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Editorial on the Research Topic
Deep learning to disease prediction on next-generation sequencing and
biomedical imaging data

Computational learning, especially deep learning and machine learning, has had a huge
impact. This Research Topic gathered articles on these two fundamental concepts which
show how deep learning and machine learning approaches have been applied to array-based
biomedical data such as next-generation sequencing (NGS) and medical imaging data.

Overall, our Research Topic published 11 articles of which 8 covered research on array-
based data, while the remaining 3 articles belonged to studies on biomedical imaging. Among
them, She et al. propose a joint mathematical model integrating a random forest classifier
and artificial neural network (ANN) for the possible diagnosis of the estrogen-dependent
inflammatory disease endometriosis. The method utilizes publicly available gene expression
datasets in the Gene Expression Omnibus (GEO) and estimated seven significant
differentially expressed genes (DEGs) (viz., COMT, NAA16, CCDC22, EIF3E, AHI1,
DMXL2, and CISD3) through the random forest classifier, while three of them (AHI1,
DMXL2, and CISD3) were novel signatures useful for the pathogenesis of endometriosis.
Related KEGG pathway and GENE Ontology analysis is also performed to obtain the
biological significance of the signatures. Niu et al. conduct a comprehensive bioinformatic
analysis to determine the potential diagnostic and prognostic genetic markers for gastric
cancer. In this study, several markers (COL1A1, COL5A2, P4HA3, and SPARC) yielded high
scores in the prognosis and diagnosis of gastric cancer, hence they are named as the
respective diagnosis and prognosis markers for the disease. A second study conducted by the
same team Niu et al. focuses on an extracellular matrix protein, prolyl 4-hydroxylase subunit
alpha 3 (P4HA3), and thus performed an extensive protein-protein interaction and
prognosis analysis in terms of correlating it with immune infiltration in the gastric
Cancer. Another study was conducted by Gu et al. in which an angiogenic factor-based
gene signature is identified that had a significant response in patients’ survival, disease
prognosis, and immunotherapy in non-small-cell lung cancer, a common malignancy. The
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corresponding model had good discrimination and calibration and
may predict the disease prognosis of treatment in the respective
clinical practice. Wei et al. provide a comprehensive bioinformatic
analysis to determine a potential prognostic genetic marker (viz.,
GNG7) for the lung adenocarcinoma that correlates with the
immune infiltrates. Wen et al. introduce a framework by
integrating several machine learning algorithms to determine
whether hub genes are useful for the diagnosis of ankylosing
spondylitis by validating several respective gene expression
datasets. A novel machine learning and optimization framework
termed as 3-factor penalized non-negative matrix factorization-
based multiple kernel learning with the soft margin hinge loss
(3PNMF-MKL) is proposed by Mallik et al. where two
consecutive steps, namely, multi-modal data integration and gene
signature discovery are conducted.

Essential genes are required for critical cellular activities in the
overall survival of many species. Rout et al. conduct an extensive
analysis to determine the discriminant features (genes) from the
stationary pattern of the nucleotide bases (A, T, G, C) and their
respective application towards the classification of the essential gene.

From the imaging point of view, a dual-input convolution neural
network (CNN) with the local interpretable model-agnostic
explanation (LIME) and Shapley additive explanation (SHAP) is
utilized to predict the discrete subtypes of brain tumors, viz., glioma,
meningioma, and pituitary through the Magnetic Resonance
Imaging (MRI) of brain (Gaur et al.). Another study was
conducted by Sharma et al. where the likelihood of a colorectal
cancer patient dying could be significantly decreased through the
early diagnosis as well as treatment of the pre-cancerous polyps.
Sharma et al. develop an ensemble-based deep CNN model that
helped to identify the polyps from a colonoscopy video with a higher
accuracy which outperformed the existing methodologies (viz.,
ResNet101, Xception, and GoogleNet). The projections of the
lateral chest radiograph (chest X-rays or, CXR) of children with
clinically suspected pulmonary tuberculosis (TB) yielded a
significant enhancement in the overall sensitivity of the enlarged
lymph nodes. A model-level ensemble was built through the fine-
tuned CNN and Vision Transformers (ViT) models by Rajaraman
et al. to detect the TB-consistent outcomes in the lateral CXRs, and
finally, a significantly better classification performance could be
obtained.

This Research Topic covers articles on developing frameworks/
tools/algorithms for handling next-generation sequencing (NGS)
array-based data as well as medical imaging data. It is expected that
future machine/deep learning software will be increasingly helpful
for biomedical and healthcare researchers to realize the utilization of
machine/deep learning and optimization to improve the overall
research quality and integrity in disease diagnosis and potential
therapeutic use.
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Detecting Tuberculosis-Consistent
Findings in Lateral Chest X-Rays
Using an Ensemble of CNNs and Vision
Transformers
Sivaramakrishnan Rajaraman1*, Ghada Zamzmi1, Les R. Folio2 and Sameer Antani 1

1Computational Health Research Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD,
United States, 2Moffitt Cancer Center, Tampa, FL, United States

Research on detecting Tuberculosis (TB) findings on chest radiographs (or Chest X-rays: CXR)
using convolutional neural networks (CNNs) has demonstrated superior performance due to
the emergence of publicly available, large-scale datasets with expert annotations and
availability of scalable computational resources. However, these studies use only the
frontal CXR projections, i.e., the posterior-anterior (PA), and the anterior-posterior (AP)
views for analysis and decision-making. Lateral CXRs which are heretofore not studied
help detect clinically suspected pulmonary TB, particularly in children. Further, Vision
Transformers (ViTs) with built-in self-attention mechanisms have recently emerged as a
viable alternative to the traditional CNNs. Although ViTs demonstrated notable
performance in several medical image analysis tasks, potential limitations exist in terms of
performance and computational efficiency, between the CNN and ViT models, necessitating a
comprehensive analysis to select appropriate models for the problem under study. This study
aims to detect TB-consistent findings in lateral CXRs by constructing an ensemble of the CNN
andViTmodels. Severalmodels are trained on lateral CXRdata extracted from two large public
collections to transfer modality-specific knowledge and fine-tune them for detecting findings
consistent with TB. We observed that the weighted averaging ensemble of the predictions of
CNN and ViT models using the optimal weights computed with the Sequential Least-Squares
Quadratic Programming method delivered significantly superior performance (MCC: 0.8136,
95% confidence intervals (CI): 0.7394, 0.8878, p < 0.05) compared to the individual models
and other ensembles. We also interpreted the decisions of CNN and ViT models using class-
selective relevance maps and attention maps, respectively, and combined them to highlight
the discriminative image regions contributing to the final output.We observed that (i) themodel
accuracy is not related to disease region of interest (ROI) localization and (ii) the bitwise-AND of
the heatmaps of the top-2-performing models delivered significantly superior ROI localization
performance in terms of mean average precision [mAP@(0.1 0.6) = 0.1820, 95% CI:
0.0771,0.2869, p < 0.05], compared to other individual models and ensembles. The code
is available at https://github.com/sivaramakrishnan-rajaraman/Ensemble-of-CNN-and-ViT-
for-TB-detection-in-lateral-CXR.

Keywords: chest radiographs, CNN, deep learning, tuberculosis classification and localization, vision transformers,
ensemble learning, significance analysis
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1 INTRODUCTION

Artificial intelligence (AI) methods, particularly deep learning
(DL)-based convolutional neural network (CNN) models, have
demonstrated remarkable performance in natural and medical
computer vision applications (Schmidhuber, 2015). Considering
chest-X-ray (CXR) analysis, CNN models have outperformed
conventional machine learning (ML) methods for semantic
segmentation, classification, and object detection, among other
tasks (Wang et al., 2017; Irvin et al., 2019; Bustos et al., 2020).

Research on detecting Tuberculosis (TB)-consistent findings
in CXRs using DL methods has demonstrated superior
performance due to the emergence of publicly available, large-
scale datasets with expert annotations and availability of scalable
computational resources (Jaeger et al., 2014; Lakhani and
Sundaram, 2017; Sivaramakrishnan et al., 2018; Pasa et al.,
2019; Rajaraman and Antani, 2020). However, these studies
only use the frontal CXR projections, i.e., the posterior-
anterior (PA), and the anterior-posterior (AP) views, for
analysis and decision-making. To the best of our knowledge,
lateral CXR projections have, heretofore, not been used for AI
detection approaches to pulmonary diseases before this work.
Lateral CXR projections of children with clinically suspected
pulmonary TB, in addition to the conventional frontal
projections, are critical and showed an increase in the
detection sensitivity of enlarged lymph nodes by 1.8% and
specificity by 2.5% (Swingler et al., 2005). Further, the World
Health Organization (WHO) recommends the use of lateral CXR
projections to identify mediastinal or hilar lymphadenopathy
(World Health Organization, 2016), especially in younger
children with primary TB where a bacteriological confirmation
might be challenging. As discussed in (Gaber et al., 2005), lateral
CXRs provide useful spatial diagnostic information on the
thoracic cage, pleura, lungs, pericardium, heart, mediastinum,
and upper abdomen and help identify lymphadenopathy in
children with primary TB (Gaber et al., 2005). Another study
(Herrera Diaz et al., 2020) discusses the current national
Canadian guidelines suggesting using lateral CXR projections
for TB screening upon admission to long-term care facilities.
These studies underscore the importance of using lateral CXR
projections as they carry useful information on disease
manifestation and progression; hence, this study aims to
explore these least studied types of CXR projection (the
lateral) and propose a novel approach for detecting TB-
consistent findings.

Recently, Vision Transformers (ViTs) (Zhai et al., 2021) with
built-in self-attention mechanisms have demonstrated
comparable performance to CNNs in natural and medical
visual recognition tasks, while requiring fewer computational
resources. Several studies (Liu and Yin, 2021; Shome et al.,
2021; Park et al., 2022) used ViTs to improve pulmonary
disease detection in frontal CXRs to detect manifestations
consistent with COVID-19 disease. Another study (Duong
et al., 2021) used a ViT model to detect TB-consistent findings
in frontal CXRs and obtained an accuracy of 97.72%. The
promising performance of ViT models in medical visual
recognition tasks is constrained by sparse data availability

(Zhai et al., 2021). Unlike CNN models, ViT models lack
intrinsic biases, i.e., the properties of translation equivariance,
which is the similarity in processing different image parts
regardless of their absolute position, and they do not consider
the relationship between the neighboring image pixels. Further,
the computational complexity of ViT models increases with the
input image resolution resulting in demand for a higher resource.
In contrast, CNN models have shown promising performance
even with limited data due to their inherent inductive bias
characteristics that help in convergence and generalization.
However, CNN models do not encode the relative position of
different image features and may require large receptive fields to
encode the combination of these features and capture long-range
dependencies in an input image. This leads to increased
convolutional kernel sizes and subsequently the computational
complexity (Alzubaidi et al., 2021). A potential solution could be
to exploit the advantages of both models, i.e., CNNs and ViTs
toward decision-making for the task under study.

Several ensemble methods including majority voting,
averaging, weighted averaging, and stacking, have been studied
for medical visual recognition tasks (Dietterich, 2000).
Considering CXR analysis, particularly TB detection, ensemble
methods have been widely used to improve performance in
semantic segmentation, classification, and object detection
tasks (Hogeweg et al., 2010; Ding et al., 2017; Islam et al.,
2017; Rajaraman et al., 2018a; Rajaraman and Antani, 2020).
However, to the best of our knowledge, we are not aware of
studies that perform an ensemble of ViTs or an ensemble of both
CNN and ViT models for disease detection, particularly detecting
TB-consistent findings using lateral CXRs. The main
contribution of this work is a systematic approach that
benefits from constructing ensembles of the best models from
both worlds (i.e., CNNs and ViTs) to detect TB-consistent
findings using lateral CXRs through reduced prediction
variance and improved performance.

The steps in this systematic study can be summarized as
follows: (i) First, ImageNet-pretrained CNN models, viz,
VGG-16 (Simonyan and Zisserman, 2015), DenseNet-121
(Huang et al., 2017), and EfficientNet-V2-B0 (Tan and Le,
2021) and the ImageNet-pretrained ViT models, viz, ViT-B/
16, ViT-B/32, ViT-L/16, and ViT-L/32 (Zhai et al., 2021) are
retrained on a combined selection of publicly available lateral
CXR collections (Rajpurkar et al., 2017; Bustos et al., 2020). This
step is performed to convert the weight layers specific to the
lateral CXR modality and learn to classify normal and abnormal
lateral CXRs; (ii) Next, the retrained models are used to transfer
the lateral CXR modality-specific knowledge to improve
performance in the related task of classifying lateral CXRs as
showing no abnormalities or other findings that are consistent
with TB; (iii)The predictions of the top-K (K = 2, 3, 5, 7) models
are combined using several ensemble methods such as majority
voting, simple averaging, and weighted averaging using the
optimal weights derived with the Sequential Least-Squares
Quadratic Programming (SLSQP) algorithm (Gupta and
Gupta, 2018). We construct a “model-level” ensemble of the
CNN and ViT models by flattening, concatenating the features
from their deepest layers, and adding the classification layers to
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classify the lateral CXRs to their respective categories; (iv) We
also interpret CNN and ViT model decisions through the use of
class-selective relevance maps (CRM) (Kim et al., 2019) and
attention maps, respectively, and construct an ensemble of
these heatmaps and attention maps using several ensemble
methods. Finally, we analyze and report statistical significance
in the results obtained using the individual models and their
ensembles using confidence intervals (CIs) and p values.

2 MATERIALS AND METHODS

2.1 Datasets
The following publicly available datasets are used in this study:

CheXpert CXR dataset: The authors in (Irvin et al., 2019)
released a collection of frontal and lateral CXR projections,
showing normal lungs, and other pulmonary abnormalities.
The dataset contains 224,316 CXRs collected from 65,240
patients at the Stanford University Hospital in California. The
CXRs are labeled using a natural language processing (NLP)-
based automatic labeler for the presence of 14 thoracic
abnormalities mentioned in radiological reports. The collection
includes 23,633 lateral CXRs manifesting various pulmonary
abnormalities and 4,717 lateral CXRs showing no
abnormalities. In this study, the lateral CXR projections are
split at the patient level into 90/10 proportions for the train
and test sets and are used during CXR modality-specific
pretraining.

PadChest CXR dataset: A collection of 160,000 frontal and
lateral CXRs and their associated radiological reports are released
by (Bustos et al., 2020). The collection includes normal and
abnormal CXRs collected from 67,000 patients at the San Juan
Hospital in Spain. The CXR images are automatically labeled for
174 radiographic findings, based on the Unified Medical
Language System (UMLS) terminology. The collection includes
33,454 lateral CXRs manifesting several pulmonary abnormalities
and 14,229 lateral CXRs showing no abnormalities. The abnormal
lateral CXR collection also includes 530 CXRs collected from
patients diagnosed with TB. The set of CXRs manifesting TB-
consistent findings and an equal number of lateral CXRs with no
abnormalities are used during the fine-tuning. The ground truth
annotations for the hold-out test set consisting of 53 images, and
showing findings that are consistent with TB, are provided by an
expert radiologist (with >30 years of experience). The radiologist
used the web-based VGG Image Annotator tool (VIA, Oxford,
England) (Dutta and Zisserman, 2019) to annotate the test
collection by manually setting boundary boxes for what is

believed to be TB-consistent findings. Table 1 shows the
datasets, the numbers of images, and their respective patient-
level train/test splits used in this study. The lateral CXR images
from the PadChest and CheXpert collections are resized to 224 ×
224 pixel dimensions to reduce computational overhead.

2.2 Classification Models
The following CNN and ViT Models are used in this study: (i)
VGG-16 (Simonyan and Zisserman, 2015); (ii) DenseNet-121
(Huang et al., 2017); (iii) EfficientNet-V2-B0 (Tan and Le, 2021);
(iv) ViT-Base (B)/16 (Zhai et al., 2021); (v) ViT-B/32 (Zhai et al.,
2021); (vi) ViT-Large (L)/16 (Zhai et al., 2021); and (vii) ViT-L/32
(Zhai et al., 2021). The CNN models are selected based on their
superior performance in CXR-based visual recognition tasks
(Wang et al., 2017; Rajaraman et al., 2018b; Irvin et al., 2019;
Rajaraman et al., 2020a). The numbers 16 and 32 in the ViT
models denote the size of input image patches. The length of the
input image patch sequence is inversely proportional to the
square of the patch size. Thus, the ViT models with smaller
patch sizes are computationally more expensive (Zhai et al.,
2021). Interested readers are referred to (Wang et al., 2017;
Rajaraman et al., 2018b; Irvin et al., 2019; Rajaraman et al.,
2020a; Zhai et al., 2021) for a detailed description of these
models’ architecture.

2.3 CXR Modality-Specific Pretraining,
Fine-Tuning, and Ensemble Learning
During CXR modality-specific pretraining, the CNN models are
instantiated with their ImageNet pretrained weights, truncated at
their optimal intermediate layers (Rajaraman et al., 2020b), and
appended with the following layers: (i) a zero-padding (ZP) layer,
(ii) a convolutional layer with 512 filters, each of size 3 × 3, (iii) a
global averaging pooling (GAP) layer; and (iv) a final dense layer
with two nodes and Softmax activation. The optimal intermediate
layers are identified from pilot analyses for the task under study.
The ViT models are instantiated with their pretrained weights
learned from a combined selection of ImageNet and
Imagenet21K datasets. These models are then truncated at the
output classification token layer and appended with a flattening
layer and a final dense layer with two nodes to output prediction
probabilities. Figure 1 shows the block diagram of models used in
CXR modality-specific pretraining and fine-tuning stages.

The CNN and ViT models are then retrained on a combined
selection of lateral CXRs from the CheXpert and PadChest
datasets (Table 1). This process is called CXR modality-
specific pretraining and it is performed to impart CXR

TABLE 1 | Datasets and their respective patient-level train/test splits. Data in parenthesis denotes the 90/10 train/test splits. A part of the lateral CXRs in the PadChest CXR
collection that show no abnormalities and those with TB-consistent manifestations are used for fine-tuning. The rest of the data from the PadChest and CheXpert lateral
CXR collections are used for CXR modality-specific pretraining.

Dataset CXR modality-specific pretraining Fine-tuning

Abnormal Normal TB Normal

PadChest 32923 (29631/3292) 13698 (12328/1370) 530 (477/53) 530 (477/53)
CheXpert 23633 (21270/2363) 4717 (4245/472) - -
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modality-specific knowledge to (i) coarsely learn the
characteristics of normal and abnormal lateral CXRs and (ii)
convert the weight layers learned from natural images to the input
CXR modality. The modality-specific pretrained CNN and ViT
models are then fine-tuned to classify the lateral CXRs as showing
no abnormalities or other findings that are consistent with TB.
The datasets are split at the patient level into 90% for training and
10% for testing during the CXRmodality-specific pretraining and
finetuning stages as shown in Table 1. We allocated 10% of the
training data for validation with a fixed seed. The training data is
augmented using affine transformations such as rotation (−5, +5),
horizontal flipping, width, and height shifting (−5, +5), and
normalized so the image pixel values lie in the range (0, 1).
During CXR modality-specific pretraining, the CNN and ViT
models are trained for 100 epochs, using a stochastic gradient

descent (SGD) optimizer with an initial learning rate of 1e-2 and
momentum of 0.9, to minimize the categorical cross-entropy loss.
We used callbacks to store model checkpoints and reduced the
learning rate whenever the validation loss ceased to decrease. The
best-performing model, delivering the least validation loss at the
end of the training epochs is stored to predict the hold-out test set.
During fine-tuning, the CXRmodality-specific pretrained models
are finetuned using the SGD optimizer with an initial learning
rate of 1e-4 and momentum of 0.9. We used callbacks for early
stopping and learning rate reduction. The best-performing
model, delivering the least validation loss at the end of the
training epochs is stored to predict the hold-out test set.

The top-K (K = 2, 3, 5, 7) fine-tuned models that deliver
superior performance with the hold-out test set are used to
construct ensembles. We constructed “prediction-level” and

FIGURE 1 | A systematic approach of training the models during CXR modality-specific pretraining and fine-tuning stages. (A) ViTs and (B) CNNs.
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“model-level” ensembles. At the prediction level, we used several
ensemble strategies such as majority voting, simple averaging,
and SLSQP-based weighted averaging to combine the top-K
model predictions. For SLSQP-based weighted averaging, we
computed the optimal weights by minimizing the total
logarithmic loss using the SLSQP algorithm (Gupta and
Gupta, 2018) to help convergence. For the model-level
ensemble, the top-K models are instantiated with their fine-
tuned weights. The ViT models are truncated at the flatten
layer. The CNN models are truncated at their deepest
convolutional layer and added with a flatten layer. The output
from the flattened layers of the ViT and CNN models are then

concatenated and appended with the final dense layer to output
class probabilities. The weights of trainable layers are frozen and
only the final dense layer is trained to output probabilities of
classifying the lateral CXRs into normal or TB categories. The
model-level ensemble is trained using an SGD optimizer and an
initial learning rate of 1e-5. Callbacks are used to store model
checkpoints and reduce the learning rate whenever the validation
performance did not improve. The best-performing model with
the least validation loss is stored to predict the hold-out test set.
Figure 2 illustrates the construction of model-level ensembles
using the fine-tuned CNN and ViT models. The performance of
the models during CXR modality-specific pretraining, fine-
tuning, and ensemble learning are evaluated using the
following metrics: (i) accuracy; (ii) area under the receiver-
operating-characteristic curve (AUROC); (iii) area under the
precision-recall curve (AUPRC); (iv) precision; (v) recall; (vi)
F-score; (vii) Matthews correlation coefficient (MCC), (viii)
Diagnostic Odds Ratio (DOR), and (ix) Cohen’s Kappa. These
metrics are expressed in Eqs 1–11.

Accuracy � TP + TN

TP + TN + FP + FN
(1)

Recall � TP

TP + FN
(2)

Precision � TP

TP + FP
(3)

F − score � 2 ×
Precision × Recall

Precision + Recall
(4)

MCC � TP × TN − FP × FN

((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2 (5)

DOR � (TP × TN)
(FP × FN) (6)

Po � (TP + TN)
(TP + FP + FN + TN) (7)

Ptrue � (TP + FN)(TP + FP)
(TP + FP + FN + TN)2 (8)

Pfalse � (FP + TN)(FN + TN)
(TP + FP + FN + TN)2 (9)
Pe � Ptrue + Pfalse (10)

Cohen’s Kappa � (Po − Pe)
1 − Pe

(11)

Here, TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative values, respectively.
The models are trained and evaluated using Tensorflow Keras
version 2.6.2 on a Linux system with NVIDIA GeForce GTX 1080
Ti GPU, and CUDA dependencies for GPU acceleration.

2.4 Model Explainability
DL models are often criticized for their “black box” behavior,
i.e., lack of explanations toward their predictions. This lack of
explainability could be attributed to (i) their architectural
depth that may not allow decomposability into explainable
components and (ii) the presence of non-linear layers that
perform complex data transformations and result in non-
deterministic behavior that adversely impacts clinical

FIGURE 2 | A model-level ensemble constructed using fine-tuned CNN
and ViT models.
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interpretations. Methods have been proposed (Selvaraju et al.,
2017) to explain model predictions by highlighting
discriminative parts of the image that causes the model to
classify the images to their respective categories. In this study,
we used class-selective relevance maps (CRM) (Kim et al.,
2019) to discriminate image regions used by the fine-tuned
CNN models to categorize the CXRs as showing TB-consistent
findings. It has been reported that the CRM-based
visualization (Kim et al., 2019) outperformed the
conventional gradient-based class activation maps (Selvaraju
et al., 2017) in interpreting model predictions.

We computed the attention maps from the fine-tuned ViT
models using the attention rollout method discussed in (Zhai
et al., 2021). The steps involved in computing the attention map
consists of (i) getting the attention weights from each transformer
block, (ii) averaging the attention weights across all the heads, (iii)
adding an identity matrix to the attention matrix to account for
residual connections, (iv) re-normalizing the weights and
recursively multiplying the weight matrices to mix the
attention across tokens through all the layers, and (v)
computing the attention from the output token to the input
space. The bounding box coordinates of the heatmaps and
attention maps are computed as follows: (i) A difference
binary image is generated using the original input lateral CXR
image and the heatmap/attention map-overlaid image; (ii) the
polygonal coordinates of the connected components in the binary
image are measured that gives the coordinates of the vertices and
that of the line segments making up the sides of the polygon, and
(iii) a binary mask is generated from the polygon and the
coordinates are stored for further analysis. The delineated
ROIs are compared against the ground truth annotations
provided by the radiologist.

For evaluating localization performance, we used several
ensemble methods, such as simple averaging, SLSQP-based
weighted averaging, and a bitwise-AND of the heatmaps and
attention maps of top-K performing models. In simple averaging,
the heatmaps and attention maps obtained respectively using the
CNN and ViT models are averaged to produce the final heatmap,
highlighting discriminative ROIs toward TB detection. In SLSQP-
based weighted averaging, the optimal weights obtained using the
SLSQP method are used while averaging the heatmaps and
attention maps. In a bitwise-AND ensemble, the heatmaps and
attention maps are binarized and bitwise-ANDed. The
corresponding pixel in the final heatmap is activated only if
there is complete agreement among activations in the candidate
heatmaps and attention maps. The ROI localization performance
of the constituent models and their ensembles is measured in
terms of the mean average precision (mAP) metric. The mAP is
calculated by taking the mean precision over 11 IoU threshold
values within the range [0.1, 0.6] at equal intervals of 0.05
[denoted as mAP@[0.1, 0.6]] (GTUA et al., 2014).

2.5 Statistical Significance Analysis
It has been reported in (Diong et al., 2018) that 90–96% of the
studies published in scientific journals do not measure statistical
significance in the reported results, casting doubt on algorithm
reliability and confidence. In this study, we analyzed statistical

significance using the 95% confidence intervals (CIs) for theMCC
metric measured as the Clopper–Pearson binomial CI interval.
For RoI localization, we measured the 95% CIs measured as the
Clopper–Pearson binomial CI interval for the mAP metric
achieved by the individual models and their ensembles to
report statistical significance. The StatsModels and SciPy
Python packages are used in this analysis. We obtained the p-
value from the CIs using the methods reported in (Altman and
Bland, 2011). Considering the upper and lower limits of the 95%
CI as u and l respectively, the standard error (SE) is measured as
given in Eq. 12.

SE � (u − l)(2 × 1.96) (12)
The test statistic z is given by Eq. 13

z � Diff

SE
(13)

Here, Diff denotes the estimated differences between the
models for the measured metric.

The p-value is then calculated as given in Eq 14.

p � exp( − 0.717 × z − 0.416 × z2) (14)

3 RESULTS

3.1 CXR Modality-Specific Pretraining and
Fine-Tuning
Recall that the CNN and ViT models are instantiated with their
ImageNet-pretrained weights and retrained on a combined
selection of lateral CXRs from the CheXpert and PadChest
datasets. The test performance achieved during CXR modality-
specific pretraining is shown in Table 2. From Table 2, we
observed the following: (i) The training time for CNN models
is comparatively small than ViT models. The EfficientNet-V2-B0
model took the least while the ViT-L/16model took themost time
for training and convergence. (ii) The VGG-16 model
demonstrated superior performance in terms of accuracy,
F-score, MCC, DOR, Kappa, AUROC, and AUPRC metrics.
The EfficientNet-V2-B0 model demonstrated superior recall
and ViT-B/32 demonstrated superior precision compared to
other models. However, considering a balanced measure of
precision and recall, as provided by the MCC metric, the
VGG-16 model demonstrated superior performance compared
to other models. (iii) We observed that the 95% CIs obtained for
the MCC metric using the VGG-16 model are not significantly
different (p > 0.05) from other models. Due to this lack of
statistical significance, all modality-specific pretrained models
are fine-tuned to evaluate performance in the TB classification
task. Table 3 shows the performance achieved by the fine-tuned
models that classify the lateral CXRs as showing no abnormalities
or other abnormalities that are consistent with TB.

The following are observed from Table 3: (i) The CNNmodels
took comparatively lesser time to converge than the ViT models.
This observation is analogous to CXR modality-specific
pretraining. (ii) The DenseNet-121 model demonstrated
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superior performance in terms of accuracy, precision, F-score,
MCC, DOR, Kappa, AUROC, and AUPRC metrics. The ViT-L/
16 model demonstrated superior recall compared to other

models. However, considering the MCC metric, the DenseNet-
121 model demonstrated superior performance compared to
other models. (iii) The 95% CIs for the MCC metric achieved

TABLE 2 | Test performance achieved by the CNN and ViT models during lateral CXR modality-specific pretraining. The values in parenthesis denote the 95% CI measured
as the Clopper–Pearson binomial interval for the MCC metric. Bold numerical values denote superior performance.

Model Accuracy Recall Precision F MCC DOR Kappa AUROC AUPRC Training
time

(seconds)

ViT-B/16 0.7747 0.7988 0.8913 0.8425 0.4596 (0.3647,0.5545) 9 0.4512 0.8276 0.9334 17582.14
ViT-B/32 0.7394 0.7151 0.9218 0.8054 0.4621 (0.3671,0.5571) 11 0.4293 0.8375 0.9375 10739.29
ViT-L/16 0.7678 0.7846 0.8946 0.8360 0.4555 (0.3606,0.5504) 9 0.4442 0.8276 0.9332 54949.73
ViT-L/32 0.7872 0.8324 0.8792 0.8552 0.4584 (0.3635,0.5533) 9 0.4560 0.8364 0.9373 28797.83
EfficientNet-V2-B0 0.7794 0.8391 0.8645 0.8516 0.4231 (0.3290,0.5172) 8 0.4223 0.8152 0.9281 2296.54
VGG-16 0.8009 0.8361 0.8931 0.8637 0.4998 (0.4046,0.5950) 11 0.4960 0.8526 0.9441 9316.52
DenseNet-121 0.7886 0.8230 0.8885 0.8545 0.4747 (0.3796,0.5698) 10 0.4701 0.8401 0.9393 7281.22

TABLE 3 | Performance achieved by the fine-tuned models toward the TB classification task. The values in parenthesis denote the 95% CI measured as the
Clopper–Pearson binomial interval for the MCC metric. Bold numerical values denote superior performance.

Model Accuracy Recall Precision F MCC DOR Kappa AUROC AUPRC Training
time

(seconds)

ViT-B/16 0.7642 0.6792 0.8182 0.7422 0.5361 (0.4411,0.6311) 12 0.5283 0.8548 0.8668 828.30
ViT-B/32 0.8302 0.7547 0.8889 0.8163 0.6680 (0.5783,0.7577) 30 0.6604 0.9227 0.9351 338.46
ViT-L/16 0.8302 0.8302 0.8302 0.8302 0.6604 (0.5702,0.7506) 24 0.6604 0.8943 0.9084 1539.06
ViT-L/32 0.7736 0.7170 0.8085 0.7600 0.5507 (0.4560,0.6454) 12 0.5472 0.8786 0.8911 574.24
EfficientNet-V2-B0 0.8019 0.6981 0.8810 0.77900 0.6172 (0.5246,0.7098) 22 0.6038 0.8896 0.9025 114.89
VGG-16 0.8208 0.7358 0.8864 0.8041 0.6510 (0.5602,0.7418) 27 0.6415 0.9110 0.9219 267.40
DenseNet-121 0.8585 0.8113 0.8958 0.8515 0.7202 (0.6347,0.8057) 41 0.7170 0.9288 0.9423 313.44

FIGURE 3 | Performance curves achieved by the models used in this study. CXR modality-specific pretraining (VGG-16): (A) AUROC; (B) AUPRC; (C) Confusion
matrix. Fine-tuning (DenseNet-121): (D) AUROC; (E) AUPRC, and (F) Confusion matrix.
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by the DenseNet-121 model demonstrated a tighter error margin,
hence higher precision, compared to other models. We observed
that the MCC metric achieved by the DenseNet-121 model is
significantly superior to ViT-B/16 (p = 0.0001), ViT-L/32 (p =
0.0002), and EfficientNet-V2-B0 (p = 0.0183) models. We also
observed that the MCC metric achieved by the VGG-16 model is
significantly superior to the ViT-B/16 (p = 0.0133) and ViT-L/32
(p = 0.0304) models. These observations underscore the fact that
the CNN models delivered superior classification performance
compared to the ViT models. Figure 3 shows the AUROC,
AUPRC, and confusion matrices achieved by the VGG-16 and
DenseNet-121 models during the CXR modality-specific
pretraining and fine-tuning stages, respectively. A no-skill
classifier fails to discriminate between the classes and would
predict a random or a constant class in all circumstances.

The ensemble of the top-K models (K = 2, 3, 5, 7) is
constructed to evaluate any improvement in classification
performance during fine-tuning. Table 4 shows the

performance achieved using various ensemble methods
discussed in this study. From Table 4, we observe that the
performance obtained through SLSQP-based weighted
averaging is comparatively higher than other ensembles and
their constituent models. This demonstrates that, unlike using
equal weights, the use of optimal weights to combine the
predictions of constituent models improved classification
performance. (ii) The SLSQP-based weighted averaging
[optimal weights: (0.65, 0.35)] of the predictions of the top-2
fine-tuned models, viz. DenseNet-121 and ViT-B/32 delivered
superior performance in terms of accuracy, Kappa, and
significantly superior performance in terms of the MCC metric
(0.8136, 95% CI: (0.7394, 0.8878)) compared to its constituent
models, viz. DenseNet-121 (p = 0.0137), and ViT-B/32 (p =
0.0002). This ensemble also demonstrated significantly
superior performance in terms of MCC metric compared to
other models, viz. VGG-16 (p = 0.0001), EfficientNet-V2-B0
(p = 0.0001), ViT-B/16 (p = 0.0001), ViT-L/16 (p = 0.0001),

TABLE 4 | Test performance obtained using prediction-level and model-level ensembles. The values in parenthesis denote 95% CI for the MCC metric measured as the
Clopper-Pearson binomial interval. Bold numerical values denote superior performance.

Ensemble Models Accuracy Recall Precision F-score MCC DOR Kappa AUROC AUPRC Training
time

(seconds)

Majority voting Top-2 0.8774 0.8868 0.8704 0.8785 0.7549 (0.6730,0.8368) 51 0.7547 0.8774 0.9069 NA
Top-3 0.8679 0.8302 0.898 0.8628 0.738 (0.6542,0.8218) 47 0.7358 0.8679 0.9065 NA
Top-5 0.8585 0.7925 0.913 0.8485 0.7233 (0.6381,0.8085) 47 0.717 0.8585 0.9046 NA
Top-7 0.8585 0.7925 0.913 0.8485 0.7233 (0.6381,0.8085) 47 0.717 0.8585 0.9046 NA

Simple averaging Top-2 0.8679 0.8113 0.9149 0.86 0.7406 (0.6571,0.8241) 53 0.7358 0.9388 0.9525 NA
Top-3 0.8491 0.8113 0.8776 0.8431 0.7001 (0.6128,0.7874) 34 0.6981 0.9377 0.9515 NA
Top-5 0.8679 0.8113 0.9149 0.86 0.7406 (0.6571,0.8241) 53 0.7358 0.937 0.949 NA
Top-7 0.8396 0.7925 0.875 0.8317 0.6823 (0.5936,0.7710) 30 0.6792 0.9313 0.9441 NA

SLSQP-weighted averaging Top-2 0.9057 0.8679 0.9388 0.902 0.8136 (0.7394,0.8878) 110 0.8113 0.9409 0.9542 NA
Top-3 0.9057 0.8868 0.9216 0.9039 0.8119 (0.7375,0.8863) 96 0.8113 0.9352 0.9492 NA
Top-5 0.8962 0.8491 0.9375 0.8911 0.796 (0.7192,0.8728) 94 0.7925 0.9388 0.952 NA
Top-7 0.9057 0.8679 0.9388 0.902 0.8136 (0.7394,0.8878) 110 0.8113 0.937 0.9503 NA

Model-level Top-2 0.8962 0.8113 0.9773 0.8866 0.8041 (0.7285,0.8797) 223 0.7925 0.9491 0.9587 91.4263
Top-3 0.8679 0.7736 0.9535 0.8542 0.7493 (0.6667,0.8319) 87 0.7358 0.9274 0.9433 418.05
Top-5 0.8679 0.7736 0.9535 0.8542 0.7493 (0.6667,0.8319) 87 0.7358 0.9427 0.9525 555.088
Top-7 0.8585 0.7547 0.9524 0.8421 0.7329 (0.6486,0.8172) 79 0.717 0.9366 0.9493 758.957

FIGURE 4 | Performance curves achieved using SLSQP-based weighted averaging of the predictions of top-2 fine-tuned models, i.e., DenseNet-121, and ViT-B/
32 models. (A) AUROC; (B) Confusion matrix, and (C) AUPRC.
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and ViT-L/32 (p = 0.0001) models. The model-level ensemble of
the top-2 fine-tuned models, i.e., DenseNet-121 and ViT-B/32
demonstrated superior values for the DOR metric. Figure 4
shows the AUROC, AUPRC, and confusion matrices achieved
by the SLSQP-based weighted averaging of the predictions of the
top-2 fine-tuned models.

3.2 Evaluating TB-Consistent ROI
Localization Performance
As described in Section 2.4, we use CRMs and attention maps to
interpret the predictions of the CNN and ViT models,
respectively. The delineated ROIs are compared against the
ground truth annotations provided by the radiologist. Figure 5
shows a sample lateral CXR with expert-annotated ROI

consistent with TB and the discriminative ROIs highlighted by
the fine-tuned CNN and ViT models discussed in this study.
Table 5 shows the TB-consistent ROI localization performance in
terms of mAP metric, achieved by the individual models.

Further, we constructed ensembles of the heatmaps of the top-
2 models from Table 5, viz. VGG-16 and DenseNet-121 models
using simple averaging, SLSQP-based weighted averaging, and
bitwise-AND techniques. Figure 6 shows the box plots for the
range of mAP values achieved by the individual models and other
ensembles. Table 6 shows the TB-consistent ROI localization
performance achieved in terms of the mAP metric by the model
ensembles.

From Figure 6, we observe that the maximum, mean,
median, the total range, and the inter-quartile range of the
mAP values achieved with the Bitwise-AND ensemble is
significantly higher (p < 0.05) than those obtained with the
ViT models and considerably higher than the averaging and
weighted averaging ensembles. From Table 6, we observe that
all ensemble methods demonstrated superior values for the
mAP metric compared to the individual models (Table 5). The
bitwise-AND operation resulted in superior values for the
mAP metric compared to the constituent models, other
models, and ensembles. The mAP metric achieved by the
bitwise-AND ensemble is observed to be significantly
superior to ViT-B/16, ViT-L/16, ViT-L/32 (p = 0.0199),
ViT-B/32 (p = 0.0193), and EfficientNet-V2-B0 (p = 0.0014)
models. This performance is followed by the SLSQP-based
weighted averaging ensemble that demonstrated significantly

FIGURE 5 | TB-consistent ROI localization achieved using the fine-tuned models. (A) An instance of lateral CXR with expert-annotated ROI consistent with TB
(shown with a red bounding box); (B) VGG-16; (C) DenseNet-121; (D) EfficientNet-V2-B0; (E) ViT-B/16; (F) ViT-B/32; (G) ViT-L/16, and (H) ViT-L/32.

TABLE 5 | TB-consistent ROI localization performance achieved by the fine-tuned
CNN and ViT models. The values in parenthesis denote the 95% CI measured
as the Clopper-Pearson binomial interval for the mAP metric. Bold numerical
values denote superior performance.

Model mAP@[0.1, 0.6]

ViT-B/16 0.0573 (0,0.1205)
ViT-B/32 0.0567 (0,0.1196)
ViT-L/16 0.0573 (0,0.1205)
ViT-L/32 0.0573 (0,0.1205)
EfficientNet-V2-B0 0.0690 (0.0001,0.1379)
VGG-16 0.1283 (0.0374,0.2192)
DenseNet-121 0.1052 (0.0218,0.1886)
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superior localization performance compared to ViT-B/16,
ViT-L/16, ViT-L/32 (p = 0.0264), and EfficientNet-V2-B0
(p = 0.0029) models. Figure 7 shows a Bitwise-AND
ensemble of the heatmaps produced by the top-2 models,
viz. VGG-16 and DenseNet-121 models, for instances of test
images.

4 DISCUSSION

Following findings from our pilot studies which are consistent
with prior observations [34], the ImageNet-pretrained CNNs
with their total depth and the ImageNet-pretrained ViT
models demonstrated sub-optimal performance toward the
task of TB detection. Therefore, we truncated the
ImageNet-pretrained CNN models at their optimal
intermediate layers, appended them with the classification
layers. Further, instead of using ImageNet weights learned
from stock photographic images we trained the CNN and
ViT models on a large-scale collection of lateral CXR data.
These CXR modality-specific pretrained weights serve as a
promising initialization to promote modality-specific
knowledge transfer and improved adaptation and

performance of the models in the relevant task of detecting
TB-consistent manifestations.

From our findings and evaluation results, we observe that
the ViT models demonstrate sub-optimal classification and
ROI localization performance and significantly higher training
time, compared to the CNN-based DL models. These findings
confirm our suspicion that these may be due to the lack of
intrinsic inductive biases. On the other hand, CNN models
show superior performance at lower training times even with
our limited dataset. Even though CheXpert and PadChest data
sets have a cumulative of over 384,316 CXRs only 76,033
lateral CXRs are found in them with only 530 lateral CXRs
(0.13% of the total number of lateral CXRs) exhibiting
manifestations consistent with TB. This could be a
significant factor in the sub-optimal performance exhibited
by the ViT models. We improved both classification and ROI
localization performance, qualitatively and quantitatively,
using CXR modality-specific training, fine-tuning, and
constructing model ensembles. This performance
improvement with ensemble learning is consistent with the
literature (He et al., 2016; Rajaraman et al., 2018a; Rajaraman
et al., 2019).

We also show that classification performance is not indicative
of reliable disease prediction. For example, even though the
average classification performance of ViT models is
approximately 80%, their average MAP score is only 5.7%
which is evident from the visualization studies, examples of
which are shown in Figures 5E–H. This underscores the need
for visualization of localized disease prediction regions to verify
model credibility.

Regarding the use of ensembles, we find in the literature a
frequent use of methods such as majority voting, simple
averaging, and weighted averaging with equal eights.
However, we show that using optimized weighting using

FIGURE 6 | Box plots showing the range of mAP values obtained by the individual models and other ensembles.

TABLE 6 | TB-consistent ROI localization performance achieved by the model
ensembles. The values in parenthesis denote the 95% CI measured as the
exact Clopper-Pearson binomial interval for themAPmetric. Bold numerical values
denote superior performance.

Model mAP@[0.1, 0.6]

Simple averaging 0.1332 (0.0408,0.2256)
SLSQP-weighted averaging 0.1742 (0.0711,0.2773)
Bitwise-AND 0.1820 (0.0771,0.2869)
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specialized techniques, such as SLSQP, result in significantly
superior classification performance, e.g., the SLSQP accuracy
achieved with the top-2 models is 0.9057 compared to 0.8679
for simple averaging (p = 0.0001). Similar behavior is observed
for localization performance as well.

Our study has the following limitations: (i) Lateral CXRs
help confirm abnormal opacification spatial location,
however, have more overlapping structures (e.g., shoulders
including scapula and humeral heads), decreasing conspicuity
relative to frontal projections. Given that there are more
frontal projection CXRs available with TB manifestations,
we provide an avenue to explore the combination including
lateral images that we believe will improve performance. (ii)
There are a very small number of lateral CXRs with TB-
consistent findings available for fine-tuning the models which
have, very likely, affected the sub-par performance of ViT
models as they demand more training data and training time
due to their functional characteristics. We expect that the
performance of the models would scale with increased data
and appropriate empowerment of computational resources.
(iii) There is also an imbalance in the number of left or right
lateral CXRs in an already small dataset of 530 TB disease-
positive images. On the positive side, through augmentation,
ensemble learning, and optimized weighting of model
predictions, we were able to achieve a lateral-view agnostic

performance that was significantly high. However, it is
important to consider that the anatomical view presented
in a left lateral image is different from the one presented in the
other. For clinical diagnostic or screening applications, it
would be necessary to train the classifier on these
differences so that a reliable and robust interpretation of
the prediction can be obtained. Further, research is
ongoing in building combination model architectures like
ConViT (d’Ascoli et al., 2021) that combines characteristics
of the CNN and ViT architectures toward improving
performance. Such models should be studied in future studies.
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Endometriosis (EM), an estrogen-dependent inflammatory disease with unknown etiology,
affects thousands of childbearing-age couples, and its early diagnosis is still very difficult.
With the rapid development of sequencing technology in recent years, the accumulation of
many sequencing data makes it possible to screen important diagnostic biomarkers from
some EM-related genes. In this study, we utilized public datasets in the Gene Expression
Omnibus (GEO) and Array-Express database and identified seven important differentially
expressed genes (DEGs) (COMT, NAA16, CCDC22, EIF3E, AHI1, DMXL2, and CISD3)
through the random forest classifier. Among these DEGs, AHI1, DMXL2, and CISD3 have
never been reported to be associated with the pathogenesis of EMs. Our study indicated
that these three genes might participate in the pathogenesis of EMs through oxidative
stress, epithelial–mesenchymal transition (EMT) with the activation of the Notch signaling
pathway, and mitochondrial homeostasis, respectively. Then, we put these seven DEGs
into an artificial neural network to construct a novel diagnostic model for EMs and verified
its diagnostic efficacy in two public datasets. Furthermore, these seven DEGs were
included in 15 hub genes identified from the constructed protein–protein interaction
(PPI) network, which confirmed the reliability of the diagnostic model. We hope the
diagnostic model can provide novel sights into the understanding of the pathogenesis
of EMs and contribute to the clinical diagnosis and treatment of EMs.

Keywords: endometriosis, random forest, artificial neural network, diagnostic model, diagnostic efficacy

INTRODUCTION

Endometriosis (EM) is an estrogen-dependent inflammatory disorder, which afflicts about 10%–15%
of women of childbearing age (Parasar et al., 2017). It is defined as the presence of endometrial-like
tissue outside of the uterine cavity, which can lead to chronic pelvic pain, and infertility (Drabble
et al., 2021). However, the true prevalence of EMs is uncertain as visual laparoscopy is the gold
standard for the diagnosis of EMs (Taylor et al., 2018). At the moment, Sampson’s theory of
menstrual blood reflux observed in most patients is commonly accepted in the pathophysiology of
EMs, while only a small portion will develop into this disease (Burney and Giudice, 2012). However,
it could only explain a portion of EMs. Therefore, it’s necessary to further investigate a
comprehensive understanding of the pathogenesis of EMs and find effective molecular
biomarkers to improve the early diagnosis and treatment of EMs.

DNA microarray technology is a high-throughput detection method that can be used to provide
gene expression profiles and thus can help to screen disease-related genes and biomarkers (Yoo et al.,
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2009). With the rapid development of DNA microarray
technology, a large amount of high-throughput data has
accumulated available on public platforms. However, how to
make effective use of these data to screen critical disease-related
genes for the diagnosis of EMs is a great challenge. At present,
random forest and neural network are widely applied for disease
prediction (Yigit and Isik, 2018; Khan et al., 2019; Shaia et al.,
2019; Kugunavar and Prabhakar, 2021). Among them, random
forest algorithm can perform random sampling to screen the
target variables (Schonlau and Zou, 2020) and has high predicted
accuracy (Byeon, 2019; Chen et al., 2020). Furthermore, the
artificial neural network can be used to evaluate the accuracy
of predicted model with divided training and validation datasets
(Curchoe et al., 2020). Currently, there are some useful
visualization and analysis tools for neural networks, such as
NeuralNetTools (Beck, 2018), spiking neuronal networks
(Galindo et al., 2020), and Net2Vis (Bauerle et al., 2021).

Therefore, the combination of random forest and artificial neural
network would have better classification performance and more
meaningful selected features (Kong and Yu, 2018; Tian et al.,
2020). In this study, we firstly identified some differentially
expressed genes (DEGs) between EMs and normal samples from
public datasets in the Gene Expression Omnibus (GEO) database.
Through the random forest classifier, we screened these DEGs and
obtained seven important DEGs (COMT, NAA16, CCDC22, EIF3E,
AHI1, DMXL2, and CISD3). Then, we put these seven DEGs into an
artificial neural network to construct a novel diagnostic model and
verified its diagnostic efficacy in two public datasets (See the detailed
process in Figure 1). We hope this diagnostic model can provide
novel sights into the pathogenesis of EMs and improve the early
diagnosis and treatment of EMs.

MATERIALS AND METHODS

Data Download and Processing
The GSE51981, GSE6364, and GSE7307 datasets were
downloaded by the R package “GEOquery” (2.60.0) (Davis
and Meltzer, 2007) to obtain the expression profile data. Then,
the E-MTAB-694 dataset was downloaded through the Array-
Express database. The related annotation information
including the platforms, the probes, and ID conversion was
obtained from the GEO database. When multiple probes
corresponded to one gene symbol, the average expression
level of multiple probes was used as the expression level of
the corresponding gene. ID conversion was conducted with the
R package “org.Hs.eg.db” (v3.13.0). Furthermore, the
“removeBatchEffect” function in the R package “LIMMA”
(v3.48.3) (Ritchie et al., 2015) was used to adjust batch
effects, which were evaluated by principal component
analysis (PCA).

Differential Expression and Functional
Enrichment Analysis
Differential expression analysis was conducted on 77 EM
disease and 71 normal samples of the GSE51981 dataset

through the Bayesian analysis of the R package “LIMMA”.
The log2FoldChange > 1.5 and p-value < 0.05 were set as the
threshold of DEGs. The R package “pheatmap” (v1.0.12) was
used to perform clustering analysis of DEGs for the heatmap.
To explore the biological significance of these DEGs in the
pathogenesis of EMs, GO and KEGG pathway enrichment
analyses were performed through the R package
“clusterProfiler” (v4.1.3) (Wu et al., 2021) to identify
significantly enriched GO terms and significantly enriched
KEGG pathways with the threshold of p-value < 0.05.

The Construction of Hub Gene Network
The STRING (v11.5) (https://string-db.org/cgi/input.pl)
(Szklarczyk et al., 2021) has been widely applied to construct a
protein–protein interaction (PPI) network. Based on those DEGs,
the “Multiple proteins” option was selected. In the PPI network,
the minimum required interaction score was set as “high
confidence (0.700)”. Then, the cytoHubba (Chin et al., 2014)
was employed to identify hub genes. The eccentricity algorithm
was selected and 15 top-ranked genes were chosen as hub genes.
Finally, the hub gene network was visualized with Cytoscape (v3.
9.0) (Demchak et al., 2014).

Screening Differentially Expressed Genes
With the Random Forest Model
The R package “randomForest” (v4.6.14) (Liaw et al., 2014)
was used to construct a random forest model to screen DEGs.
The number of random seeds and decision trees was set as
1–5,000 and 3,000 in the random forest classifier originally,
respectively. Finally, the number of random seeds and decision
trees was set as 4,543 and 219, respectively, which represented
higher accuracy of the constructed model and stable model
error. The Gini coefficient method was used to obtain the
dimensional importance value of all variables from the
constructed random forest model. Those DEGs with an
importance value greater than 4 were screened as important
genes of EMs for subsequent model construction and
verification. The R package “pheatmap” was used to
perform clustering analysis of the screened important genes
for the heatmap in this dataset.

The Construction and Verification of the
Artificial Neural Network Model
The GSE6364 dataset downloaded through the R package
“GEOquery” was selected as the training set for the
construction of the artificial neural network model. After
the data normalization, the R package “neuralnet” (v1.44.2)
(Fritsch and Guenther, 2016) was used to construct an
artificial neural network model of those important
variables. The number of hidden neuron layers should be
two-thirds of the number of the input layer plus two-thirds of
the number of the output layer. Therefore, six hidden layers
were set as the model parameter to construct a classification
model of EMs through the predicted gene weight information.
The R packages “pROC” (v1.18.0) (Robin et al., 2011) and
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“ggplot2” (v3.3.5) (Gómez-Rubio, 2017) were used to
calculate the verification results of AUC classification
performance and draw the ROC curve. Another two
datasets E-MTAB-694 and GSE7307 were used to verify the
accuracy of the constructed neural network model for the

diagnosis of EMs. The R package “pROC” was used to draw
ROC curves for each dataset, and the AUC value was
calculated to verify the classification efficiency. Meanwhile,
the sensitivity and specificity in distinguishing the disease
samples from normal samples were calculated.

FIGURE 1 | Flow chart.

FIGURE 2 | Differential expression analysis. (A) Volcano plot of the result of differential expression analysis. The x-axis is log2 (fold change) and the y-axis is −log10
(adjusted p-value). The red dots represent significant upregulated expressed genes. The green dots represent significant downregulated expressed genes. The gray
dots represent genes expressed with no change. (B) Heatmap of these DEGs. The colors in the graph from red to pink indicate the change from high to low expression
levels. On the upper part of the heatmap, the blue band indicates the disease samples and the red band indicates the normal samples.
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RESULTS

Data Processing and Differential
Expression Analysis
The R package “GEOquery” was used to download the GEO
dataset GSE51981 (77 EM disease samples and 71 normal
samples) and obtain detailed information. We used the
“removeBatchEffect” function in the R package “LIMMA” to
adjust batch effects and then conducted principal component
analysis (PCA) analysis to evaluate the performance of batch
effect adjustment. PCA results (Supplementary Figure S1)
indicated that the disease samples were mixed with the normal
samples, which suggested the challenge of diagnosing. We also
used the R package “LIMMA” to perform differential expression
analysis for the dataset GSE51981 through the Bayesian test. We
finally identified 2,267 significantly upregulated and 285
significantly downregulated expressed genes between the
disease samples and the normal samples with the threshold of
fold change values of >1.5 and p < 0.05. The detailed information
of all DEGs is listed in Supplementary Table S1. The results of
these DEGs and the heatmap of these DEGs are visualized in
Figures 2A and 2B, respectively.

Functional Enrichment Analysis for DEGs
and the Construction of PPI Network
To explore the biological significance of these DEGs in the
pathogenesis of EMs, we performed GO and KEGG pathway
enrichment analyses through the R package ‘clusterProfiler’. GO
terms were classified into three categories: biological process
(BP), cellular component (CC), and molecular function (MF).
The top five GO terms of genes with significantly upregulated and
downregulated expression levels were visualized in Figures 3A,B.
The GO enrichment analysis results indicated that these
significantly upregulated expressed genes were mainly involved
in the transmembrane transporter activity, ATPase activity,
metallopeptidase activity, aldehyde dehydrogenase NADP+

activity, and lipid transporter activity (Supplementary
Table S2), while these significantly downregulated expressed
genes were mainly involved in the flavin adenine dinucleotide
binding, acyl-CoA dehydrogenase activity,
phosphatidylcholine transporter activity, extracellular
matrix structural constituent, and ATPase-coupled
intramembrane lipid transporter activity (Supplementary
Table S3). For KEGG pathway enrichment analysis, the
results indicated that these upregulated expressed genes
were significantly associated with the cAMP signaling
pathway, adrenergic signaling in cardiomyocytes,
aldosterone synthesis and secretion, ABC transporters, and
salivary secretion (Supplementary Table S4), while these
downregulated expressed genes were significantly associated
with fatty acid degradation and metabolism; valine, leucine,
and isoleucine degradation; lysosome; the PPAR signaling
pathway; and the Hippo signaling pathway (Supplementary
Table S5). Furthermore, we constructed a PPI network
through the STRING database. The hub genes selected from
the PPI network are shown in Supplementary Figure S2.

According to the eccentricity scores, we identified 15 hub
genes from the network, which had highest confidence scores.

Constructing the Random Forest Model to
Screen Differentially Expressed Genes
To screen DEGs, we put these DEGs into the random forest
classifier and set the number of random seeds to 4,543. By
referring to the relationship between the model error and the
number of decision trees (Figure 4A), we selected 219 trees as the
parameter of the random forest model, which represented a stable
error in the model. In the modeling process, we used the Gini
coefficient method to measure the importance of all variables
according to decreased mean square error and model accuracy
(Figure 4B). Finally, we selected seven DEGs (AHI1, DMXL2,
NAA16, CCDC22, CISD3, COMT, and EIF3E) with a mean
decrease of Gini index greater than 4 as important variables
for subsequent analysis. Interestingly, all these DEGs were
included in the 15 hub genes identified from the constructed
PPI network. Among these variables, AHI1 was the most
important, with the mean decrease of the Gini index being
much higher than other variables (Supplementary Table S6).
A small number of variables meant a small out-of-band error,
which represented a high accuracy of the constructed random
forest model. Based on these seven variables, we performed the
k-means clustering of the dataset. The results suggested that these
seven genes could be used to distinguish the disease sample from
the normal samples (Figure 4C). Furthermore, AHI1, DMXL2,
and NAA16 genes were clustered as a group with low expression
in the normal sample and high expression in the disease sample.
On the contrary, CCDC22, CISD3, COMT, and EIF3E were
clustered as another group with high expression in the normal
sample and low expression in the disease sample.

The Construction of the Artificial Neural
Network Model and the Evaluation of the
ROC Curve
Based on the R package ‘neuralnet’, we use the GSE6364 dataset
(21 disease samples and 21 normal samples) as the training set to
construct the artificial neural network model. Firstly, we
performed the preprocessing and normalization of this dataset.
According to the output results of the neural network model
(Figure 5A), it is illuminated that the entire training was
performed in 11,684 steps. Among the output results, the
predicted weights of each hidden neuron layer were −3.97906,
1.04457, 2.76611, −2.00181, −11.84206, and −0.90829
(Supplementary Table S7). Next, we drew the ROC curve to
evaluate the predicted performance; the AUC values of AHI1,
COMT, DMXL2, CISD3, NAA16, EIF3E, and CCDC22 were
0.7150, 0.7809, 0.6927, 0.7266, 0.7217, 0.7093, and 0.7050,
respectively (Figure 5B). The larger the AUC value of each
DEG is, the higher the credibility of the constructed diagnostic
model will be. We also used another two datasets E-MTAB-694
(18 disease samples and 17 normal samples) and GSE7307 (18
disease samples and 23 normal samples) to verify the accuracy of
the constructed neural network model. In the E-MTAB-694
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dataset (Figure 5C), the AUC values of the seven DEGs were
0.8226, 0.6623, 0.6836, 0.6625, 0.8367, 0.8471, and 0.8617. In the
verification results of the GSE7307 dataset (Figure 5D), the AUC
values of the seven DEGs were 0.7464, 0.6484, 0.7020, 0.6300,
0.9075, 0.8295, and 0.8327. In general, we constructed a novel
diagnostic model of EMs and verified its diagnostic efficacy
through the constructed artificial neural network in two public
datasets.

DISCUSSION

The combination of random forest and artificial neural
network can be used to construct a reliable predictive
model for the diagnosis of some diseases, such as polycystic
ovary syndrome (PCOS) (Xie et al., 2020) and ulcerative colitis

(Li et al., 2020). In this study, we identified 2,552 DEGs
associated with EMs in the GSE51981 dataset. Based on the
random forest classifier, seven important candidate DEGs
(COMT, NAA16, CCDC22, EIF3E, AHI1, DMXL2, and
CISD3) were screened. Then, we used the GSE6364 dataset
as the training set to construct the artificial neural network
model and evaluated the classification efficacy of the model in
E-MTAB-694 and GSE7307 datasets. The AUC values of the
ROC curve were about 0.7, which had great efficiency and
verified the diagnostic efficacy of the model. Furthermore, we
constructed a 15-hub-gene-based PPI network and confirmed
the reliability of the prediction model. Compared with the
Nnet package, we found that the neuralnet package had higher
accuracy of the predicted model (86.5% vs 81.1%). In total, the
constructed diagnostic model could provide new insight into
our understanding of the pathogenesis of EMs and identify

FIGURE 3 | The results of GO and KEGG enrichment analyses. (A) The top five GO terms of genes with significantly upregulated expressed level. (B) The top five
GO terms of genes with significantly downregulated expressed level. (C) The top 10 KEGG pathways of genes with significantly upregulated expressed level. (D) The top
10 KEGG pathways of genes with significantly downregulated expressed level.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8481165

She et al. A Diagnostic Model of Endometriosis

24

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


crucial biomarkers as diagnostic and therapeutic targets
of EMs.

Among these seven genes, COMT, NAA16, CCDC22, and
EIF3E have been reported to be associated with the
pathogenesis of EMs. Catechol-O-methyltransferase
(COMT) is highly expressed in the placental, adrenal gland,
ovary, and other tissues. The degradative pathways of the
catecholamine transmitters can relieve painful uterine
contractions (D’Astous-Gauthier et al., 2021). COMT
polymorphism may contribute to the risk of EMs and
adenomyosis (Li et al., 2018) and has a relationship with
EM susceptibility (Ji et al., 2017; Zhai et al., 2019). N-alpha-
acetyltransferase 16 (NAA16) is highly enriched in bone
marrow, testis, endometrium, and other tissues. It can alter
NAT 2 enzyme activity and thus contribute to the
susceptibility of EMs (Nakago et al., 2001). Coiled-coil
domain containing 22 (CCDC22), a membrane-binding
protein, is highly enriched in the spleen, lymph node, and

other tissues. Studies have demonstrated that there is also a
relationship between CCDC22 polymorphisms and EM
susceptibility (de Oliveira Francisco et al., 2017). Eukaryotic
translation initiation factor 3 subunit E (EIF3E) is highly
expressed in the ovary, lymph node, endometrium, and
other tissues. Its downregulation may be involved in
epithelial–mesenchymal transition (EMT) in EMs, possibly
through the preferential translation of snail (an inhibitor of
E-cadherin) (Cai et al., 2018) and involved in the development
of adenomyosis through activating the TGF-β1 signaling
pathway (Cai et al., 2019).

Interestingly, we identified another three important genes
(AHI1, DMXL2, and CISD3), which have never been reported
to be involved in the pathogenesis of EMs. Abelson helper
integration site 1 (AHI1) is highly enriched in testis, adrenal
gland, brain, prostate, endometrium, and other tissues, which
has upregulated expression level in EMs. The AHI1 protein
participates in reactive oxygen species (ROS) production in the

FIGURE 4 |Screening DEGswith the random forest model. (A) The relationship between the number of decision tree and themodel error. The x-axis represents the
number of decision trees, and the y-axis represents the error rate of the constructed model. When the number of decision trees is nearly 219, the error rate of the
constructed model is relatively stable. (B) The importance of all variables in the random forest classifier through the Gini coefficient method. The x-axis represents the
mean decrease of the Gini index, and the y-axis represents all variables. (C) The heatmap of k-means clustering in the GSE6364 dataset. The colors in the graph
from red to blue indicate the change from high to low in expression level. On the upper part of the heatmap, the blue band indicates the disease samples and the red band
indicates the normal samples.
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form of protein complexes (Liu et al., 2017). Excessive
production of ROS can result in oxidative stress (OS) and
overall immune activation and inflammation (Newsholme
et al., 2016). OS represents an imbalance between ROS and
antioxidants, which may have an essential role in the
endometriosis pathogenesis in the peritoneal cavity (Samimi
et al., 2019). Hence, the AHI1 protein may participate in the
EMs pathogenesis through multiple processes such as OS and
immune and inflammatory response.

Dmx like 2 (DMXL2) encodes a protein with 12 WD
domains, which has relatively low expression in
endometrium tissue and downregulated expression in EMs.
The DMXL2 protein is demonstrated to participate in the
regulation of the Notch signaling pathway (Sethi et al.,
2010) and acts as a transmembrane protein, which can

promote EMT through hyperactivation of the Notch
signaling pathway (Faronato et al., 2015). Interestingly,
decreased Notch signaling can contribute to impaired
decidualization through the downregulation of FOXO1 (a
downstream target of Notch signaling) and thus lead to the
pathogenesis of EMs (Su et al., 2015). Furthermore, studies
indicate that a circRNA with downregulated expression can
regulate EMT in EMs via the Notch signaling pathway (Zhang
et al., 2019). Therefore, the downregulated expression of
DMXL2 may activate the Notch signaling pathway,
contribute to EMT through the interaction with circRNA,
and thus lead to the pathogenesis of EMs.

CDGSH iron sulfur domain 3 (CISD3) is a member of the
CDGSH domain-containing family, whose expression is
upregulated in EMs. The CISD3 protein is redox active and

FIGURE 5 | The artificial neural network model and the evaluation of the ROC curve. (A) The visualization of the artificial neural network model. (B) The evaluation
results of the ROC curve in the GSE6364 dataset. (C) The verification results of the ROC curve in the E-MTAB-694 dataset. (D) The verification results of the ROC curve in
the GSE7307 dataset. The x-axis and y-axis represent specificity and sensitivity, respectively. The AUC value is the area under the ROC curve.
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is thought to play an important role in mitochondrial
homeostasis (Geldenhuys et al., 2019). Studies indicate that
mitochondrial homeostasis can be considered as the
therapeutic target for the treatment of EMs via limiting
ESC migration and promoting apoptosis (Suliman and
Piantadosi, 2016; Zhao et al., 2018). Furthermore, excessive
mitochondrial fission can initiate caspase 9-related
mitochondrial apoptosis and thus lead to cell death
(Fuhrmann and Brüne, 2017; Zhou et al., 2017). Therefore,
upregulated expression of CISD3 may affect mitochondrial
homeostasis and thus play an important role in the
pathogenesis of EMs.

In this study, based on random forest and artificial neural
network algorithm, we established a novel reliable diagnostic
model and screened out three important DEGs that have never
been reported to be involved in the pathogenesis of EMs. We
aimed at the supplement of existing methods and provided an
alternative marker panel for further research in the early
screening of EMs. However, there are some limitations for
this study. Firstly, all samples are only classified as EM
(disease) and non-EM (normal) groups, which may affect
the final screening results of DEGs. Secondly, the diagnostic
model is only verified in two public datasets, which need more
samples for verification. Thirdly, we conduct data analysis only
at the mRNA level in the tissue samples of EMs, which require
further validation at the mRNA and protein levels. In general,
our approach has a certain clinical value, which can be
beneficial for the early screening of EMs.
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Cancer research has seen explosive development exploring deep learning (DL)
techniques for analysing magnetic resonance imaging (MRI) images for predicting
brain tumours. We have observed a substantial gap in explanation, interpretability,
and high accuracy for DL models. Consequently, we propose an explanation-driven DL
model by utilising a convolutional neural network (CNN), local interpretable model-
agnostic explanation (LIME), and Shapley additive explanation (SHAP) for the
prediction of discrete subtypes of brain tumours (meningioma, glioma, and pituitary)
using an MRI image dataset. Unlike previous models, our model used a dual-input CNN
approach to prevail over the classification challenge with images of inferior quality in
terms of noise and metal artifacts by adding Gaussian noise. Our CNN training results
reveal 94.64% accuracy as compared to other state-of-the-art methods. We used SHAP
to ensure consistency and local accuracy for interpretation as Shapley values examine all
future predictions applying all possible combinations of inputs. In contrast, LIME
constructs sparse linear models around each prediction to illustrate how the model
operates in the immediate area. Our emphasis for this study is interpretability and high
accuracy, which is critical for realising disparities in predictive performance, helpful in
developing trust, and essential in integration into clinical practice. The proposed method
has a vast clinical application that could potentially be used for mass screening in
resource-constraint countries.

Keywords: LIME, SHAP, XAI, brain tumor, MRI

1 INTRODUCTION

According to the world health organization (WHO) world cancer report (2020), cancer is
amongst the leading death-causing diseases, ranked second (after cardiovascular disease),
accounting for nearly 10 million deaths in 2020 (Sung et al., 2021). Compared to other
diagnoses, cancer screening is a different and more complicated public health approach that
needs extra resources, infrastructure, and coordination. The WHO recommends the
implementation of screening programs when the following conditions are fulfilled (Sung
et al., 2021):

1. The efficiency of tool/model/software has been demonstrated
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2. Sufficient resources and facilities to confirm diagnoses and
treatments are available

3. The prevalence of the disease is extreme enough to justify the
screening

The total prevalence of all central nervous system tumours is
3.9 per 100,000 persons worldwide; the incidence differs with age,
gender, race, and region and is extremely frequent in Northern
Europe, followed by Australia, the United States, and Canada.
Meningioma is themost common one, accounting for 36.8% of all
tumours; glioma is the most widespread malignant tumour,
accounting for 75% of central nervous system malignant
tumours, with a total incidence of six cases per 100,000 people
per year. MRI is presently the ideal method for early detection of
human brain tumours as it is non-invasive (Spatharou et al.,
2021). However, the interpretation of MRI is predominantly
centred on the opinions of radiologists.

The advent of convolution neural network (CNN)-based deep
learning (DL) provides the basis for imaging-based artificial
intelligence (AI) solutions. DL-guided solutions intend to
supplement clinical decision making. There are several motives
why the proposed architecture is a CNN-based DL architecture.
First, it is observed that CNN-basedDL is extremely good at lowering
the threshold of parameters whilemaintainingmodel quality. Second,
it does not require human feature engineering because it can
automatically extract features from an image. Third, the literature
supports the CNN-based DLmodel by several researchers and that it
has achieved good image classification and recognition accuracy.
However, it is crucial to observe that very few researchers have
applied local interpretable model-agnostic explanation (LIME) and
Shapley additive explanation (SHAP) along with CNN. Researchers
demonstrated the immense potential of imaging tools to mitigate the
heavy burden on medical experts (Wojciech et al., 2017). It further
allows devoting additional help in patient care, reducing burnout, and
shrinking overall medical costs for patients (Dave et al., 2020).
Working on the detection system, Gupta et al. (2016) applied DL
algorithms, Resnet50, to distinguish COVID-19 from X-rays to
achieve a fully autonomous and speedier diagnosis. With an

average COVID-19 detection time of roughly 2.5 s and an average
accuracy of 0.97, the authors aimed tominimise the run time to about
2.5 s. Kollias et al. (2018) introduced different performance indicators
such as precision, responsiveness, specificity, precision, F1 value, and
DL. The results showed a standard accuracy of 92.93% and sensitivity
of 94.79% to provide robust identification and detection of COVID-
19 in the chest X-ray dataset. In one of the research (Ke et al., 2019),
the deep neural network correlation learning mechanism for CT
brain tumour detection used palettes of CNN architecture to adjust
them to the best possible detection result of ANN. The AISA
framework for MRI data analysis demonstrated its application to
brain scan data by deriving independent subspaces and extracting
texture features. Then, dimensionality is reduced using t-SNE
embedding for discriminative classification. Finally, the KNN
classification is applied. Despite the immense popularity of DL
models in clinical decision making, the lack of interpretability and
transparency by algorithm-driven decisions remains the biggest
challenge, particularly in medical settings. Although, many
researchers (Richard et al., 2020; Zucco et al., 2018) observed
various impediments in developing XAI-based clinical decision
support systems (CDSS) due to the non-availability of any
universal notion of explainability. Our study proposes an
explanation-driven DL-based model to predict distinctive
subtypes of brain tumours (meningioma, glioma, and
pituitary) using an MRI image dataset. We also implemented
LIME and Shapley additive explanations to create more
transparency in the models while keeping intact a high
performance rate. Our study will help the users (medical
professionals, clinicians, etc.) in comprehending and
efficiently managing the ever-increasing number of trustable
and reliable AI partners (Sharma et al., 2020).

Compared to previousmodels, ourmodel used a dual-input CNN
approach to prevail over the classification challenge with inferior-
quality images and an accuracy of 94.64% compared to other state-of-
the-art models. Previous studies lack explanation, and thus, we used
Explainable AI (XAI) algorithms such as LIME and SHAP, which is
the differentiating element of this study. We used SHAP to ensure
consistency and local accuracy for interpretation as Shapley values

FIGURE 1 | Sample image data of different types of tumours. (A) Normal: the intensity of the parenchyma in the brain without any tumour is normal. The ventricular
system and cisternal spaces are supposed to be in good working order. There is always no evidence of an intracranial space-occupying lesion (Gaillard, 2021). (B)
Glioma tumour: gliomas have thick, irregularly enhancing borders of the focal necrotic core with a haemorrhagic component. They are surrounded by vasogenic-type
oedema, containing malignant cell infiltration. Intratumoural haemorrhage happens rarely (less than 2%) (Frank, 2021) (C) Meningioma tumour: meningiomas are
extra-axial tumours arising frommeningocytes or arachnoid cap cells of meninges and can be found where meninges exist, as well as in some sites where only rest cells
are thought to exist (Gaillard and Rasuli, 2021) (D) Pituitary tumour: for pituitary adenomas, minor intra-pituitary lesions appear differently than larger lesions that spread
into the suprasellar region and pose various surgical and diagnostic issues. Based on tumour aspects, overall signal qualities can vary (Weerakkody and Gaillard, 2021).
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examine all potential predictions using all possible combinations of
inputs. Conversely, LIME constructs sparse linear models around
each prediction to describe how the model operates in the
immediate area.

The deep neural network correlation learning mechanism for
computed tomography (CT) brain tumour detection used
palettes of CNN architecture to adjust them to the best
possible detection result of DL. Though the previously
suggested models have higher accuracy, they lack
explainability, interpretability, and transparency (Abdalla and
Esmail, 2018; Khairandish et al., 2021). The proposed model used
XAI algorithms such as LIME (Vedaldi and Soatto, 2008) and
SHAP as detailed in Algorithm 2.

The contributions in this study are summarised in what follows:

1. We aimed to create an explanation-driven multi-input DL
model where SHAP and LIME are used for an in-depth

description of results. One set of two input datasets is fed
to the convolution layer and one to the fully
connected layer.

2. We have achieved high accuracy of (94.64%) brain MRI
images compared to other state-of-the-art models.

2 METHODS

2.1 Datasets
In this study, we used the publicly available MRI images (Bhuvaji,
2020). The datasets are annotated into three categories of
tumours: glioma tumour, meningioma tumour, and pituitary
tumour, along with the normal image. Out of 2,870 total
images, 2,296 images of distinct types are used as training sets
and the remaining as test sets.

FIGURE 2 | The proposed explanation-driven DL model for prediction of brain tumour status using MRI image data: 2870 MRI images are pre-processed and
divided into training, validation, and test sets. Two copies of datasets are fed into a multi-input CNN model to find the training, validation, and test accuracy. The same
CNN model was further imposed on LIME and SHAP.

FIGURE 3 | Training and validation results of CNN. (A) Shows the overall training loss as 0.1149 and validation loss as 0.53. (B) Shows the overall training accuracy
as 94.64% and validation accuracy of 85.37%.
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2.1.1 Data Pre-Processing
All 512 × 512 × 3 images are resized to 150 × 150 × 3. The images
are rearranged for faster convergence and preventing the CNN
model from learning the training order. For better classification
results, we have introduced Gaussian noise as it improves the
learning for DL (Neelakantan et al., 2015) with mean = 0 and
standard deviation 100.5. Figure 1 shows a single instance among
the categories of tumours from the dataset.

2.2 Proposed Framework
The overall architecture of the model used is shown in Figure 2
composed of feature extraction, a CNN model, statistical
performance measures, and explanation extraction frameworks.

For improved accuracy, two copies of the dataset are fed to the
CNN model having an output layer of size 1 × 4 and six hidden
layers (Yu et al., 2017). Adam optimiser with its default parameters
is applied with the rectified linear unit (ReLU) and softmax as the
activation function. The final CNN model is used for statistical
accuracy measurement, LIME and SHAP. For LIME explanations,
perturbation is calculated, whereas for SHAP, a gradient explainer
is applied. The whole process is formalized in Algorithm 1.

Algorithm 1. Explanation-driven multi-input DL model for
prediction of brain tumour.

For the classification task in the proposed explainable model, a
CNNwith dual-input architecture is used. The CNN is imposedwith
ReLU as activation in all hidden layers. Compared with the input
value and zero value, ReLU is simple to calculate. Furthermore,
ReLU has a derivative of either 0 or 1 based on positive or negative

input. This feature of ReLU is essential in comparing explainable
modules such as LIME and SHAP. Adam optimiser with its default
parameter (Kingma and Ba, 2015) is used along with sparse
categorical cross entropy; the kernel size is set to 3 × 3.

3 RESULTS

Following the classification process, the performance of CNN
models is evaluated based on accuracy and the number of wrong
predictions. The curves for the conventional results of CNN are
presented in Figure 3.

3.1 CNN
The model was iterated for 20 epochs, and during callback in
CNN modules, we had monitored the loss with min mode and
patience level of three to cross the over-fitting. Achieving the
training accuracy of 94.64% and overall test accuracy of 85.37%,
the model has 26 wrong predictions with 0.1149 as training loss
and 0.53 as validation loss.

Furthermore, to estimate the performance of the CNN model
on the configured dataset, K-fold cross validation is performed
with K = 10 non-overlapping folds for 20 epochs with a batch size
of 128. The test and train sets were split in the ratio of 1:4. The
final validation result of the cross fold is shown in Table 1. The
proposed model has achieved almost 100% training accuracy
during cross validation.

Table 2 shows the confusionmatrix for 287 test images. A total
of 7 normal images out of 46, 14 glioma images out of 84, 12
meningioma images out of 77, and 3 pituitary images out of 80
were misclassified.

To validate our model statistically, we performed McNemar’s
test (Smith et al., 2020). For labels of test data and labels of model
prediction under test data, McNemar’s test gave a chi-squared
value of 42.022 and p value 9.02 x e−11. We can reject the null-
hypothesis that both labels perform equally well on the test set,
since the p value is smaller than α = 0.005.

3.2 SHAP
For each pixel on a predicted image, the scores show its
contribution and can be used to explain tumour classification
tasks. The Shapley values correspond to each feature for different
categories of the tumour according to Algorithm 2.

Algorithm 2. Algorithm to calculate the Shapley values.

TABLE 1 | K-fold cross-validation results.

Fold Final validation loss Final
validation accuracy (%)

1 0.011 44 99.5
2 0.017 06 98.47
3 0.021 52 99.13
4 0.009 88 99.34
5 0.005 54 100
6 0.012 98 99.13
7 0.008 74 99.78
8 0.005 33 99.78
9 0.010 18 99.34
10 0.008 8 99.56
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The CNN model with mathematical behaviour is
complicated to interpret directly. Thus, the effect of
individual input features on the model’s output is clearly
explained using SHAP and shown in Figures 4, 5. Positive
SHAP values that raise the likelihood of the class are
represented by red pixels. In contrast, negative SHAP
values that lower the probability of the class are
represented by blue pixels. Figure 4 and Figure 5 are test
images. In contrast, the rest of the figures indicate the normal
image and three other categories of tumour: glioma,
meningioma, and pituitary tumours in successive order.

3.3 LIME
A total of 150 perturbations are used. Random ones and zeros are
produced and formed into a matrix, with perturbations as rows

and superpixels as columns. A superpixel is ON if it is 1, and it is
OFF if it is 0. The length of the displayed vector represents the
number of superpixels in the image. The test image is perturbed
based on the perturbation vector and predefined superpixels
(Vedaldi and Soatto, 2008). The final perturbed image is
shown in Figure 6C for normal test image under
consideration and in Figure 7C for test image under
consideration with meningioma tumour, which shows the
portion of the image having a major role for classification.

The CNN model is utilised to generate the explanation using
LIME. Figure 6Ais a normal image, and Figure 7A is under the
meningioma category. The classification produces a vector of
2,870 probabilities for each category accessible in the CNN
model. The quick-shift segmentation method is used to create
superpixels. 22 superpixels are generated for Figure 6A and

TABLE 2 | Confusion matrix for the CNN.

Actual value

Normal Glioma Meningioma Pituitary

Predicted values Normal 37 8 1 0
Glioma 7 70 5 2
Meningioma 0 12 65 0
Pituitary 0 3 0 77

FIGURE 4 | On the basis of Shapley values, we can say that the MRI image is normal.

FIGURE 5 | On the basis of Shapley values, we can say that the MRI image holds meningioma tumour.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8226665

Gaur et al. XAI for Brain Tumour

33

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


shown in Figure 6B, and 24 superpixels are calculated for
Figure 7A and shown in Figure 7B.

4 DISCUSSION

4.1 Comparison of the Proposed Feature
Extraction Methods Using Traditional
Machine learning (ML) Methods
We compare the proposed feature extraction methods to
traditional ML methods. The comparative results are presented
in Table 3. Minz and Mahobiya (2017) pre-processed the

MICCAI BraTS dataset to eliminate noise and employed the
GLCM (gray-level co-occurrence matrix) for feature extraction
and classification boosting (Adaboost). An MRI was used to
extract 22 characteristics. The Adaboost classifier is utilised for
classification, and the suggested system achieves a maximum
accuracy of 89.90%. Abdalla and Esmail (2018) executed a
computer-aided detection system after collecting the MRI
images. They processed the image before implementing the
back-propagation algorithm and extracted the features using
Haralick’s features based on the spatial gray-level dependency
matrix (SGLD). The results were 99%, but the study could not
focus on the explainable section in the training images. A
comparative study between support vector machine (SVM)

FIGURE 6 | Interpretations generated by LIME for a normal image. (A) Sample of the normal image from the test image. (B) Superpixels generated from a sample of
the normal image from test image quick-shift segmentation to create perturbations. (C) Final perturbed image for the normal image.

FIGURE 7 | Interpretations generated by LIME for meningioma tumour. (A) Sample of meningioma tumour from the test image. (B) Superpixels generated from
quick-shift segmentation to create perturbations. (C) Final perturbed image showing meningioma tumour.

TABLE 3 | Brain tumour detection using traditional ML methods.

Authors Algorithm Dataset Accuracy (%) XAI

Martinez et al. (2020) Random Forest BraTs Dataset 76 No
Minz and Mahobiya (2017) Adaboost Classifier BraTs Dataset 89.90 No
Abdalla and Esmail (2018) Back-Propagation Network MRI Images 99 No
Asodekar and Gore (2019) Random Forest BraTs Dataset 81.90 No
Asodekar and Gore (2019) SVM BraTs Dataset 78.57 No
Proposed model Dual-Input CNN MRI Images 94.64 Yes
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and random forest (RF) classified benign and malignant tumours.
First, the brain tumour’s region of interest was determined for
feature extraction, and then, features were calculated. Shape
characteristics were obtained and utilised to classify benign
and malignant tumours. According to the authors, RF
(81.90%) outperformed the SVM (78.57%). By combining
principal component analysis (PCA), KSVM, and GRB
kernels, Arora and Ratan (2021) established a unique
technique for categorisation of MRI brain images using
discrete wavelet transform (DWT). The experiment was
carried out with four different kernels. The findings
demonstrate that combining DWT, PCA, KSVM, and the GRB
kernel yields the highest accuracy compared to other
methodologies. The results show that the time it takes to
classify a segmented picture significantly decreases, which
might be a watershed moment in the medical profession for
tumour diagnosis. Martinez et al. (2020) worked on the FLAIR
images on the BRATS 2015 training dataset; it is used to
restructure and increase data attributes that lead to a pixel-
based classifier. The U-net suggested method performs a
semantic segmentation with a precision of 76%, which
increases by 23% compared to the random forest classifier
with synthetic minority oversampling technique (SMOTE)
class balancing algorithm.

4.2 Comparison of the Proposed Method
With the Other State-of-the-Art Methods
This section compares our dual-input CNN model with other
state-of-the-art models. The results are compared in Table 4.
After several data-collection and pre-processing steps such as
average filtering segmentation, the DL model was implemented
by researchers (Hemanth et al., 2019). In comparison to existing
approaches such as conditional random field (89%), SVM
(84.5%), and genetic algorithm (GA) (83.64%), the research
represents overall performance and comparative output on the
brain MRI images. In contrast to existing algorithms, the
suggested CNN (91%) produces improved results. The
TensorFlow library was used to construct a DL method called
faster R-CNN in the work of Avsar and Salcin (2019), and the
classifier algorithm was trained and tested using a publicly
available dataset of 3,064 MRI brain pictures (708
meningiomas, 1,426 gliomas, and 930 pituitary gland tumours)
from 233 patients. The quicker RCNN algorithm has been
demonstrated to attain 91.66% accuracy, which is exceptional
compared to past work on the same dataset. Ranjbarzadeh et al.

(2021) proposed a cascaded convolutional neural network
(C-ConvNet/C-CNN). A simple but effective cascade, the
CNN model, has been suggested to extract local and global
characteristics in two methods, with different extraction
patches in each. Those patches were chosen to feed the
network that their centre was located inside this area after
extracting the tumour’s predicted location using a
sophisticated pre-processing strategy. As a result of removing
a high number of insignificant pixels from the picture in the pre-
processing stage, the computing time and ability to generate quick
predictions for categorising the clinical image are reduced. The
results were compared to other algorithms. Still, the CNN model
achieved the highest accuracy (92.03%) on the whole Dice score
(mean) and the highest precision (97.12%) on the core sensitivity
score (mean). Khairandish et al. (2021) made use of a hybrid
model of CNN and SVM in phrases of classification, type, and
threshold-based segmentation in terms of detection to classify
benign and malignant tumours in brain MRI images. This hybrid
CNN–SVM is rated as having an overall accuracy of 98.49%. Still,
their study does not show evidence for manipulating low-quality
images and XAI. Shahzadi et al. (2018) proposed a CNN cascade
with a long short-term memory (LSTM) network for classifying
3D brain tumour MRIs into HG and LG glioma. The features
from the pre-trained VGG-16 were retrieved and fed into an
LSTM network for learning high-level feature representations.
The components extracted from VGG-16 had a classification
accuracy of 84%, higher than that of those extracted from
AlexNet and ResNet, 71%. Isola et al. (2018) investigated
conditional adversarial networks as a general-purpose solution
for image-to-image translation challenges by using a 1,616
PatchGAN. The PatchGAN 70 × 70 reduces these distortions
and improves scores slightly. It is observed that scaling to the full
286 × 286 ImageGAN does not significantly improve the visual
quality of the findings and results in a considerably lower FCN-
score, indicating that conditional adversarial networks are a
promising option for many image-to-image translation tasks,
especially those involving highly structured graphical outputs.
Milletari et al. (2016) proposed an approach to 3D image
segmentation based on a volumetric, fully convolutional neural
network. The CNN is trained end-to-end on MRI volumes
depicting the prostate and predicts segmentation for the whole
volume at once. The training was performed on 50 MRI volumes,
and the relative manual ground truth annotation was obtained
from the PROMISE2012 challenge dataset. The novel objective
function was to optimise during training based on the dice
overlap coefficient between the predicted segmentation and the

TABLE 4 | Brain tumour detection using other state-of-the-art models.

Authors Algorithm Dataset Accuracy (%) XAI

Shahzadi et al. (2018) CNN with LSTM MRI Images 84 No
Hemanth et al. (2019) CNN MRI Images 91 No
Avsar and Salcin (2019) R-CNN MRI Images 91.66 No
Ranjbarzadeh et al. (2021) C-CNN BraTs Dataset 92.03 No
Khairandish et al. (2021) CNN–SVM MRI Images 98.49 No
Proposed model Dual-Input CNN MRI Images 94.69 Yes
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ground truth annotation. Han et al. (2020) proposed an
unsupervised medical anomaly detection generative adversarial
network (MADGAN). This two-step method uses GAN-based
multiple adjacent brain MRI slice reconstruction to detect brain
anomalies at various stages on multi-sequence structural MRI.
MADGAN can detect anomaly on T1 scans at a very early stage,
mild cognitive impairment (MCI), with area under the curve
(AUC) 0.727, and anomaly detection (AD) at a late stage with
AUC 0.894, while detecting brain metastases on T1c scans with
AUC 0.921. On multi-sequence MRI, the model may accurately
detect the accumulation of subtle anatomical abnormalities and
hyper-intense enhancing lesions, such as (particularly late stage)
AD and brain metastases, as the first unsupervised varied disease
diagnosis. Baur et al. (2020) presented a novel method towards
unsupervised AD in brain MRI by embedding the modelling of
healthy anatomy into a CycleGAN-based style-transfer task,
which is trained to translate healthy brain MRI images to a
simulated distribution with lower entropy and vice versa. By
filtering high-frequency, low-amplitude signals from lower
entropy samples during training, the resulting model
suppresses anomalies in reconstructing the input data at test
time. The method outperforms the state-of-the-art method in
various measures and can deal with high-resolution data, a
current pitfall of autoencoder (AE)-based methods. Castiglioni
et al. (2021) concentrated on the issues that must be addressed to
create AI applications as clinical decision support systems in a
real-world setting. A narrative review with a critical appraisal of
publications published between 1989 and 2021 was conducted.
According to the study, biomedical and healthcare systems are
among the most significant domains for AI applications, with
medical imaging being the most suited and promising domain.
Clarification of specific challenging points facilitates the
development of such systems and their translation to clinical
practice. Barragán-Montero et al. (2021) showcased the
technological pillars of AI, as well as the state-of-the-art
methods and their implementation to medical imaging. This
review offered an overview of AI, emphasising medical
imaging analysis demonstrating the potential of the state-of-
the-art ML and DL algorithms to automate and enhance
several aspects of clinical practice.

5 CONCLUSION AND FUTURE DIRECTION

Using an explanation-driven dual-input CNN model for finding if
a particular MRI image is subjected to a tumour or not, the
proposed study achieved an accuracy of 94.64%. A brain MRI
image dataset is used to train and test the proposed CNN model,
and the same model was further imposed to SHAP and LIME
algorithms for an explanation. Our experiment utilised two dataset

copies as input for better feature extraction, one in the convolution
layer and another in the fully connected layer. However, any
attempt to remove any features decreased the prediction
model’s overall performance; hence, no augmentation was
carried out. The proposed model is a locally interpreted model
with a model-agnostic explanation, shapely explained to describe
the results for ordinary people more qualitatively.

In future, classification algorithms with higher accuracy and
better optimiser can be used and imposed on XAI. For better
clinical issues, the research may be replicated and applied to other
XAI algorithms such as GradCAM. Furthermore, like the most
recent advances on computing capacity, neuroimaging
technologies, and digital phenotyping tools (Ressler and
Williams, 2020), algorithms to imitate natural occurrences can
be used on heterogeneous datasets for medical imaging
modalities, electronic health record engines, multi-omics
studies, and real-time monitoring (Rundo et al., 2019).
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Background: Gastric cancer (GC) is one of the most prevalent cancers all over the world.
The molecular mechanisms of GC remain unclear and not well understood. GC cases are
majorly diagnosed at the late stage, resulting in a poor prognosis. Advances in molecular
biology techniques allow us to get a better understanding of precise molecular
mechanisms and enable us to identify the key genes in the carcinogenesis and
progression of GC.

Methods: The present study used datasets from the GEO database to screen differentially
expressed genes (DEGs) between GC and normal gastric tissues. GO and KEGG
enrichments were utilized to analyze the function of DEGs. The STRING database and
Cytoscape software were applied to generate protein–protein network and find hub genes.
The expression levels of hub genes were evaluated using data from the TCGA database.
Survival analysis was conducted to evaluate the prognostic value of hub genes. The GEPIA
database was involved to correlate key gene expressions with the pathological stage. Also,
ROC curves were constructed to assess the diagnostic value of key genes.

Results: A total of 607 DEGs were identified using three GEO datasets. GO analysis
showed that the DEGs were mainly enriched in extracellular structure and matrix
organization, collagen fibril organization, extracellular matrix (ECM), and integrin
binding. KEGG enrichment was mainly enriched in protein digestion and absorption,
ECM-receptor interaction, and focal adhesion. Fifteen genes were identified as hub genes,
one of which was excluded for no significant expression between tumor and normal
tissues. COL1A1, COL5A2, P4HA3, and SPARC showed high values in prognosis and
diagnosis of GC.

Conclusion: We suggest COL1A1, COL5A2, P4HA3, and SPARC as biomarkers for the
diagnosis and prognosis of GC.

Keywords: gastric cancer, bioinformatics analysis, microarray, differentially expressed genes, prognosis, diagnosis
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INTRODUCTION

According to data published in 2021, gastric cancer (GC), among
all cancers, ranked fourth in cancer-related deaths (Sung et al.,
2021). Stomach adenocarcinoma (STAD), the most common
histological type, accounts for more than 90% of GC (Ajani
et al., 2017). Although endoscopy or histological detection has
developed a lot in recent years, the majority of GC patients are
diagnosed at their late and advanced stage due to an insidious
onset, resulting in high morbidity and mortality (Chen et al.,
2020; Wang W. et al., 2020). However, advances in molecular
biology techniques allow us to approach precise molecular
mechanisms of carcinogenesis and enable us to find potential
diagnostic and prognostic biomarkers for GC.

Previous bioinformatic studies resulted in different biomarkers
due to different screening criteria and different datasets from Gene
Expression Omnibus (GEO) (Sun et al., 2017; Zheng H.-C. et al.,
2017; Shi and Zhang, 2019). In the present study, we identified
DEGs based on three datasets from GEO, GSE19826, GSE54129,
and GSE118916. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis were
performed subsequently. Afterwards, we constructed the
protein–protein interaction (PPI) network to identify hub genes

using the STRING database and Cytoscape software. Then, we
performed the survival analysis, including overall survival (OS),
disease-free survival (DSS), and progress-free interval (PFI) to
identify candidate genes. The expression of candidate genes and
their correlation with the pathological stage were further analyzed
along with the diagnostic value. A total of four genes were
identified as potential biomarkers for GC in our study.

MATERIALS AND METHODS

Microarray Datasets
RNA-sequencing datasets containing gastric cancer tissue
samples and normal tissue samples were obtained from the
GEO database (Barrett et al., 2013), (https://www.ncbi.nlm.nih.
gov/geo/) and three GEO datasets, including GSE19826 (WangQ.
et al., 2012), GSE54129, and GSE118916 (Li et al., 2019), were
downloaded for further analysis.

Identification of Differentially Expressed
Genes
The limma package (version: 3.40.2) of R software was used to
identity the DEGs in three datasets. The adjusted p value was

FIGURE 1 | Flowchart diagram for bioinformatics analysis.
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analyzed to correct for false positive results in GEO datasets.
“Adjusted p < 0.05 and fold change >1.5” were defined as the
thresholds for the screening of the differential expression of
mRNAs. Subsequently, the ggplot package (version: 3.3.3) of R
software was used to make a Venn diagram to extract the
common DEGs of the three datasets.

Enrichment Analysis of Differentially
Expressed Genes
The clusterProfiler package (Yu et al., 2012) (version 3.14.3) of R
software was used for enrichment analysis with the following
ontology sources: GO biological processes (BPs), cellular
components (CCs), molecular functions (MFs), and KEGG
pathway. Adjusted p < 0.05 and q < 0.2 were set as the critical
standard for significant enrichment.

Analysis of Protein–Protein Interaction
Network
The PPI network of DEGs was generated using the search tool of
the STRING database (Szklarczyk et al., 2019) (version 11.5). The
“Multiple Proteins by Names/Identifiers” tool was chosen in this
study. The organism was set as “Homo Sapiens.” Required score
was set as high confidence (0.700), and FDR stringency was set to
medium (5%). The PPI network was exported for further analysis
with the Cytoscape software (Otasek et al., 2019) (version 3.8.2).
The plugin MCODE (Bandettini et al., 2012) (version 2.0.0,
degree cutoff: 2, node score cutoff: 0.2, K-score: 2) was applied
to identify the hub genes in the PPI network. Themodule with the
highest degree was used in the following analysis.

The Expressions and Survival Analysis of
Hub Genes
The Cancer Genome Atlas (TCGA) project is an open database
aiming to link cancer genomic data to patients’
clinicopathological information (https://www.cancer.gov/tcga).
Raw counts of RNA-sequencing data (level 3) were obtained
from TCGA along with corresponding clinicopathological
information (Liu et al., 2018). TPM-formatted RNA-
sequencing data of normal tissues from the Genotype-Tissue
Expression Project (GTEx) were obtained from the University of
California Santa Cruz (Vivian et al., 2017) (https://xenabrowser.
net/datapages/). Tumor/normal differential expression analyses
of hub genes were conducted using R software. We conducted the
survival analysis, including the OS, DSS, and PFI, with the
Xiantao Academic platform (survminer package of R
software). DEGs related to the OS, DSS, and PFI were
considered as our purpose genes and were involved in the
following data analysis.

Correlation Analysis of Purpose Genes
GEPIA (Tang et al., 2017) (http://gepia.cancer-pku.cn/) is a
database that enable users to analyze the RNA-sequencing
expression in various ways. We used GEPIA to correlate our
purpose genes with the pathological stage. Correlation analysis

among purpose genes were conducted using R software
embedded in Xiantao Academic. Correlation among these
purpose genes were visualized with a heat map generated by
the ggplot package.

Statistical Analysis
Xiantao Academic (https://www.xiantao.love/products) is a
platform embedded with R software and R packages for data
analyzing. The major analysis was performed using Xiantao
Academic in the present study. Chi-square test and the
Wilcoxon rank sum test were utilized in the analysis
depending on the data. Spearman correlation analysis was
used in different expression of genes. In the analysis of the
correlation of gene expression with pathological stage, the
expression data are first log2 (TPM+1) transformed, and the
method was one-way ANOVA, using pathological stage as a
variable for calculating differential expression. p value <0.05 was
regarded as statistically significant.

RESULTS

Identification of Differentially Expressed
Genes
The present study involved three GEO datasets, GSE19826,
GSE54129, and GSE118916. GSE19826 contained 12 pairs of
samples from GC tumor and adjacent non-tumor tissues and
three normal tissues. GSE54129 contained 111 GC tumor tissue
samples and 21 normal tissue samples. GSE118916 contained 15
pairs of Gastric cancer tumor and adjacent non-tumor (normal)
tissues. There were 138 GC tumor tissue samples and 51 normal
tissue samples in total involved in the present study. The flow
chart is shown in Figure 1. We identified 607 DEGs including
294 up-regulated genes and 313 down-regulated genes in GC
tissue samples (Figure 2).

FIGURE 2 | The Venn diagram shows a total of 607 differentially
expressed genes including 294 up-regulated genes and 313 down-
regulated genes.
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Functional Enrichment Analysis of
Differentially Expressed Genes
We conducted a functional enrichment analysis of DEGs using R
software and R codes embedded in Xiantao platform. DEGs are
enriched in 341 terms of GO BP, including extracellular structure
organization, extracellular matrix (ECM) organization, collagen
fibril organization, bone development and connective tissue
development, etc. DEGs were enriched in 43 terms of GO CC,
including collagen-containing extracellular matrix, endoplasmic
reticulum lumen, basement membrane, extracellular matrix
component and collagen trimer, etc. DEGs were enriched in
35 terms of GO MF, including extracellular matrix structural
constituent, extracellular matrix structural constituent conferring
tensile strength, integrin binding, glycosaminoglycan binding,
and platelet-derived growth factor binding (Figure 3A;
Supplementary Table S1). DEGs were enriched in 10 terms of
KEGG, including protein digestion and absorption, ECM-
receptor interaction, Focal adhesion, human papillomavirus
infection, beta-alanine metabolism, fatty acid degradation,
gastric acid secretion, histidine metabolism, drug
metabolism—cytochrome P450, and carbon metabolism
(Figure 3B; Supplementary Table S1).

Protein–Protein Interaction Network to
Identify Hub Genes
A PPI network of 607 DEGs, containing a total of 317 nodes and
606 edges, was generated using STRING, and an interaction score

>0.7 was considered a high-confidence interaction relationship.
We identified 15 nodes and 81 edges with MCODE plugin. The
module with the highest degree was used in the following analysis.
The hub genes included COL1A1, COL1A2, COL3A1, COL4A1,
COL4A2, COL5A1, COL5A2, COL6A2, COL6A3, COL11A1,

FIGURE 4 | The PPI network of 15 hub genes selected with the MCODE
plugin of Cytoscape.

FIGURE 3 | Functional analysis of DEGs. Top five GO terms enrichment in biological process (BP), cell composition (CC), and molecular function (MF) (A). KEGG
enrichment of DGEs (B).
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MMP2, P4HA3, PCOLCE, PLOD1, and SPARC (Figure 4). Gene
expression profiles of the 15 hub genes between GC tumor
samples and normal samples are shown in Figure 5. The
expression of COL6A2 showed no difference in tumor and
normal tissues, so it was excluded in further analyses. The
remaining 14 genes were considered as candidate genes for
potential diagnostic and prognostic biomarkers.

Survival and Correlation Analysis
We conducted Kaplan–Meier survival analysis with the candidate
genes. Candidate genes related to OS, DSS, or PFI were considered as
key genes. Among the 14 candidate genes, COL1A1 (HR = 1.41, p =
0.042), COL4A1 (HR = 1.45, p = 0.029), COL5A2 (HR = 1.54, p =
0.011), P4HA3 (HR = 1.57, p = 0.011), and SPARC (HR = 1.47, p =
0.022) were associated with the OS of STAD (Figure 6). COL5A2was

FIGURE 5 | Gene expression of 15 hub genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL6A2, COL6A3, COL11A1, MMP2,
P4HA3, PCOLCE, PLOD1, and SPARC) based on TGCA and GTEx databases. ***p < 0.001; ns, not statistically significant.
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associated with DSS (HR = 1.70, p = 0.015) (Figure 7) and PFI (HR =
1.44, p = 0.043) (Figure 8). Therefore, this study focused on the five
key genes, COL1A1, COL4A1, COL5A2, P4HA3, and SPARC.
Further analysis of the correlation between these key genes and the
pathological stage of GC showed that COL1A1, COL5A2, P4HA3,
and SPARCwere significantly correlated to cancer pathological stages.
However, COL4A1 showed no significance in the correlation analysis
(Figure 9). Therefore, we identify COL1A1, COL5A2, P4HA3, and
SPARC as potential biomarkers for prognosis of GC.

Correlation Expression and Diagnostic
Analysis
We analyzed the correlation between these four genes on Xiantao
Academic based on data from TCGA and found that all of these
genes were highly correlated with each other. The r value ranged

from0.84 to 0.92 (p< 0.01) (Figure 10).We used a receiver operating
characteristic (ROC) curve to assess the diagnostic value of the
purpose genes using Xiantao Academic tools based on TCGA
and GTEx samples. The area under curve (AUC) of COL1A1,
COL5A2, P4HA3, and SPARC was 0.916, 0.802, 0.874, and 0.895,
respectively. The results, as shown previously, suggested that these
four genes we selected could effectively distinguish GC samples with
normal samples (Figure 11). COL1A1, COL5A2, P4HA3, and
SPARC could be biomarkers for the diagnosis and prognosis of GC.

DISCUSSION

GC is one of the most diagnosed cancers and has brought great
burden to global health. Patients were likely to be diagnosed in their
late stage due to the lack of specific clinical symptoms at an early

FIGURE 6 | Overall survival analysis of 14 candidate genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL6A3, COL11A1, MMP2,
P4HA3, PCOLCE, PLOD1, and SPARC). COL1A1, COL4A1, COL5A2, P4HA3, and SPARC (HR = 1.47, p = 0.022) were associated with OS.
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stage. Thus, patients with GC have poor prognosis. It is urgent to
identify relevant biomarkers that are valid for both diagnostic and
prognostic evaluation. Bioinformatics analysis enables us to
explore the genetic alterations in GC and has been proved to be
a useful approach to identify new biomarkers in plenty of diseases.
An initial objective of the project was to identify appropriate
biomarkers of GC using bioinformatics analysis.

In the current study, we identified 607 DEGs meeting the
criteria. GO enrichment suggested those genes were significantly
associated with extracellular structure and matrix organization,
collagen fibril organization, and ECM and integrin binding. KEGG
was mainly enriched in protein digestion and absorption, ECM-
receptor interaction, and focal adhesion. In accordance with the
present results, previous studies have reported that cancer-
associated fibroblasts are essential in creating extracellular

matrix structure and metabolism and account for the adaptive
resistance to chemotherapy caused by immune reprogramming of
the tumor microenvironment (Quante et al., 2011; Kalluri, 2016).
Extracellular matrix plays a significant part in the creation of tumor
microenvironment and promotes malignancy (Madsen and
Sidenius, 2008; Najafi et al., 2019; Mohan et al., 2020; Piersma
et al., 2020; Wang W. et al., 2020). Integrins coordinate ECM–cell
and cell–cell interactions, signal transmission, gene expression, and
cell function. The interaction between integrin and the cancer
glycol microenvironment plays a significant part in regulating
cancer progression (Marsico et al., 2018).

The results of this study showed that COL1A1, COL4A1,
COL5A2, P4HA3, and SPARC were associated with the OS of
GC. COL5A2 was associated with DSS and PFI. Further analysis
of the correlation between these key genes and the pathological

FIGURE 7 | Disease-specific survival analysis of 14 candidate genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL6A3, COL11A1,
MMP2, P4HA3, PCOLCE, PLOD1, and SPARC). COL5A2 was associated with DSS (HR = 1.70, p = 0.015).
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stages of GC showed that COL4A1 showed no significance in the
correlation analysis to pathological stages. Therefore, we identify
four genes as potential biomarkers of GC including COL1A1,
COL5A2, P4HA3, and SPARC. Also, the diagnostic value of these
genes was confirmed in the following analysis.

COL1A1 is an important member of the type-I collagen family,
the main fibrillar collagen and an essential structural component of
the ECM (Li J. et al., 2016). Many bioinformatic analyses identified
COL1A1 as a biomarker of GC (Wang W. et al., 2020; Wang Y.
et al., 2021; Zhao et al., 2021). Abnormal expression of COL1A1
has been reported in several cancers, including hepatocellular
carcinoma, ovarian cancer, and colorectal cancer, as well as in
GC (Li J. et al., 2016; Zhang et al., 2018; Ma et al., 2019; Li et al.,
2020). In vitro, enhanced expression of COL1A1 promotes the
invasion and migration of GC cells, while knocking out COL1A1

inhibits the increase in cell metastasis ability (Li et al., 2021). It
plays an important role in promoting tumor cell proliferation,
migration, invasion, epithelial–mesenchymal transformation
(EMT), and chemotherapy resistance (Armstrong et al., 2004;
Koenig et al., 2006; Shintani et al., 2008; Yang et al., 2014;
Zheng X. et al., 2017; Yamazaki et al., 2018; Shi et al., 2021).
ROC analysis showed high diagnostic value of COL1A1 (AUC =
0.916) based on 414 GC samples and 210 normal gastric tissues.
This finding is consistent with that of Zhao et al. (2021) (AUC =
0.917) based on 375 GC samples and 32 normal samples (Zhao
et al., 2021). The diagnostic and prognostic values of COL1A1 were
confirmed with extra data (more samples than others) from the
present work.

COL5A2 is a member of the type-V collagen family which is
also a significant structural component of the ECM. COL5A2 was

FIGURE 8 | Progress free interval analysis of 14 candidate genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL6A3, COL11A1,
MMP2, P4HA3, PCOLCE, PLOD1, and SPARC). COL5A2 was associated with PFI (HR = 1.44, p = 0.043).
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reported to promote proliferation and invasion in colon cancer and
prostate cancer (Ren et al., 2021; Wang J. et al., 2021). Also, it has a
strong correlation to the prognosis of renal cancer and gastric
cancer (Ding et al., 2021; Tan et al., 2021). The overexpression of
COL5A2 promoted the migration of GC cells in vitro and in vivo,
and the knockdown of COL5A2 could significantly decrease the
migration of cell (Tan et al., 2021). A previous study had

demonstrated that patients with higher COL5A2 levels were
more likely to suffer from renal metastasis (AUC = 0.878).
Among all those genes we identified as potential biomarkers,
COL5A2 was the unique gene that was associated with the OS,
DSS, and PFI of GC, which had not been reported in previous

FIGURE 9 | Correlation analysis between five key genes (COL1A1, COL4A1, COL5A2, P4HA3, and SPARC) and the pathological stage of GC shows they are
potential prognostic markers.

FIGURE 10 | The expression of four genes (COL1A1, COL5A2, P4HA3,
and SPARC) are correlated with each other in GC.

FIGURE 11 | ROC of four key genes (COL1A1, COL5A2, P4HA3, and
SPARC) shows they are of high diagnostic value in GC.
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studies. The value of AUC in our current study is 0.802 based on
data from TCGA and GTEx. Therefore, COL5A2 could serve as a
novel biomarker of GC. Also, we would perform biological
experiments to verify the result.

Previous research showed that P4HA3 was up-regulated in
head and neck squamous cell carcinoma (HNSCC) tissue, and it
was demonstrated to promote HNSCC cell proliferation,
invasion, and migration in vitro (Wang T. et al., 2020). A
recent study showed that the de-regulation of P4HA3 was
associated with increased metastasis and poor prognosis of GC
(Song et al., 2018). In the present work, the value of AUC of
P4HA3 is 0.875, which indicated high value of diagnosis and has
not been reported in previous studies. The result suggests that
P4HA3 is a potential biomarker of GC.

SPARC is one of the first-known matricellular protein that
modulates interactions between cells and the ECM. It has divergent
actions due to different categories of tumors. It shows anti-tumor
or tumor-promoting effects in different cancers (Tai and Tang,
2008). What is surprising is that previous research results are
inconsistent. As Zhang et al. (2012) and Zhang et al. (2014)
reported, “SPARC expression is negatively correlated with the
clinicopathological factors of gastric cancer and inhibits
malignancy of gastric cancer cells,” and they confirmed the
anti-tumor activity of SPARC in vivo and in vitro. The anti-
tumor activity was also reported by Wang L. et al. (2012) in a
clinical trial involving 80 gastric cancer samples and 30 normal
samples. On the contrary, the tumor-promoting effect of SPARC
was also reported in GC. Over expression of SPARC promoted GC
progression, including serosal invasion, lymph node, and distant
metastasis, and tended to poor prognosis of patients (Zhao et al.,
2010; Sato et al., 2013; Wang et al., 2014). Also, the invasion and
proliferation ability was inhibited in SPARC knockdown MGC803
and HGC 27 gastric cancer cell lines, which demonstrated the
tumor-promoting activity of SPARC. Increased expression of
SPARC in this study corroborates these earlier findings (Li Z.
et al., 2016; Liao et al., 2018; Li et al., 2019). ROC analysis showed
high diagnostic value of SPARC, and the value of AUCwas 0.895 in
the current study. Biological experiments in different cell lines and
clinical samples are necessary to verify the result.

The correlation between these four genes was analyzed, and we
found that all of these genes were highly correlated with each other,
which enhanced their possibility as potential biomarkers of GC.

In summary, previous studies have identified COL1A1 as a
biomarker for GC diagnosis and prognosis. COL5A2, P4HA3,
and SPARC were reported to be associated with poor prognosis
(OS and DSS, but not PFI); however, the diagnostic value has not
been recognized. In the present study, the prognosis values of
COL1A1, COL5A2, P4HA3, and SPARC were confirmed. The
ROC analysis showed that they could distinguish between GC
samples and normal samples effectively. Thus, we suggest
COL1A1, COL5A2, P4HA3, and SPARC as biomarkers for
both diagnosis and prognosis of GC. Each of the biomarkers
identified in the present work plays a significant role in the ECM,
which highlights the importance of the tumor microenvironment
in GC. Compared with similar studies, we suggested those genes
as both diagnostic and prognostic biomarkers for GC.
Nevertheless, the current results are all derived from

bioinformatics analysis and are limited by the absence of
confirmation. Due to different screening criteria, previous
bioinformatics research produced different biomarkers. Many
of the biomarkers have been verified, and the combination of
those results might be more rigorous. Further clinical
experiments are underway to verify their value in GC.
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Colorectal cancer (CRC) is the third leading cause of cancer death globally. Early detection
and removal of precancerous polyps can significantly reduce the chance of CRC patient
death. Currently, the polyp detection rate mainly depends on the skill and expertise of
gastroenterologists. Over time, unidentified polyps can develop into cancer. Machine
learning has recently emerged as a powerful method in assisting clinical diagnosis. Several
classification models have been proposed to identify polyps, but their performance has not
been comparable to an expert endoscopist yet. Here, we propose a multiple classifier
consultation strategy to create an effective and powerful classifier for polyp identification.
This strategy benefits from recent findings that different classification models can better
learn and extract various information within the image. Therefore, our Ensemble classifier
can derive a more consequential decision than each individual classifier. The extracted
combined information inherits the ResNet’s advantage of residual connection, while it also
extracts objects when covered by occlusions through depth-wise separable convolution
layer of the Xception model. Here, we applied our strategy to still frames extracted from a
colonoscopy video. It outperformed other state-of-the-art techniques with a performance
measure greater than 95% in each of the algorithm parameters. Our method will help
researchers and gastroenterologists develop clinically applicable, computational-guided
tools for colonoscopy screening. It may be extended to other clinical diagnoses that rely
on image.

Keywords: colorectal cancer, deep learning, polyp detection, colonoscopy, ensemble classifier

1 INTRODUCTION

Cancer is a complex disease caused by uncontrolled cell growth. Colorectal cancer (CRC) is a
form of cancer that occurs when irregular growth occurs in the colon and rectum (the last part of
the gastrointestinal (GI) system). A polyp’s initial stage is noncancerous; however, some polyps
may become cancerous over time. For the determination of the treatment plan, the identification
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of a polyp is essential. Regular screening can prevent cancer
through the identification and removal of precancerous polyps
(Soh et al., 2018; Sánchez-Peralta et al., 2020). Diagnosis of the
disease at an early stage can result in more effective treatment.
As a consequence, screening decreases CRC mortality by both
reducing the incidence and increasing survival. The visual test
is a commonly recommended technique for CRC screening.
Colonoscopy is one of the standard screening techniques for
visualizing specific parts of the colon (Sánchez-Peralta et al.,
2020). During a colonoscopy, gastroenterologists perform
visual screening of the entire colon from the rectum to the
cecum with the help of a light and tiny camera attached to the
colonoscope.

Most of the works available in literature have focused on the
detection of different types of polyps, such as cancerous or
noncancerous, due to the lack of availability of a benchmark
dataset. However, a colonoscopy video contains frames with
polyps and without polyps. Therefore, as the first step, it is
necessary to conduct a study to classify the frames to examine
the presence of polyps, which will further study the features of the
polyps, such as whether it is cancerous or not, location on the
colorectum, or the disease stages.

Multiple computer-aided design approaches have been
proposed in previous studies that can be applied to CRC
analysis. In this direction, most of the works have used
k-means, Fuzzy C-means, K-Nearest Neighbor (KNN), and
support vector machine (SVM) based on handcrafted features
(Häfner et al., 2015; Wimmer et al., 2016; Ševo et al., 2016; Shin
and Balasingham, 2017; Sanchez-Gonzalez et al., 2018; Sundaram
and Santhiyakumari, 2019). For example, Oh et al. (2007) used
edge detection–based methods and achieved 96.5% accuracy in
detecting informative frames. Recent studies have introduced the
applicability of deep learning in colon cancer detection (Bernal
et al., 2017; Pacal et al., 2020). Bernal et al. (2017) compared the
efficacy of handcrafted features with CNN-extracted features in
detecting polyp presence on still frames. They claimed that end-
to-end learning approaches based on the CNN are more efficient
than those based on handmade features. Akbari et al., (2018)
applied the CNN on whole-slide images to classify informative
and noninformative frames. Others (Ribeiro et al., 2016; Sharma
et al., 2020a; Sharma et al., 2020b) also utilized deep learning
architecture, such as VGG, ResNet, and GoogLeNet, for
informative frame detection. Graham et al. (2019) used a
minimum information loss deep neural network to segment
the polyp region; they could achieve an F1 score of 0.825 and
object-level dice score of 0.875. Sornapudi et al. (2019) proposed a
CNN-based approach and used transfer learning from the
ImageNet dataset to achieve an 88.28% F1 score in polyp
segmentation.

The literature proffers a clear trend to eventually replace
handcrafted features and traditional ML techniques with end-
to-end frameworks. It all enables significant improvement in
colonoscopy image analysis, making it more automated and
providing more reliable and precise polyp detection methods.
This work proposed a fully automatic system to classify polyps
on still-frames from colonoscopy. The proposed system is an
ensemble of different CNN architectures. The system will

provide a decision in two stages. First, the frames are
assessed as informative (frames containing polyps) and
uninformative (frames not containing polyps). Second, the
same classification model is applied to predict informative
frames as cancerous (frames containing cancerous polyps) or
noncancerous (frames containing non-cancerous polyps).
Ensemble learning is an approach where better efficiency is
obtained by integrating the results into one high-quality
classifier from multiple classification models. Our
methodology also addresses the problems involved in the use
of the CNN for classification with limited sample data by using
pre-trained CNN on a large dataset of natural images ( > 1
million) and fine-tuning (optimizing) them using a smaller
medical image dataset (at the thousand level). The different
CNNs in our Ensemble method allow extracting the image
features on different semantic levels so that the distinctive
and subtle variations between different image classes can be
identified. The contribution of this work includes the following
three parts:

• Development of an automatic polyp detection model from
colonoscopy images. Our model will classify the
colonoscopy frames as informative or uninformative and
further classify informative frames as cancerous or
noncancerous.

• Detection of polyps during colonoscopy screening through
the multiple classifier consultation strategy to create an
effective and strong classifier for polyp identification.
After our literature review, we assessed that it is the first
approach by an Ensemble of various significant learning
models for colonoscopy frame analysis.

• The robustness of the proposed Ensemble classifier is
demonstrated by applying it to a real-world clinical
dataset and comparing its result with the publicly
available benchmark dataset. A suitable statistical
significance test is conducted to assess the significant
difference in the performance of proposed methods with
a single classifier.

2 MATERIALS AND METHODS

Conventional techniques for classification tasks rely on manually
examined features. Optimal feature selection plays a vital role in
the final outcome of the selected computer vision task. Identifying
the best features for a target segmentation/classification
algorithm is difficult due to less intergroup variability. The
variability in the visual appearance of polyps and their
background is much less compared to the object and its
background in natural images. Therefore, algorithms that are
efficient for computer vision task in natural images are not always
an ideal approach to deal with the computer vision task in
medical imaging. Deep learning is an active domain in the
research area of medical image analysis as it has recently
successfully overcome the challenges in image recognition on
the ImageNet dataset (Deng et al., 2009). Hence, the application
of the CNN, a deep learning approach in CRC analysis, is
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introduced in this work. The workflow of the proposed work is
described in Figure 1.

2.1 Dataset
A dataset that consists of colonoscopy frames extracted from a
colonoscopy video is used in this work. The data were generated in
the Department of Gastroenterology, Aichi Medical University,
Nagakute, Japan, with the IRB approval of the Aichi Medical
University ethical committee (15 January 2018; Approval No.

2017-H304). To assess the robustness of the proposed
methodology, evaluation is performed on two publicly available
benchmark datasets, Kvasir (Pogorelov et al., 2017) and Depeca
(Mesejo et al., 2016). The mentioned datasets can be downloaded
from https://datasets.simula.no/kvasir/and http://www.depeca.uah.
es/colonoscopy_dataset/, respectively. The details of these datasets
are summarized in Table 1. Because of the unavailability of any
polyp dataset that contains only two groups, that is, cancerous and
noncancerous, we combine serrated and adenoma frames available

FIGURE 1 | Workflow of the proposed system.

TABLE 1 | Summary of datasets used in this study.

Dataset # Frames # Frames with polyps

Informative Uninformative Cancerous Noncancerous

Aichi-Medical dataset 397 500 125 272
Kvasir dataset 500 500 - -
Depeca colonoscopy dataset — — 55 21
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on the Depeca colonoscopy dataset, which has a total of 55 original
frames. We consider this combined class as cancerous and 21
hyperplastic frames as noncancerous in our study.

2.2 Classification Model
The CNN typically requires a massive dataset for training (at least
thousands of samples if not available in millions). Thus, the application

of the CNN trained from scratch is difficult because limited time and
workload of experts to create labeled sample datasets onmedical images.
If the available training dataset is small in size, as is the case in this
domain of medical image analysis, methods based on the CNN usually
overfit and are unable to extract the image features in high quality.

Transfer learning is the strategy through which a CNN is
initially trained to learn standardized image characteristics on a

TABLE 2 | Performance measures for evaluating the detection model.

Measures Formula Description

Accuracy Urban et al. (2018); Zhang et al. (2016); Bandyopadhyay et al. (2013);
Bedrikovetski et al. (2021)

|TP|+|TN|
|TP|+|TN|+|FP|+|FN| The ratio of the number of correct prediction with respect to total

observations
Precision Urban et al. (2018); Zhang et al. (2016); Bandyopadhyay et al. (2013);
Bedrikovetski et al. (2021)

|TP|
|TP|+|FP| The ratio of the number of correct positive prediction with respect

to total positive prediction
Recall/Sensitivity Urban et al. (2018); Zhang et al. (2016); Bandyopadhyay et al.
(2013); Bedrikovetski et al. (2021)

|TP|
|TP|+|FN| The ratio of number of correct positive prediction with respect to

actual positive observation
F1 score/Dice-coefficient Urban et al. (2018); Zhang et al. (2016); Bandyopadhyay
et al. (2013); Bedrikovetski et al. (2021)

2 × Recall × Precision
Recall+Precision F1 score is the harmonic mean of both precision and recall

FIGURE 2 | Five-fold cross-validation accuracy and loss of each individual classifier for (A) informative frame detection and (B) cancerous and noncancerous polyp
categorization.
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large-scale labeled image dataset and then used to retrieve similar
features from a smaller dataset. It has already been successfully
applied in different image analysis tasks or disease-related trials.
Therefore, in our proposed Ensemble classifier, the base model
weights are transfer-learned from the ImageNet dataset (Deng
et al., 2009). Data augmentation is applied to all the datasets for
balancing the dataset. The augmentation techniques such as
shearing, rotation, skewing, zooming, and inverting are used.
It is one of the most common approaches used for minimizing
overfitting during the training phase of the CNN. This approach
artificially expands the dataset using different class-preserving
functions applied to each image to generate synthetic images. The
concept behind the augmentation techniques is that the
reproduced samples do not change their semantic meaning
but enable the generation of a new sample to increase dataset
size. As mentioned earlier, training CNNs on large data leads to
improvement in its efficiency, robustness, and generalizability on
previously unseen data or samples. Hence, in this work, we apply
clock-wise rotation with an angle of 45°, 90°, and 120° and
zooming parameters of 30.00 and 10.00% to the 1,000 original

images of the Kvasir dataset to generate another 1,000 augmented
images. Due to fewer data in the Aichi-Medical dataset, we apply
a shearing operation with a value of 0.1 to original frames and the
augmentation as mentioned above to balance the class disparity
in the number of images. Again, for the Depeca colonoscopy
dataset, we apply rotation, shearing, inverting, skewing, and
zooming to obtain a total of 2000 images, including the
original image. After applying augmentation, each individual
dataset contains 2000 images. Then, a two-level classification
is carried out in this research to fulfill the objective.

• The first-level classification is for informative frame detection.
The outcome of the classifier is expected to be the class label of
individual frames as informative or uninformative.

• The second classification is to detect cancerous polyps from
informative frames. The outcome of the classifier is expected
to be the class label of an individual informative frame as a
cancerous or noncancerous polyp.

Three CNN architectures are used along with the proposed
Ensemble classifier. The description of individual classifiers is
widely available in the literature.

• ResNet101: As the information from the input or the gradient
calculated by theCNNpasses throughmany layers, it sometimes
vanishes in between the hidden layers and sometimes rinsed out
by the time it hits the end or beginning of the network
(Simonyan and Zisserman, 2014; Huang et al., 2017). This
was solved using ResNet. Conventional neural networks
forward the output information of a layer (e.g., Lth) as an
input to the successive layers (L+ 1)th. If X is the input to the Lth
layer, then the input to the L + 1st layer will be X′, where X′ can
be represented as

X′ � f X( ). (1)
Here, f is the series of different operations within the

convolution block. ResNets have added a skip-connection that
bypasses the nonlinear transformations with an identity function
(Szegedy et al., 2015)

X′ � f X( ) +X. (2)
In this structure, input images are convolved by a kernel of size

7 × 7 with a stride equal to two followed by max-pooling. The first
residual block accepts the output of this pooling layer. It uses a
residual connection that adds the output of the pooling layer with the
output of the first residual block. The residual block is constituted of
three subsequent convolution layers. The first and third convolution
operations are 1 × 1 convolution. The first convolution mixes up all
the local properties of the image pixels across all the channels, and
the convolution layer with 3 × 3 kernel mixes up the spatial
properties. The third convolution layer helps increase the number
of channels. The residual connection does not have any attenuation
or gradient multiplication with activation. So, it is a unity gradient.
By virtue of a residual connection, the exact value of the gradient can
propagate back to the input layer. Using this structure, it is possible
to carry forward information to the end of the model, but it is

FIGURE 3 | Test results of all four classifiers for (A) informative frame
detection and (B) cancerous and noncancerous polyp classification.
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possible to backpropagate the gradient without vanishing it. The
main power of ResNet is the direct flow of gradient through the
identity relation from the successive layers to the prior layers.

• GoogLeNet: In the GoogLeNet architecture, a new “Inception”
subnetwork module is added. The findings of various parallel
convolution filters present at the inception are concatenated.
The repetition of the Inception modules captures the optimal
sparse representation of the image, while simultaneously
reducing dimensionality. The network comprises 22 layers
that require training (or 27 if pooling layers). Experiments have
shown that GoogLeNet has fewer trainable weights than
AlexNet and, thus, is more accurate (Szegedy et al., 2015).

• Xception: In the structure of Xception, the convolution layer
used in ResNet is replaced by a depth-wise separable
convolution module. Depth-wise separable convolution
converges the process faster, and the accuracy is high. In
the depth-wise separable convolution module, depth-wise
convolution is followed by a 1x1 convolution. The number
of filters is equal to the number of channels in each layer. With
decreasing number of channels, the number of connections
also decrease, which eliminates the drawback of performing
convolution across all the channels. The depth-wise separable
convolution learns spatial correlation, and the 1x1 convolution
learns the interchannel correlation. The nonlinear activation
function is not used. As state-of-the-art literature conveys that
Xception outperforms VGG-16 and ResNet-152 in the
ImageNet classification challenge (Chollet, 2017), Xception
retains the characteristics of ResNet and can effectively deal
with the complex situation of extracting targets covered by

occlusions. Considering these advantages, in our proposed
Ensemble method, we used Xception as a candidate model
that is optimized based on ResNet.

Each individual classifier is fine-tuned according to our
objective. Because the classification task in this work is to deal
with binary classification problems, the models are fine-tuned by
truncating the top layers of each model and replacing them with a
modified fully connected network with a two-neuron output
layer. Finding the best model for a specific task is dependent
on efficient hyperparameter optimization. The best
hyperparameters considered in this work are Adam as an
optimizer, 0.001 learning rate, and a batch size of 32.

2.3 Ensemble Classifier
Ensemble classification is the preference of many scientists in a
variety of fields such as computer vision and medical image
analysis. For example, Bolón-Canedo et al. (2012) developed an
Ensemble classification approach in the bioinformatics field,
aiming for interpretation of the microarray data classification.
Sun et al. (2015) implemented the concept of Ensemble
classification on an imbalanced dataset. They reported that it
outperformed conventional classification techniques. Sharif et al.
(2020) applied an Ensemble classifier to analyze the data for
squamous cell carcinoma. Bose et al. (2021) proposed an
Ensemble classifier for efficient classification of a malignant
tumor. Shakeel et al. (2020) used an Ensemble classifier to
detect non–small cell lung cancer from CT images. Hussain
et al. (2020) also used the Ensemble classifier to mine the data
in cervical precancerous samples and cancer lesions. Some other

FIGURE 4 | Confusion matrix of each individual classifier for (A) informative frame detection and (B) cancerous and noncancerous polyp classification.
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biomedical research contributions based on the application of the
Ensemble classifier to improve computer-aided systems can be
found in references (Yang et al., 2016; Yang et al., 2020; Ayaz
et al., 2021; Mahfouz et al., 2021). These ensembles are basically
combining traditional machine learning models, such as SVM
and AdaBoost, with one of the deep learning models. Our
motivation for this work is to find a novel and efficient model
for classifying colonic polyps to detect colorectal cancer. So far,
there has been limited work that focuses on improving the
performance of polyp detection using Ensemble. This
encouraged us to incorporate the principle of Ensemble
classification in this work. In the Ensemble method, the
approach is to consult as many classifiers as possible and
factor their decision in such a way that its efficiency will be
enhanced. Figure 1 presents an overview of the proposed
Ensemble method. Unlike most other ensembles in the
literature, which rely on handcrafted features, we use three of
the best performing CNN models in both the computer vision
and medical imaging tasks in our Ensemble. Initially, the CNN
architectures whose weights have been initialized on natural
image data are fine-tuned. Each of the fine-tuned CNN
extracts independent image features to classify an image.
Then, the Ensemble classifier chooses the class label for a
particular image based on the decision of each candidate
classifier. To consider the decision of each individual classifier,
a weight is assigned to each individual decision based on the
weighted majority voting technique. The process of decision
making by the Ensemble classifier is detailed in Algorithm 1.
During the decision-making process, we consider the loss of each
individual model when deciding the class-label probability for
each image. The individual model that has the smallest loss will be
assigned the highest weight.

Algorithm 1. Decision of the Ensemble classifier.

2.4 Performance Metrics for Evaluation of
Classification Task
The performance evaluation parameters of a classification model
are based on the correct and incorrect estimation of test records
anticipated by the model. The confusion matrix gives the insight
of predicated values compared to the actual values that can be

visualized for the test dataset for all the classes. The four
measures, true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), are part of the confusion matrix.
Based on these four measures, efficient parameters to evaluate
different classification techniques can be estimated. The most
common performance measures based on the confusion matrix
are explained in Table 2. This work has considered accuracy,
precision, recall, F1 score, and specificity to evaluate the
performance of our Ensemble classifier.

2.5 Statistical Analysis
The statistical significance test is applied to compare the
significance of our proposed Ensemble method with others.
We used the McNemar test (McNemar, 1947; Demšar, 2006)
with a contingency table. The McNemar test is used to compare
the accuracy of prediction for two models.

3 RESULTS AND DISCUSSION

To evaluate the efficiency of the proposed method and compare
their performance with the existing methods, we applied and
evaluated the proposed Ensemble method along with the
individual classifier on our generated dataset. These models
were implemented using the Keras deep learning framework
with a TensorFlow backend provided by Google-Colab.

The dataset was split into two subsets using the train–test
strategy. We first consider splitting with a ratio of 0.15. The first
subset of 300 images is considered only for testing model
performance, while the second subset of 1700 images is used
for training. In the training phase, five-fold cross-validation is
applied wherein each fold with 15% of the training data is
considered for validation to improve the performance of the
model. We train the same base classifier individually for each
classification task to achieve both the objectives of this work. First,
we perform the classification of informative and uninformative
frames. Then, we conduct a separate training for all three
classifiers for the second classification purpose, that is, to
classify cancerous and noncancerous polyps. The box and
whisker plots in Figures 2A,B show the mean score of the
validation accuracy and loss achieved during each fold for
each individual classifier. GoogLeNet achieved 96.5% average
accuracy after five-fold cross-validation, which is the highest
among all three individual classifiers for both classification
tasks. For the test dataset, the accuracy, precision, recall, F1
score, and specificity values were reported for all the classifiers.

3.1 Evaluation of Classifier Performance
Figures 3, 4 display the performance of the Ensemble classifier
along with each individual classifier on the generated dataset. For
informative frame detection, our proposed Ensemble obtained
98.3, 98.6, and 98.01% accuracy, precision, and recall,
respectively, and for cancerous polyp detection, 97.66, 98.66,
and 96.73% accuracy, precision, and recall, respectively. We
performed receiver operating characteristic (ROC) analysis,
and Figure 5 shows the model performance using the
measured area under the ROC curve (AUC). These observed
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results indicated that our proposed Ensemble classifier performed
better than any other classifiers for both classification tasks.

Based on our objective of this work, both the FP and FN are crucial,
and our goal is to keep them low. In the first scenario, our proposed
system informs that patients having a cancerous tumor but being
labeled as noncancerous could lead tomisclassification denoted as false
negative (FN). In another scenario, patients not having a cancerous
tumor but being informed as abnormal (cancerous) could cause false
positive (FP). Both FNs and FPs have a significant impact on
misclassification, therefore leading to wrong diagnosis and causing
human health problems. We considered F1 score along with other
performance evaluationmeasures to equally prioritize both FP and FN.
We observed that our proposed method gives the highest F1 score of

98% for informative frame detection and 97.33% for cancerous polyp
detection. Almost equal precision, recall, and F1 score of our ensemble
convey that the proposed model has a negligible rate of
misclassification, which is also supported by the specificity value.

Figure 6A shows the comparison of our Ensemble classifier’s
result on the Kvasir dataset with our dataset. The Kvasir dataset is
considered a benchmark dataset for informative frame detection,
and our Ensemble attains a value of test accuracy 98%, precision
99.33%, recall 96.75%, F1 score 98.03%, and specificity 99.31%.
Figure 6B compares the Ensemble classifier’s result on the
Depeca colonoscopy dataset to produce the effectiveness of
our proposed method on a new independent dataset for

FIGURE 6 | Performance comparison of Ensemble classifiers. (A)
Performance of Ensemble classifier on significant frame detection. (B)
Performance of Ensemble classifier on classification of cancerous and
noncancerous polyps.

FIGURE 5 | Area under the ROC curve analysis for (A) informative frame
detection and (B) cancerous and noncancerous polyp classification.
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cancerous polyp detection. We observed that the results were
consistent on all the datasets, which provides clear evidence of the
robustness of our proposed method.

In Table 3, we compared the Ensemble classifier with other
classifiers found in existing literature for CRC detection (Zhang et al.,
2016; Shin and Balasingham, 2017; Akbari et al., 2018; Urban et al.,
2018;Wang et al., 2018; Sharma et al., 2020a). From the observation,
it is comprehendible that the proposed method outperforms the
other classifier and is efficient in fulfilling our objective.

In aid of this interpretation, the McNemar test result of our
Ensemble paired with each individual classifier is summarized in
Table 4. The p-values obtained from this test are less than 0.05 in
all the cases. These results show that our proposed Ensemble
approach is superior to the other classifiers.

3.2 Discussion
Based on the results, it is confirmed that the proposed Ensemble
classifier is an efficient model for colonoscopy image analysis and
can be used as an assistant tool by the gastroenterologist during the
screening of CRC. Even though the proposed method shows better
performance, some clinical information such as sex and age of the
patients, other medical conditions, geographic location, etc. are not
considered in this work. Future work conducted by considering
these criteria can improve computer-aided systems for early cancer
detection and treatment in personalized medicine. As the massive

dataset available for transfer learning contains natural images, the
transfer-learned features are more reflective of the natural image
characteristics and may not always necessarily reflect the subtle
characteristics of medical images. Therefore, it is expected that
transfer learning from the same domain large-scale dataset will lead
to developing a more efficient automatic system for CRC analysis.
Kudo et al. (1996) has reported that the detection rate to
differentiate cancerous and noncancerous lesions using images
from magnifying endoscopy is higher (81.5%) than that of the
stereomicroscopic analysis. Therefore, a performance comparison
of the proposed model considering the images of magnifying
endoscopy and the colonoscopy images will be a future direction.

4 CONCLUSION

In this article, we introduced a new Ensemble method for the
classification of each individual frame of a colonoscopy video as
informative or uninformative and then for predicting the
classified informative frames as cancerous or noncancerous
polyps. Our Ensemble uses multiple fine-tuned CNNs that can
learn diverse information present in individual images. The
Ensemble can fuse the fine-tuned CNN models to derive a
more powerful image classification scheme than the individual
CNNs. When Xception extracts features, it achieves the best
performance because Xception is optimized on the basis of
ResNet, which makes Xception inherit not only ResNet’s
advantage of residual connection but also its ability to extract
objects when covered by occlusions through depth-wise separable
convolution. The analysis by the McNemar statistical test
indicates high significance in the performance of the Ensemble
classifier when compared to the individual classifiers. Therefore,
our Ensemble shows the best performance for polyp detection on
colonoscopy with an acceptable level of all performance measures
in the range 0.95–1. A minor difference in precision and recall
value of our Ensemble classifier indicates that it can accurately
detect the presence of a polyp and also differentiate the cancerous
from noncancerous polyps efficiently.

TABLE 3 | Classification performance in comparison with similar work.

Objective Methods Algorithm Accuracy Precision Recall F1
Score

Specificity

Informative frame detection Proposed Ensemble CNN 98.3 98.6 98.01 98.33 98.66
Akbari et al. (2018) CNN 90.28 74.34 68.32 71.20 94.97
Zhang et al. (2016) Ensemble (SVM + CNN) 98.0 99.4 97.6 98.00 -
Shin and Balasingham
(2017)

CNN 86.69 86.28 28.90 43.30 99.02

Liew et al. (2021) Ensemble (ResNet50 +
Adaboost)

97.91 99.35 96.45 — 99.38

Cancerous and noncancerous polyp
identification

Proposed Ensemble CNN 97.66 98.66 96.73 97.68 98.63
Urban et al. (2018) CNN 90.00 — 88.1 — —

Zhang et al. (2016) Ensemble (SVM + CNN) 85.90 87.30 87.60 87.00 —

Wang et al. (2018) CNN 90.00 — 94.50 — —

Patino-Barrientos et al.
(2020)

CNN 83.00 81.00 86.00 83.00 —

*Bold values indicate the best performance.

TABLE 4 | Significance of Ensemble classifier decision in comparison with
individual classifiers.

Classifier Chi-squared Value p-Value*

ResNet101 vs. Ensemble 4.16 0.041
GoogLeNet vs. Ensemble 2.28 0.039
Xception vs. Ensemble 6.75 0.009

ReNet101 vs. Ensemble 2.25 0.033
GoogLeNet vs. Ensemble 2.25 0.033
Xception vs. Ensemble 5.81 0.015

*p-value is based on the McNemar test.
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Non-small-cell lung cancer (NSCLC) is one of the most common malignancies, and
specific molecular targets are still lacking. Angiogenesis plays a central regulatory role
in the growth and metastasis of malignant tumors and angiogenic factors (AFs) are
involved. Although there are many studies comparing AFs and cancer, a prognostic
risk model for AFs and cancer in humans has not been reported in the literature. This study
aimed to identify the key AFs closely related to the process of NSCLC development, and
four genes have been found, C1QTNF6, SLC2A1, PTX3, and FSTL3. Then, we
constructed a novel prognostic risk model based on these four genes in non-small-cell
lung cancer (NSCLC) and fully analyzed the relationship with clinical features, immune
infiltration, genomes, and predictors. This model had good discrimination and calibration
and will perform well in predicting the prognosis of treatment in clinical practice.

Keywords: NSCLC, angiogenic factors, immunotherapy response, model validation, biomarkers

1 INTRODUCTION

Lung cancer is one of the malignant tumors with the highest incidence and mortality worldwide
(Hirsch et al., 2017). Every year, 1.8 million people (11.6% of total cases) are diagnosed with lung
cancer, and about 1.6 million people (18.4% of total cancer deaths) died because of lung cancer. There
are two basic forms of lung cancer, small cell lung cancer (SCLC) and non-small-cell lung cancer
(NSCLC), and NSCLC accounts for approximately 85% (Ettinger et al., 2013; Gridelli et al., 2015).
NSCLC is characterized by poor survival, and despite significant advances in new chemotherapeutic
drugs and clinical surgery, the prognosis remains suboptimal (Ettinger et al., 2013; Gridelli et al., 2015;
Ettinger et al., 2021).With the advent of targetedmolecular therapy and immune checkpoint inhibitors,
the use of biomarkers in identifying patients is becoming increasingly common (Ma et al., 2019; Wang
et al., 2019). The existing evidence has suggested that targeted therapies have favorable therapeutic
effects. However, acquired resistance has become a major obstacle in the field of targeted therapies
(Chatterjee and Bivona 2019). Thus, more novel driver genes, therapeutic targets, and prognostic
biomarkers must be discovered and used for targeted therapy in larger populations, more accurate
prognosis prediction, and a better understanding of the mechanisms of lung cancer development.

Tumors can promote tumor angiogenesis, leading to angiogenesis, which is the one of hallmarks
of cancer (Hanahan and Weinberg 2000). The process of new blood vessel formation is critical in
supporting tumor growth, and solid tumors secrete angiogenic factors (AFs) implicated in the
complex regulation of angiogenesis (Goveia et al., 2020). Numerous important target molecules of

Edited by:
Saurav Mallik,

Harvard University, United States

Reviewed by:
Asim Bikas Das,

National Institute of Technology
Warangal, India
Antonio Russo,

University of Palermo, Italy

*Correspondence:
Yanlan Kang

1641866831@qq.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 11 March 2022
Accepted: 14 April 2022
Published: 18 May 2022

Citation:
Gu X, Chu L and Kang Y (2022)

Angiogenic Factor-Based Signature
Predicts Prognosis and

Immunotherapy Response in Non-
Small-Cell Lung Cancer.

Front. Genet. 13:894024.
doi: 10.3389/fgene.2022.894024

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8940241

ORIGINAL RESEARCH
published: 18 May 2022

doi: 10.3389/fgene.2022.894024

61

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.894024&domain=pdf&date_stamp=2022-05-18
https://www.frontiersin.org/articles/10.3389/fgene.2022.894024/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894024/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894024/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.894024/full
http://creativecommons.org/licenses/by/4.0/
mailto:1641866831@qq.com
https://doi.org/10.3389/fgene.2022.894024
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.894024


AFs in NSCLC and other cancers, such as vascular endothelial
growth factor (VEGF) (Zhang 2015) and epidermal growth factor
receptor (EGFR) (Oxnard et al., 2011), have all become clinical
targets for antitumor angiogenesis. Antiangiogenic medications
are increasingly used as anticancer drugs for first-line treatment.
Moreover, since the introduction of the first humanized anti-
VEGF monoclonal antibody, bevacizumab (Avastin), available in
2004 (Ferrara et al., 2005), there have been nearly 30
antiangiogenic drugs approved by the FDA (Lugano et al.,
2020). AFs are also expected to be optimal therapeutic targets.
Several significant global studies noted that angiogenesis
inhibitors combined with immunotherapy can enhance the

curative effect. There is increasing evidence that targeting
angiogenesis improves the efficiency of cancer
immunotherapy. A programmed cell death 1 (PD-1) inhibitor
and camrelizumab (AiRuiKa™) can improve the treatment effect
of chemotherapeutics in multiple types of cancers (Markham and
Keam 2019). However, apatinib, a vascular endothelial growth
factor receptor 2 (VEGFR2) tyrosine kinase inhibitor, has been
shown to increase the infiltration of CD8+ T cells, reduce the
recruitment of tumor-associated macrophages, and improve the
effect of PD-1 inhibitors (Zhao et al., 2019).

Despite many studies investigating the association between AFs
and cancers, whether AFs can be used as biomarkers to predict the
prognosis of NSCLC patients is still unknown. In our study, based
on the machine algorithms and bioinformatics methods, AF-
related risk score (AFRS) was established. Four key prognosis-
related AFs, C1QTNF6, SLC2A1, PTX3, and FSTL3, were first
screened using bioinformatics analysis of differentially expressed
genes (DEGs). Then, we attempted to construct a new risk score
model to predict NSCLC, and we further analyzed the clinical
features, immune infiltration, genomes, and multiple predictors.
To further validate the AF-related prognostic risk score model, we
used external dataset validation. An overview of this study is shown
in Supplementary Figure S1.

2 RESULTS

The expression profile data of NSCLC patients were downloaded
from the UCSC database. The detailed clinical features of these
patients are summarized in Table 1.

2.1 Differential Expression Analysis and
Functional Enrichment Analysis of
Non-Small-Cell Lung Cancer
We identified a total of 372 differentially expressed AF genes in
cancer and normal samples (with a threshold of adj.P.Val<0.01 &
|log (FC) |≥1) (Figures 1A,B). GO and KEGG functional
enrichment analyses of the differentially expressed AF genes

TABLE 1 | Clinic pathological data of patients with NSCLC in this study.

Characteristic Number

Age <60 720
≥60 221

Pathologic_M M0 698
M1 30
MX 208
NA 5

Pathologic_N N0 600
N1 213
N2 106
N3 7
NX 14
NA 1

Pathologic_T T1 262
T2 529
T3 108
T4 39
TX 3

Clinical stage Ⅰ 476
Ⅱ 264
Ⅲ 159
Ⅳ 31
NA 11

Follow up status Alive 570
Dead 371

FIGURE 1 | Batch effect removal. (A) Before batch effects were removed. (B) After batch effects were removed.
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FIGURE 2 | Differential expression and functional enrichment of AF genes in non-small-cell lung cancer. (A) Heatmap and clustering of differentially expressed AF
genes. (B) Volcano map of differentially expressed AF genes. (C) GO biological processes (D) GO molecular functions (E) GO cellular components and (F) KEGG.
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were then performed (Figures 1C–F). The enriched GO terms of
DEGs were classified into three categories: molecular functions,
cellular components, and biological processes. The results
revealed that these genes were enriched for GO terms such as
regulation of vasculature development, regulation of
angiogenesis, ameboidal-type cell migration, and positive
regulation of vasculature development, epithelial cell
proliferation, and tissue migration. The KEGG pathway
enrichment showed the enrichment of critical pathways
involved in tumorigenesis and metastasis, including pathways
in cancer, focal adhesion, the MAPK signaling pathway, the
chemokine signaling pathway, the TGF-β signaling pathway,
and renal cell carcinoma. The top 15 highly enriched KEGG
pathways are presented in Figure 1F.

2.2 Cox Regression Analysis of Differentially
Expressed Angiogenic Factor Genes
We performed a univariate Cox regression analysis of these
differentially expressed AF genes and identified 58 AF-related
genes that were associated with the prognosis of NSCLC. We

performed survival analyses of the top five genes in terms of the
p-value (Figures 2A–E). The low expression of these five genes
was associated with a worse prognosis (Figure 2F).

2.3 Development of Risk Model Using Lasso
Regression
A total of five AF genes significantly associated with prognosis
(p < 0.001) in the univariate Cox regression were further selected
for lasso regression (Supplementary Figure S2). We first used
cross-validation to identify the minimal lambda, i.e. lambda min,
and then selected the four most significant genes using lambda
min to develop the prognostic risk model. The optimized model
was: risk score = 0.104 * SLC2A1 + 0.138 * FSTL3 + 0.069
*C1QTNF6 + 0.046 * PTX3. We calculated the risk scores of each
sample using this formula and classified all the samples into high-
and low-risk groups according to the median for further analysis.

To validate the performance of our model, we plotted the
Kaplan–Meier survival curves of the high- and low-risk groups
(Figure 3A). A significant association was shown between the risk
group and survival (p < 0.0001), suggesting that the model had a

FIGURE 3 | Univariate Cox regression analysis. (A–E) Top five prognostic genes. (F) Forest plot of the top 20 genes.
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high prognostic value. Time-dependent ROC curves were further
plotted, which showed AUC>0.6 in the 1-year, 3-years, and 5-
years ROC curves. This indicated that the model had good
prediction ability (Figure 3B). Based on the optimistic cutoff,
the patients were divided into high AF risk score and low AF risk
score groups (Figures 3C–F).

We used the GSE4573 and GSE68465 datasets to validate the
model (Figures 4A–D). We combined the two datasets and
removed the batch effect. We selected the prognostic genes in
the datasets (C1QTNF6 was not identified) and calculated the risk
score using the coefficients in the model for validation. The
Kaplan–Meier plot showed that the samples in the high-risk
group had a worse prognosis with a p-value < 0.05, which
indicated that our model had high accuracy.

2.4 Differential Analysis and Association
Analysis of the Angiogenic Factor Risk
Score
We analyzed the difference in AF risk scores of each group that was
stratified by clinical characteristics. The risk score of LUSC was
significantly higher than that of LUAD (Figure 5A). The risk score
of the samples with EGFRmutations was significantly lower than that
of samples without EGFR mutations (Figure 5B). The risk score also

differed significantly across the different tumor stages andTNMstages,
which was consistent with the process of carcinogenesis (Figures
5C–F). The patients with a smoking history also had significantly
higher risk scores than those who never smoked (Figure 5G).

We also visualized the association of the risk score with tumor
mutational burden (TMB), homologous recombination deficiency
(HRD), neoantigen burden, chromosomal instability (CIN), and
stemness index (mRNAsi) (Figures 6A–D). TMB is a marker for
genomic instability measured by sequencing the whole tumor
genome and has been shown to correlate with immunotherapy
(Gibney et al., 2016). Therefore, TMB is emerging as a predictor of
immunotherapeutic responses. For all indexes, the highest
correlation was obtained for TMB (Figure 6A). This further
illustrates that the interaction of AFs can affect immunotherapy.
The discovery of homologous recombination deficiency (HRD) in
lung cancer is of great importance for patients who will benefit
from poly ADP-ribose polymerase inhibitor (PARPi) (Weston
et al., 2010). However, we did not find a correlation between
HRD and AFs (Figure 2B). Neoantigens are another important
index for predicting the clinical response to immunotherapy. The
current studies of neoantigen sources mainly focus on single
nucleotide variants (SNVs), such as small insertions and
deletions (indels), somatic copy number variations (SCNVs),
and large scale transition (LSTms). Similarly, we found no

FIGURE 4 | Assessment of the risk model based on TCGA data. (A) Kaplan–Meier curve validation. (B) ROC curve validation. (C) Risk score of all samples. (D)
Scatter plot of the survival time of all samples. (E) Heatmap of the prognostic genes in high- and low-risk groups.
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FIGURE 5 | Validation results of datasets GSE4573 and GSE68465. (A) Kaplan–Meier plot. (B) Risk score of all samples. (C) Scatter plot of the survival time of all
samples. (D) Heatmap of the prognostic genes in high- and low-risk groups.
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significant differences in these parameters (Figures 6C–H). The
stemness index (mRNAsi) is used to measure the tumor
development and evaluate the reliability of stem cell indexes as
shown in Figures 6A,I significant positive correlation was found
between AFs and mRNAsi. These results confirmed that AFs were
related to biological processes, cancer metastasis, and the immune
microenvironment.

2.5 Immune Infiltration Analysis of High- and
Low-Risk Groups
The immune infiltration status was highly associated with the
prognosis of NSCLC. We used the CIBERSORT algorithm to
calculate and compare the proportion of immune infiltration in
the high- and low-risk groups based on TCGA data (Figure 7A).
The proportions of naive B cells, memory activated CD4 T cells,
gammadelta T cells, and resting dendritic cells were significantly
increased in the low-risk group, while the proportions of memory
B cells, and macrophages. M0, macrophages. M2, and activated
mast cells was significantly higher in the high-risk group, which
indicated that the immune infiltration status was different in the
high- and low-risk groups.

We also found that the stroma score (p = 7.8e-16), immune
score (p = 0.012), and tumor purity (p = 1.7e-08) were
significantly higher in the high-risk group than in the low-risk
group (Figures 7B–D).

2.6 Differences in the Mutation Profile
Between High- and Low-Risk Groups
We further investigated the difference in the mutation profiles
between the high- and low-risk groups based on TCGA data. The

mutation rate of the high-risk group was slightly higher than that
of the low-risk group (92.81 vs. 90.91%). The mutation rate of
TP53 was the highest in both the high- and low-risk groups.
Additionally, missense mutations were the most dominant
among all mutation types. Single nucleotide polymorphisms
(SNPs) occurred more frequently in the high-risk group than
in the low-risk group (Figures 8A,B).

We also investigated the difference in CNV between the high-
and low-risk groups (Figures 8C–E). The copy numbers of
amplification and deletion were distributed differently in the
same position. Significant differences in distribution could be
observed in the figures (Figures 8C,D). We analyzed the Z-score
of the high- and low-risk groups (Figure 8E) by t-test. The results
showed a significant difference between them (p < 2.22e-16).

2.7 Independent Prognosticator Analysis of
Risk Score
Immunotherapy offers a new approach to cancer treatment. For a
long period of time, immunotherapy approaches targeting PD1,
PDL1, and ctla-4 have all been successfully applied in cancer, with
largely promising outcomes. Tumor immune dysfunction and
exclusion (TIDE) is a gene expression biomarker developed for
predicting the clinical response to immune checkpoint blockade.
We used the TIDE score to assess the performance of the risk
score to predict the response to immunotherapy and visualized it
in R software. A significant difference in the TIDE score was
demonstrated between the high- and low-risk groups (p = 0.0027)
(Figure 9A), while its prediction accuracy was lower than that of
the risk score (Figure 9B).

To assess the effect of the risk score on prognosis, we
performed univariate and multivariate Cox regression analyses

FIGURE 6 | Association analysis with clinical characteristics. (A) Disease code. (B) EGFR mutation status. (C) Tumor stage. (D) T stage. (E)M stage. (F) N stage.
(G) Smoking history.
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of the above clinical characteristics and validated the risk model
using validation datasets (Figures 10A–D). The risk score
showed a significant effect on the prognosis in both univariate
and multivariate regression analyses.

2.8 Prognostic Analysis of Risk Score and
Clinical Characteristics
Finally, we developed nomograms using the risk score and clinical
characteristics and validated them with calibration plots
(Figure 11A). The risk score showed the highest accuracy of
prediction (Figure 11B). The 1-year, 2-years, and 3-years
calibration plots demonstrated the highest accuracy of our
nomograms (Figures 11C–E).

3 DISCUSSION

Angiogenesis is essential for tumor growth and metastasis and
can provide space and nutrients for tumor cells. Multiple
angiogenic growth factors play critical roles in this process.
The previous studies indicate that targeting tumor
angiogenesis is a promising way to fight tumor growth and
dissemination in numerous types of cancer (DeBusk et al.,
2010; Meng et al., 2017; Chu et al., 2021; Pan et al., 2021).

With the development of next-generation sequencing, more
extensive molecules have been discovered as therapeutic targets.
However, no study has previously constructed a prediction model
of NSCLC based on AFs. In this study, we first identified 372 DE-
AFs based on the UCSC database and then confirmed that four

FIGURE 7 | Association analysis of AF risk score. (A) Tumor mutational burden and AF risk score. (B) Homologous recombination deficiency and AF risk score.
(C–D) Neoantigen burden and AF risk score. (E) Loss of heterozygosity (LOH) in chromosome instability and AF risk score. (F) SCNV of chromosome instability and AF
risk score. (G) Telomeric allelic imbalance (NtAI) of chromosome instability and AF risk score. (H) Large scale transition (LSTm) (I) Stemness index and AF risk score.
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genes, C1QTNF6, SLC2A1, PTX3, and FSTL3, were significantly
correlated with prognosis by constructing Cox regression and
Lasso regression models. High expression of the four genes was
also associated with poor prognosis in NSCLC patients. Second,
according to the medium-risk score, NSCLC patients were
divided into high- and low-risk groups. We calculated each
AUC value of the ROC curves for predicting prognosis, which
all had significantly good sensitivity. The 1-, 3-, and 5-years AUC
values of the ROC were 0.623, 0.658, and 0.609, respectively. The
risk score also performed well in validation sets GSE4573 and
GSE68465. We also evaluated our AF risk score models on
GSE4573 and GSE68465 validation data (batch effect
correction). The results showed significant differences between
the high- and low-risk groups.

The results of our study were consistent with those of other
past studies. Wei et al. (Zhang and Feng 2021) reported that
C1QTNF6 was significantly highly expressed in NSCLC tissues
and cells and regulated tumor growth, migration, and apoptosis.
Similar results have been reported in Japan (Tamotsu et al.)

(Takeuchi et al., 2011), in which C1QTNF6 has been implicated
in tumor angiogenesis in hepatocellular carcinoma. Solute carrier
family 2 member 1 protein (SLC2A1) plays an important role in
glucose metabolism in the human body. A previous study
suggested that the upregulated expression level of SLC2A1
may increase the tumor cell proliferation and metastasis
(Xiong et al., 2020). Hongwei et al. (Xia et al., 2021) found
that lncRNA PVT1 can regulate cell growth, migration, and
invasion by targeting the miR-378c/SLC2A1 axis. PTX3 is
involved in tumor progression in multiple types of cancer and
has also been identified as an independent prognostic predictor of
cancer (Bonavita et al., 2015; Giacomini et al., 2018). Follistatin-
related gene 3 (FSTL3) was proven to be an oncogene, and
upregulated the expression of FSTL3 could activate migration
by promoting F-actin and BMP/SMAD signaling (Chu et al.,
2020; Liu et al., 2021). Although C1QTNF6, SLC2A1, PTX3, and
FSTL3 may serve as potential targets for antiangiogenic
therapeutic strategies, the molecular mechanisms of
angiogenesis remain unclear.

FIGURE 8 | Immune infiltration levels of 22 immune cell types in the low-risk group and high-risk group. (A) CIBERSORT algorithm was used to assess the
difference in immune infiltration: *, p < 0.05; **, p < 0.001; ***, p < 0.01; ****, p < 0.001; ns, p > 0.05 (nonsignificant). (B) Stromal score; (C) Immune score; and (D)
ESTIMATE score.
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FIGURE 9 |Distribution of mutations and CNVs in the high- and low-risk groups. (A)Mutations in the high-risk group. (B)Mutations in the low-risk group. (C)CNVs
in the low-risk group. (D) CNVs in the high-risk group. (E) Distribution of the G-score and the p-value of the Wilcoxon test in the high- and low-risk groups.
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Third, to better guide clinical decision-making, we applied
AFRS to different clinical samples. We were pleasantly surprised
that AFRS in LUSC patients was significantly higher than that in
LUAD patients. AFRS was significantly lower in the patients with
EGFR mutation or without smoking. Furthermore, we conducted
a correlation between AFRS and different clinical stages and
found that AFRS was closely related to the clinical stage and
TNM stage.

Fourth, in recent research, immunotherapy has been
increasingly recognized for its potential therapeutic effect on a
variety of tumors. For example, immune checkpoint (PD-1, CTLA-
4) blockade has become an increasingly important part of cancer
therapy (Passiglia et al., 2021). There were plenty of clinical trials
(Reck et al., 2019; Herbst et al., 2020; Patel et al., 2020) that proved
the combination of ICI therapy and angiogenesis therapy can
reprogram the immune microenvironment and prune cancer

FIGURE 10 | Prediction performance of the TIDE score. (A) Difference in TIDE scores in the high- and low-risk groups. (B) ROC curve.

FIGURE 11 | Univariate and multivariate regression analyses. (A) Univariate analysis. (B) Multivariate analysis. (C) Univariate analysis of the validation set. (D)
Multivariate analysis of the validation set.
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growth-related blood vessels (Ramjiawan et al., 2017; Yi et al., 2019;
Giannone et al., 2020), which could have a synergistically better
performance in prolonging overall survival, especially in patients
with activating mutations of EGFR (Reck et al., 2019). By detecting
the immunity indexes of TMB and mRNAsi, we believed that this
research might provide bioinformatics evidence to support the
design of a combination of immunotherapy and antiangiogenic
therapy for NSCLC patients in the future.

Fifth, we found that of all clinical samples, the TP53mutation
type had the highest rate of mutations, neither in the low nor
high AFRS group. The SNP mutation in the high AFRS group
was remarkably higher than that in the low AFRS group.
Numerous studies have proven that TP53 mutation in
cancers can influence drug activity, tumor apoptosis, and
immune evasion (Alexandrova et al., 2015; Srihari et al.,
2018). Notably, gain-of-function p53 mutation promotes
neutrophils to tumors, which leads to resistance to
immunotherapy (Siolas et al., 2021). As a result, we further
analyzed the correlation of AFRS with the infiltration of various
immune cells. We found that the immune response was
significantly altered between the low and high AFRS groups,
including immune cell infiltration (i.e., M2 macrophages and
M0, mast cells, B cells), immune score, stromal score, and

ESTIMATE score. These results indicated that the high AFRS
group could induce stronger immunity activity.

For better clinical applications, we strive to develop a
nomogram to predict the prognosis of NSCLC patients. The
established nomogram showed a great performance in predicting
the clinical outcomes for NSCLC patients.

However, this study has several limitations. First, due to
limited resources and funding available, no clinical samples
were analyzed, hence, clinical relevance was not assessed.
Second, the lack of experimental verification was also limited.
We will further confirm our conclusions by performing cell line
and animal model experiments in the future and prove the
changes in the protein levels by western blot analysis.

4 CONCLUSION

In conclusion, assessing the global gene expression profile of Afs
in this study was the first. From the perspective of a reliable risk
score model using angiogenic factors, the present study provided
a new method for NSCLC treatment in the clinic. However, the
established model needs to be further confirmed in the future by
large scale multicenter clinical studies.

FIGURE 12 |Nomogram and calibration plots. (A)Nomogram of age, tumor stage, and TNM stage. (B)ROC curve of risk score, age, tumor stage, and TNM stage.
(C) 1-year calibration plot. (D) 2-years calibration plot and (E) 3-years calibration plot.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 89402412

Gu et al. Angiogenesis-Prediction Model of NSCLC

72

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


5 MATERIALS AND METHODS

5.1 Sources of Non-Small-Cell Lung Cancer
Datasets
The expression profile combined with patients’ clinical and
annotation information in LUAD and LUSC datasets were
downloaded from UCSC (https://xenabrowser.net/). Next, we
averaged the expression level of genes with the same name
and removed the genes with expression levels lower than 30%.
We merged the two expression profiles after processing and
converted the data type from FPKM to TPM. The samples
from patients aged >18 years were extracted, and batch effects
were removed (Figures 12A,B). We then searched the NCBI
database (https://www.ncbi.nlm.nih.gov/gene/?term=angiogenic)
using “angiogenic factor (AF)” as the keyword and extracted AF
expression data of 1,054 samples from the downloaded
expression profile.

5.2 Enrichment Analysis of Angiogenic
Factors Expression
We used the R package “limma” to identify AF-related
differentially expressed genes (DEGs) (threshold:
adj.P.Val<0.01 & |log (FC) |≥ 1) in 372 cancer and normal
samples. Next, gene ontology (GO) enrichment analysis
(p-value cutoff < 0.05) and KEGG pathway enrichment
analysis (p-value cutoff < 0.05) of differentially expressed
genes were performed using the R package “clusterProfiler”.

5.3 Univariate Cox Regression Analysis
Other data of cancer samples were further extracted, and a
univariate Cox regression analysis of DEGs associated with
overall survival was performed using the R packages
“survival” and “survminer” with a threshold of p < 0.05.
DEGs associated with prognosis were identified after
screening.

5.4 Prognostic Risk Model Development
Based on Lasso Regression
Lasso regression was performed using the R package “glmnet” for
downscaling prognostic genes.We first screened lambda by cross-
validation, and then selected the model with lambda. min. Next,
the expression matrix of the selected genes for the model was
extracted, and the risk score of each sample was calculated using
the following formula:

Riskscorei � ∑
n

i�1
expji p βj.

It represented the expression level of gene j in sample i, and
represented the coefficient of gene j in the lasso regression model.
All the samples were stratified into high- and low-risk groups
according to the median-risk score.

5.5 Risk Model Assessment
Kaplan–Meier survival curves were plotted according to high- or
low-risk groups. The ROC curves were drawn based on the
predicted risk score of each sample.

5.6 Analysis of Angiogenic Factor Risk
Scores According to Clinical
Characteristics
The samples with AF risk scores were grouped according to
clinical characteristics. We used the R package “ggplot2” to show
the distribution of AF risk scores in each group and the R package
“ggpubr” to illustrate the significant difference between groups.

5.7 Association Analysis of Angiogenic
Factor Risk Score
We calculated tumor mutational burden, homologous
recombination deficiency (HRD) (from technical support),
tumor neoantigen burden (according to the literature The
Immune Landscape of Cancer), chromosome instability (CIN)
(according to the literature The Immune Landscape of Cancer),
and stemness index (according to the literatureMachine Learning
Identifies Stemness Features Associated with Oncogenic
Dedifferentiation) based on AF risk scores and performed
association analyses.

5.8 Assessment of Immune Infiltration in the
High- and Low-Risk Groups Using
CIBERSORT
The proportion of 22 immune cells in the samples can be derived
using the CIBERSORT algorithm based on the expression of
certain genes. We assessed the difference in immune infiltration
between the high- and low-risk groups by t-test with a
significance threshold of p < 0.05.

5.9 Assessment of Immune Score, Stromal
Score, and Tumor Purity Using ESTIMATE
We analyzed the differences in the immune score, stromal score,
and tumor purity of AF in high- and low-risk groups using the R
package “ESTIMATE” and assessed the differences in immune
infiltration in the high- and low-risk groups by t-test with a
threshold of p < 0.05.

5.10Mutation Analysis in High and Low-Risk
Groups
MAF files of NSCLC were downloaded from the GDC database,
and we extracted the mutation information of AF from the
somatic mutation profile. The mutation profile of AF in high-
and low-risk groups was demonstrated with the help of the
“oncoplot” function, using the R package “maftools”.
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5.11 Copy Number Variation Analysis of
High- and Low-Risk Groups
The copy number variation (CNV) data of LUSC and LUADwere
downloaded from UCSC. The copy numbers of the high- and
low-risk groups were extracted to generate files and plotted on the
gadget using the “CNV distribution chart - bar graph section”.

5.12 Prediction of Response to
Immunotherapy
The expression profiles of immune genes were extracted from the
processed data of endometrial cancer samples, and the immune
gene sets were obtained from the ImmPort database (https://
www.immport.org/) and InnateDB database (https://www.
innatedb.ca/). The expression profiles of the immune gene sets
were subsequently normalized. The predicted TIDE scores of the
samples were calculated using the TIDE online database. The
distribution of TIDE scores in the high- and low-risk groups was
illustrated with box plots using ggpubr, and the significance was
tested by t-test.

5.13 Independent Prognostic Factor
Analysis
To validate whether the risk score was an independent prognostic
factor, univariate Cox regression analyses of the candidate
prognostic factors using TCGA sample data were first
performed, including risk score, age, tumor stage, and TNM
stage. A multivariate Cox regression analysis was subsequently

performed to assess the effect size of the risk score. We used the
function cph in the R package “rms” to plot the nomograms and
calibration plots for visualization.

5.14 Statistical Analysis
All statistical analyses were performed using R software version
4.0.3. p < 0.05 was set as the significance criterion.
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GLOSSARY

AFRS: angiogenic factors related risk score

AFs: angiogenic factors

CIN: chromosomal instability

CNV: copy number variation

DEGs: differentially expressed genes

EGFR: epidermal growth factor receptor

HRD: homologous recombination deficiency

LASSO: least absolute shrinkage and selection operator

WHO: World Health Organization

LSTm: large scale transition

NSCLC: non-small-cell lung cancer

SCLC: small cell lung cancer

SCNV: somatic copy number variations

SNPs: single nucleotide polymorphisms

TMB: tumor mutational burden

VEGF: vascular endothelial growth factor

VEGFR2: vascular endothelial growth factor receptor 2
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High Prolyl 4-Hydroxylase Subunit
Alpha 3 Expression as an Independent
Prognostic Biomarker and Correlated
With Immune Infiltration in Gastric
Cancer
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Background: Gastric cancer (GC) has a high mortality rate and is particularly prevalent in
China. The extracellular matrix protein, prolyl 4-hydroxylase subunit alpha 3 (P4HA3), has
been implicated in various cancers. We aimed to assess the diagnostic and prognostic
value of P4HA3 in GC and investigate its correlation with immune cell infiltration.

Methods: The present study usedmicroarray data from the Cancer Genome Atlas (TCGA)
to analyze the association of P4HA3 expression with clinicopathological features. Data
from the Gene Expression Omnibus (GEO) were used for validation. Receiver operating
characteristic (ROC) and Kaplan–Meier curves were constructed to determine the
diagnostic and prognostic value of P4HA3 in GC. Univariate and multivariate
regression analyses were performed to assess the impact of P4HA3 on overall survival
(OS) rates. A protein–protein interaction (PPI) network was generated and functional
enrichment evaluated. Single-sample gene set enrichment analysis (ssGSEA) was
conducted to correlate P4HA3 expression with immune cell infiltration. The correlation
between P4HA3 and immune check point genes was studied.

Results: P4HA3was over-expressed in GC, along with 15 other types of cancer, including
breast invasive carcinoma and cholangiocarcinoma. P4HA3 showed high diagnostic and
prognostic value in GC and was an independent prognostic factor. P4HA3, TNM (tumor,
node, metastases) stage, pathological stage and age all correlated with OS rates. Genes
related to P4HA3 were enriched in the lumen of the endoplasmic reticulum and included
procollagen-proline 3-dioxygenase activity. P4HA3 expression correlated with numbers of
macrophages, natural killer (NK) cells, immature dendritic cells (iDC), mast cells,
eosinophils, effective memory T cells (Tem), T-helper 1 (Th1) cells and dendritic cells
(DC). P4HA3 was positively correlated with hepatitis A virus cellular receptor 2 (HAVCR2)
and programmed cell death 1 ligand 2 (PDCD1LG2).
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Conclusion:P4HA3 is a potential independent biomarker for prognosis of GC andmay be
an immunotherapy target in the treatment of GC.

Keywords: P4HA3, gastric cancer, bioinformatics, prognosis, immune infiltration

INTRODUCTION

Data from Global Cancer Statistics (https://gco.iarc.fr/today/
online-analysis) indicates that gastric cancer (GC) is the fifth
most frequently diagnosed cancer and the fourth leading cause of
cancer-related death worldwide. Global age-standardized
incidence and mortality rates are 11.1 per 100,000 and 7.7 per
100,000. Rates are considerably higher in China, where incidence
and mortality occur at 20.6 per 100,000 and 15.9 per 100,000,
respectively (Machlowska et al., 2020; Sung et al., 2021; Niu et al.,
2022). GC is thus a significant health and economic burden
worldwide and this is particularly the case in China.

The majority of GC cases are diagnosed at the late stage, resulting
in a poor prognosis. However, advances in molecular biology
techniques allow us to approach an understanding of precise
molecular mechanisms of carcinogenesis which holds promise for
development of diagnostic, prognostic and therapeutic strategies. It
is known that immune-related mechanisms and markers participate
in the occurrence and development of GC and appropriately
targeted therapy looks promising for its treatment (Güthle et al.,
2020). Such observations highlight the urgent need to identify new
immune-related biomarkers to facilitate early GC diagnosis and
treatment.

Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) is a catalytic
subunit involved in collagen synthesis. Its overexpression has been
associated with tumors and with non-cancerous diseases, including
idiopathic pituitary adenoma, melanoma, stomach carcinoma, breast
cancer and pulmonary fibrosis (Luo et al., 2015; Song et al., 2018;
Atkinson et al., 2019; Long et al., 2019; Gu et al., 2020).

A recent study has suggested that upregulation of P4HA3 is
associated with enhanced metastasis and poor survival of GC
patients (Song et al., 2018). However, any correlation with
immune cell infiltration has been little scrutinized. The current
study investigated P4HA3 expression in GC and its relationship
with immune cell infiltration.

MATERIAL AND METHODS

Microarray Datasets
The Cancer Genome Atlas (TCGA) project (https://www.cancer.
gov/tcga) is an open database which aims to make molecular data
characterizing the cancer-related genome freely available and to
link genomic data to patients’ clinicopathological information.
RNA-sequencing data (level 3) with corresponding
clinicopathological information were downloaded from the
TCGA database. Data was converted from fragments per
kilobase per million (FPKM) to transcripts per million reads
(TPM). Survival data were published in Cell (Liu et al., 2018). For
analyses across many tumor types, TCGA and Genotype-Tissue
Expression Project (GTEx), TPM-formatted RNAseq data

processed by Toil were downloaded from University of
California Santa Cruz (UCSC) XENA (https://xenabrowser.net/
datapages/) (Vivian et al., 2017). GSE54129 and GSE103236
datasets were obtained from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) to
validate the P4HA3 expression level. Table 1 shows the details
of expression datasets involved in the study.

Diagnostic and Prognostic Value of P4HA3
Receiver operating characteristic (ROC) and Kaplan-Meier
survival curves were constructed and used to analyze the
diagnostic and prognostic value of P4HA3, respectively. The
association between P4HA3 expression and overall survival
(OS) rates of GC patients was assessed by univariate and
multivariate regression analyses.

PPI Network Construction and Functional
Enrichment Analysis
Protein–protein interaction (PPI) network analysis of P4HA3
was performed by using the search tool of a single named protein
with default parameters within the STRING database (version
11.5, accessed date: 02 June 2022) (Szklarczyk et al., 2021).
Pathway and process enrichment analysis were conducted with
the following ontology sources: Gene Ontology (GO) Biological
Processes, GO Cellular Components, GO Molecular Functions,
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway,
Reactome Gene Sets and Canonical Pathways within the
Metascape database (https://metascape.org/gp/index.html)
(Hochberg and Benjamini, 1990; Zhou et al., 2019). The
complete proteome were regarded as the background to
enrichment. Terms with a p-value less than 0.05, a minimum
count of 3 and an enrichment factor (ratio of observed counts:
counts expected by chance) of more than 1.5 were acquired and
grouped into clusters based on their connections. p-values were
calculated from the cumulative hypergeometric distribution and
q-values using the Banjamini-Hochberg procedure to account for
multiple testing. Kappa scores were used as the similarity metric
when performing hierachical clustering of the enriched terms and
sub-trees with a similarity of >0.3 were considered a cluster. The
most statistically significant term within a cluster was used to
represent that cluster.

TABLE 1 | Details of Expression Datasets for the study.

Data source ID Platform Samples
(cancer vs. Normal)

TCGA - - 375 vs. 32
GEO GSE54129 GPL570 111 vs. 21
GEO GSE103236 GPL4133 10 vs. 9
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Correlation Analysis of Immune Cell
Infiltration
ssGSEA was used to determine relationships between P4HA3
expression and 24 kinds of immune cells, including activated DC,
B cells, macrophages and mast cells (Bindea et al., 2013). Spearman
correlation analysis was used to evaluate the correlation between
P4HA3 and immune cell infiltration and values of r > 0.3 or r < −0.3
and p < 0.05 were considered to indicate significant positive or

negative correlation. The expression of the following immune-
checkpoint–relevant transcripts was assessed: sialic acid binding
Ig like lectin 15 (SIGLEC15), T cell immunoreceptor with Ig and
ITIMdomains (TIGIT), CD274Molecule (CD274), hepatitis A virus
cellular receptor 2 (HAVCR2), programmed cell death 1 (PDCD1),
cytotoxic T-lymphocyte associated protein 4 (CTLA4), lymphocyte
activating 3 (LAG3) and programmed cell death 1 ligand 2
(PDCD1LG2) (Zeng et al., 2019).

Statistical Analysis
All the analytical methods (excluding functional enrichment
analysis) were performed using Xiantao Academic (https://
www.xiantao.love/products) embedded with R software and R
packages, including org.Hs.eg.db, GEOquery, limma, ggplot2,
clusterProfiler, survminer, survival and pROC (Davis and
Meltzer, 2007; Yu et al., 2012; Liu et al., 2018; Hu et al.,
2020). Chi-square test, paired t test and the Wilcoxon rank
sum test were used to compare data. A value of p value < 0.05
was regarded as statistically significant.

RESULTS

Clinicopathological Characteristics
The flowchart of the present study is presented in Figure 1. RNA-
seq expression data from 624 samples, including 174 normal
tissues, 36 para carcinoma tissues and 414 tumor tissues plus
clinical data were downloaded fromUCSC XENA. The details are
presented in Table 2.

FIGURE 1 | The flowchart of the present study.

TABLE 2 | Clinical characteristics of the GC patients based on TCGA.

Characteristic Low expression of P4HA3 High
expression of P4HA3

p

n 187 188
T stage, n (%) 0.003
T1 17 (4.6%) 2 (0.5%)
T2 41 (11.2%) 39 (10.6%)
T3 85 (23.2%) 83 (22.6%)
T4 43 (11.7%) 57 (15.5%)
N stage, n (%) 0.885
N0 55 (15.4%) 56 (15.7%)
N1 51 (14.3%) 46 (12.9%)
N2 35 (9.8%) 40 (11.2%)
N3 38 (10.6%) 36 (10.1%)
M stage, n (%) 0.988
M0 166 (46.8%) 164 (46.2%)
M1 12 (3.4%) 13 (3.7%)
Pathologic stage, n (%) 0.154
Stage I 34 (9.7%) 19 (5.4%)
Stage II 50 (14.2%) 61 (17.3%)
Stage III 76 (21.6%) 74 (21%)
Stage IV 19 (5.4%) 19 (5.4%)
Primary therapy outcome, n (%) 0.099
PD 38 (12%) 27 (8.5%)
SD 7 (2.2%) 10 (3.2%)
PR 0 (0%) 4 (1.3%)
CR 116 (36.6%) 115 (36.3%)
Gender, n (%) 0.564

(Continued on following page)
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Expression of P4HA3 Across Many Cancer
Cell-Types
Differential expression of P4HA3 mRNA was measured and found
to be over-expressed in 16 cancers, including breast invasive
carcinoma (BRCA), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), lymphoid neoplasm diffuse large B-cell
lymphoma (DLBC), esophageal carcinoma (ESCA), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), acute myeloid
leukemia (LAML), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), pancreatic adenocarcinoma (PAAD),
pheochromocytoma and paraganglioma (PCPG), rectum
adenocarcinoma (READ), thymoma (THYM) and stomach
adenocarcinoma (STAD; Figure 2A). All-sample and paired
sample analysis showed that expression levels of P4HA3 were
higher in GC tissue than in non-cancerous tissue (Figures 2B,C).
Further analysis using GSE54129 (Figure 2D) and GSE103236
(Figure 2E) gave similar results to those from the TCGA data.

P4HA3 Expression and GC
Clinicopathological Features
The correlation analysis showed significant differences for some
clinicopathological features, including Helicobacter pylori
infection status (Figure 3A), pathological stage (Figure 3B), T
classification (Figure 3C) and histological grade (Figure 3D).
There were no differences in P4HA3 expression based on gender
(Figure 3E) or age (Figure 3F).

Correlation Analysis of Prognosis
The area under the ROC curve was 0.933, based on TCGA data
(Figure 4A), and 0.874 for non-cancerous samples of GTEx
combined para carcinoma tissues and GC samples
(Figure 4B). These results indicate that levels of P4HA3
expression are consistently different in tumor and non-tumor
tissues. Kaplan-Meier survival analysis indicated that high levels
of P4HA3 are associated with poor prognosis (Figure 4C).

Univariate analysis demonstrated that high P4HA3 expression
corresponded to reduced OS and, thus, poor prognosis for GC
patients (Table 3). TNM stage, pathological stage and age were
also associated with reduced OS (Table 3). The results of
multivariate analysis showed that P4HA3 was an independent
prognostic marker. TNM stage and age also had independent
prognostic value for OS in GC (Table 3).

PPI Networks and Enrichment Analysis
The present study reports the construction of a network of
P4HA3 and its related genes using the STRING database.
P4HA3-related genes with scores above 0.9 included Collagen
Type I Alpha (COL1A)1, COL1A2, COL3A1, COL6A3,
COL12A1, COL20A1, prolyl 3-hydroxylase (P3H)1, P3H2 and
P3H3 (Figure 5; Table 4). Metascape pathway and process
enrichment analysis revealed that all genes related to P4HA3
were enriched in R-HSA-1650814, suggesting roles in collagen
biosynthesis and modifying enzymes. The endoplasmic reticulum
lumen and procollagen-proline 3-dioxygenase activity were also
associated with P4HA3 (Table 5).

TABLE 2 | (Continued) Clinical characteristics of the GC patients based on TCGA.

Characteristic Low expression of P4HA3 High
expression of P4HA3

p

Female 70 (18.7%) 64 (17.1%)
Male 117 (31.2%) 124 (33.1%)
Age, n (%) 0.437
≤65 86 (23.2%) 78 (21%)
>65 99 (26.7%) 108 (29.1%)
Histological type, n (%) 0.005
Diffuse Type 27 (7.2%) 36 (9.6%)
Mucinous Type 7 (1.9%) 12 (3.2%)
Not Otherwise Specified 97 (25.9%) 110 (29.4%)
Papillary Type 3 (0.8%) 2 (0.5%)
Signet Ring Type 4 (1.1%) 7 (1.9%)
Tubular Type 49 (13.1%) 20 (5.3%)
Histologic grade, n (%) 0.009
G1 5 (1.4%) 5 (1.4%)
G2 82 (22.4%) 55 (15%)
G3 95 (26%) 124 (33.9%)
H pylori infection, n (%) 0.869
No 88 (54%) 57 (35%)
Yes 10 (6.1%) 8 (4.9%)
Barretts esophagus, n (%) 0.461
No 116 (55.8%) 77 (37%)
Yes 11 (5.3%) 4 (1.9%)

Abbreviations: CR, complete response; PD, progressive disease; SD, stable disease; PR, partial response.
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Correlation Analysis of Immune Infiltration
The association between P4HA3 and the degree of immune cell
infiltration in GC was explored using ssGSEA analysis
(Figure 6A). Macrophages, NK cells, iDC, mast cells,
eosinophils, Tem, Th1 cells and DC all correlated with P4HA3
(Figures 6B–I).

Patients were divided into two groups according to P4HA3
expression and those with high expression had higher levels of the
immune-checkpoint–relevant transcripts, HAVCR2 and
PDCD1LG2, than those with low expression (Figure 7A).
P4HA3 expression was positively correlated with HAVCR2
(Figure 7B) and PDCD1LG2 (Figure 7C).

DISCUSSION

Prolyl 4-hydroxylase (P4H) activity is essential for maintenance
of the collagen triple helix and P4HAs (P4HA1, P4HA2, P4HA3)
plus P4HB are highly expressed in numerous tumors where they
may contribute to cancer progression. A number of inhibitors of
P4HAS and P4HB have been shown to exert anti-tumor effects,
suggesting that P4H is an achievable target for cancer therapy (Shi

et al., 2021). Expression profiles and functional roles of P4HA3 in
GC have rarely been studied. The current study focused on the
diagnostic, prognostic and potential immune therapeutic target
value of P4HA3 in GC.

mRNA expression levels across many different cancer types were
analyzed using data from the TCGA database. P4HA3 mRNA was
up-regulated in GC, along with BRCA, CHOL, COAD, DLBC,
ESCA, GBM, HNSC, KIRC, LAML, LUAD, LUSC, PAAD,
PCPG, READ and THYM, in agreement with the previous study
of Hu et al., 2020. P4HA3 up-regulation was confirmed using
GSE54129 and GSE103236 from the GEO database.

A key component of the current study was to address the
diagnostic and prognostic value of P4HA3. GC patients tended to
have higher P4HA3 mRNA expression when they were infected
by HP, resulting in diagnosis with higher T stages and lower
histological grades, or when they were diagnosed at late
pathological stages. ROC analysis indicated differences in
P4HA3 expression between tumor tissues and non-cancerous
tissues. Kaplan–Meier survival analysis indicated that those GC
patients with higher levels of P4HA3 tended to have shorter OS.
Multivariate Cox analysis demonstrated that high levels of
P4HA3 mRNA constituted an independent risk factor for OS

FIGURE 2 | Upregulation of P4HA3 in GC. (A) P4HA3 expression levels in various cancer-types from TCGA data; (B) P4HA3 transcript levels in GC and non-
cancerous gastric tissues from TCGA data; (C) P4HA3 expression in paired samples; (D) P4HA3 expression in GSE54129; (E) P4HA3 expression in GSE103236. (ns,
p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.) Abbreviations: P4HA3, prolyl 4-hydroxylase subunit alpha 3; GC, gastric cancer; BRCA, breast invasive carcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM,
glioblastoma multiforme, HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukemia; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; READ, rectum
adenocarcinoma; THYM, thymoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma.
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and were associated with poor GC prognosis. Thus, we believe
that P4HA3 could serve as a novel diagnostic and independent
prognostic biomarker for GC patients.

P4HA3 has been shown to have an association with many
different cancers. It promoted cell proliferation, invasion and
migration in head and neck squamous cell carcinoma and

FIGURE 3 | P4HA3 expression is associated with clinicopathological characteristics. (A) Post-mortal P4HA3 expression levels were higher; (B) Late stage P4HA3
expression levels were higher; (C) P4HA3 expression levels were higher in patients with higher T classifications; (D) P4HA3 expression levels were higher in patients with
lower histological grades; (E)No gender differences were found for P4HA3 expression levels; (F)No age-related changes were found in P4HA3 expression levels. ns, p ≥
0.05; *, p < 0.05; ***, p < 0.001.

FIGURE 4 | ROC and Kaplan-Meier survival curves. (A) ROC curve for P4HA3 based on data from TCGA; (B) ROC curve for P4HA3 using data from non-
cancerous samples from GTEx combined para carcinoma tissues and GC samples; (C) Higher levels of P4HA3 expression tended to be associated with worse
outcomes (OS) for GC patients. Abbreviations: ROC, receiver operating characteristic; GTEx, Genotype-Tissue Expression Project.
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melanoma cells (Atkinson et al., 2019; Wang et al., 2020) and
reduced the anti-tumor activity of COL6A6 on growth and
metastasis of AtT-20 and HP75 melanoma cells due to an
action on PI3K-Akt signaling (Long et al., 2019). P4HA3 is
known to be upregulated in clear cell renal carcinoma and
patients with higher expression had worse outcomes,
indicating a prognostic role for P4HA3 (Liu et al., 2020).
Findings of the present and previous studies indicate that
P4HA3 maintains the stability of newly synthesized collagens
and remodels the extracellular matrix in GC (Shoulders and
Raines, 2009; Gilkes et al., 2013, 2014).

Macrophages and NK cells influence the tumor
microenvironment and tumor immunity (Lee et al., 2014;
Sammarco et al., 2019; Gambardella et al., 2020). Infiltration
of M2 macrophages promotes tumor cell escape and thus,
numbers may reflect prognosis (Liu X. et al., 2021). Infiltration
of NK cells has an impact on immunotherapy and targeting NK
cells may improve the anti-tumor immune response (Yang et al.,
2019; Bi et al., 2021). P4HA3 expression correlated with immune
infiltration by macrophages and NK cells.

Immune checkpoint molecules regulate self-tolerance to
prevent autoimmune reactions and minimize tissue damage by
controlling the length and intensity of the immune response.
Expression of checkpoint molecules acts to limit the immune and
anti-tumor immune response, enabling escape of tumor cells
(Galluzzi et al., 2020; Liu Y. et al., 2021). Patients with higher
P4HA3 mRNA expression tended to have higher expression of
the immune checkpoint related genes, PDCD1LG2 and
HAVCR2. The current findings indicate the potential for
targeting of P4HA3 during GC immunotherapy.

In conclusion, the purpose of the current study was to
determine the diagnostic and prognostic value of P4HA3 and
its correlation with immune cell infiltration in GC. P4HA3
emerges as a feasible diagnostic and prognostic biomarker and
immunotherapy target. However, the current results are all
derived from bioinformatics analysis and limited by the
absence of experimental confirmation. Further clinical
experiments are underway to verify the function of P4HA3 in GC.

TABLE 3 | Univariate and multivariate Cox regression analysis of the P4HA3 expression and overall survival in gastric cancer patients.

Variable Total (N) Univariate analysis Multivariable

HR (95% CI) p value HR (95% CI) p value

T stage (T1 vs. T2&3&4) 362 8.829 (1.234-63.151) 0.030 3.735 (0.502-27.792) 0.198
N stage (N0 vs. N1&2&3) 352 1.925 (1.264-2.931) 0.002 1.356 (0.749-2.454) 0.314
M stage (M0 vs. M1) 352 2.254 (1.295-3.924) 0.004 1.959 (1.015-3.781) 0.045
Pathological stage (Stage I& II vs. III& IV) 347 1.947 (1.358-2.793) <0.001 1.371 (0.819-2.294) 0.230
Grade (G1&G2 vs. G3) 361 1.353 (0.957-1.914) 0.087 1.290 (0.878-1.894) 0.194
Age (≤65 vs. >65) 367 1.620 (1.154-2.276) 0.005 1.866 (1.278-2.725) 0.001
Gender (Female vs. Male) 370 1.267 (0.891-1.804) 0.188 - -
H pylori infection (NO vs. Yes) 162 0.650 (0.279-1.513) 0.317 - -
Reflux history (No vs. Yes) 213 0.582 (0.291-1.162) 0.125 - -
P4HA3 (Low vs. High) 370 1.634 (1.169-2.284) 0.004 1.641 (1.135-2.374) 0.008

Notes: Bold type indicates statistical significance.
Abbreviations: P4HA3, Prolyl 4-hydroxylase subunit alpha 3; HR, hazard ratio; CI: confidence interval.

FIGURE 5 | Protein-protein interaction (PPI) network of P4HA3-related
proteins (TOP 10, medium confidence).

TABLE 4 | The detailed information of P4HA3-related genes.

Gene symbol Annotation Score

COL1A1 collagen type I alpha 1 chain 0.951
COL1A2 collagen type I alpha 2 chain 0.926
COL3A1 collagen type III alpha 1 chain 0.933
COL6A3 collagen type VI alpha 3 chain 0.927
COL12A1 collagen type XII alpha 1 chain 0.927
COL20A1 collagen type XX alpha 1 chain 0.941
P3H1 prolyl 3-hydroxylase 1 0.934
P3H2 prolyl 3-hydroxylase 2 0.959
P3H3 prolyl 3-hydroxylase 3 0.944
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TABLE 5 | Clusters with their representative enriched terms (one per cluster).

Term Category Description Count (%) p q

R-HSA-1650814 Reactome Gene Sets Collagen biosynthesis and modifying enzymes 9 (100) <0.001 <0.001
M3005 Canonical Pathways NABA COLLAGENS 6 (66.67) <0.001 <0.001
GO:0005788 GO Cellular Components endoplasmic reticulum lumen 8 (88.89) <0.001 <0.001
GO:0019797 GO Molecular Functions procollagen-proline 3-dioxygenase activity 3 (33.33) <0.001 <0.001

Abbreviation: GO, gene ontology.

FIGURE 6 | Immune Cell Infiltration Analysis. (A) The Lollipop Chart shows the correlation between P4HA3 expression level and 24 different immune cell-types;
(B–I) the enrichment scores of P4HA3 expression for 8 immune cell-types. Abbreviations: NK, natural killer; iDC, immature dendritic cells; Tem, effective memory T cells;
Th1, T-helper 1, DC, dendritic cells.
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FIGURE 7 | (A) Differential expression of immune-checkpoint–relevant genes in low and high P4HA3-expressing groups. (B) P4HA3 was positively correlated with
HAVCR2. (C) P4HA3 was positively correlated with PDCD1LG2. ns, p > 0.05; ***, p < 0.001. Abbreviations: HAVCR2, hepatitis A virus cellular receptor 2; PDCD1LG2,
programmed cell death 1 ligand 2.
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Comprehensive analysis to
identify GNG7 as a prognostic
biomarker in lung
adenocarcinoma correlatingwith
immune infiltrates
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Background:GProtein Subunit Gamma 7 (GNG7), an important regulator of cell

proliferation and cell apoptosis, has been reported to be downregulated in a

variety of tumors including lung adenocarcinoma (LUAD). However, the

correlation between low expression of GNG7 and prognosis of LUAD as well

as the immune infiltrates of LUAD remains unclear.

Methods: The samples were obtained from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO). R software was performed for statistical

analysis. GNG7 expression and its prognostic value in LUAD were assessed

through statistically analyzing the data from different databases. A nomogram

was constructed to predict the impact of GNG7 on prognosis. Gene set

enrichment analysis (GSEA) and single-sample gene set enrichment analyses

GSEA (ssGSEA) were employed to determine the potential signal pathways and

evaluated the immune cell infiltration regulated by GNG7. The prognostic

significance of GNG7 expression associated with immune cell infiltration was

investigated using the Tumor Immune Estimation Resource 2.0 (TIMER2.0) and

the Kaplan-Meier plotter database. The UALCAN, cBio Cancer Genomics Portal

(cBioPortal) and MethSurv database were used to analyze the correlation

between the methylation of GNG7 and its mRNA expression as well as

prognostic significance.

Results: GNG7 was demonstrated to be down-regulated in LUAD and its low

expression was associated with poor prognosis. A clinical reliable prognostic-

predictive model was constructed. Pathway enrichment showed that

GNG7 was highly related to the B cell receptor signaling pathway. Further

analysis showed that GNG7 was positively associated with B cell infiltration and

low levels of B cell infiltration tended to associate with worse prognosis in

patients with low GNG7 expression. Moreover, methylation analysis suggested

hypermethylation may contribute to the low expression of GNG7 in LUAD.

Conclusion: Decreased expression of GNG7 at least partly caused by

hypermethylation of the GNG7 promoter is closely associated with poor
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prognosis and tumor immune cell infiltration (especially B cells) in LUAD. These

results suggest that GNG7 may be a promising prognostic biomarker and a

potential immunotherapeutic target for LUAD, which provides new insights into

immunotherapy for LUAD.

KEYWORDS

immune microenvironment 1, GNG7 2, prognosis 3, lung adenocarcinoma 4,
bioinformatics analysis 5

Introduction

Lung cancer is the most common reason for global cancer-

related mortality, of which lung adenocarcinoma (LUAD) is the

most common histological subtype (Travis, 2011; Sung et al.,

2021). In recent years, although molecular targeted therapies and

immunotherapy have significantly improved the prognosis of a

small proportion of LUAD patients, the above treatments are

ineffective in many patients due to the high heterogeneity and

complexity of LUAD (Molina et al., 2008; Saito et al., 2018; Wu

and Shih, 2018). The prognosis for many patients, especially

those with advanced LUAD, remains poor, with a 5-year survival

rate of less than 18% (Singh et al., 2020). Therefore, an in-depth

pathogenetic exploration and search for other effective diagnostic

and therapeutic approaches as well prognostic markers are

essential to improve the prognosis of patients with LUAD.

Accumulating evidence suggests that the immune cells

within the tumor microenvironment (TME) play essential

roles in tumorigenesis (Hinshaw and Shevde, 2019). Such

tumor associated immune cells may exert pro-tumor or anti-

tumor function in the initiation and development of tumors

(Taube et al., 2018). Studies have shown that immune cell

infiltration is an important factor influencing the efficacy of

immunotherapy (Martinez and Moon, 2019; Petitprez et al.,

2020; Bagchi et al., 2021). In addition, TME is also closely

related to the prognosis of patients (Qi et al., 2020; Wu et al.,

2020). Therefore, it is crucial to investigate the regulators of

immune cell infiltration in the TME to improve the effectiveness

of immunotherapy and improve patient prognosis.

G Protein Subunit Gamma 7 (GNG7), a subunit of

heterotrimeric G protein, is strongly enriched in the striatum

and plays a vital role in the A2A adenosine or D1 dopamine

receptor-induced neuro-protective response (Schwindinger et al.,

2012). Multiple studies have shown that GNG7 expression is

decreased in many cancers, including pancreatic cancer,

gastrointestinal tract cancer and renal carcinoma (Shibata

et al., 1998; Shibata et al., 1999; Ohta et al., 2008).

GNG7 overexpression was shown to inhibit cell growth and

tumorigenicity of esophageal carcinoma cells (Hartmann et al.,

2012). Also, GNG7 was confirmed as an essential autophagy-

inducing agent and participated in inhibiting tumor progression

through mTOR pathway (Xu et al., 2019). Recently, GNG7 was

reported to be lowly expressed in LUAD and promoted the

progression of LUAD through Hedgehog signaling (Liu et al.,

2016). These findings indicated that GNG7 may be a potential

tumor suppressor implicated in the carcinogenesis and tumor

progression. However, the detailed roles and mechanisms of

GNG7 especially the effects of GNG7 on immune infiltration

in LUAD are largely unknown.

In this study, we aimed to evaluate the clinical significance of

GNG7 in LUAD and the possible mechanisms underlying its

function through comprehensive bioinformatics analysis. Our

results showed that low expression of GNG7 positively correlated

with the progression of LUAD, and GNG7 may be an important

potential prognostic biomarker for LUAD.We also constructed a

reliable clinical prediction model. In addition, we revealed for the

first time the underlying mechanisms of GNG7 dysregulation

and the correlation between GNG7 expression and immune

infiltration in LUAD, which implies that GNG7 could be a

potential target for clinical antitumor immunotherapy.

Materials and methods

Data sources and pretreatment

The RNA-seq data of 513 LUAD samples and 59 normal

samples were downloaded from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). The

downloaded data format was level 3 HTSeq-fragments per

kilobase per million (FPKM) and then was converted to

transcripts per million (TPM) format for subsequent analysis.

TCGA supplemented prognostic data were obtained from a Cell

article (Liu et al., 2018). In addition, three sets of microarray data

of LUAD tissues (accession numbers: GSE32665, GSE32863, and

GSE43458) were downloaded from the GEO database. The data

used in this study were obtained from both the TCGA database

and the GEO database, which ensured that all written informed

consent was obtained prior to data collection.

Key gene screening

The R package “DESeq2” was used to identify the

differentially expressed genes (DEGs) between LUAD tissues

and normal tissues (Love et al., 2014). Adjusted

p-value <0.05 and | Log2fold change| >1 were set as cut-off

criteria. The Survminer R package and the survivor R package
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were used to screen for genes with better prognostic value. The

cut-off threshold was hazard ratio (HR) < 1, and the Cox

p-value <0.005. The prognostic indicators included overall

survival (OS), disease-specific survival (DSS) and progression-

free survival (PFS). The Venn diagram was used to represent the

intersection set of DEGs obtained from the four sets.

G protein subunit gamma 7 differential
expression analysis in lung
adenocarcinoma tissues

Pre-processed TCGA-LUAD data were used for differential

expression analysis of GNG7 in LUAD tumor tissues and normal

tissues. Three GEO expression profile datasets, GSE32665,

GSE32863, and GSE43458, were used to compare the

expression of GNG7 between LUAD tissues and normal

tissues. Differential protein levels of GNG7 between LUAD

tissues and normal tissues were analyzed by UALCAN (http://

ualcan.path.uab.edu/) (Chandrashekar et al., 2022). A receiver

operating characteristic (ROC) curve was used to evaluate the

diagnostic significance of GNG7 using the plotROC R package

(Version 1.17.0.1) (Robin et al., 2011).

Clinical statistical analysis on prognosis,
model construction and evaluation

The correlation between GNG7 expression and survival in

LUAD patients was analyzed by the PrognoScan database (http://

www.prognoscan.org/) (Mizuno et al., 2009). Univariate Cox

regression analysis, multivariate Cox regression analysis, logistic

analysis and Kaplan-Meier (K-M) analysis were employed for

prognosis analysis. The independent prognostic factors obtained

from multivariate Cox regression analysis were employed to

establish nomograms to predict survival probability for 1-, 2-,

and 3-year. The calibration curves and nomograms were

analyzed and plotted via the rms (version 6.2-0) and survival

(version 3.2-10) package of R software. The calibration curves

were graphically assessed by mapping the nomogram-predicted

probabilities against the observed rates, and the 45-degree line

represented the best predictive values. A concordance index

(C-index) was used to determine the discrimination of the

nomogram. According to the median risk score, patients were

divided into a high-risk score group and a low-risk score group.

The survival difference between the two groups was assessed by

K-M survival curves. The model was compared with the two-by-

two model consisting of independent prognostic factors screened

from multivariate Cox regression, and ROC curves made by the

timeROC R package (version 0.4) were used to assess the

accuracy of the model predictions. The risk curve was used to

demonstrate the application of the model in predicting clinical

outcomes.

Gene set enrichment analysis

DESeq2 package (Version 1.26.0) was employed to identify

the DEGs between GNG7-high and GNG7-low expression

patients from TCGA datasets. The cut-off threshold was |

log fold change (FC)|>1 and adjusted p-value <0.05. All the
DEGs were presented in the volcano plots, and the correlation

of some representative DEGs with GNG7 was presented in

heatmaps. Gene Set Enrichment Analysis (GSEA) is a

computational method for determining whether a defined

set of genes shows statistically significant differences

between two states. In the study, GSEA was performed by

using the clusterProfiler R package (version 3.14.3) with c2 (c2.

all.v7.0. entrez.gmt) from the Molecular Signatures Database

(MSigDB) (Subramanian et al., 2005; Yu et al., 2012). Each

analysis procedure was repeated 1000 times. The function or

pathway termed with adjusted p-value <0.05 and false

discovery rate (FDR) < 0.25 was considered statistically

significant enrichment.

Tumor immune infiltration analysis,
protein-protein interaction network
analyses and the screening of hub genes

ESTIMATE algorithm was used to calculate the immune

scores using the “estimate” R package (Yoshihara et al., 2013).

Single-sample gene set enrichment analysis (ssGSEA) algorithm

was used to assess the relative enrichment of the tumor tissue-

infiltrating immune cells in LUAD (Hänzelmann et al., 2013).

Based on an immune dataset for the 24 types of immunocytes, the

relative enrichment score of every immunocyte was quantified

from the gene expression profiles of each tumor sample (Bindea

et al., 2013). In addition, we analyzed the differences in the

enrichment of these 24 immune cells between the high and low

GNG7 expression groups using ssGSEA. The Stat R package

(Version 3.6.3) was employed to search for the genes related to

GNG7 in LUAD. The correlation results were analyzed by the

Spearman coefficient and the cut-off thresholds were |R| >0.4 and
p-value <0.05. The list of immune-related genes was obtained

from the ImmPort database. Genes associated with GNG7 were

intersected with IRGs to obtain IRGs associated with GNG7. To

further understand the interactions between IRGs associated

with GNG7, we constructed a Protein-Protein Interaction

(PPI) using the Search Tool for the Retrieval of Interacting

Genes (STRING) (https://string-db.org/). An interaction with

a combined score >0.4 was considered statistically significant.

Cytoscape (Version 3.7.2) was used to visualize the network,

while the cytoHubba plugin was used to rank genes within this

network based upon their degree centrality values. Hub genes

were considered to be those with the top 10 highest degree values.

ClusterProfiler R package was employed to perform Gene

Ontology (GO) function enrichment analyses. Furthermore,
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FIGURE 1
Workflow for screening of key genes and downstream analysis.
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We used the GEPIA2 database (http://gepia2.cancer-pku.cn/

#index) to analyze the correlation between GNG7 and B cell

infiltration in LUAD tissues and normal tissues (Tang et al.,

2019). Tumor Immune Estimation Resource 2.0 (TIMER2.0)

database (http://timer.cistrome.org/) and the Kaplan-Meier

plotter database (http://kmplot.com/analysis/) were used for

the prognostic analysis of LUAD patients with different

GNG7 expression and B cell infiltration (Li T. et al., 2020;

Lánczky and Győrffy, 2021). We also used the TIMER

database to analyze the correlation between GNG7 and

immune cell markers in LUAD (Li et al., 2017).

DNA methylation analysis

To explore the possible mechanism of decreased expression

of GNG7 in LUAD, we performed a differential methylation

analysis of GNG7 between the normal and LUAD tissues using

the UALCAN database. The cBio Cancer Genomics Portal

(cBioPortal) (https://www.cbioportal.org), developed based on

the TCGA database, was used to perform a correlation analysis

between GNG7 mRNA expression and its methylation levels

(Cerami et al., 2012; Gao et al., 2013). DNA methylation of

GNG7 at CpG sites and the prognostic value of these CpG sites in

LUAD were analyzed by MethSurv (https://biit.cs.ut.ee/

methsurv/) (Modhukur et al., 2018).

Statistical analysis

All statistical analyses were conducted using R (Version

3.6.3). A part of the figures was plotted using the

ggplot2 R package (Version 3.3.3). Dunn’s test,

Kruskal–Wallis test, and logistic regression were used to

analyze the clinicopathological features of GNG7 in LUAD.

Kaplan-Meier survival analysis, univariate and multivariate

Cox regression analysis were performed for prognostic

analysis. In all analyses, the p-value<0.05 was considered

statistically significant. The specific datasets, R packages,

software and databases used in each part of this study are

detailed in Supplementary Table S4.

Results

G protein subunit gamma 7 is found to be
one of the key regulators of lung
adenocarcinoma tightly related to the
prognosis through large-scale screening

To find key regulators of LUAD, we conducted screening

work based on differential expression analysis and prognostic

analysis, and performed a series of analytical work based on the

target gene. The workflow was shown in Figure 1 we applied the

DESeq2 R package to screen for DEGs in LUAD based on TCGA-

LUAD datasets. The results showed that there were 7741 up-

regulated and 3783 down-regulated genes among the screened

11,524 DEGs (Figure 2A). Combined with further prognostic

analysis, we found that among the DEGs, nine genes (HSD17B6,

PXMP4, HLF, ADGRD1, CYP17A1, ESYT3, FCAMR, C11orf16,

GNG7) were significantly and positively associated with LUAD

prognostic indicators including OS, DSS and PFI (Figure 2B). Of

note, although GNG7 has been reported to be differentially

expressed in a variety of tumors, its roles in the initiation and

progression of LUAD remain unclear. In the present study, we

focused on GNG7 to explore the underlying mechanism and

clinical significance in LUAD.

G protein subunit gamma 7 expression is
downregulated in lung adenocarcinoma

To elucidate the expression pattern of GNG7 in cancers, we

first evaluated the expression of GNG7 in 33 types of cancers by a

systematic analysis based on the TCGA databases. The results

showed that GNG7 expression was significantly down-regulated

in 17 different tumors, including Bladder Urothelial Carcinoma

(BLCA), Breast invasive carcinoma (BRCA), Colon

adenocarcinoma (COAD), Lung adenocarcinoma (LUAD)

while it was significantly up-regulated in Cholangiocarcinoma

(CHOL), Liver hepatocellular carcinoma (LIHC) and

Pheochromocytoma and Paraganglioma (PCPG) (Figure 2C).

Then, the low expression of GNG7 in LUAD was further

validated by using three GEO datasets (GSE32665, GSE32863,

GSE43458) (Figures 2D–F). The paired analysis got the similar

results (Figure 2G). In addition, the decreased protein level of

GNG7 was also observed in LUAD using the UALCAN database

(Figure 2H). Moreover, ROC curve analysis was employed to

analyze the distinguishing efficacy of GNG7 between LUAD

tissue and normal tissue. The area under the curve (AUC) of

GNG7 is 0.871, suggesting that GNG7may be an ideal biomarker

to distinguish LUAD from normal tissue (Figure 2I). Together,

these results indicated that GNG7 is lowly expressed in LUAD

which may be a potential diagnostic marker for LUAD.

Association between clinicopathological
characteristics and GNG7 expression in
lung adenocarcinoma

To clarify the correlation between the expression of

GNG7 and clinicopathological variables, we collected data

from the TCGA database on 535 patients with LUAD. After

data preprocessing, the relationship between gene expression

profiles and clinicopathological characteristics of 513 LUAD

patients was shown in the baseline data table (Supplementary
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FIGURE 2
Screening of key regulators and identification of the differential expression of GNG7 in LUAD. (A) The volcanic map of the DEGs in LUAD. (B) A
Venn diagram used to identify nine DEGs associated with LUAD prognostic indicators. (C) The GNG7 expression in different cancer from the TCGA
database. (D–F) The GNG7mRNA expression between LUAD and normal tissues based on data fromGSE32665 (D), GSE32863 (E) and GSE43458 (F)
dataset. (G) The GNG7 mRNA expression between paired LUAD tumor tissues and adjacent normal tissues from the TCGA-LUAD dataset. (H)
The GNG7 protein expression between LUAD and normal tissues from the UALCAN database. (I) A ROC curve to test the efficiency of GNG7 to
identify LUAD from normal lung tissue. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3
Correlation between GNG7 expression and clinicopathological features as well as the prognostic value of GNG7 in LUAD. (A) T stage. (B)
Gender. (C) Primary therapy outcome. (D) Pathologic stage. (E) N stage. (F)M stage. ns, no significant difference, *p < 0.05, **p < 0.01, ***p < 0.001.
(G–I) Survival curves of OS (G), DSS (H), and PFI (I) between GNG7-high and GNG7-low expression groups from the TCGA-LUAD dataset. (J–L)
Kaplan-Meier survival curve analysis of OS (J) and RFS (K) in a LUAD cohort (GSE31210) as well as OS (L) in a LUAD cohort (GSE31213) from the
PrognoScan database.
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Table S1). The results showed that low expression of GNG7 was

positively associated with high T stage, Gender (male sex), poor

primary therapy outcome and high pathologic stage of LUAD,

while there were no significant associations between

GNG7 expression and the other clinical factors such as N

stage and M stage (Figures 3A–F). In line with these findings,

the logistics regression analysis also revealed that

GNG7 expression was significantly associated with T stage

(OR = 0.403, 95% CI: 0.274-0.589, p < 0.001), Pathologic

stage (OR = 0.538, 95% CI: 0.377-0.766, p < 0.001), Primary

therapy outcome (OR = 0.311, 95% CI: 0.133-0.707, p = 0.006)

and Gender (OR = 0.502, 95% CI: 0.352-0.713, p < 0.001)

(Table 1).

Significance of G protein subunit gamma
7 in clinical prognosis of lung
adenocarcinoma and clinical subgroup
analysis

We utilized data from the TCGA database to investigate

the prognostic significance of GNG7 in LUAD. Kaplan-Meier

survival analysis based on the TCGA-LUAD dataset revealed

that low expression of GNG7 was associated with poor OS

(HR = 0.51, 95% CI: 0.38-0.69, p < 0.001), DSS (HR = 0.56,

95% CI: 0.38-0.82, p = 0.003) and PFI (HR = 0.64, 95% CI:

0.49-0.85, p = 0.002) (Figures 3G–I). To further validate the

prognostic value of GNG7 in LUAD, we utilized the

PrognoScan database for further study. We included two of

the GSE datasets (GSE31210 and GSE13213) in our analysis,

where low GNG7 expression was significantly associated with

the poorer prognosis (OS, HR = 0.21, 95% CI: 0,08-0.52, Cox

p = 0.000748; RFS, HR = 0.25, 95% CI: 0,13-0.49, Cox p =

0.000069 in the GSE31210 dataset; OS, HR = 0.48, 95% CI:

0,34-0.67, Cox p = 0.000023 in the GSE13213 dataset)

(Figures 3J–L).

Moreover, the univariate Cox regression analysis model

showed that GNG7 expression level was significantly

associated with OS (HR: 0.702; 95% CI: 0.599-0.822; p <
0.001) similar to T stage, N stage, M stage and Pathologic

stage as well Primary therapy outcome and Residual tumor.

Meanwhile, the multivariate Cox regression analysis also

revealed that low expression of GNG7, similar to Primary

therapy outcome and Residual tumor, was an independent

risk factor for the prognosis of LUAD patients (Table 2).

Collectively, these results suggest that low expression of

GNG7 independently predicts poor prognosis for patients

with LUAD.

Given that multivariate Cox regression analysis identified

low expression of GNG7 as an independent risk factor, we

investigated the potential prognostic value of GNG7 in

LUAD patients with different clinical subgroups. As shown

in Figures 4A–C, low expression of GNG7 was associated with

poor prognosis in stage N0, including OS (HR = 0.42, 95% CI:

0.27-0.67, p < 0.001), DSS (HR = 0.38, 95% CI: 0.21-0.69, p =

0.001) and PFI (HR = 0.57, 95% CI: 0.40-0.83, p = 0.003).

However, there was no statistically significant correlation

between GNG7 expression and prognosis in the

N1&N2&N3 stage (p > 0.05) (Supplementary Figures

S1A–C). In addition, low GNG7 expression was

significantly associated with poor prognosis in LUAD

patients in M0 stage, including OS (HR = 0.48, 95% CI:

0.33-0.68, p < 0.001), DSS (HR = 0.59, 95% CI: 0.37-0.94,

p = 0.026), PFI (HR = 0.66, 95% CI: 0.47-0.92, p = 0.015)

(Figures 4D–F). Nevertheless, no significant association

was shown between GNG7 expression and prognosis in

LUAD patients in the M1 stage (Supplementary Figures

S1D–F). These results suggest that low expression of

TABLE 1 GNG7 expression association with clinical pathological characteristics (logistic regression).

Characteristics Total (N) Odds Ratio (OR) p value

T stage (T2&T3&T4 vs. T1) 510 0.403 (0.274−0.589) ***<0.001
N stage (N1&N2&N3 vs. N0) 501 0.700 (0.482−1.014) 0.060

M stage (M1 vs. M0) 369 0.493 (0.197−1.140) 0.110

Pathologic stage (Stage II&Stage III&Stage IV vs. Stage I) 505 0.538 (0.377−0.766) ***<0.001
Primary therapy outcome (PD vs. SD) 105 0.311 (0.133−0.707) **0.006

Gender (Male vs. Female) 513 0.502 (0.352−0.713) ***<0.001
Race (Black or African American&White vs. Asian) 446 2.701 (0.576−19.003) 0.238

Age (>65 vs. <=65) 494 1.050 (0.738−1.496) 0.785

Residual tumor (R1&R2 vs. R0) 361 0.565 (0.191−1.519) 0.271

Anatomic neoplasm subdivision (Right vs. Left) 498 0.957 (0.669−1.371) 0.812

Anatomic neoplasm subdivision2 (Peripheral Lung vs. Central Lung) 189 1.022 (0.555−1.894) 0.943

number_pack_years_smoked (>=40 vs. <40) 351 0.863 (0.567−1.312) 0.491

Smoker (Yes vs. No) 499 0.629 (0.378−1.035) 0.070

*p < 0.05; **p < 0.01; ***p < 0.001.
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GNG7 is positively associated with the poor prognosis of

LUAD patients without lymph node invasion and distal

metastasis.

Construction and validation of a
nomogram based on the independent
clinical risk factors

To provide a quantitative approach to predicting the

prognosis of LUAD patients, we constructed a prognostic

nomogram to predict individual survival probability based

on the expression levels of GNG7 and other independent

clinical risk factors (Figure 4G). The calibration curve of

the nomogram showed that the established lines of 1-, 2-,

and 3-y survival highly matched the ideal line (the 45-degree

line) (Figure 4H). In addition, the C-index of the prediction

model reached 0.690 (0.659–0.720), indicating that the model

had a reliable potential to predict the OS of LUAD patients.

In addition, ROC curve analysis based on the three time points

of 1-, 2-, and 3-Year showed that the Area under the curve

(AUC) of this prediction model was higher than the AUC of

the two-by-two model consisting of independent

prognostic factors screened from multivariate Cox

regression, indicating the superiority of the model

(Supplementary Figures S2A–D). On the basis of the

median risk score, patients were divided into a high-risk

score group and a low-risk score group. Survival curve

analysis revealed that the high-risk group had a

significantly poorer prognosis compared to the low-risk

group (HR = 2.59, 95% CI: 2.59 (1.72–3.89), p < 0.001)

(Supplementary Figure S2E). Additionally, the risk curve

indicated that the high-risk score group had higher

mortality and worse prognosis than the low-risk score

group (Supplementary Figure S2F).

Functional enrichment and pathway
analysis of G protein subunit gamma 7-
associated differentially expressed genes
in lung adenocarcinoma

To investigate the biological functions and signaling

pathways associated with GNG7, we examined the DEGs

between GNG7-high and GNG7-low patients which were

stratified based on the median GNG7 expression.

Resultantly, 1403 mRNAs (492 upregulated and

911 downregulated), 962 lncRNAs (256 upregulated and

706 downregulated), and 21miRNAs (18 upregulated and

3 downregulated) were differently expressed in GNG7-high

patients compared to GNG7-low ones (Figure 5A,

Supplementary Figures S3A,C). Relative expression values

of some representative DEGs between the two cohorts were

shown in the form of heatmaps (Figure 5B, Supplementary

Figures S3B,D). Strikingly, pathway enrichment analysis

showed that the DEGs were most strongly enriched in the

B cell receptor signaling pathway, T cell receptor signaling

pathway and HIV infection allograft rejection which are highly

TABLE 2 Univariate analysis and multivariate analysis of the correlation between clinicopathological characteristics and OS in LUAD.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95%CI) p value Hazard ratio (95%CI) p value

T stage (T2&T3&T4 vs. T1) 501 1.668 (1.184−2.349) **0.003 1.116 (0.629−1.978) 0.708

N stage (N1&N2&N3 vs. N0) 492 2.606 (1.939−3.503) ***<0.001 1.689 (0.758−3.764) 0.200

M stage (M1 vs. M0) 360 2.111 (1.232−3.616) **0.007 1.698 (0.674−4.280) 0.262

Pathologic stage (Stage II&Stage III&Stage IV vs. Stage I) 496 2.975 (2.188−4.045) ***<0.001 1.109 (0.471−2.610) 0.812

Primary therapy outcome (PD&SD&PR vs. CR) 419 2.818 (2.004−3.963) ***<0.001 3.662 (2.217−6.049) ***<0.001
Gender (Male vs. Female) 504 1.060 (0.792−1.418) 0.694

Race (White vs. Asian&Black or African American) 446 1.422 (0.869−2.327) 0.162

Age (>65 vs. <=65) 494 1.228 (0.915−1.649) 0.171

Residual tumor (R1&R2 vs. R0) 352 3.973 (2.217−7.120) ***<0.001 3.670 (1.503−8.964) **0.004

Anatomic neoplasm subdivision (Right vs. Left) 490 1.024 (0.758−1.383) 0.878

Anatomic neoplasm subdivision2 (Peripheral Lung vs. Central
Lung)

182 0.913 (0.570−1.463) 0.706

Number pack years smoked (>=40 vs. <40) 345 1.038 (0.723−1.490) 0.840

Smoker (Yes vs. No) 490 0.887 (0.587−1.339) 0.568

GNG7 504 0.702 (0.599−0.822) ***<0.001 0.727 (0.561-0.943) *0.016

*p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4
Subgroup analysis and the construction of a nomogram based on GNG7 expression. (A–C) The Kaplan-Meier curves of OS (A), DSS (B), and PFI
(C) between GNG7-high and -low expression patients with LUAD in N0 stage. (D–F) The Kaplan-Meier curves of OS (D), DSS (E), and PFI (F) between
GNG7-high and -low expression patients with LUAD inM0 stage. (G) A nomogram that integrates GNG7 and other independent prognostic factors in
LUAD from TCGA data. (H) The calibration curve of the nomogram. OS, overall survival; DSS, disease specific survival; PFI, progress free interval;
LUAD, lung adenocarcinoma.
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FIGURE 5
Functional annotation of differentially expressed genes (DEGs) regulated by GNG7 in LUAD. (A,B) Based on the median GNG7 expression level,
LUAD patients from the TCGA-LUAD dataset were stratified into GNG7-high and GNG7-low groups. Expression profiles of mRNAs in two groups are
presented by volcano plots (A) and heatmaps (B). (C) Pathway enrichment plots from GSEA. (D–G) The B cell receptor signaling pathway (D), T cell
receptor signaling pathway (E), HIV infection (F), and allograft rejection (G) were positively correlated to GNG7 expression. TCGA, the cancer
genome atlas; LUAD, lung adenocarcinoma; NES, normalized enrichment score; FDR, false discovery rate.
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FIGURE 6
Correlation of immune cell infiltration and GNG7 expression in LUAD patients. (A) Relationship between immune scores and GNG7 expression
levels in LUAD. (B) Relationships between infiltration levels of 24 immune cell types and GNG7 expression profiles by Spearman’s analysis. (C)
Comparison of the immune infiltration level of 24 immune cell types between GNG7-high and GNG7-low groups. LUAD, lung adenocarcinoma;
DCs, dendritic cells; aDCs, activated DCs; iDCs, immature DCs; pDCs, plasmacytoid DCs; Th, T helper cells; Th1, type 1 Th cells; Th2, type 2 Th
cells; Th17, type 17 Th cells; Treg, regulatory T cells; Tgd, T gamma delta; Tcm, T central memory; Tem, T effector memory; Tfh, T follicular helper;
NK, natural killer. (D) The top10 hub genes calculated with the MCC algorithm by cytoHubb. (E) The top 4 enriched GO terms of BP, CC and MF
categories of the GO enrichment analysis. (F) The network including the hub genes and the enriched GO terms. BP, biological process; CC, cellular
component; MF, molecular function.
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related to the cellular immune response (Figures 5C–G). These

data suggested that GNG7 may play an important role in

regulating the tumor immune microenvironment of LUAD.

Correlation analysis between the
expression of G protein subunit gamma
7 and immune cell infiltration in lung
adenocarcinoma

As reported, tumor-associated immune cell infiltration has

a close relationship with tumor development and the

prognosis of patients. Then, we utilized the ESTIMATE

algorithm to assess the correlation between GNG7 and the

abundance of immune cell infiltration in LUAD. The results

revealed that GNG7 expression was positively correlated with

the abundance of immune cell infiltration in LUAD

(Figure 6A). Specifically, further Spearman correlation

analysis showed that among 24 immune cell

subpopulations, GNG7 expression was positively correlated

with most immune cell subsets, including Mast cell, DC,

B cells, and CD8+ T cells, but negatively correlated with

Th2 and Tgd cells (Figure 6B). Consistently, the ssGSEA

analysis demonstrated that the infiltration levels of most of

the immune cell subsets such as Mast cells, pDCs, B cells, NK

cells and CD8+ T cells were remarkably increased in LUAD

patients with GNG7 high expression compared to those with

GNG7 low expression (Figure 6C). In keeping with this

finding, GNG7 was significantly correlated with most

immune markers of different immune cells, including

CD8+T cell, B cell, Neutrophils, and Dendritic cells

(Supplementary Table S2). Moreover, by correlation

analysis, we identified immune-related genes (IRG) co-

expressed with GNG7 and constructed a PPI network

(Supplementary Figure S4A). We screened the top10 of hub

genes and showed the correlation between these 10 genes and

GNG7 in the form of scatter plots (Figure 6D, Supplementary

Figures S4B–K). Additionally, we performed GO enrichment

analysis to investigate the possible involvement of GNG7 in

the immune response. The terms identified in the BP category

showed that aberrantly expressed GNG7 was associated with

antigen processing and presentation via MHC class

II(MHCII), while in the CC category, the hub genes were

significantly enriched in the MHCII protein complex and

endoplasmic reticulum-related terms. Furthermore, the MF

category revealed significant enrichment in GO terms related

to the MHCII protein complex binding, MHCII receptor

activity and peptide antigen binding, etc (Figures 6E,F).

Together, these results suggest that GNG7 may contribute

to the remodeling of the immune microenvironment in

LUAD through promoting the infiltration of a variety of

tumor-associated immune cells and influencing antigen

presentation.

G protein subunit gamma 7 high
expression with high B cell infiltration
predicts a better prognosis of lung
adenocarcinoma patients

Of the infiltrated immune cells increased in LUAD with

GNG7 high expression, B cell infiltration attracts our attention as

the relatively less knowledge of this cell type in tumor

immunotherapy currently. Our results showed that GNG7 was

closely associated with the level of B cell infiltration in LUAD

(Supplementary Figure S5A). Specifically, the level of B cell

infiltration was significantly elevated in the GNG7 high

expression group compared with that in the GNG7 low

expression group (Supplementary Figure S5B). In addition, we

respectively investigated the correlation of GNG7 with B cells in

the tumor and normal tissues. Strikingly, GNG7 showed a strong

positive correlation with the B cell marker genes CD19 and

CD79A in LUAD tissues (Figure 7A). In contrast, the correlation

of GNG7 with the B cell markers CD19 and CD79A did not reach

statistical significance in normal tissues (Figure 7B). These results

suggest that GNG7 expression may promote B cell infiltration in

the context of LUAD. Meanwhile, through KM plot database

analysis, we found that patients with high GNG7 expression

tended to predict a better prognosis in the B cell enriched group

but not in the B cell decreased group (Figures 7C,D). Such finding

was further corroborated by the analysis using the

TIMER2.0 database, implying that high GNG7 expression

corresponded to a better prognosis for LUAD patients in the

context of enriched B cell infiltration. Furthermore, we found

that high infiltration levels of B cells in the presence of consistent

levels of GNG7 expression corresponded to a good prognosis in

patients with LUAD (Figure 7E). Taken together, it is reasonable

to suggest that GNG7 may have improved patient prognosis by

promoting B cell infiltration.

G protein subunit gamma 7 dysregulation
is associated with aberrant DNA
methylation

Considering the importance of DNA methylation in

regulating gene expression, we tested whether aberrant DNA

methylation occurs in GNG7 gene in LUAD. By analyzing the

data from the UALCAN database, we found that the methylation

level of GNG7 was significantly higher in the tumor group

compared to that in the normal group (Figure 8A). Next, the

correlation analysis based on the cBioPortal database showed

that GNG7 expression was significantly negatively correlated

with methylation (Figure 8B). To further investigate the

methylation of GNG7 in LUAD, we analyzed the methylation

levels of different CpG sites of GNG7 in LUAD patients using the

MethSurv database and presented them in the form of heat maps

(Figure 8C). The results revealed that several CpG sites of
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GNG7 exhibited high methylation in LUAD patient samples,

including cg19477361, cg21462934, and cg27181295. Prognostic

analysis showed that the above CpG sites with highly methylated

levels were associated with poor prognosis in LUAD (Figures

8D–F). These results suggest that the low expression of GNG7 in

LUAD may be partly due to the methylation modification of the

FIGURE 7
Correlation between GNG7 and B cell immune infiltration and prognostic analysis in LUAD. (A) The correlation between the expression of
GNG7 and B cell markers CD19 (left) as well CD79A (right) in LUAD tissues. (B) The correlation between the expression of GNG7 and B cell markers
CD19 (left) as well CD79A (right) in normal lung tissues. (C) Kaplan-Meier survival curves of OS in LUAD based on GNG7 expression in the enriched
B cells groups. (D) Kaplan-Meier survival curves of OS based on GNG7 expression in the decreased B cells groups. (E) Kaplan-Meier survival
curves of OS in LUAD based on B cell infiltration level in GNG7-high and -low expression patients. LUAD, lung adenocarcinoma; OS, overall survival.
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abovementioned CpG sites and plays a key role in tumor

progression.

Discussion

As one of the most common malignancies worldwide, the

prognosis of LUAD patients remains very gloomy due to the lack of

effective biomarkers for early diagnosis and effective treatment for

advanced patients. Thus, intense research has been focused on

deciphering the pathogenesis and searching for effective diagnostic

and therapeutic approaches as well as prognostic markers to

improve the prognosis of patients with LUAD in the last several

years. Indeed, a growing number of potential biomarkers for LUAD

have been identified, such as PPP1R14D, lncRNA-Ac068228,

IFITM1, and so on (Koh et al., 2019; Jiang et al., 2022; Tian Y.

FIGURE 8
DNA methylation levels of GNG7 and its prognostic value in LUAD. (A) The promoter methylation level of GNG7 in normal tissues and primary
LUAD tissues by the UALCAN database. (B) The correlation betweenGNG7methylation and its expression level. (C) The heatmap of DNAmethylation
at CpG sites in the GNG7 gene by the MethSurv database. (D–F) Kaplan-Meier survival curves of OS based on methylation at GpG sites of
cg19477361 (D), cg21462934 (E) and cg27181295 (F) in LUAD.
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et al., 2022). However, most of these biomarkers are associated with

the increase in cell numbers resulting from cell division (cell

proliferation), programmed cell death (apoptosis), and tumor

angiogenesis, while few with tumor immune microenvironment.

Accumulating evidence has shown that not only the characteristics

of tumor cells but also the tumor microenvironment, especially

Tumor infiltrating immune cells (TIICs), plays critical roles in the

tumorigenesis and progression of LUAD (Hinshaw and Shevde,

2019). In recent years, with the further understanding of the

mechanism of tumor immune infiltration, tumor

immunotherapies, such as the immune checkpoint inhibitors

(ICIs), have had a revolutionary impact on the treatment of

LUAD (Bagchi et al., 2021). However, only a small percentage

of patients achieved a durable immune response after treatment.

The mechanisms of LUAD development are far from being

elucidated. It is of great necessity to further clarify the molecular

basis of LUAD and explore contributing factors as well as sensitive

diagnosis and prognosis biomarkers of immunotherapy response to

improve patient outcomes (Wu and Shih, 2018; Singh et al., 2020).

In the current study, we performed comprehensive

bioinformatics analyses to explore the potential key

molecules involved in the development of LUAD. Through

screening and identification, GNG7 was demonstrated to be

lowly expressed in LUAD and had a good diagnostic

performance. In addition, low expression of GNG7 was

positively associated with the poor clinicopathological

characteristics such as poor primary therapy outcome and

high pathologic stage of LUAD, implying the tumor

suppressive roles of GNG7 in LUAD.

As a subunit of heterotrimeric G protein, GNG7 has been

reported to be tightly related to carcinogenesis. GNG7 is

frequently downregulated in various cancers including

pancreatic cancer, esophageal cancer and clear cell renal cell

carcinoma (Shibata et al., 1998; Ohta et al., 2008; Xu et al., 2019).

It is worth noting that GNG7 has been identified as one of the

hub genes in an eight-gene prognostic signature model and a

four-gene panel predicting overall survival for LUAD (Li C. et al.,

2020; Ma et al., 2021). However, the role of GNG7 as an

independent prognostic factor in LUAD has not been fully

elucidated. Here, our study based on GNG7 is similar to, but

more distinctive from, the newly identified biomarkers for LUAD

in the latest literatures. In our study, we demonstrated GNG7 as

an independent prognostic risk factor in LUAD (Supplementary

Table S4) (Wan et al., 2021; Tian W. et al., 2022; Zhang et al.,

2022; Zhou et al., 2022). Moreover, we constructed a nomogram

combined with other clinical independent prognostic risk factors

to predict the prognosis of LUAD patients reliably.

Recent studies have reported that GNG7 inhibited the

progression of LUAD by inhibiting E2F1 and Hedgehog signaling,

but the exact mechanism by which it regulates the development of

LUAD is largely unknown (Zhao et al., 2021; Zheng et al., 2021). Our

GSEA and GO enrichment analysis found that GNG7 may be

involved in regulating the TME of LUAD and antigen processing

and presentation via MHCII. Especially, high expression of

GNG7 corresponded to increased infiltration level of several

immune cells including B cells. Over the past decades, intense

research has focused on the roles of T cells in immune regulation

in the TME (Joyce and Fearon, 2015). More recently, there is

increasing evidence supporting a critical role for B cells in tumor

immunology (Bruno, 2020; Cabrita et al., 2020; Helmink et al., 2020).

However, there is limited understanding of the biological

contributors to the B cell infiltration in the TME. As the key

immune cell in humoral immunity, B cells express a large

number of MHCII molecules and are important antigen-

presenting cells. In the present study, we found that GNG7 may

be involved in regulating MHCII-mediated antigen processing and

presentation. Furthermore, we found that GNG7 expression may

promote B cell infiltration as evidenced by that lowGNG7 expression

was negatively correlated with B cell infiltration. Strikingly, the results

of the prognostic analysis indicated patients with high

GNG7 expression tended to predict a better prognosis in the

context of enriched B cell infiltration and high infiltration levels

of B cells regardless of GNG7-low or GNG7-high expression

corresponded to a good prognosis in patients with LUAD. Our

results indicated that GNG7 may exert its tumor suppressive roles in

LUAD by promoting B cell infiltration and GNG7 expression

together with B cell infiltration may be a powerful predictive

signature for prognosis and immunotherapy response in LUAD,

although the detailed function andmechanism need further in-depth

investigation both in vitro and in vivo.

Finally, in this study, we further explored the mechanism of

GNG7 low expression in LUAD. To our knowledge, other than

miR-19b-3p which was reported to target GNG7 directly and

significantly decrease the mRNA level of GNG7, little is known

about the mechanism of GNG7 dysregulation in LUAD (Zhao et al.,

2021). Given that DNAmethylation of CpG islands is known to be a

repressive mark of gene expression, we assessed the methylation

level of GNG7 in LUAD (Kulis and Esteller, 2010). As expected,

elevated methylation level of GNG7 was observed in tumor tissues

whichmay be responsible for the low expression ofGNG7 in LUAD.

Interestingly, hypermethylation of GNG7 was associated with poor

prognosis in patients with LUAD, which is consistent with the

prognostic value of GNG7 mRNA expression. These results suggest

the importance of DNAmethylation in regulating GNG7 expression

in LUAD.

In summary, this study revealed for the first time thatGNG7may

be involved in regulating the immune microenvironment in LUAD

and influence tumor development and patient prognosis at least

partly by regulating the B cell infiltration. GNG7 may be not only a

potential diagnostic biomarker for LUAD but also a promising

predictive signature for prognosis and immunotherapy response

for patients with LUAD. Nevertheless, as data from this study

were mainly obtained from open databases, more LUAD patient

samples are needed to confirm the clinical prognostic value of GNG7.

Moreover, the effects of GNG7 on immune cell recruitment and

infiltration as well as immunotherapy response are needed to be
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investigated deeply at the cellular and molecular levels and in future

clinical trials.
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Novel peripheral blood
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Background: Ankylosing spondylitis (AS) is a chronic inflammatory disorder of

unknown etiology that is hard to diagnose early. Therefore, it is imperative to

explore novel biomarkers that may contribute to the easy and early diagnosis

of AS.

Methods: Common differentially expressed genes between normal people and

AS patients in GSE73754 and GSE25101 were screened by machine learning

algorithms. A diagnostic model was established by the hub genes that were

screened. Then, the model was validated in several data sets.

Results: IL2RB and ZDHHC18 were screened using machine learning

algorithms and established as a diagnostic model. Nomograms suggested

that the higher the expression of ZDHHC18, the higher was the risk of AS,

while the reversewas true for IL2RB in vivo. C-indexes of themodel were no less

than 0.84 in the validation sets. Calibration analyses suggested high prediction

accuracy of the model in training and validation cohorts. The area under the

curve (AUC) values of the model in GSE73754, GSE25101, GSE18781, and

GSE11886 were 0.86, 0.84, 0.85, and 0.89, respectively. The decision curve

analyses suggested a high net benefit offered by themodel. Functional analyses

of the differentially expressed genes indicated that theyweremainly clustered in

immune response–related processes. Immune microenvironment analyses

revealed that the neutrophils were expanded and activated in AS while some

T cells were decreased.

Conclusion: IL2RB and ZDHHC18 are potential blood biomarkers of AS, which

might be used for the early diagnosis of AS and serve as a supplement to the

existing diagnostic methods. Our study deepens the insight into the

pathogenesis of AS.
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Introduction

Ankylosing spondylitis (AS), also known as radiographic

axial spondyloarthritis, is one of the two types of axial

spondyloarthritides (Sieper et al., 2015; Taurog et al., 2016;

Sieper and Poddubnyy, 2017; Navarro-Compán et al., 2021).

It is a chronic inflammatory disorder mainly affecting the axial

joints and entheses and is usually characterized by typical

features such as inflammatory back pain, limitation of the

motion of the lumbar spine, restricted chest expansion, and

advanced sacroiliitis on plain radiographs. Some patients with

AS also experience peripheral spondyloarthritis symptoms such

as dactylitis and Achilles tendinitis and extra-articular

manifestations such as uveitis, psoriasis, inflammatory bowel

disease, and many others, either simultaneously or at some point

during the course of the disease. The diagnosis of AS is based on

the Modified New York criteria: advanced sacroiliitis on plain

radiographs with any one of the three typical aforementioned

features (van der Linden et al., 1984). Patients usually do not

meet the criterion of advanced sacroiliitis on plain radiographs;

however, those with sacroiliitis on MRI or HLA-B27 positivity

plus the clinical criteria are classified into non-radiographic axial

spondyloarthritis (Rudwaleit et al., 2009; Rudwaleit et al., 2011).

The prevalence of AS, which reportedly varies with

geography, ranges from 0.02–0.35%, while that of axial

spondyloarthritis is estimated to be 0.20–1.61%, which is

much higher than the prevalence of AS, indicating a high

ratio of non-radiographic axial spondyloarthritis patients

(Dean et al., 2014; Stolwijk et al., 2016; Ward et al., 2019).

Especially, with the development of diagnostic tools and

further understanding of axial spondyloarthritis, patients

without advanced sacroiliitis on plain radiographs raise more

attention, and more non-radiographic axial spondyloarthritides

are detected together with updates in its definition (Taurog et al.,

2016; Ritchlin and Adamopoulos, 2021). However, even with

modern diagnostic methods, the diagnostic sensitivity and

specificity for axial spondyloarthritis are not higher than

approximately 80% (Sieper and Poddubnyy, 2017). This

means that a significant number of patients are still excluded

from the current diagnostic criteria, and there is still a lot of room

for improvement in our diagnostic methods. More importantly,

it has been reported that approximately 10–20% of patients with

non-radiographic axial spondyloarthritis will progress to AS

within 1 year after the initial diagnosis while 20.3% of them

will do so in 2–6 years (Sieper and Poddubnyy, 2017). Therefore,

it is necessary to identify pre-AS patients, for identifying them

could save more time for clinical interventions.

At present, our measures to identify axial spondyloarthritis

are still limited beyond clinical features. Imaging (radiography,

CT, and MRI), HLA-B27, and C-reactive protein (CRP) features

are the main indices for the clinical diagnosis of axial

spondyloarthritis (Zochling et al., 2005; Sieper and

Poddubnyy, 2017; Ritchlin and Adamopoulos, 2021). More

methods with high sensitivity and specificity are eagerly

expected. Although with the rapid development of genomics

technology, many serum biomarkers for the diagnosis of AS such

as miR-214 (Kook et al., 2019), deoxyribonuclease 1-like 3 (Sun

et al., 2020), anti-SIRT1 autoantibody (Hu et al., 2018), sclerostin

(Perrotta et al., 2018), endoplasmic reticulum aminopeptidase 1

(Danve and O’Dell, 2015), and others have been identified, there

is still a paucity of reliable indices for clinical practice besides

HLA-B27 and CRP (Sieper and Poddubnyy, 2017; Danve and

O’Dell, 2015). Therefore, the exploration of gene biomarkers of

AS in peripheral blood is not only of real need and great practical

value but could also deepen our knowledge of the

pathophysiology of AS and even help us understand its etiology.

Thereby, in this study, we aimed to screen potential gene

biomarkers in the peripheral blood by machine learning

algorithms and build a diagnostic model and also

preliminarily explore the immune microenvironment of AS to

find some differences in immune cell proportions and potential

explanations for our hub genes. To date, this work has not been

done and reported; thus, it is imperative to bridge the knowledge

gap in this area.

Materials and methods

Data collection

We searched the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) for data sets containing

whole-blood RNA expression data of normal people and AS

patients with at least 15 samples in each group. Only GSE73754,

GSE25101, and GSE18781 were qualified, and their expression

and phenotype data were downloaded for subsequent studies.

GSE73754 and GSE18781 contained whole-blood RNA

expression data of 20 normal and 52 AS patients and

25 normal and 18 AS patients, respectively, together with

their corresponding basic information such as sex and age.

The expression data of GSE73754 were detected by the

Illumina HumanHT-12 V4.0 expression BeadChip, University

of Toronto, Canada, submitted on 06 Oct 2015. The expression

data of GSE18781 were detected by the Affymetrix Human

Genome U133 Plus 2.0 Array, Oregon Health & Science

University, United States, submitted on 28 Oct 2009.

GSE25101 contained whole-blood RNA expression data of

16 normal and 16 AS patients, which were detected by the
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Illumina HumanHT-12 V3.0 expression BeadChip, University of

Queensland Diamantina Institute, Australia, submitted on

03 Nov 2010. However, the basic information of the subjects

from GSE25101 was unavailable; so, it is only used as one of the

validation sets. GSE11886 referred to the RNA expression data of

in vitro cultured macrophages, which were obtained from the

peripheral blood of nine normal people and eight AS patients.

They were detected by the Affymetrix Human Genome

U133 Plus 2.0 Array, Cincinnati Children’s Hospital Medical

Center, United States, submitted on 25 Jun 2008. Although the

RNA expression data of each set were normalized data, while in

the quality control process, we found that samples of

GSE18781 came from two batches; so, we used the

“removebatcheffect” function of the “limma” package to

recalculate the expression data (Ritchie et al., 2015).

Identify common differentially expressed
genes

Differentially expressed genes (DEGs) in GSE73754 and

GSE25101 between normal people and AS patients were

identified by the “limma” package (Ritchie et al., 2015)

(cutoff value: the absolute value of log2foldchange >0.3 and

p-value < 0.05). Then, common DEGs in GSE73754 and

GSE25101 were selected as candidates for subsequent

screening.

Screening genes for diagnostic model by
machine learning algorithms

GSE73754 served as the training set. Common DEGs were

first screened by univariate logistic regression in the training set.

Genes with a p-value < 0.05 were retained. Then, three machine

learning algorithms: the least absolute shrinkage and selection

operator (LASSO) logistic regression (Simon et al., 2011), a

support vector machine recursive feature elimination (SVM-

RFE) (Sanz et al., 2018), and random forest (RF) (Strobl et al.

2007) were adopted to screen hub genes. The common hub genes

were selected as the final genes for the diagnostic model.

Establishment of diagnostic model and its
evaluation in training set and related
validation set

A diagnostic model was established by the common hub

genes and visualized by nomograms. Then, the prediction

accuracy and discriminatory capacity were first assessed in

GSE73754 and GSE25101 by the C-index, calibration analysis,

receiver operating characteristic (ROC) curves, and decision

curve analysis (DCA).

Validation of model in validation sets

GSE18781 was set as an in vivo external validation set, while

GSE11886 was set as an in vitro external validation set. The

prediction accuracy and discriminatory capacity of the model

were also assessed in the two aforementioned sets by the C-index,

calibration analysis, ROC analysis, and DCA.

Functional analysis of differentially
expressed genes between normal and
ankylosing spondylitis groups

GO and KEGG clustering and gene set enrichment analyses

(GSEA) were used to explore the potential functions of the DEGs,

which might indicate the causes of the difference between normal

people and AS patients. With the same consideration, the

protein–protein interaction (PPI) network analysis was also

adopted to investigate the interaction between the proteins

encoded by the DEGs (interaction score ≥0.4).

Immune microenvironment analysis

The “CIBERSORT” package was employed to investigate the

immune microenvironment (IME) of the samples. Meanwhile,

the correlations between the different types of immune cells and

the hub genes were also explored.

Statistical analyses

In this study, the R software v3.63 was used to process data and

generate charts. PPI network analyses were explored on the STRING

website (https://cn.string-db.org/) (interaction score ≥0.4) and

visualized by the Cytoscape software v3.7.1. Flexible statistical

methods were adopted for the statistical analyses.

Results

Clinical characteristics of enrolled
ankylosing spondylitis patients

The basic information of the samples from GSE73754 and

GSE18781 is shown in Table 1. The clinical characteristics such as

age and sex of the two sets were similar (p-value < 0.05).

Identification of hub genes

In total, 64 downregulated and 132 upregulated DEGs were

identified by “limma” in GSE73754 (Figure 1A). Also,
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278 downregulated and 345 upregulated DEGs were identified in

GSE25101 (Figure 1B). Then, the common upregulated and

downregulated genes were selected: three common

downregulated genes, namely, IL2RB, GZMM, and CXXC5

(Figure 1C), and four common upregulated genes, namely,

S100A12, ANXA3, PROS1, and ZDHHC18 (Figure 1D).

Taking GSE73754 as the training set, the p-values of the

seven genes in the univariate logistic regression were all lower

than 0.05, meaning that all seven genes were qualified for the next

screening. Then, they were screened by three different machine

learning algorithms. IL2RB, GZMM, S100A12, and ZDHHC18

were screened as hub genes by LASSO (λ = lambda.min) (Figures

1E,F). IL2RB and ZDHHC18 were screened as hub genes by

SVM-RFE (Figure 1G). ZDHHC18, CXXC5, PROS1, and IL2RB

were screened as hub genes by RF with

MeanDecreaseAccuracy >3 and MeanDecreaseGini >2
(mtry = 3, ntree = 200) (Figures 1H,I). Obviously, IL2RB and

ZDHHC18 were the common hub genes screened by the three

algorithms, and they were selected as the final hub genes for a

diagnostic model in AS.

Evaluation of diagnostic model in training
set (GSE73754) and GSE25101

A diagnostic model was established by IL2RB and ZDHHC18

and then visualized by a nomogram in GSE73754 (Figure 2A)

and GSE25101 (Figure 2B), respectively. The nomograms

suggested that the higher the expression level of ZDHHC18

was, the higher was the risk of AS, while the reverse was true

for IL2RB. The C-index of the diagnostic model in GSE73754 was

0.86 (95% CI: 0.76–0.96) and 0.84 (95% CI: 0.71–0.97) in

GSE25101. The calibration analyses showed that the predicted

probability was in high agreement with the observed probability,

suggesting a high accuracy of the model both in the training set

and an external validation set (Figures 2C,D).

The ROC analysis in GSE73754 showed that the areas under

the curves (AUCs) for the nomogram, IL2RB, and ZDHHC18

were 0.86, 0.83, and 0.83, respectively (Figure 2E). The optimal

truncation value of Y was 0.713, and the corresponding

specificity and sensitivity were 0.85 and 0.827, respectively

(formula: y = 2.9111*EXPZDHHC18 − 2.3256*EXPIL2RB −

2.2376, where EXPZDHHC18 refers to the expression value of

ZDHHC18 and EXPIL2RB refers to the expression value of

IL2RB). In this model, the value of Y ≥ 0.713, predicted to be

AS, was otherwise normal. The actual prediction accuracy of the

model in GSE73754 was 0.82. While in GSE25101, the AUCs for

the nomogram, IL2RB, and ZDHHC18 were 0.84, 0.79, and 0.76,

respectively (formula: y = 2.320,052*EXPZDHHC18 −

1.728,388*EXPIL2RB − 6.902,309) (Figure 2F). There were three

optimal truncation values for Y: 0.589 with a corresponding

specificity of 0.875 and sensitivity of 0.688, 0.521 with a

corresponding specificity of 0.75 and sensitivity of 0.812, and

0.452 with a corresponding specificity of 0.688 and sensitivity of

0.875. The actual prediction accuracy of the model in

GSE25101 was 0.72. The DCA for the nomogram and models

involved only one of these genes, which indicated that the net

benefit of the nomogram was higher than that of the other

models (Figures 2G,H).

Validation of model in independent cohort
and in vitro

The model was validated in an independent cohort,

GSE18781, and in vitro cohort, GSE11886. The nomogram

for GSE18781 supported the conclusion reached in the

training set that AS patients had a higher expression of

ZDHHC18 and lower expression of IL2RB (Figure 3A). The

function of IL2RB in GSE11886 was in accordance with that in

the other sets; however, the function of ZDHHC18 in vitro was

opposite to that in vivo, and this might have been due to the lack

of the in vivo microenvironment (Figure 3B). According to the

coverage of points in the nomogram, IL2RB showed higher

weight in the validation sets and the alteration between the

nomograms also indicated that it is a more robust indicator

than ZDHHC18. The C-index of the diagnostic model in

GSE18781 was 0.85 (95% CI: 0.73–0.96) and 0.89 (95% CI:

0.73–1.05) in GSE11886. The calibration analyses revealed that

the prediction accuracy of the model was lower than that in

GSE73754 and GSE25101; however, it still had acceptable

accuracy (Figures 3C,D).

TABLE 1 Clinical characteristics in training and validation sets.

Characteristics Level GSE18781 GSE73754 p-value Test

Sample size (n) 43 72

Sex Female 25 (58.1) 35 (48.6) 0.342 Fisher test

Male 18 (41.9) 37 (51.4)

Age, median (interquartile range) 45.0 [32.5, 58.5] 41.5 [28.8, 51.2] 0.324 Kruskal test

Group Normal 25 (58.1) 20 (27.8)

AS 18 (41.9) 52 (72.2)
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FIGURE 1
Screening for hub genes from DEGs between normal people and AS patients. The volcano plot for DEGs in GSE73754 (A) and GSE25101 (B):
x-axis represents log2 (fold change) of gene expressions in AS patients comparedwith normal controls, while the y-axis represents −log10 (p-value) of
gene expression between AS patients and normal controls. (C) Venn plot for downregulated DEGs in GSE73754 and GSE25101. (D) Venn plot for
upregulated DEGs in GSE73754 and GSE25101. (E) LASSO coefficient profiles for the seven common DEGs in the ten-fold cross-validations. (F)
Partial likelihood deviance with changing of log(λ) plotted by LASSO regression in ten-fold cross-validations. (G) Filtering characteristic genes using
the SVM-RFE algorithm: accuracy for models with different numbers of variables: the x-axis represents the number of variables involved in the
models and the y-axis represents the corresponding accuracy of cross-validation of the models. (H) Relationship between the number of decision
trees and the error rate of the model in RF. (I) Selecting hub genes by variable importance measures for RF.
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FIGURE 2
Evaluating the diagnostic model in the training set and a related validation set. Nomograms for the diagnostic model in GSE73754 (A) and
GSE25101 (B). Calibration plots for the diagnostic model in GSE73754 (C) and GSE25101 (D): x-axis represents the predicted probability of AS by the
model, while the y-axis represents the observed probability of AS, the diagonal (dashed line) represents the ideal status that the predicted probability
equaled the observed probability, and the solid and dotted lines represent the apparent and bias-corrected statuses of the predicted and
observed probabilities, respectively. ROC plots for the diagnostic model in GSE73754 (E) and GSE25101 (F): the x-axis represents 1-specificity of the
model, while the y-axis represents the sensitivity of the model. DCA in GSE73754 (G) and GSE25101 (H): the x-axis represents the threshold
probability for the treatment or intervention, while the y-axis represents the net benefit.
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FIGURE 3
Validating the diagnostic model in validation sets. Nomograms for the diagnostic model in GSE18781 (A) and GSE11886 (B). Calibration plots for
the diagnostic model in GSE18781 (C) and GSE11886 (D): the x-axis represents the predicted probability of AS by the model, while the y-axis
represents the observed probability of AS. The diagonal (dashed line) represents the ideal status that the predicted probability equaled the observed
probability, and the solid and dotted lines represent the apparent and bias-corrected statuses of the predicted and observed probabilities,
respectively. ROC plots for the diagnostic model in GSE18781 (E) and GSE11886 (F): the x-axis represents 1-specificity of the model, while the y-axis
represents the sensitivity of the model. DCA in GSE18781 (G) and GSE11886 (H): the x-axis represents the threshold probability of the treatment or
intervention, while the y-axis represents the net benefit.
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FIGURE 4
Functional analysis of the DEGs between normal people and AS patients. Dot plots for GO (A) and KEGG (B) analyses of DEGs. (C) Circle plot for
BP clustering of the DEGs. (D) GSEA analysis for the DEGs. (E) Chord plot for the top seven clustered GO terms. (F) Chord plot for the top seven
clustered KEGG pathways. (G) PPI network analysis for DEGs.
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The ROC analysis in GSE18781 revealed that the areas under

the curves (AUCs) for the nomogram, IL2RB, and ZDHHC18

were 0.85, 0.79, and 0.67, respectively (Figure 3E). The optimal

truncation value of Y was 0.305, and the corresponding

specificity and sensitivity were 0.72 and 0.994, respectively

(formula: y = 1.29499*EXPZDHHC18 − 2.582,298*EXPIL2RB +

20.055204). The actual prediction accuracy of the model in

GSE18781 was 0.72. While in GSE11886, the AUCs for

nomogram, IL2RB, and ZDHHC18 were 0.89, 0.89, and 0.65,

respectively (formula: y = −6.49159*EXPZDHHC18 −

6.13506*EXPIL2RB − 0.01334) (Figure 3F). The optimal

truncation value of Y was 0.395, and the corresponding

specificity and sensitivity were 0.778 and 1, respectively. The

actual prediction accuracy of the model in GSE11886 was 0.76.

The DCA showed that patients could get a high net benefit from

the nomogram (Figures 3G,H). Besides, a high net benefit could

also be obtained from the model established by IL2RB only in

this set.

Results of functional analysis of
differentially expressed genes between
normal and ankylosing spondylitis groups

There was a total of 196 DEGs between normal people and

AS patients in GSE73754. Biological process (BP) clustering of

the DEGs showed that they were mainly clustered in

neutrophil activation, degranulation, immune response, and

migration (Figure 4A). Myeloid cell differentiation, leukocyte

migration, and granulocyte migration were also clustered BPs.

Gene clustering of cellular components (CC) was mostly in the

area of membranes, such as endocytic vesicles, secretory

granule membranes, membrane microdomains, and

cytoplasmic vesicle lumens (Figure 4A). Molecular

functions (MFs) of the DEGs were mostly clustered in

serine-type peptidase activity, serine hydrolase activity,

serine-type endopeptidase activity, and MHC protein

complex binding (Figure 4A). In the KEGG clustering of

the DEGs, the hematopoietic cell lineage, human T-cell

leukemia virus 1 infection, Th1 and Th2 cell

differentiation, and Th17 cell differentiation were the top

clustered pathways (Figure 4B). The circle plot for BP

clustering showed that neutrophil activation, degranulation,

immune response, and migration were upregulated in AS

(Figure 4C). By GSEA, antigen processing and presentation,

natural killer cell–mediated cytotoxicity, graft-versus-host

disease, Epstein–Barr virus infection, and rheumatoid

arthritis were the top enriched gene sets, which were all

downregulated in AS patients (Figure 4D). The top three

upregulated pathways enriched with core enrichment genes

were neutrophil extracellular trap formation, complement and

coagulation cascades, and the rap1 signaling pathway. The GO

chord plot showed thatDYSF,DMTN, ITGA2B,MAGT1, SPI1,

CXCL8, ID2, CD81, IKZF1, and many others were involved in

the top seven GO terms (Figure 4E). The KEGG chord plot

showed that ITGA2B, SPI1, ANPEP, BCL2L1, STAT5B, IL2RB,

GZMB, HLA-DQA2, CXCL8, and many more were involved in

the top seven KEGG terms (Figure 4F).

The PPI network of the proteins encoded by DEGs showed

that MMP1, ID2, MBD4, GNLY, EOMES, PUF60, and

APOBEC3G were seed proteins in the network by the

MCODE application in Cytoscape (Figure 4G). The cyan

nodes were also pivotal nodes in the net, such as IL2RB,

GZMA, SPI1, and many others. Then, GZMA, IL2RB,

CD247, KLRB1, GZMH, GZMB, GZMK, KLRD1, NKG7,

and GNLY were the top 10 hub proteins screened by

cytoHubba.

Results of immune microenvironment
analyses

IME analyses were performed in GSE73754, GSE25101, and

GSE18781 by CIBERSORT. The proportions of the 22 immune

cells for samples are shown in Figures 5A–C. In all three sets, the

neutrophils and monocytes accounted for the top two highest

proportions and together made up the majority of the immune

cells, while the other immune cells such as granulocytes, B cells,

dendritic cells, and macrophages each made up only a small

proportion of the total immune cell population. The relative

quantities of different immune cells in normal people and AS

patients are shown in Figures 5D–F. In GSE73754, when

compared with the normal subjects, there were more

neutrophils and naive CD4 T cells detected in the blood of AS

patients, while there were fewer resting NK, CD8+ T, and

gamma-delta T cells (Figure 5D). In GSE25101, monocytes

were found to be more in the blood of AS patients, while

regulatory T cells (Tregs) were fewer. In this set, the relative

number of neutrophils was more in the AS group; however, the

difference was not statistically significant (Figure 5E). The result

in GSE18781 was similar to that in GSE73754; the relative

number of neutrophils was increased, while that of CD8+ and

gamma-delta T cells was decreased in patients with AS

(Figure 5F).

The correlation between our hub genes (IL2RB and

ZDHHC18) and immune cells was also explored. In

GSE73754, the expression of IL2RB was positively correlated

with the relative numbers of resting NK, CD8+ T, and gamma-

delta cells (Figures 6A–C) and negatively correlated with the

relative numbers of neutrophils, naive CD4 T cells, and

monocytes (Figures 6D,E). Meanwhile, the expression of

ZDHHC18 was positively correlated with the relative number

of neutrophils (Figure 6F) but negatively correlated with the

relative numbers of CD8+ T cells and resting NK cells (Figures

6G,H). In GSE25101, the expression of IL2RB was positively

correlated with the relative numbers of resting NK and activated
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CD4+ memory T cells (Figures 6I,J) and negatively correlated

with the relative number of monocytes (Figure 6K). Besides, the

expression of ZDHHC18 was positively correlated with the

relative number of neutrophils (Figure 6L) but negatively

correlated with the relative number of activated NK cells

(Figure 6M). There was no significant correlation between

Tregs and the hub genes. Lastly, in GSE18781, the expression

of IL2RB was positively correlated with the relative numbers of

resting NK and CD8+ T cells (Figures 6N,O) and negatively

correlated with the relative number of neutrophils (Figure 6P).

Moreover, the expression of ZDHHC18 was positively correlated

with the relative number of neutrophils (Figure 6Q) but

negatively correlated with the relative quantities of CD8+,

gamma-delta, and activated CD4+ memory T cells

(Figures 6R–T).

Discussion

It is known that AS is an inflammatory disease mainly

involving the axial skeleton’s joints and entheses. The essential

change in AS is the dysregulation of inflammation by innate and

adaptive immune responses (Mauro et al., 2021). Although AS is

primarily associated with the axial skeleton, recent research

indicates that it may be initiated in the gut (Yang et al.,

2016a). Besides, the peripheral and extra-articular

manifestations of AS also suggest that it is a systemic

disorder. Therefore, DEGs in the peripheral blood of AS

patients can also reflect some features of AS. As for RNAs

extracted from the peripheral blood, they are mostly from the

nucleated cells in the blood, similar to leukocytes and immature

red blood cells; so, it is rational to explore the immune

FIGURE 5
The IME analysis of the sets by CIBERSORT. The proportion of the 22 immune cells for samples in GSE73754 (A), GSE25101 (B), and
GSE18781 (C). Boxplots for the 22 immune cells between normal people and AS patients in GSE73754 (D), GSE25101 (E), and GSE18781 (F) (p
significance level: no significance (ns), p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.).
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FIGURE 6
Correlation between hub genes and IME cells. The correlation between the expression of IL2RB and the estimated proportion of resting NK cells
(A), CD8+ T cells (B), gamma-delta T cells (C), neutrophils (D), and native CD4 T cells (E) by CIBERSORT in GSE73754. The correlation between the
expression of ZDHHC18 and the estimated proportions of neutrophils (F), CD8+ T cells (G), and resting NK cells (H) by CIBERSORT in GSE73754. The
correlation between the expression of IL2RB and the estimated proportions of resting NK cells (I), activated CD4+ memory T cells (J), and
monocytes (K) by CIBERSORT in GSE25101. The correlation between the expression of ZDHHC18 and the estimated proportions of neutrophils (L)
and activated NK cells (M) by CIBERSORT in GSE25101. The correlation between the expression of IL2RB and the estimated proportions of resting NK
cells (N), CD8+ T cells (O), and neutrophils (P) by CIBERSORT in GSE18781. The correlation between the expression of ZDHHC18 and the estimated
proportions of neutrophils (Q), CD8+ T cells (R), gamma-delta T cells (S), and activated CD4+ memory T cells (T) by CIBERSORT in GSE18781.
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microenvironment of the blood of AS patients. More

importantly, compared with the focal tissue, the peripheral

blood is easier to obtain and a more commonly used clinical

detection material, which is also conducive to the transition from

experimental results to applications.

To date, HLA-B27 is still considered the most important

factor in the pathogenesis of AS (Colbert et al., 2010; Bowness,

2015; Pedersen and Maksymowych, 2019; Sharip and Kunz,

2020; Voruganti and Bowness, 2020). First, many shreds of

evidence supported the hypothesis that the alternation of the

amino acid sequence in the antigenic peptide-binding groove of

HLA-B27 might induce changes in the binding specificity of

peptides and result in CD8+ T cell–mediated immune cross-

reactivity in the AS focus (Mear et al., 1999; Guiliano et al., 2017).

Second, endoplasmic reticulum stress was induced by the

accumulation of misfolded HLA-B27, which led to an

unfolded protein response (UPR) and autophagy (Yu et al.,

2017). Third, the HLA-B27 homodimer hypothesis suggests

that the HLA-B27 homodimer could activate CD8+ T cells

and NK cells by the specific receptors on their surfaces,

activating the IL-23/IL-17 axis (Bowness et al., 2011).

Certainly, there were also many other hypotheses, such as the

non-MHC hypothesis. However, the point of intersection is that

all the hypotheses are focused on the antigen-presenting process,

and its failure or dysfunction would mostly result in the

activation of the TNF signaling pathway and the IL23/

IL17 axis and eventually lead to the AS phenotype. However,

the sensitivity and specificity of HLA-B27 alone were

relatively low.

Here, to enhance the reliability and stability of the results,

only common genes screened by the three machine learning

algorithms were selected as hub genes for a diagnostic model. The

three methods used in our study are the most popular and widely

used ones in bioinformatics analyses. Currently, deep learning

methods are also popular in bioinformatics analyses, and some of

them can even generate different methods based on machine

learning techniques such as BioSeq-BLM and ilearn. However,

they are limited by the quantity and quality of the training data

and are more suitable for large data processing (Choi et al., 2020).

The data used in our study are small; so, the three machine

learning methods could be more suitable. Meanwhile, deep

learning methods are more complex, time-consuming, have

high requirements for computer hardware, and have results

that are more difficult to interpret (Choi et al., 2020). Besides,

we validated the model in three different data sets: one related

data set, one independent data set, and one data set of in vitro

samples to further assess the predictive reliability and stability of

the model. The C-index, calibration analysis, ROC analysis, and

DCA in the training and validation sets suggested that it is an

excellent diagnostic model with good applicability.

Functional analyses of DEGs and IME analyses indicated that

neutrophil activation, migration, and degranulation were

activated in AS patients. Also, the relative number or

proportion of neutrophils was significantly higher in AS

patients. Our result is also confirmed by other researchers

who have also suggested that the neutrophil-to-lymphocyte

ratio be used as an indicator of AS activity (Mercan et al.,

2016; Xu et al., 2020; Gökmen et al., 2015). Meanwhile,

neutrophil extracellular trap formation and the complement

and coagulation cascades were also upregulated in AS, which

might induce an autoimmune response, and this is in agreement

with the IME analysis result and our current understanding of AS

(Gonnet-Gracia et al., 2008; Yang et al., 2016b). A potential

explanation for the aforementioned finding is that the increased

number of neutrophils might release excessive IL-17A, the key

cytokine in the pathogenesis of AS. Although mature neutrophils

lack the transcriptional machinery to produce IL-17A, they could

produce and store IL-17A before they mature and accumulate it

from the extracellular environment (Lin et al., 2011; Tamassia

et al., 2018). Besides, in GSE25101, monocytes were also found to

be more numerous in AS patients with DEGs clustered in

myeloid cell differentiation and leukocyte migration in GO

clustering. It is known that monocytes share some similar

functions with neutrophils in immune response, and there

have also been reports that the monocyte-to-lymphocyte ratio

was increased in AS patients (Huang et al., 2018; Wang et al.,

2021; Liang et al., 2021). Whether or not the increments in the

number of lymphocytes and monocytes are two different

subtypes of AS remains unknown.

Lastly, IL2RB is a hub gene both inGO/KEGG clustering and the

PPI network analysis. Its expressionwas positively correlatedwith the

relative quantities/proportions of resting NK cells and negatively

correlated with the relative quantities/proportions of neutrophils and

monocytes in our study, which is in line with the data from the

Human Protein Atlas (HPA) website (Karlsson et al., 2021)

(Figure 7A: available from v21.1.proteinatlas.org, https://www.

proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type).

While ZDHHC18 was observed to be positively correlated with the

relative quantities/proportions of neutrophils in all three sets, it did

not seem to be highly expressed in granulocytes based on the data

from the HPA website (Karlsson et al., 2021) (Figure 7B: available

from v21.1.proteinatlas.org, https://www.proteinatlas.org/

ENSG00000100385-IL2RB/single+cell+type). Above all, our results

suggests that IL2RBmight be correlated with AS via the suppression

of the function of resting NK cells, and ZDHHC18 might be

correlated with AS through the function of neutrophils; however,

the detailed underlying mechanism still needs to be studied further.

In this study, IL2RB and ZDHHC18 were the two finally

screened hub genes. The former had already been identified by

other researchers as one of the hub genes in AS (Zhu et al., 2013;

Zheng et al., 2021), while to the best of our knowledge, the latter

was first reported here by us. IL2RB, interleukin 2 receptor

subunit beta, encoded the beta subunit of a heterodimer or

heterotrimer receptor involved in T cell–mediated immune

responses and is probably involved in the stimulation of

neutrophil phagocytosis by IL15 (Ratthé and Girard, 2004;
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Zhang et al., 2019). This protein is a type-I membrane protein

primarily expressed in NK cells, T cells, and dendritic cells.

According to the KEGG database (https://www.kegg.jp/),

IL2RB was involved in many pathways, which include

endocytosis, the PI3K-Akt signaling pathway, the JAK-STAT

signaling pathway, Th1 and Th2 cell differentiation, Th17 cell

differentiation, and many more. Obviously, Th1 and Th2 cell

differentiation and Th17 cell differentiation seemed to be most

related to AS, such that IL2 signaling can inhibit the

differentiation of Th17 via the inhibition of the transcription

factor RORγt (Waldmann, 2006; Soper et al., 2007; Liao et al.,

2011; Allard-Chamard et al., 2020; Pol et al., 2020). Therefore,

with the downregulation of IL2RB in this study, Th17 was

anticipated to be expanded. However, Th1 and Th2 cell

differentiation and Th17 cell differentiation were observed to

be downregulated in GSEA (Figure 6D), which is contradictory to

our knowledge of AS; therefore, something should be noticed. On

the one hand, the pathogeneses of changes in AS are mainly

involved in the focus of AS, not in the circulatory system, and our

knowledge was largely based on that; so, it might be common for

samples from the two sites to have some differences. On the other

hand, the role of IL2 signaling in the differentiation of Th17 has

still not been fully clarified (Campbell and Bryceson, 2019). The

question is what was the minimum IL2 signal required to

maintain the Treg numbers. Isabel Z Fernandez et al. reported

a hypomorphic mutation of IL2RB in two infant siblings that

resulted in an anticipated reduction in Tregs and an expansion of

immature NK cells (Fernandez et al., 2019). Here, in two of the

three sets, the relative numbers of CD8+ and gamma-delta T cells

were decreased, while that of Tregs was not significantly reduced,

which might indicate that the reduced IL2 signal was still

adequate for the proliferation of Tregs and the suppression of

effector T-cell expansion (Figures 5D,F). Besides, via the

blockade of IL-2 in vitro and in vivo, Kenjiro Fujimura et al.

found that the number of Th17 cells did not significantly increase

but the proportion of Th17 cells did, which suggests that it might

increase the proportion of Th17 by suppressing the total number

of immune cells (Fujimura et al., 2013). In this study, the

numbers of certain kinds of T cells, such as CD8+ T cells

gamma-delta T cells, and Tregs, were observed to have

FIGURE 7
Expression of hub genes in different single-cell types of normal subjects from the HPA website (Karlsson et al., 2021). (A) Expression of IL2RB in
different single-cell types (available from v21.1. proteinatlas.org: https://www.proteinatlas.org/ENSG00000100385-IL2RB/single+cell+type). (B)
Expression of ZDHHC18 in different single-cell types (available from v21.1. proteinatlas.org: https://www.proteinatlas.org/ENSG00000204160-
ZDHHC18/single+cell+type).
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decreased in AS patients, and this might overwhelm the effect of

the downregulation of Th17 cell differentiation. However, to see

which type of immune cells became fewer and if this would affect

the synthesis of IL17 by Th17 cells in AS patients requires further

research. In the end, although the potential function of IL2RB in

AS remains unclear, it might contribute to AS by reducing the

number of Treg cells and relatively increasing the proportion of

Th17 cells, thereby activating the IL17 signaling to form AS

phenotypes.

ZDHHC18, zinc finger DHHC-type palmitoyltransferase 18,

encoded a palmitoyltransferase, which was involved in peptidyl-

L-cysteine S-palmitoylation (Ohno et al., 2012). Studies on

ZDHHC18 are rare and insufficient. Currently, it is reported

to be associated with innate immunity (Shi et al., 2022), glioma

(Chen et al., 2019), ovarian cancer (Pei et al., 2022), and

schizophrenia (Zhao et al., 2018). The common palmitoylation

substrates of ZDHHC18 are HRAS and LCK (Baumgart et al.,

2010; Akimzhanov and Boehning, 2015; Adachi et al., 2016).

Palmitoylated HRAS could be translocated and stably anchored

to the plasma membrane (Yang et al., 2020), while

palmitoylation-defective HRAS was trapped in the Golgi

apparatus and was unable to traverse to the plasma

membrane. Meanwhile, ZDHHC18 could activate the

rap1 signaling pathway by the palmitoylation of Ras and

promote the proliferation of cells, which was consistent with

our GSEA result. Besides, Rac1, which was also involved in the

rap1 signaling pathway mainly by regulating cell adhesion,

migration, and polarity, could also be palmitoylated by the

ZDHHC family (Yang et al., 2020). Though we currently do

not know the exact role of ZDHHC18 in AS, it is essential for

neutrophil motility as well as directional sensing during

migration, which was clustered by GO clustering in our study.

In addition, the palmitoylation of LCK could promote T-cell

receptor signaling to activate T cells, although this was not seen in

our study, which meant that it is not important in the

pathogenesis of AS. Furthermore, ZDHHC18 could negatively

regulate CGAS-STING signaling–mediated antiviral innate

immunity via the palmitoylation of cGAS, which means that

the antiviral immunity in AS patients might be impaired by the

high expression of ZDHHC18 (Shi et al., 2022). In our study,

KEGG and GSEA also indicated dysregulation in some antiviral

immune pathways.

In general, our study indicated that IL2RB might be

involved in the pathogenesis of AS through the IL2

signaling pathway and ZDHHC18 through the

rap1 signaling pathway. Both of these could be used as

potential biomarkers in AS. Meanwhile, it should also be

noted that although we explored some changes in RNA

expression in the peripheral blood of AS patients, it is only

just the tip of the iceberg. Therefore, more validations of the

two genes in AS patients are required, and the mechanisms of

these two genes in the pathogenesis of AS also require further

research. These are the two main directions of our subsequent

research.

Conclusion

IL2RB and ZDHHC18 were identified as potential blood

biomarkers of AS, which might be used for the early diagnosis

of AS and serve as supplements to the existing diagnostic

methods. Our study helps deepen the understanding of the

pathogenesis of AS.
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In this current era, biomedical big data handling is a challenging task. Interestingly,
the integration of multi-modal data, followed by significant feature mining (gene
signature detection), becomes a daunting task. Remembering this, here, we
proposed a novel framework, namely, three-factor penalized, non-negative
matrix factorization-based multiple kernel learning with soft margin hinge loss
(3PNMF-MKL) for multi-modal data integration, followed by gene signature
detection. In brief, limma, employing the empirical Bayes statistics, was initially
applied to each individual molecular profile, and the statistically significant
features were extracted, which was followed by the three-factor penalized
non-negative matrix factorization method used for data/matrix fusion using
the reduced feature sets. Multiple kernel learning models with soft margin
hinge loss had been deployed to estimate average accuracy scores and the
area under the curve (AUC). Gene modules had been identified by the
consecutive analysis of average linkage clustering and dynamic tree cut. The
best module containing the highest correlation was considered the potential gene
signature. We utilized an acute myeloid leukemia cancer dataset from The Cancer
Genome Atlas (TCGA) repository containing fivemolecular profiles. Our algorithm
generated a 50-gene signature that achieved a high classification AUC score (viz.,
0.827). We explored the functions of signature genes using pathway and Gene
Ontology (GO) databases. Our method outperformed the state-of-the-art
methods in terms of computing AUC. Furthermore, we included some
comparative studies with other related methods to enhance the acceptability
of our method. Finally, it can be notified that our algorithm can be applied to any
multi-modal dataset for data integration, followed by gene module discovery.
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1 Introduction

Rapid advances in biotechnology have enabled the generation of
data in multiple platforms from the same or similar bio-samples. For
example, The Cancer Genome Atlas (TCGA) comprehensively
generated multi-omics profiles in 33 cancer types and subtypes.
Therefore, it is made available to conduct an in-depth investigation
into various molecular incidents at different biological stages and for
specific tumor categories. The challenging task here is to develop
algorithms to properly integrate these multi-omics (i.e., multi-
modal) data, which will deepen our understanding of human
tumorigenesis.

The integration of multi-omics profiles is a fast emerging
area of the biomedical research (Imielinski et al., 2012; Mo et al.,
2013; Mallik et al., 2017; Gaur et al., 2022; Ghose et al., 2022;
Saeed et al., 2022). From the perspective of biology, cellular
processes are based on the communication among different
biomolecules (viz., mutations, epigenetic regulators, proteins,
and metabolites). Molecular regulations occur in multi-layers
and multi-vantage points to orchestrate complex biological
events. An integrated analysis of profiles on the common set
of samples from multi-omics data shows great potential to yield
more biologically meaningful outcomes over an individual
analysis on a single data layer. Overall, it shows a more
comprehensive view and a global functional orientation of the
biological system.

One of the major challenges for integration is to deal with the
heterogeneity of these profiles. Profiles from various sources are often
complicated to integrate or interpret together because of the inherent
discrepancies. Various genomic variables can be measured and
accumulated in different ways, which are also vulnerable to
different kinds of noise and various confounding effects.
Interestingly, these profiles show individual aspects of the biological
system at different angles. The discrepancy among multi-omics data,
therefore, provides an opportunity for detecting reliable and consistent
signals for biological studies in a comprehensive manner. Multi-
dimensional data integration and gene signature identification are
among themost challenging tasks for bioinformaticians (Li et al., 2019;
Mallik and Zhao, 2020; Qiu et al., 2020; Pellet et al., 2015; Serra et al.,
2015). Mallik et al. (2017) proposed a scheme to recognize epigenetic
biomarkers applying maximal relevance and minimal redundancy-
based feature selection for multi-omics data. An approach of the
integration of multi-omics data was proposed by Li et al. (2019) to
identify biomarkers in the domain of cancer research. Qiu et al. (2020)
suggested an approach regarding the revelation of 172 osteoporosis
biomarkers by multi-omics data integration. A scheme of multi-omics
data integration was presented by Pellet et al. (2015) to determine
predictive molecular signatures regarding CLAD. Because specific
profiles contain different characteristics/phenomena, integration of
multi-view data with significant feature reduction and gene signature
detection is fundamentally important. In this upcoming era, the multi-
platform integration approach has been applied to accomplish various
important tasks, such as signature/bio-marker detection, disease
classification, and gene clustering. Prior research works in bio-

marker discovery (Bandyopadhyay and Mallik, 2016; Kandimalla
et al., 2022), classification (Henry et al., 2014; Maulik et al., 2015;
Zhang and Kuster, 2019), and clustering (Wang and Gu, 2016) have
improved the promising performance of multi-modal integration
approaches. Nevertheless, the outcomes of such approaches are not
always satisfactory. Zhang and Kuster (2019) represented an approach
with the incorporation of proteomics data to express the significance of
omics data integration with higher accuracy. Kandimalla et al. (2022)
showed mRNA–miRNA regulatory network analyses to improve the
approach of multi-omics data integration. In this work, we propose a
novel framework, namely three-factor penalized non-negative matrix
factorization-based multiple kernel learning with soft margin hinge
loss (3PNMF-MKL), which applies consecutive utilization of a couple
of multi-dimensional strategies: i) statistical empirical Bayes-based
feature selection, ii) three-factor penalized non-negative matrix
factorization, iii) multiple kernel learning with soft margin hinge
loss, iv) average linkage clustering, and v) the dynamic tree cut
method for multi-platform data integration and gene signature
detection. For evaluation of the performance of our proposed
approach, a cancer dataset from TCGA acute myeloid leukemia
(LAML) containing five different profiles [gene expression, DNA
methylation, exon expression, pathway activity, and copy number
variation (CNV)] was used. We demonstrated that our approach is
capable of multi-modal data integration, and thus, it can be applied to
any kind of multi-platform datasets.

2 Experimental procedures

In this section, we illustrate our proposed approach for
identifying Pareto-optimal gene signatures by feature clustering
on a cancer multi-omics dataset. The major steps are described
as follows.

2.1 Feature selection by the empirical Bayes
test

Commonly shared features (genes/probes) and samples are
chosen across all the profiles from the multi-omics cancer
dataset. Specifically, probes (features) from DNA methylation
arrays containing any missing values are discarded. The
individual profile is normalized using the zero-mean
normalization for each feature (Bandyopadhyay et al., 2013), as
described in the following formula: xik′ � xik−μ

σ . Here, μ is the mean
across the data for the feature i prior to normalization, and σ denotes
standard deviation. xik and xik′ signify the value of the i-th feature at
k-th patient (sample) prior and after normalization, respectively. To
determine statistically significant features, the empirical Bayes
statistical test is applied using the package “Linear Models for
Microarray and RNA-Seq Data” (Smyth, 2004; Bandyopadhyay
et al., 2013), which works better on the dataset with a small
sample size. The moderated t-statistic (Ritchie et al., 2015) is
elaborated as follows:
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~tpr � 1
������
1
m1

+ 1
m2

√
β̂pr
~spr

, (1)

where m1 and m2 are the number of patients (cases) and that of the
normal samples (controls), respectively. Here, β̂pr signifies the
contrast estimator for the feature pr, whereas ~s2pr refers to the
posterior sample variance for pr. The statistic to compute the
contrast estimator for the probe pr is formulated as follows:
β̂pr|σ2pr ~ N(βpr, σ2pr). Here, N represents the normal distribution.
The statistic to estimate the posterior sample variance for pr is
formulated as follows:

~s2pr �
d0s20 + dprs2pr
d0 + dpr

, (2)

where d0 (<∞) signifies the prior degrees of freedom, and s20
denotes the variance. In addition, dpr (> 0) symbolizes the
experimental degrees of freedom of pr, and s2pr denotes the
sample variance of pr. The significance of the level of the p-value

is then determined from ~s2pr with the help of the cumulative
distribution function (cdf). If the p-value of the feature is less
than the standard cutoff of 0.05, the feature is defined as
statistically significant. The filtered differentially expressed
features are then ordered according to the p-values. Notably, if
any gene corresponds to more than one probe (feature), the probe
with the lowest p-value will be selected to represent the gene, and the
rest of the probes for the gene are simply ignored.We apply the same
approach to each layer of the molecular profile, and then, we
perform the combination of the significant non-redundant
features (genes/probes/copy number variation, etc.) from all
layers (let, UF).

2.2 Fusion by matrix factorization

Let oi and oj denote two object types, namely, gene expression
and DNA methylation, in all resulted features UF. The number of
genes is N, while each gene is denoted by ni, where i = 1, 2,. . ., N.

FIGURE 1
Algorithm of the proposed 3PNMF-MK model.
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There are M number of DNA methylation samples, while each
sample is termed asmj, where j = 1, 2, . . ., M. In addition, there is a P
set consisting of p types of profiles from the multi-omics datasets.
The input to this implemented variant of the 3-FPNMF model is R,
which is a relational block matrix shown as follows:

R �
p R12 . . . R1p

R21 p . . . R2p

..

. ..
.

1 ..
.

Rp1 Rp2 . . . p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

Here, p denotes that similar object relationships are not considered
in this approach. Rij denotes the relationship between oith and ojth
object types. The respective correlation of the xth object of type oi
(e.g., gene) and the yth object of type oj (e.g., sample) is represented
as Roioj(x, y). In this implementation, we have experimented with
six object types, as described later.

For each object type from each profile, there is a constraint in the
input constraint block diagonal matrix, as shown in the following
expression:

τP � Diag τ1, τ2, . . . , τp( ). (4)
The relational block matrixR is tri-factorized into matrix factors

G and S (Žitnik and Zupan, 2014), which is shown as follows:

G � Diag G1
n1 × m1

, G2
n2 × m2

, . . . , Gp
np × mp

( ), (5)

S �
* Sr1×r212 . . . S

r1×rp
1p

Sr2×r121 * . . . S
r2×rp
2p

..

. ..
.

1 ..
.

S
rp×r1
p1 S

rp×r2
p2 . . . *

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Here, r denotes rank factorization to the object type op inferenced by
the 3-FPNMF model. The factor S denotes the block relation
between object types oi and oj. The factor Goi reconstructs
relations specifically to the object type oi.

Thus, each relation matrix Roioj obtains matrix factorization as
GoiSoiojG

T
oj
. In a simplified way, this relational block 3-FPNMF

model is shown as follows:

* Go1So1o2G
T
o2

. . . Go1So1opG
T
op

Go2So2o1G
T
o1

* . . . Go2So2opG
T
op

..

. ..
.

1 ..
.

GopSopo1G
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The objective function of this tri-factor penalized matrix
decomposition (PMD) model is to minimize the distance
between the input block relational matrix R and its 3-FPNMF
system adhering to the constraint matrix τP, which is shown as
follows:

min
G≥0

j R: G, S( ) � ∑
Roioj∈R

‖Roioj − GoiSoiojG
T
oj
‖2

+∑
P

p�1
tr GTτpG( ) .

(8)

Here, ‖.‖ denotes the Frobenius norm, and tr (.) denotes the
trace. Our sparse implementation for this 3-FPNMF model reduces
the missing relational matrix problemwith zero values. Our model is
more suitable for real-life heterogeneous datasets with missing
values, which differs from those of Žitnik and Zupan (2014) in
its non-negative sparse implementation. Our proposed 3FPNMF −
MKLmodel is shown briefly in Figure 1, while a detailed flowchart is
represented in Supplementary Figure S1.

2.3 Multiple kernel learning

Next, we introduce the multiple Kernel Learning (MKL)
algorithm (Xu et al., 2013) with the hinge loss soft margin, in
which the classifier and the kernel combination coefficients are
optimized by solving the hinge loss soft margin MKL problem.

After using the 3-FPNMF model in the first phase, the
approximate sparse relation matrix R̂oioj for target object type
pairs oi and oj is reconstructed as

R̂oioj � GoiSoiojG
T
oj
. (9)

Then, to develop kernel fusion, the resulting kernel matrices are
generated using the “Kernel Trick”: K(oi, oj) � R̂oioj.R̂

T
oioj

. The
kernels are further normalized and smoothed using 2-
dimensional linear filters.

Given p base-kernels K � {K1, K2, . . . , Kp} developed from the
reconstructed relational block matrix
R̂ � {R̂oioj|i � 1, . . . , p; j � 1, . . . , p}, kernel slack variables for the

FIGURE 2
Flowchart of the proposed 3PNMF-MKL framework.
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kernel Kp ∈ K are defined as the difference between the target
margin θ and the SVM dual objective function

DSVM Kp, α( )

� max
α∈RN

∑
N

n�1
αn − 1

2
∑
N

m�1
∑
N

n�1
αnαmynymKp xn, xm( )

subject to ∑N
n�1ynαn � 0, αn ≥ 0,∀n. Then, the slack variable is ζp =

θ − DSVM(Kp, α), and the hinge loss is shown as follows:

zp � ℓ ζp( ) � max 0, ζp( ). (10)
Therefore, the objective function for this hinge loss soft marginMKL
algorithm becomes

min
θ,α∈Dom α( ),ζp

−θ + π∑
P

p�1
ζp. (11)

subject to DSVM(Kp, α) ≥θ − ζp, ζp ≥ 0, p = 1, . . ., P.
The objective of the aforementioned hinge loss soft margin MKL

is to maximize the margin θ while considering the “errors” from the
given P-based kernels. The parameter π balances the contribution of
the loss term represented by slack variables ζp and the margin θ. π
should be in the range {π|π ≥ 1/P}. Otherwise, there is no solution to
the proposed problem. Our proposed framework for gene signature
detection from heterogeneous data sources using the 3FPNMF −
MKL model is depicted in Figure 2.

2.4 Determining best combination of class
labels using non-matrix factorization
and AUC

In biological datasets such as TCGA, the clinical data are
made available. This includes patient sample groups, biological
subtypes, drug treatment, and survival/prognosis information. In
our current study, we obtain accuracies for different
combinations of class labels using the non-matrix factorization
technique for the case where there were more than two class
labels or subtypes. Among them, the combination of class labels,
which produces the highest area under curve (AUC), is chosen
for the next step (i.e., module detection). Say, q is the specific
combination of class labels, which produces the highest AUC.
Find q = {∃i, ∃j}|{∃a, ∃b, ∃k} such that

AUCq � argmax ∀i,jAUCcliclj′,∀a,b,kAUCclaclbk′( ), (12)

where cl denotes the left part of the group combination, cl′ signifies
the right part of any sample group combination, and i ∈ {1, 2, . . .,
(m − 1)}, j ∈ {(i + 1), (i + 2), . . .,m}, a ∈ {1, 2, . . .,m}, b ∈ {1, 2, . . .,m}
& b ≠ a, k ∈ {, 2, . . ., m}, and k ≠ a and k ≠ b.

2.5 Feature clustering and module detection

After selecting the right class-label combination, we extracted
the sub-gene expression data consisting of only the selected class
labels and then used them for gene module detection and signature
identification.

In our procedure, we first evaluated the power of the soft
thresholding, which was then applied to evaluate the adjacency
matrix using Pearson’s correlation. The topological overlap matrix
(TOM) similarity score (Ravasz et al., 2002) was computed from the
employed adjacency matrix. The TOM score between two nodes
(say, i and j) symbolized as TOM(i, j) is defined as follows:

TOM i, j( ) �

∑
v≠i,j

X i, v( )X j, v( ) +X i, j( )

min ∑
v≠i

X i, v( ), ∑
v≠j

X j, v( ){ } − X i, j( ) + 1

, if i ≠ j,

1, if i � j,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(13)

where X denotes the corresponding adjacency matrix containing
Boolean entries. The entry of 1 indicates that the corresponding two
nodes share the same connection (i.e., direct connection), while the
entry of 0 signifies that no direct connection exists between them.

After obtaining the TOM score, we computed the distance/
dissimilarity value between genes (i and j) denoted by dissTOM(i,
j),which is shown as follows: dissTOM(i, j) = 1 − TOM(i, j). We
conducted average linkage clustering on the multi-omics
dissimilarity matrix dissTOM via considering all potential pairs
of genes/features. Finally, the dynamic tree cut technique
(Langfelder et al., 2008) was applied on the clustering
dendrogram to determine the gene modules. In order to evaluate
the quality of the aforementioned clustering, we calculated different
cluster validity index measures, viz., cluster coefficient,
heterogeneity, Dunn Index, maximum adjacency ratio,
centralization, silhouette width, and scaled connectivity.

2.6 Expression signature detection and
classifier models

After finding the gene modules, we estimated Pearson’s correlation
coefficient (PCC) between each gene pair within the resulted modules.
For eachmodule, the mean of the correlations for each gene pair within
that particular module was obtained. The module with the maximum
mean correlation coefficient was elected as a gene signature. Notably,
genes with the elected gene signature are differentially expressed
between case and control samples. In order to validate the
classification performance of the employed gene signature, we
utilized the Prediction Analysis of Microarrays (PAM) classifier with
10-fold cross-validation (CV) on the expression sub-data to classify the
underlying class labels. The entire procedure was then repeated ten
times. Moreover, we calculated the average scores of several
classification performance metrics such as sensitivity, specificity,
precision, accuracy, and AUC, individually.

2.7 Functional annotation analysis

We carried out KEGG pathway and Gene Ontology (GO)
analyses using the Enrichr database (Chen et al., 2013). Notably,
GO terms can be categorized into three kinds, viz., biological process
(BP), cellular component (CC), and molecular function (MF). Those
significant pathways/GO terms with an adjusted p-value less than
0.05 were identified. Meanwhile, literature research studies were also
performed to identify disease-related pathways/GO terms.
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3 Results

3.1 Data sources

For our experiment, TCGA acute myeloid leukemia (LAML)
multi-omics dataset (https://xenabrowser.net/datapages/?cohort=
GDC%20TCGA%20Acute%20Myeloid%20Leukemia%20(LAML)
&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443)
contained six heterogeneous profiles such as the gene expression
(IlluminaGA) profile, DNA methylation (Illumina Methylation
27k) profile, exon expression (IlluminaGA) profile, miRNA profile,
pathway activity (Paradigm IPLs) profile, and copy number
(GISTIC2) profile. Initially, the gene expression profile included
179 samples and 20,113 genes. For the methylation profile, there
are 194 samples and 27,578 methylation probes. Particularly, for
the methylation profile, many genes are profiled with more than
one probe. In the exon expression profile, there are a total of
219,296 chromosome ids and 179 samples. Here, many genes are
connected with more than one chromosome id. The miRNA
profile contains 705 miRNAs and 188 samples. The pathway

activity profile has 7,203 genes and 173 samples, while the copy
number profile consists of 24,776 genes and 191 samples. There are
three categories of samples (i.e., class labels) for the LAML multi-
omics dataset: i) favorable, ii) intermediate (also called normal),
and iii) poor. Specifically, every profile consists of 161 commonly
shared LAML samples. Among them, 31 samples belong to the first
category, 96 samples are in the second category, and the rest of the
samples (= 34) are in the third category. In addition, there are
1,501 uniquely matched genes among the five profiles [i.e., gene
expression, DNA methylation, exon expression, pathway activity,
and copy number variation (GISTIC2) profiles].

3.2 Statistical validation

First, we selected the sub-data, which contain commonly shared
samples (i.e., 161) and genes (i.e., 1,501) for each of the five profiles
(i.e., gene expression, DNA methylation, exon expression, pathway
activity, and copy number variation profiles). Many matched genes
are connected with more than one probe (or chromosome id) for each

TABLE 1 Predictive performance of classification for each pairwise class using the proposed method in LAML multi-omics data, where classes 1, 2, and 3 denote
“favorable,” “intermediate/normal,” and “poor,” respectively.

Sensitivity Specificity Precision (PPV) Negative predictive value Accuracy AUC

Class 1 vs. Class 2 0.5161 0.6907 0.3478 0.8171 0.6484 0.6202

Class 1 vs. Class 3 0.5484 0.8235 0.7391 0.6667 0.6923 0.7713

Class 1 vs. classes 2 and 3 0.5385 0.3871 0.7865 0.1667 0.5093 0.4608

Class 2 vs. Class 3 0.6289 0.5 0.7821 0.3208 0.5954 0.5215

Class 2 vs. classes 1 and 3 0.5 0.5052 0.4 0.6049 0.5031 0.4863

Class 3 vs. classes 1 and 2 0.5547 0.4848 0.8068 0.2192 0.5404 0.5528

Max 0.6289 0.8235 0.8068 0.8171 0.6923 0.7713

FIGURE 3
Plots for soft thresholding and dendrogram for our proposed method. (A) Power computing for soft thresholding and (B) dendrogram plots with
dynamic tree cut.
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profile. In the case of the miRNA profile, we started to work with the
matched samples (n = 161) and all of its miRNAs (n = 705). The
empirical Bayes test is performed by limma software on each gene probe
or chromosome id for each of the five profiles (i.e., gene expression,DNA
methylation, exon expression, pathway activity, and copy number
variation profiles) across all the three classes (viz., favorable,
intermediate, and poor).

Notably, since there are three classes/groups of samples, here,
limma is initially performed between each group pair (i.e., i)
favorable vs. intermediate, ii) intermediate vs. poor, and finally
iii) favorable vs. poor), then an F-statistics is computed, and
finally, the respective p-value is generated from the F-statistics.
After the test, for every gene, we only selected the probe or
chromosome id with the lowest p-value achieved among all the
probes or chromosome ids connected with that gene. As a result, we
obtained 728, 272, 1,100, 265, and 904 significant genes for the gene
expression, methylation, exon expression, pathway activity, and
copy number profiles, respectively. Thereafter, we took the
combination of all the significant gene sets, which led to a
molecular set of a total of 1,388 genes. Furthermore, the
same significance test was applied on each miRNA of the
miRNA profile across all the three classes (viz., favorable,
intermediate, and poor) as well. We obtained a total of
229 significant miRNAs.

3.3 Expression signature detection and
classification

Using the non-matrix factorization technique, we obtained
accuracies for different combinations of class labels such as i)

Class 1 (favorite) vs. Class 2 (intermediate), ii) Class 1 vs. Class 3
(Poor), iii) Class 1 vs. classes 2 and 3, iv) Class 2 vs. Class 3, v)
Class 2 vs. classes 1 and 3, and vi) Class 3 vs. Classes 1 and 2 (as
depicted in Table 1). Among them, the second combination,
i.e., Class 1 vs. Class 3 produced the highest area under curve
(AUC = 0.7713). Hence, we selected the combination for gene
signature discovery since other combinations did not produce
better AUC scores. After obtaining right combinations of class
labels, we first evaluated the power (=1) for soft thresholding
(illustrated in Figure 3A), which was then applied to estimate the
adjacency matrix through Pearson’s correlation score. Then, the
TOM score and distance matrix were computed. To determine
gene modules, we applied average linkage clustering and dynamic
tree cut methodologies. As a result, we generated a total of
10 gene modules. The numbers of participating differentially
expressed genes (DEGs) for these 10 gene modules (represented
by black, blue, brown, green, magenta, pink, purple, red,
turquoise, and yellow colors) were 50, 99, 90, 74, 23, 25, 22,
51, 214, and 80, respectively. The dendrogram is represented in
Figure 3B. The corresponding cluster validity indices in that
module detection are illustrated in Table 2. The Average
silhouette width plot generated during clustering is
represented in Supplementary Figure S2. PCC was calculated
between each gene pair within each module. The mean
correlation scores of the 10 modules (depicted by blue, green,
turquoise, magenta, brown, red, yellow, black, purple, and pink
colors) were 0.0268, 0.2562, 0.0321, 0.3914, 0.1143, 0.0215,
0.0570, 0.4029, 0.3455, and 0.1605, respectively. The black
module had the highest mean correlation coefficient score (=
0.4029 in Table 3). Thus, it was selected as the gene signature. The
resultant gene signature contained 50 DEGs (see Table 3). To
verify the classification performance of the resultant signature,
we applied the PAM classifier through the 10-fold cross-
validation (CV) on all the features and samples of signature
data in order to classify the groups (favorite and poor). The entire
procedure was then repeated 10 times. In the experiment, the
mean sensitivity, mean specificity, mean precision, mean
accuracy, and mean AUC were 69.12%, 84.19%, 82.79%, 76.31,
and 0.8273, respectively (see Figure 4; Table 4). Based on the gene
set enrichment analysis on the 50 genes of the signature using the
Enrichr web database, we extracted significant KEGG pathway
and Gene Ontology (GO) terms. Among the KEGG pathways, the
Rap1 signaling pathway (hsa04015) is the most significant
pathway (adjusted p-value = 7.497 × 10−06) that contains eight
genes (viz., EFNA1, GNAO1, TIAM1, CSF1, ITGB3, ITGA2B,
THBS1, and MAPK13). Second, the most significant pathway
is the PI3K-Akt signaling pathway (hsa04151) with an adjusted

TABLE 2 Cluster Validity Index measures of our experiment.

Cluster Validity Index Score

Dunn Index 0.6461

Average scaled connectivity 0.6834

Silhouette width −0.0012

Average cluster coefficient 0.2390

Average maximum adjacency ratio 0.2386

Density 0.2327

Centralization 0.1081

Heterogeneity 0.1143

TABLE 3 Feature (gene) names and average (avg.) Pearson’s correlation coefficient (PCC) for the pairwise manner within the TCGA LAML signature.

Measure Value/description

# Features 50

Gene symbols HK2, CHRDL1, EFNA1, ARNTL, EIF4A1, MS4A2, BMP2, FHL2, SH2D2A, CSF1, KLRG1, ITGB3, SH3BP5, CCL4, RORA, CAMK2D, BIRC3,
TP53, S1PR5,GNAZ, EPOR, TBX21,GATA3, TIAM1, IL2RB, LRIG1,GRAP2, PLEKHA1, THBS1,MAF, IL18RAP, EDN1, ETS1,GATA1, ITGA2B,
A2M, LCK, MAPK13, GZMB, PTGDR, MYBL1, RASGRP1, ARG1, PKLR, GNAO1, PRF1, CD8A, FASLG, ABCG2, and CCL5

Average PCC 0.403
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p-value of 1.128 × 10−05, which consists of nine genes (viz.,
EFNA1, CSF1, ITGB3, ITGA2B, IL2RB, FASLG, TP53, THBS1,
and EPOR). The following eight pathways are the
cytokine–cytokine receptor interaction (hsa04060) (adj.
p-value = 1.437 × 10−05), inflammatory bowel disease (IBD)
(hsa05321) (adj. p-value = 2.1E-05), proteoglycans in cancer
(hsa05205) (adj. p-value = 2.1 × 10−05), hematopoietic cell
lineage (hsa04640) (adj. p-value = 6.752 × 10−05), T-cell
receptor signaling pathway (hsa04660) (adj. p-value = 1 ×
10−4), TNF signaling pathway (hsa04668) (adj. p-value = 2 ×
10−4), osteoclast differentiation (hsa04380) (adj. p-value = 3 ×
10−4), and Ras signaling pathway (hsa04014) (adj. p-value = 3 ×
10−4) (also see Table 5). Among the significant GO:BP terms, the
positive regulation of cellular metabolic processes (GO:0031325)
(adjusted p-value = 8.02947 × 10−05) was ranked as the most
significant, which contains six genes (EDN1, CSF1, CCL5,
GATA3, THBS1, and TP53). The second most significant GO

term is the regulation of inflammatory responses (GO:0050727)
with an adjusted p-value of 8.029 × 10−05. This term consists of
seven genes (CCL5, CCL4, RORA, GATA3, ETS1, BIRC3, and
MAPK13) (Table 5). Among the significant GO:CC terms, the
platelet alpha granule (GO:0031091) (adjusted p-value = 4 × 10−3)
contains four genes (viz., ITGB3, ITGA2B, A2M, and THBS1),
while among the GO:MF terms, the core promoter binding factor
(GO:0001047) (adjusted p-value = 8 × 10−4) contains five genes
(viz., RORA, GATA3, GATA1, TP53, and ARNTL). For details of
the top significant pathways and GO terms, see Table 5.

4 Discussion

Multi-view data integration and gene signature detection are
currently the most challenging tasks for biomedical researchers.
As different datasets contain different characteristics, integration
of data from multi-platforms with significant feature reduction
and gene module detection will give a more comprehensive view
of how biology unravels at a granular level. Therefore, we
introduced the novel approach of multi-platform data
integration technique, 3PNMF-MKL, for multi-platform data
integration and gene signature detection. This approach
applies the integrated utilization of statistical methods, data
fusion through three-factor penalized non-negative matrix
factorization, and soft margin hinge loss-based multiple kernel
learning. We then tested our approach using TCGA LAMLmulti-
omics dataset, which contains five different profiles (viz., gene
expression, DNAmethylation, exon expression, pathway activity,
and copy number). Overall, our algorithm provides excellent
AUC (= 0.827) for classifying the class labels for the underlying
features (genes) within the chosen gene signature. Furthermore,
we performed a functional analysis using the KEGG pathway and
Gene Ontology database to interpret those identified relevant
feature genes. Collectively, our novel approach is applicable to
any kind of multi-modal datasets.

Our proposed method 3PNMF-MKL includes data
integration employed by means of differential expression/
methylation analysis using limma, non-negative matrix
factorization, and soft margin hinge loss, as well as gene
signature detection together. 3PNMF-MKL employs the
application of best gene module discovery with the help of
dynamic linkage clustering, dynamic tree cut, and correlation
analysis to achieve the use of best gene module discovery (in
terms of gene signature discovery) . So far, there are many state-
of-the-art methods available regarding data integration (Yang
and Michailidis, 2016; Ray et al., 2017) and gene signature
discovery (Cun and Frohlich, 2012; (Zhang and Xiao, 2020),
but very few existing methods are recently available where data
integration and gene signature detection work together in the
same framework (Fujita et al., 2018). We, here, compared our
proposed method 3PNMF-MKL with the existing method (Zhang
and Xiao, 2020) used for TCGA acute myeloid leukemia dataset.
In our proposed method, we obtained a 50-gene signature
generated after analyzing multi-omics data integration
where the other method (Zhang and Xiao, 2020) produced an
eight-gene signature from analyzing the only gene expression
data not by multi-omics data integration. Also, we obtained

FIGURE 4
Plots of the area under curve (AUC) for 10-fold cross-validation.

TABLE 4 Classification metrics for our experiment.

Evaluation metric Average score (std)

Precision 0.8279 (±0.027)

Sensitivity 0.6912 (±0.025)

Specificity 0.8419 (±0.028)

Accuracy 0.7631 (±0.0208)

AUC 0.8273
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0.87 as the training set’s 1-year AUC and 0.72 as the test set’s 1-
year AUC in the signature survival study (by cox regression),
while the other method obtained 0.86 as the training set’s 1-year
AUC and 0.69 as the test set’s 1-year AUC for the gene expression
data. Therefore, in all perspectives, our signatures are stronger
than the other.

5 Conclusion and future directions

No method, which deals with data integration non-matrix
factorization, soft margin hinge loss, and gene signature together,
exists in the field of bioinformatics, whereas our work is concerned
with the process of integration of multi-omics data employing multi-
dimensional schemes such as differential expression/methylation
analysis using limma, non-negative matrix factorization, soft margin
hinge loss, and gene signature detection through the use of best gene
module discovery using dynamic linkage clustering, dynamic tree
cut method, and correlation analysis, respectively. The achievement
of a high classification accuracy of 0.8273 also represents superior

performance for our proposed algorithm. In addition, our method
outperformed the state-of-the-art methods in terms of computing
AUC. Expansion of our current approach with a deep learning
strategy to tackle the integrative problem at a single-cell level is our
future directive. In future work, we will collaborate with a wet
laboratory to validate our experimental results in order to make it
more promising.
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TABLE 5 Top five significant KEGG pathways and Gene Ontology (GO) terms* for the gene set belonging to the LAML signature.

KEGG pathway name Gene symbol Z-score Adjusted
p-value

Rap1 signaling pathway (hsa04015) EFNA1, GNAO1, TIAM1, CSF1, ITGB3, ITGA2B, THBS1,
and MAPK13

−1.961 7.497 × 10−06

PI3K-Akt signaling pathway (hsa04151) EFNA1, CSF1, ITGB3, ITGA2B, IL2RB, FASLG, TP53,
THBS1, and EPOR

−2.041 1.128 × 10−05

Cytokine–cytokine receptor interaction (hsa04060) BMP2, IL18RAP, CSF1, CCL5, IL2RB, CCL4, FASLG, and
EPOR

−1.829 1.437 × 10−05

Inflammatory bowel disease (IBD) (hsa05321) MAF, IL18RAP, TBX21, RORA, and GATA3 −1.858 2.1 × 10−05

Proteoglycans in cancer (hsa05205) TIAM1, CAMK2D, ITGB3, FASLG, TP53, THBS1, and
MAPK13

−1.910 2.1 × 10−05

Positive regulation of the cellular metabolic process (GO:BP: GO:0031325) EDN1, CSF1, CCL5, GATA3, THBS1, and TP53 −1.551 8.029 × 10−05

Regulation of inflammatory response (GO:BP: GO:0050727) CCL5, CCL4, RORA, GATA3, ETS1, BIRC3, and MAPK13 −1.029 8.029 × 10−05

Positive regulation of gene expression (GO:BP: GO:0010628) BMP2, CSF1, TBX21, FHL2, RORA, GATA3, ETS1,
GATA1, MYBL1, THBS1, TP53, and ARNTL

−1.668 8.029 × 10−05

Cytokine-mediated signaling pathway (GO:BP: GO:0019221) CAMK2D, IL18RAP, CSF1, CCL5, CCL4, IL2RB, FASLG,
RORA, GATA3, TP53, and BIRC3

−1.343 8.029 × 10−05

Positive regulation of nucleic acid-templated transcription (GO:BP: GO:
1903508)

BMP2, TBX21, FHL2, RORA, GATA3, ETS1, GATA1,
MYBL1, TP53, and ARNTL

−2.001 8.029 × 10−05

Platelet alpha-granule (GO-CC: GO:0031091) ITGB3, ITGA2B, A2M, and THBS1 −1.639 4 × 10−3

Platelet alpha-granule membrane (GO-CC: GO:0031092) ITGB3 and ITGA2B −2.148 0.023

Core promoter binding (GO-MF: GO:0001047) RORA, GATA3, GATA1, TP53, and ARNTL −1.279 8 × 10−4

Core promoter sequence-specific DNA binding (GO-MF: GO:0001046) RORA, GATA3, GATA1, and TP53 −1.295 1.9 × 10−3

Transcription regulatory region DNA binding (GO-MF: GO:0044212) TBX21, RORA, GATA3, GATA1, MYBL1, TP53, and
ARNTL

−1.322 1.9 × 10−3

Cytokine activity (GO-MF: GO:0005125) BMP2, EDN1, CSF1, CCL5, and CCL4 −1.224 2 × 10−3

Transcription factor activity and RNA polymerase II core promoter proximal
region sequence-specific binding (GO-MF: GO:0000982)

GATA3, ETS1, GATA1, MYBL1, TP53, and ARNTL −1.604 2.2 × 10−3

*Gene Ontology (GO) has three domains: biological process (BP), cellular component (CC), and molecular function (MF).
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Introduction: Essential genes are essential for the survival of various species. These
genes are a family linked to critical cellular activities for species survival. These genes
are coded for proteins that regulate central metabolism, gene translation,
deoxyribonucleic acid replication, and fundamental cellular structure and facilitate
intracellular and extracellular transport. Essential genes preserve crucial genomics
information that may hold the key to a detailed knowledge of life and evolution.
Essential gene studies have long been regarded as a vital topic in computational
biology due to their relevance. An essential gene is composed of adenine, guanine,
cytosine, and thymine and its various combinations.

Methods: This paper presents a novel method of extracting information on the
stationary patterns of nucleotides such as adenine, guanine, cytosine, and thymine in
each gene. For this purpose, some co-occurrencematrices are derived that provide the
statistical distributionof stationarypatternsof nucleotides in thegenes,which is helpful in
establishing the relationship between the nucleotides. For extracting discriminant
features from each co-occurrence matrix, energy, entropy, homogeneity, contrast,
and dissimilarity features are computed, which are extracted from all co-occurrence
matrices and then concatenated to form a feature vector representing each essential
gene. Finally, supervised machine learning algorithms are applied for essential gene
classification based on the extracted fixed-dimensional feature vectors.

Results: For comparison, some existing state-of-the-art feature representation
techniques such as Shannon entropy (SE), Hurst exponent (HE), fractal dimension
(FD), and their combinations have been utilized.

Discussion: An extensive experiment has been performed for classifying the
essential genes of five species that show the robustness and effectiveness of
the proposed methodology.
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essential genes, DNA, co-occurrence matrix, feature analysis, classification
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1 Introduction

Essential genes are necessary for the survival of a living being and
are considered the basis of life. Essential genes consist of vital data of
genomes and, hence, could be the key to the broad interpretation of life
and expansion (Juhas et al., 2011). It decides significant attributes
involving cellular structure, chemistry, and reproduction, among others.
Genomes have encoded data for the functions regularly viewed as in all
life forms, and the instructions could be species-specific. Some genes
appear essential for survival, whereas others seem to be optional.
Essential genes have been provided to segregate genes and
determine the fundamental sustaining cellular life components.
Deletion of an essential gene would result in cell death. As a result,
essential gene prediction aids in identifying the bare minimum of genes
necessary for the vital survival of specific cell types. The discovery and
analysis of essential genes aids our understanding of origin of life
(Koonin, 2000). Furthermore, essential genes play a crucial role in
synthetic molecular biology, vital to genome development. An extensive
comprehension of essential genes can empower researchers to clarify
the biological essence of microorganisms (Juhas et al., 2014), generate
the smallest genome subset (Itaya, 1995), evolve promising medication
targets, and create probable drugs to fight infectious diseases (Dickerson
et al., 2011). Due to their significance, the identification of essential
genes has been viewed as essential in bioinformatics and genomics.

Essential genes are a set of genes necessary for an organism to
thrive in a certain climate. Most of these are only necessary for
particular circumstances. For instance, if a cell is supplied with the
amino acid lysine, the gene responsible for lysine production is non-
essential. However, if the amino acid supply is unavailable, the gene
encoding the enzyme responsible for lysine biosynthesis becomes
essential, as protein synthesis is not possible without it. Essential
genes regulate the activity of fundamental cells in almost every
species (Qin, 2019; Guo et al., 2021). Genes are essential if they
cannot be knocked out individually under circumstances when most
of the needed nutrients are present in the growth medium and the
organism grows at its optimal temperature. One of the major issues
is determining which identified genes are necessary. There are
various experimental techniques to identify essential genes in
microorganisms, such as gene knockouts (Roemer et al., 2003),
RNA interference (Cullen and Arndt, 2005), transposon
mutagenesis (Veeranagouda et al., 2014), and single-gene
knockout procedures (Giaever et al., 2002). However, these
experimental techniques have various benefits and are generally
good. They are still expensive and laborious. So, there is a need for
computational methods to identify essential genes.

Because essential genes have biological significance, several
computational methods, particularly machine learning methods, have
been employed to ascertain them. For this objective, many feature
extraction and model building approaches have been developed (Gil
et al., 2004; McCutcheon and Moran, 2010; Juhas et al., 2012; Mobegi
et al., 2017). Chen and Xu (2005) effectively used high-throughput data
and machine learning techniques in Saccharomyces cerevisiae to evaluate
protein dispensability. Seringhaus et al. (2006) constructed a machine
learning model to predict essential genes in S. cerevisiae using several
intrinsic genomic factors. Additionally, Yuan et al. (2012) designed three
machine learning techniques based on informative genomic
characteristics to detect knockdown lethality in mice. Deng (2015)
proposed an important gene classification algorithm using hybrid

characteristics like intrinsic and context-dependent genome aspects.
This model acquired area under the receiver operating characteristic
curve (AUC) scores of 0.86–0.93 when testing the same organism and
scores of 0.69–0.89 when predicting cross-organisms using ten-fold
cross-validation.

Zhang et al. (2020) have contributed significantly by combining
sequence- and network-based features to identify essential genes and
arrived at valid results by utilizing a deep learning-based model to
learn the characteristics generated from sequencing data and
protein–protein interaction networks. Liu et al. (2017) published
the findings of comprehensive research on 31 bacterial species,
including cross-validation, paired, self-test, and leave-one-species-
out experiments. Rout et al. (2020) proposed a method to identify
essential genes of four species based on various quantitative
methods, including purine and pyrimidine distribution. Le et al.
(2020) proposed a model for identifying essential genes using an
ensemble deep neural network. Xu et al. (2020) developed a method
to predict essential genes in prokaryotes based on sequence-based
features using an artificial neural network. A web server, Human
Essential Genes Interactive Analysis Platform (HEGIAP), was
developed by Chen et al. (2020) for detailed analysis of human
essential genes.

An expression-based predictor was developed by Kuang et al.
(2021) to recognize the essential genes in humans. The predictor
utilized gene expression profiles to predict lncRNAs in cancer cells.
Senthamizhan et al. (2021) created a database NetGenes for essential
genes, which contains predictions for 2,711 bacterial species using
network-based features. The protein–protein interaction network
was used to extract features from the STRING database. Marques de
Castro et al. (2022)predicted the essential genes in Tribolium castaneum
and Drosophila melanogaster based on the physicochemical and
statistical data along with subcellular locations. They extracted
extrinsic and intrinsic attributes from the essential and nonessential
data. This paper analyzed the DNA sequences of five species, i.e., Homo
sapiens, Danio rerio, D. melanogaster, Mus musculus, and Arabidopsis
thaliana, to identify essential genes. The proposed model extracts co-
occurrence matrices from the essential gene sequences to find some
informative patterns that distinguish the species. This paper also finds
the impact of different co-occurrence matrices and existing features,
such asHurst exponent (HE), fractal dimension (FD), Shannon entropy
(SE), and modified Shannon entropy (MSE).

The rest of the paper is structured in the following manner. The
definitions of various fundamental parameters are given in Section 2,
with relevant descriptions. The proposed methodology with detailed
dataset description is discussed in Section 3. The efficiency of our strategy
is proven by experimental findings and comments in Section 4, which
summarizes the paper by highlighting the most important aspects of the
whole investigation. Finally, the paper is concluded in Section 5.

2 Basic terminology

Essential genes are a family linked to critical cellular activities for
survival of species. Identifying essential genes is a multidisciplinary
process that necessitates both computational and wet-lab validation
experiments. Several machine learningmethods have been developed to
improve classification accuracy, making it a time-consuming and
resource-intensive process. Hence, with lower validation costs, most
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of these methods use supervised methods, which necessitate massive
labeled training data sets, typically impractical for less-sequenced
species. On the other hand, the rise of high-throughput wet-lab
experimental approaches like next-generation sequencing has
resulted in an oversupply of unlabeled essential gene sequence data.
In the initial study, it has been observed that a fixed-dimensional feature
vector represents every DNA sequence by using various quantitative
measures, such as SE, MSE, FD, and HE. To estimate these quantitative
measures, we convert gene sequences into binary sequences based on
pyrimidine and purine distribution. The two main forms of nucleotide
bases in DNA are made up of nitrogenous bases. Adenine (A) and
guanine (G) are purines, whereas cytosine (C) and thymine (T) are
pyrimidines. Here, purine and pyrimidine bases are expressed as 1 and
0, respectively.

A/G → 1 and C/T → 0. (1)

2.1 Shannon entropy and modified Shannon
entropy

SE may be used to determine how much uncertainty or
information a sequence contains (Zurek, 1989; Khandelwal
et al., 2022b). The uncertainty affects the distribution of each
word. A sequence’s uncertainty concerning a base pair ranges
from 0 to 2n, where n is the length of a word. The SE uses the
probability p of the two possibilities (0/1) to calculate
information entropy. The following equation gives the SE of a
binary sequence:

SE � −∑
1

i�0
pi log2 pi( ), (2)

where pi indicates the probability of two values regarding the
binary sequence, and SE is used to compute the uncertainty in a
binary string (Khandelwal et al., 2022a). When the probability p =
0, the event is assured never to happen, resulting in no
uncertainty and entropy of 0. Similarly, if p = 1, the result is
definite; hence, the entropy must be 0. When p = 1/2, the
uncertainty is highest, and the SE is 1. The MSE of different
word size is given by

MSE � −∑
k

j�1
wj log2 wj( ), (3)

wherewj indicates the frequency of the j
thword in the gene sequence.

For instance, for a word of length 1, wj is determined using the
frequencies of purine or pyrimidine 0, 1, and for a word of length 2,
wj is determined using the two-time repeat of purine or pyrimidine
00, 10, 01, and 11. The number of words determined by taking the
maximum length of both purines and pyrimidines is represented by
k (Rout et al., 2020).

2.2 Hurst exponent

The HE evaluates a data set’s smoothness and degree of
similarities. The HE is often used to analyze auto-correlation in

time-series analysis. It is calculated using rescaled range analysis (R/
S analysis) and has a value of 0–1 (Hurst, 1951; Khandelwal et al.,
2022c). A negative auto-correlation of a time series is indicated by a
HE value between 0 and 0.5, while a HE value between 0.5 and
1 indicates a positive auto-correlation. If the HE value is 0.5, the
series is random, meaning that there is no relation between the
variable and its previous values (Hassan et al., 2021; Rout et al.,
2022). The HE of a binary sequenceDn is computed by the following
equation:

R n( )
S n( ) �

n

2
( )

HE

, (4)

where

S n( ) �














1
n
∑
n

i�1
Di −m( )2

√

, (5)

and

R n( ) � max X1, X2, . . . , Xn( ) −min X1, X2, . . . , Xn( ), (6)

Xt � ∑
t

i�1
Di −m( ) for t � 1, 2, 3, . . . , n (7)

m � 1
n
∑
n

i�1
Di. (8)

2.3 Fractal dimension

Every DNA sequence is converted into indicator matrices (Rout
et al., 2018; Umer et al., 2021). Let X = {A, T, C, and G} denote the set
of finite alphabet nucleotides, and D(N) denote a DNA sequence
with four symbols from X of length N. The indicator function for
every DNA sequence is described by the following equation:

F: D N( ) × D N( ) → 0, 1{ }, and D N( ) � 0, 1{ }, (9)
such that the indicator matrix will be

I N,N( ) � 1, if si � sj
0, if si ≠ sj

{ where si, sj ∈ D N( ). (10)

Here, I(N, N) is a matrix with values 0 and 1, and it produces a
binary image of the DNA sequence as a 2D dot-plot. Within the
same sequence, the binary image can represent the distribution of 0s
and 1s. It is possible to assign a white dot to 0 and a black dot to 1.
The FD from an indicator matrix can be computed as the average
number of σ(n) of 1, randomly selected n× n from an N×N indicator
matrix (Cattani, 2010; Rout et al., 2014; Upadhayay et al., 2019).
Using σ(n), the FD is computed by the following equation:

FD � − 1
N

∑
N

n�2

log σ n( )( )
logn

. (11)

3 Proposed scheme

In this paper, we used the Database of Essential Genes (http://
www.essentialgene.org/) for experimental findings and discussion.
This dataset consists of essential genes of five species. There are
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2,051 H. sapiens (HS), 315 D. rerio (DR), 339 D. melanogaster
(DOM), 356 A. thaliana (AT), and 125M. musculus (MM) essential
genes. Table 1 lists some of the terminologies employed in the
proposed technique for reference.

3.1 Proposed feature representation
technique

The DNA (deoxyribonucleic acid) sequence of essential genes S
is composed of four bases: adenine (A), guanine (G), cytosine (C),
and thymine (T). So, several occurrences may exist with
combinations of A, C, T, G within the sequence S. The co-
occurrences of A, C, T, G in the DNA sequence establishes the
relationship between the nucleotide. It is the first time that a method
has been proposed for finding the co-occurrences of nucleotides A,
C, T, G within S. The objective of finding these co-occurrences is to

analyze the patterns of A, C, T, G within the DNA sequence S to
derive some useful features that uniquely discriminate the species by
the feature representation of their essential genes. Assuming x = (A,
C, T, G) is a vector of the nucleotides, then the possibility of
arrangement of these characters in the DNA gene sequences is
represented through co-occurrence matrices formed by the vector
combination, which are shown in Table 2.

Here, the computed co-occurrence matrices of different
combinations of nucleobases represent the distribution of
nucleobases throughout the essential gene S. This distribution of
nucleobases examines the texture pattern and considered the spatial
relationship of nucleobases in the essential gene S. Experimentally, it
has been observed that the occurrences of the spatial relationship of
nucleobases cannot provide fixed information of the stationary and
non-stationary patterns of A, C, T, and G. However, the obtained
spatial relationship contains the information of both these patterns
at a time. Hence, statistically it is easier to compute information
considering both stationary and non-stationary patterns at a time
rather than differentiating stationary and non-stationary patterns in
S. The essential genes are very critical for the survival of any
organism. It is beneficial for cell growth. Each gene sequence is
variable in length, and the arrangements A, C, T, G nucleobases are
zigzag. Hence, finding the stationary and non-stationary patterns of
A, C, T, G and the co-occurrences of the different combinations of
these nucleobases will help find its natural pattern in the gene.
Hence, deriving the valuable patterns of the variety of A, C, T, G
through co-occurrence matrix descriptors will considerably improve
the retrieval performance and be eligible to analyze the statistical and
structural information effectively from those patterns. Hence,
inspired by the co-occurrence matrix of texture analysis (Umer
et al., 2016) of image processing and pattern recognition, we have
employed the ideas of gray-level co-occurrence matrix. Here, we
have computed several co-occurrence matrices from each essential
gene data. Now, I

4×4
, J
4×4

, K
6×4

, L
6×4

, M
4×4

, N
4×4

, O
4×4

, and P
4×4

co-occurrences

TABLE 1 List of species considered in the proposed technique.

Name Symbol used

Arabidopsis thaliana AT

Drosophila melanogaster DOM

Danio rerio DR

Homo sapiens HS

Mus musculus MM

Naming convention for Arabidopsis thaliana [AT1 − AT356]

Naming convention for Drosophila melanogaster [DOM1 − DOM339]

Naming convention for Danio rerio [DR1 − DR315]

Naming convention for Homo sapiens [HS1 − HS 2051]

Naming convention for Mus musculus [MM1 − MM125]

TABLE 2 Possible sets of occurrences of nucleobases A, C, T, G in a DNA
sequence or essential gene formed by the combination of vectors, where I, J, K,
L, M, N, O, P are the co-occurrence matrices.

X Y XT × Y

X1 = (A, C, T, G) (A, C, T, G) I
4×4

� X1
T

4×1
× Y

1×4

X2 = (AA, CC, TT, GG) (A, C, T, G) J
4×4

� X2
T

4×1
× Y

1×4

X3 = (AC, AT, AG, CT, CG, TG) (A, C, T, G) K
6×4

� X3
T

6×1
× Y

1×4

X4 = (CA, TA, GA, TC, GC, GT) (A, C, T, G) L
6×4

� X4
T

4×1
× Y

1×4

X5 = (ACT, ACG, ATG, CTG) (A, C, T, G) M
4×4

� X5
T

4×1
× Y

1×4

X6 = (CAT, CAG, TAG, TCG) (A, C, T, G) N
4×4

� X6
T

4×1
× Y

1×4

X7 = (ATC, AGC, AGT, CGT) (A, C, T, G) O
4×4

� X7
T

4×1
× Y

1×4

X8 = (TCA, GCA, GTA, GTC) (A, C, T, G) P
4×4

� X8
T

4×1
× Y

1×4

TABLE 3 Co-occurrence matrix I that contains several patterns of A, C, T, G
nucleobases in DNA gene sequence S

A C T G

A #(AA) #(AC) #(AT) #(AG)

C #(CA) #(CC) #(CT) #(CG)

T #(TA) #(TC) #(TT) #(TG)

G #(GA) #(GC) #(GT) #(GG)

TABLE 4 Features extracted from a co-occurrence matrix G of DNA sequence S.

Feature Formulae

Energy ∑q
r�0∑

q
s�0G′(r, s)2

Entropy ∑
q
r�0∑

q
s�0 − G′(r, s) × ln(G′(r, s))

Homogeneity ∑q
r�0∑

q
s�0

G′(r,s)
(1+(r−s)2)

Contrast ∑q
r�0∑

q
s�0G′(r, s) × (r − s)2

Dissimilarity ∑
q
r�0∑

q
s�0G′(r, s) ×|(r − s)|
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matrices are computed that contain several patterns of A, C, T, G
nucleobases in each DNA sequence S. These co-occurrence matrices
are defined in Table 3, Supplementary Table S1, Supplementary
Table S2, Supplementary Table S3, Supplementary Table S4,
Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7, respectively.

Here, from the given DNA sequence S, the aforementioned co-
occurrence matrices are obtained. Each co-occurrence matrix G
contains the number of occurrences of A, C, T, G nucleobases with a
specific combinations and offset in S. Since a sequence S with q
different combinations of A, C, T, G nucleobases will produce a co-
occurrence matrix of size q × 4 for the given offset, so the (r,s)th value
of a co-occurrence matrix (Table 3, Supplementary Table S1,
Supplementary Table S2, Supplementary Table S3, Supplementary
Table S4, Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7) gives the number of times that rth and sth

nucleobases present in S. Hence, mathematically, here each

co-occurrence matrix (Table 3, Supplementary Table S1,
Supplementary Table S2, Supplementary Table S3, Supplementary
Table S4, Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7) is given by

G � ∑
n

i�1
∑
n

j�1

1 G i,j( ) � r & G i+△i,j+△j( ) � s
0 otherwise

,{ (12)

The offset (△i,△j) defines the spatial relation for which the matrix
G is calculated. The number of co-occurrences of the combinations ofA,
C, T, G present in S is obtained by the co-occurrence matrices. So, to
extract distinguish and discriminant features, each matrix G is

normalized to G′ � G
∑

q

r�0∑
q

s�0G(r,s)
. Then, the normalized co-

occurrence matrix G′ is used to compute some features like entropy,
dissimilarity, energy, homogeneity, and contrast. The mathematical
definitions of these features are shown in Table 4.

Now, the features defined in Table 4 are extracted from each co-
occurrence matrix (Table 3, Supplementary Table S1,
Supplementary Table S2, Supplementary Table S3, Supplementary
Table S4, Supplementary Table S5, Supplementary Table S6, and
Supplementary Table S7), and the list of feature vectors extracted
from these matrices is obtained as follows:

fI = (f1, f2, f3, f4, f5) from I (Table 3)
fJ = (f6, f7, f8, f9, f10) from J (Supplementary Table S1)
fK = (f11, f12, f13, f14, f15) from K (Supplementary Table S2)
fL = (f16, f17, f18, f19, f20) from L (Supplementary Table S3)
fM = (f21, f22, f23, f24, f25) from M (Supplementary Table S4)
fN = (f26, f27, f28, f29, f30) from N (Supplementary Table S5)
fO = (f31, f32, f33, f34, f35) from O (Supplementary Table S6)
fP = (f36, f37, f38, f39, f40) from P (Supplementary Table S7)

FIGURE 1
Framework of the proposed model for the classification of essential genes. Here, CoM indicates the co-occurrence matrices.

TABLE 5 Demonstration of actual files containing gene sequences
corresponding to AT, DOM, DR, HS, and MM species.

Actual files Actual files containing DNA sequences

AT 356 356

DOM 339 339

DR 315 315

HS 2054 2051

MM 411 125
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Hence, the final feature representation of a DNA sequence or
essential gene S is given by the feature vector f = (fI, fJ, fK, fL, fM, fN,
fO, fP).

3.2 Classification

In this study, for the classification of the essential genes in the
employed species, the decision tree (DT), k-nearest neighbor
(KNN), and support vector machine (SVM) classifiers are used.
During experimentation, the datasets of each species Arabidopsis
thaliana (AT), Drosophila melanogaster (DOM), Danio rerio (DR),
Homo sapiens (HS), and Mus musculus (MM) are divided into two,
with 50% of its data input into the training set and the remaining
50% into the testing set. Then, a five-fold cross-validation technique
is employed. Finally, the average performance for the testing data is
reported for the proposed system.

DT is a supervised algorithm, and it is generated by using the
Iterative Dichotomiser 3 algorithm (ID3) or CART algorithm
(Classification algorithm and Regression Tree) (Quinlan, 1986).
The DT uses decision nodes to split the dataset into smaller
subsets based on information gain (IG) or the Gini index.
ID3 uses IG to evaluate how well an attribute splits the training
dataset based on its classification objective. IG is the difference
between the dataset’s entropy before and after splitting depending
on the specified attribute values. Let X = x1, x2, x3, . . .., xn represent
the set of instances, A represent the attribute, and Xv subset of X
having A = v. Then, IG is given by

IG X,A( ) � Ent X( ) − ∑
v∈V A( )

|Xv|
|X| · Ent Xv( ), (13)

where ENT(X) is the entropy of X and V(A) is the collection of all
possible A values. Entropy of X is given by

Ent X( ) � ∑
c

i�1
−pi log2pi, (14)

where pi denotes the probability for current state X.
KNN is a supervised machine learning and non-parametric

technique that signifies that it makes no assumptions about the
underlying data. The KNNmethod ensures that the unseen data and

FIGURE 2
Demonstration of distribution of F1-score performance obtained by decision tree, KNN, and SVM classifiers with respect to the 40 features
computed from co-occurrence matrices of DNA gene sequence S.

TABLE 6 Impact of different co-occurrence features on the classification of
essential gene sequences of AT, DOM, DR, HS, and MM species.

Classifier Accuracy Precision Recall F1-score

Effect of entropy features

K-nearest neighbors 63.56 56.68 63.56 59.39

Decision tree 52.95 53.56 52.95 53.25

Support vector machine 64.37 41.44 64.37 50.42

Effect of dissimilarity features

K-nearest neighbors 62.96 57.38 62.96 59.55

Decision tree 52.70 53.84 52.70 53.25

Support vector machine 67.07 58.80 67.07 56.75

Effect of energy features

K-nearest neighbors 59.48 52.71 59.48 55.46

Decision tree 48.65 49.82 48.65 49.22

Support vector machine 64.94 50.32 64.94 51.83

Effect of homogeneity features

K-nearest neighbors 63.06 57.59 63.06 59.99

Decision tree 53.61 54.81 53.61 54.19

Support vector machine 67.67 60.76 67.67 58.29

Effect of contrast features

K-nearest neighbors 64.25 58.92 64.25 61.02

Decision tree 54.80 56.27 54.80 55.51

Support vector machine 68.36 59.82 68.36 58.85
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existing dataset are comparable and places the unseen data in the
most similar class to the unseen data. KNN works by just storing the
data during training time. When it sees new data at testing time, it
finds k-nearest neighbor to the latest data by using distance measure,

i.e., Euclidean distance, and classifies it based on the similarity
(Peterson, 2009). The steps of the KNN algorithm are as follows.

1. First, select the value of K, i.e., the closest data points. Any integer
may be used as K.

2. Do the following for each data point in the test data set: (i) find
the distance between the data point and all samples in the
training dataset using one of the following methods:
Manhattan, Euclidean, or Hamming distance. In this paper,
Euclidean distance measure is used for calculating the
distance; (ii) sort samples in the ascending order depending
on the distance value; (iii) select the top K samples as the
nearest neighbors to the test data point; (iv) next, the test data
point will be assigned a class depending on the most common
class of these K samples.

The SVM is a supervised machine learning approach for
classifying data. The SVM is a well-known technique used in
various bioinformatics and computational biology problems, and
it needs fewer model parameters to describe the non-linear
transition from primary sequence to protein structure region. To
minimize the error, the SVM will create the hyperplane repeatedly.
The SVM is noted for its quick training, which is necessary for high-
throughput database testing (Suthaharan, 2016). Let the dataset be
represented by (X1, y1), (X2, y2), (X3, y3), . . .. , (Xn, yn). The SVM
solves the following equation:

min
w,b

‖w‖2such that∀i, yi 〈w,Xi〉 + b( )≥ 1, (15)

where w and b is the weight and bias of the hyperplane equation w ·
X + b = 0, respectively.

3.3 Evaluation metrics

In this paper, the essential gene classification problem is a
multi-class classification problem as we have classified essential
genes of five species, i.e., AT, DOM, DR, HS, and MM. For every
class in the target, the evaluation matrices (accuracy, precision,
recall, and F1-score) were computed. Then, the weighted
averaging technique was used to give the final value of
evaluation metrics.

Accuracy � ∑C
i�1ni ×

TPi+TNi
TPi+TNi+FPi+FNi

∑C
i�1ni

, (16)

Precision � ∑C
i�1ni ×

TPi
TPi+FPi

∑C
i�1ni

(17)

Recall � ∑C
i�1ni ×

TPi
TPi+FNi

∑C
i�1ni

(18)

F1 − score � ∑C
i�1ni ×

2 × Precisioni × Recalli
Precisioni+Recalli

∑C
i�1ni

, (19)

where

Precisioni � TPi

TPi + FPi
, (20)

and

TABLE 7 Impact of features extracted from different co-occurrence matrices for
the classification of essential gene sequences of AT, DOM, DR, HS, and MM
species.

Classifier Accuracy Precision Recall F1-score

Effect of first matrix

K-nearest neighbors 63.37 56.39 63.37 59.20

Decision tree 53.70 54.02 53.70 53.85

Support vector machine 64.38 41.44 64.38 50.42

Effect of second matrix

K-nearest neighbors 62.05 54.43 62.05 57.54

Decision tree 53.20 53.88 53.20 53.53

Support vector machine 64.38 41.44 64.38 50.42

Effect of third matrix

K-nearest neighbors 60.58 52.69 60.58 55.66

Decision tree 49.72 51.01 49.72 50.34

Support vector machine 64.38 41.44 64.38 50.42

Effect of fourth matrix

K-nearest neighbors 62.96 58.32 62.96 59.41

Decision tree 54.33 55.14 54.33 54.72

Support vector machine 64.38 41.44 64.38 50.42

Effect of fifth matrix

K-nearest neighbors 57.91 49.72 57.91 53.02

Decision tree 47.24 48.14 47.24 47.69

Support vector machine 64.38 41.44 64.38 50.42

Effect of sixth matrix

K-nearest neighbors 61.49 54.13 61.49 57.14

Decision tree 52.69 54.34 52.69 53.49

Support vector machine 65.35 47.61 65.35 53.36

Effect of seventh matrix

K-nearest neighbors 58.82 52.94 58.82 55.37

Decision tree 50.44 51.56 50.44 50.99

Support vector machine 64.81 46.81 64.81 53.45

Effect of eighth matrix

K-nearest neighbors 56.12 50.86 56.12 52.78

Decision tree 49.28 49.86 49.28 49.56

Support vector machine 64.38 41.44 64.38 50.42
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Recalli � TPi

TPi + FNi
, (21)

where TPi, TNi, FPi, and FNi are the counts of true positives, true
negatives, false positives, and false negatives, respectively, for the ith

class. Here, C represents the number of classes in the problem, and ni
indicates the number of samples in the ith class.

3.4 Model framework

The proposed model classified essential genes of five species based
on co-occurrence matrices. The proposed model finds the eight
different co-occurrence matrices from the DNA sequences. From
each co-occurrence matrix, five features, i.e., energy, entropy,
homogeneity, contrast, and dissimilarity, were extracted. The existing
features, such as HE, FD, SE, and MSE were also computed and then
combined with the proposed features for the classification of essential
genes. A supervised machine learning algorithm, SVM, was used to
evaluate the model. Figure 1 shows essential genes. A supervised
machine learning algorithm, SVM was used to evaluate the model.
Figure 1 shows the framework of the proposed model.

4 Result and discussion

The proposed essential gene classification model can identify novel
essential genes with high recall and precision while only requiring a
small number of previously identified essential genes in some species.
Such a method could be highly beneficial when investigating essential
genes in newly sequenced genomes of other species with few known
examples of essential genes. The proposed work has been implemented
in the ‘Python’ environment, while the ‘Python’ library of machine

TABLE 8 Impact of existing and proposed features on the classification of
essential genes for the AT, DOM, DR, HS, and MM species.

Classifier Accuracy Precision Recall F1-score

Effect of Shannon entropy features

K-nearest \neighbors 53.10 46.24 53.10 49.14

Decision tree 48.28 46.96 48.28 47.53

Support vector machine 64.33 41.38 64.33 50.36

Effect of Hurst exponent features

K-nearest neighbors 53.98 45.63 53.98 49.14

Decision tree 43.57 45.41 43.57 44.45

Support vector machine 64.33 41.38 64.33 50.36

Effect of modified Shannon entropy features

K-nearest neighbors 54.67 46.20 54.67 49.71

Decision tree 41.76 43.98 41.76 42.80

Support vector machine 64.26 45.64 64.26 50.66

Effect of fractal dimension features

K-nearest neighbors 58.11 52.19 58.11 52.15

Decision tree 68.35 46.72 68.35 55.51

Support vector machine 68.35 46.72 68.35 55.51

Effect of proposed features

K-nearest neighbors 64.95 59.49 64.95 61.50

Decision tree 58.31 59.24 58.31 58.70

Support vector machine 66.14 56.57 66.14 54.35

FIGURE 3
Performance (F1-score) comparison of existing features and the proposed features for the classification of essential genes of AT, DOM, DR, HS, and
MM species.
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learning algorithms has been employed for data classification tasks.
Python is the best scripting and programming language, is open-source,
and has high-level object-oriented programming approaches that deal
with mathematical and statistical functions. The method’s
implementation for the proposed methodology is executed in the
Kaggle repository that explores research to data scientists and
machine learning engineers as best practitioners in these fields.
Here, for Python tools, we have employed NumPy, Pandas,
Matplotlib, Sklearn.Preprocessing, Sklearn.Classifiers, Sklearn.Metrics,
and some other packages for data analysis and prediction models. The
feature vectors extracted from each DNA gene sequence S undergo
KNN, DT, and SVM classifiers. The datasets from AT, DOM, DR, HS,
and MM species are given in Table 5. The experimentation of the
proposed methodology has been divided into sub-sections.

4.1 Experiment for the proposed features

In this section, experiments with individual features have
been performed. Here, from each DNA sequence S, individual

feature from each fI, fJ, fK, fL, fM, fN, fO, fP have been considered,
and then classification has been performed. Figure 2
demonstrates the distribution of F1-score performance
obtained by DT, KNN, and SVM classifiers with respect to
every 40 features computed from co-occurrence matrices of
DNA sequence S. From this figure, it has been observed that
both the KNN and SVM classifiers predict the classification
problem better than the DT classifier for most of the features.
Moreover, it has also been observed that classifiers have obtained
more or less similar performance for most features but better
performance due to the 19th, 26th, 27th, 30th, 32nd, and 35th
features of the forty-dimensional feature vector f. For measuring
the impact of individual features such as entropy, homogeneity,
energy, contrast, and dissimilarity on the classification of
essential genes, the performance has been reported concerning
KNN, DT, and SVM classifiers in Table 6. Here, experiments are
carried out under the same training–testing protocols, and from
each DNA sequence S, the corresponding features are extracted
from all co-occurrence matrices. So, each eight-dimensional
feature vector is extracted for entropy, homogeneity, energy,
contrast, and dissimilarity features.

As shown in Table 6, for every feature, the performance is more
or less the same, but for the KNN classifier, the performance is better
than that of DT and SVM. Here, F1-score has been considered
classification performance as the employed species AT, DOM, DR,
HS, andMMhave class imbalance problems. Furthermore, the effect
of features computed from each co-occurrence matrix in the
subsequent experiments has been considered. Here, the 5-
dimensional feature vector is extracted from each co-occurrence
matrix. The performance due to these feature vectors is reported in
Table 7 under the same training–testing protocol. Table 7 shows that
there is a more or less a similar effect of co-occurrence matrix
features on the essential gene classification. Hence, the features
computed from the co-occurrence metrics are helpful and effective.
Here, the KNN classifier has better performance.

4.2 Experiment for the existing features

In the further experiment, the performance has been
compared with some existing state-of-the-art feature
extraction techniques such as SE, MSE, HE, and FD(discussed
in Section 2), where these features are extracted accordingly. The
performance is obtained concerning KNN, DT, and SVM
classifiers. The performance due to these features is reported
in Table 8, implying that SE, HE, MSE, and FD features have
more or less similar performance. Still, among the classifiers,
SVM has obtained better performance. The comparison of these
performances and the proposed system has been shown in
Figure 3, which shows that the proposed approach has better
classified the essential genes of AT, DOM, DR, HS, and MM
species under the same training–testing protocol. Here, the
difference is in the proposed system, and the forty-
dimensional feature vector is considered, while the one-
dimensional feature vector is extracted in each existing feature
extraction technique. Hence, this work investigates the
discriminatory power of co-occurrence matrix features with
better performance than the existing state-of-the-art features.

TABLE 9 Demonstration of discriminant features among proposed features,
Shannon entropy, Hurst exponent, modified Shannon entropy and fractal
dimension features.

Feature Eigen-
values

Rank Feature Eigen-
values

Rank

f1 13.908 1 f23 0.283 23

f2 4.434 2 f24 0.257 24

f3 3.628 3 f25 0.224 25

f4 2.895 4 f26 0.192 26

f5 2.505 5 f27 0.152 27

f6 2.233 6 f28 0.109 28

f7 1.904 7 f29 0.041 29

f8 1.602 8 f30 0.032 30

f9 1.388 9 f31 0.027 32

f10 1.133 10 f32 0.027 31

f11 0.986 11 f33 0.023 33

f12 0.855 12 f34 0.019 34

f13 0.820 13 f35 0.015 35

f14 0.750 14 f36 0.008 36

f15 0.714 15 f37 0.006 37

f16 0.525 16 f38 0.001 43

f17 0.471 17 f39 0.001 44

f18 0.440 18 f40 0.002 42

f19 0.432 19 f41 0.003 41

f20 0.333 20 f42 0.003 40

f21 0.329 21 f43 0.004 39

f22 0.299 22 f44 0.004 38
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4.3 Experiment for the combined features

The co-occurrence of nucleotides A, C, T, G in the essential gene
derives the distribution of these nucleotides and also their relative
position information within the gene S. The existing state-of-the-art
techniques of feature extraction (discussed in this work) are key
measures in information theory. For example, SE and its modified
technique compute the amount of uncertainty and randomness of
nucleotides in the gene S. HE measures the relative tendency and
characteristic parameters for analyzing its distribution in the
essential gene. The FD computes the fractal-like distribution of
nucleotides from the indicator matrix calculated from the essential

gene S. So, the similarity of patterns of nucleotides computed by the
co-occurrence matrices and the information of uncertainty,
randomness, relative tendency, and fractal-like distribution
information in S are combined here to obtain more discriminant
features for the classification of essential genes of AT, DOM, DR, HS,
and MM species. The principal component analysis of
dimensionality reduction with variation ratio has been adopted to
find the best suitable combination of these features. The
performance due to the combination of these features is
demonstrated in Table 9.

Table 10 reports the discriminatory power of combined features
with respect to various dimensional reduced features concerning

FIGURE 4
Demonstration of final performance for the combination of features for the classification of essential genes of AT, DOM, DR, HS, and MM species.

TABLE 10 Demonstration of performance due to combination of features for the classification of essential genes of AT, DOM, DR, HS, and MM species.

Variation Classifier Accuracy Precision Recall F1-score Feature dimension

0.85 K-nearest neighbors 72.01 66.37 72.01 68.67 4

Decision tree 63.09 63.63 63.09 63.34

Support vector machine 74.30 68.77 74.30 67.69

0.9 K-nearest neighbors 71.52 66.77 71.52 68.94 5

Decision tree 62.67 63.81 62.67 63.18

Support vector machine 75.91 69.57 75.91 70.31

0.95 K-nearest neighbors 73.82 68.83 73.82 70.80 7

Decision tree 63.93 64.67 63.93 64.29

Support vector machine 76.46 72.63 76.46 71.06

0.99 K-nearest neighbors 73.96 68.29 73.96 70.66 9

Decision tree 64.48 65.35 64.48 64.88

Support vector machine 76.32 70.56 76.32 71.42

The bold value indicates the highest F1-score.
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KNN, DT, and SVM classifiers and shows that highest F1-score is
71.42 and it is due to the SVM classifier. As this is class imbalance
problem, so F1-score performance has been reported.

For better understanding and visibility, the final performance for
the combination of features for the classification of essential genes of
AT, DOM, DR, HS, and MM species has been shown in Figure 4.

5 Conclusion

A novel method of feature extraction and analysis for the
classification of essential genes of Arabidopsis thaliana (AT),
Drosophila melanogaster (DOM), Danio rerio (DR), Homo sapiens
(HS), and Mus musculus (MM) species has been considered in this
work. The implementation of the proposed scheme is divided into three
segments. In the first segment, novel co-occurrence matrix-based
features are extracted from genes that derive the distribution of
nucleotides and their relative position from the respective gene. The
features from these measures belong to the statistical analysis of the
distribution of stationary patterns of nucleotides in the essential genes.
In the second segment, some existing state-of-the-art feature
computation techniques such as SE, HE, and FD are used as
information theory measures that compute uncertainty, randomness,
relative tendency, and fractal-like structures in the gene. In the third
segment of this work, the features from the proposed methodology and
the existing techniques are individually carried out for classification
tasks where their F1-score performance has been considered for
comparison. These comparisons show the robustness and
effectiveness of the proposed methodology. Finally, the features from
the proposed scheme and the existing techniques are combined to
compute more discriminatory features for classifying essential genes of
AT, DOM, DR, HS, and MM species.
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