of the quantity k which involves scattering
length a and particle mass m as k∝m3/2a−1/2 (Harko, 2011).

For the considered galaxies (each labeled by its specific value of
μ)we conclude: since the particlemass is same (namely, 10–22 eV/c2),
we have differing scattering lengths in halos of different galaxies
(vice versa, would we assume same scattering length for all the five
galaxies we would have somewhat differing masses of DM particle
in different galaxies, though this second option seems to be less
realistic). As already shown in (Harko, 2011), where the BEC DM
model is also based on the LEE, there is no universality of model
parameters when describing all admissible objects. In fact, this issue
remains in our model, which improves the previously fitted rotation
curves by including an additional parameter μ. Physically, we can
only control the applicability conditions of our model: consider
DM-dominated dwarf galaxies leaving aside their rigid rotation,
which contributes to the distribution function (Zhang et al., 2018;
Nazarenko, 2020). Therefore, giving clear physical meaning to
differing scattering lengths in halos of different galaxies remains an
interesting task for future study.

Note that the parameter k is related to the observed radius rgal
of the galactic halo by krgal = R(μ), where the right-hand side is
determined by the parameter R(μ) from Eq. 12, replacing π = R (0)
in the non-deformed case. We can easily find a small difference
(of several percent) between the values of rgal in the deformed and
non-deformed cases, by comparing these with the galaxy radii from
(Harko, 2011). However, the simulation of rotation curves is more
successful in the deformed case, as shown in (Gavrilik et al., 2019).

It is worth to remark that the values of (Δr)max and (Δr)min for
the two galaxies M81dwB and IC 2574, and the others in Table 2,
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reside well within the observed sizes of DM halos as it should.
Accordingly, the values of (ΔPr)max and (ΔPr)min for these same
galaxies lie in the ranges completely consistent with DM being in
the (μ-Bose) condensate state. Clearly this is in agreement with the
above reasonings concerning the effective temperature.

It is of interest to analyze possible special meaning of our results
on the existence of finite (Δr)max and (Δr)min in the context of
treatment in (Lee and Lim, 2010; Lee, 2016) of minimum length
scale of galaxies (note that for the candidate length scales one
can take into consideration such concepts as coherence length,
Compton wavelength, quantum Jeans length scale, gravitational
Bohr radius, and de Broglie wavelength, see (Lee and Lim, 2010) and
references therein). Time dependence of some of these quantities,
e.g., characteristic length scale ̃ξ (minimum size of DM dominated
galaxies) is studied in (Lee, 2016). Let us quote one of the interesting
predictions of this work: with the mass of DM particles chosen
as m = 5× 10−22 eV/c2, it follows that ̃ξ(z = 0) = 311.5 pc while
̃ξ(z = 5) = 81.2 pc, i.e., early dwarf galaxies were significantly more

compact. In view of the extremely tiny mass of the particle from
dark sector, a question may arise of possible (inter)relation of this
entity with the cosmic microwave background (CMB). The very
first answer which comes to one’s mind could be that no relation
is possible, because of the absence of interaction between visible
and dark sectors. However, when considered in the framework
of doubly special relativity, the properties of the photon gas at
these special conditions can appear, see (Chung et al., 2019), much
more interesting and non-trivial. Noteworthy, the treatment in
(Chung et al., 2019), on one hand, is potentially applicable for
studying some unclear features of CMB, and, on the other hand,
involves a kind of deformation which is very similar to the μ-
deformation explored herein. We hope to address the details of all
these intriguing issues elsewhere.
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