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Editorial on the Research Topic
Dynamical systems, PDEs and networks for biomedical applications:
Mathematical modeling, analysis and simulations

In recent decades, mathematics for healthcare [1] and quantitative biomedicine have become
increasingly important. This research area includes various aspects such as modeling, analysis and
simulation of numerous highly relevant processes in clinical practice and combines different
scientific disciplines like biology, bioengineering, physics, mathematics and medicine. Important
biomedical applications are for instance cellular, biochemical and biomolecular processes, tumour
growth, electrophysiology of the heart or the brain, tissue regeneration and biomedical
engineering. In this line of research, mathematical and computational modeling, cf. e.g. [2–4],
have become essential components in interdisciplinary and multidisciplinary research projects
and contributes significantly to a better understanding of real-world phenomena. The great
importance of this research field also results in the establishment of numerous research centres
and research groups in the field of mathematics for healthcare and quantitative biomedicine.

New interdisciplinary research fields like computational cardiology [5], computational
neurosciences [6] and computational oncology [7] arise and can be used to develop new
therapies and help in improving clinical decision [8–12]. There are plenty of important
examples of mathematical and numerical approaches which are applied to drug (safety) testing
or drug development, the analysis and simulation of complex dynamics in the heart or the brain such
as cardiac arrhythmias [13] or seizures [14], and are becoming more and more relevant these days.
Computer modeling of complex dynamic processes like wound and bone healing [15] gives new
insights into how such complex biological processes work and helps to make better predictions.

The origins for these developments lie in the great opportunities for developing not only complex
(and detailed) models that can be tested against experimental data, which is becoming available in
increasing amount and quality, but also computational methods to solve these models. Together, this
opens new challenges and prospects for a systematical investigation of both biological and
mathematical issues from life science. Thus, this Research Topic is focused on advanced methods
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in mathematical and computational modeling of biomedical phenomena
using (experimental) data, their analysis and numerical simulations that
contribute to a significantly improved comprehension of these
phenomena. The main focus of this Research Topic is three-fold: 1)
modeling approaches using differential equations or networks describing
the behavior of single cells, cell groups, tissue or organs. 2) The analysis of
the dynamics and behavior of certain biomedical models improving the
state-of-art understanding of certain phenomena like cardiovascular and
neurological diseases and disorders. 3) Improved numerical methods to
simulate and analyze complex biomedical models.

In computational cardiology, the electrophysiological behavior of
cardiac tissue is usually modelled either by the monodomain or
bidomain models, which mathematically represent coupled systems of
partial and ordinary differential equations, and give insights into the
conduction properties of the electrochemical wave traversing the cardiac
muscle. The bidomain model is considered to be the gold standard for
numerical simulations and the monodomain model is a special case
assuming equal anisotropy rates. Jæger et al. studied and compared the
bidomain model, which represents the average over a large number of
cardiomyocytes, and the EMI model, which is considered to be more
accurate since it includes explicitly the extracellular space (E), the cell
membrane (M) and the intracellular space (I). The authors showed the
limitation of the bidomain model and that it can be derived directly from
the cell-based EMImodel as well as their similarities. Bothmodels provide
remarkably similar results when the parameters of importance for the
conduction velocity lie in the normal range. The authors concluded that
the bidomainmodel represents normal cardiac conduction very well if the
scale of interest contains many cells, but cannot be used to study
conduction in the vicinity of individual cells. Therefore, depending on
the biomedical application one has three accurate models of different
complexity and different numerical efforts. In this line of research,
Mulimani et al. and Zykov et al. studied different types of spiral waves
occurring in monodomain models. Monodomain models have been
proved to be good approximations of cardiac tissue for wave
propagation. Mulimani et al. focused their investigations on the effects
of cellular parameters on the properties of the action potential of a
myocyte. For instance, this study provides an understanding of how
changes in the action potential at single-cell level can be related to changes
in spiral-wave frequency at tissue level, which may also result in life-
threatening cardiac arrhythmias. Furthermore, Zykov et al. investigated
spiral wave instability in a modified Barkley model and showed the
existence of two quite different parameter regions of this instability. The
first region can be linked to the presence of aHopf bifurcation and is a well
known scenario, while the second region cannot be explained by a Hopf
bifurcation and a hysteresis phenomenon was detected on its boundary.
Besides the efficient modelling of a certain problem, the development of
advanced numerical algorithms are important. Xiao et al. introduced a
Fourier filter-based physics-informed convolutional recurrent network
that can solve partial differential equations without labeled data. This
approach was applied to several problems such as the two-dimensional
viscous Burger’s equation and FitzHugh–Nagumo reaction-diffusion
equations. On single-cell level Hustad et al. pointed out that ODE
computations can use a substantial fraction of the total computer time
of a heart simulator and they focused on systematically studying how to
efficiently use modern multicore CPUs for this costly computational task.
Furthermore, they concluded that the largest performance improvement
of the ODE solvers arises from using SIMD vectorisation. Molinari et al.
established an experimentally calibrated computational model of ex-vivo
cardiac radiofrequency catheter ablation featuring the inclusion of three-

dimensional myocardial anisotropy, the implementation of a multi-scale
time lag thermal ablationmodel, and the adoption of amodel of cell death
for the estimation of tissue damage and lesion sizing. The investigation
gave new insights into the anisotropic thermal behavior of cardiac tissue
and proved that the intrinsic anisotropic microstructure plays a crucial
role in the thermo-electrical response of the tissue undergoing
hyperthermic treatments.

In the realm of neuroscience, Daversin-Catty et al. introduced a new
mathematical and numerical formalism of pulsatile viscous fluid flow in
networks based on topological and geometrical model reduction, which is
a robust and effective computational approach for large scale in silico
studies. Moreover, different computational scenarios were studied, e.g.
perivascular space flow induced by cardiac pulse wave-induced
movement of the inner vascular wall. Furthermore, the framework
established a foundation for future computational studies of
perivascular flow to improve our understanding of brain transport.
Yamakou et al. investigated coherence resonance and self-induced
stochastic resonance in multiplex neural networks, which consist of
electrically connected FitzHugh–Nagumo model neurons, in the
presence of spike-timing-dependent plasticity. Here, several important
questions leading to interesting future research directions were addressed,
such as:Which of these noise-induced resonance phenomena ismore robust
to parametric perturbations? In order to better understand burst
generation in inhibitory half-center central pattern generators, Olenik
et al. studied a minimal network of two neurons coupled through
depressing synapses. They have shown that synaptic depression of
inhibition can enable the two-cell (Morris–Lecar model) network to
produce burst solutions of different periods, when the strength of the
maximum synaptic conductance is varied. Furthermore, Liu et al.
investigated BAM neural networks with delays. By using generalized
Halanay inequalities and constructing appropriate Lyapunov functionals,
some novelty criteria are obtained for the asymptotic stability of BAM
neural systemswith time delays. Spiliotis et al. analyzed network dynamics
under healthy, Parkinsonian and deep brain stimulation conditions with
the aim to improve deep brain stimulation treatment. For this purpose the
authors built a large scale computational model that consists of certain
elements of the basal ganglia network. This new approach is based on the
detection of network communities or modules central to activity
distribution. The aim of the paper was two-fold: 1) to identify
positions of nodes of high functional impact using network analysis
and 2) to explore the relationship between anatomical structure and
neural activity using modified Hodgkin–Huxley models. The analysis
showed that in all modular areas, Parkinsonian conditions alter power
spectrogams.

The last area of this Research Topic concerns modeling and analysis
to inform healthcare decision-making in terms of therapy/drug delivery
(Zlobina et al.), managing infections (Kuttler et al.), informing new
drugs’ discovery (Bondar et al.) and managing pandemics
(Chattopadhyay et al.). Zlobina et al. proposed that a qualitative
model with a proper level of abstraction can be used to predict the
response of a wound to dynamic therapy and investigated
mathematically the most effective spatio-temporal regimes for drug
delivery to accelerate wound closure. This study provides a possible
optimal regime of therapy that focuses on macrophage activity and a
hypothesis of treatment outcome to be tested in future experiments.
Kuttler et al. introduced a mathematical model for bacterial growth and
control by antibiotics treatment, including quorum sensing as a special
kind of communication. The system is formalized by a system of semi-
linear parabolic partial differential equations and can be used for in silico
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studies of bacterial cooperative behavior in the special case of quorum
sensing. The obtained data suggest that even a small bacterial population
maintains an essential quorum. Bondar et al. discussed general
principles of protonation-coupled protein conformational dynamics
and how these apply to G-Protein Coupled Receptors. The authors
found that the internal H-bond networks contain sites where structural
rearrangements upon protonation change could be transmitted
throughout the protein. In Chattopadhyay et al. a novel method of
approximating a closed form solution of the ensemble averaged density
profiles and correlation statistics of coupled dynamical systems, drawing
from a technique used in mathematical biology to calculate a quantity
called the basic reproduction number R0, was presented. It was shown
that the R0 formulation can be used to calculate the correlation between
diffusivity paths, agreeing closely with the exact numerical solution of
the double-diffusion model.

The topics covered in this Research Topic are far from
exhaustive. Rather, they point to a broader range of problems
that can not only be addressed by available mathematical and
computational approaches, but also stimulate the development of
novel tools and techniques.
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The bidomain model is considered to be the gold standard for numerical simulation

of the electrophysiology of cardiac tissue. The model provides important insights into

the conduction properties of the electrochemical wave traversing the cardiac muscle in

every heartbeat. However, in normal resolution, the model represents the average over a

large number of cardiomyocytes, and more accurate models based on representations

of all individual cells have therefore been introduced in order to gain insight into the

conduction properties close to the myocytes. The more accurate model considered here

is referred to as the EMI model since both the extracellular space (E), the cell membrane

(M) and the intracellular space (I) are explicitly represented in the model. Here, we show

that the bidomain model can be derived from the cell-based EMI model and we thus

reveal the close relation between the two models, and obtain an indication of the error

introduced in the approximation. Also, we present numerical simulations comparing the

results of the two models and thereby highlight both similarities and differences between

the models. We observe that the deviations between the solutions of the models become

larger for larger cell sizes. Furthermore, we observe that the bidomain model provides

solutions that are very similar to the EMI model when conductive properties of the tissue

are in the normal range, but large deviations are present when the resistance between

cardiomyocytes is increased.

Keywords: bidomain model, EMI model, cell-based model, cardiac electrophysiology, cardiac conduction, cardiac

tissue models, numerical simulation

1. INTRODUCTION

Mathematical models are indispensable for understanding the complex processes underlying
cardiac electrophysiology. A wide variety of models have been developed for the key processes
going on across the membrane of cardiomyocytes (see, e.g., Rudy and Silva, 2006; Rudy, 2012; Qu
et al., 2014; Amuzescu et al., 2021), where the latter paper presents a comprehensive overview of
the evolution of these models. The models of the membrane dynamics have also been extended to
yield descriptions of the electrophysiological properties of cardiac tissue, commonly represented
by the bidomain model or the somewhat simpler monodomain model (see Tung, 1978; Neu
and Krassowska, 1993; Sundnes et al., 2007; Clayton and Panfilov, 2008; Vigmond et al., 2008;
Linge et al., 2009; Niederer et al., 2011a; Franzone et al., 2014). The use of mathematical models
for understanding the properties of the cardiac action potential (AP) across the membrane of
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cardiomyocytes is very widespread, and so is the use of the
bidomain/monodomainmodels for understanding the properties
of the excitation wave traversing cardiac tissue during each
heartbeat. However, the spatial bidomain/monodomain models
have two inherent limitations. The main limitation is that the
extracellular space, the membrane of the myocyte, and the
intracellular space are all assumed to be present everywhere. This
assumption is indeed courageous but has provided surprisingly
accurate results and presently underpins the understanding of
cardiac conduction. The second limitation is that convergence
is obtained using a relatively coarse mesh (1x ∼ 0.25 mm,
see Xie et al., 2004; Clayton and Panfilov, 2008; Niederer et al.,
2011b) and thus a typical mesh block contains several hundred
cardiomyocytes (see, e.g., Jæger et al., 2021a,b). Therefore,
understanding of the conduction properties (see, e.g., Henriquez,
2014; Veeraraghavan et al., 2014) close to the myocytes cannot be
achieved using these models (see, e.g., Jæger et al., 2021a).

These limitations of the homogenized
(bidomain/monodomain) models are well known and several
authors have developed alternatives where all individual cells
are explicitly represented in the models (see, e.g., Spach et al.,
2007; Jacquemet and Henriquez, 2009; Hubbard and Henriquez,
2014; Lin and Keener, 2014; Tveito et al., 2017a; Weinberg,
2017; Jæger et al., 2019, 2021a; Domínguez et al., 2021; Jæger
and Tveito, 2021). Here, we will apply the EMI model where
both the extracellular space (E), the cell membrane (M) and the
intracellular space (I) are explicitly represented in the model
(see, e.g., Tveito et al., 2017a,b; Jæger and Tveito, 2021), and
compare properties with the homogenized bidomain model.
First, we will show how the bidomain model can be derived
from the more accurate EMI model. Earlier derivations of
the bidomain equations (see, e.g., Neu and Krassowska, 1993;
Franzone et al., 2014; Henriquez and Ying, 2021) relies on
homogenization of cardiac tissue, whereas the derivation given
here follows directly from the EMI model. As part of this
derivation, we can identify the main sources of deviations
between the models.

Next, we will compare the properties of the bidomain model
and the EMI model using numerical simulations. We first show
that the deviations between the results obtained by the bidomain
model and the EMI model become small as the cell size is
reduced. This property is consistent with the error introduced in
the derivation of the bidomain model. Secondly, we demonstrate
that, for conduction properties providing a normal excitation
wave with a conduction velocity of about 50 cm/s, the solutions
of the EMI model and the bidomain model are very similar.
However, as the resistance between the myocytes (through the
gap junctions) is increased, the deviation between the solutions
increases considerably.

It should be noted that the representation of all individual
cardiomyocytes implies a significant increase in the computation
load since the mesh resolution needs to be reduced from about
1x ∼ 0.25 mm for a finite difference method (FDM) of the
bidomainmodel to about δx ∼ 10µm for a finite elementmethod
(FEM) code solving the EMImodel (see Jæger et al., 2021a,b). The
number of mesh blocks is 1x3/δx3 = 15, 600 times larger for
the EMI model than for the bidomain model, and, therefore, the

computational load increases significantly when every myocyte
in the tissue is resolved.

The choice of using either an averaged model like the
bidomain model or a cell-based model like the EMI model,
depends on the application under consideration. The bidomain
model is very useful for simulating large scale problems, whereas
EMI is better suited when the dynamics close to individual
myocytes, or even inside individual myocytes, are of importance.

2. METHODS

In this section wewill derive the bidomainmodel commonly used
to model the electrical activity of the heart from a more detailed
model where each cell is represented. This cell-based model is
referred to as the EMI model and is derived from Maxwell’s
equations of electromagnetism in Agudelo-Toro (2012) and
Jæger and Tveito (2021). We will start by introducing the
equations of the EMI model before we describe the derivation
of the bidomain model from these equations. Finally, we discuss
how the bidomain model parameters can be defined using the
parameter values and tissue geometry of the EMI model.

2.1. The EMI Model
Consider a domain consisting of a single cell, �i, surrounded by
an extracellular space, �e, with a cell membrane, Ŵ, separating
the two spaces �i and �e. For such a domain, the electrical
activity may be modeled by the EMI model (see, e.g., Roberts
et al., 2008; Stinstra et al., 2010; Tveito et al., 2017a; Jæger et al.,
2019), given by the equations

∇ · σi∇ui = 0, in�i (1)

∇ · σe∇ue = 0, in�e (2)

ne · σe∇ue = −ni · σi∇ui ≡ Im, atŴ, (3)

ui − ue = v atŴ, (4)

Im = Cm
∂v

∂t
+ Iion atŴ, (5)

ue = 0 at ∂�D
e , (6)

∂ue

∂ne
= 0 at ∂�N

e . (7)

Here, ui, ue, and v are the intracellular, extracellular and
membrane potentials (in mV) defined in �i, �e and at Ŵ,
respectively, ni and ne are the outward pointing normal vectors
of the intracellular and extracellular spaces, respectively, Cm is
the specific membrane capacitance (in µF/cm2), Iion is the ionic
current density across the membrane (in µA/cm2), Im the sum
of the capacitive and ionic current densities (in µA/cm2), and
σi and σe are the intracellular and extracellular conductivities,
respectively (in mS/cm). The Equations (6) and (7) are Dirichlet
and Neumann boundary conditions, respectively, for the outer
boundary of the extracellular space.

2.1.1. Extension to Cells Connected by Gap Junctions
To model collections of connected cardiac cells, e.g., like
illustrated in Figure 1A, the EMI model for a single cell may be
extended to include a model for the currents through the gap
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FIGURE 1 | (A) Illustration of an EMI model domain for four connected cells. The intracellular space (orange) is denoted by �i and the extracellular space (red) is

denoted by �e. The cell membrane is defined as the interface between the intracellular and extracellular spaces and is denoted by Ŵ. Similarly, the intercalated discs

(purple) are denoted by Ŵg and are defined as the interface between neighboring cells. Each cell is shaped as a cylinder with a diameter increasing slightly toward the

center of the cell. (B) Illustration of the finite element mesh used to represent a single cell in the EMI model simulations.

junctions connecting neighboring cells (see, e.g., Tveito et al.,
2017a; Jæger and Tveito, 2021; Jæger et al., 2021c). For example,
for two connected cells 1 and 2, the EMI model can be extended
to include equations of the form

n2i · σi∇u2i = −n1i · σi∇u1i ≡ I1,2, atŴg , (8)

u1i − u2i = w, atŴg , (9)

I1,2 = Cg
∂w

∂t
+ Igap, atŴg , (10)

where Ŵg is the interface between the two cells (i.e., the
intercalated disc). Furthermore, u1i and u2i are the intracellular
potentials of the two cells, w is the potential difference between
the two cells, and n1i , and n2i are the outward pointing normal
vectors of the cells. In addition, Cg is the specific capacitance
of the intercalated discs (in µF/cm2), Igap is the current density
through the gap junction proteins located at the intercalated discs
(in µA/cm2), and I1,2 is the sum of the capacitive current density
over the intercalated discs and the current density through the
gap junction proteins connecting the two cells. The current
density through the gap junction proteins, Igap, is commonly
modeled using the simple passive model

Igap =
1

Rg
w = Ggw, (11)

whereRg is the specific resistance of the gap junctions (in k�cm2)
andGg is the corresponding specific conductance (in mS/cm2). A
further explanation of the coupling between two adjacent cells is
given in section 1.2.4 of Jæger and Tveito (2021).

2.2. Derivation of the Bidomain Model
From the EMI Model
Instead of using the detailed model (Equations 1–11), modeling
of the electrical activity of cardiac tissue is usually performed

using the homogenized bidomain and monodomain models.
In these models, the detailed geometry of the individual
cells and intercalated discs do not have to be represented in
the computational mesh because the intracellular space, the
extracellular space and the cell membrane are all assumed to
exist everywhere in the tissue. We will now describe a possible
derivation of the homogenized bidomain model from the EMI
model equations described above. Note, however, that more
rigorous versions of this derivation, using mathematical two-
scale homogenization, have also been presented (see, e.g., Neu
and Krassowska, 1993; Franzone et al., 2014; Henriquez and Ying,
2021).

2.2.1. Starting Point of the Derivation
Assume that we have a relatively large collection of cells, and
consider a small volume, 1, in this cell collection, as illustrated
in Figure 2A. We assume that this volume contains a number of
cells with an associated surrounding extracellular space, and that
the EMImodel equations apply in the extracellular domain, in the
intracellular domain, at the cell membrane and at the intercalated
discs in this small block of tissue.

Step 1: Approximating the Intracellular Conductivity
As a first step in the derivation, we wish to approximate the
intracellular conductivity to take both the purely intracellular
space and the gap junctions between neighboring cells into
account. In other words, we wish to reformulate the full EMI
model (Equations 1–11) to a system of the form

∇ · σ̄i∇ui = 0, in�i (12)

∇ · σe∇ue = 0, in�e (13)

ne · σe∇ue = −ni · σ̄i∇ui ≡ Im, atŴ, (14)

ui − ue = v atŴ, (15)

Im = Cm
∂v

∂t
+ Iion atŴ, (16)
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FIGURE 2 | Illustration of a tissue block, 1, containing a number of cells (orange) and a surrounding extracellular space (red). In Step 1 of the derivation we

approximate the discontinuous intracellular space (A) consisting of individual cells connected by gap junctions by a continuous intracellular space (B).

ue = 0 at ∂�D
e , (17)

∂ue

∂ne
= 0 at ∂�N

e , (18)

where σ̄i is the average conductivity of the intracellular
space including gap junctions. We wish to express σ̄i
such that the total intracellular resistance of a tissue
block is close to the total intracellular resistance of the
tissue block when the full EMI model (Equations 1–11)
applies. Such an expression for σ̄i is derived below in
section 2.3.3.

In the remaining part of the derivation we will treat the
intracellular domain as a continuous domain (see Figure 2B),
and assume that the simplified EMI system (Equations 12–18)
applies.

Step 2: Applying the Divergence Theorem
In the next step of the derivation, we consider the purely
intracellular part of the tissue block 1 and apply the divergence
theorem for σ̄i∇ui to obtain,

∫

∂�1
i

ni · σ̄i∇ui dS =

∫

�1
i

∇ · σ̄i∇ui dV , (19)

where �1
i is the intracellular space contained in the tissue block

and ∂�1
i is the boundary of the intracellular space contained

in the tissue block. This boundary can be separated into the
boundary between the intracellular space and the extracellular
space contained in the tissue block, i.e. the cell membrane,
and the intracellular part of the outer boundary of the tissue
block in each spatial direction. Rewriting the surface integral, we
obtain

∫

Ax,+
i

ni · σ̄i∇ui dS+

∫

Ax,−
i

ni · σ̄i∇ui dS

+

∫

A
y,+
i

ni · σ̄i∇ui dS+

∫

A
y,−
i

ni · σ̄i∇ui dS (20)

+

∫

Az,+
i

ni · σ̄i∇ui dS+

∫

Az,−
i

ni · σ̄i∇ui dS

+

∫

Ŵ1

ni · σ̄i∇ui dS =

∫

�1
i

∇ · σ̄i∇ui dV ,

where Ax,+
i is the intracellular part of the boundary of

the tissue block in the positive x-direction, Ax,−
i is the

intracellular part of the boundary of the tissue block in the

negative x-direction, and the surfaces A
y,+
i , A

y,−
i , Az,+

i , and

Az,−
i are defined similarly for the intracellular part of the

boundaries of the tissue block in the y- and z-directions.
Furthermore, Ŵ1 is the membrane contained in the tissue
block.

By applying the divergence theorem and similar definitions for
the extracellular space, we likewise obtain

∫

Ax,+
e

ne · σe∇ue dS+

∫

Ax,−
e

ne · σe∇ue dS

+

∫

A
y,+
e

ne · σe∇ue dS+

∫

A
y,−
e

ne · σe∇ue dS (21)

+

∫

Az,+
e

ne · σe∇ue dS+

∫

Az,−
e

ne · σe∇ue dS

+

∫

Ŵ1

ne · σe∇ue dS =

∫

�1
e

∇ · σe∇ue dV .
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Step 3: Applying the EMI Model Equations (12–(14)
By inserting Equations (12) and (13) into Equations (20) and
(21), we find that the right hand sides of Equations (20) and (21)
are zero. Moreover, by inserting Equation (14), we get

∫

Ax,+
i

ni · σ̄i∇ui dS+

∫

Ax,−
i

ni · σ̄i∇ui dS

+

∫

A
y,+
i

ni · σ̄i∇ui dS+

∫

A
y,−
i

ni · σ̄i∇ui dS (22)

+

∫

Az,+
i

ni · σ̄i∇ui dS+

∫

Az,−
i

ni · σ̄i∇ui dS−

∫

Ŵ1

Im dS = 0

for the intracellular part, and

∫

Ax,+
e

ne · σe∇ue dS+

∫

Ax,−
e

ne · σe∇ue dS

+

∫

A
y,+
e

ne · σe∇ue dS+

∫

A
y,−
e

ne · σe∇ue dS (23)

+

∫

Az,+
e

ne · σe∇ue dS+

∫

Az,−
e

ne · σe∇ue dS+

∫

Ŵ1

Im dS = 0

for the extracellular part.

Step 4: Extending the Variables and Parameters to Be

Defined Everywhere
In order to avoid having to represent the detailed geometry of
the cell tissue, we now define some new variables Ui, Ue, and
V that each are defined in the entire domain � = �i ∪ �e,
and thus also in the entire tissue block, 1. We want these
variables to fulfill the integral conditions specified in Equations
(22) and (23). In addition, we assume that the definitions of
the membrane potential and Im specified in Equations (15)
and (16) apply in the entire domain. In other words, in an
arbitrary tissue block, 1, of �, we seek solutions Ui, Ue, and
V such that

∫

Ax,+
i

n · σ̄i∇Ui dS+

∫

Ax,−
i

n · σ̄i∇Ui dS

+

∫

A
y,+
i

n · σ̄i∇Ui dS+

∫

A
y,−
i

n · σ̄i∇Ui dS (24)

+

∫

Az,+
i

n · σ̄i∇Ui dS+

∫

Az,−
i

n · σ̄i∇Ui dS−

∫

Ŵ1

Im dS = 0,

∫

Ax,+
e

n · σe∇Ue dS+

∫

Ax,−
e

n · σe∇Ue dS

+

∫

A
y,+
e

n · σe∇Ue dS+

∫

A
y,−
e

n · σe∇Ue dS (25)

+

∫

Az,+
e

n · σe∇Ue dS+

∫

Az,−
e

n · σe∇Ue dS+

∫

Ŵ1

Im dS = 0,

V = Ui − Ue, (26)

Im = CmVt + Iion. (27)

Here, n is the outward pointing normal vector of the tissue block,
and σ̄i, σe, Cm, Im and Iion have been extended to be defined in
the entire domain.

Step 5: Approximate the Surface Integrals
Since Im is now defined in the entire tissue block, and not just
on the membrane, the surface integral over the membrane can be
approximated by

∫

Ŵ1

Im dS ≈

∫

1

χIm dV , (28)

where 1 is the entire tissue block and χ is the membrane surface
to volume ratio, i.e., the surface area of the membrane contained
in 1 divided by the volume of 1.

In addition, the integrals in Equations (24) and (25) over
the outer boundary of the tissue block is separated into the
intracellular and extracellular parts of the tissue block, and in this
step of the derivation, we wish to approximate these integrals to
be defined over the entire tissue block boundaries. In order to do
this, we apply the approximation

∫

Ax,+
i

n · σ̄i∇Ui dS ≈ Āx
i

∫

Ax,+
n · σ̄i∇Ui dS, (29)

and similar approximations for the remaining surfaces. Here,
Āx
i is the average fraction of the cross-sectional area of the

tissue block perpendicular to the x-direction that is occupied by
the intracellular space and Ax,+ is the entire boundary of the
tissue block in the positive x-direction. Inserting this type of
approximation in all the integrals over the outer boundaries of
the tissue block, Equations (24) and (25) can be approximated as

∫

Ax,+
n · Āx

i σ̄i∇Ui dS+

∫

Ax,−
n · Āx

i σ̄i∇Ui dS

+

∫

Ay,+
n · Ā

y
i σ̄i∇Ui dS+

∫

Ay,−
n · Ā

y
i σ̄i∇Ui dS (30)

+

∫

Az,+
n · Āz

i σ̄i∇Ui dS+

∫

Az,−
n · Āz

i σ̄i∇Ui dS−

∫

1

χIm dV = 0,

∫

Ax,+
n · Āx

eσe∇Ue dS+

∫

Ax,−
n · Āx

eσe∇Ue dS

+

∫

Ay,+
n · Ā

y
eσe∇Ue dS+

∫

Ay,−
n · Ā

y
eσe∇Ue dS (31)

+

∫

Az,+
n · Āz

eσe∇Ue dS+

∫

Az,−
n · Āz

eσe∇Ue dS+

∫

1

χIm dV = 0.

Furthermore, we may define a set of scaled bidomain
conductivities,

σ̃ x
i = Āx

i σ̄
x
i , σ̃

y
i = Ā

y
i σ̄

y
i , σ̃ z

i = Āz
i σ̄

z
i , (32)

σ̃ x
e = Āx

eσ
x
e , σ̃

y
e = Ā

y
eσ

y
e , σ̃ z

e = Āz
eσ

z
e , (33)
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where σ̄ x
i , σ̄

y
i and σ̄ z

i and σ x
e , σ

y
e and σ z

e refer to the possible
directional dependence of σ̄i and σe. We also define the associated
bidomain conductivity tensors,

Mi =





σ̃ x
i 0 0

0 σ̃
y
i 0

0 0 σ̃ z
i



 , Me =





σ̃ x
e 0 0

0 σ̃
y
e 0

0 0 σ̃ z
e



 . (34)

By introducing these tensors, Equations (30) and (31) can be
rewritten as

∫

∂1

n · (Mi∇Ui) dS−

∫

1

χIm dV = 0, (35)

∫

∂1

n · (Me∇Ue) dS+

∫

1

χIm dV = 0, (36)

where ∂1 represents the entire outer surface of the tissue block.

Step 6: Reapply the Divergence Theorem for the New

Variables
We may now reapply the divergence theorem for the newly
defined variablesUi andUe defined in the entire tissue block. This
yields

∫

1

∇ · (Mi∇Ui) dV −

∫

1

χIm dV = 0, (37)

∫

1

∇ · (Me∇Ue) dV +

∫

1

χIm dV = 0. (38)

We also note that the volume1was chosen arbitrarily. Therefore,
the more general relation

∇ · (Mi∇Ui)− χIm = 0, (39)

∇ · (Me∇Ue)+ χIm = 0, (40)

holds.

Step 7: Rearranging the Terms and Inserting Equations (26)

and (27)
By rearranging Equation (39) and adding Equations (39) and
(40), these equations may be rewritten as

∇ · (Mi∇Ui) = χIm, (41)

∇ · (Mi∇Ui) +∇ · (Me∇Ue) = 0. (42)

Finally, by inserting Equations (26) and (27), we obtain the
bidomain model equations

∇ · (Mi∇V) +∇ · (Mi∇Ue) = χ

(

Cm
∂V

∂t
+ Iion

)

,

(43)

∇ · (Mi∇V) +∇ ·
(

(Mi +Me)∇Ue

)

= 0, (44)

where we recall thatMi andMe are intracellular and extracellular
conductivity tensors (in mS/cm) defined in Equations (32)–(34),
χ is the membrane surface to volume ratio (in cm−1), Cm

is the specific membrane capacitance (in µF/cm2), Iion is the

current density through ion channels, pumps and exchangers
on the cell membrane (in µA/cm2) and V and Ue (in mV)
are the bidomain model membrane and extracellular potentials,
respectively, defined in the entire domain. Furthermore, the
intracellular potential (in mV) may be computed by

Ui = V + Ue. (45)

In addition, the boundary conditions

Ue = 0 at ∂�D, (46)

∂Ue

∂n
= 0 at ∂�N , (47)

are assumed to hold at the boundary of the domain where �D

coincides with the EMI model boundary �D
e , and �N coincides

with the EMI model boundary �N
e .

2.3. Expressions for the Bidomain Model
Parameters
The bidomain model as derived above introduces a set of new
parameters, namely the conductivity tensors, Mi and Me, and
the surface to volume ratio, χ . Considering their definitions,
values for these parameters may be derived from the geometry
and parameters of the EMI model. In this subsection, we suggest
an approach for making these definitions by considering an
EMI model mesh of a volume �, containing an intracellular
volume, �i, and extracellular volume, �e, a surface for the cell
membranes, Ŵ, and a collection of surfaces for the intercalated
discs, Ŵg . For simplicity, we assume that the value of all the
EMI model parameters and the tissue geometry do not vary
in different parts of the domain, so that the bidomain model
parameters can be treated as constants throughout the domain.
In addition, we assume that the total domain � = �i ∪ �e

is shaped as a rectangular cuboid with lengths Lx, Ly and Ly in
the x-, y- and z-directions, respectively. An alternative approach
for setting up the bidomain model conductivities from the EMI
model parameters and a simplified tissue geometry is presented
in Henriquez and Ying (2021).

2.3.1. Surface to Volume Ratio, χ

In order to compute the surface to volume ratio from an EMI
model mesh, we may simply compute

AŴ,� =

∫

Ŵ

1 dS, (48)

V� =

∫

�

1 dS, (49)

where AŴ,� represents the total membrane area in the domain
and V� represents the volume of the domain. Assuming an
even distribution of cells throughout the domain, the surface to
volume ratio can then be defined as

χ =
AŴ,�

V�

. (50)
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2.3.2. Average Cross-Sectional Area Fractions
We first consider the average intracellular fraction of the cross-
sectional area perpendicular to the x-axis, Āx

i . Let A
x(x) be the

cross-sectional area of � perpendicular to the x-axis, and let
Ax
i (x) be the fraction belonging to �i. Then

V�i =

∫ Lx

0
Ax
i (x)A

x(x) dx = Āx
i

∫ Lx

0
Ax(x) dx = Āx

i V�. (51)

Hence,

Āx
i =

V�i

V�

. (52)

Similar arguments yield

Āx
i = Ā

y
i = Āz

i =
V�i

V�

, (53)

Āx
e = Ā

y
e = Āz

e =
V�e

V�

=

(

1−
V�i

V�

)

. (54)

Here, V�i can be computed from the EMI model mesh as

V�i =

∫

�i

1 dS. (55)

2.3.3. Average Intracellular Conductivity
As described above, we wish to define an average conductivity
σ̄i such that the simplified EMI model (Equations 12–18) is a
good approximation of the full EMI model (Equations 1–11). In
particular, we wish to find a σ̄i such that the total intracellular
resistance of the simplified model is close to the total intracellular
resistance of the full model. To simplify this argument, we assume
that there is no capacitive current across the intercalated discs, i.e.
that the current between two cells is given by Igap (see Equation
11).

We start by considering the total resistance in the x-direction
of the domain. In the full EMI model (Equations 1–11) with
the capacitive current set to zero, this is given by the sum of
the resistance over the purely intracellular space (Rx

c ) and the
resistance over the gap junctions (Rx

j ) (Shaw and Rudy, 1997):

Rxi = Rxc + Rxj . (56)

The total resistance in the purely intracellular space is given by
(Plonsey and Barr, 2007)

Rxc =
Lx

σiĀ
x
i LyLz

, (57)

where Āx
i LyLz is the average intracellular cross-sectional area of

the domain perpendicular to the x-direction. Assuming that the
cells are organized as a regular grid in the x-, y- and z-directions,
the total resistance through gap junctions in the x-direction is
given by

Rxj =
(Nx − 1)Rg

NyNzA
x
j

, (58)

where Rg is the specific gap junction resistance (in k�cm2), as
it appears in the full EMI model, Ax

j is the area of a single

intercalated disc perpendicular to the x-direction and Nx, Ny,
and Nz are the number of cells in the x-, y-, and z-directions,
respectively. Thus, Nx − 1 is the number of intercalated disc
collections along the length of the domain in the x-direction,
NyNz is the number of intercalated disc for each such collection,
and NyNzA

x
j is the total cross-sectional area of each of the

intercalated disc collections.
In the simplified model (Equations 12–18), the total resistance

is given by (Plonsey and Barr, 2007)

Rxi =
Lx

σ̄ x
i Ā

x
i LyLz

. (59)

Therefore, in order for the total resistance to be the same in the
two formulations, we wish σ̄ x

i to satisfy

Lx

σ̄ x
i Ā

x
i LyLz

=
Lx

σiĀ
x
i LyLz

+
(Nx − 1)Rg

NyNzA
x
j

, (60)

which yields

σ̄i
x
=

σi

1+
σiRg (Nx−1)Āx

i LyLz
LxNyNzA

x
j

. (61)

From the EMI model mesh, we may compute

Ax
j,� =

∫

Ŵx
g

1 dS, (62)

as the total area of all intercalated discs perpendicular to the
x-direction, Ŵx

g . Since Ax
j is defined as the area of a single

intercalated disc perpendicular to the x-direction, we note that

Ax
j =

Ax
j,�

(Nx − 1)NyNz
, (63)

where (Nx − 1)NyNz is the total number of intercalated discs
in the x-direction. Inserting Equations (63) into Equation (61)
yields

σ̄ x
i =

σi

1+
(Nx−1)2Āx

i LyLzσiRg
LxA

x
j,�

. (64)

We also note that from Equation (52), we have that

Āx
i =

V�i

V�

=
V�i

LxLyLz
⇒ Āx

i LyLz =
V�i

Lx
, (65)

and inserting this into Equation (64), we obtain

σ̄ x
i =

σi

1+
σiRgV�i

δ2xA
x
j,�

. (66)
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where δx = Lx/(Nx − 1). Similar arguments for the y- and
z-directions result in

σ̄
y
i =

σi

1+
σiRgV�i

δ2yA
y
j,�

, (67)

σ̄ z
i =

σi

1+
σiRgV�i

δ2zA
z
j,�

. (68)

Since

σ̄ x
i

σ̄
y
i

=

1+
σiRgV�i

δ2yA
y
j,�

1+
σiRgV�i

δ2xA
x
j,�

, (69)

the anisotropy is governed by the difference between δ2xA
x
j,� and

δ2yA
y
j,�, and similar for the other combination of axes.

2.3.4. Intracellular Conductivity Tensor
Inserting Equations (52) and (66)–(68) into Equation (32), we get

σ̃ x
i = Āx

i σ̄
x
i =

V�i

V�

σi

1+
σi(Nx−1)2RgV�i

L2xA
x
j,�

, (70)

σ̃
y
i = Ā

y
i σ̄

y
i =

V�i

V�

σi

1+
σi(Ny−1)2RgV�i

L2yA
y
j,�

, (71)

σ̃ z
i = Āz

i σ̄
z
i =

V�i

V�

σi

1+
σi(Nz−1)2RgV�i

L2zA
z
j,�

. (72)

2.3.5. Extracellular Conductivity Tensor
The extracellular conductivity tensor can be found directly from
the cross-sectional area fractions and we get

σ̃ x
e = σ̃

y
e = σ̃ z

e =
V�e

V�

σe =

(

1−
V�i

V�

)

σe. (73)

3. RESULTS

In order to compare the EMI model with the homogenized
bidomain model, we set up a few example applications and
perform numerical simulations of the two models. Note here that
all EMI model simulations are performed in three dimensions
(3D), whereas the bidomain model simulations are performed in
two dimensions (2D) or one dimension (1D).

3.1. Simulation Set-Up
In our numerical simulations of the EMI model, we consider
collections of cells shaped as cylinders with a slightly varying
diameter. In all simulations, except for the ones where the cell
length is varied and is explicitly specified, each cell is 120µm long
(in the x-direction) and has a radius varying from 6µm at the cell
ends to 7 µm at the center of the cell (see Figure 1). We let the
distance from the boundary of the extracellular space to the cell
collection be 2 µm in all spatial directions. The parameter values
used in the simulations are specified in Table 1. The parameters

TABLE 1 | Default parameter values used in the simulations.

Parameter Value Parameter Value

σi 4 mS/cm σe 20 mS/cm

Cm 1 µF/cm2 Cg 0.5 µF/cm2

Rg 0.0015 k�cm2

The bidomain model parameters Mi , Me and χ are computed from the EMI model

parameters and mesh as described in section 2.3.

used in the bidomain model are computed from the EMI model
parameters and mesh as described in section 2.3.

All EMI model simulations are performed in 3D. However,
for our example test cases with a 1D strand of cells and a 2D
grid of cells, we use 1D and 2D versions, respectively, of the
bidomain model. In the simulations of a 1D strand of cells,
we apply homogenous Neumann boundary conditions on the
outer boundary of the extracellular domain in the y- and z-
directions and homogenous Dirichlet boundary conditions in
the x-direction. In the simulations of a 2D grid of cells, we
apply homogenous Neumann boundary conditions on the outer
boundary of the extracellular domain in the z-direction and
homogenous Dirichlet boundary conditions in the x- and y-
directions.

3.2. Numerical Methods
The EMI model simulations are performed using the operator
splitting procedure described in Jæger et al. (2021c,d), the
numerical methods applied to (Jæger et al., 2021d) and the
MFEM C++ finite element method library (Anderson et al.,
2020; MFEM, 2021). For details on the numerical methods
applied to solve the EMI model, we refer to Jæger et al.
(2021a,c,d). The bidomain model simulations are performed in
Matlab using a first-order temporal operator splitting procedure
as described in Sundnes et al. (2006), where the ordinary
differential part of the equations is solved using forward Euler
and the partial differential part of the equations is solved using
an implicit finite difference scheme. Unless otherwise specified,
we use a time step of 1t = 0.001 ms in the simulations of
both models. In the bidomain model simulations, we use a spatial
discretization of 1x = 1y = 10 µm, roughly matching the
typical edge length in the applied EMImodel finite elementmesh.

3.3. 1D Strand of Cells With a Passive
Membrane Model
We first consider an example with a 1D strand of cells connected
in the longitudinal direction (x-direction). The total length of the
cell strand is 2 mm and we consider a number of different choices
for the length of a single cell (and the associated total number of
cells). In addition, we vary the value of the specific gap junction
resistance, Rg . The membrane dynamics, Iion, is modeled by a
simple passive membrane model

Iion =
1

Rm
(v− v0), (74)

where Rm = 5 k�cm2 is the specific membrane resistance and
v0 = −80 mV is the resting membrane potential. We stimulate
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FIGURE 3 | Intracellular potential, ui , at time t = 20 ms in EMI model and bidomain model simulations using a passive membrane model (Equation 74) and the default

parameter values specified in Table 1, except that the value of Rg is increased by the factor indicated by the column titles. In addition, the cell length (Lcell ) is varied as

described for each row of plots.

the first (leftmost) 400 µm of membrane in the x-direction
by a constant stimulus current of size −10 µA/cm2. Figure 3
shows the intracellular potential at time t = 20 ms along a
line in the x-direction in the center of the domain for the EMI
model and the associated solution of the bidomain model for
a few combinations of cell length and Rg values. We observe
that for small cells (lower panels), the solution of the bidomain
model is in very good agreement with the results of the EMI
model. However, if the cell size is increased, and the gap junction
resistance is increased, there is a significant difference between
the results of the EMI model and the bidomain model.

3.4. 1D Strand of Cells With an Active
Membrane Model
Next, we consider an example with a 1D strand of 20 cells of
length 120 µm with an active membrane model, modeled by the
human left atrial basemodel from Jæger et al. (2021b).We initiate

a traveling wave by stimulating the first 360µmof cell membrane
in the x-direction (corresponding to three cardiomyocytes) by
a 1 ms long constant stimulus current of size −40 µA/cm2.
We measure the conduction velocity as the distance between a
point a in the center of the domain in the x-direction and a
point b located at 4/5 of the total domain length, divided by
the difference in time between when the membrane potential
in these two points reach a value above −20 mV. Using the
default parameter values specified inTable 1, we get a conduction
velocity of 50.8 cm/s in the bidomain model simulation. This is
close to the value found in the EMI model simulation, which is
53.3 cm/s.

In Figure 4, we further investigate the relationship between
the conduction velocity found in the bidomain and EMI model
simulations when Rg is increased, representing reduced cell
coupling. We consider two different discretization resolutions,
the default resolution of 1t = 0.001 ms and 1x ∼ 10 µm
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FIGURE 4 | Conduction velocity as Rg is increased in EMI model and bidomain model simulations of a strand of 20 connected cells with an active membrane model

(Jæger et al., 2021b). The values on the x-axis represent the factor with which the default Rg value in Table 1 is multiplied. The remaining parameter values are as

specified in Table 1. Note that the plot is separated into three panels in order to improve the visibility of the data. Note also that we consider two different discretization

resolutions in the simulations of each model. In the default case, 1t = 0.001 ms and 1x in the bidomain model and the typical edge length in the EMI model is 10 µm,

whereas in the refined case (dashed lines), both the spatial and temporal discretization steps are reduced to half of the default values.

and a refined resolution of 1t = 0.0005 ms and 1x ∼

5 µm. We observe that for values of Rg relatively close to the
default value, the conduction velocities found in simulations
of the bidomain and EMI models are very similar. However,
when Rg is considerably increased, the difference between the
two model formulations appears to be more significant and the
conduction velocity is considerably higher in the bidomainmodel
simulations than in the corresponding EMI model simulations.
Furthermore, we observe that for the EMI model, conduction
is blocked when Rg is increased by a factor larger than about
2,000, whereas for the bidomain model, Rg can be increased
by a factor of about 20,000 before conduction is blocked for
the default resolution and conduction is not blocked for the
considered values of Rg for the refined resolution. In addition,
we note that the simulations of refined resolution appears to give
very similar conduction velocities as for the default resolution in
the EMImodel simulations. For the bidomainmodel simulations,
the two resolutions give very similar results for the first range of
Rg values, but as the Rg value is severely increased, we can observe
a difference between the two resolutions.

3.5. 2D Grid of Cells With an Active
Membrane Model
Next, we consider a case of a grid of 25×25 connected
cells with the same active membrane model as for the 1D
strand simulations. We stimulate the membrane of an area
corresponding to the 5×5 cells in the lower left corner by the
same stimulation current as in the 1D case. Figure 5 shows
the membrane potential, v, and the extracellular potential, ue,
from the EMI model and bidomain model simulations using the
default parameter values specified in Table 1 at time t = 5 ms.
The solution of the two models appears to be very similar.
However, in Figure 6, we have performed a similar simulation
where Rg is increased by a factor of 200. We consider the solution
at t = 20 ms and observe that the traveling excitation wave has
clearly traveled faster and reached further in the bidomain model

simulation than in the EMImodel simulation, consistent with the
results of Figure 4.

4. DISCUSSION

The bidomain model continues to provide essential insights into
cardiac conduction and how the electrochemical dynamics of the
heart is affected by blocking ion channels (see, e.g., Zemzemi
et al., 2013; Sharifi, 2017), increasing gap junction resistance
(see, e.g., Roth, 1988; Bruce et al., 2014), introducing ischemia
(see, e.g., Stinstra et al., 2004, 2005; Heidenreich et al., 2012)
or performing defibrillation (see, e.g., Skouibine et al., 2000;
Trayanova et al., 2006, 2011; Quarteroni et al., 2017). However,
as almost any model, its utility is limited by the inherent
resolution of the model. It is useful for understanding cardiac
conduction at the tissue level, but it cannot be applied for analyses
of conduction close to individual cardiomyocytes. Therefore,
detailed models representing individual myocytes have been
developed.

Here, we show that the bidomain model can be derived
directly from the cell-based EMImodel. Classically, the bidomain
model is derived using elegant homogenization techniques (see
Neu and Krassowska, 1993; Henriquez and Ying, 2021). In the
derivation presented here, the deviation between the properties
of the bidomain model and the EMI model is seen directly as
part of the derivation. In short, the advantage of the present
derivation is that it is more straightforward to follow and that
it gives indications of where the deviations in the results between
the two models stem from.

4.1. Source of Difference Between EMI and
Bidomain Solutions
There are essentially three steps in the derivation of the
bidomain model where approximations are introduced and thus,
most likely, are responsible for the difference in the solutions
of the two models. First; the resistance of the intracellular
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FIGURE 5 | Membrane potential, v, and extracellular potential, ue, at time t = 5 ms in EMI model and bidomain model simulations using the default parameter values

specified in Table 1 and an active membrane model (Jæger et al., 2021b). This simulation required a CPU time of 132 min for the EMI model and 2 min for the

bidomain model.

FIGURE 6 | Membrane potential, v, and extracellular potential, ue, at time t = 20 ms in EMI model and bidomain model simulations using and active membrane

model (Jæger et al., 2021b) and the default parameter values specified in Table 1, except that the value of Rg is increased by a factor of 200.
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space and the gap junctions are combined into one common
and averaged resistance. Second, the average of a function
over a volume is approximated by the average of the same
function over the surface of the volume. Third, the average
of a function on a surface is approximated by the average of
the same function on an extended surface. It is beyond the
scope of this paper to perform a detailed analysis of these
deviations, but based on these observations, it comes as no
surprice that the error becomes smaller when the cell size is
reduced.

4.2. Differences and Similarities
The EMI model and the bidomain model provide remarkably
similar results when the parameters of importance for the
conduction velocity are in the normal range. It is safe to claim
that the bidomain model represents normal cardiac conduction
very well if the scale of interest contains many cells. Certainly,
the bidomain model cannot be used to study conduction in the
vicinity of individual cells, and it also runs into difficulties for
large cells combined with high values of resistance across the gap
junctions. It is observed that the bidomain model consistently
overestimates the conduction velocity. For normal parameters,

the difference is small, but for strongly increased resistance
across the gap junctions, the bidomain model significantly
overestimates the conduction velocity.
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An In Silico Study of
Electrophysiological Parameters That
Affect the Spiral-Wave Frequency in
Mathematical Models for Cardiac
Tissue
Mahesh Kumar Mulimani1, Soling Zimik2 and Rahul Pandit 1*†

1Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India, 2Computational
Biology Group, Institute of Mathematical Sciences, Chennai, India

Spiral waves of excitation in cardiac tissue are associated with life-threatening cardiac
arrhythmias. It is, therefore, important to study the electrophysiological factors that affect
the dynamics of these spiral waves. By using an electrophysiologically detailed
mathematical model of a myocyte (cardiac cell), we study the effects of cellular
parameters, such as membrane-ion-channel conductances, on the properties of the
action-potential (AP) of a myocyte. We then investigate how changes in these properties,
specifically the upstroke velocity and the AP duration (APD), affect the frequency ω of a
spiral wave in the mathematical model that we use for human-ventricular tissue. We find
that an increase (decrease) in this upstroke-velocity or a decrease (increase) in the AP
duration increases (decreases)ω. We also study how other intercellular factors, such as the
fibroblast-myocyte coupling, diffusive coupling strength, and the effective number of
neighboring myocytes and fibroblasts, modulate ω. Finally, we demonstrate how a
spiral wave can drift to a region with a high density of fibroblasts. Our results provide a
natural explanation for the anchoring of spiral waves in highly fibrotic regions in fibrotic
hearts.

Keywords: mathematical models of cardiac tissue, action-potential (AP), cardiac fibrosis, spiral waves, drift of spiral
waves

1 INTRODUCTION

Nonlinear waves in the form of rotating spirals are ubiquitous spatiotemporal patterns that occur in a
variety of biological or physical systems; these include chemical-reaction waves in the Belousov-
Zhabotansky system [1–5], oxidation waves of carbon monoxide on the surface of platinum [6–8],
calcium-signalling waves in Xenopus oocytes [9], cyclic-AMP signalling waves in the aggregration
process of Dictyostelium discoideum [10, 11], and, notably, action-potential (AP) waves that mediate
muscle contraction in cardiac tissue. The organization of these AP waves in the form of spirals or
scrolls in cardiac tissue is associated with abnormal and life-threatening heart rhythms known as
arrhythmias. In particular, ventricular arrhythmias can lead to sudden cardiac death; therefore, it is
important to understand the dynamics of such waves.

The rhythm of a normal heart is maintained by the trains of waves that are generated by its
pacemaker, the sino-atrial node (SAN). This normal rhythm in a heart can be disturbed by the
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formation of a spiral wave, which can override the function of the
SAN as the primary source of waves and entrain the heart to
follow the spiral-rotation frequency. There are multiple
mechanisms through which spiral waves can occur in cardiac
tissue [12–18].

Ex vivo and in vitro studies [19–27] show that VT is
associated with functional reentry that leads to the formation
of a spiral wave. A multiple-spiral state is linked to ventricular
fibrillation (VF) that results in a chaotic heart rate [13–15, 23,
28–30], and a quivering of the left ventricle, which renders it
incapable of pumping oxygenated blood to the body; and, in the
absence of medical intervention, this leads to death in a few
minutes. It is crucial, therefore, to develop a detailed
understanding of how spiral waves in cardiac tissue can get
destabilized and form multiple spiral waves. Some studies have
shown that heterogeneity-induced spatial gradients in the
frequency ω of a spiral wave can lead to such an instability
[31, 32] or to the drifting of this spiral wave [28, 33–35]. We
build on the results of these studies to investigate which
physiological factors affect ω and how they modulate it. In
mammalian hearts, cardiac tissue is heterogeneous: there can be
cellular heterogeneity, e.g., cardiac fibroblasts in addition to
myocytes, or a spatial variation of electrophysiological
properties, e.g., along the apico-basal direction in a heart, or
between intermural layers [36] of the heart, or because of
conduction inhomogeneities [37].

We investigate the effects of various intracellular (ion-
channel conductances) and intercellular (gap-junctional
factors) parameters on the spiral-wave frequency. At the
single-cell level, we show how changes in ion-channel
conductances modulate action-potential (AP) properties,
such as its upstroke velocity dV

dt max and duration (APD). We
then examine how these changes in AP properties affect the
spiral-wave frequency ω at the tissue level. We find that an
increase (decrease) in dV

dt max (APD) increases (decreases) ω.
We then investigate the effects of intercellular coupling
strength on ω by changing the coupling strength in the
following two ways: a) by modifying the diffusion constant
D of the medium; b) by interspersing inexcitable point
obstacles in the medium, thereby reducing the effective
number of neighboring myocytes. We find that ω is
unaffected by a change in D, but, with point obstacles, ω
decreases with an increase in the density of these obstacles.
We examine two models for fibrosis, which occurs in diseased
hearts and is usually accompanied by a proliferation of
fibroblasts [38–42]. These models allow us to study how
various fibroblast parameters, e.g., the fibroblast-myocyte
coupling and the AP of the coupled myocyte, affect ω and
spiral-wave dynamics; the fibroblast parameters include its
resting potential and the number of fibroblasts coupled to a
myocyte. Moreover, we show that a spiral in a medium with a
heterogeneous distribution of fibroblasts, drifts towards the
region with a high density of fibrolasts.

The paper is organized as follows. The Materials and
Methods Section 2 contains (a) the details of the myocyte
and tissue models that we use in our simulations and (b) the
numerical techniques we use to solve the governing equations.

We then provide the findings of our study in Section 3 on
Results. Finally, in the Discussion, Section 4, we discuss our
results in the light of other past studies and mention some of
the limitations in our study.

2 MATERIALS AND METHODS

2.1 Model
For myocytes we use the TP06 human-ventricular-cell model
[43], in which the transmembrane potential Vm of an isolated
myocyte is governed by the following ordinary differential
equation (ODE):

dVm

dt
� −Iion

Cm
;

Iion � ∑
i

Ii;
(1)

Iion is the sum of all the ion-channel currents with Ii the ith ion-
channel current, and Cm the normalized transmembrane
capacitance. In Table 1 we list the currents in the TP06
model; their dependence on Vm is given, e.g., in Ref. 43.

The spatiotemporal evolution of Vm in mathematical models
for cardiac tissue is governed by the following reaction-diffusion
partial differential equation (PDE):

zVm

zt
� D ∇2V − Iion

Cm
; (2)

D is the diffusion coefficient; we restrict ourselves to a scalarD for
simplicity; the TP06 case is described in detail in Ref. 43. It is
convenient to use the following non-dimensionalised ion-
channel conductances and diffusion coefficients:

SG � G

Gc
; SD � D

D0
, (3)

where G stands for a typical conductance, Gc is the control value
of the conductance, and the control diffusion constant D0 � 0.001
54 cm2/ms; for the conductances we consider, Gc � 14.838, 0.000
039 8, 0.153 nS/pF for GNa, GCaL, and GKr, respectively.

TABLE 1 | The various ionic currents in the TP06 model [43].The details of the ion-
channel and ion-pump equations for the currents and the parameter values
that we use for the TP06 model are given in the Supplementary Material.

Symbol Ion-channel or ion
pump current

INa fast inward Na+ current
ICaL L-type inward Ca2+ current
Ito Transient outward current
IKs Slow delayed rectifier outward K+ current
IKr Rapid delayed rectifier outward K+ current
IK1 Inward rectifier outward K+ current
INaCa Na+/Ca++ exchanger current
INaK Na+/K+ pump current
IpCa plateau Ca++ current
IpK plateau K+ current
IbNa background inward Na+ current
IbCa background inward Ca+ current
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We use the following two models for the fibroblast cells:

• Model-I: We model the fibroblast cells as inexcitable
obstacles and we replace the myocytes at random with
these inexcitable obstacles throughout our simulation
domain such that the percentage of sites with obstacles is
po. The gap-junctional current between the myocyte and
inexcitable obstacles in this model is zero (see Refs. 37, 44).

• Model-II: We model the fibroblasts in our study as an
electrically passive cells, as in Ref. 45. Each myocyte is
coupled to Nf fibroblasts; and the myocyte and fibroblast
transmembrane potentials Vm and Vf, respectively, obey the
following coupled ODEs:

dVm

dt
� − Iion

Cm
+Nf × Igap

Cm
( );

dVf

dt
� Igap − If( )

Cf
;

If � Gf Vf − Ef( );
Igap � Ggap Vm − Vf( ).

(4)

Cf, Ef, and Ggap are the membrane capacitance of a fibroblast,
the fibroblast resting potential, and the fibroblast-myocyte
gap-junctional coupling, respectively. We use a bilayer
model for fibroblast-myocyte couplings: fibroblasts, in the
top layer, are coupled to myocytes in the bottom layer, as
in Ref. 16, which contains a schematic diagram of this bilayer
and the PDEs that describe the spatiotemporal evolution of
waves of activation in this model; we do not include fibroblast-
fibroblast couplings. Moreover, when we consider a
heterogeneous distribution of fibroblasts in Section 3.4, we
first consider a homogeneous region in which each myocyte is
coupled to Nf fibrloblasts, which are in a layer above the
myocyte cell layer as described in detail in Ref. 16. Now we
introduce heterogeneity, which results in a gradient in the
density of fibroblasts, we removing all the Nf fibroblasts that
are coupled to a myocyte at a site, so that the percentage of
myocyte cells, at which we retain the myocyte-fiboblast
coupling, is pf. To study gradients in the density of
fibroblasts, we use a space-dependent density that varies
linearly as we move away from chosen central site:

pf ri( ) � pf r0( ) − pf r0( ) − pf rmax( )[ ]
rmax − r0[ ] × ri, (5)

where ri is the distance from the centre, r0 is the position of the
centre, and rmax is maximum radial distance from the centre.

2.2 Numerical Methods
We update the ODEs via the forward-Euler method for Eqs 1, 4.
For our two-dimensional (2D) tissue simulations as in Eq. 2 we
use a square domain with N × N grid points with N � 512, the
forward-Euler scheme for time marching, and a central-
difference scheme with a five-point stencil for the Laplacian,
with the time and space steps Δt � 0.02ms and Δx � 0.025 cm,
respectively. The control value of the diffusion coefficient D � D0,
with D0 � 0.001 54 cm2/ms, which gives us a conduction velocity

CV ≃ 70 cm/s, as has been reported for human-ventricular-tissue
models [43, 46].

2.3 Data Aquisition
• We generate a spiral wave by the cross-field protocol; we
pass a traveling plane wave (S1) from one end of the
domain; and when the wave back of S1 reaches the
middle of the domain, we pass another plane wave (S2)
perpendicular to S1; when the wavefront of S2 meets the
wave back of S1, a phase singularity is created at the
junction; this creates a spiral wave [see Supplementary
Figure S1].

• We calculate the frequency ω by recording the time-
series of the transmembrane potential Vm at four
representative positions in the simulation domain.
From the principal peak in the Fourier transforms of
these time series, we obtain ω (we take the average of the
values at the four representative positions). [We show in
Supplementary Table S1] that this frequency is within
error bars of the frequency ωtip of rotation of the tip of
the spiral wave.]

• For the radius of the tip trajectory of rigidly rotating spiral
waves, which is, on average, circular, we fit the average
trajectory to a circle with radius r and center (xc, yc), by
using a nonlinear regression model, to obtain the mean
radius and the mean values of the coordinates of the center
of the circle; we also calculate the standard deviation of the
fluctuations in r by using the mean position of the center (xc,
yc) and the coordinates (x, y) of the points that lie on the
unaveraged tip trajectory that we compute.

• We calculate CV by pacing the simulation domain at one
end with a pacing cycle length of 1 Hz; we use 20 pulses. We
record the time series of Vm at two designated grid points A
and B, which are separated by a distance lAB. These grid
points are chosen such that the line between the two grid
points is normal to the wavefront. We obtain the times tA
and tB at which the wavefront hits the grid points A and B,
respectively; the difference tB − tA gives the time taken by the
wavefront to propagate A to B; therefore, CV � lAB

(tB−tA). In the
disordered case, with inexcitable obstacles distributed at
random in the simulation domain, we record the time series
of Vm at multiple points and repeat the above procedure; we
then take the mean of the CVs obtained from these points;
we also compute the standard deviation of the CVs (see
Supplementary Table S2).

3 RESULTS

We present the results of our in-silico studies as follows: In
Section 3.1 we examine the dependence of the AP and of ω
on various ion-channel conductances. Section 3.2 is devoted to
the effects of the gap-junctional coupling on ω. In Section 3.3 we
investigate the effects of the fibroblast-myocyte coupling on the
myocyte AP and ω. We elucidate the drift of spiral waves in
domains with an inhomogeneous distribution of fibroblasts in
Section 3.4.

Frontiers in Physics | www.frontiersin.org February 2022 | Volume 9 | Article 8198733

Mulimani et al. Spiral-Wave Frequency in Cardiac Tissue

23

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 1 | (A) Action-potential plots for the control paramater set (magenta) and the cases when the conductances GNa (black), GCaL (blue), and GKr (red) are
increased by a factor of three relative to their control values. (B,C): Plots of the APD and dV

dt max , respectively, versus SG, the non-dimensionalized conductance (Eq. 3).

FIGURE 2 | (A) Traces of the tip trajectories of a spiral for different values of conductances of three ion channels:GCaL (blue),GNa (black), andGKr (red); the columns
indicate SG (Eq. 3), which multiplies only the conductance that labels a row (all other conductances are held at their control values as wemove along a row). (B–D): Plots
versus SG of, respectively, r, CV, and ω (see text), for all these three conductances; one-standard-deviation error bars are shown for r.
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3.1 Effects of Conductances on the AP and
the Spiral-Wave Frequency ω
The cell membrane of a myocyte is embedded with various ion
channels, which we list in Table 1; Vm depends on the currents
through these ion channels (Eq. 1), so, if we vary the
conductances of these channels, we can modulate the AP of
the myocyte. To study the effects of these ion channels on the AP,
we choose three representative major ionic currents for our study:
INa, ICaL, and IKr. Figure 1A shows the APs of a myocyte for
control values (magenta) and for the cases where the
conductances GNa (black), GCaL (blue), and GKr (red) are
increased three-fold. We find that increasing GCaL (GKr)
increases (decreases) the APD, whereas GNa has no significant
effect on the APD (Figure 1B). This is because the inward current
ICaL augments depolarization, and IKr, being an outward current,
enhances repolarization; although INa is an inward current, it is
active only during the early upstroke phase of the AP, therefore, it
cannot affect the APD siginificantly. Futhermore, we find that
increasing GNa increases the upstroke velocity dV

dt max, but GCaL

and GKr do not affect on dV
dt max (Figure 1). We have also checked

the effects of other ion-channel conductances and ion-pump
parameters on the AP. The results are consistent with our
findings above, namely, increasing (decreasing) the
conductances of inward (outward) currents increases
(increases) the APD of the myocyte; and INa is the only
current that can change the value of dV

dt max. We give details in
Supplementary Figure S1.

We now study how these changes in dV
dt max and the APD affect

the dynamics of a spiral wave. In Figure 2A we show spiral-tip
trajectories and how the radius r, of the averaged circular
trajectory, varies with the three conductances GCaL (blue), GNa

(black), andGKr (red); the columns are labelled by the values of SG
(Eq. 3), which multiply only the conductance that labels a row (all
other conductances are held at their control values as we move
along a row in Figure 2A). In Figures 2B–D we give plots versus
SG of, respectively, r, CV, and ω, for all these three conductances.
In particular, we find that ω increases if we increase the values of
GNa and GKr; by contrast, ω decreases as we increase GCaL. This is
consistent with the variation of r and of CV with SG (Figures
2B,C), for ω is related to r and CV as in Eq. 6.

ω∝
CV
2πr

(6)

If we raise the values of GCaL and GKr, then we find an increase
and decrease the spiral core radius r, respectively, whereas GNa

has no significant effect on the value of r (Figure 2B).
Furthermore, Figure 2C shows that CV increases with GNa,
whereas GCaL and GKr do not affect CV; this is because only
GNa affects the value of dVdt max (Figure 1C), which determines how
fast a myocyte is excited and, therefore, how rapidly a wave of
excitation propagates through our cardiac-tissue model. This
result, along with Figure 1B, implies that the change in the
APD is associated with the change in the value of r; a large (small)
value of the APD is associated with a large (small) value of r; and
conductances such as GNa have no significant effect on the APD
because they do not affect r substantially. We have also checked

this correlation between the APD and r for other conductances
(see Supplementary Figure S2) and have found similar results. In
summary, the rise of ω with the increase of GNa is primarily
because of the increase in CV, and the decline (rise) of ω, with the
increase ofGCaL (GKr), can be attributed principally because to the
increase (decrease) in r.

3.2 Effect of the Gap-Junctional Coupling
on ω
The strength of the gap-junctional coupling between the cells in
cardiac tissue can change in diseased conditions, e.g., in the wake
of a myocardial infarction [47–49]. It is, therefore, instructive to
investigate the role of the diffusive coupling betwen the cells on
spiral-wave dynamics. To study the effect of D on ω, we first plot,
in Figure 3A, r (blue curve) and CV (red curve) versus SD, the
non-dimensionalised diffusion constant in Eq. 3; this shows that
both r and CV increase with SD, because a high diffusive coupling
enhances the propagation of waves. The increase in CV is offset
by the increase in r, so ω (see Eq. 6) does not depend on SD
significantly, as we show in Figure 3B.

We can also reduce the effective coupling strength between the
cells in the medium by interspersing the medium with inexcitable
point obstacles. These obstacles mimic collagen deposits in fibrotic
tissue [38, 50]. The random distribution of these obstacles disrupts
the propagation of a wave, as we show by the pseudocolor plots of
Vm in Figure 4A; and it reduces the velocity of the wave [37, 44, 47].
In Figure 4B we plot CV versus po; clearly, CV decreases as the
obstacle density po increases; and beyond po ≃ 38%, we observe
conduction block with CV � 0. This result is consistent with the
earlier study in Ref. 51. This reduction in CV, with the increase of po,
contributes to the decline ofωwith increasing po, which we depict by
the plot in Figure 4C. Futhermore, because of the disorder-induced
corrugated wavefront (Figure 4A), it becomes difficult to track the
spiral-tip trajectory for po > 10%; for po < 10%, the value of r remains
unaltered (see Supplementary Figure S3). Nonetheless, the
simultaneous decrease of ω and CV, as we increase po, tells us
that the change inCV is responsible principally for the variation ofω.

3.3 Effect of the Fibroblast-Myocyte
Coupling on AP Properties and ω
Fibroblast cells, which maintain the structural integrity of a heart,
are known to (a) proliferate in diseased conditions [38, 39] and
(b) form gap-junctional couplings with myocytes. Such couplings
can modulate the electrophysiological properties, e.g., of the AP,
of the myocytes [45, 52, 53]. We show in Figures 5A,B, how the
fibroblast-myocyte coupling affects the AP morphology, APD,
and dV

dt max for different values of fibroblast resting potential Ef and
the number Nf of fibroblasts coupled to a myocyte in Model-II.
We see that the APD and dV

dt max increase and decrease,
respectively, as we increase Ef. For a fixed value of Ef,
increasing Nf decreases both APD and dV

dt max. This is because
fibroblasts act as current sinks when coupled to myocytes. These
changes in the properties of the AP, because of the fibroblast-
myocyte coupling, affect the dynamics of wave at the tissue level.
We show in Figure 5C that the rise in the APD and the decline in
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dV
dt max (Figure 5B) increases and decreases the values of r and CV,
respectively, as we increase Ef. In Figure 5D we show how the
combination of these effects on CV and r affect the variation of ω
with Ef and Nf.

3.4 Drift of Spiral Waves in Domains With an
Inhomogeneous Distribution of Fibroblasts
Fibrosis is a natural wound-healing process that occurs in the
heart after a patient suffers from a condition such as infarction

or heart attack [40–42], and such fibrotic tissue can affect the
propagation of excitation waves [14, 37, 47, 48, 54, 55], which
can promote arrhythmias. We now show how a heterogeneous
density of fibroblasts in the medium (Model-II) can affect the
dynamics of a spiral wave. Figure 6A shows the heterogeneous
distribution of fibroblasts in the medium; here, yellow indicates
fibroblast-myocyte composites and blue indicates myocytes.
The density of fibroblasts decreases radially outwards from
the centre that is marked by a red octagram in Figure 6A
(Section 2; Eq. 5). Figure 6B shows the spatial variation of the

FIGURE 3 | Plots versus SD (Eq. 3) of (A) r (blue curve) and CV (red curve) and (B) ω.

FIGURE 4 | (A) Pseudocolor plots of Vm illustrating the propagation of a plane wave through the simulation domain with randomly distributed inexcitable obstacles
(Model-I); the obstacle density po � 35%. (B,C): Plots versus po of the plane-wave conduction velocity CV and the spiral-wave frequency ω. CV vanishes after po ≥ 38%;
i.e., there is conduction block.
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APD in the medium because of the heterogeneous fibroblast
density. Figures 6C,D show the spatiotemporal evolution of a
spiral in this case. It shows that a spiral, initiated at the left side
of the domain in the region with a low density of fibroblasts,
drifts towards the region with a high density of fibroblasts; and
the spiral remains anchored to the central region, where the
fibroblast density is maximum. The trajectory of the spiral tip is
shown in white in Figure 6D (see also the Supplementary
Movie M1). In Figure 6D, we have shown the drift data up until
a simulation duration of t � 60 s. The spiral indeed goes near to
the red star (highest fibrotic density region shown in
Figure 6A), anchors to it, and becomes stable (at t � 114 s);
and the spiral does not meander after anchoring. This can be
observed in the Supplementary Movie M1 provided in the
Supplementary Material. This drifting of a spiral towards the
region with a high density of fibroblasts is associated with the
tendency of the spiral wave to drift towards the region with the
highest value of the APD [33, 34, 56–58]. Such anchoring of a
spiral wave to a region with a high density of fibrosis has been
seen in experiments on real hearts [23, 28, 59–61]. Our study
illustrates how a region with a high density of fibroblasts can
behave like an attractor and an anchoring point for spiral waves
in fibrotic tissue. Such drifting of a spiral wave, in a medium

with heterogeneity, has also been reported in other studies in
contexts other than fibrosis [33, 34, 56–58].

4 DISCUSSION

We have used in silico simulations of detailed mathematical
models for cardiac tissue to examine the effects of various
electrophysiological parameters of a cardiac cell and cardiac
tissue on the AP properties and on electrical-wave dynamics.
Our work is of relevance when spiral waves are formed in real
hearts where their are gradients in electrophysiological
parameters along the transmural [36, 62, 63] and the apico-
basal [64, 65] directions. Moreover, heterogeneities can be also be
induced in the heart because of diseases [64, 66–68]. In this
context, we have shown how changes in various ion-channel
conductances of a myocyte or the fibroblast-myocyte coupling
can modulate the AP of a myocyte. We have then checked how
these changes affect the spiral-wave frequency ω. We find that an
increase (decrease) in dV

dt max or decrease (increase) in the APD
increases (decreases) ω: large values of dV

dt max increase CV; and a
low APD is associated with low values of the mean spiral-tip-
trajectory radius r; these are related to ω through Eq. 6. Our study

FIGURE 5 | (A) APs of an isolated myocyte (black -) and a myocyte coupled to fibroblasts with various paramters: Ef � 0 mV, Nf � 1 (blue -); Ef � 0 mV, Nf � 4
(blue - -); Ef � −50 mV, Nf � 1 (red -); Ef � −50 mV, Nf � 4 (red - -). (B) The values of the APD and dV

dt max for different values of Ef and two different values of Nf. (C)
The values of r and CV for different values of Ef and two different values of Nf. (D) The varition of ω with changes in Ef for two different values of Nf.
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has provided a natural understanding of how changes in the AP,
at the single-myocyte level, can be related to changes in ω at the
cardiac-tissue level. Moreover, we have investigated how changes
in the gap-junctional coupling between the cells and SD affect ω.
We have also reduced the effective coupling between the cells by
interspersing the medium with inexcitable obstacles; ω changes
with the density of the obstacles. It is of interest to investigate
such effects on ω, because they provide insights into spiral-wave
dynamics in excitable media with heterogeneities [68]. We
illustrate this in detail in Figure 6 for a simulation domain
with a heterogeneous distribution of fibroblast; here, we
demonstrate the drift of a spiral wave towards the region with
a high density of fibroblasts; such a drift has been seen in real
hearts [23, 59–61].

We have explored the validity of the frequency relation Eq. 6
(Ref. 15) for a wide range of electrophysiological parameters in
the models that we use. We show in Supplementary Figure S1
that our measurements of ω and CV

r are consistent with a linear
relation (see the fit that is indicated by a black line); at very low
values of CV, e.g., near conduction block in Model-I which
accounts for fibrosis-induced disorder, this linear relation
breaks down. The randomness in these models introduces
errors in the determination of r of the spiral wave, especially
for large randomness; e.g., as we increase pf, we observe, in
Supplementary Figure S6 that the tip trajectory of the spiral
wave becomes very noisy. Note also that the CV of a plane wave is
distinct from CVtip the velocity of the tip of the spiral wave as it
goes around its trajectory (on average a circle with radius r);
clearly, ωtip � CVtip/(2πr) (see Supplementary Table S1).

Some earlier studies have investigated the properties of spiral
waves in two-variable mathematical models for cardiac [69–75].

However, such studies have been conducted in the weak- or
strong-excitability limits; real cardiac tissue exhibits various
degrees of excitability depending on different
electrophysiological parameters. Our study, which employs
electrophysiologically detailed mathematical models for cardiac
tissue, has allowed us to study spiral-wave dynamics with greater
realism than is possible with two-variable models for cardiac
tissue. The drifting of a spiral wave towards regions with a large
APD has been reported in contexts other than fibrosis [33, 34,
56–58]. Moreover, anomalous drift of a spiral towards a region
with a small APD, which has been observed in generic models
[34], is not seen in our study; and it is yet to be reported in any of
the electrophysiologically-detailed mathematical models for the
cardiac tissue. It is also observed in the two-variable models that
the radius of the spiral tip trajectory is very large, in the weakly
excitable limit, compared to what is observed in the strongly
excitable limit [72, 76].

In our realistic models, if we consider two parameters that
control excitability, e.g., GNa and D, then we observe that r does
not increase with a decrease in the value of GNa (Figure 2); but we
observe an increase in r, as we increase the value of D (see
Supplementary Figure S5. Hence, our systematic study, which
uses a detailed human-ventricular-tissue mathematical model,
provides an important point of reference for future in silico and
experimental studies of such spiral waves in cardiac tissue.

For the study of spiral-wave dynamics in the fibrosis, we have
considered two types of models for fibrosis: (a) Model-I and (b)
Model-II (Section 2). With these models we have investigated the
following: The change of ω in (i)Model-I and (ii)Model-II as we
change fibrosis parameters such as po (inModel-I) and Nf and Ef
(inModel-II). (iii) InModel-II we show that ω decreases with an

FIGURE 6 | (A) The radially decreasing distribution of the fibroblast density (Model-II Eq. 5) away from a center, marked by a red octagram; yellow indicates
fibroblast-myocyte composites and blue denoted myocytes. (B) The distribution of the APD because of the gradient in fibroblast density. (C,D): Pseudocolor plots of Vm
showing a spiral wave in the simulation domain: a spiral initiated in the small-APD region, proximal to the left boudary, drifts towards the large-APD (low-ω) region. The tip
trajectory of the spiral is marked by the white line.
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increase in Nf in homogeneous fibrotic tissue. Furthermore, we
consider a heterogeneous model, based onModel-II, in which the
fibroblast density Pf (number density of myocyte cells coupled to
Nf fibroblast cells at a site) is highest at a central site and decreases
outwards from this center. We find that a spiral wave, initiated far
away from the center where Pf is low, drifts towards the region
with the highest fibroblast density, i.e., the center, which has the
lowest ω. There are earlier studies in this direction such as in Refs.
77, 78 that uses Model-I type fibrosis. The study of Ref. 77,
induces spiral waves by a bursting or pacing mechanism and
investigates the dependence of ω on the fibrosis density (Model of
type I). This study shows that ω is dependent on the maximal
local fibrosis density. The study in Ref. 78, considers a local
fibrotic region (Model-I type) and studies the anchoring of a
spiral wave initiated far from this region. The mechanism of
anchoring here involves the breaking up of the spiral waves
around the fibrotic tissue and a consequent alteration of the
initial spiral wave; this is eventually driven near to the fibrotic
tissue and is then anchored around it. However, our study
investigates the drift of the spiral wave in Model-II and shows
the experimentally observed drift of spiral waves towards the
region of highest fibroblast density. Also, our gradient in the
fibroblast density based on Model-II, in contrast to that of Refs.
77, 78, uses a continuous gradient in the fibroblast density and, in
addition, with fibroblasts that are treated as passive, but
electrically active, cells. We note that, multiple studies have
shown that fibroblast cells are electrically active, especially in
the context of infarction (see, e.g., Refs. 14, 49, 53, 79, 80). Such
fibroblasts are used in our Model-II but not in the studies
mentioned in Refs. 77, 78. Thus, our work extends
considerably these earlier studies.

4.1 Limitations of Our Study
We end our discussion with some limitations in our study. We
have used a monodomain model for cardiac tissue. Bidomain
models of cardiac tissue account for the extracellular matrix.
However, monodomain models have been proved to be good
approximations of cardiac tissue for wave propagation [81]
for the types of excitations we consider. Furthermore, our
tissue model does not incorporate the effects of mechanical
deformations, stretch-activated channels, and stress-
dependent diffusion tensors [82–84]. Such deformations

can affect the dynamics of spiral waves [85] and the drift
of spirals in a heterogeneous medium; we defer an
investigation of the interplay between deformation and
drift for future work.
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Wound healing consists of a sequence of biological processes often grouped into

different stages. Interventions applied to accelerate normal wound healing must take into

consideration timing with respect to wound healing stages in order to maximize treatment

effectiveness. Macrophage polarization from M1 to M2 represents a transition from the

inflammatory to the proliferative stage of wound healing. Accelerating this transition may

be an effective way to accelerate wound healing; however, it must be induced at the

appropriate time. We search for an optimal spatio-temporal regime to apply wound

healing treatment in a mathematical model of wound healing. In this work we show

that to maximize effectiveness, treatment must not be applied too early or too late

with respect to peak inflammation. We also show that the effective spatial distribution

of treatment depends on the heterogeneity of the wound surface. In conclusion, this

research provides a possible optimal regime of therapy that focuses on macrophage

activity and a hypothesis of treatment outcome to be tested in future experiments.

Finding optimal regimes for treatment application is a first step toward the development

of intelligent algorithms for wound treatment that minimize healing time.

Keywords: wound healing, mathematical model, macrophage polarization, optimal treatment regime, partial

differential equations (PDE)

1. INTRODUCTION

Delayed wound healing presents an important health-care problem. There is no decisive finding
regarding the best therapy for delayed wound healing due to the variety of complications that can
ensue [1]. In the case of acute wounds, a growing research area in wound healing has focused
on methods to accelerate wound healing such as application of an electric field, application of
stem cells, and the passive release of therapeutic molecules in so-called smart bandages [2]. Less
attention has been given to the timing of any given therapy. A treatment may exert no effect or even
a negative effect on healing tissues if not applied appropriately [3]. For example, certain treatments
can accelerate specific stages of inflammation but have little effect on others [4, 5]. In other cases,
treatment can induce toxic side-effects [6]. For this reason each treatment should be applied only
at the appropriate stages of wound healing. The emergence of bioelectronic devices provides the
opportunity to achieve drug delivery in a continuous and controlled fashion [7, 8].
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Wound healing consists of several stages: hemostasis,
inflammation, proliferation, and remodeling [9–11]. During
hemostasis, a blood clot is formed to stop bleeding [12].
Inflammation begins immediately after a blood clot formation.
At this time, chemokines are released to attract immune
cells - neutrophils and macrophages. During the proliferative
stage, angiogenesis, collagen deposition, and the formation
of granulation tissue occur. The main participants in this
stage are fibroblasts and anti-inflammatory macrophages.
During remodeling, unnecessary blood vessels are removed,
the extracellular matrix is remodeled, and tissue architecture
is restored.

Wound acceleration can be achieved by shortening the
duration of one or more of the wound healing stages.
Determining the optimal timing for a therapy requires one to
map the direct effect of the therapy on the targeted biological
processes to the overall wound closure time.

Mathematical modeling in this field may help to predict
optimal treatment regimes and to plan future experiments.
Existing mathematical models have served to investigate
different aspects/stages of wound healing [13–15]. Models
of inflammation have suggested strategies to avoid chronic
inflammation by control of neutrophil apoptosis and
macrophage phagocytosis [16]. The model presented in Xue
et al. [17] suggests a mechanism by which a deficiency in oxygen
supply can limit macrophage recruitment and slow healing.
The models describing production of the extracellular matrix by
fibroblasts allowed researchers to investigate scar formation [18].
The role of cell migration and proliferation on wound closure
was investigated in Javierre et al. [19]. Thus, we propose that a
qualitative model with a proper level of abstraction can be used
to predict the response of a wound to dynamic therapy.

In this study, we investigate mathematically the most effective
spatio-temporal regimes for drug delivery to accelerate wound
closure. In particular, we identify the effects of delivering
substances that can accelerate macrophage polarization on
wound closure times. Macrophage polarization modeling, to our
knowledge, has been applied to several biological situations but
not to wound healing [20, 21].

Macrophages play important roles at all stages of wound
healing [9–11, 22]—from clearing the wound of debris by
phagocytosis to maintaining cell proliferation of the tissue
being repaired. Macrophages can perform various tasks due to
their ability to transform into several phenotypes depending on
external stimuli [23]. The most famous phenotypes are M1 (pro-
inflammatory) and M2 (anti-inflammatory), identified in vitro
[24]. In a wound, the set of stimuli received by macrophages
is constantly changing and their phenotype undergoes a
dynamic transition. The ability to regulate the macrophage
phenotype and achieve a controlled time-dependent transition
from the M1 phenotype to the M2 phenotype is a promising
approach to accelerate wound healing [25–27]. There are several
substances that can induce macrophage polarization from the
pro-inflammatory to the anti-inflammatory subtype [28–30].
This type of treatment can have adverse effects if applied
improperly [31, 32]. For example, a fast transition from the
inflammatory to the proliferative stage may slow down the

cleaning of the wound of debris (e.g., removal of harmful bacteria
and damaged cells).

We focus our attention on accelerating wound closure of acute
wounds. For simplicity, and to this end, we consider a simple
model with only one stable state – the healthy one. That is, our
model does not capture switching between chronic and normal
wound healing regimes. However, in order to appropriately
capture trade-offs of early treatment, we model wound debris
over time, which is actively degraded by M1 macrophages.
Tracking this state, we quantify wound cleaning time with the
understanding that any remaining wound debris can be an
indicator of prolonged inflammation and potential infection
preventing wound closure. That is, wound debris should decay
in a timely manner for the treatment to be realizable.

In summary, we examine wound healing time and wound
debris cleaning time in response to different spatio-temporal
signals inducing macrophage polarization. Overall, decoupling
the different modalities of wound healing trajectories reduces
complexity of the model and allows us to gain intuition
for optimal treatment strategies. We find that actuation of
M1–M2 polarization must be applied with care and optimal
timing can depend on the duration of the treatment, time of
initiation, placement of the actuator, and initial distribution of
wound debris.

2. MATHEMATICAL MODEL

2.1. Background
The timing and coordination of biological processes involved
in wound healing are complex, however, many of them can be
lumped into a single state [33]. A good model should contain the
minimal number of variables needed to describe the process [14].

We consider a five state system, which provides an appropriate
level of abstraction for our study. In order to study the effects of
macrophage polarization we must make them explicit states. M1
macrophages are associated with the early stages of inflammation
[11, 34] and the upregulation of M2 signals corresponds to
initiation of the proliferation stage [9, 10]. The remaining
states defined as wound debris, temporary tissue, and new
tissue represent primary activity in early and later stages of
wound healing.

Debris of both internal and external origin appear in the
wound at the moment of injury, when healthy tissue is damaged.
The debris activate M1 macrophages and are then removed
by them.

M1macrophages clean up debris mainly by phagocytosis [35].
Soon after that, M1 macrophages become anti-inflammatory M2
macrophages in a process called efferocytosis (M1 macrophages
phagocytose apoptotic neutrophils, transforming into M2
macrophages) [36, 37]. The upregulation of M2 macrophages is
associated with the end of inflammation [38] and the onset of
proliferation during wound healing [10, 11].

The proliferative stage is characterized by the production of
an extracellular matrix facilitated by fibroblasts and the growth
of new blood vessels [39, 40]. These processes are regulated by
M2 macrophages [10] and are needed to help new tissue form
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FIGURE 1 | (A) Geometry of the model: the r-axis is directed from the wound center; R is the wound radius. (B) Schematic of the model of wound healing. Wound

debris Db attract M1 macrophages that remove debris. M1 macrophages become M2 macrophages, which induce production of temporary tissue C that helps new

tissue N to grow.

correctly, thus, we consider these agents as “temporary tissue” in
our model.

During the remodeling stage, the extracellular matrix is
remodeled and extra blood vessels are removed [39]; new healthy
tissue replaces temporary tissue indicating wound closure. Here,
we consider a wound where only the top epithelial layer is
damaged and new tissue grows from the edge of the wound as
epithelial cells proliferate and migrate inward. Thus, new tissue
in our model is growing as a sheet from the wound edge [41].

These five states capture the well characterized wound
healing stages and changing wound conditions inducing a
biological response.

2.2. Equations
Consider a wound of radius R. Let the axis r to be directed
from the wound center to the edge (Figure 1A). Concentrations
of substances and populations of cells are functions of r. A
schematic of the interaction between the modeled biological
processes including macrophage participation in wound healing
is shown in Figure 1B.

Db is wound debris consisting of damaged cells and bacterial
cells promoting infection. We assume the wound debris to be
non-active and only eliminated by M1 macrophages:

Ḋb = −k1DbM1, (1)

where M1 is the population of M1 macrophages, which are
attracted by debris (k2Db) and removed in the reactions
corresponding to debris elimination (k1DbM1), macrophage

polarization (k4
M

q
1

Kq+M
q
1

), and natural death (kd1M1). Spatial

migration of macrophages is described by a classical diffusion
term [42]. Thus, the dynamics of M1 macrophages are described
by the following equation:

Ṁ1 = k2Db − k1DbM1 − k4
M

q
1

Kq +M
q
1

−kd1M1 + D

(

1

r

∂M1

∂r
+

∂2M1

∂r2

)

, (2)

where the diffusion is written in a cylindrical coordinate system.
M2 is the population of M2 macrophages whose dynamics are

driven byM1 polarization (k4
M

q
1

Kq+M
q
1

), their death rate (−kd2M2),

and migration as follows:

Ṁ2 = k4
M

q
1

Kq +M
q
1

− kd2M2 + D

(

1

r

∂M2

∂r
+

∂2M2

∂r2

)

. (3)

Proliferation is a complex process involving fibroblasts. The
extracellular matrix (ECM) formation and its partial destruction
is controlled by a complex coordination of enzymes [39, 40].
This finely tuned system supporting new tissue growth has
been modeled in several works [18, 43, 44]. Here, we use a
simplified model of proliferation. The temporary tissue variable
C represents the temporarily formed ECM and active enzymes.
Temporary tissue production is induced by M2 macrophages
(k5M2) and is destroyed thereafter (−krC). The dynamics are
described by the following equation:

Ċ = k5M2 − krC. (4)

The state C is an intermediate state leading to the growth of new
healthy tissue, N. To model growth of new healthy tissue, we
assume that the top layer of the skin, the epithelium, grows as
a sheet from the edge of the wound [41]. Epithelial cells divide,
but this process slows down if there are too many cells. Thus, the
epithelial growth velocity is described asN(1−N). If the amount
of new tissue reaches N = 1 it does not grow any more. New
tissue cells can migrate to adjacent areas with a migration rate
Dn that is much slower than that of macrophages. The equation

Ṅ = aN(1 − N) + ∂2N
∂x2

is known in the theory of nonlinear
dynamical systems as the Fisher-Kolmogorov equation [45], and
its solution can be represented as a running wave [42]. However,
this is possible only in the presence of temporary tissue, so the
rate of new tissue growth is proportional to C. The dynamics of
new tissue are described by the following equation:

Ṅ = C

[

αN(1− N)+ Dn

(

1

r

∂N

∂r
+

∂2N

∂r2

)]

. (5)
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TABLE 1 | The values of parameters used in numerical simulations.

Parameter Value Reference

R 3 mm

L 0.03 mm

T 1/3 day

δ 1/3 day

β 1 [46, 47]

ρ 0.1 [48]

k 0.05 [48]

q 5 [48]

γ1 0.1 [34, 49]

γ2 0.1 [34, 49]

µ 0.2 [39]

D̃ 0.32 [50, 51]

D̃n 0.0003 [52]

α̃ 1.8 [52]

In order to reduce the number of parameters, we reparameterize
the model by introducing new variables:

a = Dbk1T m1 = M1k1T m2 = M2k1T

c = C
k1

k5
n = N τ =

t

T

r̃ =
r

L

where T and L are characteristic time and length scales. The
system of equations in the reparameterized form is:

ȧ = −am1, (6)

ṁ1 = βa− am1 − ρ
m

q
1

kq +m
q
1

− γ1m1 + D̃

(

1

r̃

∂m1

∂ r̃
+

∂2m1

∂ r̃2

)

,(7)

ṁ2 = ρ
m

q
1

kq +m
q
1

− γ2m2 + D̃

(

1

r̃

∂m2

∂ r̃
+

∂2m2

∂ r̃2

)

, (8)

ċ = m2 − µc, (9)

ṅ = c[α̃n(1− n)+ D̃n

(

1

r̃

∂n

∂ r̃
+

∂2n

∂ r̃2

)

], (10)

where β = k2T, ρ = k1k4T
2, γ1 = kd1T, γ2 = kd2T,µ =

krT, D̃ =
DT
L2

, D̃n =
DnTk5
L2k1

, α̃ = αT k5
k1
, k = Kk1T. The parameter

values used in numerical simulations are listed in Table 1.
We assume a time scale of 8 h and a spatial scale of 0.03 mm.

For β the rate of attraction of macrophages by debris/pathogen
was reported in Hau et al. [46] as 1/day and in Andersson

et al. [47] as 0.5/day. We set β = 1. The degradation rate of
macrophages varies in literature from 0.014/h [34] to 0.12/h [49].
We accept the values γ1 = γ2 = 0.1. We select parameters k, q
and ρ such thatM1 andM2 dynamics agree with those found in
Du et al. [48]. The value ofµwas set such that temporary tissue is
removed 3 weeks after injury [39]. The coefficient of diffusion for
macrophages can be deduced from cell migration experiments. In
Wheeler et al. [51], the mean displacement of cells on plastic was
20-30µm in 6.5 h, giving the estimate for the diffusion coefficient
[50] D̃=0.27− 0.61. We assume D̃ = 0.32.

Finally, the parameters D̃n = 0.0003 and α̃ = 1.8 were
selected in such a way that complete wound closure was observed
by day 14, while no changes in wound closure were observed in
the first 2 days as is consistent with some experiments [52]. The
sensitivity analysis of the model to variations in parameters is
shown in Supplementary Figures S5, S6.

The initial conditions are:

a|t=0 = 1, m1|t=0 = m2|t=0 = c|t=0 = n|t=0 = 0. (11)

We assume zero-flux boundary conditions for macrophages on
the right and left boundaries of the considered region:

∂m1

∂ r̃
|r̃=0 =

∂m2

∂ r̃
|r̃=0 =

∂m1

∂ r̃
|r̃=R/L =

∂m2

∂ r̃
|r̃=R/L = 0. (12)

New tissue is assumed to be constant at the edge of the wound
and non-moving through the center of the wound:

∂n

∂ r̃
|r̃=0 = 0, n|r̃=R/L = 1. (13)

The system of Equations (6)–(10) was solved numerically on a
uniform mesh consisting of 100 spatial cells. Five equations were
written in each cell, with the diffusion term approximated using
a central difference scheme. The resulting system of 500 ordinary
differential equations was solved in Matlab R2020a by the ode15s
solver. The results of wound healing model simulations are
shown in Figure 2. The wound radius is measured as the distance
from wound center to the location r, where n(r) > 0.95.

2.3. Model of Wound With Actuator
In order to investigate regimes of wound healing treatment
we include actuator induced macrophage polarization into the
model. This actuator is applied at a radius r = rp. We assume that
the actuator delivers a biochemical at the point of application and
its concentration θ is described by the following function in time
and space (see Figure 3A):

θ(r, t)

= θ0(t) ·























0 r ∈ (−∞, rp − σ1] ∪ [rp + σ1,∞)

1 r ∈ [rp − σ2, rp + σ2]
r−(rp−σ1)

(σ1−σ2)
r ∈ (rp − σ1, rp − σ2)

−
r−(rp+σ1)

(σ1−σ2)
r ∈ (rp + σ2, rp + σ1)

,(14)

where θ0 is the amplitude of the treatment controlled by the
actuator. One can see that θ = θ0 at the location of the actuator,
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FIGURE 2 | Results of wound healing model simulations, R = 3 mm. (A) time-dependence of all variables at a radius r = 2 mm from the wound center (B) new tissue

profiles as functions of r for several time points. (C) wound radius vs. time: wound healing time is 13.47 days.

FIGURE 3 | Spatio-temporal characteristics of treatment induced by actuation. (A) Treatment substance distribution in space. The actuator is located at r = rp. (B)

Time dependence of the actuator amplitude.

r = rp. In this work we assumed σ1 = 0.3 mm and σ2 =

0.09 mm. The treatment substance delivered affects macrophage
polarization, so equations for m1 and m2 with actuators may be
rewritten as follows:

ṁ1 = βa− am1 − ρ
m

q
1

kq +m
q
1

− γ1m1

+D̃

(

1

r̃

∂m1

∂ r̃
+

∂2m1

∂ r̃2

)

− θm1, (15)

ṁ2 = ρ
m

q
1

kq +m
q
1

− γ2m2 + D̃

(

1

r̃

∂m2

∂ r̃
+

∂2m2

∂ r̃2

)

+ θm1, (16)

In order to find the optimal regime, we test the model with
impulses of actuator treatment of duration 1t beginning at time
t0 (see Figure 3B):

θ0 =











t−t0
δ

t0 ≤ t < t0 + δ

1 t0 + δ ≤ t < t0 + 1t − δ
t0+1t−t

δ
t0 + 1t − δ ≤ t < t0 + 1t

, (17)

We present a piece-wise linear function for simplicity. We
assume linear growth and a decrease at the beginning and end
of the signal. We tested other impulse-like shapes for actuation
and found that the general behavior of the system response
remained unchanged.

3. RESULTS

We define wound healing time as the time from injury (t=0) to
the moment when the wound radius reaches zero. Application
of an actuator that accelerates macrophage polarization in the
model decreases the time of wound healing. The results are
shown in Figures 4–6.

The beginning time of actuation plays an important role
in wound healing (see Figure 4). Large values of t0 make the
treatment less effective: wound healing time increases as t0
increases. In our simulations for t0 > 3d the treatment does
not have any effect: the value of healing time tends to the
value of healing without treatment (13.47 days for the given set
of parameters).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 February 2022 | Volume 8 | Article 79106436

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zlobina et al. Wound Treatment by Macrophage Polarization

FIGURE 4 | Wound healing time dependence on the treatment beginning time t0. (A) plots for different treatment durations 1t, rp = 0.9 mm. (B) plots for different

actuator positions rp, 1t = 1 day.

FIGURE 5 | Wound healing time dependence of treatment duration 1t for

different beginning times t0. rp = 0.9 mm.

Interestingly, for shorter treatment durations 1t, healing
time plots have a minimum away from the extremes (see
plots for 1t < 2d in Figure 4A). There exists a time-
window in the wound healing process when treatment is
most effective. This time-window is likely characterized
by some underlying biological process. If the treatment
duration is short and applied early, the treatment ends
before the most effective time-window is reached. This is
not observed for longer treatments (1t = 2 − 3 days)
because even with early application at t0 = 0, the treatment
duration overlaps with the most effective time-window
for treatment.

This means that there is a non-trivial optimal treatment
beginning time t0. In other words, there is a short window
of time during wound healing when artificial acceleration of
macrophage polarization is most effective. The plots for other
actuator positions rp are shown in the Supplementary Figure S1.
Similar trends are observed for different placement of
the actuators.

Figure 5 shows how wound healing time depends on the
duration of treatment. The longer the treatment time 1t is, the
more effective it is at accelerating wound healing. However, for
1t larger than 2–3 days, wound healing time approaches a lower
bound. This means that further prolongation of the treatment
has minor effects. The plots for other values of rp are shown
in Supplementary Figure S2. Again, we find a similar trend
regardless of actuator placement.

Figure 6A shows the dependence of wound healing time on
the actuator position rp. The treatment substance in this model
is approximated by a piece-wise function (14) on a bounded
domain. To ensure the bounded domain stays within the region
of interest we constrain the actuator placement: 0.3 mm≤ r≤2.7
mm. The plots are decreasing from the wound center to the
edge. This implies that an actuator located close to the wound
edge is beneficial. The plots for other 1t and t0 are shown in
Supplementary Figures S3, S4.

The results above might be the consequence of the initial
uniform distribution of the debris in the wound (see initial
conditions). We provide additional simulations with debris
accumulation in the center and at the edge of the wound.
Alternative initial conditions for the debris variable take the
following form:

a(r)|t=0 = 2(1− r/R) (18)

and

a(r)|t=0 = 2r/R. (19)

Wound healing time dependence on rp for the three different
types of initial conditions on debris distribution is shown in
Figure 6B. One can see that debris distribution in the wound bed
affects the dependence of healing time on actuator placement.

For the case a(r) = 2r/R, there is more debris on the edge.
If the actuator is placed near the edge, we can get much shorter
healing times. For the case 2(1− r/R) (more debris in the wound
center), there exists an optimal position of the actuator away from
the edge (rp ≈ 1.8 mm). One can see that the optimal actuator
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FIGURE 6 | Wound healing time dependence on the actuator position rp. (A) plots for different treatment durations 1t, t0 = 0h (B) plots for different initial distributions

of debris in the wound, t0 = 0h 1t = 3days.

position is sensitive to the distribution of the debris in the wound.
Debris distribution cannot be estimated in the framework of this
rough modeling and must be investigated experimentally.

Figure 7 demonstrates the limitations of treatment regimes.
In addition to wound healing time, we define the wound cleaning
time for debris removal. Because debris is a diminishing variable
in our model, it tends to zero as time goes to infinity. We define
wound cleaning time as the time when the maximal value of
debris across the wound bed falls below a small threshold 0.025:

max
r

a < 0.025. (20)

Because the treatment applied in this model acceleratesM1 toM2
transition, it not only accelerates the proliferation-remodeling
stages but removes M1 cells performing debris removal. Too
large application of this treatment can make debris removal
too slow—this is the cost of accelerating the proliferative and
remodeling stages. Figure 7A shows that a shorter wound healing
time corresponds to a longer time required for wound cleaning
or debris removal. For some scenarios, wound cleaning may take
even longer than wound closure, which is physically unrealizable
and indicative of complications in wound healing.

We can see two main limitations of the treatment regimes,
divided by vertical dotted lines in Figure 7A. The regimes with
small t0 (left of the first dotted line) lead to too slow wound
cleaning. Regimes with very large t0 (to the right of the second
dotted line) result in insufficient improvement in wound healing.
We define “insufficient” by a less that 10% reduction in wound
healing time when treatment is applied. This threshold is of
course arbitrary and can be chosen by the user. For reference,
in Liang et al. [53], the authors demonstrated accelerated wound
closure on a pig wound by applying a continuous external electric
field and reduced the time for wound closure by∼12–18%. Thus,
we opine that below a 10% threshold, the cost and potential side
effects of applying the treatment outweigh the benefit.

Only the regimes with middle values of t0, between the
vertical dotted lines in Figure 7A, shorten wound healing time
sufficiently, while keeping a reasonable wound cleaning time.

Figure 7B shows these 3 types of regimes in the (t0,1t)
parametric plane. The regimes marked as red squares correspond
to regimes when wound cleaning takes a longer time than wound
healing, whereas blue diamonds correspond to regimes when
wound healing time diminishes less than 10% in comparison
with a non-treated wound. Green crosses represent the effective
regimes of wound treatment. We find that the treatment should
be applied between 0 and 1 days. Applying treatment past 1
day in all scenarios does not significantly reduce the wound
healing time, hence, the treatment is ineffective. We note that
in our simulations, M1 macrophage activity, which is associated
with inflammation, peaks at around 24 h. Thus, we may
hypothesize that treatment is best applied shortly after or just
shy of peak inflammation, thereby, accelerating the transition
from the inflammatory state to the proliferative state. Applying
treatment too early can result in chronic wounds given a less than
reasonable time is provided for inflammation, a stage in wound
healing critical for preventing infections.

Of course, one can choose more stringent conditions for
optimal regimes (maybe 10% healing time improvement is
not enough, or the threshold in the condition (20) should be
smaller. Some variants of other threshold selections are shown
in Supplementary Figure S7). Among all the regimes presented
in Figure 7B the smallest healing time (11.37 days) is observed
for the treatment regime t0 = 8 h and 1t = 2 days 8 h. This
reduces wound healing time by approximately 2 days. In practical
situations there might be additional constraints on the duration
of treatment, or maximum concentration that is not considered
here. However, our model demonstrates the principles of wound
treatment regime optimization.

4. DISCUSSION

To our knowledge, the mathematical model presented here is
the first one that considers the role of macrophage polarization
explicitly in wound healing. The model takes into account
the presence of two types of macrophages in the wound—M1
and M2. It is believed that in addition to these primary

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 February 2022 | Volume 8 | Article 79106438

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zlobina et al. Wound Treatment by Macrophage Polarization

FIGURE 7 | Optimal regimes of wound treatment. (A) wound healing time and wound cleaning time as functions of treatment beginning time, t0 (1t = 2d8h). Blue

dashed line: healing time without treatment. (B) Parametric plane for the choice of the treatment regime: green crosses – the safe and beneficial regimes of treatment;

red squares – wound cleaning takes a longer time than wound healing; blue diamonds – wound healing time diminishes less than 10% in comparison with the

non-treated wound (rp=0.6 mm). Arrows labeled “a” and “b” represent the same change in treatment strategy but demonstrate different outcomes due to different

reference points.

subtypes, there are several other subtypes of macrophages. All
subtypes of macrophages were found in vitro as a result of
identifying corresponding activating stimuli. The exact subtypes
of macrophages in wounds have not been established and
are considered to be roughly similar to those found in vitro.
It is most likely that macrophages of different types can be
present in the wound simultaneously. However, the functions
that these macrophages perform are more important for the
healing process than the markers found in vitro. Therefore, in
this model, we clearly divide the functions of the macrophages
into inflammatory and reparative, keeping inmind that such pure
cell lines may not exist in reality. This separation of functions of
macrophages gave us the opportunity to draw up a rather simple
naive model and identify general patterns for the effect of varying
treatment regimens on wound healing time.

Admittedly, this model has its limitations. The model
constructed in this work does not take into account the details
of macrophages polarization due to the poor knowledge of this
mechanism in vivo [34]. It is known that M2 macrophages
can appear in response to stimulation by certain cytokines,
for example, IL4, produced by basophils and mast cells [11].
There are indications that M1 macrophages are converted to
M2 subtypes after they phagocyte apoptotic neutrophils [38].
We made a model in which the M1 population is replaced by
M2 although the mechanisms of this transition in vivo are not
well understood. Thus the mechanisms of polarization and their
effects on timing cannot be included. Still we derive biologically
meaningful results.

Our results imply that a treatment targeting macrophage
polarization should not take place too early. Otherwise, M1
macrophages do not have enough time to eliminate wound debris
and wound healing can be delayed. Details of this scenario is out

of scope of our model. The onset of this scenario is especially
important for infected wounds when the debris consists not only
of damaged cells but of bacterial pathogen [54]. In the case of
bacterial pathogen, the first equation in the model should include
pathogen reproduction and regimes where pathogen persistence
may occur. This may lead to continuation of M1 recruitment,
inflammation persistence, and prevent full wound closure. On
the other hand, treatment targeting macrophage polarization
should not begin too late, because it becomes ineffective and toxic
side effects are unknown.

The model can still be used to guide experiments. The
parametric plane of treatment regimes in the (t0,1t) coordinate
plane (Figure 7B) may serve as a first approximation for
planning wound treatment strategies. Although the boundaries
separating the three regimes in Figure 7B may shift across
experiments, we might expect the general pattern to hold.
For example, if an experimentally tested treatment regimen
is found to not shorten healing time to a desirable extent,
then the implication is that the domain of actuation is in
the blue region of Figure 7B. A reasonable choice for the
next strategy is to decrease t0 and increase 1t with the
goal of shifting the system from the blue to green region
(arrow a in Figure 7B). However, if the new regimen leads
to complications in the inflammatory stage, this implies the
shift pushed the actuation domain into the red region, as
shown by arrow b in Figure 7B. Having this mathematically
derived parametric plane may help experimenters orient in
an unknown field of regimes. The specific values of the
thresholds and the corresponding shapes of the boundaries can
be clarified experimentally.

We note that the geometry of the domain of actuation
corresponds to a ring of a given width at a given radius. Recent
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advances in the design of bioelectronic devices provide the
ability to deliver biochemicals with spatio-temporal precision [7].
Thus, we would like to take full advantage of these capabilities
to understand the dependence of treatment effectiveness on
proximity to the wound center compared to the wound edge. The
lack of knowledge about debris distribution in the wound makes
it difficult to predict the optimal actuator position. However,
we demonstrate several possible solutions for different debris
distributions in the wound. Experiments on wound treatment
should be done to clarify the optimal spatial distribution of
treatment actuators.

Nonetheless, the general trends for changes in wound healing
times with respect to changes in actuation timing are similar
for various fixed spatial profiles. The importance of considering
spatial context in wound treatment remains an open question.
If considering spatial information can significantly improve
treatment strategies, then such numerical studies can inform
future actuator design.

5. CONCLUSION

Wound healing consists of a sequence of stages with different
cells performing different functions. Therefore, it is reasonable
to assume that at each stage, different medications should be
applied to improve healing. However, to our knowledge, there are
not many studies of dynamic wound treatment regimens. In this
work, we attempted to find the optimal wound treatment regimen
by affecting macrophage polarization.

Actuating macrophage polarization for acceleration of wound
healing must be done in a narrow time interval, beginning from
the peak time of M1. Too early and too strong treatment of
this type may slow down wound cleaning and lead to chronic
inflammation. Delayed treatment may have too small of an effect.
For the particular parameter values chosen here, the optimal
actuating time is between 0.7 and 3.1 days. The shortest observed
wound healing time was 11.37 days for a ∼15.5% reduction
in wound healing time. This is comparable to the results in
Liang et al. [53], where time for wound closure was reduced by
∼12–18%.

To our knowledge, this is the first work in search of an optimal
spatio-temporal regime of wound treatment, which can be
tested experimentally. We also note that we are only presenting
one method of intervention. In the future, this study can be
expanded to include additional intervention strategies targeting
other biological processes. Thus, this naive modeling approach
may help to predict optimal regimes for various treatments with
known distinct actions. Combining approaches could potentially
lead to unprecedented reductions in wound healing times. We
believe this is the first step toward designing smart treatment and
development of algorithms for smart wound healing devices.
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Radiofrequency catheter ablation (RFCA) is the mainstream treatment for drug-refractory
cardiac fibrillation. Multiple studies demonstrated that incorrect dosage of radiofrequency
energy to the myocardium could lead to uncontrolled tissue damage or treatment failure,
with the consequent need for unplanned reoperations. Monitoring tissue temperature
during thermal therapy and predicting the extent of lesionsmay improve treatment efficacy.
Cardiac computational modeling represents a viable tool for identifying optimal RFCA
settings, though predictability issues still limit a widespread usage of such a technology in
clinical scenarios. We aim to fill this gap by assessing the influence of the intrinsic
myocardial microstructure on the thermo-electric behavior at the tissue level. By
performing multi-point temperature measurements on ex-vivo swine cardiac tissue
samples, the experimental characterization of myocardial thermal anisotropy allowed
us to assemble a fine-tuned thermo-electric material model of the cardiac tissue. We
implemented a multiphysics and multiscale computational framework, encompassing
thermo-electric anisotropic conduction, phase-lagging for heat transfer, and a three-
state dynamical system for cellular death and lesion estimation. Our analysis resulted in a
remarkable agreement between ex-vivo measurements and numerical results.
Accordingly, we identified myocardium anisotropy as the driving effect on the
outcomes of hyperthermic treatments. Furthermore, we characterized the complex
nonlinear couplings regulating tissue behavior during RFCA, discussing model
calibration, limitations, and perspectives.

Keywords: radiofrequency ablation, myocardial anisotropy, hyperthermal tissue damage, fiber Bragg grating
sensors, finite element analysis
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1 INTRODUCTION

Cardiac arrhythmias are the most common and disabling
pathologies worldwide (Pires et al., 1995; Kornej et al., 2020;
Siontis et al., 2021) with increasing incidence–it is estimated that
about 16 million people in the United States will suffer from this
condition by 2050 (Patel et al., 2014). In the context of
minimally invasive procedures, cardiac radiofrequency
catheter ablation (RFCA) emerged as the leading clinical
routine for treating cardiac arrhythmias (Nath et al., 1994).
RFCA causes hyperthermic lesions destroying myocardial
regions responsible for arrhythmias foci. Radiofrequency (RF)
energy is carried out through a delivery antenna to target areas
where the temperature is raised to at least 50°C (Wood et al.,
2011). Cellular excitability is eliminated in correspondence with
the ablation sites, and thermal damage is produced (Morady,
1999).

Despite the extensive clinical achievements which result in a
high success rate and low mortality, RFCA is still subject to
several drawbacks. An excessive thermal increase can produce
steam pops and unwanted tissue lesions (Zaltieri et al., 2021).
On the contrary, failure to achieve target temperatures can lead
to incomplete tissue ablations, which may provoke recurrent
arrhythmias that often require repeated clinical interventions.
Since the temperature profoundly affects the outcome of this
procedure, considerable interest has matured in predicting
macroscopic thermal patterns and, in turn, estimating the
expected lesion size to make RFCA risk-free and prevent
failures.

Computational modeling has emerged as a feasible way to
predict the outcome of cardiac RFCA procedures and to tackle
specific unanswered questions. Numerical techniques, including
the Finite Element Method (FEM), have been extensively used in
numerous studies on cardiac RFCA (Dillon-Murphy et al., 2018;
Roney et al., 2020) and, more generally, RFCA of biological
tissues. Within the spectrum of RFCA, the electromagnetic
source is approximated by a quasi-static form of Maxwell’s
equations, often disregarding the effects of external factors.
Heat transfer is usually modeled via the classical Pennes’ bio-
heat equation due to its relative ease of implementation (Trujillo
and Berjano, 2013; González-Suárez and Berjano, 2015; Park
et al., 2016; Qadri et al., 2017; Petras et al., 2019). Only a few more
complex models incorporating non-Fourier effects have been
proposed in the literature (Tzou, 1995; Sahoo et al., 2014;
Singh and Melnik, 2019). Besides, the vast majority of
computational studies include simplified two-dimensional
geometries (Schutt et al., 2009; Joseph and Rajappan, 2012;
Hamaya et al., 2018; Singh and Melnik, 2019). The 2D nature
of the current models dramatically reduces their reliability and
predictability–planar domains cannot investigate cardiac
microstructural features, i.e., rotational anisotropic conduction.

The role of the myocardial fibers on thermal conductive
properties remains unexamined mainly, both from the
experimental and computational points of view. Previous
works claimed the anisotropic thermal and electrically
conductive nature of the myocardium as a possible
explanation for the discrepancies found between elliptical

experimental/clinical lesions and the computed spherical ones
(Petras et al., 2019, 2018). Only one study hitherto was found,
which integrates anisotropic conductive properties in the analysis
of cardiac ablation (Xie and Zemlin, 2016). Nevertheless, the
work focused on pulsed-field ablation with penetrating needles
and neglected tissue heat transfer. In a recent contribution
(Molinari et al., 2022), we derived a novel thermo-mechanical
framework for cardiac RFCA based on energetic reasoning and
variational procedures also accounting for tissue microstructure.
We showed that complex patterns of tissue damage and residual
strains appear depending on the applied contact force and local
material properties. Here, we aim at generalizing the classical
thermo-electric model from the literature, considering, for the
first time, a three-dimensional model of RFCA including
anisotropic thermo-electrical conduction, a three-state cellular
death model, and a higher-order formulation for heat transfer. In
addition, we work out an experimental-based model tuning
considering an innovative high-resolution measure of the
thermal profile during the RFCA procedure employing Fiber
Bragg Grating (FBG) sensors.

The final aim of the work is to assess the influence of the
underlying myocardial microstructure on the thermal
behavior at the tissue level. Accordingly, we present a
multiphysics material model, implemented in a multiscale
computational framework fine-tuned via multi-point
temperature measurements on ex-vivo swine cardiac tissue
undergoing RFCA. We exploited FGB sensors due to their
excellent metrological and physical characteristics (i.e., small
size, high thermal sensitivity, good accuracy and spatial
resolution, short response time, immune to
electromagnetic fields (Schena et al., 2016)), obtaining high
spatio-temporal resolution of temperature maps in tissue
depth. Ultimately, we integrated the space and time
evolution of thermal ablation into a simplified three-
dimensional finite element model of the cardiac tissue. We
further considered multiscale boundary conditions,
incorporating the effect of blood flow, electrical
impedance, and power dissipation circuit, thus addressing
and discussing several open questions of clinical relevance.

The manuscript is organized as follows. In Section 2 we
provide the experimental setup developed and the RFCA
protocol adopted. Besides, a description of FBGs for
temperature measurements is described in terms of working
principle, sensors positioning, and tissue damage estimation. In
Section 3 we detail the computational model developed in terms
of geometry, microstructured, and boundary conditions. We
work out our generalized theory of heat transfer, further
introducing an additional coupled model of thermal damage
by means of cellular death and thermal dependency of material
properties. Section 4 presents experimental and modeling
results based on numerical convergence, sensitivity analysis,
and fine-tuning of the anisotropic constitutive parameters. In
particular, we discuss model accuracy and predictability
quantifying the relative error between simulations and
experiments. Section 5 closes the manuscript with a critical
discussion of the results, highlighting limitations and
perspectives.
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2 RFCA ON EX-VIVO SWINEMYOCARDIUM

This section describes the experimental setup and the RFCA
protocol used to investigate the temperature variation (ΔT) in the
porcine myocardium. A focus on the FBG sensors’ working
principle is provided.

2.1 Experimental Setup and RFCA Protocol
Two freshly excised swine hearts were collected from the local
slaughterhouse. Three myocardial specimens with a thickness of
at least 30 mm were extracted from the left ventricular area (such

a thickness ensures that the RFCA treatment is confined within
the ventricular wall) and put into a water bath at ≈ 37°C to achieve
body temperature. Each specimen was then positioned in a
container filled with saline solution, placed upon a precision
digital scale (EU C7500, Gibertini Elettronica, Novate Milanese,
MI). An RF antenna (FlexAbilityTM Ablation Catheter Sensor
EnabledTM, Abbott Medical, MN, United States) with 2.5 mm of
tip diameter and connected to a cooling system (Cool Point™,
Abbott Medical, MN, United States) delivering 17 [mL/min] of
saline solution was positioned on the surface of the tissue. A slight
pressure was exerted on the antenna until the value of about 12 gf
(i.e., about 0.118 N) was displayed by the scale, to simulate clinical
pressure conditions. A perforated plexiglass positioner was
exploited to hold the RF antenna in place. Four optical FBG
arrays were inserted into the specimen with the help of four steel
needles 20 Gauge calipered. RF impulses were produced by a RF
generator (Generatore Ampere, Abbott Medical, MN,
United States). A spectrum analyzer (si255 based on Hyperion
Platform, Micron Optics, Atlanta, GA, United States) connected
to a personal computer was employed during all the RFCAs to
collect the fibers’ outputs at 1 kHz of sampling frequency.
Impedance measurement was performed during the ablation

TABLE 1 | Impedance values at the starting (Ii) and ending (If) instants of each of
the six experimental RF delivery process.

Trial Ii [Ω] If [Ω]

1 58 56
2 59 57
3 54.5 52
4 57 55
5 61 58
6 51 50

FIGURE 1 | (A) Representation of the experimental setup: a) RF generator; b) cooling system; c) container with saline solution holding the myocardial specimen; d)
digital scale; e) plexiglass RF antenna holder; f) spectrum analyzer connected to the four optical fibers; g) personal computer; h) thermometer for temperature reference.
On the right, a zoom-in on the tissue specimen displaying the placement of the RF antenna and the four fiber optics is reported. (B) Schematic of the RF antenna and
FBGs placement within the specimen. The FBGs positioning into the y-z plane (left image) and in the x-z plane (central image) with respect to the RF antenna (red
rectangle) is reported. On the right, the arrangement of the FBGs in one of the two planes (x–z) is depicted as an example. The RF antenna tip is considered as the origin of
the plane.
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procedure. The values at the starting and ending instants of each
RF delivery process of the protocol described below are provided
in Table 1. In Figure 1A, the experimental setup is shown.

Two RFCAs were performed for 60 s of treatment time at
30W of power delivery in two different points of each specimen.
On every tissue sample, fibers placement and RF deliveries were
executed according to the experimental protocol detailed as
follows: 1) the RF antenna was set in a specific point of the
tissue surface; 2) the four optical fibers were placed in a x-z plane
parallel to the longitudinal axis of the antenna; 3) a first RF
delivery was performed; 4) the optical fibers were removed, and
the antenna was moved about 4 cm below the previous
application site; 5) the four optical fibers were inserted in a
y-z plane parallel to the longitudinal axis of the antenna and
mutually orthogonal to the previous x-z plane; 6) a second RFCA
was performed. For the sake of clarity, an example of fiber
positioning is shown in Figure 1B.

2.2 FBGs for Temperature Measurements
Multi-point ΔT measurements were performed into swine
myocardial specimens (starting from the initial tissue
temperature T0 ≈ 37°C) during RFCA by means of four
nominally identical FBG arrays (FiSens GmbH, Braunschweig,
Germany). Each array enclosed 7 FBGs (acrylate coating,
reflectivity value > 20%, FWHM value < 2 nm, and declared
thermal sensitivity ST = 0.01 nm°C) of 1 mm in length and 2 mm
of edge-to-edge distance (total sensing length of 19 mm), each of
whose set at a specific wavelength (i.e., Bragg wavelength, λB nm)
ranging from 1,500 to 1,600 nm.

2.2.1 Working Principle
Once illuminated by a broadband source, an FBG operates as a
notch filter which reflects a narrow spectrum of light centered
around its λB. As shown in (1), λB is function of the core effective
refractive index (ηeff [·]) and the grating period (Λ [nm])
(Erdogan, 1997):

λB � 2ηeffΛ (1)
Both ηeff and Λ depend on ΔT and strain (ϵ). These two

parameters cause a shift in the reflected spectrum, thus of λB
(ΔλB). As the experiments were performed in a strain-free
configuration, the ΔλB was attributable to the ΔT contribute
only, as also proven in a previous work (Zaltieri et al., 2020).
The relationship between ΔλB and ΔT reads:

ΔλB
λB

� STΔT (1a)

2.2.2 Sensors Positioning Within Tissue
Before each RFCA, the optical fibers were inserted into the
myocardial tissue and placed into the specimen (according to
anatomical landmarks), parallel to the longitudinal axis of the RF
antenna and spaced 2 mm, 4 mm, 6 mm, and 8 mm apart from it.
The fiber insertion was adjusted to have all the FBGs as reported
in Figure 1B. For ease of reference, the optical FBG arrays are
denoted with “A” associated to a number from 1 to 4, starting

from the closest to the RF antenna to the farthest one. Also, the
fibers belonging to the x-z plane (which is parallel to the RF
antenna) are denoted by the subscript “P” (i.e.,A1P,A2P,A3P, and
A4P), while the ones lying in the y-z plane (which is transversal to
the x-z plane) are denoted by the subscript “T” (i.e., A1T, A2T,
A3T, and A4T).

The 7 FBGs embedded in each array are labelled with a
progressive number from 1 to 7 (i.e., FBG1, FBG2, FBG3,
FBG4, FBG5, FBG6 and FBG7), starting from the outermost
to the innermost. In each plane, a total amount of 28 sensing
points distributed in a tissue area of 6 mm × 19 mm are
positioned.

2.2.3 Hyperthermal Tissue Damage Estimation
At the end of the experimental session, the hyperthermal damage
caused to the myocardial tissue by RFCA was evaluated. For each
specimen, in correspondence with every ablation site, tissue was
sectioned along the insertion plane of the arrays. The dimensions
of each lesion (intended as the area that visually showed a lighter
coloring, as common in the literature (Calzolari et al., 2017)) were
manually estimated in terms of length and depth by means of a
digital caliper.

3 COMPUTATIONAL MODEL

3.1 Computational Domain and Myocardial
Fiber Modeling
The computational model developed in the present work
replicates the experimental setup described before by means
of a simplified geometry model. We included a tissue sample of
8 cm × 8 cm × 3 cm and the surrounding domain of saline
solution 13 cm × 13 cm × 9 cm (see Figure 2A). The chosen
dimensions, with constant thickness, are in line with the
physical dimensions of a porcine ventricular wall and do not
affect the overall numerical results as discussed in the following.
The catheter and electrode geometries have been omitted to
reduce the overall computational burden and have been
considered by appropriate thermal and electrical boundary
conditions detailed in the next sections. The geometry is
encapsulated in a larger box to which a coordinate scaling
was applied. Therefore, these regions are treated as having an
infinite extent compared to the scale length of the model,
thereby minimizing boundary effects. According to well-
established evidence, ventricular myocardial rotational
anisotropy was implemented assuming a
120°counterclockwise rotation of the fibers, from epicardium
to endocardium (Lombaert et al., 2012). To set a direct
comparison with experimental data, fibers were assumed
parallel to the tissue surface and aligned to the x-axis of the
epicardial layer (see Figure 2B). We remark that myocardial
fibers rotate continuously throughout the ventricular wall
building up a sheet-like transverse isotropic material
changing the conductivity properties along the depth. In
other words, the material is both anisotropic and
heterogeneous. The fiber rotational anisotropy is thus
described by the law:
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θ z( ) � θepi + z − zepi
zendo − zpi

θendo − θepi( ) (2)

being z the thickness direction with versor n.

3.2 Multiscale Electrical Model
The electric potential due to the ablative procedure was
determined by solving the time-harmonic Maxwell’s equations
(quasi-static regime), complemented by the constitutive relations:

∇ · J � 0, J � σE + jωD, E � −∇V, D � εE (2a − d)
where V is the electric potential, E the electric field vector, J the
current density vector, D the electric displacement vector, ε the
electrical permittivity constant, and ω the angular frequency.
Considering the frequency spectrum of RFCA, the wavelength of
the electromagnetic field is ~ 600m, several orders of magnitude
larger than the spatial scale of the system, i.e., ~ 10 cm.
Accordingly, we can assume the biological medium as resistive
and solve the quasi-static form of the electrical problem.

The second-order conductivity tensor σ is introduced tomodel
the anisotropic electrical conduction in the ventricular wall as:

σ � R
σ f 0 0
0 σ t 0
0 0 σn

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦RT (3)

where σf, σt, σn [S/m] are the conductivities in the fiber and
transverse directions, respectively, and R = [f t n] is the rotation
matrix tensor, based on the local fiber reference system see
Figure 2B):

R �
cos θ( ) −sin θ( ) 0
sin θ( ) cos θ( ) 0

0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (4)

The saline solution was modelled as an isotropic medium with
constant conductivity σsol.

We further adopted a multiscale modeling approach, coupling
the 3D computational domain with an external 0D electrical

circuit composed of an AC voltage generator, an input, and
output resistance. The latter is fine-tuned in a pre-processing
step to match the experimentally measured impedance and the
applied power source, according to the RFCA protocol (see
Figure 3). The electric potential from the AC voltage
generator follows a sigmoidal increase from 0 to V0 �






2PRref

√
in a time window of 1s, with p = 30W being the

applied power; Dirichlet boundary conditions were applied to the
electrode tip (V � VRin) and the outer surface of the saline
solution (V � VRout) to simulate the connection with the
external circuit; a homogeneous Neuman boundary condition
(−σ ∇V · n = 0) was applied at the catheter surface to simulate
electrical insulation.

3.3 Heat Transfer Model
Heat transfer was described using two alternative formulations:

ρc
zT
zt

� k∇2T (5a)

τqρc
z2T

z2t
+ ρc

zT
zt

� ∇ · k∇T( ) + τt∇ · k
z∇T
zt

( ) + Qs (5b)

where Eq. 5a refers to the parabolic heat equation based on the
classical Fourier’s theory (Pennes, 1998) employed for the saline
solution domain, and Eq. 5b denotes the so called dual-phase-lag
(DPL) equation (Tzou, 1995), which is solved for the
myocardium. Here, T [K] is the temperature, ρ [kg/m3] the
density, c the heat capacity [J/kg · K], k [W/m · K] the
thermal conductivity tensor, Qs = J · E [W/m3] the external
electromagnetic heating source, and τq, τt [s] the phase-lag time
constants.

Classical Fourier-based models fail to capture the finite
thermal propagation speed due to the inherently
heterogeneous microstructure of the biological medium and
fast transient temperature increase occurring in hyperthermal
treatments due to the small time scales and high-temperature
gradients involved. Different theories have been proposed to
account for non-Fourier behavior (e.g., hyperbolic heat

FIGURE 2 | (A) Computational geometry, including the myocardium and saline solution domain. (B) 3D fiber distribution showing myocardium rotational
anisotropy. The inset provides the fibers local reference system with a right-handed orthonormal set of basis vectors (f, t, n), where f denotes the muscle fiber axis, t the
sheet (or cross–fiber) axis, and n the sheet–normal axis n = f ×t.
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equations and relativistic heat transfer). Among them, the so-
called dual-phase-lag proposed by (Tzou, 1995) characterizes this
phenomenon by means of a hyperbolic heat equation including
two thermal relaxation time constants τq and τt, to control the
delayed response between the heat flux and temperature gradient
induced in the medium. In such a framework, τq defines the time
lag between the heat flux and temperature gradient, while τt
governs the phase lag in establishing the temperature gradient in
the conductive medium, accounting for microstructural
inhomogeneities of the biological tissue. Notably, the
constraint τq < τt (i.e., heat flux precedes the temperature
gradient established in the tissue) must be satisfied not to
violate the causality principle (Singh and Melnik, 2019). As
shown in (López Molina et al., 2014), parabolic heat equation
(Fourier’s theory) and hyperbolic heat conduction (DPL)
converge for infinite time or infinite distance from the
electrode. Our findings confirm the assumption that both heat
conduction models recover the steady-state solution. In contrast,
the DPL model is required to catch the initial transient

temperature increase, which has a critical impact on the
evolution of the damage pattern in the tissue.

Consistently with the electrical problem, Eq. 3, we introduce
tissue thermal anisotropy by means of the conductivity tensor k,
with kf, kt, kn, the fiber and transverse thermal conductivities,
respectively; the saline solution was modeled as an isotropic
medium, with a constant thermal conductivity ksol. According
to the experimental setup, we did not consider blood perfusion in
the ventricle and applied the following boundary conditions for
the heat transfer model (see Figure 4): a constant temperature T0
= 37°C was imposed to the outer boundaries of the saline solution
domain; thermal insulation (−k∇T · n = 0) was assumed at
the catheter surface; a Robin convective boundary condition
(−k∇T · n = h(T − Tc)) was applied at the electrode-solution
and electrode-tissue interface to simulate the effect of saline
cooling, assuming a coolant temperature Tc = 25°C, and a heat
transfer coefficient h = 5,927 [W/m2 · K] calculated as in
(González-Suárez and Berjano, 2015) by assuming an
irrigation rate of 17 [mL/min].

FIGURE 3 | (A) External 0D electrical circuit coupled to the 3D computational model, to apply the RF stimulus. (B) Procedure employed to calibrate the output
resistance Rout, matching the experimentally measured impedance.
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3.4 Thermal Damage Modeling
Thermal damage in ventricular tissue was assessed by using
the three-state variable model of hyperthermic cell death
proposed by (O’Neill et al., 2011). Such a compartment
model assumes the occurrence of three cell states, i.e., alive
or native (N), vulnerable or unfolded (U), and dead or
denatured (D). The system allows for cell reversibility to
the native state N if the thermal history is short enough
(reverse transition between N and U states) and preceding
irreversible damage in state D. Accordingly, the kinetic
equations read:

N#
α1

α2
U����→α3 D, (6)

resulting in a system of 3 coupled ODEs controlling the dynamics
of each state, readily:

dN
dt

� −α1N + α2U,
dU
dt

� α1N − α2 + α3( )U, dD
dt

� α3U.

(7)
The model must satisfy the global volumetric constraint N +

U + D = 1 (conserved cell population). The reaction rates αi �
Aie−ΔEi/(RT) are temperature dependent and determined by the
Arrhenius law, where ΔEi [J/mol] is the activation energy, Ai [1/s]
the frequency factor, T [K] the absolute temperature and R [J/mol
· K] the universal gas constant. Consistently with previous works
(Qadri et al., 2017; Singh and Melnik, 2019), such a dynamic
model allows us to predict and quantify several key features of the
RFCA procedure. In particular, the tissue is considered to be
completely damaged if N < Nthr, with Nthr a tissue-dependent
threshold.

FIGURE 4 | Electrical (A) and thermal (B) boundary conditions. In (A), VRin and VRout refer to the electric potential measured at the connection node between the 3D
model and the input/output resistances of the 0D circuit. In (B) h is the thermal convection coefficient to simulate the electrode cooling, T0 = 37 C is the reference
temperature and Tcool = 25 C is the temperature of the coolant solution.

FIGURE 5 | Three-state cellular model: (left) variables dynamics during RF hyperthermic treatment; (right) N-U-D phase portrait of system 7 for constant
temperature applied for 800s (40 ÷ 100°C).
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In Figure 5(left), we show the time course of the three state
variables applying the RFCA heating curve compared with the
temperature rise (black). The model replicates the nonlinear
features observed experimentally and characterizes the latency
of the cell death rate. Interestingly, the intermediate state balances
the transition towards the irreversible dead state. Figure 5(right)
also provides the phase portrait parametrized by the temperature
value in the range 40 ÷ 100°C for 800 s. The dynamical system is
characterized by the fixed point [N,U,D] � [0, 0, D] that
changes to [0, 0, 1] once the cell population constraint is
included. It is worth mentioning that the fast temperature
increase due to RFCA critically modifies the reaction rates αi
driving the system towards the vulnerable state. Such dynamics is
much faster than the system’s natural evolution towards the
global fix point (dead state), enriching the nonlinear evolution
of the lesion.

3.5 Thermal Dependency of Material
Properties
Predictive simulations of RFCA have been shown to critically
depend on the biophysical modeling of tissue parameters (Trujillo
and Berjano, 2013). All parameters included in the simulations
were gathered from literature and reported in Table 2.
Consistently with the phenomenological approach adopted, we
assumed temperature dependency for the following myocardial
constitutive parameters (c, k, σ). In particular σ increases with

temperature while k and c decrease. As a part of the model
calibration, different mathematical functions were tested to
describe such a temperature dependency (Petras et al., 2019):

c T( ) � c0 1 − 0.0041 T − T0( )[ ] (8a)
klint T( ) � k0i 1 − λk T − T0( )[ ], i � f , n, t (8b)
kstept T( ) � k0i f T − Tm,ΔTm, λk( ), i � f , n, t (8c)
σ lint T( ) � σ0i 1 − λσ T − T0( )[ ], i � f , n, t (8d)
σstept T( ) � σ0i f Tm − T,ΔTm, λσ( ), i � f , n, t (8e)

where (·)0 refers to the baseline value of the parameter at body
core temperature T0 = 37°C, λi are rates of increase/decrease, f(·, ·,
·) is a smoothed Heaviside function with a continuous second
derivative, implemented via piecewise 5th-degree polynomials;
the parameters Tm = 68.5°C and ΔTm in (Eqs 8c–8e) control the
step reference temperature and the transition zone, respectively.
Possible generalizations of the chosen formulation are discussed
in the conclusions.

4 RESULTS AND DISCUSSION

4.1 Experimental Results
FBGs data were exported and processed in MATLAB®
(Mathworks, Natick, MA, United States) environment. For
each experiment, the ΔT trends estimated by the 28 FBGs
embedded in the four arrays are analyzed with respect to T0

TABLE 2 | Material properties for the 3D model including the myocardium and saline solution domains.

Parameter Value Ref

Electrical model

Myocardium fiber electrical conductivity [S/m] σ0f 0.3367 Wang et al. (2001)

Myocardium transverse electrical conductivity [S/m] σ0t , σ
0
n 0.1683 Wang et al. (2001)

Saline solution electrical conductivity [S/m] σsol 1.4 Sauerheber and Heinz, (2015)
Myocardium electrical permittivity [F/m] εmyo 3,260 (Gabriel, 1996; Raghavan et al., 2009)
Saline solution electrical permittivity [F/m] εsol 80 Raghavan et al. (2009)

Maribo-Mogensen et al. (2013)
Nörtemann et al. (1997)

Thermal model

Myocardium fiber thermal conductivity [W/m · K] k0f 0.6a Končan et al. (2000)

Saline solution thermal conductivity [W/m · K] ksol 0.6 Ozbek and Phillips, (1979)
Myocardium heat capacity [J/kg · K] c0myo 3,017 Petras et al. (2019)

Saline solution heat capacity [J/kg · K] csol 4,178 Kho et al. (2021)
Myocardium density [kg/m3] ρmyo 1,076 Petras et al. (2019)
Saline solution density [kg/m3] ρsol 997 Kho et al. (2021)
Relaxation time heat flux [s] τq 8a Sahoo et al. (2014)
Relaxation time temperature gradient [s] τt 0.045a Sahoo et al. (2014)

Cell-death model

Frequency factor N → U [1/s] A1 3.68 × 1030 Park et al. (2016)
Frequency factor U → D [1/s] A2 5.68 × 103 Park et al. (2016)
Frequency factor U → N [1/s] A3 2.58 × 105 Park et al. (2016)
Activation energy N → U [J/mol] ΔE1 210, ×, 103 Park et al. (2016)
Activation energy U → D [J/mol] ΔE2 38.6 × 103 Park et al. (2016)
Activation energy U → N [J/mol] ΔE3 47.2 × 103 Park et al. (2016)

aParameter included in the parametric analysis.
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FIGURE 6 | Electrical Temperature evolution during the RFCA treatment for the first 4 FBGs of Array 1 (A) and Array 2 (B). Average temperature and confidence
bands were computed from the 6 experimental trials. Solid black line indicates the results of the calibrated computational model.

FIGURE 7 | (A) comparison of experimental (left) and computational (right) temperature maps, revealing different elongations of the thermal lesion across
orthogonal directions. (B)Half-sections of the tissue after RFA treatment, sliced at the lesion site, along the plane of the FBGs’ arrays. (C) 3D views of the numerical lesion
resulting from the calibrated model.
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during the 60 s of RFCA. In the Supplementary Material (SM),
the plots showing the temperature increase caused by the RF
heating effect are reported for all the six experiments. The ΔT
measured by each FBG strictly depends on its placement with
respect to the RF antenna tip. In fact, FBGs positioned closer to
the antenna (see Figure 1B, right image), measured higher ΔT
than the distant ones, also exhibiting faster temperature rises. For
example, among the sensors belonging to the same array (e.g.,
from FBG1 to FBG7 of A1T), FBG1 always measures the maximal
ΔT values. Also, proceeding deeper into the tissue from FBG1 to
FBG7, the obtained ΔT trends decrease. Furthermore, referring to
FBGs placed into the tissue at the same depth but belonging to
different arrays (e.g., all the FBG1s of A1T, A2T, A3T, and A4T),
the ΔT trends are progressively lower starting from A1T to A4T.
For the sake of completeness, for each FBG the average
temperature was computed across the six experiments,
together with the standard deviation. Figure 6 shows the
average temperature trends relative to FBG1, FBG2, FBG3 and
FBG4 of the arrays A1 and A2, respectively. Such multi-point
measurement enabled the identification and quantification of
two-dimensional temperature maps to depict the temperature
spatial distribution into the treated tissues at the end of each
RFCA. More precisely, FBGs data were collected from the start of
treatment to the moment of RF discharge. A total amount of 28
experimental values related to the 28 measurement sites as
previously depicted were obtained. A linear interpolation was
implemented along such temperature values and 2D
experimental temperature maps were produced for all the
performed RFCAs, both along x-z and y-z planes.

We remark that statistical averages were derived from the
whole data set to represent a robust information bandwidth to fit
the computational model. As described in the following, the
tuning procedure was developed such to identify the optimal
anisotropy ratio matching average and variance in tissue depth at
different locations.

In Figure 7A, two representative experimental temperature
maps showing the temperature distributions at the final instant of
the treatment (i.e., 60th s) are provided.

The temperaturemaps evaluated on the x-z plane (top) and on the
y-z plane (bottom), and the isothermal level at T = 50°C (solid black
curve) are reported. Temperatures greater than 50°C are considered
responsible of myocardial tissue permanent injury. As consequence, it
is supposed that the area included into the curvemay be representative
of the damaged tissue (Zhang et al., 2016). However, the two
temperature maps differ in terms of dimension and size of the
tissue area surrounded by the 50°C isotherm (which is larger in
the y-z plane with respect to the x-z plane). These results confirm the
occurrence of a preferential direction along which the heat diffuses. In
this specific case, heat transport is higher along the y-axis (Figure 7A,
bottom) than the x-axis (Figure 7A, top). Moreover, heat spreads
mostly in the y-z plane than in the x-z plane. We remark that the
observed anisotropic evolutions critically depend on FGB location
with respect to ventricularmicrostructure. However, though following
anatomical landmarks, FGB positioning does not get information on
the underlying fiber structure. Moreover, the in-depth measure along
the seven sensors gathers thermal information from twisted
myocardial fibers (see Figure 1). The definition of the appropriate

myocardial anisotropy requires then an accurate parametric tuning as
described in the following section.

Such findings are supported by comparing the hyperthermal
damages’ dimensions obtained manually by means of the digital
caliper. In Figure 7B, the two images of the produced lesions
sectioned along the x-z plane (upper image) and y-z plane (down
image) are shown. As expected, both length and depth of the damage
evaluated in the y-z plane are greater than the ones evaluated in the x-z
plane (i.e., 7.8mm vs. 6.6. mm in length, 5 vs. 3.8mm in depth). In
both cases, the lesions which were manually assessed result in larger
dimensions than the ones obtained from the 2D temperaturemaps by
using the thermal isocontour method: for instance, widths were 6.6
and 7.8mm (Figure 7B) vs. almost 10 and 18mm (Figure 7A),
respectively. Two main motivations can justify such a discrepancy: 1)
the occurrence of measurement errors caused by possible inaccuracies
in the visual evaluation of the damaged area as there is no unequivocal
method for visually assessing the extent of the lesions (no evidence is
given that the damaged area uniquely consists of the zone with lighter
color), and 2) the adoption of the isothermal curve at 50°C as the sole
criterion for the lesion evaluation. Significantly, using this approach,
the lesion is determined only based on the local temperature and does
not account for the effects of the thermal treatment duration. In
addition, there have been concerns about the actual value of the
temperature threshold, and various alternatives have been proposed in
the literature, e.g., 55 and 59°C (Zhang et al., 2016). To cope with such
a non-unique definition, in the following, we provide a rationale based
on the three-state dynamics cell model.

4.2 Model Setup and Convergence Analysis
Numerical simulations were performed with the finite element
software COMSOL Multiphysics® (Comsol 5.6, COMSOL,
Stockholm, Sweden). We discretized the computational domain
with mixed linear tetrahedral and hexahedral elements. In
particular, hexahedral elements were used to discretize the
additional domain for the coordinate scaling (see Section 2.1),
with a significantly reduced number of elements in the mesh.
From a relatively coarse discretization, the mesh was gradually
refined near the electrode area, which is strongly affected by
hyperthermic treatment. To solve the problem in the time domain,
an implicit BDF scheme with adaptive time stepping was adopted. A
preliminary convergence analysis ensured that the results were
independent of the numerical approximation. Specifically, five
different meshes were tested, and the optimal discretization (71,501
degrees of freedom) was chosen to achieve an error below 1% for the
maximum temperature of each FBG, compared to the reference
solution, i.e., the one with the finest mesh (see Molinari et al. (2021)).

4.3 Sensitivity Analysis and Model
Calibration
In the following, we present the extensive sensitivity analysis
performed to fine-tune the computational model and match
experimental data. Virtual probes were positioned in the
computational model following FBG positions in the
experimental setup to obtain consistency for quantitative
comparison. Initially, a preliminary model tuning was
conducted using the parabolic Fourier model Eq. 5a getting a
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basal thermo-electric profile in the myocardium. Then, the DPL
model Eq. 5b was introduced to better replicate the transient
temperature rise during RFCA treatment. Finally, the parameters
for anisotropic thermal conductivity were adjusted to match the
spatial temperature distribution obtained from the multi-point
measurements. For the sake of conciseness, the complete set of
numerical analyses are available at (Molinari et al., 2021). In the
following, we will rather present how the calibration process was
carried out and discuss the main findings of the study.

4.3.1 Electrical Model Tuning
Different functional forms for the electrical conductivity were tested,
as described in Section 3.5, with the linear function resulting in
better compatibility with reference data. The linear increase rate λσ
was calibrated to achieve an impedance drop at the end of ablation in
the range of experimental measurements (2 ± 0.63Ω). A value of λσ
= 0.1 was selected and included in the upcoming analyses.

4.3.2 Fourier Thermal Model Tuning
A preliminary numerical examination confirmed that the baseline
value of thermal conductivity k0 = 0.6 [W/m · K], gathered from
literature, provided optimal results in terms of temperature
distribution within the tissue. Afterwards, we calibrated the two
proposed functions for thermal conductivity, i.e., smoothed step
(ΔTm = 55°C, λk = −0.006) and linear (λk = −0.001). Results
comparison shows that both strategies furnish similar values,
albeit with significantly reduced computational time in the case
of the linear decrease of k. Accordingly, we assumed a linear
temperature dependence for the thermal conductivity.

4.3.3 DPL Model Time Constant Tuning
After calibrating the myocardium’s thermal and electrical
constitutive properties using the parabolic heat conduction, we
investigated the effect of phase lag on the model outcome. To
handle separately the two phase-lagging phenomena reproduced
in the model (i.e., heat flux and temperature gradient delays), we
performed two different tests by modifying the value of one of the
time constants while keeping the other fixed. Our investigations
determined that the values reported in (Sahoo et al., 2014) (τq = 8
s, τt = 0.045 s) best fit our experimental data.

4.3.4 Thermal Anisotropy Tuning
Experimental results outlined in Section 4.1 showed a higher
temperature increase in the longitudinal direction than in the
tissue depth due to myocardial fiber architecture. To achieve
optimal agreement with the time course of temperature curves,
we performed multiple numerical tests by varying the coefficients
kf and kn introduced in Section 3.3, i.e., the heat conduction
values in the fiber and sheet-normal directions, respectively.
Starting from an isotropic conductive medium (i.e., kf = kt =
kn = k), multiple combinations were tested, with increased
conductivity along the fibers (kf = 2k, 3k, 5k, 6k) and
decreased conductivity in the sheet-normal direction (kn =
0.8k, 0.7k, 0.6k, 0.5k), holding k = k(T) the thermal dependent
conductivity tensor as in Eq. 8b. Our parametric analysis revealed
negligible sensitivity to the cross-fiber conductivity kt, and we
identified [kf, kt, kn] = [6k, k, 0.5k] as the optimal values that

provide the best fit for the experimental temperature curves. We
note that, during the optimization process, thermal anisotropy
mainly influences the initial temperature increase. In contrast,
both contributions, electrical and thermal anisotropies, are
required to reproduce experimental transient temperature
increases and steady-state values. As a representative example,
Figure 8 compares thermal and electrical anisotropy fitting for
different ratios versus the corresponding isotropic case.

A conclusive study was conducted to test the sensitivity of the
computational model to the alignment of the FBG arrays and
myocardial fibers. We tested five different fiber distributions by
gradually rotating the fibers at epicardial level by 10°. As expected,
due to the higher conductivity in the fiber direction, we noticed a
decrease in temperature as the level of misalignment increases.
However, this effect was negligible, particularly for FBGs that are
distant from the RF antenna. We remark that FBG arrays have
been placed according to anatomical landmarks on the surface of
the ventricular surface and the adopted fitting procedure
considered the statistical average-variance over the total
experiments. Accordingly, the conducted parametric analysis
was able to identify the rotational anisotropy ratio recovering
the temperature rise with negligible error (see next Section).

4.4 Model Accuracy and Damage Prediction
We present the results obtained from the calibrated model, which
are thoroughly compared with the experimental counterpart. In
Figure 6, we provide the time evolution of the simulated
temperature profiles (solid black) over imposed to the average
value and confidence bands of the experimental recordings
(dashed color) for each FBG. Though clear accordance among
calibrated model and ex-vivo measurements is obtained, we
quantified the goodness of fit using two different strategies.
First, we computed the relative error (ΔFBGi) between the
numerical and the average experimental temperature at each
instant of the RFCA (Figures 9A, B). Additionally, we
analyzed the relationship between experimental and simulated
temperatures using the Pearson correlation coefficient ρ (Figure 9
C, D). The plots display the statistical analysis results for the first
FBGs of A1 and A2. The error settles below 5% for each FBG of
the two arrays, with a slightly higher value (6%) for FBG1/A1 in
the initial phase of the RFCA treatment. However, given the non-
critical temperature (below 43°C) experienced by the tissue, we
reasonably considered this result of minor importance.

As confirmed in Table 3, we found an excellent correlation
between the predicted and experimental data. More significant
relative errors, still below 10%, were found for FBG1 and FBG2 of
the remaining arrays, while the correlation remained positive
(ρ̂ > 0.98). Nevertheless, given the distance of the FBGs from the
ablation site, the absolute temperature increase was limited
(below 43°C). Therefore the marginal discrepancies between
the model and the measurements were not considered
meaningful. The complete results, including the 28 FBGs
traces, are provided in (Molinari et al., 2021).

Finally, we provide a quantitative analysis of damage assessment
and lesion prediction criterium. The lesion was first computed with
the 50°C thermal isocontour method (consistently with the visual
post-processing of experimental data). The computed damage
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FIGURE 8 | Comparison between thermal and electrical anisotropy fitting. Left: thermal isotropy for three levels of electrical anisotropy. Right: electrical isotropy for
three levels of thermal anisotropy.

FIGURE 9 | Relative error between simulated and measured temperatures for the first 4 FBGs of Array 1, 2. (A,B) Relative error and (C,D) Pearson correlation
coefficient between the numerical and the average experimental temperature at each instant of the RFCA.
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volume, shown inFigure 7, is 12.6mm inwidth and 3.6mm in depth.
Both experimental and computational lesions exhibit an ellipsoidal
shape, with themajor axis oriented towards themuscular fibers. Then,
a numerical sensitivity analysis was performed by using the cell-death
model varying the threshold valueNthr ∈ [0.8 ÷ 0.99].Figure 10 shows
how the cell-based computed damage volume grows as the threshold
increases also depending on the ablation time.We identify Nthr ≈ 0.95
÷ 0.98 as the optimal value for the present model vs. experimental
lesions.We further note that the computational lesion follows the fiber
rotation across the tissue and that the irreversible damage volume
concentrates below the tissue surface according to the expected RF
concentration in the presence of blood flow and saline boundary
conditions. This result broadly supports the work of (Xie and Zemlin,
2016) though an extended validation in this direction is required.

5 DISCUSSION

In the present study, we developed an experimentally calibrated
finite element computational model of ex-vivo cardiac RFCA. The
key innovative features of the proposed methodology are the
inclusion of three-dimensional myocardial anisotropy, the
implementation of a multi-scale time lag thermal ablation
model, and the adoption of a dynamical model of cell death
for the estimation of tissue damage and lesion sizing.

Remarkably, model calibration relies on accurate multi-point
temperature measurements obtained via FBG sensors. The study

offered novel insights into the anisotropic thermal behavior of cardiac
tissue, which was poorly addressed in the literature. In a combined
experimental-computationalmodeling framework, we proved that the
intrinsic anisotropicmicrostructure of themyocardiumplays a pivotal
role in the thermo-electrical response of the tissue undergoing
hyperthermic treatments. Furthermore, we showed that a
comprehensive sensitivity analysis must comply with complex
nonlinear couplings and heretogeneous materials properties.

5.1 Limitations
Limitations to this study need to be acknowledged. First, the
computational domain was idealized. Experimental thickness
variation, and associated microstructure, may represent a possible
source of error in model tuning. However, a priori sensitivity
analysis of varying tissue thickness indicated that overall results
do not change since temperature decreases rapidly with tissue depth
and significant heating only occurs in the vicinity of the electrode.
Because of clinical applications, however, a patient-specific image-
based realistic geometry will be mandatory for maximizing model
reliability and further improving its predictability (Sung et al., 2021).

Second, material modeling lacks of cardiac electro-mechanical
couplings (Singh and Melnik, 2019; Pandolfi et al., 2016, 2017;
Gizzi et al., 2015; Ruiz-Baier et al., 2020), as well as tissue-
electrode contact mechanics (Petras et al., 2018). Besides, three-
dimensional blood hemodynamics and saline irrigation (accounted
in the present study by means of multiscale boundary conditions)
shall be considered in line with recent computational studies (Petras
et al., 2019). We remark that our experimental calibration is
performed on ex-vivo samples, with no external perfusion.
Accordingly, we did not include the perfusion term in the heat
equation to be consistent with our experimental dataset. However,
additional volumetric sources (accounting for blood perfusion,
metabolism, to name a few) and multi-field coupling phenomena
should be included when modeling in-vivo cardiac ablation. In
addition state-of-the-art machine learning algorithms and data
assimilation procedures (Barone et al., 2020a,b; Zaman et al., 2021)
are also foreseen in view of a patient-specific optimization applications
(Lopez-Perez et al., 2019; Aronis et al., 2021).

From the experimental point of view, it was not possible to ensure
an identical placement of the sensors within the tissues for all the
experiments and no measurements were performed contemporary
in the x-y plane due to difficulties in sensors positioning. We opted
for a solution minimizing the positioning error of the FBGs caused

TABLE 3 | Maximum absolute error and correlation coefficients for the simulated
and measured temperatures for the first 4 FBGs of Array 1 and 2.

FBG Max |ΔFBG| [%] ρ̂

Array 1
FBG1 5.84 0.9987
FBG2 4.48 0.9972
FBG3 3.47 0.9963
FBG4 3.32 0.9934

Array 1
FBG1 4.36 0.9979
FBG2 2.40 0.9976
FBG3 1.32 0.9978
FBG4 1.10 0.9915

FIGURE 10 | 3D views of the numerical lesion resulting from the three-state cell model for different threshold levels Nthr: (A) 0.8, (B) 0.9, (C) 0.95, and (D) 0.99. A
shaded view of the 50°C thermal isocontour method is provided for comparison.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 84589613

Molinari et al. Modeling Anisotropic Cardiac RFCA

55

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


by themanual insertion of the optical fibers. A dedicated 3D-printed
holding setup for FBG insertion is a route we are exploring for
further improving the current measurement technique.

Finally, more objective criteria for the estimation of tissue
damage taking advantage of histological techniques are expected.
We investigated a smooth transition of the damage criterium
through a parametric analysis of the threshold value. In view of
generalized robust and reliable multiscale modeling approaches,
an extended validation of the damage criterium is foreseen to
cope with a broad spectrum of clinical applications.

5.2 CONCLUSION

The present work has the ultimate purpose of improving the
predictive capabilities of RFCA computational models in view of
personalized therapy planning, design, and development of new
RFCA systems and protocols and ultimately paving the way to a
dramatic improvement in the safety of clinical procedures.
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Geometrically Reduced Modelling of
Pulsatile Flow in Perivascular
Networks
Cécile Daversin-Catty 1*, Ingeborg G. Gjerde 2 and Marie E. Rognes 1,2

1Simula Research Laboratory, Oslo, Norway, 2Department of Mathematics, University of Bergen, Bergen, Norway

Flow of cerebrospinal fluid in perivascular spaces is a key mechanism underlying brain
transport and clearance. In this paper, we present amathematical and numerical formalism
for reduced models of pulsatile viscous fluid flow in networks of generalized annular
cylinders. We apply this framework to study cerebrospinal fluid flow in perivascular spaces
induced by pressure differences, cardiac pulse wave-induced vascular wall motion and
vasomotion. The reduced models provide approximations of the cross-section average
pressure and cross-section flux, both defined over the topologically one-dimensional
centerlines of the network geometry. Comparing the full and reduced model predictions,
we find that the reduced models capture pulsatile flow characteristics and provide
accurate pressure and flux predictions across the range of idealized and image-based
scenarios investigated—at a fraction of the computational cost of the corresponding full
models. The framework presented thus provides a robust and effective computational
approach for large scale in-silico studies of pulsatile perivascular fluid flow and transport.

Keywords: biomedical flows, low-dimensional models, bifurcation, variational methods, computational methods

1 INTRODUCTION

Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVSs) is a key transport mechanism in and
around the brain [1–3]. A PVS is a space or potential space along or around a blood vessel through
which fluid and particles can pass [4]. Such spaces appear along blood vessels on the brain surface
(surface or pial PVSs) or along blood vessels within the brain parenchyma (parenchymal PVSs).
While their shape and structure, and to some extent existence, remain disputed [4–8], PVSs are
typically represented as (elliptic) annular structures surrounding the blood vessels. As such, surface
and parenchymal PVSs form structural networks, dual to and in close interaction with the vascular
network, and the surrounding brain tissue and/or subarachnoid space.

Mathematical and computational models are playing an increasingly important role in
understanding and predicting PVS flow characteristics [9]. Theoretical models have quantified
the resistance in PVS networks [10], while detailed numerical simulations can predict perivascular
fluid velocities and pressures in idealized [11–17] and image-based geometries [18]. However,
computational fluid dynamics simulations rapidly become prohibitively expensive for large, three-
dimensional PVS networks. A natural question is therefore whether reduced models can accurately
capture PVS flow and transport characteristics and magnitudes. Of particular interest and relevance
are geometrically-reduced models for which the computational domain is reduced from an initial
three-dimensional representation to a network of topologically one-dimensional branches. Such
models have been subject to active research over the last decades in the context of the vasculature,
arterial blood flow, and tissue perfusion [19–29]. For the one-dimensional arterial blood flowmodels,
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see e.g., the seminal work of Olufsen [19], the vasculature is
typically represented by a branching network of centerlines, and
the model variables are the time-varying cross-section flux and
vascular area. The corresponding PVS flow setting has received
less attention from the mathematical and numerical community
on the other hand.

In this work, we introduce a geometrically-reduced
mathematical model and numerical solution techniques for the
time-dependent flow of an incompressible viscous fluid such as
CSF in surface PVS networks. The cross-section flux and average
pressure are the primary model variables. We consider different
computational scenarios including PVS flow induced by a
systemic pressure gradient, by cardiac pulse wave-induced
movement of the inner vascular wall and by vasomotion in
idealized or image-based model geometries. We evaluate the
accuracy and efficiency of the reduced models by qualitative
and quantitative comparison with the full three-dimensional
model analogues.

The reduced models provide accurate approximations of the
cross-section average pressure, cross-section flux and net flow in
all geometries considered with relative model discrepancies in the

peak flux between 0 and 35% and in the peak pressure between 0
and 52%. For realistic three-dimensional geometries, the reduced
model reduces the computational costs (memory and runtime) by
factors of 50 −200× with higher factors expected for larger scale
networks.

2 MATERIALS AND METHODS

2.1 PVS Geometries (3D and 1D)
In general, we consider a perivascular tree-like domain Ω
consisting of a network of branching generalized annular
cylinders Ωi, with Ω ⊆∪i∈IΩi, spatial coordinates x ∈ Ω and
time t ≥ 0. The boundary is denoted zΩ, with boundary
normal n. We assume that each generalized annular cylinder
Ωi has a well-defined and oriented, topologically one-
dimensional centerline Λi with coordinate s. We set Λ =
∪i∈IΛi. Along s, we define the cross-sections Ci = Ci(s, t) of Λi

with area Ai = Ai (s, t). We denote the inner radius of Ωi by Ri
1

and the outer radius of Ωi by Ri
2; these radii will in practice

vary with s, t and the angular coordinate θ. We denote the set

FIGURE 1 | Overview of the full three-dimensional and topologically one-dimensional reduced model domains. The idealized geometry (A) (the axisymmetric PVS)
is a single 1 mm long axisymmetric annular cylinder represented by its two-dimensional angular cross-section. Geometry (B) (the image-based PVS) is generated from a
cerebral artery segment (Aneurisk dataset repository, case id C0092) and represents an image-based perivascular space without bifurcation. Geometry (C) (the
bifurcating image-based PVS) is generated from a middle cerebral artery (MCA M1–M2) segment (Aneurisk dataset repository, case id C0075) and represents an
image-based perivascular space including a bifurcation.
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of bifurcation points i.e. the points at which the centerlines of
branches meet by B.

We introduce three specific geometries of increasing
complexity: from an axisymmetric cylinder (A) to an image-
based perivascular geometry without any bifurcations (B) and one
with a bifurcation (C) (Figure 1 and Table 1). The image-based
geometries (B) and (C) are constructed from non-pathological
artery segments from the Aneurisk dataset repository [30], and
thus define high-fidelity 3D representations of human brain
surface arteries. In each of these geometries, the PVS domain
is defined by creating a generalized annular cylinder surrounding
the vascular segment with the vascular wall as the inner surface of
the PVS. The width of the PVS is set proportional to the blood
vessel diameter (by factor of 0.95) and scaled (to a mouse scale)
[18, 31]. Three-dimensional PVS flow in geometries A and C have
been studied previously [18] and will be used for comparison. We
define as PVS inlets and outlets (zΩin and zΩout) the PVS ends
surrounding the vascular inlets and outlets, respectively, noting
however that fluid may flow both in and out of both the inlet and
outlets. We denote the inner PVS wall (boundary) by zΩinner and
outer wall by zΩouter.

The 3D PVS construction and the 1D centerline extraction are
performed using PVS-meshing-tools [32], largely based on VMTK
[33]. The extracted centerline comes with underlying data
including the branch lengths and vessel radii. The centerline
radius refers to the radius of the maximal inscribed circle of the
vessel cross-sections. The meshing of both 3D and 1D PVS
domains is performed within PVS-meshing-tools [32] using
meshio [34] and GMSH [35]. The centerline meshes consist of
topologically one-dimensional intervals embedded in three
dimensions. The bifurcation points b ∈ B ⊂ Ω are explicitly
labeled within each centerline mesh. Each branch is also
separately tagged and given a consistent orientation. This
procedure allows for the identification of bifurcation points as
the outlet of one (parent) centerline and the inlet of other
(daughter) centerlines, and a split of the full perivascular
network into oriented mesh branches.

2.2 Stokes Flow in a Deforming Perivascular
Domain
Flow of CSF in surface PVSs is reported to be laminar, with low
Reynolds numbers (10–4−10–2) and moderate Péclet numbers
(102–104) for 1 μm spherical particles transported at low
Reynolds number [31], a mean flow speed of up to 60 μm/s,

and parabolic flow profiles [31]. We therefore model the flow of
an incompressible, viscous fluid flowing at low Reynolds and
Womersley numbers via the time-dependent Stokes equations
over a time-dependent domain Ω = Ω(t) representing the PVS.
The fluid velocity v = v (x, t) for x ∈ Ω(t) at time t and the CSF
pressure p = p (x, t) then solve the following system of time-
dependent partial differential equations (PDEs) [18, 36]:

ρztv − μ∇2v + ∇p � 0 inΩ t( ), (1a)
∇ · v � 0 inΩ t( ), (1b)

where ρ is the fluid density and μ is the dynamic fluid viscosity.
To model CSF at body temperature, we set the fluid density to ρ
= 103 kg/m3 and the dynamic viscosity to μ = 0.697 × 10–3 Pa s.
As in our previous full models of perivascular flow [18], the
initial PVS mesh defines the reference domain Ω(0), and we
assume that Ω(t) at time t > 0 is given by a deformation d of the
reference domain: Ω(0)↦Ω(t) with x = d (X, t), X ∈ Ω(0), x ∈
Ω(t). We denote the domain velocity associated with d by w
(thus _d � w).

2.3 Boundary Conditions, Initial Conditions
and Periodicity
At the PVS ends, we prescribe a traction condition corresponding
to a known, applied pressure ~p � ~p(x, t):

σn ≡ μ∇u − pI( ) · n � −~pn on zΩin and zΩout. (2)
We either prescribe (i) zero pressure at both ends ~p � 0, or (ii)

a constant-in-time pressure gradient Δ~p> 0 by setting ~pin �
LoutΔ~p at the inlet, letting ~pout � 0 at the outlet furthest from
the inlet with distance Lout, and setting ~pout at any other outlets
such that the average pressure gradient over each branch path
(~pi − ~pout)/Lout is constant and equal to the prescribed pressure
gradient Δ~p mmHg/m. This static pressure difference can
represent e.g., a hydrostatic pressure difference, a venous
pressure differential, or some other systemic pressure
difference. Other types of boundary conditions could also be
considered, see e.g., a discussion of compliance conditions in [18],
or [37].

On the inner and outer PVS walls (along the length of the
PVS), we set the fluid velocity v to match a known, prescribed
domain velocity w = w (x, t). For the inner PVS wall, we either (i)
consider a rigid wall and set v = w = 0, or (ii) impose a pulsating
wall displacement:

TABLE 1 | Geometrical or numerical PVS domain characteristics for domains A, B, C.

Domain L (mm) Da (mm) Dpvs (mm) Mesh (full) Mesh (reduced)

cells vertices hmin (mm) vertices hmin (mm)

A 1 0.04 0.06 1920 1053 1.3 × 10–2 65 1.6 × 10–2

B ≈1 0.036–0.047 0.035–0.044 63144 12404 9.4 × 10–3 356 2.8 × 10–4

C ≈1 0.024–0.046 0.023–0.044 88074 17318 6.4 × 10–3 249 9.9 × 10–5

L denotes an approximate domain length, Da = 2R1 is the range of the arterial diameters, Dpvs indicates the range of widths of the perivascular space (Dpvs = R2 − R1, so that R2 = 2.95R1)
cells and vertices indicate the number of mesh cells and mesh vertices respectively for the full (2D or 3D) model and reducedmodels, and hmax denotes the maximal mesh cell size for each
mesh. The vertices for the one-dimensional geometries are uniformly spaced in the interior of the domain
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d|zΩinner
X, t( ) � A X, t( ) n, (3)

with reference to the initial (fixed) mesh with coordinates X and
prescribe v � w � _d. To represent wall motion induced by the
cardiac pulse wave, we let the amplitude A be defined by the
juxtaposition of an experimentally-observed wall motion time
series [31] either applied uniformly along the length of the PVS or
as a travelling wave along the PVS length with wave speed c =
1 m/s and frequency 10 Hz. We refer to [18] for the detailed
description. To represent wall motion due to vasomotion, we
consider a similar set-up but with a travelling sinusoidal wave in
time with a frequency of 0.1 Hz and wave length λ = 8 mm [38],
and an amplitude A of 7.5% of the initial inner radius R1. We note
that for all models, the wall moves in the normal (radial) direction
only. For the outer PVS wall zΩouter, we set v = w = 0.

The system starts at rest with v = w = 0 at t = 0. The system
reaches the periodic steady state nearly immediately, and we
report results starting from the first cycle.

2.4 Model Reduction Assumptions
We define a reduced, topologically one-dimensional, model
approximation of the full PVS flow model [(1) with the given
boundary and initial conditions] under the following stipulations.
For each branch Ωi(t) with centerline Λi and local coordinate
system (s, r, θ), where s represents the path length (or axial
coordinate), r is the radial coordinate and θ is the angular
coordinate, we suppose that:

(I) Axial symmetry. Fields and input parameters are
independent of the angular coordinate θ;

(II) Radial displacements. Boundaries displace in the radial
direction only;

(III) Fixed centerline. The centerline Λ is fixed in time and
defines the axial direction;

(IV) Constant cross-section pressure. The pressure field is
independent of the angular and radial coordinates
i.e., p = p (s, t);

(V) Axial velocity profile The axial velocity vs, i.e., the velocity
component in the axial direction can be decomposed in
the form

v · s � vs � vs s, r, t( ) � v̂ s, t( )vvp r( ), (4)
where vvp is a given velocity profile varying radially only, v̂ is to be
determined.

For the velocity profile vvp, we here choose a normalized
annular Poiseuille flow:

vvp r( ) � vpoise r( )
vpoise

R1+R2
2( ),

vpoise r( ) � 1 − r2

R2
1

+ R2
2 − R2

1

R2
1 ln R2/R1( ) ln r/R1( )( ). (5)

This velocity profile is parabolic in r (as for Poiseuille flow in a
cylinder) with a logarithmic correction that accounts for the
annulus.

In particular, the domain velocityw is assumed independent of
the angular coordinate θ. Note that we do not assume other

velocity components (than the axial) to necessarily be zero. We
emphasize that these assumptions will in general not be satisfied
by realistic geometries and flows. Thus, the reducedmodel defines
a model approximation associated with a certain modelling error.

2.5 Reduced Model Equations
Under the assumptions (I–V), the full PVS flow model can be
reduced to the following system of time-dependent differential
equations: find the cross-section flux q̂ � q̂(s, t) and the cross-
section average pressure p̂ � p̂(s, t) such that for each centerline
Λi (denoting q̂|Λi � q̂i and p̂|Λi � p̂i):

ρ

Ai
ztq̂

i − μ

Ai
zssq̂

i + μ
αi

Ai
q̂i + zsp̂

i � 0 onΛi, (6a)
zsq̂

i � f̂
i
onΛi, (6b)

hold.

f̂
i
s( ) ≡ 2πRi

1 s, t( )w R1, s, t( ) · n|zΩinner

+2πRi
2 s, t( )w R2, s, t( ) · n|zΩouter

.
(7)

Moreover, Ai = Ai (s, t) denotes the cross-section area, while
α̂i � α̂i(s, t) is a lumped flow parameter that depends on the
domain geometry and the choice of velocity profile vvp:

αi s, t( ) ≡ 1
A�vvp s( ) 2πRi

1 s, t( ) zrvvp Ri
1 s, t( )( )(

−2πRi
2 s, t( ) zrvvp Ri

2 s, t( )( )), (8)

and where �vvp is the velocity profile integrated over each cross-
section:

�vvp ≡ ∫
C s( )

vvp r dr dθ. (9)

We also define the (one-dimensional) normal stress induced
by q̂ and p̂:

σ̂ ≡
μ

A
zsq̂ − p̂, (10)

which corresponds to an average of the axial (s-)component of the
normal stress in (2) over each cross-section

At the bifurcation points b ∈ B ⊂ Ω, we impose the following
two conditions representing conservation of flux and continuity
of normal stress, respectively:

q̂p sp( ) � q̂d1 sd1( ) + q̂d2 sd2( ), (11)
σ̂p sp( ) � σ̂d1 sd1( ) � σ̂d2 sd2( ), (12)

where Λp and Λd1 , Λd2 represent the centerlines of the parent and
two daughter branches, respectively, associated with the
bifurcation point b and s· = ι·(b) where ι· denotes the map
from three-dimensional bifurcation point to the one-
dimensional centerline coordinate for each branch Ω·.

System (6) defines a set of equations for each branch centerline
Λi and is closed by the bifurcation conditions (11, 12), together
with boundary conditions at the PVS inlet and outlets, as well as
initial conditions for the cross-section flux. Specifically, in place of
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the traction condition (2), we prescribe the corresponding
pressure difference for the (average) normal stress σ̂ cf. (10).
In this manner, the (one-dimensional) solutions q̂i and p̂i of the
reduced model (6) define approximations of the (three-
dimensional) axial flux and pressure solving (1) integrated or
averaged over each cross-section:

q̂i s( ) ≈ ∫
Ci s( )

vs s, r, t( ) r dr dθ ≡ Ai s( ) �q−i s( ),

p̂i s( ) ≈ 1

Ai s( )∫Ci s( )
p s, r, t( ) r dr dθ.

The factor r originates from integrating in cylindrical
coordinates. We note that the wall velocity w, which defines a
boundary condition for the full PVS model (1), enters as a body
force in the reduced model (6).

2.6 Numerical Solution and Software
We solve the full PVS (1) via a previously developed and verified
arbitrary Lagrangian-Eulerian (ALE) formulation and finite
element discretization [18]. This solver builds on the standard
FEniCS finite element software suite [39], and is openly
available [40].

To compute numerical solutions to the reduced model (6),
we consider a first-order implicit Euler scheme in time and a
higher-order finite element method in space. The finite
element mesh T of the centerline Λ is composed of mesh
segments T i, one for each centerline branch Λi. Each mesh
segment is a mesh consisting of intervals embedded in R3.
We label the set of bifurcation points B, inlet points I and
outlet points O, and define the following finite element
spaces:

• The flux space Vh is the space of continuous piecewise
quadratics over T i for each i.

• The (average) pressure space Qh is the space of continuous
piecewise linears on T .

• The Lagrange multiplier space Rh � RB where B is the
number of bifurcation points.

The flux is thus solved on each mesh segment representing the
PVSnetwork branches andmay be discontinuous across bifurcations.
We impose the flux conservation condition (11) weakly using a
Lagrange multiplier formulation. The pressure is solved on the whole
mesh and is continuous at bifurcations by construction.

For each discrete time tk, given q̂k−1h at the previous time tk−1

and time step Δt = tk − tk−1, we solve for the approximate cross-
section flux q̂kh ∈ Vh, average pressure p̂k

h ∈ Qh and a Lagrange
multiplier [corresponding to the normal stress (10) at the
bifurcation points] λkh ∈ Rh solving

a q̂kh, p̂
k
h, λ

k
h( ), ψ, ϕ, ξ( )( ) � Lk ψ, ϕ, ξ( )( ), (13)

for all finite element test functions ψ ∈ Vh, ϕ ∈ Qh, and ξ ∈ Rh. The
left-hand side bilinear form a is defined by:

a q, p, λ( ), ψ, ϕ, ξ( )( ) �
∑
i∈I

∫
Λi

1

Ai ρ + Δtμαi( )qiψi + Δtμ
Ai zsq

izsψ
i + zsq

iϕi − Δtzsψipi ds

+∑
b∈B

λb ψ[ ]b + ξb q[ ]b, (14)

where λb (or ξb) is simply the entry of the vector λ (or ξ)
corresponding to bifurcation point b, and we define the
natural jump:

ψ[ ]b � ψp b( ) − ψd1 b( ) − ψd2 b( ). (15)
The right-hand side linear form L is:

Lk ψ, ϕ, ξ( ) � ∑
i∈I

∫
Λi

ρ

Ai
q̂k−1,ih ψi + fiϕi ds − ∑

x∈I
Δt~pin x( )ψiI x( )

+ ∑
x∈O

Δt~pout x( )ψiO x( ),

(16)
where the superscript iI (iO) in the inlet (outlet) terms above refers
to the unique centerline branch associated with the inlet (outlet)
points.

The numerical solver for the reduced model was
implemented in the well-established FEniCS Project finite
element software [39]. The solver, and in particular the
definition of the partially continuous flux space, builds on
mixed-domain features [41] and relies on the latest
development version of FEniCS. All data and source code are
available via Zenodo [42].

2.7 Overview of Computational Models,
Output Functionals and Model Error
Measures
An overview of the six computational models considered is given
in Table 2. Each model is labeled with reference to its domain (A,
B, or C) followed by a number indicating the driving forces
included: (1) a given pressure drop, (2) wall movement due to
cardiac pulsations and (3) wall movement due to vasomotion. For
each model, we consider the full three-dimensional version as
well as the reduced model.

To compare the solutions from the full and reduced
models, we consider the following quantities of interest.
For each domain, we define a set of cross-sections as
follows. For domain A, we define the left-most end as the
inlet (s = 0) and define an upper cross-section. For domain B,
we consider the inlet and outlet ends of the PVS, as well as
upper and lower cross-sections. For domain C, we consider
the inlet at s = 0, and the two outlets, as well as three additional
cross sections near the inlet, on the largest daughter branch
relatively close to the bifurcation, and near the outlet of the
other daughter branch.

We then compute for each cross section C(s) the averaged
pressure �ph(s, t) and the cross-section flux �qh(s, t):
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�ph s, t( ) � 1
|C| ∑

k

wkph xk, t( ),
�qh s, t( ) � ∑

k

wkvh xk, t( ) · nC xk( ) (17)

for a quadrature scheme with points xk and weights wk defined
over C and an approximation |C| of the cross-section area. Here
nC is the normal vector of the cross-section. The averaging is
implemented by using the Frenet frame associated with Λ to map
from an annular cylinder in a reference domain onto the cross-
section, similar to the implementation of the averaging operator
in fenics_ii [43].

With this in hand we define the percentagewise relative model
discrepancy Eq(t) in the flux by

Eq t( ) � ‖�qh t( ) − q̂h t( )‖L2 Λ( )
‖�qh t( )‖L2 Λ( )

· 100% (18)

and similarly for the pressure Ep. We typically compute this
quantity if the flow is driven by a constant pressure gradient. In
this case the fluid starts at rests and then quickly develops to
stationary, annular Poiseuille flow. We then compute Eq(T) and
Ep(T), where T denotes the final time.

For pulsatile flow, we typically compare the percentagewise
relative error in peak pressure epeakp (s′) and peak cross-section
flow epeakq (s′) at some cross section C (s′, t), where

epeakq s′( ) � |maxt∈ 0,T( )q̂h s′, t( ) −maxt∈ 0,T( )�qh s′, t( )|
|maxt∈ 0,T( )�qh s′, t( )| · 100% (19)

and epeakp (s′) is similarly defined. Finally, we compare the net
fluxes Q of the full and reduced model, where Q associated with
the velocity v = v (x, t) can be computed as:

Q � ∫T

0
∫

zΩin

v · n dx dt, (20)

and the corresponding quantity associated with the flux q̂ �
q̂(s) by:

Q � ∫T

0
∑
x∈I

q̂ x( ) dt (21)

where the integration in time is over one period [0, T].

3 RESULTS

The prescribed pressure gradient and the pulsating PVS walls
each induce pressure gradients and fluid flow in the different
PVS geometries. For each of the models (Table 2), we compare
the simulation results from the full PVS (1) defined over the
three-dimensional model domains and the reduced system (6)
defined over the topologically one-dimensional domains,
quantify the discrepancies between the models and the
computational costs.

3.1 Reduced Model Exactly Predicts
Pressure-Driven Axisymmetric Flow
Characteristics
Flow in an axisymmetric annular cylinder of length ℓ driven by a
constant pressure difference Δp (Model A1) is described by the
analytic expression:

q̂ s, t( ) � A
Δp
μαℓ

1 − exp −μαt
ρ

( )( ),
p̂ s, t( ) � Δp

ℓ
s + p̂ 0( ),

(22)

where α is the lumped flow parameter given by (8) and which is
constant in time and space in this case. For the velocity profile (5)
defined over geometry A (cf. Table 1), α = 7325.3/m2, and μα/ρ =
5105.7/s. Thus, the time-dependency is negligible after only a few
milliseconds, and the flow develops near-instantaneously to
steady-state Poiseuille flow.

Both the full and reduced models reproduce the exact
annular Poiseuille flow characteristics of this case
(Figure 2A). The numerical difference between the
analytic and computed reduced solutions for the cross-
section flux q̂ and average pressure p̂ is at machine
precision (‖q̂(T) − q̂h(T)‖ � 1.7 × 10−14 and
‖p̂(T) − p̂h(T)‖ � 2.6 × 10−17) (T = 1 s). In general, the total
error is the sum of the model error and the numerical error
associated with the space-time discrete approximation (13).
For Model A1, the model error is zero as the model reduction
assumptions (I–V) are exactly fulfilled by the geometry and
flow pattern. As the total error also vanishes, we note that the
numerical error is also negligible for this case.

TABLE 2 | Overview of computational models parameterized by domain, prescribed pressure gradient Δ~p and wall motion pattern (see Methods).

Domain Pressure
Gradient Δ~p [Pa/mm]

Wall motion pattern Model assumptions

(I) (II) (III) (IV) (V)

Model A1 A 0.1995 None ✓ ✓ ✓ ✓ ✓
Model A2 A 0.0 Cardiac pulsations (uniform) ✓ ✓ ✓ 7 7

Model B1 B 0.1995 None 7 ✓ ✓ 7 7

Model B2 B 0.0 Cardiac pulsations (travelling) 7 ✓ ✓ 7 7

Model B3 B 0.0 Vasomotion (travelling) 7 ✓ ✓ 7 7

Model C12 C 0.1995 Cardiac pulsations (travelling) 7 ✓ ✓ 7 7

Wall pulsations are applied uniformly in space (uniform) or as a travelling wave in space (travelling). Each of the models satisfy some of the reducedmodel assumptions (I–V), but only Model
A1 satisfies all

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 8822606

Daversin-Catty et al. Reduced Modelling of Perivascular Flow

63

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


3.2 Reduced Model Accurately Captures
Axisymmetric PVS Wall Pulsations
Next, we examine the PVS flow and pressure generated by
uniform axisymmetric pulsations of the inner PVS wall
(Model A2, Figures 2B–E). The inner wall movement
changes the inner domain radius R1 in time. The fluid is
pushed out at the both ends as the PVS width decreases, and
flows back in at both ends as the PVS width returns to baseline.
This behaviour is reproduced by both the full (Figure 2B [18])
and reduced models (Figure 2C). We note that the reduced
model assumptions (IV, V) do not hold in this scenario as the
PVS axial velocity profile is no longer identical to the Poiseuille
velocity profile, and the pressure is not perfectly constant on
each cross-section. Comparing the full and reduced cross-
section fluxes �qh and q̂h, we observe however that the two

models still agree closely (Figures 2D,E), both at the inlet
and at an interior cross-section. Moreover, the time-profile of
the reduced and full cross-section flux approximations are very
similar (both at the inlet and at the interior cross-section,
Table), though with small (Δt s) shifts in time. The peak
outfluxes occur at the inlet and outlet; the peak outflux for
the full model is 1.53 × 10–3 μm3/s, and 1.47 × 10–3 μm3/s for the
reduced model (Figure 2D). The peak pressure occurs in the
middle of the domain; the peak pressure for the full model is
0.194 and 0.193 Pa for the reduced model. Using (19) the
relative error in the peak cross-section flux at the inlet is
epeakq (0) � 4.0% and in the peak cross-section (average)
pressure epeakp (0) � 0.8%. There is thus a small discrepancy
between the two models, as expected by the violation of the
reduced model assumptions.

FIGURE 2 | PVS flux and pressure in an axisymmetric annular cylinder induced by a constant pressure difference or cardiac wall motion (Models A1, A2). (A)Model
A1: A constant pressure gradient induces annular Poiseuille flow in both the full axisymmetric model (upper panel) and the reduced model (lower panel): snapshot of
steady solution at T = 0.1. (B–E)Model A2: Inner wall pulsations induce bidirectional and oscillatory flow. (B) Snapshot of the full model solutions at peak outflux (t = 0.05).
Different cross-sections are marked in green (at the inlet) and blue (in the interior). (C) Pressure (upper panel) and cross-section flux �qh (lower panel). (D) Cross-
section flux predicted by the full model (dotted line) and the reduced model (solid line) at inlet versus time. (D) As for (C) but at the interior cross-section marked in (B).
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3.3 Radial Geometry Variations Induce
Small Model Errors
In contrast to the axisymmetric geometry A, the image-based
geometries B and C express angular and axial variations in radius.
The inner and outer radii of these geometries vary along the
length of the domain (with s) and depend on the angular
coordinate θ, with the latter violating model assumption I. To
study the resulting model error in isolation, we again examine the
pressure-driven flow predicted in full and reduced models but
now of geometry B (Model B1, Figure 3). The full numerical
approximation of the pressure is nearly constant over each cross-
section. On the other hand, the velocity profile varies between
cross-sections and with the angular coordinate within each cross-
section (Figure 3A). Therefore, we expect a larger model error in
the reduced model compared to the previous case(s). At steady
state (t = 0.5), the reduced pressure approximation p̂ varies nearly
linearly along the length of the domain as expected, and the
reduced flux approximation q̂ is essentially constant along the
centerline with value q̂ � 4.28 × 10−4 μL/s. Computing the
corresponding cross-section flux from the full model, we find
values ranging from 3.5 × 10–4 to 5.31 × 10–4 μL/s. The relative
model discrepancy (18) in the pressure is Ep = 2.6% and for the
flux Eq = 12.6%.

3.4 Reduced Model is Robust with Respect
to Wall Motion Amplitude and Frequency
Cardiac wall motion and vasomotion may drive pulsatile
perivascular flow with different flow characteristics. To
evaluate the model discrepancy induced by different
physiological drivers, we compare the full and reduced models
over an image-based PVS segment driven by wall motion induced
by the cardiac pulse wave (Model B2) and by vasomotion (Model
B3). The cardiac pulse wave induces wall motion at a higher
frequency (10 Hz) travelling at a higher wave speed (1000 mm/s),
while vasomotion creates pulsations at lower frequencies (0.1 Hz)
and at a lower wave speed (0.8 mm/s). Both models include

angularly, axially and temporally varying radii, and we expect
model assumptions I, IV-V to not hold.

Both pairs of models induce pulsatile bidirectional flow in and
out of the PVS segment in synchrony with the pulsating wall
(Figure 4, Supplementary Video S1) with peak pressure
magnitude in the middle of the segment, and conversely, low
velocities in the middle of the domain and higher velocities near
the PVS ends. Both model scenarios lead to pressure fields that
are nearly constant on each cross-section (Figures 4C, 5), but
with angularly varying velocity profiles (Figures 4B, 5).

For the cardiac wall motion, the overall cross-section average
of the full pressure �ph ranges from −0.05 to 0.26 Pa, while the full
cross-section flux �vh ranges from −1.54 × 10–3 to 1.95 × 10–3 μL/s.
The reduced model accurately captures the temporal and spatial
characteristics of the full model (Figures 4D–G). For the reduced
model, the overall cross-section pressure p̂h ranges from −0.06 to
0.29 Pa, while the cross-section flux q̂h is between −1.61 × 10–3

and 2.23 × 10–3 μL/s. Comparing the full and reduced pressure
and flux over time at an interior, lower cross-section with axial
coordinate s′ (Figures 4B,C), we observe that the reduced model
slightly overestimates the peak pressure and flux when compared
to the full model (Figures 4F,G). Using (19) at this cross-section
we find that the relative error of the peak pressure is epeakp (s′) �
19.0% and the relative error of the peak flux is epeakq (s′) � 1.2%.
One shall note that the space discretization of the initial 3Dmodel
has a non negligible impact on these relative errors. Indeed, using
a finer 3D mesh composed of 333000 tetrahedrons instead of the
initial 63000 lowers the relative error of the peak pressure
epeakp (s′) to 12.1%. The relative error on peak flux is not
significantly impacted but epeakq (s′) was already very small.

For the vasomotion scenario, the domain movement is larger
compared to the cardiac wall motion, but the wall velocity is lower
(peak wall speed of 0.001 vs. 0.005 mm/s). The resulting peak (in
terms of magnitude) cross-section pressure is −0.012 Pa and peak
cross-section flux is 9.14 × 10–5 μL/s (Figure 5, Supplementary
Video S2). These are one-to-two orders of magnitude lower than
for the cardiac wall motion scenario. Comparing the full and
reduced models in two interior (upper and lower) cross-sections,

FIGURE 3 | In an image-based perivascular segment with varying radii, a pressure difference between inlet and outlet induces a pressure field that is nearly constant
on each cross-section, but a velocity field that varies with the radial, angular and axial coordinates. (A) Full pressure and velocity approximations in the domain (left) along
with close-up views of the pressure (middle) and velocity magnitude (right) at two cross-sections; (B) Reduced average cross-section pressure (left) and cross-section
flux approximations (right).
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we observe that the cross-section pressure q̂h matches pulsatile
behaviour of the average cross-section pressure in the full model
�qh (Figure 5B) but that the peak amplitude is higher. The largest
model differences in pressure at the lower cross-section is at the
peak pressure; there the relative difference in peak pressure is
epeakp (s′) � 52.7%. The similar observations hold for the flux, but
the model discrepancies are lower: the relative difference in peak
flux is epeakq (s′) � 15.6%. Moreover, the full and reduced models
agree on a pressure phase shift of 0.5s. In agreement with our
previous findings, the reduced pressure approximation displays a

greater model discrepancy with higher predicted pressure
variations in the reduced model (Figure 5B).

3.5 Reduced Model Captures Flow and
Transport Characteristics Through
Bifurcations
Now, we turn to compare the full and reduced model
predictions of physiologically realistic perivascular flow in
an image-based PVS surrounding a vascular bifurcation

FIGURE 4 | Cardiac wall motion induces substantial pulsatile pressures and velocities in an image-based perivascular space segment, with the reduced model
accurately capturing flow, pressure and transport characteristics. (A) Snapshot of the pressure and velocity at time of peak pressure (t = 0.05 s); (B) Velocity at upper and
lower cross-section [zoom of (A)]; (C) Pressure at upper and lower cross-sections [zoom of (A)]; (D)Cross-section flux from reducedmodel (left) and full model (right); (E)
cross-section average pressure from reducedmodel (left) and full model (right); (F) full and reducedmodel cross-section fluxes at the lower cross-section over time;
(G) full and reduced model pressures at the lower cross-section over time.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 8822609

Daversin-Catty et al. Reduced Modelling of Perivascular Flow

66

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


(Model C12). The prescribed pressure difference between
inlet and outlets as well as the cardiac wall motion induces
pulsatile flow with a net flow component [18] (Figure 6A,
Supplementary Video S3). We note that the domain radii
vary both angularly and axially, also for the initial domain,
and also that the presence of a bifurcation region induces non-
Poiseuille/non-Womersley-type velocity profiles. Comparing
the full and reduced average pressure and flux at the time of
peak velocity (Figures 6F,J), we note that the reduced model
captures the qualitative and quantitative flow and pressure
characteristics. The bifurcation conditions are satisfied at the
bifurcation point b (Figures 6C,G) with a parent branch flux
q̂(b)|ΛP � −5.52 × 10−4μL/s and daughter branch fluxes
q̂(b)|Λd1 � −7.8 × 10−5μL/s and q̂(b)|Λd2 � −4.74 × 10−4μL/s.
The uneven flux distribution is induced by the smaller

average width of one of the daughter vessels. The predicted
stress σ̂ is continuous (data not shown).

The reduced peak cross-section flux (over time) at the inlet is
−1.5 × 10−3 μL/s, and 1.2 × 10−3 μL/s and 7.9, ×, 10−4 μL/s at the
outlets (Figure 6B).

Comparing the relative difference in peak flux at the inlet and
outlets, we note that the discrepancy is largest at larger daughter
outlet (sout) with a relative difference epeakp (sout) � 12.7%.
Comparing the full and reduced peak pressures at the upper
(su), middle (sm) and lower (sl) cross-sections, we find relative
differences epeakp (su) � 1.1%, epeakp (sm) � 4.1%, and
epeakp (sl) � 16.4%. The analogous numbers for the fluxes are
epeakq (su) � 1.0%, epeakq (sm) � 33.5%, and epeakq (sl) � 5.1%.
Thus, the relative differences in peak flux are larger near the
bifurcation region (Figures 6F,J).

FIGURE 5 | Vasomotion induces higher domain deformations but lower wall velocities, pressure differences and cross-section fluxes. (A) Snapshots of the full
model pressure and velocity at different time points with cross-section velocities (top). (B) Average pressure (upper panel) and flux (lower panel) for the full and reduced
models at upper and lower cross-sections over time. The values at the different cross-sections are slightly shifted in time due to the travelling vasomotion. The pressure
model discrepancy dominates the flux differences.
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The net flow is a key quantity of interest for the physiological
relevance of perivascular flow and transport. The net flow per
cycle in the full model is 3.5 × 10−5, and 2.9 × 10−5 μL for the
reduced model, corresponding to a relative difference of 17%.

3.6 Reduced Models Offer Orders of
Magnitude Saving in Computational
Resources
Accurate direct three-dimensional simulations of pulsatile
perivascular fluid flow in large, deforming vascular networks

FIGURE 6 | Flow through a bifurcating PVS (Model C12) (A) Snapshot of pressure and velocity from full model at peak velocity (t = 0.05). (B) Full versus reduced
cross-section flux at inlet (in) and outlets (out1 and out2) over time. (C) Snapshot of reduced cross-section pressure at peak velocity. (D) Snapshot of average cross-
section pressure at the same time. (E) Pressure at upper, middle and lower cross-sections [zoom of (A)]. (F) Full versus reduced cross-section average pressure at
cross-sections. (G) Snapshot of reduced cross-section flux at peak velocity (t = 0.05). (H) Snapshot of cross-section flux from the full model at the same time. (I)
Flux at upper, middle and lower cross-sections [zoom of (A)]. (J) Full versus reduced cross-section flux at cross-sections.

TABLE 3 | The geometrically-reduced models reduce computational cost by
orders of magnitude.

Model d.o.fs Time (s) Memory (MB)

Full Reduced Full Reduced Full Reduced

A2 9, 103 194 0.16 0.35 180 146
B2 287, 432 1067 42.33 0.83 6261 133
C12 401, 156 749 130.57 0.76 8874 176

Number of degrees of freedom d.o.f.s, computational tim (average time for a single time
step) and memory usage (peak memory usage throughout the simulation) for the full
models (2D/3D) and reduced models (1D).
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involve a significant computational cost. The expense is
dominated by solving large linear systems of equations at each
time step. For instance, even the moderate-resolution single-
bifurcation model considered here (model C12) includes more
than 17 000 vertices, 88 000 mesh cells and 400,000 degrees of
freedom. For a small-scale idealized model such as axisymmetric
Model A2, the reduced model uses 2.1% of the number of degrees
of freedom but approximately the same amount of memory and
longer runtime (0.16 vs. 0.35 s per time step, Table 3). However,
the one-dimensional models reduce computational cost
substantially for the image-based geometries (Table 3). For the
image-based perivascular segment (Model B2), the reduced
model uses 0.4% of the number of degrees of freedom, 2.0% of
the runtime, and 2.1% of the memory of the full model. For the
image-based bifurcating PVS (Model C12), the reduced model
uses 0.18% of the number of degrees of freedom, 0.6% of the
runtime and 2.0% of the memory of the full model. Overall, the
reduced model reduces the computational expense, both in terms
of computational time and memory, by several orders of
magnitude for image-based PVS segments.

DISCUSSION

We have proposed a newmathematical and numerical framework
based on topological and geometrical model reduction for
computational modelling and simulation of steady and
pulsatile fluid flow in deformable perivascular space networks.
The reduced model is defined over a perivascular centerline
network and predicts the fluid flux and average pressure in
each cross-section of each network branch. By numerically
comparing direct three-dimensional simulations of the fluid
flow with the reduced model results for a range of
physiological scenarios, we find that the reduced model
accurately captures the important flow characteristics with
cross-section peak pressure discrepancies ranging from 0% to
52% and peak flux discrepancies ranging from 0% to 35%. Our
findings indicate that reduced model is robust with respect to
physiologically relevant spatial and temporal variations in the
vascular radius. Moreover and importantly, the computational
cost of the reduced model is several orders of magnitude lower
than that of the corresponding full model.

While geometrically-reduced network models of pulsatile
blood flow have become a standard computational tool [19,
23, 44], network models of perivascular fluid flow have mainly
focused either on quantifying flow resistance [7, 10] or predicting
steady flow [45]. In the latter, Tithof et al present the results of a
network model of glymphatic flow under different parameters,
using resistance models to compute flow in idealized domains.
For the open channel flow, they compute the flow therein via
Darcy’s law v = −(κA/])∇p with permeability

κ � 1
8

R2
2 + R2

1 −
R2
2 − R2

1

ln R2/R1( )( ). (23)

This relationship holds under the assumption of Poiseuille
flow in the open, annular channel (for which there is an analytic

solution) and corresponds to the permeability required for this
solution to satisfy Darcy’s law. For steady-state flow (ztv = zssv =
0) driven by a constant pressure difference, the reduced model (6)
simplify to the Darcy flow equation with permeability

κ � 1
α
. (24)

In the idealized Model A1 scenario, the two definitions of κ
(23, 24) agree, with κ = 1.36 × 10–4 mm2, and thus the models
coincide within this regime.

Rey and Sarntinoranont [13] also introduced two hydraulic
models to predict fluid flow induced by blood pressure wave
pulsations, and in particular net flow and transport. Their models
also capture the pulsatile flow generated by the volume changes
induced by a pulsating inner boundary, but under other
modelling assumptions and without considering bifurcations,
and thus differ from the one considered here. However, their
peak fluid velocities of the order tens of μm/s is of the same order
as the fluid velocities predicted in single branches here (Models
A2, B2, B3), as are the pressures on the order of up to 0.3 Pa.

Several different bifurcation conditions have been proposed in
the literature. In one-dimensional blood flow models, the most
common conditions are conservation of flux combined with
continuity of pressure [44, 46]. These conditions may be
imposed directly on the pressure and flux solution variables
[44], or weakly in the variational formulation [46]. Here, we
also enforce conservation of flux, but in place of the strong
pressure continuity condition, we weakly impose the
continuity of the normal stress. This approach gives a natural
setting for Stokes flow and allows for a compatible variational
formulation using a Lagrange multiplier space.

In terms of limitations, we here focus on models of
perivascular flow and the effect of vascular pulsations on
perivascular flow, and not on the full interplay between
vascular, perivascular and interstitial flow and deformation,
nor on the transfer across the blood-brain barrier or the glial
limitans. For healthy arterial and venous regions, in which the
blood flow dynamics dominate the perivascular flow and
pressure, we expect this one-way (vascular-to-perivascular)
coupling to capture the leading order dynamics. Moreover, in
light of the expected high resistance of the interstitial space [13,
45, 47, 48], we expect the perivascular-interstitial transfer and
interstitial flow to be relatively small under physiological
conditions. However, in light of the importance of quantifying
and characterizing the different potential pathways, coupled fluid
dynamics in vascular, perivascular and interstitial spaces will be
considered in subsequent work.

We here consider open (in contrast to porous) domains. This
is an appropriate modelling choice for surface perivascular spaces
surrounding arteries or veins [6, 8]. For parenchymal perivascular
spaces, within the pial-glial interface or within the smooth muscle
cell basement membranes [49], however, a porous media
representation may be more appropriate. In such a case, the
Stokes flow (1) are naturally replaced by a Darcy or Brinkman
flowmodel with an additional permeability κ [50]. The analogous
reduced model [corresponding to (6)] would include an

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 88226012

Daversin-Catty et al. Reduced Modelling of Perivascular Flow

69

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


additional lower order term for the flux q̂ weighted by this
permeability. For parenchymal and capillary perivascular
spaces, we would also expect the coupled interplay between
vascular, perivascular and interstitial spaces to be non-negligible.

Surface PVSs may be of different shapes ranging from annular
cylinders with no or some ellipticity to fully separated segments
[7], or be defined as more irregular expansions of the
subarachnoid space [6, 51]. The image-based vascular
geometries used here define high-fidelity representations of
inner boundaries of human surface PVSs. However, the
representation of surrounding PVSs as annular structures is
clearly an approximation, and a response to the lack of
appropriate three-dimensional data of human surface PVSs.
An interesting point in this regard, and an opportunity for
further study, is the quantification of the model error
introduced by approximating these non-regular structures by
elliptic annular cylinders with a fixed centerline. We would expect
more irregular geometries to induce larger differences between
the full and reduced models, but the relative importance and role
of ellipticity and other geometrical irregularities remain
undetermined.

Our simulations rely on a high-order discretization in space to
ensure stability of the model, combined with a first-order
discretization in time. A temporal sensitivity analysis on key
output quantities i.e. pressure and cross-section flux showed
expected convergence as the time resolution is reduced, and
was used to determine the employed time step. The use of a
higher-order discretization in time could also be considered. We
also note that we have considered simplified (prescribed traction)
boundary conditions at the PVS inlet and outlets. Compliance or
resistance-based boundary conditions could of course also be
considered, e.g., as in previous work [18], or [37]. We have
focused on cardiac pulse wave-induced wall motion and
vasomotion, two physiological factors that generate changes in
vascular radius of up to 15% [31, 38] and only moderate wall
velocities. However, the vascular and perivascular diameters may
change more dramatically. For instance, Enger et al [52] report of
a nearly 40% increase and 50% decrease in arteriole diameter
during cortical spreading depression, and intriguingly the
vascular and perivascular wall motions may differ between
e.g., sleep states [53]. If these changes lead to significantly
higher wall velocities than those considered here, we would
expect a further breakdown of the reduced model
assumptions, specifically assumption V, which in turn would
be expected to impact the accuracy of the reduced models.

While many aspects of brain influx and clearance remain
enigmatic, perivascular fluid flow along the cerebral vasculature is
widely recognized as a key transport mechanism. The

computationally inexpensive yet accurate reduced models
presented here give an efficient and flexible framework for
computational modelling and simulation of pulsatile flow in
idealized or realistic networks including complete
representations of e.g., the cerebral arteries or veins and many
generations of arterioles/capillaries. This framework thus
establishes a foundation for future computational studies of
perivascular flow to improve our understanding of brain
transport.
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The stability of rigidly rotating spiral waves is a very important topic in the study of

nonlinear reaction-diffusion media. Computer experiments carried out with a slightly

modified Barkley model showed that, in addition to one region of instability observed

earlier in the original Barkley model, there is another one exhibiting completely different

properties. The wave instability in the second region is not related to the Hopf bifurcation.

Moreover, hysteresis effects are observed at the boundary of the region. This means that

in the vicinity of this region of instability, direct integration of the model equations leads

either to a rigidly rotating or meandering spiral, depending on the initial conditions.

Keywords: excitable media, spiral wave, instability, hysteresis, modified Barkley model

1. INTRODUCTION

Excitable media represent a broad class of non-equilibrium reaction-diffusion systems that play an
important role in physical, chemical, and biological applications [1–4]. For example, wave processes
in excitable media are intensively studied in various distributed systems, including the colonies of
Dictyostelium discoideum [5], the Belousov-Zhabotinsky chemical reaction [6], the heart muscle
[7], the eye retina [8], the neocortex [9], CO oxidation on the platinum single crystal surface [10],
and many others.

An excitable medium can be viewed as an ensemble of active elements coupled locally by
diffusion-like transport processes. Each individual active element has a resting state, resistant to
small external perturbations. However, it can be excited by the application of a suprathreshold
stimulus or by interacting with their neighbors. Therefore, locally induced excitation can propagate
through the medium as a self-sustaining wave. Such a wave represents a rapid transition from a
stable resting state to an excited one followed by a slow recovery transition (refractory) back to the
resting state. Under normal conditions, the wave back follows the wavefront, and they never touch
each other.

However, under some special conditions, the propagating wavefront can be broken [1, 11]. Then
the front and the back of the wave propagating in a two-dimensional medium coincide at one point
called a phase change point [2]. Near this point, the front and the back are moving in opposite
directions and the boundary of the excited region curls around this singularity point. As a result,
the broken wave is winding up into a spiral permanently rotating within the medium.

Such self-sustained activity unexpectedly appearing in cardiac or neuronal tissues strongly
destroys their dynamics that results in life-threating diseases. In this context, an understanding of
possible scenarios of spiral wave dynamics is of great theoretical importance and has many practical
applications.

One important aspect of this study is investigation of spiral wave stability. In a homogeneous
low excitable two-dimensional medium spiral wave rigidly rotates around a round core. However,
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under a variation of the medium’s parameters this well-ordered
dynamics can be destroyed that leads to a transformation of
a circular trajectory of the spiral wave tip into the so-called
meandering one, e.g., hypotrochoid or epitrochoid [12, 13].

Spiral wave meander has been observed in experiments with
chemical solutions [14] and in computations performed with
different reaction-diffusion models [15–17]. The investigation of
spiral wave instability attracts a great attention from a theoretical
point of view [18–21].

In this study we would like to find out domains of the
spiral wave meandering within the parameter space of a slightly
modified Barkley model of an excitable medium.

2. MODEL

In many studies it was demonstrated that the basic features of
the wave dynamics can be reproduced by the two-component
reaction-diffusion system

∂u

∂t
= D∇2u+ F(u, v),

∂v

∂t
= ǫG(u, v), (1)

where the variables u and v represent the activator and inhibiter
species, respectively. Typically the nullcline F(u, v) = 0 is a
non-monotonic function creating possibility for undamped wave
propagation. The second nullcline G(u, v) = 0 is monotone
and intersects the first one at only one point (u0, v0). Below the
functions F(u, v) and G(u, v) are taken in the form proposed by
Barkley [22]:

F(u, v) = u(1− u)[u− (v+ b)/a)], (2)

G(u, v) =

{

u− v, u ≥ v,
kǫ(u− v), u < v.

(3)

Note, that in the original Barkley model the value of the
parameter kǫ is fixed as kǫ = 1. Three other constants a, b, and
ǫ have been used as important control parameters. A variation of
each of these three parameters results in a simultaneous influence
on such important medium’s characteristics as the propagation
velocity, pulse duration and refractoriness. In themodifiedmodel
under consideration the constant kǫ is introduced, which has no
influence on the duration of a single pulse and its propagation
velocity. However, this parameter allow us to control the recovery
process because its characteristic time is determined as the
product kǫǫ. Thus the activation and the recovery processes
have different time constants, if kǫ 6= 1. Such a jump in the
characteristic time constant is a fairly common and useful tool
in simulations of excitable media [12, 23, 24].

In all computations below the parameter D is fixed as D = 1.
The Laplacian in Equation (1) was approximated using the five-
point finite-difference method on the rectangular 500× 500 grid
with spatial step 1x = 1y = 0.3. After this spatial discretization
the model equations are integrated in time with the explicit
forward Euler method with time step 1t = 0.01 and no-flux
boundary conditions. The spiral wave tip is determined as a point
where u = 0.5 and du/dt = 0. A part of an isoconcentration line
u(x, y, t) = 0.5 corresponds to the wave front where du/dt > 0,
and another part, where du/dt < 0, represents the wave back.

FIGURE 1 | Parameter space of the modified Barkley model with ǫ = 0.01

and kǫ = 2. Within the SE region wave segments created in two dimensional

medium are shrinking. Within the BI region the system (1)–(3) exhibits the

bistability. Rotating spiral waves are analyzed between these two regions.

Within the white domain spiral waves rotates around a circular core, while they

are meandering within the light gray domain. Black spots correspond to

parameter values used in Figure 2.

FIGURE 2 | Spiral waves dynamics obtained for the system (1)–(3) with

ǫ = 0.01, kǫ = 2 and b = 0.01 for different values of the parameter a. In (A)

a = 0.22, in (B) a = 0.4, in (C) a = 0.6, and in (D) a = 0.8. Thick and dotted

solids represent the wave front and back, correspondingly. The trajectory of

the spiral wave tip is shown in red.

3. RESULTS

3.1. Single Domain of Meandering Spiral
Waves
As the first step of our study the parameters are fixed as ǫ =

0.01 and kǫ = 2, while the constants a and b are used
as important control parameters. The obtained computational
results are illustrated in Figures 1, 2.
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Within the parameter space shown in Figure 1 there is a line

b = a− 1, (4)

which determines the boundary of the bistability (BI) domain,
where b < a − 1. Here the nullclines of the system (1)–(3) have
two intersections points.

We analyse another part of the parameter space, where b >

a − 1 and the system has only one rest point. Here he existence
of spiral waves is limited by another line, where the radius
of the core of the spiral wave becomes infinitely large. In the
subexcitable (SE) region above this line, the wave segments
formed after a wave break are not able to curl around the created
singularity point, but simply shrink and disappear. An analytical
expression for this line was obtained earlier [25] and has the form

b = [a− (
4ǫa2

Bc
)1/3]/2, (5)

where Bc = 0.535 is a critical value of the parameter B =
2D
duc

2
p
, as it was shown in [26]. Here du and cp are the duration

and the propagation velocity of a single pulse through a one
dimensional medium, correspondingly. It can be seen, that
the analytical approximation expressed by Equation (4) is in
good agreement with the direct reaction-diffusion calculations
illustrated by asterisk in Figure 1.

In order to analyse the dynamics of the spiral wave, numerous
calculations were performed at various points in the parameter
space. A broken plane excitation wave [2] was used as initial
conditions. Initially, we fixed a relatively small value of the
parameter b. A rigidly rotating spiral wave with a large core
was generated near the boundary of the SE region. Then the
parameter a increases step by step from one calculation to the
next. The size of the core decreases as a increases, and the rotation
period decreases. At some computational step, rigid rotation
becomes impossible, and a meandering trajectory of the spiral
wave tip is observed. This occurs on the left boundary of the light
gray region in the Figure 1.

Meandering spirals were observed in the entire light gray
region. It is found that in this meandering region the trajectory
of the spiral wave tip may look like an epitrochoid (Figure 2A)
or a hypotrochoid (Figure 2B). In the white region, to the right
of the light gray region and until the BI domain, the tip of the
spiral wave moves along a circular trajectory. The radius of this
trajectory strongly decreases as a increases.

The computational data shown in Figures 1, 2 look
qualitatively similar to ones obtained earlier for the original
Barkley model with kǫ = 1 and ǫ = 0.02 [22, 27]. However,
the size of the instability domain is considerably smaller in
the case under consideration. Note, that while the used value
of the parameter ǫ is smaller, the characteristic recovery time
determined by the product kǫǫ remains the same.

FIGURE 3 | Parameter space of the modified Barkley model with kǫ = 4 and

ǫ = 0.005. Within the light gray domain tip trajectories look like epi- or

hypo-trohoids, like in Figure 1. Within the dark gray domain the tip trajectories

are more complicated and disordered. Within the white domain spiral waves

rotates around a circular core. Black spots correspond to parameter values

used in Figure 4.

FIGURE 4 | Spiral waves dynamics obtained for the system (1)–(3) with

ǫ = 0.005, kǫ = 4, and b = 0.01 for different values of the parameter a. In (A)

a = 0.22, in (B) a = 0.4, in (C) a = 0.6, and in (D) a = 0.8. Thick and dotted

solids represent the wave front and back, correspondingly. The trajectory of

the spiral wave tip is shown in red. In the left lower corner of (D) the trajectory

is magnified.

4. SECOND DOMAIN OF MEANDERING
SPIRAL WAVES

In the second part of our study the value of the parameter ǫ is
further decreased to ǫ = 0.005 and kǫ is increased to kǫ =

4 in order to conserve the characteristic recovery time. The
data obtained in the corresponding computations are shown in
Figures 3, 4.
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FIGURE 5 | A small part of the parameter space of the modified Barkley model

with kǫ = 20 and ǫ = 0.001. The 2D medium does not support self-sustained

spiral waves within the SE domain. Within the gray region spiral waves are

unstable. Black spots correspond to parameter values used in Figure 6.

As well as in the previous case, the existence of spiral waves
here is limited by the lines defined by Equations (4) and (5).
Note that the accuracy of the analytical estimate represented by
Equation (5) becomes better as ǫ decreases.

Figure 3 clearly shows that there are two regions of instability
in the parameter space. The spiral waves in the light gray region
show dynamics very similar to those observed in the light gray
region in Figure 1. Here, the trajectories of the spiral wave
tips resemble epitrochoids or hypotrochoids, for example (see
Figure 4A).

In the dark gray region, the tip trajectories becomemuchmore
complex and are not as well ordered as shown in Figure 4D.
In the parameter region surrounding these two regions, the
trajectory of the spiral tip is circular.

Note that the light gray domain in Figure 3 is much smaller
than in Figure 1. You can also see that the radius of the circular
trajectory of the spiral tip is much smaller for these ǫ and kǫ

values, while the values of a and b are the same. This follows from
a comparison of Figures 1B,C with Figures 3B,C.

5. HYSTERESIS PHENOMENON

As the next step of our study the value of the parameter ǫ

is considerably decreased to ǫ = 0.001 in the numerical
computations. Simultaneously the parameter kǫ is increased to
kǫ = 20 in order to conserve the characteristic recovery time.

Under these modified values a part of the parameter space
shown in Figure 5 looks qualitatively similar to the picture
obtained for the original Barkley model as well as for one shown
in Figure 1. Within the subexcitable region SE there are no self-
sustained spiral waves. Wave segments initiated in this parameter
region are shrinking and disappear. Within the rest of the
parameter space presented in Figure 5 self-sustained spiral waves
have been observed. They are rotating rigidly within the white
region, while inside the light gray region they are meandering.
Some examples of spiral wave dynamics are shown in Figure 6.

However, this is only a very small part of the entire parameter
space investigated at these parameter values. The results obtained

FIGURE 6 | Four examples of the trajectories of the spiral wave tip observed

within the gray parameter region shown in Figure 5 with b = 0.002 and (A)

a = 0.028, (B) a = 0.04, (C) a = 0.06, (D) a = 0.08.

FIGURE 7 | Parameter space of the modified Barkley model with kǫ = 20 and

ǫ = 0.001. The 2D medium does not support self-sustained spiral waves

within the SE domain. Within the dark gray region spiral waves are unstable.

Within the white region between these two domains rigidly rotating spirals with

a circular core have been observed. Black spots correspond to parameter

values used in Figure 8.

in a wider parameter space are shown in Figure 7. The regions of
subexcitability (SE) and bistability (BI) are indicated here. Self-
sustaining spiral waves are observed between these two regions.
Within the narrow white region, the rigid rotation of spiral waves
is stable. The transition to meandering spiral motion occurs in a
very small light gray region with a≪1 and b≪1, which is almost
invisible in Figure 7 but is shown in Figure 5.

In the dark gray region, the trajectories of the spiral tips are
very different from those of the hypotrachoids and epitrachoids
shown in Figure 6. A step by step increase of the parameter a
within the dark gray domain results in a strong transformation of
the spiral tip trajectory. Indeed, rigidly rotating spiral describing
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FIGURE 8 | Four examples of the trajectories of the spiral wave tip observed

within the gray parameter region shown in Figure 5 with b = 0.01 and (A)

a = 0.22, (B) a = 0.4, (C) a = 0.6, (D) a = 0.8.

FIGURE 9 | The trajectories of the spiral wave tips obtained numerically for the

modified Barkley model with the parameter b fixed as b = 0.015 and varied

parameter a. (A) a = 0.31, (B) a = 0.32, (C) a = 0.325, (D) a = 0.32.

a perfect circular shown in Figure 8A transforms into a jagged
trajectory in Figure 8B. Further increase of a results in increasing
of angular loops of the trajectory in Figure 8C and their dynamics
becomes more irregular in Figure 8D.

Moreover, at the boundary of this region a hysteresis effect in
the spiral wave dynamics has been observed. This phenomenon
is illustrated in Figure 9. Here the trajectories of the spiral wave
tip are shown obtained for different values of the parameter a
and b = 0.015. The computations have been started at a =

0.31 and result in rigidly rotating spiral shown in Figure 9A.
This stationary rotating wave is used as the initial conditions

for the next computations performed with a = 0.32 and
illustrated in Figure 9B. After a short transient process the
spiral wave trajectory approaches the circular shape. However,
a jump to a = 0.325 leads to a destabilization of the rigid
rotation and appearance of a rather complicated trajectory,
shown in Figure 9C. This wave pattern has been used as the
initial conditions for the computations in which the parameter
a has been returned back to a = 0.32. However, the spiral tip
trajectory does not return back to a circular one, as can be seen
in Figure 9D. A rigid rotation restores only for a = 0.31. The
further decrease of a also results in a circular trajectory. Thus,
it is demonstrated that for a = 0.32 the shape of the spiral tip
trajectory depends on the initial conditions.

The observed hysteresis effect exists not only for b = 0.015,
but for all other values of b corresponding to the boundary of
the instability domain represented by a dashed-dotted line in
Figure 9. In particular for a = 1.0 and b = 0.328, as well as
for a = 1.4 and b = 0.51. It has been observed not only by a
variation of the parameter a and fixed parameter b, but also by a
variation of the parameter b and fixed a.

6. SUMMARY

Thus, the numerical computations performed with a slightly
modified Barkley model demonstrate the existence of two quite
different parameter regions of spiral wave instability. Within
a region located near the SE domain a transition from rigid
rotation to spiral meandering follows a well known scenario.
Here the instability is induced by the Hopf bifurcation that
results in a hypotrachoidal or epitrachoidal trajectory of the spiral
wave tip.

The spiral tip trajectories lookmore complex in the new found
region (see Figure 4). The smooth circular trajectory transforms
here into a jagged one and even becomes randomized (see
Figure 8). This resembles a transition to hypermeandering spiral
dynamics reported for the FitzHugh-Nagumo model [13], but is
very unusual for the well studied Barkley model. The observed
instability cannot be explained by the Hopf bifurcation as was
done for the original Barkley model.

At the boundary of this new found instability region the
hysteresis phenomenon was detected (see Figure 9). Note, that
the similar hysteresis phenomenon was recently observed in
the context of the Barkley model within the bistability region
[25]. Moreover, a hysteresis phenomenon has been described in
context of the FitzHugh-Nagumo model [28, 29].

Thus, the results obtained are quite general and applicable to
quite different reaction-diffusion models, which should stimulate
further research in this area.
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Short-term synaptic plasticity is found in many areas of the central nervous system.

In the inhibitory half-center central pattern generators involved in locomotion, synaptic

depression is believed to act as a burst termination mechanism, allowing networks to

generate anti-phase bursting patterns of varying periods. To better understand burst

generation in these central pattern generators, we study a minimal network of two

neurons coupled through depressing synapses. Depending on the strength of the

synaptic conductance between the two neurons, this network can produce symmetric

n : n anti-phase bursts, where neurons fire n spikes in alternation, with the period of

such solutions increasing with the strength of the synaptic conductance. Relying on the

timescale disparity in the model, we reduce the eight-dimensional network equations

to a fully-explicit scalar Poincaré burst map. This map tracks the state of synaptic

depression from one burst to the next and captures the complex bursting dynamics of

the network. Fixed points of this map are associated with stable burst solutions of the full

network model, and are created through fold bifurcations of maps. We derive conditions

that predict the bifurcations between n : n and (n + 1) : (n + 1) solutions, producing a

full bifurcation diagram of the burst cycle period. Predictions of the Poincaré map fit

excellently with numerical simulations of the full network model and allow the study of

parameter sensitivity for rhythm generation.

Keywords: Poincaré map, neuronal bursting, dynamical system (DS), synaptic depression, central pattern

generator

1. INTRODUCTION

Short-term synaptic plasticity may have a role in burst activity in central pattern generators
(CPGs). Short-term synaptic depression is commonly found in neuronal networks involved in
the generation of rhythmic movements, such as in the pyloric CPG of the spiny lobster [1, 2],
or in the lumbosacral cord of the chick embryo [3]. Synaptic depression modulates the strength
of synapses in response to changes to the presynaptic firing frequency. At a high neuronal firing
frequency, depression weakens the strength of synapses and therefore reduces the magnitude of
the postsynaptic response. At low firing frequency, it allows sufficient time for the synapse to
recover from depression between spikes, leading to a stronger postsynaptic response. In reciprocal
networks, synaptic depression has been shown to act as a “switch,” giving rise to a wide range
of network dynamics such as synchronous and multi-stable rhythms, as well as fine tuning the
frequency of network oscillations [4–6].
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Brown [7] pioneered the idea that synaptic depression
acts as a burst termination mechanism in CPGs composed
of reciprocally inhibitory neurons and involved in rhythm
generation of locomotion. When one side is firing during a
burst the other, antagonistic side, is prevented from firing by
synaptic inhibition. However, the weakening of inhibition as a
result of synaptic depression eventually releases the antagonistic
side so that it starts firing, terminating the burst on the side
that had originally been firing. This rhythmogenesis hypothesis
has been considered one of a handful of standard mechanisms
for generating locomotion rhythms in vertebrates [8–10]. It has
been proposed as an explanation of the antiphase burst rhythm
in struggling in Xenopus tadpoles [11].

Bose and Booth [6] investigated burst generation in a
generic half-center CPG that consists of two identical, tonically
active Morris-Lecar [12] neurons coupled through inhibitory
depressing synapses. Numerical simulations showed that when
the reciprocal synaptic conductance between the two neurons is
varied, the network produces symmetric n : n anti-phase bursts,
with stronger synaptic coupling leading to longer bursts. They
used methods from geometric singular perturbation theory to
separate the timescales of the fast membrane, and the slow
synaptic dynamics of the network to derive one-dimensional
conditions necessary for the existence of stable n : n solutions (for
n ≤ 2). According to these conditions the type of firing pattern
largely depends on the slow depression dynamics of the synapses
between the two neurons, and can therefore be predicted by
knowing the strengths of the synaptic conductances of the two
synapses. Thus, the scalar conditions derived in Bose and Booth
[6] provide a method to numerically identify the type of stable
n : n pattern for any given value of the coupling strength and
n ≤ 2. However, they do not predict the exact period of such
solutions. Furthermore, while they provide good arguments for
the validity of their reduction assumptions and the resulting
scalar conditions, they do not verify them numerically.

Here we extend the previous analysis by providing a Poincaré
map of the slow depression dynamics. This allows us not only
to predict the types of stable n : n solutions the full network
can produce, (for any n), but also to study how varying the
coupling strength affects the period of such solutions. To do
this, we build on, and numerically test, the assumptions on
the fast-slow timescale disparity made in Bose and Booth [6].
We reduce the two-cell model to a scalar Poincaré map that
tracks the evolution of the depression from the beginning of
one burst to the beginning of the next burst. Stable fixed points
of our map are associated with stable n : n burst solutions. Our
map construction is motivated by the burst length map of a
T-type calcium current, utilized by Matveev et al. [13], which
approximates the anti-phase bursting dynamics of a network of
two coupled Morris-Lecar neurons. In contrast to our model,
the network described in the Matveev et al. [13] paper does not
contain short-term synaptic depression, and burst termination
is instead accomplished through the dynamics of a slow T-type
calcium current.

The Poincaré map derived here replicates the results from
numerical simulations of the full two-cell ODE system: Given
the strength of maximum conductance between the two neurons,

fixed points of our map predict the type and period of n : n
patterns, the switch between burst solutions of different periods,
as well as the occurrence of co-existent solutions. In addition
to proving the existence and stability of fixed points, our map
shows that fixed points are created via a fold bifurcation of maps.
Finally, we use our map to derive algebraic conditions that allow
us to predict parameter values of the maximum conductance at
which n : n solutions bifurcate to (n + 1) : (n + 1) solutions,
and vice versa. Because our map is fully explicit, it lays the
framework for studying the effects of other model parameters on
network dynamics without the need to run expensive numerical
integrations of the ODEs.

This paper is organized as follows. First, we introduce the
network of two neurons, and describe the properties of single
cell and synapse dynamics. We use numerical simulations of
the network to provide an intuition for the range of possible
burst dynamics the system can produce. Next, we state and
justify the simplifying assumptions that are necessary for the
map construction. Finally, we analytically derive the first return
map of the depression variable as well as the conditions that
are required for stable n : n solutions. We end this work with a
discussion.

2. MATERIALS AND METHODS

We consider a pair of identical Morris-Lecar neurons [12],
with parameters from Bose and Booth [6]. The Morris-Lecar
model is a set of two first-order differential equations that
describe the membrane dynamics of a spiking neuron. The
depolarisation is modeled by an instantaneous calcium current,
and the hyperpolarisation by a slow potassium current and a leak
current. The membrane potential vi and potassium activation wi

of neuron i (i, j = 1, 2) is described by:

v̇i = f (vi,wi)− ḡsj(vi − vs), (1)

ẇi = h(vi,wi). (2)

Here vs is the inhibitory reversal potential, and ḡ and sj are
the maximal synaptic conductance and the synaptic gating,
respectively, constituting the total inhibitory conductance ḡsj
from neuron j to neuron i. Function f (vi,wi) describes the
membrane currents of a single cell:

f (vi,wi) = −gCam∞(vi)(vi − vCa)− gKwi(vi − vK)

− gL(vi − vL)+ I. (3)

The currents include a constant current I, and three ionic
currents: an instantaneous calcium current, a potassium current,
and a leak current, with respective reversal potentials vCa, vK,
and vL, as well as maximum conductances gCa, gK, and gL. The
function h(vi,wi) models the kinetics of the potassium gating
variable wi, and is given by

h(vi,wi) =
w∞(vi)− wi

τw
. (4)
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The steady-state activation functions m∞ and w∞ as
well as the default model parameters are described in the
Supplementary Material 1.

The dynamics of the synaptic interactions between the
neurons are governed by a synaptic gating variable si and a
depression variable di:

ḋi =

{

(1− di)/τa if vi < vθ ,

−di/τb if vi > vθ ,
(5)

ṡi =

{

−si/τκ if vi < vθ ,

0 if vi > vθ .
(6)

Variable di describes a firing rate dependent depletion
mechanism that governs the amount of depression acting
on the synapse. The model is agnostic with respect to the exact
mechanism of this depletion, be it pre- or post-synaptic. When
the voltage of cell i is above firing threshold (vi > vθ ), variable
di decays with time constant τb, and recovers with time constant
τa when voltage is below firing threshold (vi < vθ ). Since the
synaptic inhibition occurs on a much faster timescale than
synaptic depression, we assume that si is instantaneously reset to
di whenever vi increases above vθ , where it remains throughout
vi > vθ . Whenever vi < vθ , the synaptic variable decays
exponentially with time constant τκ . The equations for the
depression model are identical to the Bose and Booth [14] model.
These equations are a mathematically tractable simplification of
the established phenomenological depression model previously
described by Tsodyks and Markram [15].

When the total inhibitory conductance ḡsj is constant, the
membrane dynamics are determined by the cubic v-nullcline
v∞(vi) and the sigmoid w-nullcline w∞(vi), satisfying v̇i = 0
and ẇi = 0, respectively. In case of no inhibition (ḡ = 0),
the two curves intersect near the local minimum of v∞ to the
left of vθ (commonly referred to as “left knee” of v∞), creating
an unstable fixed point pf with a surrounding stable limit cycle
of period T = Ta + Ts (Figure 1A). Here Ta is the amount
of time the membrane potential spends above firing threshold
(vi > vθ ), while Ts is the time it spends below firing threshold
(vi < vθ ). Trajectories along that limit cycle have the familiar
shape of the action potential (Figure 1B). Applying a constant
nonzero inhibition, e.g., by letting sj = 1 and ḡ > 0, moves the
cubic v∞ with the ensuing unstable fixed point down w∞ in the
(vi,wi) -plane.When ḡ is large enough, the fixed point moves past
the left knee and becomes stable via a subcritical Andoronov-
Hopf bifurcation, attracting all previously periodic trajectories.
In the following section we will refer to the value of the total
conductance ḡsj at the bifurcation point as gbif .

The two-cell network model is numerically integrated using
an adaptive step-size integrator for stiff differential equations
implemented with XPPAUT [16] and controlled through the
Python packages SciPy [17] and PyXPP [18]. The following
mathematical analysis is performed on the equations of a single
cell. Unless required for clarity, we will therefore omit the
subscripts i, j from here on.

3. RESULTS

3.1. Anti-phase Burst Solutions
Short-term synaptic depression of inhibition in a half-center
oscillator acts as a burst terminationmechanism [7] and is known
to produce n : n anti-phase burst solutions of varying period.
Such n : n solutions consist of cells firing bursts of n spikes in
alternation. Figure 2D shows the timecourse of a typical 4 : 4
burst. While one cell is firing a burst it provides an inhibitory
conductance to the other cell, preventing it from firing.

Therefore, at any given moment one cell is spiking while the
other is suppressed and does not spike. We will refer to the
currently firing cell as “active” and we will call the suppressed
cell “silent.” Additionally, we will distinguish between two phases
of a n : n solution: We will refer to the time interval when
a cell is firing as the “active phase,” and we will call the
remaining duration of a cycle, when a cell is not firing, the
“silent phase.”

With each action potential of the active cell, short-term
depression leads to a decrease of d, and consequently of s.
If d depresses faster at spike time than it can recover in the
inter-spike-intervals (ISIs), the total synaptic conductance ḡs will
eventually become sufficiently small to allow for the silent cell to
be released [19, 20] and start firing, thus inhibiting the previously
active cell.While a cell is silent its depression variable can recover.
Once the silent cell becomes active again its synaptic inhibition
will be sufficient to terminate the burst of the previously active
cell and commence a new cycle. As previously demonstrated by
Bose and Booth [6], in a two-cell reciprocally inhibitory network
with synaptic depression the coupling strength ḡ determines the
type of n : n solution. Increasing ḡ produces higher n : n burst
solutions with more spikes per burst and a longer cycle period.
Figure 2 shows numerically stable n : n solutions for varying
values of ḡ. For small values of ḡ the network produces anti-phase
spiking 1 : 1 solutions (Figure 2A). As ḡ is increased the network
generates solutions of increasing n, that is 2 : 2 (Figure 2B), 3 : 3
(Figure 2C), and 4 : 4 (Figure 2D). When ḡ is sufficiently large
(Figure 2E), one of the cells continuously spikes at its uncoupled
periodT while the other cell remains fully suppressed. Depending
on the initial conditions either of the two cells can become
the suppressed cell, which is why the suppressed solution is
numerically bistable.

Branches of numerically stable n : n solutions and their
associated limit cycle period for varying values of ḡ are depicted
in Figure 3 (see Supplementary Material 2 for algorithm
description). Not only do higher n : n solutions branches require
stronger coupling ḡ, but also within n : n branches the period
increases with ḡ. In line with Bose and Booth [6] we find
small overlaps between solution branches indicating numerical
bistability, for example such as between the 2 : 2 and 3 : 3 solution
branches. Branches of higher n : n burst solutions occur on
increasingly smaller intervals of ḡ, for instance is the ḡ interval
of the 5 : 5 branch shorter than that of the 4 : 4 branch and so on.
The interval between the 5 : 5 branch and the suppressed solution
(region between dotted lines in Figure 3) not only contains even
higher numerically stable n : n solutions, such as 11 : 11 bursts,
but also other non-symmetric n :m solutions as well as irregular,
non-periodic solutions. However, the analysis in the following
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FIGURE 1 | Periodic solution of ML model neuron. (A) Projection of limit cycle onto (v,w)-phase plane with v-nullcline (blue, v∞) and w-nullcline (orange, w∞).

Unstable fixed point pf is indicated by an orange dot; firing threshold vθ is denoted by a dashed line. (B) Corresponding voltage trace v(t) of an action potential.

sections will only be concerned with the numerically stable and
symmetric n : n solutions.

3.2. Mathematical Analysis of Two-Cell
Network
The goal of the following mathematical analysis is to reduce the
complexity of the eight-dimensional system to a more tractable
problem. As we will explain, we do this by approximating the full
dynamics by a reduced system that describes the evolution of the
depression variable d of either of the two cells. We will construct
the solution of d in a piecewise manner from one spike to the
next, first during the active phase, and then during the silent
phase. This construction will require two assumptions about the
membrane and synaptic dynamics. The first assumption states
that during a burst the active cell fires at its uncoupled period
T, which simplifies the construction of the solution of d. The
second assumption states that once the inhibitory conductance
acting on the silent cell drops below a critical threshold, the
cell is immediately released and fires. The second assumption
is necessary to predict the release time of the silent cell, which
allows us to model the recovery of d during the silent phase. In
other words, the second assumption requires that the release of
the silent cell from inhibition depends only on the timecourse
of the inhibition, and not on the membrane dynamics of the
silent cell. The approximate validity of both assumptions can
be observed in coupled relaxation-oscillator types of neurons
such as the Morris-Lecar model we use, and will be numerically
verified below. Both assumptions were first used in Bose and
Booth [6] to derive algebraic conditions that guarantee the
periodicity of the depression variable for different n : n solutions.
However, here we will use these assumptions to construct a
Poincaré map of d, which will provide a geometric intuition for
the dynamics of the full two-cell network and its dependence on
model parameters.

Our first assumption about the model states that the active cell
fires at its uncoupled period T, that is, during the active phase of
a burst we have ISI = T. Solution profiles in Figure 2 suggest
that the ISIs are indeed approximately constant. Numerically
computing ISIs for all stable n : n solutions in Figure 3 reveals
that ISIs differ by at most 1ms from the intrinsic firing period
T ≈ 376ms. Assuming ISI = T seems reasonable given that
inhibition acting on the silent cell decays exponentially on a
much shorter timescale τκ than the duration of the ISI. Therefore,
once the silent cell is released its trajectory quickly approaches
the spiking limit cycle. Naturally the above assumption requires
a sufficiently small τκ , and fails when τκ is large. In the
Supplementary Material 3we numerically explore how different
values of τκ affect the ISIs of the active cell. Finally, assuming
ISI = T allows us to ignore the non-linear membrane dynamics
during the active phase, and to construct the evolution of the
synaptic variables iteratively from spike to spike.

Our second assumption states that the silent cell is released
and spikes as soon as the total inhibitory conductance ḡs acting
on it drops below some threshold value. We call this critical
threshold value the “release conductance,” and define it as the
value of ḡs at the time when the voltage of the silent cell first
crosses the firing threshold vθ , that is when that cell is released
and fires its first spike. Recall that when a cell is silent its v- and
w-nullclines intersect at a stable fixed point and ḡs > gbif . A
sufficient condition for the silent cell to be released is therefore
ḡs < gbif . However, depending on the topology of the stable
manifold, the (v,w)-trajectory of the silent cell can escape the
stable fixed point and allow the cell to produce a spike for
ḡs > gbif . In this case the value of the release conductance
depends on the type of n : n solution and the coupling strength
ḡ. For any stable n : n solution in Figure 3 we can compute
an associated release conductance numerically by recording the
value of ḡs at the time of the first spike of the silent cell. Such
values of the release conductance are shown in Figure 4A, and
the graph suggests that as n increases, the value of the release
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FIGURE 2 | Voltage traces of cell 1 (blue) and cell 2 (orange) of numerically

stable solutions. (A–D) 1 : 1, 2 : 2, 3 : 3, and 4 : 4 anti-phase solutions for

increasing values of ḡ. (E) Suppressed solution.

conductance converges to some constant conductance value g⋆ ≈

0.0068mS/cm2. Here g⋆ is the value of ḡs at the end of a cycle
of a suppressed solution, just before the active cell spikes. Using
g⋆ as a constant approximation for the release conductance will
allow us to formulate a scalar condition that predicts the release
time of the silent cell. Moreover, using g⋆ is convenient because
its exact value can be derived explicitly, as will be shown in the
following section.

Assuming a constant release conductance for all n : n solutions
will naturally introduce some error in the prediction of the
release time of the silent cell. We can compute that error for any
associated solution in Figure 4A by calculating the time interval
between the first spike of the silent cell and the time when ḡs
first crosses g⋆. We will call this time interval the “release delay.”
Figure 4B shows the numerically computed graph of such release
delays. For n > 1 the absolute delays are smaller than 2ms.
Therefore, using

ḡs = g⋆ (7)

as a constant release condition for all n : n solutions allows us
to accurately predict the timing of the release of the silent cell.
And to simplify the terminology, from now on we will refer to
Equation (7) simply as the “release condition.”

In summary:We assume that the release condition is sufficient
to predict when the silent cell is released. Due to the symmetry of
n : n solutions the release occurs at exactly half the period of the
full cycle. The release time therefore uniquely determines the type
of n : n solution. Furthermore, computation of the release time
does not depend on the membrane nor the synaptic dynamics
of the silent cell. Instead, the solution of the synaptic variable
s of the active cell is sufficient to predict when ḡs = g⋆ is
satisfied. Finally, the value of s at each spike time is determined
by the evolution of the depression variable d of the active cell.
Constructing a solution of d during the active phase of either cell
will therefore uniquely determine the solution of the full eight-
dimensional network. However, finding the solution d requires
us to know the initial value d(0) at the start of a cycle at t =

0. In the next section we will construct a scalar return map
that tracks these initial values d(0) from cycle to cycle of stable
n : n solutions.

3.3. Construction of the Scalar Poincaré
Map
In this section we construct the scalar Poincaré map 5n : d

⋆ 7→

d⋆. Here the discrete variable d⋆ tracks the values of the
continuous depression variable d at the beginning of each n : n
burst. The map 5n therefore describes the evolution of d, of
either of the two cells, from the beginning of one cycle to the
beginning of the next cycle. To simplify the map construction
we will assume that an active cell fires exactly n times before it
becomes silent. We will construct 5n by evolving d first during
the active phase and then during the silent phase of the n : n limit
cycle. The terms “active” and “silent” phases will be defined in
terms of the state of the depression variable. During the active
phase the depression variable of the active cell both decays and
recovers, while during the silent phase it only recovers. First, let
us give explicit definitions of the active and silent phases of a
burst. A schematic illustration of both phases is given in Figure 5.

Suppose that at t = 0 cell 1 becomes active with some initial
d(0). Cell 1 then fires n spikes at the uncoupled period T =

Ta + Ts. Let s(t) and d(t) be the corresponding solutions of the
synaptic and depression variables of cell 1. After n spikes the
total conductance ḡs(t) acting on the silent cell 2 has decayed
sufficiently to satisfy the release condition (Equation 7). That is
at some time t = (n − 1)T + Ta + 1t, where 1t < Ts will be
determined below, we have ḡs(t) = g⋆ [6]. Cell 2 is then released
and prevents cell 1 from further spiking. Once released, cell 2 also
fires n spikes until cell 1 becomes active once again. Let Pn denote
the full cycle period of a n : n solution:

Pn = 2
[

(n− 1)T + Ta + 1t
]

. (8)

We can now define the active and silent phases of cell 1 explicitly.
The active phase of a burst is the interval that lasts from the first
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FIGURE 3 | Numerically computed bifurcation diagram of the cycle period of stable n : n solutions for increasing coupling strength ḡ. Regions of bistability are

indicated by light blue vertical stripes. Dashed lines show the interval between the 5 :5 and the suppressed solution, where higher period n : n solutions occur on

increasingly smaller intervals of ḡ.

spike time up until the beginning of the silent phase of the last
spike, that is for time 0 < t < (n − 1)T + Ta. During the active
phase of cell 1, the silent cell 2 is inhibited sufficiently strong to
prevent it from firing, hence ḡs > g⋆. The silent phase of cell 1
is the remaining duration of the cycle when the cell is not firing,
that is for (n − 1)T + Ta < t < Pn. The silent phase lasts for
(n− 1)T + Ta + 21t.

Note that only the silent phase depends on 1t, which will play
a central role in the construction of 5n. From Equation (8) 1t
can be computed as

1t =
1

2
Pn − (n− 1)T − Ta. (9)

We can use Equation (9) and the numerically computed
bifurcation diagram of the period for stable n : n solutions in
Figure 3 to obtain the graph of 1t as a function of ḡ (Figure 6).
Each continuous branch of 1t is monotonically increasing and
corresponds to a n : n burst: Stronger coupling ḡ increases the
total synaptic conductance ḡs that acts on the silent cell, thus
delaying its release. It is easy to see that for any n-branch we have
1t < Ts: Once 1t crosses Ts, the active cell can “squeeze in" an
additional spike and the solutions bifurcate into a (n+1) : (n+1)
burst.

Distinguishing between the active and silent phases of a
n : n cycle allows us to describe the dynamics of the depression
variable d explicitly for each phase. As can be seen from
Figure 5C, during the active phase d depresses when v > vθ

and recovers when v < vθ . In contrast, during the silent phase d
only recovers and does not depress. Given the initial d⋆ = d(0) at

the beginning of the cycle and the number of spikes in the active
phase n, we can now construct the burst map 5n. The map

5n(d
⋆) = Qn

[

Fn(d
⋆
)

] (10)

is a composition of two maps. Map

Fn : d
⋆
7→ 1t (11)

models the evolution of d in the active phase. Fn takes an initial
value d⋆ and calculates 1t. Map

Qn :1t 7→ d⋆ (12)

models the recovery of d in the silent phase. Given some 1t map
Qn computes d⋆ at the start of the next cycle.

Our aim in the following analysis is to elucidate the properties
of 5n and to understand the structure of its parameter space
by exploring how the stable and unstable fixed points of 5n are
created. To that effect it will be useful to include not only positive,
but also negative values of d⋆ to the domain of 5n. But it is
important to add that values d⋆ < 0 are biologically impossible as
the depression variable models a finite pool of neurotransmitters,
and therefore must be positive. Because 5n maps first from d⋆ to
1t, and then back to d⋆, we will also consider negative values of
1t, interpreting them as n : n solutions with partially overlapping
bursts. As will become evident, 1t < 0 is only a formal violation
of the biological realism of themap5n, as numerically stable n : n
solutions of the full system of ODEs only exist for 1t > 0.
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FIGURE 4 | Numerically computed values of the release conductance (A) and

release delay (B) for various n : n solutions and values ḡ. The dashed line

indicates the analytical approximation of the release conductance by g⋆.

We start the construction of 5n by first considering the active
phase and building the map Fn. At each spike time tk where
d(tk) = dk, variable d decays first for the duration of Ta, as
described by the solution to Equation (5). At t = tk + Ta we
have

d(tk + Ta) = dke
−Ta/τb . (13)

The depression variable then recovers for Ts until tk+1, where for
0 < t < Ts:

d(tk+1) = 1− (1− dke
−Ta/τb )e−t/τa . (14)

By substituting t = Ts we can build a linear map that models the
depression of d from spike time tk to the subsequent spike time
tk+1 during the active phase:

dk+1 = λρdk + (1− ρ), (15)

where to keep the notation simple we let

λ : = exp(−Ta/τb), (16)

ρ : = exp(−Ts/τa). (17)

Given constant Ta and Ts, the derived parameter λ determines
how much the synapses depresses when v > vθ , while ρ

FIGURE 5 | Schematic diagram of the active and silent phases for a 3 : 3

solution. (A) Membrane potentials of cell 1 (v1 blue) and cell 2 (v2 orange).

Gray patches depict 1t intervals. (B) Total synaptic conductance of cell 1 (ḡs1)

as it crosses the release conductance g⋆. (C) Solution d1(t) of depression

variable of cell 1, during active (blue) and silent phases (orange).

determines how much it recovers when v < vθ . Since 0 < λ, ρ <

1, the map in Equation (15) is increasing and contracting, with a
fixed point at

ds =
1− ρ

1− λρ
, (18)

where 0 < ds < 1. The value ds is the maximum depression
value that can be observed in the suppressed solution where the
active cell fires at its uncoupled period T (see Figure 2E). Using
the release condition in Equation (7) allows us to derive the value
of the minimum coupling strength that will produce the full
suppressed solution, denoted as ḡs. Solving Equation (7) for s(t)
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FIGURE 6 | Numerically computed bifurcation diagram of 1t for varying ḡ.

Each continuous branch is associated with a stable n : n burst solution.

Increasing ḡ increases 1t until the solutions bifurcate at 1t ≈ Ts.

with t = Ts and setting the initial value s(0) = dsλ then gives us
the aforementioned approximation of the release conductance g⋆:

ḡsdsλe
−Ts/τκ = g⋆

≈ 0.0068mS/cm2. (19)

By substituting the definition of ds in Equation (18) and
rearranging, we can also write ḡs as a function of λ and ρ:

ḡs(λ, ρ) =
1/λ − ρ

1− ρ
eTs/τκ g⋆. (20)

Note that the above dependence of ḡs on λ is linear and
monotonically decreasing. Increasing λ reduces the strength of
the depression of the active cell. This in turn allows the active cell
to fully suppress the silent cell at smaller values of ḡ.

Solving Equation (15) gives us the linear map δn, that for some
initial d⋆ computes the depression at the nth spike time, that is
d(tn):

δn(d
⋆) = (λρ)n−1d⋆

+ (1− ρ)

n−2
∑

i=0

(λρ)i. (21)

Since λ < 1, function δn is a linearly increasing function of
d⋆ with a fixed point at ds for all n. Having identified d after n
spikes, we can now use the release condition ḡs = g⋆ (Equation
7) to find 1t. At the last (nth) spike of the active phase at time
tn = (n− 1)T the synapse variable s is set to the respective value
of d(tn) = δn(d

⋆), and mirrors the value of d for the duration of

Ta. At the end of the active phase at time tn + Ta variable d has
decayed to δn(d

⋆)λ, therefore

s(tn + Ta) = δn(d
⋆)λ. (22)

Finally s decays exponentially for 1t < Ts. Solving (Equation 6)
with initial condition s(0) = δn(d

⋆)λ yields:

s(1t) = δn(d
⋆)λe−1t/τκ . (23)

Substituting s(1t) into s of the release condition (Equation 7)
gives then

ḡδn(d
⋆)λe−1t/τκ = g⋆. (24)

Our assumption of the release condition guarantees that the silent
cell 2 spikes and becomes active when ḡs−g⋆ crosses zero. Solving
(Equation 24) for 1t allows us to compute 1t as a function of d⋆,
which defines the map Fn:

Fn(d
⋆) : = τκ ln

(

ḡ

g⋆
λδn(d

⋆)

)

= 1t. (25)

Figure 7A shows Fn for various n, which is a strict monotonically
increasing function of d⋆ as well as ḡ. Larger values of d⋆ and
ḡ, respectively, cause stronger inhibition of the silent cell, and
therefore prolong its release time and the associated 1t. Map Fn
is defined on d⋆ > da, where da is a vertical asymptote found by
solving δn(d

⋆) = 0 in Equation (21) for d⋆, which yields

da(n) = −
(1− ρ)

∑n−2
i=0 (λρ)

i

(λρ)n−1
≤ 0 . (26)

We now turn to the construction of map Qn, which describes the
recovery of the depression variable during the silent phase. As we
have identified earlier, the recovery of d in the silent phase of a
n : n solution starts at time tn + Ta and lasts for the duration of
(n− 1)T+Ta+ 21t. Substituting that duration into the solution
of d (Equation 5) with the initial condition d(0) = δn(d

⋆)λ yields
the map Qn:

Qn(1t) : = 1− [1− δn(d
⋆)λ]e−[(n−1)T+Ta+21t]/τa . (27)

We can find δn(d
⋆), i.e., the value of d at the nth spike time, by

rearranging the release condition in Equation (24):

δn(d
⋆) =

1

ḡλ
g⋆e1t/τκ . (28)

Map Qn is shown in Figure 7B for various values n. Note that
Qn is monotonically increasing as larger values 1t imply a longer
recovery time, and henceQn grows without bound. All curvesQn

intersect at some 1t = τκ ln
[

ḡ/g⋆
]

where

Qn

[

τκ ln

(

ḡ

g⋆

)]

= 1. (29)

As we will show in the next section, all fixed points of the full
map 5n occur for d

⋆ < 1. We will therefore restrict the domain
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FIGURE 7 | Maps Fn (A) and Qn (B) for ḡ = 0.5 mS/cm2 and n = 1, 2, 3, 4. Curves Fn intersect at d⋆ = ds which is indicated by a dashed vertical line. Curves Qn

intersect at 1t = τκ ln
(

ḡ/g⋆
)

.

FIGURE 8 | Map 5n :d
⋆ 7→ d⋆. (A) 5n for n = 1, 2, 3, 4 at ḡ = 0.5 mS/cm2. (B) 52 with n = 2 for various ḡ. The identity function is illustrated by a diagonal line.

of Qn to (−∞, τκ ln
[

ḡ/(g⋆)
]

) and the codomain to (−∞, 1).
Additionally, while values 1t > T will be helpful in exploring
the geometry of 5n, recall from Figure 6 that in the flow system
n : n solutions bifurcate into (n + 1) : (n + 1) solutions exactly
when 1t = Ts, and we will address this concern in the last part
of our map analysis.

Having found Fn and Qn, we can now construct the full map
5n(d

⋆) = Qn

[

Fn(d
⋆)

]

:

5n(d
⋆) = 1−

[

1− δn(d
⋆)λ

][ ḡ

g⋆
δn(d

⋆)λ
]−τ

e−[(n−1)T+Ta]/τa ,

(30)
where we substituted τ = 2τk/τa. Recall that δn(d

⋆) and g⋆

are obtained from Equations (21) and (19), respectively. Since d
is the slowest variable of the system and τa ≫ τκ , we will also
assume τ < 1. Figure 8A depicts 5n for various n. Intersections

of 5n with the diagonal are fixed points of the map. Figure 8B
shows 52 with n = 2. Varying the synaptic strength ḡ moves
the curves 5n up and down the (d⋆,5n)-plane. For ḡ < 0.0015
mS/cm2 map 52 has no fixed points. As ḡ is increased to
ḡ ≈ 0.0015 mS/cm2, curve 52 coalesces with the diagonal
tangentially. When ḡ > 0.0015 mS/cm2, a pair of fixed points
emerge, one stable and one unstable fixed point, indicating the
occurrence of a fold bifurcation of maps.

5n is monotonically increasing with respect to ḡ and also d⋆:

d5n

dḡ
> 0, (31)

d5n

dd⋆
> 0, (32)

The monotonicity of 5n w.r.t. ḡ is evident from Equation (30),
while the monotonicity w.r.t. d⋆ follows from the monotonicity
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of both Qn and Fn. In the following sections we will heavily rely
on this monotonicity property of5n. Just as Fn, curves5n spawn
at the asymptote da (Equation 26), and because

lim
ḡ→∞

5n = 1 for all n, (33)

fixed points of 5n lie in (da, 1).

3.4. Existence and Stability of Fixed Points
We introduce the fixed point notation d⋆

f
with 5n(d

⋆
f
) = d⋆

f
.

The existence of fixed points d⋆
f
for ḡ sufficiently large can be

shown from the strict monotonicity of 5n with respect to ḡ and
d⋆ (Equations 32, 31), as well as the fact that the slope of 5n is
monotonically decreasing,

(

d

dd⋆

)2

5n < 0. (34)

In the limit d⋆ → da the value of5n decreases without bound for
any ḡ > 0. In the limit ḡ → 0, 5n also decreases without bound,
but as ḡ → ∞ values of 5n approach 1. It follows from Equation
(31) and the intermediate value theorem that for some ḡ large
enough5n intersects the diagonal. Moreover, because 5n and its
slope are monotonic with respect to d⋆, there exists some critical
fixed point (d⋆

b
, ḡb) where5n aligns with the diagonal tangentially

with

5n(d
⋆
b, ḡb) = d⋆

b, (35)

d

dd⋆
5n(d

⋆
b, ḡb) = 1. (36)

3.5. Fold Bifurcations of Maps
Fixed points of 5n satisfy the fixed point equation

8n(d
⋆, ḡ) : = 5n(d

⋆, ḡ)− d⋆
= 0. (37)

As we have already shown, for ḡ > ḡb(n) solutions to Equation
(37) exist in pairs of stable and unstable fixed points. Solving
(Equation 37) explicitly for d⋆ is not trivial, but solving for ḡ is
straightforward and given by ḡ = Gn(d

⋆), where

Gn(d
⋆) : =

g⋆

δn(d⋆)λ

( [1− λδn(d
⋆)]

1− d⋆
e−[(n−1)T+Ta]/τa

)1/τ
(38)

is defined for d⋆ < 1 and δn(d
⋆) > 0. Plotting d⋆ against ḡ gives

the fixed point curves, which are shown in Figure 9A. Note the
typical quadratic shape of a fold bifurcation of maps. It is also
evident that the fold bifurcations occur for increasingly smaller
ḡ as n is increased. Moreover, the graph suggests that for n > 1
unstable fixed points have negative values of d⋆.

Equation (38) also allows us to find the critical fixed point
connected with the fold bifurcation, namely

[

d⋆
b
(n), ḡb(n)

]

, which
is the global minimum of Gn(d

⋆
f
):

d⋆
b(n) = argminGn(d

⋆
f ), (39)

ḡb(n) = minGn(d
⋆
f ). (40)

Function Gn is strictly monotonic on the respective intervals of
d⋆
f
that correspond to the stable and unstable fixed points, that is

dGn

dd⋆
f

> 0, for d⋆
f > d⋆

b(n) stable, (41)

dGn

dd⋆
f

< 0, for d⋆
f < d⋆

b(n) unstable, (42)

which allows us to express the stable and unstable fixed points as
the inverse of Gn on their respective intervals of d⋆

f
. Because we

are primarily interested in the stable fixed points d⋆
f

> d⋆
b
(n), we

define the stable fixed point function d⋆
f
= φn(ḡ) as

φn(ḡ) : = G−1
n (ḡ). (43)

Function φn(ḡ) is also monotonic, and is therefore
straightforward to compute numerically. We use the Python
package Pynverse [21] for that purpose.

Having found the stable fixed points d⋆
f
as a function of ḡ,

we can now compute the associated cycle period. Recall that the
period is given by Equation (8), which can be written as a function
of ḡ:

Pn(ḡ) = 2
(

(n− 1)T + Ta + Fn
[

φn(ḡ)
︸ ︷︷ ︸

d⋆
f

, ḡ
]

)

, (44)

where map Fn (Equation 25) calculates 1t given a stable fixed
point d⋆

f
= φn(ḡ). Figure 9B shows the period Pn(ḡ) computed

from Equation (44) versus the cycle period of stable n : n
solutions, computed from numerically integrating the full system
of ODEs. The overlap between blue and orange curves suggests
that stable fixed points of 5n accurately predict the cycle period
of stable solutions of the flow system.

It is evident from Figure 9A that φn is strictly increasing with
ḡ. This property follows directly from the quadratic normal form
of the fold bifurcation, but can also be shown using implicit
differentiation and the fixed point equation 8n[φn(ḡ), ḡ] = 0 in
Equation (37). For d⋆

f
= φn(ḡ) > db(n) we get:

dφn

dḡ
= −

∂8n/∂ ḡ

∂8n/∂d⋆
=

∂5n/∂ ḡ

1− ∂5n/∂d⋆
> 0. (45)

The inequality follows from ∂5n/∂ ḡ > 0 and the fact that
∂5n/∂d

⋆ < 1 for d⋆ > db(n). Equation (45) allows us to
explain why the period Pn increases with ḡ, as seen in Figure 9B.
Differentiating Pn gives:

dPn

dḡ
= 2▽Fn(d

⋆
f , ḡ) ·

[

∂φn/∂ ḡ
1

]

> 0, (46)

where the partial derivatives of Fn(d
⋆
f
, ḡ) are:

∂Fn

∂d⋆
f

= τκ

(λρ)n−1

δn(d
⋆
f
)

> 0. (47)

∂Fn

∂ ḡ
=

τκ

ḡ
> 0. (48)
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FIGURE 9 | (A) Fold bifurcation diagrams of stable (continuous curves) and unstable (dotted curves) fixed points of 5n for varying n. (B) Cycle periods computed from

stable fixed points of 5n (blue), and the corresponding periods from stable n : n solutions acquired via numerical integration of the system of ODEs (orange).

Equation (46) and (47) have an intuitive biological interpretation:
Increasing the coupling strength between the neurons leads to
overall stronger inhibition of the silent cell, which delays its
release and leads to a longer cycle period. The latter allows more
time for the synapse to depress in the active phase and recover
in the silent phase, resulting in overall larger values of d⋆

f
, that is

weaker depression at the burst onset.
While fixed points of our Poincaré map predict the cycle

period of the flow system excellently, its construction relies on
the strong assumption that the active phase contains exactly n
spikes. As is evident from Figure 9B this assumption is clearly
violated in the flow system, as stable n : n bursts exists only
on certain parameter intervals of ḡ. The multi-stability of fixed
points of maps 5n in Figure 9B does therefore not imply a
similar multi-stability of the flow system. In the last sub-section
we will analyze the mechanisms that guide how the stable n : n
are created and destroyed, and use our previous analysis to derive
the corresponding parameter intervals of ḡ where such solutions
exist.

3.6. Stable Solution Branch Borders
Let ḡL(n) and ḡR(n) denote the left and right parameter

borders on ḡ where stable n : n solutions exist. That is, as
ḡ is increased stable n : n solutions are created at ḡL(n) and
destroyed at ḡR(n). When ḡ is reduced beyond ḡL(n), n : n
solutions bifurcate into (n − 1) : (n − 1) solutions, while
when ḡ is increased beyond ḡR(n), n : n solutions bifurcate
into (n + 1) : (n + 1) solutions. Let us briefly recap our
observations regarding ḡL(n) and ḡR(n) from the numerical
bifurcation diagram in Figure 9B. For n > 1 there are the
following relations:

ḡL(n) < ḡR(n), (49)

ḡL(n) < ḡR(n+ 1) and ḡR(n) < ḡL(n+ 1), (50)

ḡL(n) < ḡR(n) (51)

ḡL(n) < ḡL(n+ 1) and ḡR(n) < ḡR(n+ 1) (52)

Equations (49, 50) are self-explanatory. Equation (51) formally
describes occurrence of co-existence between stable n : n and (n+
1) : (n + 1) solutions. Equation (52) implies that the parameter
interval on ḡ of n : n solutions decreases with n, in other words,
bursts with more spikes occur on increasingly smaller intervals of
the coupling strength. All of the above relations are reminiscent
of the bifurcation scenario of type period increment with co-
existent attractors, first described for piecewise-linear scalarmaps
with a single discontinuity by Avrutin and colleagues [e.g., see
22–24]. While our maps 5n are fully continuous, the above
observation suggests that a different piecewise-linear scalar map
that captures such period increment dynamics of the full system
might exist. We will explore what such a map might look like in
the discussion.

Let us now find algebraic equations that will allow us to
calculate the critical parameters ḡL(n) and ḡR(n) associated with
the left and right n : n branch borders. Recall that the period Pn
derived from the fixed points of 5n is an increasing function of
ḡ (Equation 46). That is, as the coupling strength increases, it
takes longer for the total synaptic conductance to fall below the
value of the release conductance, which delays the release of the
silent cell, and 1t becomes larger. When 1t > Ts, the active
cell can produce another spike and the solution bifurcates into
a (n + 1) : (n + 1) solution. Note, however, that at ḡL(n) the
bifurcation into a (n−1) : (n−1) does not occur at1t = 0. Here
the mechanism is different: A sufficient reduction of ḡ causes the
total synaptic conductance to drop below the release conductance
in the previous ISI, which allows the silent cell to be released one
spike earlier.

Using the above reasoning we can now formulate the
conditions for both bifurcations at ḡL(n) and ḡR(n). As in the
previous sections, we will only restrict ourselves to the analysis of
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FIGURE 10 | Bifurcation diagram of the period of stable n : n solutions computed analytically from fixed points of 5n, plotted on the respective intervals of

ḡ ∈ [ḡL(n), ḡR(n)] (blue), and computed from numerical integrations of the ODEs (orange).

the stable fixed points given implicitly by d⋆
f
= φn(ḡ) (Equation

43). At the right bifurcation border ḡR(n) we have 1t = Ts, and
after substituting our Fn map (Equation 25) this translates into

ḡL(n+ 1) < ḡR(n) (53)

which lets us define a function

ḡR(n+ 1)− ḡL(n+ 1) < ḡR(n)− ḡL(n) (54)

whose root is the desired right bifurcation border ḡR(n). In case
of the left bifurcation border at ḡL(n), the release condition is
satisfied just before the active cell has produced its nth spike,
where total synaptic conductance is given by

ḡδn−1

[

φn(ḡ)
]

λe−Ts/τκ = g⋆, (55)

which can be rewritten as a function

Ln(ḡ) : = ḡδn−1

[

φn(ḡ)
]

λe−Ts/τκ − g⋆, (56)

whose root is ḡL(n). Both Rn and Ln are increasing with
respect to ḡ, which makes finding their roots numerically
straightforward.

Figure 10 shows the period Pn(ḡ) as predicted by the fixed
points of 5n (Equation 44) plotted on their respective intervals
ḡ ∈ [ḡL(n), ḡR(n)] (blue), as well as the cycle period acquired
from numerical integration of the full system of ODEs (orange).

Here gL(n) and ḡR(n) were computed from Equations (56) and
(54), respectively. Note that the width of n : n branches decreases
with n, which confirms the inequality in Equation (52). That is,
bursts with more spikes occur on increasingly smaller intervals
of ḡ, which can be interpreted as a lost of robustness with respect
to the coupling strength of long-cyclic solutions. We also note
the occurrence of bistability between pairs of n : n and (n +

1) : (n+ 1) branches, which also confirms our initial observation
in Equation (51). As previously observed in Figure 9B our maps
prediction of the cycle period is accurate. However, the mismatch
in the left and right branch borders is significant. This mismatch
might be due to the millisecond release delay error (Figure 4B)
induced by our assumption of a constant release conductance
for all n : n solutions (see Equation 7). Another explanation for
the border mismatch could be that our assumptions on the
time scales of (v,w) vs s- and d-dynamics do not hold near
the stability borders, and that they can only be captured by
more complex approximations. Nevertheless, our map allows
approximate extrapolation of the cycle period and the respective
bifurcation borders where numerical integration of the ODEs
would require a very small time step.

4. DISCUSSION

Synaptic depression of inhibition is believed to play an important
role in the generation of rhythmic activity involved in many
motor rhythms such as in leech swimming [25] and leech
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heart beat [26], and in the lobster pyloric system [1, 2]. In
inhibitory half-center CPGs, such as believed to be found in the
struggling network of Xenopus tapdoles, synaptic depression can
act as a burst termination mechanism, enabling the alternation
of bursting between the two sides of the CPG [11]. Modeling
can shed light on the underlying mathematical principles that
enable the generation of such anti-phase bursts, and help identify
the components that control this rhythm allowing it to switch
between different patterns.

To study the mechanisms of burst generation in half-
center CPGs we have analyzed a neuronal model network
that consists of a pair of inhibitory neurons that undergo a
frequency dependent synaptic depression. When the strength
of synaptic inhibition between the neurons is varied, such a
simple network can display a range of different n : n burst
patterns. Using the timescale disparity between neuronal and
synaptic dynamics, we have reduced the network model of eight
ODEs to a scalar first return map 5n of the slow depression
variable d. This map 5n is a composition of two maps, Fn
and Qn, that model the evolution of the depression during
the active and silent phases of n : n solutions respectively. Both
Fn and Qn maps are constructed by using the dynamics of
a single uncoupled neuron. Fixed points of 5n are created
in pairs through a fold bifurcation of maps, where the stable
fixed point correspond to stable n : n burst solutions of the
full two-cell system of ODEs. The results from our one-
dimensional map match excellently with numerical simulation
of the full network. Our results are also in line with Brown’s
[7] rhythmogenesis hypothesis, namely that synaptic depression
of inhibition is a mechanism by which anti-phase bursting
may arise.

We have studied n : n solutions assuming that the synaptic
coupling ḡ between the two cells is symmetrical. However,
Bose and Booth [6] have shown that asymmetrical coupling
(ḡ1, ḡ2) can result in network solutions of type m : n, where one
cell fires m spikes, while the other n spikes. It is conceivable
that our map construction can be extended to also capture
such m : n solutions. Remember, in the case of symmetrical
coupling with n : n solutions, the timecourse of the depression
variables d1 and d2 were in anti-phase, and it was therefore
sufficient to track only one of the two variables. To capture
the full network dynamics in case of asymmetrical coupling
one would also have to account for burst patterns of type
m : n, where the solutions of the depression variables d1
and d2 are not simply time-shifted versions of each other.
To do that, one could track the state of both variables by
constructing a two-dimensional Poincaré map 5(d1, d2). While
geometrical interpretation of two-dimensional maps remains
challenging, there exist a number of recent studies which have
employed novel geometrical analysis methods to understand
the dynamics of two-dimensional maps of small neuronal
networks [27–29]. Generally speaking, our map construction
approach is applicable to any small network, even with
more than two neurons. As long as the network dynamics
occur on separable timescales the main challenges to the
map construction lie in identifying the slowest variables, and
finding an appropriate, simplified description of their respective

timecourses. In theory, the reduction approach can be also
applied to neuronal systems with more than two timescales [e.g.,
see 30].

In tadpoles, struggling is believed to be initiated by an increase
in the firing frequency of reciprocally inhibitory commisural
interneurons, which has been hypothesized to lead to stronger
synaptic depression of inhibition and result in the iconic anti-
phase bursting [11]. It would therefore be interesting to study
how varying the cell intrinsic firing period T could affect the
network rhythm. While we have laid out the framework to
perform such an investigation, due to the choice of neural model
we have avoided varying T. Recall that T is a derived parameter in
the Morris and Lecar [12] model, and can therefore not be varied
in isolation of other model parameters. This makes verifying
any analytical results from our map analysis via numerical
integration of the ODEs difficult. A more abstract model such
as the quadratic integrate-and-fire model [31] allows varying T
independently of other model parameters, and could be more
fitting for such an investigation.

Our simulations of the network showed that n : n solutions
lose robustness as their period is increased. That is, solutions
with a larger cycle period occur on increasingly smaller intervals
of the coupling strength. We were able to replicate this finding
by numerically finding the respective left and right borders of
stable n : n branches of fixed points of 5n, and showing that
the distance between these borders shrinks with n. We have also
noted the resemblance of our bifurcation diagram to one where
such n : n branches are created via the bifurcation scenario of type
period-increment with co-existent attractors, first described for
scalar linear maps with a discontinuity [24, 32]. It is worthwhile
noting that the bifurcations of piecewise linear maps studied by
Avrutin et al. [32] result from a “reinjection” mechanism [33].
Here the orbit of a map performs multiple iterations on one
side of the discontinuity, before jumping to the other side and
being reinjected back into the initial side of the discontinuity.
The stark difference of such a map to our map is that reinjection
allows a single scalar map to produce periodic solutions of
varying periods. In contrast, we rely on n different maps 5n

to describe the burst dynamics without explicitly capturing the
period increment dynamics. It is therefore conceivable that
despite the complexity and non-linearity of the dynamics of
our two-cell network, a single piecewise-linear map might be
already sufficient to capture the mechanisms that shape the
parameter space of the full system. In their discussion, Bose and
Booth [6] briefly outline ideas about how such a linear map could
be constructed.

In addition to stable n : n solutions, the numerical
continuation by Bose and Booth [6] also revealed branches
of unstable n : n solutions. While we have identified fold
bifurcations of our burst map, we have not found corresponding
bifurcations of the flow ODE system, and have generally ignored
the significance of unstable map fixed points. However, the
quadratic nature of the period bifurcation curve is reminiscent
of a saddle-node on an invariant circle (SNIC) bifurcation,
where the oscillation period lengthens and finally becomes
infinite as a limit cycle coalesces with a saddle point. SNIC
bifurcations have been studied in great detail [e.g., 34], and a
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next step would be to provide a rigorous explanation of not
only the map dynamics, but also of the flow dynamics of the
ODE system.

We have shown that when the strength of the maximum
synaptic conductance is varied, synaptic depression of
inhibition can enable our two-cell network to produce burst
solutions of different periods. This result is in line with the
idea that one role of synaptic depression in the nervous
system may be to allow a finite size neuronal network to
participate in different tasks by producing a large number of
rhythms [6, 11, 35]. To change from one rhythm to another
would only require a reconfiguration of the network through
changes in synaptic coupling strength. Thus short-term
synaptic depression of inhibition may provide means for a
network to adapt to environmental challenges without changing
its topology, that is without the introduction or removal
of neurons.
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A corrigendum on

A scalar poincaré map for anti-phase bursting in coupled inhibitory

neurons with synaptic depression

by Olenik M, and Houghton C. (2022). Front. Appl. Math. Stat. 8:822782.

doi: 10.3389/fams.2022.822782

In the published article, there was an error in Figure 10 as published. The analytically

derived graph was plotted orange, and the numerically computed graph was plotted

blue. In the correct version the analytically computed graph is blue, and the numerically

computed graph is orange. The corrected Figure 10 and its caption appear below.

In the published article there is a typo in section 1, paragraph 5, where the singular

form “parameter” was used, instead of the correct plural “parameters”. The last sentence

of the paragraph previously stated:

“Because our map is fully explicit, it lays the framework for studying the effects

of other model parameter on network dynamics without the need to run expensive

numerical integrations of the ODEs.”

The corrected sentence appears below:

“Because our map is fully explicit, it lays the framework for studying the effects

of other model parameters on network dynamics without the need to run expensive

numerical integrations of the ODEs.”

A correction has been made to section 1.

In the original article, Equations 31 and 32 miss the differential in the denominator.

A correction has been made to Results, “Construction of the Scalar Poincaré Map,”

Equations 31, 32:

d5n

dḡ
> 0, (31)

d5n

dd⋆
> 0, (32)
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FIGURE 10

Bifurcation diagram of the period of stable n : n solutions computed analytically from fixed points of 5n, plotted on the respective intervals of

ḡ ∈
[

ḡL(n), ḡR(n)
]

(blue), and computed from numerical integrations of the ODEs (orange).

Moreover, in the published article Equation 36 misses the

differential symbol in the denominator. A correction has been

made to Results, “Existence and Stability of Fixed Points,”

Equation 36:

d

dd⋆
5n(d

⋆
b, ḡb) = 1. (36)

In the published article in Equation 47, the symbol δn in the

denominator is written incorrectly, the n should be a subscript.

The correct Equation 47 is:

∂Fn

∂d⋆
f

= τκ
(λρ)n−1

δn(d
⋆
f
)

> 0. (47)

A correction has been made to section 3.5.

In the published article in Equations 41 and 42, the “smaller

than” and “greater than” signs appear in the wrong order. The

correct Equations 41 and 42 are:

dGn

dd⋆
f

> 0, for d⋆
f > d⋆

b(n) stable, (41)

dGn

dd⋆
f

< 0, for d⋆
f < d⋆

b(n) unstable, (42)

In the published article in the Equations 51-54 some symbols

have incorrect subscripts. The correct Equations 51-54 are:

ḡL(n) < ḡR(n) (51)

ḡL(n) < ḡL(n+ 1) and ḡR(n) < ḡR(n+ 1)

(52)

ḡL(n+ 1) < ḡR(n) (53)

ḡR(n+ 1)− ḡL(n+ 1) < ḡR(n)− ḡL(n) (54)

A correction has been made to section 3.6.

Finally, in the published article in Results, “Stable Solution

Branch Borders,” paragraph 4, Equation 58 was quoted instead of

Equation 54. The corrected sentence is:

Here gL(n) and ḡR(n) were computed from Equations (56)

and (54), respectively.

In the published article in the last sentence of section 4,

paragraph 2, a wrong type of citation format was used. The

original sentence previously stated “Our results are also in

line with [7] rhythmogenesis hypothesis, namely that synaptic

depression of inhibition is a mechanism by which anti-phase

bursting may arise.”
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The corrected sentence appears below:

“Our results are also in line with Brown’s [7] rhythmogenesis

hypothesis, namely that synaptic depression of inhibition is a

mechanism by which anti-phase bursting may arise.”

In the published article there was a typo in the

acknowledgments. The first sentence previously stated:

“MO thank the Wellcome Trust for financial support of his

Ph.D. study.”

The corrected sentence appears below: “MO thanks the

Wellcome Trust for financial support of his Ph.D. study.”
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Model analogies and exchange of ideas between physics or chemistry with biology

or epidemiology have often involved inter-sectoral mapping of techniques. Material

mechanics has benefitted hugely from such interpolations from mathematical physics

where dislocation patterning of platstically deformed metals and mass transport in

nanocomposite materials with high diffusivity paths such as dislocation and grain

boundaries, have been traditionally analyzed using the paradigmatic Walgraef-Aifantis

(W-A) double-diffusivity (D-D) model. A long standing challenge in these studies

has been the inherent nonlinear correlation between the diffusivity paths, making it

extremely difficult to analyze their interdependence. Here, we present a novel method

of approximating a closed form solution of the ensemble averaged density profiles and

correlation statistics of coupled dynamical systems, drawing from a technique used in

mathematical biology to calculate a quantity called the basic reproduction number R0,

which is the average number of secondary infections generated from every infected. We

show that the R0 formulation can be used to calculate the correlation between diffusivity

paths, agreeing closely with the exact numerical solution of the D-D model. The method

can be generically implemented to analyze other reaction-diffusion models.

Keywords: double diffusion, reproduction number, autocorrelation, spatiotemporal correlation, Fick’s diffusion

1. INTRODUCTION

Transport of mass, heat or electricity in inhomogeneous media has been modeled [1–3] involving
distinct conducting paths such as diffusion in metals containing a large number of dislocations
and/or grain boundaries [4], fluid flows in fissured rocks and media with double porosity [5, 6],
heat or electricity conduction in fiber reinforced composites [10] have been addressed by Aifantis
through continuous models, typically based on coupled sets of linear partial differential equations
(the double diffusivity or D-D model) involving 4 phenomenological constants: 2 diffusion
coefficients for each one of the two paths and two mass exchange constants between the paths. The
above two-state idea was also utilized later in developing the first dynamical model of dislocation
patterning, commonly known as the Walgraef-Aifantis (W-A) model [1, 2] that could distinguish
between two dislocation populations: slow or “immobile” dislocation and fast or “mobile” ones
that brings plastic deformation about. It turns out that the linearized version of the W-A model is
identical in form to the D-D model variant of the two-state reaction-diffusion (R-D) formulation
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used to describe transport of multiple families of species such
as vacancies and interstitials in crystalline lattices, impurity,
segregation in dislocation and grain boundaries or trapping and
precipitation process in alloys.

Over the last two decades, the D-D and W-A models have
become quite popular in both the applied mathematics [11] and
the material science [12] communities due to the interesting
mathematical properties of the former and robust interpretation
of experimental observations of the latter groups of models. This
includes implementation of D-D type models in interpreting
molecular and mesoscopic transport in condensed matter and
cosmological systems [13], i.e., Most of such models though
overlooked the contribution of stochastic forcing or spatial
randomness, e.g., surface impurities in materials, restricting
the implementation of such models in explaining experimental
observations. A recent series of stochastically driven D-Dmodels
[7–9] have not only addressed this issue of steering qualitative
phenomenological models closer to experimental descriptions,
technically these have opened up further possibilities of cross-
disciplinary implementation of these models from material
science to other fields and vice versa.

Anomalous diffusion involving multiple species and media
has for long remained an interesting field of research. The
diffusive behavior changes their characteristics depending on the
choice of medium. There are many plausible reasons for this.
One of them is that there exists some void grain boundary in
the medium which represents an especially high diffusivity path
inside the medium. Also, there are relatively narrow domains
in the medium where the diffusion rate is slower. Simultaneous
diffusion in multiple media has been traditionally analyzed
using double-diffusion models [4–6, 10, 14] that is a coupled
system of partial differential equations involving interacting
variables. These D-D models considered two species of diffusive
elements, one that follows the regular path, another following
a high-diffusive path, with eventual dynamics determined by a
dynamical equilibrium of these competing paths.

1.1. State of the Art
Elias C. Aifantis developed and introduced the concept of double
diffusion step by step in Aifantis and Hill [5, 6] and Aifantis
[15, 16]. A continuum basis for diffusion in regions with multiple
diffusivity was introduced in Aifantis [15]. Simultaneously,
in Aifantis [17], the diffusion in media with a continuous
distribution of high-diffusivity paths was modeled. Finally,
Aifantis provided a formulation generalizing this idea of the
diffusion in solidmedia for wide range of applicability in different
physical process, in double porosity [18], from metallurgy to
soil science [14] polymer physics and geophysics, in Aifantis
and Hill [5, 6]. Another explanation of this double diffusion
model was provided in Hill [19] using the concept of discrete
random walk model. In [5, 6]–[19], Aifantis and Hill studied the
basic mathematical questions of the model. Mainly they studied
uniqueness, maximum principles and basic source solutions in
Aifantis [20] and Hill [19] and boundary value problems in Hill
[19]. Kuttler and Aifantis studied the existence and uniqueness
of the weak form of the nonclassical diffusion equation in Kuttler
and Aifantis [21].

The diffusion process in a media is not deterministic. Indeed
there are stochastic effects initiated and controlled by several
factors. Randomness can be related to thermal fluctuations, grain
size changes, impurity effects, etc. Recent studies of a type of
non-equilibrium system involving multiple states of diffusion of
a diffusing species, called stochastic resetting, is governed by a
dynamics similar to a double-diffusion system [22]. These types
of interactive features play an important role in the process and
it became necessary to take into account of the stochastic agents.
In nanoscales or nanopolycrystals, the diffusion near the grain
boundary following two paths, regular and high diffusive, can
be affected by stochastic fluctuations [7]. Deterministic internal
length gradient method can not completely explain relaxation
time for diffusion in nanopolycrystals. Considering boundary
layer fluctuations, stochasticity was added in the modeling and
first stochastic gradient nanomechanics (SGNM) model was
proposed in Chattopadhyay and Aifantis [8]. Using SGNM
model, relaxation time is discussed thoroughly for a specific
superconductors [23] in Chattopadhyay and Aifantis [9]. Also,
linear stochastic resonance has been predicted and how stochastic
effects start affecting the system is explained in Chattopadhyay
and Aifantis [9].

1.2. Open Questions
The present article is the first in line to provide a closed form
approximate perturbative solution of the nonlinear model (close
to the linearized stationary state) resulting from a combination
of the D-D and W-A models. The D-D:W-A composite model
leads to a coupled system of reaction-diffusion (R-D) equations
where the diffusion terms are identical to those contained
in both models, the linear terms as in the D-D model [7,
8] while the nonlinear terms resemble the W-A model (3rd
order). In addition, the composite model contain second order
cross-coupled terms that do not lend themselves to an exact
analytical solution, not even in their linearized form. The
underlying physical picture represents a system of multiple
diffusive relaxation, including boundary layer shear (nonlinear
terms), and driven by stochastic forcing as in the two models.
The present model considers simultaneous diffusion in the lattice
or grain interior along the grain boundaries but also allow for
trapping and impurity effects. In other words, diffusing species
can be trapped in both grain interiors along dislocation cores
and dislocation dipoles as well as in the counterparts of the
defects within the grain boundary space, as also impurity of
lattice imperfection that are stochastically distributed and hence
extremely difficult to account for.

While diffusion mediated interaction between multiple
species is intrinsically nonlinear, traditional analyzes have relied
on the dual approach of numerical modeling (nonlinear systems)
and exactly solvable linear models (approximate only). Most
of these studies are deterministic with occasional stochastic
models strictly restricted to linear models. The present study
outlines a generic approach, repurposed from the field of
mathematical biology, to provide approximate closed form
solutions of inherently nonlinear coupled systems irrespective of
their origin. While there is no paucity of numerical estimation of
nonlinear models, including those for double diffusion ([8] and
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references therein), from the perspective of theoretical modeling,
analytical clarity had to give way to quantitative precision. More
importantly, a closed form solution offers a direct methodological
link between the process and its parameters that is not available
from brute numerical evaluation in a multi-parameter space.
The present study is thus a major breakaway from the linearity
assumption, retaining closer proximity to experiments while
also comparing favorably with numerical solutions, as we will
later show.

Nonlinear diffusion equations, a classical example of parabolic
type equations, play an important role in the modeling
of diffusion equations with nonlinearity [24], in particular,
for stochastically driven diffusive systems. One is for free
boundary problems such as the distribution of temperature in a
homogeneous material during phase-transition [25], i.e., the time
evolution of the phase boundaries, the so called Stefan problem.

Another is for reaction-diffusion problems, such as the
Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP)model for
propagation of an advantageous gene in a population [26, 27],
Gray Scott Model for diffusion of chemical species [28]. Similar
style of modeling can be found for dislocation profiles in a
material. Walgraef and Aifantis (WA model) proposed a model
of a system of Reaction-Diffusion equations considering two
profiles of dislocation flows, immobile dislocation for slow
moving and mobile for relatively speedy moving [1]. The W-
A model has been studied extensively numerically, toward
bifurcation analysis and pattern formation in Pontes et al. [11]
and Spillotis et al. [12]. None of these were targeting a closed form
analysis, as is the target in this study.

The article provides a generic technique, repurposed from
a diverse domain (mathematical biology), to solve systems of
coupled nonlinear equations. Following a general introduction
and pointers to open questions in Section 1, Section 2
summarizes the model equation and provides a physical
explanation of the mechanisms involved. Section 3 represents
the nondimensionalized representation of the model in Section
2, the relevant non-dimensional governing equations and their
linear stability analysis. Section 4 first discusses a popular
method used in mathematical epidemiology in the calculation
of the time varying reproduction number R0, then identifies the
phenomenology as one of analyzing the covariance of two (or
more) coupled variables in a dynamical system, and then uses
this hypothesis to connect with the cross-coupling between D-D
variables. Section 5 provides the anatomy of the time (t) evolution
of the reproduction number R0(t) in the equivalent D-D model
as one measuring the strength of cross-correlation between the
different diffusing species. Finally, Section 6 summarizes the
outcomes of this continuum (approximate) mapping that then
is compared against direct numerical evaluation of this model.

2. THE MODEL

In this work, we focus on a closed-form, albeit approximate,
solution of the D-D model for nano polycrystal diffusion by
considering nonlinear source terms in the original W-A model,
representing additional exchange of diffusion species between the

two paths. These new non-linear exchange terms represent the
transfer of diffusion species through dislocation atmosphere i.e.,
diffusing species segregated in dislocation cores and dislocation
dipoles. We study in particular how the “transmissibility” of
the species affect their diffusion and corresponding trapping
processes. We observe how their internal interactions can affect
their behavior. We study how the transmissibility of the species
affects their diffusion.

Considering ρ̃1 and ρ̃2 as the concentrations/densities for the
two distinct D-D species along two different paths, the governing
equations of diffusion are given by

∂ρ̃1

∂ t̃
= D1

∂2ρ̃1

∂ x̃2
− k1ρ̃1 + k2ρ̃2 + λ1ρ̃1ρ̃2 + σ1ρ̃1

2ρ̃2 (1a)

∂ρ̃2

∂ t̃
= D2

∂2ρ̃2

∂ x̃2
+ k1ρ̃1 − k2ρ̃2 + λ2ρ̃1ρ̃2 + σ2ρ̃1ρ̃2

2 (1b)

where D1,D2 are diffusion coefficients, k1, k2 are the rate mass
exchange between different paths. The nonlinear terms represent
the interactions between different species (or dislocation paths, in
case of two diffusive paths in the material body) when the density
of one species influences the creation or annihilation of the other.

3. NON-DIMENSIONALIZATION OF THE
DOUBLE DIFFUSING
WALGRAEF-AIFANTIS MODEL

Let x̃ = ax, t̃ = bt, ρ̃1 = c1ρ1, ρ̃2 = c2ρ2. Substituting in
Equations (1a–1b), then assuming that the diffusion coefficients
remain unchanged after scaling, and choosing coefficients of
nonlinear product terms as unity after scaling, for σ1 = σ2 = σ ,
we have

∂ρ1

∂t
= D1

∂2ρ1

∂x2
−

(

k1σ

λ1λ2

)

ρ1 +

(

k2σ

λ21

)

ρ2 + ρ1ρ2 + ρ2
1ρ2 (2a)

∂ρ2

∂t
= D2

∂2ρ2

∂x2
+

(

k1σ

λ22

)

ρ1 −

(

k2σ

λ1λ2

)

ρ2 + ρ1ρ2 + ρ1ρ
2
2 . (2b)

Note, the variables ρ1 and ρ2, representing Equations (2a, 2b),
are non-dimensional. The numerical model uses this system of a
non-dimensional dynamical system.

3.1. Linear Stability Analysis
Equations (2a,2b) can be represented as the following coupled
reaction-diffusion model

∂ρ1

∂t
= D1

∂2ρ1

∂x2
+ F1(ρ1, ρ2) (3a)

∂ρ2

∂t
= D2

∂2ρ2

∂x2
+ F2(ρ1, ρ2), (3b)

where F1(ρ1, ρ2) = −

(

k1σ
λ1λ2

)

ρ1 +

(

k2σ
λ21

)

ρ2 + ρ1ρ2 + ρ2
1ρ2, and

F2(ρ1, ρ2) =
(

k1σ
λ22

)

ρ1 −

(

k2σ
λ1λ2

)

ρ2 + ρ1ρ2 + ρ1ρ
2
2 . We analyze

the system stability near theHomogeneous Equilibrium (HE) state
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or at the uniform steady state (ρ∗
1 , ρ

∗
2 ) [1, 12], in line with the

approach used in Spillotis et al. [12], i.e., where

F1(ρ
∗
1 , ρ

∗
2 ) = 0, (4a)

F2(ρ
∗
1 , ρ

∗
2 ) = 0 (4b)

Solving these equations we get the HE state, (ρ∗
1 , ρ

∗
2 ) = (0, 0).

Perturbing around this equilibrium state, perturbations defined
as (ρ̂1, ρ̂2), we get ρ1 = ρ∗

1 + ρ̂1, ρ2 = ρ∗
2 + ρ̂2.

Now near the HE states, the linearized version of the
Equations (3a, 3b) are

∂ρ

∂t
=

(

D1 0
0 D2

)

∂2ρ

∂x2
+ JFρ (5)

where ρ =

(

ρ̂1
ρ̂2

)

, and JF is the Jacobian of

(

F1(ρ1, ρ2)
F2(ρ1, ρ2)

)

at the

equilibrium states (ρ∗
1 , ρ

∗
2 ). We consider ρ =

(

φ1(t)
φ2(t)

)

eiωx for

real ω and get

(

dφ1
dt
dφ2
dt

)

=
(

JF − ω2D
)

(

φ1(t)
φ2(t)

)

, (6)

where D =

(

D1 0
0 D2

)

. As this is a system of two variables, the

signatures of trace and determinant of the matrix
(

JF − ω2D
)

defines the stability of the system. The determinant should be
always positive and trace should be always negative for all real
values of ω. We test these conditions for the HE state at (0, 0) and
arrive at the following closed form expressions for the Trace (Tr)
and Determinant (Det) of the model:

Tr
(

JF − ω2D
)

= −D1ω
2
− D2ω

2
−

k1σ

λ1λ2
−

k1σ

λ1λ2
(7a)

Det
(

JF − ω2D
)

= D1D2ω
4
+

D1k2σω2

λ1λ2
+

D2k1σω2

λ1λ2
(7b)

For D1 > 0,D2 > 0, k1 > 0, k2 > 0, σ > 0, λ1 > 0λ2 > 0,ω2 >

0, Trace is always negative and determinant is always positive.
Hence, the HE state at (0, 0) is a stable state.

4. BIOLOGY TO MATERIALS’ MODELING

It is usual practice in infectious disease epidemiology and
modeling to measure the “speed” of the propagation of the
infection. This measurement is generally called the basic
reproduction number R0 that effectively equates to the number
of secondary infections generated from each infected member of
the population. R0 depends on the numbers of currently infected,
susceptible and the rate of infection in the population. This R0
is the threshold parameter for an infectious disease, determining
whether it becomes an epidemic, pandemic, or extinct in a
community. The epidemiologists follow several methods to

calculate R0. Two of these, referred to as the next generation
method and the age-structured method [29–31] are widely used.
Both are effective and popular in infection modeling studies.

In this work, we show how the concept of R0 can be made an
auxiliary method in studying the diffusion process in a medium.
We show how the profile of time evolution of R0 can help us
to understand the diffusion-dynamics of two species, and can be
used as a substitute to the enumeration of correlation functions.

Our starting point in this “reverse mapping” scheme from
mathematical biology to material science relates to the origin
of the concept of basic reproduction number R0. Let I(t) be a
time-evolving quantity whose value at time t is dependent on
its values at previous time points. This essential non-Markovian
distribution ensures non-trivial values for all I(t − τ ), where 0 ≤

τ ≤ t, as long as I(t) is defined. Representing I(t) as the number
of infected individuals at time t in a population, non-Markovian
kinetics ensures that I(t) should depend on the number of
infected, present in the population, at time t − τ , since the
new infections can only be generated by the previous infections.
The time required for an infected individual to generate a new
infection, from the onset of its infection, is called the generation
time τ . Clearly, τ is a non-negative continuous random variable
which has a probability density function, say g(τ ). In the case
of infectious diseases, g(τ ) is generally taken as Gamma or a
lognormal distribution.

5. “GENERATION TIME” IN DOUBLE
DIFFUSION: COMPARISON WITH
RANDOM WALK MODEL

We can think of double diffusion as the continuum limit of a
random walk model where the random walker diffuses along
two different diffusive paths, occasionally jumping between
them [19]. Here, by different diffusivity of paths we mean the
probability of left jump (pi), right jump (qi), staying at same
position without making any jump (ri) are different for the two
paths, where i = 1, 2 for path-1 and path-2. Let us introduce
a random time interval τ , having a probability density function
g(τ ), during which the walker diffuses along the same path before
making any jump to the other path. The time τ can be thought
of as the generation time for the double diffusion model, in
parallel with the well defined generation time for an infectious
disease. For this random walk model of double diffusion, let the
probability of jumping from path-1 to path-2 be P(1 → 2) = s1
and same for path-2 to path-1 be P(2 → 1) = s2. Therefore,
the generation time in case of our double diffusion model can
be compared to the survival time of the random walker on a
single path before making a jump to the other. Now, for the
random walk model of double diffusion we must have pi + qi +
ri + si = 1 for i = 1, 2. Therefore, the probability that the
random walker continues on path i, in two consecutive jumps, is
(1− si). Hence the corresponding survival probability on path i is
given by a geometric distribution. More explicitly, the probability
that the walker will stay on path i for n consecutive jumps is
(1 − si)

nsi. Motivated by the fact that the geometric distribution
has memoryless property, and exponential distribution is the
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FIGURE 1 | Comparison of normalized autocorrelation and R0 at x = 0.2. Outset is in log scale and inset is in original scale. (A) Shows that the autocorrelation (in

blue) is decreasing at later times although the R0 is increasing for the species ρ1 (orange curve). This indicates that at x = 0.2 the production of ρ1 occurs from its own

population at small timescales. On the other hand in (B), the simultaneous decreasing behavior of the autocorrelation and R0 indicate that at x = 0.2 the production of

ρ2 also occurs at smaller timescales. However, in case of ρ2, its production occurs due to the conversion of ρ1 into ρ2, since the measure of self-creation R0 is

decreasing in this case.

FIGURE 2 | Comparison of normalized autocorrelation and R0 at x = 0.3. Outset is in log scale and inset is in original scale. (A) Shows that the autocorrelation

function and R0 for the species ρ1 have the same increasing trend as a function of time. The understanding we get from this trend is that the species ρ1 is produced

fom its own species for long time-scales. (B) Indicates that the dynamics of the species ρ2 is quite different than ρ1. The species ρ2 is produced from the conversion

of ρ1 instead from its own ancestors, as the R0 for ρ2 decreases over time.

only continuous distribution having memoryless property, it is
reasonable to assume that the generation time is exponentially
distributed in the continuum limit of this random walk model of
double diffusion.

5.1. The Reproduction Number R0 and Its
Mapping to the D-D Model
Following the similar concept in the case of double diffusion, we
can think of the density ρ(t) of certain species is dependent on
its density ρ(t − τ ) at earlier times (0 ≤ τ ≤ t). The time
required for generating new particles of the same species from
the old ones is a continuous random variable τ with some density

function g(τ ). Therefore, in the same token, as defined in case of
infectious diseases, we can define a quantity R0 for a species in a
double-diffusive process as

R0(t) =
ρ(t)

∫∞

0 ρ(t − τ ) g(τ ) dτ
. (8)

where g(τ ) is the generation time.
Figures 1–4 compare the R0 equivalent of an equivalent

epidemic rate model with that of the autocorrelation function
(Equations (2a, 2b) at the quantitative level, providing interesting
insights into the D-D reaction-diffusion model. It can be easily
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FIGURE 3 | Comparison of normalized autocorrelation and R0 at x = 0.5. Outset is in log scale and inset is in original scale. (A) Shows similar trend for R0 and

autocorrelation as in Figure 2A, which indicates that the production of ρ1 is boosted by the abundance of its ancestor. (B) Whereas, the production of ρ2 occurs both

by the conversion of ρ1 for some time and due to its own population at later times.

FIGURE 4 | Comparison of normalized autocorrelation and R0 at x = 0.6. Outset is in log scale and inset is in original scale. The dynamics at x = 0.6 is almost similar

to that of at x = 0.5, as shown in Figure 3. (A) Autocorrelation and R0 of ρ1 at x = 0.6. (B) Autocorrelation and R0 of ρ2 at x = 0.6.

understood from the mathematical expression of R0(t) that it is a
measure of the production rate of a species from the population
of the same species at an earlier epoch, rather than due the
conversion of other species. On the other hand, autocorrelation
is a measure of the abundance of a species as a whole,
aggregating the production of a species from it’s own population
as well as due to the conversion of other species. Therefore,
the autocorrelation function together with the time-varying
R0(t), gives us interesting spatio-temporal insights about the
observed abundance.

A comparison between Figures 1, 2 with Figure 3

clearly indicates that while asymmetric cases (x < 0.5)
ensure only partial convergence between the R0 and
autocorrelation profiles, i.e., only one of the two
double diffusing variables match both profiles, at

x = 0.5, the profiles match (approximately) for
both variables.

Note, the dynamics of ρ1 as shown in Figure 5 matches those
for x = 0.3, 0.5, 0.6. However, the species ρ2 is mostly created
by the conversion of the species ρ1. These 5 figures clearly
indicate that only for the symmetric case x = 0.5, the time
dynamical evolution of the reproductive number for an epidemic
model matches the average energy dissipation rate of individual
variables (expressed as autocorrelation functions), not otherwise.
This is not unexpected as the point x = 0.5 (spatial scale 0 < x <

1) represents the point of dynamical equilibrium between two
diffusing species, that also represents infection flux equilibrium
between susceptible-infected-recovered species in an epidemic
model. In other words, a fair quantitative comparison between
the R0 vs. the D-D model is only ensured at x = 0.5.
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FIGURE 5 | Comparison of normalized autocorrelation and R0 at x = 0.7. Outset is in log scale and inset is in original scale. (A) Autocorrelation and R0 of ρ1 at

x = 0.7. (B) Autocorrelation and R0 of ρ2 at x = 0.7.

6. CONCLUSIONS

Clearly, a comparison of the dynamical variable R0(t),
motivated by the epidemiological literature, with the
autocorrelation function reveals the richness of the dynamics
of a reaction-diffusion system which offers an option of
interpolating the results from the epidemic model into
the double-diffusion domain, in the process providing a
closed form solution of the latter that has remained elusive
thus far. Comparing the time evolution of R0 with the
autocorrelation function gives the information of the origin
of the observed abundance of different species in a reaction-
diffusion system as explained in Figures 1–5. The analogy
is strictly restricted to the spatially symmetric (x = 0.5)
conformation though, a point of dynamical equilibrium
between two (or multiple) diffusing species, an analogy with
the stationary state fixed point of an epidemic model in
dynamical equilibrium.

Therefore, the introduction of the epidemiologically
motivated quantity R0(t) into the studies of the reaction-
diffusion systems can play a crucial role in understanding such
systems in more depth. Since this interpolation between two
unrelated disciplines only uses the mathematical similarity
between two (or multiple) reaction-diffusion species, expressed
as double-diffusion in material science, as compared to infection
rate growth in epidemiology, the approach is generic enough
to be applied to all coupled reaction-diffusion models. At the
point of symmetry (x = 0.5 in our model), both quantities
(R0 and autocorrelation) will asymptotically match their
values with evolving time allowing for a closed form mapped
(from mathematical biology) solution of the R-D model. As
a comparison with the numerical solution confirms close
convergence with the approximate mapped solution (based on

the R0(t) formula as a descriptor of the correlation strength
of the diffusing variables), the solution provides handle to
studies analyzing higher order perturbations and relevant
bifurcations, also including stochastic terms. Future studies
involving calculation of correlated superconducting fluxes would
be presented using the same method.
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Resource-Efficient Use of Modern
Processor Architectures For
Numerically Solving Cardiac Ionic Cell
Models
Kristian Gregorius Hustad1* and Xing Cai1,2

1Simula Research Laboratory, Oslo, Norway, 2Department of Informatics, University of Oslo, Oslo, Norway

A central component in simulating cardiac electrophysiology is the numerical solution of
nonlinear ordinary differential equations, also called cardiac ionic cell models, that
describe cross-cell-membrane ion transport. Biophysically detailed cell models often
require a considerable amount of computation, including calls to special mathematical
functions. This paper systematically studies how to efficiently use modern multicore
CPUs for this costly computational task. We start by investigating the code
restructurings needed to effectively enable compiler-supported SIMD vectorisation,
which is the most important performance booster in this context. It is found that
suitable OpenMP directives are sufficient for achieving both vectorisation and
parallelisation. We then continue with an evaluation of the performance optimisation
technique of using lookup tables. Due to increased challenges for automated
vectorisation, the obtainable benefits of lookup tables are dependent on the
hardware platforms chosen. Throughout the study, we report detailed time
measurements obtained on Intel Xeon, Xeon Phi, AMD Epyc and two ARM
processors including Fujitsu A64FX, while attention is also paid to the impact of
SIMD vectorisation and lookup tables on the computational accuracy. As a realistic
example, the benefits of performance enhancement are demonstrated by a 109-run
ensemble on the Oakforest-PACS system, where code restructurings and SIMD
vectorisation yield an 84% reduction in computing time, corresponding to 63,270
node hours.

Keywords: cardiac electrophysiogy, ionic cell models, multicore CPUs, lookup tables (LUTs), SIMD vectorisation

1 INTRODUCTION

Computer simulation has firmly established itself as an important approach to studying cardiac
electrophysiology, see e.g. Vigmond et al. (2009); Trayanova (2011). One essential component of any
heart simulator is the computation of the total transmembrane ionic current density, conventionally
denoted by Iion. The importance of Iion is due to its close interaction with the transmembrane
potential v, i.e., the difference between the intra- and extracellular potentials. A coordinated
evolvement of v( �x, t) in space and time is a prerequisite for the proper functioning of the heart.
Physiologically, Iion is intricately determined by various transmembrane currents through ionic
channels, pumps and exchangers, even subcellular calcium handling. Thus, mathematical modeling
of Iion is challenging and still remains an active research field. Many cell models have been developed
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over the years, where two examples of widely used cell models are
the ten Tusscher–Panfilov model (see ten Tusscher and Panfilov
(2006)) and the Grandi–Pasqualini–Bers model (see Grandi et al.
(2010)).

The majority of the cell models take the form of a system of
nonlinear first-order ordinary differential equations (ODEs) with
initial conditions:

d �s t( )
dt

� �f t, �s t( )( ), �s 0( ) � �s0, (1)

where �s(t) is a vector of so-called state variables including the
transmembrane potential itself, a set of individual ionic
concentrations, and a set of gating variables, see e.g. Alonso et al.
(2016) for a review. The evolution of �s(t) determines the total
transmembrane ionic current density Iion, which in turn contributes
to the dynamic change of v. The particular ODE inside the system in
Eq. (1) that describes the dynamics of v has its simplest form as
follows:

dv
dt

� − 1
Cm

Iion, (2)

where Cm denotes the membrane capacitance. If electrophysiology
is simulated over a cardiac tissue or the entire heart, then Eq. (2)
can be incorporated into a partial differential equation (PDE) of the
reaction-diffusion type, such as in the monodomain and bidomain
models, see e.g. Colli Franzone et al. (2014).

1.1 Need for Huge Amounts of Computation
Many of the right-hand side functions in Eq. (1), i.e., f1, f2, . . ., fN,
where N denotes the number of state variables of a cell model, are
nonlinear and involve special mathematical functions such as the
exponential, logarithmic and power functions. For example, the ten
Tusscher–Panfilov model [see ten Tusscher and Panfilov (2006)]
adopts N = 19 state variables and the authors’ own C++ source
code [see ten Tusscher (2021)] counts 77 calls to the exponential
function and 4 calls to the logarithmic function. On a computer,
these calls to the special mathematical functions will be translated
into a large number of basic floating-point operations (FLOPs). For
example, profiling tools have revealed that typical compilers will
generate in total around 1500 FLOPs each time the 19 right-
hand side functions of the ten Tusscher–Panfilov model are
evaluated on a computer (see Section 3.2).

ODE computations can use substantial time of a heart simulator.
Inside a monodomain or bidomain simulator of a cardiac tissue or
an entire heart, an ODE system of form Eq. (1) exists “everywhere”,
i.e., with the same spatial resolution as for the intra- and extracellular
potential fields. For the latest simulation strategy based on the EMI
(extracellular-membrane-intracellular) approach, see e.g., Tveito
et al. (2017); Jæger et al. (2021a), a high spatial resolution is still
needed to resolve the cell membrane surfaces, resulting in
considerable computational effort needed to solve the individual
ODE systems. Multiple studies have investigated how simulations
using the monodomain model or the bidomain model can be scaled
to thousands of compute nodes [see e.g., Niederer et al. (2011);Mirin
et al. (2012); Colli Franzone et al. (2018)]. Operator splitting is
typically used with the monodomain, bidomain, and EMI models

such that the non-linear ODE part is decoupled from the linear PDE
part [see Clayton et al. (2011); Tveito et al. (2017)]. Thus, the
performance of the ODE part, which does not require any
communication, may be studied independently of the PDE part.
For whole-heart simulations using the monodomain or bidomain
model with reasonably accurate meshes, the number of ODE
systems is in the millions, even ranging as high as 370 million
[see Mirin et al. (2012)], whereas the time step is typically limited to
around 25 µs [see Niederer et al. (2011)]. In other words, 40,000 time
steps must be solved for each second of simulated time.

Besides the above simulation scenario, an ensemble scenario can
also require solvingmany instances of a cell model. This is needed to
study the sensitivity of a cell model with respect to its internal
parameters, or to fit the model parameters with real-word cellular
measurements [see e.g., Jæger et al. (2021b)]. The number of
instances can easily be colossal, if the number of parameters of
interest is large and/or the resolution needed to study each
parameter is high.

No matter which scenario, when the required temporal/
spatial/parameter resolution is high, there arises the need for
numerically solving a large number of ODE system instances over
a large number of time steps. This can lead to a gargantuan
amount of computing time even on a supercomputer. The present
paper thus aims to investigate how the modern multicore CPU
architectures can be efficiently used for this purpose.

1.2 Need for Effective Use of Modern
Processor Architectures
The primary design goal of a modern multicore CPU is to execute
FLOPs fast. This is in principle a goodmatch with numerically solving
cardiac ionic cell models, which typically have a high computational
intensity, i.e., the number of FLOPs executed per byte of memory
traffic. Effective utilisation of the floating-point capability of a
multicore CPU requires employing all the processor cores while
each delivers a sizeable portion of its theoretical peak floating-point
performance. Achieving the latter is not straightforward, because it
requires each processor core to execute, most of the time, in a single-
instruction-multiple-data (SIMD) style. The individual ODE system
instances, in both simulation and ensemble scenarios, can be
computed independently and thus readily offer parallelisation
across the processor cores. However, inappropriate data structures,
memory access patterns and/or code structure can seriously limit or
even prohibit SIMD vectorisation. This important topic will be
addressed in Section 2.3.

Executing FLOPs using SIMD vectorisation alone does not
necessarily lead to the best computing speed. Another concern is
the necessity of the FLOPs. Modern compilers are good at
common subexpression elimination, thus avoiding unnecessary
repetitions of FLOPs, but they are unable to decide the most
economical way of evaluating the special mathematical functions.
A classical method is to pre-evaluate a costly function for a certain
value range and resolution, and store these pre-computed values
in a lookup table. Later evaluations of the function are then
replaced by reading (approximate) values from the table. The
number of arithmetic operations is reduced at the cost of extra
memory usage by the lookup table itself and extra memory traffic
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due to repeatedly accessing the lookup table. Moreover, using
lookup tables may prohibit a compiler from vectorising the other
parts of the computation. Section 2.4 will thus discuss the
considerations and programming details about lookup tables.

The contribution of this paper is not about devising new ODE
solvers with lower algorithmic complexity, higher accuracy or
better stability. Instead, our approach to getting fast computing
speed is rooted in a resource-efficient usage of modern multicore
processor architectures.We discuss the code restructurings that are
needed to help modern compilers automatically enable SIMD
vectorisation. The speed improvement due to vectorisation is
thoroughly investigated by both time measurements and
profiling. To our knowledge, these aspects have not been
systematically studied in the literature.

Another novelty of this paper is a deep dive into the pros and
cons of using lookup tables, where we also study some related
programming nuances. Although a number of choices
concerning the trade-off between accuracy and speed may be
considered when using lookup tables, we have devoted our
attention to the programming details. We report accuracy
results to verify the correctness of our implementation and
contrast with the error associated with the use of SIMD
vectorisation.

The ODE models used in this paper for performance study in
Section 3 are realistic cardiac ionic cell models (see Table 1),
whereas we have only adopted the simplest ODE solvers. The
rationale is that more sophisticated ODE solvers often use simple
ODE solvers as the building blocks. Thus, a thorough
understanding of how to obtain hardware resource efficiency
for simple ODE solvers is readily extended to the wealth of
advanced ODE solvers.

The remainder of this paper is organised as follows. Section 2.1
briefly explains the basic steps of implementing ODE solvers,
including directive-based parallelisation. Section 2.2 points out the
inefficiency of naïvely implementedODE solvers. Section 2.3 carefully
examines the topic of SIMD vectorisation on modern multicore
processors. Section 2.4 is devoted to the details of using lookup
tables as an alternative to getting fast computing speed. Section 2.5
demonstrates how SIMD vectorisation and lookup tables can be
combined. Thereafter, Section 3 contains an extensive set of
numerical experiments about the benefits due to, respectively,
SIMD vectorisation and lookup tables. The topic of accuracy also
receives close attention in Section 3. Finally, Section 4 comments on
the related work and provides some concluding remarks.

2 SIMD VECTORISATION AND LOOKUP
TABLES FORDELIVERING PERFORMANCE

As argued in Section 1.1, huge amounts of computation may arise
from numerically solving many instances of a cell model, in both
simulation and ensemble scenarios. At the same time, as discussed in
Section 1.2, utilising the computational potential of modern
processors can be non-trivial. This section thus aims to
investigate two strategies for enhancing the performance of
typical solvers of a cell model, specifically, use of SIMD

vectorisation and lookup tables. We will start with explaining the
basic steps of implementing an ODE solver, for the purpose of
setting the programming scene needed to dive into the two strategies.

2.1 Basic Steps of Implementing an ODE
Solver
The basic steps of implementing an ODE solver are largely
generic, such that automated code generation can allow an
easy plug-and-play of the solution strategy and cell model,
while keeping manual coding to a minimum level. We will use
as an illustrating example the simplest ODE solver, namely, the
forward Euler method. This choice is motivated by both its
simplicity and its relevance as building blocks in many
advanced ODE solvers. Simplicity is also the reason for
choosing, later in this section, the FitzHugh-Nagumo cell
model [see FitzHugh (1961); Nagumo et al. (1962)] that has
only two state variables, for the ease of presentation. We remark
that the same (automated) programming process applies to other
ODE solvers and cell models.

Specifically, to numerically solve a system of ODEs in the form
of Eq. (1), the computational work per time step of the forward
Euler (FE) method is as follows:

�s tℓ+1( ) ≈ �s tℓ( ) + Δt · �f tℓ , �s tℓ( )( ). (3)
This simple numerical scheme only requires evaluating the

right-hand functions �f with the latest state variables. The
downside of FE is that it may require a very small time step
size Δt = tℓ+1 − tℓ, and thereby a tremendous number of steps, to
produce a stable solution of a stiff ODE system.

2.1.1 Algorithmic Skeletons
The algorithmic skeleton for solving individual ODE system
instances in a simulation scenario will differ from that in an
ensemble scenario (see Section 1.1). Suppose the computational
work of an ODE solver (e.g., FE) per time step is coded as a
subroutine named COMPUTE_ODE_STEP( �s, t,Δt), these two
algorithmic skeletons can be found, respectively, in Algorithm 1
and Algorithm 2. Moreover, a realistic simulation scenario can
also have a PDE component per time step, due to operator splitting
used for solving e.g. the monodomain or bidomain equations. This
is shown in Algorithm 3 where the v values from all the cells are
jointly updated per time step additionally to accommodate the
PDE contribution.

Algorithm 1. Simple skeleton for the simulation scenario (outer
loop over time).

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9046483

Hustad and Cai Solving Cardiac Ionic Cell Models

107

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Algorithm 2. Simple skeleton for the ensemble scenario (outer
loop over cells).

Algorithm 3. Operator-splitting skeleton for the simulation
scenario (outer loop over time).

2.1.2 Automated Code Generation
Mathematical models of the ionic current density are typically very
complex, involving many parameters and internal variables. Manual
coding of COMPUTE_ODE_STEP, which is needed in any of the
algorithmic skeletons, can therefore be nontrivial and error-
prone. Here, two factors support an approach of automated code
generation. First, most ODE solution strategies are generic and
independent of a specific cell model. Second, the research
community has developed several domain-specific standards to
facilitate sharing of the existing cell models, thus offering
standardised input to automated code generators. One such open
standard is the CellML language [see Cuellar et al. (2003)] based on
XML. The benefits of automation include avoidance of human
programming errors, a flexible choice of the programming
language for the generated code, and easy experimentation with
different cell models.

As an example, we will show in Listing 2 a piece of auto-
generated code that implements a single FE step for the two-
variable FitzHugh-Nagumo (FHN) cell model [see FitzHugh
(1961); Nagumo et al. (1962)]:

dv
dt

� v v − α( ) 1 − v( ) − w + Istim,

dw
dt

� ε v − γw( ),
Istim � −80 0≤ t≤ 0.5,

0 otherwise,
{

(4)
where v and w are state variables, and α, ε and γ are model
parameters. Correspondingly, Listing 1 contains two assisting
enum types that are used instead of integer literals when indexing
arrays in order to improve readability. The FHN model is used in
code listings in this section due to its simplicity. The results
presented in Section 3 use the more realistic models listed in
Table 1.

Listing 1:Auto-generated enum declarations for the FHNmodel.

Listing 2: Auto-generated code of one FE step applied to the
FHN model.

The C code in Listing 2 is auto-generated by Gotran [see
Hake et al. (2020)]: a code generation framework for cell models
and the associated ODE solvers. The input format of the
FHN model can be found at the CellML website [see CellML
(2022)].

2.1.3 Shared-Memory Parallelisation Using OpenMP
The need for parallelisation arises when the number of ODE
system instances involved in a simulation or ensemble
scenario is large. For both cases, parallelisation is
straightforward because the ODE system instances can be
computed independently. An automated code generator, such
as Gotran, can easily create a subroutine that uses OpenMP
directives for this purpose. Listing 3 is such an example,
which loops over a collection of cells and invokes
FHN_step_FE_single (implemented in Listing 2) for
each cell. The code in Listing 3 is typically used in a
simulation scenario, wrapped within an outer loop over time.

Listing 3: Example of OpenMP parallelisation (simulation scenario).
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2.2 Issues of Inefficiency
The auto-generated code shown in Listings 2 and 3 can be
readily used in any simulation scenario. A corresponding
version of Listing 3 for an ensemble scenario can also easily
be auto-generated. Switching to another cell model and/or a
different explicit ODE solver will in general pose no challenge.
Thanks to the automated insertion of OpenMP directives, the
generated code can use all the CPU cores of a shared-memory
system. Listings 2 and 3 can also be used without change inside
a distributed-memory parallel monodomain or bidomain
simulator. (Here, we assume that each MPI process is
assigned with a partition of the cells.)

However, we can only label the above auto-generated code
as naïve, because the obtained performance will be
considerably lower than the ideally achievable level. The
main reason is the inability of compilers to enable SIMD
vectorisation for this code. Specifically, the first argument to
function FHN_step_FE_single in Listing 2 assumes that
the N state variables for each cell are stored contiguously in
memory. This means that the state variables of all the cells are
stored logically as an “array of structs”, as used by Listing 3.
Although such a data structure makes sense by grouping the
state variables of each cell, the downside is that compiler-
supported SIMD vectorisation will fail completely. Code
restructuring needed for auto-vectorisation will be
addressed in Section 2.3, whereas the potential
performance benefits of using lookup tables will be the
topic of Section 2.4.

2.3 SIMD Vectorisation
2.3.1 Computing with Vectors
Modern CPUs use special registers and instructions for SIMD
vectorised operations. For example, the AVX-512 vector
instruction set provides 512-bit vectors, so that eight
double-precision (64-bit) floating-point numbers may be
stored together in a vector register, and arithmetic
operations such as addition and multiplication can be
performed simultaneously to all the numbers stored in these
vectors. To efficiently read and store vector registers, the
content of a vector should lie contiguously and aligned in
memory. The latter means that the start address of the
vector in memory is a multiple of the vector width.

Conceptually, simultaneous solution of multiple instances
of the same cell model suits perfectly for SIMD vectorisation.
This is because the identical computation takes place in the
different cells, i.e., the same operations are applied to different
values. The rare situation of conditional branching (e.g., the
outcome of an if test depends on the actual value of a state
variable) can also be vectorised through masking. In the
following, we will discuss how to restructure the auto-
generated naïve code, so that compilers can automatically

carry out the SIMD vectorisation, by using suitable compiler
options/hints and vectorised math libraries.

2.3.2 Restructuring for Optimal Memory Layout
As discussed in Section 2.2, the auto-generated naïve code (as shown
in Listings 2 and 3) adopts a natural but vectorisation-unfriendly
data structure, where the state variables of each cell are stored
contiguously in memory. For effective use of the vector registers, a
vectorisation-friendly data structure should let the same state
variable from all the cells be stored contiguously. The entire data
structure thus has the layout of a “struct of arrays”. To guarantee
memory alignment, each state-variable arraymay need to be padded.
Suppose the number of cells is C, the number of no-use 64-bit values
padded at the end of each array can be calculated as 8 -
modulo(C,8) for the case of 512-bit vector width. In
practice, all the state-variable arrays (with padding) are
concatenated into a very long 1D array. This can be seen in
Listing 4.

2.3.3 Compiler-Supported Auto Vectorisation for the
Simulation Scenario
When the memory-related code restructuring is done, SIMD
vectorisation can be automatically enabled by a compiler. There
are multiple ways of providing vectorisation hints to a C compiler,
but we will focus on the simd construct of OpenMP as it is
supported by all the major compilers. (The code examples given in
this paper require OpenMP version 4.5 or newer.) In Listing 3, we
used the compiler directive of #pragma omp parallel for to
parallelise the for loop. Listing 4 shows a modified version based
on a restructured SIMD-friendly data layout, where we have also
added the necessary compiler hints to enable auto-vectorisation.
Specifically, the additional simd clause suggests to the compiler
that multiple iterations of the loop could be computed together as a
vector.

The simd clause may be followed by additional clauses: The
simdlen clause specifies the preferred number of lanes per
SIMD vector. In the following code listings, we assume that the
user has defined the constant VECTOR_LENGTH which is
passed as the argument to simdlen. The aligned clause
can be used to provide information about the alignment of
arrays, so that the compiler can employ aligned vector load/
store instructions.

When using the Clang compiler, however, specifying only
OpenMP pragmas does not lead to successful vectorisation,
because Clang is unable to prove that vectorisation can safely
be applied. We therefore specify an additional Clang-specific
pragma, see Listing 4, where we instruct the compiler to
assume memory safety, relieving Clang of the requirement to
prove that there are no overlapping memory accesses. For the
sake of brevity, we only show the vectorisation hints based on
OpenMP in the remaining listings.
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Listing 4: Step function for the FitzHugh-Nagumo model
(simulation scenario) with SIMD-friendly data layout restructuring.

2.3.4 Compiler-Supported Auto Vectorisation for the
Ensemble Scenario
The simd OpenMP clause works best when applied to the inner
loop. In case the outer loop is over the cells, vectorisation becomes
more complicated as the compiler will have to perform outer loop
vectorisation. Listing 5 shows how to restructure the code in the
ensemble scenario to enable auto vectorisation.When the loops are
structured in this manner with cells in the outer loop and time in
the inner loop (we refer to this loop structure as Cell–Time), we
minimise memory traffic, as the parameters and state variables can
easily fit in cache between two time steps. Furthermore, expressions
that are not a function of the state variables or time will not change
between time steps and can therefore be reused such that the total
amount of computation is reduced. Since the number of iterations
in the inner loop over time (i.e., the number of time steps) is the
same for all cells, outer loop vectorisation can safely be applied in
this scenario. However, we observed that only the Intel compiler
was able to perform vectorisation for the function in Listing 5. We
therefore investigated two alternative loop structures in order to
achieve vectorisation with the other compilers.

Listing 6 uses a Time–Cell loop structure similar to the
simulation scenario, with the difference being that the
parameters are no longer shared between all cells. This loop
structure can lead to very high memory traffic, because all
parameters must be read and all state variables read and written
for each inner iteration in the loop. The three code blocks following
the comments “Assign parameters”, “Assign states”, and “Compute
FE step” are the same as in Listing 5 and were omitted for brevity.

If we solve the model for smaller batches of cells, we facilitate
caching of both arrays and reduce the memory traffic. Listing 7

shows a Cell–Time–Cell loop structure where the outermost loop
divides the work into batches that are mapped to different
OpenMP threads with the “parallel for” directive, and then the
middle loop iterates over time, whereas the innermost loop iterates
over the elements in a batch.We should choose the batch size to be
a multiple of the hardware SIMD vector length, and the batch size
is here controlled via a compile-time defined constant
VECTOR_LENGTH. In practice, all vector lengths are a power
of 2, so 25 = 32 would be a reasonable choice of batch size that
would work well on any CPU. Note that some extra bookkeeping is
needed to handle the case where the total number of cells does not
evenly divide the batch size. The performance of the different loop
structures is discussed in Section 3.4.

Listing 5: Cell–Time loop structure in FE solution of the FitzHugh-
Nagumomodel (ensemble scenario) with SIMD-friendly data layout
restructuring.

Listing 6: Time–Cell loop structure in FE solution of the FitzHugh-
Nagumo model (ensemble scenario) with SIMD-friendly data layout
restructuring.
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Listing 7: Cell–Time–Cell loop structure in FE solution of the
FitzHugh-Nagumo model (ensemble scenario).

2.3.5 Using Vectorised Math Libraries
The cell models often involve calls to the exponential function
(exp), the logarithmic function (log), and the power function
(pow). The expm1 function is also relevant in the context of
some numerical schemes that require evaluating ex − 1 where x
may be close to zero, in which case exp(x)-1 is prone to
rounding errors and expm1(x) produces more accurate
results. In the standard C library, these are defined as
functions with a scalar input and output, but we need to
evaluate these functions on all the elements in a vector
simultaneously to achieve SIMD. Fortunately, there are
vectorised math libraries that provide C functions that use
SIMD instructions to evaluate these math functions for
selected vector lengths.

Intel’s Short Vector Math Library (SVML) and the GNU C
library, glibc, both provide vectorised versions of the relevant
math functions for the x86 instruction set. Shibata and
Petrogalli [see Shibata and Petrogalli (2020)] developed a
vector math library, SLEEF, that supports the ARMv8
instruction set in addition to x86. There are also other
vector math libraries, but these three libraries all integrate
with compiler auto-vectorisation when used with a compatible
compiler.

As vectorised implementations of expm1 are not available for
all libraries, we have used a preprocessor macro to control
whether expm1(x) or (exp(x)-1) is used. expm1(x) is
used in the naïve implementations, and (exp(x)-1) is used in
all vectorised code unless otherwise stated.

We should note that the libraries vary slightly in the
accuracy to which the functions are evaluated, and the
instructions used (and thereby the total number of floating
point operations) may also vary. Our goal in this study is not to
compare the vector math libraries, but they are a necessary
component when using auto-vectorisation on cell models that
contain calls to math functions. When studying the

performance and accuracy of cell models, we will therefore
have to consider the influence of the math libraries used. Time
measurements of using vectorised math libraries, as well as an
accuracy analysis will be provided in Section 3.3.

2.3.6 Explicit Control of the Vector Length
In some instances, the compiler may generate instructions with a
shorter vector length than the maximal supported vector length,
often resulting in sub-optimal performance. There are mechanisms
that allow the user to instruct the compiler to target a specific vector
length, but the exact mechanism varies for each compiler. For the
Intel compiler on Oakbridge (see Table 2), we observed that 256-
bit vectors would be used by default when targeting the Cascade
Lake CPU, although the hardware vector length is 512 bits. When
we appended simdlen(8) to the simd clause, the compiler
would instead use 512-bit instructions (8 SIMD lanes with 64-bit
floating-point values). For GCC, the flag -mprefer-vector-
width=512 can be used to the same effect.

For the Fujitsu compiler on Wisteria, we pass the flags
-msve-vector-bits=512 and -ffj-interleave-loop-
insns=4. The second flag instructs the compiler to interleave
4 iterations of the loop such that 4 × 8 cells are processed in
parallel in each OpenMP thread. Interleaving loop iterations
increases the amount of instruction-level parallelism at the
cost of an increased register pressure, which seems to be very
beneficial on the A64FX CPU with somewhat higher latencies for
arithmetic instructions than the CPUs found in the other systems.
We found that interleaving 4 loop iterations yielded the best
performance on Wisteria.

2.4 Lookup Tables
The rationale for using lookup tables is to reduce the amount of
computation, by repeatedly referring to tables of pre-
computed values. Most cell models contain a number of
expressions that are functions of the transmembrane
potential v, so these expressions may be pre-evaluated for a
chosen sampling of the expected v values, before the ODE
solution procedure. For instance, we may assume v ∈
[−100 mV, 50mV] in the healthy heart, and we can thus pre-
evaluate the expressions at equally spaced points in this interval
with a resolution of vstep. Expressions that are a function of more
than one state variable are usually not considered for using lookup
tables, because the memory footprint (and setup cost) of the tables
grows exponentially with the number of input variables.

Let f(v) denote an expression that depends on v and assume
that a lookup table has been pre-computed for the interval [vmin, vmax]
with resolution vstep. When the lookup table is later repeatedly
used, the actual v values may not coincide with the pre-chosen
sampling values. Suppose a particular v value lies between two
consecutive sampling points: va ≤ v < vb = va + vstep. The typical
strategy is to use a linear interpolation by computing wa � vb−v

vstep
and wb = 1 − wa, and then use wa · f (va) + wb · f (vb) as the
approximation of f(v). The two values of f (va) and f (vb) are
fetched from the pre-computed lookup table that is stored in
memory. Note that if multiple expressions use the same input
variable, the weights wa and wb remain the same for all these
expressions. For memory efficiency, the pre-evaluated values of
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these expressions can be collected as a large 2D table where each
column corresponds to one expression.

2.4.1 The Rush–Larsen Scheme and Lookup Tables
When solving stiff ODE systems, the forward Euler scheme
may require a very small Δt in order to maintain stability.
Rush and Larsen [see Rush and Larsen (1978)] proposed the
use of an exponential integrator for the gate variables, which
are governed by quasi-linear equations on the form:

dw
dt

� w∞ v( ) − w

τw v( ) , (5)

where w∞ and τw are functions of the transmembrane potential.
Let vi denote the latest computed transmembrane potential. If v is
assumed to be constant when updating w, Eq. (5) becomes a
linear ODE with an analytical solution:

w ti + Δt( ) � w ti( ) − w∞ vi( )[ ]e−Δt/τw vi( ) + w∞ vi( ). (6)
The Rush–Larsen scheme (RL) applies Eq. (6) to all the gating

equations, whereas the FE scheme in Eq. (3) is used for the
remaining equations.

When using lookup tables in the context of RL, it is convenient
to rewrite Eq. (6) on the form:

w ti + Δt( ) � a vi( ) · w ti( ) + b vi( ), (7)
where a (vi) and b (vi) are two pre-tabulated expressions:

a vi( ) � e−Δt/τw vi( ), (8)
b vi( ) � −w∞ vi( ) e−Δt/τw vi( ) − 1[ ]. (9)

Sundnes et al. [see Sundnes et al. (2009)] showed that the RL
scheme can be generalised to equations that are not quasi-linear by
performing an additional linearisation step. This leads to a first-order
accurate generalised Rush–Larsen scheme, which we will simply
refer to as GRL1. Both RL and GRL1 schemes will be used in the
numerical experiments later.

2.4.2 Memory Layout of a Multi-Expression Lookup
Table
A lookup table containingM expressions evaluated at S points,
can be represented as an S ×M array in memory. This choice of
memory layout suits well for the row-major storage scheme
used by the C programming language. To find linear
interpolations of the M expressions with the same input

TABLE 2 | Hardware specifications (compute node level) of the five target platforms. ISA is an abbreviation of “instruction set architecture”.

Name CPU ISA SIMD width
(bits)

Memory Peak memory bandwidth

Oakforest 1 × Intel Xeon Phi 7250 x86-64 512 16 GiB MCDRAM + 96 GiB DDR4 MCDRAM: >400 GB/s DDR4: 125 GB/s
Peak performance: 3 TFLOPS

Oakbridge 2 × Intel Xeon Platinum 8280 x86-64 512 192 GiB DDR4 281 GB/s
Peak performance: 4.8 TFLOPS

Wisteria 1 × Fujitsu A64FX ARM v8.2-A 512 32 GiB HBM 1024 GB/s
Peak performance: 3.4 TFLOPS

Milan 2 × AMD EPYC 7763 x86-64 256 2 TiB DDR4 410 GB/s
Peak performance: 5.0 TFLOPS

ThunderX2 2 × Cavium ThunderX2 CN9980 ARM v8.1-A 128 1 TiB DDR4 341 GB/s
Peak performance: 1.0 TFLOPS

TABLE 3 | Compiler flags used to enable auto-vectorisation.

Compiler Version System Flags

ARMClang 21.0 ThunderX2 -O3 -fopenmp -ffast-math -fsimdmath -fno-math-errno

Fujitsu 4.7.0 Wisteria -Nclang -Ofast -fopenmp

GCC 11.1.0 Milan -O3 -fopenmp -ffast-math -march=native

Intel 19.1.3.304 Oakbridge/ Oakforest -O3 -qopenmp -fp-model fast=2 -march=native

TABLE 1 | Cell models used in the numerical experiments of this paper. The “FLOPs” column lists the number of floating-point operations required to compute a single time
step for a naïve implementation using the Forward Euler scheme. Section 3.2 describes how performance counters were used to obtain the operation counts.

Model Name State variables FLOPs References

ten Tusscher–Panfilov (2006) TP06 19 1500 ten Tusscher and Panfilov (2006)
Jæger–Tveito (2021) JT21 25 1322 Jæger et al. (2020, 2021a)
Grandi–Pasqualini–Bers (2010) GPB 39 2149 Grandi et al. (2010)
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variable, we need to extract two consecutively tabulated values
for each expression. Accessing two consecutive rows of the
tabulated values (when the table is S × M) is much more
efficient than accessing two columns that are not contiguous in
memory (if the table is M × S).

We have implemented the ten Tusscher–Panfilov (TP06)
model [see ten Tusscher and Panfilov (2006)] using lookup
tables. Our selection of tabulated expressions is based on the
implementation found in the openCARP cardiac simulator [see
Plank et al. (2021)], which also makes use of the RL scheme. In
total 12 out of the 19 state variables are gating variables that can
be solved with Eq. (7). Eleven of the gating variables are
functions of v, and the last one is a function of Cass (free
diadic subspace calcium concentration). We have therefore
created one lookup table for the 11 expressions related to v
and another table for Cass. The v table also contains 6
expressions that appear on the right hand side of the
equations for the non-gating variables.

2.5 Combining SIMD Vectorisation and
Lookup Tables
Reconciling the scattered memory access patterns arising from the use
of lookup tables with the need for contiguous memory accesses for
effective use of SIMD vectorisation is non-trivial. We propose
a partitioned method for the TP06 model where lookup tables
are used for the 12 gating variables, and the non-gating
variables are computed using SIMD vectorisation. The
rationale for this partitioned method is that computing the
gating equations using lookup tables is very effective.
Specifically, updating each gating variable requires only
eight FLOPs: two FLOPs for Eq. (7), in addition to the
three FLOPs required for the linear interpolation of each
of the two pre-tabulated expressions (a and b). Listing 8
shows the code skeleton with two inner loops.

Listing 8:Combined use of SIMD vectorisation and lookup tables
when solving the ten Tusscher–Panfilov model with the RL
scheme (simulation scenario).

TABLE 4 | Single-threaded performance of scalar and vectorised math library
calls. The units for the Scalar and SIMD columns is millions of function
evaluations per second.

System Function Scalar SIMD Speedup

Oakbridge exp 261.0 760.6 2.91
Oakbridge expm1 167.4 648.8 3.88
Oakbridge log 202.4 663.6 3.28
Oakbridge pow 83.4 427.1 5.12

Oakforest exp 43.9 260.0 5.92
Oakforest expm1 23.7 223.4 9.44
Oakforest log 38.5 247.1 6.41
Oakforest pow 13.9 103.9 7.50

Milan exp 91.7 743.6 8.11
Milan expm1 151.8 138.3 0.91
Milan log 73.9 583.6 7.89
Milan pow 26.8 159.7 5.96

Wisteria exp 85.6 633.1 7.40
Wisteria expm1 25.3 24.3 0.96
Wisteria log 79.1 534.7 6.76
Wisteria pow 16.4 113.4 6.92

ThunderX2 exp 88.4 123.0 1.39
ThunderX2 expm1 45.6 27.1 0.59
ThunderX2 log 64.8 102.9 1.59
ThunderX2 pow 25.6 22.6 0.88

TABLE 5 | Maximum error of vectorised math library calls when evaluating input values in the prescribed ranges. The error is reported in units of least precision (ULPs).

Function (value range)
System

exp (−700, 700) expm1 (−700, 700) log (10–300, 10,300) pow (—30, 30) ×
(—30, 30)

Oakbridge 2.623 2.753 1.496 0.998
Oakforest 1.471 2.008 1.276 1.035
Milan 2.623 0.735 1.343 0.998
Wisteria 1.923 0.753 1.343 1.62×1013

ThunderX2 2.313 0.992 1.883 0.998
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The complete source code for the experiments in this paper is
available online at https://github.com/KGHustad/cell-model-cpu-code.

3 EXPERIMENTS AND PERFORMANCE
MEASUREMENTS

3.1 Overview of Hardware Testbeds
As our aim in this paper is to compare different optimisation
strategies for a wide range of CPU architectures, we have used

five different hardware testbeds. The first three testbeds are using the
supercomputers Oakforest-PACS, Oakbridge-CX and Wisteria-O
operated by the Information Technology Center at the University of
Tokyo, whereas the “Milan” and “ThunderX2” testbeds are part of
the eX3 infrastructure hosted at Simula Research Laboratory. Each
testbed consists of a single compute node with one or two multicore
CPUs. An overview of the CPU and memory specifications for the
testbeds is given in Table 2.

Table 3 lists the compiler flags we used to enable auto-
vectorisation. Since Listing 4 makes use of preprocessor
conditionals, we have provided additional flags to define
constants controlling which code path is compiled. With
ARMClang and the Fujitsu compiler (running in Clang mode)
we pass the flag -DHINT_CLANG_SIMD, and with the other
compilers we pass the flag -DHINT_OMP_SIMD).

3.2 Counting Floating-Point Operations with
Performance Counters
Some CPU architectures provide performance counters that enable
the programmer to count the number of floating-point instructions
executed for each vector length. The set of performance counters
available is highly architecture-dependent, and we will limit our
discussion here to the Intel Cascade Lake CPU architecture found on
the “Oakbridge” system in Table 2. Listing 9 demonstrates how the
perf command in Linux can be used to count number of floating-
point operations (FLOPs). Note that the performance counters must
bemultiplied by the number of SIMD lanes and summed up in order
to obtain the total FLOP count. Written out, the total number of
floating-point operations is computed as

floating − point operations

� 8 · FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE
+ 4 · FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE
+ 2 · FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE
+ 1 · FP_ARITH_INST_RETIRED.SCALAR_DOUBLE.

TABLE 7 | Multi-threaded performance of naïve and auto-vectorised
implementations; The FE scheme is used; C = 11688851 cells. “SoA” refers to
the “struct of arrays” memory layout discussed in Section 2.3.2.

System Model Throughput (106 · cell stepssecond ) Speedup

Naïve SoA SIMD SIMD
naïve

SIMD
SoA

Oakbridge TP06 127.8 134.0 481.7 3.8 3.6
Oakbridge JT21 148.8 147.2 444.7 3.0 3.0
Oakbridge GPB 87.4 91.1 239.4 2.7 2.6

Oakforest TP06 55.7 59.8 398.7 7.2 6.7
Oakforest JT21 68.3 66.1 376.6 5.5 5.7
Oakforest GPB 36.4 39.5 234.2 6.4 5.9

Milan TP06 199.4 219.8 920.8 4.6 4.2
Milan JT21 250.4 256.0 833.5 3.3 3.3
Milan GPB 170.2 164.5 518.9 3.0 3.2

Wisteria TP06 27.8 33.2 296.6 10.7 8.9
Wisteria JT21 25.1 41.0 321.0 12.8 7.8
Wisteria GPB 19.5 22.4 167.5 8.6 7.5

ThunderX2 TP06 94.1 97.6 137.1 1.5 1.4
ThunderX2 JT21 142.5 114.2 169.3 1.2 1.5
ThunderX2 GPB 75.5 83.1 109.1 1.4 1.3

TABLE 8 |Multi-threaded performance of an ensemble simulation using the JT21
model; C = 11688851 cells. The most performant implementation for each
system is in boldface.

System SIMD Cell–Time Time–Cell Cell–Time–Cell

FE GRL1 FE GRL1 FE GRL1

Oakbridge On 631.1 358.9 154.3 132.2 375.2 257.5
Oakbridge Off 150.5 90.0 85.3 57.8 110.1 71.1

Oakforest On 422.4 237.6 108.2 89.1 114.1 94.7
Oakforest Off 63.5 37.8 16.1 13.7 16.0 14.1

Milan On 271.8 161.2 292.1 275.2 729.3 499.0
Milan Off 269.2 158.7 151.2 105.9 167.4 116.8

Wisteria On 41.4 19.4 104.5 70.3 125.1 79.1
Wisteria Off 40.8 19.6 17.8 12.0 17.5 11.9

ThunderX2 On 103.5 58.6 83.5 60.9 112.2 76.6
ThunderX2 Off 111.4 62.6 64.1 40.6 79.6 47.9

TABLE 6 | Single-threaded performance of naïve and auto-vectorised
implementations. The FE scheme is used; C = 11688851 cells. “SoA” refers to
the “struct of arrays” memory layout discussed in Section 2.3.2.

System Model Throughput (106 · cell stepssecond ) Speedup

Naïve SoA SIMD SIMD
naïve

SIMD
SoA

Oakbridge TP06 2.917 3.039 15.070 5.2 5.0
Oakbridge JT21 3.622 3.559 17.970 5.0 5.0
Oakbridge GPB 2.039 2.047 8.204 4.0 4.0

Oakforest TP06 0.499 0.525 4.081 8.2 7.8
Oakforest JT21 0.645 0.651 5.116 7.9 7.9
Oakforest GPB 0.351 0.406 3.526 10.0 8.7

Milan TP06 1.186 1.336 5.910 5.0 4.4
Milan JT21 1.590 1.624 6.712 4.2 4.1
Milan GPB 1.094 1.103 4.073 3.7 3.7

Wisteria TP06 0.578 0.694 6.604 11.4 9.5
Wisteria JT21 0.532 0.871 7.649 14.4 8.8
Wisteria GPB 0.413 0.475 4.211 10.2 8.9

ThunderX2 TP06 0.911 0.951 1.509 1.7 1.6
ThunderX2 JT21 1.629 1.080 1.849 1.1 1.7
ThunderX2 GPB 0.747 0.787 1.179 1.6 1.5
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Listing 9: Command used to count number of floating point
operations on Intel Cascade Lake CPUs.

In Table 1 we have used performance counters to count the
number of floating-point operations required to solve a single
step with a naïve FE implementation for each of the three cell
models that are used in this section.

3.3 Speed and Accuracy of Vectorised Math
Libraries
We measured the performance of selected scalar and vectorised
math functions for each of the testbeds. The math function is
called for every element in an array of length 30,000, and then this
is repeated 20,000 times in an outer loop. We annotate the inner
loop with #pragma omp for simd to enable vectorisation via
OpenMP. We have selected the exp(), expm1(), log(),
pow() functions for this benchmark, as these are the only
math functions that are used when solving the cell models in
this paper. The benchmark is single-threaded, and the number of
function evaluations per second is reported in Table 4.

The Intel-based systems (Oakbridge and Oakforest) both
see a speedup when using SIMD, and although the speedup is
more pronounced on Oakforest, the absolute performance is
2.5–4 times higher on Oakbridge, despite having only 1.6 times
the theoretical peak performance. The last x86 system, Milan,
achieves speedup that exceeds expectations, considering that
its 256-bit vector length would allow it to perform arithmetic
at 4 times the rate of a scalar implementation. The theoretical
peak performance of Milan and Oakbridge are comparable,
and it seems likely that the high speedup is explained by the
scalar implementations performing poorly on Milan. As there
is no vectorised implementation of expm1() in libmvec
version 2.27, we see no speedup for that function.

On Wisteria, we observe a reasonable 6–8 times speedup for all
functions except expm1(). ThunderX2 achieves a modest
speedup only for the exp() and log() functions, whereas
the vectorised expm1() function sees a substantial
degradation in performance.

We also measured the accuracy of the vectorisedmath libraries
by calling each function with 1 million different input values,
and then comparing the result with reference solutions with
the MPFR library [see Fousse et al. (2007)] computed using
120 bits of accuracy. Table 5 reports the maximum error in
units of least precision (ULPs). If the true, infinite-precision
value is located on the midpoint between two floating-point
values of similar magnitude, the error would be 0.5 ULPs. The
input values were generated by interpreting randomly
generated bytes as a double-precision floats, and then we
discarded values outside the desired domain (the input
domains are listed in Table 5) and subnormal values (that
are too small to represent in full precision). For the pow()
function, we also omit values where the answer would have
been subnormal.

pow() on Wisteria has very poor accuracy for two input
values where the correct answers (6.11 × 10–308, 2.48 × 10–307)
are small but not subnormal (as they are greater than 2.23 ×
10–308). If those two values are ignored, the maximum error
was 36.206 ULPs, which is still significantly greater than the
other systems. The remaining errors reported in Table 5 are all
below 3 ULPs, which should be well within the accuracy
requirements for the solution of cell models.

3.4 Performance of Vectorised ODE Solvers
In our performance measurements of the ODE solver, we use the
throughput metric “cell steps per second”, which is simply
defined as

cell steps per second � number of cells × number of time steps
solution time in seconds

.

(10)
The advantage of a such a throughput metric is that it

simplifies the comparison of results with differing numbers of
cells or time steps, and it can easily be used to estimate the
solution time for a problem with a given number of cells and
time steps.

Table 6 and Table 7 show the single-threaded and multi-
threaded performance of the naïve and auto-vectorised
implementations using the FE scheme, where we have used
it to solve three realistic ODE models as shown in Table 1. We
set OMP_NUM_THREADS=1 in the environment when
measuring single-threaded performance, and we set it to
the number of logical cores when measuring the multi-
threaded performance. The “SoA” column uses a “struct of
arrays” memory layout, as discussed in Section 2.3.2, but it
does not provide any SIMD hints to the compiler. The
“SIMD” column adds SIMD hints to the SoA
implementation. We also report speedup factors
comparing the SIMD implementation to both the naïve
and the SoA implementation. The CPU clock speed is
typically somewhat lower when executing vector
instructions than when execution scalar instructions,
especially when all cores are under heavy load, and this is
one of the reasons why the speedup is generally higher in the
single-threaded case. The other reason would be that we are
more likely to encounter a memory bandwidth bottleneck

TABLE 9 | RRMS error when solving the TP06 model using SIMD and vectorised
math functions. For each ODE solver scheme a reference solution is
computed on Milan using scalar math functions and with compiler optimisations
disabled. The model is solved for 1 s with a time step Δt = 1 µs.

System FE RL GRL1

Oakbridge (with expm1) 2.11 × 10–16 1.34 × 10–16 9.47 × 10–17

Oakbridge 2.00 × 10–16 1.48 × 10–14 1.29 × 10–12

Oakforest 3.40 × 10–16 2.40 × 10–11 1.17 × 10–11

Milan 2.67 × 10–16 2.48 × 10–14 1.07 × 10–12

Wisteria 2.33 × 10–16 2.49 × 10–14 8.43 × 10–13

ThunderX2 1.85 × 10–16 2.48 × 10–14 7.94 × 10–13
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when using all threads. For the JT21 model on the
ThunderX2, we see a pronounced reduction in
performance for the SoA implementation compared to the
naïve implementation, but the other system–model
combinations generally show a slight improvement for
SoA over naïve.

Table 8 shows the multi-threaded performance in an
ensemble simulation with the JT21 model using the FE and
GRL1 schemes. The three loop-structures discussed in Section
2.3.4 are shown in separate columns, and we also report the
performance when vectorisation is disabled. When the Cell–Time
loop structure is successfully auto-vectorised, it outperforms the
other two loop structures, as we observe for Oakbridge and
Oakforest. Both of the other loop structures are successfully
auto-vectorised on all systems, but the Cell–Time–Cell loop
structure is more cache friendly and performs better than the
Time–Cell loop structure.

To quantify the error of the vectorised code relative to the
scalar code, we use the relative root-mean-square (RRMS) norm
given by

e‖ ‖RRMS �

												
∑N

i�1 vi − vrefi( )2
∑N

i�1 vrefi( )2
√√

, (11)

where N is the number of time steps. We have solved the TP06
model for one second using a time step Δt = 1 µs for the FE, RL
and GRL1 schemes. The RRMS error for the transmembrane
potential is reported in Table 9. The RL and GRL1 schemes
exhibit a larger error when (exp(x)-1) is used instead of
expm1(x).

3.5 Speed and Accuracy Related to Using
Lookup Tables
Table 10 reports the multi-threaded performance of naïve, auto-
vectorised and lookup table (LUT) implementations for the TP06
model. Across all systems the LUT implementation is
3.5–4.7 times faster than naïve. ThunderX2 clearly favours
LUT, which we attribute to its 128-bit vector length. Oakforest
and Wisteria, on the other hand, clearly favour SIMD with their
512-bit vector length. On Oakbridge, which also has 512-bit
vector units, LUT is marginally faster than SIMD. The fact
that SIMD doesn’t perform better on Oakbridge is likely due

to the somewhat low speedup of the vectorised math library (see
Table 4). On Milan, SIMD and LUT perform very similarly,
which is roughly in line with expectations.

When solving the non-gating equations with SIMD
vectorisation and the gating equations with LUT, we see an
improvement over only SIMD or LUT on the three x86-based
systems. As ThunderX2 has a very limited speedup from the use of
SIMD vectorisation, the combination of SIMD and LUT performs
worse than the LUT implementation. On Wisteria, the use of
SIMD vectorisation leads to much greater speedups than the use of
LUT, and shifting parts of the computation from SIMD to LUT
leads to a loss in performance compared to the pure SIMD variant.

Whereas the speedup of the LUT implementation is largely
insensitive to the CPU vector width and depends more on the
model formulation, the speedup of the SIMD implementation
strongly depends on the vector width. For the TP06 model, it
seems that we need more than 4 SIMD lanes for the SIMD
implementation to outperform the LUT implementation.
However, the observations we have made regarding the
speedup solving the TP06 model with a LUT does not
generalise to all cell models, and other models may see smaller
or larger gains from using a LUT.

Figure 1 compares the accuracy of the LUT implementation
to the naïve implementation. The two solutions are plotted
together in the top panel, and the difference is plotted in the
bottom panel. The error introduced by the LUT is greatest
during the upstroke, but the absolute error does not exceed 5 ×
10−5mV at any point.

3.6 Speeding up a 109-Ensemble
Computation
Recent studies [see e.g., Tveito et al. (2018); Jæger et al. (2020,
2021a)] have used cardiac cell models to decode the observed
effect of a drug on a chip of human induced pluripotent stem cell-
derived cardiomyocytes. In these studies, the assumption is that
there is a set of model parameters corresponding to the drug
effect, and the computational problem consists of searching
through the higher-dimensional parameter space. The
optimisation problem is particularly expensive because one has
to solve the cell model for a long time period until steady state is
reached.

In this section, we have set up an ensemble simulation where
we try to optimise 11 parameters by pre-computing solutions for

TABLE 10 |Multi-threaded performance of naïve, auto-vectorised and LUT implementations for the TP06 model in a simulation scenario. The Rush–Larsen scheme is used
with Δt = 0.1 µs, C = 11688851 cells. “SoA” refers to the “struct of arrays” memory layout discussed in Section 2.3.2. The most performant implementation is in
boldface.

System Throughput (106 · cell stepssecond ) Speedup

Naïve SoA SIMD LUT SIMD & LUT SIMD
Naïve

LUT
Naïve

SIMD& LUT
Naïve

Oakbridge 96.0 96.3 374.3 393.4 552.4 3.9 4.1 5.8
Oakforest 46.9 47.8 354.3 196.3 423.5 7.6 4.2 9.0
Milan 163.2 170.9 754.5 762.3 1198.0 4.6 4.7 7.3
Wisteria 17.5 21.3 245.0 74.3 206.5 14.0 4.2 11.8
ThunderX2 71.8 79.7 116.0 250.1 199.3 1.6 3.5 2.8
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a cartesian grid in the parameter space. Note that we treat the
remaining model parameters as constant, similar to how all
parameters are essentially constant in the simulation scenario.
With 5–12 grid points for each parameter, the total number of
parameter sets was 1,020,937,500. This parameter mesh can be
used directly to solve the optimisation problem by taking the

parameter mesh point that minimises the cost function as the
solution, or it can be used to guide the search of another
optimisation algorithm.

Each parameter set is solved for 102 seconds using a GRL1
scheme with a time step Δt = 10 µs. The model is paced at 1 Hz,
and the 100 first seconds are intended to allow the model to reach

FIGURE 2 | Traces of the transmembrane potential and calcium concentration for 1000 different sets of parameters in an ensemble simulation.

FIGURE 1 | Comparison of the TP06 model solved with and without the use of lookup tables. The RL scheme is used with Δt = 1 µs. In the upper plot, the two
numerical solutions cannot be distinguished by eye. The RRMS error of the LUT solution compared with the non-LUT solution is 1.36 × 10–7.
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steady state.We then record the solution for the last 2 seconds at a
temporal resolution of 5 ms. By comparing the two last action
potentials, we can determine whether steady state has indeed been
reached. For some choices of parameters, there is no steady state
solution with a period equal to the pacing period. Figure 2 shows
traces of the transmembrane potential for 1000 different sets of
parameters for t ∈ [100 s, 101 s).

The 1,020,937,500 parameter sets were divided into batches of
size 50,048 so that we could use a batch job in the queue system on
Oakforest to achieve task-level parallelism. Each of the 20,400
batches was solved on a single node, and the resource limits on
Oakforest allowed us to use up to 2048 nodes concurrently. This
job expended 11,990 tokens (and one token equals an hour of
compute time for a single node). We ran one of the batches both
with and without SIMD vectorisation so that we can extrapolate
an estimate for howmany tokens we would have needed if we had
run the entire job with a scalar implementation. The codes differ
only in the absence of vectorisation compiler hints for the non-
SIMD version, i.e. the line #pragma omp for simd is replaced
by #pragma omp for. The expm1 function was used to
evaluate expressions on the form (ex − 1). Without SIMD, the
solver achieved a throughput of 37.0 million cell steps per second,
whereas the SIMD version reached 232.25 million cell steps per
second, equating to a speedup by a factor of 6.28. If we extrapolate
from this speedup factor, we can estimate the cost of running the
whole simulation without vectorisation to 75,260 node hours. In
other words, the use of vectorisation lead to a reduction in
compute time of approximately 63,270 node hours. Since the
power draw per compute node on Oakforest is approximately
331W [see TOP500 (2021)], 63,270 node hours translates to an
energy consumption of approximately 20,942 kW h.

4 RELATED WORK AND CONCLUSION

4.1 Related Work
The code vectorisation in this work is automatically enabled by
the compilers, with the help of a few hints that are provided in the
form of compiler directives and additional clauses. Such an
implicit vectorisation approach is programmer-friendly and
portable, except perhaps a few #if defined (XXX)
directives to accommodate compiler-specific details. The
downside is that concerns over safety or efficiency may
prevent the compiler from vectorising more complicated code,
such as a loop body containing scattered memory accesses due to
the use of lookup tables. To handle such situations will require
explicit vectorisation. The first alternative is to directly
program with SIMD intrinsics. The challenge is that
different processor architectures may support different
intrinsic instruction sets. For example, AMD CPUs
currently only support (extended) SSE instructions with
128-bit and 256-bit vector widths [see AMD64
Technology (2021)], whereas high-end Xeon and Xeon Phi
processors also support AVX-512 instructions with 512-bit
vector width [see Intel (2021)]. On Arm processors, the
diversity is even larger with respect to SIMD
vectorisation. There are currently three SIMD instruction

set architectures applicable: SVE, Neon and Helium [see
Arm Intrinsics (2022)]. However, a specific Arm processor
may only support one of them. An explicit vectorisation of
the ten Tusscher–Panfilov model for IBM A2 CPUs was
developed as part of the “Cardioid” monodomain
simulator [see Mirin et al. (2012)]. As a second approach
to explicit vectorisation, there are high-level wrapper
libraries that offer portability and improved
programmability. Two such examples are VCL [see Fog
(2017; 2022)] and MIPP [see Cassagne et al. (2018); MIPP
(2021)]. Both are implemented using C++ and support
various SSE and AVX/AVX-512 instructions, whereas the
latter also supports Arm Neon instructions. The single-
instruction-multiple-thread (SIMT) execution model found on
graphics processing units (GPUs), which resembles CPU-based
SIMD execution in some respects, has been applied to cardiac cell
models [see e.g., Neic et al. (2012); Sachetto Oliveira et al. (2018)].

Using lookup tables is a widely used approach to saving the
computational cost of directly evaluating mathematical
functions. The different scientific domains that have used
this performance enhancing strategy are summarised in a
recent publication [see Marsh et al. (2021)], which also
discusses a methodology for predicting the speedup due to
using lookup tables. For cardiac simulations in particular, the
topic of using lookup tables has been addressed in e.g. Cooper
et al. (2006); Mirin et al. (2012); Green et al. (2019), where the
latter contains a detailed study about the accuracy loss caused
by lookup tables.

4.2 Conclusion
Wehave seen that the largest performance improvement of theODE
solvers arises from using SIMD, and the code vectorisation in this
work has been automatically enabled by the compilers. There are two
conditions for this “easy” approach. First, some restructurings of a
naïve implementation are needed. The most important code
restructuring is to re-organise the overall data structure as a
“struct of arrays” with padding, see Section 2.3.2. The other code
restructurings include swapping the cell–time loop ordering or
adding an additional loop level for the ensemble scenario, see
Section 2.3.4. Second, appropriate compiler hints are needed
inside the source code. We have chosen to use the OpenMP
simd construct together with the #pragma omp parallel
for directive, as illustrated in Listings 4, 5, 6 and 7. This choice
has the benefit of simultaneously enabling SIMD vectorisation and
multi-threaded parallelisation, both are essential for achieving the
full potential of multi-core CPUs for the ODE solving procedure.

In connection with the compiler-enabled auto-vectorisation, we
have presented the necessary compiler options for the different
compilers, see Table 3. We have also studied the performance
gain (or even loss) due to vectorisation of four frequently used
mathematical functions on five hardware testbeds (see Table 4),
as well as the appropriate vectorised math libraries to be used.
We have found that the relative benefit of using SIMD is
correlated with the peak SIMD floating-point throughput of
the hardware platform. Moreover, the minor accuracy loss due
to using vectorised math libraries can be found in Table 5. It has
been shown through actual ODE computations, see Table 9,
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that the slightly inaccurate vectorised math libraries will not
affect the overall accuracy.

The use of lookup tables may interfere with the auto-
vectorisation, but we have demonstrated that the two
techniques can be used to solve different parts of the cell
model, which on some of the target platforms yielded higher
performance than using either technique by itself. The decision
about whether to use lookup tables is hardware specific. On
platforms that only support small vector widths or have no
high-quality vectorised math libraries, the speedup potential
due to lookup tables can be large. The exact performance
benefit, however, depends on the size and resolution of the
lookup tables, which may affect the computational accuracy. A
direction for future work is to investigate whether explicit
vectorisation (using high-level wrapper libraries) can be used
to combine SIMD parallelism with lookup tables without
partitioning the state variables. In particular, such a
combination should be attempted with the help of
automated code generation, e.g., inside the modern cardiac
simulator openCARP [see Plank et al. (2021); openCARP
(2022)].
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Novel Global Asymptotic Stability and
Dissipativity Criteria of BAM Neural
Networks With Delays
Mei Liu1*, Haijun Jiang2, Cheng Hu2, Binglong Lu1 and Zhanfeng Li1

1School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou, China, 2College of Mathematics and System
Sciences, Xinjiang University, Urumqi, China

In this article, issues of both stability and dissipativity for a type of bidirectional associative
memory (BAM) neural systems with time delays are investigated. By using generalized
Halanay inequalities and constructing appropriate Lyapunov functionals, some novelty
criteria are obtained for the asymptotic stability for BAM neural systems with time delays.
Also, without assuming boundedness and differentiability for activation functions, some
new sufficient conditions for proving the dissipativity are established by making use of
matrix theory and inner product properties. The received conclusions extend and improve
some previously known works on these problems for general BAM neural systems. In the
end, numerical simulation examples are made to show the availability of the theoretical
conclusions.

Keywords: BAM neural network, global asymptotic stability, dissipativity, inner product, generalized Halanay
inequalities, matrix theory

1 INTRODUCTION

The BAM neural network model, proposed by Kosko in [1], consists of neurons in two layers, the x-
layer and the y-layer. The neurons of the same layer are sufficiently interconnected to the neurons
arranged in the other layer, but neurons do not interconnect among the same layer. A useful feature
of BAM is its ability to invoke stored pattern pairs in the case of noise. For detailed memory structure
and examples of the BAM neural network, please refer to [2]. In recent years, BAM neural systems
have received significant attention due to their wide applications in a lot of fields such as pattern
recognition, image processing, signal processing, associative memories, optimization problems, and
other engineering areas [3–6].

In general, due to the limited switching speed and signal propagation speed of neuron amplifiers,
the implementation of a neural network will inevitably have a time delay. We also know that using a
delayed version of the neural network is very important to solve some motion-related optimization
problems. However, research shows that time delay may lead to divergence, oscillation, and
instability, which may be bad for BAM neural systems [7, 8]. Therefore, these applications of
the BAMneural systems with delays greatly rely on the dynamical behavior of the neural systems. For
these reasons, it is necessary to study the dynamical behavior of the neural systems with delays, and it
has been widely studied by a great number of researchers [9, 10].

In the design and analysis of neural networks, stability analysis is a very important and essential
link. As small as a specific control system or as large as a social system, financial system, and
ecosystem, it is always carried out under various accidental or continuous disturbances. After bearing
this kind of interference, it is very important whether the system can keep running or working
without losing control or swinging. For neural networks, because the output of the network is a
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function of time, for a given input, the response of the network
may converge to a stable output, oscillate, increase infinitely, or
follow a chaotic mode. Therefore, if a neural network system
wants to play a role in engineering, it must be stable.

The notion of global dissipativity proposed in the 1970s is a
common notion in dynamical systems, and it is applied in the
fields of chaos and synchronization theory, stability theory, and
robust control and system norm estimation [11–14]. Hence, it is a
special and interesting problem to study the dissipativity of
dynamical networks. Up to now, the dissipativity for several
classes of simple neural networks with delays has begun to
attract initial interest in investigation, and some sufficient
conditions have been received [15–17]. Yet, to our knowledge,
only a few articles have not been used for Lyapunov–Krasovskii
functionals or Lyapunov functionals [18–22]. In this study, a few
dissipativity conclusions have been received for BAM neural
networks with varying delays via inner product properties and
matrix theory, which are different from the neural systems’model
investigated in [23, 24].

Inspired by the previous discussion, the global asymptotic
stability and dissipativity of BAM neural systems with time
delays are investigated. Some new criteria to ensure the
dissipation and stability of the BAM neural system are received.
Compared with the previous results, our main results are more
general and less conservative. The innovations of the study are at
least the following aspects.

1) The BAM neural network model studied in this article has a
time-varying delay.

2) In our article, the nonlinear activation functions we assumed
are not differentiable and bound.

3) In this article, the sufficient conditions for the dissipativity of
BAM neural networks with time-varying delay are obtained
by using only the inner product property and matrix theory.

4) Moreover, the global attraction sets, namely, positive invariant
sets, are obtained.

The structure of the article is organized in the following. The
model description and some preliminary knowledge with some
necessary definitions and lemmas are given in Section 2. In
Section 3, by constructing Lyapunov functionals, we discussed
the global asymptotic stability for the equilibrium point of
delayed BAM neural systems. Some sufficient criteria are
obtained and discussed to guarantee the global dissipativity by
using inner product properties in Section 4. Two examples and
their simulation conclusions are provided in Section 5. In the
end, some results are reached in Section 6.

2 PRELIMINARIES

Notations: In this article, let Rn be a Euclidean space with the
inner product <x, y> � yTx and the norm ‖x‖2 � �������<x, x>√

,
where x � (x1, x2, . . . , xn)Tand y � (y1, y2, . . . , yn)T ∈ Rn. The
matrix norm is ‖A‖2 �

���������
λmax(ATA)√

for A ∈ Rn×n, where
λmax(A

TA) denotes the maximum eigenvalue of ATA. λmin(A)

denotes the minimum eigenvalue of A. A > 0 denotes that matrix
A is symmetric positive definite. E is a unit matrix.

In this article, the model of delayed BAM neural networks is
investigated.

_x t( ) � −Ax t( ) + Cf y t( )( ) + ~Cf y t − τ( )( ) + I,
_y t( ) � −By t( ) +Dg x t( )( ) + ~Dg x t − σ( )( ) + J,

{ (1)

for t > 0, x(t) � (x1(t), x2(t), . . . , xn(t))T represents neuron in
the first layer at time t, and y(t) � (y1(t), y2(t), . . . , yn(t))T
represents neuron in the second layer at time t; A = diag (a1, a2,
. . ., an) and B = diag (b1, b2, . . ., bn), in which ai > 0 and
bj > 0(i, j ∈ I � {1, 2, . . . , n}) denote passive decay rates,
respectively; C � (cij)n×n, D � (dij)n×n, ~C � (~cij)n×n, and ~D �
(~dji)n×n are synaptic connection strengths; f(y(t)) �
(f1(y1(t)), f2(y2(t)), . . . , fn(yn(t)))T and g(x(t)) �
(g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))T denote nonlinear
activation functions; I � (I1, I2, . . . , In)T, J � (J1, J2, . . . , Jn)T
represents the external inputs to the neurons; τ �
(τ1, τ2, . . . , τn)T, σ � (σ1, σ2, . . . , σn)T which are required for
axonal transmission and neural processing of signals are time
delays.

In this study, we considered the following continuous
activation functions:

(H1): ∀x, y ∈ R, x ≠ y, i, j ∈ I , activation functions fj(·) and
gi(·) satisfy fj(0) = gi(0) = 0, and there exist constants lj,mi > 0 such
that

0≤
fj x( ) − fj y( )

x − y
≤ lj, 0≤

gi x( ) − gi y( )
x − y

≤mi.

Remark 1: The hypothesis of activation function H1 in this study
has been widely used in some references. In particular, when
discussing the stability, synchronization, and dissipation of neural
networks, H1 is a common assumption. In the study, the activation
function is Lipschitz continuous, so it is monotonously increasing.
But it may not be differentiable or bounded. However, in [8, 13], the
activation function should not only satisfy the hypothesis H1 of this
study but also satisfy the boundedness. In [15], the derivative of the
activation function also satisfies boundedness. In this study, the
activation function only needs to satisfy the hypothesis H1.
Compared with [8, 13, 15], the assumption of excitation function
in this study is more general.

The initial condition of the system (1) is considered as

x s( ) � φ s( ), s ∈ −α + t0, t0[ ],
y s( ) � ψ s( ), s ∈ −α + t0, t0[ ],{

where �τ � max
j∈I

{τj}, �σ � max
i∈I

{σ i}, α � max {�τ, �σ}, and φ(s), ψ(s)
∈ C[(− α + t0, t0), R

n].

Definition 1: [25]. The neural system (1) is globally dissipative if
there exists a compact set S ⊆ R2n, such that ∀z0 ∈ S, ∃ T(z0) > 0,
when t ≥ t0 + T(z0), z(t, t0, z0) ⊆ S, in which z(t, t0, z0) represents
the solution for (1) from initial time t0 and initial state z0. A set S
is said to be forward invariant if ∀z0 ∈ S indicates z(t, t0, z0) ⊆ S
for t ≥ t0.
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Definition 2: [26]. The point (x*T, y*T)T with x* �
(x1*, x2*, . . . , xn*)Tand y* � (y1* , y2*, . . . , yn*)T is the
equilibrium of system (1) if

−Ax* + Cf y*( ) + ~Cf y*( ) + I � 0,
−By* +Dg x*( ) + ~Dg x*( ) + J � 0.

{

Lemma 1: [27]. For every positive k > 0 and every a, b ∈ Rn,

2aTb≤ kaTXa + k−1bTX−1b

holds, in which X > 0.

Lemma 2: (Generalized Halanay inequalities) [28]. If V(t) ≥ 0, t ∈
(−∞, + ∞) and

D+V t( )≤ γ t( ) + ξ t( )V t( ) + η t( ) sup
t−τ t( )≤s≤t

V s( ), t≥ t0,

for t ∈ [t0, + ∞), in which γ(t) ≥ 0, η(t) ≥ 0, and ξ(t) ≤ 0 are
continuous functions and τ(t) ≥ 0, and there exists α > 0 such that

ξ t( ) + η t( )≤ − α, for t≥ t0.

Then,

V t( )≤ γ*
α
+ sup

−∞≤s≤t0
V s( ) − γ*

α
( ) · e−μ* t−t0( ),

where
γ* � sup

t0 ≤ t≤∞
γ(t), μ* � inf

t≥t0
{μ(t): μ(t) + ξ(t) + η(t)eμ(t)τ(t) � 0},

and the upper-right Dini derivative D+y(t) � lim
h→0+

y(t+h)−y(t)
h .

3 GLOBAL ASYMPTOTIC STABILITY FOR
BAM NEURAL NETWORKS

First of all, under condition (H1), neural system (1) always at least
has an equilibrium point. In the following, the asymptotic stability of
the equilibrium point will be proved. For simplicity, we transformed
the equilibrium point of system (1) to the origin. We assumed that
z* � (x1* , x2*, . . . , xn* , y1*, y2*, . . . , yn*)T is an equilibrium of neural
system (1). By the transformation
ui(·) � xi(·) − xp

i , wj(·) � yj(·) − yj*, one can transform system
(1) into the system as follows:

_u t( ) � −Au t( ) + C~f w t( )( ) + ~C~f w t − τ( )( ),
_w t( ) � −Bw t( ) +D~g u t( )( ) + ~D~g u t − σ( )( ),{ (2)

where ~f(w(t)) � (~f 1(w1(t)), ~f2(w2 (t)), . . . , ~fn(wn(t))
)T, ~g(u(t)) � (~g1(u1(t)), ~g2(u2(t)), . . . , ~gn(un(t)))T, in which
~fj(wj(t)) � f j(wj(t) + yj*) − fj(
yj*), and ~gi(ui(t)) � gi(ui(t) + xp

i ) − gi(xp
i ). Functions fj(·),

gi(·) satisfy the condition (H1); hence, ~fj(·), ~gi(·) satisfy

~f
2

j wj ·( )( )≤ ljwj ·( )~fj wj ·( )( ),
~f
2

j wj ·( )( )≤ l2jw2
j ·( ), ~fj 0( ) � 0,

⎧⎪⎨⎪⎩ (3)

~g2
i ui ·( )( )≤miui ·( )~gi ui ·( )( ),
~g2
i ui ·( )( )≤m2

i u
2
i ·( ), ~gi 0( ) � 0.

{ (4)

Remark 2: It is easy to verify that systems (1) and (2) have the
same stability. Therefore, to prove the stability of the equilibrium
point z* of the system (1), it is sufficient to prove the stability of
the trivial solution of the system (2).

Theorem 1: Under condition (H1), if there exist positive definite
diagonal matrices P = {pi} ∈ Rn×n,N = {ni} ∈ Rn×n and constants ς1,
ς2, β1, β2 > 0 such that

−2PA + ς−11 P~CN−1 ~C
T
P + β−11 PCCTP + β2M

2 + ς2PM
2 < 0,

−2NB + ς−12 N ~DP−1 ~D
T
N + β−12 NDDTN + β1L

2 + ς1NL2 < 0,

where M = diag{m1, . . ., mn}, L = diag{l1, . . ., ln}; then the zero
solution of neural system (2) is a unique equilibrium point and is
globally asymptotically stable. Proof. Now, we chose Lyapunov
functional.

V u t( ), w t( )( ) � ∑n
i�1

piu
2
i t( ) + ς1 ∑

n

j�1
∫t

t−τj
nj ~f

2

j wj s( )( )ds

+∑n
j�1

njw
2
j t( ) + ς2 ∑

n

i�1
∫t

t−σi
pi~g

2
i ui s( )( )ds.

Then,

_V u t( ), w t( )( ) � 2∑n
i�1

piui t( ) _ui t( ) + ς1 ∑
n

j�1
nj ~f

2

j wj t( )( ) − ~f
2

j wj t − τj( )( )[ ]
+2∑n

j�1
njwj t( ) _wj t( ) + ς2 ∑

n

i�1
pi ~g2

i ui t( )( ) − ~g2
i ui t − σ i( )( )[ ]

� 2uT t( )P _u t( ) + ς1 ~f
T
w t( )( )N~f w t( )( ) − ς1 ~f

T
w t − τ( )( )N

× ~f w t − τ( )( ) + 2wT t( )N _w t( ) + ς2 ~g
T u t( )( )P~g u t( )( )

−ς2 ~gT u t − σ( )( )P~g u t − σ( )( )
� 2uT t( )P −Au t( ) + C~f w t( )( ) + ~C~f w t − τ( )( )( ) + ς1 ~f

T
w t( )( )N

× ~f w t( )( ) − ς1 ~f
T
w t − τ( )( )N~f w t − τ( )( ) + 2wT t( )N −Bw t( )(

+D~g u t( )( ) + ~D~g u t − σ( )( )) + ς2 ~g
T u t( )( )P~g u t( )( )

−ς2 ~gT u t − σ( )( )P~g u t − σ( )( ).
(5)

By Lemma 1, we obtained

−ς1 ~fT
w t − τ( )( )N~f w t − τ( )( )

+ 2uT t( )P~C~f w t − τ( )( )≤ ς−11 uT t( )P~CN−1 ~C
T
Pu t( ), (6)

−ς2~gT u t − σ( )( )P~g u t − σ( )( )
+ 2wT t( )N ~D~g u t − σ( )( )≤ ς−12 wT t( )N ~DP−1 ~D

T
Nw t( ). (7)

From Eqs 6, 7, then

_V u t( ), w t( )( ) ≤ − 2uT t( )PAu t( ) + 2uT t( )PC~f w t( )( ) + ς−11 uT t( )P~CN−1 ~C
T
Pu t( )

+ς1 ~fT
w t( )( )N~f w t( )( ) − 2wT t( )NBw t( ) + 2wT t( )ND~g u t( )( )

+ς−12 wT t( )N ~DP−1 ~D
T
Nw t( ) + ς2 ~g

T u t( )( )P~g u t( )( )
≤ − 2uT t( )PAu t( ) + β−11 uT t( )PCCTPTu t( ) + β1

~f
T
w t( )( )~f w t( )( )

+ς−11 uT t( )P~CN−1 ~C
T
Pu t( ) + ς1w

T t( )NL2w t( ) − 2wT t( )NBw t( )
+β−12 wT t( )NDDTNTw t( ) + β2 ~g

T u t( )( )~g u t( )( )
+ς−12 wT t( )N ~DP−1 ~D

T
Nw t( ) + ς2u

T t( )PM2u t( )
� uT t( ) −2PA + ς−11 P~CN−1 ~C

T
P + β−11 PCCTP + β2M

2 + ς2PM
2( )u t( )

+wT t( ) −2NB + ς−12 N ~DP−1 ~D
T
N + β−12 NDDTN + β1L

2(
+ς1NL2)w t( )

< 0, ∀u t( ) ≠ 0, w t( ) ≠ 0.

(8)
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This implies that the origin solution of system (2) is
asymptotically stable. So the equilibrium point of system (1) is
asymptotically stable.

Corollary 1: Under condition (H1), suppose L =M = E, ς1 = ς2 =
β1 = β2 = 1, if there exist positive definite diagonal matrices P =
{pi} ∈ Rn×n, N = {ni} ∈ Rn×n such that

−2PA + P~CN−1 ~C
T
P + PCCTP + E + P< 0,

−2NB +N ~DP−1 ~D
T
N +NDDTN + E +N< 0,

then, the origin solution of network (2) is a unique equilibrium
point, and it is globally asymptotically stable.

4 GLOBAL DISSIPATIVITY FOR BAM
NEURAL NETWORKS

In this part, the global dissipativity for the BAM neural system (1)
is considered.

Theorem 2: Under assumption (H1), suppose z(t) �
(x1(t), . . . , xn(t), y1(t), . . . , yn(t))T is a solution of system
(1) and

ξ t( ) + η t( )≤ − α< 0,

then for any given ε > 0, there exists T such that for all t ≥ T

‖z t( )‖2 ≤
�����
γ2

α
+ ε

√
.

So, network (1) is dissipative, and the closed ball E �
E(0,

�����
γ2

α + ε
√

) is an absorbing set, where γ� δ3‖I‖22 +ρ3‖J‖22,
ξ(t) �max{−2λmin(A)+δ−11 +δ−12 +ρ1m2‖D‖22 +δ−13 , −2λmin(B)+
ρ−11 +ρ−12 +δ1l2‖C‖22 +ρ−13 }, η(t) �max{δ2l2‖~C‖22, ρ2m2‖ ~D‖22}, δ1,
δ2, δ3, ρ1, ρ2, ρ3>0, l�max

j∈I
{lj},and m�max

i∈I
{mi}. Proof. The

Lyapunov functional should be considered:

V t( ) � ‖x t( )‖22 + ‖y t( )‖22. (9)
Then,

_V t( ) � 2<x t( ), _x t( )> + 2<y t( ), _y t( )>
� 2<x t( ),−Ax t( )> + 2<x t( ), Cf y t( )( )> + 2< x t( ), ~Cf y t − τ( )( )>
+2<x t( ), I> + 2<y t( ),−By t( )> + 2<y t( ), Dg x t( )( )>
+2<y t( ), ~Dg x t − σ( )( )> + 2<y t( ), J>

≤ − 2λmin A( )‖x t( )‖22 + 2fT y t( )( )CTx t( ) + 2fT y t − τ( )( )~CT
x t( ) + 2ITx t( )

−2λmin B( )‖y t( )‖22 + 2gT x t( )( )DTy t( ) + 2gT x t − σ( )( ) ~DT
y t( ) + 2JTy t( ).

(10)

By <x, y> � yTx, (H1), and Lemma 1, there exists σ1, σ2, σ3, ρ1,
ρ2, ρ3 > 0 such that

2fT y t( )( )CTx t( ) ≤ δ1fT y t( )( )CTCf y t( )( ) + δ−11 xT t( )x t( )
≤ δ1λmax CTC( )‖f y t( )( )‖22 + δ−11 ‖x t( )‖22
≤ δ1λmax CTC( )l2‖y t( )‖22 + δ−11 ‖x t( )‖22
≤ δ1l2‖C‖22‖y t( )‖22 + δ−11 ‖x t( )‖22,

(11)

2fT y t − τ( )( )~CT
x t( ) ≤ δ2fT y t − τ( )( )~CT ~Cf y t − τ( )( ) + δ−12 xT t( )x t( )

≤ δ2λmax
~C
T ~C( )‖f y t − τ( )( )‖22 + δ−12 ‖x t( )‖22

≤ δ2λmax
~C
T ~C( )l2‖y t − τ( )‖22 + δ−12 ‖x t( )‖22

≤ δ2l2‖~C‖22‖y t − τ( )‖22 + δ−12 ‖x t( )‖22,
(12)

ITx t( ) ≤ δ3ITI + δ−13 xT t( )x t( )
≤ δ3‖I‖22 + δ−13 ‖x t( )‖22. (13)

Similar to Eqs 11–13, then

2gT x t( )( )DTy t( )≤ ρ1m2‖D‖22‖x t( )‖22 + ρ−11 ‖y t( )‖22, (14)
2gT x t − σ( )( ) ~DT

y t( )≤ ρ2m2‖ ~D‖22‖x t − σ( )‖22 + ρ−12 ‖y t( )‖22,
(15)

JTy t( )≤ ρ3‖J‖22 + ρ−13 ‖y t( )‖22. (16)
By using Eqs 11–16 in Eq. 10, it is easy to obtain

_V t( ) ≤ −2λmin A( ) + δ−11 + δ−12 + ρ1m
2‖D‖22 + δ−13( )‖x t( )‖22

+ −2λmin B( ) + ρ−11 + ρ−12 + δ1l
2‖C‖22 + ρ−13( )‖y t( )‖22

+δ2l2‖~C‖22‖y t − τ( )‖22 + ρ2m
2‖ ~D‖22‖x t − σ( )‖22

+δ3‖I‖22 + ρ3‖J‖22
≤ γ + ξ t( ) ‖x‖22 + ‖y‖22( ) + η t( ) ‖x t − σ( )‖22 + ‖y t − τ( )‖22( )
≤ γ + ξ t( )V t( ) + η t( ) sup

t−max �τ,�σ{ }≤s≤t
V s( ).

(17)
Then, by Lemma 2, we obtain

‖z t( )‖22 ≤ ‖x t( )‖22 + ‖y t( )‖22 � V t( )≤ γ*
α

+ sup
−∞≤s≤0

V s( ) − γ*
α

( )e−μ*t,
where μ* � inf

t≥0
{μ(t): μ(t) + ξ(t) + η(t)eμ(t)max {�τ,�σ} � 0}.

So, for the given sufficient small ε > 0, there exists T ≥ 0 such
that

‖z t( )‖2 ≤
�����
γ*
α
+ ε

√
, ∀t≥T,

where ε > 0 is sufficiently small. □

Corollary 2: If taking δ1, δ2, δ3, ρ1, ρ2, ρ3 = 1, under assumptions
(H1), suppose that z(t) � (x1(t), . . . , xn(t), y1(t), . . . , yn(t))T is
a solution of network (1) and

ξ t( ) + η t( )≤ − α< 0,

then network (1) is dissipative, and the closed ball E �
E(0,

�����
γ2

α + ε
√

) is an absorbing set for any ε > 0, where γ � ‖I‖22 +
‖J‖22, ξ(t) � max{−2λmin(A) +m2‖D‖22+ 3,−2λmin(B) + l2‖C‖22 +
3}, η(t) � max {l2‖~C‖22, m2‖ ~D‖22}.

Corollary 3: Under assumptions (H1), suppose that z(t) �
(x1(t), . . . , xn(t), y1(t), . . . , yn(t))T is a solution of network
(1), if

ξ t( ) + η t( )≤ − α< 0
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FIGURE 1 | Trajectories of system (18) for [x(0), y(0)]T = (−0.4, 0.5, 0.2, −0.5)T.

FIGURE 2 | Time response of the state variable x1(t) with different initial values.

FIGURE 3 | Time response of the state variable x2(t) with different initial values.
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FIGURE 4 | Time response of the state variable y1(t) with different initial values.

FIGURE 5 | Time response of the state variable y2(t) with different initial values.

FIGURE 6 | Time response of the state variable x1(t) and x2(t) with different initial values.
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and

lim
t≥0

δ3‖I‖22 + ρ3‖J‖22{ } � 0,

then system (1) is globally stable, where γ� δ3‖I‖22 +ρ3‖J‖22,
ξ(t) �max{−2λmin(A)+δ−11 +δ−12 +ρ1m2‖D‖22+ δ−13 ,−2λmin(B)+
ρ−11 +ρ−12 +δ1l2‖C‖22 +ρ−13 }, η(t) �max{δ2l2‖~C‖22,ρ2m2 ‖ ~D‖22}, δ1,
δ2, δ3, ρ1, ρ2, ρ3>0 .

Remark 3: In the existing articles, a lot of researchers studied the
qualitative behaviors of neural systems via the Lyapunov function
with linear matrix inequality techniques [26, 29, 30]. However, in
this article, some new sufficient criteria of dissipativity of BAM
neural networks with time delays are given by only using the
property of matrix theory and inner product.

5 NUMERICAL SIMULATIONS

In the part, two examples are presented to show the effectiveness.
Example 1. Investigation of the delayed BAM neural network

model.

_x t( ) � −Ax t( ) + Cf y t( )( ) + ~Cf y t − τ( )( ) + I,
_y t( ) � −By t( ) +Dg x t( )( ) + ~Dg x t − σ( )( ) + J,

{ (18)

in which x(t) � (x1(t), x2(t))T and y(t) � (y1(t), y2(t))T. Let
τ1 = 1, τ1 = 0.9, σ1 = 0.8, σ2 = 0.7, A = B = E, I = J = 0 and

C � 0 0.2
−0.2 0.1

( ), ~C � 0.1 0.2
0 −0.1( ), D � 0.2 1

1 0.4
( ),

~D � 0.2 0.5
0 −0.1( ).

Choose fj(yj) = (|yj + 1| + |yj − 1|)/2, gj(xj) = (|xj + 1| + |xj − 1|)/2,
j = 1, 2, l1 = l2 = m1 = m2 = L = M = β1 = β2 = ς1 = ς2 = 1.

By computing, we can get

−2PA + ς−11 P~CN−1 ~C
T
P + β−11 PCCTP + β2M

2 + ς2PM
2 < 0,

−2NB + ς−12 N ~DP−1 ~D
T
N + β−12 NDDTN + β1L

2 + ς1NL2 < 0.

So, from Theorem 1, network (18) has a unique equilibrium, and
it is globally asymptotically stable. By MATLAB, a unique
equilibrium of network (18) (0,0,0,0)T is given, and the
simulation results are given in Figure 1.

Example 2. The BAM neural model with delays is considered
as (Eq. 18), where x(t) � (x1(t), x2(t))T, y(t) � (y1(t), y2(t))T
and x(0) = (−1, 1.5)T, y(0) = (0.8, −1.5)T. Let τ1 = 0.9, τ2 = 0.9, σ1 =
0.8, σ2 = 0.8, A = B = E, I = (1, 0.5)T, J = (2.5, 0.5)T and

C � 1 0.2
−0.2 0.1

( ), ~C � 0.1 0.2
1 −0.1( ), D � 0.2 1

1 0.4
( ),

~D � 0.2 0.5
1 −0.1( ).

Choose fj(yj) = (|yj + 1| + |yj − 1|)/2, gj(xj) = (|xj + 1| + |xj − 1|)/2,
j = 1, 2 and l1 = l2 = m1 = m2 = l = m = δ1 = δ2 = δ3 = ρ1 = ρ2 =
ρ3 = 1.

By computing, we can get γ = 7.75, ξ(t) = 2.703, η(t) = 1.04.
Let α = 4, ε = 0.98, it follows from Theorem 2 and is observed
that system (18) is global dissipativity. Figures 2, 3 reflect the
behaviors for the states x1(t) and x2(t) with different initial
conditions. Figures 4, 5 show the phase plane behaviors of
y1(t) and y2(t) with different initial conditions. Figures 6, 7
demonstrate the behaviors of the time domain for the states
x1(t), x2(t) and y1(t), y2(t) with different initial conditions.
System (18) is globally dissipative from the numerical
simulations.

Remark 4 : In the numerical simulation part of [13], the author
only gives the simulation diagram of the BAM neural network
model with one node. This article presents the simulation
diagram of the BAM neural network model with two nodes.
Moreover, in [13], the values of σ(t) and τ(t) are all 1, while the
values of σ1(t), σ2(t), τ1(t), and τ2(t) in this study are different.
Therefore, in numerical simulation, this study is more general
in the value of the model and time delay. In addition, the

FIGURE 7 | Time response of the state variable y1(t) and y2(t) with different initial values.
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unique equilibrium point (0,0,0,0)T of the system (18) is
obtained by MATLAB. Figure 1 shows an image which is
globally asymptotically stable of the system (18) under initial
conditions (x1(t), x2(t), y1(t), y2(t))T � (−0.4, 0.5, 0.2,−0.5)T.
Figures 2–5 show the state diagram of x1(t), x2(t), y1(t), and
y2(t) under different initial conditions with respect to time t.
Figures 6, 7 show the state diagrams of x1(t), x2(t) and y1(t),
y2(t) under different initial conditions with respect to time t.
The previous figures given in this study can more intuitively
reflect the stability and dissipation of the BAM neural
network model.

6 CONCLUSION

In this study, by using matrix theory, inner product properties,
generalized Halanay inequalities, and constructing
appropriate Lyapunov functionals, novel sufficient criteria
of the global asymptotic stability of the system and the
global dissipativity of the equilibrium point have been
derived for a type of BAM neural systems with delays. The
given results might have an impact on investigating the
instability, the existence of periodic solutions, and the
stability of BAM neural networks. A comparison between
the results and the correspondingly previous works implies
that the derived criteria are less conservative and more general
through numerical simulations.
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Optimal Resonances in Multiplex
Neural Networks Driven by an STDP
Learning Rule
Marius E. Yamakou1,2*, Tat Dat Tran3,2 and Jürgen Jost2,4

1Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Max-Planck-Institut für
Mathematik in den Naturwissenschaften, Leipzig, Germany, 3Fakultät für Mathematik und Informatik, Universität Leipzig, Leipzig,
Germany, 4Santa Fe Institute for the Sciences of Complexity, Santa Fe, NM, United States

In this paper, we numerically investigate two distinct phenomena, coherence resonance
(CR) and self-induced stochastic resonance (SISR), in multiplex neural networks in the
presence of spike-timing-dependent plasticity (STDP). The high degree of CR achieved in
one layer network turns out to be more robust than that of SISR against variations in the
network topology and the STDP parameters. This behavior is the opposite of the one
presented by Yamakou and Jost (Phys. Rev. E 100, 022313, 2019), where SISR is more
robust than CR against variations in the network parameters but in the absence of STDP.
Moreover, the degree of SISR in one layer network increases with a decreasing (increasing)
depression temporal window (potentiation adjusting rate) of STDP. However, the poor
degree of SISR in one layer network can be significantly enhanced bymultiplexing this layer
with another one exhibiting a high degree of CR or SISR and suitable inter-layer STDP
parameter values. In addition, for all inter-layer STDP parameter values, the enhancement
strategy of SISR based on the occurrence of SISR outperforms the one based on CR.
Finally, the optimal enhancement strategy of SISR based on the occurrence of SISR (CR)
occurs via long-term potentiation (long-term depression) of the inter-layer synaptic
weights.

Keywords: coherence resonance, self-induced stochastic resonance, small-world network, multiplex network,
STDP

1 INTRODUCTION

Spiking activity in neural systems can be induced and affected by noise, which can be internally
produced by the system itself and/or externally by processes acting on the system. The sources of
neural noise include 1) synaptic noise, which is externally produced, and is caused by the quasi-
random release of neurotransmitters by synapses and/or random synaptic input from other neurons,
and 2) channel noise, which is internally produced and comes from the random switching of ion
channels [47, 49]. Synaptic and channel noise have been found to give rise to peculiar dynamical
behavior in neural networks, including various resonance phenomena. The most prominent forms of
these noise-induced resonance phenomena include: stochastic resonance (SR) [3, 28], coherence
resonance (CR) [36], self-induced stochastic resonance (SISR) [10, 34], and inverse stochastic
resonance (ISR) [18, 42]. The emergence and the dynamics of SR, CR, SISR, and ISR are quite
different from each other, and therefore, they have mostly been separately investigated in previous
research works. It might nevertheless be possible that fundamental relationships exist between some
or even all of these noise-induced resonances and that efficient enhancement schemes for
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information processing could emerge from their co-existence in a
neural network. Some research works have shown intriguing
results about the interplay between some of these noise-
induced resonance phenomena. The bifurcation and stochastic
analysis in [48] revealed that the parameter that changes the
relative geometric positioning (and stability) of the fixed point
(the quiescent state of the neuron) with respect to the fold point of
the cubic nullcline of the FitzHugh-Nagumo (FHN) model [11]
can cause a switch between SISR and ISR in the same synaptic
weak-noise limit. Experiments have frequently shown that real
biological neurons with similar physiological features, excited by
identical stimuli, may spike quite differently, thus expressing
different neuro-computational properties [40]. The analysis
presented in [48] may, therefore, provide a qualitative
explanation for this particular behavior. Zamani et al. [51]
later showed a similar behavior between SR and ISR in a
minimal bistable spiking neural circuit, where both
mechanisms could co-exist under careful preparations of the
neural circuit. Whether and if so, how all of these different
types of noise-induced resonance mechanisms are related and
what efficient enhancement schemes for information processing
emerge from their interactions is far from being completely
understood.

In this paper, CR and SISR will be the phenomena of interest.
In fact, in both CR and SISR, small random perturbations of an
excitable neural system with a large time scale separation ratio
may lead to the emergence of coherent spiking activity. The
mechanisms behind these noise-induced resonance phenomena,
however, are entirely different, see [10]. CR [36] occurs when a
maximal degree of regularity in the neuron’s spiking activity is
achieved at an optimal noise intensity without a periodic input
signal, provided the neuron’s bifurcation parameters are tuned
near the Hopf bifurcation [25, 26, 36] or the saddle-node
bifurcation [17, 19, 20, 27] threshold. In this case, a relatively
small noise amplitude can easily (without overwhelming the
entire dynamics) drive the neuron towards a coherent spiking
activity that emerges right after the bifurcation threshold. Thus,
during CR, noise plays a relatively passive role. In the FitzHugh-
Nagumo neuron model (that will be used in this work), CR
requires that the noise source is attached to the slow recovery
variable—mimicking the dynamics of channel noise [10].

SISR, on the other hand, occurs when a vanishingly small noise
intensity perturbing the fast variable of an excitable system results
in the onset of a limit cycle behavior that is absent without noise
[34]. SISR combines a coherence resonance-type mechanism with
an intrinsic reset mechanism, and no external periodic driving is
required. The period of the coherent oscillations created by the
noise has a non-trivial dependence on the noise intensity and the
timescale between the fast variable and slow variable of the
excitable system. SISR essentially depends on the interplay
between three different timescales: the two timescales of the
deterministic part of the excitable system (i.e., the fast and
slow timescale of the fast and slow variable, respectively), plus
a third timescale characteristic of the noise, which plays an active
role in the mechanism of SISR, in contrast to CR. Thus, the
mechanism behind SISR is different from that of CR (see [10]),
and remarkably, it can also occur away from bifurcation

thresholds in a parameter regime where the zero-noise
(deterministic) dynamics do not display a limit cycle nor even
its precursor. The properties of the limit cycle that SISR induces
are controlled by both the noise intensity and the time scale
separation ratio. Moreover, unlike CR, SISR requires a strong
timescale separation ratio between the variables of the excitable
system. In the FitzHugh-Nagumo neuron model, SISR (in
contrast to CR) requires that the noise source is attached to
the fast membrane potential variable—mimicking the dynamics
of synaptic noise [10].

Of course, it is worth pointing out that a neuron can have both
channel and synaptic noise simultaneously. In this case, CR and
SISR will compete with each other. The dominant phenomenon
will correspond to the one whose conditions are met first. It is
shown in [10, 34] that SISR will dominate CR because the
oscillations due to SISR are contained in those of CR. Thus,
the conditions necessary for SISR can always be met first. In the
current work, we shall not consider the situations where we have
both channel and synaptic noise in a given layer. Just one type of
noise will be considered in a given layer, and thus the competition
between CR and SISR in a given layer will also not be considered.

The characteristic features of CR and SISR based on (1) time-
delayed feedback couplings and network topology [1, 15, 30], 2)
the multiplexing of layer networks [6, 31, 39, 46, 50], and 3) the
use of one type of noise-induced resonance mechanism to
optimize another type [50] have been established. It has been
shown that appropriate selection of the time-delayed feedback
parameters of FHN neurons coupled in a ring network can
modulate CR: with a local coupling topology, synaptic time
delay weakens CR, while in cases of non-local and global
coupling, only appropriate synaptic time delays can strengthen
or weaken CR [1, 15, 30, 38]. The enhancement of CR and SISR in
neural systems with multiplex layer networks has recently
attracted attention. In a multiplex network [5], the nodes
participate in several networks simultaneously, and the
connections and interaction patterns are different in the
different networks, although the nodes preserve their identities
across the different networks or layers. Since there may exist
different types of relations between neurons or brain regions,
multiplex networks have also been proposed as
neurophysiological models [8]. For instance, functional
couplings, like synchronization, between brain regions can be
realized in different frequency bands. And each such frequency
band can process a different type of information, for instance in
language processing, phonetic, semantic and prosodic
information [13]. But the main purpose of our paper is a
formal investigation of the interplay between different types of
stochastic resonance in a model where the individual units follow
FHN dynamics, as FHN has become a paradigmatic model
system for nonlinear dynamics [24] where many features can
be studied in rather explicit terms.

In particular, the enhancement of CR in one layer of a
multiplex network of FHN neurons based on the occurrence
of SISR in another layer was established in [50]. In this case, two
enhancement schemes for CR were compared: In one scheme
(CR-CR scheme), one layer of the multiplex network is
configured so that CR is optimal and the other layer
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configured so that CR is non-optimal in isolation. In the other
scheme (SISR-CR scheme), one layer of the multiplex network is
configured so that SISR is optimal, and the other layer is
configured so that CR is non-optimal in isolation. It was then
shown that depending on which optimal resonance mechanism
(CR or SISR) we had in one layer of the multiplex network, the
best enhancement of CR in the other layer would depend on the
multiplexing time delay and strength between the two layers.
With weaker multiplexing strength and shorter time delays
between the layers, the CR-CR scheme performs better than
the SISR-CR scheme. But with stronger multiplexing
connections, the SISR-CR scheme outperforms the CR-CR
scheme, especially at weaker noise amplitudes and longer
multiplexing time delays. This result suggests that the
interactions between different noise-induced resonance
mechanisms in neural networks could open up new
possibilities for control and enhancement of information
processing. These enhancement schemes could allow us to
enhance information processing in neural networks more
efficiently, using the interplay between different noise-induced
resonance mechanisms and the multiplexing of layer networks.
Enhancement schemes based on multiplexing (or, in general, on
connecting several layers to form a multilayer network) are
advantageous because the dynamics of one layer can be
controlled by adjusting the parameters of another layer. So far,
the enhancement of CR and SISR based on the multiplexing of
neural layer networks has been established only in regular
networks in the absence of STDP [6, 31, 39, 46, 50].

Adaptive (or learning) rules in biological neural networks have
been linked to an important mechanism, namely, spike-timing-
dependent plasticity (STDP) [16, 29]. STDP describes how the
synaptic weights get modified by repeated pairings of pre-and
postsynaptic action potentials (spikes) with the sign and the
degree of the modification dependent on the relative timing of
the firing of neurons. Depending on the precise timing of pre-and
postsynaptic action potentials, the synaptic weights can exhibit
long-term potentiation (LTP, i.e., persistent strengthening of
synapses) or long-term depression (LTD, i.e., persistent
weakening of synapses). There are two main types of
STDP—Hebbian excitatory STDP (eSTDP) and anti-Hebbian
inhibitory STDP (iSTDP). In this paper, we will focus only on
eSTDP.

The ubiquity and importance of STDP in neural dynamics
require us to investigate the enhancement of CR and SISR in
adaptive neural networks driven by STDP. Such an investigation
should be instrumental both theoretically and experimentally.
Some previous works have shown the crucial role of adaptivity in
network of coupled oscillators. For example, in [2] it is shown that
the plasticity of the connections between oscillators plays a
facilitatory role for inverse stochastic resonance (ISR), where
adaptive couplings guide the dynamics of coupled oscillators to
parameter domains in which noise effectively enhances ISR. In
[12], it is shown how the interaction of noise and multiscale
dynamics, induced by slowly adapting feedback, may affect an
excitable system, giving rise to a new mode of behavior based on
switching dynamics which allows for an efficient control of the
properties of CR.

In the current work, the main questions we want to address are
the following: 1) How do network topology and STDP parameters
affect the degree of coherence due to CR and SISR? 2) In the
presence of STDP, which of these noise-induced resonance
phenomena is more robust to parametric perturbations? 3) In
the presence of STDP, is an enhancement of the less robust
phenomenon in an isolated layer network still possible via
multiplexing? 4) Can the occurrence of one resonance
phenomenon in one layer be used to enhance the other
phenomenon in another layer in the presence of STDP? 5) If
the answers to the previous questions are affirmative, then what
behavior (LTP or LTD) of the STDP learning rule optimizes the
multiplexing enhancement strategy?

Here is an outline of the remainder of this article: In Section 2,
we present the mathematical model of the stochastic neural
networks and give a brief description of the STDP learning
rule and the dynamical differences in the emergent nature of
the two noise-induced resonance phenomena that are of interest.
In Section 3, we present the numerical methods used in our
numerical simulations. In Section 3.1, we discuss the results of
the dynamics of CR and SISR in isolated layer networks. In
Section 3.2, we discuss the results of the enhancement of SISR
using the multiplexing technique. Finally, we summarize our
findings and conclude in Section 4.

2 MATHEMATICAL MODEL

We consider the following two-layer multiplex network, where
each layer represents a network of N diffusively coupled FHN
neurons in the excitable regime and the presence of noise:

dv1i � v1i − v31i
3
− w1i − Is1i t( ) + Im2i t( )[ ]dt + σ1dW1i,

dw1i � [ε1 v1i + α − γ1w1i( )]dt + σ2dW2i,

dv2i � v2i − v32i
3
− w2i − Is2i t( ) + Im1i t( )[ ]dt + σ̂1dW3i,

dw2i � [ε2 v2i + α − γ2w2i( )]dt + σ̂2dW4i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

v1i ∈ R and w1i ∈ R represent the fast membrane potential
variables and the slow recovery current variables in the first
layer, respectively. Similarly, v2i ∈ R and w2i ∈ R, respectively
represent the membrane potential and recovery current variables
for the neurons in the second layer. The index i = 1, . . . , N stands
for the ith neuron in the network ofN neurons. 0 < ε1≪ 1 and 0 <
ε2 ≪ 1 are the time-scale separation ratios between the fast
membrane potential and the slow recovery current variables in
the first and second layers, respectively. γ1 > 0 and γ2 > 0 are co-
dimension-one Hopf bifurcation parameters in each of the layers
and thus define the excitability threshold. α ∈ (0, 1) is a constant
parameter. σ1W1i is the uncorrelated Gaussian white noise with
standard deviation σ1, and similarly for σ2W2i, σ̂1W3i, and σ̂2W4i.
σ1W1i and σ̂1W3i which are attached to the fast membrane
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potential variables should be interpreted as representing synaptic
noise sources, while σ2W2i and σ̂2W4i which are attached to the
slow recovery variables both represent channel noise sources.

The terms Is1i(t), Is2i(t), Im1i(t), and Im2i(t) in Eq. 1 represent
synaptic currents (modelled by diffusive electrical couplings) and
also govern the STDP learning rule between connected neurons.
We point out that we are using adaptive (based on STDP)
electrical synapses so that we can directly compare our results
to those in [50] where non-adaptive electrical synapses are used to
study CR and SISR. The intra-layer synaptic currents Is1i(t) and
Is2i(t) of the ith neuron in the layer 1 and layer 2 at time t are
respectively given by

Is1i t( ) � 1

c1i
∑
j≠i

a1ijK
1
ij t( ) v1j t − τ1( ) − v1i t( )( ),

Is2i t( ) � 1

c2i
∑
j≠i

a2ijK
2
ij t( ) v2j t − τ2( ) − v2i t( )( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

where the synaptic connectivity matrices A1 � {a1ij}Ni, j�1 and

A2 � {a2ij}Ni, j�1 of the layer 1 and layer 2, respectively, have

a1ij � 1 � a2ij if the neuron j is pre-synaptic to the neuron i;
otherwise, a1ij � 0 � a2ij. The synaptic connections in each
layer, represented by the connectivity matrices A

1

and A
2

,
are modeled in terms of the time-invariant Watts-Strogatz
small-world network [41, 43, 44], where the in-degree of the
ith neuron in the ℓth layer (i.e., the number of synaptic
inputs to the neuron i in layer ℓ) is given by cℓi � ∑j≠ia

ℓ

ij, (ℓ =
1, 2). The intra-layer time delays of the electric synaptic
coupling in layer 1 and layer 2 are represented by τ1 and τ2,
respectively.

The inter-layer synaptic currents Im1i(t) and Im2i(t) (which we
shall also sometimes refer to as multiplexing currents) of the
ith neuron in layer 1 and layer 2 at time t are respectively
given by

Im1i t( ) � K12
ii t( ) v2i t − τ12( ) − v1i t( )( ),

Im2i t( ) � K12
ii t( ) v1i t − τ12( ) − v2i t( )( ),{ (3)

where τ12 represents the multiplexing (inter-layer) time delay of
the electrical synaptic coupling between layer 1 and layer 2. With
increasing time t, the intra-layer synaptic strengths K1

ij(t) and
K2

ij(t), and the multiplexing (inter-layer) synaptic strength
K12

ii (t) for each synapse are updated with a nearest-spike pair-
based STDP rule [33]. To prevent unbounded growth, negative
conductances (i.e., negative coupling strength) and elimination of
synapses (i.e., K1

ij � K2
ij � K12

ii � 0), we set a range with the lower
and upper bounds: {K1

ij, K
2
ij, K

12
ii } ∈ [0.0001, 1]. The initial intra-

layer synaptic weights (i.e., K1
ij(t � 0) and K2

ij(t � 0)), are
normally distributed with mean and standard deviation equal
to 0.1 and 0.02, respectively. And each of the N initial inter-layer
synaptic weights K12

ii (t � 0) is uniformly distributed in the
interval [0.0001, 1]. They are updated according to the rule

K1
ij → K1

ij + λΔK1
ij Δt1ij( ),

K2
ij → K2

ij + λΔK2
ij Δt2ij( ),

K12
ii → K12

ii + λΔK12
ii Δt12ii( ),

⎧⎪⎪⎨⎪⎪⎩ (4)

The intra-layer synaptic modifications ΔK1
ij(Δt1ij) and ΔK2

ij(Δt2ij)
depend on the relative time difference Δtij � (t(post)i − t(pre)j )
(Δtij � Δt1ij,Δt2ij) between the nearest-spike times of the post-
synaptic neuron i and the pre-synaptic neuron j. The inter-layer
synaptic modification ΔK12

ii (Δt12ii ) depends on the relative time
difference Δt12ii � (t(post)2 − t(pre)1 ) between the nearest-spike times
of the ith post-synaptic neuron in layer 2 and the ith pre-synaptic
neuron in layer 1. The parameter λ represents the learning rate. It
was found that small learning rates lead to more robust learning
[32]. Hence, in this work, we choose a small learning rate (i.e., λ =
0.0001) which, by the way, also simulates the effect of STDP on
the long-term evolution of a neural network [37]. In the
numerical simulations, we will consider eSTDP with an
asymmetric Hebbian time window for the synaptic
modifications given by [4, 22]:

ΔK1
ij Δt1ij( ) �

P1 exp −Δt1ij/τ1p( ) if Δt1ij > 0
−D1 exp Δt1ij/τ1d( ) if Δt1ij < 0
0, if Δt1ij � 0

⎧⎪⎪⎨⎪⎪⎩

ΔK2
ij Δt2ij( ) �

P2 exp −Δt2ij/τ2p( ) if Δt2ij > 0
−D2 exp Δt2ij/τ2d( ) if Δt2ij < 0
0, if Δt2ij � 0

⎧⎪⎪⎨⎪⎪⎩

ΔK12
ii Δt12ii( ) � P12 exp −Δt12ii /τ12p( ) if Δt12ii > 0

−D12 exp Δt12ii /τ12d( ) if Δt12ii < 0
0 if Δt12ii � 0,

⎧⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where LTP occurs if Δt1ij > 0, Δt2ij > 0, and Δt12ii > 0 (i.e., a post-
synaptic spike follows a pre-synaptic spike); LTD if Δt1ij < 0,
Δt2ij < 0, and Δt12ii < 0 (i.e., a post-synaptic spike precedes a
pre-synaptic spike); and no synaptic modification if
Δt1ij � Δt2ij � Δt12ii � 0. In Eq. 5, P1, P2, and P12 (D1, D2, and
D12) represent the potentiation (depression) adjusting rate
parameters in layer 1, layer 2, and between layer 1 and 2,
respectively. And τ1p, τ2p, and τ12p (τ1d, τ2d, and τ12d)
represent the potentiation (depression) temporal window
parameters in layer 1, layer 2, and between layer 1 and 2,
respectively. The amount of synaptic modification
(i.e., strengthening or weakening) is controlled by the
adjusting rate parameters P1, P2, P12, D1, D2, and D12, while
the time window for the synaptic modification is controlled by
τ1p, τ2p, τ12p, τ1d, τ2d, and τ12d.

Experimental investigations [7, 9, 14, 45, 52] have shown that
for a fixed stimulus, D1τ1d > P1τ1p ensures dominant depression
of synapses, otherwise (i.e.,D1τ1d ≤ P1τ1p) dominant potentiation.
In Figures 1A,B, we show the asymmetric Hebbian time window
for the synaptic modification ΔK1

ij(Δtij) given by Eq. 5
(ΔK2

ij(Δt2ij) and ΔK12
ii (Δt12ii have the same behavior). We see

that ΔK1
ij(Δtij) varies, depending on the relative time difference

Δt1ij between the nearest spike times of the post-synaptic neuron i
and the pre-synaptic neuron j. In Figure 1A, for a fixed value of
D1 (= 0.5), τ1d (= 20), and τ1p (= 20), we show the effects of P1 on
LTP and LTD. In Figure 1B, for a fixed value of D1 (= 0.5), τ1(=
20), and P1 (= 0.5), we show the effects of τ1d on LTP and LTD. In
the same way, fixing P1 and τ1d and varying D1 and τ1p show
similar effects on LTD and LTP. Thus, for a particular noise
intensity, when we fix parameter values of D1 and τ1p, the
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inequality D1τ1d > P1τ1p (D1τ1d ≤ P1τ1p) can switch from LTD
(LTP) to LTP (LTD) by changing the values of the parameters P1
and τ1d. Hence, the synapses can exhibit LTD and LTP if we vary
only two parameters (i.e., P1 and τ1d or D1 and τ1p) and keep the
other two constant. Therefore, throughout our studies, we fix the
depression adjusting rate parameter at D1 = 0.5 and the
potentiation temporal window parameter at τ1p = 20, and
choose the potentiation adjusting rate parameter P1 ∈ [0.1, 1]
and the depression temporal window parameter τ1d ∈ [0.2, 30] as
the alterable (control) parameters of the eSTDP learning rule.

3 NUMERICAL RESULTS

To quantify the degree of SISR (i.e., the degree of coherence of the
spiking activity induced by the mechanism of SISR), we use the
normalized standard deviation of the mean interspike interval,
commonly known as the coefficient of variation [36]. Because the
coefficient of variation is based on the time intervals between
spikes, it does relate to the timing precision of information
processing in neural systems [35] and naturally becomes an
essential statistical measure in neural coding. The coefficient of
variation (CV) of N coupled neurons is defined as [30]:

CV �
�������������
〈ISI2〉 − 〈ISI〉2

√
〈ISI〉

, (6)
where

〈ISI〉 � 1
N

∑N
i�1

〈ISIi〉,

〈ISI2〉 � 1
N

∑N
i�1

〈ISI2i 〉.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(7)

〈ISIi〉 and 〈ISI2i 〉 are respectively the mean and the mean squared
(over time) inter-spike intervals (ISI) of the ith neuron
(i.e., ISIi � tm+1

i − tmi > 0, where tmi and tm+1
i two consecutive

spike times bounding the mth interval). We determine the
spike occurrence times by the upward crossing of the
membrane potential variable vℓi past the spike detection

threshold of vth = 0.0. If CV = 1, we get a Poissonian spike
train (rare and incoherent spiking). If CV < 1, the spike sequence
becomes more regular, and CV vanishes for periodic
deterministic spikes. CV > 1 corresponds to a spike point
process that is more variable than a Poisson process. Thus, a
neural network undergoing a high degree of CR or SISR will show
a pronounced minimum in the values of CV [36].

For our investigations, we numerically integrate the set of
stochastic differential equations in Eq. 1with the Hebbian eSTDP
rule of Eq. 4 by using the fourth-order Runge-Kutta algorithm for
stochastic processes [21] and the Box-Muller algorithm [23]. The
integration time step is fixed at dt = 0.01 for a total time of T = 1.0,
×, 106 unit. Averages are taken over 20 different realizations of the
initial conditions. For each realization, we choose random initial
points [vℓi (0), wℓi (0)] for the ith neuron in the ℓth layer with
uniform probability in the range of vℓi (0) ∈ (−2, 2) and wℓi (0) ∈
(−2/3, 2/3). The initial synaptic weights K1

ij(t � 0), K2
ij(t � 0),

and K12
ii (t � 0) are normally distributed with mean and standard

deviation equal to 0.1 and 0.02, respectively. Furthermore, in our
simulations, we use small-world networks generated by the
Watts-Strogatz algorithm [41, 43, 44]. The average degree 〈sℓ〉
and the rewiring probability βℓ ∈ [0, 1] will be taken as the
network parameters to control the degrees of CR and SISR. We
note that in the context of small-world networks with rewiring
probability βℓ ∈ (0, 1), it is possible to interpolate between a
regular ring network by setting βℓ = 0 and a random network by
setting βℓ = 1 in the Watts-Strogatz algorithm.

Following the work in [10, 50], we note that while CR and SISR
generally require an excitable regime (achieved by fixing γ1 = γ2 =
0.75) for their occurrence, for the particular case of the FHN
neuron model, the occurrence of CR requires the presence of only
channel noise. Thus, when investigating CR in a given layer of Eq.
1, we will set all synaptic noises to zero (i.e., σ1 � σ̂1 � 0) in that
layer. Secondly, because the CR has been shown [10] to be rather
insensitive against variations of the timescale separation ratio, we
will fix these parameters at the standard and most commonly
used value εℓ = 0.01, (ℓ = 1, 2) in the layer in which we investigate
CR. On the other hand, the occurrence of SISR in a given layer
network of Eq. 1 requires 1) presence of only synaptic noise, and
thus, when investigating SISR in a given layer, we will set all

FIGURE 1 | Time windows for an asymmetric Hebbian eSTDP learning rule. Plot of synaptic modification ΔK1
ij versus Δt1ij (� t(post)i − t(pre)j ). t(post)i and t(pre)j are

spiking times of the ith post-synaptic and the jth pre-synaptic neurons, respectively. The blue and magenta curves represent LTP, while the red and cyan curves
represents LTD. Th effects of P1 and τ1d on LTD and LTP are indicated in panels (A) and (B), respectively. The other eSTDP parameters are fixed at: D1 = 0.5, τ1p = 20.
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channel noises to zero (i.e., σ2 � σ̂2 � 0) in that layer, and 2) a
stronger timescale separation ratio between the fast and slow
variables of the FHN model. Thus, we will set εℓ = 0.001 (ℓ = 1, 2)
in the layer in which we investigate SISR—a much smaller value
than for CR. The constant parameter α ∈ (0, 1) is fixed at 0.5
throughout our simulations.

3.1 Optimal CR and SISR in an Isolated
Layer
Before investigating the dynamics of CR and SISR in the
multiplex network of Eq. 1, we should first understand their
dynamics in an isolated layer network. Thus, this subsection is
devoted to the investigation of CR and SISR in a single isolated
layer of Eq. 1. We present the numerical results on the dynamics
of CR and SISR in terms of the network parameters (i.e., the
average degree 〈s1〉, the rewiring probability β1, and the intra-
layer time delay τ1) and the parameters of the eSTDP learning
rule (i.e., the potentiation adjusting rate P1 and depression
temporal window τ1d) in layer 1 of Eq. 1.

3.1.1 With respect to Network Parameters: 〈s1〉, β1, τ1
The average number of synaptic inputs per neuron (i.e., the
average degree connectivity) in layer 1 is given by 〈s1〉 � 1

N∑N
i�1c1i ,

where the in-degree of the ith neuron in layer 1 (i.e., the number

of synaptic inputs to the neuron i in layer 1) is given by
c1i � ∑j≠ia

1
ij. The higher (lower) the value of 〈s1〉, the denser

(sparser) the network in layer 1. The rewiring probability β1 of
layer 1, satisfying 0 ≤ β1 ≤ 1, reflects the degree of randomness in
the network. The network is 1) regular for β1 = 0 with a high
clustering high mean geodesic distance between neurons, 2)
random for β1 = 1 with a low clustering and low mean
geodesic distance between neurons, and 3) small-world for β1
∈ (0, 1) with a relatively high clustering but low mean geodesic
distance between neurons. The time delay τ1 between the signal
transfer between any pair of connected neurons originates from
the finite transmission speed of the neural signal along the axon
pre-synaptic neuron.

Figures 2A,B depicts the variation in the degree of CR in layer
1 (in isolation) of Eq. 1. We show the variation of CV as a
function of the channel noise intensity σ2 (with σ1 = 0) and the
average degree 〈s1〉 of this layer. In these panels, CR is
characterized by a family of non-monotonic CV curves as a
function of the noise intensity σ2. Panels A and B also indicate
that the phenomenon of CR is robust to changes in the average
degree of the network connectivity 〈s1〉. As 〈s1〉 increases, the
minimum of the CV curves (taking the value CVmin = 0.1108 at σ2
= 7.3 × 10–6) does not change. However, when the network is very
sparse, i.e., when 〈s1〉 = 1, we can see that the green line in
Figure 2A extends a little more to the left compared to the denser

FIGURE 2 | Variation of CV w.r.t. the average degree 〈s1〉 and the noise intensity σ2 for CR or σ1 for SISR. Panels (A) and (B) show CR characterized by a family of
non-monotonic CV curves w.r.t. σ2 (σ1 = 0) at ε1 = 0.01. Panels (C) and (D) show SISR characterized by a family of non-monotonic CV curves w.r.t. σ1 (σ2 = 0) at ε1 =
0.001. In both phenomena, the other parameters of the layer 1 are fixed at: β1 = 0.1, τ1 = 1, P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
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network configurations. This indicates that when 〈s1〉 = 1, a
relatively weaker noise intensity can enhance the degree of CR.
Therefore, in the rest of our simulations, to have the best degree of
CR while also allowing the network to have a small-world
topology, we will fix the average degree of the layer networks
at 〈s1〉 = 2.

Figures 2C,D show the variation in the degree of SISR in layer
1 (in isolation) of Eq. 1. In this case, we switched on the synaptic
noise intensity σ1 (and turned off the channel noise, i.e., σ2 = 0),
decreased the timescale separation parameter from ε = 0.01 to ε =
0.001, and kept the rest of the parameters at the same values as in
Figures 2A,B. In contrast to CR, SISR is sensitive to changes in
the average degree parameter 〈s1〉. In particular, when the
network is very sparse, i.e., when 〈s1〉 = 1, the degree of SISR
becomes significantly lower, with a minimum value of the CV
curve around CVmin = 0.4 for a wide range of the noise intensity,
i.e., σ1 ∈ (3.7 × 10–7; 1.9, ×, 10–2). As the network becomes denser,
i.e., 〈s1〉 increases, the degree of SISR also increases with the
minimum value of the CV curves occurring at CVmin ≈ 0.1903 for
σ1 ∈ (3.7 × 10–7; 1.9, ×, 10–2). Thus, in the rest of our simulations,
to have a high (low) degree of SISR, we will fix the average degree
of the layer networks at 〈s1〉 = 10 (〈s1〉 = 1), in contrast to CR.

Interestingly, in Figure 2, we see that the best degree of
coherence is higher for CR (with CVmin = 0.1108) than for
SISR (with (CVmin ≈ 0.1903). In previous work [50], where we
investigated CR and SISR in one isolated layer of Eq. 1 in the
absence of STDP, the opposite behavior occurs, i.e., SISR
produces a higher degree of coherence (with CVmin = 0.012)
than CR (with CVmin = 0.130), when all the other parameters are

at their optimal values. This means that in the presence (absence)
of STDP, the degree of coherence due to CR (SISR) is higher than
that of SISR (CR). Furthermore, while the degree of CR is higher
than that of SISR, the range of values of the noise intensity in
which the degree of CR is high is significantly smaller than that of
SISR. This is explained by the fact that high coherence due to SISR
emerges due to the asymptotic matching of the deterministic and
stochastic timescales. While the high coherence due to CR
emerges as a result of the proximity to the Hopf bifurcation
[10, 50]. Figures 2C,D indicate that this matching of timescales
occurs for a wider range of values of the synaptic noise intensity
(with flat-bottom CV curves), hence the larger interval for
coherence. On the other hand, Figures 2A,B show a smaller
interval of the channel noise intensity in which the degree CR is
highest. In this case, the noise intensity has to be just right (not
too weak or strong) to let the systems oscillate between the
excitable and the oscillatory regimes via a noise-induced Hopf
bifurcation, leading to the emergence of a limit cycle behavior
(i.e., noise-induced coherent oscillations). The noise channel
noise should not be too weak so that the systems do not stay
for too long in the excitable regime, thereby destroying the
coherence. Nor should it be too strong to overwhelm the
entire oscillations in the oscillatory regime, hence the relatively
smaller noise interval for the highest coherence in the case of CR.

Figures 3A,B depict the variation in the degree of CR in layer 1
(in isolation) of Eq. 1 as a function of the channel noise intensity
σ2 and the network rewiring probability β1 at an optimal value of
the average degree (i.e., 〈s1〉 = 1) chosen from Figure 2A. The
other parameters are kept fixed at the values given in Figure 2.

FIGURE 3 | Variation of CV w.r.t. the wiring probability β1 and the noise intensity σ1 for SISR or σ2 for CR. Panels (A) and (b) show the CV curves due to CR (σ1 = 0,
ε1 = 0.01, 〈s1〉 = 2). Panels (C) and (D) show the CV curves due to SISR (σ2 = 0, ε1 = 0.001, 〈s1〉 = 10). In both phenomena, the other parameters are fixed at: τ1 = 1,
P1 = 0.1, τ1d = 20, D1 = 0.5, τ1p = 20, N = 50.
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From Figures 3A,B, we notice that variations in the rewiring
probability do not destroy the high degree of CR. Here the
minimum of the CV curves remain very low. However, we
can observe that when the network is regular, i. e, when β1 =
0.0, the minimum of the CV curve (see, e.g., the green curve in
Figure 3A) is noticeably lower than when we have small-world
(with β1 ∈ (0, 1)) and the random network (with β1 = 1) topology.
Nevertheless, because in this work we are interested in non-
regular networks (i.e., β1 ∈ (0, 1]), we will fix β1 to a very low, but
non-zero value (i.e., β1 = 0.1) to have a high degree of CR in a
small-world network. Hence, in the rest of our simulations, to
have the best degree of CR in our small-world network, we will fix
the rewiring probability of the layer networks at β1 = 0.1.

Figures 3C,D show the variation in the degree of SISR in layer
1 (in isolation) of Eq. 1 as a function of the synaptic noise
intensity σ1 and the network rewiring probability β1 at the
optimal value of the average degree (i.e., 〈s1〉 = 10) chosen
from Figure 2C. The rest of the parameter values are the
same as in Figures 3A,B. We observe again that the degree of
SISR is more sensitive to changes in the parameter β1 than the
degree of CR. Furthermore, we observe that varying the rewiring
probability β1 has the opposite effect on the degree of SISR
compared to its effect on the degree of CR. The more regular
the network is (see, e.g., the red curve in Figure 3C), the higher
the CV curve and hence the lower the degree of SISR. Thus, in the
rest of our simulations, to have the best degree of SISR in our

network, we will fix the rewiring probability of the layer networks
at β1 = 1 (see the green curve in Figure 3C).

Figures 4A,B depict the variation in the degree of CR in layer 1
(in isolation) of Eq. 1 as a function of channel noise intensity σ2
and the intra-layer time delay τ1 of the network, at an optimal
value of the average degree (i.e., 〈s1〉 = 2) and the network
rewiring probability (i.e., β1 = 0.1) chosen from Figure 2A and
Figure 3A, respectively. Again we notice, from the low values of
the minimum of the CV curves, the robustness of the degree of
CR to variations of a network parameter, i.e., τ1. Nonetheless,
with the low degree of CR, we can still observe that when the
synaptic connections between the neurons are instantaneous
(i.e., when τ1 = 0), the CV curve (see the green curve in) is
slightly lower than the rest of the curves. Further increase in the
time delay does not affect the degree of CR. In the rest of the
simulations, to have the best degree of CR in our network, we will
fix the intra-layer time delay at a low but non-zero value, i.e., at
τ1 = 1.

Figures 4C,D show the variation in the degree of SISR in layer
1 (in isolation) of Eq. 1 as a function of synaptic noise intensity σ1
and the intra-layer time delay τ1 at an optimal value of the average
degree (i.e., 〈s1〉 = 10) and the network rewiring probability
(i.e., β1 = 1) chosen from Figure 2C and Figure 3C, respectively.
We observe that the degree of SISR is again more sensitive to
parametric perturbations than the degree CR. Moreover, the
variation in the degree of SISR as a function of the intra-layer

FIGURE 4 | Variation of CV w.r.t. the time delay τ1 and noise intensity σ1 for SISR or σ2 for CR. Panels (A) and (B) show the CV curves due to CR (σ1 = 0, ε1 = 0.01,
〈s1〉 = 2). Panels (C) and (D) show the CV curves due to SISR (σ2 = 0, ε1 = 0.001, 〈s1〉 = 10). In both phenomena, the other parameters are fixed at: τ1 = 1, P1 = 0.1, τ1d =
20, D1 = 0.5, τ1p = 20, N = 50.
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time delay τ1 is not linear and significantly depends on values of
the synaptic noise σ1. In Figure 4A, for τ1 = 0.0, we have CV
values which are higher and lower than those at τ1 = 1,000 and τ1
= 500, respectively. Thus, in the rest of the simulations, to have
the best degree of SISR in our network, we will fix the intra-layer
time delay at τ1 = 1,000.

3.1.2 With respect to STDP Parameters: P1, τ1d
Using the insight from the previous section on the effects of each
network parameter (i.e., 〈s1〉, β1, and τ1) on the degree of CR and
SISR, we now investigate the effects of STDP on the degree of CR
and SISR by varying the parameters P1 of the potentiation
adjusting rate and τ1d of the depression temporal window. To
do this, we first note that the results in Figures 2–4 are obtained
when the parameters of STDP (i.e., P1 and τ1d) are kept fixed at
the values indicated in the captions. So in the sequel, we fix the
network parameters at their non-optimal values, i.e., at values at
which each phenomenon produces the lowest degree of
coherence. Then, we vary the parameters (P1 and τ1d) of the
STDP learning rule in layer 1.

Extensive numerical simulations (not shown) have indicated
that the variations in the degree of CR and SISR with respect to P1
and τ1d are higher at the corresponding optimal network
parameter values indicated in Figures 2–4 than at the non-
optimal network parameter values. Qualitatively, however, the
variations in the degrees of both phenomena are essentially the
same when we have optimal or non-optimal network parameter
values. Because we are interested in the highest degree of CR and
SISR, we present the results on the effects of STDP on the degree

of CR and SISR when the network parameters are non-
optimal. We will then investigate the enhancement
strategies of the degree of each phenomenon using the
multiplexing technique.

In Figures 5A,B, we show the variations in degree of CR and
SISR in layer 1 (in isolation) of Eq. 1 as a function of the channel
(σ2) and synaptic (σ1) noise intensity and the potentiation
adjusting rate parameter P1 at corresponding non-optimal
values of the network parameters, respectively. Figure 5A
shows that the higher (compared to the degree of coherence
induced by SISR in Figure 5B) degree of coherence induced CR is
more (compared to the robustness of the coherence induced by
SISR in Figure 5B) robust to variations in the potentiation
adjusting rate parameter P1. Even though the lowest CV values
for each value of P1 are relatively close to each other, we have the
lowest (highest) CVmin = 0.1363 (CVmin = 0.1804) occurring at
P1 = 0.1 (P1 = 1). For SISR, we the lowest (highest) CVmin =
0.2009 (CVmin = 0.2588) occurs at P1 = 0.1 (P1 = 1).

In Figures 5C,D, we show the variations in degree of CR and
SISR in layer 1 (in isolation) of Eq. 1 as a function of the channel
(σ2) and synaptic (σ1) noise intensity and the depression temporal
window τ1d at corresponding non-optimal values both of the
network parameters and the potentiation adjusting rate
parameter P1 (obtained from Figures 5A,B), respectively. For
CR, we the lowest (highest) CVmin = 0.0254 (CVmin = 0.1849)
occurs at τ1d = 0.01 (τ1d = 30). For SISR, we the lowest (highest)
CVmin = 0.1245 (CVmin = 0.2632) occurs at τ1d = 0.01 (τ1d = 30).
Thus, unlike the opposite effects of the variations in each network
parameter on the degree of CR and SISR, the variations in the

FIGURE 5 | Variation of CV w.r.t. the potentiation adjusting rate P1, depression temporal window τ1d, and the noise intensity σ1 or σ2, with the corresponding non-
optimal network parameter values. Panel (A) and (B) show the values of CV during CR (σ1 = 0, ε1 = 0.01, 〈s1〉 = 10, β = 1, τ1 = 100, τ1d = 20) and during SISR (σ2 = 0, ε1 =
0.001, 〈s1〉 = 1, β = 0.1 τ1 = 600, τ1d = 20). Panel (C) and (D) show the values CV during CR (σ1 = 0, ε1 = 0.01,〈s1〉 = 10, β = 1, τ1 = 100, P1 = 1) and during SISR (σ2 = 0,
ε1 = 0.001, 〈s1〉 = 1, β = 0.1, τ1 = 600, P1 = 1). In both phenomena, the other parameters are fixed at: D1 = 0.5, τ1p = 20, N = 50.
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STDP parameters have similar effects on the degree of CR
and SISR.

In previous work [50], we aimed at enhancing CR (and not
SISR) via the multiplexing technique because CR showed more
sensitivity to parametric perturbations than SISR in the absence
of the STDP learning rule. The results in Figures 2–5 indicate that
the degree of CR becomes more robust to parametric
perturbations than the degree of SISR, which is particularly
sensitive to the variations in the parameters of the STDP
learning rule. For this reason, in the next section, we focus
only on the enhancement of the more sensitive phenomenon,
i.e., SISR, via the multiplexing technique used in [50].

3.2 Enhancement of SISR via the
Multiplexing Technique
It has been shown in [50] that in a two-layer multiplex network
with static (non-adaptive) synaptic couplings, CR or SISR in one
layer could induce and enhance CR in the other layer. Here, we
address whether enhancing a low degree of SISR in one layer of a
multiplex network is possible using an enhanced CR or SISR in
the other layer when adaptive synaptic couplings drive the
network. Then, we investigate which enhancement scheme is
best: 1) the CR-SISR scheme or 2) the SISR-SISR scheme.

In the CR-SISR scheme, we use the results from Section 3.1
and we set layer 1 such that it has a low degree of SISR, i.e., we
choose the network and STDP parameter values (〈s1〉 = 1, β1 =
0.1, τ1 = 600, P1 = 1, τ1d = 0.01) so that the CV curve is
high—indicating a poor degree of SISR in layer 1 in isolation.
We also set layer two such that it has a high degree of CR,
i.e., we choose the network and the STDP parameter values
(〈s1〉 = 2, β2 = 0.1, τ2 = 1, P2 = 0.1, τ2d = 20) so that the CV
curve is low—indicating a high degree of CR in layer 2 in
isolation. Then, we couple the two layers in a multiplex
fashion, i.e., each neuron in a layer is coupled only to its
replica neuron in the other layer via a synaptic coupling driven
by STDP. In the SISR-SISR scheme, we have the same settings
as in the CR-SISR scheme, except that in layer 2, we set the
network and STDP parameter values (〈s2〉 = 10, β2 = 1, τ2 = 1,
P2 = 0.1, τ2d = 20) so that the CV curve is high—in indicating a
high degree of SISR in layer 2 in isolation.

The STDP driving the multiplexing (inter-layer) synaptic
connections is governed by synaptic weight K12

ii (t) that
evolves according Eqs. 4, 5. Similarly to the intra-layer
synaptic weights of the isolated layer networks of Section 3.1,
we will fix the depression adjusting rate parameter at D12 = 0.5
and the potentiation temporal window parameter at τ12p = 20,
and vary only the potentiation adjusting rate P12 ∈ [0.05, 1], the

FIGURE 6 | Variation of CV of the controlled layer (exhibiting SISR) w.r.t. the noise intensity σ1 and the inter-layer time delay τ12. Panels (A) and (B) show the CV
curves in the absence (τ12 = 0) and presence (τ12 = 1,000) of the inter-layer time delay τ12, respectively. The red curves represent the variation in the degree of SISR in
layer 1 when in isolation. The black and the green curves show the enhancement performances of the CR-SISR and SISR-SISR schemes, respectively. Panel (C) shows
that for the same value of the inter-layer time delay, the SISR-SISR scheme always outperforms the CR-SISR scheme. Parameters of layer 2 in the CR-SISR
scheme: σ̂1 � σ2 � 0, σ̂2 � σ1 ≠ 0, ε2 = 0.01, 〈s2〉 = 2, β2 = 0.1, τ2 = 1, P2 = 0.1, τ2d = 20. Parameters of layer 2 in the SISR-SISR scheme: σ̂2 � σ2 � 0, σ̂1 � σ1 ≠ 0, ε2 =
0.001, 〈s2〉 = 10, β2 = 1, τ2 = 1, P2 = 0.1, τ2d = 20. Parameters of layer 1 in isolation and in both schemes: ε1 = 0.001, 〈s1〉 = 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01, N =
50. Parameters of the inter-layer STDP: P12 = 1, τ12d = 30, D12 = 0.5, τ12p = 20.
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depression temporal window τ12d ∈ [0.2, 30], and the inter-layer
time delay τ12 ∈ [0.0, 1,000] parameters in the intervals indicated.

In Figure 6, we show the performance of each scheme in
enhancing the low degree of SISR in layer 1. Figures 6A,B depict
the performances for an instantaneous (i.e., τ12 = 0) multiplexing
and for a time-delayed (τ12 = 1,000) multiplexing between layer 1
and layer 2, respectively. We recall that layer 1 is the layer of
interest, i.e., the layer with a low degree of SISR when it is in
isolation. The red curve in Figures 6A,B represents the degree of
coherence due to SISR in layer 1 when it is in isolation.We can see
that for the selected set of network and STDP parameters (i.e. 〈s1〉
= 1, β1 = 0.1, τ1 = 600, P1 = 1, τ1d = 0.01), the degree of coherence
due to SISR is very low as indicated by the high values of the red
CV curve for values of the synaptic noise intensity in some
interval, i.e., σ1 ∈ (5.0, ×, 10–8, 3.5 × 10–2).

When layer 1, with its poor degree of SISR, is multiplexed with
layer 2 exhibiting a high degree of CR, the performance of this
CR-SISR scheme is depicted by the black curve in Figures 6A,B
which represent the new degree of SISR in layer 1. We see that the
multiplexing of layer 1 with another layer exhibiting a strong CR
can significantly improve the degree of SISR in layer 1 by lowering
the red CV curve, which becomes black. On the other hand, when
layer 1, with its poor degree of SISR, is multiplexed with layer 2
exhibiting a high degree of SISR, the performance of this SISR-
SISR scheme is depicted by the green curve in Figures 6A,B
which represent the new degree of SISR in layer 1. We see that the
multiplexing of layer 1 with another layer exhibiting a strong SISR
can significantly improve the degree of SISR in layer 1 by lowering
the red CV curve, which becomes green. However, in both
schemes, this enhancement of SISR in layer 1 fails when the
synaptic noise intensity is larger than 1.9 × 10–2, a point from
which the black and the green CV curves of the CR-SISR and
SISR-SISR schemes lie above the red CV curve of layer 1 in
isolation.

Furthermore, we observe that even though the degree of the
coherence induced by CR can be higher than the degree of
coherence induced by SISR in an isolated layer network driven
by STDP, the degree of SISR induced via a multiplexing SISR-
SISR enhancement scheme is higher than that induced by a CR-
SISR enhancement scheme. This is clearly indicated by the black
and green curves simulated with no inter-layer time delay in
Figure 6A and with an inter-layer time delay in Figure 6B. For
the majority of values of the synaptic noise intensity of layer 1, the
green curve lies entirely below the black one.

To further investigate the effect of the inter-layer time delay
τ12 on the degree of coherence due to SISR in layer 1, we
computed the minimum value of the CV curve, (i.e., CVmin)
for a wide range of values of the inter-layer time delay τ12. The
result is shown in Figure 6C, where the green curve representing
the enhancement performance of the SISR-SISR scheme always
lies below the black curve, which represents the performance of
the CR-SISR scheme, as the inter-layer time delay changes in τ12 ∈
[0, 1,000]. Figure 6C also indicates that when the inter-layer time
delay is at τ12 = 550 and τ12 = 1,000, the SISR-SISR scheme
performs significantly better than at other values of the inter-layer
time delay and the CR-SISR scheme. The best inter-layer time
delay values in the CR-SISR scheme occur at τ12 = 0 and at τ12 =

350. The results presented in Figure 6 are for fixed values of the
alterable parameters of the inter-layer STDP learning rule, i.e.
P12 = 0.05 and τ12d = 30.

Now we investigate the effects of varying these two parameters
on the performances of the CR-SISR and SISR-SISR enhancement
schemes. To implement this, we fix, from Figure 6C, the inter-
layer time delay at the optimal value for each scheme, i.e., τ12 =
350 and τ12 = 1,000 for the CR-SISR and the SISR-SISR scheme,
respectively. Figures 7A,B show the performances of the CR-
SISR and SISR-SISR schemes as a function of the multiplexing
STDP parameters, i.e., P12 and τ12d, respectively. For the CR-SISR
scheme, we observe that a larger depression temporal window
(i.e., τ12d → 30) and a smaller potentiation adjusting rate (P12 →
0.05) yield the lowest minimum CV value, given by CVmin =
0.2989 which occurs at the synaptic noise intensity of σ1 �
1.9,×, 10−4 � σ̂2.

The SISR-SISR scheme in Figure 7B shows better overall
performance compared to the CR-SISR scheme with respect to
these inter-layer STDP parameters. First, we observe that the
surface of the graph CVmin in the SISR-SISR scheme (with the
highest value at CVmin = 0.2098, occurring at P12 = 0.5 and τ12 =
0.5) lies entirely below the surface of the graph CVmin in the CR-
SISR scheme (with the lowest value at CVmin = 0.2989, occurring
at P12 = 0.05 and τ12d = 30). Secondly, from Figure 7B, we observe
that small (i.e., P12 = 0.1), but not too small values (unlike in the
CR-SISR scheme in Figure 7Awith P12 = 0.05) of the potentiation
adjusting rate and large values of the depression temporal
window (i.e., τ12 = 30) parameters yield the lowest minimum
CV value, given by CVmin = 0.1005 which occurs at the synaptic
noise intensity of σ1 � 7.3 × 10−5 � σ̂1.

In [50], the synaptic connections between the FHN neurons
are static, and the effects of STDP on the strength of synaptic
couplings are entirely ignored. The results [50] show that
intermediate and strong multiplexing between the layer
networks is required for the enhancement of the coherence,
irrespective of the enhancement scheme. However, in the
current paper, the inter-layer synaptic strength may not be
static. Thus, we cannot choose a priori the strength of the
inter-layer synaptic connections because this is entirely
controlled by the STDP rule, which depends on the neurons’
random spiking times. The best performance of the CR-SISR
scheme (indicated by the lowest of value of CVmin in Figure 7A)
occurs when P12 = 0.05, τ12d = 30, τ12 = 350, and σ1 = 1.9, ×, 10–4.
While the best performance of the SISR-SISR scheme (indicated
by the lowest value CVmin in Figure 7B) occurs when P12 = 0.1,
τ12d = 30, τ12 = 1,000, and σ1 = 7.3 × 10–5. Now, using these two
sets of parameter values, we computed the time-evolution of the
population-averaged multiplexing synaptic weights 〈K12

ii 〉 with
an initial normal distribution of mean 0.1 and standard deviation
of 0.02. The results are depicted in Figure 7C where the green
curve shows that the best enhancement of SISR via the SISR-SISR
scheme occurs via LTP, i.e., the strengthening of the inter-layer
synapses from the initial value. In contrast, the red curve shows
that the best enhancement of SISR via the CR-SISR scheme occurs
via LTD, i.e., the weakening of the inter-layer synapses from the
initial value. We note that the red curve in Figure 7C is close to
zero, but not exactly zero (since the elimination of synapses has
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been avoided by bounding 〈K12
ii 〉 ∈ [0.0001, 1]). The fact that the

weak multiplexing of layer networks could enhance resonance
phenomena in one of the layers was already discovered in [39].
However, this remains an observed behavior as the precise
mechanism behind it is still elusive. A theoretical explanation
of weak-multiplexing-induced resonance phenomena should be
rewarding in theoretical studies and applications, e.g., in
neuroengineering.

4 SUMMARY AND CONCLUSION

In this paper, we have numerically investigated the effects of
varying the network and STDP parameters on the degree of CR
and SISR in isolated and coupled (multiplexed) layer networks
consisting of electrically connected FHN model neurons. In
the isolated layer networks and for a fixed set of parameters,
the results indicate that: 1) in the presence of STDP, the degree
and the robustness of the coherence due to CR are always
higher than those of the coherence due to SISR, unlike in the
absence of STDP where the opposite behaviors occur [50], 2)
the degree of coherence due to SISR increases with the average
degree of the network connectivity and the rewiring
probability of the network topology. While the degree of the

coherence due to SISR shows a nonlinear response to the
variation in the electric time delay between the
neurons—smaller and significantly larger time delays yield a
higher degree of coherence than intermediate values, and 3) the
degree of coherence due to SISR increases with a decreasing
(increasing) value of the depression temporal window
(potentiation adjusting rate) parameter of the STDP learning
rule, especially at (relatively) larger synaptic noise intensities.

In the multiplex networks, we set up two enhancement
schemes for the more sensitive phenomenon, i.e., SISR in
layer 1, based on the multiplexing with layer 2 and using
SISR and CR acting as the enhancing phenomena each with
a high degree of coherence in layer 2. In the first enhancement
scheme (termed the CR-SISR scheme), we have SISR with a low
degree of coherence, achieved with specific values of the
network and STDP parameter in layer 1 obtained in advance.
And in layer 2 we have CR with a high degree of coherence,
achieved with specific values of the network and STDP
parameters obtained in advance. In the second enhancement
scheme, termed the SISR-SISR scheme, we have SISR with a low
degree of coherence in layer 1. And in layer 2 we have SISR with
a high degree of coherence. Our results showed that: 1) both
schemes can significantly enhance (as indicated by the relatively
lower value of the CV curves) the poor degree of SISR in layer 1,

FIGURE 7 |MinimumCV against the multiplexing potentiation adjusting rate P12 and depression temporal window τ12d for layer 1 exhibiting SISR whenmultiplexed
to layer 2 exhibiting CR and SISR in Panels (A) and (B), respectively. The SISR-SISR scheme outperforms the CR-SISR scheme in enhancing SISR in layer 1 in the entire
(τ12d, P12) plane. Parameter values in panels (A) and (B) are the same as in (Figure 6A) with τ12 = 350 and τ12 = 1,000 in the CR-SISR and SISR-SISR scheme,
respectively. Panel (C) shows the time-evolution of population-averaged inter-layer synaptic weights 〈K12

ii 〉 with an initial normal distribution of mean 0.1 and
standard deviation 0.02 at the values of P12, τ12d, and σ1 (see main text) at which CVmin achieves it lowest value in CR-SISR and the SISR-SISR schemes. LTP (LTD)
favours the SISR-SISR scheme (CR-SISR scheme).
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2) at the optimal inter-layer time delay (τ12) of each scheme, a
larger depression temporal window (τ12d) and a smaller
potentiation adjusting rate (P12) parameters of the inter-layer
STDP learning rule improve the CR-SISR and SISR-SISR
enhancement schemes. However, for the SISR-SISR scheme,
the potentiation adjusting rate parameter should not be too
small, 3) the SISR-SISR scheme outperforms the CR-SISR
scheme in the enhancement of SISR in layer 1 for all the
parameter values of the inter-layer STDP learning rule, and
4) at their respective optimal inter-layer time delay, synaptic
noise intensity, potentiation adjusting rate, and depression
temporal window parameter values, the SISR-SISR scheme
enhances SISR in layer 1 via long-term potentiation (LTP) of
the synaptic strength between the layers. In contrast, the CR-
SISR scheme enhances SISR in layer 1 via long-term depression
(LTD) of the synaptic strength between the layers.

Interesting future research directions on the topic would be to
investigate the robustness of the results presented in this paper
when the topologies of the layer and multiplex networks are
different and when the networks are driven by homeostatic
structural plasticity.
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Hydrogen-bond networks for
proton couplings in G-Protein
coupled receptors

Ana-Nicoleta Bondar1,2* and Mercedes Alfonso-Prieto2

1Faculty of Physics, University of Bucharest, Bucharest, Romania, 2Computational Biomedicine (IAS-5/
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G-protein signaling pathways mediate communication across cell membranes.

The first steps of this communication occur at the cell membrane, where upon

receiving an external signal –the binding of an agonist ligand– the membrane-

embedded G-Protein Coupled Receptor adopts a conformation recognized by

a cytoplasmatic G protein. Whereas specialized GPCRs sense protons from the

extracellular milieu, thus acting as pH sensors in specialized cells, accumulating

evidence suggests that pH sensitivity might be common to distinct GPCRs. In

this perspective article we discuss general principles of protonation-coupled

protein conformational dynamics and how these apply to GPCRs. To dissect

molecular interactions that might govern the protonation-coupled

conformational dynamics of GPCRs, we use graph-based algorithms to

compute graphs of hydrogen bond networks. We find that the internal

H-bond networks contain sites where structural rearrangements upon

protonation change could be transmitted throughout the protein. Proton

binding to bulk-exposed clusters of titratable protein sidechains ensures the

pH sensing mechanism is robust.

KEYWORDS

G-protein coupled receptor (GPCR), G protein, pH, hydrogen bond (H-bond), graph
theory—graph algorithms

Introduction

G-Protein Coupled Receptors (GPCRs) mediate communication between eukaryotic

cells and their environments. Signals sensed by GPCRs can be of external origin, such as

light or odors, or endogenous, such as hormones or neurotransmitters. Humans

have >750 GPCRs [1], and about 30–35% of the drugs target GPCRs that respond to

endogenous signals (endo-GPCRs)—though just a minority (10%) of the known GPCRs

are used as targets [2–4]. As endo-GPCRs are significantly conserved between human and

mouse, and are expressed preferentially in the brain [1], they are of tremendous interest in

expanding the repertoire of GPCRs used for therapeutics [4]. Moreover, since themajority

of the GPCRs that are currently targeted by approved drugs couple to cytoplasmatic G

proteins Gs or Gi [4], in the future G proteins might also become drug targets [5, 6], e.g., by

using ligands that can modulate interactions between G proteins and their upstream/

downstream interaction partners and thus impact signal transduction pathways.
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The general principles of how GPCRs interact with G proteins

to effect cell signaling are illustrated in Figure 1A. Upon binding of

an agonist the GPCR changes conformation and binds to the G

protein (Figure 1A). Some class B GPCRs alter their ligand

specificity upon interactions with receptor activity-modifying

proteins, RAMPS, which are single-pass transmembrane proteins

with an extracellular domain [7]. Both GPCRs and G proteins are

dynamic [8, 9]. GPCRs can couple to lipids [10, 11], can bind

sodium ions [12, 13], and change protonation during their function

[14, 15]. Indeed, recent data were interpreted to suggest that

“proton-sensing and H+-gated agonism are recurring features of

GPCR signaling biology” [16]; however it remains unclear how

GPCRs couple proton binding with protein conformation.

Mechanisms for protonation-coupled function have been

FIGURE 1
GPCR activation and protonation-coupled conformational dynamics with H-bond networks. (A) Agonist and G-protein binding may associate
with protonation-coupled formation of a continuous H-bond network inside the GPCR. (B) Schematic representation of a membrane protein with a
bulk-exposed proton antenna cluster and an internal proton-binding site. (C,D)Close view of the internal H-bond network (C) and H-bond graph (D)
computed for bacteriorhodopsin, pdb 7z09 [39]. Gray and red nodes represent, respectively, protein sidechains and water oxygen atoms; only
selected nodes are labeled. (E,F)Molecular graphics (E) andH-bond graph (F) computed for Acetabularia rhodopsin I, pdb 5awz [40]. (G,H)Molecular
graphics (G) and H-bond graph computed for archaeorhodopsin-3, pdb 6gux [41]. Only some helices are displayed in panels E,G. Groups underlined
in panels C,E,G were implicated in proton binding [40, 41, 78]. Molecular graphics included in Figure 1 and Figure 2 were prepared with Visual
Molecular Dynamics, VMD [79]. H-bond graphs in panels D, E, H were computed with C-Graphs [19] using structures aligned with OPM [80].
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dissected for microbial rhodopsins –which, similar to GPCRs, are

seven-helical membrane proteins, and pass through discrete

intermediate conformations during their reaction cycles. Here,

we rely on GPCRs and microbial rhodopsin structures to dissect

interactions potentially important for protonation-coupled

conformational change. We computed H-bond networks using

the graph-based algorithms Bridge [17, 18] and C-Graphs [19]

and asH-bond criterion a distance of ≤3.5 Å between the donor and

acceptor heavy atoms; the graph computations included all

H-bonding protein sidechains, and water-mediated bridges

between sidechains with up to three water molecules in a bridge.

Thus, nodes of an H-bond graph are H-bonding protein sidechains,

and edges, sidechain-sidechain H-bonds or water-mediated bridges

between sidechains. We suggest that GPCRs that couple proton

binding with conformational change might use mechanisms similar

to other membrane proteins (Figure 1B).

Internal H-bond networks of static
GPCR structures depend on the
resolution

Analyses of H-bonds in static experimental structures of

GPCRs are commonly used to formulate hypotheses about

reaction mechanisms. As summarized below, the view of

internal H-bond networks of GPCRs depends drastically on

the resolution at which structures were solved, and on the

internal number of water molecules.

The structure of the (inactive) visual rhodopsin GPCR from

squid presented a remarkable internal protein-water H-bond

network hypothesized to mediate propagation of structural

change during receptor activation [20]. Much of this H-bond

network remains present in structures of the early intermediates

batho and lumi [19]. Moreover, some of the internal water

molecules of squid rhodopsin are conserved in structures of

jumping-spider rhodopsin-1 and adenosine A2A receptor

(AA2AR), suggesting conserved roles of water molecules in

propagating structural change [19].

A difficulty with identifying protein-water H-bond networks of

GPCRs based on static structures is that the number of internal water

molecules tends to depend on the resolution: GPCR structures solved

at resolutions of 2 Å or higher typically have at least 30 internal water

molecules, some of which are found at conserved sites [21]. A dataset

of 63 GPCR structures solved at a resolution of 2.5 Å or better, and

with at least 10 internal water molecules, were found to host a

conserved, core protein-water H-bond network that inter-connects

functionally important regions of GPCRs [21]; within this dataset,

structures solved at resolution of at least 2.3 Å and with more

internal water molecules had additional local H-bond clusters

[21]. In stark contrast with the extended H-bond network of the

inactive squid rhodopsin structure, two recent structures of

G-protein bound GPCRs solved at resolutions of 2.9–3.15 Å [22,

23], which lack internal water molecules, have only small, localized

H-bond clusters of up to 3-4 protein sidechains [24]. This suggests

that both the resolution and internal water content need to be

accounted for in hypotheses about putative roles of H-bond

networks for conformational couplings of GPCRs [21, 24].

Protonation change during GPCR
function and pH-sensing GPCRs:
Lessons from microbial rhodopsins
and other proton-binding membrane
proteins

GPCRs that change protonation during function include

bovine rhodopsin –two internal Glu groups, one at the ligand

binding site (E3.28 in the standard Ballesteros-Weinstein

numbering scheme for class A GPCRs), and one at a

conserved functional motif (E3.49) [14]; the M2 muscarinic

receptor –two conserved carboxylic groups, D2.50 and D3.32,

might change protonation [25]; the calcium receptor –whose

activity might be modulated by proton binding to carboxylic

sidechains [26]; the μ-opioid receptor –the propensity of the

ligand to H-bond to H6.52 could explain pH sensitivity [27];

AA2ARs –ligand binding depends on pH-sensitive interactions

of E169 and H264 at the extracellular side [28, 29].

Other GPCRs signal changes in extracellular pH to ensure

cell homeostasis, i.e., their biological function is to sense pH, and

they have been implicated in disease conditions associated with

acidic pH –cancer, inflammatory disease, and ischemia [30, 31].

As no three-dimensional structures have been solved for these

canonical pH-sensing GPCRs, their reaction mechanism remains

elusive. Central roles for proton sensing have been assigned to

H-bonding extracellular His sidechains [32], or to a triad of

internal carboxylic groups [33]. How the protonation change of

external His sidechains would cause receptor structural changes,

and how protons from the extracellular bulk would make their

way to internal carboxylic groups, are key open questions. As

summarized below, we suggest that mechanisms used by

microbial rhodopsins, and by other proton-binding membrane

proteins, provide clues about common principles of action for

protonation-coupled membrane proteins.

Membrane proteins are commonly thought to rely on

internal H-bond networks to couple protein conformation

with a change in protonation, typically of a carboxylate

and/or His sidechains, as these moieties titrate in a

pH range relevant to biology [34, 35]. Protonation change

at internal sites of membrane proteins involves H-bond paths

that transiently inter-connect proton donor and acceptor

pairs. In the bacteriorhodopsin proton pump (Figures 1C,D

2A), a few internal carboxylic groups, including D85, D96 and

E194/E204 (Figures 1C,D) change protonation during

bacteriorhodopsin’s function. In the resting state, the

primary proton acceptor D85 H-bonds with T89 and water,

protonated D115 with T90, D212 with Y57 and Y185, and the
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proton-release site E194-E204 with S193. At the cytoplasmic

side, a cluster of carboxylic groups might function as a proton-

collecting antenna [36–38] that picks up protons and delivers

them to an internal carboxylic group [37, 38] (Figure 2A).

The protein-water H-bond graph computed from a high-

resolution structure (1.05 Å) of bacteriorhodopsin [39] contains

79 H-bonding sidechains and water molecules, and 73 H-bonds

between these groups (Figure 1D); when we computed the

H-bond graph of the same structure without water molecules,

only 19 H-bonds remained. We obtained similar results for a

1.6 Å resolution structure of Acetabularia rhodopsin I [40]

(Figure 1E), whose H-bond graph has about 3.7-fold more H-

bonds when both protein sidechains and water molecules are

included (Figure 1F), than when water was excluded. Likewise,

for the 1.3 Å resolution structure of archaerhodopsin-3

[41] (Figure 1G) the protein-water H-bond graph has about

FIGURE 2
H-bond networks of GPCRs. Dotted lines indicate selected clusters of bulk-exposed carboxylic and His groups. (A) Carboxylic groups of
bacteriorhodopsin, based on pdb 5zim [81]; Asp/Glu groups labeled are part of the proton-collecting antenna [37, 38]. (B) Carboxylic and His groups
of human GPR4 from model AF-P46093-F1-model_v2, UniProt entry P46093 [61]. (C,D) Carboxylic and His groups of AA2AR (panel B, pdb 5nm4,
1.7Å resolution [63]) and of rAmy-AMY1R (pdb 7tyf [72]). (E–G) C-Graphs H-bond graphs computed with water bridges (E) vs. for protein
sidechains (F) for AA2AR based on pdb 5 nm4, and for G-protein bound AA2AR, pdb 5g53, 3.4 Å resolution [82] (G). H-bond networks of AA2ARswere
reported in Refs. [19, 21]. In panels (E,F), stars indicate groups of a synthetic construct. (H) Selected H-bonds of AA2AR. (I) Bridge2 H-bond graph of
the CTR-G protein complex, pdb 6e3y, 3.3 Å resolution [70]. (J) C-Graphs H-bond graph for the CTR, pdb 7tyf, 2.2 Å resolution [72]. Panels (E–G,J)
use structures with the receptor domain oriented along the membrane normal using VMD and OPM [80].
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3.8-fold more H-bonds than when (Figure 1H), vs. 24 H-bonds

when only sidechains were included in computations.

The H-bond graphs above of microbial rhodopsins have

H-bonds that are common at proton-binding sites of membrane

transporters and receptors, including GPCRs [42, 43]. In class A

GPCRs, the conserved D2.50 is paired with S7.46 [21, 44, 45]. In

bacteriorhodopsin, for which proton binding has been studied

extensively, including with Fourier Transform Infrared

Spectroscopy [38, 46–50], Nuclear Magnetic Resonance [51],

time-resolved serial femtosecond crystallography [52, 53], and

computations [54–56], the internal proton donor D96 H-bonds

to T46, and D115, which remains protonated throughout the

reaction cycle, H-bonds to T90 (Figure 1D). Interhelical H-bonds

of the corresponding Asp are present in Acetabularia rhodopsin-1

and archaerhodopsin-3, though in the former D100 (corresponding

to bacteriorhodopsin D96) H-bonds to an Asn (N48) instead of a

Ser/Thr. More generally, Asp/Glu-Ser/Thr and Asp-Asn H-bonds

are rather common in membrane transporters and receptors [42].

Similarly, bulk-exposed proton antenna clusters that deliver/release

a proton to/from an internal site (Figures 1B, 2A), as proposed for

bacteriorhodopsin, have also been discussed for cytochrome c

oxidase and for photosystem II [36–38, 44, 57–59].

The AlphaFold [60] model deposited for the pH-sensing

GPR4 [61] suggests that a large cluster of Asp, Glu, and His

groups is located at the extracellular site, where pH must be

sensed, and several carboxylic and histidine sidechains, at the

core of the receptor (Figure 2B). Although details of the

predicted structural model might be debatable, we suggest that,

qualitatively, the overall arrangement with a bulk-exposed

carboxylic-histidine cluster and several internal titratable

sidechains resembles that of bacteriorhodopsin (Figures 1B,

2A,2B) and other microbial rhodopsins (Figures 1E–H).

Given the lack of experimental structures for pH-sensing

GPCRs, below we further dissect internal H-bond networks of

AA2AR as a class A receptor for which activation upon proton

binding was recently discovered [16], and the calcitonin

receptor (CTR), as a class B GPCR involved in cell signaling

paths likely to depend on pH; as proton sensing appears to be

rather common to GPCRs, studies of H-bond networks of

GPCRs susceptible of pH sensitivity could inform on general

principles of function.

Internal H-bond networks of the
adenosine A2A receptors

AA2ARs are targeted by one of the most consumed

substances in the world, caffeine, and by drugs against

Parkinson’s disease [62]. Very recently, experimental data

were interpreted to suggest that acidic pH can activate

AA2AR [16], but it remains unclear how AA2ARs may couple

proton binding to protein conformational change for receptor

activation.

AA2AR (Figure 2C) contains relatively few internal

carboxylic and His sidechains; there are, however, numerous

other charged and polar sidechains within the transmembrane

region of AA2AR, such that its protein-water H-bond graph

computed for the highest-resolution structure [63] has no fewer

than 82 H-bonds (Figure 2E). An extended H-bond cluster with

19 H-bonding protein sidechains and water molecules extends

across >20 Å along the membrane normal, from S6 (1.32) to

N181; a few other relatively large protein-water H-bond clusters

are present, such that the entire receptor is spanned by H-bond

clusters. H250 (6.52) and H278 (7.42) are located in the ligand

binding site [64], with H278 part of an H-bond cluster with Y9

(1.35) and E13 (1.39) (Figures 2F,G). In an active-like structure,

D52 (2.50) is H-bonded to S91 (3.39), S281 (7.46) and N284

(7.49) (Figure 2H), thus being part of a network that connects

several GPCR motifs involved in ligand binding and receptor

activation. For detailed analyses and discussions of GPCR H-

bond networks of GPCRs, including of the adenosine A2A

receptor we refer the reader to [21].

Without water molecules, the H-bond graph of the same

AA2AR structure consists of just 29 H-bonds, and the largest

H-bond cluster has 4 H-bonding sidechains (compare Figure 2E

with Figure 2F). Likewise, the H-bond graph obtained for AA2AR in

the AA2AR-G complex has 21 H-bonds, with local H-bond clusters

of up to 4 H-bonding sidechains (Figure 2G). This finding is

compatible with the aforementioned observations on the

chemokine [23] and cannabinoid [24] receptors bound to G

proteins, with the graph computations presented above for

microbial rhodopsins (Figure 1), and with computations

suggesting important roles of water-mediated interactions in

GPCR activation [21, 65, 66]. That is, internal water molecules

might be needed to establish extended connections throughout

active-like, G-protein bound GPCRs. Moreover, the H-bond

networks at the extracellular side, where bulk water molecules

could visit the receptor at least transiently, are likely dynamic and

could rearrange upon binding of an agonist, including –in the

recently proposed acid sensor AA2AR [16]- upon proton binding.

Internal His, Asp and Glu of AA2AR mentioned above are

conserved in the non-proton-sensing adenosine A1 and A2B

receptors, which suggests that details of the intra-molecular

interactions of titratable groups might determine

pH sensitivity. Further studies that integrate high-resolution

static structures with spectroscopy, site-directed mutagenesis,

and computation, will be needed to unravel mechanisms of

proton binding to adenosine receptors.

H-bond networks for allosteric
regulation of the calcitocin receptor

The CTR is among the best-studied class B GPCRs that are

regulated by RAMPs. By itself, the CTR has high affinity for

calcitocin (CT), being implicated in bone homeostasis. In
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complex with one of the three RAMPs, CTR forms amylin

receptors, AMY1-3R, which have high affinity for the peptide

amylin (Amy) and are involved in the control of food intake [7];

in addition to Amy, AMY1R binds the neuropeptide calcitonin

gene-related peptide [7] and could be involved in migraines [67].

Whether and how pH impacts CTRs is unclear, though

observations of an increased expression of the CTR at acidic

pH [68] and of pH-dependent interactions between calcitonin

and model membranes [69], suggest that CTR could be among

GPCRs whose functioning is influenced by pH.

A structure of the human(h) CTR bound to Gαsβγ and to

salmon calcitocin (sCT) was initially solved with cryo-EM at a

resolution of 4.1 Å [70] and then refined to a resolution of 3.3 Å

[71]. Although some ambiguity remained in the CTR-CT

interactions, the structure suggested polar receptor-ligand

contacts and a number of H-bonds within the CTR and at the

CTR-G protein interface [71]. The transmembrane region of the

refined CTR structure contains several local H-bond clusters, but

they are localized, with at most 4-5 sidechains in a cluster, and

most of the H-bond graph consists of singular H-bonds

(Figure 2I). Such a picture is compatible with the findings for

AA2AR and other GPCRs, which need internal water molecules

to establish extended H-bond clusters.

Cryo-EM structures solved were recently at resolutions of

2.0–3.3 Å for ligand-bound Gs-CTR and Gs-AMY1-3R [72].

Protein-water H-bonds were suggested to help stabilize the

active conformation of the receptor, and to contribute to the

binding of sCT [72]. The H-bond graph we computed for the

CTR domain contains 51 sidechain-sidechain and water-

mediated H-bonds; the largest H-bond clusters contain two

water molecules each and 5-6 protein sidechains (Figure 2J).

Several Asp, Glu, and His sidechains are part of the internal

H-bond network, and thus of interest for potential couplings

between protonation change and protein conformation. A large

cluster of carboxylic and His sidechains that faces the

extracellular bulk (Figure 2D) could couple protonation

change with ligand binding.

Conclusion

Protonation is of general importance for the post-

translational regulation of protein function [35], and a

number of GPCRs bind protons during function [25, 73] or

function as pH sensors implicated in cancer [32]. H-bond graphs

of GPCRs and microbial rhodopsins suggest that GPCRs might

share with other protonation-coupled membrane proteins

common principles of how protonation change couples with

protein conformation (Figure 1B). In the future, given the rapid

pace at which GPCR structures are solved, H-bond graph

computations could help identify H-bond networks and sites

where the H-bond network is interrupted –which could guide,

e.g., the placing of internal water molecules in GPCR structures.

H-bond graphs of high-resolution structures of GPCRs trapped

in distinct intermediates could help interpret spectroscopic

fingerprints for putative proton-binding sites of GPCRs. We

anticipate that future studies will capitalize on improvements

in cryo-EM structure solving [74], computational modeling of

GPCR conformational intermediates [75], and public

repositories for GPCRs [76, 77].
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Computer-assisted modeling of
Quorum sensing in bacterial
population exposed to
antibiotics

Christina Kuttler1* and Anna Maslovskaya2

1Fakultät für Mathematik, Technische Universität München, Garching bei München, Germany,
2Mathematics and Computer Sciences Department, Amur State University, Blagoveshchensk, Russia

A mathematical model for bacterial growth and control by antibiotics

treatment, including Quorum sensing as a special kind of communication,

is introduced. We aim in setting up a flexible model structure allowing for

fast simulations and overview about the general behavior. The deterministic

approach can be used for in silico studies of bacterial cooperative behavior in

the special case of Quorum sensing. Since antibiotic treatment is the basic

and vital way to fight pathogenic bacteria, in the present study, we propose a

modification of a reaction-di�usion model of communication processes in a

bacterial population exposed to antibiotics. The dynamical biological system

is formalized by a system of semilinear parabolic PDEs. The numerical solution

of the 2D problem is based on a hybrid computing procedure, which includes

a finite di�erence method combined with a Monte-Carlo simulation of

population dynamics. Computational experiments are performed to describe

space-time distributions of key chemical compounds characterizing Quorum

sensing during the growth of a bacterial population and its decrease resulting

from the predetermined strategy of antibiotic treatment.

KEYWORDS

bacterial communication, antibiotics action, reaction-di�usion process, model of

Quorum sensing, stochastic bacterial dynamics, computer simulation of signal

substances

1. Introduction

Bacteria are not just single cells and acting individually, but have been discovered to

form successful communities which have various possibilities to interact, within colonies

but also beyond. One such mechanism, detected in more and more bacterial species, is

the so-called “Quorum sensing” [1]. It is based on an intracellular gene regulation system

and uses signal molecules, the so-called, which are produced inside the cells and can be

transported and diffuse in the extracellular space.

Quorum sensing systems are known to control many important phenotypic changes

of the bacteria. Historically first luminescence of the marine bacterial species Vibrio

fischeri was found in the light organ of the squid Euprymna scolopes. Later, more and

more species were found to use similar systems for different purposes, like pathogenicity

and biofilm production [2]. Furthermore, Quorum sensing may even influence the
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resistance against several stressors like antibiotics to some

extent, as considered e.g., in [3].

More concretely, we consider the Gram-negative bacterial

species Pseudomonas putida IsoF, whose Quorum sensing

system is quite well-known and has been used in many previous

publications as a model organism for this purpose. Even though,

this sounds very specific, P. putida uses a type of Quorum

sensing system as many other Gram-negative bacteria also do,

with slight differences in the molecule structure, but analogous

architecture of the gene regulation system [4]. Usually, they use

so-called Acyl-homoserine lactones (short: AHL) as autoinducer

molecules. Thus, the ppu system of P. putida can be taken

as prototype system, and the mathematical modeling can

easily be transferred also to other species and their Quorum

sensing systems. As a special property, P. putida also produces

an enzyme which can degrade autoinducers, the so-called

Lactonase [5]. Corresponding models have been considered in

previous publications and can be taken as standard [6, 7].

However, as a main treatment of bacterial infections in

patients since many decades, antibiotics are used, fight against

bacterial infections and to kill or at least reduce growth of the

bacteria. We aim in setting up a simple and fast to calculate

model. This means, we focus on the most essential parts: growth

of whole colonies, decrease during the presence of antibiotics. To

keep it as simple as possible, we neglect any refined structures

of the colony growth, as they may play a minor role for our

purposes. Based on this, we want to keep the basic Quorum

sensing model in, including the Lactonase in the model setup.

By that we can always check, if (and when) the Quorum sensing

system, including the behavioral changes controlled by it, is

active or not, given a certain antibiotics treatment.

For our in silico study, we focus on the situation of bacterial

colonies, e.g., on surfaces of medical devices or on laboratory

equipment. They can be easier ”treated” than bacterial infections

in a living host, where many side aspects may play a role. We

want to set up a prototype model which is easy to handle, but

already provides the structure to be adapted to more concrete

situations. The hybrid structure contains a time-dependent

colony growth including an explicit saturation and the effect

of the antibiotics treatment on the one hand side, as well as a

classic reaction-diffusion model to describe the spread of AHL

and Lactonase molecules on a surface layer. For the antibiotics

treatment we assume for simplification that it can be applied

on the whole surface at once, e.g., by putting a water-based

layer above which contains the antibiotics in a homogeneous

concentration. Thus, it is sufficient to use one homogeneous

time-dependent variable for the antibiotics for the whole system.

The model approach allows to easily make simulations, to

place the bacterial colonies, also to handle many of them at

once. It provides a simplified structure, which can also be easily

used to control such systems, e.g., how a treatment should look

like to keep a bacterial population under control, such that it

doesn’t activate it’s Quorum sensing system and by that doesn’t

become pathogenic.

The present study aims in the development of the

mathematical model of Quorum sensing in a Gram-negative

bacterial population under the inhibitory action of antibiotics.

The overall goal is to design a hybrid model that provides

a quick approach by combining the continuous deterministic

approach (expressed by the reaction-diffusionmodel of bacterial

communication) and the discrete stochastic simulation of vital

activity of bacteria exposed to antibiotics. By that, we keep the

model as simple as possible to focus on the essential behavior.

The paper is organized as follows. The mathematical statement

of the reaction-diffusion problem, the applied numerical

method, and the computational setup are presented in Section

2. Section 3 focuses on the computer simulations of space-

time distributions of key characteristics of Quorum sensing

for P. putida bacterial species. We will perform a full cycle of

mathematical modeling and computer simulation to explore

the changes in chemical compounds characterizing bacterial

communication at varying strategies of antibiotic treatment.

2. Mathematical problem statement
and computational details

2.1. Governing equations for modeling of
bacterial Quorum sensing

The basic model of the bacterial communication process

describes the dynamics of changes in concentrations of key

chemical compounds such as AHL and Lactonase, which

characterize the “quorum level” in a bacterial population and

the “level” of its degradation, respectively [8]. The bacterial

Quorum sensing model can be referred to as a reaction-

diffusion dynamical system. In the two-dimensional case, the

mathematical model is expressed by an initial-boundary value

problem for a system of partial differential equations:

∂U

∂t
= DU1U − γUU − γL→ULU + F1(x, y, t,U), (1)

∂L

∂t
= DL1U − γLL+ F2(x, y, t,U),

0 < x < l, 0 < y < l, 0 < t ≤ tob, (2)

U(x, y, 0) = 0, L(x, y, 0) = 0, 0 ≤ x ≤ l, 0 ≤ y ≤ l, (3)

U(0, y, t) = 0, U(l, y, t) = 0, L(0, y, t) = 0, L(l, y, t) = 0,

U(x, 0, t) = 0, U(x, l, t) = 0, L(x, 0, t) = 0,

L(x, l, t) = 0, 0 < t ≤ tob, (4)
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where U(x, y, t) is the AHL concentration and L(x, y, t) is the

Lactonase concentration produced by bacteria, both given in

mol/l; l is the linear size of the solution domain in µm;

tob is the observation time in h; γU , γL→U , γL, DU , DL

are model parameters (detailed description below) associated

with the processes of diffusion and degradation of main

chemical compounds.

The governing Equations (1)–(2) describe the dynamics and

diffusion of AHL and Lactonase concentrations, the natural

degradation of AHL and Lactonase, degradation of AHL by

Lactonase due to the negative feedback, the production of

AHL and the reaction of Lactonase resulting from the positive

feedback. The generation terms F1(x, y, t, U) and F2(x, y, t,

U) are defined by the assumed normal distribution of bacterial

population density and the Hill function taking into account the

possible changes in bacterial concentration:

Fm(x, y, t,U) = N(t)

V
∑

v=1

fm exp

(

−

(

x− xvc
)2

+
(

y− yvc
)2

σ 2

)

,

m = 1, 2, (5)

f1(U) = αU + βU
Un

((

Uth

)n
+ Un

) ,

f2(U) = βL
Un

((

Uth + ε
)n

+ Un
) , (6)

where (xvc , y
v
c ) is the position of the bacterial colony with the

number v; N(t) is the normalized function defined the dynamics

of a bacterial population density; σ = σ (t), ε, αU , βU , βL, Uth,

n are model parameters, which specify the principles underlying

the time dependence of the bacterial population density and its

spatial distribution in the solution domain.

Therefore, the mathematical model is formalized by an

initial-boundary value problem for the system of semilinear

reaction-diffusion PDEs. Some remarks devoted to the existence

and uniqueness of solutions can be found in [8] supported

by theoretical reviews [9, 10]. Obviously, the construction of

analytical solutions for the considered problem meets essential

difficulties. Thus, we focus in our present study on the

application of numerical methods, namely a finite difference

method combined with a stochastic procedure for the simulation

of the bacterial population dynamics, to obtain solutions of the

problem (1)–(6).

2.2. Numerical scheme for solving the
problem

The equations of the system (1)–(2) could be written in the

following general form:

∂u

∂t
= D

(

∂2u

∂x2
+

∂2u

∂y2

)

− qu+ F, (7)

where u = U, q = γU + γL→UL, D = DU , F = F1 for Equation

(1) and u = L, q = γL, D = DL, F = F2 for Equation (2).

To solve the problem numerically, we apply a splitting finite-

difference method [11]. For instance, we use the concept of

the Peaceman-Rachford alternating direction method. Notice

that the main advantage of the method is a fairly good

correlation between accuracy and computational costs. This

method is quite simple in programming, at the same time, for

standard problems it is absolutely stable and has the second

order of accuracy with respect to space and time variables.

For small Courant numbers, this method is used even to

test other schemes. The disadvantages of this scheme include

conditional convergence when the number of spatial variables

is more than two. In addition, this method is conditionally

stable when solving problems with the Neumann and Robin

boundary conditions [11, 12]. Since our particular problem

does not have such limitations, the alternating direction method

turned out to be a promising candidate for constructing a

numerical algorithm.

Here, let us introduce �τ
h1,h2

as a space-time grid covering

the solution domain:

�τ
h1,h2

=
{

xi = (i− 1)h1, i = 1,N + 1, yj = (j− 1)h2,

j = 1,M + 1, tk = (k− 1)τ , k = 1,K + 1
}

.

To deal properly with functions, we introduce the discrete

function space of grid functions, which is isomorphic to

finite dimensional Euclidean spaces. Further, the space of grid

functions is equipped with an appropriate discrete norm (for

instance, l2 norm is further used).

Therefore, we have the following finite difference

approximation on the first temporal semi-step k + 1/2 for

i = 2, 3, ...,N, j = 2, 3, ...,M, k = 1, 2, ...,K:

[

−
Dτ

2h21

]

u
(s+1)
i−1,j +



1+
Dτ

2h21
+

τq
k+1/2
i,j

2



 u
(s+1)
i,j

+

[

−
Dτ

2h21

]

u
(s+1)
i+1,j = uki,j +

Dτ

2h22

[

uki,j−1 − 2uki,j + uki,j+1

]

+
τ

2
F̃, (8)

where the iterative sequence u
(s)
i,j , s = 1, 2, ..., converges to the

u
k+1/2
i,j , starting with u

(1)
i,j = uki,j; q

k+1/2
i,j = γU + γL→UL

k+1/2
i,j

for the Equation (1) and q
k+1/2
i,j = γL for the Equation (2).

In this case, we supplement the computational scheme by the

iterative procedure due to the presence of nonlinear terms in the

generation parts of equations. In order to calculate the Lactonase

concentration, we set F̃ = F
(

xi, yj, t
k,Uk

i,j

)

for the Equation (2).

Further, we suppose that F̃ = F
(

xi, yj, t
k,U

(s)
i,j

)

to calculate the

AHL concentration with the Equation (1). And then, we again

solve Equation (2) with F̃ = F
(

xi, yj, t
k,U

(k+1/2)
i,j

)

to obtain the

update distribution of the Lactonase concentration.
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In a similar way, we can derive the computational scheme

for the second time semi-step k+ 1:

[

−
Dτ

2h22

]

u
(s+1)
i,j−1 +



1+
Dτ

2h22
+

τqk+1
i,j

2



 u
(s+1)
i,j +

[

−
Dτ

2h22

]

u
(s+1)
i,j+1

= u
k+1/2
i,j +

Dτ

2h21

[

u
k+1/2
i−1,j − 2u

k+1/2
i,j + u

k+1/2
i+1,j

]

+
τ

2
F̃, (9)

where the iterative sequence u
(s)
i,j , s = 1, 2, ..., converges to the

uk+1
i,j , starting with u

(1)
i,j = u

k+1/2
i,j ; qk+1

i,j = γU + γL→UL
k+1
i,j

for the Equation (1); qk+1
i,j = γL for the Equation (2); F̃ =

F
(

xi, yj, t
k+1,U

(k+1)
i,j

)

for (2) and F̃ = F
(

xi, yj, t
k,U

(s)
i,j

)

for

(1). The systems defined by (8)–(9) are supplemented by discrete

initial and boundary conditions:

u1i,j = 0, i = 1, 2, ...,N + 1, j = 1, 2, ...,M + 1, (10)

uki,1 = 0, uki,M+1 = 0, i = 1, 2, ...,N + 1, k = 2, 3, ...K + 1,

uk1,j = 0, ukN+1,j = 0, j = 1, 2, ...,M + 1, k = 2, 3, ...K + 1,

(11)

To solve the systems of linear equations on each time layer,

we apply the Thomas algorithm.

2.3. Computational algorithm for
simulation of bacterial population
dynamics

The mathematical problem statement allows us to calculate

the space-time distributions of chemical compounds regulating

Quorum sensing for bacterial colonies, which are located at

a priori defined positions in the computational domain. At

the same time, we can provide simulations in a more realistic

manner by including the algorithm of modeling bacterial

population dynamics into the general computation scheme. In

the present study, we use the ideas of a stochastic generation

and the logistic growth of a bacterial population. The approach

to constructing a hybrid scheme combining a deterministic

model and stochastic modeling of bacterial evolution has

been proposed before and successfully tested in our previous

studies [7, 13, 14].

The computational algorithm is based on the following

assumptions. During the observation process, bacteria colonies

of circular shapes are growing stochastically on the plane

OXY according to the logistic law. First, up to three bacterial

colonies start to grow simultaneously from randomly chosen

points (xvc , y
v
c ), and besides, with different probabilities, i.e. the

probability of appearance of one colony is essentially greater

than for two and three (for example, for one colony p1 = 0.6,

for two colonies p2 = 0.3, and for three colonies p3 = 0.1).

According to the Monte-Carlo method, a new bacterial colony

can appear at a random time, but with a small probability on

each time layer (for instance, pv = 0.1). The linear size (radius)

of each bacterial colony is denoted by R(xvc , y
v
c , t). The time-

dependent value of R is calculated by the logistic law of growth:

Rv(t) =
IR0 exp(rt)

I + R0(exp(rt)− 1)
, v = 1, 2, ...V , (12)

where R0 is the initial linear size of a bacterial colony, which

can grow up by assumption to a limiting linear size of I, in

µm, and r is the parameter related to the rate of bacterial

growth in 1/h .

Here, we suppose that all bacterial colonies grow with a

similar velocity. If the colonies are overlapping, the source

functions F1 and F2 are determined by a superposition of

corresponding contributions. Note also that the parameter σ in

(5) is approximately estimated according to the “3-Sigma rule,”

specifically, as Rv(t)/3.

Further, we start the degradation of a bacterial population

by simulating the action of antibiotics at a defined time, when

the total bacterial concentration reaches 4.6 · 1011 cells/l. This

value corresponds to the normalized value of N(t) equaled

to the unit. At the same time, we stop “generating” new

bacterial colonies.

In addition, we need to formalize the relation between

the linear size of bacterial colonies and the antibiotic action.

In the present study, we apply a simplified approach. We

suppose that the concentration of antibiotics does not depend

on spatial coordinates, but is homogeneous on the whole

surface, and it can be specified as a time-dependent function.

To be precise, let us consider the antibiotics of ciprofloxacin

as an example [15]. An approximation of concentration

dynamics for ciprofloxacin can be plotted with the use of

empirical data: the maximum value reaches at time moment

4–8 h and approximately after 12–24 h the concentration

falls to a certain level. We use the Rayleigh distribution for

the approximation:

A(t) = A0t exp

(

−t2

A1

)

. (13)

Hence, we can assume for simplicity that the linear size of

each bacterial colony reduced due to antibiotic action can be

expressed as follows:

Rv(t) = R̃v(t)

(

1− θ
A2(t)

A2(t)+m

)

, v = 1, 2, ...V , (14)

where R̃v(t) is the current value of the linear size of v colony;

θ is the empirical constant provided the certain density of alive

population; the parameterm corresponds to themaximum value

of antibiotic concentration.
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Further, to determine the time-dependent bacterial density

N(t) (the normalized value) we assume here for simplicity

that this function can be described by the formula for the

growth range:

N(t) =
(

1+ exp
(

−µ(t − b1)
))−1

, t ≤ td, (15)

and we use the following expression to approximate decreasing

in the bacterial population density as a result of the degradation

due to a single antibiotic treatment:

N(t) = a+ b
(

1+ exp
(

µ(t − b2)
))−1

, t > td, (16)

where a, b1, b2, µ are approximation parameters, which, in

particular, provide a smooth behavior ofN(t) at timemoment td.

Notice that the Equations (15)–(16) provide a model

description of time-dependent behavior of the bacterial

concentration (namely, the periods of bacterial growth and

degradation to equilibrium values, the velocity of changes in

concentration, the relative level of degradation). The ”height” of

the bacterial concentration is influenced by the parameters αU ,

βU , αL, and the corresponding dimensions are correspondent to

the basic Equations (5)–(6).

Therefore, the space distribution of a bacterial population

is stochastically simulated on each time layer, taking into

account the mechanisms of growth and degradation. At

the same time, for all bacterial colonies, we calculate the

corresponding bacterial concentration in view of the growth or

degradation phase.

3. Computational experiments
results and discussions

3.1. General algorithm, specification of
the model object, and computational
setup

By construction, the procedure of model implementation

includes the Monte-Carlo simulation of bacterial population

growth, the finite difference iterative scheme to solve PDEs

and calculate the chemical compounds, the algorithm for

simulation of the degradation of a bacterial population

due to antibiotic action, and the functional dependence for

bacterial concentration, taking into account the time-dependent

decrease of the bacterial amount. The flowchart of the general

computational algorithm is shown in Figure 1.

The program implementation of 2D model of bacterial

Quorum sensing was performed in Matlab. The designed

software is intended for computer simulations of space-

time distributions of chemical compounds such as AHL

and Lactonase concentrations at given parameters. Figure 2

illustrates the program application architecture diagram. In

these terms, conducting simulations requires initialization

of the model as well as computational parameters. The

graphical user interface (GUI) permits to submit all parameters

and options that are necessary to accomplish a quorum

sensing simulation. The GUI provides options to access the

core system and modules that compute and visualize the

antibiotic strategy (as time-dependent function of an antibiotic

concentration), characteristics of bacterial populations (location

at each moment, summarized linear size, total amount, etc.),

and space-time distributions of main characteristics of quorum

sensing, namely AHL and Lactonase concentrations during the

observation process.

For instance, we will consider Pseudomonas putida IsoF as

an object of mathematical modeling [16].

Pseudomonas putida is a Gram-negative rod-shaped

bacterium of Pseudomonas genus, that lives in soils, waters,

and plants. Generally, P. putida is defined as a nonpathogenic

bacterium due to the lack of virulence-related genes [17].

P. putida IsoF is considered as an object due to its versatility

and ease of handling to examine Quorum sensing. Note

also that recent research suggests that P. putida can be a

human pathogen causing nosocomial infections in patients

with a weakened immune system like cancer patients and

newborns [18]. P. putida can provide the exchange platform for

more virulent and antibiotic resistant microorganisms such as

deadly Pseudomonas aeruginosa [19]. Most infections caused by

P. genus demonstrate resistance to certain antibiotics and their

combinations. Therefore, P. putida represents an important

model organism to perform simulations of Quorum sensing

characteristics in a bacterial population under antibiotic action.

Let us assume that we have a two-dimensional domain

limited by 0 ≤ x ≤ 100 µm and 0 ≤ y ≤ 100 µm. The time of

observation is up to 50–100 h. We choose the model parameter

values as listed in Table 1 using previously estimated values [8].

The empirical parameter θ in (14) is fixed to be 0.2. The time of

start of antibiotic action is estimated as td = 10− 16 h.

The values of the parameters for bacterial density

approximation (15)–(16) are established empirically from

microbiological experiments for Pseudomonas bacterial

species [20, 21]. We specify a following set of approximation

parameters for the bacterial dynamics: b1 = 6 h, b2 = 18 h,

µ = 1.4 1/h. Figure 3 illustrates the time-dependent behavior

of bacterial density for the species P. putida. In this case, we

suppose 30% decreasing in the bacterial population density

within 10 h due to a single antibiotic action.

In addition, we conducted a numerical study of the

stability of a constructed computational scheme. As far as

the initial and boundary conditions are strictly defined for

the corresponding chemical substances, here we examine the

stability of the computational scheme by variation of the

“amplitude part” of the generating terms defined by Fm. In

more detail, we vary the parameters of αU ,βU , and βL. Here

we assume that the parameters of αU ,βU , and βL alternately

increase by 20, 30, 40, 50% while the others remain the same
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FIGURE 1

The flowchart of the general algorithm.

(with respect to the initial values as listed in Table 1). In

order to estimate the perturbations of grid functions under

the “amplitude parameters” variation, we use the following

estimations: ξm = ‖Ūm − Um−1‖2/‖Um−1‖2,ϕm = ‖L̄m −

Lm−1‖2/‖Lm−1‖2,m = 2, 3, 4, 5, where m = 1 corresponds

to the AHL and Lactonase concentrations calculated for the

last time moment at h1 = h2 = 1 µm and τ = 0.01 h at

initial parameters listed in Table 1. For these computations we

suppose that there is only one bacterial colony located at the

central position of the computational domain with a linear size

of 10 µm.

Figure 4 shows the estimation of the perturbation

of corresponding grid functions. These data suggest

an appearance of slight perturbations of the AHL

and Lactonase concentrations under the variation of

the “source functions.” The almost linear growth of

the estimations indicates the numerical stability of the

computational algorithm.
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FIGURE 2

The program application architecture diagram.

TABLE 1 Parameter values estimated for the bacterium P. putida.

Name Meaning of parameter Value

DU Diffusion rate of AHL 100 µm2/h

DL Diffusion rate of Lactonase 1 µm2/h

γU Abiotic degradation rate of AHL 0.005545 1/h

γL Abiotic degradation rate of

Lactonase

0.5 1/h

γL→U Degradation rate of AHL by

Lactonase

0.65 · 109 l/(mol·h)

αU Low production rate of AHL 1.058 · 10−7 mol/(l·h)

βU Increased production rate of AHL 1.058 · 10−6 mol/(l·h)

βL Production rate of Lactonase 1.38 · 10−6 mol/(l·h)

Uth Threshold of AHL concentration

between low and increased activity

7 · 10−8 mol/l

ε Threshold shift for Lactonase

production

5 · 10−9 mol/l

n Degree of polymerization 2.5

3.2. Time-dependent simulations of
Quorum sensing characteristics in
bacterial population of P. putida under
antibiotics action

We conducted numerical experiments for the 2D reaction-

diffusion model combined with the procedure of the Monte-

Carlo simulation of bacterial growth and further degradation

FIGURE 3

The time dependence of the normalized bacterial density under

single antibiotic treatment.

of the population due to antibiotic action. According to the

above algorithm, one, two or three bacterial colonies with

a circular shape can start to grow at an initial time. The

initial radius R0 of each bacterial colony is set to be 1 µm.

The parameter of the rate of logistics population growth is

assumed to be r = 0.4 1/h, the limiting value of linear

size is I = 20 µm. During the bacterial evolution process,

a new bacterial colony appears with a small probability

specified as 0.1 per time step of the simulation, chosen to

be 0.5 h. Concretely, for the first simulation, we had two

bacterial colonies at the start moment and the total amount V ,

equaled to 4.
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FIGURE 4

The estimation of the perturbations of grid functions for AHL concentration (A), and the Lactonase concentration (B) under the variation of the

parameters of generating terms αU (1), βU (2), and βL (3).

FIGURE 5

The dynamics of changes in antibiotic concentration (A), and the total linear size of bacterial colonies at single antibiotic treatment (B).

In the first case, we suppose that we do a single

antibiotic treatment when the bacteria reach the critical value

of population density. The time-dependent function (13)

defining the dynamics of antibiotic concentration during the

observation time is shown in Figure 5A. The parameters of the

approximation (13) are set to be A0 = 1.65 and A1 = 32.

Here we can claim that antibiotics reach an acting maximum

concentration after 3.5–4 h after adding and acting during 10–

13 h. Figure 5B illustrates the dynamics of the total value of

linear size R(t) =
V
∑

v=1
Rv(t) of bacterial colonies. We see that

the bacterial population has time to reach the equilibrium value

before we start the degradation by antibiotics at t = 12 h. After

that, the R(t) leveled off at 2.017 µm.

The following figures (Figures 6A,B) present the space

distributions of key chemical compounds characterizing

Quorum sensing in the bacterial community, namely the AHL

and Lactonase concentrations calculated at a fixed time 12 h. In

addition, graphs in Figure 7 visualize the maximum values of

the AHL and Lactonase concentrations as time dependencies.

These data indicate that the Lactonase concentration reached

a maximum value before adding antibiotics, whereas the

AHL concentration declined slightly due to the interaction

between these players. The results suggest that the AHL

concentration fell gradually, followed by a stabilization

to the level of 4.89 · 10−10 mol/l, at the same time, the

Lactonase concentration decreases more essential and leveled

to the value of 6.76 · 10−13 mol/l. The average value of the
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FIGURE 6

The distributions of chemical compounds calculated at time 12 h: (A)—the AHL concentration; (B)—the Lactonase concentration.

FIGURE 7

The time-dependent profiles of maximum values of chemical compounds during the observation time 50 h: (A)—the AHL concentration and

(B)—the Lactonase concentration at single antibiotic treatment.

AHL concentration equals 1.36 · 10−10 mol/l at the final

time point.

This means that antibiotic action affects the enzyme,

preventing the bacterial quorum to a greater extent than the

signaling substance that provides the quorum itself. We can

observe that a small bacterial population that has been reduced

by a factor of ten is still producing signaling molecules. This

effect can be referred to as the emergence of increasing the

resistance of reduced bacterial population. Hence, we can

conclude that a single antibiotic treatment leads to a reduction

in the bacterial population under the assumed conditions of

computational experiments. However, the Quorum sensing

level in a reduced population remains very high compared

to a saturated population, and a bacterial population will

be able to quickly restore their numbers in the presence

of a nutrient medium. Therefore, the obvious strategies for

suppressing Quorum sensing are to use a multiple antibiotic

treatments strategy, an increasing antibiotic doze, a combination

of different antibiotics, or even combining application of

antibiotics and natural degrading enzymes.

3.3. A multiple antibiotic treatment
strategy: Numerical experiments

Note that due to the stochasticity underlying the simulation

of population generation and growth an exact reproduction of

the computational experiments is not possible. Let us consider

a computational experiment in which we apply a multiple

antibiotic treatment strategy. For instance, we assume that
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FIGURE 8

The dynamics of changes in the antibiotic concentration—(A) and the normalized bacterial concentration dynamics—(B) under multiple

exposure to antibiotics.

FIGURE 9

The time dependence of total linear size of bacterial colonies—(A) and the dynamics of the maximum values of the AHL concentration—(B) at

the multiple antibiotic treatment.

antibiotic treatment was done three times, specifically at 12, 24,

and 36 h (Figure 8A). In these terms, the function of bacterial

density dynamics N(t) includes three degradation phases as

presented in Figure 8B. Figure 9A shows the changes in the total

bacterial linear size R(t) during the observation time. The graph

is characterized by a sharp decline to the value of 4.8 · 10−5 µm.

The simulations suggest a more significant decrease in the AHL

concentration as presented in Figure 9B, where the maximum

value corresponds to 1.78 · 10−10 mol/l at the final time t = 50

h. Nevertheless, the quorum level remains considerable even

for a negligible population size. Concretely, the average value

of AHL concentration is equal to 4.26 · 10−11 mol/l at the

last moment. This effect is caused by the diffusion processes

and long relaxation time of the AHL concentration. Moreover,

as we mentioned above, antibiotic adding has a strong effect

on the Lactonase concentration, resulting in the suppression

of this enzyme, which in turn does not essentially inhibit the

AHL concentration.

We conducted a series of computational experiments,

varying the interval between antibiotic treatment: 4, 8, 12, 16

h with a triple sequential addition of the same concentration.

The findings allow us to conclude that all applied strategies

lead to significant degradation of the bacterial population and

a decrease in the AHL concentration. The total linear size of

the population varies in the range of 2 · 10−5 − 4 · 10−4 µm

and the average value of the AHL concentration changes from
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FIGURE 10

The dynamics of bacterial population (A–C), and the space distributions of the AHL concentration—(D–F), calculated at the corresponding

moments 5, 12, and 100 h.

FIGURE 11

The time dependence of the total linear size of bacterial colonies—(A) and the dynamics of the average value of the AHL concentration—(B).

2 ·10−11 to 8 ·10−11 mol/l at t = tob. It follows that the frequent

use (within the considered range) of antibiotics does not confer

treatment benefits.

It should be pointed out that we simulate the effect of a

powerful antibiotic action in a simplified situation, excluding the

growth of the population after treatment. However, as known,

pathogenic species of the P. genus exhibit resistant behavior [22],

i.e., capable of continuing their vital activity under antibiotic

treatment. Obviously, the intervals of antibiotic exposure should

not exceed the duration of the antibiotic action (in our case, it
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is about 16 h), otherwise the surviving population will strive to

restore equilibrium amount.

Figures 10A–C show frames of evolution of a typical

bacterial population growing in colonies under triple antibiotic

treatment 12 h apart (12, 24, 36 h, respectively). In this

computational experiment, we assume that the bacterial

population can continue to grow after antibiotic action (for

example, after 55 h), but more slowly than in the initial case (the

parameter of the logistic growth r = 0.1). Also, new bacterial

colonies can appear during simulations. The space distributions

of the AHL concentration are presented in Figures 10D–F

computed at fixed moments: at the beginning of bacterial

evolution—5 h, at the beginning of antibiotic action—12 h, and

at the final time 100 h. Figure 11 gives a detailed visualization of

time-dependence of the total linear size of the population and

the average value of the AHL concentration. Our data indicate

that after 17 h, the population restored its numbers. At the same

time, the “communication level” of the bacterial population is

only 20% of the equilibrium value in the absence of inhibition

due to antibiotics. This effect is caused by a long relaxation

time of the AHL concentration and an additional increase in the

Lactonase concentration.

4. Conclusions

In summary, we have shown that the developed hybrid

mathematical model allows to examine the behavior of key

chemical compounds characterizing bacterial communication

during antibiotic treatment. We have proposed suitable

computational techniques to conduct time-dependent

simulations of bacterial quorum sensing. The computational

procedure for the model implementation includes the

following points: First, we performed the Monte-Carlo

simulation of bacterial maturation and population growth.

Then, to estimate chemical compounds, the system of PDEs

was numerically solved with the finite difference iterative

scheme. Finally, we conducted simulations of the degradation

of a bacterial population due to antibiotic action, taking

into account the time-dependent decrease in the number

of bacteria.

The continued in silico studies of bacterial cooperative

behavior hold great promise in microbiology. Computational

experiments based on the mathematical model of Quorum

sensing in pathogenic bacteria provide a set of tools for

building a new level of understanding of the mechanisms

of response formation to external influences. The obtained

data suggest that even a small bacterial population maintains

an essential quorum, which will be able to restore the

equilibrium population size provided the nutrient medium

and in the absence of further external inhibitors (or, for

example, a weak immune system). The big advantage

of the presented approach is that it allows for a quick

overview and estimate of the system behavior, what was

our purpose here. Additional studies are required to modify

the mathematical model, e.g., by introducing space-time

distributions of bacterial biomass and antibiotic concentration,

providing more details and accuracy, but requiring more

computational effort and more detailed knowledge about

the biological system. This general approach can be useful

for further studies of optimal modes of antibiotic and other

treatments.
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Fourier filter-based physics-
information convolutional
recurrent network for 2D
incompressible flow
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Physics-informed convolutional recurrent network (PhyCRNet) can solve partial

differential equations without labeled data by encoding physics constraints into

the loss function. However, the finite-difference filter makes the solution of 2D

incompressible flow challenging. Hence, this paper proposes a Fourier filter-

based physics-informed convolution recurrent network (named Fourier filter-

based PhyCRNet), which replaces the finite-difference filter in PhyCRNet with

the Fourier filter to solve the 2D incompressible flow problem. The suggested

network improves the accuracy of the partial derivatives, solves the inverse

Laplacian operator, and has similar generalization ability due to inheriting the

framework of PhyCRNet. Four examples, including the 2D viscous Burger,

FitzHugh–Nagumo RD, vorticity and the two-dimensional Navier- Stokes

(N-S) equations, validate the correctness and reliability of the proposed

Fourier filter-based PhyCRNet.

KEYWORDS

fourier filter, convolutional recurrent network, 2D incompressible flow, inverse
laplacian operator, physics-informed

1 Introduction

Partial differential equations (PDEs), play a crucial role in modeling a wide

variety of problems in applied mathematics, physics, biology, chemistry, and

engineering technology and thus are widely used to express and interpret the

laws involved [1,2]. Although many phenomena can be analyzed and solved

through PDEs modeling, such as weather forecasting [3], communication

technology [4] and electromagnetic induction [5], in many cases, the analytical

solution of PDEs is unavailable, and researchers solve PDEs by numerical methods,

i.e., finite-difference, finite volume, and finite element methods [6]. Although some

classic numerical methods achieve very high accuracy, the balance between

computational cost and accuracy is still a vital issue.

Recently, the rapid development and application of deep learning have provided an

alternative solution to PDEs of positive and inverse problems. Theoretically, the universal
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approximation theorem proves that deep neural networks can

simulate arbitrarily complex functions [7]. Due to the

development of deep learning and the improvement of

computing power, several studies have been proposed utilizing

deep learning to solve PDEs [8–15]. The latest related research

can be mainly divided into discovering PDEs from data and

solving PDEs. The pioneering work in inverse problem research

is the sparse regression method introduced by Rudy et al. [8]. On

this basis, Long et al [11] proposed an improved neural network,

the PDE-Net, to obtain the PDE coefficients and solve PDE. The

Physics-informed Neural Network (PINN) proposed by Rassi

et al. [16] introduced an innovative approach to encoding

physical constraints into loss functions, with many improved

PINN versions bring used to solve problems in different

scenarios [17–21]. Other researchers propose operator

schemes to solve PDEs. For example, Lu et al. [22] introduced

a neural network of DeepONets for learning nonlinear operators,

while Li et al [23] proposed the Fourier neural operator (FNO)

utilizing the Fourier transform, which afforded a much faster

solution rate and a stronger generalization ability than other

neural networks. Recent research fused neural operators and

PINNs to improve the interpretability and speed up the

network’s fitting [24,25]. Nevertheless, such a strategy requires

quantitative and high-quality training data.

Recent studies have revealed that PDEs can be solved by

training the network constraints, such as physical constraints

[26,27], without labeled data. However, due to limitations of

the network training process, the time extrapolation results

are often unsatisfactory. Therefore, researchers have

introduced time series prediction deep learning networks in

the study to solve PDEs [28–30] with the help of classical

numerical methods to solve time-dependent PDEs [31–33].

For instance, the physics-informed based convolutional

recurrent network (PhyCRNet) introduced by Ren et al.

[30] considers all aspects. Indeed, it starts from the initial

conditions without any labeled data, extracts spatial features

using a convolutional neural network (CNN) [34], utilizes a

convolutional long and short term memory network

(ConvLSTM) [35] to learn its evolution, and finally encodes

the output values into the loss function through the finite-

difference filter for physical constraints. Hence, PhyCRNet

solves PDEs using the equations as constraints and supervises

the network’s convergence, without high-quality

training data.

However, the 2D incompressible flow refers to a flow in

which the density remains constant in two-dimensional fluid

parcel, which is characterized by stream function and the

associated velocity fields and vorticity, as defined by the

stream function’s partial derivatives. Typical numerical

methods use pseudo-spectral methods to balance the solution

rate and accuracy by using the vorticity as the initial field,

calculating the partial derivatives in the spectral space, and

solving the equations using time iterations [36–38].

Nevertheless, calculating the stream function from the

vorticity involves calculating the inverse Laplace operator,

which is difficult to solve by the finite-difference method.

Overall, PhyCRNet has the following disadvantages in solving

the 2D incompressible flow problem.

1. The differential accuracy of the finite-difference is not high,

resulting in an inaccurate calculation loss function and

affecting the convergence speed and accuracy of the solution.

2. Calculating the inverse Laplace operator is challenging when

using the finite-difference filter and in the case of calculating

the stream function.

3. Finite-difference differential calculation accuracy is related to

the grid spacing and the number of cells, and the

computational overhead is higher in high-resolution

calculations.

Based on these shortcomings, it is necessary to improve the

PhyCRNet.

Hence, this paper employs the discrete Fourier transform

[39] in the pseudo-spectral method [40] to replace the finite-

difference filter in the PhyCRNet and optimize PhyCRNet. The

main contribution of this method is solving the problem of

efficient solution of the differential operator and the inverse

Laplace operator during the vorticity calculation of the stream

function in PhyCRNet. In the Fourier filter-based PhyCRNet, we

first transform the network’s output into the Fourier space for

partial differentiation and calculate the Laplace and the inverse

operators, followed by the inverse Fourier transform. Finally, the

physical constraints are achieved by encoding and thus effectively

solving PhyCRNet’s problem. This improved network has a faster

solution than the finite-difference method in large-scale

calculations [23].

The remainder of the paper is organized as follows:

Section 2 introduces the Fourier filter-based PhyCRNet,

while Section 3 provides two examples of two-dimensional

viscous Buger’s equation and FitzHugh–Nagumo RD

equations to verify the performance of the Fourier filter-

based PhyCRNet in solving some basic PDEs. Then, two

examples, including the vorticity equation and the 2D

incompressible Navier-Stokes equation, demonstrate the

advantages of the Fourier filter-based PhyCRNet, finally,

Section 5 concludes this work.

2 Methodology

This section introduces the proposed Fourier filter-based

PhyCRNet, whose structure describes the PDEs to be solved

and then introduces the related algorithms and network

frameworks. Finally, the related content of the improved

PhyCRNet (namely, Fourier filter-based PhyCRNet) is

introduced.
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2.1 Problem statement

Our proposed method focuses on the time series prediction

and solution of spatiotemporal PDEs. Numerical experimental

equations such as Burger’s equation are widely used to verify the

method and have the following general form [41,42].

ut + F [u; λ] � 0, x ∈ Ω, t ∈ [0, T] (1)

where u(t, x) represents the possible solutions found in the

time range t ∈ [0, T] and the physical space x ∈ Ω and F [*; λ]
is the nonlinear operator parameterized with λ. Also, for the

initial and boundary conditions, there are characterizations

of the form I(u,F [*; λ], with t � 0, x ∈ Ω) = 0 and

(u,F[*; λ]; t ∈ [0, T], x ∈zΩ) = 0, where x ∈zΩ represents

the boundary interval. The boundary conditions such as

Dirichlet and Neumann have not been discussed in this

work for the time being.

2.2 PhyCRNet

PhyCRNet proposed by Ren et al adopts ConvLSTM to learn

temporal evolution and constructs the network loss function with

PDE constraints. It propagates information into future times and

solves equations without labeled data as PINN. It has stable

extrapolability after training which makes it better than other

deep learning methods. For more detailed work on PhyCRNet,

refer to the work [30].

2.3 The discrete fourier transform

The discrete Fourier transform (DFT), a fundamental

transformation in digital signal processing, is widely used in

convolution, image processing, and frequency analysis [43–45].

Its implementation is similar to the continuous Fourier

transform, which for a given certain sequence of real numbers

{xn, n � 0, 1, 2 . . . .N − 1}, it is represented as a sequence of

complex numbers {Xn, n � 0, 1, 2 . . . .N − 1} utilizing the

discrete Fourier transform. DFT is defined as follows:

Xk � ∑N−1
n�0 xne

−2πinkN , k � 0, 1, ..,N − 1 (2)

where e−2πinkN � cos(2π nk
N) + isin(2π nk

N). At the same time, the

original discrete function can also be reconstructed by the inverse

discrete Fourier transform (IDFT), defined as:

xn � 1
N

∑N−1
n�0 Xke

2πinkN , k � 0, 1, ..,N − 1 (3)

By considering the 2-dimensional function f(x, y) as an

example, according to Eqs 2, 3:

f(x, y)→DFT
DFTF̂(x, y); F̂(x, y) →IDFT

IDFTf(x, y) (4)

For the function after the discrete Fourier transform, its

corresponding derivative can be quickly obtained in the Fourier

space.

zf

zx
←IDFT

2πi
n

N
F̂(x, y); zf

zy
←IDFT

2πj
n

N
F̂(x, y)

n � −N
2
, . . . ,

N

2
− 1

(5)

Different from the finite difference filter in PhyCRNet to

solve the derivative, the spatial derivative is calculated as the

product of spectrum and ik in the wave number domain after the

discrete Fourier transforms the function. So, the Fourier filter

proposed in this paper is used to calculate spatial derivatives of

loss function by discrete Fourier transform. This strategy is more

adaptable to solving many PDEs types.

Moreover, the pseudo-spectral method has advantages in solving

the 2-dimensional incompressible flow equation [46]. Indeed, given

vorticity (ζ) and the stream function (ψ) at time t, this method first

updates ζ forward at time t + δt. Then the Poisson equation with

periodic boundary is considered as a relationship between the two to

update ψ forward at time t + δt. The Poisson equation involves the

inverse Laplace operator calculation, which is trivial to implement by

the discrete Fourier transform when its mean state is known [47].

This is why the discrete Fourier transform is superior to the finite-

difference. Assuming that the mean state is one, the inverse Laplace

operator is computed as follows:

K �
⎧⎪⎪⎨⎪⎪⎩

(2πi n
N
)2

+ (2πj n

N
)2

n � −N
2
, . . . ,−1, 1, . . . , N

2
− 1

1 n � 0

f ←IDFTΔF̂(x, y)/K
(6)

The improvement proposed in this work is to replace the finite-

difference filter in the PhyCRNet with the discrete Fourier transform,

and then perform the PDE residual connection to integrate the

physical constraints into the neural network (further details are

presented in Section 2.4). The resulting network has two

advantages. First, it overcomes the inability of PhyCRNet to

efficiently solve the inverse Laplace operator. Indeed, the Fourier

filter-based PhyCRNet can solve PDEs similar to describing 2D

incompressible flows, enhancing the network’s generalization ability.

Second, the Fourier transform has higher accuracy than the finite-

difference method when calculating high-order partial derivatives,

and its computational efficiency is faster in large-scale scientific

computing.

2.4 Fourier filter-based PhyCRNet

This section introduces the structure of proposed network.

As illustrated in Figure 1, the network consists of the encoding
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module, time series module, decoding module, input and output

connection module and Fourier filtering module. Firstly, the

encoding module is used to extract spatial features through CNN

and then output to the time series module. Secondly, the time

series module captures the time dependence of spatial features

and establishes time series relationships. In this way, the network

generates the predicted values only under the initial condition.

Then, the decoding module reconstructs the discrete output of

the time series module by the sub-pixel convolutional layer (pixel

shuffle) to achieve the same resolution as the input. In addition, a

convolution layer without activation function is added at the end

of the module. Finally, the input-output connection module

adopts a forward Eulerian method to establish the relationship

of ui+1 and ui.The Fourier filtering module calculates the spatial

derivative involved in the computation of loss function. The

Fourier filter calculates the spatial partial derivatives by

transforming the input to the spectral space, which turns into

a simple multiplication in the frequency domain compared with

the finite difference. For more details, please refer to 2.3 for the

idea of Fourier filtering and 2.5 for loss construction.

2.5 Fourier transform loss function with
physics-informed

Given that the Fourier filter-based PhyCRNet is trained

without labeled data, the loss function construction controlled

by the PDEs is significant and must preserve high accuracy and

efficiency. The loss function accuracy depends on the partial

derivatives, which unlike the chained derivatives of Physics-

informed Neural Network (PINN) [16], the Fourier filter-

based PhyCRNet uses the Fourier filter formed by the discrete

Fourier transform (as introduced in Section 2.3) to calculate the

partial derivatives in the PDEs. Hence, we calculate F[u; λ] in Eq.

1 and construct the PDEs residual connection to integrate the

physical constraints into the loss function of the neural network.

Then the PDEs residual connection is formed and the physical

constraints are integrated into the loss function in the neural

network. As an example, solving the 2-dimensional PDEs,

f(x, y, t; θ) can be defined according to the left side of Eq. 1:

f(x, y, t; θ): � ut(x, y, t; θ) + F[u(x, y, t; θ); λ] (7)

FIGURE 1
The architecture of Fourier filter-based PhyCRNet. It comprises CNN layers with activation functions in the encoder. In the decoder, Pixel
Shuffle conducts super-resolution reconstruction to obtain the resolution of the input value, and considers a CNN layer without an activation
function for convolution processing. H and C are the hidden state and cell state of ConvLSTM, respectively. All outputs are incorporated into the loss
function using DFT and IDFT. Fourier transform loss function with physics-informed.
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where ut(x, y, t; θ) is obtained by traditional numerical methods.

The shared network parameter θ is obtained during training by

using the minimization loss function L(θ) in Eqs 8, 9, defined as

the sum of squares of the discrete values of f(x, y, t; θ) over all
spatial and temporal periods

L(θ) � ∑n

i�1 ∑m

j�1 ∑T

k�1
�����f(xi, yj, tk; θ)�����22 (8)

θ � argminL(θ) (9)
where ‖ ∗ ‖2 denotes the ℓ2 norm.

3 Numerical experiments

This section validates the proposed Fourier filter-based

PhyCRNet by utilizing nonlinear PDEs and two PDEs for

describing the 2D incompressible fluid flow. The trial

involving two nonlinear PDE (2D viscous Burger’s

equations and FitzHugh–Nagumo RD equations) verifies

that the Fourier filter-based PhyCRNet possesses the

capabilities of PhyCRNet. And two 2D incompressible fluid

flow PDEs test the feasibility and advantages of Fourier filter-

based PhyCRNet. All numerical implementations and

constructed networks are coded using Pytorch [48], and all

models are trained on an NVIDIA GeForce GTX 3090 with

24 GB of memory.

3.1 Network parameters

The main difference between Fourier filter-based physics-

informed convolutional recurrent network (PhyCRNet) and

PhyCRNet is the calculation of the partial derivatives, while

the other remaining structure is the same. In the encoding

part, three convolutional layers are used for feature extraction,

with 8, 32, 128 units respectively using a convolutional kernel

(4×4) and a stride of 2 and ReLU function as the activation

function. In the decoding part, for the standard connection

between the input and output, sub-pixel convolution is

performed through pixel shuffle to complete super-resolution

reconstruction. Then a convolutional layer is added, using a

convolutional kernel (5×5) and a stride of one to ensure constant

resolution without an activation function. The convolution

operation in ConvLSTM involves a convolution kernel (3×3)

and a stride of 1. At the same time, the training of both networks

are trained using the stochastic gradient descent Adam

optimizer [49].

3.2 Evaluation metrics

Three evaluation metrics, mean absolute error (MAE), mean

absolute percentage error (MAPE), and root mean square error

(RMSE), are widely used in the evaluation of deep learning

networks. In order to evaluate the solution accuracy of the

network in this paper, an accumulative root mean square

error (a-RMSE) is defined and the same evaluation metric is

used for training and extrapolation.

ϵτ �

������������������������������
1
Nt

∑Nt

k�1

�����u(xi,j, tk) − u(xi,j, θ, tk) �����22
mn

√√
(10)

whereNt represents the number of time steps in the period [0, τ],
and ϵτ represents the full-field a-RMSE. m and n are the

resolutions in the spatial region, while u(xi,j, tk) and

u(xi,j, θ, tk) represent the reference solution and the

prediction, respectively.

3.3 2D viscous Burger’s equations

Considering the following 2D viscous Burger’s equations

with periodic conditions:

ut + u(x, y, t)▽u(x, y, t) � ]Δu(x, y, t)x, y ∈ [0, 1], t ∈ (0, T]
u(x, y, 0) � u0(x, y, 0)x, y ∈ [0, 1]

(11)
where u is the fluid’s velocity (u and v), ] is the viscosity

coefficient, Δ is the Laplace operator, ▽ is the gradient

operator, and u0(x, y, 0) denotes the initial condition. Here,

we set ] = 0.005, and the spatial region is Ω ∈ [0, 1]2 with a

resolution of [128 × 128].

The initial condition u0(x,y, 0) is generated in a Gaussian

random field, according to u0 ~ μ where

μ ~ M(0, 625(−Δ + 25Ι)−2). The experimental reference value is

obtained by a pseudo-spectral method with a fourth-order Runge-

Kutta method (δt � 1 × 10−4). PhyCRNet and the Fourier filter-

based PhyCRNet both are trained with a relatively large time step

(δt � 0.002) for iterative calculation. In the finite-difference filter

module of PhyCRNet, Eq. 12 is used to calculateΔ, and the following
difference filter Eq. 13 is used to calculate ▽:

Dlap �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 1 0 0
0 0 16 0 0
−1 16 − 60 16 − 1
0 0 16 0 0
0 0 − 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
1

12(δx)2 (12)

D1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 − 8 0 0
1 − 8 0 8 − 1
0 0 8 0 0
0 0 − 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ×
1

12δx
(13)

Dt � [−1, 0, 1] × 1
2δt

(14)

However, in Fourier filter-based PhyCRNet, Eq. 5 is used to

calculate▽, andΔ is calculated by amethod similar to Eq. 6, while ut
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is calculated by the difference filter in Eq. 14 uniformly. Except for the

calculation of spatial derivatives, all parameters are the same as Ref.

[30]. The learning rate starts at 6 × 10−4 and decays to 99% every

50 epochs. During the period [0,0.4], PhyCRNet and Fourier filter-

based PhyCRNet are trained separately to obtain the numerical

solution of the two-dimensional viscous Burger’s equation for

200 time steps. Then, based on the trained model, the solution

for the last 200 time steps (within time [0.4, 0.8]) is predicted to verify

the model’s extrapolation performance. According to the training

methodmentioned in [30], we pretrain themodel from 100 and then

200 time steps, then extrapolate for another 200 time steps. The

relevant codes and data come from open source [30].

Figure 2 depicts four snapshots of u taken from the training

phase (t = 0.1, 0.3 s) and the extrapolation phase (t = 0.6, 0.8 s),

respectively. Each snapshot from top to bottom are reference

solutions, predictions by PhyCRNet and ours, and errors of

PhyCRNet and ours, respectively. From Figure 2, it can be

found that the results of both networks are very agreement

with the reference in training and extrapolation. It verifies

that the Fourier filter-based PhyCRNet has the same

capability to solve basic PDEs as PhyCRNet.

3.4FitzHugh–Nagumo RD equations

Considering the following the FitzHugh–Nagumo (FN) RD

equations:

ut � γuΔu + u − u3 − v + α
vt � γvΔv + β(u − v) (15)

Same as 3.2, except for the Fourier filter, the network

hyperparameters and equation coefficients are the same as

[30]. u and v are two interactive components. γu, γv, α and β

are equation coefficients by γu � 1, γv � 100, α � 0.01 and

β � 0.25, respectively. The IC is IC_FN1 and the reference

solution is calculated using a method in 2D domain of [0.128]

for 12,000 time steps (δt � 2 × 10−4) [30]. Two model are

trained to solve this PDEs for 200 time steps with time

duration of [0, 1.2] and used to achieve the inference for

[1.2, 2.4], where δt � 0.006. The learning rate is set as 5 × 10–5

and decays by 0.5% every 50 epochs. Besides, we pretrain the

model from 100 and then 200 time steps to extrapolate for

another 200 time steps.

During training (t = 0.6, 1.2 s) and extrapolation (t = 1.8,

2.4 s) phases, the reference solutions, predicted solutions and

error maps are shown in Figure 3. Although FitzHugh–Nagumo

RD equations are more complex than Burger’s equation, Fourier

filter-based PhyCRNet and PhyCRNet have the same

outstanding performance with the truth reference both in

training and extrapolation. The error maps of two model

exhibit near-perfect results, especially the extrapolation error

of the field variable v is smaller. Considering that this PDEs has a

more complex nonlinear form, the above two neural network

methods capture the dynamic evolution process in the long-term,

FIGURE 2
The results of Fourier filter-based PhyCRNet and PhyCRNet network solving the two-dimensional viscous Burger’s equation. Four
representative moments are selected for comparison as training (t = 0.1, 0.3 s) and extrapolation (t = 0.6, 0.8 s), and the errors across the interval are
compared. The subfigures from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours,
respectively.
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which is different from the traditional forward Euler integration

scheme.

3.5 Vorticity equation

This section focuses on the experimental validation of the

Fourier filter-based PhyCRNet to solve the problems that the

finite-difference filter of PhyCRNet cannot solve. Since the finite-

difference filter cannot solve problems like inverse Laplace

operators and there is a time iteration relationship between

the input and output modules, the finite-difference method

imposes the solution of some PDEs not to have a good

propagation relationship between the input and output.

Consider a simple equation for describing 2D incompressible

nonviscous fluid flow, namely the vorticity equation, which takes

the following form

Dζ

Dt
� ζ t − ψyζx + ψxζy � 0 x, y ∈ [0, 1], t ∈ (0, T]

ζ(x, y, t) � vx − uy � ψxx + ψyy x, y ∈ [0, 1], t ∈ (0, T]
u � −ψy v � ψx ux + vy � 0 x, y ∈ [0, 1]

(16)

where ζ(x, y, t) represents the vorticity, the stream function

ψ(x, y, t) is used to describe the flow of the fluid, and u, v

represent the velocity of the fluid in the x and y directions,

respectively. The initial flow function for the equation is:

ψ(x, y, 0) � −0.25 exp ([−4(x − 0.5)2 − (y − 0.5)2/2σ2])
(17)

where σ = 0.15. When calculating the reference solution, we

calculate ζ and ψ of the initial state from Eq. 17. On the 2D

region Ω ∈ [0, 1]2 with a resolution of 256 × 256, a pseudo-

spectral method with a fourth-order Runge-Kutta time

integral (δt � 1 × 10−4) is used to solve the vorticity

equation. The solution reveals that the vorticity ζ moves

forward first, then uses the method of Eq. 6 to update the

stream function ψ, and then calculates u, v. Using vorticity as a

bridge between the input-output connection modules of the

network can more effectively capture the time evolution.

During network training and extrapolation, the time step is

chosen to be δt � 0.001. Fourier filter-based PhyCRNet is

trained for 100 time steps within [0,0.1] to solve the

vorticity equation, and the solution is extrapolated based

on the training model for another 100 time steps within

time [0.1,0.2]. The learning rate starts at 5× 10−3 and then

decays to 99% every 100 epochs. The entire training time

is 6.5 h.

Figures 4, 5 compare the vorticity and velocity fields

predicted by Fourier filter-based PhyCRNet and the ground-

truth reference values. Four representative time instances are

selected for the training (t = 0.025, 0.075 s) and extrapolation (t =

0.125, 0.175 s) phases. From Figures 4, 5, we conclude the

following. First, we can see in figures that both the vorticity

FIGURE 3
The results of Fourier filter-based PhyCRNet and PhyCRNet network solving the FitzHugh–Nagumo RD equations. Four representative
moments are selected for comparison as training (t = 0.6, 1.2 s) and extrapolation (t = 1.8, 2.4 s), and the errors across the interval are compared. The
subfigures from top to bottom are reference solutions, predictions by PhyCRNet and ours, and errors of PhyCRNet and ours, respectively.
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and velocity fields are close to the true reference during the

training and extrapolation phases. Especially in the training

phase, many errors are close to zero. As the extrapolation

period increases, the error also increases. However, when the

extrapolation is at the same training time, the shape of the

rotation is still the same. In the region with a larger value, the

FIGURE 4
The vortex results for solving the vorticity equation with Fourier filter-based PhyCRNet. Four representative moments are selected for
comparison, presenting the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) maps, and compare the errors across the interval. From
top to bottom are reference solutions, predictions and errors.

FIGURE 5
The velocity results for solving the vorticity equation with Fourier filter-based PhyCRNet. Four representative moments are selected for
comparison, presenting the training (t = 0.025, 0.075 s) and extrapolation (t = 0.125, 0.175 s) maps, and compare the errors of the entire interval.
From top to bottom are reference solutions, predictions and errors.
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error becomes larger, but the evolution trend of the solution can

still be used as a reference. As the extrapolation time increases,

the error also increases. This conclusion is also verified in

Figure 8C according to the time-varying a-RMSE.

3.6 Two-dimensional Navier-Stokes
equation

Weconsider the 2DNavier-Stokes equations for a incompressible

viscous fluid in the form of vorticity on the unit torus [23]:

ztζ(x, y, t) + u(x, y, t) · ∇ζ(x, y, t) � ]Δζ(x, y, t) + f(x, y)
x, y ∈ [0, 1], t ∈ (0, T]∇ · u(x, y, t)

� 0x, y ∈ [0, 1], t ∈ (0, T] (18)

The reference is all from the open source code of [23]. The

initial condition ζ(x, y, 0) with periodic boundary condition are

generated according to ζ(x, y, 0) ~ μ, where

μ � N(0, 73/2(−Δ + 25I)−2.5).We set ] � 1e − 3, and the forcing

is kept fixed f(x, y) � 0.1(sin (2π(x + y)) + cos (2π(x + y))).
The equation is solved by a pseudo-spectral method, where

first, the velocity field is calculated in the Fourier space. The

vorticity field is then differentiated, and the nonlinear term is

calculated in the physical space. In terms of time, we use the

Crank-Nicolson scheme, and the time step is δt � 1 × 10−4.
All data are generated on a grid with 256 × 256 resolution.

The model is trained for 200 timesteps within the [0, 2]

period, and we extrapolate over [2,4], where δt � 0.01. The

entire training time process lasts 12.5 h.

The vorticity and velocity field predicted by the Fourier filter-

based PhyCRNet and the ground-truth are illustrated in Figures

6, 7, respectively. The figures clearly show that the velocity and

vorticity fields agree with the ground truth during the training

phase. According to the error distribution, the error is minimal

and, on many occasions, close to zero. In the extrapolation stage,

although the error is increased compared to the training phase,

the evolution of the vorticity and velocity fields can still be

predicted accurately by the trained model of Fourier filter-

based PhyCRNet. This reveals that Fourier filter-based

PhyCRNet affords appealing stability.

3.7 Errors comparison

The error propagation maps of 2D viscous Burger’s equations

and FitzHugh–Nagumo RD equations are shown in Figures

8A,B, respectively. The performance of the proposed methods

is different in the two experiments. There may be caused by the

Fourier filter performs smooth filtering when calculating spatial

derivatives and the setting of hyperparameters which is not the

optimal setting of Fourier filter based PhyCRNet for solving 2D

viscous Burger’s equations. Overall, the errors of both models are

on the same level, which indicates that Fourier filter-based

PhyCRNet has the same capability to solve the basic PDEs as

PhyCRNet.

In Figure 8C, we observe that the errors of vorticity and

velocity are very small during the training phase, and the errors

gradually increase as the extrapolation time increases. Since both

values are not in the same order of magnitude, the a-RMSE of the

vorticity is significantly larger than the velocity field, below

0.7 and 0.02, respectively. As shown in Figure 8D, the

a-RMSE of vorticity and velocity during the training and

extrapolation phases is below 0.04 and 0.01, respectively. This

further verifies the effectiveness of the Fourier filter-based

PhyCRNet in solving 2D N-S equations.

3.8 Convergence study

It is significant to conduct the convergence study of the

Fourier filter-based PhyCRNet. Fourier method is widely

used to solve PDEs, and its convergence has been verified in

previous studies (Hald, 1981; Tadmor, 1989; Bardos and

Tadmor, 2015). Besides, the convergence of PhyCRNet has

been verified. The Fourier filter that replaces the finite

difference filter has a higher solution accuracy, so the

calculation of the loss function is more accurate. The loss

function is used to evaluate the error between the predicted

value of the network and the target value. The trained

network reaches convergence by back-propagation

algorithm [50–52]. According to Eqs 7, 8, the loss

function with physical constraints is trained to converge

to an acceptable error range, which guarantees the

convergence of the network. Therefore, we focus on the

loss history of the neural network. Since the loss histories of

the four experiments are similar at training phases, we

choose the 2D Navier-Stokes equation as the

representative example to show the convergence

history of the proposed method in Figure 9. It is obvious

that as the number of iterations increases, the loss value

decreases. However, the convergence trend gradually

becomes stable with the iteration. More precisely, the

network training has reached a reasonable convergence

range after training.

4 Discussion

As a widely used fluid model, incompressible flow has

many variants for different scenarios and there are many

traditional numerical methods [53–58]. The development of

deep learning in recent years has also made rapid progress in

the exploration and solution of incompressible flow models

[59–61]. This paper develops the Fourier filter-based

PhyCRNet to solve PDEs. Through four numerical
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experiments, we verify the capability of our proposed method

in the solution of general PDEs and equations describing 2D

incompressible flows, respectively. By comparing the

predicted values of the Fourier filter-based PhyCRNet with

the reference solution, it shows that the proposed network

inherits the advantages of PhyCRNet, that is, the ability of

FIGURE 6
The vorticity field results of Fourier filter-based PhyCRNet solving the 2D N_S equation. Four representative snapshots are selected as
comparisons, namely training (t = 0.5, 1.5 s) and extrapolation (t = 2.5, 3.5 s), and compared the errors over the entire interval. From top to bottom are
reference solutions, predictions and errors.

FIGURE 7
The velocity field results of Fourier filter-based PhyCRNet solving the 2D N_S equation. Four representative time instants are selected as
comparisons, namely training (t = 0.5, 1.5 s) and extrapolation (t = 2.5, 3.5 s), and compare the errors of the whole interval one by one. From top to
bottom are reference solutions, predictions and errors.
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FIGURE 8
The a-RMSE of the four Equations. (A) 2D viscous Burger’s equations; (B) FitzHugh–Nagumo RD equations; (C) Vorticity equation; (D) 2D
Navier-Stokes equation.
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extrapolate and encode physical constraints into loss

function, and has the following strengths:

1. The calculation of the inverse Laplace operator. It introduces

the Fourier filter to calculate the inverse Laplace operator,

which the finite-difference filter cannot achieve. In the 2D

incompressible flows, the solution is to iterate forward on the

vorticity field and update the velocity field after the Laplace

inverse operation. The Fourier filter-based PhyCRNet can

efficiently solve 2D incompressible flows with the inverse

Laplace operator.

2. The accuracy of partial derivatives. It adopts a discrete Fourier

transform to calculate partial derivatives improving the

solution accuracy. Here we only consider numerical

experiments in the periodic domain, but after processing

the output with methods such as periodic extension

[62,63], the Fourier filter can extend the proposed method

to the aperiodic domain.

3. The computational efficient of network. Because of Fourier

method, the calculation of the inverse Laplace operator and

partial derivatives is very efficient. Due to the small amount of

experimental computation and the computational cost of the

time series module dominates the entire training process,

there is no noticeable performance in the solution of the 2D

viscous Burger,s equation and FitzHugh–Nagumo RD

equations.

4. The proposed network exploits the powerful fitting

capabilities of deep learning, while avoiding the

dependence of the quality of training data. When carrying

out network constraints, the fusion of physics-informed

adopts the classical numerical method, so the prediction

accuracy after training cannot be better than that of the

traditional numerical method. Overall, the proposed

method provides a reference deep learning method for

scientific computing.

5 Conclusion

In this paper, a Fourier filter-based PhyCRNet is proposed by

replacing the finite-difference filter with the Fourier filter to

improve the accuracy of derivatives and overcome the difficulty

of solving the inverse Laplacian operator. The proposed method

integrates the physics-informed into the loss function by

traditional numerical method to enhance the interpretability

and improve the convergence rate. Numerical results

demonstrate that the Fourier filter based PhyCRNet not only

has the ability to solve general partial differential equations with

PhyCRNet, but also is very effective, accurate and easy to

implement for 2D incompressible flow. Certainly, the method

proposed is not to replace the classical numerical method, but as

an emerging field of deep learning to solve partial differential

equations, it can bring a new method to scientific computing.

In the future, the proposed network can extend to the

solution of problem with irregular regions and various

boundary conditions. Furthermore, the graph neural network

can be used to replace the convolutional network to extract

spatial features more effectively.
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An important question in computational neuroscience is how to improve the

efficacy of deep brain stimulation by extracting information from the underlying

connectivity structure. Recent studies also highlight the relation of structural

and functional connectivity in disorders such as Parkinson’s disease. Exploiting

the structural properties of the network, we identify nodes of strong influence,

which are potential targets for Deep Brain Stimulation (DBS). Simulating the

volume of the tissue activated, we confirm that the proposed targets are

reported as optimal targets (sweet spots) to be beneficial for the

improvement of motor symptoms. Furthermore, based on a modularity

algorithm, network communities are detected as set of nodes with high-

interconnectivity. This allows to localise the neural activity, directly from the

underlying structural topology. For this purpose, we build a large scale

computational model that consists of the following elements of the basal

ganglia network: subthalamic nucleus (STN), globus pallidus (external and

internal parts) (GPe-GPi), extended with the striatum, thalamus and motor

cortex (MC) areas, integrating connectivity from multimodal imaging data.

We analyse the network dynamics under Healthy, Parkinsonian and DBS

conditions with the aim to improve DBS treatment. The dynamics of the

communities define a new functional partition (or segregation) of the brain,

characterising Healthy, Parkinsonian and DBS treatment conditions.

KEYWORDS

electric field volume conductor model, dynamical systems, Hodgkin Huxley neurons,
complex networks, movement disorder
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1 Introduction

Movement disorders like Parkinson’s disease and dystonia

are characterised by abnormal functioning of the whole basal

ganglia (BG) - thalamocortical network. In Parkinson’s disease,

one of the main characteristics of the altered BG network

behaviour is a synchronised abnormal β − activity (12–35 Hz)

Kühn et al. [1]; Neumann et al. [2]. This enhanced BG rhythm

also affects thalamic activity by sending strong inhibitory signals

via GPi (internal segment of the globus pallidus). The

hyperpolarisation of thalamic neurons due to increased

inhibitory BG output increases the burst discharges Kim et al.

[3]; Galvan et al. [4], which in turn triggers motor dysfunction

through the thalamocortical pathway Kim et al. [3].

Deep brain stimulation (DBS) of the BG was shown to be an

efficient treatment for movement disorders Deuschl et al. [5];

Vidailhet et al. [6], but its therapeutic mechanism is still not fully

understood. The application of DBS leads to firing pattern

alterations, and in particular, to disruption of

hypersynchronised β-band oscillations Kühn et al. [1]; Kim

et al. [3]; Crompe et al. [7]. Indeed, recordings in animal

models Xu et al. [8]; Kim et al. [3]; Crompe et al. [7] and

observations from computational network models Rubin and

Terman [9]; Popovych and Tass [10]; So et al. [11]; Galvan and

Wichmann [12] suggest that DBS in the subthalamic nucleus

(STN) results in more periodic and regular firing at higher

frequencies in the BG-thalamic network.

Two important questions arise concerning the structural

connectivity and DBS effectiveness. The first question is how

to determine those electrode positions which are the most

effective for the activation of neural pathways to improve DBS

outcome. The second question which naturally arises, is which

differences in neural activation patterns will emerge within the

brain’s structural network when simulating different conditions

(i.e., Healthy, Parkinsonian and DBS). Due to the strongly

heterogeneous nature of the connection topology and the

stochastic and nonlinear large scale interactions of the

underlying units/neurons, the emergent macroscopic behavior

usually is far from trivial to predict Spiliotis and Siettos [13];

Siettos and Starke [14]; Deco et al. [15,16]; Bassett and Bullmore

[17]; Bullmore and Sporns [18]; Iliopoulos and Papasotiriou [19].

Self-organisation, sustained oscillations, travelling waves,

multiplicity of stationary states and spatio-temporal chaos are

paradigms of the rich nonlinear behaviour at the coarse-grained

systems level Spiliotis and Siettos [13]; Siettos and Starke [14];

Deco et al. [15,16]; De Santos-Sierra et al. [20]; Crowell et al. [21];

Spiliotis et al. [22], indicating thus that a precise

structure–function relation remains a major open problem

Deco et al. [16].

As the primary aim of this paper, we identify positions of

nodes of high functional impact using network analysis. We test

then the hypothesis that such high-connectivity nodes are pivotal

in shaping network activity and are highly effective stimulation

targets for restoring the normal network function. Notably, the

electric field-based approximation of the volume of tissue

activated (VTA) Butson et al. [23]; Butenko et al. [24],

computed at these nodes for a monopolar DBS, overlapped

with target areas previously shown to be effective against

akinetic symptoms of Parkinson’s disease Dembek et al. [25].

The critical high-connectivity nodes were identified

according to three different, but interrelated measures:

1) Using the measure of “clustering coefficient,” nodes are

identified which form triplet interactions. This triangular

interconnection allows for circular information flow and

information feedback. This triplet organisation constitutes

the complex level of connectivity, and is speculated to play a

role in e.g. effective information distribution but also complex

oscillatory network rhythm formation.

2) Using the measure of “betweenness centrality,” high-

connectivity nodes are identified (also known as hubs and

defined by their so-called nodal efficiency van Hartevelt et al.

[26]). This nodal efficiency is related to the degree of influence

of nodes in the network and can be interpreted as the amount

of flow that passes through these nodes. Such hubs act as

central crossroads, enhancing the ability of parallel

information transfer and the functional integration in

brain networksvan Hartevelt et al. [26].

3) Using the measure of “eigencentrality” (or eigenvector

centrality), nodes are identified which specifically connect

with other nodes of high centrality. In this way, targeting such

nodes will likely influence a large population of other nodes.

In many cases, centrality measures correlate strongly Li et al.

[27]; nodes with extreme values of “betweenness centrality”

also show high “eigencentrality” values.

The second aim of this study was to explore the relationship

between anatomical structure and neural activity (i.e., functional

connectivity) using modified Hodgkin-Huxley models Terman

et al. [28]; Rubin and Terman [9]; So et al. [11]; Spiliotis et al.

[22]. In the current study, we address this question by combining

the community structures (i.e., sets of high-connectivity nodes as

identified using modularity measures, Newman [29]) and a large

scale biophysical model which produces virtual neural activity.

We study three different conditions: Healthy, Parkinsonian state

and Parkinsonian conditions with DBS. In the latter case, we

extend the previous computational model Spiliotis et al. [22] in

order to simulate specific spatial positions of DBS electrodes

Mandali et al. [30].

Predicting DBS outcome using neural networks is not novel

Rubin and Terman [9]; Popovych and Tass [10]; Spiliotis et al.

[22]; Fleming et al. [31], in the cited studies, however, smaller

networks were studied without taking into account connectivity

structure and VTA. In the current study, we follow a different

approach: initially, we integrate the high dimensional nonlinear

system, which produces spatiotemporal patterns consistent with
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either Healthy (normal) or Parkinsonian states. Then we average

the activity over the different community structures that have

been previously identified using modularity network measures.

The second main result of the study shows that in all areas

(the detected communities), including neocortical ones,

Parkinsonian conditions alter power spectrogams, but mainly

subcortical structures, with e.g., slowing of activity in the

thalamus and faster activity in pathways connecting pallido-

thalamic and subthalamic-pallidal nodes. Under DBS, in turn,

the simulation reveals that this stimulation at high-connectivity

nodes is able to restore thalamic activity, and partly also cortical

one, while on the one hand, hyperdirect-pathway associated

nodes remain largely unaffected, and on the other, structures

in close vicinity of the electrode mainly follow the stimulation.

2 Network connectivity from data
sources

To describe the structural connectivity of the network, data

from different studies on human brain anatomy were utilised.

2.1 Data sources

For the current model, published data on anatomical and fiber

tract positions were used from different sources: The basal ganglia

nuclei and their substructures were taken from the DISTAL Atlas

Ewert et al. [32]; Chakravarty et al. [33]. TheMelbourne Subcortex

Atlas Tian et al. [34] was used to define substructures of the

thalamus, while the relevant cortical regions were selected using

the Brainnetome Atlas parcellation Fan et al. [35]. Fiber tracts

classified to pathways in the vicinity of the STN were taken from

Petersen et al. [36], and projections of the ventral anterior nucleus

to motor cortical regions, required to complete the BG-thalamo-

cortical network, were extracted from the structural group

connectome of 90 PPMI Parkinsons’s disease-patients GQI

Marek et al. [37], post-processed in Ewert et al. [32]. All data

were represented in MNI (Montreal Neurological Institute) space.

2.2 Structural connectivity of the basal
ganglia-thalamo-cortical network

To investigate DBS network effects in Parkinsons’s disease, the

classic circuit model of the BG-thalamo-cortical network was

employed Milardi et al. [38] (Figure 1A). It consists of three

inputs from motor cortical regions: the direct pathway that

involves the striatum and continues as a GABAergic projection

to the GPi and SNr (substantia nigra pars reticulata); the indirect

pathway that also involves the striatum, but has GABAergic

projections to the GPe (external segment of the globus

pallidus), which in turn inhibits the STN, GPi and SNr. In

addition to these pathways, there is the hyperdirect pathway

through which the STN receives a direct excitatory input from

the cortical areas. The glutamatergic efferents of the STN innervate

the GPe, GPi and SNr. GABAergic projections of the two latter

nuclei to the ventral anterior (VA) and ventral lateral (VL) regions

of the thalamus represent the output of the BG circuit to the

thalamo-cortical network Bosch-Bouju et al. [39].

The interstructural connectivity of the network was

simulated using data based on the pathway atlas of human

motor network obtained from multimodal imaging, including

diffusion, histological and structural MRI data, fused to a virtual

3D rendering Petersen et al. [36] or classified based on their

position relative to the involved structures (thalamo-cortical

projections), see Figure 1. Note that the grouping of fibers

leads to an emergence of network nodes. In the current study,

the simulated network (Figure 1B) does not include the

substantia nigra (SN). The reason for this omission is that the

dopaminergic projections of the SNc (substantia nigra pars

compacta) are not myelinated, and hence less excitable (by

approx. two orders of magnitude) by extracellular fields

Tarnaud et al. [40], yielding a very low chance that DBS

actually would affect them directly. Furthermore, to ensure

homogeneity of the BG pathways, only those present in

Petersen et al. [36] were employed, which did not include the

striatonigral and the nigrothalamic projections. For the same

reason, only the VA neurons were simulated, as they

predominantly receive the pallidal output, unlike the VL

nucleus that is mostly innervated by the SNr afferents

Lanciego et al. [41]. Note that although the projections from

the VL to the motor cortex exist, we excluded them to avoid

modelling of intrinsic dynamics between subregions of the

thalamus.

3 Modelling structural basal ganglia-
thalamo-cortical neuronal network
using complex network theory and
pathway classification

Structural brain connectivity refers to the set of

anatomical links (or axonal tracts) which join different

brain regions. The connectivity can be described and

simplified employing elements of complex network theory

Bullmore and Sporns [18]; Stam and Reijneveld [42], where

the neural elements at the beginning and the end of a tract

serve as nodes of the network, while the anatomical tract is

described as edge of the network. The topological structure of

the network plays an important role in the emergent neural

activity and brain functionality, however it is not well

understood how the structure or topology shapes the

dynamics Deco et al. [15,43]. The knowledge of the

network structural properties is important since it allows

to build realistic computational models and to shed light
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on mechanisms underlying brain functionality or dis-

functionality (i.e., movement disorders), and to predict the

neural dynamics on multiple scales Honey et al. [44,45].

Using the structural connectivity of Section 2, we build a

directed network. The internal connectivity structure within

the areas STN, GPe, GPi, thalamus and motor cortex areas

had to be defined using complex network theory Stam and

Reijneveld [42]; Watts and Strogatz [46].

3.1 Construction of complex network
using the structural connectivity

The resulting structure of Section 2.2 is used to obtain the

connectivity network in the form G = (V, E), where V is the set

of nodes and E represents the set of edges. The nodes of the

structural network are defined as points in three-dimensional

space and correspond to the starting and ending point of a

fiber tract. The resolution is set at 1mm3, meaning that if two

(or more) ending (or starting) points lying within the same

cube of 1mm3, they are considered as one node. The

connectivity information is included in the adjacency (or

connectivity) matrix A: if there is a fiber tract starting at

position x = (x1, y1, z1) and ending at y = (x2, y2, z2) then A(x,

y) = 1, otherwise A(x, y) = 0. The resulting connectivity

constitutes a graph G = (V, E), where the V is the set of

nodes and E is the set of edges or tracts. At the given resolution

of 1mm3, the network contains 134 STN nodes, 244 and

246 GPe and GPi nodes, respectively, 833 thalamic nodes

and 2070 cortical nodes.

FIGURE 1
Basal ganglia-thalamo-cortical circuits. (A): Circuit model comprising all main connections. MC/PMC—motor and premotor cortical regions,
respectively. For explanations, please see the main text. (B): Simulated reduced circuit model with highlighted (bold arrows) connections possibly
affected by STN-DBS. The synaptic connection between Striatum and Globus Pallidus pars externa/interna (GPe and GPi) weremodelled by different
constant currents. (C): Structural connectivity of the simulated network is based on the pathway atlas of human motor network constructed
from multimodal data including diffusion, histological and structural MRI data, fused to a virtual 3D rendering Petersen et al. [36]. (C1): Projections
fromGPi to thalamus (VA nucleus) are shown in red, connections between subthalamic nucleus (STN) and GPe are shown in green, projections from
STN to GPi are shown in violet. (C2): Connections between motor cortex (MC/PMC) and the thalamus projections were obtained by classifying fiber
tracts from Marek et al. [37] and are shown in orange. Projections from motor cortex to STN (hyperdirect pathway) are shown in blue. Nuclei are
shown in the following colours: GPe in light grey, GPi in dark grey, STN in dark orange, thalamus (VA nucleus) in yellow andmotor cortex (M1) in light
grey.
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3.2 Intrastructural small-world network
connectivity

The pathway classification analysis in Section 2.2 does not

contain information about the internal connectivity of each

region (i.e., how the nodes are connected within a region).

We model connectivity within each area using small-world

structures Watts and Strogatz [46]; Bassett and Bullmore [47];

Bullmore and Sporns [18]; Stam and Reijneveld [42]; Spiliotis

and Siettos [13], thus increasing overall network connectivity

beyond the interstructural projections. In such small-world

complex networks Mark [48]; Watts and Strogatz [46], each

node interacts with its k nearest neighbours; additionally, a few

randomly chosen remote connections (with a small probability p)

within the area are also formed Watts and Strogatz [46]. Small-

world structures are commonly used in computational

neuroscience Netoff et al. [49]; Berman et al. [50]; She et al.

[51]; Bassett and Bullmore [17,47]; Fang et al. [52]; De Santos-

Sierra et al. [20] as a result of two main characteristics which they

show: highly clustered property together with short path length

Bullmore and Sporns [18]; Watts and Strogatz [46]; Newman

[29], enhancing in this way the signal or rhythm propagation

within the network and the synchronizability in the network.

The GPe/GPi, thalamus and MC layers were modelled as

separate small-world networks. Each node increases the initial

number of connections (or the degree of the node) by k = 20

degrees on average. The local internal connections lay in a

distance less than 5 mm (these are the local neighbours);

however, the small-world topology Watts and Strogatz [46]

allows remote connections (in a distance greater than 5 mm)

with a small probability p = 0.05. The choices of k and p in this

model are phenomenologically extracted. These values turn out

to be successful i.e. the values k and p are chosen such that the

network will give high values of clustering coefficient compared

to a random network (where the clustering coefficient is very low

and simultaneously a low value of the characteristic path length,

see alsoWatts and Strogatz [46]. Similar values have been used in

other studies and with the chosen values, the connectivity

structure resembles real-neuronal connectivity as it is shown

for example, in the work of De Santos-Sierra et al. [20] and Netoff

et al. [49].

For the STN, we chose a modified small world approach

which results from the experimental findings of Gouty-Colomer

et al. [53]; Ammari et al. [54]. The STN area is characterised by

sparse connectivity, where local and remote connections coexist.

Specifically, only 20% of the STN neurons develop connections

(collaterals) within the other STN neurons Gouty-Colomer et al.

[53]. Almost 80% of these connections are local within a distance

of 200–400 μ m radius, and the other 20% are contacts which

occur farther away, i.e., > 500μ m. In this sense, the 20% of

neurons, which form STN connections, have both local and

remote connections analogous to the small-world property

Spiliotis et al. [22]. Similar to the previous connectivity, in our

model, only the 20% of STN neurons show an average of

25 connections each, while few of these are randomly chosen

remote connections Spiliotis et al. [22]; Gouty-Colomer

et al. [53]).

3.3 Network properties: Degree
distributions, path distances and
centralities

Network measures such as a quantification of homogeneity

are used to identify structural properties of the underlying

neuronal network. These measures allow to categorise

structural elements according to connectivity properties

(i.e., profiles), segregating them into discrete entities. The

main categories are clustering and distancing measures,

centralities and communities detection Bullmore and Sporns

[18]; Stam and Reijneveld [42]. Another subdivision of the

network measures is the local and global description. The

local description refers to the individual property of the i−th

node, while the ensemble over the whole set of nodes in the

network defines the global description (or distribution) for the

network. The statistical distribution of a network property in this

paper is characterised by its mean (the first-order statistical

measure).

3.3.1 Degree distribution
The degree of a node i refers to the number of edges

connected to it Bullmore and Sporns [18]. In directed

networks, a node has both an in-degree and out-degree, which

are the numbers of in-coming and out-going edges, respectively.

A high degree of connectivity (increased numbers of links) of the

i−th node defines the importance of a node in the network. The

degree distribution P(k) defines the probability of a randomly

selected node to have specific degree k. Averaging over all the

nodes of the network, we obtain the mean degree, the first

characteristic of the connectivity. The degree distribution after

pathway classification analysis (Section 2.1), as long as internal

connectivity is not considered, follows a power law of the form.

P K( ) � ck−γ (1)
where the exponent γ was calculated as γ ≈ 2.5.

The main characteristic of a power-law degree distribution is

that only a few high-connectivity nodes acting as central nodes or

hubs (nodes with a high number of connections) exist, while the

majority of nodes show little connectivity. The high-connectivity

nodes or hubs are responsible for an effective and fast spreading

of information or signals in the network. Figure 2A depicts the

degree distribution of P(k) in the network, while Figure 2B shows

the degree distribution of the network including internal

connections. In the latter case, the network thus combines

both power law properties (describing connections among

nuclei) and small world characteristics (describing local
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connectivity within nuclei). This generates an almost symmetric

distribution of P(k).

3.3.2 Paths lengths, efficacy, and clustering
coefficient

In graph theory, a path is a sequence of successive steps

between two nodes, assuming that it is never intersecting a

single node more than once. The minimum distance (i.e., the

minimum steps in case of binary networks) between two

nodes defines the shortest path length. Averaging over the

set of all shortest paths, we obtain the mean path length of the

network:

�m � ∑i,jdi→j

N N − 1( ), (2)

The mean path length shows the ability of the network to spread

information between any two nodes. A low mean shortest path

length �m signifies that any two randomly chosen nodes can

interchange information via just very few intermediate nodes (in

our case ≈ 4 nodes).

Another similar measure which is applied in the case where

there is no connecting path between two nodes (i.e., di→j =∞), is

the global efficiency �G:

�G �
∑i,j

1
di→j

N N − 1( ). (3)

This measure avoids calculating with infinity, since if there is no

pathway between two nodes i.e., di→j =∞0 1/di→j = 0. The �m is

comparable with inverse �G, and according to the Cauchy

inequality for the arithmetic and harmonic mean, we obtain

�m≥
1
�G
. (4)

For the augmented network, the mean path length was computed

to be �m � 4.435, while the inverse global efficacy resulted in

1/ �G � 3.91. Figure 2C shows the distribution of distances

between any two nodes (i.e., di→j).

Beyond the information flow between any two nodes,

information flow among three nodes in a circular path, with

the first node communicating with the second, and the second

with the third, but the third communicating back to the first,

another quality of information is made possible, i.e. feedback

information. This would enable a circuitry to act in control loops,

allowing for rhythm generation. To quantify this property, we

introduce the clustering coefficient, which measures the local

property of a node i to form triangle motifs. The clustering

coefficient of a node i is defined as ratio:

c i( ) � ∑jkaijajkaki

ki ki − 1( ) . (5)

The higher the number of triangles (that exist) with respect to

the i − th node, the higher the clustering coefficient. Figure 2D

depicts the distribution of clustering coefficients. The mean

clustering coefficient is computed as �c � 0.1. The distribution

shows the existence of few nodes with high values of c.

3.3.3 Betweenness centrality
Besides the ability to generate feedback-loops, information

flow within a network is governed by the degree of

interconnectivity between nodes. Centrality measures are used

to identify such high-interconnectivity nodes in the network. The

significance of a node is related to the degree of influence which it

exerts in the network. For example, the influence can be

interpreted as the amount of flow which passes from this

node. Important nodes act as central crossroad or hubs in the

network.

“Betweenness centrality” measures the amount of influence

which a node has with respect to the total information flow in the

network (serving as a bridge between subgraphs, i.e., sets of nodes

of the network). The “betweenness centrality” (Bc)

mathematically is defined as the fraction of all shortest paths

FIGURE 2
Statistical properties of the connectivity network. (A) The
degree distribution (depicted in logarithmic scale) follows a power
law as Eq. 1 with critical exponent γ = 2.54. (B) The augmented
network, using a small world network for the internal
connectivity. The resulting distribution is a combination of power
laws, meaning that the central nodes still exist and act as hubs.
Furthermore, each neuron is connected on average with the
20 nearest neighbours in a radius of 5 mm. (C) The distribution of
path lengths in the network. The mean value was calculated as
ml = 4.43. (D) The distribution of clustering coefficients. There are
few nodes with a high value of clustering coefficient.
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in the network that pass through a given node, specifically the

“betweenness centrality” of a node i is defined as:

Bc i( ) � ∑
j≠i≠k

gjk i( )( )/gjk, (6)

where gjk(i) is the number of shortest paths from j to k passing

from node i, and gjk is the number of shortest paths between

nodes j and k. Bridging nodes that connect disparate parts of the

network often have a high ‘betweenness centrality’. Higher values

of Bc(i) indicate that the node acts as a central node influencing

most of the other nodes in the network. The importance of these

hubs is also highlighted pathophysiologically in the sense that

therapeutic intervention in, e.g., Parkinson’s disease alters both

the structural and functional connectivity profile in patients (a

study which, however, obviously does not have any data on the

Healthy state of the network as a basis of comparisons) van den

Heuvel and Sporns [55].

Figure 3 depicts the distribution of Bc of the network. Indeed,

the large majority of nodes shows very low centrality. However,

there are few nodes with high Bc. In Figure 3B, black filled circles

depict the spatial localisation of these central nodes in the

network. As can be seen in this figure, these high-centrality

nodes can be found in the STN, GPe and GPi, as well as the

thalamus, but also in the motor cortex. We propose these nodes

as very promising targets for DBS treatment. The coordinates of

these hubs in MNI space, and the brain area they belong to, are

given in Table 1.

3.3.4 Eigencentrality
Beyond betweenness centrality, identifying nodes with high-

connectivity, nodes with high connectivity connected to other

nodes with high connectivity represent a special type of network

information distribution, since nodes with such high

“eigencentrality” (Ec), are hypothesised to play an important

role in fast and effective signal distribution within the network.

For each node in the network, a positive number xi is

assigned. The number xi is set to be proportional to the sum

of the weights of all nodes connected to i:

xi � λ−1 ∑
j

Aijxj 5 Ax � λx, (7)

where λ has to be identified. The last equation shows that the

element xi is the i−th element of the eigenvector of the adjacency

matrix (corresponds to the eigenvalue λ). The eigencentrality (or

FIGURE 3
Probability distribution (A,C) and position (B,D) of nodes with high centrality measures. (A,C): Probability distribution of centrality nodes. (A) The
distribution of “betweenness centrality” follows a power law distribution. Thus, >90% of the nodes have a “betweenness centrality” <20,000, and
only 0.5% a centrality value of 200,000. (C) The distribution of “eigencentrality” also follows a power law distribution. Thus, again > 99% of the nodes
have a value < 0.2, and only 0.2% an “eigencentrality” value of 0.17. (B,D) Position of high centrality nodes (i.e., the nodes with the highest Bc or
Ec values in each region, usually with a Bc > 200.000/Ec > 0.17) in MNI brain space coordinates shown as black dots. Brain regions are colour-coded
as given in the figure. Most of these nodes are located in STN and GPi, thalamus (Tha) and GPe, but also some in the motor cortex (MC).
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eigenvector centrality) is defined when one chooses λ = λ1 the

highest eigenvalue of the adjacency matrix A. Then

Ec i( ) � λ−11 ∑
j

Aijxj, (8)

which gives the eigenvector centrality the nice property that it

can be large either because a vertex has many neighbours or

because it has important neighbours (or both) Newman [56].

3.4 Detection of communities and
modularity

Networks characteristically are made up of sets of

nodes (subgraphs) which are densely connected among

each other within the network, and which have sparse

connections to other subgraphs Newman [29]. We

hypothesise that such densely connected subgraph groups

(or communities) play a significant role in information

processing within the network. Assigning and allocating

these densely connected communities to brain structures

allows to construct a modular view of the network’s

dynamics Newman [29].

In this paper, the modality index identifies such densely

connected communities. The modality index Newman [29]

assigns a community numbersi to each node. For example, in

the case of two communities, then si = ±1. Here, we seek the best

network partition in order to optimise the modularity

function Q:

Q � 1
4m

sTBs (9)

where m = 1/2∑kij is the total number of edges in the network,

and Bij = Aij−kikj/2m is the resultant modularity matrix, also

known as graph Laplacian matrix. In such matrices, the

optimisations can be achieved using graph partitioning or

spectral partitioning (eigenvalues-eigenvectors decomposition)

of the matrix B Newman [29]; Leicht and Newman [57].

Figure 4 shows the communities for the augmented network

as determined by the optimisation of the Q function. Using

structural brain segmentation and following anatomical

partitioning, the resulting communities can be assigned to

distinct brain areas. Specifically, six communities emerged

from the simulation as populations with 294, 473, 189, 399,

290, and 330 members, all located in MC (see also Figure 7).

Three important communities were detected in BG and the

thalamus, the first one with 780 members in the thalamus, the

second with 293 members connecting GPi and thalamus, and the

third with 283 members connecting STN and GPe (see also

TABLE 1 High centrality nodes, which might have high effectiveness in the DBS treatment.

Centrality
measure

Subthalamic nucleus
(STN)

Globus pallidus
externa (GPe)

Globus pallidus
interna (Gpi)

Thalamus (Tha) Motor cortex
areas (MC)

Betweenness
centrality

(15, −13, −4),(13, −14, −7),
(13, −11, −6), (13, −13, −8) center:
(13.5, −12.8, −6.3)

(18, −4, −7), (18, −6, −2),
(19, −5, −1), (20, −6, −3)
center: (18.8, −5.3, −3.3)

(18, −9, −1), (20, −9, −1),
(19, −9, 0), (18, −10, −1)
center: (18.8, −9.3, −0.8)

(19, −7, 13), (9, −5, 4),
(9, −4, 6) (8, −4, 5)
center:
(11.25, −5.0, 7.0)

(16, 2, 51), (16, 1, 49),
(20, 9, 46), (18, 2, 49)
center: (17.5, 3.5, 48.8)

Eigencentrality (15, −14, −8), (14, −15, −8),
(11, −12, −7), (15, −13, −4) center:
(13.8, −13.5, −6.8)

(23, −7, 1), (20, −6, 1),
(22, −4, 1), (20, −2, 0) center:
(21.3, −4.8, 0.8)

(20, −9, −1), (12, −1, −6),
(13, −1, −6), (13, −2, −7)
center: (14.5, −3.3, −5)

(19, −8, 10) (18, −8, 10),
(18, −8, 9), (19, −9, 9)
center: (18.5, −8.3, 9.5)

(29, −20, 34), (27, −19,
33), (28, −22, 33),
(19, −1, 50) center:
(25.8, −15.5, 37.5)

Clustering
coefficient

(12, −11, −9), (17, −14, −4),
(15, −10, −5), (15, −17, −7), center:
(14.8, −13, −6.3)

(17, −6, 10), (21, −8, −10),
(16, −3, −7), (16, −5, -12)
center: (17.5, −5.5, −9.75)

(13, −4, −5), (15, −5, −6),
(11, −1, −5), (14, −3, −7)
center: (13.3, −3.3, −5.8)

(7, −6, 8), (7, −6, 6),
(17, −13, 10) (10, −5, 3)
center: (10.3, −7.5, 6.8)

(27, −7, 66), (47, −2, 37),
(36, 20, 32), (44, −4, 53)
center: (38.5, 1.8, 47)

FIGURE 4
Community detection using the modularity-index algorithm
Leicht and Newman [57]. The algorithm identifies 12 major areas
with the number of members of densely connected communities
higher than 100. Remarkably, the modularity partition
generated by the simulation is in line with anatomical brain
separation.
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Figure 9). In addition, one community with 41 members was

obtained in the STN itself, and further two communities with

184 and 107 members connecting MC and STN as hyperdirect

patwhway (see also Figure 10). The localisation of these

communities in virtual space is given in Figure 4, as

projection onto the MNI coordinate space in Figure 5.

4 Deep brain stimulation at centrality
nodes: Electric field approximation

As outlined above, the centrality nodes (defined by the higher

values of the “betweenness centrality” Bc and the

“eigencentrality” Ec, as well as the clustering coefficient c) can

be hypothesised to be possible stimulation targets especially

effective in neuromodulation. To evaluate this hypothesis, for

each of the three measures (Bc, Ec and c), first the centre of mass

was calculated for the four positions in or close to the STN with

the highest values (see coordinates as given in Table 1). For centre

of mass positions, next an approximation of the volume of tissue

activated (VTA) for a conventional DBS signal (2mA 90 μs

rectangular pulse with a 130Hz repetition rate) was

calculated. The stimulation was conducted in a monopolar

mode, with the active contact placed at the coordinates of the

centrality nodes, and the approximation was based on the electric

field magnitude Åström et al. [58], thresholded at 150 V/m.

Using the simulation platform OSS-DBS Butenko et al. [24],

the field was computed in a heterogeneous and anisotropic

volume conductor defined with data from Zhang and

Arfanakis [59] and Horn [60]; Horn et al. [61].

Since the centrality nodes were located very close to each

other, the three corresponding VTAs overlapped strongly; all

three being located in the dorsolateral STN (Figure 6A), which

is a clinically established target for treating motor symptoms

of Parkinsons’s disease Benabid et al. [62]. It must be,

however, noted that the employed structural connectivity of

the network (Figure 1) was inherently biased towards the

dorsolateral region. Next, we estimated the structural

connectivity of these VTAs using the previously described

pathway atlas, but now also including fibers beyond the

motor circuit. In all three cases, nearly the same fibers were

“recruited” by the stimulation, namely, the motor pallido-

subthalamic projections, the hyperdirect pathway descending

from the primary motor cortex (upper and lower extremity),

and the dorso-lateral prefrontal cortex. Importantly, for

the given stimulation amplitude, a recruitment of the

corticofugal pathway was not predicted, allowing to avoid

capsular side-effects Tommasi et al. [63]; Xu et al. [64].

Beyond this, no activation in the pallidothalamic

projections was observed.

Noteworthy is the spatial relation of the centrality nodes

obtained by our simulation to the target spots of the STN-DBS.

The VTAs significantly overlapped with STN regions shown to

be effective in treating hypokinetic symptoms of Parkinsons’s

disease, while a region implicated in side-effect occurrence was

largely avoided Dembek et al. [25] (Figure 6B). Moreover, the

VTAs of the present study contained the effective target points

which were determined by projecting actual target coordinates of

patients treated successfully with DBS for Parkinsons’s disease

onto MNI space in another study on a large cohort Horn et al.

[65]. Such a coincidence of the centrality nodes and the so-called

sweet spots might explain the efficiency of the STN as a target for

various neurological disorders. This relatively small nucleus is a

site of convergence of various neural circuits (even though not all

of them include the STN itself). Hence, its stimulation allows a

wide-spread neuromodulatory intervention.

FIGURE 5
Community detection using themodularity-index algorithm Leicht andNewman [57], now projecting the same communities as in Figure 4 onto
MNI space sections, showing motor cortical areas as surface projection (A), thalamus and basal ganglia as frontal cut projection (B) and STN-MC
connections as hyperdirect pathway projected onto a frontal section (C). As in the previous figure, the 12 major areas are located in MC (6), thalamus
(1) and basal ganglia (2), as well as three communities in locations associated with the hyperdirect pathway (one in STN in light orange, two
connecting STN and MC; dark orange and green).
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5 Modelling the dynamics of the
thalamo-cortical basal ganglia circuit

After establishing the structural components and

determining promising target regions in the previous

sections on structural simulation, we also wished to explore

the functional consequences of DBS on network activity

patterns. For this, we worked on the same structural model

as above, and superimposed modified Hodgkin-Huxley

modelling.

In the augmented network, each node serves as a neuron

(hypothesising a homogeneous neural population on the

1 mm3 cube), and the edges represent synaptic links between

the neurons. Consequently, depending on the region, each

node-neuron is modelled with a variation of Hodgkin-

Huxley’s current-balance equations Terman et al. [28];

Rubin and Terman [9]; Hodgkin and Huxley [66]. In this

section, we present the mathematical description of the

neurons from each area of the basal ganglia (BG),

thalamus and cortex. Next, we couple the neural activity

of neurons according to structural connectivity within and

between the subthalamic nucleus (STN), globus pallidus

externa (GPe) and interna (GPi), thalamus (Tha) and

motor cortex (MC).

5.1 Modelling and simulations of neurons
in STN-GPe-GPi nuclei

The properties of neurons are expressed using the

conductance-based biophysical model of Hodgkin-Huxley’s

formalism as also has been used in previous work of Terman

et al. [28]; Rubin and Terman [9]; Popovych and Tass [67]. The

dynamics of each STN, GPe and GPi neuron are given by a

current balance equation for the membrane potential: Terman

et al. [28]; Bevan and Wilson [68]; Popovych and Tass [10]:

C
dVi

dt
� −ILEAK − IK − INa − ICa − IT − IAHP − Isyn + IDBS (10)

dxi

dt
� x∞ − xi( )/τxi (11)

d Ca2+[ ]i
dt

� ϵ1 −ICa − IT − kCa Ca2+[ ]i( ), (12)

where C is the membrane capacity, Vi is the membrane potential

of the ith neuron, xi denotes the gating variables n, h, r and x∞ is

the steady state value for the gating variables. The quantity

[Ca2+]i is the intracellular concentration of calcium. The exact

description of the ionic currents ILEAK, IK, INa, ICa and the

synaptic current Isyn for the STN and GP neurons are given

in the supplementary material. The current IDBS in Eq. 10 models

FIGURE 6
Recruitment of neural tissue bymonopolar STN-DBS at the centrality nodes. (A): All three (overlapping) VTAs are located in the dorsolateral STN
(left; green for between-centrality nodes, yellow for clustering coefficient, and blue eigencentrality) and predominantly recruit motor
pallidosubthalamic projections, the hyperdirect pathway from the primary motor cortex (upper and lower extremities), as well as its branch
descending from the dorso-lateral prefrontal cortex (right). Note that the latter was not used to construct the networkmodel. For the particular
stimulation protocol (2 mA), no corticofugal fibers are recruited according to the computational model. (B): The VTAs (green for between-centrality
nodes, yellow for clustering coefficient, and blue eigencentrality) overlap with target areas, whose stimulation is clinically proven to improve motor
symptoms, especially akinesia Dembek et al. [25]. While an overlap alsowith regions producing possible side-effects exists, this overlap is significantly
smaller (note that the regions delineated in Dembek et al. [25] overlap as well).
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DBS on STN neurons only and the form is described in the

Supplementary Material. In the absence of DBS treatment the

value is: IDBS = 0.

5.2 Synaptic suppression of pallido-
thalamic projections

Here, we model the GABAergic short term depression. The

functionality of the GABAergic synapse and the resulting release

of neurotransmitters is dependent on the firing history of the

presynaptic neuron Zucker and Regehr [69]; Farokhniaee and

McIntyre [70]. High-frequency stimulation induces suppression

of GPi GABAergic synaptic transmission Farokhniaee and

McIntyre [70], which in turn, leads to a thalamic activity

facilitation.

The synaptic activity is defined by the activation variable si,

which is given by Laing and Chow [71]; Ermentrout and Terman

[72]; Compte et al. [73]:

dsi
dt

� α 1 − si( )H Vi − θ0( ) − βsi, (13)

where H(V) is a smooth approximation of the step function,

i.e., H(V) � 1/(1 + e−(V−θx)/σx ), where α, β stands for the rate of

activation and inactivation, respectively, and typically, α = O(1),

β = O(ϵ) holds Laing and Chow [71]; Ermentrout and Terman

[72]; Terman [74].

The inhibitory GaBAergic synaptic current for the ith neuron

is given, by

Ii,GABA � gGABA Vi − EGABA( )∑
j

Aijsj, (14)

where Aij has the value 1 or 0, depending on whether the neuron is

connected or not. The summation is taken over all presynaptic neurons.

In case of existent synaptic suppression the GABAergic

synaptic current changes to

Ii,GABA � gGABA Vi − EGABA( )∑
j

AijsjPj, (15)

where the factor Pj describes the probability of a

neurotransmitter release (in the {ij} synapses), and follows the

dynamics Benita et al. [75]:

dPj

dt
� P0 − Pj

τD
Pj tsp( ) → Pj tsp( )AD,

(16)

where tsp corresponds to the last spike-time of the presynaptic

neuron and AD is the depression factor (0 < AD < 1), in our case,

the value AD = 0.8 was used. The value P0 describes the steady

state of P and in our case was set to 1. To simplify, when a

presynaptic neuron fires at time tsp the functionality of the

synapse (the release of neurotransmitters) is reduced

(suppressed by a factor AD). In the absence of neural activity

the synapse returns to a full ability of release, in a time scale 1/τ

where τ = 400 ms Benita et al. [75].

5.3 Modelling neurons in the thalamus

The mathematical description of the thalamic neurons is

given by the following equation.

C
dVi

dt
� −ILEAK − IK − INa − IT − Isyn + ISM (17)

dxi

dt
� x∞ − xi( )/τx, (18)

where C is the membrane capacity and Vi is the membrane

potential of the ith neuron, while the Eq. 18 describes the first

order kinetics for the gating variables h, r. The currents ILEAK, IK
and INa are the ionic currents, IT is the T-type calcium channel.

The synaptic current Isyn has the form Isyn = IGPTH + ITHTH,

where the GABAergic current IGPTH represents the inhibition of

the GPi area to the thalamus, while ITHTH represents the internal

excitatory or inhibitory thalamic connections. The current ISM
represents sensorimotor excitation (from motor cortex areas to

thalamus). The detailed description of the ionic and synaptic

currents is given in the Supplementary Material.

5.4 Modelling and simulations of neurons
in the motor cortex

The motor cortex neurons MC, are described as one-

compartment soma, and following the equations Pospischil

et al. [76]:

C
dVi

dt
� −ILEAK − IK − INa − IM − Isyn + Iapp (19)

dxi

dt
� ax 1 − xi( ) − bxxi (20)

dpi

dt
� p∞ − pi( )/τp, (21)

where Vi is the membrane potential, and xi represents the gating

variables for potassium and sodium current, of the ith neuron.

The gating variable pi represents the activation gate of the slow,

voltage-dependent potassium current IM. The current Iapp is

added to tune the oscillatory behaviour of MC neurons

around 20Hz. Each MC neuron has different value of Iapp
which is extracted randomly from the interval [2, 3]. The

synaptic activity is given from the current Isyn and the exact

form is described at Supplementary Material. The whole MC area

is modelled as small world network. In this network, 20% of the

neurons send inhibitory signals. i.e., replicate interneurons. The

cortical neurons show a regular spiking activity Pospischil et al.

[76]. The exact description is given in the Supplementary

Material.
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5.5 Average over the detected
communities macroscopic description

In this paper, we obtain a macroscopic description of the

dynamics of the detected communities of Section 3.4, by

averaging the mean voltage activity �V of neurons over the

population in the community; specifically, we define:

�Vx t( ) � 1
N

∑N
k�1

Vk t( ). (22)

The mean voltage activity �V is used for the characterisation of

rhythmic activity using Fourier spectral analysis under different

states (Healthy, Parkinsonian or DBS in Parkinsonian

conditions). In all simulations, the Fourier power spectrum is

normalised dividing by the highest absolute value. In this context,

the Parkinsonian state was modelled, in brief, by increasing the

activity of STN, decreasing the activity of GPe (D2 dopamine-

mediated receptor activity effect in the indirect pathway), and

simultaneously increasing the activation of GPi due to

D1 dopamine-mediated activity in the direct pathway. The

detailed description of is given in Section 3 of the

Supplementary Material.

6 Collective dynamics of the
structural clusters (communities)

Structural connectivity can have significant impact on the

large-scale dynamics of the brain Deco et al. [43]; Papadopoulos

et al. [77]; Deco et al. [15], However, the connection between

anatomical-structural and functional brain connectivity is far

from been trivial. Large-scale computational models and their

complex nonlinear dynamics constitute an important method to

explore this connection Papadopoulos et al. [77]; Schirner et al.

[78]. Here, we propose a new method which correlates the

structural and functional connectivity, specifically focusing on

densely connected communities as identified by the modality

index (Section 3.4).

6.1 Analysis of macroscopic activity in
motor cortex clusters

The network analysis resulted in the identification of 6 MC

areas consisting of 294, 473, 189, 399, 290 and

330 nodes, respectively. For each area, we extract the

Fourier spectrum for the macroscopic variable of Eq. 22,

averaging all values of each member of the detected

community. The results are depicted in Figure 7. The first

column depicts the six different cortical node sets (six clusters

emerging from modularity analysis) in red on the virtual

brain surface. The next three columns show the power

spectra in three different conditions (i.e., Healthy,

Parkinsonian and DBS). Under healthy conditions, the

activity peaks in the low and high γ band (i.e. ≈ 80 Hz and

≈ 190–290 Hz, with one to three peaks). Under Parkinsonian

conditions, these peaks are often blunted, i.e., with less

obvious peaks in e.g., MC1, MC3 and MC6 (Parkinsonian

conditions depicted as blue curves, and healthy conditions

depicted as red curves, for comparison see also column 1 of

Figure 8 which depicts the differences between Healthy and

Parkinsonian cases).

To better estimate the differences between the conditions, we

generated difference curves of the spectrograms of Figure 7 based

on the following subtraction pairs: |PX(f)|−|PY(f)|, where |PX|, |

PY|, are the power spectra of the states X, Y, respectively, and

represent: healthy, Parkinsonian or DBS conditions, see Figure 8.

By further calculating the area under the curve (AUC, Valor et al.

[79]) for each of these difference pairs i.e.,

E � ∫
b

a

|PX f( )| − |PY f( )|∣∣∣∣ ∣∣∣∣df (23)

(numbers in insets in Figure 8) one can estimate the degree of

change expected to occur when changing the condition.

Comparing the difference between healthy and Parkinsonian

conditions [Park-Healthy, Eq. 23], one can see that the

spectrograms differ by ≈ 55 arbitrary units for most MC

clusters, save in two locations (MC2 and MC6), where the

values are below 50. Obviously, thus, the effect of

Parkinsonian conditions is heterogeneous in the MC network,

albeit within moderate boundaries; overall, the difference is in the

range of 50 ± 5 (arbitrary units).

Comparing these differences now to differences DBS-Healthy,

see Eq. 23, the relative effect of DBS can be gauged: In two areas,

DBS actually induced more differences than the disease condition

alone (MC1, MC2, with values 62 and 49, compared to 55 and 45),

in three areas, DBS reduces the differences (which might be

interpreted as a normalisation of activity), i.e., in MC3,

MC4 and MC5 (with values 47, 40 and 44 compared to 58,

55 and 53), and in one area, there is virtually no effect of DBS

regarding this measure (MC6, with a value 49, compared to 49).

Again, this leads to the conclusion that the effect of DBS is

heterogeneous regarding cortical activity, with alterations by

+18 and +8% (positive changes meaning that the frequency

spectrogram digresses even more from healthy conditions under

DBS than under Parkinsonian conditions alone) occurring in some

regions (MC1, MC2), and −20, −28 and −17% in others (MC3,

MC4,MC5; negative values indicating that the spectrograms under

DBS show less of a difference against healthy conditions than

under Parkinsonian conditions without DBS), and in fact only a

minimal change (+0.9%) in MC6, see Figure 8 (Supplementary

Table S4). Using repetitive analyses with the data, we did not see

changes of > 5%, while the effect sizes particularly of beneficial

DBS effects in the order of 17%–28%. Therefore, we think that the
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differences are unlikely due to random sampling errors. Overall,

just averaging these changes, this amounts to a change of cortical

spectral activity by ≈ − 7%. Where are the clusters positioned on

the cortex? With MC1 and MC2, those regions where DBS seems

to accentuate differences in spectral activity, we see the largest

clusters forming (incidentally) a “W” or “∞” figure. With MC3,

MC4 and MC5, it appears that these clusters are positioned very

close to the frontal or dorsal end of the MC2 cluster, or indeed at

fragmented positions of the MC1 cluster; those regions

interestingly show a reduction in spectrogram difference

induced by DBS. One might speculate that normalising

effects of DBS are reflected in spatially fragmented changes

in the cortex, but not when considering large networks. Overall,

obviously, the reason for the heterogeneity in functional

connectivity or for the impact of DBS remains unknown and

we hope that the current analysis spurs further detailed

investigations into this matter.

6.2 Analysis of macroscopic activity in
basal ganglia-thalamic clusters

The second group of communities (clusters), identified by

modularity measure, belongs to the basal ganglia or thalamus.

Specifically, the first thalamic cluster contains 780 neurons, the

second community contains 293 neurons connecting GPi and

thalamus and the third cluster consists of 283 neurons

connecting STN and GPe. For each cluster, we extract the

Fourier spectrum for the macroscopic variable of Eq. 22. These

Fourier spectra of all members of the detected communities were

averaged. The results are depicted in Figure 9. The three rows depict

node sets emerging frommodularity analysis in the thalamus (top),

in the GPi-thalamic pathway (middle) and the STN-GPe pathway

(bottom), depicted as red dots on the virtual brain sections.

Under healthy conditions (column 2 in Figure 9), in the

thalamus, the activity peaks in the low γ band (i.e., ≈ 46 Hz). In

FIGURE 7
Simulation of frequency spectrograms of cortical sets of nodes as average neuronal activity (power on ordinate given as relative value) in a
frequency range of 0–400 Hz. The six rows depict six different cortical node sets (six clusters emerging frommodularity analysis) shown in red on the
virtual brain surface. The spectrograms correspond to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected
network (both as blue traces), as shown in the different columns. Traces from healthy conditions are superimposed as fine red traces. Under
healthy conditions, the activity peaks in the low and high γ band (i.e., ≈80 Hz and ≈190–290 Hz, with one to three peaks). Under Parkinsonian
conditions, these peaks are generally blunted, and DBS is able to reverse this at least in some instances (e.g., clusters in MC3, MC4 and MC5, where
spectrograms under DBS deviate less from healthy conditions than spectrograms under Parkinsonian conditions by as much as 17–28%, taking the
overall area under the curve differences as a measure; see Figure 8).
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the pallido-thalamic cluster (projections from GPi to thalamus;

GPi-Thal), the neuronal activity is characterised by a slow β band

rhythm (i.e., ≈ 13–14 Hz). The third cluster comprises neurons

projecting from the STN to GPe (STN-GPe), again showing a

maximum of activity in the low β band (i.e., ≈ 13–14 Hz).

Under Parkinsonian conditions, the situation reverses: in the

thalamus, higher frequency γ activity is blunted, and low-frequency

activity emerges (at ≈ 6 Hz, i.e., θ band), while in the cited pallidal

pathways, peak frequencies are shifted to higher frequencies

(≈25 and 50 Hz, i.e., in the β and low γ band). DBS clearly

changes this situation: In the pathways directly connected to the

STN (which is the stimulation target), the dominant frequencies are

in the DBS frequency and harmonics (i.e., 130 and 260 Hz).

Importantly, this leads to a restoration of thalamic activity, where

again the activity is peaking in the low γ band (i.e., ≈ 38 Hz), not

quite reaching the frequency under healthy conditions, but definitely

different from low-frequency Parkinsonian activity.

6.3 Analysis of macroscopic activity in
clusters associated with the hyperdirect
pathway

The third group of communities emerging from the

simulation were clusters associated with the hyperdirect

pathway, as shown in Figure 10. These include one cluster

in the STN, and two clusters connecting MC and STN. The

first cluster is made of 41 neurons, and the other two of

184 and 107 neurons. Under healthy conditions, in a set of

STN nodes quite different from the one projecting to the GPe

of the BG-thalamic clusters (compare with Figure 9), the

activity is also distinctly different as it peaks at 21 Hz

(compared to 14 Hz in the BG-cluster), with a much wider

frequency distribution into higher frequencies. These nodes

probably relate to the hyperdirect pathway, as they are close to

the nodes of MC-STN connections. In the latter, under

FIGURE 8
Differences of the spectrum between Park-Healthy and DBS-Healthy [subtracting the spectrum according to Eq. 23]. Each row represents one
of six cortical sets of nodes as emergent from centrality measure modelling. The columns show the differences of these frequency spectra by
subtracting Park vs. Healthy, DBS vs. Park and DBS vs. Healthy. The shaded area under the curve as a measure of frequency spectrum divergence is
computed and depicted in columns 1, 2 and 3. The MC3, MC4 andMC5 areas in the cases of DBS vs. Healthy show a reduction in the computed
area compared to Park vs. Healthy, indicating that DBS reduces the spectrum difference compared to Parkinsonian condition, although differences
to the healthy condition remain.
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healthy conditions, peak activity emerges at ≈ 160–180 Hz, i.e.

in the high γ range.

Under Parkinsonian conditions, STN nodes narrow down

their spectrum to two peaks (at 44 and 86 Hz), and a loss of the

wide spectral activity. Under DBS, in the STN nodes a wider

distribution of frequencies appears again, albeit as an appearance

of peaks at harmonic frequencies of 44 Hz (44, 88, 172 Hz). In the

hyperdirect pathway related nodes, however, DBS does not

change much in the activity, save appearance of a 130 Hz

peak (then stimulating frequency). In the first cluster (see

middle row in Figure 10), the frequency distribution otherwise

remains more or less similar, and in the second cluster (bottom

row in Figure 10), the 160 Hz peak is blunted.

7 Discussion and conclusion

In this study, we provided insights into complex network

processes in order to obtain a new approach gauging the

effectiveness of DBS. Additionally, we investigated the

relationship between structural and functional connectivity,

presenting a new in silico methodological approach to explore

dynamics of brain motor area functions under healthy and

Parkinsonian conditions, as well as the impact of Deep Brain

Stimulation (DBS). Using a state-of-the-art network (constructed

from data based on the pathway atlas of human motor network,

obtained from various types of imaging, including diffusion,

histological and structural MRI data, all fused to a virtual 3D

rendering, Petersen et al. [36]) and integrating this network into

advanced complex network measures, Bullmore and Sporns [18],

we detected nodes, with high-connectivity and thus pivotal

impact on the activity distribution within the network. These

nodes are hypothesised to be ideal targets for DBS application.

Our results based on betweenness centrality propose the

following MNI coordinates (13.5, −12.8, −6.3) as optimal STN

target. The following optimal points (sweet spots) are suggested

in other publications: (12.5, −12.72, −5.38) in Dembek et al. [25];

(12.42, −12.58, −5.92) in Horn et al. [65]; (11.83, −11.63, −5.8) in

Bot et al. [80] and (10.83, −13.31, −7.01) in Akram et al. [81], see

also Table 2 in Dembek et al. [25]. Remarkably, completely

different methodologies [e.g., we use graph theory, while

Dembek et al. [25] use VTA with Probabilistic Stimulation

FIGURE 9
Simulation of frequency spectrograms of basal ganglia and thalamic sets of nodes as average neuronal activity (power on ordinate given as
relative value) in a frequency range of 0–400 Hz. The three rows depict node sets emerging from modularity analysis in the thalamus (top), in the
GPi-thalamic pathway (middle) and the STN-GPe pathway (bottom), depicted as red dots on the virtual brain sections. The spectrograms correspond
to healthy conditions (red traces), Parkinsonian conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the
different columns. Traces from healthy conditions are superimposed as fine red traces. Under healthy conditions, the activity peaks in the low γ band
(i.e., ≈ 46 Hz) in the thalamus, while in the pathways projecting from GPi to the thalamus and projecting from the STN to GPe, low frequency activity
in the low β band is seen (i.e. ≈ 13–14 Hz). Under Parkinsonian conditions, the situation reverses: in the thalamus, higher frequency γ activity is
blunted, and low-frequency activity emerges (at ≈6 Hz, i.e., θ band), while in the cited pathways, peak frequencies are shifted to higher frequencies
(≈25 and 50 Hz, i.e., in the β and low γ band). DBS clearly changes this situation: In the pathways directly connected to the STN (which is the
stimulation target), the dominant frequencies are in the DBS frequency and harmonics (i.e., 130 and 260 Hz). This leads to a restoration of thalamic
activity, where again the activity is peaking in the low γ band (i.e., ≈38 Hz).
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Maps (PSM)] result in very similar STN sweet spots. The

advantage of using a graph-theoretical approach, as in the

current study, is that it is simple and takes only a few seconds

to estimate the best stimulus target. Furthermore, this method

could be combined in the future with already established

statistical methods used e.g., Dembek et al. [25].

As a next step, we computed the volume of tissue activated

(VTA) at the positions around the STN, which had emerged as

pivotal nodes. Comparing these VTAs to clinically established

DBS targets in Parkinsons’s disease, it is evident that the position

of the nodes matches well with areas associated with alleviation of

motor symptoms Benabid et al. [62]; Dembek et al. [25]; Horn

et al. [65], suggesting that the high-connectivity nodes can infer

potentially effective stimulation sites. Future studies should

investigate whether a match between such nodes and

neurosurgical targets also occurs when analysing networks

constructed based on whole brain structural connectomes.

The second part of the current study addresses modelling of

functional changes within a neuronal network. Specifically, here,

we propose a new method to analyse network activity under

different conditions (i.e., Healthy, Parkinsonian and DBS), using

knowledge of detailed structural network connectivity in a large

scale Basal ganglia-thalamo-cortical model. This new approach is

based on the detection of network communities or modules

central to activity distribution. Network analysis of structural

connectivity showed that the communities or groups of highly-

connected nodes can be assigned to distinct anatomical regions

(Figure 4). Such a modular network organisation, in comparison

to a random distribution network, clearly shows advantages like

greater robustness, adaptivity, and evolvability of network

function Meunier et al. [82]. Although the relation of

structural/functional connectivity and how neural activity

could emerge from the brain’s anatomical connections has

been studied in several other experimental and computational

studies Deco et al. [16,43]; Horn et al. [83], the current view of

modular activity organisation is new.

Our analysis showed that in all modular areas, including

neocortical ones, Parkinsonian conditions alter power

spectrogams, but mainly subcortical structures, with e.g.,

slowing of activity in the thalamus and faster activity in

FIGURE 10
Simulation of frequency spectrograms of the STN (top row) and the hyperdirect pathway connections (two bottom rows) as average neuronal
activity (power on ordinate given as relative value) in a frequency range of 0–400 Hz. The three rows thus depict node sets emerging frommodularity
analysis in the STN itself (top), and in nodes connecting MC and STN, i.e., two clusters of connections involving the hyperdirect pathway (middle and
bottom), depicted as red dots on the virtual brain sections. The spectrograms correspond to healthy conditions (red traces), Parkinsonian
conditions and DBS in a Parkinson-affected network (both as blue traces), as shown in the different columns. Traces from healthy conditions are
superimposed as fine red traces. Under healthy conditions, in a set of STN nodes quite different from the one projecting to the GPe of the previous
figure, the activity is also distinctly different as it peaks at 21 Hz, with a very wide frequency distribution into higher frequencies. These nodes probably
relate to the hyperdirect pathway, as they are close to the nodes of the second row, i.e., MC-STN connections. In the latter, under healthy conditions,
peak activity emerges at ≈ 160–180 Hz, i.e., in the high γ range. Under Parkinsonian conditions, STN nodes narrow down their spectrum to two peaks
(at 44 and 86 Hz), and a loss of the wide spectral activity. Under DBS, in the STN nodes a wider distribution of frequencies appears again, albeit as an
appearance of peaks at harmonic frequencies of 44 Hz (44, 88, 172 Hz). In the hyperdirect pathway related nodes, however, DBS does not change
much in the activity, save appearance of a 130 Hz peak (then stimulating frequency). In the first cluster (middle), the frequency distribution otherwise
remains more or less similar, and in the second cluster (bottom), the 160 Hz peak is blunted.
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pathways connecting pallido-thalamic and subthalamic-pallidal

nodes. Under DBS, in turn, simulations reveal that this

stimulation at high-connectivity nodes is able to restore

thalamic activity, and partly also cortical one, while on the

other hand, hyperdirect-pathway associated nodes remain

largely unaffected. Specifically, the simulations suggest that

nuclei directly involved in DBS (STN, Pallidum) mainly

follow the stimulation. The thalamus, in turn, translates this

into a concordant shift of its activity to the low-γ frequency band

(from θ under Parkinsonian conditions), while the motor cortex,

in turn, shows a discrete, and inhomogeneous response. Thus,

theoretically, the thalamus also under these conditions may serve

as activity gate to the cortex, while the motor cortex only adjusts

in a minor way—presumably thus preserving general

functionality, which would likely be lost if strong rhythmicity

were to emerge in the cortex. Importantly, at least a part of these

conclusions is also clinically confirmed. In a recent study

Neumann et al. [84] on Parkinsons’s disease patients receiving

DBS, using clinical, behavioural and fiber tracking informed

computational models, the hypokinetic state depends on

suppressing indirect pathway activity and not on the

hyperdirect pathway. By contrast, in that study, cognitive

impairment in Parkinson’s disease patients could be attributed

to modulation of the hyperdirect pathway, suggesting that the

hyperdirect and indirect pathways, converging in the

subthalamic nucleus, are differentially involved in cognitive

aspects of motor programming and kinematic gain control

during motor performance.

The present study constitutes a computational

approximation of the basal ganglia-thalamo-cortical network,

with assumptions and limitations. Regarding the assumptions,

synaptic coupling was tuned to be consistent to produce beta-

band oscillatory activity within the basal ganglia, as a

pathophysiological marker of Parkinson’s disease. Further, an

internal connectivity in the nuclei was assumed to take the form

of small world complex structures. This novel approach in basal

ganglia modelling has a reasonable justification in previous

publications, both modelling and experimental Netoff et al.

[49]; Berman et al. [50]; She et al. [51]; Bassett and Bullmore

[17,47]; Fang et al. [52]; De Santos-Sierra et al. [20]. As a

limitation of the model, the exact structure of the connectivity

on this microscopic level is not known, and hence also it remains

to be clarified in the future how this can be analogously modelled.

In the current study, the striatal input to GPe and GPi was

simplified as different, but homogeneous constant currents to all

neurons in GPe and GPi, but with different values between GPe

and GPi, as well as healthy and Parkinsonian conditions.

As a future modelling perspective, one important

topic will be the investigation of how this structural

separation of the network can help to construct a low-

representation model of brain activity (also called neural

manifolds). The low representation will be tested under

several DBS variations (i.e., functional connectivity) with

respect to the parameters of DBS implantation (position,

frequency, shape).
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As a result of its wide range of applications, FSI has grabbed the attention of

researchers and scientists. In this study we consider an incompressible, laminar

fluid flowing through the bifurcated channel. The wavy walls of the channel are

considered elastic. Moreover, a magnetic field is applied towards the axial

direction of the flow. Using a two-way fluid-structure interaction, an

Arbitrary Lagrangian-Eulerian (ALE) formulation is used for coupling the

problem. The problem is discretized using P2 and P1 finite element methods

to approximate the displacement, pressure, and velocity. The linearized system

of equations is solved using Newton’s iterative scheme. The analysis is carried

out for the Reynolds number and Hartman number. The ranges of the studied

parameters are Reynolds number 300≤Re≤ 1000 and Hartmann number

0≤Ha≤ 10. The hemodynamic effects on the bifurcated channel and elastic

walls are calculated using velocity, pressure, wall shear stresses (WSS), and loads

at the walls. The study shows there is an increase in boundary load as the values

of the Hartman number increase hence WSS increases. On the other hand, an

increase in the Reynolds number increases the resistance forces hence velocity

and WSS decrease. Also, numerical values of WSS for rigid and elastic walls are

calculated. Studies showed that WSS decreases for the FSI case when compare

to CFD (computational fluid dynamic) case.

KEYWORDS

fluid-structure interaction, wall shear stress, finite element method, bifurcation,
biomagnetic fluid, elastic walls
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Introduction

Cardiovascular disorders are now the leading cause of death

worldwide, accounting for around a quarter of all deaths in the

modern era [1–3]. Cardiovascular problems include

atherosclerosis, carotid aneurysm, and deep vein thrombosis,

which cause heart attack, stroke, and embolism all stem from

platelet aggregation [4]. Recent years have seen a large number of

theoretical and experimental studies on arterial blood flow [4].

To better understand how the cardiovascular system’s

physiological blood flow might be diagnosed, researchers are

eager to examine how blood flows through an aortic artery

bifurcation. The evaluation of blood flow through different

types of geometries under different flow sites is highly

essential because the leading cause of death in the world by

arterial diseases is connected with the flow problems in the blood

arteries. Viscosity, size, and form of arteries, as well as flow

characteristics such as laminar, pulsatile, and turbulent all, have a

significant impact on how blood moves through the vessels [5].

Numerous theoretical and experimental investigations on arterial

blood flow have been conducted recently. Blood flow

hemodynamics strongly depends upon the non-Newtonian

characteristics, flow behavior, and shape of the artery. Fojas

et al.[6] study the two-dimensional carotid artery model with

bifurcation. An arbitrary Lagrangian-Eulerian (ALE) technique

was used to solve the system of nonlinear equations.

Comparisons were made between the findings of the

hemodynamic simulations and the Doppler ultrasonography

measurements of physiological blood velocity.

A literature review shows that many experiments were

performed to measure the velocity field in bifurcation [7, 8],

and the pressure drop model was proposed [9, 10]. Mekheimer

[11] Proposed a theoretical investigation of a mixture of blood

and synovial with heat distribution, volume fraction and

concentration effects through stenosed concentric tubes. They

concluded synovial fluid which has less friction than other fluids,

can help to speed up the blood flow in the area of atherosclerosis.

Flow past in a branching tube was analyzed by [12]. Yung et al.

[13] numerically investigated the flow in bifurcation. For

analytical and numerical research, basic “Y” type bifurcations

with sharp corners were taken as assumptions, but experimental

articles did not specify specific geometry employed in

experiments. Thus, it is only possible to study the correlation

between these theoretical and experimental results qualitatively.

For the first time [14, 15], conducted thorough experiments to

explore the primary and secondary flow field in a single

bifurcation with smoothed corners and precisely defined

geometric parameters. Numerical simulation performed by

Zhao et al. [16] showed agreement between experimental and

computational results by [14, 15].

Magnetohydrodynamics (MHD) is the study of fluids with

magnetic characteristics. Human blood flow in the vascular

system is greatly influenced by the use of MHD. Magnetic

devices have been developed for a variety of applications,

including medication transporters, cancer treatment, cell

separation, etc. In medical research, the theory of

electromagnetic field was first introduced by Kolin [17]. Later,

Korchevskii, Marochnik [18] offered the opportunity to control

the blood flow in the arterial lumen system by spreading a

magnetic field. Ahmed et al. [19] proposed a unique model of

unsteady MHD fluid flow and heat transfer across carbon

nanotubes utilizing variable viscosity. MHD effects on blood

flow in bifurcated arteries with minor stenosis in the parent

lumen were studied by Srinivasacharya and Rao [20]. They used

the finite difference method to solve the resulting set of equations

numerically. The hemodynamics effects like flow rate, shear

stresses are calculated for the involved parameter. Abdelsalam

et al.[21] investigated the effects of chemical interaction and laser

radiation with MHD and electroosmotic flow of non-Newtonian

hybrid fluid in a sinusoidal channel. The aim of the research is to

help restrict the growth of bacteria, promote oxygen binding to

the blood, transfer oxygen to organs, and activate white blood

cells. Mekheimer et al. [11] used a vertical micro channel to

investigate the effect of diamond and copper nanoparticles on the

electro-magneto-hydro dynamically regulated peristaltic

pumping of a couple stress fluid. They found the

irreversibility process enhanced with the sphere shaped

particles also, MHD reduced the bolus size. Further

investigation on MHD flows and their applications can be

seen in the articles [22–25] and references therein.

Researchers are eager to examine how blood flows through

an aortic artery bifurcation to better understand how the

cardiovascular system’s physiological blood flow might be

diagnosed. Blood flow across diverse geometries and flow sites

are critical since arterial diseases are the leading cause of death in

the globe, and because flow problems in the blood arteries are the

primary cause of death. The blood flow is greatly affected by

physical properties such as viscosity, vessel size and shape, and

flow behaviour, such as laminar or pulsatile. Many vascular

disorders can be linked back to abnormal blood flow

dynamics in the arteries. Having a better knowledge of these

dynamics could help in both healthy and pathological conditions.

The hemodynamics of blood flow cannot be predicted accurately

if we assume rigid walls. So this study is not effective in many

practical cases. Therefore, FSI is taken into account [26]. FSI

between blood and wall artery is difficult to model. Both

modeling and computing efficiency is advancing rapidly in

this discipline. Taking into consideration the FSI for the

vessels and blood can be achieved by introducing a 2D or 3D

elastic structure, utilizing a Lagrangian [27], Eulerian [28], or

ALE (Arbitrary Lagrangian-Eulerian) framework [29]. Zhao et al.

[30] studied the blood flow in the aortic arch using FSI. The

system of equations is formed using the ALE frame. They studied

the elasticity and wall stress in the aorta wall. Studies show that

difference in the elastic characteristics of the different layer is

responsible for the pathological state. Methods et al. [31]
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performed an FSI simulation in a patient-specific artery using the

ALE concept. The fluid flow pattern and WSS were given special

consideration in their study. In [32] the hemodynamics

characteristic of blood flow using FSI were discussed. The

coupling of the non-linear system of the equation with FSI is

performed using the Gauss-Seidel iterative algorithm. Recently

Shahzad et al. [33] studied the hemodynamics effects of non-

Newtonian fluid flowing in the bifurcated artery. The theoretical

model for stenosed bifurcated artery was constructed. They used

an ALE technique to study the elastic wall behavior for non-

Newtonian fluid.

In this study, a fluid-structure interaction simulation is

performed for the bifurcated channel. The walls of the

channel are considered wavy and elastic. The magnetic field is

applied toward the axial direction of the flow. How Re and Ha

affect the hemodynamics of the channel were studied. In the next

section, physical configuration and mathematical modeling are

performed. After that solution methodology is explained. The

result and discussion section highlighted the major outcomes of

the study. The conclusion based on the results is highlighted in

the last section.

Physical configuration and
mathematical modeling

The coordinate system and the geometry of the problem are

shown in Figure 1. The wall of the channel is considered wavy

with width w � 0.08cm. The total length of the channel is

L � 6cm. The geometrical elements that influence the fluid

dynamics in branching geometries are: change in cross-

sectional area from mother to daughter branch, shape change

in bifurcation module, flow driven at a bifurcation, and flow path

curvature in the bifurcation module. Further, we suppose that

walls of the bifurcated channel are constructed of linear elastic

and isotropic material with a particular Young’s modulus and

Poisson ratio. Which we defined as [34]

v � λl
2(λ + μm), E � μ(3λl + 2μm)

λl + μm
,

μm � E

2(1 + v), λl � vE

(1 + μm)(1 − 2v)
(1)

where λl, Lame coefficient; μm, Shear modulus; E, Young’s

Modulus; v, Poisson ratio.Where E � 5 × 105 and value of v �
0.49.

We consider the incompressible, two–dimensional, viscous,

biomagnetic fluid flowing through the bifurcated channel. The

walls of the bifurcated channel are considered wavy. The upper

wall and lower walls move with velocity 1. The parabolic inlet

with Umax � 0.3 is considered at the inlet. While at outlet

boundaries pressure is assumed zero. The low magnetic

Reynolds approximation is assumed [35].

Lagrangian and Eulerian descriptions are commonly used in

continuum mechanics to describe solid and fluid motion,

respectively. With regards to fluid and solid domains mixing

(fluid structure interaction), ALE is a more generic approach. For

the fluid-structure interaction, we can write the governing

equations in two dimensions as [34].

FIGURE 1
Geometry of the wavy bifurcated channel.

FIGURE 2
Coarse mesh for the discused problem.

TABLE 1 Grid convergence for various refinement levels at Re =
200 and Ha = 0.

Refinement level WSS on
the upper wall

Absolute error

1 0.473018 —

2 0.470492 0.0025

3 0.473178 0.0027

4 0.475150 0.0047

5 0.476230 0.0011

6 0.476365 0.0001
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TABLE 2 WSS comparison for CFD and FSI case.

Ha Re = 300 Re = 500 Re = 800

CFD case FSI case CFD case FSI case CFD case FSI case

0 0.342855 0.334139 0.221536 0.218223 0.157072 0.155413

2 0.347158 0.338239 0.222788 0.219411 0.156423 0.154701

4 0.360056 0.350603 0.228537 0.224991 0.15612 0.154361

6 0.38257 0.372627 0.239482 0.235677 0.16016 0.158443

8 0.414214 0.403517 0.256632 0.252632 0.168657 0.166945

10 0.451058 0.439229 0.278059 0.273645 0.180917 0.179107

FIGURE 3
Velocity contours for Re 300 (left) and 500 (right).
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Continuity equation

zu

zx
+ zv

zy
� 0 (2)

Momentum equations

ρ((u − us) zu
zx

+ (v − vs) zu
zy

) � −zp
zx

+ μ(z2u
zx2

+ z2u

zy2
) − σpB2pu

(3)

ρ((u − us) zv
zx

+ (v − vs) zv
zy

) � −zp
zy

+ μ(z2v
zx2

+ z2v

zy2
) (4)

The governing equation for the solid displacement is given by

∇ϱs � 0 (5)

where u, v, velocity component; us, vs, mesh coordinate velocity;

σ, electrical conductivity of the fluid; ρ, density of the fluid; μ,

viscosity of the fluid; ϱs, solid stress tensor; B, magnetic field

strength.

The elastic deformation of the walls caused by the fluid and

pressure forces can be represented in terms of the Kirchhoff stress

tensor as [36].

τ � Jϱs
ϱs � J−1FSFT

where F � (1 + ∇ds), J � det(F), S is related by the strain ϵ as
S � C(E, ]): (ϵ), and

ϵ � 1
2
(∇ds + ∇dT

s + ∇dT
S∇ds)

where S, second Piola-Kirchhoff stress tensor; E, Young’s

modulus; υ, Poisson’s ratio; ds, solid displacement vector.

Making use of the dimensionless variables listed bel

u � �u

u0
, v � �v

u0
, x � �x

h
, y � �y

h
, us � us

u0
, ϱ � �ϱs

�E
, p

� �p

ρu2
0

, Re � ρ h u2
0

μ
, Ha � σ B2h

μ
(6)

where h, channel height; u0, inlet velocity; Re, Reynolds number;

Ha, Hartmann number.

By taking a dimensionless parameter into account and

omitting bar sign for simplicity, we can rewrite Eqs 2–5 as

zu

zx
+ zv

zy
� 0 (7)

ρ((u − us) zu
zx

+ (v − vs) zu
zy

) � −zp
zx

+ 1
Re

(z2u
zx2

+ z2u

zy2
)

− Ha2

Re
pu (8)

FIGURE 4
Streamlines for various Hartmann numbers at Re = 300.
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ρ((u − us) zv
zx

+ (v − vs) zv
zy

) � −zp
zy

+ 1
Re

(z2v
zx2

+ z2v

zy2
) (9)

∇ϱs � 0 (10)

At the inlet, a parabolic velocity profile is assumed as

u(x, y) � 3Umax y (1 − y). Pressure determines the outflow

boundary conditions. The outlet’s pressure is set to zero.

Solution methodology

To address the FSI problem, the interdependent system of

partial differential Eqs 8–10 are solved with the ALE

approach, based on FEM. Galerkin finite element method

[35] was used to transform and discretize the equations. This

approach combines the ability to move the boundary domain,

FIGURE 5
Streamlines for various Reynolds numbers at Ha = 0.

FIGURE 6
Velocity profile for various cut lines defined.
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holding a moving domain with a moving procedure. The ALE

approach is explained in greater detail in the articles [37–41].

A solution accuracy is improved by applying hybrid mesh

which consists of rectangular and triangular elements. The

requirements for the nonlinear iteration’s convergence are

stated as ∣∣∣∣∣∣∣∣
χn−1 − χn

χn+1

∣∣∣∣∣∣∣∣< 10−6

where χ is the general component of the solution. Figure 2

depicts the coarse level grid of the problem. The key steps to

study the structural analysis of the domain using FEM are

discretization, meshing, and mesh refinement. FEM schemes

are used to address the complex fluid flow problems by

dividing the domain into subdomains or elements. Since

discretization of the domain into finite elements is a key

step so meshing is performed at multiple levels but for

optimization, only a coarse level is presented (see

Figure 2). The first and second-order polynomial space (P1

and P2) is generated in the form of a hybrid grid consisting of

quadrilateral and triangular elements to approximate the

domain. Grid independence tests are performed to confirm

that the results produced are independent of the number of

mesh elements. The numerical values of WSS for the upper

wall at Re = 200 and Ha = 0 are calculated for various

refinement levels and shown in Table 1 (coarse to

extremely fine). With the improvement of refinement

FIGURE 7
WSS vs. Ha for variation of Re.

FIGURE 8
Boundary load for different Ha.
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levels, the absolute error decreases and is minimum for

extremely fine level. Therefore, the study is conducted at

an extremely fine level.

Results and discussion

A two–dimensional theoretical model for bio-magnetic

flow in a bifurcated channel with elastic wavy walls is

proposed. The magnetic field is applied to the axial

direction of the flow. The nonlinear differential equations

are transformed into a dimensionless form by utilizing

appropriate scales. The system of equations is discretized

using ALE and is solved using the FEM approach. The

numerical solution is obtained for the various values of the

parameters involved. Results for various values of Ha and Re

are produced to gain a physical understanding of the

situation. The results are demonstrated by the mean of

streamlines, velocity surfaces, displacements, and WSS.

In Table 2 WSS are calculated for the variation of

Reynolds and Hartmann number. Also, a comparison is

made for CFD (rigid wall) and FSI (elastic wall) cases.

WSS decreases for the FSI case as compared to the CFD

case where the walls of the channel are considered rigid. WSS

decreases when the viscous forces inside the channel increase

i. e for increasing Reynolds number. The magnetic field has

opposite effects on WSS as compared to Re. WSS is minimum

for pure hydrodynamic cases i.e., Ha = 0, but when the value

of Hartmann number increases the pressure at the walls

increases hence WSS increases (see Table 1).

Figure 3 shows the variation of velocity magnitude for

various values of Hartmann number at Re = 300 (left) and 500

(right). Due to an increase in viscous forces the velocity

magnitude inside the channel decreases. Therefore, an

increase in Reynolds number retards the velocity. On the

other hand velocity magnitude inside the channel is

maximum for the pure hydrodynamic case. An increase in

magnetic field strength give rise to WSS, as a result, velocity

magnitude inside the channel decreases. Due to the elastic

nature of the walls, a reasonable distortion can be observed

for the variation of Hartmann number (see Figure 3). In

Figure 4 streamlines are drawn for various values of the

Hartmann number. Recirculation near the walls is

maximum for the pure hydrodynamic case (Ha = 0). As

Hartmann varies, the recirculation pattern decreases. The

fluid exerts more pressure on the wall, which results in to

increase in WSS. In Figure 5 streamlines for the variation of

Reynolds number are drawn and observed near the

bifurcation region. As increase in Reynolds number

increases the viscous forces which consequently retards the

flow and thereby reduced the flow velocity. This can also be

observed by the recirculation pattern of the fluid near the

walls (see Figure 5). Figure 6 plots the velocity profile for the

expanded and contracted region for the variation of

Hartmann number. An increase in Hartmann’s number

reduces the velocity. Moreover, due to the parabolic inlet,

a parabolic profile of velocity is observed.

Mechanical properties of the bifurcated channel are very

important because they are directly related to recirculation

area, flow pattern, WSS, etc. Due to the elastic behavior of

wavy walls, a noticeable deformation can be seen for the

variation of Hartmann number, which results in to decrease

in the recirculation which gives rise to the wall shear stress.

Figure 7 plots the WSS against the Hartmann number for the

variation of Re. Also, a comparison is made between the CFD

and FSI cases. A significant decrease in WSS for the FSI case.

A boundary load is simulated in Figure 8. A significant

change in the load at the boundary is observed for the

variation of the Hartmann number. At Ha = 0, due to

parabolic inlet velocity, there is a negligible load at the

boundary. But it gradually starts increasing for variation of

Ha. A noticeable change can be seen at Ha = 10.

Conclusion

A fluid-structure interaction study of two–dimensional

biomagnetic flow in a bifurcated channel is conducted. The

walls of the channel are assumed elastic. The magnetic field

is applied to the axial direction of the flow. The nonlinear

differential equations are transformed into a dimensionless

form by utilizing appropriate scales. The system of

equations is discretized using ALE and is solved using the

FEM approach. The major findings of the study are

highlighted as.

• WSS is higher for CFD (rigid wall) case as compared to FSI

(elastic wall) case.

• WSS decreases for increasing values of Reynolds number.

• Compared to the pure hydrodynamic scenario, the

magnetic field reduces the gain in velocity.

• There is an increase in the recirculation patterns near the

walls of the channel for the variation of Hartmann number.

Hence pressure exerted by the fluid on the wall increases.

• The magnetic field increases the boundary load as

compared to the pure hydrodynamic case.

• The magnetic field increases the WSS and hence the risk of

atherosclerosis reduces.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Frontiers in Physics frontiersin.org08

Shahzad et al. 10.3389/fphy.2022.999279

205

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.999279


Author contributions

ZR: funding; HS and AHM computed the results; HS and

SME wrote the original draft; XW has supervised; AR and AHM

wrote the review draft; XW and MAA: modeling;

Conceptualization and Validation, MAA.

Funding

This work was supported by the King Khalid University

through a grant KKU/RCAMS/22 under the Research Center for

Advance Materials (RCAMS) at King Khalid University, Saudi

Arabia.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Lloyd-Jones D, Adams RJ, Brown TM, CarnethonM, Dai S, De Simone G, et al.
Heart disease and stroke statistics-2010 update: A report from the American heart
Association. Circulation (2010) 121:e46–e215. doi:10.1161/CIRCULATIONAHA.
109.192667

2. Jackson SP. Arterial thrombosis-insidious, unpredictable and deadly. Nat Med
(2011) 17:1423–36. doi:10.1038/nm.2515

3. Davies MJ, Fulton WF, Robertson WB. The relation of coronary thrombosis to
ischaemic myocardial necrosis. J. Pathol. (1979) 127:99–110. doi:10.1002/path.
1711270208

4. Srinivasacharya D, Madhava Rao G. Modeling of blood flow through a
bifurcated artery using nanofluid. Bionanoscience (2017) 7:464–74. doi:10.1007/
s12668-017-0402-6

5. Ahmed A. Peristaltic flow of a magnetohydrodynamic nanofluid through a
bifurcated channel. Acta Mech (2021) 232:575–89. doi:10.1007/s00707-020-
02731-6

6. Fojas JJR, De Leon RL. Carotid artery modeling using the Navier-Stokes
equations for an incompressible, Newtonian and Axisymmetric flow. APCBEE
Proced (2013) 7:86–92. doi:10.1016/j.apcbee.2013.08.017

7. Chang HK, El Masry OA. A model study of flow dynamics in human central
airways. Part I: Axial velocity profiles. Respir Physiol (1982) 49:75–95. doi:10.1016/
0034-5687(82)90104-9

8. Schroter RC, Sudlow MF. Flow patterns in models of the human
bronchial airways. Respir Physiol (1969) 7:341–55. doi:10.1016/0034-
5687(69)90018-8

9. Pedley TJ, Schroter RC, SudlowMF. Energy losses and pressure drop in models
of human airways. Respir Physiol (1970) 9:371–86. doi:10.1016/0034-5687(70)
90093-9

10. Pedley TJ, Schroter RC, Sudlow MF. The prediction of pressure drop and
variation of resistance within the human bronchial airways. Respir Physiol (1970) 9:
387–405. doi:10.1016/0034-5687(70)90094-0

11. Mekheimer KS, Abo-Elkhair RE, Abdelsalam SI, Ali KK, Moawad AMA.
Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in
diseased organs: Synovitis problem. Int Commun Heat Mass Transfer (2021) 130:
105756. doi:10.1016/j.icheatmasstransfer.2021.105756

12. Smith FT. On entry-flow effects in bifurcating, blocked or constricted tubes.
J Fluid Mech (1976) 78:709–36. doi:10.1017/S002211207600270X

13. Yung CN, de Witt KJ, Keith TG. Three-dimensional steady flow through a
bifurcation. J Biomech Eng (1990) 112:189–97. doi:10.1115/1.2891171

14. Zhao Y, Lieber BB. Steady Inspiratory flow in a model Symmetric bifurcation.
J Biomech Eng (2016) 116:488–96. doi:10.1115/1.2895800

15. Zhao Y, Lieber BB. Steady expiratory flow in a model Symmetric bifurcation.
J Biomech Eng (2016) 116:318–23. doi:10.1115/1.2895737

16. Zhao Y, Brunskill CT, Lieber BB. Inspiratory and expiratory steady flow
analysis in a model symmetrically bifurcating airway. J Biomech Eng (1997) 119:
52–8. doi:10.1115/1.2796064

17. Kolin A. An electromagnetic flowmeter: The principle of the method and its
application to blood flow measurements. Exp Biol Med (Maywood) (1936) 35:53–6.
doi:10.3181/00379727-35-8854p

18. Korchevskii LS, Marochnik EM.Magnetohydrodynamic version of movement
of blood. Biophys (1965) 10:411–3. doi:10.1016/j.asej.2016.04.023

19. Ahmed Z, Nadeem S, Saleem S, Ellahi R. Numerical study of unsteady flow
and heat transfer CNT-based MHD nanofluid with variable viscosity over a
permeable shrinking surface. Int J Numer Methods Heat Fluid Flow (2019) 29:
4607–23. doi:10.1108/HFF-04-2019-0346

20. Srinivasacharya D, Rao M. Computational analysis of magnetic effects on
pulsatile flow of couple stress fluid through a bifurcated artery. Comput Methods
Programs Biomed (2016) 137:269–79. doi:10.1016/j.cmpb.2016.09.015

21. Abdelsalam SI, Mekheimer KS, Zaher AZ. Dynamism of a hybrid Casson
nanofluid with laser radiation and chemical reaction through sinusoidal channels.
Waves in Random and Complex Media (2022). 2022. 1–22. doi:10.1080/17455030.
2022.2058714

22. Jagadeesha RD, Prasanna BMR, Sankar M. Double diffusive convection in an
inclined parallelogrammic porous enclosure. Proced Eng (2015) 127:1346–53.
doi:10.1016/j.proeng.2015.11.493

23. Jagadeesha RD, Prasanna BMR, Younghae D, Sankar M. Natural
convection in an inclined parallelogrammic porous enclosure under the
effect of magnetic field. J Phys : Conf Ser (2017) 908:012076. doi:10.1088/
1742-6596/908/1/012076

24. Alsharif AM, Abdellateef AI, Elmaboud YA, Abdelsalam SI. Performance
enhancement of a DC-operated micropump with electroosmosis in a hybrid
nanofluid: Fractional Cattaneo heat flux problem. Appl Math Mech (2022)
43(6):931–44. doi:10.1007/s10483-022-2854-6

25. Shahzad H, Ain QU, Pasha AA, Irshad K, Shah IA, Ghaffari A, et al.
Double-diffusive natural convection energy transfer in magnetically
influenced Casson fluid flow in trapezoidal enclosure with fillets. Int
Commun Heat Mass Transfer (2022) 137:106236. doi:10.1016/j.
icheatmasstransfer.2022.106236

26. Crosetto P, Reymond P, Deparis S, Kontaxakis D, Stergiopulos N, Quarteroni
A. Fluid-structure interaction simulation of aortic blood flow. Comput Fluids (2011)
43:46–57. doi:10.1016/j.compfluid.2010.11.032

27. Idelsohn SR, Oñate E, Del Pin F. A Lagrangianmeshless finite element method
applied to fluid-structure interaction problems. Comput Struct (2003) 81:655–71.
doi:10.1016/S0045-7949(02)00477-7

28. Cottet GH, Maitre E, Milcent T. Eulerian formulation and level set models for
incompressible. Fluid-Structure Interaction (2008) 42:471–92. doi:10.1051/m2an

29. Scovazzi G, Hughes TJR. Lecture Notes on continuummechanics on arbitrary
moving domains. Solutions (2007) 62.

30. Zhao YC, Vatankhah P, Goh T, Wang J, Chen XV, Kashani MN, et al.
Computational fluid dynamics simulations at micro-scale stenosis for microfluidic
thrombosis model characterization.Mol Cel Biomech (2021) 18:1–10. doi:10.32604/
mcb.2021.012598

Frontiers in Physics frontiersin.org09

Shahzad et al. 10.3389/fphy.2022.999279

206

https://doi.org/10.1161/CIRCULATIONAHA.109.192667
https://doi.org/10.1161/CIRCULATIONAHA.109.192667
https://doi.org/10.1038/nm.2515
https://doi.org/10.1002/path.1711270208
https://doi.org/10.1002/path.1711270208
https://doi.org/10.1007/s12668-017-0402-6
https://doi.org/10.1007/s12668-017-0402-6
https://doi.org/10.1007/s00707-020-02731-6
https://doi.org/10.1007/s00707-020-02731-6
https://doi.org/10.1016/j.apcbee.2013.08.017
https://doi.org/10.1016/0034-5687(82)90104-9
https://doi.org/10.1016/0034-5687(82)90104-9
https://doi.org/10.1016/0034-5687(69)90018-8
https://doi.org/10.1016/0034-5687(69)90018-8
https://doi.org/10.1016/0034-5687(70)90093-9
https://doi.org/10.1016/0034-5687(70)90093-9
https://doi.org/10.1016/0034-5687(70)90094-0
https://doi.org/10.1016/j.icheatmasstransfer.2021.105756
https://doi.org/10.1017/S002211207600270X
https://doi.org/10.1115/1.2891171
https://doi.org/10.1115/1.2895800
https://doi.org/10.1115/1.2895737
https://doi.org/10.1115/1.2796064
https://doi.org/10.3181/00379727-35-8854p
https://doi.org/10.1016/j.asej.2016.04.023
https://doi.org/10.1108/HFF-04-2019-0346
https://doi.org/10.1016/j.cmpb.2016.09.015
https://doi.org/10.1080/17455030.2022.2058714
https://doi.org/10.1080/17455030.2022.2058714
https://doi.org/10.1016/j.proeng.2015.11.493
https://doi.org/10.1088/1742-6596/908/1/012076
https://doi.org/10.1088/1742-6596/908/1/012076
https://doi.org/10.1007/s10483-022-2854-6
https://doi.org/10.1016/j.icheatmasstransfer.2022.106236
https://doi.org/10.1016/j.icheatmasstransfer.2022.106236
https://doi.org/10.1016/j.compfluid.2010.11.032
https://doi.org/10.1016/S0045-7949(02)00477-7
https://doi.org/10.1051/m2an
https://doi.org/10.32604/mcb.2021.012598
https://doi.org/10.32604/mcb.2021.012598
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.999279


31. Methods C, Mech A, Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, et al.
Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic
blood flow due to implantation of the Jarvik 2000 left ventricular assist device.
Comput Methods Appl Mech Eng (2009) 198:3534–50. doi:10.1016/j.cma.2009.
04.015

32. Nobile F. Numerical approximation of fluid-structure interaction problems
with applications to Haemodynamics. Lausanne: EPFL (2001). doi:10.5075/epfl-
thesis-2458

33. Shahzad H, Wang X, Sarris I, Iqbal K, Hafeez MB, Krawczuk M. Study of
Non - Newtonian biomagnetic blood flow in a stenosed bifurcated artery
having elastic walls. Sci Rep (2021) 11:23835. doi:10.1038/s41598-021-
03426-1

34. Anwar MA, Iqbal K, Razzaq M. Analysis of biomagnetic blood flow in a
stenosed bifurcation artery amidst elastic walls. Phys Scr (2021) 96:085202. doi:10.
1088/1402-4896/abf67b

35. Sajid M, Shahzad H, Mughees M, Ali N. Mathematical modeling of slip and
magnetohydrodynamics effects in blade coating. J Plast Film Sheeting (2019) 35:
9–21. doi:10.1177/8756087918777782

36. Ghalambaz M, Jamesahar E, Ismael MA, Chamkha AJ. Fluid-structure
interaction study of natural convection heat transfer over a flexible oscillating
fin in a square cavity. Int J Therm Sci (2017) 111:256–73. doi:10.1016/j.ijthermalsci.
2016.09.001

37. Casadei F, Halleux JP. An algorithm for permanent fluid-structure interaction
in explicit transient dynamics. Comput Methods Appl Mech Eng (1995) 128:231–89.
doi:10.1016/0045-7825(95)00843-8

38. Donea J, Huerta A. Finite element methods for flow problems. Hoboken: Wiley
(2003). p. 30.

39. Donea J, Giuliani S, Halleux JP. An arbitrary Lagrangian-Eulerian finite
element method for transient dynamic fluid-structure interactions. Comput
Methods Appl Mech Eng (1982) 33:689–723. doi:10.1016/0045-7825(82)
90128-1

40. Kuhl E, Hulshof S, de Borst R. An arbitrary Lagrangian eulerian finite-element
approach for fluid-structure interaction phenomena. Int J Numer Methods Eng
(2003) 57:117–42. doi:10.1002/nme.749

41. Mazumder S. Numerical methods for partial differential equations: Finite
difference and finite volume methods. Cambridge: Academic Press (2015).

Frontiers in Physics frontiersin.org10

Shahzad et al. 10.3389/fphy.2022.999279

207

https://doi.org/10.1016/j.cma.2009.04.015
https://doi.org/10.1016/j.cma.2009.04.015
https://doi.org/10.5075/epfl-thesis-2458
https://doi.org/10.5075/epfl-thesis-2458
https://doi.org/10.1038/s41598-021-03426-1
https://doi.org/10.1038/s41598-021-03426-1
https://doi.org/10.1088/1402-4896/abf67b
https://doi.org/10.1088/1402-4896/abf67b
https://doi.org/10.1177/8756087918777782
https://doi.org/10.1016/j.ijthermalsci.2016.09.001
https://doi.org/10.1016/j.ijthermalsci.2016.09.001
https://doi.org/10.1016/0045-7825(95)00843-8
https://doi.org/10.1016/0045-7825(82)90128-1
https://doi.org/10.1016/0045-7825(82)90128-1
https://doi.org/10.1002/nme.749
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.999279


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Investigates complex questions in physics to 

understand the nature of the physical world

Addresses the biggest questions in physics, 

from macro to micro, and from theoretical to 

experimental and applied physics.

Discover the latest 
Research Topics

See more 

Frontiers in
Physics

https://www.frontiersin.org/journals/physics/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Dynamical systems, PDEs and networks for biomedical applications: Mathematical modeling, analysis and simulations
	Table of contents
	Editorial: Dynamical systems, PDEs and networks for biomedical applications: Mathematical modeling, analysis and simulations
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

	Deriving the Bidomain Model of Cardiac Electrophysiology From a Cell-Based Model; Properties and Comparisons
	1. Introduction
	2. Methods
	2.1. The EMI Model
	2.1.1. Extension to Cells Connected by Gap Junctions

	2.2. Derivation of the Bidomain Model From the EMI Model
	2.2.1. Starting Point of the Derivation
	Step 1: Approximating the Intracellular Conductivity
	Step 2: Applying the Divergence Theorem
	Step 3: Applying the EMI Model Equations (12–(14)
	Step 4: Extending the Variables and Parameters to Be Defined Everywhere
	Step 5: Approximate the Surface Integrals
	Step 6: Reapply the Divergence Theorem for the New Variables
	Step 7: Rearranging the Terms and Inserting Equations (26) and (27)


	2.3. Expressions for the Bidomain Model Parameters 
	2.3.1. Surface to Volume Ratio, χ
	2.3.2. Average Cross-Sectional Area Fractions
	2.3.3. Average Intracellular Conductivity 
	2.3.4. Intracellular Conductivity Tensor
	2.3.5. Extracellular Conductivity Tensor


	3. Results
	3.1. Simulation Set-Up
	3.2. Numerical Methods
	3.3. 1D Strand of Cells With a Passive Membrane Model
	3.4. 1D Strand of Cells With an Active Membrane Model
	3.5. 2D Grid of Cells With an Active Membrane Model

	4. Discussion
	4.1. Source of Difference Between EMI and Bidomain Solutions
	4.2. Differences and Similarities

	Data Availability Statement
	Author Contributions
	Funding
	References

	An In Silico Study of Electrophysiological Parameters That Affect the Spiral-Wave Frequency in Mathematical Models for Card ...
	1 Introduction
	2 Materials and Methods
	2.1 Model
	2.2 Numerical Methods
	2.3 Data Aquisition

	3 Results
	3.1 Effects of Conductances on the AP and the Spiral-Wave Frequency ω
	3.2 Effect of the Gap-Junctional Coupling on ω
	3.3 Effect of the Fibroblast-Myocyte Coupling on AP Properties and ω
	3.4 Drift of Spiral Waves in Domains With an Inhomogeneous Distribution of Fibroblasts

	4 Discussion
	4.1 Limitations of Our Study

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Effective Spatio-Temporal Regimes for Wound Treatment by Way of Macrophage Polarization: A Mathematical Model
	1. Introduction
	2. Mathematical Model
	2.1. Background
	2.2. Equations
	2.3. Model of Wound With Actuator

	3. Results
	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Multiscale and Multiphysics Modeling of Anisotropic Cardiac RFCA: Experimental-Based Model Calibration via Multi-Point Temp ...
	1 Introduction
	2 RFCA on Ex-Vivo Swine Myocardium
	2.1 Experimental Setup and RFCA Protocol
	2.2 FBGs for Temperature Measurements
	2.2.1 Working Principle
	2.2.2 Sensors Positioning Within Tissue
	2.2.3 Hyperthermal Tissue Damage Estimation


	3 Computational Model
	3.1 Computational Domain and Myocardial Fiber Modeling
	3.2 Multiscale Electrical Model
	3.3 Heat Transfer Model
	3.4 Thermal Damage Modeling
	3.5 Thermal Dependency of Material Properties

	4 Results and Discussion
	4.1 Experimental Results
	4.2 Model Setup and Convergence Analysis
	4.3 Sensitivity Analysis and Model Calibration
	4.3.1 Electrical Model Tuning
	4.3.2 Fourier Thermal Model Tuning
	4.3.3 DPL Model Time Constant Tuning
	4.3.4 Thermal Anisotropy Tuning

	4.4 Model Accuracy and Damage Prediction

	5 Discussion
	5.1 Limitations

	5.2 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Geometrically Reduced Modelling of Pulsatile Flow in Perivascular Networks
	1 Introduction
	2 Materials and Methods
	2.1 PVS Geometries (3D and 1D)
	2.2 Stokes Flow in a Deforming Perivascular Domain
	2.3 Boundary Conditions, Initial Conditions and Periodicity
	2.4 Model Reduction Assumptions
	2.5 Reduced Model Equations
	2.6 Numerical Solution and Software
	2.7 Overview of Computational Models, Output Functionals and Model Error Measures

	3 Results
	3.1 Reduced Model Exactly Predicts Pressure-Driven Axisymmetric Flow Characteristics
	3.2 Reduced Model Accurately Captures Axisymmetric PVS Wall Pulsations
	3.3 Radial Geometry Variations Induce Small Model Errors
	3.4 Reduced Model is Robust with Respect to Wall Motion Amplitude and Frequency
	3.5 Reduced Model Captures Flow and Transport Characteristics Through Bifurcations
	3.6 Reduced Models Offer Orders of Magnitude Saving in Computational Resources

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Two Domains of Meandering Spiral Waves in a Modified Barkley Model
	1. Introduction
	2. Model
	3. Results
	3.1. Single Domain of Meandering Spiral Waves

	4. Second Domain of Meandering Spiral Waves
	5. Hysteresis Phenomenon
	6. Summary
	Data Availability Statement
	Author Contributions
	Funding
	References
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