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The systems biology of microbial 
infections aims at describing and 
analysing the confrontation of 
the host with bacterial and fungal 
pathogens. It intends to understand 
and to model the interaction of 
the host, in particular the immune 
system of humans or animals, with 
components of pathogens. This 
comprises experimental studies that 
provide spatio-temporal data from 
monitoring the response of host and 
pathogenic cells to perturbations or 
when interacting with each other, 
as well as the integrative analysis of 

genome-wide data from both the host and the pathogen. In perspective, the host-pathogen 
interaction should be described by a combination of spatio-temporal models with interacting 
molecular networks of the host and the pathogen. The aim is to unravel the main mechanisms 
of pathogenicity, to identify diagnostic biomarkers and potential drug targets, and to explore 
novel strategies for personalized therapy by computer simulations. 

Some microorganisms are part of the normal microbial flora, existing either in a mutualistic 
or commensal relationship with the host. Microorganisms become pathogenic if they posses 
certain physiological characteristics and virulence determinants as well as capabilities for 
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immune evasion. Despite the different pathogenesis of infections, there are several  
common traits: 

(1)  Before infection, pathogens must be able to overcome (epithelial) barriers. The infection 
starts by adhesion and colonization and is followed by entering of the pathogen into the 
host through the mucosa or (injured) skin. 

(2)  Next, infection arises if the pathogen multiplies and overgrows the normal microbial flora, 
either at the place of entrance or in deeper tissue layers or organs. 

(3)  After the growth phase, the pathogen damages the host’s cells, tissues and organs by 
producing toxins or destructive enzymes. 

Thus, systems biology of microbial infection comprises all levels of the pathogen and the 
host’s immune system. The investigation may start with the pathogen, its adhesion and 
colonization at the host, its interaction with host cell types e.g. epithelia cells, dendritic cells, 
macrophages, neutrophils, natural killer cells, etc. Because infection diseases are mainly found 
in patients with a weakened immune system, e.g. reduced activities of immune effector cells 
or defects in the epithelial barriers, systems biology of infection can also start with modelling 
of the immune defence including innate and adaptive immunity. 

Systems biological studies comprise both experimental and theoretical approaches. The 
experimental studies may be dedicated to reveal the relevance of certain genes or proteins 
in the above mentioned processes on the side of the pathogen and/or the host by applying 
functional and biochemical analyses based on knock-out mutants and knock- down 
experiments. 

At the theoretical, i.e. mathematical and computational, side systems biology of microbial 
infection comprises: 

(1)  modelling of molecular mechanisms of bacterial or fungal infections, 
(2)  modelling of non-protective and protective immune defences against microbial pathogens 

to generate information for possible immune therapy approaches, 
(3)  modelling of infection dynamics and identification of biomarkers for diagnosis and for 

individualized therapy, 
(4) identifying essential virulence determinants and thereby predicting potential drug targets.
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Next, infection arises if the pathogen multiplies and overgrows 
the normal microbial flora, either at the place of entrance or in 
deeper tissue layers and organs. This is reviewed by Fuchs et al. 
(2012) focusing on the bacterial replication of metabolism in Listeria.

Part II: OrIgInal research PaPers
The original research papers demonstrate different systems biology 
approaches to model: (i) host-pathogen interactions, (ii) molecular 
interaction networks of the pathogen, and (iii) host responses to 
the microbial infection.

hOst-PathOgen InteractIOn
In the past, most studies have focused on either the side of the 
pathogen or the host. Tierney et al. (2012) try to overcome this 
limitation using Next Generation Sequencing (RNA-Seq analysis) 
to monitor the gene expression of the host and the pathogen simul-
taneously. They analyze and model the interaction of mouse bone 
marrow-derived dendritic cells with the pathogenic yeast Candida 
albicans, and infer a gene regulatory network comprising genes and 
proteins of both host and pathogen.

Durmus‚ Tekir et al. (2012) study more than 23,000 protein–pro-
tein interactions that characterize the strategies of interaction of the 
human host with viral, bacterial, and some fungal pathogens utilizing 
the database pathogen-host-search-interaction-tool (PHISTO).

Binder et al. (2012) modeled the population dynamics of Borrelia 
burgdorferi using an ordinary differential equation approach taking 
into account the dissemination of bacteria to different tissues as well 
as cellular phagocytic activity during the innate immune response. 
By comparing different model scenarios with experimental data on 
infected mice, they aim at understanding why an almost cleared 
population of these bacteria can recover and reach a size that is even 
larger than the initial population before entering the chronic phase.

Applying an agent-based modeling approach that treats cells as 
discrete objects in space with dynamic properties, Tokarski et al. 
(2012) simulated the interactions of conidia of the human-path-
ogenic fungus A. fumigatus with migrating human neutrophils. 
Based on the analysis of time-lapse microscopy image data, different 
scenarios of phagocyte migration are explored and evaluated with 
regard to the clearance efficiency.

MOlecular InteractIOn netwOrk Of the PathOgen
A genome-wide gene regulatory network has been inferred by 
Altwasser et al. (2012) for C. albicans using a compendium of 
microarray data by integration of prior knowledge from different 

This special Systems Biology of Microbial Infection research 
topic is dedicated to the dynamic modeling and model-driven 
analysis of microbial infection processes. It aims at describ-
ing and analyzing the confrontation of the host with bacterial 
and fungal pathogens, and at modeling and understanding the 
interactions of the immune system of humans and animals, 
with pathogens.

The early stages of the mathematical modeling of infectious 
diseases were initiated at the beginning of the twentieth century 
and were based on the population dynamics of epidemics, e.g., to 
design governmental vaccination policy (Ross, 1911, 1916).

Today, systems biology of microbial infection considers molecu-
lar, cellular, and even organismic levels of the pathogen and the 
host’s immune system and is directed toward personalized medicine 
and theranostics.

The presented papers comprise theoretical and experimen-
tal studies. Some contributions present an integrative analysis 
of genome-wide data from both the host and the pathogen. 
Other contributions report on spatio-temporal determinations 
of host-pathogen interactions or the response of the host and 
pathogenic cells to defined perturbations that simulate infec-
tious conditions.

This research topic is organized in two parts, with the first part 
consisting of four review articles and the second part consisting of 
seven original research papers.

Part I: revIew artIcles
Horn et al. (2012) review the systems biology of fungal infec-
tion, regarding virulence determinants of fungal pathogens, their 
adhesion and colonization of the host, their metabolism and gene 
expression patterns during infection, and their interaction with 
host cell types.

Haas (2012) reviews the regulation of iron uptake from the host 
and its storage within Aspergillus fumigatus cells as well as the regu-
lation of iron homeostasis and transcriptional regulation under 
conditions of iron starvation within the pathogen.

Another example of adaptation to a pathogenic lifestyle to 
the conditions in the host is reviewed by Dandekar et al. (2012). 
The authors report on recent findings regarding the metabolic 
modeling of adaptation of Salmonella sp. to nutritional condi-
tions within the host’s vacuoles and membrane-bound compart-
ments. Furthermore, the required metabolic conditions during 
Salmonella infection are compared with those for Listeria and 
Legionella.
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sources (e.g., transcription factor – target gene and protein–pro-
tein interaction data bases) as well as a large number of research 
papers screened for regulator/target gene interactions relations by 
an automatic text mining search.

hOst resPOnse tO MIcrObIal InfectIOn
Monitoring the immune response by flow cytometry for immune 
cells and cytokine production, Simon et al. (2012) identified and 
analyzed correlations and decision rules that formulated multidi-
mensional and non-linear relations between the measured data 
on T-helper-cells and the cytokines GM-CSF, IFN-gamma, IL-2, 
IL-17, RANKL, and TNF-alpha. The authors found that, in par-
ticular, the production of GM-CSF and IL-17 turned out to be 
highly correlated.

Translational systems biology aims at the integration of omics 
data and clinical data from individual patients based on the inves-
tigation of animal models for therapeutical interventions. Lambeck 
et al. (2012) analyzed and compared the transcriptome from blood 
samples of a murine sepsis model together with that of patients 
from the pediatric intensive care unit.

suMMary
Systems biology of microbial infection aims at the development of 
testable mathematical and computational models of host-pathogen 
interactions that have predictive power for diagnosis and therapy 
by focusing on biomarkers and drug targets. This Research Topic 
presents a survey on the current state of this field. Some results 
were already presented at the first International Workshop on the 
“Systems Biology of Microbial Infection” that was held in 2011 
in Jena, Germany, and will be organized in a biennial fashion by 
the Leibniz Institute for Natural Product Research and Infection 
Biology – Hans Knöll Institute (HKI), Jena. Today, the field of sys-
tems biology of microbial infection is still in its infancy. However, 
we are convinced that the integration of “omics” approaches with 
image-based systems biology will strengthen and open new ave-
nues to quantitative modeling of host-pathogen interactions in 
the future.

acknOwledgMent
The authors acknowledge the excellence graduate school “Jena 
School for Microbial Communication (JSMC)” for support.

Guthke et al. Systems biology of microbial infection

Frontiers in Microbiology | Microbial Immunology  September 2012 | Volume 3 | Article 328 | 6

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Microbial_Immunology/archive
http://www.frontiersin.org/Microbial_Immunology/
http://www.frontiersin.org/Microbiology


REVIEW ARTICLE
published: 02 April 2012

doi: 10.3389/fmicb.2012.00108

Systems biology of fungal infection
Fabian Horn1,Thorsten Heinekamp2, Olaf Kniemeyer 2, Johannes Pollmächer 3,Vito Valiante2 and

Axel A. Brakhage2,4*

1 Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
2 Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
3 Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
4 Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany

Edited by:

Jörg Linde, Leibniz Institute for
Natural Product Research and
Infection Biology – Hans Knöll
Institute, Germany

Reviewed by:

Rene Alvarez, Naval Medical
Research Unit-San Antonio, USA
Guoku Hu, Creighton University, USA
Scott G. Filler, Los Angeles
Biomedical Research Institute, USA

*Correspondence:

Axel A. Brakhage, Molecular and
Applied Microbiology, Leibniz Institute
for Natural Product Research and
Infection Biology – Hans Knöll
Institute, Beutenbergstrasse 11a,
07745 Jena, Germany.
e-mail: axel.brakhage@hki-jena.de

Elucidation of pathogenicity mechanisms of the most important human-pathogenic fungi,
Aspergillus fumigatus and Candida albicans, has gained great interest in the light of the
steadily increasing number of cases of invasive fungal infections. A key feature of these
infections is the interaction of the different fungal morphotypes with epithelial and immune
effector cells in the human host. Because of the high level of complexity, it is necessary to
describe and understand invasive fungal infection by taking a systems biological approach,
i.e., by a comprehensive quantitative analysis of the non-linear and selective interactions
of a large number of functionally diverse, and frequently multifunctional, sets of elements,
e.g., genes, proteins, metabolites, which produce coherent and emergent behaviors in
time and space. The recent advances in systems biology will now make it possible to
uncover the structure and dynamics of molecular and cellular cause-effect relationships
within these pathogenic interactions. We review current efforts to integrate omics and
image-based data of host-pathogen interactions into network and spatio-temporal models.
The modeling will help to elucidate pathogenicity mechanisms and to identify diagnostic
biomarkers and potential drug targets for therapy and could thus pave the way for novel
intervention strategies based on novel antifungal drugs and cell therapy.

Keywords: Aspergillus fumigatus, Candida albicans, gene-regulatory network, network modeling, pathogenicity,

pathogen-host interaction, spatio-temporal modeling, systems biology

1. BACKGROUND
1.1. HUMAN-PATHOGENIC FUNGI
It is estimated that the total number of fungal species exceeds
1.5 million (Hawksworth, 2001). However, only a small minority
of approximately 100 species of fungi are associated with human
diseases. Nevertheless, infections caused by fungal pathogens lead
to a wide range of diseases including allergies, superficial infec-
tions, and invasive mycoses. The outcome of an infection with a
human-pathogenic fungus often depends on the immune status
of the host organism. Patients suffering from a weakened immune
system are at high risk of developing a serious fungal infection.
Continuous progress in medicine, e.g., in chemotherapy and organ
or bone marrow transplantation, has led to an increasing num-
ber of patients with impaired immune status. In recent decades,
the frequency of invasive fungal infections has increased steadily,
resulting in considerable morbidity and mortality. In the USA,
the incidence of sepsis caused by fungi has increased by more
than 200% since 1991, whereas cases of bacterial sepsis have only
increased moderate (Martin et al., 2003). Invasive mycoses are
characterized by a high mortality rate. The increasing number of
fungal infections has significantly contributed to health-related
costs (Pfaller and Diekema, 2007).

The yeast Candida albicans and the filamentous fungus
Aspergillus fumigatus are by far the most important causes of life-
threatening invasive mycoses. Apart from A. fumigatus, around
10% of the more than 200 species of the genus Aspergillus are

regarded as human pathogens or as having other adverse effects,
e.g., A. terreus, A. flavus, and A. niger (Brakhage, 2005). The
prevalence of C. albicans in clinical Candida samples is 50–70%,
followed by infections with Candida glabrata, which is found in
20–25% of clinical Candida samples. Other pathogenic Candida
species include C. tropicalis, C. dubliniensis, C. krusei, and C. parap-
silosis (overview in Pfaller and Diekema, 2007). Another important
human-pathogenic fungus of clinical relevance is the fungus Cryp-
tococcus neoformans. The most common fungal infection among
AIDS patients, cryptococcal meningitis, is caused by this basid-
iomycete. Furthermore, other fungal species, such as Pneumocystis
jiroveci, Zygomycetes, Fusarium species, and Scedosporium species,
have emerged as causal agents of invasive mycoses (Pfaller and
Diekema, 2007).

Despite the different pathogenesis of infections caused by C.
albicans and A. fumigatus, there are several common traits, par-
ticularly when the host response is considered: (i) the pathogens
must be able to overcome epithelial barriers, (ii) innate immunity
represents the major defense system, (iii) pathogenic fungi possess
physiological characteristics, virulence determinants, and capabili-
ties for immune evasion that make them aggressive pathogens, and
(iv) invasive candidiasis and invasive aspergillosis are mainly found
in patients with a weakened immune system either due to reduced
activity of immune effector cells or defects in epithelial barriers.

Consequently, the aims of research on human-pathogenic fungi
are (i) to unravel the pathogenic determinants specific to each
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fungus, (ii) to investigate the distinct roles of epithelial barriers,
the mechanisms of the innate immunity, and potential contri-
butions of the adaptive immune system to the pathogenesis of
fungal infections, and (iii) to elucidate the complex mechanisms
of fungal infections and identify common principles of fungal
pathogenesis.

1.2. PATHOBIOLOGY OF ASPERGILLUS FUMIGATUS : FROM
ENVIRONMENTAL MICROORGANISM TO PATHOGEN

Within the last two decades, the filamentous fungus A. fumigatus
has become one of the most important fungal pathogens. Conidia
of this saprophytic fungus can be found almost everywhere, from
the winds of the Sahara to the snow of the Antarctic. The most
severe disease caused by A. fumigatus is invasive aspergillosis (IA),
which occurs almost exclusively in immunocompromised patients
(Brakhage, 2005). There is currently a lack of reliable diagnostic
tools and effective treatment options for this condition, resulting
in a high mortality rate despite therapy. Remarkably, A. fumigatus
causes 90% of all systemic Aspergillus infections. This indicates
that A. fumigatus possesses certain virulence determinants that
favor this species becoming an opportunistic human pathogen.
Because of their ubiquitous presence in the air, each person inhales
several hundred A. fumigatus conidia daily. In immunosuppressed
patients, the lung is the primary site of infection. In immuno-
competent individuals, mucociliary clearance and phagocytic cells
normally prevent the disease (Brakhage et al., 2010). However,
there is a correlation between the degree of immunosuppression
and the risk of contracting IA. Consequently, important risk fac-
tors include neutropenia, T cell depletion, CD34-selected stem cell
products, corticosteroid therapy, and cytomegalovirus infections
(Marr et al., 2002).

Since 2005, considerable progress has been made in the analysis
of A. fumigatus. The genome sequence of A. fumigatus is available,
and the transformation efficiency of the fungus was drastically
increased by generation of ku70 and ku80 mutants of A. fumigatus
(Nierman et al., 2005; da Silva Ferreira et al., 2006; Krappmann
et al., 2006) making the generation of mutants by targeted gene
deletion much easier. As a result of this improvement, the number
of deletion mutants has increased from a handful, in the year 2000,
to more than 400, today.

However, only a few virulence determinants of A. fumigatus
have been characterized to date. These determinants include the
siderophore-mediated iron uptake system (Schrettl et al., 2004) or
the pksP gene, which is involved in the biosynthesis of the gray-
green spore pigment (Langfelder et al., 1998; Thywißen et al., 2011;
Volling et al., 2011). How these virulence determinants influence
the infection is currently under investigation. DHN melanin was
shown to inhibit both apoptosis and the acidification of conidia-
containing phagolysosomes of macrophages (Thywißen et al.,
2011; Volling et al., 2011). Because virulence is a multifactorial
process, it can safely be expected that many more virulence-
associated traits will be discovered, e.g.,A. fumigatus is able to grow
under hypoxic conditions. This ability is essential for pathogenicity
(Willger et al., 2008). A. fumigatus also possesses immune-evasion
mechanisms which reduce recognition, both by immune effec-
tor cells and the complement system (Behnsen et al., 2008, 2010;
Aimanianda et al., 2009).

Innate immunity is of great importance in defense against A.
fumigatus. Alveolar macrophages are the major resident cells of the
lung alveoli and they phagocytose conidia. However, conidia have
the ability to interfere with functions of the macrophages such as
the maturation of phagolysosomes (Jahn et al., 2002; Ibrahim-
Granet et al., 2003; Thywißen et al., 2011). Unphagocytosed
conidia and outgrowing hyphae are killed by neutrophilic granu-
locytes, whose activity is essential for preventing IA (Feldmesser,
2006).

Also, the complement system appears to contribute to the
defense mechanism (Moalli et al., 2010). Human pattern recogni-
tion receptors sensing fungal cell wall components include TLRs
(Toll-like receptors), Galactin 3, DC-Sign (C-type lectin recep-
tors), dendritic cell-specific intracellular adhesion molecule 3
(ICAM-3)-grabbing non-integrin, Dectin-1, SCARF1, and CD36.
In line with the importance of these receptors for fungal recogni-
tion, a growing number of defined single nucleotide polymor-
phisms in the respective genes that appear to determine host
susceptibility to A. fumigatus were identified (overview in Romani,
2011).

Furthermore, neutrophils possess recently discovered extra-
cellular killing mechanisms: they degranulate, release DNA, and
form neutrophil extracellular traps (NETs) both in vitro and
in vivo against A. fumigatus (Bruns et al., 2010; McCormick et al.,
2010). However, whether NET formation is detrimental for A.
fumigatus overall is currently under investigation, and it remains
unclear how neutrophils ultimately kill A. fumigatus. Reactive
oxygen intermediates (ROI) most probably do not play a role
as primary killing agents, but are required as signaling mole-
cules (Lessing et al., 2007). Incubation of dendritic cells (DCs)
with A. fumigatus in vitro resulted in the release of chemokine
CXCL8, which attracts neutrophils (Gafa et al., 2007). Secretion
of additional factors increased surface expression of CD11b and
CD18 on neutrophils. Dectin-1, which is an important recep-
tor on macrophages and neutrophils, is also expressed on the
surface of immature DCs and is involved in the induction of a
proinflammatory cytokine response (Mezger et al., 2008). DCs
thus play an important role in defense against A. fumigatus. The
pathogen recognition receptor Dectin-1 acts upstream of the Syk
tyrosine kinase in response to an infection with A. fumigatus.
Signaling via the Syk tyrosine kinase was recently found to be
essential for the activation of NLRP3 inflammasome, another
component of the innate immune system (Saïd-Sadier et al.,
2010). Despite these findings, we are still in the early stages
of understanding their role in organizing the immune defense
mechanism.

Epithelial and endothelial cells in the lung can internal-
ize conidia. It cannot, therefore, be excluded that these cells
form sites of persistence and foci of infection (Latgé, 1999).
The role of T cells has not yet been clarified. It appears
most likely that they initiate the adaptive immune responses
to Aspergillus species and directly influence the outcome of
an infection (Dagenais and Keller, 2009). Phagocytosis of
conidia by DCs leads to a protective Th1 response, whereas
hyphal phagocytosis results in non-favorable Th2 responses
and the generation of IL-10-producing CD4 cells (Romani,
2011).
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1.3. PATHOBIOLOGY OF CANDIDA ALBICANS : FROM COMMENSAL TO
PATHOGEN

Candida albicans normally exists as harmless commensal yeast on
mucosal surfaces of the majority of the human population. Only
under certain circumstances (imbalance of the normal microbial
flora, immunosuppression, damage of tissue barriers), can C. albi-
cans cause superficial (oral thrush in 90% of all untreated HIV
patients, vaginal thrush in 75% of all women once in their lifetime)
or life-threatening systemic infections (nosocomial candidiasis,
candidemia; reviewed in Pfaller and Diekema, 2007; Martin et al.,
2011). C. albicans is currently identified as the fourth most com-
mon blood isolate in US hospitals, accounting for around 10%
of hospital-acquired bloodstream infections (Wisplinghoff et al.,
2004). Cases of sepsis caused by this fungus lead to mortality rates
of about 40% and are thus higher than observed for any bacte-
rial sepsis (Gudlaugsson et al., 2003; Wisplinghoff et al., 2004;
Picazo et al., 2008). Although C. albicans is an opportunistic
pathogen, only a minority of cases (20%) of disseminated can-
didiasis occurs in patients with severe immunosuppression such as
individuals with neutropenia, corticosteroid therapy, or HIV infec-
tion. Patients with severe illnesses who have prolonged periods of
hospitalizations, a central venous catheter, gastrointestinal/cardiac
surgery, or burns are at especially high risk of developing an
invasive Candida infection (reviewed in Perlroth et al., 2007).

Almost all C. albicans infections are endogenous infections,
caused by commensal strains of patients’ own microflora. Despite
numerous studies, it remains unclear how the transition from a
harmless commensal to an aggressive pathogen is triggered. It
seems certain that it is not only modifications of the microbial
flora and host factors, but also specific attributes of the fungus
that play an important role in this transition.

The ability to switch from yeast to pseudohyphal or hyphal
growth is an important virulence trait for C. albicans. Several envi-
ronmental conditions such as temperatures above 37˚C, pH values
of 7.0 or higher, high exogenous CO2 concentrations of more than
5%, or the presence of serum (Liu, 2002) trigger this transition.
Numerous genes are involved in the regulation of the morpho-
logical switch, but molecular details are still poorly understood.
The transcription factor Efg1p plays a central role in the control
of morphogenesis (Stoldt et al., 1997; Doedt et al., 2004) and the
loss of the EFG1 gene led to mutants which were locked in the
yeast form and showed reduced virulence in a murine model of
candidiasis (Lo et al., 1997; Stoldt et al., 1997). In the regulation of
the Efg1p pathway, cAMP-mediated signal transduction plays an
essential role and mutants lacking the adenylyl cyclase Cdc35p do
not form hyphae. As well as Efg1p, a large number of other tran-
scription factors have also been reported to inhibit or trigger the
yeast to hyphal transition, e.g., Efh1p, Mcm1p, Cph2p, and Tec1p
(reviewed in Whiteway and Bachewich, 2007).

Besides the morphological plasticity, the ability of C. albicans to
adhere to host cells and tissue and form biofilms is another impor-
tant virulence factor. Amongst others, the ALS (agglutinin-like
sequence) proteins are a well-studied group of proteins that form
a family of peptide-binding proteins and which mediate adhesion
(Salgado et al., 2011). They bind to extracellular matrix proteins,
such as collagen, fibronectin and laminin (Als1p, Als3p, Als5p,
Als6p, Als9p), endothelial and epithelial cells (Als1p, Als3p, Als5p),

and also mediate cell-to-cell aggregation (Als5p) and iron acqui-
sition (Als3p; Filler, 2006; Almeida et al., 2009). Hwp1p is another
important adhesin, expressed only on hyphae, which binds tightly
to oral epithelial cells and that is involved in biofilm formation
(Nobile et al., 2006).

Secreted enzymes with proteolytic or lipolytic activity repre-
sent another group of proteins which contributes significantly to
C. albicans’ pathogenicity. A large proportion of the proteolytic
activity is attributed to a multigene family of secreted aspartic
proteinases (SAPs). Ten different SAPs have been described in C.
albicans, eight of which are secreted extracellularly and two of
which are anchored to the membrane via GPI linkage. Their con-
tribution to the pathogenesis of C. albicans infections has been
extensively investigated. SAP1–SAP3 genes were considered to play
a role in localized C. albicans infections and complement eva-
sion, whereas SAP4–SAP6 were postulated to play an important
role in the pathogenesis of invasive candidiasis (Schaller et al.,
2005; Gropp et al., 2009). However, in a recent study by Cor-
reia et al. (2010) the importance of SAP1 to SAP6 for virulence
was reassessed in a murine model of candidemia. In contrast to
previous findings, SAP1 to SAP6 were found to play no signif-
icant role in disseminated C. albicans infections. In addition to
the virulence determinants described above, physiological fitness,
in other words, high stress tolerance and metabolic flexibility, is
another important factor that contributes to the pathogenicity of
C. albicans (Brown et al., 2007; Fleck et al., 2011).

The fact that C. albicans is a diploid fungus and was long
thought to be an obligate asexual organism (Alby et al., 2009),
has long hindered the production of genetically defined mutants.
In contrast to the well-studied yeast Saccharomyces cerevisiae, C.
albicans does not have any natural DNA plasmids that could be
used for transformation. In addition to this, C. albicans shows a
non-standard codon usage and translates the CUG codon as serine
instead of leucine (Lloyd and Sharp, 1992). Only after establish-
ing protocols for targeted gene disruptions of both alleles, creating
conditional null mutants based on tetracycline-regulatable sys-
tems, sequencing of the entire genome, establishment of a genome
database, production of genome-wide microarrays, and produc-
tion of reporter strains and other molecular tools as well as
infection models, has C. albicans reached the status of a model
organism for yeast infections (Theiss et al., 2002; Fradin et al.,
2003; Jones et al., 2004; Braun et al., 2005; Samaranayake and
Hanes, 2011; Szabo and MacCallum, 2011).

Due to this technical progress, interactions of C. albicans with
host cells and the immune system have been the focus of many
studies in recent years. Fungal recognition is the first step in the
antifungal immune response and is mediated by pattern recog-
nition receptors (PRR). The mannan cell wall component is rec-
ognized by the mannose receptor, the C-type lectin-like receptor
Dectin-2, and the TLR4. Furthermore, TLR2 triggers an immune
response by binding to phospholipomannans, as the Dectin-1
receptor does by binding to β-glucan (Netea et al., 2008). TLR2
and Dectin-1 regulate also the gene transcription of proinflamma-
tory cytokines such as the pro-IL-1β. This interleukin is further
processed into its active mature form via the NLRP3 inflamma-
some, a multiprotein complex. It has recently been shown that
it is crucial for antifungal host defense (Gross et al., 2009; Hise
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et al., 2009). After recognition, phagocytes, like macrophages or
neutrophilic granulocytes, kill C. albicans cells by phagocytosis or
secretion of antimicrobials. One mechanism discovered recently is
the formation of neutrophil extracellular traps as mentioned above
in the section on A. fumigatus (Urban et al., 2006). To link these
interactions to the highly complex setting of clinical infections,
complex in vitro, ex vivo, and in vivo infection models have been
established and genome-wide transcriptional profiles, including
direct C. albicans transcriptomes from patient samples, have been
produced (Wilson et al., 2009; Cairns et al., 2010).

1.4. SYSTEMS BIOLOGY OF INFECTION
Due to their high complexity, it is conceivable that invasive infec-
tions caused by human-pathogenic fungi can be described and
understood in a comprehensive manner by taking a systems
biological approach. There are two complementary strategies in
systems biology: (i) Starting from smaller, even minimal mod-
els capturing the essential and abstract interactions in the sys-
tem under study and (ii) using experimental measurements such
as large omics datasets in combination with large-scale models.
Hybrid approaches, which integrate these top-down and bottom-
up perspectives, contribute to our understanding of the multiple
interdependencies of different hierarchical levels in biological sys-
tems (Forst, 2006). The global dynamics of a system can only
be understood and quantified if the functionality of modular
subsystems is elucidated, while considering the most important
interactions on different levels in the biological system. With the
aim of revealing molecular and cellular cause-effect relationships
within the host-pathogen interaction in a non-ambiguous and effi-
cient way, the setup of experiments and the design of experimental
series can be optimized on the basis of established mathematical
and computational models. Data exchange proceeds in an iterative
cycle between model and experiment, with a constant refinement
and validation of the models and the model-based planning of
experiments (Ideker et al., 2001).

Current experimental and modeling techniques focus on spe-
cific perspectives at different scales. At present, experimental data
from high-throughput experiments are increasingly and routinely
used as the basis for mathematical modeling. This wealth of infor-
mation has become available recently. Nevertheless, the history of
the mathematical modeling of infectious diseases can be traced
back to the eighteenth century, when today’s basic concepts of
evolution, genetics, and molecular biology were still unknown.
Back in 1760, Daniel Bernoulli predicted the life expectancy of a
population which has been immunized with cowpox (Bernoulli,
1760). In the early twentieth century, mathematical models were
developed that mainly focused on the spread of diseases such as
measles and malaria (Ross,1911; Bailey,1975). Most models would
be related to today’s research field of population biology, meaning
that they dealt with fluctuations in population size under dif-
ferent modes of disease transmission. Since the second half of
the twentieth century, these models have become more sophis-
ticated. Amongst other concepts, they incorporated new aspects
(e.g., population variables, May and Anderson, 1979; transmission
rates, Real and Biek, 2007; pathogen life cycles, and host specifici-
ties, Woolhouse et al., 2001; Barrett et al., 2008) and extended the
model to allow multi-level modeling (Roux and Aiello, 2005) or
concepts of evolution (reviewed in Tong and Ng, 2011).

Naturally, each infection process is unique. Nevertheless, the
modeling makes it possible to reveal fundamental similarities and
differences in the underlying processes. The influence of single
model parameters and their interdependency can thus be deduced.
These parameters are also assessed if they serve as effective control
options for the implementation of governmental public health risk
management programs (Tong and Ng, 2011).

With the progress in molecular biology, infection biology, and
biotechnology, it is now possible to study species-specific host-
pathogen interactions at the molecular level in order to search
directly for biomarkers with diagnostic potential and drug targets
for novel therapeutic treatment strategies. The focus of research
has diversified, resulting in specialized databases and research
groups. Only early steps toward the computational systems biol-
ogy of A. fumigatus and C. albicans have been made, including
genome-scale data mining and mathematical modeling of infec-
tion processes by these fungi (reviewed for human-pathogenic
fungi in Albrecht et al., 2008, 2011 and Rizzetto and Cavalieri,
2011).

2. DATA BASIS AND DATA ANALYSIS
The aim of understanding the complexity of host-pathogen inter-
actions can be achieved by exploiting the increasing amount of
experimental data, including high-throughput data and informa-
tion available from public repositories as well as from biomolecular
databases (see Table 1). Typically, experimental series comprise
knock-down experiments along with global and specific screen-
ing using knockout mutants of pathogenic fungi. Procedures can
be designed to analyze the complex structured data obtained

Table 1 | Bioinformatic resources of special interest for fungal systems

biology.

Resource Website Description

AsperCyc www.aspercyc.org Aspergillus

metabolic pathways

Aspergillus

genome DB

www.aspgd.org Aspergillus

genomics

BROAD www.broadinstitute.org Genomics

Candida

genome DB

www.candidagenome.org Candida genomics

CFGB http://cfgp.riceblast.snu.ac.kr Comparative

genomics platform

Ensembl http://fungi.ensembl.org Genomics

FunCatDB www.helmholtz-muenchen.de/

en/mips/projects/funcat

Gene-annotations

FungiDB www.fungidb.org Genomics

FungiFun https://sbi.hki-jena.de/FungiFun/ Gene set enrichment

analysis

JGI www.jgi.doe.gov Genomics

Omnifung www.omnifung.hki-jena.de Data warehouse for

omics data

PhiBase www.phibase.org Database of

virulence genes

SysMo-DB www.sysmo-db.org Collaborative

platform
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from these experimental series. Standardized pre-processing of
the raw data and integrative analyses allow the identification of
key regulators involved in pathogenicity. The management and
integrative analysis of experimental data is challenging and con-
stitutes a research field itself within bioinformatics (Albrecht et al.,
2008). It was presented exemplary for genome, transcriptome,
and proteome analysis of the heat shock response of A. fumi-
gatus (Albrecht et al., 2010). Each technique applied generates
different types of data, which have been acquired at the vari-
ous levels of information. For each level, all of the available data
types and their accompanying computational methods are usually
referred to as “omics.” New technologies, such as high-throughput
sequencing, impose new challenges on efficient data storage, data
retrieval, and statistical analysis. In order to handle the tremendous
amount of data required for systems biology, the heterologous
data has to be linked between existing databases. Automatic com-
puter access has to be provided, and different user perspectives
have to be taken into account. The standardization of biological
terms (GO, FunCat, SBO, Ruepp et al., 2004; Arnaud et al., 2009;
Courtot et al., 2011), data formats (SBML, Hucka et al., 2003),
experimental metadata (MIBBI, Taylor et al., 2008), and oper-
ating procedures (Taverna, Hull et al., 2006) contribute to this
objective.

Despite the wealth of information gained from analyzing high-
throughput data, research into biological systems is mostly focused
on a single data level. To overcome these limitations, data ware-
housing approaches (Omnifung, IntegromeDB, Albrecht et al.,
2007; Kozhenkov et al., 2011) aim to integrate the different data
layers. At the same time, most integration tools offer different
visualization techniques as an additional key method for query-
ing and understanding large datasets (Köhler et al., 2006; Smoot
et al., 2011). Even though efforts have been made in this respect, an
integrated view of different omics data levels is still a major chal-
lenge. Regulatory processes, different time scales, and non-linear

processes in the biological system as well as technical limita-
tions of omics technologies hamper the detection of causality
or even correlation between different data layers (Albrecht et al.,
2011).

2.1. “OMICS” BASED DATA
2.1.1. Genome
The importance of fungal-derived infections is reflected impres-
sively by the number of fungal genomes that have been sequenced
in recent years. The genome of the diploid C. albicans was pub-
lished in 2004 (Jones et al., 2004; Braun et al., 2005), followed by
the C. neoformans genome (Loftus et al., 2005) and by the A. fumi-
gatus genome (Nierman et al., 2005). Since then, other Candida
and Aspergilli genomes have been sequenced (Arnaud et al., 2007;
Fedorova et al., 2008). Also, the first genomes of dermatophytes
have recently been published (Burmester et al., 2011). Table 2 lists
all human-pathogenic fungi for which the full genome sequence
is available. This list does not include genome projects currently
in progress such as the sequencing of several C. albicans strains to
evaluate Candida genome plasticity. New sequencing technologies
now allow even greater numbers of genomes and transcriptomes
to be deciphered, which will contribute to a better understanding
of fungal pathogenesis. This information has been collected and
released in suitable and easy to use web tools (see Table 1). For
Candida sp., the main websites used are the CandidaDB (d’Enfert
et al., 2005) and the Candida Genome Database (CGD; Arnaud
et al., 2007). For A. fumigatus, the community normally refers to
the Central Aspergillus Data REpositery (CADRE, Gilsenan et al.,
2012) and the new Aspergillus Genome Database (AspGD, Arnaud
et al., 2012).

The information available in the different genome databases
allowed us to apply studies of comparative genomics to human-
pathogenic fungi focusing on evolutionary aspects of virulence
genes. Studies of different Candida sp. highlighted that cell

Table 2 | List of human-pathogenic fungi of which the genomes have been sequenced.

Scientific classification Species

ASCOMYCOTA

Ascomycetes Ajellomyces dermatitidis, Aspergillus clavatus, Aspergillus fischeri, Aspergillus flavus, Aspergillus fumigatus, Aspergillus

terreus, Blastomyces dermatitidis, Exophiala dermatitidis, Histoplasma capsulatum

Euascomycetes Coccidioides immitis, Coccidioides posadasii, Penicillium marneffei

Eurotiomycetes Arthroderma benhamiae, Arthroderma canis, Arthroderma gypseum, Arthroderma otae, Lacazia loboi, Paracoccidioides

brasiliensis, Penicillium chrysogenum, Trichophyton equinum, Trichophyton rubrum, Trichophyton tonsurans, Trichophyton

verrucosum

Saccharomycetes Candida albicans, Candida dubliniensis, Candida glabrata, Candida guilliermondii, Candida lusitaniae, Candida parapsilosis,

Candida tropicalis

Sordariomycetes Chaetomium globosum, Fusarium oxysporum, Fusarium verticilloides, Nectria haematococca

Pneumocystidomycetes Pneumocystis jirovecii

BASIDIOMYCOTA

Agaricomycetes Cryptococcus gattii, Cryptococcus neoformans

Ustilaginomycetes Malassezia globosa, Malassezia restricta

ZYGOMYCOTA

Mucorales Rhizopus oryzae

MICROSPORIDIA

Encephalitozoon cuniculi, Encephalitozoon intestinalis
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wall-associated genes, important for host recognition and viru-
lence of Candida sp., have been subject to gene duplications (Butler
et al., 2009). Furthermore, the high number of lipases or GPI
anchored proteins (normally clustered) is important for the vir-
ulence of C. albicans and C. glabrata (van het Hoog et al., 2007;
Dujon, 2010). This phenomenon is known as gene family expan-
sion and results in an increase of enzymatic power during infection
processes or, where possible, easier rearrangement of the genome.
In both cases, there is an increase in the competitiveness of the
pathogens during infection processes (Moran et al., 2011).

Many clustered genes present in Aspergillus sp. encode pro-
teins for secondary metabolite production, such as mycotoxins
and antibiotics, and do not normally represent repetition of
genes with similar enzymatic activity. A higher degree of genome
rearrangement was observed in telomeric regions, where many of
these clusters are located. The origins of these gene clusters have
always been associated with the possibility of vertical gene trans-
fer from other microbes. However, extensive comparative studies
on Aspergilli genomes suggest that the presence of paralogs in
the different species could be ascribed to gene duplication within
the genus and subsequent translocation to telomere-proximal
locations (Fedorova et al., 2008).

In addition to the importance for taxonomic studies, com-
parative genomics also highlighted peculiarities and similarities
between different fungal species. One example was given by com-
paring signaling pathways in different pathogenic fungi. The
mitogen activated protein kinase (MAPK) signaling pathways and
the calcineurin pathway have been extensively studied in patho-
genic fungi because of their involvement in pathogenesis. Global
sequence similarity analysis indicated that, on the one hand,
core structures involved in signaling are highly conserved while,
on the other hand, upstream (e.g., receptors) and downstream
factors (e.g., transcription factors) are far more species-specific
(Rispail et al., 2009). Knowledge obtained in these studies can be
used to identify suitable intraspecific or interspecific targets for
therapeutic intervention.

2.1.2. Transcriptome
A genome, apart from its arrangement and complexity, can always
be regarded as a static feature. In contrast to this, transcriptome
analysis provides information about the dynamics of a genome’s
expression. Due to the availability of fungal genome data, it is
now possible to design microarrays for genome-wide expression
analysis.

For more than 10 years, scientists have had access to various C.
albicans transcriptome studies. Many experiments have focused
on studying gene expression in response to antifungal agents (e.g.,
azole derivatives, amphotericin B, echinocandins; Backer et al.,
2001; Barker et al., 2004; Liu et al., 2005) but also at different stages
of development and during biofilm formation (Doedt et al., 2004;
Murillo et al., 2005). For C. albicans, already in 2005 a comparative
gene expression analysis was published (Ihmels et al., 2005).

Aspergillus fumigatus’ transcriptome history is comparatively
recent. The first entire global transcriptome analysis was published
together with the release of the first genome sequence (Nierman
et al., 2005). After that, scientists had access to various transcrip-
tome studies of developmental stages, during iron starvation, of

biofilm formation, and response to antifungals (e.g., da Silva Fer-
reira et al., 2006; Schrettl et al., 2008; Bruns et al., 2010; Cagas
et al., 2011; Jain et al., 2011). Fewer transcriptome studies have
been carried out for A. fumigatus than for C. albicans. Further-
more, the comparability of transcriptome data is low. One reason
for this is the development of different microarray platforms that
made it harder to compare different gene expression data. In addi-
tion to this, the experimental design of transcriptome studies has
been quite heterogenous with respect to media, strains, and gen-
eral growth conditions. At present, we can only reliably compare
different transcriptome data on the basis of genes that have high
fold-changes in expression levels.

The main challenge in infection biology is to understand gene
responses during infection. Such studies have been performed in
several ways (co-culture of fungi and immune cells or direct tis-
sue infection). The main problem remains the enrichment of the
RNA from the pathogen prior to the hybridization step in order
to avoid a decrease in data quality caused by cross-hybridization.
This step is normally performed by separation of the different RNA
species that can eventually be amplified to increase the nucleic acid
quantity (Nygaard and Hovig, 2006). Previous studies identified
genes involved in nutrient acquisition, oxidative stress response,
and metal homeostasis, which are differentially regulated in C.
albicans when co-cultured with macrophages and neutrophils
(Lorenz and Fink, 2001; Lorenz et al., 2004; Wilson et al., 2009).
Similar results have also been found in A. fumigatus when co-
cultured with neutrophils and dendritic cells (Lessing et al., 2007;
Sugui et al., 2008; Morton et al., 2011). A recent review described
a comparison of transcriptome data obtained from pathogenic
fungi during organ or tissue infections (Cairns et al., 2010).
Many genes involved in primary metabolism appeared to be dif-
ferentially expressed during infection in both human and plant
pathogens. This data suggested that physiological reprogram-
ming during infection remains relatively well conserved among
various pathogens. On the other hand, these types of studies high-
lighted the limitations of hybridization-based techniques such as
microarrays.

Recently, new techniques based on deep RNA sequencing have
been introduced, i.e., the RNA-seq technique to analyze transcrip-
tomes (Wang et al., 2009). Recent work on C. albicans and A.
fumigatus indicated that with this technology it is possible to
identify misannotated genes and differences in the level of low
expressed genes which, for example, is relevant for many secondary
metabolite gene clusters (Bruno et al., 2010; Gibbons et al., 2012).
Furthermore, in infection biology it is important to study the gene
expression profiles during infection, not only from the pathogen
side, but also from the host side. To date, microarray analysis was
limited in this respect, because separation of organism-specific
RNA prior the hybridization is hard to achieve. Theoretically,
RNA-seq analysis is capable of handling this problem. Techni-
cally, RNA from different species can be pooled, and then the
data obtained can be separated during the analysis by aligning raw
sequence data to different genomes. This approach seems possi-
ble because the sequences not matching a genome are normally
discarded. The RNA-seq technique could potentially give us a way
of monitoring gene expression profiles from the pathogen and the
host simultaneously.
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2.1.3. Proteome
To gain global insights into the biology of fungal pathogens and
their interactions, genome-wide studies should focus not only on
the transcript level, but also on the protein level. Proteins are the
molecules that are catalytically active, build up the cellular struc-
ture, and mediate signal transduction and gene regulation. The
release of the genome sequences of C. albicans and A. fumigatus
paved the way for studies on the fungal proteome, i.e., the entire
set of proteins which is synthesized and modified at a given time
under defined conditions. Two dimensional-gel electrophoresis, a
method invented in the mid-1970s, was the first technique used to
study the presence of proteins on a global scale (O’Farrell, 1975;
Klose and Kobalz, 1995). Meanwhile, mass spectrometry (MS)-
based methods have become more and more popular. Here, the
separation of tryptically digested peptides by liquid chromatogra-
phy is coupled to mass spectrometry (reviewed in Aebersold and
Mann, 2003). Despite the significant technical progress made in
recent years in the field of MS-based proteomics, no technique
currently available allows us to entirely profile the highly dynamic
range and complexity of the protein set of a eukaryotic organism.
However, a lot of knowledge about the proteome of C. albicans and
A. fumigatus has already been obtained, which is summarized in
several recent reviews (Rupp, 2004; Thomas et al., 2006; Kim et al.,
2008; Kniemeyer and Brakhage, 2008; Andersen and Nielsen, 2009;
Kniemeyer, 2011; Kniemeyer et al., 2011). Here, a brief overview
will be given and current trends will be highlighted.

For C. albicans, the first studies on the extent of changes in cyto-
plasmic proteins during yeast-mycelial transition were conducted
in the early 1980s, 25 years before the start of the post-genomic era
in the field of fungal pathogenicity (Manning and Mitchell, 1980).
More 2D-PAGE studies followed (Niimi et al., 1996), and differ-
ences in protein expression between the two morphotypes were
also analyzed using MS-based techniques (Melanson et al., 2006).
Several proteins that also play a role in the virulence of C. albi-
cans were found to have increased expression levels in hyphal cells
(reviewed in Kniemeyer and Brakhage, 2008). Recently, a study by
Monteoliva et al. (2011) indicated that the primary metabolism
undergoes a reorganization during morphotype-switching. Also,
the composition of the C. albicans cell surface proteome undergoes
changes during the yeast-mycelial transition. Several extraction
techniques have been established in recent years to study this phe-
nomenon (Pitarch et al., 2002; de Groot et al., 2004; Castillo et al.,
2008; Hernáez et al., 2010). Heilmann et al. (2011) gave a first
quantitative proteomic snapshot of the changes occurring in the
cell wall proteome of C. albicans during the transition from yeast
to hyphal cells. Several proteins were identified as indicators of
hyphal growth, including the adhesin Als3p.

Due to the fact that C. albicans faces a multitude of diverse
stresses, e.g., oxidative stress, higher temperatures, hypoxia, and
low pH during infection, the proteomic response to these and other
adverse conditions have been investigated by many groups. Kusch
et al. (2007) and Yin et al. (2009) showed that the levels of many
proteins with antioxidative functions were significantly increased
during the oxidative stress response. Sosinska et al. (2008) and
Sosinska et al. (2011) investigated the variability of the cell wall
proteome during iron depletion, hypoxia, and at different pH
values (pH 4 and 7).

Proteomics is also a suitable approach for gaining a deeper
insight into the response of C. albicans toward antifungal com-
pounds. Bruneau et al. (2003) characterized the proteome changes
in C. albicans induced by triazoles (fluconazole and itraconazole)
and an echinocandin-like lipopeptide (mulundocandin). The dif-
ferent modes of action of triazoles and echinocandins, two differ-
ent classes of antifungal agents, were also reflected at the protein
level. Similar results were obtained by Hoehamer et al. (2010),
who additionally included the polyene amphotericin B in their
study. Results of a recent study using a liquid chromatography–
mass spectrometry (LC-MS) based approach suggested a cell wall
destabilizing effect of the triazole fluconazole (Sorgo et al., 2011).
Other studies addressed the mechanism of drug resistance by
comparing the proteome of a drug-resistant mutant strain with
a drug-susceptible wild-type strain (Hooshdaran et al., 2004; Yan
et al., 2007).

A lot of progress has also been made in the field of A. fumi-
gatus proteomics. In contrast to C. albicans, this pathogenic mold
shows not only a mycelial growth form, but also produces spores
for dispersal. Proteome maps of both morphotypes and the com-
position of the secretome have been established (Vödisch et al.,
2009; Teutschbein et al., 2010; Cagas et al., 2011; Wartenberg et al.,
2011). Also, the stress response to oxidative and heat stress was
characterized (Lessing et al., 2007; Albrecht et al., 2010). Chap-
erones and antioxidative enzymes were produced under both
conditions. Additionally, the results showed that the thioredoxin
system seems to play an important role in maintaining the cellu-
lar redox balance for A. fumigatus. Recent findings revealed that
A. fumigatus is exposed to oxygen-depleted microenvironments
during infection (Grahl et al., 2011). The response to hypoxia
was also studied at the protein level using an oxygen-controlled
chemostat (Vödisch et al., 2011). Under hypoxic conditions, A.
fumigatus cells developed a higher respiratory capacity, induced
the synthesis of enzymes of the nitrosative stress response, and
activated a secondary metabolite gene cluster (pseurotin A). Also,
other growth conditions triggered the production of secondary
metabolites with biological activity. When A. fumigatus attaches to
surfaces, it can grow into a biofilm-like structure including the for-
mation of an extracellular matrix. Under these conditions, higher
levels of the immunosuppressive secondary metabolite gliotoxin
were produced (Bruns et al., 2010).

Several groups profiled the A. fumigatus proteome in response
to the antifungal compounds caspofungin (Cagas et al., 2011)
and amphotericin B (Gautam et al., 2008). Amphotericin B influ-
enced various metabolic processes including the ergosterol path-
way, whereas caspofungin induced a strong increase in levels of
ribosomal proteins.

The study of the interplay between fungal pathogens and
human cells at the level of the proteome remains a challenging task
due to the complexity and the limited number of methods available
for the separation of fungal cells from the human effector cells. Sev-
eral studies characterized the proteome of murine macrophages,
which had been exposed to living or heat-inactivated C. albi-
cans yeast cells (Shin et al., 2005; Martínez-Solano et al., 2006,
2009). To complement these studies, proteomic changes of C.
albicans yeast cells due to macrophage confrontation were inves-
tigated and revealed an increase of the level of chaperones and
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other stress-related proteins. No proteomic data is available on
the interaction with other cells of the immune system or on the
interaction of A. fumigatus with cells of the immune system. Nev-
ertheless, proteomic technologies, such as targeted MS methods
with high-performance instruments, have the potential to deter-
mine the mode of interaction between pathogenic fungi and their
host. Targeted proteomic approaches are based on the selection
of specific peptides of a protein for mass analysis. This process is
termed multiple reaction monitoring (MRM). It allows the identi-
fication of very low-abundance proteins (Domon and Aebersold,
2010). However, this technique is still limited to the analysis of
several hundred proteins in a single LC-MS/MS run, but technical
progress in this field can be expected and may help to make a leap
forward to the systematic investigation of host-pathogen interplay.

2.2. IMAGE-BASED DATA
Investigation and elucidation of the pathobiology of fungal infec-
tions strictly requires analysis of the interaction of the pathogen
with the host immune effector cells (Brakhage et al., 2010). Image
analysis is an indispensable tool for doing this. In combina-
tion with advances in computer performance and computing
resources, the use of several imaging technologies led to the gen-
eration of large amounts of data (Behnsen et al., 2007; Hickey
and Read, 2009; Brock, 2012) awaiting integration via a systems
biological approach for analysis and interpretation. In general,
image data can be obtained by different experimental approaches,
e.g., microscopy, positron emission tomography (PET)/computer
tomography (CT), or bioluminescence imaging. Due to the fact
that the latter two techniques for monitoring fungal infections in
living hosts are still in the early stages of development (Avet et al.,
2009; Ibrahim-Granet et al., 2010), we focus here on recent studies
using microscopy-generated image data. A good example of such
data is represented by monitoring the interaction of labeled fungal
cells, i.e., conidia, germlings, or hyphae, with immune effector cells
using microscopy, especially fluorescence microscopy or confocal
laser scanning microscopy (CLSM). Interaction of A. fumigatus
and phagocytes based on fluorescence microscopy and manual
image analysis was described, for example, by Ibrahim-Granet
et al. (2003) and Jahn et al. (2002). In theses studies, interac-
tion of A. fumigatus with phagocytes was monitored in detail,
which revealed that A. fumigatus is able to inhibit acidification of
phagolysosomes. More recently, Thywißen et al. (2011) were able
to assign this ability to the presence of an active PksP, the polyketide
synthase involved in dihydroxynaphthalene melanin biosynthesis.
All of these studies were based on differentially labeled conidia,
germlings, phagocytes, and their structures and compartments.
It is even possible to monitor different pH values within dis-
tinct compartments of the phagocytes, allowing us to monitor
phagocytosis rates in general and the fate of conidia after con-
frontation with immune cells in detail (Thywißen et al., 2011).
In the future, a large number of mutants can be screened using
this assay to identify further pathogen-derived components inter-
fering with phagocytosis. Although phagocytosis of A. fumigatus
by different phagocytes from both human and mouse has been
analyzed in detail in several studies (Jahn et al., 2002; Ibrahim-
Granet et al., 2003), only a limited amount of data is available with
regard to direct observation of the phagocytosis process itself by

live cell imaging. This applies to live cell imaging of phagocytosis
of Candida species. Cell motility, however, is an essential require-
ment for the function of phagocytes. A detailed spatio-temporal
analysis of the dynamics of the interaction of phagocytes with
A. fumigatus and C. albicans using time-lapse microscopy and
single-cell tracking was performed by Behnsen et al. (2007). In
this study, the natural environments of different phagocytes were
simulated by 2D liquid cultures and by generation of a 3D col-
lagen environment. Live imaging showed that the interaction of
phagocytes with A. fumigatus conidia or C. albicans cells in both
2D and 3D environments is a highly dynamic process that includes
touching, dragging, and phagocytosis of fungal structures. Inter-
estingly, the different immune cells, i.e., neutrophils, macrophages,
and dendritic cells, exhibited different behavior with regard to the
dependence on environmental dimensionality and as well as to the
processing of A. fumigatus and C. albicans. Whereas neutrophils
and alveolar macrophages efficiently phagocytosed or dragged A.
fumigatus conidia in a 2D environment, their function was severely
impaired in a 3D matrix. The opposite was found for processing of
C. albicans cells. Phagocytosis was reduced in 2D environments,
while in 3D environments most neutrophils internalized multi-
ple yeast cells. These differences were also found in competitive
assays, when both C. albicans and A. fumigatus were confronted
with immune cells in the respective environment. Despite frequent
touching of the other pathogen, neutrophils primarily incorpo-
rated A. fumigatus conidia in 2D and C. albicans yeast cells in a 3D
environment. It is therefore conceivable that the activity and effi-
cacy of the different phagocytes is best in the environment where
a pathogen is naturally encountered.

Analysis of image data with regard to host-pathogen interac-
tion was performed almost exclusively manually, with all of the
inherent drawbacks and disadvantages. Manual data analysis is
very time-consuming, error-prone, and last but not least, depen-
dent on subjective criteria of the person performing the analysis.
A first approach to automatize image analysis was performed
by Mech et al. (2011). As a proof of principle, the interaction
of A. fumigatus conidia with macrophages was monitored (see
Figure 1). Data was collected by CLSM using cells labeled with
different fluorescent dyes. The ruleset developed for processing
microscopic raw data allows fully automated and context-based
analysis of image data. By applying this method, discrimination
between different cell types, i.e., phagocytes and conidia, was
facilitated. Furthermore, cell counting based on discrimination
between phagocytosed, adherent and non-adherent exterior coni-
dia was performed. This is of particular importance since the
different steps in conidia-macrophage interaction, i.e., recogni-
tion, adherence, ingestion, and intracellular processing of inhaled
spores, define important pathogenesis-related processes. A prereq-
uisite for automated image analysis, e.g., to determine phagocyto-
sis rates, is the digitization of images. However, due to the fact that
phagocytosis of A. fumigatus conidia by macrophages is a complex
process, current image analysis tools that require precisely defined
and homogeneous objects (overview in Shamir et al., 2010; Sysko
and Davis, 2010) cannot be applied here. During co-incubation,
conidia and macrophages tend to attach and form clusters. In
addition to this, the relevant structures vary in their intensities
as a result of different labeling efficacies and, last but not least,
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the background differs considerably. These parameters were taken
into consideration by the ruleset developed by Mech et al. (2011)
and thereby allowed fully automated and context-based analysis
of spatially resolved biological data, i.e., phagocytosis rates of A.

FIGURE 1 | Image of the phagocytosis assay showing all conidia and

macrophages after segmentation and classification. Exterior
non-adherent conidia outlined in magenta, adherent conidia outlined in
white, interior conidia outlined in orange, and macrophages outlined in
yellow. ( Taken from Mech et al., 2011.)

fumigatus conidia. As this ruleset can be easily transferred to high-
throughput microscopy measurements of other pathogens, e.g.,
Candida sp. or Cryptococcus neoformans, it will contribute to the
further elucidation of host-pathogen interactions.

3. MODELING
The identification of pathogenic traits will increasingly be sup-
ported by mathematical and computational modeling and by the
integration of experimental data and prior knowledge into com-
plex models that describe the underlying virulence mechanisms.
The generation of models and their subsequent application aim
to support the optimal and standardized design of experiments
and to generate and validate hypotheses. This allows that new
knowledge is gained and predictions for novel strategies for diag-
nostics (biomarker design) and therapy (drug discovery, drug
administration, therapy decision support) are made.

Systems biology of fungal infections describes and analyses var-
ious aspects of the confrontation of the host and its pathogen
under defined conditions. The interactions and co-evolution of
host and pathogen can be described with the help of evolutionary
models (May and Anderson, 1979). Currently, molecular modeling
of the host-pathogen interaction generally takes a reductionistic
approach.

In general, models either describe a biological perspective on
a single scale, or they span several different orders of magnitude
(see Figure 2). Molecular mechanisms of host-pathogen inter-
action were identified with the help of statistical and integrated
analysis of experimental data (see section 2). Single interactions
represent only a reduced level of complexity, and a combina-
tion of several different mechanisms is capable of reflecting the
global behavior at a cellular level. Such multi-systems interactions
will become more complex when several species are considered.
More recent approaches incorporate different biological levels to

FIGURE 2 | Schematic diagram of different biological and modeling

levels of systems biology of infectious diseases. Biological systems span
several orders of magnitude. Mathematical methods, which are presented in
this paper, focus on different biological levels of a fungal or similar infection.
Modeling approaches can be applied to host and pathogen systems and their

interplay. The flexibility and adaptability of agent-based modeling allows
analysis at multiple levels without any restrictions with respect to the
biological system. In order to generate new hypotheses, the advantages of
bottom-up and top-down models are usually incorporated into the analysis.
(Figure adapted from Forst, 2006.)
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get an interrelated view of fungal infections. These multi-scale
approaches need to integrate data from experiments on two or
more scales (Walker and Southgate, 2009). The greatest challenge
arises from the fact that an effective computational framework
has to deal with the complexity of different length and time scales
spanning several orders of magnitude. This leads to quantifiable
differences of crucial constituents (e.g., one cell and its sizeable
number of molecules) and to newly considered events (e.g., move-
ment of the cell and the corresponding events at the molecular
scale).

To date, only a few models of fungal infections of humans
have been studied, which is mainly due to the complex model-
ing challenges and the previous lack of measurements of model
parameters. In perspective, the host-pathogen interaction should
be described by a combination of spatio-temporal models with
interacting molecular network models.

3.1. NETWORK MODELING
Nodes in networks stand for interacting molecular entities (e.g.,
genes, proteins, metabolites) whose concentration or activity can
be quantified by discrete or continuous variables. Edges, which
stand for the relationships between the nodes, can be modeled in
different ways, e.g., by directed or undirected edges and labeled by
linear or non-linear functionality (Hecker et al., 2009). The cellular
behavior of a system is usually represented by gene-regulatory net-
works, signaling networks, protein-protein interaction networks
(PPI), and metabolic networks (see Figure 3). In addition to this,
a confrontation between pathogen and host can be viewed as two
interacting molecular networks, for example one within the host
epithelial or immune cells and the other in the colonizing, per-
sisting, or invading pathogens. Network models are capable of
reflecting the non-linear dynamic behavior of the systems. Despite
the fact that network visualization and handling is not scalable, its
representation is intuitive and, as an example, there are ongoing
projects which aim to standardize the graphical representation
(BioPax, PSI-MI, SBGN, Hermjakob et al., 2004; Strömbäck and
Lambrix, 2005; Le Novère et al., 2009). Basic networks only model
the coordinated behavior of biological entities, and experimental
data can be mapped to the network in order to confirm and anno-
tate experimental results. The integration of general and specific
knowledge transforms those “influence networks” into “mecha-
nistic networks” of higher quality (Hecker et al., 2009; Santamaría
et al., 2011) which themselves already represent a molecular inter-
action model that can be tested with the help of perturbation
experiments. The dynamic nature of a system is partly reflected

in the network topology. The investigation of the interactivity, the
distribution and regulation of hubs, network motifs, and cross-talk
of functional modules and reaction sets (e.g., coupled reaction sets
and elementary flux patterns in metabolic networks) contribute
to our understanding of the robustness and flexibility of a system
(Barabási and Oltvai, 2004).

The major challenge of a systems biology-based approach
to understanding the host-pathogen interaction arises from the
robustness of the pathogenic system. The robustness originates
from the network structure of the biological system that makes it
unlikely that it will be possible to develop a single biomarker or
drug against fungal infection. In the interests of clinical success,
a system-oriented drug design with multiple antifungal strategies
needs to affect sufficient points in the infection process (Kitano,
2007).

3.1.1. Gene-regulatory networks
Gene expression is mainly regulated by transcription factors and
co-factors and additionally by post-transcriptional modification
as well as mRNA and protein degradation. The reverse engi-
neering of genome-wide interdependencies between these mol-
ecular entities relies on comprehensive datasets. Since there are
only a few datasets on infectious processes available, one of the
major tasks is to collect and process data and prior knowledge
required for the development of novel parsimonious network
models, describing essential fungus-host interactions. The infer-
ence process is mathematically challenging because the search
space (number of possible gene regulations) increases exponen-
tially with the number of nodes (genes). The modeling, on the
other hand, relies on a small amount of data, which is usually
obtained from microarray time series experiments. The experi-
mental design is a trade-off that minimizes the cost and effort of
the experiment, while ensuring that the data reliably reflects the
underlying processes of the perturbation experiment. Many differ-
ent network model architectures and inference methods have been
proposed (reviewed in Hecker et al., 2009; Marbach et al., 2010). As
part of the DREAM5-initiative1 (Dialog for Reverse Engineering
Assessments and Methods), gene expression data of the bacterial
pathogen Staphylococcus aureus was presented to infer large-scale
gene-regulatory networks. The inferred networks have been used
to create a predictive community network of 1054 genes and 1688
edges, which need to be validated experimentally (Stolovitzky,

1http://wiki.c2b2.columbia.edu/dream/

FIGURE 3 | Graphical representation of (A) gene-regulatory network, (B)

metabolic network, and (C) signaling network. (A) The activation of genes
is shown by arrows whereas repression is marked by bars. (B) Metabolites

(Mi) are connected with internal (vi) or external (bi) metabolic fluxes. (C) A
signal can lead to a phosphorylation (“-P”) cascade of MAP kinases, and
eventually the target is activated or repressed.
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2011). The infection process of the fungi C. albicans and A. fumiga-
tus were modeled using tools such as NetGenerator (Guthke et al.,
2005; Toepfer et al., 2007), which are based on ordinary differential
equation systems and linear regression methods that are capable
of describing the dynamic behavior of systems, even on a global
scale (Altwasser et al., 2012). The high dimensionality of the math-
ematical problem can be reduced at several stages in the network
reconstruction process (Hecker et al., 2009). For example, Guthke
et al. (2007) reconstructed the underlying gene-regulatory events
when A. fumigatus was exposed to a temperature shift. In order to
select features for the network modeling, expression profiles with
similar significantly regulated time courses were clustered to func-
tional entities. Cluster representatives, indicating main biological
functions, were assigned to these entities using gene annotation
(Priebe et al., 2011).

The dimensionality of the problem can be further reduced
when known global characteristics of a gene-regulatory network
are taken into account. The observed high modularity, hierar-
chical structure, and over-representation of network motifs can
guide the optimization of the structure of the model. A widely
used criterion is the network sparseness, meaning that each gene
is regulated only by a small number of regulatory genes. This fea-
ture of gene networks was incorporated in studies by Linde et al.
(2010, 2012), who analyzed transcriptomic data focused on the
iron homeostasis of C. albicans during infection and of A. fumi-
gatus after a change in available iron concentration. The authors
also used prior knowledge in order to reduce the search space.
Interactions between genes and transcription factors found in lit-
erature were used to build a network template, and this prior
knowledge was integrated into the network reconstruction pro-
cedures with the help of a weighting function. Currently, prior
knowledge about fungi is scarcely available in databases and needs
to be extracted from literature or genome sequences, e.g., by pre-
dicting transcription factor binding sites (Fazius et al., 2011).
The prior knowledge also forms the basis for the analysis of the
validity of the inferred network and the performance of the applied
reconstruction method.

Recently, the inference of gene-regulatory network was applied
to predict host-pathogen interactions (Tierney et al., 2012). RNA-
seq data from a C. albicans infection of Mus musculus were used
to predict subnetworks which were subsequently combined into
an interspecies network. This model contained predicted regula-
tions between the two species during the infection process. The
results were supported by experimental findings which, overall,
demonstrated that network inference can be used to support the
deciphering of complex infectious processes.

3.1.2. Protein-protein interaction network
The biological function of genes originates from encoded proteins
which form molecular structures, catalyze metabolic reactions,
and are involved in signaling and regulation. With the help of
technologies such as yeast two-hybrid or tandem affinity purifi-
cation combined with mass spectrometry, it is possible to identify
interacting protein partners which form an “interactome” net-
work. The interactome shifts the focus from the detection of single
protein interactions to the decoding of the global organization
of proteomes (Barabási and Oltvai, 2004). Protein networks are

increasingly used to identify host immune molecules and path-
ogenic effector proteins associated with host infection and drug
targets (reviewed in Ideker and Sharan, 2008). For fungal infec-
tions, the main challenge is the lack of experimental protein inter-
action data, which is required to (semi)automatically construct
such a network. The bioinformatic approaches either rely on text-
mining (Zhou and He, 2008; Rao et al., 2010), or the interaction is
predicted on the basis of sequence analyses (Dyer et al., 2007; Skra-
banek et al., 2008). For the modeling of infectious diseases, Dyer
et al. (2008) mapped all available host-pathogen protein interac-
tions to a single protein network. Many pathogens were found to
target the same process and therefore supported the hypothesis
that topological properties of the protein-protein interaction net-
work can be used to identify pathogenetic traits (Mukhtar et al.,
2011) and drug targets (Hase et al., 2009; Zhu et al., 2009). In
addition to this, the functional annotation of single gene prod-
ucts is supported by the interaction context of proteins within
the global protein-protein interaction network (Xu and Li, 2006;
Sharan et al., 2007).

3.1.3. Signaling Networks
The cell’s response to an internal and external stimulus is triggered
by a signaling network whose regulation is the key control for cel-
lular behavior. The understanding and modeling of this network
holds great promise for the development of new therapeutic strate-
gies and, consequently, many different modeling techniques have
been developed (reviewed in Aldridge et al., 2006). The elements
of the signal transduction networks help to identify the effect of
positive or negative feedback loops (Blüthgen et al., 2009) and also
shed light on the cross-talk between different signaling pathways
(Borisov et al., 2009).

Successful application of signaling models depends on care-
ful validation of the underlying data, especially since molecular
signals are hard to measure experimentally. This is one reason
why many applications in this research area concentrate on the
perspective of the human host where, for example, the JAK/Stat
pathway (Vera et al., 2011) and macrophage activation (Raza et al.,
2008) have been modeled. Currently, the yeast Saccharomyces cere-
visiae is a model organism for the analysis of fungal signaling
networks (Waltermann and Klipp, 2010). The modeling of fungal
pathogen signaling is still in its early stages. Efforts are being made
to reconstruct the underlying signaling network, e.g., for C. albi-
cans, with the help of sequence analysis and molecular biological
experiments (Rispail et al., 2009). Additionally, the effects of host-
pathogen interaction on the signaling pathways of the host are the
subject of several studies (reviewed in Brodsky and Medzhitov,
2009; Hajishengallis and Lambris, 2011). For example, Franke et al.
(2008) modeled the c-Met signaling network of hepatocytes after
infection with the pathogenic bacterium Helicobacter pylori and
predicted the effects of gene knock-outs, which were subsequently
confirmed experimentally.

3.1.4. Metabolic networks
Supported by the increasing number of sequenced fungal
genomes, the modeling of host-pathogen interactions with the
help of genome-scale metabolic networks is feasible. The function-
ality of thousands of genes can be associated with a set of metabolic
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reactions, because they either encode enzymes or they regulate
related reactions (Cavalieri and Filippo, 2005). The steady state
of metabolic fluxes through a metabolic network structure can be
understood as a phenotypic state of an organism. For example, the
metabolic capacity of the pathogen needs to be able to produce a
variety of secretory metabolites and proteins which correspond to
the pathogenic traits of the species and which are interesting drug
targets (Fang et al., 2009). On the other hand, fungi also rely on the
uptake of essential minerals which are bound to storage proteins in
the host, e.g., iron bound to hemoglobin or ferritin during C. albi-
cans infection (Almeida et al., 2009). The intertwined nature of the
host-pathogen interaction can thus be modeled by two interacting
metabolic networks (Raghunathan et al., 2009).

Despite the increasing number of sequencing projects for path-
ogenic fungi (see Table 2), the number of reconstructed networks
is limited to species which are in the focus of metabolic engineer-
ing. To the best of our knowledge, only two large-scale, manually
curated metabolic network reconstructions of fungal pathogens
exist, namely for A. fumigatus (Tuckwell et al., 2011) and C. albi-
cans2. Despite the recent efforts made at automation, a high quality
network reconstruction process needs manual curation, a step
which acts as the bottleneck in this modeling technique (Pitkänen
et al., 2010). During the curation of specific metabolic pathways,
genes that encode missing enzymes are annotated with the help
of bioinformatic tools or experimental validation (Pitkänen et al.,
2010). The reconstruction process itself thus already contributes
to the elucidation of the underlying molecular processes.

The mathematical modeling and simulation of metabolic net-
works allow us to address questions such as (i) the influence of
single enzymes (and corresponding genes) within the network,
(ii) the search for invariant steady states, (iii) the prediction of ele-
mentary flux modes, and even (iv) the consideration of different
optimization strategies for the organism (Ruppin et al., 2010).
With these objectives in mind, specific methods and concepts
of metabolic modeling, which do not rely on mostly unknown
specific kinetic parameters, can be applied to fungi.

Nevertheless, it is promising to compare metabolic networks of
closely related pathogenic and non-pathogenic species in order to
understand the physical features of pathogenicity (Lee et al., 2009).
Recently, Oberhardt et al. (2011) examined differences and sim-
ilarities between a pathogenic and non-pathogenic Pseudomonas
species. Prior to analysis, the authors reconciled both metabolic
networks in order to minimize the influence of different recon-
struction approaches on the results. The subsequent analysis con-
firmed the multifactorial aspect of pathogenicity, but differences
in the flexibility of sulfur related pathways were also found.

3.2. SPATIO-TEMPORAL MODELING
In contrast to the network models discussed in section 3.1, which
are based on “omics”-data that does not contain any spatial infor-
mation, spatio-temporal models are developed to include this type
of information. For example, modeling the affinity maturation of
antibodies in germinal centers in response to the recognition of
antigens has been successfully performed in recent years in joint

2http://www.candidagenome.org and commercially available at Insilico Biotechnol-
ogy AG and ERGO

FIGURE 4 | Schematic illustration of a continuous 3D spatial

environment in silico within an agent-based model. Spherical objects
represent cells, the different colors depict different cell types.

experimental and theoretical studies (Figge, 2005; Figge et al.,
2008; Garin et al., 2010). Similarly, this modeling approach can
be applied to the field of fungal infections to model the innate
immune response (see Figure 4). With the application of special
imaging techniques to generate spatially and spatio-temporally
resolved data and their automated analysis (see section 2.2), the
way has been paved to model, simulate, and study interactions
between the host and pathogenic fungi from this point of view.

Two common approaches to model spatio-temporally resolved
systems are partial differential equations (PDEs) and agent-based
models (ABMs). The former treats systemic constituents (e.g.,mol-
ecules or cells) as concentrations (or populations), whereas the
latter deals with them as discrete objects. When it comes to the
number of constituents and their quantities, scalability is one of
the computational strengths of PDEs. Apart from this advantage,
crucial limitations such as the identification of single objects, their
specific local interactions and their particular internal states exist
(Van Dyke Parunak et al., 1998). ABMs can cope with all of the con-
straints mentioned above, but come at the price of more expensive
computer resources in terms of computer memory and computing
time (Chavali et al., 2008).

Each modeling approach has its own right to exist. ABM sys-
tems proved to have the necessary properties when higher levels of
granularity for single constituents are considered. PDEs are ade-
quate when the general behavior, such as Brownian motion, for
a whole population of constituents is considered (Guo and Tay,
2005). Another criterion for making the right choice is the amount
of data and knowledge available for the scale under consideration.
Cells can be differentiated in various states. They may either move
in a straight line or show random migration behavior and inter-
act individually, depending on the interaction partners involved.
These characteristics favor the choice of an ABM. However, mod-
eling molecules at the level of individual molecules also has several
advantages. Nevertheless, describing innate immune responses
against fungal infections at all levels within ABMs renders the
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multi-scale system intractable because of the overwhelmingly large
number of cells and molecules. A promising approach toward
modeling multi-scale systems was proposed by Guo et al. (2008),
where, within a hybrid model, cells are described in continuous
space as individual agents by an ABM approach, while molecular
interaction is described by PDEs via reaction-diffusion equations
for molecular populations. Such a hybrid multi-scale approach has
the potential to model fungal infections since it is adaptable and
extensible, thus providing the required flexibility.

At the beginning of the modeling process of this multi-scale
system, one major issue is the definition of the necessary features
of cells at the cellular scale. Examples of macroscopic character-
istics are the cellular migration type as well as their morphology
and interaction with other cells. A major source of these essential
parameters are images and time-lapse videos, which are recorded
during microscopy experiments. With the analysis of single frames,
cellular sizes, morphological properties, and population quanti-
ties can be computationally extracted in an automated fashion
(see Figure 1). An automated analysis of the interaction between
macrophages and A. fumigatus was recently presented by Mech
et al. (2011). Furthermore, the analysis of cell tracks extracted
from videos plays an important role in the calculation of charac-
teristic properties of the cellular movement such as speed, motility
coefficient, and diffusion constant. The intercellular interactions
can be defined at both the cellular and molecular scale. The initial
setup of the interaction model can be arranged by implementing
simple interaction rules of cellular behavior based on phenomeno-
logical knowledge. An extension toward a complex rule-system is
also conceivable as well as the implementation of specific strategic
behavior of the pathogenic fungi, as recently unraveled by Hum-
mert et al. (2010), by applying methods of game theory. It would
also be conceivable to include cell-cell interactions by considering
interacting molecules at the cellular surface and their subsequent
impact on internal and external signaling. These processes, taking
place at the molecular level, require the data basis that underlies the
network models (see section 3.1) and can be integrated together
with the microscopy data basis into one and the same multi-scale
model.

In addition to the integration of data, there are also other chal-
lenging tasks, such as the estimation of unknown parameters and
the establishment of efficient algorithms and adequate data struc-
tures, in order to make simulations computational feasible. The
former issue is strongly related to the generation of hypotheses.
The efficiency of the applied algorithms needs to be verified exper-
imentally in further studies. We are still at the beginning of the
systems biology cycle regarding the spatio-temporal modeling of
fungal infections, but the first promising steps have successfully
been made.

4. OUTLOOK
Although great advances have been made in the understanding
of molecular and cellular mechanisms of fungal infections, they
do not currently provide a genome-wide view on the pathogenic
processes of both fungal pathogens and hosts. New technologies
such as RNA-seq, single-cell measurements, and PET/CT imag-
ing open up new opportunities to unravel molecular and cellular
mechanisms in greater detail and complexity. However, integrative
analysis of high-throughput and spatio-temporal data on several

molecular and cellular levels is increasingly becoming the limiting
step when identifying molecular key regulators and mechanisms
involved in fungal pathogenicity. Efforts to standardize data man-
agement and annotation promise advances for computational
approaches to the mathematical modeling of host-pathogen inter-
actions. Bioinformatic tools also need to be further adapted to the
specific biological context of fungi. The current focus of systems
biology is on the application of network and agent-based mod-
eling techniques to genome-wide and spatio-temporally resolved
dynamic systems thus exploiting the full range of high-throughput
and image data available. In order to fully facilitate existing com-
putational methods, it is necessary to deepen our understanding
of molecular mechanisms thus improving gene annotation and
establishing wider knowledge bases.

Genomic knowledge, coupled with high-throughput gene
knock-out methodologies, are already advancing. The availabil-
ity of mutant strains has grown rapidly over the last 10 years
(McCluskey et al., 2010). We now have the possibility to screen
more than 3,000 C. albicans single deletion mutants, but we still
lack complete A. fumigatus or C. albicans knock-out libraries.
At present, many high-throughput investigations are performed
using complete gene knock-out libraries from S. cerevisiae or Neu-
rospora crassa. This approach can be exploited to discover wide
spectra of antimycotic drugs, but is not helpful for virulence stud-
ies. However, complete sets of viable genome-wide mutants for
many pathogenic fungi are expected to become available in the
next few years. In parallel, many efforts are being made to cre-
ate high-throughput screening infection model systems. Recently,
alternative systems using insects, nematodes, or embryonated eggs
have been used (Ferrandon et al., 2007; Mylonakis, 2008; Moy et al.,
2009; Jacobsen et al., 2010).

In the meantime, the scientific community continues to inves-
tigate the role of innate immunity during fungal infections. It has
yet to be explored how neutrophil granulocytes actually kill out-
growing hyphae of A. fumigatus. The cellular mechanisms can be
explored with the help of images which are a promising data source
for driving the systems biology cycle. Image-based Systems Biology
focuses on spatial properties such as cellular morphology or the
mechanical features of interactions, and allows further insights
which contribute to a better understanding of biological systems.

In clinical practice, differential diagnosis of infectious diseases
and sepsis is based primarily on clinical criteria. These crite-
ria lack the required sensitivity and specificity (Alberti et al.,
2003) making the identification of novel biomarkers essential to
identify the pathogen causing the infection on time. In clinical
decision-making, fast and reliable diagnosis of specific pathogens
is required. Theranostics (Chen, 2011) is a novel concept of com-
bining novel platforms and technologies in clinical diagnostics
and therapy such as image-guided therapy by, e.g., PET (Walther
et al., 2011) or Raman spectroscopy (Neugebauer et al., 2006).
There is currently a great deal of effort being made to push
commercialization and collaboration strategies to establish the
so-called companion diagnostics (CDx) marketplace. So-called
Translational Systems Biology describes the clinical application of
mathematical or computational models by enhancing the under-
standing of the complex dynamics of biomedical processes in an
integrative, genome-wide way (Vodovotz et al., 2008). It integrates
the scientific background of these trends and is based on current
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experimental findings. Apart from integrating different “omics”
data levels, models should not exclusively focus on the host’s and
the pathogen’s aspects of the infection process, but also on the
interaction between both biological systems. This interconnected
perspective supports the elucidation of mechanisms underlying
the complex process of fungal pathogenicity. Translational Sys-
tems Biology is primarily directed at drug target identification
and validation as well as rational drug design, supported by
analysis of the inferred molecular network models (Klipp et al.,
2010). Furthermore, Translational Systems Biology of infection
aims (i) to recognize pathogens by their molecular signatures, (ii)
to make the outcome and responsiveness of therapeutic interven-
tions more predictable, and (iii) to identify more effective therapies
using mathematical and computational models. The first steps

in Translational Systems Biology were taken in the area of sep-
sis control (Vodovotz et al., 2008) and tuberculosis research (Day
et al., 2010). Translational Systems Biology of fungal infections
with applications in personalized medicine (Willard and Ginsburg,
2009) can be expected to be developed in the near future.
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Iron is an essential but, in excess, toxic nutrient.Therefore, fungi evolved fine-tuned mecha-
nisms for uptake and storage of iron, such as the production of siderophores (low-molecular
mass iron-specific chelators). In Aspergillus fumigatus, iron starvation causes extensive
transcriptional remodeling involving two central transcription factors, which are intercon-
nected in a negative transcriptional feed-back loop: the GATA-factor SreA and the bZip-factor
HapX. During iron sufficiency, SreA represses iron uptake, including reductive iron assimi-
lation and siderophore-mediated iron uptake, to avoid toxic effects. During iron starvation,
HapX represses iron-consuming pathways, including heme biosynthesis and respiration, to
spare iron and activates synthesis of ribotoxin AspF1 and siderophores, the latter partly by
ensuring supply of the precursor, ornithine. In accordance with the expression pattern and
mode of action, detrimental effects of inactivation of SreA and HapX are confined to growth
during iron sufficiency and iron starvation, respectively. Deficiency in HapX, but not SreA,
attenuates virulence of A. fumigatus in a murine model of aspergillosis, which underlines
the crucial role of adaptation to iron limitation in virulence. Consistently, production of both
extra and intracellular siderophores is crucial for virulence of A. fumigatus. Recently, the
sterol regulatory element binding protein SrbA was found to be essential for adaptation
to iron starvation, thereby linking regulation of iron metabolism, ergosterol biosynthesis,
azole drug resistance, and hypoxia adaptation.

Keywords: iron, virulence, fungi, siderophore, isoprenoid, ergosterol, mevalonate, ornithine

INTRODUCTION
Iron is an essential nutrient for all eukaryotes and nearly all
prokaryotes (Kaplan and Kaplan, 2009). As mono or diiron cen-
ter as well as incorporated into heme or iron–sulfur clusters,
this metal is an indispensable cofactor for a variety of cellular
processes including electron transport, amino acid metabolism,
and biosynthesis of DNA and sterols. Nevertheless, iron excess
has the potential to catalyze the formation of cell-damaging
reactive oxygen species (Halliwell and Gutteridge, 1984). The
complex intertwining of iron metabolism and oxidative stress is
emphasized by the iron-dependence of detoxification of oxida-
tive stress as, e.g., catalases and peroxidases require heme as
cofactor. Despite its high abundance in the Earth’s crust, the
bioavailability of iron is low owing to its oxidation into spar-
ingly soluble ferric (Fe3+) hydroxides by atmospheric oxygen.
To ensure iron supply but to avoid iron toxicity, all organ-
isms evolved sophisticated mechanisms to balance acquisition,
storage, and consumption of iron. The control over access
to iron is one of the central battlefields during infection as
pathogens have to “steal” the iron from the host. Moreover, the
mammalian innate immune system restricts access to iron by
pathogens via a variety of mechanisms (Ganz, 2009; Weinberg,
2009).

Abbreviations: CBC, CCAAT-binding complex; FC, ferricrocin; FsC, fusarinine C;
RIA, reductive iron assimilation; SB, siderophore biosynthesis; SIT, siderophore-iron
transporter; TAFC, triacetylfusarinine C; TF, transcription factor.

Aspergillus fumigatus is a ubiquitous saprophytic fungus,
which has become the most common air-borne fungal pathogen
of humans (Tekaia and Latge, 2005). Clinical manifestations
range from allergic reactions to life-threatening invasive dis-
ease, termed aspergillosis, particularly in immuno-compromised
patients. The identification and functional characterization of 24
genes that are involved in iron homeostasis in A. fumigatus and/or
Aspergillus nidulans, respectively, revealed significant insights into
iron metabolism and its regulation (Table 1). A. nidulans is a
less virulent A. fumigatus relative and longstanding genetic model
organism. Inactivation of 10 of the 19 A. fumigatus genes caused
defects in virulence. All of the virulence-associated genes are
transcriptionally upregulated during iron starvation and encode
functions that are important for survival during iron starvation,
which emphasizes the crucial role of adaptation to iron starva-
tion in virulence. This review summarizes the current knowl-
edge on iron homeostasis and its role in virulence in Aspergillus
spp.

IRON ACQUISITION
As microorganisms are believed to lack mechanisms for iron
excretion, control of iron uptake is considered the major iron
homeostatic mechanism (Haas et al., 2008). In contrast to var-
ious bacterial and fungal pathogens (Ratledge and Dover, 2000;
Almeida et al., 2009), both A. fumigatus and A. nidulans lack
systems for direct uptake of host iron sources such as heme, fer-
ritin, or transferrin (Eisendle et al., 2003; Schrettl et al., 2004a).
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Table 1 | Functionally analyzed proteins involved in iron homeostasis in A. fumigatus and A. nidulans.

Protein1 Gene Function Gene deletion-caused defect

in iron metabolism4

Expression2 Virulence3 Reference

ENZYMES/TRANSPORTERS INVOLVED IN RIA (3)

FetC AFUA_5G03790 Ferroxidase RIA −Fe + Schrettl et al. (2004a)

FreB AFUA_1G17270 Ferric reductase RIA −Fe na Blatzer et al. (2011b)

FtrA AFUA_5G03800 Iron permease RIA −Fe + Schrettl et al. (2004a)

ENZYMES INVOLVED IN SB (10)

EstA AFUA_3G03660 TAFC esterase TAFC hydrolysis after uptake (partial) −Fe na Kragl et al. (2007)

NpgA/

PptA§

AFUA_2G08590 Phosphopantetheinyl

transferase

Entire SB (all NRPS and polyketide

synthetases)

– na Oberegger et al. (2003)

SidA§ AFUA_2G07680 Ornithine

monooxygenase

Entire SB −Fe − Schrettl et al. (2004a)

SidC§ AFUA_1G17200 FC NRPS FC biosynthesis −Fe ± Schrettl et al. (2007)

SidD AFUA_3G03420 FSC NRPS FSC and TAFC biosynthesis −Fe ± Schrettl et al. (2007)

SidF AFUA_3G03400 Transacylase FSC and TAFC biosynthesis −Fe ± Schrettl et al. (2007)

SidG AFUA_3G03650 Transacetylase TAFC biosynthesis (but increased

FSC biosynthesis)

−Fe ± Schrettl et al. (2007)

SidH AFUA_3G03410 Mevalonyl-CoA

hydratase

FSC and TAFC biosynthesis −Fe ± Yasmin et al. (2011)

SidI AFUA_1G17190 Mevalonyl-CoA

ligase

FSC and TAFC biosynthesis −Fe ± Yasmin et al. (2011)

SidL AFUA_1G04450 Transacetylase FC biosynthesis (partial) – na Blatzer et al. (2011c)

SITs (2)

MirA AN7800 Enterobactin

transporter

na −Fe na Haas et al. (2003)

MirB AN8540 TAFC transporter na −Fe na Haas et al. (2003)

REGULATORY PROTEINS (9)

AcuM˚ AFUA_2G12330 Zn2Cys6 TF Repression of iron uptake including

SB and RIA

– ± Liu et al. (2010)

HapB* AN7545 Subunit of the CBC See HapX – na Hortschansky et al. (2007)

HapC* AN4034 Subunit of the CBC See HapX – na Hortschansky et al. (2007)

HapE* AN6492 Subunit of the CBC See HapX – na Hortschansky et al. (2007)

HapX§ AFUA_5G03920 bZip-TF Repression of iron consumption,

activation of iron uptake

−Fe ± Schrettl et al. (2010a)

MpkA AFUA_4G13720 MAP kinase A Repression of SB na na Jain et al. (2011)

PacC* AFUA_3G11970 (Cys2His2)3 TF Activation of TAFC biosynthesis in

alkaline pH

na na Eisendle et al. (2004)

SrbA AFUA_2G01260 bHLH-LZ TF Activation of iron uptake including

SB and RIA

−Fe − Blatzer et al. (2011a)

SreA§ AFUA_5G11260 GATA TF Repression of iron uptake including

SB and RIA

+Fe + Schrettl et al. (2008)

1Unmarked, function analyzed only in A. fumigatus; *, function analyzed only in A. nidulans; §, function is conserved in A. nidulans and A. fumigatus; ˚, iron regulatory

function found only in A. fumigatus but not in A. nidulans.
2−Fe, transcriptional upregulation during iron starvation; +Fe, transcriptional upregulation during iron sufficiency; –, constitutively expressed.
3+, Virulent; ±, partially attenuated virulent; −, avirulent.
2,3,4na, not analyzed.

Both Aspergillus species employ low-affinity ferrous (Fe2+) iron
acquisition as well as siderophore-assisted iron uptake, a high-
affinity ferric iron uptake system (Eisendle et al., 2003; Schrettl
et al., 2004a). In contrast to A. nidulans, A. fumigatus pos-
sesses a second high-affinity iron uptake system, termed reductive
iron assimilation (RIA). Schemes of the mechanisms for iron
uptake and storage employed by Aspergillus spp. are found in

recently published reviews (Haas et al., 2008; Schrettl and Haas,
2011).

LOW-AFFINITY IRON UPTAKE
At the molecular level, low-affinity iron uptake has been character-
ized exclusively in Saccharomyces cerevisiae. The relevant perme-
ases are not specific for ferrous iron but additionally transport
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other metals, such as copper and zinc (Kaplan and Kaplan,
2009).

REDUCTIVE IRON ASSIMILATION
Reductive iron assimilation starts with reduction of ferric iron
sources to the more soluble ferrous iron by plasma membrane-
localized metalloreductases (Kosman, 2010). A. fumigatus encodes
15 putative metalloreductases indicating possible redundancy of
this enzyme system. The metalloreductase FreB has recently been
shown to be involved in RIA (Blatzer et al., 2011b). The reduced
ferrous iron is re-oxidized and imported by a protein complex con-
sisting of the ferroxidase FetC and the iron permease FtrA (Schrettl
et al., 2004a).

SIDEROPHORE-MEDIATED IRON UPTAKE
The siderophores produced by A. nidulans and A. fumigatus are
shown in Figure 1. Both fungal species excrete two siderophores,
fusarinine C (FsC) and its derivative triacetylfusarinine C (TAFC),
to mobilize extracellular iron. The ferri-forms of FsC and TAFC
are taken up by siderophore-iron transporters (SIT), which con-
stitute a subfamily of the major facilitator protein superfamily.
SIT act most likely as proton symporters energized by the plasma
membrane potential (Haas et al., 2003; Philpott and Protchenko,
2008). SIT-mediated iron uptake appears to be universally con-
served in the fungal kingdom, even in species not producing
siderophores such as S. cerevisiae, Candida spp., and Cryptococ-
cus neoformans (Schrettl et al., 2004b; Haas et al., 2008; Jung
and Kronstad, 2008; Philpott and Protchenko, 2008; Nevitt and
Thiele, 2011). A likely reason is the dramatically increased solubil-
ity and therefore bioavailability of iron chelated by siderophores.
Moreover, siderophores might play a role in microbial warfare as
chelation of environmental iron by siderophore-types that are not
recognized by competitors might be used to starve competitors of
iron. This is counteracted by evolving transporters that recognize
xenosiderophores, i.e., siderophores that are not produced by the
organism, which enables “stealing” of siderophores. This scenario
is supported by the fact that most siderophore-producing bacte-
ria and fungi possess xenosiderophore-specific SITs (Haas et al.,
2008). A. fumigatus and A. nidulans encode 10 and 7 putative

SITs, respectively (Haas et al., 2008). Heterologous expression in
a S. cerevisiae mutant lacking high-affinity iron uptake indicated
that the A. nidulans SITs MirA and MirB transport the bacter-
ial siderophore enterobactin and TAFC, respectively (Haas et al.,
2003).

After uptake, the intracellular release of iron from TAFC and
FsC involves hydrolysis of the siderophore backbones by the
esterase EstB (Kragl et al., 2007).

IRON STORAGE
Extracellular siderophores are employed by most bacterial and
some plant species. In contrast, intracellular siderophores are only
found in siderophore-producing fungi. A. fumigatus produces two
different intracellular siderophores (Figure 1), ferricrocin (FC) for
hyphal iron storage and distribution and its derivative hydroxy-
ferricrocin (HFC) for conidial iron storage (Schrettl et al., 2007;
Wallner et al., 2009). A. nidulans lacks HFC and employs FC
for both hyphal and conidial iron storage (Eisendle et al., 2003).
Additionally, the iron-inducible expression of CccA, the ortholog
of the vacuolar iron importer Ccc1p from S. cerevisiae (Kaplan
and Kaplan, 2009), indicates vacuolar iron storage in A. fumigatus
(Schrettl et al., 2008). In contrast to bacteria, plants, and animals,
fungi lack ferritin-mediated iron storage and detoxification.

SIDEROPHORE BIOSYNTHESIS
Fusarinine C consists of three N 5-anhydromevalonyl-N 5-
hydroxyornithine residues cyclically linked by ester bonds. TAFC
is the N 2-acetylated FsC. FC is a cyclic hexapeptide with the struc-
ture Gly-Ser-Gly-(N 5-acetyl-N 5-hydroxyornithine)3 and HFC is
the hydroxylated FC (Haas et al., 2008). The siderophore biosyn-
thesis (SB) pathway was characterized by reverse genetics and is
shown in Figure 2. The first committed step in the biosynthesis
of all four siderophores is the hydroxylation of ornithine cat-
alyzed by the ornithine monooxygenase SidA (Eisendle et al., 2003;
Schrettl et al., 2004a). Subsequently, the pathways for biosynthesis
of extra and intracellular siderophores split. For extracellular SB
the transacylase SidF transfers anhydromevalonyl to hydroxyor-
nithine (Schrettl et al., 2007). The required anhydromevalonyl-
CoA moiety is derived from mevalonate by CoA-ligation and

FIGURE 1 | Siderophores produced by A. fumigatus and A. nidulans: R = H in fusarinine C (FsC) and R = acetyl in triacetylfusarinine C (TAFC); the

hydroxylation site in hydroxyferricrocin (HFC) is unknown. The siderophores are shown in the ferric (Fe3+) form.
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FIGURE 2 | Siderophore biosynthesis (in purple) and its links to the

isoprenoid biosynthesis (in green) as well as ornithine/arginine

metabolism (in blue). The enzymes, boxed in respective colors, are

described in the text andTable 1. Enzymatic steps transcriptionally
upregulated during iron starvation are marked by red arrows. Broken arrows
denote reactions involving more than one enzyme.

dehydration catalyzed by SidI and SidH, respectively (Yasmin et al.,
2011). The acetylation of hydroxyornithine for intracellular SB
involves two transacetylases, the constitutively expressed SidL and
an unidentified enzyme, the activity of which is upregulated by
iron starvation (Blatzer et al., 2011c). Assembly of FsC and FC
is catalyzed by two different non-ribosomal peptide synthetases
(NRPS), SidD and SidC, respectively. TAFC and HFC are formed
by SidG-mediated N 2-acetylation of FsC and hydroxylation of
FC, respectively (Eisendle et al., 2003; Schrettl et al., 2007). NRPS,
polyketide synthases, and the lysine-biosynthetic α-aminoadipate
reductase depend on activation by the 4′-phosphopantetheinyl
transferase. Consistently, the 4′-phosphopantetheinyl transferases
NpgA and PptA are essential for SB in A. nidulans and A. fumigatus,
respectively (Oberegger et al., 2003; Allen et al., 2011). Conse-
quently, it is not surprising that this enzyme was found to be
indispensable for phytopathogenic fungi (Horbach et al., 2009).

GENOMIC ORGANIZATION OF GENES INVOLVED IN
HIGH-AFFINITY IRON ACQUISITION
Most of the described SB genes above are organized in three
gene clusters containing additional genes encoding putative
siderophore transporters, the TAFC esterase EstB and genes with
uncharacterized functions (Schrettl et al., 2008, 2010a). Excep-
tions are the genes encoding SidA, SidL, and NpgA/PptA. Notably,
SidL and NpgA/PptA are special for another reason as their
expression is, in contrast to the other identified structural com-
ponents of siderophore metabolism, not regulated by iron avail-
ability (Oberegger et al., 2003; Blatzer et al., 2011c). Moreover,

NpgA/PptA is not exclusively involved in SB. In contrast to A.
fumigatus and A. nidulans, SidA ortholog-encoding genes are clus-
tered with siderophore NRPS in various other fungi, e.g., Ustilago
maydis and Neurospora crassa (Haas et al., 2008). The genes encod-
ing FtrA and FetC form a gene cluster with a common promoter
region.

DEFECTS CAUSED BY SIDEROPHORE-DEFICIENCY
Genetic elimination of extracellular siderophores (ΔsidF and
ΔsidD mutants) decreases growth, conidiation, and oxidative
stress resistance during iron limitation but not during iron
sufficiency, which enables compensation by other iron acquisi-
tion systems (Schrettl et al., 2007). Elimination of intracellular
siderophores (ΔsidC mutant) reduces conidiation and blocks sex-
ual development (as shown in A. nidulans) due to the role of FC
in intracellular iron transport from substrate-contacting hyphae
into aerial hyphae (Eisendle et al., 2006; Schrettl et al., 2007;
Wallner et al., 2009). FC-deficiency decreases the conidial iron
content by about 50%, which impairs iron-dependent enzymes
such as aconitase and catalase A, and thereby decreases conidial
size and conidial resistance to oxidative stress (Schrettl et al., 2007;
Wallner et al., 2009). Moreover, the lack of FC-mediated iron
storage (ΔsidC mutants) delays germination during iron starva-
tion (Schrettl et al., 2007). Inactivation of the entire siderophore
system (ΔsidA mutant) combines the defects caused by inacti-
vation of either extra or intracellular SB and renders A. fumiga-
tus extremely sensitive to iron starvation (Schrettl et al., 2004a,
2007).
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Both extra and intracellular siderophores are crucial for viru-
lence as elimination of the entire SB (ΔsidA mutant) results in
absolute avirulence of A. fumigatus in a murine model of invasive
pulmonary aspergillosis (Schrettl et al., 2004a; Hissen et al., 2005),
while deficiency in either extracellular (ΔsidI, ΔsidH, ΔsidF, or
ΔsidD mutants) or intracellular siderophores (ΔsidC mutants)
causes partial attenuation of virulence (Schrettl et al., 2007; Yas-
min et al., 2011). Conidial FC appears to play a particularly crucial
role during initiation of infection because restoration of the coni-
dial HFC content by supplementation with FC during conidiation
partially cures the virulence defect of ΔsidA conidia (Schrettl et al.,
2007). SidG-deficiency, which eliminates TAFC production with
concomitant increase of FsC production, affects neither growth
nor virulence, indicating that the structural differences between
these two siderophores do not play a role in these settings (Schrettl
et al., 2007). Consistent with a role in iron acquisition during infec-
tion, A. fumigatus’ siderophores are able to remove iron from host
sources, such as transferrin (Hissen et al., 2004; Hissen and Moore,
2005).

Blocking RIA (ΔftrA mutant) does not affect virulence of A.
fumigatus (Schrettl et al., 2004a). Nevertheless, a putative role of
RIA in virulence is indicated by several lines of evidence: (i) elimi-
nation of extracellular siderophores causes only partial attenuation
of virulence, (ii) mutants lacking both RIA and the siderophore
system (ΔftrAΔsidA double mutant) are unable to grow unless
supplemented with siderophores or extremely high iron concen-
trations fueling low-affinity iron uptake (Schrettl et al., 2004a), and
(iii) genome-wide expression profiling demonstrated induction
of both the siderophore system and RIA during murine infection
(McDonagh et al., 2008). Consistently, RIA has been shown to be
crucial for virulence of the siderophore-lacking species C. albicans
and C. neoformans (Ramanan and Wang, 2000; Jung et al., 2008).

The siderophore system is important not only for extra, but
also for intracellular growth as defects in the siderophore sys-
tem decrease intracellular growth and survival of A. fumigatus
after phagocytosis by murine alveolar macrophages, which rep-
resent the first line of defense in the lung during pulmonary
aspergillosis (Schrettl et al., 2010b). Furthermore, impairment of
SB changes the immune response of macrophages after phago-
cytosis of A. fumigatus (Seifert et al., 2008). In agreement, the
siderophore system is also critical for virulence of Histoplasma
capsulatum, a dimorphic fungal pathogen replicating in the yeast
form within macrophages (Hwang et al., 2008). The evolutionary
conserved role of siderophores in virulence has been confirmed in
various other aspergillosis infection models, i.e., a murine cuta-
neous model, Drosophila melanogaster, and Galleria mellonella
(Ben-Ami et al., 2010; Chamilos et al., 2010; Slater et al., 2011).
Moreover, SB is indispensable for the virulence of various phy-
topathogenic ascomycetes (Oide et al., 2006; Greenshields et al.,
2007). In contrast, SB is dispensable and RIA is essential for phy-
topathogenicity of U. maydis (Mei et al., 1993; Eichhorn et al.,
2006).

INTEGRATION OF THE SIDEROPHORE-BIOSYNTHETIC
PATHWAY IN THE GENERAL METABOLISM
During iron starvation, siderophore production reaches up to 10%
of the biomass. In addition, iron starvation dramatically remodels

the free amino acid pool of A. fumigatus with eight amino acids
increasing and three amino acids decreasing more than 1.5-fold
(Schrettl et al., 2010a). Among these changes, the approximate sev-
enfold increase of the siderophore precursor ornithine during iron
starvation compared to sufficiency indicates that the enormous
ornithine demand for SB is matched by active upregulation of
biosynthesis and not by de-repression via its consumption. Con-
sistently, blocking siderophore-mediated ornithine consumption
by inactivation of SidA (ΔsidA mutant) causes a further 2.9-fold
increase of the ornithine pool during iron starvation (Schrettl et al.,
2010a).

Ornithine is produced in the mitochondrion, and its biosyn-
thetic pathway as well as export via the transporter AmcA to the
cytosol is transcriptionally upregulated under iron deprivation
(Schrettl et al., 2010a; Figure 2). Moreover, ornithine is a pre-
cursor of arginine and the conversion of arginine to ornithine
in the cytosol by the arginase AgaA is likewise upregulated in
response to iron starvation. The metabolic commitment required
for siderophore production must however be balanced against the
need to maintain other cellular functions as arginine itself is vital
for protein biosynthesis. Recently, arginine was found to allosteri-
cally activate SidA enzyme activity (Frederick et al., 2011), which
appears to connect siderophore production to cellular amino acid
homeostasis: SB is stimulated only if the cytosolic arginine pool is
sufficient for all of the cell’s needs.

Consistent with mevalonate being a precursor for TAFC biosyn-
thesis (Figure 2), overexpression of the mevalonate-producing
HMG-CoA reductase Hmg1 increases TAFC production, while
lovastatin-mediated Hmg1 inhibition blocks TAFC biosynthesis
in A. fumigatus (Yasmin et al., 2011). Mevalonate is an interme-
diate of the isoprenoid biosynthetic pathway with ergosterol as
the major product, which is one major target of antifungal treat-
ment, i.e., amphotericin B and azoles. In contrast to siderophore
production, iron starvation decreases the cellular ergosterol level
due to the iron-requirement of ergosterol biosynthesis (Yasmin
et al., 2011). Concordant with bilateral demand for mevalonate,
blocking mevalonate consumption for TAFC biosynthesis (ΔsidI
mutant) alters the sterol composition and increases lovastatin
resistance during iron starvation (Yasmin et al., 2011). These
data demonstrate that statins such as lovastatin, which are widely
used as cholesterol-decreasing drugs, have an additional target in
siderophore-producing fungi. As SB is crucial for virulence statins
might be useful to combat infections with siderophore-producing
fungi.

REGULATION OF IRON METABOLISM AND ITS ROLE IN
VIRULENCE
Iron starvation has been shown to cause extensive transcriptional
remodeling in A. fumigatus with about 13% of the genes respond-
ing to iron availability (Schrettl et al., 2008, 2010a). As shown
in Figure 3, in both A. fumigatus and A. nidulans maintenance
of iron homeostasis involves the two central transcription fac-
tors (TF) SreA and HapX (Haas et al., 1999; Hortschansky et al.,
2007; Schrettl et al., 2008, 2010a). During iron sufficiency, the
GATA-factor SreA, postulated by bioinformatic analyses to recog-
nize the consensus sequence ATCWGATAA, represses high-affinity
iron uptake, including RIA and the siderophore system, to avoid
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FIGURE 3 | Iron regulation in Aspergillus spp. (A) Scheme of SreA-

and HapX-mediated iron regulation. (B) Phenotypes of A. fumigatus
SreA-(ΔsreA) and HapX-(ΔhapX ) deficient mutant strains in 24 h/37˚C
flask cultures. In contrast to the wild type (wt ), ΔhapX mycelia are

reddish colored during iron starvation due to accumulation of
protoporphyrin IX, while ΔsreA mycelia are reddish colored during iron
sufficiency due to accumulation of iron, heme, and FC (Schrettl et al.,
2008, 2010a).

iron toxicity (Schrettl et al., 2008). During iron starvation, the
bZip-TF HapX represses iron-consuming pathways such as heme
biosynthesis, respiration, and ribosome biogenesis to spare iron
(Oberegger et al., 2001, 2002; Schrettl et al., 2008, 2010a). Fur-
thermore, HapX activates synthesis of the ribotoxin AspF1 and
siderophores in A. fumigatus, the latter partly by coordinating
SB with supply of its precursor ornithine (Schrettl et al., 2010a).
The metabolic deregulation caused by deficiency in either SreA
or HapX causes reddish hyphal pigmentation (Figure 3). SreA
and HapX are interconnected in a negative feed-back loop: SreA
represses expression of hapX during iron sufficiency, while HapX
represses sreA during iron starvation. Additionally, both SreA and
HapX appear to be regulated posttranslationally by iron blocking
HapX function and activating SreA function (Haas et al., 1999;
Hortschansky et al., 2007). In S. pombe, posttranslational iron
sensing by the HapX and SreA orthologs involves the monothiol
glutaredoxin Grx4 (Mercier and Labbe, 2009; Jbel et al., 2011; Kim
et al., 2011). In A. nidulans and A. fumigatus, inactivation of both
HapX and SreA is synthetically lethal underlining the critical role
of iron homeostasis in cellular survival (Hortschansky et al., 2007;
Schrettl et al., 2008, 2010a). In agreement with their expression
pattern and mode of action, detrimental effects of inactivation of
SreA or HapX are confined to growth during iron sufficiency or
starvation, respectively (Figure 3). Deficiency in HapX, but not
SreA, attenuates virulence of A. fumigatus in murine models of
aspergillosis (Schrettl et al., 2008, 2010a), which emphasizes the
crucial role of adaptation to iron limitation in virulence. Most fun-
gal species possess orthologs to SreA and HapX and the important
role of HapX orthologs in virulence has been demonstrated in C.
albicans and C. neoformans (Labbe et al., 2007; Haas et al., 2008;

Jung et al., 2010; Hsu et al., 2011). Similar to A. fumigatus, the SreA
ortholog Sfu1 is dispensable for systemic virulence of C. albicans
(Chen et al., 2011). However, Sfu1 is crucial for persistence of this
commensal in the iron-rich gut, which impressively illustrates the
importance of adaptation to opposing conditions of iron avail-
ability for survival. Remarkably, the fungal prototype S. cerevisiae
lacks orthologs of SreA, HapX, and SrbA and employs entirely dif-
ferent regulators, Aft1/2 and Cth1/2, which are conserved only in
closely related Saccharomycotina species (Haas et al., 2008; Kaplan
and Kaplan, 2009).

INTERCONNECTION OF IRON METABOLISM WITH OTHER
REGULATORY CIRCUITS: OXYGEN, REDOX PH,
GLUCONEOGENESIS, MAP KINASE SIGNALING, ZINC
Due to the central metabolic role of iron, a variety of regulatory
circuits affect cellular iron handling. As obligate aerobic organ-
isms,Aspergilli rely on respiration, which is highly iron-dependent.
Therefore, oxygen supply largely influences iron metabolism and
vice versa. Recently, proteomic analysis of A. fumigatus revealed
that hypoxia increases the production of proteins involved in
glycolysis, the TCA-cycle, and respiration, which is paralleled by
increased cellular iron, heme, copper, and zinc contents (Vodisch
et al., 2009). The increase in iron/heme is attributable to the
iron/heme-dependence of the TCA-cycle and respiration. In A.
fumigatus, hypoxic adaptation involves SrbA, a member of the
“sterol regulatory element binding protein (SREBP)” TF fam-
ily, which is conserved in most eukaryotes (Willger et al., 2008).
These TFs are activated by cellular sterol-depletion to maintain
sterol homeostasis (Bien and Espenshade, 2010). In A. fumi-
gatus, SrbA-deficiency decreases the cellular ergosterol content
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and resistance against azole drugs and blocks hypoxic growth
as well as virulence (Willger et al., 2008). Recently, SrbA was
found to activate siderophore-mediated iron uptake in response
to hypoxia and iron starvation in part by transcriptional acti-
vation of HapX (Blatzer et al., 2011a). In agreement with SrbA
being involved in iron homeostasis, defects in hypoxic growth
and azole resistance caused by SrbA-deficiency are at least par-
tially cured by increased iron supplementation and in particular
by de-repression of iron uptake via simultaneous inactivation
of SreA (Blatzer et al., 2011a). SrbA is transcriptionally upreg-
ulated during hypoxia and iron starvation, in both cases likely in
response to sterol-depletion and autoregulation as sterol biosyn-
thesis depends on both oxygen and iron. During iron starvation,
consumption of the sterol intermediate mevalonate by SB might
play an additional role (see above). In agreement, the transcrip-
tional activation of SrbA during iron starvation is independent of
SreA and HapX. These data indicate that A. fumigatus senses iron
not only via HapX and SreA but also via ergosterol biosynthesis
and SrbA. Taken together, SrbA coordinates ergosterol biosyn-
thesis and iron metabolism to mediate hypoxia responses and
azole resistance. Growth defects during iron starvation of respec-
tive gene deletion mutants indicate similar functions in iron
homeostasis of the SrbA orthologs in S. pombe and C. neofor-
mans (Hughes et al., 2005; Chang et al., 2007). Moreover, the
SrbA ortholog is also crucial for virulence in C. neoformans
(Chun et al., 2007). Consequently, the virulence defect of SrbA
mutants is possibly attributable not only to the defects in adap-
tation to hypoxia, but also iron starvation. S. cerevisiae lacks an
SrbA ortholog and the TFs mediating hypoxic adaptation (Hap1,
Mot1, Rox1) are not conserved in Aspergilli (Willger et al., 2008),
which might be explained by S. cerevisiae being an facultative
anaerobe.

As shown in A. nidulans, HapX functions via physical inter-
action with the DNA-binding CCAAT-binding complex (CBC;
Hortschansky et al., 2007). The CBC is a heterotrimeric DNA-
binding complex, which is conserved in all eukaryotes. In A.
nidulans, inactivation of either one of its subunits, HapB, HapC, or
HapE phenocopies HapX inactivation with respect to the defects
in adaptation to iron starvation. However, the CBC has HapX-
independent functions and is speculated to affect expression of
about 30% of all genes. Consistently, CBC-deficiency results in
decreased growth and sporulation during both iron sufficiency
and starvation (Hortschansky et al., 2007). The mode of dis-
crimination between HapX targets and the remaining CBC tar-
gets remains to be elucidated. As mentioned in the introduction,
iron metabolism and oxidative stress are intimately intertwined.
Therefore it is particularly interesting that, as shown in A. nidu-
lans, the CBC senses the redox state of the cell via oxidation
and thioredoxin-mediated reduction of evolutionary conserved
thiol groups within the HapC histone fold motif (Thon et al.,
2010). Oxidation blocks CBC formation and nuclear localiza-
tion. In line with a role in redox regulation, CBC-deficiency
impairs the oxidative stress response. The impact of iron avail-
ability on the oxidative stress detoxification system is indicated by
iron starvation-mediated transcriptional downregulation of the
heme-dependent hyphal catalase B (CatB) and upregulation by the
Cu/Zn-superoxide dismutase (SodA; Oberegger et al., 2000, 2001).

Excessive iron uptake caused by SreA-deficiency transcriptionally
upregulates both enzymes (Oberegger et al., 2001).

The ambient pH impacts iron availability as alkaline condi-
tions decrease iron solubility. In line, neutral compared to acidic
conditions upregulate SB and uptake in A. nidulans mediated by
the pH-reactive TF PacC (Eisendle et al., 2004). Similarly, PacC
orthologs mediate upregulation of high-affinity iron uptake – in
these species RIA – during alkaline conditions in S. cerevisiae, C.
albicans, and C. neoformans (Lamb et al., 2001; Baek et al., 2008).
Virulence of C. albicans but not C. neoformans depends on its
PacC ortholog, which is most likely attributable to the occupation
of different host niches by these two pathogens (Nobile et al., 2008;
O’Meara et al., 2010).

Interestingly, deficiency in the TF AcuM, which is required for
gluconeogenesis, decreases siderophore production in A. fumiga-
tus, but not in A. nidulans, and attenuates virulence in A. fumigatus
(Liu et al., 2010). Though it is unclear if its effects are direct, AcuM
appears to transcriptionally repress SreA.

Recently, iron starvation was found to trigger phosphorylation
and nuclear localization of the A. fumigatus mitogen-activated
protein kinase (MAPK) MpkA, which is involved in maintaining
cell wall integrity, protection against ROS, and secondary metab-
olism (Jain et al., 2011). Moreover, MpkA-deficiency increases
siderophore production. The TF targeted by MpkA signaling
remains to be identified. Remarkably, despite its dramatic effect
on in vitro growth rate, MpkA-deficiency does not affect virulence
of A. fumigatus (Valiante et al., 2008).

Similar to iron, zinc plays a critical role in a diverse array of
biochemical processes, but excess of zinc is deleterious. Conse-
quently, regulation of zinc homeostasis by the TF ZafA is essen-
tial for virulence of A. fumigatus. Iron starvation causes zinc
hypersensitive and therefore iron depletion changes cellular zinc
handling by downregulating zinc uptake and upregulation of vac-
uolar zinc detoxification (Yasmin et al., 2009). HapX appears to
play a critical role in coordination of zinc and iron homeostasis
as its deficiency causes zinc hypersensitivity during iron starva-
tion. These data demonstrate the importance of cellular metal
balancing.

CONCLUSION AND PERSPECTIVES
The understanding of the role of iron in fungal pathogenic-
ity has advanced enormously in recent years. Together with the
transcriptional upregulation of the high-affinity iron acquisi-
tion systems during initiation of murine infection (McDonagh
et al., 2008), the attenuated virulence caused by defects in SB
or HapX confirms that A. fumigatus faces iron limitation during
mammalian infection. Thus, human protection against A. fumiga-
tus includes growth inhibition by polymorphonuclear leukocytes
via lactoferrin-mediated iron depletion and possibly siderocalin-
mediated scavenging of siderophores (Fluckinger et al., 2004;
Zarember et al., 2007). On the other hand, increased bone mar-
row iron stores represent an independent risk factor for invasive
aspergillosis (Kontoyiannis et al., 2007).

The current difficulties in diagnosis and treatment of
aspergillosis are reflected by the high mortality rate of this infec-
tious disease (Tekaia and Latge, 2005). The essentiality of iron
and the differences in iron handling between mammals and fungi
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like Aspergilli might help to improve therapy and diagnosis of
fungal infections. Specifically, the unique fungal siderophore sys-
tem represents a promising target for selective therapeutic inter-
vention. Noteworthy, SIT constitute one of few protein fami-
lies that are unique to fungi (Hsiang and Baillie, 2005). Their
absence in prokaryotes and other eukaryotes might enable spe-
cific inhibition or drug delivery during infection by a “Trojan
horse” approach (Miller et al., 2009), whereby antifungal agents
are covalently attached to siderophores and selectively imported
by fungi.

Moreover, the enzymatic and regulatory links between
siderophore and ergosterol biosynthetic pathways might be crucial
for optimization of treatment of infections caused by siderophore-
producing fungi. The potential of iron chelation therapy is indi-

cated by the synergistic effect of iron chelators and antifungal
drugs demonstrated in vitro and in a murine aspergillosis model
(Zarember et al., 2009; Ibrahim et al., 2010). Moreover, the recently
demonstrated imaging of invasive pulmonary aspergillosis in a rat
model, based on positron emission tomography (PET)-visualized
fungal accumulation of TAFC-chelated 68Gallium, emphasizes the
potential of siderophores in diagnosis of fungal infections (Petrik
et al., 2010a,b).
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The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to
nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We
summarize latest results on metabolic requirements for Salmonella during infection. This
includes intracellular phenotypes of mutant strains based on metabolic modeling and
experimental tests, isotopolog profiling using 13C-compounds in intracellular Salmonella,
and complementation of metabolic defects for attenuated mutant strains towards a com-
prehensive understanding of the metabolic requirements of the intracellular lifestyle of
Salmonella. Helpful for this are also genomic comparisons. We outline further recent stud-
ies and which analyses of intracellular phenotypes and improved metabolic simulations
were done and comment on technical required steps as well as progress involved in the
iterative refinement of metabolic flux models, analyses of mutant phenotypes, and iso-
topolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic
requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic
generalist Salmonella is quite successful in host infection.

Keywords: metabolism, Salmonella-containing vacuole, regulation, virulence

INTRODUCTION
Salmonella enterica serovar Typhimurium (S. Typhimurium) is
an important human gastrointestinal pathogen with an invasive
and facultative intracellular lifestyle (Neidhardt, 1996; Eisenreich
et al., 2010). Among the various habitats that can be colonized by
Salmonella, the adaptation to life inside the host cell is of spe-
cific interest, since this ability is considered as crucial for systemic
infections with fatal outcome. The World Health Organization
estimated 1.4 million cases of non-typhoidal Salmonella infec-
tions. Furthermore, these cause 580 deaths annually even in the
United States (World Health Organization, 2005). Infections are
often associated with selected subgroups as elderly or patients
suffering from HIV and connective tissue disorders (Cummings
et al., 2010).

Throughout the intracellular life, Salmonella remains in a
membrane-bound compartment, which is termed Salmonella-
containing vacuole or SCV. The SCV is probably a unique com-
partment that is formed by the combined action of a large number
of bacterial virulence factors (Figure 1). Virulent Salmonellae
are able to modify this vacuole in order to escape killing in the
endocytic pathway, and to proliferate within host cells (Haraga
et al., 2008). The ability to survive and replicate within host
cells is closely related to the systemic pathogenesis of Salmonella
in a murine model of typhoid fever. Mutant strains defective
in intracellular replication due to auxotrophies are also attenu-
ated in virulence in an animal murine model of typhoid fever
(Fields et al., 1986). Salmonella is able to rapidly multiply in var-
ious eukaryotic cell lines, but the proliferation appears to be far
less rapid within cells in tissues of infected hosts, indicating a
more restrictive situation in vivo (Mastroeni et al., 2009). The

SCV is commonly considered as a nutritional deprived environ-
ment, and this notion is based on the phenotypes of auxotrophic
strains, analyses of bacterial reporter strains, and microarray
analyses. However, the fact that Salmonella replicates within
the SCV indicates the successful adaptation to this intracellular
environment.

Despite the remarkable increase in understanding of the cellular
microbiology of Salmonella infections and the molecular functions
of virulence factors required for intracellular life, the nutritional
basis of life of Salmonella within the SCV is still not completely
understood.

Understanding how Salmonella survives and thrives within this
compartment and how nutrients are acquired is not only essential
for the understanding of the intracellular lifestyle, but might as
well open new avenues to therapeutic interference with Salmonella
infections.

METHODS AND APPROACHES TO GET INSIGHTS
INTO INTRACELLULAR NUTRITION
To target metabolism of intracellular Salmonella, several
approaches have been established covering in vitro approaches
from analyzing simple growth behavior in full or minimal medium
and changes in morphology (Paterson et al., 2009), intracellular
replication ability (Bowden et al., 2009, 2010) to more complex
transcriptome analysis (Eriksson et al., 2003) or 13C-isotopolog
profiling analysis (13C-IPA; Götz and Goebel, 2010) in a cell cul-
ture model. Experiments to test if a gene of interest contributes
to virulence are mainly done in macrophage cell lines as strains
unable to replicate within macrophages proved to be avirulent
(Fields et al., 1986). In addition, epithelial cell infection models,
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FIGURE 1 | Intracellular lifestyle of Salmonella. Salmonella is taken up
by host cells either by Salmonella-induced invasion (T3SS-1 triggered
macropinocytosis) or via phagocytosis. By translocating effector proteins
via the T3SS-2 into the host cell, the SCV undergoes an altered maturation
process characterized by specific endosomal markers. The onset of
Salmonella-induced filaments (SIFs) formation coincides with the start of
Salmonella replication between 4 and 6 h after infection. SIFs develop on a
microtubule scaffold.

such as HeLa or CaCo-2 cells (Götz and Goebel, 2010) which are
targeted first in Salmonella infection are under investigation.

The importance of certain metabolic functions and their corre-
sponding pathways can be investigated by intracellular replication
assays performed in murine macrophage cell lines with Salmonella
wild-type (WT) and mutant strains with metabolic defects (Bow-
den et al., 2009; Lim et al., 2010). Mutant strains can be easily
generated by the λ-Red mediated mutagenesis approach (Dat-
senko and Wanner, 2000). The intracellular replication ability
of these mutant strains compared to the WT strain indicates the
importance of the respective metabolic pathway for intracellular
nutrition and, in turn, intracellular survival and replication. Other
useful ways to “scan” for the complete setup of essential genes and
metabolic enzymes are transcriptome and proteome analyses of
Salmonella strains isolated from infected murine macrophage cell
lines (Eriksson et al., 2003; Shi et al., 2006) giving direct evidence
of genes and proteins expressed under intracellular conditions.
The application of 13C-IPA to follow metabolic fluxes in the host
and the bacteria cells in vitro is on the rise (Figure 2). It has been
widely used for analyzing metabolic fluxes in different bacterial
species like Escherichia coli (Fischer and Sauer, 2003) or intracel-
lular pathogens like Salmonella, enteroinvasive E. coli (EIEC; Götz
and Goebel, 2010), Listeria (Eylert et al., 2008), and Legionella
(Eylert et al., 2010).

In vitro approaches provide essential clues about the nutritional
status of intracellular Salmonella. However, the gained in vitro data
are often supported by, or compared to, data received from ani-
mal models, e.g., mouse (Bowden et al., 2009). A large number of
different mutant strains with metabolic defects has been tested for

virulence in mouse models (Tchawa Yimga et al., 2006; Bowden
et al., 2009; Paterson et al., 2009) and a proteome analysis with
Salmonella isolated from infected mice (recovered from cecum
and spleen) has been performed (Becker et al., 2006) providing
information about the essential metabolic enzymes and pathways.
Data on metabolite levels would provide important complemen-
tary information, but are often difficult to obtain for intracellular
bacteria and require complex experimental setups. Another com-
plementary approach is proteome analysis, a modern technique
to directly determine enzyme type and amount as well as modifi-
cations (e.g., regulatory phosphorylation of metabolic enzymes).
The fact that there may be differences between results obtained
by in vitro and in vivo approaches does not render data from in
vitro experiments questionable. The data may very well be reli-
able (i.e., reproducible) and of importance for understanding of
a limiting number of specific factors. The differences in results
from in vivo analyses can best be explained by the presence of a
large number of additional factors (immune responses, different
concentration gradients of nutrients in different tissues, cytokines,
etc.) that are often interrelated and affect pathogen survival and
replication in host tissue. For example, comparing experimental
evidence including proteomics, metabolomics, and survival data
on mutants with in vivo and in vitro conditions, conflicting results
can be observed for mutant strains of Salmonella with defects in
enzymes of the tricarboxylic acid (TCA) cycle. The mutant strains
showed even increased replication in a murine RAW macrophage
cell line, but were highly reduced in virulence in an animal model
(Bowden et al., 2010).

As they are easier to study and analyze, cell culture models for
Salmonella infections will remain the essential basis for the under-
standing of the cellular and molecular changes and mechanisms of
the intracellular bacterial nutrition. Cell culture experiments are
less complex and laborious than animal experiments and offer the
possibility to study such important aspects of intracellular nutri-
tion as access of Salmonella to host cell nutrients or to nutrients
in extracellular medium. Attenuation of certain mutant strains
can be directly linked to the lack of a certain metabolite in the
cell culture media. Supplementation experiments with labeled
carbon sources (C-sources) allow to analyze if and how this nutri-
ents reach Salmonella inside its SCV. Data gained from in vitro
experiments help to establish and improve mathematical models
of Salmonella during infection. By contrast, the large number of
additional and partially unknown factors affecting the pathogen
in in vivo infection studies would lead to models of extreme
complexity.

SALMONELLA INTRACELLULAR LIFESTYLE IN COMPARISON
TO LIFESTYLES OF OTHER INTRACELLULAR PATHOGENS
Salmonella is well-adapted to the SCV compartment as seen if
compared to cytoplasmic lifestyle (e.g., Listeria) or Legionella
as a further pathogen in a membrane-bound compartment. In
Salmonella, glucose represents a major C-source. However, glu-
coneogenesis rather than glycolysis is observed for cytoplasmic
listerial intracellular metabolism. This is required to synthesize
glucose from available substrates. Glucose is then predominantly
degraded in the pentose phosphate pathway (PPP). A complete
TCA cycle is observed for Salmonella. However, in cytoplasmic
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FIGURE 2 | Principles of isotopolog profiling with labeled [U-13C6]

glucose. The fate of labeled glucose via different metabolic routes can
be followed by isotopolog profiling in analyzing resulting metabolites
or products (in this case amino acids). An example is given for the
biosynthetic routes of the two aspartate isotopologs 13C2-aspartate

and 13C3-aspartate (represented by orange and blue arrows,
respectively) and the origin of a 13C3-alanine. Isotopolog studies
are described in Eisenreich et al. (2006), Eylert et al. (2008), and
Eylert et al. (2010). 13C-atoms are marked in red and indicated by
an asterisk.

Listeria the enzyme 2-oxoglutarate dehydrogenase is missing
(Glaser et al., 2001; Eisenreich et al., 2006), oxaloacetate is
formed by carboxylation of C3 compounds like pyruvate and the
anaplerotic enzyme pyruvate carboxylase becomes crucial (Schar
et al., 2010), major C-source is glycerol. De novo synthesized liste-
rial amino acids are Ala, Asp, Glu, Ser, Thr, Val, and Gly (Eisenreich
et al., 2010), indicating that other amino acids are taken up in the
host cell cytoplasm (Schauer et al., 2010).

For comparison, Legionella pneumophila, a gram-negative
intracellular pathogen and causative agent for Legionnaire’s dis-
ease was long time supposed to feed solely on amino acids while
residing in the host alveolar macrophages (Tesh and Miller, 1981).
Indeed, the amino acids Cys, Gln, Ser, and Arg are efficiently
used as carbon and energy sources in vivo (Wieland et al., 2005).
However, recent studies highlight that also glucose is metabo-
lized by Legionella during infection of eukaryotic cells. In contrast
to Salmonella, Legionella predominantly degrades glucose by the

2-keto-3-deoxy-phosphogluconate pathway (KDPGP) and only in
small quantities by glycolysis. The non-oxidative branch of PPP
also accounts for small amounts of glucose catabolism (Harada
et al., 2010). 13C-IPA further revealed that there is no evidence
for a functional glyoxylate bypass (Eylert et al., 2010), confirming
earlier models build on genome sequence analysis (Cazalet et al.,
2004). Furthermore, 13C-IPA results indicate that a complete and
active TCA cycle occurs in Legionella and that the inability to syn-
thesize amino acids de novo is only valid for Ile, Leu, Val, Phe, Met,
Arg, and Tyr.

COMPUTATIONAL AND SYSTEM BIOLOGICAL ANALYSES
OF THE METABOLISM OF INTRACELLULAR SALMONELLA
A number of recent studies highlight the importance of system bio-
logical modeling of Salmonella during infection (Bumann, 2009b;
McDermott et al., 2011). Besides the genome information, the
analysis of the pathogen proteomes during infection provides
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an important basis for infection research, as well as for devis-
ing novel control strategies including antibiotics and vaccines
(Bumann, 2009a). On this, independent models for Salmonella
metabolism are built (Becker et al., 2006; AbuOun et al., 2009;
Raghunathan et al., 2009; Eisenreich et al., 2010). In such mod-
els the flow of metabolites is modeled in terms of pathways.
Enzyme chains are calculated such that metabolites are balanced,
i.e., consumed and produced in equilibrium, this is called flux
balance analysis (FBA). If such a chain of metabolic enzymes
can not be dissected any further, this is named an elementary
mode. Helpful software tools include the COBRA Toolbox (Schel-
lenberger et al., 2011) and YANAsquare (Schwarz et al., 2007)
which can compile available biochemical and genome data sys-
tematically and calculate flux distributions by FBA or elementary
mode analysis (EMA). Specific tools such as the KEGGbrowser
(Schwarz et al., 2007) simplify the direct import of available bio-
chemical data into metabolic network reconstructions even on
genome-scale basis. Furthermore, metabolic gaps and dubious
annotations for enzymes of central metabolism often occur and
therefore different genome annotation software and comparisons
are strongly recommended to improve the network reconstruction
(Gaudermann et al., 2006).

Recently, a community effort towards a knowledge-base and
mathematical model of S. Typhimurium strain LT2 has been
initiated, resulting in the BiGG knowledge-base of Salmonella
metabolism (Thiele et al., 2011). A consensus metabolic recon-
struction was obtained from two independently developed (Rup-
pin et al., 2010) metabolic reconstructions for S. Typhimurium.
The joined reconstruction effort included, furthermore, the devel-
opment and implementation of a community-based workflow
for annotation and corrections including incorporation of ther-
modynamic information (to decide on reversible and irreversible
reactions). By this, metabolite transporters and reactions are more
accurately identified and considered. Higher reliable consensus
models improve, furthermore, the potential of multi-target drug
therapy approaches for specific strains though of course the host
response is another important factor to consider.

Our metabolic modeling approach calculating elementary flux
modes on central carbon and amino acid metabolism in S.
Typhimurium indicates that the anaplerotic reactions around
phosphoenolpyruvate (PEP) to oxaloacetate are pivotal and occur
in many flux modes. For modeling growth on glucose as the sole C-
source, PEP carboxylase (ppc) plays a central role in directing the
flux to the TCA cycle. However, disruption of PEP carboxylase can
be partly compensated by alternative routes in the network regard-
ing carbohydrate metabolism. A ppc-deficient mutant showed no
reduced virulence in vivo (Tchawa Yimga et al., 2006), indicating
the availability of further C-sources such as amino acids which,
through transaminase reactions, also can feed into the TCA cycle.
This would give support to a model that contains both glucose and
amino acids as C-sources. Here, the flux through PEP carboxy-
lase decreased and the flux through PEP carboxykinase (pckA)
increased, compared to a medium with only glucose. PEP car-
boxykinase catalyzes a reaction in the opposite direction of the
normal flow cycle, i.e., increasing the flow from oxaloacetate to
PEP. The direct conversion of oxaloacetate to aspartate cannot
be easily compensated by alternative flux modes. Transaminase

activity can be compensated, for instance, loss of two transam-
inases (aspC and tyrB) is required before aspartate auxotrophy
appears. Moreover, aspartate can also be acquired from the host.
However, the production and availability of oxaloacetate is criti-
cal, requiring increased PEP carboxylase activity or a reversal of the
flow from oxaloacetate to aspartate. This and similar other model-
ing results suggest that amino acid metabolism is easier impaired
and more critical in the SCV than in intracytoplasmic survival
(Schauer et al., 2010).

Flux balance analysis and EMA calculate metabolic pathways
but the integration of experimental “omics” data allows to bet-
ter determine metabolic flux strengths (Covert et al., 2004). Tools
have thus recently been developed that help to integrate experi-
mental data into metabolic models such as YANAvergence (Liang
et al., 2011) fit experimental flux measurements, enzyme activities,
gene expression data (Cecil et al., 2011), as well as extracellular
metabolite ratios to computational predictions.

Due to the intracellular lifestyle, the host provides further nutri-
ents by transporters (Figure 3). Overall, there is an intensive
exchange of metabolites during growth in the host cell. Game
theoretical approaches treat such interdependencies in a novel
mathematical way showing advantages as well as limitations for
any specific survival strategy (bacterial pathogen) or opposing
strategy from the host (Ruppin et al., 2010; Schuster et al., 2010b,
2011). This becomes even more important as the robust Salmonella
metabolism including its redundant, overlapping pathway organi-
zation limits possibilities for new antimicrobials interfering with
its metabolic processes (Becker et al., 2006). Moreover, the poten-
tial of central carbon metabolism as a target for microbial defense
depends on the environmental factors of the specific niche and the
genetic and phenotypic traits of infecting bacteria. For instance, in
dormant sub-populations, or “persisters,” the uptake of glucose,
mannitol, or fructose implies a direct influence in preparatory
steps of glycolysis. This potentiates the killing by aminoglyco-
sides (Allison et al., 2011). Thus, for an iterative refinement of
computational modeling the integration of transporter reactions
(Raghunathan et al., 2009) and a strain-specific analysis (Liang
et al., 2011) is crucial. In this regard, a global gene expression anal-
ysis of S. Typhimurium (Harvey et al., 2011) during colonization
of the chicken’s cecal lumen and cecal mucosa demonstrates very
specific Salmonella metabolic adaptations to its environment. For
comparison, differences in expression of transporters and in the
usage of C-sources regarding three specific niches (cecal lumen,
mucosal wall, and the SCV in macrophages and epithelial cells)
are illustrated in Figure 3.

THE ROLE OF CENTRAL CARBON METABOLISM PATHWAYS
DURING INTRACELLULAR SURVIVAL
Salmonella is in fact a pathogen with a very broad and versa-
tile metabolism and as already seen by its comparatively large
genome, is a generalist among gram-negative bacteria (Figure 4).
For instance, Salmonella can easily metabolize glucose combining
various pathways to supply both energy and amino acids and the
same applies for most nutrient sources.

Furthermore, the combination of different pathways guaran-
tees a fine-tuned balance of internal metabolites. Due to this
redundancy it is not easy to block growth of Salmonella by
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FIGURE 3 | Activity of nutrient transport systems in various host habitats

colonized by Salmonella. Transporter gene expression and carbon source
usage is exemplified according to Hautefort et al. (2008), Eisenreich et al.
(2010), and Harvey et al. (2011). During the colonization of the intestine,
Salmonella first resides in the cecal lumen (bottom left), then attaches to the
mucosal layer (bottom right) until it invades macrophages and epithelial cells

forming the SCV (upper part). Transporter proteins differentially expressed in
the specific niches are represented as small ovals with transported
metabolites at the outside of the Salmonella cell (central oval) and gene
names on the inside. Carbon sources suggested according to literature are
illustrated as gray boxes. Salmonella genome information is according to
McClelland et al. (2001).

antibiotics targeted against key metabolic enzymes of primary
metabolism (Becker et al., 2006). In the following we discuss
specific Salmonella pathways.

THE ROLE OF CATABOLISM OF GLUCOSE
There are three routes for the catabolism of glucose: (i) glycolysis,
(ii) the PPP, and (iii) the Entner–Doudoroff pathway also known as
the KDPGP. The two latter pathways for glucose utilization seem
to be of lesser importance for Salmonella. A Salmonella mutant
strain deficient in zwf (encoding glucose-6-phosphate dehydro-
genase), catalyzing the first step of both PPP and KDPGP, and
a double mutant strain in gnd (PPP) and edd (KDPGP), or a
double mutant in gnd (PPP) and edd (KDPGP) are not atten-
uated in proliferation in the murine macrophage cell line RAW
264.7 (own unpublished results). Nevertheless, it was reported
that a zwf mutant shows reduced virulence in a mouse model
of systemic infection (Lundberg et al., 1999). This group refers

to the importance of NADPH production in the PPP which is
used as electron donor for reductases required for oxidative stress
response. However, we think that in our cell culture models the
superoxide levels should be less high than in the mouse infection
model and this may explain the decreased need for such reduc-
tases and for NADPH. Other important PPP products like ribose
used for nucleoside synthesis can still be produced by the non-
oxidative part of PPP. We suggest that PPP and KDPGP play no
important role if glucose is the major substrate. Isotopolog pro-
filing experiments in CaCo-2 cells showed that the internalized
glucose is mainly converted by glycolysis and/or KDPGP path-
way and excluded PPP as a major route for glucose catabolism
(Götz and Goebel, 2010). Salmonella studied in epithelial cell lines
are significantly less challenged with reactive oxygen intermediates
(ROI) and reactive nitrogen intermediates (RNI) responses, hence,
the generation of NADPH would be less important than in an ani-
mal model. In particular, the activity of the PPP may become
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FIGURE 4 | Salmonella central carbon metabolism. Shown are genes and
enzymes of the central carbon metabolism covering glycolysis, PPP,
KDPG/Entner–Doudoroff pathway, oxidative carboxylation, TCA cycle, and
anaplerotic reactions. Boxes represent metabolites, arrows indicate enzyme
reactions. Metabolites and enzymes are colored according to the color of
their pathway name. Arrows are directed according flux direction under
glucose metabolism but may vary under different conditions. Detailed
information on importance of the illustrated pathways in intracellular infection
is outlined in the text including behavior of an array of different enzyme
mutations. 1,3pg, 1,3-bisphospho-D-glycerate; 2pg, 2-phospho-D-glycerate;

3pg, 3-phospho-D-glycerate; 6pg, 6-phospho-D-gluconate; αkg,
α-ketoglutarate; ac-coa, acetyl-CoA; cit, citrate; dhap, dihydroxyacetone
phosphate; e4p, D-erythrose-4-phosphate; f1,6bp, fructose-1,6-bisphosphate;
f6p, D-fructose-6-phosphate; fum, fumarate; gap,
D-glyceraldehyde-3-phosphate; glyox, glyoxylate; icit, isocitrate; kdpg,
2-dehydro-3-deoxy-D-gluconate-6-phosphate; mal, (S)-malate; mg,
methylglyoxal; oaa, oxaloacetate; pep, phosphoenolpyruvate; pyr, pyruvate;
r5p, D-ribose-5-phosphate; ru5p, D-ribulose-5-phosphate; s7p,
D-sedoheptulose-7-phosphate; suc, succinate; suc-coa, succinyl-CoA; x5p,
D-xylulose-5-phosphate.

important if Salmonella is challenged with higher degrees of
oxidative stress.

The significance of glucose as one of the major C-sources, and
glycolysis as the main route for utilization has recently been shown
(Bowden et al., 2009). Extending the set of glycolysis mutant
strains analyzed by Bowden et al. (2009), work in our groups
showed that eno, fba, pgk, gapA, or tpiA deficient strains are
strongly attenuated in intracellular replication and survival in
RAW 264.7 cells (unpublished results). In case of a tpiA mutant it
was demonstrated that reduced growth in rich medium (lysogeny
broth, LB) and decreased fitness in mice seems to depend on accu-
mulation of the toxic electrophile methylglyoxal from accumulated

dihydroxyacetone phosphate by reaction of the methylglyoxal syn-
thetase (Paterson et al., 2009). Overproduction of methylglyoxal
as a result of tpiA mutation for E. coli has been shown before
(Cooper and Anderson, 1970; Cooper, 1984) and although the
concentration is lower in the tpiA mutant of Salmonella, it still
leads to reduced growth in medium and lower fitness in mice
(Paterson et al., 2009). Mutant strains deficient in eno, fba, gapA,
or pgk show similar growth characteristics in medium containing
just traces of glucose or other C-sources ending up in glycolytic
intermediates, e.g., in LB or minimal medium containing ribose.
None of these mutant strains was able to grow in these media, but
growth was observed on minimal medium with glycerol or PEP
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as C-source. The growth defect in the presence of sugars is due to
accumulation of phosphorylated sugars, i.e., fructose-6-phosphate
(f6p), glucose-6-phosphate (g6p), and fructose-1,6-bisphosphate
(f1,6bp), that appear to influence RNA stability as observed in E.
coli mutant strains (Bock and Neidhardt, 1966; Singer et al., 1991;
Morita et al., 2003). Glucose is the main C-source in common cell
culture media for eukaryotic host cells along with amino acids. The
inability of these mutants to survive intracellularly suggests that
the metabolism of glucose through glycolysis and the accumula-
tion of phosphorylated sugars is harmful, caused by the knockout
of the aforementioned glycolytic genes. Nevertheless, further ana-
lytical approaches such as quantification of metabolites by GC–MS
are required to determine the presence and accumulation of these
glycolytic intermediates.

OXIDATIVE DECARBOXYLATION OF PYRUVATE – THE
CONNECTION TO THE TCA CYCLE
Pyruvate as final product of glycolysis or KDPGP can be further
metabolized to acetyl-CoA by reaction of pyruvate dehydrogenase.
This production of acetyl-CoA and the connection to the TCA
cycle is of great importance as indicated by the reduced growth
of a pyruvate dehydrogenase subunit I deficient strain (�aceE)
in rich media (LB) and strong attenuation of intracellular repli-
cation. An aceE mutant of S. enterica serovar Enteritidis tested
in a chicken infection model also showed reduced growth com-
pared to a WT strain, a lower invasion rate in HeLa cells and
was less resistant to ROI. Chicken macrophages (HD-11) were
able to eliminate this strain completely within 24 h after infection
(Pang et al., 2011). In non-activated RAW 264.7 cells that produce
low amounts of ROI, reduced replication was observed (unpub-
lished observations). The loss of aceE may also have influence
on the expression of virulence genes important for the defense
against ROI. The attenuation of the �aceE strain may be due
to the metabolic burden of virulence gene expression and the
lower energy production due to this knockout. Energy is prob-
ably mainly produced by glycolysis resulting in less ATP than
via respiratory chain of the reduction agents produced in the
TCA cycle.

THE ROLE OF THE TCA CYCLE AND ANAPLEROTIC
REACTIONS
The TCA cycle plays an important role as a source for precursors
for anabolic pathways, e.g., amino acids, and reducing agents used
as electron donors in the respiratory chain or for biosynthesis.
Due to this central role, it is obvious that in the last years research
is focused on this part of the central carbon metabolism. Some
groups already showed loss of virulence in a murine model for
mutants with defects in the TCA cycle (Tchawa Yimga et al., 2006;
Bowden et al., 2010), concluding that the ability to run the full
TCA cycle is critical for virulence. The latter group could show
that for some of these TCA cycle mutant strains showing reduced
virulence in the murine model (mdh, sdhCDAB, and sucCD)
an increased replication in resting and activated macrophages
(RAW 264.7) could be observed that is probably due to differ-
ences in the in vitro and in vivo environment (available nutrients,
etc.). An sdhA mutant strain of E. coli had an expanded life
span due to a lower production of superoxide in contrast to the

WT (Gonidakis et al., 2011). The phenomenon may explain the
observed increased intracellular replication for the mdh, sdhCDAB,
and sucCD strains of Salmonella in vitro. A TCA cycle mutant
strain with an icdA deletion was not tested in this experimental
setup but we could observe a strong attenuation in inactivated
murine RAW macrophages. The strong attenuation of the icdA
mutant could be due to the accumulation of an inhibitory prod-
uct like citrate or isocitrate as was shown for an E. coli icd mutant
(Lakshmi and Helling, 1976).

In view of the significance of the anaplerotic reaction for sur-
vival in macrophages (Figure 4), it seems quite convincing that the
glyoxylate shunt, which is used during growth on acetate and fatty
acids is important for chronic infections but not for acute infec-
tions (Fang et al., 2005; Tchawa Yimga et al., 2006). This supports
the suggestion that acetate and fatty acids are of no importance as
C-sources in acute infection either due to their absence or the pres-
ence of more favorable C-sources like glucose. This is confirmed
by transcriptome data observing no up-regulation in expression of
the isocitrate lyase gene aceA (Eriksson et al., 2003) and by obser-
vations that Salmonella strains with a defect in β-oxidation of fatty
acids (fadD) also showed the same virulence as the WT strain in a
murine model (Tchawa Yimga et al., 2006).

The direct conversion of PEP to oxaloacetate, an important
precursor for the amino acids aspartate and asparagine, is another
anaplerotic reaction preventing the TCA cycle from idling and
is catalyzed by the enzyme PEP carboxylase (Sabe et al., 1984).
Loss of this enzyme does not lead to reduced virulence in a
murine model (Tchawa Yimga et al., 2006) indicating the pres-
ence of C-sources other than glucose, e.g., amino acids, in
amounts required for intracellular replication of Salmonella. This
would make redundant the replenishment of the TCA cycle by
this route.

TOWARDS A COMPREHENSIVE UNDERSTANDING OF THE
METABOLIC REQUIREMENTS OF THE INTRACELLULAR
LIFESTYLE OF SALMONELLA
The environmental and nutritional conditions encountered by
Salmonella within the SCV are still a matter of debate. In the
process of SCV formation an acidification of the intravacuo-
lar environment takes place (Rathman et al., 1996). Salmonella
metabolism during infection adapts to this intracellular life style
in the host cell. It is regulated by different transcription fac-
tors (Eisenreich et al., 2010; Götz and Goebel, 2010). However,
to what extent can the SCV be reached from outside? Are there
macrophage-specific strategies of adaptation? A number of recent
efforts were stimulated by these questions (Eriksson et al., 2003;
Becker et al., 2006; Bowden et al., 2009; Götz and Goebel, 2010)
and gene knockout strategies as well as metabolite measurements
and modeling were applied to better understand Salmonella life
inside the cell.

Limitation of magnesium, phosphate, and iron occur as genes
for their uptake are up-regulated in Salmonella during infection.
By gene expression analysis it could also be shown that glycol-
ysis, KDPGP, and TCA cycle are highly expressed in SCV of
macrophages and epithelial cells (Hautefort et al., 2008). In con-
trast, gluconeogenesis is not required for a full virulent phenotype
in mice (Tchawa Yimga et al., 2006).
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In a number of reports, the nutrient-poor, underfed conditions
of the SCV were stressed (Eriksson et al., 2003; Ibarra et al., 2009).
This applies even more for the early phases of the infection. Fur-
thermore, detailed studies suggest that intracellular Salmonella
deploys specific mechanisms to redirect vacuolar transport to
make use of host-derived nutrients (Kuhle et al., 2006; Drecktrah
et al., 2007; Rajashekar et al., 2008).

Direct comparison of intracellular lifestyles of bacterial
pathogens such as Salmonella and Legionella that reside within a
membrane-bound compartment, to those with survival and repli-
cation within the cytoplasm of host cells is of interest. For the
latter, survival depends on the availability of cytoplasmic host
cell metabolites and tight regulation is necessary such as by the
pathogenicity factor PrfA in Listeria (Eylert et al., 2008) to sur-
vive surprisingly poor nutritional conditions (Eriksson et al., 2003;
Ibarra et al., 2009). For the Salmonella lifestyle in the SCV, also
strong metabolic adaptations are necessary, in particular regard-
ing low abundant nutrients and ions, however, carbohydrates are
not that limiting. The survival under these different conditions of
intracellular life in the host cell indicates successful adaptation to
different metabolic limitations.

The expression of virulence factors by Salmonella does not
come without a price. For example, in a recent study retarded
growth of S. Typhimurium cells expressing the type III secre-
tion system 1 (T3SS-1) compared to the minus phenotype was
observed and the effects on growth kinetics were modeled (Sturm
et al., 2011). Growth retardation was at least partially attributable
to the expression of the T3SS-1 effector and/or translocon
proteins. In spite of this growth penalty, the T3SS-1(+) sub-
population increased from <10% to approximately 60% during
the late logarithmic growth phase of an LB batch culture. As
shown by experimental data and mathematical modeling, this
was attributable to an increasing initiation rate of expression
of T3SS-1 genes, in response to environmental cues accumulat-
ing during this growth phase. The key is here to mathematically
describe the whole system, correctly quantify responses and obtain
results from the model which agree with observation. Such
models and methods can, furthermore, also be transferred to bet-
ter understand other genetic variations pertaining, for instance,
to effector proteins and estimate the cost of virulence regard-
ing growth and metabolism. Such systems biology approaches
to Salmonella lifestyle and pathogenicity are expected to grow
(Helaine et al., 2010).

Furthermore, a number of technical developments con-
tributed to the understanding of bacterial metabolism during
infection. The modeling of genome-scale metabolic networks
is now feasible, originally pioneered by the Palsson group
(Price et al., 2004a). However, even with strong computational
power at hand, detailed modeling requires additional meth-
ods to handle the combinatorial explosion of different pathways
concerned, for instance, by dividing the metabolic network
(Schuster et al., 2002) or sampling averages over high numbers
of different modes (Price et al., 2004b). Furthermore, a num-
ber of recent developments tackle new software solutions for
metabolic modeling including modifications of extreme path-
way analysis (Kaleta et al., 2009; Schuster et al., 2010a). More-
over, the analysis of isotopolog data profits from advances in

software development (Nanchen et al., 2007). Achieving gene
knockout combinations experimentally has been advanced tech-
nically (Datsenko and Wanner, 2000; Gerlach et al., 2009) and
this has been complemented by in silico prediction studies on
gene knockouts agreeing well with these experiments. This can
also be applied to study survival during infection (Raghunathan
et al., 2009).

IMPLICATIONS AND CONCLUSIONS
Pathogenicity can arise from a bacterial specialization where
intrinsic cellular functions are especially adapted to the host’s
environment such as in exclusive human pathogens like Mycobac-
terium tuberculosis (Moller and Hoal, 2010), Neisseria gonorrhoeae
(Criss and Seifert, 2012), N. meningitides (Criss and Seifert, 2012),
and Mycoplasma pneumoniae (Dumke et al., 2011). In contrast,
Salmonella is a surprisingly successful intracellular pathogen that
is less specialized but rather a generalist with an extraordinary
metabolic versatility. Furthermore, E. coli, Pseudomonas spp., Kleb-
siella spp., and further bacteria are common pathogens with a
similar metabolic background which are not highly specialized for
a specific host environment.

To underline this, a broad spectrum of central carbon
metabolism routes constitutes the repertoire of the Salmonella
lifestyle (Figure 4). Glucose, the predominant C-source during
SCV colonization can either be degraded in the glycolytic pathway
or the KDPG route, the former one preferentially used. The TCA
cycle as the major biosynthetic origin of precursor and provider
of reductive agents is complete and is supported by important
anaplerotic reactions that lead the metabolic flux to the TCA
cycle, mainly by the PEP carboxylase. However, this enzyme can be
compensated by other flux modes as shown by EMA. In systemic
infections, the PPP generates NADPH required for reductases in
oxidative stress response. Salmonella is well-equipped to rapidly
adapt to various environments during the passage through the
host’s body.

The flexible metabolic abilities of Salmonella make it chal-
lenging to elucidate targets to inhibit metabolic functions during
infection. The pathogen efficiently modifies its unique vacuo-
lar compartment for its benefits. Additionally, the transport of
nutrients to the SCV in response of Salmonella effector proteins
is currently under investigation. Host–pathogen metabolism is
intertwined.

Is there an Achilles’ heel of Salmonella metabolism in infec-
tion? To answer this we suggest a combination of a thorough
analysis of central metabolic enzymes such as mutant phenotypes
of glycolytic enzymes with systemic analysis such of transporter
expression profiles, strain-specific analysis, and projecting those
on the very specific environmental conditions under study. Thus,
the loss of pyruvate dehydrogenase may have an influence on the
expression of virulence genes important for ROI defense. Fur-
ther, mutants with a defect in the TCA cycle showed reduced
virulence in a murine infection model. In Salmonella, the T3SS-
2 is responsible for translocation of over 20 virulence proteins
into the host cell cytoplasm (Haraga et al., 2008). SifA is prob-
ably the most prominent among these effectors in maintaining
the integrity of the SCV and induction of extensive networks of
tubular membrane compartments including Salmonella-induced
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filaments and recently identified further tubular compartment
(Schroeder et al., 2011).

Future work will take up the challenge of this surprisingly well-
adapted pathogen by looking more closely at the host–pathogen
interaction, not only regarding metabolic interactions for fur-
ther pathways including secondary metabolism, iso-enzymes, and
intertwined links between pathways (including supplementation
experiments), but also regarding the regulatory and immune
response from the host, for instance, potential immune mod-
ifiers as novel approaches to boost host response in severe
infections by Salmonella. Infectious disease burden in develop-
ing countries will doubtless profit from improved hygiene and
clean water supply but also protective nutrient additives (e.g.,

vitamins; golden rice, and similar recent developments) and
regarding trace elements such as selenocysteine. Challenges in
industrialized countries include persistent infection which can
again be coped with metabolic approaches relying, for instance,
on elicitors of growth which in turn make the previous per-
sister Salmonella vulnerable to standard antibiotics. In general,
the exploration of the link between metabolism and infection
has to be explored further to improve medical options against
Salmonella.
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Listeria monocytogenes is a foodborne human pathogen that can cause invasive infection in
susceptible animals and humans. For proliferation within hosts, this facultative intracellular
pathogen uses a reservoir of specific metabolic pathways, transporter, and enzymatic func-
tions whose expression requires the coordinated activity of a complex regulatory network.
The highly adapted metabolism of L. monocytogenes strongly depends on the nutrient
composition of various milieus encountered during infection.Transcriptomic and proteomic
studies revealed the spatial–temporal dynamic of gene expression of this pathogen during
replication within cultured cells or in vivo. Metabolic clues are the utilization of unusual C2-
and C3-bodies, the metabolism of pyruvate, thiamine availability, the uptake of peptides,
the acquisition or biosynthesis of certain amino acids, and the degradation of glucose-
phosphate via the pentose phosphate pathway.These examples illustrate the interference
of in vivo conditions with energy, carbon, and nitrogen metabolism, thus affecting listerial
growth.The exploitation, analysis, and modeling of the available data sets served as a first
attempt to a systemic understanding of listerial metabolism during infection. L. monocyto-
genes might serve as a model organism for systems biology of a Gram-positive, facultative
intracellular bacterium.

Keywords: Listeria monocytogenes, infection, metabolism, systems biology, modeling, intracellular

INTRODUCTION
A successful infection by bacterial pathogens requires multiple
adaptation processes including adhesion to host tissues, mod-
ulation of the immune response, or toxic activity toward the
host defense system. Some pathogens enter epithelial cells or are
internalized by professional phagocytes, and these steps are often
followed by bacterial manipulation of the host cell actin skele-
ton and the manipulation of the endocytic route. Most of these
processes, which often require specific virulence factors that enable
the microbes to overcome the various physical and biochemical
barriers of the infected host, have been characterized in detail.

In contrast, little attention has been given to the metabolic
requirements and the metabolic flexibility of bacteria during infec-
tion, in parts due to limitation of analytical tools, and because the
bacterial metabolism in vivo and in vitro has erroneously been
assumed to be similar (Muñoz-Elías and McKinney, 2006). There-
fore, our knowledge about the substrates used by pathogens during
infection, and, equally important, the effect of a bacterial infection
on the metabolism of the host cell is still fragmentary (Joseph and
Goebel, 2007; Fuchs et al., 2011; Rohmer et al., 2011). Furthermore,
the structural conservation of metabolic enzymes was considered

Abbreviations: σB, sigma factor; BBCAAs, branched-chain amino acids; GAP,
glyceraldehyde-3-phosphate; Hly, listeriolysin; IPA, isotopolog profiling analy-
sis; Pdh, pyruvate dehydrogenase; PlcA/PlcB, phospholipase A/B; PPP, pentose
phosphate pathway; PrfA, positive regulatory factor A.

to prevent the identification of microbe-specific inhibitors. Key
metabolic enzymes, however, that are specifically required during
growth within host cells could constitute a promising new set of
possible targets for antibacterial compounds urgently needed or be
used for the development of food formulas that suppress growth
of pathogenic bacteria (Boigegrain et al., 2005; Becker et al., 2006;
Liautard et al., 2006). Recent progress has been made in determin-
ing the major carbon sources used by intracellularly replicating
pathogens such as Listeria monocytogenes, Shigella flexneri, and
pathogenic Escherichia coli (Lucchini et al., 2005; Eylert et al., 2008;
Götz and Goebel, 2010; Götz et al., 2010). These data suggest that
pathogens, in order to efficiently replicate within a host or its
cells, have to coordinate their metabolism with the availability of
nutrients during their life cycle (for review, see Eisenreich et al.,
2010).

Listeria monocytogenes is a Gram-positive pathogen that mainly
affects immunocompromised individuals, pregnant women, and
newborns. Severe infections are characterized by bacteremia,
meningoencephalitis, abortion, or neonatal sepsis. The most com-
mon vehicles of transmission of this saprophytic bacterium to
humans are dairy products and other foods including eggs,
seafood, and vegetables. Three hundred eighty-six documented
cases of listeriosis were reported for 2010 in Germany (Robert
Koch-Institut, 2011), and about 1600 in the USA (Centers for
Disease Control and Prevention, 2011). The high lethality rate
of up to 20–30% despite early antibiotic treatment resulted in
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increasing efforts to understand listerial pathogenicity and to find
tools against this pathogen (Vázquez-Boland et al., 2001).

Upon uptake by contaminated food, L. monocytogenes enter
non-phagocytic cells such as epithelial cells, hepatocytes, or fibrob-
lasts by the activity of the surface-associated internalins A and B.
In contrast to other facultative intracellular pathogens like Salmo-
nella, a hallmark of L. monocytogenes is that it is capable to escape
from the phagocytic vacuole by disrupting the phagosomal mem-
brane via the expression of listeriolysin (Hly) and phospholipase
A (PlcA). Listerial cells thus access the host cell cytoplasm where
they are not only able to replicate, but also to actively move by actin
polymerization mediated by ActA. Cell-to-cell spreading and sub-
sequent disruption of the vacuolar double-membrane by Hly and
PlcB has also been observed. Having passed the gut epithelium, L.
monocytogenes is capable to resist killing by professional phago-
cytes. It might disseminate via the lymph and the blood to the
liver and the spleen and even cross the blood–brain or the blood–
placenta barrier. All main virulence factors are under control of
the positive regulatory factor A (PrfA; for more details, see reviews
such as Vázquez-Boland et al., 2001; Dussurget et al., 2004; Hamon
et al., 2006; Cossart and Toledo-Arana, 2008; Camejo et al., 2011).

Here, we will summarize recent omic-studies relevant for the
topic of listerial metabolism during infection, and introduce iso-
topolog profiling analysis (IPA) as a technique that allows novel
insights in metabolic fluxes during infection. Then, metabolic
adaptations and requirement of L. monocytogenes in cultured cells
and in vivo, as well as the underlying regulatory factors, will be
resumed. Modeling approaches as further tools that pave the way
toward a systems level understanding of listerial metabolism dur-
ing infection will be presented, followed by challenges and future
perspectives in this research field.

OMIC-APPROACHES TO DELINEATE METABOLIC TRAITS
RELEVANT FOR INFECTION
So far,mainly two strategies have been followed to improve our sys-
temic understanding of metabolic adaptations by listeriae within
host compartments: firstly, the differences between the transcrip-
tomes and the proteomes of apathogenic and pathogenic strains,
and secondly the analysis of differential gene expression upon the
transition from one physiologically relevant condition to another.

COMPARATIVE APPROACHES
Comparative genomics is important to identify factors and path-
ways contributing to virulence properties, both on the genus level
with insights into host specificities and on the species level regard-
ing the biodiversity of certain bacterial lineages (Zhao et al., 2011).
Detection of differences between the genomes of L. monocytogenes
and the apathogenic species L. innocua gave first insights into the
reasons that cause a Listeria species to be pathogenic (Buchrieser
et al., 2003). In a triple analysis involving the whole genome
sequences of L. monocytogenes, L. welshimeri, and L. innocua, it was
shown that genome reduction led to the apathogenic L. welshimeri,
the latter being derived from early evolutionary events. This find-
ing points to an ancestor more compact than L. monocytogenes
(Hain et al., 2006).

However, the genetic equipment itself does not sufficiently
describe differences of more closely related strains with respect

to their virulence properties. Several proteomic approaches have
been performed in the context of listerial adaption to the host
environment, thus contributing to the systemic understanding of
metabolism during infection (Cabanes et al., 2011). A comparative
in vitro proteomic approach investigated the protein expression
profiles of L. monocytogenes and L. innocua with a focus on the
secretome of both species (Trost et al., 2005). In vitro comparative
transcriptome analysis of L. monocytogenes strains revealed dif-
ferences of the two major lineages/serovar 1/2a, and serovars 4b
and 1/2b including stress-related sigma factor B (see below) and
virulence factors (Severino et al., 2007). Related studies analyzed
the secreted proteomes of L. monocytogenes strains belonging to
serovars 4b, 1/2b, and 1/2a (Dumas et al., 2008, 2009a,b). Due to
the identification of factors possibly involved in substrate degra-
dation, those studies might reveal novel insight into the listerial
metabolism in vivo. Donaldson et al. (2011) focused on proteome
differences between an avirulent and two virulent L. monocytogenes
strains representing the two lineages mentioned above. Their data
revealed that most proteins of the intermediary metabolism are
stronger expressed in pathogenic strains in comparison to apath-
ogenic strains. Comparison between the two virulent serovars
also revealed metabolic differences in their intramacrophagic pro-
teome, possibly reflecting unequal proliferation rates (Donaldson
et al., 2009).

TRANSITION STUDIES
Two pilot studies had investigated the transcriptome of L. monocy-
togenes infecting human epithelial (Caco-2) cells and the murine
macrophage cell line P388D1. Both studies revealed that up to 19%
of the listerial genes are differentially expressed in comparison to
their level of transcription in BHI medium (Chatterjee et al., 2006;
Joseph et al., 2006). Differences in the results point to cell-specific
metabolic adaptations during the intracellular replication of L.
monocytogenes, whereas common findings support the assump-
tion that several metabolic traits play a central role for listerial
replication in vivo (see below). The analysis of the proteome of L.
monocytogenes strain EGDe replicating in macrophages demon-
strated the upregulation of specific metabolic pathways (van de
Velde et al., 2009). An in vitro proteomic study revealed global
changes in gene expression when L. monocytogenes enters station-
ary phase, a growth condition also relevant in vivo (Weeks et al.,
2004). These data clearly indicate that specific metabolic adap-
tations significantly contribute to the capability of pathogens to
replicate within macrophages.

The analysis of the bacterial response to changing conditions
in vitro also elucidates the dynamic of metabolism in vivo. Wen
et al. (2011) investigated the reversible transition from the bacilli-
like to the cocci-morphology in the long-term-survival (LTS)
phase of L. monocytogenes serotype 4b strain F2365 at different
growth stages in tryptic soy broth with yeast extract (TSBYE).
Transcriptome analysis identified 225 differentially expressed
genes (≥4-fold; P < 0.05) with the upregulation of metabolic
genes including those involved in the synthesis of branched-chain
amino acids (BCAAs). Combined treatment with potassium lac-
tate and sodium diacetate led to altered metabolism, including a
shift toward fermentative production of acetoin (Stasiewicz et al.,
2011).
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POWER OF ISOTOPOLOG PERTURBATION STUDIES FOR
SYSTEMS BIOLOGY OF INFECTION
The study of biosynthetic pathways and fluxes under in vivo con-
ditions is crucial to understand the metabolism and physiology of
microorganisms on a systems level (Winder et al., 2011). While
many important features on metabolism can be deduced on the
basis of genome sequences, RNA transcripts, protein and metabo-
lite profiles, and numeric modeling, the direct observation of
metabolic pathways and fluxes during listerial growth in eukary-
otic host cells has long been hampered by the lack of an adequate
technology. One of the recent methods for the quantitative analy-
sis of metabolite fluxes throughout biological systems is based on
growing infected host cells in medium containing stable isotope
labeled nutrients (Eylert et al., 2008). For heterotrophic organisms
including pathogenic bacteria such as L. monocytogenes and their
eukaryotic host cells, simple carbohydrates, amino acids, and glyc-
erol are among the typical carbon sources and, therefore, serve as
suitable tracers in these labeling studies.

Any perturbation of the natural isotope equilibrium by the sup-
ply of such an isotope enriched compound will naturally spread
in the experimental system via a large number of enzyme cat-
alyzed reactions. In other words, a broad spectrum of biosynthetic
pathways (if not all) is covered by this experimental approach.
As a consequence, comprehensive information about the nature
and the dynamics of the metabolic network can be obtained. Ana-
lytical methods to monitor the distribution of the stable isotope
(e.g., 13C) in biosynthetic products are NMR spectroscopy and/or
mass spectrometry typically coupled with gas chromatography
(GC/MS). Both methods have their specific advantages and disad-
vantages. Mass spectrometry is a well-established tool to determine
isotopolog patterns in amino acids at adequate sensitivity (Zam-
boni et al., 2009). Signals with high signal-to-noise ratio can be
obtained even with small sample amounts, i.e., 108 bacterial cells or
1 mg of dry cell pellet is sufficient for the measurement of protein
bound amino acids (Eisenreich et al., 2010).

After protein hydrolysis, the resulting amino acids are con-
verted into tert -butyldimethylsilyl-derivatives (TBDMS amino
acids). On the basis of the mass patterns, the relative fractions
of isotopomers (i.e., molecular ions or fragments thereof com-
prising a defined number of 13C-atoms) can be determined for
approximately 50 mass fragments of 15 TBDMS amino acids
under realistic conditions. However, from these analytes only 29
fragments of 12 different TBDMS amino acids (glycine, alanine,
serine, aspartate, threonine, glutamate, valine, leucine, isoleucine,
methionine, tyrosine, and phenylalanine) meet the demands for a
reliable isotopomer quantification (Antoniewicz et al., 2007). Only
13 fragments comprise all carbon atoms of the original amino
acids (i.e., for glycine, alanine, serine, aspartate, threonine, gluta-
mate, proline, methionine, valine, lysine, histidine, phenylalanine,
and tyrosine), whereas all other fragments are observed after loss
of one or more carbon atoms from the original amino acid. For
most TBDMS amino acids, fragments are detected where C-1 (the
carboxylic atom) has been lost during the ionization. Provided
that the labeling strategy had generated specific profiles in all of
these fragments, the biosynthetic pathways leading to the analyzed
amino acids can be identified in typical studies. Moreover, the
same data can be used to predict the patterns in the precursors for

the respective amino acids as a basis to elucidate the fluxes in the
central intermediary metabolisms. For accurate data, the overall
13C-enrichment should be at least 0.2%; better results are obtained
with enrichments>1%.

Notably, the measurements can be done in a high throughput
manner by automated systems, albeit data processing, and inter-
pretation still need considerable efforts by expert users even when
supported by the available software to deconvolute isotopolog
enrichments from the original data. Considering the isotope frac-
tions in the molecular masses of the original metabolites and
one or more fragments thereof, some limited information can
be gleaned about the positional distribution of the 13C-label.
However, the positional resolution is still low in comparison with
isotopolog profiling by NMR spectroscopy that, in turn, is worse
in sensitivity (Eisenreich and Bacher, 2007). Nevertheless, the iso-
topomer patterns in amino acids detected by GC/MS already reveal
considerable information about the carbon fluxes in the bacterial
cells and their hosts (see below).

When more than 1012 bacterial cells are available (>10 mg of
dry cell pellet), one- and two-dimensional NMR spectroscopy can
be used in addition to GC/MS. Indeed, high-resolution 13C-NMR
spectroscopy is capable to assess 13C-enrichment for each non-
equivalent carbon atom of a metabolite under study. Isotopomers
carrying one 13C-atom at different positions display completely
different 13C-NMR spectra with singlet signals at the chemi-
cal shifts for the respective labeled carbon atoms. Notably, this
is in sharp contrast to mass spectrometry, where each of these
isotopomers gives rise to identical signals due to the identical
molecular masses. The same holds true for multiply 13C-labeled
isotopologs. Whereas the mass spectra only show the sum of all
isotopologs comprising two or more 13C-atoms, respectively, these
isotopologs can be better distinguished by NMR spectroscopy. Due
to scalar 13C13C couplings, the 13C-NMR signals of a multiply
13C-labeled metabolite appear as specific multiplets in the spectra.

On the basis of the 13C-NMR coupling signatures observed
for every single (non-equivalent) carbon atom in a 13C-labeled
compound, information on the abundance of 12C and 13C at the
respective neighbored carbon atoms is obtained (i.e., in a frame-
work comprising not more than three to four bonds around the
index atom). As a result, a set of isotopolog groups can be identi-
fied for each 13C-NMR signal. On the basis of the signal intensities
(i.e., by deconvolution of the complex coupling patterns providing
integral values for each component in the 13C-NMR multiplets),
these sets are quantified. For most very small non-symmetrical
molecules (i.e., comprising not more than three carbon atoms),
all isotopomers/isotopologs display specific NMR signal patterns
and can be clearly assigned and quantified on this basis (Eisenreich
and Bacher, 2007).

Due to the fact that many of the potential long-range 13C-
couplings cannot be completely resolved in the 13C-NMR spec-
trum of a more complex metabolite (comprising more than three
carbon atoms), the observables are typically not sufficient for
the direct observation of all individual isotopologs. However,
in combination with GC/MS analysis, a sufficient number of
constraints can be determined for amino acids to clearly assign
molecules with single and multiple labels at adjacent carbon
positions. As described below, isotopolog profiling studies have
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indeed contributed important and novel insights into the listerial
metabolism during infection.

THE INTRACELLULAR NICHE
A hallmark of L. monocytogenes is its capability to replicate within
host cells. Thus, auxotrophic mutants indicate possible nutri-
ent limitations within a host cell. For example, listerial strains
defective in the biosynthesis of aromatic compounds as precur-
sors for menaquinone show a strong attenuation in cell culture
and mice infection assays, and a more slightly in vivo attenua-
tion was observed for mutants requiring the three aromatic amino
acids, threonine, and adenine (Alexander et al., 1993; Marquis
et al., 1993; Stritzker et al., 2004). These studies indicate that
hosts provide sufficient organic and inorganic compounds to
overcome selected auxotrophies. In addition, proteins involved in
nucleotide synthesis (PyrD, PyrE, PyrF, and PyrAB) are expressed
at a lower level during replication of L. monocytogenes within
human THP-1 monocytes or macrophages, indicating a sufficient
supply of nucleotides from the host cell (Klarsfeld et al., 1994;
van de Velde et al., 2009). The reduced replication rate of a pyrE
mutant in macrophages (Schauer et al., 2010) again might point
to specificities of host cell lines with respect to their metabolic
status.

The cytosol serves as a compartment that protects pathogens
from killing by the host’s immune system. Its composition with
respect to metabolites is largely unknown, as well as the intra-
cytosolic availability of nutrients. Typically, the cytosol exhibits
low concentrations of magnesium, sodium, iron, and calcium
ions at neutral pH (reviewed in Ray et al., 2009). In total, up
to 100 suitable carbon as well as nitrogen, phosphorus, and sulfur
sources are present within eukaryotic cells (Brown et al., 2008).
The intracellular milieu is a reducing environment that contains
10 mM reduced glutathione and only 0.5 mM oxidized glutathione
(Hwang et al., 1992), a fact important for growth of L. monocy-
togenes that depends on the availability of reduced nitrogen and
sulfur sources (Joseph and Goebel, 2007).

It was assumed that facultative intracellular bacteria have devel-
oped a balanced strategy to exploit just enough nutrients from the
host cell to maintain survival and proliferation in the intracellular
niche (Joseph and Goebel, 2007). A prerequisite for such a strategy,
however, is that the intracellular compartment is rich in nutrients,
a hypothesis for which the following pros and cons might be stated:

Pros: Strikingly, non-pathogenic bacteria such as Bacillus sub-
tilis or E. coli expressing Hly are able to replicate within the cytosol
following phagocytic uptake and escape from the vacuole (Bielecki
et al., 1990; Monack and Theriot, 2001). The vacuolar passage, for
example by a low pH, might prime the bacterium for intracellular
replication since microinjected non-pathogenic L. innocua, E. coli,
Salmonella enterica serovar Typhimurium, Yersinia enterocolitica,
or B. subtilis failed to proliferate within the cytosol (Goetz et al.,
2001; Slaghuis et al., 2004; Hain et al., 2008). Cons: In case cells are
a habitat providing easy access to substrates, much more pathogens
beside L. monocytogenes, S. flexneri, Burkholderia pseudomallei, and
Francisella tularensis would exploit this niche (Ray et al., 2009).
Furthermore, all intracellular pathogens exhibit a preference for
certain cell types that might depend on differences in the cytosolic
nutrient composition. For example, the pathogenic strains EGDe

and F2365 could be more metabolically active in J774.1 than in
P388D1 macrophages (Chatterjee et al., 2006).

LISTERIAL METABOLISM WITHIN CELLS
Occupation of the intracellular niche plays a pivotal role for L.
monocytogenes virulence, allowing the pathogen to temporarily
escape from the immune system of the host and to initiate systemic
infection. The host cell cytosol with cell-specific and dynamic
nutrient composition is a complex environment that this intra-
cellular pathogen actively adapts to (Eisenreich et al., 2010). Here,
we will resume what is known about the listerial mechanisms of
substrate acquisition, and the specific metabolic adaptations of L.
monocytogenes that allow its successful transition from the extra-
to the intracellular milieu (Figure 1).

CARBON SOURCES
The intracellular utilization of glucose or glucose-6-phosphate,
but also of non-carbohydrate nutrients such as glycerol and amino
acids has been demonstrated by IPA studies (Eylert et al., 2008).
A multiple mutant unable to take up and catabolize glycerol due
to a lack of GlpF, glycerol kinase (GlpK), glycerol-3-phosphate
dehydrogenase (GlpD), and DhaK is also attenuated in intracel-
lular growth (own unpublished data). This is in line with the
upregulation of these genes within the cytoplasm of host cells
(Chatterjee et al., 2006; Joseph et al., 2006) and within the intes-
tine of mice (Toledo-Arana et al., 2009). In vitro, genes encoding
glycolysis enzymes and genes involved in the metabolism and
the biosynthesis of BCAA are downregulated, and those required
for gluconeogenesis are upregulated in the presence of glycerol.
All PrfA-dependent genes show a higher level of transcription
under these conditions (Joseph et al., 2008). On the other hand,
a strain lacking Hpt, a transporter involved in the exploitation
of hexose phosphate from the host cell, is attenuated in vivo and
within cells, and its gene, uhpT, revealed to be highly upregu-
lated during growth in intracellular strains (Chatterjee et al., 2006;
Joseph et al., 2006). In addition, the decreased transcription of
hpr encoding the phosphocarrier protein of a phosphoenolpyru-
vate (PEP)-dependent phosphotransferase system (PTS) during
intraepithelial replication reflects the lower amount of Hpr in the
absence of glucose (Asanuma and Hino, 2003). These data sup-
port the assumption that glucose-6-phosphate rather than glucose
is used for bacterial metabolism within hosts (Chico-Calero et al.,
2002). This was confirmed by the observation of carbon catabolite
derepression during intracellular growth (Joseph et al., 2006), and
the finding that a mutant unable to uptake glucose does not show
replication attenuation in macrophages or epithelial cells (Stoll
and Goebel, 2010). Instead of glycolysis, the oxidative pentose
phosphate pathway (PPP) is assumed to be the predominant path-
way of sugar metabolism within host cells, since the genes required
for glycolysis are down- and those for PPP are upregulated (Chat-
terjee et al., 2006; Joseph et al., 2006). The non-oxidative branch
of PPP is also upregulated in epithelial cells and results in the
production of xylulose- and ribose-5-phosphate as precursors of
nucleotide biosynthesis (Chatterjee et al., 2006). This was not sup-
ported by proteomic analysis that revealed a decreased abundance
of two enzymes of this pathway, namely the transaldolase lmo2743
and ribose-5-phosphate epimerase during listerial replication in
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FIGURE 1 | Simplified view of listerial metabolic enzymes, transporters,

and pathways relevant during infection. Cofactor thiamine is symbolized by
a blue square. Dashed lines indicate putative interactions of master regulators
with transporters, enzymes, or metabolites, dashed arrows unknown uptake

mechanisms. Blue, shaded genes encode putative interaction partners of
PrkA. De novo biosynthesized amino acids are shown in red, complex
pathways in green. Abbreviations: G, glycolysis; PEP, phosphoenolpyruvate; P,
phosphate. Functions of genes are mentioned in the text.

human THP-1 monocytes (van de Velde et al., 2009). This contra-
diction might be due to cell-type specific metabolite compositions.
Another possible explanation was only recently been provided by a
proteomic comparison between two pathogenic strains EGDe and
F2365 of L. monocytogenes with the non-pathogenic strain HCC23.
The pattern of intermediary metabolism proteins suggests that an
initial period of reduced glycolysis during intracellular replication
is followed by a resumption of glycolysis (Donaldson et al., 2011).

NITROGEN METABOLISM
Glutamine, convertible to glutamate, is the optimal nitrogen
source for L. monocytogenes in vitro (Fisher, 1999). Little is known
about the in vivo nitrogen metabolism of L. monocytogenes that
is assumed to use ammonium, arginine, and/or ethanolamine as
nitrogen sources during intracellular replication (Buchrieser et al.,
2003; Joseph et al., 2006; Joseph and Goebel, 2007). NrgAB that
is activated by TnrA at low concentrations of nitrogen sources
is responsible for the uptake of ammonium ions. Gene nrgAB is
strongly downregulated within murine macrophages (Chatterjee
et al., 2006),but upregulated in human epithelial cells (Joseph et al.,
2006). These data again suggest a cell-type dependent availability
of nitrogen sources and/or cell-type specific metabolic adaptations
of L. monocytogenes.

Ethanolamine lyase EutABC has been demonstrated to be
required for wildtype-like intracellular replication of L. mono-
cytogenes (Joseph et al., 2006). Ethanolamine might be derived
from phoshatidylethanolamine by the activity of listerial phos-
pholipases. Thus, phospholipids ubiquitous in host environments

such as the gut might serve as important nitrogen, carbon, and
energy source during infection. This hypothesis is in line with the
finding that ethanolamine can be utilized under anaerobic condi-
tions only (Price-Carter et al., 2001; Winter et al., 2010; Srikumar
and Fuchs, 2011). The role of host peptides in nitrogen metabolism
(see below) remains to be investigated in more detail.

AMINO ACID UPTAKE AND DE NOVO BIOSYNTHESIS
At least six listerial transporters possibly involved in the uptake
of amino acids and oligopeptides were recently identified to con-
tribute to intramacrophagic survival and replication (Joseph et al.,
2006; Schauer et al., 2010). Induced expression of the oligopep-
tide transporter lmo0135–0137 associated with cysteine transport
has been demonstrated to contribute to proliferation in Caco-2
cells and in vivo (Chatterjee et al., 2006; Schauer et al., 2010).
In addition, the oligopeptide permease OppABCDF is not only
a prerequisite for intramacrophagic growth, but also for full vir-
ulence of L. monocytogenes in mice (Borezee et al., 2000; Port
and Freitag, 2007). These findings support the assumption that
L. monocytogenes uses intracellular peptides as a source of amino
acids (Marquis et al., 1993).

Transcriptomic data showed that genes involved in the biosyn-
thesis of glutamate, glutamine, and arginine belonging to the glu-
tamate family are upregulated during intraepithelial replication of
L. monocytogenes (Joseph et al., 2006). Similar findings were made
for tryptophan and the BCAAs valine, leucine, and isoleucine.
BCAAs are among the most abundant amino acids in proteins, and
maintaining their pools is a prerequisite for high-level synthesis of
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proteins (Sonenshein, 2007). The downregulation of aminoacyl
tRNA synthase genes glyS, serS, cysS, alaS, hisS, valS, thrS, ileS, leuS,
tyrS, and trpS suggests that the respective amino acids are available
for L. monocytogenes within macrophages (Chatterjee et al., 2006).
In a pilot study, this hypothesis was at least partially confirmed
by 13C-isotopolog profiling experiments, demonstrating that up
to 50% of the amino acids alanine, aspartate, and glutamate are
recruited from the host cells during intracellular replication of
L. monocytogenes (Eylert et al., 2008). Results of the same study
indicate a restricted anabolism under these conditions since only
7 of 14 amino acids investigated, namely alanine, aspartate, gluta-
mate, serine, threonine, valine, and glycine ordered by decreased
13C-incorporation, were identified to be de novo biosynthesized
(Eylert et al., 2008).

CENTRAL METABOLISM
A hallmark of the central metabolism of L. monocytogenes is
the incomplete tricarboxylic acid (TCA) cycle due to a lack of
2-oxoglutarate dehydrogenase as demonstrated by genome analy-
sis and 13C-labeling studies (Glaser et al., 2001; Eisenreich et al.,
2006). 2-Oxoglutarate as a substrate of glutamate synthase links
carbon and nitrogen metabolism. Vice versa, amino acids such as
arginine, proline, and histidine can be converted to 2-oxoglutarate.

It could be demonstrated that oxaloacetate, the direct or indi-
rect precursor of aspartate and threonine, is generated by an
anaplerotic reaction afforded by pyruvate carboxylation (Eylert
et al., 2008). This reaction is catalyzed by the ATP-dependent
pyruvate carboxylase PycA (Schär et al., 2010). The critical role
for PycA for proliferation of L. monocytogenes in vivo and within
epithelial cells or macrophages makes it an interesting candidate
for antilisterial compound search (Schindler and Zähner, 1972).
It is worth to note that pyruvate is also the precursor for the syn-
thesis of BCAAs that, as demonstrated by several studies cited
here, play a pivotal role during intracellular replication of liste-
riae. Thus, the biosynthesis of BCAAs that is mainly regulated by
catabolite control protein A (CcpA) and CodY in an opposite man-
ner also balances the distribution of pyruvate and 2-oxoglutarate
(Sonenshein, 2007).

Oxidative decarboxylation of pyruvate results in acetyl-
coenzyme A used for the synthesis of valine and leucine, whereas
isoleucine is more indirectly derived via pyruvate carboxylation
to oxaloacetate as a precursor for aspartate and threonine synthe-
sis. These data suggest a competition of two metabolic pathways
important for intracellular replication, namely the biosynthesis of
BCAA and the replenishing of the TCA cycle. This metabolic sink
might partially be compensated by the increased and decreased
expression of several enzymes involved in amino acid metabolism,
among them d-alanyl-d-alanine ligase and d-alanine transami-
nase, an enzyme essential for virulence (Johnson et al., 2004; van
de Velde et al., 2009).

COFACTORS
The cofactors riboflavin, thiamine, biotin, and lipoate are sup-
plements of defined growth media for L. monocytogenes. The
vitamin thiamine is required by enzymes of the central metab-
olism including Pdh, and the need of its de novo biosynthesis
by L. monocytogenes suggests its intracellular limitation (Schauer

et al., 2009). Its precursors might be derived from glutamine or
from 2-oxoglutarate by overexpressed glutamate dehydrogenase
(van de Velde et al., 2009). The same authors also argued that
the unexpected induced expression of PurQ and PurM results in
the formation of 1-(5′-phosphoribosyl)-5-amino-imidazole that
might predominantly be used as a thiamine precursor. Indeed,
insertional knockout of purQ attenuated listerial replication inside
macrophages (Schauer et al., 2010). Interestingly, Madeo and
coworkers recently identified thiamine to play a yet unknown role
in listerial tolerance toward low pH as encountered within host
compartments. This was explained by the fact that the thiamine-
dependent conversion of pyruvate to acetolactate and further to
acetoin comprises two proton-consuming steps (Madeo et al.,
2012). The first step is catalyzed by the product of alsS induced
under acidic conditions (Stasiewicz et al., 2011). The use of host-
derived lipoic acid is also relevant for L. monocytogenes infection.
Lipoyl modification of Pdh subunit E2 by lipoate protein ligase
LplA1 was demonstrated to contribute to intracellular replication
and virulence of this pathogen (O’Riordan et al., 2003).

METABOLISM OF L. MONOCYTOGENES IN VIVO
Fundamental shifts in the expression pattern of genes are involved
in the adaptation of listerial metabolism to several host compart-
ments. A comprehensive approach was recently performed using
tiling arrays to describe the listerial RNome during transition of
L. monocytogenes from saprophytism to virulence. To this end,
the authors not only studied three physiologically relevant condi-
tions, namely stationary phase, hypoxia, and temperature shifts,
but also investigated sigma B (σB)- and PrfA-negative mutants
(Toledo-Arana et al., 2009). Two PTS required for mannitol and
mannose uptake, and ribose-5-phosphate isomerase as part of the
non-oxidative PPP are also upregulated in intestine and stationary
phase. A remarkable metabolic adaptation to the intestine and the
blood is the increased transcription of the gene cluster involved in
ethanolamine and 1,2-propanediol utilization including the cofac-
tor cobalamine (see above), of PTS systems for galactitol, fructose,
and cellobiose uptake, and of DhaKs involved in glycerol utiliza-
tion. Interestingly, the gene clusters lmo0315–lmo0318 responsible
for thiamine biosynthesis, and lmo1983–1991 involved in the
biosynthesis of BCAAs are also upregulated during listerial replica-
tion in blood (Toledo-Arana et al., 2009). This resembles previous
findings that these metabolic traits are required for intracellular
replication (Joseph et al., 2006). In the host intestinal lumen, the
authors observed a σB-mediated activation of genes, whereas in
blood, gene transcription was mainly controlled by PrfA.

Listeria monocytogenes also actively replicates within the spleen
of infected mice. Following intravenous application of strain
EGDe, 30% of all genes differentially regulated in mice spleen were
found to be involved in metabolism (Camejo et al., 2009). Upreg-
ulated genes include uhpT and, in contrast to epithelial cells and
macrophages, genes involved in glycolysis (gap, pgi, fbaA, pgm),
whereas those involved in the non-oxidative phase of the PPP
appeared to be downregulated. Genes involved in the expression
of the Pdh complex including its activator, lipoate protein lig-
ase, were induced in vivo. The upregulation of genes encoding
pyruvate–formate lyase indicates an anoxic degradation of pyru-
vate to formate and acetyl-CoA in the spleen. The upregulation of
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genes responsible for the biosynthesis of aromatic amino acids
(aroA, pheA), of BCAAs and of amino acids of the aspartate
and glutamate families is in line with the transcription pattern
in epithelial cells and macrophages. An increased expression of
mannose-, maltose-, and cellobiose-specific PTS and a decreased
expression of PTS responsible for fructose,galactitol, and mannitol
uptake was observed. The induction of glnA encoding glutamine
synthetase might hint to an inactivation of TnrA within the spleen.
Remarkably, listerial genes involved in thiamine synthesis are also
upregulated during proliferation in mice spleen.

The human intestine is a yet underinvestigated compartment
with respect to its impact on bacterial metabolism. Here, L. mono-
cytogenes not only encounters predominantly anaerobic condi-
tions as a prerequisite for ethanolamine utilization, but also a
higher concentration of carbon dioxide known to act as a signal for
bacterial metabolism (Neidhardt et al., 1974; Kröger et al., 2011).
It has been hypothesized that the biosynthesis of threonine via
oxaloacetate and overexpression of threonine synthase is favored
by the high concentration of carbon dioxide (van de Velde et al.,
2009). Carbon dioxide is also required for oxidative carboxylation
of glucose-6-phosphate, the first reaction in the PPP.

Some of the data on the listerial metabolism in cell culture
on the one hand and in vivo on the other hand, for example the
role of glycolysis, the non-oxidative PPP or the uptake of sugars,
are inconsistent. These discrepancies not only indicate to a more
active multiplication status in mouse organs compared to cell cul-
ture studies using immortal cells (Camejo et al., 2009), but also
point to compartment-specific metabolic needs.

REGULATION OF LISTERIAL METABOLISM DURING
INFECTION
During invasive infection, L. monocytogenes not only prolifer-
ates within epithelial cells and macrophages, but encounters a
frequent change of the surrounding milieu. Therefore, in vivo
growth is assumed to require the concerted activity of the following
regulators:

CodY, TnrA, AND CcpA
Three global regulators of L. monocytogenes, CcpA, TnrA, and
CodY sense key metabolites generated in carbon- and nitrogen
metabolism (Fisher, 1999; Sonenshein, 2007). CodY, a global tran-
scriptional regulator, seems to play a critical role in the intracellular
adaptation of L. monocytogenes. CodY is known to lose its repress-
ing activity when intracellular levels of GTP and BCAAs decrease.
As shown by Bennett et al. (2007), the CodY regulon comprises
genes involved in amino acid metabolism, nitrogen assimilation,
and sugar uptake. Derepression of the CodY operon revealed to be
essential for listerial replication in various cell culture models and
in mice. The authors therefore hypothesized that CodY senses the
metabolic state of the host cell cytoplasm and triggers an adap-
tive listerial response, which is characterized by the induction of
genes involved in the de novo biosynthesis of amino acids such
as glutamate, arginine, histidine, tryptophan, and serine, in the
intermediary carbon metabolism, in the uptake of sugars or in pep-
tide, and ammonium transport. The induction and requirement of
argD encoding N -acetylornithine aminotransferase during intra-
cellular replication simultaneously with the induced expression of

the arginine transporter ArpJ might reflect a limited availability
of this amino acid under intracellular conditions (Klarsfeld et al.,
1994; Joseph et al., 2006). Listerial TnrA, probably encoded by
lmo1298, is known as the principal global regulator of nitrogen
metabolism in B. subtilis and represses the synthesis of glutamate
synthase (Glt) and glutamine synthetase (GlnA). TnrA expression
revealed to be downregulated within epithelial cells (Chatterjee
et al., 2006), a finding that links to the inactivation of TnrA in the
presence of glutamine (Wray et al., 2001). Less is known about the
role of the listerial catabolite CcpA. Repression of sugar utilization
pathways by glucose is independent of CcpA (Gopal et al., 2010),
and CcpA is not involved in carbon source regulation of virulence
genes (Behari and Youngman, 1998).

ALTERNATIVE SIGMA FACTOR B (σB)
The transition of L. monocytogenes from the saprophytic to the
pathogenic lifestyle requires an adequate response to environmen-
tal conditions such as low pH, bile stress, carbon starvation, and
the presence of reactive oxygen species on the level of transcription
and expression (Abram et al., 2008a; Hain et al., 2008; O’Byrne
and Karatzas, 2008; Ryan et al., 2008; Soni et al., 2011; Zhang
et al., 2011). The regulon controlled by σB plays a major role in
this adaptation process. Moreover, σB has been demonstrated to
contribute to invasion of epithelial cells and to gastrointestinal
infection (Kim et al., 2004; Garner et al., 2006; McGann et al.,
2007; Ollinger et al., 2009). Interestingly, the two most highly rep-
resented categories of σB-dependent factors were transport and
metabolism proteins, among them pyruvate dehydrogenase Pdh,
a dihydroxyacetone kinase DhaK, the glycerol transporter GlpF,
and a mannose-specific PTS (Kazmierczak et al., 2003). Accord-
ingly, a L. monocytogenes σB mutant lacking σB less efficiently used
glycerol as a carbon and energy source (Abram et al., 2008b). An
intensive transcriptional reorganization was observed in an in vivo
study based on tiling microarrays in which a σB mutant was used
for infection (Toledo-Arana et al., 2009).

POSITIVE REGULATORY FACTOR A
The main virulence regulator of L. monocytogenes, PrfA, belongs
to the family of cAMP receptor protein (Crp)/fumarate nitrate
reductase regulators (de las Heras et al., 2011). PrfA not only acti-
vates nine key virulence factors including Hpt, but also controls
the expression of further 136 factors including those involved in
the metabolic activity of this pathogen during infection (Milo-
hanic et al., 2003). The direct or indirect regulatory PrfA function
requires an interplay with σB that controls the general stress
response of L. monocytogenes (Ollinger et al., 2008, 2009). Interest-
ingly, there is a close link between metabolism and virulence in L.
monocytogenes since the carbon sources utilized by the pathogen
affect the expression of virulence genes. Especially, glucose, fruc-
tose, mannose, or cellobiose transported by PTS downregulated
PrfA-dependent genes (Freitag et al., 2009), a finding that points
to a low concentration of these sugars within cells. Vice versa,
overproduction of PrfA resulted in growth inhibition in glucose-
containing media and in an increased de novo biosynthesis of
BCAA (Eisenreich et al., 2006; Marr et al., 2006). This sugar-
mediated gene repression of PrfA-dependent genes depends rather
on inhibition of PrfA than on changes of the PrfA concentration
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(Renzoni et al., 1997). Taken together, the intracellular availabil-
ity of carbon sources might act as a key signal for virulence gene
expression in L. monocytogenes (de las Heras et al., 2011).

ADDITIONAL REGULATORY MECHANISMS
Another mechanism that regulates the metabolic adaptation of
pathogens to their hosts is the phosphorylation status of pro-
teins. In L. monocytogenes, a eukaryotic-type serine/threonine-
kinase (PrkA, lmo1820) and a serine/threonine-phosphatase (Stp,
lmo1821) have been identified that play a role during intracellu-
lar replication and in vivo, respectively (Archambaud et al., 2005;
Zemansky et al., 2009). In a proteomic approach, 62 proteins were
identified as interacting partners of PrkA including 19 involved
in carbohydrate and amino acid metabolism (Lima et al., 2011).
PrkA directly influences important metabolic enzymes such as
Pdh, glyceraldehyde-3-phosphate (GAP) dehydrogenase, pyruvate
carboxylase PycA, an aminotransferase involved in BCAA synthe-
sis, and the acetate kinase Acs. The role of universal stress proteins
(Usps), which support the adaptation to energy deficiencies, in
listerial stress resistance and in virulence has only recently been
demonstrated (Seifart Gomes et al., 2011). In E. coli, the activation
of uspA is regulated by fructose-6-phosphate (Persson et al., 2007),
but a similar mechanism in Gram-positive pathogens remains to
be elucidated.

MODELING L. MONOCYTOGENES METABOLISM UNDER
INFECTION CONDITIONS
Systems biology approaches of listerial infection use a combina-
tion of genome-based bioinformatics tools including sequence and
domain analysis, function and structure prediction for proteins,
and phylogenetic comparisons. The focus of modeling has been on
(intracellular) metabolism, pathogenicity factors, host–pathogen
interaction, and the immune response of the host (Schauer et al.,
2010; Sauer et al., 2011).

To model listerial metabolism in vitro and within cells, ele-
mentary mode analysis was applied (Eisenreich et al., 2006). This
method allows to enumerate all possible enzyme combinations
or independent pathways within the bacterial cell. Each path-
way balances all internal metabolites involved. Furthermore, the
metabolic flux models allows to fill in gaps of knowledge from
the retrobiosynthetic analysis of the isotopolog compositions, for
instance areas where no labeled metabolites were transported by
the metabolic flux.

In a more recent study, quantitative literature data on intra-
cellular replication of defined mutants was combined with the
replication rates derived from a genome-scale screening for
mutants showing reduced intraepithelial survival of L. mono-
cytogenes (Schauer et al., 2010). The application of extreme
pathway and elementary mode analysis revealed a critical role
of glycerol and purine metabolism, of fucose utilization, and
of the synthesis of glutathione, aspartate semialdehyde, serine,
and BCAAs during intracellular replication of L. monocyto-
genes. Thus, new targets for antibiotic intervention became vis-
ible by this approach. Furthermore, the modeling demonstrated
that degradation of glucose indeed occurs to a large extent via
the PPP. To achieve those insights in metabolic traits relevant
for listerial infection, numerous all-against-all protein sequence

comparisons were performed to establish specific and general
protein families.

The number of metabolic pathways to consider in such
genome-scale models reaches several thousand and more. Two cri-
teria helped here to zoom in on the key pathways involved: Firstly,
only those mutants of L. monocytogenes were considered that
showed wildtype-like replication in rich medium, but impaired
growth in macrophages.

Secondly, the pathways critical for survival in the macrophage
were analyzed to particularly identify enzymes with a role in at
least two of these pathways. The list of key enzymes reoccurring in
the affected elementary modes by the different affected mutants
could then be calculated and ranked. By this procedure, it was
possible to quickly identify the most important listerial pathways
required for intracellular survival.

Modeling metabolic pathways often results in combinator-
ial explosion, i.e., an intractable high number of potential flux
modes. However, recent advances have the potential to over-
come this disadvantage. For instance, flux distributions were
decomposed into elementary flux modes in genome-scale meta-
bolic networks of E. coli grown in rich medium containing
various carbon sources (Chan and Ji, 2011). Furthermore, soft-
ware such as EMILiO increases the scope of strain design to
include reactions with individually optimized fluxes. Unlike exist-
ing approaches experiencing an explosion in complexity to solve
this problem, this allowed to generate diverse strain designs regard-
ing production of succinate, l-glutamate, and l-serine (Yang
et al., 2011). A third possibility is the application of metabolic
flux patterns. These are sets of reactions representing the basic
routes through a particular subsystem that are compatible with
admissible fluxes in a (possibly) much larger metabolic net-
work (Schuster et al., 2010). The subsystem can be made up
by reactions one is interested in, for example production of a
certain metabolite. Furthermore, growth, growth boundary, and
inactivation models of L. monocytogenes have extensively been
developed in food research. Validated approaches exploited avail-
able experimental data and combined all three aspects using
on different food sources as a medium (Coroller et al., 2012).
Stochastic-based examples are multiplicative heteroscedastic mod-
els taking into account differing growth variance for heteroge-
neous populations (Cao et al., 2010), or the dependence of suc-
cessful growth on inoculum and cell counts (Vermeulen et al.,
2009).

PERSPECTIVES
Each of the approaches reviewed above has obvious limitations.
Interfacing the transcriptome analysis with a mutant library
screening underscored that the up- or downregulation of a gene
or an operon not necessarily coincides with a phenotype under the
same conditions (Joseph et al., 2006), a general drawback of these
approaches. On the other hand, a proteomic analysis does not
reveal the whole proteome under given conditions. Mutant analy-
sis and IPA, on the other hand, focus on the role of single genes
and metabolic traits, thus providing parts of the metabolic puz-
zle only. Contradictory results derived from different approaches
posed the relevance of single metabolic pathways of L. monocyto-
genes for infection in question. Examples are the overexpression
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of glutamate dehydrogenase during listerial replication in human
THP-1 monocytes in contrast to its decreased expression in strain
F2365 (van de Velde et al., 2009; Donaldson et al., 2011), or the
induction or repression of the non-oxidative branch of the PPP
(see above). These contradictions not only point to host cell-
specific or temporary metabolic adaptations of L. monocytogenes,
but also to the need of more standardized experimental conditions
in omic-approaches.

Another prerequisite for systems biology of listerial metabolism
is to quantify and qualify the metabolic state of the bacterial and
the host cells during different stages of infection (Zamboni and
Sauer, 2009). So far, data sets on metabolites have been derived
only from in vitro approaches under non-physiological conditions.
For example, L. monocytogenes 10403S cells grown at 37 and 8˚C
were analyzed (Singh et al., 2011). At low temperature, an increase
of solute concentrations such as amino acids, sugars, organic
acids, urea cycle intermediates, polyamines, and different compat-
ible solutes was observed in the listerial cytoplasm, thus lowering
the freezing point of intracellular water and decreasing ice crys-
tal formation. A statistical analysis (PCA) was instrumental to
reveal this system response. Mathematical modeling can consider
such effects by adjusting metabolite concentrations and by ther-
modynamic considerations. Furthermore, compartment models
are soon expected to improve such studies (Cheng et al., 2008)
including pools and fluxes of the mammalian cell (Lopes et al.,
2010). Future research should also consider microcompartments
and organelles that both are used to optimize metabolic processes.
Compartmentalization is common also in L. monocytogenes
including carboxysomes responsible for cobalamine-dependent
1,2-propanediol degradation, thus contributing to functional
diversity.

To reveal an even more comprehensive picture of listerial
metabolism during infection, cells such as primary macrophages
and fibroblasts should be considered for future cell culture experi-
ments. It is also of interest to determine whether and to what extent
the host metabolism is modulated during infection, for instance
by L. monocytogenes secreting c-di-AMP (Woodward et al., 2010).
In addition to in vivo studies using mice and guinea pigs (Cabanes
et al., 2008), small animals such as Caenorhabditis elegans or Gal-
leria mellonella might be established as new model organisms.
C. elegans is a facile and proven model host for the study of
microbial pathogenesis and metabolism (Sifri et al., 2005; Thom-
sen et al., 2006; Srikumar and Fuchs, 2011). Because both host
and pathogen are easily amenable to genetic manipulations, the
effect of metabolic perturbations upon infection, changing culture

conditions, or gene knockouts can be investigated in this infec-
tion model. Notably, the model also reduces costs and ethical
constraints in comparison to infection experiments with higher
animals. A further advantage of the model is that metabolic fluxes
from cells or tissues of an infected host animal to L. monocyto-
genes and vice versa might be followed, an approach that has long
been hampered by the lack of technology to identify and quantify
metabolism throughout an appropriate biological system (Spanier
et al., 2009). G. mellonella, the greater wax moth, is another rela-
tively simple, non-mammalian host model system that can be used
to assess not only the virulence of listerial strains, but also the con-
tribution of metabolic capacities to larvae killing as exemplified by
the attenuated phenotype of an EGDe ΔuhpT mutant (Mukher-
jee et al., 2010). A major disadvantage in contrast to nematodes,
however, is the need of subcutaneous instead of oral application
of the pathogen.

SUMMARY
Listeria monocytogenes is highly adapted to the cytoplasm of mam-
malian host cells where it is able to multiply with a generation time
comparable to that in rich medium. A comprehensive analysis of
its metabolism is a prerequisite for a systemic understanding of
L. monocytogenes infection. Taking into account all omic-studies
and mutant data, certain metabolic enzymes and pathways of L.
monocytogenes revealed to have a critical role during infection and
might serve as new targets for the development of antilisterial com-
pounds (Figure 1). Metabolic clues for intracellular and in vivo
replication are the degradation of phosphorylated glucose via the
PPP, the utilization of C3-bodies as alternative carbon- and energy
source, pyruvate as a sink for central metabolism including down-
stream reactions such as pyruvate decarboxylation, biosynthesis
of BCAAs, the availability of thiamine, and the acquisition of host
cell derived nitrogen sources including ethanolamine. The regula-
tion of these metabolic capabilities involves the activity of factors
such as PrfA and σB, resulting in a fine-tuned balance of metabolic
flows with the host cell and in vivo. For a deeper understand-
ing especially of host–pathogen interdependencies with respect to
metabolism, new technologies such as isotopolog profiling, addi-
tional animal models including invertebrates, and novel systems
biological approaches have to be combined in future research.
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The ability to adapt to diverse micro-environmental challenges encountered within a host
is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have
quantified C. albicans and M. musculus gene expression dynamics during phagocytosis
by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq.
A robust network inference map was generated from this dataset using NetGenerator,
predicting novel interactions between the host and the pathogen. We experimentally veri-
fied predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and
Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell
wall was found to regulate the expression of fungal Hap3 target genes as predicted by the
network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly
altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent
manner, further suggesting a role for Mta2 in host–pathogen interplay as predicted in the
network inference model. We propose an integrated model for the functionality of these
sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to
the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering
the immune response to the pathogen. We show the applicability of network inference to
predict interactions between host–pathogen pairs, demonstrating the usefulness of this
systems biology approach to decipher mechanisms of microbial pathogenesis.

Keywords: host–pathogen, RNA-seq, network inference, modeling, reverse engineering, Candida, dendritic cells

INTRODUCTION
Both host and pathogenic species have evolved a plethora of strate-
gies to rapidly adapt to the changing environmental dynamics
within the infection milieu. However, the extent of this com-
plexity has only recently been investigated through the use of
system biology approaches (reviewed in Rizzetto and Cavalieri,
2011). On the molecular level, these adaptations are mediated by
complex interaction networks, which sense these environmen-
tal changes and transmit the information throughout the cell,
leading to a cascade of changes in gene and eventually protein
expression. Understanding these underlying interaction networks
is important to elucidate how organisms and defense mechanisms
interact during microbial infection processes. Genome-wide inte-
grative approaches for modeling have become increasingly popular
(Rizzetto and Cavalieri, 2011) due to the availability of high-
throughput sequencing technologies, including RNA sequencing
(RNA-seq). These technologies now allow for the parallel sequenc-
ing of millions of nucleotide sequences simultaneously (Wang

et al., 2009; Zhang et al., 2011). One major advantage to using
sequencing approach rather than microarrays is that it is a species-
independent platform, allowing for an in-depth investigation of
non-model organism species, as well as multiple organisms from
a single experiment.

In many cases, the underlying interaction networks between the
organisms of interest are unknown. Network inference uses reverse
engineering techniques (Hecker et al., 2009b; Marbach et al.,
2010) to predict unknown interaction networks based on high-
throughput gene expression data. A number of approaches have
been established to predict inference networks including Bayesian
network modeling (Friedman et al., 2000), information theoretical
approaches (Butte and Kohane, 2000; Faith et al., 2007), regres-
sion based models (D’Haeseleer et al., 1999; Hecker et al., 2009a),
and differential equation models (Holter et al., 2001; Guthke et al.,
2005, 2007). Biological networks are scale free networks composed
of nodes and edges, where nodes represent the objects of interest
and edges show the relations between those objects (Le Novere
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et al., 2009). Biological interaction networks often use nodes to
represent genes or proteins, and edges to show either a direct
or indirection interaction, such as protein binding or transcrip-
tional regulation (Barabasi and Oltvai, 2004). Network inference
has been successfully applied to a variety of biological scenarios,
including the modeling of immune diseases (Guthke et al., 2005;
Hecker et al., 2009a), full-genomic models of Escherichia coli (Faith
et al., 2007), and more recently, small scale networks describing
fungal infections (Linde et al., 2010). So far these model have only
focused on a single species and have not addressed host–pathogen
interactions.

In the present work, we have generated the first interspecies
computational model of molecular host–pathogen interactions.
We used RNA-seq expression data from an infection time course
of Candida albicans and bone marrow-derived dendritic cells
(BMDCs) from M. musculus. C. albicans is one of the most preva-
lent opportunistic human fungal pathogens. Although C. albicans
normally colonizes the human host, a variety of factors, most
notably immune suppression, can lead to dissemination of fungal
cells throughout the body. This dissemination can lead to a wide
range of diseases, from thrush to multi-organ failure (Gudlaugs-
son et al., 2003). We focused on dendritic cells as our model host
based of their function as antigen-presenting cells, their specializa-
tion in pathogen recognition, and their greater role in activating
and modulating adaptive immune responses (Netea et al., 2008;
Bourgeois et al., 2010). We experimentally verified predicted sub-
networks of the interspecies inferred regulatory network, which
identifies a role of the transcription factor Hap3 in C. albicans
during in vitro infection. We find that fungal Hap3 is regulated
by murine Ptx3, a soluble pattern recognition receptor acting as
an opsonin for pathogens (Diniz et al., 2004). We show that Ptx3
binding to C. albicans regulates fungal Hap3 target genes, altering
the immune response in dendritic cells. Based on the regulation
of downstream cytokines and the regulation of MTA2 mRNA in a
Hap3-dependent manner, we provide indirect evidence for a role
for Mta2, a member of the nucleosome remodeling and histone
deacetylase complex NuRD (Manavathi et al., 2007). We propose a
mechanism whereby Ptx3 binding to C. albicans leads to cell wall
remodeling via fungal Hap3 target genes, thereby changing the
ability of the fungi to be recognized by immune cells. The exper-
imental verification of the predicted interspecies interactions is
proof-of-principle that network inference can be used to investi-
gate microbial pathogenesis. We suggest that this could be a useful
method to identify potential antifungal target genes.

MATERIALS AND METHODS
CANDIDA STRAINS AND GROWTH CONDITIONS
All strains were routinely grown on YPD plates (1% yeast extract,
2% peptone, 2% glucose, 2% agar) and in standard rich media
YPD (1% yeast extract, 2% peptone, 2% glucose) for liquid cul-
ture at 30˚C. Fungal cells were collected in the logarithmic growth
phase by a brief centrifugation, washed in sterile PBS, and diluted
for all interaction studies. The following strains were used in this
study: C. albicans clinical isolate SC5314 (Gillum et al., 1984)
and homozygous knock-out of Hap3 (hap3Δ/hap3Δ) and rever-
tant strain (hap3Δ/hap3Δ + CIp10 (HAP3, URA3), abbreviated
in the text as hap3Δ/hap3Δ + HAP3), were generated from the

strain BWP17 (ura3::imm434/ura3::imm434 iro1/iro1::imm434
his1::hisG/his1::hisG arg4::hisG/arg4::hisG) by stepwise deletion of
both alleles using PCR-amplified HAP3::ARG4 and HAP3::HIS1
cassettes (Gola et al., 2003) and a cIP10 plasmid containing HAP3
and its promoter and terminator sequences integrated at the RP10
locus (Murad et al., 2000).The homozygous knock-out of cda2
and revertant were kindly provided by Neil Gow (Aberdeen, UK).

CELL CULTURE OF PRIMARY IMMUNE CELLS FROM MOUSE BONE
MARROW
Bone marrow was differentiated to either BMDCs or bone
marrow-derived macrophages (BMDMs) from the femurs of 7-
to 9-week-old wild type C57BL/6 mice and assessed for homo-
geneity as previously described using a panel of marker antibodies
(Bourgeois et al., 2009).

FUNGAL-MAMMALIAN CELL CO-CULTURE
Fungal-mammalian cell co-cultures were performed as previously
described (Bourgeois et al., 2009). Briefly, immune cells were
plated at a density of 1.0 × 105 cells/cm2 in sterile cell culture
dishes and incubated with fungal cells at a multiplicity of infec-
tion (MOI) of five fungal cells per immune cell. Samples were
incubated at 37˚C in 5% CO2, 95% humidity for up to 24 h.

cDNA PREPARATION FOR RNA-seq
Total RNA was isolated from immune cells and C. albicans using
the SV total RNA isolation system (Promega, Madison, MI, USA)
following manufacturers instructions. To obtain RNA mixtures
from both C. albicans and BMDCs, cells were first scraped in the
provided lysis buffer, followed by homogenization with 200 μl
of 0.5 mm acid-washed glass beads (Sigma-Aldrich, St. Louis,
MO, USA) in a Fast Prep-24 cooling block at 4˚C (MP Bio-
medicals Europe, Illkirch, France) for 45 s at 5 m/s. Ribosomal
RNA was depleted from 10 μg of pooled total RNA samples using
the RiboMinus eukaryote kit for RNA-seq (Invitrogen, Carlsbad,
CA, USA) and concentrated using the corresponding RiboMi-
nus Concentration Module (Invitrogen) following manufactures
instructions for three independent biological repeats. For each
sample, 1 μg of ribosomal-depleted RNA was converted into
cDNA using the SMARTer PCR cDNA Synthesis kit and the Advan-
tage 2 polymerase mix (Clontech, Mountain View, CA, USA).
PCR amplifications were performed on 1/10 of the first strand
synthesis reaction for 18 cycles of 90˚C for 1 min, 95˚C for 15 s,
65˚C for 30 s, and 68˚C for 6 min on a GeneAmp PCR system
9700 (Applied Biosystems, Carlsbad, CA, USA), and purified on
ChromaSpin columns (Clontech, Mountain View, CA, USA). The
resulting cDNAs were sequenced on the Genome Analyzer IIx at
GATC (Konstanz, Germany) using 36 bp, single run, indexed read
mode.

SEQUENCE READ MAPPING, PRE-PROCESSING, AND DATA
NORMALIZATION
All sequencing reads were mapped using TopHat 1.2.0 (Trapnell
et al., 2009) against the SC5314 C. albicans assembly 21 (Skrzypek
et al., 2010) and the M. musculus UCSC version mm9 from the
ENSEMBL database (Flicek et al., 2011). Mapping was carried out
using the default settings in which only unique hits were kept for
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further analysis. The gene expression and normalization analysis
was performed as previously described (Mortazavi et al., 2008).
Genes were tested for differential expression using the bioconduc-
tor package baySeq (Hardcastle and Kelly, 2010) relative to the
0-min infection time point. The analysis was carried out for C.
albicans and M. musculus genes individually.

CLUSTERING AND OVER-REPRESENTED GENE ONTOLOGY TERMS
Fuzzy c-means clustering (Bezdek, 1992) was applied to the
two expression matrices of differentially expressed genes from
C. albicans and M. musculus. The optimal number of clus-
ters was estimated as previously described (Guthke et al., 2005;
Linde et al., 2010). Functional categorization and significantly
over-represented categories were identified using the tool Fungi-
Fun (Priebe et al., 2011). All four hierarchical levels of Funcat
(Ruepp et al., 2004) and Gene Ontology (Ashburner et al., 2000)
categorization were used in this study.

NETWORK INFERENCE PREDICTION AND MEASURING INTERACTION
ROBUSTNESS
Network inference was performed as previously described using
the NetGenerator tool (Guthke et al., 2005; Linde et al., 2010).
Briefly, NetGenerator is based on a set of linear differential equa-
tions and models the temporal change of the expression intensity
xi(t ) of gene i (i = 1. . .n) at time t as the weighted sum of the
expression intensities of all other genes and an external stimulus
u(t ) at time t. The external stimulus u(t ) is modeled as a stepwise
constant function representing the change from no host–pathogen
interaction to the onset of the interaction. The tool aims to identify
a network structure, which best fits to the measured RNA-seq data,
while it minimizes the number of predicted interactions (Guthke
et al., 2005). Thus, a sparse network is inferred.

NetGenerator offers the possibility to integrate prior knowl-
edge (i.e., putative regulatory interactions based on additional data
besides the initial time series expression data). Based on the con-
fidence of the prior knowledge source, it is possible to score each
proposed interaction. The confidence of the prior knowledge is
based on the level of experimentation used to verify a specific inter-
action and the number of independent experiments showing the
same interaction. Since different data sources might be contradic-
tory, prior knowledge is softly integrated, i.e., if a proposed inter-
action contradicts the measured data too much it can be removed
by NetGenerator. Furthermore, the tool may add new interac-
tions not covered by the prior knowledge in order to fit to the
measured data. In this study, prior knowledge from public data-
bases was softly integrated (Guthke et al., 2005). Each proposed
interaction was scored in an additive manner based on the con-
fidence of the prior knowledge source as follows: direct evidence
that a gene is involved in a host–pathogen interaction (confidence
score = 0.5), co-expression of two genes (confidence score = 0.25),
and the occurrence of the respective transcription factor bind-
ing motif in the upstream intergenic regions of genes (confidence
score = 0.125). Prior knowledge was obtained from GeneMania1,
IntAct (Aranda et al., 2010), BioGrid (Stark et al., 2011), the C. albi-
cans database (Skrzypek et al., 2010), the mouse genome database

1http://genemania.org/data/

(Blake et al., 2011), and a number of peer-reviewed publications
(Lane et al., 2001; Doedt et al., 2004; Martchenko et al., 2004;
Zhao et al., 2004; Fradin et al., 2005; Oberholzer et al., 2006; Wang
et al., 2006; Spira et al., 2007; Thewes et al., 2007; Zakikhany et al.,
2007; Almeida et al., 2008; Baek et al., 2008; Nobile et al., 2008;
Frohner et al., 2009; Griffin et al., 2009; Raman et al., 2009; Sellam
et al., 2009; Hinze et al., 2010; Hou et al., 2010; Smith et al., 2010;
Wachtler et al., 2011) summarized in Figure 1C. Putative regula-
tory interactions were tested for robustness using two methods.
First, Gaussian noise was introduced with a mean of 0 and SD 0.05
to the estimated mRNA concentrations for 1000 iterations. Sec-
ondly, predicted interactions were screened for robustness against
changes in prior knowledge by iterating the modeling approach
1000 times while randomly skipping 10% of all interactions in the
set of prior knowledge for each run. Only edges that were con-
firmed by more than 50% of the iterations were considered to be
robust and used in the resultant model.

REAL-TIME qPCR ANALYSIS
RNA sample preparation, reverse transcription, and real-
time PCR were performed previously described (Bour-
geois et al., 2009) using the following primers: mouse β-
Actin, forward 5′-GCGTGACATCAAAGAGAAG-3′ reverse 5′-
AGGAGCCAGAGCAGTAATC-3′ (RTPrimerDB)2 mouse MTA2,
forward 5′-CACTGCTATAGCCTCACGCC-3′, reverse 5′-GCTAG
GAGCTGGAACC TCAC-3′,mouse PTX3, forward 5′-CCTGCTTT
GTGCTCTCTGGT-3′, reverse 5′-TCTCCAGCATGATGAACAGC-
3′ (Diniz et al., 2004), C. albicans TUP1, forward 5′-
GACTACGCCTCAAACGAAGC-3′ reverse 5′-TGGTGCCACAAT
CTGTTGTT-3′, C. albicans FRE6 forward 5′-CCGGTAAACATCC
ATTCCAC-3′, reverse 5′-TTGATCCAAATGCCATT-CAA-3′, C.
albicans SEF1, forward 5′-GTGGAGGACTCGTTCATGGT-3′,
reverse 5′-TGAACCAGCACGATTCAGAG-3′, C. albicans RIP1,
forward 5′-TGCTGACAGAGTCAAGA-AACC-3′ reverse 5′-
GAACCAACCACCGAAATCAC-3′ as determined using the
sequence analysis software Vector NTI (Invitrogen, Carlsbad, CA,
USA). Results were calculated using the ΔΔct method and are
expressed as the fold of the gene expression of interest versus the
expression of a housekeeping gene in M. musculus (β-Actin) or C.
albicans (RIP1) in treated versus untreated conditions.

CYTOKINE QUANTIFICATION FROM CO-CULTURE SUPERNATANTS
The amount of cytokines released into cell culture supernatants by
immune cells during in vitro interaction studies with heat killed C.
albicans were assayed after 24 h of co-culture using the mouse IL-2,
IL-4, or TNFα Ready-set-go ELISA kit (R&D Systems, Minneapo-
lis, MN, USA) or the Mouse Cytokine Array Panel A kit (R&D
Systems) according to the manufacturers instructions.

BINDING AND LABELING Ptx3 IN VITRO
Recombinant mouse Ptx3 (rmPtx3) protein (R&D Systems) was
reconstituted in sterile PBS and diluted for all experiments.
Some 0.5 × 106 fungal cells were incubated for 1 h at 37˚C
with 5 μg reconstituted rmPtx3. Ptx3 was labeled with the pri-
mary antibody against Ptx3 (Abnova, Taiwan) and secondarily

2 http://medgen.ugent.be/rtprimerdb/index.php
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FIGURE 1 | RNA-seq predicts regulatory host-fungus interactions. (A) M.
musculus clustering of differentially expressed genes (scaled and centered
log2 values) over the time course of the infection. Black lines represent the
expression of individual genes. The mean (dotted line, red) and the variance
(solid, red) are shown. (B) C. albicans clustering of differentially expressed
genes (scaled and centered log2 values) over the time course of the infection.
Black lines represent the expression of individual genes. The mean (dotted
line, red) and the variance (solid, red) are shown. (C) Prior knowledge
incorporated into the inference network for all genes, where the input
corresponds to the external perturbation (co-culture) and regulation by target
corresponds to induction by the co-culture environment but not associated
with a specific gene set. (D) Measured (dots), interpolated (dotted line),

simulated (solid line) gene expression for all genes used in the inference
model from NetGenerator over the time course of the infection. (E) Inferred
network model between C. albicans and M. musculus, where all C. albicans
(blue) and M. musculus genes (green) in the study are included. The following
interactions are represented on the model: predicted interactions based on
the RNA-seq data set from individual species where no prior knowledge
exists (gray), predicted interactions between a C. albicans and M. musculus
gene where no prior knowledge exists (red), or where prior knowledge exists
and corresponds to expression data set (orange). Here, activation is shown as
an arrow and a repression with a bar. The “C. albicans/M. musculus”
rectangle represents the influence from the external perturbation (co-culture
during in vitro infection) on the gene expression level.

labeled with goat-anti-rabbit 649 Dylight (Thermo Scientific,
Rockford, Illinois). Fungal cell wall chitin was labeled using
10 μM of Calcofluor White (Sigma-Aldrich). Intracellular labeling
of Ptx3 was performed using the BD Cytofix/Cytoperm Fixa-
tion/Permeabilization kit with BD GolgiPlug protein transport
inhibitor (BD Biosciences, Heidelberg) after 6 h of C. albicans
infection following manufactures instructions. Preparations were

assessed by flow cytometry or visualized on an Olympus Cell-R
live imaging unit (Olympus, Essex, UK) for all experiments.

STATISTICAL ANALYSIS FOR INFERENCE MODEL VERIFICATION
Statistical analysis of data was performed using the GraphPad
Prism graphing and analysis software (GraphPad Software, San
Diego, USA) for all in vitro experiments excluding the RNA-seq
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analysis described above. Statistical significance was assessed using
with the Student t -test and a p-value <0.05 was considered
significant.

RESULTS
INFERRED REGULATORY NETWORK IDENTIFIES NOVEL INTERSPECIES
HOST–PATHOGEN INTERACTIONS
We used massively parallel RNA sequencing of cDNA (RNA-seq)
obtained from co-cultures of C. albicans and M. musculus BMDCs
over 2 h to model an infection time course from fungal adhesion
to early host cell lysis. In total, we obtained approximately 120
million reads, which were mapped to the C. albicans 21 assembly
or M. musculus mm9 genome and analyzed each for differential
gene expression relative to the pre-infection state. We identified
545 differentially expressed genes for C. albicans and 240 for M.
musculus over the complete time course.

The small number of measured data points for each gene over
the time course restricts the modeling approach to a limited num-
ber of genes. If there was no pre-selection of the genes, or a large
number of genes were to be used, it would result in an over-fitting
of the measured data that would not produce a robust inference
model. For this reason, it is necessary to select a set of relevant
genes to be represented by nodes in the network model. To identify
candidate genes in C. albicans and M. musculus, all differentially
expressed genes were first clustered (Bezdek, 1992) by their kinetics
during the time course (Figures 1A,B). From each cluster, one or
more representative genes were chosen for use within the model.
Several considerations were taken into account for the selection
of candidate genes. In C. albicans, we preferentially chose genes
that have been either annotated as virulence genes (i.e., adhe-
sion, hyphal formation, or response to host) or strongly respond
to infection or infection-like conditions (i.e., temperature stress,
nutrient limitation, or iron regulation). For M. musculus, we pri-
oritized genes with phenotypes relating to the immune defense or
response, or susceptibility to pathogens in a systemic mouse model
of infection.

A number of recent studies have shown the reverse engineer-
ing approach is greatly improved by the integration of different
data sources (Werhli and Husmeier, 2007; Gustafsson et al., 2008;
Hecker et al., 2009a,b). We therefore collected putative regulatory
interactions based on additional data obtained from literature,
referred to as prior knowledge, for each gene. Based on the con-
fidence of the prior knowledge source, a score is attributed to
each interaction (see Materials and Methods). Since different data
sources might be contradictory, prior knowledge was softly inte-
grated so that if a proposed interaction contradicts the measured
data to a great extent, it can be removed from the resulting network
(see Materials and Methods). Genes with no known or predicted
function were therefore excluded from the analysis. Based on these
criteria, we narrowed our gene lists to five from C. albicans and six
from M. musculus. Prior knowledge scores (Figure 1C) and expres-
sion kinetics (Figure 1D) for the candidate genes were combined in
NetGenerator to generate the final network inference (Figure 1E).

To verify the fit of the model to the actual expression kinetics
of the candidate genes, we first used NetGenerator to interpolate
and simulate gene expression for the measured data points of each
gene (Figure 1D). The closer expression profiles for the individual

genes fit to the measured data points, the better the inference pre-
diction is. We found a close relationship between the simulated
and measured data points, showing that the NetGenerator model
is representative of the measured data. The final interspecies net-
work was based on these predictions (Figure 1E). Only edges that
were robust against the addition of Gaussian noise and partial
skipping of prior knowledge were used in the construction of the
model. The final network predicts 21 putative edges, including 4
interspecies edges.

To specifically test the robustness of the interspecies edges
experimentally, we focused on a sub-network composed of a sin-
gle C. albicans transcription factor Hap3 that was predicted in
the inference model to contain two interactions with M. musculus
genes. These interactions include a predicted blunt or repressing
edge between fungal Hap3 by murine Ptx3, and a predicted blunt
edge of murine Mta2 by fungal Hap3 itself.

THE BINDING OF MURINE Ptx3 REGULATES Hap3 TARGET GENES
Pentraxin 3 (Ptx3) is a soluble pattern recognition receptor that
has been previously shown to function as an opsonin to facili-
tate pathogen uptake by phagocytic cells in a dectin-1 dependent
manner (Diniz et al., 2004). To determine if M. musculus Ptx3
blocked fungal Hap3 function or the expression of Hap3-regulated
genes in C. albicans as suggested by the inference model, we
first asked whether Ptx3 was induced upon infection with Can-
dida cells. Using intracellular staining for Ptx3, we detected a
strong fluorescence signal in BMDMs infected with C. albicans,
whereas no signal was detected in BMDMs alone or ptx3−/−
macrophages (Figures 2A,B). Furthermore, we found an increase
in PTX3 mRNA levels in BMDCs (Figure 2C) and BMDMs (data
not shown) after 1 h of C. albicans infection, verifying that Ptx3
is indeed induced in our experimental setup. Interestingly, the
amount of PTX3 induced significantly decreased in the absence
of Hap3 (Figure 2C). We detected a similarly significant decrease
in PTX3 induction in the gene containing the Hap3 binding box,
Cda2, a predicted chitin deacetylase in C. albicans.

Ptx3 has been previously shown to bind to numerous fungi,
including Aspergillus fumigatus (Jaillon et al., 2007) as well as
zymosan-coated particles (Diniz et al., 2004). Therefore, we asked
whether recombinant mouse Ptx3 (rmPtx3) could also bind to
the C. albicans cell wall. We assessed rmPtx3 binding using
fluorescence microscopy and flow cytometry. Fungal cells pre-
incubated with rmPtx3 for 1 h at 37˚C showed surface localization
of Ptx3 to the cell wall. No signal was visible on cells treated
with the PE-conjugated secondary alone or the untreated con-
trol (Figure 2E). Notably, the labeling pattern of Ptx3 coincided
with areas of expected chitin exposure. Hence, we also stained C.
albicans cells with Calcofluor White, a fluorescent dye that binds
to exposed chitin (Bulawa et al., 1995). Interestingly, the local-
ization of rmPtx3 on the C. albicans overlapped with the signal
detected for Calcofluor White alone (Figure 2E), suggesting that
Ptx3 might bind to accessible cell surface chitin. We confirmed
and quantified the amount of Ptx3 binding to the cell wall using
flow cytometry. Based on the binding observed in the fluorescence
microscopy, we analyzed our data using both the complete pool of
C. albicans cells as well as discriminating yeast and hyphal forms
(Figure 2D; Figure A1 in Appendix). We detected a high level of
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FIGURE 2 | Binding of rmPtx3 to C. albicans mediates the expression of

Hap3 target genes. (A) Intracellular labeling of endogenous Ptx3 induction
after 6 h of C. albicans stimulation of macrophages derived from wild type or
ptx3−/− bone marrow. (B) Intracellular labeling of endogenous Ptx3 after 6 h
of C. albicans stimulation of macrophages derived from wild type bone
marrow. Macrophages directly associated with fungal cells and show a
strong signal for endogenous Ptx3, while those not associated have only
background signal levels. (C) qPCR of PTX3 in BMDCs after 1 h of infection
with different C. albicans strains. Results represent the mean of 3 pooled

experiments ± SD. (D) FACS analysis of wild type strain SC5314 after 1-h
treatment with rmPtx3, where untreated cells stained with PE only (red) and
rmPtx3 and SC5314 (blue) are shown. Cells were gated by size to
differentiate yeast and hyphal morphologies. (E) Fluorescence microscopy
of SC5314 after 1 h pre-treatment with 5 μg rmPtx3 (red) or 10 μM
Calcofluor White (blue). (F) qPCR of predicted targets genes of Hap3.
SC5314 (white), BWP17 (gray), hap3Δ/hap3Δ (blue), and
hap3Δ/hap3Δ + HAP3 (black) after 1 h pre-incubation with 5 μg rmPtx3 are
shown. Results represent the mean of 3 pooled experiments ± SD.

binding in fungal hyphae compared to yeast form cells. This is
consistent with our fluorescence microscopy analysis, where we

detected much stronger signals on the hyphal cell walls compared
to the bud scars on yeast form cells.
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Given that rmPtx3 binds to the fungal cell surface, we assessed
if rmPtx3 binding influenced the expression of predicted fungal
Hap3 target genes as predicted by the inferred network using qPCR
(Figure 2F). There are 10 predicted target genes of Hap3 that were
recently identified in a network inference study using microarray
data from C. albicans during in vitro epithelial infection, where
iron is assumed to be limited (Linde et al., 2010). Out of the 10
putative Hap3 target genes, we found three,TUP1, FRE6, and SEF1,
whose expressions were significantly decreased in C. albicans after
rmPtx3 binding, verifying their functionality as Hap3 target genes.
Interestingly, the levels of these genes increased in the Hap3 knock-
out. These data strongly suggest that their down-modulation upon
binding of rmPtx3 is Hap3-dependent.

CANDIDA ALBICANS BOUND BY Ptx3 ATTENUATES THE IMMUNE
RESPONSE IN BMDCs
Recently it was shown that the binding of recombinant human
Ptx3 increases A. fumigatus conidia phagocytosis and influences
cytokine production. Those mice lacking Ptx3 were additionally
found to be more susceptible to A. fumigatus infection (Moalli
et al., 2011). To determine if the binding of Ptx3 to C. albicans
changed the cytokine production of murine immune cells in vitro,
we first investigated the gross immune response using a cytokine
array after 24 h of co-culture with BMDCs (Figure A2 in Appen-
dix). RmPtx3-bound C. albicans induced multiple cytokines com-
pared to untreated C. albicans including IL-2, a cytokine regulated
by Mta2, as well as the inflammatory cytokines KC, JE, and TNFα

(Figures A2 in Appendix). Interestingly, when we then compared
Hap3 knock-out cells pre-incubated with rmPtx3, we detected a
general increase in these cytokines in addition to IL-23, IL-17,
IL-16, and IL-10 that were not detected in using wild type C.
albicans (Figure A2 in Appendix).

Since the cytokine array is a qualitative assessment of cytokine
production with a relatively high detection threshold, we verified
the changes in cytokine levels for the cytokines most relevant to
the inference model, namely, IL-2 and IL-4, both target cytokines
of Mta2, and TNFα, a pleiotropic inflammatory cytokine, by
ELISA. Mta2 is a member of the NuRD (nucleosome remodel-
ing and histone deacetylase) complex in M. musculus (Manavathi
et al., 2007) and predicted in our network model as repressed
by Hap3. The cytokines IL-2 and IL-4 produced during the host
immune response were both recently identified as targets of the
Mta2/NuRD complex (Lu et al., 2008). We found that in BMDCs,
MTA2 increased in the absence of Hap3, suggesting that Hap3
might indirectly regulate expression of Mta2 (Figure 3A). We
quantified cellular cytokine release using wild type BMDCs with
C. albicans, wild type BMDCs with rmPtx3-bound C. albicans, and
ptx3−/− BMDCs. We found that the production of IL-2 and IL-
4 significantly increased in the absence of Hap3 (Figures 3B,C).
This increase was augmented by C. albicans cells pre-incubated
with rmPtx3, confirming our observation from the cytokine array
that there is a general increase in the production of these cytokines
when there is an increase in Ptx3. Interestingly, compared to wild
type BMDCs, the basal level of cytokine production of IL-2 and
IL-4 increased in ptx3−/− BMDCs, corresponding to our inferred
network prediction that the loss of its predicted negative regu-
lators, Ptx3 and fungal Hap3, would increase the expression of

Mta2 and thereby increase the expression of its target cytokines.
In Hap3 knock-out cells, we found both on the cytokine arrays and
by ELISA a significant decrease in TNFα (Figure 3D). These data
show that the binding of Ptx3 to fungal cells alters the cytokine
production by immune cells in a Hap3-dependent manner, and
the regulation of Mta2 target cytokines indirectly suggests an
involvement of Mta2 as predicted by the network inference model.

IDENTIFYING CELL SURFACE Hap3 TARGET GENES
To identify how immune cells could detect the regulation of the
transcription factor Hap3 in C. albicans, we searched for puta-
tive Hap3 target genes that could have more direct contact with
immune cells, including: cell wall, plasma membrane or secretory
proteins. We focused on C. albicans genes of cluster 2, since their
expression strongly increased expression over the time course of
invasion (Figure 1B). Within this cluster, we scanned for genes
harboring the binding site of the Hap-complex in their upstream
regulatory regions (Baek et al., 2008). We further narrowed down
the candidate list by removing genes that did not have a pre-
dicted cellular localization or function in the C. albicans database
(Skrzypek et al., 2010). Following these selection criteria, nine can-
didate genes were left that we used to infer an additional network in
combination with Ptx3, Hap3, and Mta2 to determine if an inter-
action could be inferred with a protein that could come in direct
contact with immune cells (Figure A3 in Appendix). To increase
the reliability of the putative Hap3 interactions within the new
interaction network, we included the validated interactions from
our experiments within this study (repression of HAP3 by Ptx3
and MTA2 by Hap3), as additional prior knowledge. Of all of the
candidate genes, only the activation of CDA2 (a putative chitin
deacetylase in C. albicans) by Hap3, was robust against Gaussian
noise and partial skipping of prior knowledge.

DISCUSSION
In this study, we aimed to infer a network that predicts interactions
between host and pathogenic species under infection settings. To
our knowledge, this is the first network inference approach pre-
dicting host–pathogen interactions. This approach allowed for
the prediction, identification, and experimental verification of
interdependent sub-networks composed of a single C. albicans
transcription factor Hap3, and the M. musculus genes Ptx3 and
Mta2. The experimental validation suggests a putative mecha-
nism to explain how these interactions could be regulated during
infection of immune cells by fungal pathogens.

Our modeling approach was fundamentally based on differen-
tial equations, which have been previously used to infer regulatory
network models (Toepfer et al., 2007; Linde et al., 2010). This
approach is generally suitable for time series data. Nevertheless,
this approach is inappropriate for large-scale modeling, because
a large number of genes incorporated into a differential equa-
tion based model leaves open a number of parameters to be
identified. This may result in an over-fitting of the data. The mod-
eling approach uses four attempts to prevent over-fitting. First,
we restrict the number of genes within the model such that a
smaller number of parameters need to be identified. Second, it
aims at inferring a sparse network where many parameters are zero.
Thirdly, it makes use of re-sampling techniques where the data are
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FIGURE 3 | Mouse MTA2, IL-2 and IL-4 increase upon stimulation with C.

albicans in a Hap3-dependent manner. (A) qPCR of M. musculus MTA2
expression in BMDCs after 1 h incubation with fungal cells at an MOI of five
fungal cells to immune cells are shown. Results represent the mean of 3
pooled experiments ± SD. (B–D) ELISA measurement of IL-2 (B), IL-4 (C), and

TNFα (D) from the supernatants of BMDCs after 24 h incubation with fungal
cells in WT BMDCs, C. albicans cells pre-incubated with rmPtx3 on wild type
BMDCs, or fungal cells on ptx3−/− BMDCs. Incubations were performed at an
MOI of five fungal cells to immune cells. Results represent the mean of 2
pooled experiments ± SD.

perturbed in a random manner. Finally, we make use of prior
knowledge guiding the inferred structure to a knowledge-based
solution. Thus skipping incorrect network structures.

Gene expression levels, as well as available prior biological
knowledge, were used to aid in the narrowing of genes that we
chose to incorporate into the model. For this reason, genes where
no biological knowledge was available were excluded from fur-
ther analysis. However, we cannot exclude the possibility that
additional genes of unknown function might also play a role in
our inference model. This remains a limitation of the modeling
approach, in so far as predictions can only be made for genes where
a reasonable amount or prior knowledge is available. The genes
incorporated into the model represent only one possible scenario
of interactions and we do not exclude the possibility that other
genes may play a role under other conditions. We have already
started to take first step for a full-genomic network modeling for
C. albicans utilizing a compendium of all available expression data
(Altwasser et al., 2012). Moreover, we primarily focused on genes
acting as putative network“hubs”in their organisms (Bulawa et al.,
1995). Hubs are genes such as transcription factors that regulate
many other downstream genes within a network either directly or
indirectly. Hubs were chosen because they are less likely to have
redundant roles. Therefore, we would expect a stronger pheno-
type than investigating genes that are sparsely connected. This also
means that the interactions we are investigating are more likely to
be indirect and should be interpreted with caution.

From our original candidate gene list, we inferred HAP3 as a
putative network hub targeted by innate immune cells. Interest-
ingly, several putative target genes of Hap3 identified in this study
are predicted to localize to the plasma membrane, cell wall, or are
involved with cell wall reorganization in C. albicans. The fungal
cell wall is a dynamic structure, which undergoes significant struc-
tural and molecular composition remodeling throughout its life
cycle, as well as in response to a variety of external stimuli (Chaffin,
2008). As Hap3 in C. albicans is a transcription factor up-regulated
under iron-limiting conditions (Linde et al., 2010), it is likely
that its function during fungal recognition or phagocytosis by
immune cells is indirect. Of all of the candidate cell surface Hap3
targets, only Cda2, a putative chitin deacetylase forms a robust
interaction with Hap3 within the second network (Figure A3 in
Appendix). Chitin deacetylase enzymes exists in both intracellu-
lar and secreted forms in different fungi, where they hydrolyzes
the acetamido group in the N -acetylglucosamine units of chitin
and chitosan, leaving glucosamine units and acetic acid form as
byproducts (Zhao et al., 2010). Chitin deacetylases exist in both
Saccharomyces cerevisiae (Martinou et al., 2002) and in the oppor-
tunistic fungal pathogen Cryptococcus neoformans, where they have
been suggested as an antifungal target due to their severe effect on
cell wall integrity (Baker et al., 2007). Notably, chitin deacety-
lases are secreted during different developmental stages of some
other fungi (Zhao et al., 2010). For example, in Colletotrichum
lindemuthianum, a plant fungal pathogen, chitin deacetylases are
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exclusively secreted during hyphal penetration into plant tissue
(Tokuyasu et al., 1996). We find that Ptx3 induction is decreased
in the CDA2 knock-out (Figure 2C), further suggesting a possible
connection to the inferred network model. These data are consis-
tent with the overlap of Ptx3 staining and that of Calcofluor White
(Figure 2E), which binds to exposed chitin. Therefore, it is tempt-
ing to speculate that the recognition of C. albicans by immune
cells triggers the production of this enzyme to induce cell wall
remodeling as an evasion strategy. However, further work beyond
the scope of this study is needed to decipher the specific function
of Cda2 in C. albicans and its connection to Hap3.

We observed that upon binding of rmPtx3 to fungal cells, the
C. albicans virulence genes TUP1, FRE6, and SEF1 mRNA levels
significantly decreased in a Hap3-dependent manner (Figure 2F).
Tup1 has a well-characterized role as a key regulator in C. albicans
morphogenesis (Braun and Johnson, 1997). We cannot exclude
the possibility that Hap3 and Tup1 may have similar or even
complementary functions during interaction with immune cells.
Interestingly, both Tup1 and Fre6 are either directly or indirectly
involved in the C. albicans cell wall homeostasis. Tup1 is a multi-
functional transcriptional co-repressor of filamentous growth in
C. albicans whose lack leads to constitutive filamentous growth
(Braun and Johnson, 1997; Park and Morschhäuser, 2005). Fre6 is
an uncharacterized protein, for which in silico predictions suggest
it to reside in the plasma membrane with a putative functional
similarity to the ferric reductase Fre10, an important protein in
iron acquisition (Knight et al., 2005). Therefore, their regulation
upon binding or phagocytosis might play an additional role in
cell wall remodeling during infection. Since fungal cells experi-
ence severe iron-limiting condition within phagosomes of host

cells, Hap3 and Fre6 appear as logical candidates involved in this
reciprocal interaction. Likewise, Sef1 regulates iron uptake, and
has recently been shown to promote virulence in a mouse model
of bloodstream infections (Chen et al., 2011). Interestingly, it was
shown that knock-out mice lacking Ptx3 are hyper-susceptible to
A. fumigatus (Moalli et al., 2010). However, no in vivo work has
been performed to date using ptx3−/− mice and C. albicans. A
recent study has shown that the activation of the complement
system via the lectin pathway can be triggered via a complex of
Ptx3 and mannose binding lectin (MBL) on C. albicans mannan
in vitro (Ma et al., 2011). They showed the MBL–Ptx3 complex
could enhance the deposition of the complement components
C3 and C4 and thereby increase phagocytosis of C. albicans by
polymorphonuclear leukocytes. It has previously been shown that
C3 knock-out mice are additionally more susceptible to C. albi-
cans infections (Han et al., 2001). Therefore, it is possible that the
absence of Ptx3 could result in reduced activation of the comple-
ment pathway and reduced fungal killing. In vivo studies using
ptx3−/− mice would be needed to investigate this hypothesis.

We found that the expression of MTA2 and the regulation
of its downstream targets such as cytokines IL-2 and IL-4, are
increased during immune cell invasion by C. albicans in a Hap3-
dependent manner (Figures 3B,C). Moreover, we found that an
altered-immune response is one consequence of rmPtx3 binding.
Mta2 knock-out mice display partial embryonic lethality, while
the surviving mice develop lupus-like autoimmune symptoms,
including severe developmental phenotypes (Lu et al., 2008). Mta2
is uniquely associated with the NuRD chromatin complex, which
has both nucleosome remodeling and histone deacetylase activ-
ity (Feng and Zhang, 2003). Although there has been no data

Immune response

Altered-immune response

WT

.h
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3Δ

Δ

/hap
3

6-24 h1-5 h0 h Time  

FIGURE 4 | A proposed model for the mode of action of Ptx3 on C.

albicans. After mutual recognition between C. albicans (yellow) and host
immune cells (blue), Ptx3 (blue, stars) is released into the surrounding
milieu where it can bind to the invading fungal cell wall. The binding of

Ptx3 induces a change in the C. albicans cell wall (purple) after the
activation of Hap3 target genes, influencing its recognition by immune
cells and the subsequent immune response. Arrows represent
progression of time during an infection.
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to date in fungi indicating a role for host chromatin in patho-
genesis, recent work in bacteria and viruses (Hamon and Cossart,
2008; Rohde, 2011) shows that chromatin remodeling is induced in
host cells during invasion. Consistent with these observations, our
data suggests that the regulation of MTA2 may affect chromatin
remodeling in immune cells in the response to fungal pathogens.
The resultant altered-immune response may be disadvantageous
to the pathogen because it would promote fungal clearance.

We propose that Hap3 constitutes a target hub of C. albicans,
which actively regulates immune responses through the reorga-
nization of the C. albicans cell wall during invasion of innate
immune cells (Figure 4). Specifically, we propose a model in which
the binding of Ptx3 released from immune cells to C. albicans
cell wall triggering the reorganization of the C. albicans cell wall
and plasma membrane via the activation of Hap3 target genes.
This reorganization in turn changes the recognition of the fun-
gus by immune cells and attenuates the host immune response.
This work demonstrates the possibility to experimentally verify
predicted host–pathogen relationships based on an interspecies
model of network inference, showing that inference modeling can
be used in the investigation of microbial pathogenesis. We propose
that this method could be useful for the identification of antifungal
target genes.
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FIGURE A1 | FACS analysis of rmPtx3 binding to C. albicans yeast and

hyphal cells. SC5314 after 1-h treatment with rmPtx3. Cells were gated
according to morphology based on size, all Candida cells analyzed (green

gate), yeast form only (black gate) and hyphal form only (the brown gate).
Histograms for untreated cells (red), and treated rmPtx3 and SC5314 (blue)
are shown.
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Since ancient times, even in today’s modern world, infectious diseases cause lots of
people to die. Infectious organisms, pathogens, cause diseases by physical interactions
with human proteins. A thorough analysis of these interspecies interactions is required
to provide insights about infection strategies of pathogens. Here we analyzed the most
comprehensive available pathogen–human protein interaction data including 23,435 inter-
actions, targeting 5,210 human proteins.The data were obtained from the newly developed
pathogen–host interaction search tool, PHISTO. This is the first comprehensive attempt to
get a comparison between bacterial and viral infections. We investigated human proteins
that are targeted by bacteria and viruses to provide an overview of common and spe-
cial infection strategies used by these pathogen types. We observed that in the human
protein interaction network the proteins targeted by pathogens have higher connectivity
and betweenness centrality values than those proteins not interacting with pathogens.
The preference of interacting with hub and bottleneck proteins is found to be a common
infection strategy of all types of pathogens to manipulate essential mechanisms in human.
Compared to bacteria, viruses tend to interact with human proteins of much higher connec-
tivity and centrality values in the human network. Gene Ontology enrichment analysis of
the human proteins targeted by pathogens indicates crucial clues about the infection mech-
anisms of bacteria and viruses. As the main infection strategy, bacteria interact with human
proteins that function in immune response to disrupt human defense mechanisms. Indis-
pensable viral strategy, on the other hand, is the manipulation of human cellular processes
in order to use that transcriptional machinery for their own genetic material transcription.
A novel observation about pathogen–human systems is that the human proteins targeted
by both pathogens are enriched in the regulation of metabolic processes.

Keywords: pathogen–human protein–protein interactions, PHISTO, infection strategy, hub, bottleneck, gene

ontology

INTRODUCTION
According to a report of World Health Organization (WHO), more
than 20% of total deaths in the world are due to infectious diseases
(World Health Organization, 2008). Different types of microor-
ganisms (bacteria, fungi, protozoa, and viruses) act as pathogens
for such diseases. The mechanism of infection is based on the
interactions between the proteins of pathogen and host. Thanks to
the developments in high-throughput protein interaction detec-
tion methods, it is possible to identify pathogen–host protein–
protein interactions (PHIs) at large-scale. Infection strategies have
been studied through intraspecies protein interactions of various
pathogens (Flajolet et al., 2000; McCraith et al., 2000; Rain et al.,
2001; LaCount et al., 2005; Uetz et al., 2006; Calderwood et al.,
2007; Wang et al., 2010) as well as through interspecies protein
interactions between pathogens and human (Filippova et al., 2004;
Mogensen et al., 2006; Uetz et al., 2006; Calderwood et al., 2007;
König et al., 2008). Notwithstanding these, a general overview of
infection mechanisms of different types of pathogens is missing
since there has been a lack of interspecies interactome data until
very recent years.

A major step toward a complete picture of the pathogenesis
of infectious diseases and consequently identifying drug targets
is the cataloging of large-scale PHIs. There are few PHI-specific
databases, which enable the access to PHI data for each type
of pathogen from a single source (Driscoll et al., 2009; Kumar
and Nanduri, 2010). Nevertheless these databases have not been
updated since their first release, and miss lots of recently reported
PHIs. Therefore, we have recently developed a pathogen–host
interaction search tool (PHISTO), which serves as a centralized
and up-to-date source for the entire available PHI data between
various pathogen strains and human via a user-friendly and
functional interface1.

The systemic analysis of PHI data has so far focused mainly on
virus-based infections due to the scarcity of data for other types of
pathogenic organisms (Uetz et al., 2006; Calderwood et al., 2007;
Dyer et al., 2008). We have enough bacterial PHIs to get statis-
tically meaningful results, providing a good opportunity to get a

1http://www.phisto.boun.edu.tr
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systemic picture of the pathogenesis of bacterial infections. In this
work, we studied up-to-date PHI data reported in PHISTO with a
specific focus on comparison between bacterial and viral infections
of human. We constructed various sets of human proteins targeted
by bacteria, fungi, protozoa, and viruses to pick out specific infec-
tion strategies of different pathogen types. On the other hand, the
set of human proteins targeted by both bacteria and viruses were
used to obtain common infection strategies of these pathogens.
We computed degree (connectivity) and betweenness centrality
distributions of the human protein sets targeted by bacteria and
viruses to observe the network properties of targeted human pro-
teins. Additionally, we computed gene ontology (GO; Ashburner
et al., 2000) terms enriched in each above-mentioned protein set to
find out attacked mechanisms in human. GO enrichment analysis
was also performed for sets of human proteins targeted by each
pathogen group included in our PHI data to decipher the pathogen
group(s) manipulating specific processes in human.

MATERIALS AND METHODS
PATHOGEN–HOST INTERACTION SEARCH TOOL
We have developed PHISTO that presents experimentally verified
pathogen–human protein interaction data in the most compre-
hensive and updated manner. The database provides the entirety
of relevant information about the physical PHIs in a single non-
redundant resource to researchers. It offers access via a user-
friendly and functional web interface (see text footnote 1) with
various searching, filtering, browsing, and extraction options.
Results are displayed in a very clear and consistent presentation
format. PHISTO enables the users to reach additional information
easily by providing links in the search results to external databases.
Proteins, pathogens, and publications listed in the search results
are linked to UniProt, NCBI Taxonomy, and PubMed, respectively,
offering users quick navigation in these informative databases.

We downloaded the pathogen–human PHIs from PHISTO in
October 2011. The data cover 23,435 physical interactions occur-
ring between 5,210 human proteins and 3,419 proteins of 257
pathogen strains of 72 pathogen groups (24 bacterial groups, 3
fungal groups, 2 protozoan groups, and 43 viral groups; Table 1).
In PHISTO, pathogen strains are grouped to provide an option to
present PHI results together for related strains. Bacterial groups
are sets of strains of the same genus as the names of the groups
are the names of the genuses. For viral groups, there are two
definitions. Some viral groups are sets of strains of the same fam-
ily as the names of the groups are the names coming from the
families of the strains (e.g., papillomaviruses, herpesviruses, poly-
omaviruses). Some viral strains are grouped based on the related
infections caused by them, as the names are generally coming
from the diseases (e.g., HIV, hepatitis viruses, anemia viruses).
Detailed PHI data for 72 groups are given in Data Sheets 1–4 in
Supplementary Material.

HUMAN PPI DATA
To obtain degree and betweenness centrality values of pathogen-
targeted proteins, the human protein–protein interaction (PPI)
network was constructed by downloading 194,006 interactions
between 13,015 human proteins from BioGRID (Stark et al., 2011),
DIP (Salwinski et al., 2004), IntAct (Kerrien et al., 2012), Mint

(Ceol et al., 2010), and Reactome (Matthews et al., 2009; Croft
et al., 2011) in April 2011.

HUMAN PROTEIN SETS
A total of 10 sets of human proteins interacting with pathogens
were constructed from PHI data to analyze the properties of
targeted human proteins as follows: The sets targeted by bacte-
rial pathogens (bacteria-targeted set), fungal pathogens (fungi-
targeted set), protozoan pathogens (protozoa-targeted set), and
viral pathogens (virus-targeted set) were analyzed for specific
infection strategies of these different pathogen types. For a deeper
comparison between bacterial and viral infections, human pro-
teins interacting with at least two bacterial groups (two-bacteria-
targeted set) and two viral groups (two-viruses-targeted set)
and also human proteins interacting with at least three bacte-
rial groups (three-bacteria-targeted set) and three viral groups
(three-viruses-targeted set) were used. To obtain common infec-
tion strategies of pathogens, sets of human proteins targeted by
all types of pathogens (pathogen-targeted set) and by both bac-
teria and viruses (bacteria–virus-targeted set) were also analyzed.
Finally, 72 sets of human proteins each targeted by a pathogen
group reported in Table 1 were additionally used in GO enrich-
ment analysis to investigate the human mechanisms attacked by
each pathogen group in the PHI data. Totally, 82 human protein
sets were constructed and analyzed.

DEGREE AND BETWEENNESS CENTRALITY CALCULATIONS
Degree of a protein within a network is defined as its number
of connections. Betweenness centrality of a protein is equal to
the number of shortest paths between any pairs passing through
that protein. The degree and centrality values of proteins in inter-
action networks provide valuable information about the role of
corresponding proteins in the network’s functional organization
using the topology of the interconnections. For instance, hubs
(highly connected proteins) and bottlenecks (central proteins to
many paths in the network) are critical players in the intraspecies
protein networks for information flow (Barabasi and Oltvai, 2004;
Yu et al., 2007).

The undirected human PPI network was represented as an
adjacency matrix, and the degree and centrality values of each
protein in the network were calculated in MATLAB environment.
Betweenness centrality calculations were performed by freely avail-
able MATLAB BGL package developed by David Gleich2. The
results were normalized by (n − 1)(n − 2), where n is the num-
ber of all proteins in the PPI network. Self-interactions were not
taken into account in these calculations.

GO ENRICHMENT ANALYSIS
Gene Ontology (Ashburner et al., 2000) enrichments of all 82
human protein sets were performed using BiNGO plugin (ver.
2.44) of Cytoscape (ver. 2.8.1; Maere et al., 2005). Significance
level was set to 0.05 meaning that only terms enriched with a
p-value of at most 0.05 were considered. All three GO terms (bio-
logical process, molecular function, and cellular component) were

2https://launchpad.net/matlab-bgl
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Table 1 | Contents of pathogen–human PHI data.

Pathogen Number of strains Number of PHIs Number of targeting pathogen proteins Number of targeted human proteins

BACTERIA 41 8,549 2,591 3,589

Aeromonas 1 2 1 2

Bacillus 2 3,021 940 1,736

Campylobacter 1 3 1 3

Chlamydia 2 21 3 21

Citrobacter 1 1 1 1

Clostridium 3 47 9 10

Corynebacterium 1 1 1 1

Escherichia 4 30 14 27

Finegoldia 1 1 1 1

Francisella 1 1,338 346 986

Helicobacter 2 3 3 2

Klebsiella 1 1 1 1

Legionella 1 1 1 1

Listeria 1 4 4 3

Moraxella 1 1 1 1

Mycoplasma 1 2 1 2

Neisseria 1 17 1 17

Pseudomonas 1 12 4 10

Salmonella 1 5 5 5

Shigella 1 11 9 8

Staphylococcus 3 12 10 10

Streptococcus 5 15 12 9

Vibrio 1 1 1 1

Yersinia 4 3,999 1,221 2,120

FUNGI 3 4 3 4

Candida 1 1 1 1

Pneumocystis 1 1 1 1

Radiomyces 1 2 1 2

PROTOZOA 4 9 5 9

Plasmodium 3 8 4 8

Toxoplasma 1 1 1 1

VIRUS 209 14,873 820 2,398

Adenovirus 13 121 36 80

Anemia virus 6 8 6 4

ASFV 1 1 1 1

Bacteriophage 6 6 6 5

Coxsackie virus 1 1 1 1

Dengue virus 3 3 3 2

Ebola virus 1 1 1 1

Echo virus 2 3 3 1

Ectromelia virus 1 2 2 2

Encephalitis virus 1 2 1 2

Foamy virus 1 1 1 1

Hantaan virus 1 6 1 6

Hendra virus 1 1 1 1

Hepatitis virus 21 1,573 179 399

Herpesvirus 28 666 141 388

HIV 49 11,435 279 1,601

Influenza virus 9 523 27 182

Leukemia virus 3 10 3 10

Measles virus 3 10 4 4

(Continued)
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Table 1 | Continued

Pathogen Number of strains Number of PHIs Number of targeting pathogen proteins Number of targeted human proteins

Molluscum virus 1 1 1 1

MPMV 1 1 1 1

Nipah virus 1 1 1 1

Nucleopolyhedrovirus 1 1 1 1

Orf virus 2 2 2 1

Papillomavirus 14 290 51 128

Parainfluenza virus 1 2 1 2

Parvo virus 1 1 1 1

Polio virus 2 3 2 2

Polyomavirus 4 64 10 45

Puumala virus 1 3 1 3

Rabies virus 1 1 1 1

Rhino virus 1 1 1 1

Rota virus 4 8 5 6

Sarcoma virus 5 15 6 11

SARS 1 4 3 4

Sendai virus 1 1 1 1

Seoul virus 1 4 1 4

SIV 2 3 2 3

Stomatitis virus 3 7 3 6

T-lymphotropic virus 3 38 7 35

Tula virus 1 2 1 2

Vaccinia virus 5 46 20 33

West Nile virus 1 1 1 1

TOTAL 257 23,435 3,419 5,210

See Data Sheets 1–4 in Supplementary Material for detailed information.

scanned to identify the terms having significant association with
each human protein set studied.

RESULTS
PATHOGEN-TARGETED HUMAN PROTEINS
The distribution of 5,210 human proteins on their targeting
pathogens are shown in the Venn diagram (Figure 1). Detailed
properties of all pathogen-targeted human proteins including
number and types of targeting pathogens together with degree
and betweenness centrality values in the human PPI network
are given in Data Sheet 5 in Supplementary Material. The most
targeted human proteins are listed in Table 2. The top of this
list, P53 (Tumor suppressor), DRA (HLA class II histocompati-
bility antigen, DR alpha chain), SUMO1 (Small ubiquitin-related
modifier 1), JUN (Transcription factor AP-1), NPM (Nucleophos-
min), ROA1 (Heterogeneous nuclear ribonucleoprotein A1), and
UBC9 (SUMO-conjugating enzyme) and the following proteins
have potential to give important insights about infections.

DEGREE AND CENTRALITY DISTRIBUTIONS
Figure 2 displays the comparison between the degree distributions
of non-targeted proteins in the human PPI network and bacteria
and virus-targeted sets. For both cases of bacteria and virus-
targeted sets, it is observed that pathogen-targeted human proteins
have generally higher degree values than non-targeted ones. How-
ever a difference is observed in trends of degree distributions of

FIGURE 1 |The number of pathogen-targeted human proteins that are

grouped based on their interactions with viruses, bacteria, and

fungi – protozoa (targeted by fungi and/or protozoa).

multibacteria and multiviruses targeted sets. For bacteria-targeted
cases, the increase in degree values of human proteins with increas-
ing number of targeting pathogen groups is not as clear as those
of virus-targeted cases (Figure 2). Very similar trends are obtained
for centrality distributions of human proteins (Figure 3). In order
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Table 2 | Highly targeted human proteins.

Protein Degree Betweenness

centrality

Targeting bacterial groups Targeting viral groups

P53 347 0.01547 Bacillus, Escherichia, Francisella, Yersinia Adenovirus, Hepatitis virus, HIV, Papillomavirus, Polyomavirus, SIV

DRA 52 0.00003 Bacillus, Francisella, Mycoplasma, Staphylo-

coccus, Yersinia

Herpesvirus, HIV, Influenza virus

SUMO1 103 0.00366 Bacillus Herpesvirus, HIV, Papillomavirus, Puumala virus, SARS, Tula virus,

Vaccinia virus

JUN 122 0.00335 Bacillus, Francisella, Yersinia Hepatitis virus, HIV, Papillomavirus, Vaccinia virus

NPM 137 0.00166 Bacillus, Francisella, Yersinia Adenovirus, Hepatitis virus, Herpesvirus, HIV

ROA1 246 0.00262 Bacillus, Francisella, Yersinia Herpesvirus, HIV, Influenza virus, SARS

UBC9 134 0.00410 Yersinia Hantaan virus, Herpesvirus, HIV, Influenza virus, Papillomavirus,

Seoul virus

IGHG1 57 0.00219 Bacillus, Francisella, Staphylococcus, Strep-

tococcus, Yersinia

Herpesvirus

RAC1 239 0.00279 Bacillus, Clostridium, Pseudomonas, Salmo-

nella, Yersinia

HIV

CDC42 232 0.00405 Bacillus, Francisella, Salmonella, Yersinia HIV, T-lymphotropic virus

DRB5 – – Bacillus, Francisella, Streptococcus, Yersinia Herpesvirus, HIV

LCK 147 0.00202 Bacillus, Francisella, Yersinia Hepatitis virus, Herpesvirus, HIV

XRCC6 131 0.00445 Bacillus, Francisella, Yersinia Herpesvirus, HIV, Polyomavirus

KPYM 76 0.00041 Bacillus, Francisella, Yersinia Hepatitis virus, Herpesvirus, Papillomavirus

ROA2 189 0.00069 Bacillus, Francisella, Yersinia Herpesvirus, Influenza virus, Vaccinia virus

P85A 402 0.00914 Bacillus, Francisella, Yersinia Anemia virus, HIV, Influenza virus

STAT3 77 0.00133 Bacillus, Francisella, Yersinia Hepatitis virus, Herpesvirus, HIV

STAT1 71 0.00104 Bacillus, Francisella, Yersinia Adenovirus, Herpesvirus, HIV

GBLP 93 0.00265 Bacillus, Francisella, Yersinia Adenovirus, Herpesvirus, HIV

PARP4 1 0.00000 Bacillus, Francisella, Yersinia Hepatitis virus, Herpesvirus, HIV

RB 149 0.00282 Yersinia Adenovirus, Herpesvirus, HIV, Papillomavirus, Polyomavirus

SP1 103 0.00268 Yersinia Adenovirus, Herpesvirus, HIV, Polyomavirus, T-lymphotropic virus

TAF1 58 0.00025 Bacillus Adenovirus, Hepatitis virus, HIV, Papillomavirus, Polyomavirus

CDK2 151 0.00220 Shigella Herpesvirus, HIV, Papillomavirus, Polyomavirus,T-lymphotropic virus

TF2B 69 0.00020 Bacillus Hepatitis virus, Herpesvirus, HIV, Papillomavirus, Polyomavirus

EP300 123 0.00245 Bacillus Adenovirus, Hepatitis virus, HIV, Papillomavirus, Polyomavirus

CBP 147 0.00304 Yersinia Adenovirus, Hepatitis virus, HIV, Papillomavirus, Polyomavirus

TBP 147 0.00241 – Adenovirus, Hepatitis virus, Herpesvirus, HIV, Papillomavirus, Poly-

omavirus

The targeting pathogenic proteins for each human protein can be obtained from Data Sheets 1–4 in Supplementary Material.

to justify these global trends, the same analyses was then repeated
with human protein sets excluding the overrepresented pathogens,
i.e., Bacillus, Yersinia, and HIV which target the largest number of
human proteins (Table 1). Similar results are still obtained when
major pathogen groups are eliminated (Figure 4).

GO ENRICHMENT ANALYSIS
All enriched GO terms for each human protein set are avail-
able in Data Sheets 6–10 in Supplementary Material for fur-
ther detailed analyses. Special attention should be paid to the
results of sets of human proteins interacting with three and
more bacterial groups and three and more viral groups for a
comparison between their infection strategies. The human pro-
teins targeted by more pathogen groups reflect more specificity
to infection mechanism of the corresponding pathogen (bac-
teria or virus). The enriched GO terms in human proteins

interacting with both bacterial and viral pathogens are also impor-
tant to highlight common infection mechanisms. The first 20
enriched GO process terms for three-bacteria-targeted-set, three-
viruses-targeted-set, and bacteria–virus-targeted set are listed in
Tables 3–5 to point out the human processes that are attacked by
pathogens.

DISCUSSION
In this study, we aim to provide a general overview of infection
strategies used by different pathogens based on the comprehensive
PHI data in PHISTO. Although large-scale pathogen–human pro-
tein interaction data have been identified in the last few years, the
data for fungal and protozoan systems are still scarce (Table 1) to
extract significant conclusions about their infection mechanisms.
On the other hand, interspecies protein interaction networks for
bacterial and viral pathogens with human have been identified,
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FIGURE 2 |The cumulative degree distributions of human protein sets.

The distribution of all proteins in the PPI network is given in comparison with
(A) the bacteria-targeted sets, and (B) the virus-targeted sets. The number of

proteins in each set is given in the parentheses. The fraction of proteins at a
particular value of degree is the number of proteins having that value and
greater divided by the number of proteins in the set.

FIGURE 3 |The cumulative betweenness centrality

distributions of human protein sets. The distribution of all
proteins in the PPI network is given in comparison with (A) the
bacteria-targeted sets, and (B) the virus-targeted sets.The number

of proteins in each set is given in the parentheses. The fraction of
proteins at a particular value of betweenness centrality is the
number of proteins having that value and greater divided by the
number of proteins in the set.

enough to provide some insights about their strategies to subvert
human cellular processes during infection.

With increasing PHI data of bacterial and viral pathogens, stud-
ies have been performed to enlighten specific bacteria–human
(Mogensen et al., 2006; Dyer et al., 2010) and virus–human
(Filippova et al., 2004; Uetz et al., 2006; Calderwood et al.,
2007; König et al., 2008) interaction systems. Although some
studies provided global views of infection strategies of viruses
(Dyer et al., 2008) and bacteria (Dyer et al., 2010) separately,
they do not provide a direct comparison between bacterial and

viral infections. In fact, only <2% of the PHI data of Dyer
et al. (2008) are for bacteria–human interactions whereas it
is more than 36% in our database of PHISTO. Hence, our
study constitutes the first extensive comparison between bacteria–
human and virus–human interspecies protein interaction net-
works to retrieve information about infection strategies specific
to each system and then common to both systems. Our findings
should be interpreted with caution since the protein interac-
tion networks between pathogens and human are not complete
yet.
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FIGURE 4 |The cumulative distributions of degree and betweenness

centrality of human proteins excludingYersinia and HIV data. The number
of proteins in each set is given in the parentheses. (A) The degree

distributions (B) the betweenness centrality distributions. The fraction of
proteins at a particular value of degree is the number of proteins having that
value and greater divided by the number of proteins in the set.

SPECIAL INFECTION STRATEGIES
In recent studies it has been suggested that viral proteins (Calder-
wood et al., 2007; Dyer et al., 2008; Itzhaki, 2011) and bacterial
proteins (Dyer et al., 2010) have evolved to preferentially inter-
act with hubs and bottlenecks in the human PPI network. The
degree and betweenness centrality distributions of the bacteria-
targeted and virus-targeted human protein sets are displayed in
comparison with non-targeted proteins in the human PPI net-
work in Figures 2 and 3. We observe that the degree and centrality
values of human proteins increase with increasing number of tar-
geting bacterial and viral groups, confirming the previous results
with the most comprehensive PHI data. A novel finding by our
comparative analysis is that the increase in degree and centrality
values with increasing number of pathogen groups is much more
pronounced in virus-targeted cases than bacteria-targeted cases
(Figures 2 and 3). Therefore we can conclude that attacking to
hub and bottleneck proteins in the human interaction network is
more specific to viral infections.

In our PHI data, some pathogen groups are overrepresented
with their larger number of reported interactions with human
(Table 1). As most of these large-scale data have been produced
with high-throughput detection methods, which are prone to
experimental biases and errors, it was necessary to check whether
the distributions of degree and centrality values of the pathogen-
targeted human proteins would be same without the groups with
large number of interacting partners of human proteins (i.e., Bacil-
lus,Yersinia, and HIV). Hence,we performed the above-mentioned
analyses with human protein sets excluding these major pathogen
groups. 1,199 human proteins targeted by only Yersinia strains
were excluded from the bacteria-targeted set, and 1,283 human
proteins targeted by only HIV strains were excluded from the
virus-targeted set to obtain the degree and betweenness central-
ity values of the remaining human proteins. We also analyzed
the human proteins targeted by bacteria other than Bacillus and

Yersinia to exclude the effect of large-scale data of the two. 1,199
only Yersinia-targeted and 847 only Bacillus-targeted human pro-
teins were excluded from the bacteria-targeted set. The behavior of
the remaining human proteins can be observed in Figure 4 result-
ing in similar trends with the global case. Additionally, a direct
comparison of the degree and centrality between bacteria and
virus-targeted interaction partners with respect to non-targeted
human proteins is also given in Figure 4. The difference in the
behavior of the bacteria- and virus-targeted sets are clear espe-
cially in degree distributions (Figure 4A). The degree values of
bacteria-targeted human proteins with or without Bacillus and
Yersinia are nearly same. On the other hand, attack of viruses to
more connected human proteins is more clear when HIV data are
excluded.

From the enriched GO process terms in human proteins tar-
geted by at least three bacterial groups (Table 3), we can conclude
that bacteria may have adapted to attack proteins involved gener-
ally in human immunity pathways. Therefore, the most specific
bacterial infection strategy is through evading or suppressing
human immune responses as also concluded previously (Lai et al.,
2001; Park et al., 2002; Zhang et al., 2005; Dyer et al., 2010).
The human immune system is manipulated by bacterial pro-
teins attacking human proteins functioning in innate and adaptive
immunity (i.e., TLR4 and TLR7), inflammation (i.e., NF-κB and
BCL6), and activation of T cells (i.e., CXCR4 and LCK; Zhang and
Ghosh, 2000; Alonso et al., 2004; Oda and Kitano, 2006; Dyer et al.,
2010). In our PHI data it is observed that Yersinia bacteria attack all
these human defense mechanisms targeting all mentioned human
proteins. Proteins of Bacillus and Francisella interact with NF-κB
and LCK (Dyer et al., 2010) aiming to disrupt the mechanisms of
inflammation and T cell responses. On the other hand, proteins of
Chlamydia, Escherichia, and Neisseria interact with crucial players
of innate and adaptive immunity, toll-like receptors (TLR4 and
TLR7; Croft et al., 2011) to collapse the human immune system.

www.frontiersin.org February 2012 | Volume 3 | Article 46 | 80

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive
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Table 3 | First 20 enriched GO process terms in human proteins

targeted by at least three bacterial groups (three-bacteria-targeted

set).

GO process term p-Value

I-kappaB kinase/NF-kappaB cascade 9.64E−13

Regulation of biological process 9.69E−10

Biological regulation 2.59E−09

Negative regulation of biological process 4.89E−09

Positive regulation by organism of immune response of other

organism involved in symbiotic interaction

6.64E−09

Modulation by organism of immune response of other organ-

ism involved in symbiotic interaction

6.64E−09

Modulation by symbiont of host immune response 6.64E−09

Positive regulation by symbiont of host immune response 6.64E−09

Response to immune response of other organism involved

in symbiotic interaction

6.64E−09

Response to host immune response 6.64E−09

Positive regulation by organism of defense response of other

organism involved in symbiotic interaction

6.64E−09

Positive regulation by symbiont of host defense response 6.64E−09

Positive regulation by organism of innate immunity in other

organism involved in symbiotic interaction

6.64E−09

Modulation by organism of innate immunity in other organ-

ism involved in symbiotic interaction

6.64E−09

Pathogen-associated molecular pattern dependent modu-

lation by organism of innate immunity in other organism

involved in symbiotic interaction

6.64E−09

Modulation by organism of defense response of other organ-

ism involved in symbiotic interaction

6.64E−09

Pathogen-associated molecular pattern dependent induction

by organism of innate immunity of other organism involved

in symbiotic interaction

6.64E−09

Modulation by symbiont of host defense response 6.64E−09

Pathogen-associated molecular pattern dependent induction

by symbiont of host innate immunity

6.64E−09

Modulation by symbiont of host innate immunity 6.64E−09

See Data Sheet 10 in Supplementary Material for the whole list and the human

proteins corresponding to each GO term.

There are several other bacteria-targeted human proteins involved
in the immune system. Their interactions with bacterial proteins
should be investigated carefully for a complete understanding of
bacterial strategies targeting human defense mechanism during
infection.

Viruses attack human cellular processes (Table 4) enabling
themselves to proliferate in human during infection. All viruses use
this mechanism since they need host’s transcriptional machinery
for viral genetic material transcription. Even the human proteins
targeted by only one viral group are enriched in GO process
terms relevant to regulation of cellular mechanisms (Data Sheet 10
in Supplementary Material). Viruses manipulate human cellular
mechanisms by interacting with various proteins functioning in
cell cycle (i.e., DLG1, PTMA, and EP300), with human transcrip-
tion factors to promote their own genetic material transcription
(i.e., E2F1 and TAF1), with key proteins controlling apoptosis

Table 4 | First 20 enriched GO process terms in human proteins

targeted by at least three viral groups (three-viruses-targeted set).

Go process term p-Value

Interspecies interaction between organisms 1.89E−40

Multi-organism process 1.19E−27

Positive regulation of cellular process 1.12E−17

Positive regulation of biological process 1.06E−16

Cellular macromolecule metabolic process 1.12E−15

Nucleic acid metabolic process 4.49E−14

Positive regulation of macromolecule metabolic process 4.60E−14

Cell cycle process 6.72E−14

Positive regulation of gene expression 1.49E−13

Cell cycle 2.06E−13

Positive regulation of metabolic process 3.79E−13

Positive regulation of transcription 4.37E−13

Macromolecule metabolic process 8.51E−13

Positive regulation of cellular metabolic process 3.89E−12

Cellular response to stimulus 6.61E−12

Positive regulation of nucleobase, nucleoside, nucleotide,

and nucleic acid metabolic process

7.26E−12

Positive regulation of macromolecule biosynthetic process 1.32E−11

Positive regulation of nitrogen compound metabolic process 1.41E−11

Positive regulation of transcription, DNA-dependent 1.44E−11

Regulation of cell cycle 1.47E−11

See Data Sheet 10 in Supplementary Material for the whole list and the human

proteins corresponding to each GO term.

(i.e., P53), and with nuclear membrane proteins for transporting
their genetic material across the nuclear membrane (i.e., RAN, and
SUMO1; Lechner and Laimins, 1994; Thompson et al., 1997; Car-
rillo et al., 2004; Thomas et al., 2005; Dyer et al., 2008). In our PHI
data, Adenoviruses, HIV, Papillomaviruses, and Polyomaviruses
are observed to target one or more proteins in each of four groups;
cell cycle proteins, transcription factors, apoptosis regulator, and
nuclear membrane proteins. Proteins of Hepatitis viruses interact
with PTMA,EP300,TAF1,and p53 while proteins of Herpesviruses
interact with PTMA and SUMO1. On the other hand, viral groups
of Influenza, Puumala, Tula, SARS, and Vaccinia are observed
to target nuclear membrane proteins. The other virus-targeted
human proteins involved in cellular mechanisms should be inves-
tigated comprehensively for a complete understanding of viral
strategies targeting human cellular mechanism.

We can conclude that the main infection strategies of bacteria
and viruses are through attacking human immune system and cel-
lular processes, respectively. However, there are some exceptions
such that some bacterial groups target human proteins functioning
in cellular mechanisms whereas some viral groups target human
proteins functioning in defense mechanisms. In the case of bacte-
ria, the difference might arise from the life-style, e.g., intracellular
bacteria like Chlamydia, Listeria, and Mycoplasma are able to grow
and reproduce only within the host cells just like viruses (Kauf-
mann, 1993). Therefore, human protein sets targeted by these
intracellular bacterial groups are enriched in GO process terms
related to the cellular mechanisms (e.g., regulation of cellular
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Table 5 | First 20 enriched GO process terms in human proteins

targeted by both bacterial and viral groups (bacteria–virus-targeted

set).

GO process term p-Value

Interspecies interaction between organisms 1.64E−52

Multi-organism process 1.01E−47

Positive regulation of biological process 5.62E−47

Regulation of biological process 1.32E−42

Biological regulation 2.66E−40

Positive regulation of cellular process 4.59E−40

Negative regulation of biological process 6.32E−37

Regulation of cellular process 2.00E−36

Negative regulation of cellular process 4.84E−32

Regulation of protein metabolic process 7.68E−30

Regulation of macromolecule metabolic process 3.21E−29

Regulation of cellular protein metabolic process 1.39E−28

Regulation of cell death 1.74E−28

Positive regulation of macromolecule metabolic process 1.91E−28

Positive regulation of cellular metabolic process 7.04E−28

Regulation of programmed cell death 1.13E−27

Cellular macromolecule metabolic process 1.94E−27

Positive regulation of metabolic process 2.92E−27

Negative regulation of macromolecule metabolic process 5.31E−27

Regulation of apoptosis 6.54E−27

See Data Sheet 10 in Supplementary Material for the whole list and the human

proteins corresponding to each GO term.

processes, regulation of transcription) in addition to the immune
sytem (Data Sheet 6 in Supplementary Material). On the other
hand, viruses like herpes and pox (ectromelia, molluscum, orf,
vaccinia) viruses as well as HIV have the ability to evade human
immune system (Alcami and Koszinowski, 2000) as observed in
our results (Data Sheet 9 in Supplementary Material).

For more specific infection strategies of pathogen groups, the
results of GO enrichment analysis for the human protein sets tar-
geted by each of the 72 groups in the PHI data can be used (Data
Sheets 6–9 in Supplementary Material). Additionally, intranet-
works of pathogenic proteins in each pathogen group should be
analyzed for drug target identification after a thorough under-
standing of pathogenesis via interspecies protein interactions.

COMMON INFECTION STRATEGIES
In spite of the difference in the trends of distributions of degree
and centrality values of human proteins in bacteria-targeted and
virus-targeted sets, the tendency to attack human proteins that
are highly connected (hubs) and central to shortest paths (bot-
tlenecks) is common to all types of pathogens. We observed in
our PHI data that the degree and centrality values of pathogen-
targeted human proteins are generally greater than non-targeted
ones. This infection strategy of pathogens, attacking more con-
nected and central nodes in the human PPI network, is probably
due to enabling themselves to control and disrupt essential com-
plexes and pathways more easily. With scale-free nature, the human
PPI network is robust to attacks on random nodes. However, the
selective attacks to even a small number of nodes of high degree can

dramatically change the topology and functionality of the network
(Albert et al., 2000; Li et al., 2006).

Although bacteria and viruses have a tendency to interact with
different human proteins (Figure 1), they together target those
(779 human proteins) enriched in the regulation of metabolic
processes in addition to cellular processes (Table 5). For instance,
a pyruvate kinase isozyme, KPYM, functions in glycolysis catalyz-
ing the transfer of a phosphoryl group from phosphoenolpyruvate
(PEP) to ADP, generating ATP. This metabolic human protein
is targeted by three bacterial (Bacillus, Francisella, and Yersinia)
and three viral groups (Hepatitis, Herpesviruses, and Papillo-
maviruses) in the PHI data. Alpha-enolase is another bacteria–
virus-targeted enzyme which functions in glycolysis, just before
KPYM enzyme, converting 2-phospho-glycerate to PEP. A meta-
bolic step operating again around lower glycolysis is the produc-
tion of lactate from pyruvate. Both isoenzymes (LDHA, LDHB)
are found to be a target for bacterial and viral groups. In addition
to lower glycolysis, some enzymes functioning in lipid metabo-
lism (ACSA, ACOT9, CPT1A) were identified as common targets
of bacteria and viruses. Interestingly, two enzymes functioning
for protection against oxidative-stress are in our common-target
list: catalase (CATA) and glutathione peroxidase 3 (GPX3). These
enzymes remove H2O2, which is a reactive oxygen species (ROS)
harmful for the cell.

To our knowledge, the human proteins targeted by both bacte-
ria and viruses have not been investigated in any previous study.
Through our analyses using large-scale PHI data we can conclude
that both bacteria and viruses attack to the proteins functioning
in human metabolic processes as a common infection strategy. All
bacteria–viruses-targeted human proteins involved in metabolic
processes should be investigated carefully for a complete picture
of commonalities in bacterial and viral infections.
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Many chronic inflammatory diseases are known to be caused by persistent bacterial or
viral infections. A well-studied example is the tick-borne infection by the gram-negative
spirochaetes of the genus Borrelia in humans and other mammals, causing severe symp-
toms of chronic inflammation and subsequent tissue damage (Lyme Disease), particularly
in large joints and the central nervous system, but also in the heart and other tissues of
untreated patients. Although killed efficiently by human phagocytic cells in vitro, Borrelia
exhibits a remarkably high infectivity in mice and men. In experimentally infected mice, the
first immune response almost clears the infection. However, approximately 1 week post
infection, the bacterial population recovers and reaches an even larger size before entering
the chronic phase.We developed a mathematical model describing the bacterial growth and
the immune response against Borrelia burgdorferi in the C3H mouse strain that has been
established as an experimental model for Lyme disease.The peculiar dynamics of the infec-
tion exclude two possible mechanistic explanations for the regrowth of the almost cleared
bacteria. Neither the hypothesis of bacterial dissemination to different tissues nor a limi-
tation of phagocytic capacity were compatible with experiment. The mathematical model
predicts that Borrelia recovers from the strong initial immune response by the regrowth
of an immune-resistant sub-population of the bacteria. The chronic phase appears as an
equilibration of bacterial growth and adaptive immunity. This result has major implications
for the development of the chronic phase of Borrelia infections as well as on potential
protective clinical interventions.

Keywords: Borrelia burgdorferi, Lyme disease, mathematical model, immunology, macrophages, mouse model

INTRODUCTION
Originally described in 1977 (Steere et al., 1977), Lyme disease
is today recognized as the most common vector-borne disease in
the United States and Europe, with approximately 65,000 cases
reported annually in Europe (Rizzoli et al., 2011). Its causative
agent, Borrelia burgdorferi and several closely related species com-
monly referred to as Borrelia burgdorferi sensu lato (sl), is transmit-
ted by hard ticks of the genus Ixodes (Lane et al., 1991). Borrelia
burgdorferi sl (BB) is spreading geographically (Hubalek, 2009),
and the number of reported cases is increasing, although this is
possibly partly due to increased diagnostic sensitivity.

BB belongs to the spirochaetes and shares characteristic traits
of this group, including the spiral shape and a remarkable motility
system enabling them to move efficiently through dense material
like connective tissues (Tilly et al., 2008). Their natural reservoir
are mainly small rodents, birds and reptiles that can harbor BB
and transmit them to uninfected ticks feeding on these animals.
The spirochaete is transmitted to humans mainly by Ixodes ricinus
and, to a lesser extent, by I. persulcatus (Lane et al., 1991).

The disease symptoms in humans can be roughly divided into
three infection stages. In most patients, the first noticeable symp-
tom consists of a slowly growing, circle-shaped skin rash known
as Erythema migrans (EM) around the tick bite appearing shortly

after infection. This early, localized infection symptom is often
accompanied by mild fever and flu-like symptoms.

Several days to weeks after infection, the bacteria begin to
disseminate to different tissues, where they cause strong inflam-
matory reactions and tissue damage. Tissues commonly affected
include the heart, joints and the central and peripheral nervous
system as well as skin tissue where the pathogen can cause mul-
tiple EM lesions. In the U.S., approximately 60% of untreated
patients develop an inflammation of the synovial tissue, particu-
larly in the large joints, referred to as Lyme Arthritis (Steere and
Glickstein, 2004). Among other possible routes of infection, e.g.,
along peripheral nerves, hematogenous dissemination of BB seems
to occur frequently at least in patients in the USA (Rupprecht et al.,
2008). This stage of the infection lasts up to 6 months.

If left untreated, symptoms can occur more than 6 month up to
years after disease onset; in fact, some symptoms have been shown
to persist for more than 10 years (Åsbrink and Hovmark, 2009;
Stanek et al., 2011), presumably by persistent infection (Steere and
Glickstein, 2004). At any of these stages, the disease can be treated
by antibiotics with a high degree of success (Nau et al., 2009),
although Lyme Arthritis fails to resolve in a minority of patients
despite apparently effective antibiotic treatment, possibly due to
an autoimmune reaction triggered by the infection (Steere et al.,
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2006). The different origins and exact nature of the chronic disease
are, however, under debate (Feder et al., 2007).

When entering the mammalian host, BB is confronted first
with a strong innate immune response. The first lines of defense
include the attack of the spirochaetes by the complement system
that opsonizes the spirochaetes and attracts, among other leuko-
cytes, macrophages and neutrophils that have been shown to kill
BB efficiently in vitro (Montgomery et al., 2002). When confronted
with three times larger spirochaete concentrations in an in vitro
assay, human polymorphonuclear cells and monocytes were both
shown to ingest and kill the bacteria rapidly: after 60 min, 41–51%
of the spirochaetes were phagocytized, and more than 50% of
the ingested cells were dead within 30 min (Peterson et al., 1984).
Additionally, mice and humans can produce antibodies against
surface proteins of BB (Sadziene and Barbour, 1996).

The fact that despite the strong and effective early immune reac-
tion, mammalian hosts frequently fail to clear the infection and
that BB can often disseminate throughout the body remains strik-
ing. Even more surprising is the large population size that the bac-
teria reach at the infection site after an initial immune response has
almost cleared the infection (see Table 1; Åsbrink and Hovmark,
2009). Given that dissemination of the bacteria has been shown as
early as 2 days after experimental infection in mice (Barthold et al.,
1991), active emigration from the infection site might aid the bac-
teria in escaping the host’s early immune response. Furthermore,
BB has been shown to actively alter the expression of several outer
surface proteins in reaction to immune responses of the host (de
Silva and Fikrig, 1997; Hodzic et al., 2003).

In this study, a deterministic model is developed to understand
the interactions between BB and its mammalian host in the first

Table 1 | Spirochaete counts per 106 mouse tissue cells as determined

by qPCR (Pahl et al., 1999).

Time p.i. Sample no. Infected foot Contralateral foot

1 h 1 12,592 0

2 751 0

3 h 1 16,306 0

2 12,265 0

6 h 1 11,999 0

2 ND 0

12 h 1 287 0

2 ND 0

24 h 1 415 0

2 642 0

72 h 1 880 0

2 ND 513

8 days 1 28,000 0

2 146,067 0

15 days 1 6,667 343

2 5,429 13,889

55 days 1 5,278 2,200

2 8,644 159

Only the development in C3H/HeJ mice is shown here; spirochaete populations

in BALB/c mice develop similarly (Pahl et al., 1999).

stages of the infection. The model is used to elucidate how the bac-
teria evade the immune response, i.e., whether active emigration
from the infection site, limited phagocytic capacity, or molecular
adaptations of BB are critical for surviving the first line of defense
by the innate immune response and to allow for a second growth
phase reaching even higher bacterial loads. In this context, the
importance of the adaptive immune system for controlling the
infection is investigated.

RESULTS
Our model is based on a study with mice infected experimentally
with BB by Pahl et al. (1999). The spirochaete burden was mea-
sured using a quantitative polymerase chain reaction (qPCR) over
the infection course. To analyze the kinetics of dissemination, two
different mouse strains, disease-resistant BALB/c mice and sus-
ceptible C3H/HeJ mice were infected with BB and the spirochaete
load was quantified at different tissues. Although the concentra-
tion of spirochaetes reached in these experiments differed between
the two strains, the overall pattern was similar between the two
strains. This modeling approach focuses on bacterial dynamics
in C3H/HeJ mice, as they develop symptoms resembling Lyme
disease in humans and are commonly used as a model organism
for Lyme disease. Table 1 summarizes spirochaete counts per 106

mouse cells as measured by Pahl et al. Out of the six tissue sites
analyzed experimentally, we consider the infection site at the hind
foot and the corresponding tissue site at the contralateral hind foot
that serves as a measure of disseminated infection.

The bacterial populations in C3H/HeJ mice show remarkable
dynamics at the infection site: spirochaetes are present in high
numbers at three and six hours post infection (p.i.), but the pop-
ulation diminishes drastically after 12 h and remains at low levels
at the following days; however, 8 days p.i., the BB population not
only recovers, but reaches very high concentrations far above the
level measured shortly after infection. At the contralateral site, the
bacterial population reaches its maximum later and without the
high intermediate population size observed at the infection site.
Although the bacterial populations in BALB/c mice reach only
lower levels, the dynamics are qualitatively similar. These data can
be interpreted as an immediate immune response that controls
the early infection effectively, but for unknown reasons fails to
clear the infection and is overwhelmed at later time points. In our
mathematical model, we attempt to explain this failure to clear the
infection by three different hypotheses: (1) the immune response
might be effective at the infection site, but dissemination and later
re-migration to the infection site could aid the spirochaetes in
escaping from this immune response, (2) the immune response at
the infection site could be effective only in the very first hours and
bacteria might overcome it due to limitations of innate immune
responses, and (3) molecular adaptations of BB might be necessary
to evade the host’s immune response.

HEMATOGENOUS MIGRATION OF BACTERIA
Our first model (depicted in Figure 1) attempts to explain the
persistence of the bacteria at the infection site by migration of BB
to different tissues. Hence, we consider two tissue sites potentially
harboring spirochaetes and describe bacterial population dynam-
ics and the immune response at each of these sites. The first tissue
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site described by this model is the infection site, i.e., the site at the
hind foot where the mouse has been infected, the second one is a
site at the contralateral hind foot. The bacteria live in the extracel-
lular space where they can actively move through the extracellular
matrix. Additionally, we also include bacterial dynamics in the
blood as a third compartment connecting the two sites.

In each of these three compartments, the spirochaetes replicate
at a maximal growth rate β. They are assumed to grow according
to a logistic growth model with a carrying capacity (per 106 mouse
cells) K. Hence, the growth of a bacterial population Bi in each of
the compartments can be formulated as

βBi

(
1 − Bi

K

)
(1)

The maximal growth rate of BB in in vitro assays can be
estimated at 0.06 h−1 (Barbour, 1983). The maximum bacterial
concentration has been estimated at 1–4·108 BB cells per milli-
liter liquid medium in the same study; however, since spirochaete
densities are given per 106 mouse cells and it is difficult to relate
the in vitro result to the in vivo situation in the tissue, we take the
maximal bacterial density measured in the experiments by Pahl
et al. (1999), approximately 1–5·105 cells per 106 mouse cells, as
the bacterial carrying capacity K.

In human patients, hematogenous migration of the bacteria
is associated with disease symptoms and dissemination to tissues
(Wormser et al., 2005). Whereas other routes of dissemination
like the lymph system or direct migration within connective tis-
sues cannot be excluded, their significance for the disseminated
infection remains unclear. Hence, it is assumed that BB primar-
ily disseminates hematogenously to the contralateral site and that
bacteria can migrate from each of the tissues to the blood and
vice versa. These migration rates, νi andμi are difficult to measure
experimentally and thus have to be estimated.

Phagocytic cells are considered as an important early immune
response. They are assumed to directly remove the bacteria. How-
ever, since the capacity of a single cell to kill bacteria is limited, we
approximate phagocytosis of bacteria by a function saturable in Bi:

ρBi

Cρ + Bi
· Mi , (2)

where ρ is the maximal rate of phagocytosis, Cρ is the bacterial
number where phagocytosis reaches 50% of its maximum and Mi

is the number of phagocytes in the compartment.
Bacterial dynamics for the populations at the infection site (B1),

the contralateral hind foot (B2) and the blood (BB) are described
by the ordinary differential equations

dB1

dt
= βB1

(
1 − B1

K

)
− ν1B1 + μ1BB − ρB1

Cρ + B1
· M1, (3)

dB2

dt
= βB2

(
1 − B2

K

)
− ν2B2 + μ2BB − ρB2

Cρ + B2
· M2, (4)

dBB

dt
= βBB

(
1 − BB

K

)
+ ν1B1 + ν2B2 − (μ1 + μ2)BB

− ρBB

Cρ + BB
· MB . (5)

The dynamics of the mice’ phagocytic cells must not be
neglected in this model. First, the production and death of
phagocytic cells have to be considered. Furthermore, since phago-
cytic cells encountering BB produce strong inflammatory signals
(Hirschfeld et al., 1999), they are assumed to recruit more phago-
cytic cells to the infected tissue site. Production of phagocytes by
the bone marrow is assumed to occur at a constant rate δ. In
addition to this, an infection-induced leukocyte production that
depends on and is saturable with the bacterial load in the tissues,
can be denoted as

σ (B1 + B2)

Cσ + (B1 + B2)
, (6)

with σ describing the maximal rate of BB-induced leukocyte pro-
duction. Both processes are assumed to increase the number of
leukocytes in the blood in our model.

Similarly, there is a physiological migration of leukocytes from
the blood to the tissues (φ) and an additional infection-induced
recruitment to the tissues (ψ):

ψBi

Cψ + Bi
MiMB . (7)

Note that this recruitment also depends on the phagocytic cells
already present in the tissue, because they are assumed to be the
main producers of chemokines, attracting further leukocytes, and
pro-inflammatory signals like TNF-α. The average lifetime of all
phagocytes is assumed to be limited by a death rate θ in all three
compartments.

The dynamics of phagocytic cell populations at the infection
site M 1, at the contralateral foot M 2, and in the blood MB are
described by the differential equations

dM1

dt
= φMB + ψB1

Cψ + B1
M1MB − θM1, (8)

dM2

dt
= φMB + ψB2

Cψ + B2
M2MB − θM2, (9)

dMB

dt
= δ + σ(B1 + B2)

Cσ + (B1 + B2)
− θMB − 2φMB

− ψB1

Cψ + B1
M1MB − ψB2

Cψ + B2
M2MB . (10)

Figure 1 gives an overview of this model including both
phagocytosis and bacterial dynamics at all three sites.

Although the host’s immune response to BB is limited by differ-
ent mechanisms in this model and bacterial migration is included
here, it fails to reproduce the bacterial dynamics observed at the
infection site under biologically reasonable conditions. With this
model, the immune control at the infection site can be over-
whelmed due to bacterial migration after a good initial success
in diminishing bacteria that leaves less than 20% of the initial
bacterial population alive (Figure 2). In this simulation the bacte-
rial load saturates on a high level. However, the intermediate peak
of the number of bacteria as found in experiments could not be
reproduced. The bacterial population always approaches the sat-
uration level from below. Very high numbers of bacteria in the
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FIGURE 1 | Overview of the BB infection dynamics model based on the

hematogenous migration of the bacteria. Boxes represent different
compartments of the organism, circles are the considered quantities, and
arrows/bars depict a stimulating/inhibiting influence of one quantity on
another. The small filled circles represent death of the phagocytes. B, M :
bacteria and phagocyte populations in the respective compartments, μ, ν:
migration rates between the blood compartment and the two tissue sites, β:

bacterial replication rates, K : carrying capacity for bacteria, ρ: phagocytosis
rate, Cρ : bacterial concentration with half-maximal phagocytosis rate, δ:
physiological phagocyte production rate, σ : phagocyte production in response
to infection, Cσ : bacterial concentration with half-maximal phagocyte
production, φ: physiological phagocyte migration to tissue, ψ : phagocyte
recruitment in response to infection, Cψ : bacterial concentration with
half-maximal phagocyte recruitment, θ : phagocyte death rate.

FIGURE 2 | Simulation of spirochetal dynamics at the infection site,

the contralateral hind foot and in the blood with a parameter set

leading to an effective early immune response that is overwhelmed

due to bacterial migration later.

blood are required to achieve long-term persistence of bacteria at
both sites, leading to a very high migration rate from the blood
back into the tissue. Although BB can be cultured from the blood

of many infected patients, this seems unlikely given that the blood
was consistently culture-positive for BB only after day 10 p.i. in
experimentally infected mice (Barthold et al., 1991). Within the
concept of two sites and the blood compartment, no solution to
this contradiction could be identified. The contradictions turned
out to be a robust property of the model within physiologically
relevant parameter values for bacterial replication and migration
rates.

SINGLE-SITE MODEL WITHOUT MIGRATION AND LIMITED
PHAGOCYTIC CAPACITY
Having dismissed bacterial migration as a likely reason for failure
of early control at the infection site, an alternative explanation
might be a limited killing capacity of the phagocytic cells: uptake
of the bacteria might be faster than clearance, leading to fully occu-
pied phagocytic cells that can take up no more bacteria. For this
model, only the infection site was considered, because the timing
of the infection rules out that the infection of the second infec-
tion site influences the immune control of the primary infection
site. Early control of the infection at the infection site is crucial
for the later outcome. If the site of the tick bite is excised during
the first 48 h, dissemination of the bacteria is not observed (Shih
et al., 1993). Hence, migration processes are ignored in this model.
Figure 3 depicts an overview of this model.

The average natural death of the phagocytic cells is again
described as a rate θ . To describe the limitation of bacterial
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FIGURE 3 | Model of the bacterial dynamics at the infection site with

limited phagocytic capacity of the immune cells. The phagocyte
population is subdivided into an active Ma and an inactive Mi compartment.
B: bacterial population at the infection site, β: bacterial replication rate, K :
carrying capacity, ρ: phagocytosis rate, φ: physiological phagocyte
migration into infection site, ψ : phagocyte recruitment as infection
response, C : bacterial concentration yielding half-maximal recruitment of
phagocytes, θ : phagocyte death rate, λ: inactivation rate of phagocytes, κ:
rate of re-activation of phagocytes.

uptake, the population of phagocytic cells is subdivided into two
compartments, one population Ma being active and able to phago-
cytose bacteria and the other one, Mi, in a saturated, inactive state,
unable to take up more bacteria. The transition to the inactive state
is modeled proportional to the number of bacteria at the infection
site at a rate λ. Inactive phagocytic cells are allowed to return to
the active state at a rate κ .

Again, bacterial replication is assumed to follow a logistic
growth model with the same parameters used in the previous
approach. However, since a limitation of the phagocytic capac-
ity is modeled explicitly here, the phagocytosis rate is modeled
as simply being proportional to the number of phagocytes and
bacteria in the compartment:

ρBMa , (11)

where Ma is the number of active phagocytes that are able to take
up more bacteria. Hence, the bacterial dynamics can be described
by the differential equation

dB

dt
= βB

(
1 − B

K

)
− ρBMa . (12)

Recruitment of leukocytes is also modeled similarly to the pre-
vious model. A low physiological, bacteria-independent migration
φ into the infection site is combined with a bacteria-dependent
log-sigmoidal recruitment

ψB

C + B
M , (13)

with M being the sum of all macrophages. The phagocyte
dynamics in the model can be described by the differential

FIGURE 4 | Simulation of spirochetal dynamics in an infection at a

single-site. In this model, the phagocytic capacity of the phagocytes

limits the immune reaction and prevents control of the infection. B:
bacteria population, Ma: active phagocytes, Mi: inactive phagocytes.

equations

dMa

dt
= φ + ψB

C + B
(Ma + Mi)− λBMa + κMi − θMa , (14)

dMi

dt
= λBMa − κMi − θMi . (15)

Adjustment of the ratio of the phagocytosis rate to the transi-
tion to the inactive state, ρ

λ
, regulates the phagocytic capacity of

the immune cells. Figure 3 gives an overview of this second model.
This much simpler model is able to explain the recovery of the

bacterial population between day 3 and day 8 p.i. (Figure 4). How-
ever, it requires that the phagocytic cells are saturated quickly and
return to the active state only very slowly – the phagocytes have to
operate at the very limit of their uptake capability for several days.
The clearance half-time of ingested BB is approximately 20 min
(Montgomery and Malawista, 1996), making limited phagocytic
capacity as an explanation for the failure to clear the early infec-
tion seem unlikely. In addition, as in the hematogenous migration
model, with this model we could not identify any possibility to
reproduce the measured second peak together with the second
reduction of the bacterial load.

SINGLE-SITE MODEL WITH BACTERIAL ADAPTATION AND ADAPTIVE
IMMUNE RESPONSE
In a third model, it is hypothesized that molecular adaptation of
the spirochaetes is critical for BB to survive the first days to weeks
of the infection. It is known that BB alters the expression of sev-
eral outer surface proteins in response to immune reactions of its
host and employs a variety of different immune evasion strategies
(Tsao, 2009).

Considering the different mechanisms to hide from the host’s
immune mechanism and the critical role of the innate immune
response early in BB infection, especially the fact that there are
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adaptations to the innate immune response, it seems necessary to
include this in the mathematical model. However, the impact and
exact nature of these molecular adaptations is far less understood.
It is difficult to estimate to what extent a molecular adaptation
protects the bacteria from an immune response. We approximate
this task by assuming that there are two different varieties of
BB: one is infecting the mouse and is susceptible to the innate
immune response (Bt), the second is resistant and is not directly
phagocytosed (Bm; Figure 5).

In this model, we focus again on a single infection site. Bac-
terial growth is described by a logistic growth model using the
same parameters as in the previous models. However, there are
now two different BB compartments. The first, Bt, has not seen
the host environment in the mouse and is thus not adapted to the
mammalian immune response. This population is susceptible to
phagocytosis, but adapts to the host environment at a rate α, not
being recognized by the phagocytes after this adaptation. The host
environment is constantly present as a stimulus inducing the tran-
sition from the susceptible to the resistant state. This is reflected
in the model by an irreversible transition to the robust state. The
dynamics in the two different BB compartments can be described
by the following differential equations:

dBt

dt
= βBt

(
1 − Bt + Bm

K

)
− αBt − ρBt M , (16)

dBm

dt
= βBm

(
1 − Bt + Bm

K

)
+ αBt . (17)

FIGURE 5 | Model of the bacterial dynamics at the infection site with

molecular adaptations of the pathogen and a simple representation of

the adaptive immunity. Vulnerable BB Bt enter the infection site and adapt
at a rate α to a state where they are not recognized by phagocytes
anymore. These adapted bacteria (Bm) can be bound by antibody I (not
shown), making them susceptible again. Bt: phagocytosis-susceptible
bacteria, Bm: adapted bacteria, B∗

m : antibody-bound bacteria, beta: bacterial
replication rate, K : carrying capacity, ρ: phagocytosis rate, φ: physiological
phagocyte migration into infection site, ψ : phagocyte recruitment as
infection response, C : bacterial concentration yielding half-maximal
recruitment of phagocytes, θ : phagocyte death rate, α: bacterial adaptation
rate (transition to resistant state), μ: antibody binding rate, ν antibody
dissociation rate, I antibody concentration.

Choosing α appropriately high, a complete transition from the
susceptible to the robust state is achieved. However, with all bacte-
ria now being resistant against the only immune response modeled
so far, it is obvious that the infection cannot be controlled in this
model. C3H mice develop antibody titers to BB as early as 7 days
p.i. (Barthold et al., 1991). Opsonized bacteria can be seen as sus-
ceptible to phagocytosis again. We introduce a new quantity I into
the model, reflecting the antibody concentration. As including
antibody production and degradation is far beyond the scope of
this model, we describe the antibody concentration simply as a
time-dependent function reflecting the antibody titers measured
in experimentally infected mice:

I (t ) =
⎧⎨
⎩

0 t ≤ tig
Imax(t−tig )

n

t n
1/2+(t−tig )

n t > tig
, (18)

where tig represents the time when the antibody production
starts, t 1/2 denotes the time when the antibody concentration
reaches its half-maximal value and I max is the maximal antibody
concentration reached. As this is a phenomenological description,
parameters have to be estimated based on experimental data. The
antibody production term is based on IgM titers measured by
Barthold et al. (1991). Figure 6 shows the fit of the function I (t ) to
IgM titers against BB normalized to 1. The measured IgM titers, in
contrast to our fit, show a decline at the last measurement>400 h.
However, since IgG antibodies at that time started to show signif-
icant concentrations in the same studies, we do not consider this
decline in our model, as these antibodies complement the IgM
response. To capture the adaptive immune response at this time
more accurately, the model would have to be extended to reflect
the difference in diffusibility and efficacy of the different immune
strategies as well as the adaptations of the bacteria to the presence
of IgG antibody, which is beyond the scope of the present study.

FIGURE 6 | Experimentally measured IgM titers (Barthold et al., 1991),

normalized to 1, and the corresponding function given by equation 18

with Imax = 1, �tig = 72, t 1/2 = 100 and n = 4.
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The maximal antibody concentration in the tissue is difficult to
estimate, as the concentration in the serum is most likely higher
than in the tissue. However, since to our knowledge, the antibody
concentration in the tissue has not been determined experimen-
tally and also varies between different mice and pathogen strains,
we take the IgM serum concentration measured by Wooten et al.
(2002) 2 weeks p.i. as approximation of the antibody concentration
in the tissue.

The antibody can now bind reversibly to the phagocytosis-
resistant spirochaetes Bm, leading to a third, opsonized bacterial
population B∗

m . Binding and dissociation of the antibody can be
described by

dBm

dt
= −μI Bm + νB∗

m , (19)

dB∗
m

dt
= μI Bm − νB∗

m , (20)

where μ denotes the binding rate and ν the corresponding disso-
ciation rate. Note that the antibody consumption by the binding
process is ignored in this approach. Combining equations 17 and
19/20 and considering the antibody-bound bacteria B∗

m to be sus-
ceptible to phagocytosis, we can express the bacterial dynamics at
the infection site as

dBm

dt
= βBm

(
1 − Bt + Bm

K

)
+ αBt − μI Bm + νB∗

m , (21)

dB∗
m

dt
= μI Bm − νB∗

m − ρB∗
mM . (22)

Since we do not consider the limited phagocytic capacity to be
critical for the survival of the pathogen, the distinction between
active and saturated phagocytes is obsolete. Recruitment and death
of phagocytes are modeled as before. The differential equation
describing their dynamics is thus straightforward:

dM

dt
= φ + ψB

C + B
M − θM . (23)

Numerical simulation of the system shows that the model is able to
reproduce the experimental data (Figure 7A). The parameter set
used for this simulation is shown in Table 2. The three individual
sub-populations of BB show a quick transition from the initial,
vulnerable state to the “phagocytosis-resistant” state (Figure 7B).
Already 1 day p.i., most bacteria have adapted to the immune
response in our model; 2 days p.i., the initial, vulnerable popula-
tion is almost extinct. This fast adaptation is achieved by regulating
the parameter α and seems reasonable given the fact that in vivo,
already 2 days p.i. BB has completely downregulated the tick-stage
specific ospA gene (Hodzic et al., 2002). Although the leukocyte
recruitment is limited in the model, this limitation alone could
not rescue the bacterial population, as relatively low phagocyte
numbers in the beginning are sufficient to drastically reduce the
bacterial population size (Figure 8).

DISCUSSION
Our three modeling approaches presented here try to give three
different explanations for the survival of BB in the first days of

FIGURE 7 | Numerical simulation of the BB infection model with

adaptation of the spirochaetes and humoral immune response. (A)

Total number of spirochaetes per 106 mouse cells in experiment (Pahl et al.,
1999) and simulation. The parameters used are described inTable 2. The
simulation result is shown as the sum of all three BB sub-populations. (B)

Borrelia sub-populations. Bt is the initial, vulnerable BB population, Bm the
adapted, resistant one, and B∗

m antibody-bound spirochaetes.

the immune response. All three models can explain this, but in
the first two approaches, this is only possible in a narrow range of
parameters that is biologically unlikely, e.g., with extremely high
bacterial replication and migration rates or with a fast saturation
of the phagocytes (i.e., low phagocytic capacity) and a slow diges-
tion rate within the phagocytic cells. The high population size that
the spirochaetes reach at the infection site after the infection was
almost cleared is striking and can only be explained by the third
model presented here, which includes bacterial adaptations to the
immune response of the host.

The first model tries to explain the failure to clear the infection
by spirochetal escape to other tissues in the body. The bacteria
might escape to other tissues, replicate there and then migrate
back to the blood and from there into the infection site. However,
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Table 2 | Parameters used for the numerical simulations in Figure 7A.

Parameter Unit Value Derived from Description

β h−1 0.06 Barbour (1983) Bacterial growth rate

K cells 150,000 Max. value from Pahl et al. (1999) Bacterial carrying capacity

α h−1 0.0006 Estimate Bacterial adaptation rate (transition to resistant state)

ρ cells h−1 0.005 Estimate Phagocytosis rate

Imax μg ml−1 8.5 Wooten et al. (2002) Antibody concentration

t h 72 Barthold et al., 1991; phenomenology) Time until antibody response starts

t1/2 h 100 Barthold et al., 1991; phenomenology) Time until antibody response reaches half-maximal value

n – 4 Barthold et al., 1991; phenomenology) Hill coefficient in antibody response function

μ ml μg−1 h−1 0.0085 Estimate Antibody binding rate

ν h−1 1 Estimate Antibody dissociation rate

φ cells h−1 0.1 Estimate Physiological phagocyte migration to tissue

ψ h−1 0.001 Estimate Phagocyte recruitment (infection response)

C cells 1000 Estimate Bacterial population size that yields half-maximal phagocyte

recruitment

θ h−1 0.0076 van Furth and Diesselhoff-den Dulk (1970) Phagocyte death rate

FIGURE 8 | Numerical simulation of the BB infection model with

adaptation of the spirochaetes and humoral immune response. Btot is
the total bacterial population size, M the number of phagocytic cells.

this process would have to be very fast to explain the dynamics
measured at the infection site: to overcome the immune response,
a high bacterial concentration in the blood is required. A large
amount of bacteria has to migrate to the infection site to lead to a
high concentration of bacteria that is in excess of the number of
bacteria that can be digested by the phagocytes. Considering pre-
vious studies on experimentally infected mice of the same strain
(Barthold et al., 1991), this seems unlikely. Blood samples of these
mice were not consistently tested positive on BB before day 10
p.i., indicating that the average spirochaete load in the blood was
probably not very high in the first days. This is confirmed by later
results where culture-positive on BB were only found 2 weeks p.i.
(Hodzic et al., 2003) and even at this time only in one out of five
tested mice. One factor that contributes to this fact is that there is

a strong dilution effect for the bacteria in the blood: the spatially
limited tissue area can yield a high concentration of bacteria. A
fraction of these bacteria now migrates through the endothelial
barriers into the blood stream, where it is dispersed in a much
larger volume. Furthermore, although bacteria can move in the
extracellular space, migration through endothelial barriers is an
active process involving bacterial movement through dense tis-
sues and binding of host factors, likely resulting in a slow process.
In contrast, at the infection site, the bacterial population recovers
at earlier times from the innate immune response. It seems thus
unlikely, that the recovery of the spirochetal populations from
the initial immune response at the infection site results from the
re-immigration of bacteria from the blood.

The second model neglects migration processes of the bacteria
and tries to explain the failure of the immune response by a limited
phagocytic capacity. Phagocytes might take up bacteria, but fail to
digest them fast enough. The phagocytic cells would engulf many
bacteria, but stop to phagocytose more due to physical restrictions,
becoming inactive until the bacteria are digested. In our model,
this is expressed by introducing a population of inactive phagocytic
cells. However, we could not reproduce the dynamics measured at
the infection site using this model. It is possible to achieve a recov-
ery of the bacterial population in the model, but this requires a
large fraction of the phagocytic cells to be in an inactive state. The
short clearance time of BB in macrophages (Peterson et al., 1984)
and the generally high capacity of phagocytic cells to engulf parti-
cles (Cannon and Swanson, 1992) makes this assumption unlikely
from a biological point of view. In addition, the final reduction of
the bacterial population at day 7 p.i. could not be reproduced by
this model.

The third model does not rely on phagocytes reaching the limit
of bacteria uptake. Instead, a very simple phagocytosis model is
employed; phagocytosis is limited only by the amount of available
phagocytic cells in this model which is determined by the recruit-
ment of cells. There is solid evidence for a number of different
adaptations of BB (Zhang and Norris, 1998; Hodzic et al., 2003;
Grimm et al., 2004; Palmer et al., 2009; Tsao, 2009) to different
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factors of the host environment, including immune responses. A
classical example of these adaptations is the reciprocal regulation
of the surface proteins OspA and OspC. The former is a tick spe-
cific protein that is exclusively expressed when the spirochaete is
in the tick’s midgut, but downregulated in the mammalian host
environment. OspC is only expressed inside the mammalian host,
and is crucial for dissemination and survival of the spirochaetes
in the early stages. The downregulation of OspA has been shown
to be suppressed in reaction to the host’s immune response, which
is also true for other surface proteins (Hodzic et al., 2003). These
adaptations are included in the third modeling approach.

It was assumed in this third model that BB becomes com-
pletely resistant against phagocytosis by immune cells. This is a
strong assumption and the situation is probably different in vivo,
as the bacteria are recognized and attacked via different path-
ways (Schröder et al., 2008). However, this simplification allows
to estimate the influence of a molecular adaptation to a host
response without making further assumptions about different
innate immune processes that are not completely resolved. The
transition of the whole population to the resistant state happens
fast. But, surprisingly, the influence of the rate α on the speed
of this transition is low. The transition is facilitated by removing
bacteria susceptible to phagocytosis and by this allowing the resis-
tant population to replicate faster within the limits imposed by the
carrying capacity K for bacteria in the logistic growth function.

After the peak on day 8 p.i., the bacterial population decreases
again. This coincides with an early IgM antibody response that
may start to control the infection at this time. The antibody mod-
eled in this approach binds to the spirochaetes and is assumed to
make them susceptible to phagocytosis again. The affinity of these
antibodies has not been investigated to our knowledge. Also, anti-
body responses to BB have different targets, making it difficult to
determine the antibody affinity that is represented by the ratio of
the dissociation and binding rates of the antibody ν

μ
in our model.

As the dissociation constant widely determines the asymp-
totic bacterial load (Figure 9), these rates were estimated to fit

FIGURE 9 | Single-site model with bacterial adaptation and adaptive

immune reaction. Simulations were done with different values for ν

μ
as

shown in the figure.

the bacterial levels measured experimentally at 55 days p.i. The
ratio ν

μ
used in our simulations, corresponding to a dissociation

constant KD = 1.3·10−7 M, can be considered to be in a realistic
range of IgM affinities. For example, human IgM antibodies have
been shown to bind to different human antigens with dissocia-
tion constants between 10−6 and 10−8 M (Diaw et al., 1997). The
presented results are robust within this experimental range of dis-
sociation constants. However, the resulting asymptotic bacterial
load is quantitatively lifted up and down in dependence on its
exact value (see Figure 9).

To evaluate the robustness of this last model, single parameters
like the phagocytosis rate ρ or reasonable combinations of para-
meters like ν

μ
were varied. The fact that there is a population of

bacteria in our model that is not attacked by the phagocytes at
all before the IgM response is visible makes the overall behavior
of the system robust to strong variations in different parameters;
the parameters ρ and ψ can, however, change the behavior quali-
tatively, since setting them arbitrarily low leads to uncontrolled
replication of the bacteria in the early stages of the infection.
For the later development, the antibodies’ dissociation constant ν

μ

determines the bacterial population size in the late infection. This
population size, however, cannot be interpreted as a real equi-
librium, since the biological situation is more complicated due
to different adaptive immune strategies, adaptations of the bac-
teria to these immune strategies and the presence of bacteria in
immunoprivileged niches like the synoviae.

Our model is only intended to capture the first few weeks of
the infection, specifically why the spirochaetes are not removed
from the infection site. More sophisticated models of the spe-
cific immune response would be required to describe later stages
and investigate the persistence of BB. For example, the IgG
response that reaches its maximum significantly later would have
to be included. Furthermore, for long-term persistence of the
spirochaetes, the migration to different tissues might still be
important even though the present analysis showed that its role is
not important in the early stage of the infection. BB aligns with
collagenic fibers in many tissues by binding to different host fac-
tors which might provide a protected niche for spirochetal survival
(Steere and Glickstein, 2004; Rupprecht et al., 2008).

The model could also be extended to better describe the in vivo
situation. Currently, the model is based on experimental data from
experimentally infected mice,where both the effect of the tick envi-
ronment before infection and the influence of the tick bite itself
are missing, as the mice are infected intradermally with a syringe.
In particular, immunosuppressive components of tick saliva can
be expected to have an influence on the infection dynamics and
control of the disease. Such effects are currently embedded into
the phagocytosis rates without being explicit.

Our approach has shown that the representation of different
mechanisms of bacteria-host-interaction in mathematical models
allows to disentangle their relevance in different phases of a bac-
terial infection. In the case of BB, the measured dynamics of the
bacterial load provides sufficient constraints to exclude specific
mechanisms and to favor others. However, the relevance derived
from the modeling is valid only in the early stage of the infection.
Thus, this model for the BB infection dynamics can be used to
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simulate and optimize therapeutical approaches in the first days
after infection.

MATERIALS AND METHODS
Numerical simulations of the model were done using the LSODA
solver for Ordinary Differential Equations implemented in the
library deSolve for the R statistics language and in our own
implementation of a fifth order Dormand-Prince method in C++.

Parameter values were derived from literature data where avail-
able and otherwise estimated in an iterative approach. First, the
phagocytosis rate ρ, the phagocyte recruitment ψ and its half-
maximal bacterial concentration, and the physiological phagocyte
migration φ were approximated by fitting the decline of the total
bacterial population size to the sharp initial decline measured
experimentally for the first days. Second, the parameter α was
adjusted to allow for recovery of the bacterial population accord-
ing to measured data by a transition from the vulnerable to a
resistant state of the bacteria. Setting α in this way also shows
an adaptation of most of the bacterial population after the first 3
days p.i., reflecting the time frame in which reciprocal regulation
of ospA and ospC as an example for molecular adaptations to a
changed host environment can be found in vivo (Hodzic et al.,
2003) and that is hence considered as a realistic time required for

the majority of a bacterial population to adapt to a host’s immune
response. For this second step, the experimental data up to the sec-
ond peak in the bacterial population size were taken into account.
In the last step, the binding affinity of the antibody, μ

ν
, was esti-

mated to match the size that the bacterial population approaches
at the end of the experimental measurements. The sum of squared
errors was used as measure of discrepancy between data and pre-
dictions. When estimating parameters without prior knowledge
about the exact values, parameters were set to physiologically rea-
sonable values and the parameter space was scanned within a
maximum of biologically plausible range; e.g., for the antibody dis-
sociation constant, ν

μ
, published values lie within 10−8 to 10−6 M,

so ν
μ

was varied from 10−9 to 10−5 M and the fit optimized within
this range. The parameters used for our final model are given in
Table 2 and explained in the text.
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Opportunistic human pathogenic fungi like the ubiquitous fungus Aspergillus fumigatus
are a major threat to immunocompromised patients. An impaired immune system renders
the body vulnerable to invasive mycoses that often lead to the death of the patient. While
the number of immunocompromised patients is rising with medical progress, the process,
and dynamics of defense against invaded and ready to germinate fungal conidia are still
insufficiently understood. Besides macrophages, neutrophil granulocytes form an impor-
tant line of defense in that they clear conidia. Live imaging shows the interaction of those
phagocytes and conidia as a dynamic process of touching, dragging, and phagocytosis. To
unravel strategies of phagocytes on the hunt for conidia an agent-based modeling approach
is used, implemented in NetLogo. Different modes of movement of phagocytes are tested
regarding their clearing efficiency: random walk, short-term persistence in their recent
direction, chemotaxis of chemokines excreted by conidia, and communication between
phagocytes. While the short-term persistence hunting strategy turned out to be superior
to the simple random walk, following a gradient of chemokines released by conidial agents
is even better. The advantage of communication between neutrophilic agents showed a
strong dependency on the spatial scale of the focused area and the distribution of the
pathogens.

Keywords: agent-based modeling, individual-based modeling, host-pathogen interaction, immune defense, oppor-

tunistic pathogenic fungi, chemotaxis, video analysis of life cell imaging

1. INTRODUCTION
The immune system of healthy humans successfully defends them
against ubiquitous fungi like Aspergillus fumigatus, Candida albi-
cans, and Cryptococcus neoformans. A weakened immune defense,
due to diseases like infection with human immunodeficiency virus
(HIV) or in the course of medical treatment, is compromised in
the ability to repel those opportunistic fungal pathogens (Richard-
son, 2005; Karkowska-Kuleta et al., 2009). The recent medical
progress especially in immune therapy, transplantation therapy,
and life-prolonging measures leads to a growing number of suscep-
tible patients (Richardson, 2005; Karkowska-Kuleta et al., 2009).
Invasive mycoses caused by A. fumigatus lead to mortality rates
of 60–90% (Karkowska-Kuleta et al., 2009). Thus, understand-
ing infection dynamics and the response of the immune system
to invading fungi is an essential step on the way to stop the
opportunistic pathogens from taking over.

Inhaled conidia of A. fumigatus that are not repelled by respi-
ratory tract mucociliary defenses lead to a complex response of
the immune system (Shoham and Levitz, 2005). Here, we focus on
the role of neutrophil granulocytes (neutrophils). These phago-
cytes are recruited by chemokines like IL-8 to the site of infection
(Shoham and Levitz, 2005). In case of getting in contact with
fungal conidia, phagocytes can engulf, and degrade them. The
recruitment of neutrophils occurs within 4–8 h of intratracheal
conidial infection, the same time A. fumigatus needs for conidial

germination and hyphal formation (Hohl, 2009). Hyphae can
invade pulmonary tissues, enter the bloodstream, and disseminate
to remote tissues, leading to life-threatening systemic infections.
Thus, clearance of fungal conidia should occur rapidly. To eluci-
date the dynamics of the interaction of A. fumigatus conidia and
neutrophils live imaging data have been recorded and analyzed
(Behnsen et al., 2007).

The goal of the present paper is to make a first step in analyzing
these data by computer simulations. Computational immunology
as a method to complement wet lab immunology comprises sev-
eral mathematical methods (for a review see reference Forrest and
Beauchemin, 2007). While game-theoretic models of immuno-
logical aspects are focused on states of equilibrium (Hummert
et al., 2010), agent-based models (ABMs) are well-suited to model
spatially heterogeneous, dynamic processes like interactions of
immune cells with conidia. The main feature of ABMs is that a
complex system’s behavior is modeled by actions and interactions
of entities called agents which themselves behave according to
rules.

In theoretical immunology, models are composed of agents
belonging to immune defense, e.g., phagocytes, as well as agents
representing evading pathogens, e.g., fungal or bacterial cells.
Behavioral rules of agents are based on experimental findings
complemented by hypothetical properties. Thus, the impact of
hypothetical properties on the system’s behavior can be tested,
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predictions can be made and for validation, the system’s behavior
in silico can be compared with the experimentally observed one.
For reviews on ABMs in theoretical immunology see references
Bauer et al. (2009), Chavali et al. (2008).

We implemented an ABM in NetLogo (Wilensky, 1999) to test
the impact of different hunting strategies of neutrophils on their
phagocytosis efficiency. A central question tackled in this work is
whether chemical communication and chemotaxis of neutrophils
improve the clearing efficiency. Germinating conidia of A. fumiga-
tus activate the complement system and induce neutrophil chemo-
taxis (Waldorf and Diamond, 1985). Further, it is known that
neutrophils have the ability to recruit other neutrophils (Scapini
et al., 2000).

2. MATERIALS AND METHODS
2.1. VIDEO ANALYSIS OF LIFE CELL IMAGING
There exist well established techniques to visualize fungal infec-
tions in hosts, such as confocal laser scanning microscopy (Pad-
dock, 1999) and bright-field microscopy (Pluta, 1988). The latter
was used in this approach. The majority of produced data are
images with immune cells and conidia, either as bright-field or
fluorescence images. Important quantities that characterize the
dynamic cellular behavior are the cell classification, cell count-
ing, shape and extent measurements, cell-cell interactions, and,
for time-lapse data, cell motility, and velocity. However, the image
analysis forms the bottleneck in these studies. Automation of this
process is the goal of biological image analysis. This was already
realized for the two-dimensional case of phagocytosis assays (Mech
et al., 2011). However, a specific application to temporally resolved
phagocytosis assays of A. fumigatus conidia and phagocytes in a
fully automated fashion is not available, today.

We analyzed video material (15 sequences) of the first 90 min
of an in vitro interaction of neutrophils and conidia of A. fumiga-
tus (videos have been provided by the research group of Matthias
Gunzer). Every 30 s a frame was recorded which corresponds to
180 frames for sequences of 90 min length.

The analysis comprises three steps: segmentation, classification,
and tracking. The segmentation of frames was done for each frame
separately similar to the approach used in (Mech et al., 2011).
Erroneous segmentation results due to highly heterogeneous cell
morphologies and uneven illumination artifacts were corrected
manually. With that, each cell was recognized as an object. After-
wards, neutrophilic objects were semi-automatically tracked. Each
neutrophilic object was tracked from frame to frame using overlap
in two consecutive frames or, if no overlap existed, by searching for
the nearest neutrophilic object in the subsequent frame. During
the tracking an unique identifier was assigned to each neutrophilic
object as well as the changes in positions as velocities. Then, the
number of conidia which are freely moving, ingested, or dragged
were counted manually for each time step. The numbers of dragged
and ingested conidia were assigned to the respective neutrophils.
Thus, the phagocytosis rate of a neutrophil is the number of coni-
dia which a neutrophil ingested over time. Furthermore, adherence
of conidia may lead over time to ingestion by or dissociation from
neutrophils. In the former case respecting conidia were catego-
rized as dragged. Hence, the dragging rate depicts the number of
adherent conidia which did not dissociate from a neutrophil.

After the time-lapse data analysis the number of neutrophils,
the velocities, and number of associated and ingested conidia per
neutrophil as well as the number of conidia categorized as free,
ingested, or dragged, were available.

2.2. THE MODEL
The “hunt” of neutrophils for conidia is modeled by an ABM. The
behavior of neutrophilic agents as well as conidial agents is defined
by rules which is a key element of ABMs. Here, the rules are based
on properties extracted from the given video material of life cell
imaging (see subsection 2.1.) as described in subsequent sections.
We follow the ODD-protocol for describing ABMs (Grimm et al.,
2006, 2010).

2.3. PURPOSE OF THE ABM
Clearing conidia before they germinate can be seen as an action
enhancing the fitness of the organism. Different strategies of neu-
trophils in tracking and disposing conidia vary in their efficiency.
In this ABM approach we tested the impact of different tracking
modes of neutrophilic agents on their efficiency in reducing the
amount of free conidial agents. Simple random walk as well as a
short-term persistence in keeping direction, both without sensing
of chemotactic molecules were tested. Then, perception of excreted
metabolites of germinating conidia or signal-molecules from com-
plement system, thus all chemokines, was considered as well as
positive feedback activation via chemical communication between
neutrophilic agents. In a large-scale modeling approach repre-
senting a part of lung tissue we additionally tested the efficiency
of chemotactic communication between neutrophilic agents for
clustered distributions of conidial agents simulating an infection
scenario.

2.4. ENTITIES, STATE VARIABLES, AND SCALES
The ABM was initialized on a grid of 41 × 35 (=1,435) discrete
cells. The width of a grid cell fits the size of a conidium which
is about 3 μm in diameter. The evaluation of the life imaging
videos showed immigration and emigration of the motile cells
out of the scope. For the model we assumed an equal rate of
this events and therefore implemented periodical boundary con-
ditions. One time-step in the simulation refers to a 30 s interval and
matches the 2 frames per min pattern of the evaluated life imaging
videos. Simulations run over the first 90 min of neutrophil-conidia
interactions.

For a large-scale simulation a grid of 401 × 341 (=136,741) cells
was built. Thus, an area of more than 1 mm2 was covered. The
simulation was evaluated for 2,880 simulated time-steps, which
corresponds to 24 h after the initial infection. The model comprises
three types of entities: grid cells, conidial agents, and motile neu-
trophilic agents. See Tables A1–A3 in Appendix for state variables
and parameters.

2.5. DESIGN CONCEPTS
We tested and combined several modes of neutrophilic movement
to explain the in vitro efficiency of a population of neutrophils in
reducing the amount of free conidia. In the model approach that
incorporates diffusion of chemokines, excreted by the conidial
agents, neutrophilic agents adapt their movement to this signal.
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This assumption is supported by the observation of Waldorf and
Diamond (1985) that germinating conidia of A. fumigatus activate
the complement system and induce neutrophil chemotaxis. Scap-
ini et al. (2000) report the ability of neutrophils to recruit other
neutrophils. Thus, as a further hunting strategy communication
between neutrophilic agents that orientate on gradients of signals
was tested.

In our model we do not focus on the fitness functions of single
agents, but on the immune system as a whole, where the popula-
tion of neutrophils form a first line defense of a multi-cellular
organism. Here, the efficient reduction of free conidia, which
potentially germinate, infect the organism, and may decrease its
overall fitness, can be seen as the fitness function. Costs of differ-
ent hunting strategies have not been taken into account. None of
the agents did change their behavior due to any kind of increas-
ing experience or learning effects. In the model approaches with
diffusion of chemokines excreted by conidial agents and chemi-
cal communication between neutrophilic agents, latter were able to
sense and follow the gradients of these substances. Prediction: neu-
trophilic agents adjusted their movement in direction of the high-
est amount of these substances on the eight neighboring grid cells
(Moore neighborhood) which indirectly increased the probability
to encounter either a conidial agent (see sub-model diffusion of
chemokines in section 2.8.1.) or another neutrophilic agent, which
was activated by at least one dragged conidial agent (see sub-model
communication between neutrophils in section 2.8.1.) – which can
be seen as a positive feedback loop. The interaction of neutrophilic
and conidial agents was separated into two major types: dragging
of conidial agents and intake of them, corresponding to the video
material (see sub-model interaction of agents in section 2.8.2. and
Figure A1 in Appendix). Stochasticity: Each simulation started
with a random distribution of neutrophilic and conidial agents on
the grid. The direction of movement of neutrophilic agents was
chosen randomly for the random walk model. The velocities of
neutrophilic agents were chosen either to form a normal distrib-
ution or a log-normal distribution, which was derived from life
cell imaging data. We stored the fraction of free conidial agents,
neither dragged or phagocytized by neutrophilic agents, for a fixed

set of simulated time-steps, which correspond to the evaluated
timeframes of the video material.

2.6. INITIALIZATION
Small-scale simulation: Each simulation was initialized with a
random distribution and orientation of conidial agents and neu-
trophilic agents. Starting numbers of both agents (110 conidial
agents, 25 neutrophilic agents) were taken from one of 15 given
in vitro life cell imaging sequences (videos have been provided by
the research group of Matthias Gunzer). All experimental samples
contained between 68 and 127 conidia (mean: 100).

Large-scale simulation: 600 conidial agents were clustered in 4
randomly located spots on the grid. Cluster-size and number of
conidial agents per cluster were equal for all clusters at initializa-
tion. 100 neutrophilic agents were randomly placed onto the grid.

2.7. INPUT DATA
From one of the videos we derived a density-distribution of
the neutrophils’ velocity. A histogram and the fitted log-normal
density-distribution of the velocities is shown in Figure 1.

2.8. SUB-MODELS
2.8.1. Diffusion of chemokines by conidial agents and positive

feedback activation of neutrophilic agents
Two types of chemical signaling determining the movement
behavior of neutrophilic agents were considered in our model-
ing approach. We tested the impact of chemokines emitted by
conidial agents which could be recognized by neutrophilic agents
(Figure 2). Further, we allowed chemical communication between
neutrophilic agents, assuming that the contact with a conidium
can activate and recruit other immune cells (positive feedback;
Figure 2). In our ABM the process of diffusion was expressed
by two distinct parameters: chemokine-diffusion-rate and num-
ber of diffusion steps per time-step (repetition-of-chemokine-
diffusion). Chemokine-diffusion-rate gives the fraction of mole-
cules in the source grid cell that is equally divided and transferred
to the eight neighboring cells (Moore neighborhood) in a single
diffusion step. Both parameters determine the chemical gradient
(see Figure 3).

FIGURE 1 | Plots of (left) histogram and fitted density-distribution of neutrophils’ velocity derived from life cell imaging (right) fitted continuous

log-normal density-distribution function.
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FIGURE 2 | ABM with (left) random walk of neutrophilic agents (middle)

diffusion of chemokines excreted by conidial agents, and (right) with

communication between neutrophilic agents, which causes a positive

feedback loop in activating the immune defense and an aggregation of

neutrophilic agents (see Appendix for sample videos of each movement

type).

FIGURE 3 | Effects of the parameters “repetition-of-chemokine-

diffusion” and “chemokine-diffusion-rate” on the process of diffusion

of chemokines excreted by conidial agents on the grid cells for a fixed

number of simulation-steps. A high value “repetition-of-chemokine-
diffusion” leads to flat gradient of chemokines, while a high
“chemokine-diffusion-rate” leads to a wider and faster diffusion of the
chemical signal.

2.8.2. Interaction of agents
From life cell imaging we derived four main states of a coni-
dial agent: it can either be free, dragged, phagocytized, or lysed
by a neutrophilic agent (see Figure A1 in Appendix). Free coni-
dial agents can be dragged by neutrophilic agents with a cer-
tain probability. This linkage can vanish with a certain prob-
ability. Then, the conidial agent is free again, or the dragged
conidial agent can be phagocytized with a certain probabil-
ity. Once a conidial agent is ingested it gets digested by the
neutrophilic agent after a fixed amount of time-steps (see
Figure 4). The progress of a typical simulation run is shown in
Figure 5.

3. RESULTS
For the interpretation of interactions of neutrophils with conidia
of A. fumigatus recorded by in vitro life cell imaging we tested in
an ABM several modes of movement of the neutrophilic agents
in their hunt for conidial agents. The remaining amount of free
conidial agents after a defined timespan was taken as a measure
for the efficiency of the applied hunting strategy of neutrophilic
agents. Different strategies were tested in a small-scale model cov-
ering about 10,000 μm2 as well as on a larger scale representing
about 1 mm2 of lung tissue.

3.1. SMALL-SCALE SIMULATION
The simulation was conducted over the first 90 min of interac-
tions, identical to the timespan of observation in life cell imaging
experiments, and was repeated 250 times for each parameter
combination.

3.1.1. Random walk, normally distributed velocity of neutrophilic
agents

The simplest way for neutrophilic agents to search conidial agents
while having no clue of their whereabouts is by searching ran-
domly, i.e., random walk. The velocity of neutrophilic agents was
assumed to be normally distributed. An increasing mean resulted
in a significantly decreased amount of free conidial agents at the
end of the simulations, while the impact of the SD was low (see
Figure 6).

3.1.2. Neutrophilic agents keep direction for a short timespan
(short-term persistence in direction)

Is it better to keep direction on the search and thus, to reduce
the probability of moving back where the area is already cleared?
Indeed, the efficiency of neutrophilic agents to phagocytize coni-
dial agents increased significantly with a higher probability to
hold the recent direction in the next time-step, which is called
short-term persistence (STP; see Figure 7). The gain in clearing
efficiency increases with the passing of time. The STP strategy pays
off especially at low amounts of remaining free conidial agents.

3.1.3. Diffusion of chemokines
Does following traces of the presence of conidia lead to a higher clear-
ing efficiency? Metabolic activities of germinating conidia as well
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FIGURE 4 |Two main procedures of the ABM. The setup-procedure
initializes the environment, the agents and the lists for storing the output-data.

The go-procedure is a for-loop over 180 time-steps, which corresponds to the
first 90 min of neutrophil-conidia interaction observed by live cell imaging.

FIGURE 5 | Progress of a typical simulation run. Neutrophilic agents (black) move on the grid randomly or search for free conidial agents (orange), which they
may drag (yellow), or phagocytize (red). Conidial agents, which have been phagocytized already (gray), remain in the neutrophilic agent for reasons of
visualization and do not further contribute to the simulation run.
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as recognition by the complement system result in certain mol-
ecules diffusing away from a conidium. Acting as a chemokine
they could be sensed by a neutrophilic agent that follows the
gradient. In Figure 8 the clearing efficiency is shown in depen-
dence on the diffusion parameters. If there is only one diffu-
sion step per time-step the chemokine-diffusion-rate does not
matter since the chemokines have only diffused to the next
neighboring grid cells. The chemokines have not reached far
and thus, the clearing efficiency is relatively low. For a high
repetition-of-chemokine-diffusion the gradient is too flat if the
chemokine-diffusion-rate is not very small. Optimal sets of para-
meters are a low repetition-of-chemokine-diffusion (but higher

FIGURE 6 | Influence of mean and SD of neutrophilic agents’ velocity

on clearing efficiency (SD as function of mean).

than one) with an arbitrary chemokine-diffusion-rate and a higher
repetition-of-chemokine-diffusion in combination with a low
chemokine-diffusion-rate.

3.1.4. Communication between neutrophils
Is it useful to call other neutrophils if a neutrophil was successful
in its hunt? In this model neutrophilic agents secrete communi-
cation molecules if they ingested a conidial agent. Other neu-
trophilic agents follow the gradient and help clearing conidial
agents. Surprisingly, at first glance, nearly any communication dis-
turbed the search for conidial agents (see Figure 9). At a closer
look on the initialization setup it becomes clear that the coni-
dial agents are distributed randomly. Thus, a found conidial agent

FIGURE 8 | Influence of diffusion parameters on clearing efficiency.
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FIGURE 7 | Mean amount of free conidial agents during simulation-time which corresponds to 90 min of in vivo interaction. The simulation was
repeated for each STP strategy 250 times.
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does not imply that other conidial agents are located nearby.
Communication between neutrophils leads to an accumulation
of neutrophilic agents on locations where conidial agents already
have been cleared. Hence, it is a better strategy to search at places
where no other neutrophilic agents are and thus, to retain the
initial random distribution.

FIGURE 9 | Influence of intra-neutrophilic communication on clearing

efficiency of randomly distributed conidial agents.

3.2. SIMULATION OF THE INTERACTION OF NEUTROPHILS AND
CLUSTERS OF CONIDIA ON A LARGER SCALE

In a large-scale simulation-approach we tested whether commu-
nication between neutrophilic agents increases their efficiency to
phagocytize conidial agents. In this setup the distribution of coni-
dial agents was clustered in several randomly located spots on the
grid. We evaluated the first 24 h after infection and documented the
number of conidial agents which were not yet dragged or phago-
cytized by neutrophilic agents. In this approach we focused on the
major parameters of a possible positive feedback stimulation of
neutrophils by other neutrophils, which were already in contact
with infectious conidia. Simulation results show that communi-
cation between neutrophilic agents significantly increases the effi-
ciency compared to the random walk model (Figures 10 and 11).
A high repetition-of-communication-signal-diffusion had a pos-
itive effect on the clearing efficiency. Here, the chemokines have
reached areas far away from the source and thus, could activate
neutrophilic agents that are far away from cluster of conidial
agents.

A repetition-of-communication-signal-diffusion of 3 seems to
produce as good results as higher repetition-of-communication-
signal-diffusion (see Figure 10) while computation time is shorter.
Hence, this parameter remained fixed for the next study while
upper-communication-threshold was varied. At the beginning of
the clearance process neutrophilic agents with a higher upper
threshold of communication signal perception were more suc-
cessful. Later on, the inverse situation occurred.

FIGURE 10 | Influence of the diffusion parameter “repetition-of-communication-signal-diffusion” on the clearing efficiency dynamics. For comparison
simulation results based on random movement of neutrophilic agents (black) and STP with a 75% probability of holding direction (gray) are shown.
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FIGURE 11 | Influence of the signal perception parameter “upper-

communication-threshold” on the clearing efficiency dynamics. For
comparison, simulation results based on random movement of neutrophilic
agents (black) and STP with a 75% probability of holding direction (gray) are

shown. The inset shows a zoom into the graph where a crossover of the
clearing efficiency for the highest (pink) and lowest (orange) “upper-
communication-threshold” occurs which can be interpreted as two opposing
clearing strategies. SE are indicated.

A high upper threshold of communication signal perception is
useful during the first hours where still many conidial agents are
present near to calling neutrophilic agents. At a later time, when
only few conidial agents remain in a cluster, a better strategy is
to move to the vicinity of successful neutrophilic agents, but not
nearby where the area is already cleared. This is realized by a small
upper threshold of communication signal perception.

4. DISCUSSION
Neutrophils play an essential role in the elimination of A. fumigatus
(Balloy and Chignard, 2009; Mircescu et al., 2009). Nevertheless,
the detailed mechanisms how these immune effector cells protect
the human host are still a matter of debate (Bruns et al., 2010).
One effector mechanism is phagocytosis of conidia (Behnsen et al.,
2007).

Different potential movement strategies of neutrophils in
tracking infectious conidia have been tested in an ABM to explain
the in vitro efficiency of a population of neutrophils in reduc-
ing the amount of free conidia. Simple random walk, random
walk with a tendency to keep the former direction (short-term
persistence) and chemotactic movement triggered by chemokines
excreted by conidia or communication signals sent out by other
neutrophils that already have found conidia have been considered.
The short-term persistence hunting strategy turned out to be supe-
rior to the simple random walk. A similar result has been found
in computer simulations on the effectiveness of various search

strategies at finding habitat patches (Zollner and Lima, 1999). Fol-
lowing a gradient of chemokines released by conidia is even better.
Then, the success in clearing conidia depends on the diffusion
parameters of the sensed molecules.

Neutrophils comprise both tracking strategies, short-term per-
sistence to direction and chemotaxis (Tranquillo et al., 1988). In
the absence of a gradient of a chemoattractant, they keep direction
over the scale of minutes.

A central question tackled in this work is whether chem-
ical communication and chemotaxis of neutrophils improve
the clearing efficiency. We found that the answer depends on
the spatial distribution of conidia, so that two cases can be
distinguished: (a) If conidia are distributed randomly, com-
munication does not pay off because it leads to an aggrega-
tion of neutrophils, so that many conidia are unaffected from
neutrophilic attacks. (b) If conidia are clustered, communica-
tion of neutrophils results in a higher clearing efficiency, since
attracting other neutrophils for a faster cooperative clearing
pays off.

Calenbuhr and Deneubourg (1992) achieved similar results
with a chemotaxis-diffusion model that describes collective hunt-
ing strategies using chemical communication in animals. It is
found that collective hunting is more efficient at low prey den-
sities whereas individual strategies are more efficient at high prey
densities. Clustering of conidia can be seen as decreasing the
density of the searched-for objects.
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The communication model includes two parameters for
cytokine recognition. A lower threshold of perception, and an
upper threshold for sensing communication signals between
immune cells. The large-scale simulation results showed a non-
linear effect of this upper threshold of cytokine recognition on the
efficiency of neutrophilic agents in clearing the tissue from infec-
tious conidia. If the upper-communication-threshold was high,
neutrophilic agents, activated by another “calling” neutrophilic
agent,directly followed the gradient of cytokines until they reached
the position of the calling agent. With lower values for the upper-
communication-threshold activated neutrophilic agents mainly
headed to the whole cluster of conidial agents, which significantly
increased their overall efficiency. Scanning through possible values
for this upper-communication-threshold revealed two opposing
strategies. For a high threshold of cytokine recognition the overall
efficiency of neutrophilic agents to clear the tissue was fast, but
after a simulated time of 24 h after infection this strategy was not
that efficient as simulation runs with a low threshold. We con-
cluded that the overall efficiency of a population of neutrophilic
agents can be either “fast but sloppy” possessing a high threshold
for communication signal perception or, “slow but thoroughly”
having a low threshold.

In an evolutionary context, we assume that selection would
favor hosts with a “fast but sloppy” immune-response by neu-
trophils against pathogens, like A. fumigatus. An infection is a

race against time and we expect that the immune system of hosts
are selected for a fast clearance to prevent conidial germination,
even if this might not be the most thorough strategy in the
long-run.

However, the possibility remains that neutrophils vary their
threshold in signal perception according to the current situation
comprising both strategies like they control chemotaxis via dif-
ferent concentrations of chemoattractants by G-protein signaling
(Zhang et al., 2009).
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APPENDIX

Table A1 | List of agents.

State variables Brief description

GRID CELLS

Size Corresponds to the mean conidium size of A. fumigatus of 2.5 μm

Radius of neutrophil 2.5 grid cells

Conidia-chemokines Amount of chemokines segregated by conidial agents

Neutrophil chemokines Amount of chemokines segregated by neutrophilic agents

CONIDIAL AGENTS

Size Same size as a grid cell

In-zone Stores the identity number of the neutrophilic agent in whose radius a conidial agent finds itself

Dragged – By which it is dragged

Caught – By which it is caught

Phagocytosis-counter Counts the time until a caught conidial agent is digested

NEUTROPHILIC AGENTS

Identity number Unique number for each neutrophilic agent

Size Size-ratio of neutrophilic and conidial agents is 2.5

Velocity Depends on movement mode

Direction Depends on direction mode

Catching Number of caught conidial agents

Dragging Number of dragged conidial agents

Phagocytized Number of phagocytized conidial agents

Table A2 | List of global parameters.

Parameter Brief description

SETUP

Initial-number-of-conidia Initial population size of conidial agents

Initial-number-of-neutrophils Initial population size of neutrophilic agents

Velocities-mode-of-neutrophils Setup of neutrophilic agents’ movement options

Direction-mode-of-neutrophils Setup of neutrophilic agents’ direction options

Move-conidia Conidial agents are moved randomly around their initial position

INTERACTION

Catch% Neutrophilic agents’ probability to: catch a free conidial agent

Drag% – Drag a free conidial agent

Drag-to-release% – Release a dragged conidial agent

Drag-to-catch% – Phagocytize a dragged conidial agent

Phagocytosis-capacity Maximum number of conidial agents which can be phagocytized by a neutrophilic agent

Phagocytosis-time Duration of phagocytosis
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Table A3 | Neutrophilic agents’ movement modes.

Parameter Brief description

Random walk Random walk of neutrophilic agents

Mean-neutros Option for normally-distributed mean of neutrophilic agents’ velocity (with fixed standard deviation)

Mean-normal dist Option for normally-distributed mean of neutrophilic agents’ velocity

SD-normal dist Option for normally-distributed standard deviation of neutrophilic agents’ velocity

Short-term persistence (STP) Neutrophilic agents hold their actual direction with a certain probability

Hold-direction Probability to hold given direction at the next step

Diffusion of conidia-chemokines Activation of neutrophilic agents through conidia-chemokines, neutrophilic agents follow chemokine

gradients

Amount-of-chemokines Amount of chemokines spread by the free conidial agents per time-step

Chemokine-perception-threshold Neutrophilic agents’ lower threshold of chemokine perception

Chemokine-diffusion-rate Degree of diffusion

Repetition-of-chemokine-diffusion Velocity of diffusion

Communication between neutrophils Neutrophilic agents follow chemokine gradients segregated by activated neutrophilic agents (positive

feedback-activation)

Activated neutrophil Attracts other neutrophilic agents (positive feedback-activation)

Communication-signal Signal strength of chemical communication spread by an activated neutrophilic agent

Decrease-of-communication-signal Option for reducing the strength of communication signal

Lower-communication-threshold Neutrophilic agents’ lower threshold of communication signal perception

Communication-over-chemotaxis Option to rank priority of chemokine perception and communication signal perception of neutrophilic

agents

Communication-signal-diffusion-rate Degree of diffusion

Repetition-of-communication-signal-diffusion Velocity of diffusion

LARGE-SCALE GRID WITH CLUSTERS OF CONIDIA

Number-of-conidia-clusters Initial number of spots of infection

Size-of-clusters Size of spot of infection

Density-of-clusters Number of conidial agents per spot of infection

Upper-communication-threshold Neutrophilic agents’ upper threshold of communication signal perception
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FIGURE A1 | Interaction of conidial and neutrophilic agents.

www.frontiersin.org April 2012 | Volume 3 | Article 129 | 108

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


ORIGINAL RESEARCH ARTICLE
published: 16 February 2012

doi: 10.3389/fmicb.2012.00051

Genome-wide scale-free network inference for
Candida albicans
Robert Altwasser 1*, Jörg Linde1, Ekaterina Buyko2, Udo Hahn2 and Reinhard Guthke1

1 Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
2 Jena University Language and Information Engineering Lab, Friedrich Schiller University, Jena, Germany

Edited by:

Franziska Mech, Hans Knöll Institute,
Germany

Reviewed by:

Anke Meyer-Baese, Florida State
University, USA
Steffen Rupp, Fraunhofer
Gesellschaft, Germany

*Correspondence:

Robert Altwasser , Research Group
Systems Biology/Bioinformatics,
Leibniz Institute for Natural Product
Research and Infection
Biology – Hans Knoell Institute,
Beutenbergstr. 11a, 07743 Jena,
Germany.
e-mail: robert.altwasser@hki-jena.de

Discovery of essential genes in pathogenic organisms is an important step in the devel-
opment of new medication. Despite a growing number of genome data available, little is
known about C. albicans, a major fungal pathogen. Most of the human population carries
C. albicans as commensal, but it can cause systemic infection that may lead to the death
of the host if the immune system has deteriorated. In many organisms central nodes in the
interaction network (hubs) play a crucial role for information and energy transport. Knock-
outs of such hubs often lead to lethal phenotypes making them interesting drug targets.To
identify these central genes via topological analysis, we inferred gene regulatory networks
that are sparse and scale-free. We collected information from various sources to comple-
ment the limited expression data available. We utilized a linear regression algorithm to infer
genome-wide gene regulatory interaction networks. To evaluate the predictive power of
our approach, we used an automated text-mining system that scanned full-text research
papers for known interactions. With the help of the compendium of known interactions,
we also optimize the influence of the prior knowledge and the sparseness of the model
to achieve the best results. We compare the results of our approach with those of other
state-of-the-art network inference methods and show that we outperform those methods.
Finally we identify a number of hubs in the genome of the fungus and investigate their
biological relevance.

Keywords: network inference, linear regression, LASSO, reverse engineering, scale-free, Candida albicans, hubs,

prior knowledge

1. INTRODUCTION
Candida albicans is the most important human-pathogenic fun-
gus (D’Enfert and Hube, 2007). Most of the time, it lives as a
commensal in the microbial flora of the host. However, if the
immune system of the host is impaired, it can switch to an aggres-
sive pathogen that can cause systematic infections with a high
mortality rate (Wilson et al., 2002). An important prerequisite of
C. albicans virulence is its ability to react upon environmental
changes such as temperature shifts, pH value changes, or nutrition
supply. C. albicans can react to these environmental conditions
by altering its gene expression pattern. These alteration can create
phenotype changes, like switching from typical yeast-like ovoid
to hyphal growth form (Hube, 2004). These changes in mor-
phology are a crucial part of the infectious ability of C. albicans.
Understanding how these gene expression alterations change the
morphology of the fungus can uncover new therapeutic methods
to counter fungal infections.

Gene expression regulation is primarily mediated by tran-
scription factors but also by post-translational modification or
other mechanisms. Reverse engineering of such mechanisms is an
important part of systems biology (Hecker et al., 2009a). It aims to
uncover essential interactions within the genome of the organism.
This research is facilitated by the growing number of expression
data available (Edgar et al., 2002).

Network inference approaches have been successfully applied in
order to infer small-scale networks and to predict gene interactions
for pathogenic fungi (Guthke et al., 2005, 2007; Linde et al., 2010).
Such networks investigate certain aspects of regulatory processes
and provide valuable information regarding specific gene interac-
tions. However, the number of genes that can be considered using
such approaches is limited. Topological analysis of the full genome
is beyond the scope of this approach.

Different methods for the reverse engineering of genome-
wide inferences have been developed. A common approach is
the use of information-theoretic principles. Some define inter-
actions between genes as statistical dependencies between gene
expression profiles (Margolin et al., 2006). The idea is that statis-
tical dependencies, that can not be explained as artifacts of other
dependencies in the network, are likely to identify direct regulatory
interactions. These methods are also called mutual information.
Common representatives are ARACNE (Margolin et al., 2006),
MRNET (Meyer et al., 2007), and CLRNET (Faith et al., 2007).
Due to the nature of these methods, mutual information networks
are primarily undirected, e.g., the network does not discriminate
between source and target gene of an interaction.

In this work, we use a system of linear equations to model the
regulatory interactions between genes. The idea of this approach
is to model the expression of one gene as the weighted sum of the
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expression of other genes and external perturbations (Gustafsson
et al., 2004). The advantage of this approach is, that it can describe
gene interaction in a quantitative way that takes the direction of the
interaction into account, i.e., it discriminates between the source
and the target gene of an interaction. Topological motives like feed-
back loops can be described as well as dynamic processes within
gene regulatory interactions (Hecker et al., 2009b). A commonly
used algorithm is the so-called LASSO (Tibshirani, 1994). It works
well under the condition, that there are more genes than sam-
ples, which is mostly the case in biological data. This approach
has already been implemented for pathogenic fungi like C. albi-
cans (Linde et al., 2011). However, these models have not been
scale-free.

One of the most severe problems researchers face while defining
network inferences for fungi is the dearth of available information.
So far, there are only few data sets for pathogenic fungi available,
mostly from microarray experiments. This problem becomes even
more serious when modeling networks including a large number
of genes. One approach is the use of proposed gene interactions
called prior knowledge, taken from data sources different from
gene expression data. This concept has been successfully imple-
mented in earlier approaches (Linde et al., 2011) and was used in
this work as well.

Topological analysis of large-scale networks can unravel inter-
esting interactions and regulatory genes with a high number of
interaction partners called hubs. Hubs are essential for the viabil-
ity of the organism since they are a central part of the interaction
network architecture. Because of the large number of interactions,
it is very likely to destroy an essential interaction by knocking out
a hub (Han et al., 2004; He and Zhang, 2006). This property makes
hubs interesting drug targets. Frequently, genome-wide models do
not meet the requirement of scale-freeness, i.e., the distribution of
connections between nodes does not follow a power-law. However,
scale-freeness is a pre-condition for topological analysis and the
detection of hubs because most biological networks exhibit such
a power-law distribution (Barabási and Oltvai, 2004).

In this study, we combine the LASSO with the ridge regression, a
method of regularization, as proposed by Gustafsson et al. (2004),
to infer scale-free networks. We extend this approach to our gene
data by implementing different sources of prior knowledge to our
gene expression data. We use an automatic relation extraction sys-
tem to scan 9,000 research papers in order to get a compendium
of currently known interactions to compare and evaluate our net-
works. We then perform topological analysis on these networks
to identify hubs. We investigate these hubs for their biologi-
cal function. We also compare our algorithm to state-of-the-art
methods.

2. MATERIALS AND METHODS
2.1. DATA
2.1.1. Gene expression data set
We took genome-wide gene expression data of C. albicans from
a collection of Ihmels et al. (2005). The data set consists of tran-
scription data of 6,167 open reading frames (ORF) under 198
conditions ranging from drug application, via stress exposition to
response to mating pheromone. The set contains transcriptional
profiles of cells growing as yeast or hyphal cells taken from four
independent microarray designs. 16.7% of the data are missing.

Four hundred eleven ORFs have more than 50% missing val-
ues. We tested different imputation methods to complete the data
set and applied the best performing method LLS, since the used
network inference method requires complete observations. We
applied the Local Least Squares (LLS) imputation method as pro-
vided by the pca Method (Stacklies et al., 2007) package for R (R
Development Core Team, 2009).

2.1.2. Gold standard
We evaluated the performance of the network inference
approaches with emphasis on the reliability of the predicted inter-
actions. The data set on which this evaluation was based was
generated using text-mining technology. Accordingly, we automat-
ically extracted information about gene regulatory interactions
from full-text research articles in order to collect a set of known
interactions published in the literature. Text mining was based on
JReX (Buyko et al., 2011), a high-performance machine-learning
relation extraction system. JReX identifies pairs of genes as inter-
action pairs exploiting rich syntactic and semantic information.
Using this system, we harvested gene regulation information from
about 9,000 open-access research papers about C. albicans. The
resulting collection contains 509 genes and 1,016 interactions
between them. We are very much aware of the fact that this pro-
cedure has inherent limitations (e.g., f-scores ranging between 50
and 60% are consistently reported for such approaches (Kim et al.,
2011)), but in the absence of a comprehensive manually generated
gold standard, we used this automatically built gold standard to
evaluate the networks inferred using different methods and para-
meter settings. Only 503 genes of the gold standard are part of our
gene expression data set. Therefore, these 503 gold genes were used
to optimize different parameters.

2.2. NETWORK INFERENCE
To infer a regulatory network in C. albicans, we used a modeling
approach based on linear regression. This approach describes the
expression of a gene xi under condition m as the weighted sum of
the expression of the other genes under this condition:

xi(m) =
N∑

j=1,
j �=i

βi,j xj(m) (1)

N is the number of genes and xj = xj(1),. . .,xj(M ) describes the
expression of gene j under the condition 1 to M. β i,j is the coeffi-
cient that describes the influence of gene xj on gene xi. The strength
of the interaction is represented by the absolute value of the coef-
ficient. This coefficients can be positive or negative, representing
activating or inhibiting relations, respectively. A coefficient equal
to zero means there is no interaction between these genes.

The equation system, defined in (1), has more variables than
equations, i.e., more genes than samples. To cope with this prob-
lem and to enhance the interpretability of the inferred network,
we followed the idea of sparseness (Yeung et al., 2002; Leclerc,
2008). This concept tries to maximize the number of zeros in the
interaction matrix B =β i,j. To solve this task, (Tibshirani, 1994)
proposed the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm. It applies the L1-norm shown in equation (3)
on the interaction matrix B and assigns many weights zero. To find
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the model that fits best to the expression data, we minimized the
residual sum of squares (RSS):

β̂ i,· = arg min
βi,·

M∑
m=1

⎛
⎜⎜⎝xi(m)−

N∑
j=1,
j �=i

βi,j xj(m)

⎞
⎟⎟⎠

2

(2)

subject to
N∑

j=1,
j �=i

∣∣βi,j
∣∣ ≤ μi for i = 1, . . . , N (3)

where μi is a parameter limiting the absolute sum of all β i,·. To
account for the varying reliability of the prior knowledge, we intro-
duce an additional weight parameter ωi,j, denoting the reliability
of interaction β i,j. Hereby we follow a knowledge-driven approach
and extend the equation (3) as presented by Zou (2006):

N∑
j=1,
j �=i

ωi,j
∣∣βi,j

∣∣ ≤ μi (4)

By default, all interactions ωi,j have a value of 1. A small value of
ωi,j means that the interaction is reliable, while larger ωi,j indicate
questionable interactions. Setting ωi,j = 0 means that we trust xi,j

unconditionally.
The prior knowledge was incorporated by the creation of an

N × N penalty matrix �. The component ωi,j of the matrix � is
multiplied by β i,j during the computation of the threshold shown
in equation (4). If a source of prior knowledge predicts an inter-
action between two edges i and j, the penalty of this interaction is
ωi,j = εn where n is the number of prior knowledge sources that
support the interaction. If an interaction is not supported by any
prior knowledge, then ωi,j = 1.

To determine the optimal value for μi, we follow the approach
suggested by Gustafsson et al. (2004, 2005). This approach first
minimizes the L2-norm:

μ
(2)
i =

⎛
⎜⎜⎝

N∑
j=1,
j �=i

(
ωi,jβi,j

)2

⎞
⎟⎟⎠

1
2

(5)

and set μi = cμ(2)i . The networks created using this method were
proved to be scale-free.

The inference of genome-wide networks is computationally
intensive. However, the calculation of the regression for one gene
is independent from the regression of other genes. This way, the
network inference factorizes and we used parallel computing to
speed up the inference.

3. RESULTS
3.1. PARAMETER ESTIMATION AND NETWORK ASSESSMENT
The result of the inference depends on different parameters, that
need to be estimated. The parameter ε defines the influence of
the prior knowledge. It is too time consuming to perform an

exhaustive search over this parameter exploiting the whole expres-
sion data set. Therefore, we only selected the expression data of
genes, that are included in the gold standard. This subset con-
tained the expression data from 503 genes, called gold genes. With
this subset we investigated the influence of the prior knowledge by
using a search over ten equidistant values each within the inter-
vals 0.01, . . ., 0.1 and 0.1, . . ., 1 and calculated the F-measure
(Van Rijsbergen, 1979) of the inferred networks. The F-measure
incorporates the trade off between the recall (completeness of the
identified interactions within the gold standard) and the precision
(ratio of correctly identified interactions).

F = 2 ∗ precision ∗ recall

precision + recall
(6)

The second parameter to optimize determines the size of the
network, i.e., the number of inferred interactions. LASSO works
with constraint introduced by the parameter μi . As suggested by

(Gustafsson et al., 2004), we first calculate the parameterμ(2)i via

equation (5) and define μi = cμ(2)i . Gustafsson et al. fixed c at
0.1 and stated that deviating from this value does not result in
large changes in the selected interactions and still leads to a scale-
free network. Nevertheless, we performed a grid search over 24
different steps for c ranging from 0.00001 to 0.5. We calculated
the corresponding F-measure with regard to the gold standard and
degree of scale-freeness for all inferred networks.

Results show that smaller values for ε, i.e., more influence
of the prior knowledge, yield higher F-measures. For the BIND
prior knowledge, the result of different values of ε is depicted
in Figure 1. Because of these results, we choose ε= 0.1 for the
network construction for all known interactions.

FIGURE 1 | F-measure of the LASSO inference for the 503 gold genes in

which the gold standard and the expression data overlap. We exploited
the BIND prior knowledge. The different graphs represent different values
of ε and therefore different weighting of prior knowledge. It indicates that a
higher influence of prior knowledge yields better results concerning the
F-measure.
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To study the influence of the different prior knowledge sources,
we first constructed a genome-wide network without including
prior knowledge in the model. Subsequently, we constructed net-
works involving all four sources of prior knowledge individually.
After that, we also created one network that used all available prior
knowledge to infer a network.

In the following, we took the full-genomic network that was
supported by all prior knowledge sources (ALL). Since we com-
puted this network for different network sizes, by variation of
parameter c, we selected the one with the highest F-measure, which
was c = 0.2, as illustrated in Figure 2.

In order to compare our approach to state-of-the-art
methods, we also inferred genome-wide networks based on
mutual information, like ARACNE (Margolin et al., 2006),
MRNET (Meyer et al., 2007), and CLRNET (Faith et al.,
2007). The results of the inferred networks can be seen in
Table 1.

The results of these tests are shown in Figure 3. Compar-
ing the LASSO-based networks without or with different prior

knowledge sources, we found that the implementation of prior
knowledge clearly improves the performance of the inference,
especially when exploiting the BIND set of prior knowledge
results in a high F-measure compared to the gold standard. All
LASSO-based inferences outperform the networks constructed
using mutual information. The inferred networks differ remark-
ably in size. While the LASSO-based networks are compara-
bly sparse, having around 6,200–6,900 interactions, the net-
work inferred by ARACNE has around 40,000 interactions. CLR-
NET and MRNET inferred networks contain about 15,000,000
interactions.

All of the networks inferred by LASSO are scale-free, as can be
seen in Figure 4. We calculated the correlation of the degree dis-
tribution to the power-law distribution using Cytoscape (Smoot
et al., 2011). The LASSO network that implemented all prior
knowledge sources has a correlation coefficient of 0.88. This
was the lowest correlation of all LASSO-based methods. In con-
trast, none of the mutual information networks are scale-free, see
Figure 5.

FIGURE 2 | F-measures and number of interactions for different values of

c for the LASSO-based genome-wide inference that used all genes and

all available prior knowledge. The maximum F-measure 0.0018 is reached at
c = 0.2 with a network of 6866 interactions between 6,167 genes.

Table 1 | Results of the genome-wide network inference.

LASSO LASSO +
FAC

LASSO +
PPI

LASSO +
TRANS

LASSO +
BIND

LASSO +
ALL

CLRNET MRNET ARACNE

F-measure 0.0014 0.0015 0.0053 0.0058 0.0067 0.0018 0.00006 0.00006 0.0009

No. of interactions 6,167 6,167 6,167 6,167 6,167 6,866 15,686,064 15,329,450 39,986

The first six rows show the results for LASSO and LASSO with different prior knowledge sources. The sixth row shows the LASSO inference with ALL four sources

of prior knowledge. The last three rows show the results for the mutual information-based networks.
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Figure 6 shows that there is little overlap between the gold
standard, which we extracted from literature concerning C. albi-
cans, and the prior knowledge, extracted from data bases where
C. albicans is underrepresented. Besides BIND and PPI, none of
the prior knowledge sources have a large overlap. Also the prior
knowledge sources and the gold standard barely overlap with each

FIGURE 3 | F-measure obtained by LASSO-based genome-wide

network inferences (left) with or without prior knowledge (FAC, PPI,

TRANS, BIND) and with all four prior knowledge sources (ALL). The
three bars on the right show the results of the mutual information-based
networks.

other. FAC is by far the smallest of the prior knowledge sources
(249 interactions) and only 14 of them are also part of the gold
standard. Therefore, it is not surprising, that the network inferred
exploiting FAC yields the smallest improvement concerning the
F-measure over the network inferred without prior knowledge
(Figure 3). The LASSO without the use of prior knowledge reaches
a F-measure of 0.0014 and the use of the FAC improves this
result to 0.0015. With the information of PPI, LASSO reaches
a F-measure of 0.0053, with TRANS 0.0058 and 0.0067 with
BIND.

3.2. CENTRAL GENES
This study aims at identifying hubs, i.e., genes with high influ-
ence on other genes. (Han et al., 2004) propose that hubs should
have at least six interactions with other genes. Since our networks
have more nodes than those by Han, we considered an out degree
of seven or more to be reasonable. We found 126 genes with an
out degree of at least seven and examined them for their function
(Arnaud et al., 2010). Ten of them are shown in Table 2.

Since there is little information available for C. albicans, most
of the hub genes we found are still not functionally annotated.
We often only found information from ortholog genes in S. cere-
visiae. The information found indicates that the putative hub genes
regulate various cell functions. At least 16 of the 126 hubs are influ-
enced by known antimycotica like amphotericin B, caspofungin, or
the azole group as shown in Table 3. Thirty-one of the identified
hub genes are still not annotated and no functional information is
available.

One of the few well studied networks within yeasts is the so-
called GAL-network. It has been comprehensively studied for S.
cerevisiae (Johnston, 1987; Lohr et al., 1995). It was also used to

FIGURE 4 | Distribution of degrees for the LASSO-based inference without prior knowledge. The red line represents the fitted power-law. The correlation
coefficient of the logarithmical data is 0.95.
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FIGURE 5 | Distribution of degrees for the ARACNE-based inference. The red line represents the fitted power-law. The correlation coefficient of the
logarithmical data is 0.08.

FIGURE 6 | Venn diagram of the four different prior knowledge sources

and the gold standard. Empty fields contain no common interaction.
There is little overlap between the sources of prior knowledge as well as
between the prior knowledge and the gold standard.

investigate transcriptional rewiring between tit C. albicans and
S. cerevisiae (Rokas and Hittinger, 2007). The GAL-network is
responsible for the degradation of galactose. Via GAL10, β-d-
galactose is transferred to α-d-galactose which is transferred to
α-d-galactose 1-phosphate by GAL1. GAL7 then converts α-d-
galactose 1-phosphate to α-d-glucose 1-phosphate. The direct
regulation GAL10 → GAL1 → GAL7 is predicted by the inferred
network models, as can be seen in Figure 7, even though it is not
part of any prior knowledge. Only the interaction GAL1 → GAL7
is part of the gold standard.

Table 2 |Ten genes with the highest out degree of the LASSO network

inferred with all four sources of prior knowledge (ALL).

Gene name Out degree

FET31 29

orf19.7450 28

orf19.1300 25

MAL2 20

orf19.4678 19

orf19.1735 18

SGO1 17

orf19.6715 17

Yor353c 15

PSA2 15

The Figures 8 and 9 illustrate how usage of different sources
of prior knowledge affect the connectivity of genes. PSA2
is involved in nucleotidyltransferase activity and biosynthetic
processes (Arnaud et al., 2010). TKL1 is involved in transketolase
activity, part of the cell wall in yeast form, and possibly essential
for the viability of the organism.

4. DISCUSSION
We inferred genome-wide scale-free gene regulatory network
inference models by exploitation of prior knowledge. The soft inte-
gration of prior knowledge can tackle the problem of insufficient
data and improves the performance of the inference algorithm.
The level of improvement depends on the quality and quantity of
the prior knowledge.
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Table 3 |Table of 16 hubs which are sensitive to antifungal treatment.

Yor353c Domain protein of RAM cell wall integrity signaling network; role in cell separation, azole sensitivity; required for hyphal growth; lacks

orthologs in higher eukaryotes

orf19.5975 Putative zinc finger DNA-binding transcription factor; fluconazole-downregulated; expression regulated during planktonic growth

Hmg2 HMG-CoA reductase; enzyme of sterol pathway; inhibited by lovastatin; gene not transcriptionally regulated in response to lovastatin and

fluconazole

ASR1 Putative heat shock protein; transcription regulated by cAMP, osmotic stress, ciclopirox olamine, ketoconazole; stationary phase enriched

YJR073c Phosphatidylethanolamine N -methyltransferase of phosphatidylcholine biosynthesis; downregulation correlates with clinical development of

fluconazole resistance; amphotericin B; and caspofungin repressed

Cor1 Putative ubiquinol-cytochrome-c reductase; amphotericin B induced; repressed by nitric oxide; protein level decreases in stationary phase

cultures

Taf19 Putative TFIID subunit; mutation confers hypersensitivity to amphotericin B

OPT8 Possible oligopeptide transporter; induced by nitric oxide, amphotericin B

AGP2 Amino acid permease; hyphal downregulated; regulated upon white-opaque switching; induced in core caspofungin response, during cell

wall regeneration, or by flucytosine; fungal-specific

FET31 Putative iron transport multicopper oxidase precursor; flucytosine induced; caspofungin repressed

HIP1 Similar to amino acid permeases; alkaline upregulated; flucytosine induced; fungal-specific (no human or murine homolog)

APT1 Adenine phosphoribosyltransferase; flucytosine induced; repressed by nitric oxide; protein level decreased in stationary phase yeast cultures

ARX1 Putative ribosomal large subunit biogenesis protein; downregulated during core stress response; decreased expression in response to

prostaglandins

Ygr090w Putative U3 snoRNP protein; decreased expression in response to prostaglandins; heterozygous null mutant exhibits resistance to

parnafungin

NOG1 Putative GTPase; mutation confers hypersensitivity to 5-fluorocytosine (5-FC), 5-fluorouracil (5-FU), and tubercidin (7-deazaadenosine);

decreased expression in response to prostaglandins

Imp4 Putative SSU processome component; decreased expression in response to prostaglandins

The data was taken from the Candida Genome Database (Arnaud et al., 2010). Antifungal agents are marked in bold.

FIGURE 7 | Subnetwork GAL-genes using expression data and the full

set of prior knowledge that does not contain these predicted relations.

The connection of GAL10, GAL1, and GAL7 is well studied in many yeast
forms. The network predictions also contain this relationship.

The prior knowledge sources BIND, TRANS, and PPI contain
much more interactions than FAC and have also more inter-
actions in common with the gold standard. Even though they
still have very little overlap with the gold standard, the values of
the F-measure improve strongly. A possible explanation is that
the prior knowledge supports interactions outside the gold stan-
dard, which afterward supports correct interactions from the gold
standard.

This emphasizes the importance of extensive data sets to
improve the performance of the algorithm. However, the com-
bination of all four sources of prior knowledge does not result

in the best performance. With an F-measure of 0.0018, the net-
work is only slightly better than the one created with FAC. This
may indicate contradicting information within the prior knowl-
edge sources. Additional refinement concerning weighting prior
knowledge with regard to its reliability and the combination of
different prior knowledge sources has great potential to further
improve the performance of the algorithm.

In general, we can conclude that the higher the influence of the
prior knowledge, the better the results concerning the F-measure
are, as depicted in Figure 1. But there is another conclusion, that
can be seen in this Figure: the improvement with prior knowledge
is stronger with smaller c-value, i.e., on smaller networks. This
seems reasonable since smaller networks have a more strict con-
straint and the decreased penalty for interactions supported by the
prior knowledge has a stronger effect.

However, the inferences correctly predict parts of the GAL-
network, as can be seen in Figure 7. It shows, that the infer-
ence can uncover regulations even without the help of prior
knowledge. None of the prior knowledge (ALL) suggest these
interactions. The gold standard contains only one of them
(GAL1 → GAL7 ).

It should also be noted that the prior knowledge reflects the
knowledge of other species, in particular S. cerevisiae, whereas
the gold standard contains C. albicans specific knowledge. We
are aware that there are substantial differences between the reg-
ulation of C. albicans on the one hand and S. cerevisiae and
other model organisms on the other hand. Therefore, putting
to much weight on the prior knowledge from these model
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FIGURE 8 | Predicted hub PSA2. The labels on the edges tell which
inference and prior knowledge predicted this interaction. LASSO for
the LASSO inference without prior knowledge. FAC, BIND, TRANS,

and PPI for the inferences with the corresponding prior knowledge
source. ALL for the inference that exploited all four prior knowledge
sources.

organisms can lead to false conclusions. To minimize the prob-
ability of such wrong conclusions, we use the C. albicans specific
gold standard to estimate the optimal weighting of the prior
knowledge.

All of the presented LASSO-based inferences outperform
the models created by mutual information-based methods.
CLRNET and MRNET both produced networks with a com-
parably high number of interactions (15,686,064 with CLR-
NET and 15,329,450 with MRNET). ARACNE on the other
hand produced a network with 39,986. This is by far the
smallest of the mutual information-based networks but still
about five times larger than the LASSO-based networks. How-
ever, with 0.0009 it has a higher F-measure than those of
CLRNET and MRNET, which both have a F-measure of
0.00006. It may be correct to assume a correlation between
the size of the mutual information-based networks and their
F-measure.

The performance evaluation of the network construction algo-
rithm is based on a gold standard obtained by automatic scan-
ning of 9,000 full-text research papers. This leads to a gold
standard of 509 genes and 1,016 interactions. Utilizing this
compendium of known interactions, we optimize the parame-
ters of the algorithm in order to increase the performance

for best results. A major performance criterion is sparseness,
in order to balance comprehensiveness and interpretability of
the model. We focused on optimal sparseness, in order to
locate the most significant interactions and to increase reli-
ability of the predictions. However, compared to the 6,167
genes of the genome-scale networks, this gold standard is still
far from adequate. Therefore, the evaluation of the models
by comparison to the gold standard may favor smaller net-
works.

The combination of these features with the requirement for
scale-freeness is a novel approach. As this is also true for most
biological networks and therefore a requirement for a reason-
able topological analysis to uncover hubs. Since hubs are of great
interest as potential drug targets or biomarker for the develop-
ment of novel therapies against fungal infections, we concen-
trated our effort on such a topological analysis and uncovered
a list of hubs with many not yet described. Further investiga-
tion in this field is still required and continuous improvements
in the available data will also enhance the predictive power of our
approach.

To further check causality of the predicted gene-to-gene rela-
tions, the concept of Granger causality modeling could be applied
as proposed by Shojaie and Michailidis (2010) by truncating
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FIGURE 9 | Predicted hubTKL1. The labels on the edges tell which
inference and prior knowledge predicted this interaction. LASSO for
the LASSO inference without prior knowledge. FAC, BIND, TRANS,

and PPI for the inferences with the corresponding prior knowledge
source. ALL for the inference that exploited all four prior knowledge
sources.

LASSO penalty. However, this approach requires time series
data whereas the data set analyzed in the present work com-
prises both, time series and steady state data under different
conditions.

We applied our approach to the non-model organism C. albi-
cans since there is still little known about this human pathogenic
fungus. However, our approach is not limited to C. albicans and

can be applied to other organisms, where little knowledge is
available, as well.
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Characterization of the response of the host immune system is important in understanding
the bidirectional interactions between the host and microbial pathogens. For research on
the host site, flow cytometry has become one of the major tools in immunology. Advances
in technology and reagents allow now the simultaneous assessment of multiple markers
on a single cell level generating multidimensional data sets that require multivariate sta-
tistical analysis. We explored the explanatory power of the supervised machine learning
method called “induction of decision trees” in flow cytometric data. In order to examine
whether the production of a certain cytokine is depended on other cytokines, datasets
from intracellular staining for six cytokines with complex patterns of co-expression were
analyzed by induction of decision trees. After weighting the data according to their class
probabilities, we created a total of 13,392 different decision trees for each given cytokine
with different parameter settings. For a more realistic estimation of the decision trees’
quality, we used stratified fivefold cross validation and chose the “best” tree according
to a combination of different quality criteria. While some of the decision trees reflected
previously known co-expression patterns, we found that the expression of some cytokines
was not only dependent on the co-expression of others per se, but was also dependent
on the intensity of expression. Thus, for the first time we successfully used induction of
decision trees for the analysis of high dimensional flow cytometric data and demonstrated
the feasibility of this method to reveal structural patterns in such data sets.

Keywords: flow cytometry, cytokines, machine learning, induction of decision trees, imbalanced data, multidimen-

sionality

1. INTRODUCTION
Flow cytometry is a fundamental technology in immunology.
It allows the identification of cell populations as well as func-
tional properties of immune cells with high speed and precision.
Because of its ability to analyze thousands of cells per second,
this technique is key for the study of immune cell population
dynamics in the context of microbial infection or autoimmune
disease. Recent advances in flow cytometry instrumentation and
reagents provide researchers now with the capability to assess
simultaneously multiple phenotypic and functional markers on
a single cell level (Perfetto et al., 2004). Assessment of multiple
phenotypic and functional markers gives the opportunity for a
comprehensive single cell analysis, but the resulting data sets are
quite complex. Therefore, the gap between generation of such
data and our understanding of it is growing. Conventional analy-
sis approaches are based on filtering of populations (subsets) of
interest and subsequent analysis of the expression of certain mark-
ers within these populations. This, however, often neglects the
multidimensionality of the data. If, for example, the expression
of n markers is analyzed in a given subpopulation, the resulting

dataset has n dimensions. Using color-coded representation of the
third dimension, three different parameters can be displayed in a
two-dimensional dot-plot (Roederer and Moody, 2008). However,
analysis of data sets with more than three dimensions is heav-
ily impaired by our limited capability to integrate information
from more than three dimensions and biased by the experience of
the researcher, leaving some information unexploited. By using
machine learning methods commonly used in data mining, it
should be possible to automate analysis, preclude the operator-
introduced bias and reveal structural patterns of the data which
would have been unrecognized with conventional approaches
(Sachs et al., 2005). Machine learning methods learn decision
rules from training data sets to classify new, unknown data sets
and thereby can describe the structural patterns contained in the
data. Machine learning methods are divided into supervised and
unsupervised methods. For supervised learning methods a label
(also referred to as a class) is known for the training data set, for
instance the outcome of a medical treatment depending on clini-
cal or laboratory parameters. For unsupervised methods a known
outcome is not used. In flow cytometry a training data set can
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be considered as a collection of analyzed cells with its different
expression values for a set of markers (attributes) and an outcome
(class label). For instance, a class could be defined by the absence or
the presence of a given marker which could be dependent on the
expression of the other measured markers. Thus, by supervised
machine learning methods the dependency of the expression of
one marker on the expression of other markers can be analyzed. A
supervised method with an easily understandable graphical rep-
resentation is the induction of decision trees. Basically, decision
trees represent the structural patterns of the data. Beginning at
the root, the data set is split at each node according to a marker
and a split value is assigned to this node. At each node, the marker
and the split value is chosen to maximize a split criterion. In this
way the cells are routed down the tree and reach a specific leaf,
which gives a classification. The aim of our study was to test the
feasibility of this approach for the identification of structural pat-
terns in flow cytometric data. We used data sets from experiments
where the expression of six cytokines in antigen-specific T helper
(Th) cells from a murine arthritis model were analyzed (Schubert
et al., 2004; Frey et al., 2010b). Our results show that the supervised
machine learning method induction of decision trees is a versatile
tool for identification of structural patterns in multidimensional
data obtained by flow cytometry.

2. MATERIALS AND METHODS
2.1. DATA GENERATION AND ACQUISITION
We used a data set from intracellular cytokine staining of acti-
vated Th cells (Frey et al., 2011b). The cells were stained and
analyzed for the expression of six cytokines as described in the
following. DBA/1 mice in the age of 6–12 weeks were subcu-
taneously immunized at the base of the tail with recombinant
glucose-6-phosphate isomerase (G6PI) in an emulsion contain-
ing also Freunds complete adjuvant as described (Bruns et al.,
2009; Frey et al., 2010a,b, 2011a,b). At day 21 after immuniza-
tion, the draining lymph nodes (inguinal, axillary, paraaortic)
were aseptically removed and prepared to a single cell suspen-
sion. In addition, beside the wild type DBA/1 mice (WT) also
interferon-gamma (IFN-γ) receptor knock-out DBA/1 mice (KO)
were analyzed (Frey et al., 2011b) and we performed the analyses
also for other time points (day 9 and day 21 after immunization).
Altogether, we studied four conditions: WT-day 21 (standard con-
dition) as well as the additional conditions WT-day 9, KO-day 21,
and KO-day 9. The additional conditions have only been applied
for the results shown in Figures 10–12 for a comparative study
and to investigate the robustness of the results against experi-
mental variations. For detection of antigen-specific cells by their
CD154 expression (Kirchhoff et al., 2007), cells (1 × 107/ml in
a 48 well plate) were restimulated with 20 μg/ml G6PI. Control
samples were left unstimulated. The total restimulation time was
6 h and Brefeldin A (Sigma) at 5 μg/ml was added to all sam-
ples for the last 4 h to block cytokine secretion and to stabilize
CD154 expression. These assay conditions have been determined
to be optimal for a simultaneous detection of CD154 expression
and cytokine production in antigen-specific CD4+ T helper cells.
At the end of the restimulation period, cells were washed with
ice-cold phosphate-buffered saline (PBS) and incubated with the
fixable amine-reactive Aqua viability stain (Invitrogen) for 30 min

on ice, fixed with 2% paraformaldehyde in PBS and permeabilized
with 0.5% Saponin/0.5% BSA/0.02% NaN3 in PBS. Non-specific
binding of antibodies was blocked by preincubation of the cells
with anti-CD16/32 (2.4G2) and rat IgG (both at 5 μg/ml) for
8 min, followed by staining with fluorochrome-conjugated mAbs
against CD4, CD154, GM-CSF, TNF-α, RANKL, IL-2, IL-17, and
IFN-γ (all from BD, eBiosciences, Biolegend, or Miltenyi Biotech).
For optimal staining results all antibodies were properly titrated
and the binding of the anti-CD4 antibody to fixed and perme-
abilized cells was verified. After an additional washing step 0.5%
Saponin/0.5% BSA/0.02% NaN3 in PBS, cells were resuspended
in 0.5% BSA/0.02% NaN3 in PBS and measured within 3 h after
staining. Cell analysis was performed on a BD LSR II flow cytome-
ter equipped with 405, 488, and 633 nm laser lines and standard
filter sets, except additional detectors for detection of Alexa-700
(red laser, 685 nm long-pass and 710/50 band-pass filters) and
Qdot655 (violet laser, 635 nm long-pass and 670/14 band-pass fil-
ters, not used for this study). For fluorescence standardization and
monitoring of the instrument performance, the cytometer setup,
and tracking module of the BD FACSDiVa was used. Compen-
sation for spectral overlap of the fluorochromes was done with
the use of singly stained BD CompBeads and a compensation
matrix was calculated using the BD FACSDiVa software. At least
1.5 million events were acquired.

2.2. DATA PRE-PROCESSING
For analysis, data were exported as FCS3.0 files. Further pre-
processing was done using FlowJo 8.1.1 (Treestar Inc., Ashland,
Oregon). For identification of antigen-specific cells the following
progressive filtering (also referred to as gating) strategy was used:
events were first filtered on a FSC-A vs. FSC-W plot (forward
scatter pulse area vs. pulse width) for the exclusion of doublets.
Thereafter, a filter was set on lymphocyte in FSC-A vs. SSC-A plot
(side scatter pulse area), followed by the exclusion of aqua+ dead
cells. Subsequently, cells were filtered for CD4-positive events. The
small compartment of antigen-specific T cells was identified by
their expression of CD154. The filter for CD154 expression was
set using unstimulated control samples. Only the filtered CD154+
events were than exported into a new data file. These resulting data
files containing the events from single animals were than concate-
nated into a single file containing data from four mice and were
used for further analyses. This electronic pooling of the data was
performed in order to have a sufficient number of cells for further
analysis by machine learning methods. The distributions of MFI
values for each cytokines were compared between the four bio-
logical replicates which were pooled for further analysis. By visual
comparison the variance was assessed.

2.3. DATA ANALYSIS
The data analysis was performed using the programming language
and statistical software R (R Development Core Team, 2009). To
read in the pre-processed FACS data set the R/Bioconductor pack-
age flowCore was used (Data File Standards Committee of the
Society for Analytical Cytology, 1990; Gentleman et al., 2004;
Hahne et al., 2009). The intensity of the staining was mea-
sured as mean fluorescence intensity (MFI) value. To distinguish
between specifically stained cells and background fluorescence
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we used appropriate controls, including unstimulated samples
and fluorescence-minus-one controls (Hulspas et al., 2009). We
defined this MFI value as a cut-off and considered a cell as positive
for a given cytokine if their MFI exceeded this cut-off value and
cells with a MFI values below this cut-off value are referred to as
cytokine-negative cells.

For the induction of decision trees we used the WEKA java
implementation J48 of the C4.5 algorithm of Quinlan in revision
8 (Quinlan, 1993; Witten and Frank, 2005) through an interface
provided by the R package RWeka (Hornik et al., 2009). Since the
outcome of the induction of a decision tree is highly dependent on
the parameter setting and since it is not known which parameters
are the best, our approach is to build decision trees for different
parameter settings, to compare their quality and choose the best
tree according to some quality criteria. We therefore varied the
following parameters:

• pruning (reduced error pruning vs. heuristic or no pruning)
• minimum size of data in each leaf
• exclusion of one or more cytokines for the induction of decision

trees (like a brute-force way of feature selection)
• exclusion of cytokine-negative cells

Cytokine-negative cells are cells which are not stained specifically
for any cytokine. Their MFI values for each cytokine are under
the experimentally determined threshold for cytokine production.
Thus they produce none of the measured cytokines. We created
decision trees with and without cytokine-negative cells to test if the
presence of these cells has an effect on the quality of the decision
trees.

Due to the fact that decision trees work best with balanced data
(Weiss and Provost, 2003; Sun et al., 2007), the data was also weight
according to the class probabilities (CostSensitiveClassifier Class of
WEKA).

To choose one tree we applied different quality criteria on
stratified fivefold cross validation results in a stepwise manner:

1. choose all trees whose G-mean (definition see below) is
maximal 5% below the best G-mean

2. choose all trees of these with ROC AUC greater than 80%, if
values greater than 80% exist

3. choose all trees of these whose F-mean (definition see below)
is maximal 5% below the best F-mean of these

4. choose the smallest of these trees

G-mean is the geometric mean of the TP rate and the TN rate.
TP (true positive) and TN (true negative) rate is the proportion
of the positive cells which were correctly classified as positive (also
called sensitivity and recall) or as negative (also called specificity),
respectively. We used both values, since we assess both as equally
important, and the geometric mean, since this mean gives the
smaller value more weight than the arithmetic mean. This helps
to filter out trees where only either the TP rate or TN rate is
good. The name G-mean was introduced by Kubat et al. (1998).
G-mean is the geometric mean of the TP rate and the TN rate.
TP (true positive) and TN (true negative) rate is the proportion
of the positive cells which were correctly classified as positive (also

called sensitivity and recall) or as negative (also called specificity),
respectively. We used both values, since we assess both as equally
important, and the geometric mean, since this mean gives the
smaller value more weight than the arithmetic mean. This helps
to filter out trees where only either the TP rate or TN rate is good.
The name G-mean was introduced by Kubat et al. (1998). For the
same reason we used the geometric mean of the F-measures. The
F-measure combines the precision and the recall, where precision
is the fraction of cells correctly classified as positive. We calculate
the F-measure for the class positives and also an F-measure for the
class negatives and determined the geometric mean of both, called
F-mean.

Decision trees route data (cells) down the tree, starting at the
top (root), ending at the colored boxes (leaves). Leaves classify the
cells either as positive (green) or negative (red). This classification
can be correct or incorrect. To decide which route is taken by a
cell, the attribute values (MFI values of the other cytokines) are
compared to the split values at the branch. The names in the white
boxes (inner nodes) state the attribute to which this split value
has to be applied to. Additional each node contains the number of
cells in the data set, which were routed to this inner node. To ease
the analysis of the decision trees and to avoid many look ups at the
raw data sets we included some additional information in the raw
decision trees. First, we visualized the experimentally determined
cut-off values of a cytokine as a further attribute at the corre-
sponding node to allow for a simple assessment between the split
value and the cut-off value. Cut-off values are colored in green if
the split value is close to the cut-off value, and red or blue if the
split value is below or above the cut-off value, respectively. Second,
we visualized in each leaf the proportion of positive (or negative)
cells in this leaf on all positive (or negative) cells. This allows for
an easy assessment of the importance of a particular leave in the
overall classification.

3. RESULTS
Figure 1 shows the filtering of the raw data. The resulting data set
of antigen-specific activated T helper (Th) cells contains measure-
ments for the six cytokines TNF-α, RANKL, IL-17, IL-2, IFN-γ,
and GM-CSF. The intensity of the staining for this cytokines was
measured as mean fluorescence intensity (MFI) value. The vari-
ance of the MFI values for the same conditions was found to be low
as assessed for four biological replicates (Figure 2). As shown in
Figure 3A a huge proportion of antigen-specific activated Th cells
(71%) produced TNF-α, followed by expression of RANKL, IL-17,
IL-2, IFN-γ, and GM-CSF. Of note, the sum of these cells exceeds
100% because of the co-expression of two or more cytokines which
is shown in Figure 3B. We found a strong co-expression of TNF-α
together with GM-CSF, IFN-γ, and IL-17 (first row in Figure 3B),
whereas for IL-2 and RANKL this association was lower. There
was also a huge proportion of cells (58.65%) which produced
only TNF-α and no other cytokines. A strong association was also
seen between GM-CSF, IFN-γ, and RANKL (58.25 and 49.51%,
respectively, column GM-CSF in Figure 3B). In other cases the
co-expression was surprisingly low, for instance only 2.58% of the
IL-2 positive cells also co-produced GM-CSF. However, such pair-
wise comparisons are limited because they neglect the possibility
that the expression of a certain cytokine could be dependent of
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FIGURE 1 | Progressive filtering (gating) strategy for identification of antigen-specificT helper cells. Total events measured were filtered (gated) for single
cell (A) and for lymphocytes (B). To exclude dead cells aqua dye positive cells were excluded from further analysis (C). The remaining cells were further selected
for CD4 (D).

the co-expression of two or more cytokines simultaneously. To
study the dependencies of the co-expression patterns of cytokines
we formed a data set for each cytokine, with the expression of
this cytokine as the class and with the measurements of the five
remaining cytokines as attributes. We considered cells as positive
for a given cytokine according to the cut-off value defined by our
biological and staining control samples. Since the data sets were
highly imbalanced (for instance only 1.4% of all cells produce
GM-CSF, see Figure 3A) we weighted the data according to the
class probabilities (extitCostSensitiveClassifier Class of WEKA).
The resulting data sets were used to build decision trees to test if the
graphical representation of the decision trees can reveal structural
patterns in the data. This approach yielded 13,392 different deci-
sion trees for each given cytokine. We assumed that if a decision
tree gives a good classification, the structure of the decision tree
reflect reasonable patterns of co-expression. We therefore aimed
at the identification of the best decision tree out of the 13,392
generated for each cytokine.

With the approach explained in the section 3 we chose the“best”
tree for every cytokine out of the many trees which were build with
different parameter settings.

For instance, the tree of IL-2 (Figure 4) is to be read as
followed:

For this decision only cells with expression of at least one
cytokine were used. The tree thus begins with 2590 cells at the
root. Based on the MFI value of the root attribute TNF-α the 2590
cells are routed down the tree. If the TNF-α MFI value of a cell
is equal or below the split value 2390, the cells are routed to the
inner left node. Otherwise the cells are routed down to the right
leaf which classifies 1859 cells as IL-2 negative. This classification
is correct for 1611 cells, they are true negative (TN). For 248 cells
this classification is wrong, they are false negative (FN). Further
information in this leave show that the leaf captures 78.66% of the
IL-2 negative cells and 45.76% of the IL-2 positive cells. Due to
the imbalance of the data set there is a high percentage of the IL-2
positive cells in this leaf, but only a small number of false negative
cells. 20% of all measured cells produce IL-2 (see Figure 3A). The
inner node splits the cells based on the MFI value of RANKL and
routes them to the right leaf if the RANKL MFI value is above
the split value of 1817. This leaf classifies the cells again as IL-
2 negative. If the RANKL MFI value is equal or below the split
value, they are routed to the left leaf, which classifies these cells as
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FIGURE 2 | Kernel density estimation of MFI values of the four biological

replicates. Method density from R (R Development Core Team, 2009) was
used with default parameter settings. Data values are logicle transformed
according to Parks et al. (2006) using flowCore (Hahne et al., 2009).

IL-2 positive. This leaf contains 356 cells, of which 251 are classi-
fied correctly as positive (true positive – TP) and 105 are wrongly
classified as positive (false positive – FN). This leaf than contains
46.31% of the IL-2 positive cells and 5.13% of the IL-2 negative
cells. Furthermore, the split values of TNF-α and RANKL capture
all cells which are negative for TNF-α and RANKL but positive
for IL-2. Therefore, the split values have to be so low that they do

not route cells down to this leaf which express RANKL or TNF-
α. This is indeed true since the split values are very close to the
experimentally determined cut-off values of these cytokines. The
experimentally determined cut-off values are shown below the
root and inner nodes, the green color indicates that the split values
are close to the cut-off value. Finally, the proportion of RANKL
and TNF-α negative cells in this leaf exceeds 100%. Thus, it is clear
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FIGURE 3 | Cytokine expression by antigen-activatedT helper cells.

Expression of the cytokines TNF-α, RANKL, IL-2, IL-17 IFN-γ, and GM-CSF was
measured in lymph node cells as described in section 2. Data depict the
proportion of activated cells (identified by expression of the marker CD154)
that produce the indicated cytokine (A). As the cells can express multiple
cytokines simultaneously, pair-wise co-expression patterns of cytokines are

shown in (B). The primary cytokines are listed from left to right as the column
names. For each primary cytokine the percentage of cells co-expressing one
of the other cytokines (listed as row names) are shown. As an example
GM-CSF expressing cells often co-express TNF-α (75.73% of all GM-CSF
expressing cells) but only rarely IL-2 (13.59%). (Green background = low
co-expression, red background = high co-expression).

FIGURE 4 | Best decision tree for the classification of cells as positive

or negative for IL-2 expression. Cells are classified based on the MFI
values of first TNF-α and second RANKL. The green colored cut-off values
below the inner nodes, indicate that the split values are near the cut-off
values. Therefore, these nodes dived the cells in TNF-α (respectively
RANKL) negative and positive cells. The cells are routed to the right leaf if
they do not express TNF-α. This leaf captures 78.66% of all IL-2 negative
cells, but also 45.76% of the IL-2 positive cells. The leaf in the middle
classifies cells as IL-2 negative, which do not express TNF-α but RANKL. The
left node classifies cells as IL-2 positive and captures 46.31% of the IL-2
positive cells. It is stated that this node contains 100.56% of the TNF-α and
RANKL negative cells. Thus, also cells which are positive for TNF-α and/or
RANKL are in this leaf. This is due to the split values of TNF-α. The split value
is slightly above the real cut-off, therefore a few TNF-α positive cells have
been routed to the left and are therefore contained in the leftmost leaf.
Since the split value of RANKL is below the cut-off value, no RANKL
positive cells can be contained in the leftmost leaf.

that there are few cells in this leave which are positive for TNF-
α, RANKL, or both. A closer comparison of the split values and

cut-off values reveal that these cells can only be TNF-α and not
RANKL positive, since the split value of TNF-α is slightly above
the cut-off value, but the split value of RANKL is slightly below
the cut-off value.

All resulting decision trees (besides the tree of IL-17) were of
sufficient quality to reveal meaningful structural patterns. This
implies that there are associations between the expressions of dif-
ferent cytokines. An interesting common finding for the decision
trees for TNF-α (Figure 5) and IL-2 (Figure 4) was the fact that
the chosen split thresholds of all used cytokines (RANKL, IL-2
respectively TNF-α, RANKL) were close to the experimentally
determined cut-off value of these cytokines. These finding sug-
gests that the expression (or non-expression) of TNF-α and IL-2
depends on if the other cytokines are expressed or not. Inter-
estingly, there was an inverse relationship between the cytokines:
no expression of RANKL and IL-2 classified cells as positive for
TNF-α (Figure 5). Similarly, no expression of TNF-α and RANKL
classified cells as positive for IL-2 (Figure 4). One obvious rea-
son for this classification is that TNF-α and IL-2-expressing cells
have a high proportion of cells producing only a single cytokine
(see Figure 3B). While the IL-2-expressing Th cells contain 44.1%
single producers (Figure 3B) by bivariate analysis, our multidi-
mensional analysis classified 46.31% of all IL-2 positive cells into
the left leave of the decision tree (Figure 4). These cells do neither
produce TNF-α nor RANKL and can therefore be considered as
IL-2 single producers. We therefore can conclude that only the IL-
2 single producers are classified correctly. However the decision
tree can not reveal patterns in the IL-2 positive cells which are
co-expressed with other cytokines. The TNF-α tree (Figure 5) has
a similar structure as the IL-2 tree (Figure 4). Cells are classified as
TNF-α positive if they neither produce RANKL nor IL-2. Unlike
in the IL-2 tree, the TNF-α positive leave does not contain only
TNF-α single producers (74.87% TNF-α positive cells, Figure 5
vs. 58.65% TNF-α single producers in Figure 3B). We therefore
conclude from the two trees for cytokine expression with a high
percentage of single producers that the decision trees could reveal
this pattern. Furthermore, other subsets with a high percentage
of single producers were used to filter out cells negative for the
cytokine of interest. Therefore, the decision trees detect nearly
exactly the experimentally determined cut-off values of these

Frontiers in Microbiology | Microbial Immunology April 2012 | Volume 3 | Article 114 | 124

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Simon et al. Multidimensional flow cytometric data analysis

FIGURE 5 | Best decision tree for the classification of cells as positive

or negative forTNF-α expression. Cells are classified based on the MFI
values of first RANKL and second IL-2. The green colored cut-off values
below the inner nodes, indicate that the split values are close to the cut-off
values. Therefore, these nodes dived the cells in RANKL (respectively IL-2)
negative and positive cells. The cells are routed to the right leaf if they do
not express RANKL. Cells of this leaf are classified as negative and this leaf
capture 52.61% of all TNF-α negative cells, and only classifies 15.04% of
the TNF-α positive cells incorrectly. The leaf in the middle classifies cells as
TNF-α negative which do not express RANKL, but do express IL-2. The left
node classifies cells as TNF-α positive and captures 74.87% of the TNF-α
positive cells. This node contains not all RANKL and IL-2 negative cells, but
98.38% of them. Since the split values of RANKL and IL-2 are slightly below
the real cut-off a few RANKL and IL-2 positive cells have been routed to the
right and are therefore not contained in the leftmost leaf.

cytokines. RANKL (tree not shown) also had a high percentage
of single producers. We thus expected a tree with the same
structure like for TNF-α and IL-2. Compared to these easy and
compact trees, the RANKL decision tree was quite complex, how-
ever it could be pruned to the same structure like the IL-2 and
TNF-α tree (not shown). This pruning only slightly impaired the
classification and resulted in a tree with TNF-α as root and IL-2
as next split attribute. As for RANKL and TNF-α the split values
were very close to the experimentally determined cut-off values.
Cells were classified as RANKL positive if TNF-α and IL-2 were
not expressed and classified as RANKL negative if one of them was
expressed. Other decision trees (Figures 6 and 8) had split values
highly above the experimentally determined cut-off values. These
high split values also revealed some biologically relevant informa-
tion. As an example, the tree for IFN-ma (Figure 6) was splitted
into IFN-γ positive and negative cells by the expression of TNF-α
with an MFI of about 6621. Due to this high split value, the node
to the right (MFI for TNF-α> 6621) only contained 37.43% of
all TNF-α positive cells. However, this node contained 81.47% of
all TNF-α and IFN-γ positive cells. Given that the expression of
TNF-α started above an MFI of 2368 (as measured by controls),

FIGURE 6 | Best decision tree for the classification of cells as positive

or negative for IFN-γ expression. Cells are classified based on the MFI
values of first TNF-α and second GM-CSF. The blue colored TNF-α (red
colored GM-CSF) cut-off value indicates that the split value is high above
(below) the cut-off value. Therefore, these nodes dived the cells not just in
TNF-α (respectively GM-CSF) negative and positive cells. Only a proportion
of the cells which express TNF-α are routed to the right leaf. Contained in
this leafs are only 37.43% of all TNF-α positive cells due to this high split
value compared to the cut-off value. This leaf captures 62.8% of the IFN-γ
positive cells, these are 233 cells (TP – true positive). The leaf also contains
the information that this leave captures 81.47% of all IFN-γ and TNF-α
positive cells. The leaf in the middle classifies cells as IFN-γ positive and
captures 10.78% of all IFN-γ positive cells. The left node classifies cells as
IFN-γ negative, thus this leaf wrongly classifies 26.42% of the IFN-γ
positive, but captures 92.11% of all IFN-γ negative cells.

FIGURE 7 | Cells with highTNF-α expression are enriched for IFN-γ

expressing cells. Dot plots show the expression of IFN-γ vs. GM-CSF in
the same data set for all cells with expression of TNF-α (left), for cells with
expression of TNF-α below the split value 6621 given by the decision tree
shown in Figure 6 (middle) and for cells with high TNF-α expression (right).
Horizontal and vertical lines represent the experimentally determined
cut-off values that define the expression for these cytokines as estimated
by controls. The cells in the lower left quadrant produce neither IFN-γ nor
GM-CSF and the cells in the upper right quadrant produce both. Numbers in
quadrants give the percentage of the cells in the respective quadrant.

it can be concluded that especially a high expression of TNF-α is
associated with the expression of IFN-γ. Routing down the tree
of IFN-γ further, the next node contained GM-CSF expression
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as split attribute for cells with a TNF-α expression below 6621
(Figure 6). However, the split value of 863 for GM-CSF expression
was far below the threshold for GM-CSF positive cells as estimated
by biological controls (MFI> 1192). This lead to the classification
IFN-γ negative for cells below this threshold (TN rate is 92.11%,
FN 26.42%) and a classification as IFN-γ positive for cells above
this threshold (TP rate 10.78%). Since the TP rate was only around
11% and the split value did not correspond with the true cut-off
of GM-CSF, it can be concluded that IFN-γ expression is probably
only loosely associated with the expression of GM-CSF. Most of
the IFN-γ negative cells do not express GM-CSF since the true
negative (TN) rate is high.

To further confirm the relationship between the produc-
tion of IFN-γ and TNF-α, we filtered the data on TNF-α high
(MFI> 6621) and TNF-α low (MFI< 6621) cells. As shown in
Figure 7, TNF-α-high cells were highly enriched for IFN-γ pro-
ducing cells (5.52 vs. 29.7%; left vs. right plot in Figure 7), while
TNF-α-low cells are depleted of IFN-γ producing cells (5.52 vs.
1.95%; left vs. middle plot in Figure 7). Strikingly, although seg-
regation into TNF-α high and low populations did also enrich
GM-CSF producers, the proportion between GM-CSF single pos-
itive cells and GM-CSF, IFN-γ double positive cells was similar for
unfiltered TNF-α low and TNF-α high cells (Figure 7). Thus, the
co-production of GM-CSF and TNF-α seems to be independent
of IFN-γ production.

GM-CSF showed a complex decision tree with many leaves
(Figure 8). Comparable to IFN-γ (Figure 6), the first split was
at a high level of TNF-α production, but captured most of the
GM-CSF and TNF-α positive cells (80.77%). Further splits were
at IFN-γ and RANKL expression again with split values above the
cut-off value of these cytokines. Cells with expression of TNF-
α below 7213, IFN-γ below 2458, and RANKL below 2729 were
classified as GM-CSF negative cells (TN = 88.84% in Figure 8).
The decision tree of IL-17 (Figure 9) did not provide useful
patterns, because the split values were always below the real cut-
off values of these cytokines. Nevertheless the classification is
quite good.

To validate the robustness of identified patterns we gener-
ated decision trees not only for the standard condition (WT-
day 21) as presented up to this point, but also for three addi-
tional experimental conditions (WT-day 9, KO-day 21, and KO-
day 9). The trees for IFN-γ are almost identical as shown in
Figures 10A–C and 6. The four trees demonstrate that high TNF-
α production is required for IFN-γ expression. Quite similar,
the expression of GM-CSF is the most important split criterion
for the expression of IL-17 as shown in Figure 9 for the stan-
dard condition and the three trees shown in Figures 11A–C for
the additional conditions. In addition, also the pattern found
for the standard condition WT-day 21 (Figure 9) is very sim-
ilar to that found for KO-day 21 shown in Figure 11C. These
two trees show that IL-17 is expressed if both GM-CSF and
TNF-α are expressed. The importance of TNF-α as the sec-
ond important criterion for IL-17 production is only evident
at the day 21 after immunization (Figures 9 and 11C), not at
the day 9 (Figures 11A,B). Further comparisons of the induced
trees demonstrate that the expression of TNF-α is the most

FIGURE 8 | Best decision tree for the classification of cells as positive

or negative for GM-CSF expression. Cells are first classified based on the
MFI values of TNF-α. The blue colored TNF-α cut-off value indicates that the
split value is high above the cut-off value. Therefore, only a proportion of the
cells which express TNF-α are routed to the right leaf. A closer look at this
leafs shows that due to the split value high above the cut-off value only
19.44% of all TNF-α positive cells are contained in this leaf. But this leaf
captures 61.17% of the GM-CSF positive cells. The leaf also contains the
information that this leave captures 80.77% of all GM-CSF and TNF-α
positive cells. Form the root (top) cells with a TNF-α MFI value equal or
below 12618 are routed down to the next inner node. This node splits the
cells on the MFI value of IFN-γ. Again, the blue colored cut-off values
indicates that not all IFN-γ positive cells in this node are routed to the leaf at
the right. This leaf also classifies cells as GM-CSF positive. This leaf
captures less of the GM-CSF positive cells – around one out of four. The
other two leafs which give a positive classification captures even less of the
GM-CSF positive cells, but summed up the four leaves which give a
positive classification captures 96.12% of all GM-CSF positive cells.

important split criterion also for the GM-CSF as well as IL-
2 production not only for the standard condition (Figures 4
and 8 for IL-2 and GM-CSF, respectively) but also for the
knock-out mutant when observed at 21 days after immunization
(KO-day 21, Figures 12A,B for IL-2 and GM-CSF, respectively).
These rules have not been confirmed when measured 9 days after
immunization.

As stated in the section 3 we use different parameter settings
and chose the best tree according to specific quality criteria. The
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FIGURE 9 | Best decision tree for the classification of cells as positive

or negative for IL-17 expression. Cells are first classified based on the
MFI values of GM-CSF. The red colored GM-CSF cut-off value indicates that
the split value is high below the cut-off value. The cells routed to the left
node do not express GM-CSF and this value split captures 59.59% of all
IL-17 negative cells and only wrongly classifies 13.73% of the IL-17 positive
cells. The next split on the right is on TNF-α, but again the split value is
below the cut-off value. The split values of GM-CSF and TNF-α are below the
cut-off value and thus not all cells, which are routed down the path to the
rightmost leaf express this two cytokines. Nevertheless this leaf correctly
classifies 69.61% of the IL-17 positive cells as positive. Only 15.17% of the
IL-17 negative cells are wrongly classified in this leaf. Also the last split
value again on GM-CSF is below the cut-off value.

question is whether our quality criteria always choose a tree created
with the same parameter settings. The answer is no. The parame-
ter settings for the induction of the decision trees clearly vary for
each cytokine to meet our quality criteria. For instance, the induc-
tion of the “best” decision trees for GM-CSF, IFN-γ, and IL-17
required the inclusion of all cells (cytokine-positive and negative)
while for IL-2, RANKL, and TNF-α, a better classification could
be reached when cytokine-negative cells were omitted. This is due
to the fact that IL-2, RANKL, and TNF-α have a high percentage
of cells which only produce this cytokine (see Figure 3). The cor-
responding decision trees have the characteristic that positive cells
are routed to the left most node (see Figures 4 and 5), thus these
cells are correctly classified as positive if they do not produce the
cytokines used for this trees. If also the cytokine-negative cells have
been used to induce decision trees for IL-2, RANKL, and TNF-α,
then also all cytokine-negative cells would have been routed to this
leaf and that would have worsen the classification. Consequently,
although the induction of decision trees seems to be a promis-
ing approach for the analysis of multidimensional data, standard

FIGURE 10 | IFN-γ (A) WT-day 9, (B) KO-day 9, (C) KO-day 21.

parameter settings that are suitable for all data sets cannot be pro-
posed. Our approach to choose a decision tree will be discussed in
the next section.
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FIGURE 11 | IL-17 (A) WT-day 9, (B) KO-day 9, (C) KO-day 21.

4. DISCUSSION
Commonly used sequential filtering strategies have several dis-
advantages in the analysis of multi-parametric flow cytometry
data. They are time-consuming and subjective and therefore

information which is contained in the dataset might be lost. Per-
haps more importantly, this approach is mainly descriptive and
not quantitative. The establishment of an improved workflow for
the analysis of flow cytometric data is a demanding need since

Frontiers in Microbiology | Microbial Immunology April 2012 | Volume 3 | Article 114 | 128

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Simon et al. Multidimensional flow cytometric data analysis

FIGURE 12 | (A) IL-2 KO-day 21, (B) GM-CSF KO-day 21.

further increases in data complexity can be expected by the cur-
rent technical advance in flow cytometry technology (Perfetto
et al., 2004; Lugli et al., 2010; Bendall et al., 2011; Mittag and
Tarnok, 2011). We tested the feasibility of the induction of deci-
sion trees to identify structural patterns in multidimensional flow
cytometric data. Data sets from intracellular cytokine staining
of antigen-specific T helper cells were analyzed in our proof-of-
concept study. T helper cell cytokine production is critical for their
capacity to regulate different aspects of the immune response.
Cytokine secretion must occur in a coordinated way for maxi-
mum efficiency of an immune response. In several independent
studies, it has been demonstrated that the protective or pathogenic

potential of a T cell response is not determined by the produc-
tion of a single cytokine. It is rather correlated to their capacity
for a coordinated expression of cytokines. For instance, protec-
tion against infection with the intracellular parasite Leishmania
major is related to a high number of Th cells producing TNF-α,
IFN-γ, and IL-2 simultaneously (Darrah et al., 2007; Seder et al.,
2008). The identification of patterns of cytokine expression by
machine learning might be a useful tool for a better understand-
ing of both T cell immunology and system biology of microbial
infection, which critically depends on bidirectional interactions
between the pathogen and the host. This prompted us to test the
feasibility of the induction of decision trees for the analysis of
highly complex flow cytometric data. We hypothesized that good
retrieval of information requires good classification by the deci-
sion tree. Unfortunately, universally applicable criteria that assess
the quality of a decision tree do not exist; these criteria depend
on both the data and on the intention of the researcher. Fur-
thermore, there are no general applicable parameter settings in
machine learning. Thus, we used different parameter settings and
ended up with a large set of decision trees from which we had to
choose. Our approach was to select the one tree we considered to
be the “best” tree. For the selection of the best, we chose a com-
bination of different criteria, including the geometric mean of the
TP rate and the TN rate, the area under the ROC curve (AUC)
and geometric mean of the F-measures (see section 3). Since deci-
sion trees works best with balanced data, we also weighted our
highly imbalanced data sets regarding positive and negative cells
(see Figure 3A). Although, we were able to identify a tree of suf-
ficient for each cytokine, the parameter settings for the induction
of the decision trees clearly varied to meet our quality criteria. For
instance, the induction of the “best” decision trees for GM-CSF,
IFN-γ, and IL-17 required the inclusion of all cells (cytokine-
positive and negative). In contrast for IL-2, RANKL, and TNF-α,
a better classification could be reached when cytokine-negative
cells were omitted. This shows that although the induction of
decision trees seems to be a promising approach for the analy-
sis of multidimensional data, standard parameter settings, which
are suitable for all data sets, cannot be proposed. The choice and
combination of the quality measure was adjusted for our task. We
consequently used primarily the geometric mean of the TP and
TN rate since we considered both as equally important and chose
the smallest tree, since we aimed at a visual expert inspection of
the trees. Other tasks may require other criteria. An extension to
our approach to chose only the “best” tree could be to provide the
expert user with a set of good trees. A comparison of these set
could reveal more insight and will be the scope of future work.
Another discussable point is the weighting of the data sets accord-
ing to their imbalance. Due to the weighting of the data, a node
is also classified as positive if the number of cells negative for this
cytokine is much higher than the number of cells positive for this
cytokine. Thus, the precision of classification becomes lower. Such
low precision heavily impairs the ability to predict the expression
of a given marker depending on the known expression of other
markers, in order to avoid its direct measurement. Since we used
decision trees to find structural patterns in the data and to gen-
erate hypothesis from these patterns, precision does not play a
critical role.

www.frontiersin.org April 2012 | Volume 3 | Article 114 | 129

http://www.frontiersin.org
http://www.frontiersin.org/Microbial_Immunology/archive


Simon et al. Multidimensional flow cytometric data analysis

The work was focused on standard condition (WT-day 21).
However, for comparative reasons and to check the robustness
of identified rules, additional conditions were investigated using
knock-out mice (KO) and measurement already 9 days after
immunization. The importance of high TNF-α expression for
IFN-γ was confirmed for all conditions while for GM-CSF and
IL-2 production only when measured 21 days after immuniza-
tion. Furthermore, TNF-α was identified as the second important
criterion also for IL-17 production but again only when mea-
sured 21 days after immunization. Summarizing, some rules of
co-expression have been confirmed with different experimental
conditions. Thus, the method of induction of decision trees is
able to extract robust rules. Interestingly, the strong dependency
of the expression of one cytokine on the expression of others
which we found reproducibly between different time points and
despite differing genotypes implies some biological significance of
these findings. We have previously shown in a kinetic study that
TNF-α is one of the earliest cytokines produced after activation of
antigen-specific T cells (Frey et al., 2010b). Given that expression
of the other cytokines starts later, the strong relationship between

TNF-α and the expression of the other cytokines could argue for
a hard-wired connection between the expression of these medi-
ators. High TNF-α expression has been described as a marker
of polyfunctional T cells in another study (Darrah et al., 2007;
Seder et al., 2008), supporting our hypothesis that TNF-α expres-
sion is highly correlated with the expression of other effector
cytokines.

In conclusion, the presented results show that data analysis with
decision trees can easily reveal structural patterns in flow cyto-
metric data that would have been missed by conventional analysis.
Such patterns can be used for the generation of hypothesis on the
complex biology of certain subsets of cells.
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Experimental models, mimicking physiology, and molecular dynamics of diseases in
human, harbor the possibility to study the effect of interventions and transfer results from
bench to bedside. Recent advances in high-throughput technologies, standardized proto-
cols, and integration of knowledge from databases yielded rising consistency and usability
of results for inter-species comparisons. Here, we explored similarities and dissimilarities
in gene expression from blood samples of a murine sepsis model (peritoneal contamina-
tion and infection, PCI) and patients from the pediatric intensive care unit (PICU) measured
by microarrays. Applying a consistent pre-processing and analysis workflow, differentially
expressed genes (DEG) from PCI and PICU data significantly overlapped. A major fraction
of DEG was commonly expressed and mapped to adaptive and innate immune response
related pathways, whereas the minor fraction, including the chemokine (C–C motif) ligand 4,
exhibited constant inter-species disparities. Reproducibility of transcriptomic observations
was validated experimentally in PCI. These data underline, that inter-species comparison
can obtain commonly expressed transcriptomic features despite missing homologs and
different protocols. Our findings point toward a high suitability of an animal sepsis model
and further experimental efforts in order to transfer results from animal experiments to the
bedside.

Keywords: innate and adaptive immune response, major histocompatibility complex class II, sepsis, systems
biology, transcriptomics

INTRODUCTION
Application of high-throughput technologies like microarrays
extended the understanding of the complex molecular interactions
in infectious disease processes (Jenner and Young, 2005; Polpitiya
et al., 2009). Contrary to a single gene study, unbiased quantitative
insights are collected by simultaneously monitored gene expres-
sion levels. These can be subject to data- and knowledge-driven
analyses by bioinformatic and systems biology approaches in order
to extract hypotheses about molecular interactions and predict
interventional targets. Validation of these hypotheses may lead to
translational approaches and ultimately optimize clinical practice
(Cavaillon and Adib-Conquy, 2006). A major precondition for
this comprises the inter-species comparison of molecular features
in response to disease including their interactions as well as the
underlying dynamics, which are covered by translational systems
biology (Vodovotz et al., 2008). Experiments in animal models like
M. musculus are often used to study human gene expression based
on the assumption that the expression and function are similar for
the majority of orthologous genes between both species (Lu et al.,
2009). Although >12,000 orthologous gene pairs, i.e., homolo-
gous genes in the same syntenic location, were found in human
and mouse, genomic differences with transcriptional and regu-
latory relevance exist (Mestas and Hughes, 2004). Comparison

of expression differences in meta-studies, focusing on comparing
lists of differentially expressed genes (DEG) derived from litera-
ture, e.g., studies about dietary restriction spanning six organisms
for different species (Han and Hickey, 2005) or of sepsis markers
in humans (Tang et al., 2010), yielded no agreement or only small
intersections, respectively. This may be related to biological vari-
ability as well as different protocols for experimental set-up and
data analysis. In contrast, promising transcriptomic comparisons
from murine and human samples with respect to conserved path-
ways (Lim et al., 2010) as well as similar expression of homologs
(Dowell, 2011) have been reported. Using a consistent workflow
and filtering according to microarray quality control (MAQC, Shi
et al., 2006) criteria, DEG with approximately 50% overlap in
murine and human monocytes were obtained (Ingersoll et al.,
2010), which is driving attempts to find conserved markers for
diseases like sepsis across species.

Sepsis is a syndrome characterized by a systemic inflammatory
response to infection (Bone et al., 1992) with high incidence in the
intensive care unit (ICU) and especially critical for the Pediatric
Intensive Care Unit (PICU) patients (Kovarik and Siegrist, 1998).
The most severe form of sepsis, septic shock, is characterized by
hypotension or hypoperfusion despite adequate fluid resuscita-
tion. Therapies aimed at reducing the inflammatory burden of
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acute sepsis patients have been studied in clinical trials with little
success, underlining the need to revise current approaches includ-
ing the basic research in animals (Marshall, 2008). Experimental
approaches in mimicking the sepsis syndrome include the use of
peritonitis models like the polymicrobial challenges by peritoneal
contamination and infection (PCI; Gonnert et al., 2011) and cecal
ligation and puncture (CLP; Hubbard et al., 2005) or pneumonia
models (Weber et al., 2012) aiming to closely reflect the patho-
physiology observed in humans in the rodent models (Rittirsch
et al., 2008).

In the present study, we investigated inter-species compara-
bility based on gene expression patterns from experimental and
clinical samples from septic blood. We compared time-resolved
transcriptomic data obtained from (I) a murine polymicrobial sep-
sis model induced by PCI (Gonnert et al., 2011) and (II) sepsis and
septic shock patients from the PICU and identified genes and path-
ways which could be translationally (across species) promising for
diagnostics and interventions.

MATERIALS AND METHODS
DATA CHARACTERISTICS
Table 1 is summarizing the animal (I, PCI) and human (II, PICU)
sepsis data used in this comparison further described in detail
below.

(I) Animal experiments were carried out after approval of the
local ethics committee. Using a recently published rodent sep-
sis model (Gonnert et al., 2011), 8-week-old female C57/BL6
mice were subject to the PCI challenge. Eight mice, equally
divided into 6 and 24 h observational groups, received an
intraperitoneal injection of 200 µl of a human feces suspen-
sion (0.21× 106 CFU/g, predicted to be lethal). Control mice
(n= 4) were used for adjustments. Blood was drawn with
a 20G Sterican needle (Braun, Melsungen, Germany) from
the Vena cava caudalis in a syringe prepared with 200 µl
PAXgene reagent (PreAnalytix®, Qiagen, Hilden, Germany).
Clearing from globin RNA from whole blood samples was
done by the GLOBINclearTM Mouse/Rat Kit by Ambion®
(Applied Biosystems, Darmstadt, Germany). RNA integrity
and concentration analyses were performed with the Bio-
analyzer 2100 (Agilent Technologies®, Palo Alto, CA, USA)
according to the manufacturers specifications (RNA 6000
Nano Assay) using RNA 6000 Nano LabChip® Kits by Agi-
lent Technologies®. Amplification and biotinylation of RNA
was in agreement to the protocol of the Illumina® TotalPrep
RNA Amplifikation Kit from Ambion (Applied Biosystems,

Darmstadt, Germany). Hybridization was in accordance to
the Whole-Genome Gene Expression with IntelliHybTM Seal
protocol (Revision B) from Illumina® (San Diego, CA, USA).
Scanning of arrays was done with the BeadArray Reader 500
X for Illumina MouseWG-6 v2.0 expression beadchips. Vali-
dation of expression changes for candidate features PCI (6 h)
was performed using a lower dose (0.14× 106 CFU/g, pre-
dicted to be lethal) for n= 2 gender- and age-matched mice
monitored on Illumina MouseRef-8 V2 chips and compared
to a control in a follow-up run.

(II) A publically available data set containing gene expression val-
ues from blood samples of PICU sepsis and septic shock
patients and controls, along protocols as described elsewhere
(Wong et al., 2009). Briefly, pediatric patients with septic
shock were characterized by a significantly higher illness
severity, higher mortality (n= 27 died within 28 days), and an
increased degree of organ failure, compared to sepsis patients.
Total RNA was isolated from whole blood samples using
the PaxGene Blood RNA System according to the manufac-
turer’s specifications. Raw data for gene expression profiling
was obtained from Gene Expression Omnibus (accession ID
GSE13904).

DATA ANALYSIS
Computations were performed using R software (http://www.
r-project.org/) version 2.15 and Bioconductor (Gentleman et al.,
2004) packages. To assure data comparability (Ramasamy et al.,
2008) a consistent workflow was applied.

(I) PCI data was subjected to quality control and the robust spline
procedure from the R package lumi (Du et al., 2008), com-
bining the features of quantile and loess normalization and
log2 transformed signals were obtained. Bead types having
detection values p < 0.01 in at least four of the RNA sam-
ples were taken. Subsequently, bead types were mapped to
most recent annotation and gene-centered agglomeration by
Entrez IDs was performed. Normalized detected bead types
from PCI samples and controls are provided in Supplemen-
tary Tables 1 and 2, for the initial run and the validation data
set, respectively.

(II) PICU data was pre-processed using chip definition file
from Brainarray (v. 15.1, 2012) which aggregates probes
into updated gene-centered probe set definitions mapped
to Entrez IDs (Sandberg and Larsson, 2007). Further pre-
processing was performed using quantile and loess normal-
ization.

Table 1 | Characteristics of transcriptomic data used in this analysis.

Organisms (age) PCI (experimental sepsis) PICU (clinical sepsis and septic shock)

Female C57BL/6 mice (8-week old) Pediatric intensive care unit (PICU) patients

(2–5-year old)

Syndrome Sepsis Sepsis Septic shock

Case number [time (h)] 4, 4 (6, 24) 32, 20 (24, 72) 67, 39 (24, 72)

Controls 4 18

Chip Illumina Mouse WG 6 v2 Affymetrix HGU 133plus2
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Entrez IDs were mapped using the Array Information Library
Universal Navigator (AILUN)-service (Chen et al., 2007), facili-
tating cross-species and cross-platform comparisons by the use
of homologous gene definitions. Merged data sets were re-
normalized to avoid potential bias due to different log2 signal
ranges. DEG were separately identified in PCI and PICU data
according to micro array quality control (MAQC; Shi et al., 2006) –
criteria and standard thresholds by: (1) average twofold difference
for sample groups (opposed to controls) and (2) FDR (Ben-
jamini and Hochberg, 1995)-adjusted p-values from moderated
t -statistics <0.05 using limma (Smyth, 2004). Because different
hybridization properties of the probes on species–specific arrays
can profoundly bias cross-platform comparison of gene expression
levels the use of relative expression changes is preferred to absolute
expression signals (Liao and Zhang, 2006). Parametric tests (t -
statistics) were applied to account for the small sample-sized PCI
data. Pearson correlation (r) was used to assess similarity.

Hypergeometric tests were performed for the evaluation if
intersections of separately identified DEG from PICU and PCI
data could occur by chance (Fury et al., 2006). In addition, Monte–
Carlo simulations (MCS, 4,000 iterations) were employed to non-
parametrically assess the significance of intersections for two and
more groups by re-sampling procedures (Ramasamy et al., 2008).
One-sided p-values were defined by the fraction of counts derived
from the empirical distributions of randomly expected intersec-
tions being larger than the number of observed intersections from
the original gene lists.

To include potential differences in PICU (sepsis) and
PICU (septic shock), commonly expressed DEG, i.e., found
in human and murine data at any time point, were
obtained by: DEGC= {DEG(PICU sepsis)∪DEG(PICU septic
shock)}∩DEG(PCI). Differences in signs of expression changes
were assessed by sign (DEGC(PICU)) 6= sign (DEGC(PCI)). Hier-
archical clustering (Eisen et al., 1998) of average log2 fold change
data was applied for features drawn in a heatmap. Gene set enrich-
ment analysis (GSEA) was performed using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID, v6.7;
Huang et al., 2009) and its internal variant of Fisher’s exact test for
enrichment within the pathways defined by the Kyoto Encyclopedia
of Genes and Genomes (KEGG; Kanehisa et al., 2008) for murine
and human data and backgrounds.

RESULTS
DIFFERENTIALLY EXPRESSED GENES SIGNIFICANTLY OVERLAP IN
BOTH SPECIES
Pre-processing yielded k = 18,988 and l = 9,325 gene-centered
features from human and murine samples, respectively. Merging
by Entrez IDs narrowed down the lists to m= 7,461 homolo-
gous features. Converted log2FC values (opposed to controls)
of common detected features (m) indicated overall positive and
significant correlations (p < 0.05) for PCI and PICU, but higher
correlation within PICU data (r > 0.85). Combining DEG from
PCI and PICU data as shown in the Venn diagrams for the early
time point (Figure 1A) and both time points (Figure 1B) indi-
cated time-persistent expression changes. Observed intersections
of DEG from PCI and PICU were significantly higher than would
be expected by chance (Figure 1A; e.g., n1= 89 common DEG

in PCI and PICU, p < 0.05 hypergeometric test; MCS sampling
out of m features). Notably, septic shock induced more DEG
than sepsis in PICU data (196 DEG were exclusively assigned to
septic shock for both time points). DEGC, i.e., DEG found in
PCI and PICU at any time point (Figure 1B highlighted in gray,
n12= 135, p < 0.05), as depicted in the heatmap (Figure 1C), indi-
cated hierarchically grouped clusters for down- and upregulated
genes. A small subset of DEGC (10 out of 135) was expressed
with different signs, comprising, e.g., the chemokine (C-X-C
motif) ligand 4 (CCL4) and MARCKSL1 genes with high average
disparity.

Assessing the dynamic changes for each group by the MAQC-
criteria, e.g., PICU sepsis 72 h (late) versus PICU sepsis 24 h (early),
yielded no qualitative changes in PICU sepsis data and only one
gene in PICU septic shock data, but 141 features for PCI data (PCI
24 h versus PCI 6 h).

GENE SET ENRICHMENT ANALYSIS IDENTIFIES PATHWAYS RELATED
TO THE INNATE AND ADAPTIVE IMMUNE RESPONSE
Next, we thought to determine the pathways exhibiting highest
enrichment for the DEGC. Equally signed DEGC mapped to path-
ways from the immune response using DAVID knowledge base on
KEGG (M. musculus definitions) as shown in Table 2.

Top enrichment of commonly downregulated genes from the
DEGC was found in the CAMs-category, containing CD8B1,
ICAM2, and histocompatibility 2 class II locus genes (H2-OB, H2-
EB1, and H2-DMa). Histocompatibility 2 class II locus genes were
also included in the Antigen processing and presentation pathway
and indicated an overlap for further categories, e.g., Asthma.

Top enriched category termed Cytokine–Cytokine-Receptor
Interaction for commonly upregulated genes comprised chemokine
(C-X-C motif) ligand 16, and related genes from interleukin recep-
tors 1, 10, 17, and 18. Further enrichment was found for the Insulin
signaling pathway (e.g., flotilin 1 and 2) and the Toll-like receptor
(TLR) signaling pathway (CD14, TLR2, TLR4, and TLR6). Map-
ping of DEGC by human definitions/background to KEGG did
not alter the ranking of enriched pathways.

VALIDATION OF THE TRANSCRIPTOMIC RESPONSE IN MURINE SEPSIS
Validation by a second run of wet lab experiments for the murine
PCI challenge to a slightly lower dose yielded similar expression
changes, i.e., significant positive correlation (r > 0.7, p < 0.05) by
log2FC values of all detected genes on both Illumina platforms.
Higher correlation (r > 0.9) was obtained for detectable DEGC
(n= 115) in comparison of log2FC values of PCI data (first versus
second run) as depicted in Figure 2A (including two highlighted
outliers). Detailed log2 signals are exemplarily shown in Figure 2B
for a selection of the aforementioned genes.

DISCUSSION
In the present work, we compared the transcriptomic response
in blood samples from a murine sepsis model and pediatric
septic patients. Batch-effects, due to different protocols, in this
inter-species and cross-platform comparison, were approached
by standard bioinformatic and microarray data analysis pro-
cedures including probe set re-annotation, group-wise control
adjustments and using stringent MAQC-criteria for filtering of
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A C

B

FIGURE 1 | Venn diagram for (A) DEG for the early time point (with
respect to controls) and (B) DEG for both time points for murine (PCI)
and human (PICU) sepsis and septic shock data. (C) Heatmap for the
135 DEGC, i.e., genes, which are at least two-times differentially

expressed (once in PCI and once in PICU). Features in the heatmap are
annotated with gene symbols from M. musculus and average log2FC
values (all adjusted to their respective controls) were pruned to be
in [−3, 3].

DEG. The analyzed spectrum of time-resolved gene expression
data demonstrated positive correlations for PCI and PICU data
with significantly overlapping DEG. Furthermore, commonly

expressed genes were found throughout the observation period for
both species, whereas the early time points (6 h PCI, 24 h PICU)
already comprised the majority of identified DEG.
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Table 2 |Top five enriched KEGG pathways obtained from DAVID (p-values Fisher’s exact test p < 0.05) supported by FDR-adjusted p-values

within the common down- and upregulated DEG from PCI and PICU.

Pathway Hits % p-Value FDR-adjusted p-value

Commonly downregulated genes (32 DAVID IDs) Cell adhesion molecules (CAMs) 5 15.6 3.0E−04 7.7E−03

Antigen processing and presentation 4 12.5 9.8E−04 1.3E−03

Asthma 3 9.4 2.4E−03 2.1E−02

Intestinal immune network for IgA production 3 9.4 6.3E−03 4.1E−02

Allograft rejection 3 9.7 7.3E−03 3.7E−02

Commonly upregulated genes (87 DAVID IDs) Cytokine–cytokine receptor interaction 7 8 2.0E−03 7.2E−02

Insulin signaling pathway 5 5.7 6.8E−03 1.2E−01

Toll-like receptor signaling pathway 4 4.6 1.7E−02 2.0E−01

Jak-STAT signaling pathway 4 4.6 5.2E−02 4.0E−01

Hematopoietic cell lineage 3 3.4 7.90E−02 4.7E−01

A B

FIGURE 2 | (A) Scatterplot opposing average log2FC values for DEGC
(n=115) in PCI for the 1st and 2nd run. Two spots with different signs
for log2FC values are marked. (B) Gene-centered log2 signal values

for controls (CTRL, n=4), PCI 6 h (n=4, light gray) of the initial run,
and the validation run for control (CTRL, n=1) and PCI 6 h (n=2,
gray).

LITERATURE SUMMARY FOR GENES AND PATHWAYS RELATED TO THE
INNATE AND ADAPTIVE IMMUNE RESPONSE IN SEPSIS
Although not statistically significant after multiple test correction
commonly upregulated features mapped to Cytokine–Cytokine-
Receptor Interaction, Insulin signaling pathway, and the TLR
signaling pathway. The latter comprised TLR2, TLR4, and TLR6
genes and can be grouped to the innate immune response (Tsu-
jimoto et al., 2008). The differential regulation of these pathogen
receptors is supported by a recent transcriptomic meta-study cov-
ering over 10 publications from human septic blood samples
indicating a common activation of pathogen recognition receptors
and corresponding signal transduction cascades (Tang et al., 2010).

Further features, which were identified commonly expressed in
PCI and PICU, included the repressed MHC II genes, e.g., related
to Antigen processing and presentation. Among many transcrip-
tomic studies, MHC II related genes were found mostly stable
downregulated and may characterize an immune paralysis (Prucha
et al., 2004; Tang et al., 2009) related to reduced lymphocyte popu-
lations in sepsis due to apoptosis (Hotchkiss and Nicholson, 2006).

Furthermore a lot of unmapped features (not within KEGG
pathway definitions for both species) were found and could be
subject to enrichment tests in other knowledge bases. Comparison
of DEGC to another published experimental sepsis study yielded,
e.g., the significantly upregulated LCN2 gene in the murine CLP
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model (Chung et al., 2006), whose protein mediating an innate
immune response by sequestering iron (Flo et al., 2004).

Our results regarding the involved genes and pathways are sup-
ported by adult data from a recently published time-resolved tran-
scriptomic study (Xiao et al., 2011), comparing a large cohort of
severe trauma and burn injury patients to healthy subjects, where
a sustained transcriptionally downregulated adaptive immune
response (e.g., MHC II genes) as well as an upregulated innate
immune response (including, e.g., TLR, LTF, LCN2, and HP tran-
scripts) were found. As the degree of deregulation of these genes
was able to discriminate between complicated and uncomplicated
clinical courses, they might be of interest for novel diagnostic
approaches in sepsis and other clinical entities.

LIMITATIONS AND PERSPECTIVES
Limitations of our study include the differences in the wet lab pro-
tocols, because variation in the relative proportions of distinct cell
types may contain valuable molecular information (Palmer et al.,
2006). Furthermore, the number of homologous genes mapped
by Entrez IDs across species may influence the results, as observed
for the limiting PCI data set (k, l, m). Observed disparities in
expression of the DEG, e.g., high average disparity in murine and
pediatric sepsis samples for the CCL4 and MARCKSL1 genes, may
reflect a bias within the mapping or the underlying genomic fea-
tures. Because their expression can also be affected by missing
homologs through complex interaction networks, experimental
workarounds may include the use of transgenic or humanized
mice (Shultz et al., 2007).

These limitations notwithstanding, we have done a first step,
in comparing functional genomic-based experimental sepsis to
pediatric patients data for potential modeling applications in
translational systems biology. Future studies could also address the

impact of different therapeutic approaches in sepsis across species,
e.g., the response to antibiotics in combination with immunomod-
ulators in PCI (Bauhofer et al., 2008) on the transcriptomic level.

CONCLUSION
We found highly comparable gene expression patterns in blood
samples from a murine sepsis model and pediatric septic patients
characterized by commonly expressed genes from the adaptive and
innate immune response. Findings point toward a high suitability
of an animal sepsis model to study the complex molecular mech-
anisms and to establish diagnostic as well as treatment options for
pediatric sepsis patients.
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