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Editorial on the Research Topic
Cryosphere and climate change in the Arctic, the Antarctic, and the Tibetan
plateau

Introduction

The Tibetan Plateau (TP) is known as the “third pole,” which together with the Arctic,
the Antarctic is known as the “three poles of the Earth” (Xie et al., 2022). The “three poles”
play an important role in the formation of the global climate, and they are also sensitive
regions to climate change (Shepherd et al., 2018). Under global warming, rapid changes in
“three poles”will affect regional and even global hydrological, ecological and climate systems
(Pattyn et al., 2018; Mouginot et al., 2019; Li et al., 2021). The rapid changes of the Earth’s
three poles affect not only the local climate and hydrology, but also the large-scale
atmospheric and oceanic circulation through various feedback mechanisms (IPCC,
2019). “Three poles” are not independent and there are potential correlations among
“three pole.” Numerous studies have revealed correlations between the Arctic and the
TP (Zhang et al., 2019; Li et al., 2020). The negative Arctic Sea ice area anomaly could
influence the circulation in the TP by Rossby wave train (Li et al., 2020). Through
thermohaline circulation the Antarctic and the Arctic are also connected (Chylek et al.,
2010; Blunier and Brook, 2011).

Along with the Arctic and Antarctic, the TP which is recognized to have a profound
influence on regional and global climate systems, as well as the eco-environment and
ecological economy (Hu et al., 2018; Yang et al., 2019). Recently, the study of TP glaciers and
their response to climate change has shown a strong development (Bolch et al., 2011; Bolch
et al., 2012; Kääb et al., 2015; Brun et al., 2017; Yao et al., 2019). Glaciers change has suggested
that enhanced glacier melting has induced increased glacier runoff, and the consequent
glacier melting brought a series of response of regional eco-environment problems (Yao
et al., 2019).

A large number of studies have focused on the characteristics and impacts of past,
present, and future changes in the “three poles” (Kattsov et al., 2005), but many research
results are still controversial (Shepherd et al., 2018). For example, there is still a lack of
observational data in the “three poles,” and there are still great uncertainties in model
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simulation and influence mechanism (Screen et al., 2018). The
physical mechanisms of Arctic warming can be summarized as
local feedbacks (such as albedo, cloud and water vapor feedback,
etc.) and large-scale circulation forcing, but the relative contribution
of each feedback mechanism remains unclear (Wu et al., 2019).

This brief review of editorial focus on these studies of Frontiers
in Earth Sciences Research Topic examines various aspects of
Cryosphere and Climate Change in the Arctic, the Antarctic and
the Tibetan Plateau.

Glaciers change over the Tibetan
plateau

In this Research Topic, He and Zhou provide a
comprehensive analysis of ten glacier inventories. The
assessment results indicate that the overall quality of the
small-scale glacier inventories is higher than the large-scale
inventories. By merging the products of the eight glacier
inventories, a new glacier inventory product of the best
comprehensive quality was derived for the entire TP. We
think that this database will meet the needs of a variety of
potential researchers, including those who prefer to get
information for a particular parameter from a single glacier
inventory.

Glacier mass balance is a key factor in understanding the
relationship between glaciers and climate (Kääb et al., 2015;
Hock et al., 2017). Xu et al. present glacier mass budgets in the
Turgen Daban Range, over the western Qilian Mountain, from
1966/75 to 2020 by means of the digital elevation models
generated by the topographic maps and ASTER images. The
results show that glacier mass decreased by −18.79 ± 12.48 m
w.e. during the past 50 years. Similarly, Chang et al. also found
glaciers in the Altai Mountains had experienced an accelerated
shrinkage from 2000 to 2020 compared to the 20th century.
Based on multiple source data, Chen et al. reported mass balance
change of the Baishui River Glacier No. 1 (BRG1) in Yulong
Snow Mountain with contour line maps.

The latest IPCC (2019) report stated that under the influence
of global warming, changes in the cryosphere will lead to an
increase in glacier surges, snow/ice avalanches, glacial debris flow,
glacial lake outburst flood (GLOF), occurring frequently and
caused serious catastrophes on TP, thereby increasing local
infrastructure, cultural, tourism damage (Ding et al., 2018).
Sha et al. stated that the distance between Tuosu Lake and the
Qinghai-Tibet Railway has been shortened year by year, with the
shortest distance of 0.85 km in 2021. With the intensification of
climate change impacts, glacial hazards in TP and the hazards
chains triggered by glacier change are more frequent. Therefore,
in recent decades, the significant melting and retreating of
temperate glaciers along the TP region have drawn great
attention to the glacier hazards (Ding et al.,2021; Richardson
and Reynolds, 2000). In addition, the climate change of the TP
also attracts attentions of researchers. Yang et al. connect the
spring heat source over the TP with the winter warm Arctic–Cold
Siberia pattern. The results of EOF1 showed there was a
significant positive correlation between these two.

Climate change in the Antarctic

In this Research Topic, Zeng et al. evaluated the estimation
performance of the global solar radiation (DGSR) at the Great Wall
Station from empirical models and machine learning models. Thy
presented the first reconstruction of the Antarctica Great Wall
Station DGSR spanning 1986–2020 with a significant increasing
trend of 0.14 MJ/m2/decade. Besides, more people care the
relationship between the Antarctic change and low latitude sea
surface temperature. Yang et al. suggested that the winter
precipitation in the Lambert Glacier basin (LGB) in Antarctic is
closely related to the autumn sea surface temperature variability in
Southern Indian Ocean (SIO) without the influence of El
Niño–Southern Oscillation. It is shown that the positive autumn
SIO dipole of SST anomalies is usually followed by reduced
precipitation in the following winter over the LGB region and
vice versa. The positive (negative) autumn SIOD can persist into
the winter and excite cyclonic (anticyclonic) circulation and deepen
(weaken) SIO low in high latitude, corresponding to an enhanced
northward (southward) wind anomaly in LGB and central SIO. This
mechanism prevents (promotes) the transportation of warm and
moist marine air to the LGB region and hence decreases (increases)
the precipitation during the following winter.

Changes in typical drainage basins of
the Greenland ice sheet

Lu et al. investigated the spatial and temporal characteristics of
ice motions of three branches in the Northeast Greenland Ice Stream
(NEGIS) between 1985 and 2018. The temporal variability of ice
velocity of typical glaciers shows a clear regional speedup, with a
mean increase of 14.60% and 9.40% in 2001–2018 compared to
1985–2000, and a widespread slowing of Storstrømmen glacier with
a mean of 16.30%, which were related to a 184% surface runoff
increase. This work highlights crucial roles of subglacial topography
and surface runoff on ice motion, which helps to promote
understanding of dynamic changes of NEGIS response to
changing atmospheric circumstances.

In the future, comprehensive monitoring of “three poles” region
needs to be strengthened to improve the simulation capability of
models on the physical processes of the climate change and glaciers
shrinkage, and multi-model, multi-data and multi-method
integrated research should be carried out.
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As the largest valley glacier in the Qilian Mountains, the Laohugou glacier No. 12 (LHG12)
has shrunk significantly since 1957. In this study, two topographic maps and aWorldView-
2 satellite stereopair image data were used to assess the volume and cumulative mass
balance of LHG12 located at the western Qilian Mountains during 1957–2015. During the
study period, the LHG12 exhibited changes in two processes: slightly ablation and stability
in a brief period during 1957–1989 and strong melting and accelerated ablation during
1989–2015. During 1957–2015, the volume of LHG12 decreased by 0.38 km3, the
average thickness decreased by 17.23m, the cumulative mass balance (MB) was
−14.69 ± 3.00 m w. e., and ablation was found glacier-wide. By comparing the
previous MB simulation and digital elevation model (DEM) differencing results, it was
found that the MB simulation results underestimated the strong melting trend of LHG12
since the 1990s. Temperature rose, especially in autumn and winter, and could cause the
ice temperature of LHG12 to increase, and LHG12 may become more sensitive to climate
change.

Keywords: glacier mass balance, glacier volume, glacier change, qilian mountains, glacier surface elevation

INTRODUCTION

Due to global warming, glaciers have shrunk significantly worldwide, and much of this loss was not
reversed (Moon, 2017; Liu et al., 2020; Shean et al., 2020). Glacier mass balance (MB), which is a key
component in glaciology, is an important factor for studying the changes in the climate, water
resource, and sea level (Zemp et al., 2015; Sold et al., 2016). In recent centuries, glacier mass balances
have been considered to be sensitive indicators of climate change (Oerlemans and Fortuin, 1992).
Combining traditional observations with satellite altimetry and gravimetry, glacier mass budgets
were reconciled in order to obtain an estimate of the glacier contribution to sea level change in the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, but the analysis was
only possible over a short time period (Gardner, 2013). Long series glacier mass balance data are
important and useful for investigating climate trends and for numerical simulations of glacier
dynamics, but only 33 glaciers worldwide have an annual mass-balance series longer than 40 years
(Dyurgerov and Meier, 1999; Vincent, 2002; Le Meur and Vincent, 2003). Glacier mass balance can
be monitored using traditional glaciological or geodetic methods. Traditional glaciological methods
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provide in situ observations of the annual and sometimes
seasonal mass balance (Zemp et al., 2013), stake measurements
and snow pits provide ablation and accumulation data, and point
observations can be extrapolated to a glacier-wide mass balance
using the contour-line or profile methods (Østrem and Brugman,
1991). Geodetic methods use multi-temporal digital elevation
models (DEMs) generated by repeated mapping or stereo image
pairs to calculate a glacier-wide mass balance (Cogley et al., 2009;
Zemp et al., 2013). The geodetic method has been widely used in
glacier mass balance research (Ruiz et al., 2017; Xu et al., 2017a;
He et al., 2020). This technique can be used to calibrate long-term
glaciological mass balance series (Berthier et al., 2007; Huss et al.,
2009).

The Qilian Mountains, located on the northeastern part of
the Qinghai-Tibetan Plateau, northwestern China, are an
important freshwater resource in the Hexi-Corridor.
According to the Second Chinese Glacier Inventory, the
Qilian Mountains contains 2684 glaciers, covering an area
of 1597.81 ± 70.30 km2 with an ice volume of 84.48 km3. Over

the past half-century, the area and volume of the glaciers have
decreased by 420.81 km2 (−20.88%) and 21.63 km3 (−20.26%),
respectively (Sun et al., 2018). As the largest valley glacier in
the Qilian Mountains, the Laohugou glacier No. 12 (LHG12)
has shrunk significantly, with reduction in the terminus, area,
and volume of 402.96 m (3.99%), 1.54 km2 (7.03%), and
0.1816 km3, respectively. Between 1957 and 2015, the
reduction rate accelerated (Liu et al., 2018). Observations of
LHG12 began in 1958. However, the data series is not
continuous, as the mass balance observations were
interrupted by a summer flood in 1962 and were restarted
in 2005. Because of the lack of mass balance measurements,
two mass balance simulation data series were obtained using
the degree-day factor method (DDF) (Zhang et al., 2018; Chen
et al., 2020), but some differences were found between the two
sets of simulation results. Thus, the aims of this study are (1) to
generate authentic data for mass balance simulations; (2) to
generate the glacier surface elevation changes using two
topographic maps and a WorldView2 image and to
calculate the glacier volume change; and (3) to obtain the
glacier wide net mass loss based on the mass balance
conversion using the DEM differencing algorithm.

STUDY AREA

LHG12 (glacier number: 5Y448D0012) is located in the
Daxueshan region, western Qilian Mountains, northern
Tibetan Plateau (Figure 1). It is the largest valley glacier in
the Qilian Mountains. LHG12 is 9.7 km long and covers an
area of 20.37 km2. During 1960–2015, the glacier terminus
retreated by about 400 m, and the glacier area decreased by
1.54 km2 (7.03% in total) (Liu et al., 2018). The average
equilibrium line altitude (ELA) was 4830 m a.s.l. during
1958–1977 (Kang and Ding, 1981), and the ELA0 was 5015 m
a.s.l. during 2010–2012 (Chen et al., 2017). The main
observations were conducted in the east branch, the
confluence, and the terminus regions. LHG12 is a typical
continental valley glacier. The annual mean air temperature of
LGH12 recorded by an automatic weather station (AWS) at
5040 m a.s.l. was −11.8°C. The annual precipitation was about
443 mm water equivalent (w.e.) and was highly concentrated
from May to September (85%) at 4990 m a.s.l. (Sun et al., 2012;
Du et al., 2016).

DATA AND METHODS

In this study, two topographical maps derived from aerial
photographs acquired in 1957 and 1989 and a WorldView-2
stereo image acquired in 2015 were used to calculate the changes
in the glacier’s surface elevation. The coordinate system of all
images and vector layers processed using QGIS (https://www.
qgis.org/en/site/) are WGS84/UTM47N. The climate background
was analyzed using the meteorological data recorded at Tuole
station (Tuole AWS) from 1957 to 2015 and LHG12 automatic
weather station (LHG12 AWS).

FIGURE 1 |Map of study area. (A) figure shows location of LHG12 and
Tuole AWS in Qilian Mountains, (B) figure shows LHG12 extent in 1957, 1989
and 2015, surface elevation in 2015 and location of AWS at 4550 m a. s. l.
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Topographic Map
The 20 m interval contours of two geographical maps with scales
of 1:50,000 were digitized in order to generate DEMs based on the
Beijing54 coordinate. The seven-parameter datum
transformation model was used to re-project the DEMs onto
the WSG84 coordinate. The transformation error was less than
0.002 m (Wang et al., 2003).

Remote Sensing Image
A Landsat5 TM image acquired on January 5, 1989, was used to
measure the boundary and glacier area, and the path and row of
the image was p136r33. The glacier boundary was extracted using
artificial vectorization, which afforded a satisfaction precision.
The error of the artificial vectorization was less than 2% (Liu et al.,
2013).

Meteorological Data
The climate background was analyzed using the temperature and
precipitation recorded at the Tuole meteorological station during
1957–2015. The Tuole meteorological station, which is a national
weather station, is located about 200 km from LHG12. The
LHG12 AWS located at confluence region (4550 m a. s. l) was
set in 2008, and temperature data were obtained during
2010–2015 (Figure 1).

Mass Balance Calculations
Glacier DEM differencing generated by repeated mapping can be
used to determine the volume and surface changes. The results of
the glacier volume change (ΔV) can be converted into a specific
mass balance over a period of record (PoR) in units of metre
water equivalent (m w.e.) (Zemp et al., 2013):

Bgeod.PoR � ΔV
�S

· �ρ

ρwater
(1)

where �ρ is the average density of ΔV, assuming no change in the
bulk glacier density over the balance period. �S is the average
glacier area during the two surveys at times t0 and t1, assuming a
linear change with time, i.e.,

�S � St0 + St1.
2

(2)

�ρ is a key parameter in mass convention. In this study,
850 ± 60kg ·m−3 was used, which is recommended for periods
of longer than 5 years, with stable mass balance gradients, the
presence of a firn area, and volume changes that significantly
differ from zero (Huss, 2013).

Uncertainty Analysis
Due to technical limitations, the mapping era, and other
factors, the error of the topographic map is unknown. In
order to evaluate the error of the glacier volume change, it was
necessary to assume that the non-glacier region was stable
terrain. However, in the non-glacier region, the topography
may be modified by freeze-thaw action, runoff erosion,
fluvial-glacial erosion, and so on. Therefore, the spatial
distribution of the check points should be on different
slopes and rivers should be avoided.

In this study, the uncertainty was calculated using 39
points in the non-glacial region. The uncertainty of the
check point at different times was described by the Root
Mean Square Error (RMSE):

RMSE �

������������∑
n
(HA −HB)2

n

√√
(3)

where HA and HB are the elevation check points on the stable
terrain on two topographic maps; n is the number of check points.

The DEMs produced from the topographic map and
WorldView-2 image were re-sampled to a 30 m ground
resolution (GSD). The RMSE calculation results show that
the accuracy of the DEMs in 1957 and 1989 were lower
(Table 1). The precisions of the glacier volume change are
±2.0403 × 10−5 km3, ±1.0422 × 10−5 km3, and ±1.8738 ×
10−5 km3 for the periods of 1957–1989, 1989–2015, and
1957–2015, respectively.

The mass-balance convention uncertainty σ in the
homogenized results from the errors in the geodetic mass
change can be calculated as follows (Xu et al., 2017b):

σ �
��������������������(Δh × σρ)2 + (ρ × σΔh)2±

√
(4)

where σρ is the uncertainty of the density. Δh is the mean of the
geodetic elevation changes, and the related uncertainty depends
on the accuracy of the two DEMs. σΔh is the elevation uncertainty
in the non-ice region, and it can be calculated as follows:

σΔh �
���
σ2
Δh

N

√
(5)

where σΔh is the standard deviation of the elevation changes for
the two DEMs for the stable terrain; N is the number of check
points.

The MB convention uncertainty is shown in Table 2.

TABLE 1 | Errors of the different DEMs in 1957, 1989, and 2015.

year 1957–1989 1989–2015 1957–2015

MEAN/m 3.74 0.44 4.18
MID/m 0.00 −1.08 0.17
STDEV 22.65 11.72 20.66
RMSE/m 22.67 11.58 20.82

TABLE 2 | MB convention uncertainty.

1957–1989 1989–2015 1957–2015

STD 22.65 11.72 20.66
N 39 39 39
MB Uncertainty/m w.e ±3.08 ±1.89 ±3.00
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RESULTS AND DISCUSSION

Area Change in Elevation Zone
The area above 4800 m a.s.l. accounted for more than 70% of the
LHG12, and the firn basin region was huge. The area in every
elevation zone (100 m interval) in the 4800–5300 m a.s.l. region
was greater than 10% of the total area of the LGH12 (Figure 2). In
1957–1989, the glacier areas at 4200–4300 m a.s.l. and
4300–4400 m a.s.l. accounted for 16.57 and 14.48%,
respectively; and the area increased slightly at 5100–5200 m
(by 1.34%). In other elevation zones, the glacier area
decreased, and most decreased by 4–7%. At 5400–5500 m

a.s.l., 4600–4700 m a.s.l., and 4400–4500 m a.s.l., the glacier
areas decreased to 17.49, 14.67, and 0.93%, respectively. In
1989–2015, the glacier area at 4300–4400 m a.s.l. increased to
11.19%. The areas at 4700–4800 m a.s.l., 4900–5000 m a.s.l., and
5000–5100 m a.s.l. increased slightly by 1.29, 0.01, and 1.62%,
respectively; and the maximum area at 5400–5500 m a.s.l.
decreased to 55.64% (Figure 2).

Changes in Glacier Volume and MB
During 1957–1989, the glacier volume increased above 4800 m
a.s.l. and decreased below 4800 m a.s.l. At the same time,
glacier area above 4800 m a.s.l. except at 5100–5200 m a.s.l.
decreased (Figure 2), which means that the ice thickness at
those elevation zones were increased obviously. The maximum
regions of increase and decrease were 4900–5000 m a.s.l. and
4500–4600 m a.s.l., respectively. During 1989–2015, the entire
glacier shrank, and the mean surface elevation in every zone
decreased. Overall, the trend of the glacier’s surface elevation
change in 1957–2015 was the same as in 1989–2015
(Figure 3A). At 4200–4300 m a.s.l. and 5400–5500 m a.s.l.,
the terminus and top region of the LHG12 had a small area and
thin thickness (Wu et al., 2009; Wu et al., 2011; Wang et al.,
2016), so the surface elevation changes had a low magnitude in
those areas. During 1957–1989, the maximum surface
elevation decreased at the confluence region of LHG12.
During 1989–2015, the maximum surface elevation
decreased at 4800–5200 m a.s.l., and at the firn basin region,
it had significant ablation.

Glacier surface elevation changes can be converted to MB
using Eq. 1. During 1989–2015, MB was negative in every
elevation zone. The most intense ablation region was the
terminus area (4300–4400 m a.s.l.). From 1957 to 2015, the
change in the MB with altitude was the same as during
1989–2015 (Figure 3B).

In 1957–2015, the DEM differencing result showed that the
trend of the LHG12 volume reduction was accelerating. In
1957–1989, the glacier volume decreased by 0.01 ±
2.0403×10−5 km3, and the average glacier thickness
decreased by 0.39 m. In 1989–2015, the glacier volume

FIGURE 2 | Distribution of area in elevation zone (1957, 1989, and 2015) with 100 m interval.

FIGURE 3 | Changes of volume and MB of LHG12 in elevation zone. (A)
Volume change in elevation zone. (B) MB change in elevation zone.
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decreased by 0.37 ± 1.0422×10−5 km3, and the average glacier
thickness decreased by 16.89 m. In 1957–2015, the glacier
volume and average thickness decreased by 0.38 ±
1.8738×10−5 km3 and 17.23 m, respectively (Figure 4). The
conversion MB of LHG12 was −0.33 ± 3.08 m w. e. in
1957–1989, −14.36 ± 1.89 m w. e. in 1989–2015, and
−14.69 ± 3.00 m w. e. in total in 1957–2015.

Comparison of Simulation and DEM
Difference
Two MB simulation results were provided by Chen et al.
(2020) (Data C) and Zhang et al. (2018) (Data Z), and there
are some differences between them. The correlation between
Data C and Data Z is 0.7, the mean averages of Data C and
Data Z are −126.79 mm w. e. and −307.86 mm w. e., and their
standard deviations are 221.66 and 229.75, respectively. Data
C and Data Z were both obtained using the DDF method. For
Data C, air temperature data from six stations were used to
interpolate the air temperature of the LGH12 using the
ordinary kriging interpolation method, and the
precipitation data for LHG12 was simulated from the data
collected at Tuole station. For Data Z, four national weather
stations were used to reconstruct the daily air temperature
and precipitation, and the precipitation was reconstructed
using precipitation gradients and the inverse distance weight
(IDW) method.

The DEM differencing result contained the total mass balance
of the glacier over a period of time. The results of Data Z show
that the MB of LHG12 was −5.52 m w. e. in 1959–1989, −12.25 m
w. e. in 1989–2015, and −17.55 in total in 1959–2015. The results
of Data C show that the MB of LHG12 was 0.44 m w. e. in
1960–1989, −7.57 m w. e. in 1989–2015, and −7.10 m in total in

1960–2015. For 1957–1989, the results of Data C are similar to the
DEM differencing, and the simulation and DEM differencing
results show a weak positive and negative MB, respectively.
However, the results of Data Z are 1564.25% lower than the
DEM differencing result. For 1989–2015, the results of both Data
Z and Data C are higher than the DEM differencing result by
14.71 and 47.27%, respectively. For 1957–2015, the results of Data
Z are 19.47% lower than the DEM differencing result, but the
results of Data C are 51.66% higher than the DEM differencing
(Table 3).

Before the 1980s, the LHG12 experienced a slight acceleration in
the rate of retreat, but it stabilized in the 1980s. Since the 1990s, the
LHG12 has shrunk rapidly, and the trend has accelerated (Liu et al.,
2018). The MB simulation results did not show the intense melting
process after the 1980s, but Data C produces a more accurate result
for 1957–1989. The cumulative mass balance produced using Data
Z is close to the DEMdifference result, but it is not as accurate as the
process simulation, and it overestimates the amount of ablation
before 1989 and underestimates the amount of ablation after 1989.
The cumulativemass balance obtained usingData C underestimates
the amount of ablation, especially the strongmelting after the 1980s,
but the simulation results are accurate before 1989.

FIGURE 4 | Changes in surface elevation of the LHG12. (A) During 1957–1989. (B) During 1989–5015. (C) During 1957–2015.

TABLE 3 | Comparison of Data C, Data Z, and DEMs difference result,
1957–2015.

Period Cumulative mass balance/m w.e

1957–1989 1989–2015 1957–2015

DEMs difference −0.33 −14.36 −14.69
Data C 0.44 −7.54 −7.10
Data Z −5.51 −12.03 −17.55
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Climate Background
The automatic weather station was located at the LHG12
confluence region (4550 m a.s.l.) with continuous observation
data in 2010–2015. The daily temperature between LHG12 and
Tuole in the same period is closely associated (R2 = 0.921)
(Figure 5). Therefore, the temperature and precipitation data
of Tuole meteorological station were used to analyze climate
background.

Based on the 1957–2015 Tuole meteorological station data
analysis, in western Qilian Mountains, the temperature and
precipitation fluctuations increased; the rates of increase were
0.34°C 10 a−1 and 14.00 mm 10 a−1, respectively (Figure 6).

Other research points out (Xu et al., 2014) that in the upper
Shule River region, the temperature was not significantly
increased during 1961–1966, fluctuated during 1967–1986, and
increased significantly since 1986; the precipitation exhibited five
stages: increased (1961–1965), stabled (1966–1973), increased
(1974–1989), decreased (1990–1997), and increased (1997–2010),
and precipitation was increased significantly since 2002.

The number of positive and negative temperature days and
positive and negative accumulated temperatures in each year were
counted respectively. In 1957–2015, the number of positive
temperature days increased at a rate of 0.27 day year−1, and
correspondingly, the number of negative temperature days

FIGURE 5 | Relationship of temperature between Tuole and LHG12,
2010–2015.

FIGURE 6 | Temperature and precipitation of Tuole meteorological station, 1957–2015.

FIGURE 7 | Statistics of positive and negative temperature, 1957–2015.
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decreased at the same rate; the positive accumulated temperature
increased at a rate of 4.89°C year−1, while the negative accumulated
temperature decreased at a rate of 7.70°C year−1, which was higher
than the increase of the positive accumulated temperature (Figure 7).

Temperature variation in season was analyzed, and in spring
and summer temperature increased at a rate of 0.02°C a−1, 0.03°C
a−1, respectively, in autumn the temperature increased at a rate of
0.04°C a−1, and in winter temperature increased at a rate of 0.05°C
a−1. The temperature rise in winter was significantly higher than
the other seasons (Figure 8). Temperature rise, especially in
autumn and winter, could cause the ice temperature of LHG12
glacier to increase and become more sensitive to climate change.
Analysis of ice temperature in-situ monitoring data from LHG12
showed a significant increase in ice temperature (Zhu et al., 2019).

CONCLUSION

In this study, two topographic maps and a WorldView-2 satellite
image data were used to assess the volume change and cumulative
mass balance of the LHG12 located at the western Qilian
Mountains in 1957–2015. The conclusions are as follows:

1) During the study period, the changes of the LHG12 included two
processes: slight ablation and stability for a brief period in
1957–1989, and strong melting and accelerated ablation in
1989–2015;

2) Due to temperature increase, the changes in region of
LHG12 at 4500–4600 m a. s. l and 4800–5200 m a. s. l were

the most obvious. In 1957–2015, the volume of LHG12
decreased by 0.38 km3 and the average thickness thinned
to 17.23 m. The cumulative mass balance was −14.69 ±
3.00 m w. e., and ablation was found glacier-wide;

3) Comparing DEM differencing result with previous MB
simulation results, the MB simulations underestimated the
strong melting trend of LGH12 since the 1990s. It is necessary
to analyse the variations in the input parameters of the MB
simulation in further research;

4) The increase of temperature, especially in autumn and winter,
leads to positive accumulated temperature increase and
negative accumulated temperature decrease in a glacier
region, and the sensitivity of glaciers to climate change is
increased.
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The Spring Heat Source Over the
Qinghai–Tibetan Plateau Linked With
the Winter Warm Arctic–Cold Siberia
Pattern Impacting Summer Drought in
China
Yumeng Yang1, Liang Zhao2*, Xinyong Shen1,3*, Ziniu Xiao2 and Qingquan Li1,4

1Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and
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of Information Science and Technology, Nanjing, China, 2State Key Laboratory of Numerical Modeling for Atmosphere Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China,
3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China, 4Laboratory for Climate Studies,
National Climate Center, China Meteorological Administration, Beijing, China

The atmospheric heat source over the Qinghai–Tibetan Plateau (QTP) in spring has an
important impact on the climate of the surrounding regions. However, there have been few
systematic studies of the dominant mode of the heat source and the cross-seasonal
connections with the preceding winter and following summer. Using a distinct empirical
orthogonal function (DEOF) decomposition method, we obtained the leading mode of the
spring heat source over the QTP and the surrounding regions and analyzed its precursors
in the previous winter and lagging effects in the following summer. Our results show that
the first mode (DEOF1) was characterized by a warm plateau and cold surrounding
regions. The positive phase was significantly associated with the warm Arctic–cold Siberia
(WACS) pattern (r = 0.39, p = .01) and the La Niña-like SST anomaly in the Pacific in the
preceding winter and the following East Asian subtropical summer monsoon (r = –0.44, p =
.01), resulting in a widespread drought in China during the following summer. The cold
anomaly in Siberia and the warm anomaly at mid-to low latitudes in winter associated with
the WACS pattern coincide with the DEOF1 mode of the heat source over the QTP and its
surroundings through change of meridional temperature gradient and wave-flow
interactions. A mid-latitude wave train excited by the WACS and the thermal difference
in the meridional direction of the spring DEOF1 mode caused high-pressure anomalies
over the QTP and the mid-latitude region of East Asia, influencing central and eastern
China. This anomaly was not conducive to the northward advancement of the East Asian
summer monsoon, resulting in drought in most of China in spring and summer. The cross-
seasonal relationship between the main mode of the spring heat source on the QTP and
the preceding winter WACS pattern and the following East Asian summer monsoon can be
used as a reference in climate prediction studies.

Keywords: atmospheric heat source, Qinghai-Tibetan Plateau, warm arctic-cold siberia, east asian summer
monsoon, precipitation, drought
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1 INTRODUCTION

The Qinghai–Tibetan Plateau (QTP) covers a quarter of
China’s land area and has an average altitude >4,000 m,
making it the highest and most complex plateau in the
world. The QTP heats the upper troposphere over the
plateau more effectively than the surrounding areas through
the transfer of sensible heat, latent heat and radiation (Flohn,
1957; Flohn and Reiter, 1968; Ye et al., 1979; Kuo and Qian,
1983; Zheng et al., 2015). The changing trend of temperature
over the QTP is stronger than in other regions at the same
latitude and this affects the atmospheric circulation of the
surrounding areas (e.g., Zhang and Zhou, 2008). The huge
dynamic and thermodynamic effects of the QTP not only affect
the formation and development of the South Asian high (Liu
et al., 1989; Liu et al., 2007; Shan et al., 2020; Zhao et al., 2020),
but also affect the maintenance and development of the
subtropical high (Zhang et al., 2015; Luo et al., 2016) and
the overall climate and circulation in the northern hemisphere
(Ye, 1952; Ye and Gu, 1955; Li et al., 2007; Zheng et al., 2021).
Seasonal changes in the circulation and climate in East Asia are
also influenced by the QTP (Matsumoto, 1992; Murakami and
Matsumoto, 1994).

As an important heat source in spring and summer, the
dynamic and thermodynamic effects of the QTP have
important effects on the atmospheric circulation in East Asia,
including the East Asian summer monsoon (EASM) (Luo, 1989;
Li and Yanai, 1996; Dong et al., 2001; Zhang et al., 2006).
Numerical simulations have shown that the thermal role of
the underlying surface of the QTP is more important than the
dynamic role of the terrain for the EASM, but both are equally
important for the Indian summer monsoon (Liu et al., 1989; Luo
and Zhang, 1991).

The thermal effects of the QTP affect the EASM in two
ways. Heating of the slope of the QTP increases the energy of
the air mass moving toward the plateau, causing it to rise. This
alters the temperature and circulation over the QTP and
stimulates the monsoonal meridional circulation in summer
(Wu et al., 2015). This, in turn, affects the establishment and
outbreak of the EASM (Luo and Yanai, 1983; Luo and Yanai,
1984; Huang, 1985; Shao and Qian, 2001; Liu et al., 2002; Sun
and Ding, 2002; Liang et al., 2005; Wu et al., 2012; Duan et al.,
2014; Duan et al., 2018). The QTP also affects the monsoon
through the thermal contrast with the surrounding oceans
(Ren and Qian, 2003; Yan et al., 2005; Zhu et al., 2007; Liu
et al., 2012; Luo et al., 2016; Xu et al., 2016; Zhang et al., 2017).
The thermal difference between the eastern plateau and the
western Pacific has the strongest correlation with the intensity
of the EASM (Xu et al., 2016).

The nature of the QTP heat source changes in spring, from a
cold source in winter to a heat source in summer. Some studies
have shown that this change is an important signal of the seasonal
change in the thermal field over the QTP (Yanai et al., 1992;
Daisuke et al., 2003). This transformation of the heat source has
an important impact on the seasonal transition of the
atmospheric circulation in late summer. Heating of the QTP
in spring leads to a reversal in the nearby temperature gradient

and affects the establishment of the EASM (Flohn, 1957; Flohn
and Reiter, 1968; He et al., 1987; Liu et al., 2002; Zhang and Qian,
2002). The thermal and dynamic effects of the QTP accelerate the
northward advancement of the monsoon and the seasonal
transition in East Asia (Zheng et al., 2001). However, there
have been few studies of the early circulation signals of the
anomaly in the spring heat source of the QTP, especially for
signals in the Eurasia continent in winter.

As a result of the large spatial differences in the thermal
status of the QTP caused by the complex terrain, the regional
average cannot accurately reflect the spatial heterogeneity of
the change in the heat source. Analysis of the main mode can
better account for the spatial heterogeneity of the change in
the heat source and help to analyze the precursory signals and
later impacts. Some studies have made progress. Wang et al.
(2007) found that the intensity of the heat source in the
eastern QTP is negatively correlated with the intensity of
the EASM and positively correlated with the intensity of the
South Asian summer monsoon. The leading first mode of the
heat source changed in the 1970s (Wang et al., 2011). Zhang
et al. (2019) found that the importance of the east–west
inverse change in the mode of the QTP heat source during
summer on the summer precipitation in China is increasing.

There have been few studies of the main mode of the heat
source over the plateau and its surrounding areas and of the
cross-seasonal connection of the main mode. Most of the
previous thermal indices for the QTP were obtained based on
the regional average of low-resolution data and the topographic
factors were not fully considered. We therefore need to use higher
resolution heat source data for an analysis of the principal mode
to obtain an index that can more accurately describe the thermal
characteristics of the QTP.

Previous analyses of the main mode of the heat source were
often based on the empirical orthogonal function (EOF)
method. However, the modes obtained by EOF analysis may
have a false dipole distribution (Dommenget and Latif, 2002).
Studies have shown that if the data field is a random system
and satisfies the relationship that the correlation of various
points in space (time) attenuates with increasing distance, then
its EOF mode often appears as a false dipole distribution
(Dommenget and Latif, 2002; Gerber and Vallis, 2005; Cook
et al., 2010). Dommenget (2007) therefore proposed a new
EOF method: the distinct EOF (DEOF) method. DEOF can
eliminate features of randomness from strong noise and
highlight features with more physical information. It can
better estimate real climate modes (Dommenget, 2007;
Cook et al., 2010). This method has been applied in the
fields of meteorology and oceanography (e.g., Cook et al.,
2010; Feng et al., 2014; Hu et al., 2018).

We used the DEOF method proposed by (Dommenget,
2007) to decompose the atmospheric heat source over the
QTP and its surrounding domain based on high-resolution
ERA5 data. We obtained the main mode of the heat source in
spring and studied its cross-seasonal relationship with the
atmospheric circulation in the preceding winter and
following summer. This is of great scientific significance for
the in-depth understanding of the change in the QTP heat
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source in spring and climate variability in East Asia and can
also be used as a reference value for cross-seasonal climate
prediction.

2 DATA AND METHODS

2.1 Data
2.1.1 The Data Used in This Work Included Three
Reanalysis Datasets, Climate Indices and Historical
Simulation Data
The ERA5 reanalysis dataset consists of monthly reanalysis data
with a horizontal resolution of (0.25° × 0.25°) (Hersbach et al.,
2018). Most of the reanalysis data used in previous studies to
calculate the heat sources of the QTP were from the National
Centers for Environmental Prediction–National Center for
Atmospheric Research (NCEP/NCAR) (Liu et al., 2007; Wang
et al., 2007; Luo et al., 2016), the NCEP/Department of Energy
(DOE) (Tian et al., 2017; Wang et al., 2019) and the ERA-Interim
(Ao and Li, 2015; Zhang et al., 2019) datasets. To facilitate
comparison with the NCEP data, we interpolated the heat
source data calculated from the ERA5 dataset to a (2.5° × 2.5°)
grid when comparing it with the heat sources based on the NCEP
data. The DEOF results of heat source of different resolutions (1°

and 0.25°) are shown in text and supplementary material,
respectively.

The NCEP/DOE reanalysis (NCEP2) dataset is a monthly
reanalysis dataset with a horizontal resolution of (2.5° × 2.5°)
(Kanamitsu et al., 2002). The NCEP/NCAR reanalysis dataset
(NCEP1) is also a monthly reanalysis dataset with a horizontal
resolution of (2.5° × 2.5°) (Kalnay et al., 1996).

The subtropical EASM index was provided by the National
Tibetan Plateau Data Center of China (Zhao et al., 2015; Huang
and Zhao 2019) (www.tpdc.ac.cn/zh-hans/). The South Asian
summer monsoon index was from Li and Zeng (2003) (http://
lijianping.cn/dct/page/1). The northern Pacific subtropical high
index and the western Pacific warm pool intensity index were
provided by the National Climate Center of China (https://cmdp.
ncc-cma.net/cn/download.htm). The Arctic oscillation index was
from the National Oceanic and Atmospheric Administration
National Weather Service–NCEP Climate Prediction Center
(www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_
index/ao.shtml). The multivariate El Niño–Southern Oscillation
index version two was derived from the National Oceanic and
Atmospheric Administration Physical Sciences Laboratory
(https://psl.noaa.gov/enso/mei/). The warm Arctic–cold Siberia
(WACS) index was derived from the time coefficient of the
second mode (PC2) of the EOF analysis of the winter 2 m
temperature of the ERA5 in the Eurasia continent (Guan et al.,
2020; Jin et al., 2020).

We used the outputs of five models from the World Climate
Research Programme Coupled Model Intercomparison Project
(phase 6) (CMIP6) Historical simulation (Eyring et al., 2016;
https://esgf-node.llnl.gov/projects/cmip6/). Supplementarty
Table S1 presents a brief description of these models. The
period for the analysis based on the observations/simulations
was from January 1979 to December 2020/2014. The simulation

data were remapped onto the same (1° × 1°) grid for comparison
with observations.

We also used atmospheric heat source/sink dataset over the
Tibetan Plateau based on satellite and 80 routine meteorological
station (Duan, 2019), provided by the National Tibetan Plateau
Data Center of China, to verify the heat source data calculated by
the ERA5 reanalysis data.

2.2 Materials and Methods
2.2.1 Calculation of Apparent Heat Source
Following previous work (Yanai et al., 1973), the apparent heat
source can be calculated by:

Q1 � cp[ zT
zt

+ V
. · ∇T + ( p

p0
)k

ω
zθ

zp
] (1)

〈Q1〉 � 1
g
∫ps
pt

Q1dp (2)

where Q1 is the diabatic heating efficiency at different levels
(units: K d−1), 〈Q1〉 is the vertically integrated apparent heat
source (units: Wm−2), T is the atmospheric temperature at
different levels, V

.
is the horizontal wind (units: m s−1), ps and

pT are the ground and tropopause pressure, p0 = 1,013.25 hPa and
k = R/cp (units: J (kg K)

−1), where R and cp are the gas constant
and the specific heat at a constant pressure of dry air, respectively,
ω is the vertical velocity on an isobaric surface (units: Pa s−1), θ is
the potential temperature (units: K) and ∇ is the isobaric gradient
operator.

2.2.2 Distinct EOF
The EOF method, also known as eigenvector analysis or
principal components analysis, is a method of analyzing the
structural features of matrix data and extracting the main data
feature quantities. The EOF method is able to decompose the
field of time-varying variables into a part that does not vary
with time as a function of space and a part that depends only
on the time variation as a function of time. It allows the main
information of the original variable field to be concentrated on
a few main components so that a study of the variation with
time of the main components only needs to be studied instead
of the original variable field. The results derived from this
analysis can also be used to explain the physical variation
characteristics of the variable field. Lorenz first introduced this
analysis method into meteorological and climate studies in the
1950s. As long as the data field satisfies the relationship of the
correlation between points in space (or time) decaying with
distance, then the EOF modes have a dipole-type distribution
(Gerber and Vallis, 2005) and not all the EOF modes are
physically significant.

Dommenget (2007) proposed the DEOFmethod, which uses a
stochastic isotropic diffusive process to simulate the stochastic
null hypothesis for the spatial structure and then finds the modes
that differ most from the null hypothesis. These are then used as
the modes for DEOF analysis, which better excludes randomness
and has a clearer physical meaning than EOF analysis.
Dommenget (2007) introduced a diffusion process to extend a
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spatial first-order autoregressive (AR (1)) process to two
dimensions:

d
dt

Φ � cdamp · Φ + cdiffuse∇
2Φ + f (3)

where Φ is the climate element, t is time, cdamp is constant damping,
cdiffuse is the diffusion coefficient and f represents the spatial and
temporal white noise. The diffusion process introduced in the
equation is statistically significant and is used to represent the
correlation between two spatial points in the element field.

When neither cdamp nor cdiffuse are a function of the location,
then Eq. 3 notes that, for an isotropic diffusive process driven by
homogenous forcing, f is an AR (1) process in the spatial domain.
The covariance matrix of Φ is therefore:∑

ij

� σ iσje
−dij/d0 (4)

where σ i is the standard deviation of Φ at point i and dij is the
spatial distance between the two points i and j and d0 is the
decorrelation length. Eq. 3 and Eq. 4 are the null hypothesis for
the spatial characteristics of Φ.

The effective spatial degrees of freedom Neff characterizes the
spatially effective dimensionality and quantifies the degree of
complexity in the spatial variability of the domains:

Neff � 1∑e2i
,with ∑ ei � 1 (5)

where ei is the eigenvalue derived from the EOF analysis. Neff

corresponds to the number of independent spatial modes and can
be used as an estimate for the decorrelation length d0.

By projecting the eigenvectors Enull
j

���→
onto the eigenvector Eobs

i

���→
:

cij �
Eobs
i

��→
Enull
j

���→
∣∣∣∣Eobs

i

��→∣∣∣∣∣∣∣∣Enull
j

���→∣∣∣∣ (6)

where cij is the uncentered pattern correlation coefficient between
the two EOF patterns. The variance that the mode Eobs

i

���→
would

have under the null hypothesis can be estimated by the linear
combination of all eigenvalues enullj of the null hypothesis using cij:

eobsnulli � ∑N
j�1
c2ije

null
j (7)

where varobs(Dobs
���→

) denotes the variance that the pattern Dobs
���→

explains in the observed data and varnull(Dobs
���→

) denotes the

variance that the pattern Dobs
���→

explains under the null

hypothesis following Eq. 7. The leading Dobs
���→

can be found by
pairwise rotation of the leading EOFs until the maximum of Δvar

is found:

Δvar � varobs(Dobs
���→) − varnull(Dobs

���→) (8)

where Dobs
���→

is the distinct EOF (DEOF) and the corresponding
time series are the distinct principal components (DPCs). The

main modes of the DEOF differ most from the null
hypothesis.

3 COMPARISON OF HEAT SOURCE
RESULTS CALCULATED FROM
DIFFERENT REANALYSIS DATASETS
There are usually large differences in the QTP apparent heat
source among different datasets. Therefore, before calculating the
DEOF modes of the heat source, we first need to evaluate the
reliability of the heat source in the region calculated using the
ERA5 data by comparing the apparent heat source results from
different reanalysis datasets. Figure 1 shows the multi-year mean
climatology (1979–2020) of the apparent heat source in spring
calculated from the three reanalysis datasets. The spatial
distribution shows that all three datasets identify the QTP and
its surrounding areas as the main source of heat and that there are
large heat values on the southeastern, northeastern and western
sides of the QTP. However, the details of the specific distribution
are inconsistent among the three datasets. The ERA5 dataset
shows more details, larger extreme values and an uneven
distribution of the heat source, especially near the boundary
regions with the 3,000 m altitude contour, where there are
dramatic changes in altitude. The two groups of NCEP data
are similar and show a heat source in the central and eastern parts
of the QTP; the spatial variation is less severe than that in the
ERA5 dataset. This may be a result of the high spatial resolution
of the ERA5 data before interpolation, which means that it
contains more topographic information.

Some studies indicated that elevation dependence may be exist
in the trends in temperature and precipitation on the QTP (e.g.,
Qin et al., 2009; Li et al., 2017). To further verify whether the
similarities and differences in the apparent heat sources in
different datasets are affected by the terrain and resolution, we
calculated the climatology of the vertically integrated heat source
from 500 to 100 hPa (Figure 2) and compared this with the heat
source integrated from the ground. The 500 hPa altitude layer is
located >5,000 m above sea-level and is not far from ground level
on the plateau. Therefore, in theory, the heat source integrated
from this height should not be very different from the heat source
integrated from the ground.

The results showed that, in the plateau region, the spatial
distribution of the three groups of heat source tended to be more
inconsistent than the heat source integrated from the ground. The
ERA5 heat source did not change very much and showed a
staggered distribution of positive and negative extremes at the
boundary of the QTP, suggesting that it still reflects some
topographic effects. However, the other two groups of data
showed very different results for the heat source over the
QTP: the area of the heat source was significantly smaller and
the central area of QTP was a cold source. This indicates that the
500 hPa layer in the NCEP database may be further away from the
ground layer and that the heat source near the ground layer is not
integrated. The distribution of the NCEP heat sources was
relatively smooth, which is an unreasonable result. This
suggests that the difference in the results from the three
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FIGURE 1 |Climatology of the vertically integrated (from the land surface to 100 hPa) atmospheric apparent heat source in spring (color shading; units: W m−2) over
the QTP and its surrounding areas from 1979 to 2020 based the three reanalysis datasets: (A) ERA5, (B)NCEP1 and (C)NCEP2. The black lines represent the 3,000 m
altitude contours.

FIGURE 2 | Climatology of the vertically integrated (from 500 to 100 hPa) atmospheric apparent heat source in spring (color shading; units: W m−2) over the QTP
and its surrounding areas from 1979 to 2020 based the three reanalysis datasets: (A) ERA5, (B) NCEP1 and (C) NCEP2. The black lines represent the 3,000 m altitude
contours.
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datasets is related to the terrain and resolution. The ERA5 dataset
has a higher spatial resolution and retains more realistic terrain
information, impacting of vertically integrated result. Therefore,
the ERA5 heat source may be more reasonable.

We carried out a quantitative analysis of the consistency of the
three sets of heat source data. Supplementary Table S2 gives the
field correlation coefficients of the climatology of the heat sources
and the correlation coefficients of the time series of the regionally
averaged heat sources among the three datasets based on different
integral heights. For the whole-layer integration, all the field
correlations among the three sets of heat source data and the
correlation of the time series between the ERA5 and NCEP2
datasets passed the significance level test. For the heat source data
integrated above 500 hPa, the field correlation coefficients
significantly decreased and the correlations of the time series
increased. This verifies the comparison between Figure 1 and
Figure 2. The NCEP data have a low resolution, are strongly
affected by the terrain and the accuracy of the near-ground
elements is low, resulting in large differences between the

integration results from the ground and 500 hPa. It is
therefore necessary to use high-resolution data to calculate the
heat source on the plateau and the distribution of the heat source
in the plateau area from the ERA5 dataset is more reasonable.

Besides, we also compared heat sources from the reanalysis
data with station data (Duan, 2019). The results are shown in
Supplementary Figure S1. Although there are some differences
among the results of heat sources calculated using the ERA5
reanalysis data and station data, the main body of the plateau is
characterized by a heat source in the two datasets
(Supplementary Figures S1A,B). The temporal correlation at
the 80 station sites between station data and ERA5 data
(Supplementary Figure S1C) shows that correlations in most
of stations are positive, and correlations with 0.10 significant level
are basically positive (red circles) and only one station with 0.10
significant level has a negative correlation (a blue circle). And
stations in the southern part of the plateau basically pass the
significant test. The complex topographic conditions in the
southern part of the plateau prove that ERA5 can characterize

FIGURE 3 | Spring 〈Q1〉 in the QTP and surrounding area during the time period 1979–2020 showing the EOF1-4 modes (first column), the stochastic null
hypothesis one to four modes (second column) and the DEOF1-4 modes (third column) based on the interpolated ERA5 data of 1° resolution (the DEOF result of 0.25°

resolution is shown in Supplementary Figure S2). The black lines are the 3,000 m altitude lines. The numbers in the upper right corner of the EOF/DEOFmodes are the
corresponding variance contributions, and the numbers in the upper right corner of the null hypothetical process are the corresponding variance contributions of
EOF/DEOF modes to the null hypothetical process.
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the topographic factors on the plateau well. And combined with
the above comparison results with NCEP reanalysis data, the
ERA5 data are feasible for calculating heat sources on the plateau,
and can reflect the more topographic effects which are not
presented in the low-resolution reanalysis.

4 DEOF ANALYSIS OF THE APPARENT
HEAT SOURCE IN AND AROUND THE
TIBETAN PLATEAU IN SPRING
Based on our analysis, we have some confidence in the heat
sources calculated by the ERA5 dataset. The main modes of the
spring 〈Q1〉 in the QTP were therefore analyzed based on the
heat source calculated from the ERA5 dataset with 1° resolution.
The DEOF result of 0.25° resolution is shown in Supplementary

Figure S2. Two methods of principal mode analysis were used:
EOF and DEOF analysis (Figure 3 and Figure 4). We also
calculated the EOF modes (Figure 3, middle column) and
variance contribution comparisons (Figure 5) for the null
hypothesis process. The null hypothesis process is a stochastic
isotropic diffusive process representing the background state of
the elemental field (e.g., noise) for which the EOF analysis reflects
spurious physical information. Comparisons with background
state can help to identify more realistic physical modes.

The variance contribution of the first mode of the 〈Q1〉 EOF
(EOF1) (Figure 3, left-hand column) was 16.2%, which is about
the size of result from other studies, e.g., Zhang et al. (2015),
Zhang et al. (2019) and Liu et al, 2021a). The spatial distribution
of EOF1 shows warming in the QTP and cooling in the
surrounding areas, with the heat sources mainly distributed in
the central-eastern part of the main QTP and the cold sources

FIGURE 4 | Time series corresponding to the modes of EOF (left-hand panel) and DEOF (right-hand panel) analyses for the spring 〈Q1〉 in the QTP and surrounding
areas during the time period 1979–2020.
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mainly located on the southern side of the QTP and the
surrounding areas. The feature is more distinct in the high-
resolution data (Supplementary Figure S2). The time series of
the first mode (PC1) (Figure 4 and Supplementary Figure S3)
was characterized by a significant decadal variation and an
interannual variation, with a general trend toward a stronger
PC1 intensity. A 9 year sliding t-test on PC1 (Supplementary
Figure S4) showed that PC1 had a significant change point in
1999 that passed the 99% confidence level test. This indicates that
an abrupt decadal change in the EOF1 of the QTP 〈Q1〉 occurred
in 1999.

The EOF2 modal variance contributed 10.3%. In terms of the
spatial distribution, this is an east–west dipole-type distribution
with a cold source in the central-eastern part of the plateau and a
hot source in the west. The strongest cold source was in the
southeast of the QTP, with 85° E as the dividing line. The
corresponding time series (PC2) mainly showed an
interannual variability (Figure 4).

The EOF3 modal variance contributed 8.9%. The spatial
distribution was characterized by a northeast–southwest
dipole-type distribution with the QTP and its northeastern
side as the cold source and the southern area as the heat
source; the strongest warm center was located on the southern
side of the plateau. The corresponding time series (PC3) was
characterized by both an interannual and a decadal variability,
with a clear downward trend after 2003.

The EOF4 modal variance contributed 7.1%. The distribution
was north–south, with cold sources near the southern edge of the
QTP and its southern flank and heat sources on the northern
flank of the plateau. PC4 showed a significant interannual
variation and there was no significant abrupt change in the
variation of the sequence.

Analysis of the null hypothesis process (Figure 3, middle
column) revealed that the first mode (EOF0-1) had a monopole
distribution, EOF0-2 had a northwest–southeast dipole
distribution, EOF0-3 had a northeast–southwest dipole

distribution and EOF0-4 had a + − + quasi-zonal distribution.
Comparing the variance contribution of each mode of the EOF
with the stochastic null hypothesis (Figure 5), we found that the
variance contribution of EOF1 was 16.2%. The explained variance
of the null hypothesis was 1.9%, which was a significant difference
with an effective variance contribution of 14.3%, proving that
EOF1 was physically significant and reflected more realistic
physical information. Although the spatial modes of EOF2,
EOF3 and EOF4 all had dipole-type characteristics, their
variance contributions were 10.3, 8.9 and 7.1%, respectively,
and the explained variance of the stochastic null hypothesis
was 6.0, 3.1 and 3.2%, respectively, which differ by only 4.3,
5.8 and 3.9%, respectively, indicating that EOF2, EOF3 and EOF4
contain only a very small amount of physical information.

This EOF analysis showed that the spatial modes of EOF2,
EOF3 and EOF4 all had dipole-type characteristics and the
variance contribution was not very different from that of the
stochastic null hypothesis, indicating that their physical reality is
yet to be verified. It is therefore essential to use DEOF analysis to
exclude noise effects and to determine the modes with the most
significant difference from the null hypothesis to obtain more
realistic physical information and modes.

The DEOF analysis (Figure 3 and Supplementary Figure S2,
right-hand column) showed that the first mode of the 〈Q1〉
DEOF (DEOF1) had a very similar distribution to EOF1, which is
also influenced by the Himalayan topography, with an overall
distribution characterized by a warming of the QTP (especially in
the central-eastern part) and a cooling of the surrounding areas.
The variance contribution of 15.9% (Figure 3), relative to the null
hypothesis of 0.6%, gave an effective variance contribution of
15.3%, indicating that this mode had the highest reliable-to-noise
ratio and reflected the most real physical information. DPC1 was
also very similar to PC1 and also changed abruptly around 1999
(Figure 4). This verifies that DEOF1 and EOF1 were the most
physically realistic modes.

DEOF2 differed markedly from the original EOF2. Although
both showed an east–west anti-phase distribution, the center of
the cold source in the southern part of the QTP was significantly
weaker in DEOF2 and the heat source on the northwestern side of
the plateau was also weaker, whereas the heat source on the
southern side strengthened and expanded.

DEOF2 generally had a more northeast–southwest inversion
distribution, a feature more similar to EOF3. The spatial
distribution of DEOF2 was essentially a combination of EOF2
and EOF3; the spatial correlation between DEOF2 and EOF2
(EOF3) was 0.84 (0.39). A comparison of the time series
(Figure 4) showed that although DPC2 and PC2 were
generally similar with a more pronounced interannual
variability, DPC2 had a more pronounced decadal variability.
The variance contribution of DEOF2 to the noise was 1.0%, which
was considerably less than the variance contribution of EOF2 to
the stochastic null hypothesis (6.0%). It can be assumed that the
DEOF analysis filtered out the spurious physical information in
the original EOF2 and that the reliable-to-noise ratio of DEOF2
increased, reflecting a more realistic physical mode.

The distribution of DEOF3 showed some changes compared
with EOF3. It no longer had a reverse northeast–southwest

FIGURE 5 | Variance contribution of each mode of the spring 〈Q1〉 EOF
(black line) and its contribution to the stochastic null hypothesis (red dashed
line).
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distribution, but was closer to the + − + radial distribution with a
cold source in the QTP and heat sources on the southern and
northern sides of the QTP. The interannual variation was more
pronounced in DPC3 than in PC3. DEOF3 only contributed 0.8%
to the environmental noise, which showed that the physical
information in DEOF3 was more realistic than that in EOF3.

The heat sources in DEOF4 were mainly on the southern and
northeastern sides of the QTP, with a zonal distribution of cold
sources on the eastern and western sides. DPC4 had changed
relative to PC4, but still had a significant interannual variability.

The DEOF1 distributions were therefore similar to EOF1 and
both had significant variance contributions (~16%). They both
explained the microscopic variance in the null hypothesis process
(~1%), suggesting that both EOF1 and DEOF1 truly reflected the
main modes of variation in the heat source. The first mode of
〈Q1〉 was dominated by the central-eastern heat source, with the
cold source distributed to the west and the surrounding area. The
eastern heat source of the QTP was distributed in anti-phase with
the southeastern side. This mode underwent a decadal shift in
1999. The differences between EOF2 and DEOF2 were more
significant and explained 6.0 and 1.0% of the variance of the null
hypothesis, respectively. EOF2 therefore did not retain as much
real physical information as DEOF2. DEOF2 had a

northeast–southwest anti-phase distribution with a combined
EOF2 and EOF3 distribution.

DEOF3 mainly had a meridional distribution, with the QTP
varying inversely between the north and south sides. DEOF4 mainly
had an east–west zonal distribution. The reliable-to-noise ratio of
eachmode became larger after theDEOF analysis, indicating that the
DEOF was more realistic and reliable than the EOF.

5 PRE-SIGNAL AND POST-INFLUENCE OF
THE MAIN MODES OF THE SPRING
TIBETAN PLATEAU 〈Q1〉
The DEOF method showed that DEOF1 was the most realistic
and physically meaningful mode. As a result, detecting the cross-
seasonal relationship between the spring 〈Q1〉 main mode and
the subsequent Asian summer monsoon, in addition to the sea
surface temperature (SST) and atmospheric circulation, is crucial
for a scientific understanding of climate variability in the pan-
QTP region and for the practical prediction of weather patterns.
We therefore examined this correlation and analyzed the
dynamical field between the DEOF1 of the spring 〈Q1〉 and
the different factors in different time periods.

TABLE 1 | Correlation coefficients of the DPC1 series with the monsoon, circulation and SST indices for 1979–2020 spring heat sources.

Preceding winter Following summer

Warm Arctic–cold
Siberia Arctic

Arctic oscillation El Niño–Southern
Oscillation

East Asian
subtropical summer

monsoon

Tropical South
Asian summer

monsoon

Northern Pacific
subtropical high

Warm pool

spring 〈Q1〉 DPC1 0.39** 0.08 −0.27* −0.44** 0.33** 0.09 0.29*

* and ** indicate passing 0.10 and 0.05 significance test, respectively.

FIGURE 6 |DPC1 series and the previous winter (A)WACS index, (B) El Niño–Southern Oscillation (ENSO) index, the summer (C)western Pacific warm pool index
and (D) EASM index series.
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Table 1 gives the correlation coefficients between the DPC1
series and various factors in different seasons. The first mode was
significantly correlated with the WACS index (Figure 6A; r =
0.39), the El Niño–Southern Oscillation index (Figure 6B) in the
previous winter, the EASM index (Figure 6D; r = –0.44) and the
western Pacific warm pool index in summer (Figure 6C), but not
significantly correlated with Arctic oscillation index in winter and
the north Pacific subtropical high northern boundary index in
summer. Specifically, when DPC1 was high, then the subsequent
subtropical EASMwas significantly weaker and the tropical South
Asian summer monsoon was strong. The cross-seasonal
relationship between DPC1 and the EASM didn’t depend on
different monsoon index [e.g., the EASM indices by Zhang et al.
(2003) and Li and Zeng (2003)]. The atmospheric circulation
usually featured a warm Arctic with a cold Eurasia, a La Niña-like
SST anomaly and prominent warm pools in the previous winter.

We analyzed the relationship between the DEOF1 and systems
in the previous winter and late summer to explore the precursor
of the DEOF1 in the previous winter and its possible influence on
the later summer climate in East Asia and the physical process of
signal transmission. Figure 7 shows the correlation between the
2 m air temperature (2 mT) and the DPC1 in different seasons.

The distribution of the 2 mT showed a WACS-like pattern in
the previous winter, with a strong positive correlation covering
Eastern Europe and the Arctic. In the high DPC1 winter, the
temperature over Eastern Europe, the Barents Sea region and the
entire Arctic are unusually warm, while it was colder in Siberia

and northern East Asia. Previous studies have shown that the
WACS pattern has been the dominant mode in winter
throughout Eurasia in recent years and may share a close
relationship with the winter blocking high (the Ural blocking
high), the Arctic oscillation and sea ice cover (Cohen et al., 2014;
Luo et al., 2017; Cohen et al., 2020; Dong et al., 2020; Jin et al.,
2020). In addition, subtropical regions are warm, which is often
seen asWACS-related temperature anomalies (Cohen et al., 2014;
Francis and Skific, 2015).

In spring, the region of positive temperature correlation in
Eurasia expanded further eastward to the surrounding sea area,
but the temperature decreased in the QTP and on its southern
side. The meridional temperature distribution showed a + − +
tripolar pattern. According to the theory of thermal winds, such
an anomaly in the meridional temperature gradient will stimulate
an easterly wind anomaly near the QTP and East Asia and a
westerly wind anomaly at high latitudes. This facilitates
strengthening and expansion of the South Asian high and the
development of high-pressure systems in East Asia in summer.

The anomaly in the meridional temperature gradient did not
favor the northward movement of the subtropical monsoon and
hindered the establishment and advancement of the subtropical
EASM. By contrast, it generated a westerly wind anomaly in the
tropical and South Asian monsoon regions, thereby
strengthening the South Asian summer monsoon. This
anomalous pattern lasted until summer. The warm area
expanded further to the south and the reduced East

FIGURE 7 | Distribution of the correlation coefficients between DPC1 and the 2 m air temperature in the time period 1979–2020 in (A) previous winter, (B) spring
and (C) summer. The white dots indicate statistical significance at the 95% confidence level.
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Asia–West Pacific temperature contrast was not conducive to the
enhancement and northward movement of the EASM. We
therefore conclude that the DEOF1 may be intimately related
to the WACS anomaly between Eurasia and the Arctic in the
previous winter.

Figure 8 shows the correlation coefficients between 〈Q1〉 and
DPC1 (Figure 8A) and between 〈Q1〉 and theWACS index in the
previous winter (Figure 8B). The distribution of the correlation
coefficients with the WACS was almost identical to that with
DPC1, implying that the WACS pattern in the previous winter
was associated with the mainmode of 〈Q1〉 in spring. There was a
reduced correlation over the QTP and a significant correlation
dominating the low-latitude area and the Barents Sea.

When the DPC1 was positive in spring, although the central-
eastern part of the QTP was a heat source, the other regions of the
QTP and its surroundings were mainly a cold source and the
tropical ocean was a heat source. The land–sea thermal contrast
was therefore reduced, which did not favor strengthening of the
EASM. The WACS in the previous winter may therefore be
related to the formation of the DEOF1 mode characterizing
the warm QTP and cold surroundings in spring.

Figures 9, 10 show that DPC1 was significantly associated
with the Pacific SST in all seasons. In the year with a high DPC1,
there was a negative anomaly in the central-eastern Pacific in the
previous winter and spring and a strong positive anomaly near

the western Pacific warm pool, which was similar to the La Niña
SST anomaly (SSTA). This SSTA pattern was consistent with the
distribution of 2mT (Figure 7) and Figure 10, suggesting that this
SSTA pattern may be related to the WACS. The warm SST
anomaly in the western Pacific lasted until summer, which did
not favor an enhancement of the land–sea thermal contrast in the
Asia–Pacific region and the inversion of the high- and low-
latitude SST gradients and therefore hindered the formation of
the EASM.

We investigated the cross-seasonal relationship between the
DEOF1 and the atmospheric circulation in the previous winter
and the following summer. Extensive studies have been
undertaken to demonstrate that the winter WACS contributes
to weakening of the contemporaneous and summer storm track,
enhancing wave activity and causing an offset of the jet, which
leads, in turn, to frequent warm–dry events in summer (Petrie
et al., 2015; Chang et al., 2016; Coumou et al., 2018). However,
few studies have attempted to determine how 〈Q1〉, which is
known to have a crucial effect on the atmospheric circulation in
Asia, responds to theWACS in the previous winter and whether it
will exert a profound impact on the seasonal transmission of the
winter thermal anomaly.

Figure 11 shows the correlation of DPC1 with the 500 hPa
geopotential height and the 300 hPa T-N wave activity flux and
Figure 12 shows the 700 hPa wind field for each season. Arrows

FIGURE 8 | (A) Spatial distribution of correlation coefficients between DPC1 and 〈Q1〉. (B) Spatial distribution of correlation coefficients between the winter WACS
index and 〈Q1〉. White dots indicate statistical significance at the 95% confidence level.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 83510111

Yang et al. Qinghai–Tibetan Plateau, WACS and Drought

28

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


denote vector resultants of correlation coefficient between DPC1
and zonal and meridional components. A positive correlation for
zonal or meridional component is denoted by an eastward or
poleward arrow, respectively (Kodera and Kuroda, 2005; Zhao
et al., 2016). In the previous winter (Figures 11A, 12A), the wave
activity was strong from the polar regions through Siberia to the
northwest Pacific. The blocking high in theWestern Asia–Eastern
Europe region caused warmer temperatures in the Arctic due to
poleward transports of the warm air-flow behind of the ridge and
the cool Siberia due to the southward transport of cold air in the
front of the high ridge. This caused aWACS pattern of Figure 7A.
The cold Siberia is likely favored the formation of the DEOF1 of
〈Q1〉 in the QTP and surrounding areas. Meanwhile, a wave train
from the western Asia with a strong high-pressure anomaly
propagated to the QTP and its south, likely associated with
the QTP–circumglobal teleconnection pattern (Li et al., 2021)
or the influence of the strong Ural blocking high (Cohen et al.,
2014; Luo et al., 2017; Jin et al., 2020), which could induce heating
anomaly over the QTP. The meridional tripole pattern of height
between the Arctic and the QTP is similar to the tripole mode of
precipitation in winter, related to the mid-latitude teleconnection
(Liu et al., 2020; Liu et al., 2021a), and could cause a tripole
pattern of temperature anomaly between the Arctic and the QTP
and the change of meridional temperature gradient. This
coincided with the DEOF1 of heat source in the QTP and
surrounding areas. On the other hand, the planetary wave
divergence/convergence in the high-latitude region of Asia/

Mongolia and northeast China stimulated a westerly/an
easterly wind anomaly, which favored a following anticyclonic
anomaly in the higher latitude region of the East Asia. The
anticyclonic anomaly is very important for circulation
variations in the following seasons. This result is consistent
with previous studies on the atmospheric circulation in the
WACS pattern (Luo et al., 2017; Coumou et al., 2018; Jin
et al., 2020), although previous studies did not find a
relationship between the WACS pattern and the main mode
of 〈Q1〉 in spring.

We also found that the mid-high latitude planetary waves
continue to propagate to the southeast, causing positive and
negative phase interval anomalies in the geopotential height
and wind fields over the East Asia–Pacific region, further
affecting the SST. Strong easterly winds south of the north
Pacific high-pressure region strengthened the trade winds and
could cause a La Niña-like SSTA (Figures 9A, 10A). The positive
SSTA in the western Pacific had a seasonal persistence, which did
not enhance the land–sea thermal contrast in East Asia and thus
affected the establishment of the subtropical monsoon.

For the same period (spring) (Figures 11A, 12B), the
correlation coefficient field of DPC1 with the geopotential
height showed a significant − + dipole distribution from the
northwest to the southeast in Eurasia. The low-pressure anomaly
accompanied by an anomalous cyclonic circulation may be
related to feedback from the warm, dry underlying surface
caused by the blocking high (Fischer et al., 2007; Coumou

FIGURE 9 | Distribution of the correlation coefficients between DPC1 and the SST in the time period 1979–2020 in (A) previous winter, (B) spring and (C) summer.
The white dots indicate statistical significance at the 95% confidence level.
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et al., 2018). The anomalous low pressure also caused an
intensified southwesterly wind anomaly on its southeastern
side. The planetary wave propagating southeast from the
Barents Sea converged with the north-moving planetary wave
east of Lake Baikal, which was responsible for the development of
an easterly wind. In this way, a large-scale high-pressure anomaly
with an anomalous anticyclonic circulation extended from the
QTP to the northeast, eventually resulting in warm, dry weather.

We determined the DEOF of 〈Q1〉 in summer to explore
whether the warm plateau and cold surroundings mode still
existed (Supplementary Figures S5,6). Among the correlations
between the spring DPC1 and the four summer DPCs, the
summer DPC2 had the strongest correlation with the spring
DPC1 with a correlation coefficient of 0.47 (p < .01). The
distribution of the summer DEOF2 was identical to that of the
spring DEOF1, suggesting that the summer DEOF2 may be
significantly associated with the spring DEOF1 and that the
main mode of 〈Q1〉 may have some seasonal persistence.

The mode with a warm QTP weakened the mid-latitude
meridional temperature gradient, which hindered
strengthening of the storm track and the generation of
cyclones, but favored the formation of a high-pressure ridge
(Matsumura et al., 2014; Petrie et al., 2015). The positive
geopotential height anomaly and the anticyclonic circulation
anomaly on the northeastern side of the QTP were present in
both spring and summer (Figures 11B,C, 12B,C), reflecting the
existence of intensified high-pressure systems, such as the South

Asian high-pressure region and blocking high, and suppressing
precipitation in northern China.

The winter WACS pattern can affect the atmospheric
circulation in the northern hemisphere and planetary wave
activity in summer. This causes a weak mid-latitude zonal
circulation with east–west waveguides in summer, which can
excite latitudinal global wave columns (Petoukhov et al., 2016;
Coumou et al., 2018) and affect the weather in distant regions.
Figure 11C shows that the trough and ridge were more
pronounced at mid- and high latitudes in summer when the
DPC1 was positive in spring, with the WACS pattern in the
previous winter and that there was significant planetary wave
activity near the jet belt. This is consistent with previous studies
(Petoukhov et al., 2016; Coumou et al., 2018). Thermal anomalies
over the QTPmay also have an important role because the QTP is
higher in elevation and is located south of this global zonal wave
train; thermal anomalies in the QTP can affect areas over and
downstream of this region via the zonal wave train.

Planetary waves tend to converge in southern East Asia and
disperse in the north, which results in an anticyclonic (high-
pressure) anomaly. This anticyclonic circulation dominates the
central and northern regions of China. Such an anomalous
circulation causes a sinking trend, which does not favor the
transport of water vapor (Haarsma et al., 2009). Zhu, 1934)
proposed that droughts in the Yangtze River region are mainly
caused by easterly winds, which are not conducive to the
formation of the northward-moving monsoon. Such a

FIGURE 10 | Distribution of the correlation coefficients between the WACS index and the SST in the time period 1979–2020 in (A) previous winter, (B) spring and
(C) summer. The white dots indicate statistical significance at the 95% confidence level.
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dominant high-pressure anomaly may therefore be responsible
for drought over most of China in summer.

The results of our dynamic field analysis can also be verified in
the precipitation field. Figure 13 shows the correlation fields
between DPC1 in spring and precipitation in different seasons.
Precipitation in summer was significantly suppressed in the
Yangtze river basin, Central China and North China in
summer, apart from coastal South China and the western part
of the QTP, which denotes the rain belt is obviously south in
summer due to the slow advancement of the EASM. And there is
more precipitation in the Indian Peninsula, the Bay of Bengal and
the western plateau, corresponding to the strong south Asian
summer monsoon (Table 1).

In conclusion, when the DEOF1 was in the positive phase, it
was often accompanied by aWACS pattern in the previous winter
and an active global zonal wave train, which caused a large-scale
circulation anomaly (a high-pressure anomaly) and a Pacific
SSTA (west warm winter cold) in East Asia–Pacific region. It
not only caused a warmQTP and cool surroundings in spring and
summer, but had a seasonal persistence, which led to a circulation
anomaly in East Asia in summer. The seasonal persistence of the
western Pacific SST warming and the main mode of 〈Q1〉, in
addition to the active global zonal wave train, caused a large-scale
high-pressure anomaly in north-central East Asia in summer and
a weak East Asian subtropical monsoon. This pushed the

monsoon rain belt northward and contributed to frequent
drought events in most parts of East Asia.

6 DISCUSSION AND CONCLUSION

We verified the cross-seasonal relationships in the observations
between the spring QTP 〈Q1〉 and the previous winter and post-
summer climate factors using two methods: 1) partial correlation
analysis to test the dependence and independence of these
relations; and 2) CMIP6 Historical simulation test data to
verify whether such relationships also exist in the model.

Table 2 shows the results of the partial correlation analysis.
The correlation between the WACS pattern and the EASM in the
previous winter was −0.34 (p < .05). When the effect of DPC1 was
excluded, the correlation decreased to −0.18, which was not
significant. This suggests that the cross-seasonal relationship
between the WACS pattern and the EASM is related to the
DEOF1 of 〈Q1〉 in spring. The correlation between the spring
DPC1 and previous winter WACS pattern was 0.39 (p = .01).
After excluding the effect of the EASM, although the correlation
decreased to 0.31 (p = .05), it was still significant, indicating that
the correlation was not strongly dependent on the EASM. The
correlation of the spring DPC1 of heat source with the EASMwas
−0.44 (p < .01). After excluding the effect of the WACS pattern,

FIGURE 11 | Distribution of the correlation coefficients between DPC1 and 500 hPa geopotential height (shading; gpm) and vector resultants of correlation
coefficient between DPC1 and the 300 hPa T-N wave activity flux (arrows; m/s) in the time period 1979–2020 in (A) previous winter, (B) spring and (C) summer. The
white dots indicate statistical significance at the 95% confidence level. In part (C), the black solid/dashed lines are the composite geopotential height contours in summer
of DPC1 high (DPC1 > 1)/low (DPC1 < −1) years (only the 5,860, 5,840, 5,800, 5,720, and 5,640 gpm lines are shown). The red solid/dashed lines are the
composite subtropical high in summer of DPC1 high (DPC1 > 1)/low (DPC1 < −1) years. The purple lines are the composite 12,500 contour of the DPC1 high (DPC1 > 1)/
low (DPC1 < −1) in summer (the South Asian high-pressure range). Vectors are plotted as arrows only when statistical significance of zonal component of T-N wave
activity flux is at the 90% confidence level. A positive correlation for zonal or meridional component is denoted by an eastward or poleward arrow, respectively.
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FIGURE 12 | Vector resultants (arrows) of correlation coefficient between DPC1 and 700 hPa zonal and meridional wind in the time period 1979–2020 in (A)
previous winter, (B) spring and (C) summer. A positive correlation for zonal or meridional wind is denoted by an eastward or poleward arrow, respectively. Arrows are
shown only when the statistical significance at the 90% confidence level for the correlations of zonal wind.

FIGURE 13 | Distribution of the correlation coefficients between DPC1 and precipitation in the time period 1979–2020 in (A) previous winter, (B) spring and (C)
summer. White dots indicate statistical significance at the 90% confidence level.
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the correlation decreased to −0.36 (p < .05), which was still
significant, indicating that the DEOF1-EASM correlation was not
very dependent on the WACS pattern. The results of the partial
correlation analysis therefore show that the DEOF1 of spring heat
source over the QTP had an important role in the cross-seasonal
relationship between the WACS pattern and the EASM.

We used the CMIP6 historical simulation data to validate our
results. The model DEOF analysis (Supplementary Figures S7,8)
showed that the multi-model ensemble DEOF2 characterized the
pattern of a warm plateau with cold surroundings. DPC2 also had
a high correlation with the observational DPC1, with the
correlation coefficient reaching 0.38 (p < .05; Supplementary
Figure S9). Therefore, although the observational DEOF1 may
not be reproduced in the model DEOF1, it may correspond to the
model DEOF2. To validate this suggestion, we calculated the
correlation coefficient between the model DPC2 in the three
seasons and the atmospheric circulation variables
(Supplementary Figures S10–S14) to determine whether the
correlation coefficient field displayed the warm Arctic–cold
Eurasia pattern and was related to the La Niña in the previous
winter and whether there was a significant high-pressure anomaly
and large-scale droughts in East Asia in the following summer.

The model DEOF results showed that the Arctic and Ural
Mountains underwent exceptional warming in the previous
winter. The fact that the northwestern Pacific warmed while
the eastern Pacific was cold agreed with the observations. The
cold Siberia signal was not obvious, which also agreed with the
observations. In the model SST field, the La Niña-like Pacific
SSTA in the observations (warm in the west and cold in the east)
was reproduced well and was maintained until the summer. This
implies a coupling relationship between the WACS pattern and
the Pacific SSTA, which means that the two factors both affect
〈Q1〉. The correlation efficient field with the geopotential height
and the wave activity flux also implies that the high-pressure
anomaly in East Asia and the planetary wave anomaly in the
Barents Sea and the Mediterranean profoundly affected the
atmospheric circulation and planetary wave activity in East Asia.

We compared 〈Q1〉 calculated by different reanalysis datasets
and found that the spring 〈Q1〉 calculated by the ERA5 dataset
was reliable over the main body of the QTP and was consistent
with the results obtained using the NCEP dataset, although the
spatial distribution was fairly heterogeneous at the boundary of
the plateau. This may be a result of the higher resolution of the
ERA5 dataset and indicated that 〈Q1〉 calculated using the ERA5
dataset was better able to reflect the influence of topography.

We found that the reliable-to-noise ratio of 〈Q1〉 on the QTP
and surrounding areas obtained by DEOF analysis was
significantly improved compared with that from EOF analysis
and was better able to show physical processes. DEOF1 was

similar to EOF1, with the heat sources located in the central-
eastern part and cold sources in the western and surrounding
areas. DEOF1 had the highest reliable-to-noise ratio among all
the modes and the effectively explained variance (the difference
from the explained variance of the null hypothesis) was 15.3%,
twice that of the second mode.

We analyzed the relationship between DEOF1 and the
atmospheric circulation in the previous winter and the
EASM. We found that DEOF1 was linked to both the
WACS temperature anomaly in the previous winter and the
weakened EASM and droughts in most parts of China (the
Yangtze river basin, Central China and North China) in the
following summer mainly based on ERA5 data. The WACS
pattern in the previous winter was associated with intensified
blocking in Eastern Europe and a warmer Barents Sea, and was
likely related to decrease in snow on the middle and eastern
QTP in winter and spring (Si and Ding, 2013). The WACS
signal affected Siberia, the area around the plateau and the
north Pacific Ocean through the propagation of planetary
waves at mid- and high latitudes, resulting in a colder
Siberia with the tropical Pacific Ocean featuring a La Niña-
like pattern. The SSTA was maintained from spring to
summer, reducing the land–sea thermal contrast in the
subtropical monsoon region of the East Asia. This WACS
pattern facilitates the formation of the QTP’s dominant mode,
leading to a + − + tripolar distribution of the temperature
anomaly near the plateau in spring and summer, which
coincided with the tripole mode between the Arctic and the
QTP region (Li, et al., 2021; Liu et al., 2021b). And the
weakened temperature gradient at mid- and high latitudes
led to a weaker storm track and fewer cyclones at mid-latitudes
(Chang et al., 2016). A widespread easterly wind anomaly and
anticyclonic (high-pressure) anomaly were therefore
generated in the surroundings of the plateau and East Asia,
which hindered the establishment and northward movement
of the monsoon airflow in East Asia and led to widespread
drought. The cross-seasonal relationship between the winter
WACS pattern and the leading mode of the spring 〈Q1〉 and
the intensity of the EASMmay be a potentially factor in climate
prediction and requires further investigation.
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Data availability Statement Publicly available datasets were
analyzed in this study. These data can be found here: ERA5
data is available via https://cds.climate.copernicus.eu/cdsapp#!/
search?type=dataset&text=era5. The NCEP/DOE reanalysis data
is available via https://psl.noaa.gov/data/gridded/reanalysis/. The

TABLE 2 | Correlation/partial correlation coefficients of the DPC1 with the previous winter WACS pattern and the EASM index.

Preceding winter WACS
(2mT PC2)

EASM

DPC1 of spring 〈Q1〉 0.39**/0.31* −0.44**/−0.36*
Preceding winter WACS pattern (2mT PC2) −0.34*/−0.18
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EASM index (Huang and Zhao, 2019) and atmospheric heat
source/sink dataset over the Tibetan Plateau based on satellite
and station (Duan, 2019) isare available via http://www.tpdc.ac.
cn/zh-hans/. The South Asian summer monsoon index is
available via http://ljp.gcess.cn/dct/page/1http://lijianping.cn/
dct/page/1. The northern Pacific subtropical high index
and the western Pacific warm pool intensity index is
available via https://cmdp.ncc-cma.net/cn/download.htm.
The Arctic oscillation index is available via www.cpc.ncep.
noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml.
The multivariate El Niño–Southern Oscillation index version 2
is available via https://psl.noaa.gov/enso/mei. CMIP6 Historical
simulation is available via https://esgf-node.llnl.gov/projects/
cmip6.

AUTHOR CONTRIBUTIONS

YY carried out data collection and data analysis. YY and LZ
drafted the manuscript. LZ and XS designed the methods and
edited the manuscript. ZX and QL edited and reviewed the
manuscript.

FUNDING

This work is supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (XDA20100304

and XDA20060501), the Second Tibetan Plateau Scientific
Expedition and Research Program (STEP) (2019QZKK0208),
Guangdong Major Project of Basic and Applied Basic Research
(2020B0301030004), the National Natural Science Foundation of
China (41790471, 41975054, 41930967, and U2033207) and the
National Key Research and Development Program of China
(2018YFA0606203 and 2019YFC1510400).

ACKNOWLEDGMENTS

We thank the reviewers and editor for insightful remarks. We
would like to thank the European Centre for Medium-Range
Weather Forecasts for providing the ERA5 reanalysis data and the
NOAA/OAR/ESRL PSL for providing NCEP data. We thank the
National Climate Center of China, National Tibetan Plateau Data
Center of China, Prof. Jianping Li and Prof. Gang Huang for the
index data. The authors acknowledged the World Climate
Research Program’s Working Group on Coupled Modeling
and thank the climate modeling groups for producing and
making available their model output.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/feart.2022.835101/
full#supplementary-material

REFERENCES

Ao, T., and Li, Y. Q. (2015). Summer Thermal Characteristics over Qinghai-Xizang
Plateau and Surrounding Areas and its Relationship with Precipitation in East Asia.
Plateau Meteorol. 34 (5), 1204–1216. doi:10.7522/j.issn.1000-0534.2014.00100

Chang, E. K. M., Ma, C. G., Zheng, C., and Yau, A. M. W. (2016). Observed and
Projected Decrease in Northern Hemisphere Extratropical Cyclone Activity in
Summer and its Impacts on Maximum Temperature. Geophys. Res. Lett. 43,
2200–2208. doi:10.1002/2016GL068172

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D.,
et al. (2014). Recent Arctic Amplification and Extreme Mid-latitude Weather.
Nat. Geosci 7 (9), 627–637. doi:10.1038/ngeo2234

Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J., et al. (2020).
Divergent Consensuses on Arctic Amplification Influence on Midlatitude
Severe winter Weather. Nat. Clim. Chang. 10 (6), 20–29. doi:10.1038/
s41558-019-0662-y

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., and
Wright, W. E. (2010). Asian Monsoon Failure and Megadrought During the
Last Millennium. Sci. 328 (5977), 486–489. (in Chinese). doi:10.1126/science.
1185188

Coumou, D., Di Capua, G., Vavrus, S., Wang, L., and Wang, S. (2018). The
Influence of Arctic Amplification on Mid-latitude Summer Circulation. Nat.
Commun. 9 (1). doi:10.1038/s41467-018-05256-8

Daisuke, M., Ryuichi, K., and Tomonori, M. (2003). A Mechanism of the Onset of
the South Asian Summer Monsoon.Meteorol. Soc. Jpn. 81 (3), 563–580. doi:10.
2151/jmsj.81.563

Dommenget, D. (2007). Evaluating EOF Modes against a Stochastic Null
Hypothesis. Clim. Dyn. 28 (15), 517–531. doi:10.1007/s00382-006-0195-8

Dommenget, D., and Latif, M. (2002). A Cautionary Note on the Interpretation of
EOFs. J. Clim. 15 (2), 2162–2225. doi:10.1175/1520-0442(2002)015<0216:
ACNOTI>2.0

Dong, M., Zhu, W. M., and Xu, X. D. (2001). The Variation of Surface Heat Flux
over Tibetan Plateau and its Influences on the East Asia Circulation in Early
Summer. J. Appl. Meteot Sci. 12 (4), 459–468.

Dong, W., Zhao, L., Zhou, S., and Shen, X. (2020). A Synergistic Effect of Blockings
on a Persistent Strong Cold Surge in East Asia in January 2018. Atmosphere 11
(2), 215. doi:10.3390/atmos11020215

Duan, A. (2019). Atmospheric Heat Source/sink Dataset over the Tibetan Plateau
Based on Satellite and Routine Meteorological Observations (1984-2015). National
Tibetan Plateau Data Center (in Chinese). doi:10.1080/20964471.2018.15141

Duan, A. M., Xiao, Z. X., and Wang, Z. Q. (2018). Impacts of the Tibetan Plateau
winter/spring Snow Depth and Surface Heat Source on Asian Summer
Monsoon: A Review. Chin. J. Atmos Sci. 42 (4), 755–766. doi:10.3878/j.issn.
1006-9895.1801.17247

Duan, A. M., Xiao, Z. X., Wu, G. X., andWang, M. R. (2014). Study Progress of the
Influence of the Tibetan Plateau Winter and Spring Snow Depth on Asian
Summer Monsoon. Meteorol. Environ Sci 37 (3), 95–101. doi:10.16765/j.cnki.
1673-7148.2014.03.012

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., et al.
(2016). Overview of the Coupled Model Intercomparison Project Phase 6
(CMIP6) Experimental Design and Organization. Geosci. Model. Dev. 9 (5),
1937–1958. doi:10.5194/gmd-9-1937-2016

Feng, Z. G., Chen, X., Cheng, X. W., Xu, S., and Liang, S. X. (2014). DEOF Analysis
and its Application to the Research on the Rainstorms in the Huaihe River
Basin. Acta Meteorol. Sinica 72 (6), 1246–1256.

Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., and Schär, C. (2007). Soil
Moisture-Atmosphere Interactions during the 2003 European Summer Heat
Wave. J. Clim. 20 (20), 5081–5099. doi:10.1175/JCLI4288.1

Flohn, H. (1957). Large-scale Aspects of the “Summer Monsoon” in South and East
Asia. J. Meteorol. Soc. Jpn. 35A, 180–186. doi:10.2151/jmsj1923.35A.0_180

Flohn, H., and Reiter, E. R. (1968). Contributions to Meteorology of the Tibetan
Highland, Fort Collins, CO: Department of Atmospheric Science, Colorado
State University, 130.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 83510117

Yang et al. Qinghai–Tibetan Plateau, WACS and Drought

34

http://www.tpdc.ac.cn/zh-hans/
http://www.tpdc.ac.cn/zh-hans/
http://ljp.gcess.cn/dct/page/1http://lijianping.cn/dct/page/1
http://ljp.gcess.cn/dct/page/1http://lijianping.cn/dct/page/1
https://cmdp.ncc-cma.net/cn/download.htm
www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
https://psl.noaa.gov/enso/mei
https://esgf-node.llnl.gov/projects/cmip6
https://esgf-node.llnl.gov/projects/cmip6
https://www.frontiersin.org/articles/10.3389/feart.2022.835101/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2022.835101/full#supplementary-material
https://doi.org/10.7522/j.issn.1000-0534.2014.00100
https://doi.org/10.1002/2016GL068172
https://doi.org/10.1038/ngeo2234
https://doi.org/10.1038/s41558-019-0662-y
https://doi.org/10.1038/s41558-019-0662-y
https://doi.org/10.1126/science.1185188
https://doi.org/10.1126/science.1185188
https://doi.org/10.1038/s41467-018-05256-8
https://doi.org/10.2151/jmsj.81.563
https://doi.org/10.2151/jmsj.81.563
https://doi.org/10.1007/s00382-006-0195-8
https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0
https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0
https://doi.org/10.3390/atmos11020215
https://doi.org/10.1080/20964471.2018.15141
https://doi.org/10.3878/j.issn.1006-9895.1801.17247
https://doi.org/10.3878/j.issn.1006-9895.1801.17247
https://doi.org/10.16765/j.cnki.1673-7148.2014.03.012
https://doi.org/10.16765/j.cnki.1673-7148.2014.03.012
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/JCLI4288.1
https://doi.org/10.2151/jmsj1923.35A.0_180
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Francis, J., and Skific, N. (20152045). Evidence Linking Rapid Arctic Warming to
Mid-latitude Weather Patterns. Phil. Trans. R. Soc. A. 373, 20140170. doi:10.
1098/rsta.2014.0170

Gerber, E. P., and Vallis, G. K. (2005). A Stochastic Model for the Spatial Structure
of Annular Patterns of Variability and the North Atlantic Oscillation. J. Clim. 18
(12), 2102–2118. doi:10.1175/JCLI3337.1

Guan, W. N., Jiang, X. N., Ren, X. J., Chen, G., and Ding, Q. H. (2020). Role of
Atmospheric Variability in Driving the “Warm-Arctic, Cold-Continent”
Pattern Over the North America Sector and Sea Ice Variability Over the
Chukchi-Bering Sea. Geophys. Res. Lett. 47 (13). doi:10.1029/2020GL088599

Haarsma, R. J., Selten, F., Hurk, B. v., Hazeleger, W., and Wang, X. (2009). Drier
Mediterranean Soils Due to Greenhouse Warming Bring Easterly Winds over
Summertime central Europe. Geophys. Res. Lett. 36 (4), 1–7. doi:10.1029/
2008GL036617

He, H., Mcginnis, J. W., Song, Z., and Yanai, M. (1987). Onset of the Asian
Summer Monsoon in 1979 and the Effect of the Tibetan Plateau.Mon. Wea.
Rev. 115 (9), 1966–1995. doi:10.1175/1520-0493(1987)115<1966:
ootasm>2.0.co;2

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,
et al. (2018). ERA5 Monthly Averaged Data on Pressure Levels from 1979 to
present(C3S) Climate Data Store (CDS). Available at: https://cds.climate.
copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview
(Accessed on July 27, 2021).

Hu, J. Q., Yang, Y. C., Liao, L. P., Deng, S. M., and Chen, L. H. (2018).
Characteristics and Future Trend of Seasonal Dry and Wet Evolution in
Guangxi Based on Multiple Rainfall Data. Mountain Res. 36 (2), 148–159.
doi:10.16089/j.cnki.1008-2786.000320

Huang, G., and Zhao, G. (2019). The East Asian Summer Monsoon index (1851-
2021). National Tibetan Plateau Data Center (in Chinese). doi:10.11888/
Meteoro.tpdc.270323

Huang, R. H. (1985). The thermal Effect of the Qinghai-Xizang Plateau on
Formation and Maintenance of the Mean Monsoon Circulation over South
Asia in Summer. J. Trop. Meteorol. 1 (1), 2–8. doi:10.16032/j.issn.1004-4965.
1985.01.001

Jianping, L., and Qingcun, Z. (2003). A New Monsoon index and the Geographical
Distribution of the Global Monsoons. Adv. Atmos. Sci. 20 (2), 299–302. doi:10.
1007/s00376-003-0016-5

Jin, C., Wang, B., Yang, Y. M., and Liu, J. (2020). "Warm Arctic-Cold Siberia" as an
Internal Mode Instigated by North Atlantic Warming. Geophys. Res. Lett. 47
(9). doi:10.1029/2019GL086248

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al.
(1996). The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer. Meteorol. Soc.
77, 437–471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J. J., Fiorino, M., et al.
(2002). NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 83
(11), 1631–1643.

Kodera, K., and Kuroda, Y. (2005). A Possible Mechanism of Solar Modulation of
the Spatial Structure of the North Atlantic Oscillation. J. Geophys. Res. 110 (D2),
D02111. doi:10.1029/2004JD005258

Kuo, H. L., and Qian, Y. F. (1983). Numerical Simulation of the Development of
Mean Monsoon Circulation in July. Mon. Weather Rev. 110 (12), 1879–1897.
doi:10.1175/1520-0493(1982)110<1879:NSOTDO>2.0.CO;2

Li, C., and Yanai, M. (1996). The Onset and Interannual Variability of the Asian
Summer Monsoon in Relation to Land-Sea Thermal Contrast. J. Clim. 9 (2),
358–375. doi:10.1175/1520-0442(1996)009<0358:toaivo>2.0.co;2

Li, D. L., He, J. H., Tang, X., Lei, X. T., and Hou, Y. L. (2007). The Relationship
between the Intensity of Surface Heating Fields over the Qinghai-Xizang
Plateau and ENSO Cycle. Plateau Meteorol. 26 (1), 40–46. (in Chinese).

Li, Q., Zhao, M., Yang, S., Shen, X., Dong, L., and Liu, Z. (2021). A Zonally-Oriented
Teleconnection Pattern Induced by Heating of the Western Tibetan Plateau in
Boreal Summer. Clim. Dyn. 57, 2823–2842. doi:10.1007/s00382-021-05841-6

Li, X., Wang, L., Guo, X., and Chen, D. (2017). Does Summer Precipitation Trend
over and Around the Tibetan Plateau Depend on Elevation? Int. J. Climatol 37,
1278–1284. doi:10.1002/joc.4978

Liang, X. Y., Liu, Y. M., and Wu, G. X. (2005). The Impact of Qinghai-Xizang
Plateau Uplift on Asian General Circulation in Spring and Summer. Plateau
Meteorol. 24 (6), 838–845. (in Chinese).

Liu, B. Q., Duan, Y. N., Li, J., Mao, Y., and Mao, J. Y. (2021a). Intraseasonal
Oscillation of Atmospheric Heat Source over the Qinghai-Xizang Plateau in
Boreal Spring and its Maintaining Mechanism. Plateau Meteorology 40 (6),
1419–1431.

Liu, H., Zhou, T., Zhu, Y., and Lin, Y. (2012). The Strengthening East Asia Summer
Monsoon since the Early 1990s. Chin. Sci. Bull. 57 (9), 1553–1558. doi:10.1007/
s11434-012-4991-8

Liu, X. D., Luo, S. W., and Qian, Y. F. (1989). Numerical Simulations of Influences
of Different thermal Characteristics on Ground Surface of Tibetan Plateau on
the over Se-Asian. Plateau Meteorol. 8 (3), 206–216. (in Chinese).

Liu, X., Li, W. P., Xu, H. X., and Wu, G. X. (2007). The Effect of Tibetan Plateau
Heating on the East Asian Summer Precipitation. Plateau Meteorol. 26 (6),
1288–1292. (in Chinese).

Liu, X., Liu, Y., Wang, X., and Wu, G. (2020). Large-Scale Dynamics and
Moisture Sources of the Precipitation over the Western Tibetan Plateau in
Boreal Winter. J. Geophys. Res. Atmos. 125, e2019JD032133. doi:10.1029/
2019JD032133

Liu, X., Lu, J., Liu, Y., and Wu, G. (2021b). Meridional Tripole Mode of Winter
Precipitation over the Arctic and Continental North Africa-Eurasia. J. Clim. 34
(24), 1–9678. doi:10.1175/JCLI-D-21-0212.1

Liu, X., Wu, G. X., Liu, Y. M., and Liu, P. (2002). Diabatic Heating over the Tibetan
Plateau and the Seasonal Variations of the Asian Circulation and Summer
Monsoon Onset. Chin. J. Atmos Sci. 26 (6), 782–793. (in Chinese).

Luo, D., Yao, Y., Dai, A., Simmonds, I., and Zhong, L. (2017). Increased Quasi
Stationarity and Persistence of Winter Ural Blocking and Eurasian Extreme
Cold Events in Response to ArcticWarming. Part II: A Theoretical Explanation.
J. Clim. 30 (10), 3569–3587. doi:10.1175/JCLI-D-16-0262.1

Luo, H., and Yanai, M. (1983). The Large-Scale Circulation and Heat Sources over
the Tibetan Plateau and Surrounding Areas during the Early Summer of 1979.
Part I: Precipitation and Kinematic Analyses.Mon. Wea. Rev. 111 (5), 922–944.
doi:10.1175/1520-0493(1983)111<0922:tlscah>2.0.co;2

Luo, H., and Yanai, M. (1984). The Large-Scale Circulation and Heat Sources over
the Tibetan Plateau and Surrounding Areas during the Early Summer of 1979.
Part II: Heat and Moisture Budgets. Mon. Wea. Rev. 112 (5), 966–989. doi:10.
1175/1520-0493(1984)112<0966:tlscah>2.0.co;2

Luo, L. S., Duan, C. F., Bi, Y., Tang, W. A., and Ding, X. J. (2016). Relation between
Atmospheric Heat Source in spring over Tibetan Plateau and Mid-summer
High Temperature Events in Middle-Lower Reaches of the Yangtze River.
Scientia Meteorol. Sinica 36 (5), 614–621. doi:10.3969/2015jms.0062

Luo, L. S. (1989). Review of Study on Weather and Circulation in Qinghai-Xizang
Plateau Area. Plateau Meteorol. 8 (2), 122–126. (in Chinese).

Luo, M. X., and Zhang, K. S. (1991). Numerical experiment on the Effects of the
Large Scale Topography and Diabatic Heating on the Formation of East Asian
Monsoon and India Monsoon Sirculation. Chin. J. Atmos Sci. 15 (2), 41–52. (in
Chinese).

Matsumoto, J. (1992). The Seasonal Changes in Asian and Australian Monsoon
Regions. J. Meteorol. Soc. Jpn. 70 (1B), 257–273. doi:10.2151/jmsj1965.70.
1B_257

Matsumura, S., Zhang, X., and Yamazaki, K. (2014). Summer Arctic Atmospheric
Circulation Response to spring Eurasian Snow Cover and its Possible Linkage to
Accelerated Sea Ice Decrease. J. Clim. 27 (17), 6551–6558. doi:10.1175/JCLI-D-
13-00549.1

Murakami, T., and Matsumoto, J. (1994). Summer Monsoon over the Asian
Continent and Western North Pacific. J. Meteorol. Soc. Jpn. 72 (5), 719–745.
doi:10.2151/jmsj1965.72.5_719

Petoukhov, V., Petri, S., Rahmstorf, S., Coumou, D., Kornhuber, K., and
Schellnhuber, H. J. (2016). Role of Quasiresonant Planetary Wave Dynamics
in Recent Boreal spring-to-autumn Extreme Events. Proc. Natl. Acad. Sci. USA
113 (25), 6862–6867. doi:10.1073/pnas.1606300113

Petrie, R. E., Shaffrey, L. C., and Sutton, R. T. (2015). Atmospheric Response in
Summer Linked to Recent Arctic Sea Ice Loss. Q.J.R. Meteorol. Soc. 141,
2070–2076. doi:10.1002/qj.2502

Qin, J., Yang, K., Liang, S., and Guo, X. (2009). The Altitudinal Dependence of
Recent Rapid Warming over the Tibetan Plateau. Clim. Change 97 (1–2),
321–327. doi:10.1007/s10584-009-9733-9

Ren, X. J., and Qian, Y. F. (2003). Numerical Simulation Experiments of the
Impacts of Local Sea-Land Thermodynamic Contrasts on the SCS Summer

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 83510118

Yang et al. Qinghai–Tibetan Plateau, WACS and Drought

35

https://doi.org/10.1098/rsta.2014.0170
https://doi.org/10.1098/rsta.2014.0170
https://doi.org/10.1175/JCLI3337.1
https://doi.org/10.1029/2020GL088599
https://doi.org/10.1029/2008GL036617
https://doi.org/10.1029/2008GL036617
https://doi.org/10.1175/1520-0493(1987)115<1966:ootasm>2.0.co;2
https://doi.org/10.1175/1520-0493(1987)115<1966:ootasm>2.0.co;2
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview
https://doi.org/10.16089/j.cnki.1008-2786.000320
https://doi.org/10.11888/Meteoro.tpdc.270323
https://doi.org/10.11888/Meteoro.tpdc.270323
https://doi.org/10.16032/j.issn.1004-4965.1985.01.001
https://doi.org/10.16032/j.issn.1004-4965.1985.01.001
https://doi.org/10.1007/s00376-003-0016-5
https://doi.org/10.1007/s00376-003-0016-5
https://doi.org/10.1029/2019GL086248
https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
https://doi.org/10.1029/2004JD005258
https://doi.org/10.1175/1520-0493(1982)110<1879:NSOTDO>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<0358:toaivo>2.0.co;2
https://doi.org/10.1007/s00382-021-05841-6
https://doi.org/10.1002/joc.4978
https://doi.org/10.1007/s11434-012-4991-8
https://doi.org/10.1007/s11434-012-4991-8
https://doi.org/10.1029/2019JD032133
https://doi.org/10.1029/2019JD032133
https://doi.org/10.1175/JCLI-D-21-0212.1
https://doi.org/10.1175/JCLI-D-16-0262.1
https://doi.org/10.1175/1520-0493(1983)111<0922:tlscah>2.0.co;2
https://doi.org/10.1175/1520-0493(1984)112<0966:tlscah>2.0.co;2
https://doi.org/10.1175/1520-0493(1984)112<0966:tlscah>2.0.co;2
https://doi.org/10.3969/2015jms.0062
https://doi.org/10.2151/jmsj1965.70.1B_257
https://doi.org/10.2151/jmsj1965.70.1B_257
https://doi.org/10.1175/JCLI-D-13-00549.1
https://doi.org/10.1175/JCLI-D-13-00549.1
https://doi.org/10.2151/jmsj1965.72.5_719
https://doi.org/10.1073/pnas.1606300113
https://doi.org/10.1002/qj.2502
https://doi.org/10.1007/s10584-009-9733-9
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Monsoon Onset. J. Trop. Meteorol. 18 (4), 328–334. doi:10.16032/j.issn.1004-
4965.2002.04.005

Shan, X., Zhou, S. W., Wang, M. R., Zheng, D., and Wang, C. H. (2020). Effects of
Spring Sensible Heat in the Tibetan Plateau on Minsummer Precipitation in
South China under ENSO. J. Trop. Metror 36 (1), 60–71. doi:10.16032/j.issn.
1004-4965.2020.007

Shao, H., and Qian, Y. F. (2001). Thermal Influences of Land-Sea Contrast
and Topography on Summer Monsoon of 1998. J. Trop. Meteorol. 17 (1),
46–56.

Si, D., and Ding, Y. (2013). Decadal Change in the Correlation Pattern between the
Tibetan Plateau Winter Snow and the East Asian Summer Precipitation during
1979-2011. J. Clim. 26 (19), 7622–7634. doi:10.1175/jcli-d-12-00587.1

Sun, Y., and Ding, Y. H. (2002). Influence of Anomalous Heat Source over Tibetan
Plateau on the Anomalous Activities of the 1999 East Asian Summer Monsoon.
Chin. J. Atmos Sci. 26 (6), 818–828. (in Chinese).

Tian, Y. R., Li, G. P., and Liu, Y. F. (2017). Comparison of the Atmospheric Heat
Sources over the Tibetan Plateau Computed by Three Reanalysis Data Sets.
Desert Oasis Meteorol. 11 (4), 1–8.

Wang, M. R., Guo, D., and Zhong, S. S. (2019). Comparision of the Multi-Source
Datasets in Calculation of the Atmospheric Heat Source over the Tibetan
Plateau. Meteorol. Mon 42 (12), 1718–1726. doi:10.7519/j.issn.1000-0526.209.
12.009

Wang, Q., Guo, P. W., and Cao, Y. Y. (2007). Interdecadal Variations of the
Relationship of Spring Thermal Anomaly over Easten Tibetan Plateau and East
Asian Summer Monsoon. J. Nanjing Inst. Meteorology 30 (2), 259–265.

Wang, Q., Guo, P. W., and Zhou, H. W. (2011). Climatic Character of Heat Source
in Tibetan Plateau. Scientia Meteorol. Sinica 31 (2), 179–186.

Wu, G., Duan, A., Liu, Y., Mao, J., Ren, R., Bao, Q., et al. (2015). Tibetan Plateau
Climate Dynamics: Recent Research Progress and Outlook. Natl. Sci. Rev. 2 (1),
100–116. doi:10.1093/nsr/nwu045

Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F.-F. (2012). Thermal Controls
on the Asian Summer Monsoon. Sci. Rep. 2 (1), 404. doi:10.1038/srep00404

Xu, T. T., Fan, G. Z., Lai, X., and Zhang, Y. L. (2016). The Thermal Contrast over
the Tibetan Plateau, the East Asian and the Pacific Ocean in Strong and Weak
East Asian Monsoon Years. J. Chengdu Univ. Inf. Technol. 31 (6), 600–606.
doi:10.16836/j.cnki.jcuit.2016.06.009

Yanai, M., Esbensen, S., and Chu, J.-H. (1973). Determination of Bulk Properties
of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets.
J. Atmos. Sci. 30 (4), 611–627. doi:10.1175/1520-0469(1973)030<0611:
dobpot>2.0.co;2

Yanai, M., Li, C., and Song, Z. (1992). Seasonal Heating of the Tibetan Plateau and
its Effects on the Evolution of the Asian Summer Monsoon. J. Meteorol. Soc.
Jpn. 70 (1), 319–351. doi:10.2151/jmsj1965.70.1B_319

Yan, H. M., Qi, M. H., Xiao, Z. N., and Chen, Y. (2005). The Influence of
Wintertime Thermal Contrast over the Asian Contient on Asian Monsoon.
Chinese J. Atmos. Sci. 29 (4), 550–564 (in Chinese). doi:10.3878/j.issn.1006-
9895.2005.04.06

Ye, D. Z., and Gu, Z. C. (1955). Impact of the Tibetan Plateau on the East Asian
Atmospheric Circulation and China’s Weather. Chin. Sci Bull. 6 (6), 29–33.
doi:10.1360/csb1955-0-6-29

Ye, D. Z. (1952). The Seasonal Cariation of the Influence of Tibetan Plateau on the
General Circulation. Acta Meteorol. Sin. 23 (1/2), 33–47.

Ye, D. Z., Yang, G. J., and Wang, X. D. (1979). The Average Vertical Circulations
over the East-Asia and the Pacific Area, (I) in Summer. Chin. J. Atmos Sci. 3 (1),
2–10. doi:10.1016/0146-6364(79)90015-x

Zhang, L. L., Xie, Q., and Yang, X. Q. (2015). Interdecadal Anomaly of
Atmospheric Diabatic Heating and Interdecadal Weakening of East Asian
Summer Monsoon at the End of 1970s. Scientia Meteorol. Sinica 35 (6),
663–671. doi:10.3969/2015jms.0064

Zhang, Q., Tao, S., and Chen, L. (2003). The Interannual Variability of East Asian
Summer Monsoon Indices and its Association with the Pattern of General
Circulation over East Asia (In Chinese). Acta Meteorologica Sinica 56, 199–211.

Zhang, Q. Y., Jin, Z. H., and Peng, J. B. (2006). The Relationships between
Convection over the Tibetan Plateau and Circulation over East Asian.
Chinese. J. Atmos. Sci. 30 (5), 803–812.

Zhang, R. H., and Zhou, S. W. (2008). The Air Temperature Change over the
Tibetan Plateau during 1979-2002 and its Possible Link Age with Ozone
Depletion. Acta Meteorol. Sinica 66 (6), 916–925.

Zhang, Y., Fan, G., Hua, W., Zhang, Y., Wang, B., and Lai, X. (2017). Differences in
Atmospheric Heat Source between the Tibetan Plateau-South Asia Region and
the Southern Indian Ocean and Their Impacts on the Indian SummerMonsoon
Outbreak. J. Meteorol. Res. 31 (3), 540–554. doi:10.1007/s13351-017-6042-5

Zhang, Y., and Qian, Y. F. (2002). Thermal Effect of Surface Heat Source over the
Tibetan Plateau on the Onset of Asian Summer Monsoon. J. Nanjing Inst.
Meteorology 25 (3), 299–306. doi:10.13878/j.cnki.dqkxxb.2002.03.002

Zhang, Z. H., Cai, J. J., Qiao, Y. T., and Jian, M. Q. (2019). Interdecadal Change in
the Relation between Atmospheric Apparent Heat Sources over Tibetan Plateau
and Precipitation in Eastern China in Summer. Chin. J. Atmos Sci. 43 (5),
990–1004. doi:10.3878/j.issn.1006-9895.1901.18141

Zhao, G., HuangWu, G. R. G., Wu, R., Tao, W., Gong, H., Qu, X., et al. (2015). A
New Upper-Level Circulation Index for the East Asian Summer Monsoon
Variability. J. Clim. 28 (24), 9977–9996. doi:10.1175/JCLI-D-15-0272.1

Zhao, L., Liu, H., Hu, Y., Cheng, H., and Xiao, Z. (2020). Extratropical Extended-
Range Precursors Near the Tropopause Preceding Persistent strong
Precipitation in South China: a Climatology. Clim. Dyn. 55 (5633),
3133–3150. doi:10.1007/s00382-020-05437-6

Zhao, L., Zhu, Y., Liu, H., Liu, Z., Liu, Y., Li, X., et al. (2016). A Stable Snow-
Atmosphere Coupled Mode. Clim. Dyn. 47 (7), 2085–2104. doi:10.1007/
s00382-015-2952-z

Zheng, Q. L., Wang, S. S., Zhang, C. L., and Song, Q. L. (2001). Numerical Study of
the Effects of Dynamic and Thermodynamic of Qinghai-Xizang Plateau on
Tropical Atmospheric Circulation in Summer. Plateau Meteorol. 20 (1), 15–21.
(in Chinese).

Zheng, R., Li, D. L., and Jiang, Y. C. (2015). New Characteristics of Temperature
Change over Qinghai-Xizang Plateau on the Background of Global Warming.
Plateau Meteorol. 35 (4), 1531–1539. (in Chinese). doi:10.7522/j.issn.1000-
0534.2014.00123

Zheng, R., Liu, J. H. M., Wang, C. X., Li, D. L., Tang, Y. H., and Liu, B. (2021).
Anomaly of Autumn Rain in the South Area of West China and its Response to
Atmospheric Cold Sources over the Tibetan Plateau in Winter. Arid Meteorol.
39 (2), 225–234. (in Chinese). doi:10.11755/j.issn.1006-7639(2021)-02-0225

Zhu, K. Z. (1934). The Enigma of Southeast Monsoon in China. Acta Geographica
Sinica (1), 4–30. (in Chinese).

Zhu, Y. X., Ding, Y. H., and Xu, H. G. (2007). The Decadal Relationship between
Atmospheric Heat Source of winter and spring Snow over Tibetan Plateau and
Rainfall in East China. Acta Meteorol. Sinica 65 (6), 947–957.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yang, Zhao, Shen, Xiao and Li. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Earth Science | www.frontiersin.org February 2022 | Volume 10 | Article 83510119

Yang et al. Qinghai–Tibetan Plateau, WACS and Drought

36

https://doi.org/10.16032/j.issn.1004-4965.2002.04.005
https://doi.org/10.16032/j.issn.1004-4965.2002.04.005
https://doi.org/10.16032/j.issn.1004-4965.2020.007
https://doi.org/10.16032/j.issn.1004-4965.2020.007
https://doi.org/10.1175/jcli-d-12-00587.1
https://doi.org/10.7519/j.issn.1000-0526.209.12.009
https://doi.org/10.7519/j.issn.1000-0526.209.12.009
https://doi.org/10.1093/nsr/nwu045
https://doi.org/10.1038/srep00404
https://doi.org/10.16836/j.cnki.jcuit.2016.06.009
https://doi.org/10.1175/1520-0469(1973)030<0611:dobpot>2.0.co;2
https://doi.org/10.1175/1520-0469(1973)030<0611:dobpot>2.0.co;2
https://doi.org/10.2151/jmsj1965.70.1B_319
https://doi.org/10.3878/j.issn.1006-9895.2005.04.06
https://doi.org/10.3878/j.issn.1006-9895.2005.04.06
https://doi.org/10.1360/csb1955-0-6-29
https://doi.org/10.1016/0146-6364(79)90015-x
https://doi.org/10.3969/2015jms.0064
https://doi.org/10.1007/s13351-017-6042-5
https://doi.org/10.13878/j.cnki.dqkxxb.2002.03.002
https://doi.org/10.3878/j.issn.1006-9895.1901.18141
https://doi.org/10.1175/JCLI-D-15-0272.1
https://doi.org/10.1007/s00382-020-05437-6
https://doi.org/10.1007/s00382-015-2952-z
https://doi.org/10.1007/s00382-015-2952-z
https://doi.org/10.7522/j.issn.1000-0534.2014.00123
https://doi.org/10.7522/j.issn.1000-0534.2014.00123
https://doi.org/10.11755/j.issn.1006-7639(2021)-02-0225
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Albedo Parametrizations for the
Laohugou Glacier No.12 in the Qilian
Mountains—Previous Models and an
Alternative Approach
Lihui Wang1,2, Dongwei Zhang3, Jakob F. Steiner4,5, Xiaobo He1, Jizu Chen1, Yushuo Liu1,2,
Yanzhao Li1,2, Zizhen Jin1,2 and Xiang Qin1*

1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China, 2University of Chinese
Academy of Sciences, Beijing, China, 3SINOPEC Petroleum Exploration and Production Research Institute, Beijing, China,
4Department of Physical Geography, Utrecht University, Utrecht, Netherlands, 5International Center for Integrated Mountain
Development, Lalitpur, Nepal

Accurate estimates of albedo can be crucial for energy balance models of glaciers. A
number of algorithms exist which are often site dependent and rely on accurate
measurements or estimates of snow depth. Using the well-established COSIMA model
we simulate the energy and mass balance of the Laohugou Glacier No.12 in the Qilian
Mountains, on the northern fringe of the Qinghai-Tibetan Plateau, a glacier that has been
well studied in the past. Using energy flux andmass balancemeasurements between 2010
and 2015 we were able to validate the model over multiple seasons. Using the original
albedo parametrization, the model fails to reproduce the observed mass balance. We
show that this is due to the failure to estimate snow depth accurately. We therefore applied
two alternative albedo algorithms, one well established example and one new
parametrization only dependent on temperature and time since last snow fall. As a
result, mass balance simulations improve considerably from a RMSE of 0.53 m w.e. for
the original parametrization to 0.39 and 0.19 m w.e. for the uncalibrated established and
the new calibrated model respectively. Modelled albedo during the ablation period (NSE =
0.05, R2 = 0.33) is more accurate than during the accumulation period (NSE = −0.37, R2 =
0.04). Testing the new model at another glacier on the Tibetan Plateau shows that a local
recalibration of parameters remains necessary to achieve satisfying results. Investigations
into the effect of impurities in snow, regional moisture sources and changing surface
characteristics with rising temperatures will be crucial for accurate projections into the
future.

Keywords: albedo, glacier mass balance, Tibetan plateau, high-mountain Asia, energy balance model

INTRODUCTION

Mass loss of glaciers on the Tibetan plateau has been very variable in recent decades, with a strong
negative balance in the South-East and near balance in the South-West (Kääb et al., 2012; Brun et al.,
2017; Li et al., 2019). This heterogeneous response can be explained with different dominant drivers
of accumulation and ablation (Yao et al., 2012). In this rather dry part of high-mountain Asia, glacier
melt also constitutes an essential water source for ecosystems and downstream communities
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(Immerzeel et al., 2020). To assess mass change of an individual
glacier while elucidating the drivers of said mass loss a surface
energy balance model (SEB) is generally employed, which can be
compared against local mass balance measurements. SEBs on
clean ice glaciers have been applied on a number of glaciers on the
Tibetan Plateau and the wider region including in the Tien Shan
(Zhang et al., 2007), the Tanggula mountains (Zhang et al., 1996;
Liang et al., 2018), the Qilian mountains (Sakai et al., 2006; Chen
et al., 2007; Qing et al., 2018), the central (Zhang et al., 2013;
Huintjes et al., 2015a; Huintjes et al., 2015b) and the south-
eastern Plateau (Yang et al., 2011) as well as the Himalaya (Yang
et al., 2010). The Qilian mountains are located on the north
eastern fringe of the plateau, being the water source of many oases
downstream. Approximately 2000 glaciers are located in this
mountain range, covering an area of 1,057 km2 with a total ice
volume of 51 km3 (Guo et al., 2015). As it is relatively easily
accessible compared to the rest of the plateau, a number of
glaciers have been researched in more detail including the
Ningchanhe glaciers (Liu et al., 2012), the Bayi glacier (Liu
et al., 2020), the Qiyi glacier (Chen et al., 2007) as well as the
Laohugou Glacier No. 12 (Sun et al., 2012; Zhang et al., 2012; Sun
et al., 2014; Qin et al., 2015; Wang et al., 2018; Liu et al., 2019).

Surface melt has been previously shown to be sensitive to
albedo. On the Greenland ice sheet, its sensitivity to albedo is
roughly twice than sensitivity to temperature variations (van de
Wal, 1996). A number of studies have shown that the SEB of
glaciers on the Tibetan Plateau is especially sensitive to changes in
albedo, which is not surprising considering that melt in this cold
environment is mainly driven by radiation (Fujita et al., 2007;
Yang et al., 2011; Sun et al., 2014). Some field observations further
indicate that albedo of glacier surfaces has decreased in recent
years due to aerosol depositions, resulting in increased melt rates
(Wang et al., 2015; Zhang et al., 2017).

Surface albedo is defined as the ratio between reflected and
received solar radiation on a predefined surface area and is a
result of reflections and refractions at the air ice interface. The
proportion reflected is not only determined by properties of the
surface itself, but also by the spectral and angular distribution of
solar radiation reaching the Earth’s surface. As radiation passes
through ice it comes into contact with light-absorbing impurities,
and a fraction is absorbed into the surface (Gardner and Sharp,
2010). It can vary greatly in time and space on the glacier, ranging
from 0.1 for dirty ice to 0.9 for fresh snow and hence is an important
control of surface melt. It is furthermore affected by snow particle
size, liquid water content, density, snowpack depth and impurities of
the snowpack. Summer snowfall reduces the melting of glaciers and
runoff due to the increase in albedo, but snow albedo changes
through the melt process and due to impurities (Brock et al., 2000;
Jansson et al., 2003). Even relatively small changes in albedo can
have significant effects on mass loss on the local and regional scale
(Konzelmann and Braithwaite, 1995). On a larger scale albedo also
affects the global energy balance and climate and is hence important
for regional climate models (Kukla and Kukla, 1974; Sicart et al.,
2008; Six et al., 2009).

While many of the studies mentioned above use direct
measurements of in- and outgoing radiation, this is often not
available in many locations and if only at a point location. To this

end net radiation has to be modelled, making use of an albedo
model for temporal and spatial variability.

Dunkle and Bevans (1956) proposed a solution based on
diffuse radiation and Wiscombe and Warren (1980) developed
a method to calculate the spectral albedo of snow at any
wavelength. However such approaches remain too complex to
be readily applied in any location for a SEB model. Gardner and
Sharp (2010) developed a scheme based on the specific surface
area of snow/ice, light absorbing carbon, solar zenith angle, cloud
optical thickness, and snow depth. Ding et al. (2017) also consider
the precipitation type. While all these models have their merits
they generally depend on specific insights into the local climate or
snow and ice properties. In SEBs generally much simpler
approaches are employed. Commonly applied is the model by
Oerlemans and Knap (1998) that relies on snow depth and time
since last snowfall. Hock and Holmgren (2005) proposed a model
that includes information about the current state of the surface
boundary layer and needs as input air temperature, solid
precipitation and days since last snowfall. It also relies on the
albedo of the preceding timestep and hence is very sensitive to the
initial choice of this value. Brock et al. (2000) test a number of
parametrisations and find that information of the physical
properties of snow should be included for an accurate
derivation of albedo. They hence propose a model with
different parameters at different snow depths that relies on air
temperature and the time since the last snow fall, in this way
reproducing the decay of the snowpack.

In this study we employ a coupled energy and mass balance
model (COSIMA) that has been developed on the Tibetan Plateau
(Huintjes et al., 2015a; Huintjes et al., 2015b) and test its
performance at a glacier site in the Qilian mountains. A
previous study on the glacier has already tested the suitability
of the common bulk aerodynamic model to reproduce the
turbulent fluxes, by comparing it against direct measurements
of turbulence (Sun et al., 2014). They show that the models
generally work well but that turbulent fluxes are considerably less
relevant for melt than radiative fluxes. They also show that the
SEB is especially sensitive to the change in albedo.

We have collected 6 years of surface flux andmass balance data
on Laohugou No. 12 Glacier in the Qilian mountains, which allows
us to investigate the importance of albedo for mass balance
estimates as well as the performance of models compared to
directly measured albedo values. In this study we therefore try to
reach the three following specific aims: (a) we investigate how
suitable the standard approach in the COSIMA model based on
Oerlemans and Knap (1998) is to reproduce the mass balance
accurately; (b) we discuss its shortcoming and test an alternative
approach; (c) we also propose a new parametrization that is able to
account for the variability of albedo and (d) discuss the implications
the choice of different models has on mass balance estimates.

STUDY AREA AND DATA

Laohugou Glacier No.12 (LHG No. 12) is located on the north
slope of the western edge of the Qilian mountains (39°26.4′N,
96°32.5′E, Figure 1). This area has typical continental climatic
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characteristics and is mainly affected by westerly circulation. The
ablation season is from June to September and precipitation
occurs mainly from May to September (Wang, 1981). The
glacier has been researched in detail before and is a reference
glacier for the region (Sun et al., 2012; Zhang et al., 2012; Sun
et al., 2014; Wang et al., 2018; Liu et al., 2019). It is the largest
valley glacier in the Qilian Mountains with a length of 9.85 km
and a total area of 20.4 km2 (Qin et al., 2015). The glacier consists
of two branches and its elevation ranges from 4,260 m to 5,481 m
(Liu et al., 2010). The average thickness of the glacier is 157 m
(Wang et al., 2018). Between 1959 and 2010 the glacier slowed by
11% to ~32 m a−1 (Liu et al., 2010).

An automatic weather station (AWS) was installed on the
glacier at an elevation of 4,550 m (Figures 1, 2). The station
monitored air temperature (T), relative humidity (RH), air
pressure (p), wind speed (u), shortwave radiation (SWin and
SWout), and longwave radiation (LWin and LWout) between
2010 and 2015 (Table 1; Figure 3). Albedo is determined using
radiation measurements around noon to make sure that refraction
and diffuse radiation impacts the measurement as little as possible.
All data is collected in Beijing time and as a result noon is defined
slightly later (12:30–14:30) to correspond to the local situation. A
shielded Geonor T-200B precipitation was installed near the AWS,
which measured both solid and liquid precipitation. Following
previous research on the Tibetan Plateau, 0°C was used as the
threshold temperature for distinguishing between solid and liquid
precipitation. During the 6-years observation period the average air
temperature was −11.0°C. Average relative humidity and wind
speed was 46% and 2.8 m s−1 respectively. The mean annual
precipitation was 350 mm and snowfall accounts for more than
90% of total precipitation (Figure 3). In addition, wind and

temperature data was adjusted to the level of 2 m before
running COSIMA. The mass balance was observed by multiple
stakes located close to the AWS during 2011, 2012, 2014, and 2015
generally between May and September. It was measured at least
once a month during ablation period for each year.

METHODS

Energy and Mass Balance Model
In this study, we use the Coupled Snowpack and Ice surface
energy and Mass balance model (COSIMA) to calculate the
energy balance components. The model was successfully used
on glaciers of the Tibetan Plateau (Huintjes et al., 2015a; Huintjes
et al., 2015b). It combines a surface energy balance (SEB) with a
multi-layer subsurface snow and ice model to compute the glacier
mass balance (MB) at an hourly resolution. It is computed as
follows:

F � SWin · (1 − α) + LWin + LWout + Qsens + Qlat + QG (1)
where SWin is incoming shortwave radiation, α is the surface
albedo, LWin and LWout are incoming and outgoing longwave
radiation, Qsens is the turbulent sensible heat flux, Qlat is the
turbulent latent heat flux and QG is the ground heat flux. Heat
flux from liquid precipitation is neglected. Energy fluxes towards
the surface have a positive sign. The resulting flux F is equal to
Qmelt only if the surface temperature (Ts) is at the melting point
(273.15 K). Ts is calculated iteratively through Eq. 1 from the
energy available at the surface. In case Ts exceeds the melting
point, it is reset to 273.15 K and the remaining energy flux F
equals Qmelt.

FIGURE 1 | The study area on the Qinghai-Tibetan Plateau, including other glaciers where the samemodel was applied previously as well as Dongkemadi which we
use as a validation in this study.
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LWin and LWout are obtained by the Stefan-Boltzmann law.
For LWin, the atmospheric emissivity ε is calculated after Klok
and Oerlemans (2002):

ε � εcs · (1 −Na) + εcl ·Na (2)
where εcs is clear-sky emissivity and εcl is cloud emissivity, N is
cloud cover factor, εcs is calculated as follows:

εcs � 0.23 + b(e/Tair)1/8 (3)
where e is water vapour pressure and Tair is air temperature. For
a, b and εcl we take the values of 2, 0.433 and 0.984, respectively

(Klok and Oerlemans, 2002). N is calculated following (Favier
et al., 2004):

N � 1.3 − 1.4 · (SWin/SWTOA) (4)
where SWTOA is the top of atmosphere solar irradiance (Wm−2)
and is calculated considering solar constant and geographical
position (Kumar et al., 1997).

SWTOA � S0(1 + 0.0344 cos(360°M/365)) (5)
where S0 is the solar constant (1,367 Wm−2) and M is the day
number.

FIGURE 2 | The floating AWS installed in 2012. Themass balance stakes are visible in the background and close-up images of the typical glacier surface next to the
AWS in 2018 are shown at the bottom of the figure.

TABLE 1 | AWS sensor specifications and installed heights of sensors.

Element Sensor type Accuracy Height (m)

Air temperature, °C Vaisala41382 ±0.2°C 1.5
Relative humidity, % Vaisala41382 ±2% 1.5
Wind speed, m s−1 Young05103 ±0.3 m/s 1.5
Wind direction, ° Young05103 ±3° 1.5
Shortwave radiation, W m−2 CNR1 ±10% for daily total 1.5
Longwave radiation, W m−2 CNR1 ±10% for daily total 1.5
Precipitation, mm w.e Geonor T-200B ±0.1% 1.7
Snow depth, cm Campbell SR50 ±1 cm 2.0
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Turbulent heat fluxesQsens andQlat are calculated through the
standard bulk aerodynamic method (Oerlemans, 2001) between
the surface and 1.5 m, using Tair, RH and wind speed (u) data:

Qsens � ρaircp
k2

ln( z
z0
)2 u(Tair − Ts) (6)

Qlat � ρairLE/S
k2

ln( z
z0
)2 u(qair − qs) (7)

ρair is air density, calculated from air pressure, Tair and specific
humidity in 2 m, cp is specific heat capacity of air (1004.67 J kg−1

K−1), LE is latent heat of evaporation (2.514 × 106 J kg−1), LS for
sublimation (2.849 × 106 J kg−1), qair and qs are specific humidity
at 1.5 m and at the surface, calculated from RH, p (air pressure)
and saturation water vapour pressure. RH is assumed to be 100%
at the surface. k is the von Karman constant (0.41), z the
instrument height (1.5 m) and z0 the surface roughness length
that changes depending on the underlying surface (fresh snow,
aged snow, ice) (Mölg et al., 2009):

QG � QC + QPS (8)
where QC is the conductive heat flux and QPS is the energy flux
from penetrating shortwave radiation.QPS is calculated following
Bintanja and Broeke (1995). By

Si(z) � SWnet · (1 − ζ) · eβ·z (9)

the extinction of net shortwave radiation (SWnet) in the snow or
ice layers is parameterized. Si is the remaining fraction of
shortwave radiation reaching down to depth z. In the top
model layer, a fraction ζ is absorbed and an exponentially
decreasing flux with constant extinction coefficient ß reaches
the layers at depth z and increases subsurface temperatures. Thus,
QPS is equal to SWnet (1-ζ). For ζ and ß we take the values of 0.8
and 2.5 for ice, and 0.9 and 17.1 for snow, respectively (Bintanja
and Broeke, 1995).

QC is determined from the temperature difference between the
surface and the two uppermost subsurface layers and depends on
the thermal conductivity (λ) of the medium (ice or snow). λ is
calculated from the subsurface density (ρ, in kg m−3) after
Anderson (1976):

λ � 0.021 + 2.5 · (ρ/1000)2 (10)
A spin-up time of about 1 year is needed for the subsurface

module to adapt to the surrounding conditions. We use our first
full year of observations to do so and hence do not compare any
mass balance measurements to model outputs from that year.

Albedo Schemes
The original parameterization of surface albedo follows
Oerlemans and Knap (1998) where a is determined as a
function of snowfall frequency and snow depth:

αsnow � αfirn + (αfrsnow − αfirn)exp(tsnow/t*) (11)

FIGURE 3 | Daily meteorological variables between 2010 and 2015. Radiation refers to incoming solar radiation.
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α � αsnow + αice − αsnowexp(−h/d*) (12)
tsnow is the time since the last snowfall, t* is a constant for the
effect of ageing on snow albedo, h is the snow depth and d* is a
constant for the effect of snow depth on albedo. The original free
parameters are adopted according to Huintjes and Schneider
(2014): albedo fresh snow (αfrsnow) = 0.9, albedo firn (αfirn) = 0.55,
albedo ice (αice) = 0.3, t* = 6 days and d* � 8cm. We will refer to
this model as Oerlemans1998 below.

Brock et al. (2000) argued that a more physical representation
of the melting process is needed to reproduce albedo values
accurately. Using air temperature as a proxy for the
atmospheric input they proposed a new parametrization which
takes two forms depending on snow depth:

αsnow � { 0.713 − 0.112lnTa, snow depth≥ 0.5 cm w.e.
αice + 0.442e−0.058Ta , snow depth < 0.5 cm w.e.

(13)

where Ta is accumulated daily Tmax above 0°C since the last
snowfall (K), aice is ice albedo (0.3). We will refer to this model as
Brock2000 below.

RESULTS

Albedo Simulations
In Figure 4 results of the measured and modelled mean daily
albedo values are shown for the measurement period from 2011
to 2015. It is obvious that the Oerlemans1998 model, originally
applied in the COSIMAmodel, fails to reproduce albedo correctly
although the simulation curve fluctuates with snowfall. Three
crucial shortcomings are apparent.

First, the initial assumption of an albedo of 0.3 for clean ice
does not hold as values are much higher in the region of 0.6–0.8.
Huintjes et al. (2015a) note a good match between their model
and observations on Zhadang Glacier. There, albedo remains
high even longer than on LHG No.12 and just drops briefly
down to values around 0.3 during July. More recent research
confirms these generally high values but sees a decreasing trend
in recent years due to an increase in impurities (Qu et al., 2014).

On LHG No.12 albedo only remains high during few weeks
between December and January and decreases and increases in
between (Figure 4). As rainfall stops after September and
temperatures drop rapidly ice remains snow covered and
albedo high.

Second, the model predicts a decay that is happening too fast
resulting in an immediate return to the chosen value for clean ice
while the actual snow depth decay happens much slower
(Figure 3). As snow depth simulation and albedo are naturally
coupled in the model it is difficult to disentangle that problem.
Slightly lower albedo already results in larger SWnet and therefore
increasing Qmelt and QPS. This causes snow depth to decrease
rapidly (Huintjes and Schneider, 2014). Additionally, accurate
snow depth simulations remain a challenge also with other model
setups (Stigter et al., 2017; Hedrick et al., 2018; Sauter et al., 2020).

Third, the strong variability of albedo which is apparent
during the whole year is not captured by the model, again
simply explained by the lack of accurate snow depth data as
well as possibly the strong variability that local impurities can
cause (Figure 2).

Huintjes and Schneider (2014) had good snow depth data
to drive their model. This is missing for LHG No. 12 as the
rapid downwasting of the ice surface repeatedly shifts the
station and makes surface height measurements largely
unusable. We have measurements over a short period of
time in 2011 where the station was stable (Figure 5) that
visualizes the underestimation of the modelled snow depth.
While the model does reproduce measured snow heights just
after a snow fall event, the decay of the snowpack is too rapid
on nearly all instances. Nevertheless, it should also be noted
that observed snow depth also does decay more rapidly than
elsewhere. As wind speeds are generally high during the
accumulation period fresh snow is eroded quickly.

Considering that accurate snow depth data remains difficult to
obtain in many regions and even individual field sites with
climate data, an approach to obtain reliable albedo data that is
less sensitive to this variable is called for. Brock et al. (2000) has
argued that the accumulated maximum temperature since the last
snowfall is a good indicator of snow metamorphosis and

FIGURE 4 | Albedo comparison between observation and simulation of Oerlemans1998 and Brock2000 from 2011 to 2015.
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proposed a model that does differentiate between deep (> 5 cm)
and shallow snow (< 5 cm) but otherwise does not need its
precise value as a variable. We apply the model here and the
results improve considerably (Figure 4). The R2 over the
complete model period is 0.23 but is considerably poorer
during the accumulation period where the model is not able
to reproduce the variability (Figure 4). The error (RMSE and
MAE) is 0.16 and 0.11, while the NSE is negative, suggesting that
at the daily scale the model still has a poor performance in
prediction. We have therefore attempted to develop an
algorithm that is able to account for this variability as well
during the accumulation period.

Development of New Albedo
Parameterization Scheme
Snow albedo is impacted by solar zenith angle, clouds and the
snow characteristics (including snow depth, liquid water content,
density, particle size, impurities, snow age, surface roughness), as
well as the proportion of diffuse reflection to direct radiation
(Brock et al., 2000;Wang et al., 2014).We use air temperature and
time since last snowfall as model variables. Both variables are also
generally easy to obtain in any research site and less prone to
sensor malfunction or uncertainty.

We use the idea of a Fourier transformation which is any
periodic function that can be decomposed into the sum of several
trigonometric functions (Lagerros, 1997) and refer to the new
model as FT model below. A similar model has earlier been also
applied to develop a solar radiation model (Sun and Kok, 2007). It
takes the following form:

f(x) � C +∑∞

n�1(an cos 2πnt x) + bn sin(2πn
t

x), C ∈ R (14)

where t is the period and n is the independent variable.
Considering the perturbation effect of snowfall on albedo, the
parameterization scheme of albedo is driven predominantly by
precipitation. During snowfall events, the default albedo is set to
0.8 as in previous models. When there is no snowfall, albedo is
mainly affected by temperature impacting the underlying surface.
When the temperature is much below freezing, the state of the
snow is relatively stable and remains in a solid form. Similarly,
when the temperature is considerably above 0°C, precipitation is
liquid. In these two cases, the water phase is relatively stable, and
therefore the parameterization scheme only considers
temperature as a variable. However, around 0°C, a transient
solid-liquid phase occurs which affects the snowpack. In this
case, the scheme introduces the parameter of time since last
snowfall (m) as well as air temperature. Field data suggest a strong
negative relation between albedo and air temperature
measurements. Therefore, we propose the following albedo
parameterization scheme

α �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

100 cos( 2πT
365 × 24

) − a T≤T1 and snowfall � 0

0.8 − exp( − T0

m · T) T1 <T<T2 and snowfall � 0

100 cos( 2πT
365 × 24

) − c T≥T2 and snowfall � 0

0.8 snowfall> 0
(15)

FIGURE 5 | Measured and modelled (Oerlemans 1998) snow depth and corresponding meteorological variables in 2011, when snow depth measurements
were valid.
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where α is albedo, T is air temperature (K), T0 is air temperature
at freezing point (273.15 K). m is the time since last snowfall
(days). a and c are parameters and T1 and T2 are threshold
temperatures (K) that are determined from optimization.

We use the data of 2011–2012 to optimize the model
parameters and the threshold temperatures that define the
transition of the parametrization. The parameters were
identified by minimizing RMSE of model output and
observations, resulting in a = 97.59 and c = 97.61 and T1/T2 =
268/274 K.

Evaluation of the FT Model
In order to verify the simulation accuracy of the new albedo
parameterization scheme, statistical indicators of the
accumulation period and ablation period of three
parameterization schemes were calculated (Table 2). The
simulated effect of Oerlemans1998 is naturally poor in any
period. Although the accuracy of Brock2000 is higher with

lower RMSE (0.08) and MAE (0.06) during the
accumulation period, its simulation value remains a
constant and the NSE is small (Figure 4; Table 2). The FT
model has similar statistics for the ablation period, with a
positive but very low NSE suggesting that its predictive power
remains low. The very low albedo values (< 0.4) during the
ablation season reflected better by the Brock2000 model are
not captured by the FT model at the expense of reproducing
some of the variability of the accumulation period (Figure 6).
During this colder period the new model is able to reproduce
the general trend and individual peaks reasonably well
(Figure 6; Table 2).

The distribution of albedo values for ablation and
accumulation period is shown in Figure 7. All models fail to
reproduce the large variability especially during the ablation
period but both Brock2000 and the FT model are able to
reproduce the median and some of the distribution in time.
Individual modelled values tend to overestimate in both seasons

TABLE 2 | Basics statistics for all albedo models against observations at the daily scale at LHG No.12 glacier.

Models Accumulation period Ablation period Annual

RMSE MAE NSE R2 RMSE MAE NSE R2 RMSE MAE NSE R2

Oerlemans1998 model 0.41 0.40 −21.16 0.10 0.30 0.25 −0.88 0.02 0.35 0.33 −4.83 0.02
Brock2000 model 0.08 0.06 0.18 0.10 0.23 0.18 −0.14 0.23 0.16 0.11 −0.07 0.23
FT model 0.10 0.08 −0.37 0.04 0.21 0.17 0.05 0.33 0.15 0.11 0.01 0.33

RMSE: root mean square error; MAE: mean absolute error; NSE: Nash-Sutcliffe efficiency coefficient.

FIGURE 6 | (A) Measured albedo and modelled albedo using the FT model during the validation period from 2013 to 2015. The grey rectangles in panel (A) are
enlarged in panel (B, C).
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for the Brock2000 and FT model (Figure 7). When aggregating
albedo to weekly values, results improve naturally, but the
predictive value for Brock2000 remains low (NSE = 0.01,
RMSE = 0.16) and is slightly better for the FT model
(NSE = 0.30, RMSE = 0.13).

Mass Balance Computations
Figure 8 shows the mass balance simulation for all models for
four seasons as well as field measurements. While albedo in
Oerlemans1998 is generally too constant and low, during the
ablation period the actual value is often lower. As a result, the

FIGURE 7 | Violin plots of simulated albedo during the accumulation (A) and ablation period (B).

FIGURE 8 | Comparison of mass balance using original and new albedo parameterization schemes. Note different time periods for different years based on
available data.
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model underestimates melt considerably, even though overall
albedo estimates are too low. As can be seen in Figure 4, the
simulated albedo of Oerlemans1998 model during the ablation
period is relatively high, resulting in lower incoming shortwave
radiation. As a result, the glacier melt in the ablation season is
lower than the measured value (Figure 8). The RMSE between
modelled and measured mass balance is 0.52 m w.e. over all years,
varying from 0.24 m w.e. in 2015 to 0.76 m w.e. in 2012.

Although albedo variability is reproduced much better for the
Brock2000 model than the Oerlemans1998 approach, this
translates only into slightly improved mass balance estimates
(Figure 8). The RMSE for Brock2000 decreases relatively little to
0.39 m w.e. (0.23 and 0.52 m w.e. in 2012 and 2014 respectively),
mainly due to large remaining errors during the beginning of the

melt season where melt is underestimated as albedo drops earlier
in the season than modelled (Figure 4). This is improved for the
new scheme (Figure 6) and overestimations become overall lower
(Figure 8). Additional potential sources of error are likely within
the turbulent fluxes which are difficult to capture accurately. The
FT model, with albedo calibrated for 2011 and 2012, reproduces
mass loss very well and has a considerably lower error than the
other models over all years (RMSE = 0.19 m w.e., Figure 8).
Naturally, the error is lower in the years where the albedo scheme
was calibrated (0.13 and 0.17 m w.e. in 2011 and 2012
respectively), and slightly higher in the other 2 years (0.27 and
0.14 m w.e. in 2014 and 2015 respectively). This suggests that
getting albedo right alone is likely to result in good estimates of
mass loss with the energy balance approach.

FIGURE 9 | Comparison of simulation results of different models with actual measurements on Dongkemadi Glacier.

FIGURE 10 | Simulation results of Jiangxi model and FT model compared with the actual measurements on LHG glacier No.12.
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Validation on Dongkemadi Glacier
In order to verify the transferability of the new albedo
parameterization scheme, the data of Dongkemadi Glacier
located in the Tanggula mountains in the middle of the
Qinghai-Tibet Plateau was used. The measurements are from
January 1 to December 31, 2012, obtained at 5,700 m a.s.l. and are
previously unpublished.

As for LH No. 12 the Oerlemans1998 model fails to capture
the magnitude or variability of the observed albedo. Due to the
cold temperatures on Dongkemadi Glacier and again a lack of
accurate snow depth data the Brock2000 fails to reproduce most
of the observed variability. Using the parameters found at LHG
No. 12 for the FT model provides reasonable variability during
the ablation period which the other models fail to reproduce at
any time (Figure 9). However, the predictive power of all models
is very poor. During the accumulation period the RMSE of FT
model, Oerlemans1998 model and Brock2000 model are −0.11,
0.22, and 0.11 respectively. For the ablation period the RMSE
improves to 0.13, 0.23, and 0.09 but even for the FT model the
NSE remains low (0.12) and negative for other models.

DISCUSSION

Our results show that the choice of albedo parametrization for an
accurate estimation of mass balance with an energy balance model
is crucial. Lacking accurate snow depth data, the COSIMA model
fails to reproduce albedo and consequently mass balance with the
original scheme. As the albedo scheme is dependent on snow depth
data generated by the model its performance is impacted by the
ability of COSIMA to reproduce snow height accurately. This the
model fails to do in our case (Figure 5). Similarly, measurements
are prone to large uncertainties due to the rapid downwasting of
the surface which in extreme cases in July and August exceeded
5 cm day−1 at the measured stakes. Therefore, we believe it is
prudent to rely on parametrizations that do not rely on
accurate daily snow depth values.

Additionally, as the AWS is located in the lower ablation area
of the glacier, snow disappears rapidly and no continuous snowpack
develops, as evidenced from satellite imagery. The ice surface is hence
mostly exposed, which exhibits a rapidly changing surfacemorphology
throughmelt as well possibly constantly shifting deposits of impurities,
that can also be accumulated and transported away by melt water
(Figure 2). We suspect that the original parametrization is simply not
very suitable for this environment.

The Brock2000 model already provides much better results
than the original parametrization and focusing on the ablation
period only reproduces the magnitude of albedo generally well.
The RMSE for the entire year is reduced from 0.35 to just 0.16,
compared to the original parametrization. However, it cannot be
solved when the maximum temperature is lower than 0°C, which
happens in the region throughout the accumulation and at times
even the ablation season (Brock et al., 2000). Therefore,
Brock2000 fails to reproduce the strong variability of albedo
during the accumulation period. The new FT model proposed
here, calibrated for 2 years of the data series, improves the
statistics only slightly but is notably able to provide variability

in the cold period as well. While mass balance computations
using the uncalibrated Brock2000 model already improve,
reducing the RMSE from 0.52 to 0.39 m w.e., using the
calibrated FT model reduces this even further to 0.19 m w.e.
This strongly suggests that calibrating parameters for the specific
location remains crucial. This is further supported by applying
the same FT model with the same parameters on another glacier
on the Tibetan Plateau.

While the variability introduced matches the observations
overall, the model has little predictive power on the daily scale.
To improve, it would need to be recalibrated at the same site. A
different model has previously been developed at the nearby Qiyi
Glacier (108 kmwest of LHGNo. 12) in theQilianmountains (Jiang
et al., 2011). The model uses temperature, days since last snowfall
and cloudiness as variables and works well on the Qiyi Glacier but
depends on 6 different calibrated parameters. It does less so at LHG
No. 12 (Figure 10).While variability is introduced, themagnitude is
considerably off and recalibration would again be necessary.

The difference in albedo magnitude and variability between
the glaciers in the region emphasizes the importance to carefully
choose parametrizations for glacier scale studies and in the best
case calibrate them to the local surface properties and climate
(Bamber and Payne, 2004). While the model developed here for
LHG No.12 works very well to generate reasonable mass balance
estimates and can be transferred in time without a strong loss in
accuracy and also reproduces the strong variability of albedo in
both accumulation and ablation period, transfer to another
location is still not straightforward. Even the well-established
Brock2000 model however improves albedo estimates
considerably for the ablation period alone even without any
site-specific recalibration.

We argue that the failure of the Oerlemans1998 model for the
case of the LHG No.12 Glacier is due to the lack of accurate snow
depth data. Glaciers previously studied with the COSIMA model
include Zhadang Glacier on the southern central TP, Halji Glacier
in the western Himalayas, Naimona’nyi Glacier on the south
western TP, Purogangri Ice Cap on the central TP and a glacier in
the Muztagh Ata Shan on the north western TP (Figure 1), which
are affected by the westerly winds and the Indian monsoon
(Huintjes and Schneider, 2014). However, LHG No. 12 is
located to the northeast of the Qinghai-Tibet plateau,
controlled by the east Asian season (Domrös and Peng, 1988;
Chen et al., 2019). Studies have shown that the average content of
glacial black carbon on the edge of the Qinghai-Tibet Plateau is
much higher than that of inland areas (Li, 2017; Li, 2020). That
could explain some of the strong variability that is difficult to
capture with an albedo model dependent only on air temperature.

A striking feature of observed albedo on LHG No 12. and
Dongkemadi is the strong daily variability which is caused largely
by the presence of impurities transported to the glacier surface
but also the different moisture sources of the dominating
precipitation for each glacier. Their presence obviously has a
strong effect on the albedo of the overall glacier surface. None of
the models so far are able to account for such variables.

Apart from the fact that the lack of accurate snow depth
measurements likely explains the failure of previously used
models in our case, we have also investigated potential
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differences in atmospheric drivers that could explain the strong
daily variability in albedo on LHG No.12 as well as Dongkemadi
Glacier. In order to analyze the source of air masses, the backward
trajectory during August 2012, when monsoon is active, of LHG
Glacier No. 12 and Zhadang Glacier was calculated by the
Meteoinfo software (http://www.meteothink.org/) (Wang,
2014). We used NCEP/NCAR global analysis data (air pressure,
temperature, relative humidity, vertical and horizontal wind speed)
provided by NOAA (with a resolution of 2.5° × 2.5°) for model
forcing (https://www.ready.noaa.gov/HYSPLIT.php). The
dominant source region at LHG Glacier No. 12 is from the
continental area over the relatively densely populated Gansu
province. At Zhadang Glacier dominant source areas are over
the Central Tibetan Plateau. Previous work has shown that a high
value of light-absorbing impurities, including both black carbon
(BC) andmineral dust (MD) is present on LHGGlacier No. 12 (Li,
2020). The BC and MD contents of LHG Glacier No. 12 are much
higher than that of Dongkemadi Glacier and ZhadangGlacier, with
the lowest measurements taken at Zhadang Glacier (Li, 2017). This
presence of impurities could explain the strong temporal variability
of albedo on glaciers like LHG No. 12, especially in the ablation
areas where the ice is exposed for a large part of the year.

CONCLUSION

In this paper we show how a mass and energy balance model
applied on a glacier in the Qilian Shan, on the northern fringes of
the Tibetan Plateau, fails due to the use of an albedo scheme that
is dependent on accurate snow depth data that is not available in
our case and in many other field sites. Not only does the original
albedo parametrization underestimate albedo continuously but
also fails to reproduce a strong daily variability present on this
glacier as well as another validation site. Applying another well-
established model that only relies on air temperature
measurements and the time to last snowfall considerably
improves results. While it still fails to reproduce the variability
of the accumulation period, it is in the right order of magnitude
and reproduces some of the variability in the ablation period.
Applying a new model developed and calibrated for this location
that equally only relies on air temperature and time since last
snow fall further slightly improves results, but more importantly
improves mass balance estimates. While the original scheme
results in a RMSE of the modelled mass balance against stake
measurements of 0.52 m w.e. from measurements over four melt
seasons, the new approach reduces this error to just 0.19 m w.e.
However the new model has been calibrated for this specific site,
while for the Brock2000 model, where the RMSE is reduced to
0.39 m w.e., we relied on the original parametrization derived in
the European Alps. This suggests that the Brock2000 model,
without any recalibration of parameters is a more reasonable
choice to determine albedo, specifically in the ablation area of
glaciers. On the other hand, the FT model introduced here fails to
provide significant improvement to reproduce daily albedo during
the ablation period nor is it transferable in space. Using this model
on another glacier on the Tibetan Plateau shows that the same

parameters produce accurate average estimates considering the
whole season but fail to reproduce accurate daily albedo
measurements. This can be explained by a different temperature
regime in the second location, a considerably colder climate. Its
advantage lies in the ability to reproduce albedo variability during
very cold periods, where Brock2000 fails to provide variability as
well as the fact that it does not rely on snow depth data.

In the present model we do not consider impurities and
moisture controls on melt. Both vary considerably in the
region and have been shown to be of great importance to
changing melt patterns already. They are of special importance
in the ablation area where surfaces tend to be of heterogenous
composition and undergo rapid morphological change.
Studies that investigate future mass loss in the region
should consider the effect these impurities have on the
development of surface albedo, including their potential
change with climate change as well as a potential change in
airborne particles due to local desiccation as well as direct
anthropogenic sources.
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Diagnoses of Antarctic Inland Water
Cycle Regime: Perspectives From
Atmospheric Water Vapor Isotope
Observations Along the Transect From
Zhongshan Station to Dome A
Jingfeng Liu1,2*, Zhiheng Du3, Dongqi Zhang4 and Shimeng Wang3

1College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou, China, 2College of Urban and
Environmental Sciences, Peking University, Beijing, China, 3State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China, 4Chinese Academy of Meteorological
Sciences, Beijing, China

Water stable isotopes are crucial for paleoclimate reconstruction and water cycle tracing in
Antarctica. Accurate measurement of atmospheric water vapor isotopic composition of
hydrogen and oxygen is required urgently for understanding the processes controlling the
atmosphere–snow interaction and associated isotope fractionation. This study presents in
situ real-time measurements of water vapor isotopes along the transect from Zhongshan
Station to Dome Argus (hereafter Dome A) in East Antarctica for the first time. The results
reveal that the surface vapor stable isotopes of δ18O and δ D showed a gradual decreasing
trend in the interior plateau region with the distance away from the coast, with significant
δ18O-temperature correlation gradient of 1.61‰°/C and δ18O-altitude gradient of
–2.13‰/100m. Meanwhile, d-excess gradually arises with elevation rise. Moreover,
the spatial variation of vapor isotopic composition displays three different characters
implying different atmosphere circulation backgrounds controlling the inland water cycle; it
can be divided as the coastal steep area below 2,000 m, a vast inland area with an
elevation varied between 2,000 and 3,000m, and high central plateau. Thirdly, observed
high inland Antarctica water vapor d-excess quantitatively confirms stratosphere air
intrusion and vapor derived from low latitudes by Brewer–Dobson circulation. Finally,
the diurnal cycle signals of interior area water vapor isotopes δ18O, δD, and air temperature
highlighted the substantial domination of the supersaturation sublimation/condensation
effect in inland, and this suggests that fractionation occurs during sublimation and
vapor–snow exchanges should no longer be considered insignificant for the isotopic
composition of near-surface snow in Antarctica.
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INTRODUCTION

Since the identification of the relationship between the
temperature and the isotopic composition of condensed
precipitation in the 1960s (Dansgaard et al., 1969), stable
isotopic compositions of ice core (δ18O and δ D) have been
used as temperature and moisture proxies to reconstruct past
climate and the atmospheric water cycle (Jouzel et al., 1997;
Augustin et al., 2004; Jouzel and Masson-Delmotte, 2010; Fudge
et al., 2013; Münch and Laepple, 2018; Jing et al., 2019). However,
the hydrogen and oxygen isotopes of snowfall are usually affected
by multiple factors including fractionations in water phase
transitions (e.g., evaporation and condensation) during its
atmospheric transport and precipitation (Ritter et al., 2016;
Pang et al., 2019; Hughes et al., 2021), so the
isotope–temperature relationship varies with time and space
(Jouzel et al., 1997; Masson-Delmotte et al., 2008; Casado
et al., 2018), especially in the polar regions, after snow
deposition, there is substantial isotope exchange between air
(water vapor) and snow through sublimation and
condensation because of the supersaturation condition, which
can significantly change the isotopic composition of snow
(Krinner et al., 1997; LeGrande and Schmidt, 2006; Masson-
Delmotte et al., 2011; Werner et al., 2011; Pang et al., 2019). The
so-called postdepositional processing and its effects on snow
isotopic compositions need to be carefully assessed for
properly interpreting ice core water isotopic records in terms
of the reconstruction of past climate (Ritter et al., 2016; Hughes
et al., 2021). The water vapor isotopic composition together with
snow isotopes can provide information on the air–snow–ice
interaction processes, including isotopic fractionation, related
evaporation temperature, and condensation condition
(Frezzotti et al., 2002; Ekaykin et al., 2004; Masson-Delmotte
et al., 2008). In addition, equilibrium fractionation coefficients of
water isotopes have been determined either by spectroscopic
calculations or by laboratory experiments mainly at about
20°C (Merlivat and Nief, 1967; Majoube, 1970; Cappa et al.,
2003; Steen-Larsen et al., 2013), and it needs further field work
measurement and experiment for low-temperature application.

In inland Antarctica, accurate measurements of atmosphere
water vapor isotopes are difficult due to major logistical
challenges and a very low water vapor content resulting from
low temperature. Recently, the development of infrared
spectroscopy enables direct measurements of isotopic
composition of atmospheric water vapor in the field. With
careful calibration methodologies, these devices have already
been successfully used for studies of water vapor isotopes in
some Arctic and Antarctic sites (Steen-Larsen et al., 2013; Bonne
et al., 2014; Casado et al., 2016). In Antarctica, although much
data of snow and ice core water isotopes are available in the
literature (Masson-Delmotte et al., 2008; Ding et al., 2010; Wang
et al., 2010; Xiao et al., 2013; Pang et al., 2015), atmospheric water
vapor isotopes in most regions of the ice sheet and their variations
remain unknown, except of Dome C and Kohnen Station, where
limited observations were recently conducted (Casado et al.,
2016). Along the transect from coastal Zhongshan Station to
Dome A (the summit of the East Antarctic), previous studies have

used surface snow and snowpit samples to characterize the
isotopic composition (δ18O, δ D, and 17O-excess) of
precipitations, and the results indicate apparent latitudinal and
altitudinal variations of water isotopes (Ding et al., 2011; Xiao
et al., 2013; Pang et al., 2015), but the potential mechanism(s)
controlling the observed spatial variations of snow isotopic
composition is still a key issue (Pang et al., 2019). Data of
atmospheric water vapor isotopic composition covering the
same region would provide additional information that is
useful for understanding the air–snow exchange of moistures
and the associated isotope processes. In this study, we conducted
field real-time measurements of water vapor isotopes during the
31st Chinese National Antarctica Research Expedition
(CHINARE 31) from December 2014 to January 2015, along
the transect from the Zhongshan Station to Dome A. Data were
used to characterize the spatial variations in atmospheric
moisture isotopes and the relationship between isotopic data
and climatic/meteorological parameters, to explore the possible
moisture source and the transport route.

FIELD MEASUREMENTS AND DATA
CALIBRATION

Instrumentation and Field Measurements
We conducted field measurements of water vapor isotopes along
the transect from Zhongshan Station to Dome A (80°22′51″S,
77°27′23″E, 4,093 m above the sea level, the summit of the
Antarctic ice sheet) in East Antarctica. This transect covers
about 1,250 km with elevation rising more than 4,000 m from
the coast to Dome A. In these regions, the snow accumulation
rates vary between ~70 and ~9 cm a−1(Ding et al., 2011). The field
measurements were conducted in austral summer over the period
of December 2014 to January 2015 when the expedition team
traveled from the coast to Dome A. The atmospheric water vapor
isotope composition measurements were performed every day
along the route when the expedition team camped (Figure 1A).

Measurements of water vapor isotopes were performed using a
Wavelength Scanned Cavity Ring-Down Spectrometry analyzer
(PICARRO Inc., 1102-i). The analyzer was installed in a
laboratory cabin modified by a container, which was installed
on sledge. When camped, the carry-on container was removed
from the sledge and placed upwind 50 m away from the camp site
in order to prevent pollution from the power generator and any
artificial effects during the measurements, and then the electric
heat booster would warm up the temperature in the container
laboratory cabin to about 20°C, and the tube will get heated well
above the dew point temperature of atmospheric air in order to
prevent condensation in the line. Figure 1B displays the
experimental setup used in the water vapor isotope monitoring
and mainly illustrates the calibration system for the special
extreme cold and dry conditions.

Simultaneous observations of meteorological conditions (e.g.,
temperature, relative humility (RH), and wind speed) and surface
snow sampling were also conducted. Temperature and RH were
measured by a Campbell Scientific HMP155A Vaisala
Temperature and RH Probe, respectively. Wind speed and
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direction were monitored using a 05106 Wind Monitor with the
05603C Wind Sensor Interface.

Calibration Protocol
Calibration of the spectrometer is crucial for such dry
conditions. Measurement deviations arise mainly from
instrumental drift, systematic errors, and water vapor
concentration. To correct such deviations, especially under
polar conditions regarding the very low water vapor content,
protocols have been developed and adapted with good

performance (Steen-Larsen et al., 2013; Bonne et al., 2014).
Briefly, calibration protocols include instrumental humidity-
induced bias correction and VSMOW-SLAP calibration and
drift correction. In this study, as the measurement is carried
out on the remote ice sheet, the calibration will not be exactly
the same as in the laboratory. The specific calibration
processes are as follows: before the field work, isotopic
values of liquid standards (NEEM (δ18O = −33.56‰ and δ
D = −257.6‰), SLAP (δ18O = −55.50‰ and δ D = −427.5‰),
and ROSS (δ18O = −18.75‰ and δ D = −144.6‰)) were
measured in order to evaluate the sensitivity of the
spectrometer, and the liquid standards calibration were
performed as follows:

δ18Orealvalue � 0.9842δ18Omeasure + 0.4570, r2 � 0.99

δDrealvalue � 1.0072δDmeasure + 10.6737, r2 � 0.99.

Then at the beginning of every measurement in each site, we
conduct a standard measurement four times repeatedly, and
followed by different level vapor concentrations (ppm), this
work was carried out every day. Based on the repeated
measure of standards, we carried instrumental error and
drift calibration, then the calibrated vapor concentration
bias based on different level vapor standards (showed in
Figure 2). We observed that the measurement precision
and stability decreased with reduced humidity, and
especially at humidity below 1,000 ppm, the uncertainties
of the measurements dropped to 8.2 and 1.3‰ for δ D and
δ18O, respectively, as the primary goal is to disentangle the
separate influences to the water cycle and large spatial scale
characteristic, postdeposition, and circulation background,
so we mainly focus on relative variations of the vapor
isotopes.

FIGURE 1 | (A) Sites (blue dots) of in situmeasurements along the transect from the Zhongshan station to Dome A; (B) Schematics of the field instrumentation used
for in situ measurements of water vapor isotopic composition.

FIGURE 2 | Humidity-induced bias calibration during the field
measurement.
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RESULTS AND DISCUSSION

Spatial Variation Characteristics
The observed atmospheric vapor hydrogen and oxygen isotopes
changed regularly along the distance from the coast (Zhongshang
Station) along with their changes of altitudes. As shown in
Figure 3, along the ice sheet transect, atmospheric vapor δ18O
varied from −40‰ to lower than −80‰ and δ D varied
approximately from −280 to −390‰. The relationship between
water vapor isotopes (δ18O, δ D, and d-excess) and temperature
are plotted in Figure 4. Despite the large variability, we observed
significant decreases in δ18O and δ D with distance increasing
from the coast. And on the contrary, deuterium excess [d-excess,
defined as d = δ D –8δ18O (Dansgaard, 1964)] increased with
distance away from the coast and showed a significantly high
value near inland Dome A where the elevation is above 3,000 m.
What needs to be pointed out is that the vapor isotope variation is
different among the near coast region and the inland high latitude
region, especially in inner land near Dome A, d-excess became
higher than other place. This phenomenon displays the
temperature effect that dominant water stable isotope
fractionation and intensified by the altitude effect. Because
when more inner from the coast, the temperature became
colder, and higher the elevation made heavy water isotopes to
deplete more.

The δ18O of atmospheric water vapor shows a temperature
gradient of 1.61‰ °C–1, and an altitude gradient of –2.13‰ per
100 m. Similarly, δ D increased with temperature with a gradient
of 2.54‰ °C–1 and decreased with altitude with a gradient of

−3.52‰ per 100 m, and d-excess decreased with temperature
with a gradient of −10.4‰ °C–1 and increased with altitude with a
gradient of 13.55‰ per100 m. As shown in Figure 4, the data of
interior region near Dome A show apparent different trends with
altitudes compared to data from other regions. This may indicate
different water vapor sources or dominant fractionation
processes in inland plateau because of the extreme cool and
dry conditions in comparison with the coast and transition
regions from the coast to the plateau. In addition, we
compared the relationships of isotopes with temperature and
altitude for both surface snow and atmospheric water vapor and
found that the isotopes of snow show similar temperature and
altitude gradients as water vapor isotopes but the latter with larger
variation.

We also observed diurnal cycles of water vapor isotopes along
with that of air temperature and humidity (Figure 5), and the
magnitude of the diurnal cycle increased as the distance increased
from the coast.

Implication to Moisture Transport
Based on the data of Antarctic snow and ice isotopes and isotope
enabled general circulation models, potential moisture sources
for the Antarctic ice sheet, especially the inland high elevation
areas near Dome A have been explored (Noone and Simmonds,
2002; Sodemann and Stohl, 2009; Wang et al., 2013; Pang et al.,
2015). But up to date, there is still no agreement on the origin of
inland Antarctic precipitation (Ding et al., 2015). One of the
many factors limits the understanding of inland moisture sources
is the insufficient of water vapor isotope data.

For regions below 2,000 m, which are within 200 km from the
coast, it has already reached a consensus that the steep coastal
orography effectively blocks air masses from mid- and high
latitudes with cold potential temperatures and prevents the air
masses from penetrating to higher elevations to reach inland
Antarctica (Masson-Delmotte et al., 2008), which leads to
frequent precipitations in the coastal regions with high snow
accumulation of about 100–200 kg m-1a-1 (Ding et al., 2015).
Therefore, in this region, the moisture source and the isotopes of
water vapor and precipitation are dominated by marine moisture
near the coast (Masson-Delmotte et al., 2008; Becagli et al., 2017).
For the vast inland areas with elevations between 2,000 and
3,000 m, atmospheric water vapor isotopes were depleted
compared to the coast region. This pattern is consistent with
the spatial variations in accumulation rates. Accumulation rates
decrease from the coast to inland, and lower accumulation rates
indicate drier air masses than the coastal region. At the same time,
more moisture with depleted isotope compositions prevailing
with katabatic wind come from the plateau, where the moistures
are more affected by the upper stratosphere. It is noteworthy that
in these areas, with distance further from the coast, the vapor
isotope composition gradually changed, indicating the intensified
influence of fractionations of inner plateau (Figure 3).

Here, we focus on the atmospheric vapor δ D and δ18O of the
central Antarctic Dome vicinity area. Apparently, the mechanism
controlling isotope fractionation in Dome vicinity is distinct,
characterized by much higher d-excess. It is known that central
Antarctic plateau prevailed with katabatic wind and air

FIGURE 3 | Synthesis multi-index comparison of isotopes and
accumulation along transect from Zhongshan to Dome A, all these
coincidently shows three climatic regimes, which controls the circulation and
isotopic fractionation of the water cycle.
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descending, or anticyclonic type of weather. The latter is formed
by the formation of the circumpolar vortex in the free atmosphere,
which is characterized by low pressure in the center and with
clockwise rotation. A previous study has already suggested the
possible influence of stratospheric water vapor intrusion from
stratosphere to troposphere exchange (STE) (Brewer, 1949;
Dobson, 1956; Butchart, 2014).These influences of δ18O and
d-excess caused by very strong Rayleigh distillation effects were
showed in this study. Previous studies in Vostok (Winkler et al.,
2013) revealed that the inland Vostok located within the Antarctica
vortex about a quarter of precipitation originates from tropospheric
snowfall, whereas 75% is due to hoar frost deposition and diamond
dust fall, which may originate from the stratosphere. Despite
stratospheric air contains a very low water content (4–6.5 ppm)
and the annual supply of stratosphere vapor into troposphere is very
small and have very little influence on tropospheric water vapor and
isotopic composition. However, for the central Antarctic Dome A
region, it may be more important because the extremely low water
vapor content and the very low accumulation rate, even more most
of the descending flux from the stratosphere occurs at this high
latitudes, DomeA is located within the Antarctic descending vortex,
which makes it more sensitive to stratospheric air masses input and
have strong influence on atmosphere vapor isotope composition as
our measurement indicated.

Inland Snow–Air Sublimation/Condensation
and the Isotopic Processes
The interior Antarctic region is located within the Antarctic
vortex and characterized by very dry and cold backgrounds.
The dry and cold conditions also cause substantial isotope
exchange between air and snow through supersaturation
sublimation and condensation. During our monitoring period,
the signals of water vapor isotopes δ18O, δD, 2 m air temperature,
vapor water content (humidity), and d-excess showed apparent
diurnal cycles, and the magnitudes of the isotope diurnal
variations increased as the distance increased from the coast
and close to Dome A. The field observations were conducted
when camped every day and were mainly in local “nighttime,”
even though the Sun never actually passed below the horizon;
however, we have also obtained a whole day data when camped in
Taishan Station from 21 December to 23 December. Figure 4
displays the daily isotope and temperature variations from the
coastal region to the interior plateau; it is notable that the vapor
isotopes varied synchronously with temperature and humidity
diurnally, with more depleted isotopes in colder temperatures.
Moreover, the inland Dome region is marked by larger magnitude
of the diurnal cycle under the colder and drier conditions. These
observations suggest substantial temperature-dependent
fractionations in Antarctica snow surface and kinetic isotope

FIGURE 4 | Atmospheric water vapor isotopic composition measured along the transect from Zhongshan Station to Dome A and the relationships between δ18O
(A,B), δ D (C,D), and d-excess (E,F) with temperature and altitude, respectively.
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fractionation occurred in the interior Dome area and that
dominates local isotope variations(Ritter et al., 2016; Touzeau
et al., 2016; Pang et al., 2019; Hughes et al., 2021), as what has
been observed in the Greenland and Antarctic Dronning Maud
Land (Steen-Larsen et al., 2013; Steen-Larsen et al., 2014; Ritter
et al., 2016).

Since the saturated water vapor pressure over ice is less than
that over water, the atmosphere over the Antarctic plateau is
saturated (or even supersaturated) by moisture in relation to ice,
which favors the formation and growth of ice crystals.
Observations showed that sublimation (as high as 10–20% of

the total precipitation) mainly happens when air temperature is
below −15°C. Thus, the seemly temperature-dependent isotope
diurnal cycles of our observation could be deemed to frequent
snow–air isotope exchange under an approximate equilibrium
fractionation status in sublimation/condensation cycles, and this
could also explain that the snow surface was successively acting as
a sink during the night and as a source during the day. Because the
inland high plateau accumulation is very low, it is not difficult to
understand the very high d-excess of isotope composition in both
atmosphere and surface was principally influenced by local effects
of sublimation and condensation, the partially stratosphere

FIGURE 5 |Diurnal cycles during the monitoring period. (A) δ18O, (B) d-excess, (C) 2 m air temperature, and (D)water vapor content. The color successive change
represents gradual distance variation from near coastal to interior inland Antarctica. All the signals are dominated by the presence of diurnal cycles with the isotope
variation amplitude increased to interior.
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descended air mass with very depleted isotope make the surface
snow analogous, and d-excess varied stronger due to very low
condensation temperature (<−30°C).

CONCLUSION

In this study, we implemented atmosphere water vapor isotope
measurement near the ice sheet surface of East Antarctica, the
observation data revealed spatial variation characteristic and
influences to the water cycle. Identical measurements in the
field showed spatial variation characteristic of atmosphere water
vapor isotope composition from Zhongshan Station to Dome A,
with a significant interior gradual decrease of δ18O varies from
−40‰ to lower than −80, and δD varies approximately from −410
to −280‰. The relation between vapor isotope and temperature/
altitude revealed distinct temperature gradient and altitude
gradient. In addition, the distinct spatial variation of vapor
isotopic composition indicated three subgroups of vapor δ18O
vs. δ D relationship, denoting three different regimes controlling
the inland water cycle and corresponding fractionation processes,
therefore dividing as the coastal steep area below 2,000 m, the vast
inland area with elevation between 2,000 and 3,000 m, and high
central plateau.

Additionally, the observed high inland Antarctica water vapor
may indicate the substantial influence of stratosphere air and vapor
intrusion derived by Brewer–Dobson circulation from low
latitudes, which may no longer be considered insignificant for
origination of vapor and isotopic composition in central Antarctica
plateau. Another conclusion is the signals of water vapor isotopes
δ18O, δ D, and air temperature diurnal cycles in Antarctica plateau
with amplitude increased for more interior sites, which implied the
substantial domination role of supersaturation sublimation/
condensation effect in inland; this temperature-related isotope
diurnal cycles could attribute to frequent snow–air isotope
exchange under the extreme cold equilibrium fractionation
condition sublimation/condensation cycles.

In conclusion, our study opens new perspectives on the
influence of supersaturation sublimation/condensation effects

and postdeposition effects on water stable isotope signal
recorded in deep ice cores, and also identifies particular
moisture sources and water cycle regimes of inland snow and
ice. However, more accurate atmosphere vapor isotope
observation and modeling studies are needed for further
understanding of past ice core records.
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Solar radiation plays an important role in the cryospheric water cycle, especially in alpine
regions. This study presents an evaluation of the Modern-Era Retrospective analysis for
Research and Applications 2 (MERRA2), ERA5, High Asia Refined analysis version 2 (HAR
v2), JRA-55, and National Centers for Environmental Prediction/Climate Forecast System
Reanalysis datasets at different time scales by comparing observed datasets from July
2010 to December 2015 at 4,550m in the Laohugou Basin. In terms of shortwave
radiation, ERA5 performs significantly better than the other reanalysis radiation datasets.
For downward shortwave radiation, HAR v2 performs better than ERA5 on only two
timescales, 3 months and half-year, with mean absolute errors (MAEs) of 13.28 and
7.96 w/m2. The upward shortwave radiation, ERA5, outperforms the other reanalysis
datasets on all 12 timescales. For downward longwave radiation, ERA5 also performs
significantly better, with only MERRA2 outperforming ERA5 on the daily scale and annual
scale, with R2, bias, root mean square error, and MAE of 0.6, 0.95, −9.51 w/m2, −9.41 w/
m2, 34.98 w/m2, 9.46 w/m2, and 27.52 w/m2, 9.41 w/m2, respectively. In the upward
longwave radiation, HAR v2 performs better than the other reanalysis datasets on all
timescales, except for ERA5, which has a better R2 of 0.92 on the annual scale. All the
reanalysis datasets can show the variation trend of the four radiation parameters in different
seasons and achieve a better performance in winter. Therefore, ERA5 is recommended for
regions without shortwave radiation observations, and HAR v2 and ERA5 are
recommended for longwave radiation simulations. Although there are obvious
shortcomings in the reanalysis radiation datasets, they still provide important
supplementary information for research in high-altitude areas, where the observed
datasets are too sparse.
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INTRODUCTION

Solar radiation is the main source of Earth’s energy (Li, 2015).
Solar radiation and surface thermal conditions affect Earth’s
energy balance, energy exchange, and ecohydrological
processes (Liu et al., 2018), as well as the weather and
climate (Fu et al., 2015). The Intergovernmental Panel on
Climate Change (IPCC) reported that the atmosphere and
cryosphere are undergoing rapid changes (Cao, 2021; IPCC,
2021). Therefore, the study of radiation as an important driver
of climate evolution is important because of climate change.
Previous radiation research was previously based on measured
datasets, but sparse measured stations made it difficult to
obtain spatially continuous and long time series of surface
radiation datasets (Li et al., 2017; Zhang et al., 2018).
Reanalysis datasets, which were introduced and rapidly
developed in the 1990s, optimally combine observations of
different types and sources with short-term weather forecasts
through a constantly updated data assimilation system (Du
et al., 2019; Yang et al., 2020). The development of reanalysis
datasets has shown to be promising in the estimation of global
surface radiation; nonetheless, the different models and
assimilation techniques produce many systematic errors
(Liang and Xia, 2005; Power and Mills, 2005; Shi et al.,
2008; Deng et al., 2010; Shen et al., 2019). Therefore, it is
necessary to evaluate the applicability of various reanalysis
datasets and to obtain the appropriate reanalysis radiation
data for research.

Currently, many scholars have evaluated the applicability
of reanalysis datasets in different regions. At Dome A, Fu et al.
(2015) evaluated the applicability of four reanalysis datasets,
ERA-I, National Centers for Environmental Prediction
(NCEP)–DOE, NCEP/NCAR, and JCDAS, using annual-
scale radiation observations from February 2011 to January
2012 at the Southeast Polar Panda-1 station (73°39′S, 77°00′E)
and showed that ERA-I was the best. Similarly, ERA-I is also
more suitable for European regions than JRC-MARS based on
longtime series solar radiation datasets from 1983 to 2005
(Bojanowski et al., 2014). However, ERA-I does not apply to
all areas. For example, ERA-I performs worse than ITPCAS on
the Tibetan Plateau (Du et al., 2019), and ERA-I is severely
overestimated in western, northern, and Central China (Wang
et al., 2020a). For other reanalysis datasets, Babar et al. (2019)
evaluated four reanalysis radiation datasets, CLARA, SARAH,
ERA5, and ASR, based on 31 observed stations in Norway. The
results showed that the errors in ERA5 and ASR increased
with an increase in cloudiness, with ERA5 overestimating
TCWC under clear and moderate cloud cover conditions
while underestimating it under cloudy conditions. Wang
et al. (2020a) assessed the applicability of NCEP/DOE,
ERA-Interim, and GLDASV2.1 using Chinese radiation
observation datasets from 2000 to 2016. The results show
that the precision of the abovementioned reanalysis datasets is
higher in summer and autumn months than in winter and
spring months. NCEP is severely overestimated in the eastern
region, and GLDAS has the smallest average deviation. In the
winter months, the errors are smaller in the high-elevation

areas than in the low-elevation areas; however, they are not
obvious in the summer months. Liu et al. (2018) validated and
evaluated the SWDN-1.0 and SWDN-2.0 products using
observations from 91 stations in China from 2009 to 2014
and compared them with the CERES-SYN1deg and ERA-
Interim reanalysis irradiation datasets. The results show
that CERES-SYN1deg is closest to the observed datasets,
with R, root mean square error (RMSE), and bias of 0.92,
33.5, and 8.48 w/m2, respectively, and that ERA-Interim has
the worst performance, with an R of 0.84. These studies are
only assessed at annual or monthly scales and did not assess
the reanalysis radiation datasets at hourly and daily scales.
However, short time scale datasets are more important for the
study of ice mass balance.

Moreover, many studies on reanalysis radiation dataset
assessments have focused on low-latitude or flat terrain areas.
In addition, few studies have focused on the application of
reanalysis datasets in mountain regions with complex
topography and severe climatic conditions. The preformation
of all the reanalysis datasets in mountain regions is different
because of different assimilation methods and resolutions.
Although previous studies have evaluated different reanalysis
datasets in different regions on long time scales (annual,
seasonal, or monthly), the applicability of frequently used
reanalysis datasets in alpine regions, especially in glacier cover
zones or periglacial zones, warrants further discussion. Therefore,
we want to evaluate the applicability of several reanalysis datasets
at different time scales (from hourly to annually) in the Laohugou
Basin of the western Qilian Mountains.

The observed stations were located in the Laohugou Basin
(LHG) and 4,550 m a.s.l. The observed radiation datasets from
2010 to 2015 were selected to assess the applicability of five
reanalysis radiation datasets (Modern-Era Retrospective analysis
for Research and Applications2 [MERRA-2], JRA55, ERA5,
NCEP–Climate Forecast System Reanalysis (CFSR)/CFS v2,
and High Asia Refined analysis version 2 [HAR v2]) on
different temporal-spatial scales in LHG. This approach
facilitates the use and improvement of reanalysis radiation
datasets in alpine regions with sparse observation stations and
is important for the study and response to climate change in the
Qilian Mountains.

STUDY AREA

The LHG is located on the northern slope of the western Qilian
Mountains and belongs to the upper reaches of the Shule River,
with a location of 39°25′–39°35′N, 96°31′–96°33′E (Zhang and
Qin, 2017a). The length and width of the study area are 40 km
from east to the west and 25 km from north to south, respectively.
The LHG has a typical continental climate, with a large annual
difference in temperature; the warmest month is in July, and the
lowest temperature is in January. The average annual temperature
is −9.1°C, and low temperatures occur year round at 4,550 m a.s.l.
The LHG is controlled by westerly circulation, and the
precipitation amount is approximately 390 mm, mainly
concentrated from May to September and accounting for more
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than 70% of the annual precipitation (Zhang and Qin, 2017b). Air
relative humidity and specific humidity show significantly higher
values in July, August and September, with the maximum value
measured in July. The type of daily variation in barometric
pressure is double peak and double valley, and the seasonal
variation shows a single peak and single valley (Li et al.,
2017). There are 44 glaciers developed in the basin, with a
total area of 54.32 km2 (Zhang and Qin, 2013). The LHG is
located in the high value area of solar radiation in the country,
and the total annual solar energy resources are very rich, up to
6,937.9 MJ/m2; the total radiation in spring and summer is larger
than that in autumn and winter, with an annual average value of
220W/m2, and the daily maximum value of total radiation is
35.5 MJ/m2 (Sun and Qin, 2011b).

The No. 12 glacier (5Y448D0012, Figure 1) is the most typical
glacier in the LHG; it belongs to the extreme continental-type
glacier, with an area of 21.91 km2 and a total length of 10.8 km,
accounting for 40.3% of the glacier area and 65.8% of the ice
reserves in the basin, which is the largest valley-type glacier in the

Qilian Mountains (Zhang et al., 2017). Laohugou Glacier No. 12,
which is composed of two branches from east and west, converges
at an altitude of 4,560 m; the highest point is 5,483 m. The ice
tongue end is 4,250 m; the relative altitude difference is greater
than 1,000 m; and the mean elevation is 4,830 m, with a gentle
slope (Li, 2015; Sun and Qin, 2011a). Laohugou Glacier No. 12 is
the site of the first field station for glacier monitoring research in
China (Shi, 1988) and interests many glaciologists because of its
typical physical characteristics. Its glacial meltwater is an
important source of recharge for the Changma River, with a
water recharge of 40%, which eventually feeds into the Shule
River (Du and Qin, 2012).

Radiation income and expenditure studies on mountain glaciers,
where information is relatively sparse, are important for revealing the
hydrothermal conditions of modern glacier development and
glacier–climate interactions. The LHG is located in alpine regions,
with a complex environment and few artificial observations, which
need to be combined with reanalysis information. Thus, the LHG is
important to evaluate the accuracy of reanalysis data in this basin.

FIGURE 1 | Geographical location of the Laohugou Basin with the spatial distribution of observation stations.
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DATASETS AND METHODS

Datasets
Observed Datasets
Measured radiation datasets are derived from the automatic
weather station (AWS) located in the ablation area of glaciers
in LHG Glacier No. 12, with an elevation of 4,550 m in LHG
(Figure 1). The AWS radiation sensor models are shown in
Table 1. The equipment was calibrated and tested by the China
Meteorological Administration in strict accordance with the
Code of Practice for Specifications for Surface Meteorological
Observation (China Meteorological Administration, 2003). All
sensors are connected to a low-temperature–resistant data
collector, the CR1000 (Campbell, USA), which collects data
every 10 s and outputs an average value every 30 min. In this
article, four components of radiation datasets from July 7, 2010,
to December 31, 2015, were selected and divided into 12
timescales for analysis: hourly, 3 h, 6 h, half-day, daily, 3 days,
6 days, half-month, monthly, 3 months, half-year, and annually.
All times in the article are in Beijing Time.

Reanalysis Datasets
The radiation reanalysis datasets chosen for this article include
the European Centre for Medium-Range Weather Forecasts
(ECMWF) fifth generation of global climate and weather
reanalysis products ERA5; JRA-55, which is a comprehensive
climate reanalysis dataset produced by the Japan Meteorological
Agency (JMA) (JRA-55: Japanese 55-year Reanalysis, Daily 3-
Hourly and 6-Hourly Data, 2013); the NCEP CFSR and Climate
Forecast System version 2 (Saha et al., 2010; National Center for
Atmospheric Research Staff Eds, 2017); NASA’s atmospheric
reanalysis, which is the second MERRA2; and the HAR v2,
which is an atmospheric dataset generated within the
framework of the CaTeNA project (Climatic and Tectonic
Natural Hazards in Central Asia), which is funded by the

Federal Ministry of Education and Research (Wang et al.,
2020b). These five sets of reanalysis datasets are selected to
match the radiation datasets with the measured data for
evaluation. Detailed information on each reanalysis radiation
dataset is shown in Table 2.

Methods
The reanalysis datasets consist of grid point data, whereas the
observed data comprise site data. The reanalysis datasets are
stratified by atmospheric pressure and correspond to different
elevations. If the site elevation to be determined belongs to the
upper and lower boundary layers of the reanalysis datasets, it can
be calculated by interpolation and integration. Therefore, we
evaluated the point-to-point applicability by interpolating the
reanalysis radiation data to the corresponding station using the
nearest-neighbor method based on the latitude, longitude, and
altitude of 4,550 m a.s.l. The nearest neighbor method of
interpolation directly applies the original data to fill in the
points to be interpolated and uses the nearest of the four
nearby grid points around the point to be sampled as the data
for the point to be sampled (Liu and Luo, 2009). The formula is
expressed as follows:

f(x + u, y + v) � f(x, y) (1)
x, y are positive integers, u, v are floating point numbers in the
interval [0, 1], usually 0.5, and (x + u, y + v) are the coordinates
of the point to be identified.

In this article, four evaluation indices were adopted to
quantitatively assess the error characteristics of the suitability
of the reanalysis radiation datasets, including the bias, RMSE,
coefficient of determination (R2), and mean absolute error
(MAE). These statistical metrics were calculated as follows:

(1) Bias

TABLE 1 | Technical parameters and installation height of radiation sensors.

Meteorological elements
and units

Sensor model Manufacturer Measurement range Accuracy Installation height
(m)

Longwave radiation/(W·m−2) Kipp&Zonen CM3 Kipp&Zonen Wavelength: 0.305 < λ < 2.8 µm 10–35 W m−2 1.5
Shortwave radiation/(W·m−2) Kipp&Zonen CG3 Kipp&Zonen Wavelength: 5 < λ < 50 µm 10–35 W m−2 1.5

TABLE 2 | Detailed information of the five reanalysis radiation datasets.

Reanalysis dataset Spatial resolution Temporal resolution
(h)

Domain Temporal coverage Assimilation system

MERRA2 0.5° × 0.625° 1 −180.0°,−90.0°, 180.0°,90.0° 1980 to present GEOS-5 (version 5.12.4)
JRA-55 0.5625° × 0.5625° 3 89.57°N–89.57°S, 0°E–359.438°E 1958 to present 4D-Var
ERA5 0.25° × 0.25° 1 90°N–90°S, 0°E–360°E 1979 to present IFS Cycle 41r2 4D-Var
NCEP/CFSR 0.3° × 0.3° 6 90°N–90°S, 0°E–360°E 1979.1 to 2010.12 3DVAR
NCEP/CFSV2 0.2° × 0.2° 6 90°N–90°S, 0°E–360°E 2011 to present 3DVAR
HAR V2 10 km 1 Tibetan Plateau 1991 to 2020 WRF (version 4.1.)
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Reflects the degree to which the reanalysis radiation datasets
deviate from the observed datasets (Fu et al., 2015). The formula
is expressed as follows:

bias � �m − �k (2)

(2) RMSE

The smaller the value of RMSE is, the smaller the deviation of
the reanalysis datasets from the observed datasets (Bromwich and
Fogt, 2004). The formula is expressed as follows:

FIGURE 2 | 2010–2015 Scatter distribution of shortwave radiation observed datasets and reanalysis datasets on different time scales; (A) and (B) represent
downward shortwave radiation and upward shortwave radiation, respectively.
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FIGURE 3 | Five sets of reanalysis datasets shortwave radiation evaluation results; (A) and (B) represent downward shortwave radiation and upward shortwave
radiation, respectively.
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RMSE �
�����������∑n

i�1(mi − ki)
n

√
(3)

(3) Coefficient of determination (R2)

The coefficient of determination reflects what percentage
of the fluctuations in y can be described by the fluctuations in
x; that is, it characterizes what percentage of the variation in
the dependent variable Y can be explained by the control of
the independent variable X. The formula is expressed as
follows:

R2 � 1 − ∑i(mi − ki)2∑i(mi − m̂)2 (4)

Range of values: 0–1, the closer the value to 1, the better it fits.

(4) MAE

MAE avoids the problem of errors canceling each other out
and accurately reflects the absolute error (Jia et al., 2004). The
formula is expressed as follows:

MAE � 1
n
∑n

i�1
∣∣∣∣mi − ki

∣∣∣∣ (5)

In Eqs 2–5, mi and ki are reanalysis datasets and observed
datasets, respectively, and �m and �k are the averages of the
reanalysis data and observed data, respectively.

RESULTS AND DISCUSSIONS

Reanalysis of Shortwave Radiation
Evaluation
As seen from Figures 2, 3, on the hourly scale, the three sets of
MERRA2, ERA5, and HAR v2 well fit the shortwave radiation,
showing an underestimation for downward shortwave
radiation (SW↓) and an overestimation for upward
shortwave radiation (SW↑), with ERA5 having the lowest
error and the best performance. The better fit of the
reanalysis datasets on the 3-h scale improved. JRA55’s R2

of 0.46 and 0.37 were slightly lower than the R2 of the other
three reanalysis datasets, and JRA55’s MAE of 153.83 w/m2,
and 81.94 w/m2 for SW↓ and SW↑ were much higher than the
MAE of the other three reanalysis datasets, which yield a
poorer performance. At the 6-h scale, all four datasets are
overestimated, except NCEP/CFSR, which underestimates
SW↓. The R2 values for MERRA2, ERA5, and CFSR are
similar, and the RMSE of 170.28 w/m2 for CFSR is the
smallest of the five reanalysis datasets for the best
performance. For SW↑, the fits for MERRA2, ERA5, HAR
v2, and CFSR are similar, at 0.62, 0.65, 0.5, and 0.6, with RMSE
and MAE for ERA5 at 93.88 and 57.6 w/m2 being the smallest
of the five reanalysis datasets and achieving the best
performance, whereas JRA55 has the largest error and the
worst performance. On the 12-h scale, the fit of all five

reanalysis datasets to SW↓ and SW↑ decreases; JRA55 and
HAR v2 do not well fit the trends of both on the half-day scale,
and ERA5 and CFSR perform best.

Compared with the hourly scale, the NCEP/CFSR
performance at the daily scale is significantly lower and
performs worse than the other reanalysis for SW↓, with HAR
v2 performing the best at R2 of 0.46 and RMSE andMAE of 75.37
and 56.22 w/m2, respectively, both of which are the smallest
values of the five reanalysis datasets. On the 3-day scale, the
fit of the five sets of reanalysis radiation datasets to SW↓ increases
substantially, with MERRA2, ERA5, HAR v2, JRA55, and CFSR
showing good fits of 0.77, 0.82, 0.79, 0.78, and 0.19; all except
CFSR well fit the trend of SW↓. However, the five sets of
reanalysis radiation datasets do not fit the SW↑ trend well on
both the daily scale and 3-day scale, showing a significant
underestimation. MERRA2 is the most underestimated, and
ERA5 is the best performer at relative term scales. On the 6-
day and half-month scales, SW↓HAR v2 performed best, with the
highest coefficient of determination and lowest error (Table 3),
whereas NCEP/CFSR performed the worst. For SW↑, there is
minimal change in the five sets of reanalysis radiation datasets on
the 6-day scale. ERA5 performed best, with an R2 of 0.59 and
RMSE and MAE values of 39.07 and 28.41 w/m2, respectively,
among the five reanalysis datasets. On the half-month scale, the
fit of the five sets of reanalysis radiation datasets to SW↑ increases
substantially, with fits of 0.9, 0.95, 0.93, 0.92, and 0.29. All four
reanalysis datasets fit the observed SW↑ datasets well, except for
NCEP/CFSR, and ERA5 still performs best, having the highest
coefficient of determination and the lowest error.

As seen from the information reflected in Figure 3; Table 4,
on the monthly scale, for SW↓, ERA5 has the best
performance, with R2, bias, RMSE, and MAE values of 0.96,
15.18, 19.85, and 16.24 w/m2, respectively. For SW↑, MERRA2
has the highest degree of underestimation and the highest
error; ERA5 has the smallest bias, best fit, and smallest error,
performing best on this scale with R2, bias, RMSE, and MAE of
0.67, −19.31, 32.98, and 25.05 w/m2, respectively. The
difference between HAR v2 and JRA-55 is not significant;
HAR v2 has a slightly better fit than JRA-55, and NCEP/CFSR
does not well fit upward shortwave radiation and performs
poorly for downward shortwave radiation. At the 3-month
scale, the four sets of reanalysis radiation datasets fit better for
SW↓, but all exhibit a certain degree of overestimation. With
the exception of the CFSR, HAR v2 is the least overestimated,
with a bias of 5.43 w/m2, and the smallest error performs best
at this scale. The five reanalysis datasets show improved fits
and reduced errors for SW↑, again showing an
underestimation trend, with ERA5 being the least
underestimated with a bias of −19.31 w/m2 and a fit of 0.81
significantly higher than the other four datasets, of performing
best at this scale. The errors in all five sets of reanalysis datasets
for SW↓ on the half-year scale have been reduced, and their
precision is improved, but the coefficients of determination
have been reduced for all four datasets except NCEP/CFSR.
The combined four evaluation indicators performed best on
this scale for HAR v2, with CFSR performing the worst and the
other three datasets showing a similar performance. However,
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the fit and accuracy of the five sets of reanalysis data for SW↑
have improved significantly, with the combined four
assessment metrics performing best on this scale for ERA5,
with R2, RMSE, and MAE of 0.92, 19.84, and 19.58 w/m2,
respectively, and the worst performance for MERRA2.
Compared with the monthly scales, the annual scales show
a decrease in the fit of both upward shortwave radiation and
downward shortwave radiation, except for ERA5, whose R2

values are 0.86 and 0.95, respectively, and which performs best
at the annual scale.

The downward and upward shortwave radiation varies widely
over the seasons, with the five sets of reanalysis datasets showing
significantly better applicability of SW↓ and SW↑ in winter
(September to May) than in summer (June to August), as
shown in Figure 4 and Table 5. Only ERA5 is able to fit the
variation in upward shortwave radiation in summer, with R2,

bias, RMSE, and MAE values of 0.39, −35.25, 63.51, and
47.54 w/m2, respectively. For SW↓, NCEP/CFSR shows a
distinct trend of underestimation, whereas MERRA2,
ERA5, HAR v2, and JRA55 show a trend of overestimation
with biases of 49.29, 22.71, 25.68, and 28 w/m2. However, the
five reanalysis datasets show a distinct tendency to
underestimate SW↑, with HAR v2 being the least
underestimated and NCEP/CFSR being the most
underestimated, with biases of −3.62 and −52.91 w/m2.

Compared with summer, the fit to downward and upward
shortwave radiation improved for each reanalysis radiation
dataset in winter, but the CFSR still failed to fit the SW↓ and
SW↑ trends, with R2 values of 0.06 and 0.01, respectively. JRA55
still did not well fit the SW↑ trend, with an R2 of 0.22. TheHAR v2
reanalysis datasets have a low degree of underestimation for SW↓
with a bias of −1.6 w/m2 and the smallest bias, whereas the other

TABLE 3 | Evaluation of the day scales of shortwave radiation from five sets of reanalysis datasets.

SW↓ SW↑

Daily 3 days 6 days Half-month Daily 3 days 6 days Half-month

MERRA2 Bias 19.40 19.40 19.40 19.52 −67.17 −67.17 −67.17 −67.38
RMSE 73.29 43.48 36.12 31.48 83.57 79.48 78.25 76.34
MAE 52.78 29.90 24.54 21.32 70.45 69.46 68.85 68.51

ERA5 Bias 15.05 15.10 15.10 15.28 −19.28 −19.27 −19.27 −19.43
RMSE 72.98 35.53 27.54 21.78 54.1 41.77 39.07 36
MAE 53.02 26.85 21.32 17.65 40.23 30.39 28.41 26.76

HAR v2 Bias 5.43 5.43 5.43 5.36 −27.67 −27.67 −27.67 −27.94
RMSE 75.37 40.68 29.70 23.09 57.84 48.58 45.99 42.67
MAE 56.22 30.00 22.52 17 46.45 39.9 38.67 37.09

JRA55 Bias 12.38 12.38 12.38 11.72 −25.14 −25.14 −25.14 −25.56
RMSE 64.49 37.39 31.07 23.22 57.42 50.73 48.42 44.63
MAE 48.17 28.14 22.75 17.66 42.75 36.85 34.82 33.81

NCEP/CFSR Bias −16.23 −16.23 −16.23 −16.11 −55.94 −55.94 −55.94 −56.13
RMSE 102.64 78.83 70.56 61.37 80.56 75.31 73.44 70.35
MAE 79.73 59.91 52.57 44.67 63.27 60.57 59.53 58.54

TABLE 4 | Evaluation of monthly and annual scales of shortwave radiation from five sets of reanalysis datasets.

SW↓ SW↑

Monthly 3 months Half-year Annually Monthly 3 months Half-year Annually

MERRA2 Bias 19.41 19.41 19.41 19.67 −67.22 −67.22 −67.22 −66.36
RMSE 29.73 27.21 21 20.46 74.78 72.05 69.93 67.03
MAE 20.88 20.51 19.41 19.67 67.22 67.22 67.22 66.36

ERA5 Bias 15.18 15.18 15.18 15.09 −19.31 −19.31 −19.31 −19.58
RMSE 19.85 17.47 15.97 15.38 32.98 25.62 21.8 19.84
MAE 16.24 15.41 15.18 15.09 25.05 21.35 20.08 19.58

HAR v2 Bias 5.43 5.43 5.43 5.81 −27.72 −27.72 −27.72 −27.33
RMSE 20.61 17.23 9.15 7.92 39.94 35.12 30.74 27.91
MAE 14.58 13.28 7.96 7.25 34.49 28.68 27.72 27.33

JRA55 Bias 12.51 12.51 12.51 12.5 −25.06 −25.06 −25.06 −24.81
RMSE 21.32 17.58 13.82 13.2 42.03 36.73 28.17 25.88
MAE 16.46 14.87 12.69 12.5 30.53 25.89 25.06 24.81

NCEP/CFSR Bias −11.47 −16.07 −16.07 −15.32 −45.28 −55.95 −55.95 −54.95
RMSE 58.44 37.35 26.92 16.62 59.05 63.79 58.9 55.69
MAE 40.75 28.22 20.81 15.32 47.2 55.95 55.95 54.95
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four reanalysis radiation datasets show a trend of overestimation.
While the five reanalysis datasets show a tendency to
underestimate SW↑ in both winter and summer, the

underestimation of all four reanalysis radiation datasets shows
an increasing trend, except for ERA5, where the underestimation
decreases with a bias of −13.73 w/m2. A combination of the

FIGURE 4 | Trends in observed and reanalysis shortwave radiation datasets in different seasons; (A) and (B) represent downward shortwave radiation and upward
shortwave radiation, respectively.

TABLE 5 | Results of the five reanalysis datasets for shortwave radiation evaluated in summer and winter.

SW↓ SW↑

Bias RMSE MAE R2 Bias RMSE MAE R2

MERRA2 Summer 49.29 106.19 84.22 0.04 −46.66 78.34 58.80 0.14
Winter 9.04 57.65 41.88 0.55 −74.28 85.31 74.49 0.46

ERA5 Summer 22.71 91.25 71.29 0.13 −35.25 63.51 47.54 0.39
Winter 12.46 52.22 38.37 0.62 −13.73 44.73 33.80 0.47

HAR v2 Summer 25.68 104.83 82.38 0.18 −3.62 65.64 53.84 0.10
Winter −1.60 61.96 47.15 0.53 −36.01 54.88 43.89 0.38

JRA55 Summer 28.00 93.39 74.35 0.10 −17.78 65.92 52.07 0.10
Winter 6.97 50.76 39.09 0.61 −27.69 54.16 39.52 0.22

NCEP/CFSR Summer −74.32 133.56 109.73 0.04 −52.91 81.80 62.15 0.13
Winter 3.92 102.19 78.14 0.06 −57.00 79.87 63.18 0.01
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indicators evaluated shows that for SW↓, JRA55 has the highest
accuracy in winter with the best performance of 6.97, 50.76, and
39.09 w/m2 for bias, RMSE, and MAE, respectively. ERA5 for
SW↑ has the highest accuracy in winter, with the best

performances of 44.73 and 33.8 w/m2 for RMSE and MAE,
respectively.

The results of the assessment of shortwave radiation were
consistent with those of previous studies; ERA5 performed best,

FIGURE 5 | 2010–2015 Scatter distribution of observed longwave radiation datasets and reanalysis datasets on different time scales; (A) and (B) represent
downward longwave radiation and upward longwave radiation.
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FIGURE 6 | Five sets of reanalysis datasets longwave radiation evaluation results; (A) and (B) represent downward longwave radiation and upward longwave
radiation, respectively.
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and CFSR and MERRA2 performed worse (Jiang et al., 2019; Seo
et al., 2020; Wang, 2020; Zhang et al., 2021). The advantages of
the ERA-5 reanalysis datasets are particularly evident on snow
and ice surfaces (Wang, 2020; Zhang et al., 2021). Because of
cloudiness and other meteorological factors, the accuracy of rainy
and cloudy conditions is lower than that of clear-sky conditions
on the daily and monthly scales; on the seasonal scale, the
accuracy is significantly higher in winter and spring than in
summer and autumn (Jiang et al., 2019; Zhang et al., 2021).

Reanalysis of Longwave Radiation
Evaluation
As seen through Figures 5, 6, on the hourly scale, both MERRA2
and ERA5 are able to roughly fit the downward longwave
radiation (LW↓) with R2 values of 0.42 and 0.48, respectively.
The HAR v2 fit is poor, with an R2 of 0.28, and the ERA5 error is
significantly smaller than that of MERRA2, which performs
better. The three reanalysis datasets MERRA2, ERA5, and
HAR v2 well fit the upward longwave radiation (LW↑), with
R2 values of 0.72, 0.79, and 0.73, which are overestimated. HAR v2
has the smallest error, with bias, RMSE, and MAE values of 7.02,
24.53, and 18.92 w/m2, respectively, which is the best
performance. There is some improvement in the fit of the
reanalysis datasets on the 3-h scale for LW↓. The R2 of HAR
v2 is 0.27, which is slightly lower than that of the other three
reanalysis datasets. The RMSE and MAE are 57.57 and 44.98 w/
m2, respectively, which are higher than those of the other three
datasets, with poorer performance. ERA5 performs best with
minimal error. However, in LW↑, the R2 values of MERRA2,
ERA5, HAR v2, and JRA55 are similar, at 0.74, 0.8, 0.75, and 0.79,
respectively. HAR v2 has the best performance, with RMSE and
MAE values of 23.74 and 18.35 w/m2, respectively, which are
lower than those of the other three datasets. At the 6-h scale,
MERRA2 and HAR v2 underestimate and poorly fit LW↓,
whereas the other datasets are overestimated. The fits for
MERRA2, ERA5, and JRA55 are similar, with ERA5 having

the lowest RMSE and MAE of 41.39 and 33.4 w/m2 of the
three, performing best. MERRA2, ERA5, HAR v2, and JRA55
provide a better fit to LW↑, with values of 0.76, 0.82, 0.76, and
0.81, and all errors decrease. HAR v2 still has the smallest error
and the best applicability. The fit of the five reanalysis datasets on
the half-day scale continues to improve. NCEP/CFSR and HAR
v2 have worse fits for LW↓ trends on half-day scales, whereas
ERA5, MERRA2, and JRA55 perform similarly, with ERA5
performing slightly better. ERA5, MERRA2, HAR v2, and
JRA55 are similar for LW↑ in R2, and HAR v2 has the
smallest error, with bias, RMSE, and MAE values of 7.02, 18.4,
and 14.71 w/m2, respectively, which are the best performances.

Combined with Table 6, the five sets of reanalysis radiation
datasets well fit the LW↓ and LW↑ trends on four scales—daily,
3 days, 6 days, and half-month—with an increase in accuracy, but
all show a tendency to overestimate. For LW↓, MERRA2 has the
best performance, with RMSE and MAE values of 34.98 and
27.57 w/m2, respectively, which are the smallest values of the
three datasets. On the 3-day scale, the R2, RMSE, and MAE of
ERA5 are 0.85, 18.08, and 14.85 w/m2, respectively, which is a
small error and the best performance. On the 6-day and half-
month scales, ERA5 performs best, with an R2 of 0.97 and
minimum error RMSE and MAE of 9.21 and 7.24 w/m2,
respectively. For LW↑, HAR v2 is the least overestimated and
decreasing dataset, reaching its lowest value on the half-month
scale with a bias of 6.97 w/m2. On the daily to half-month time
scales, the fits of the four reanalysis radiation datasets—MERRA2,
ERA5, HAR v2, and JRA55—exceed 0.9, except for JRA55, which
is 0.86 on the half-month scale, and well fit LW↑, with HAR v2
performing the best.

Based on the information reflected in Figure 6 and Table 7, it
can be seen that on the monthly scale, all four sets of reanalysis
datasets, except NCEP/CFSR, fit above 0.95 and well fit the LW↓
at this scale. The best fit is achieved by ERA5, with the smallest R2,
bias, RMSE, and MAE values of 0.98, 4.41, 8.02, and 6.35 w/m2.
All five sets of reanalysis datasets show a tendency to overestimate
LW↑, with HAR v2 being the best and showing the lowest degree
of overestimation and the smallest error, bias, RMSE, andMAE of

TABLE 6 | Evaluation of the day scales of longwave radiation from five sets of reanalysis datasets.

LW↓ LW↑

Daily 3 days 6 days Half-month Daily 3 days 6 days Half-month

MERRA2 Bias −9.52 −9.52 −9.52 −9.59 39.19 39.19 39.19 39.15
RMSE 34.98 20.69 15.28 11.95 42.97 42.11 41.65 41.27
MAE 27.57 16.46 12.24 10.23 39.27 39.19 39.19 39.15

ERA5 Bias 4.37 4.44 4.44 4.37 22.38 22.44 22.44 22.41
RMSE 37.64 18.08 12.88 9.21 33.37 31.31 30.8 30.36
MAE 30.81 14.85 10.11 7.24 26.99 24.45 24.03 23.64

HAR v2 Bias −0.63 −0.63 −0.63 −0.63 7.01 7.01 7.01 6.97
RMSE 40.92 22.27 15.9 11.41 15.31 12.45 10.81 9.6
MAE 32.88 18.15 12.97 9.17 12.43 9.76 8.67 7.65

JRA55 Bias 12.07 12.07 12.07 12.07 36.04 36.04 36.04 29.5
RMSE 35.32 23.19 18.63 15.76 38.81 37.87 37.4 33.94
MAE 29.63 19.16 15.47 13.25 36.1 36.04 36.04 30.71

NCEP/CFSR Bias 17.71 17.71 17.71 17.67 41.9 41.9 41.9 41.84
RMSE 60.05 51.26 46.93 43.37 57.56 56.53 55.52 55.22
MAE 48.08 39.81 36.44 34.64 48.24 47.62 47.08 46.69
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7.01, 9.16, and 7.56 w/m2. At the 3-month scale, MERRA2 and
HAR v2 show an underestimated trend, and the other three are
overestimated. The bias of HAR v2 is the smallest at −0.6 w/m2;
combining the other three indicators proves that ERA5 performs
best at this scale. The error in the ERA5 reanalysis datasets for
LW↑ is higher; the others are not significantly different from the
monthly scale, and HAR v2 is the least overestimated, with a fit of
0.98, and performs best on this scale. The errors in the five
reanalysis radiation datasets for LW↓ and LW↑ on the half-year
scale are essentially the same as those on the 3-month scale, and
the NCEP/CFSR fit is significantly better. The combined four
evaluation indicators performed best on this scale for HAR v2.
Compared with the monthly scales, the fit of the reanalysis data to
both LW↓ and LW↑ is significantly reduced on the annual scale,
except for the NCEP/CFSR, where the fit to LW↓ is improved.
MERRA2 fit is better than the other three datasets, with a slightly
higher error than ERA5, and its R2, bias, RMSE, and MAE values
were 0.95, −9.41, 9.46, and 9.41 w/m2, respectively, which are the
best performances in LW↓. ERA5 has a distinct advantage for
LW↑ with an R2 of 0.92. HAR v2, JRA55, and CFSR are not much
different; HAR v2 produces error less than both and performs
slightly better, whereas MERRA2 performs the worst, with R2,
RMSE, MAE, values of 0.62, 39.65, and 39.56 w/m2.

The downward and upward longwave radiation varies
considerably over the seasons, with the five sets of reanalysis
datasets showing significantly better applicability in winter than
in summer, as shown in Figure 7 and Table 8. Only ERA5 and
JRA55 are able to fit the variation in upward longwave radiation
in summer, with R2, bias, RMSE, and MAE values of 0.39, 0.26;
48.22 w/m2, 41.39 w/m2; 50.77 w/m2, 43.17 w/m2; and 48.24 w/
m2, 41.39 w/m2, respectively. MERRA2, HAR v2 and NCEP/
CFSR show a distinct trend of underestimation for LW↓, whereas
ERA5 and JRA55 are overestimated. The five biases of MERRA2,
ERA5, HAR v2, JRA55, and CFSR are −11.01 w/m2, 9.23 w/m2,
−11.69 w/m2, 12.22 w/m2, and −37.49 w/m2, respectively, with
the combined four assessment indicators ERA5 performing the
best. However, the five reanalysis datasets show a distinct
tendency to overestimate LW↑, with NCEP/CFSR

underestimating the least and MERRA2 underestimating the
most, with biases of 0.22 and 55.48 w/m2, respectively.

Compared with summer, the fit to downward and upward
longwave radiation improved for all reanalysis radiation datasets
in winter, but HAR v2 and CFSR still do not fit the LW↓ trend
well, with R2 of 0.25 and 0.08, respectively. The CFSR still does
not fit the LW↑ trend well, with R2 of 0.12. Only the MERRA2
reanalysis shows an underestimation trend for LW↓with a bias of
−9 w/m2, whereas the other reanalysis radiation datasets show an
overestimation trend for LW↓ and LW↑. ERA5 and JRA55 have
the best fit, with R2 values of 0.46 and 0.44 for LW↓, respectively,
and MERRA2 is the next best with an R2 of 0.39. All three models
fit better for downward solar radiation in winter. A combination
of the evaluation indicators shows that for LW↓, ERA5 has the
highest accuracy in winter, with the best performance of 31.67 w/
m2 for RMSE and 25.78 w/m2 for MAE. However, the fits of
ERA5, MERRA2, HAR v2, and JRA55 are similar, with R2 values
of 0.84, 0.84, 0.82, and 0.82 for LW↑; the HAR errors are
obviously lower than the three datasets, with biases, RMSEs,
and MAEs of −5.7, 14.2, and 11.42 w/m2, respectively, which are
the best performances.

The assessment of longwave radiation is also consistent with
previous studies, with HAR v2 and ERA5 performing better but
still performing better in winter than in summer on a seasonal
scale (Jiang et al., 2019; Zhang, 2019; Zhang et al., 2021).

Reasons for the Different Performances
The radiation assimilation performance of different reanalysis
datasets for glacier ablation areas (4,550 m) in the LHG basin
showed significant differences at different timescales. In alpine
regions, the accuracy of reanalysis datasets is significantly
influenced by topography, weather, land surface,
assimilation methods, and accurate observed datasets (Fan
and Van den Dool, 2008; Luo et al., 2019; Jia et al., 2021).
We analyze the possible reasons for the errors in the reanalysis
radiation datasets, taking into account the assimilation model
and the basic principles of the dynamic downscaling model.
First, different assimilation methods are the main error

TABLE 7 | Evaluation of monthly and annual scales of longwave radiation from five sets of reanalysis datasets.

SW↓ SW↑

Monthly 3 months Half-year Annually Monthly 3 months Half-year Annually

MERRA2 Bias −9.54 −9.54 −9.54 −9.41 39.18 39.18 39.18 39.56
RMSE 10.93 10.12 9.92 9.46 41.19 40.75 39.34 39.65
MAE 9.73 9.54 9.54 9.41 39.18 39.18 39.18 39.56

ERA5 Bias 4.41 4.41 4.41 4.69 22.45 22.45 22.45 22.88
RMSE 8.02 5.64 5.64 4.99 30.01 51.7 23.54 23.05
MAE 6.35 4.52 4.52 4.69 23.56 50.78 22.45 22.88

HAR v2 Bias −0.6 −0.6 −0.6 −0.94 7.01 7.01 7.01 7.46
RMSE 9.96 8.83 3.36 2.46 9.16 8.38 7.85 7.81
MAE 8.28 7.9 2.85 1.99 7.56 7.24 7.01 7.46

JRA55 Bias 12.04 12.04 12.04 12.25 36.04 36.04 36.04 36.22
RMSE 14.72 12.8 12.41 12.34 36.95 36.69 36.16 36.25
MAE 12.71 12.04 12.04 12.25 36.04 36.04 36.04 36.22

NCEP/CFSR Bias 17.7 17.7 17.7 18.49 30.85 41.91 41.91 42.52
RMSE 40.06 27.84 18.53 18.88 49.83 46.14 42.44 42.64
MAE 31.36 21.94 17.7 18.49 41.12 42.97 41.91 42.52
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FIGURE 7 | Trends in observed and reanalysis longwave radiation datasets in different seasons; (A) and (B) represent downward longwave radiation and upward
longwave radiation.

TABLE 8 | Results of the five sets of reanalysis datasets for longwave radiation evaluated in summer and winter.

LW↓ LW↑

Bias RMSE MAE R2 Bias RMSE MAE R2

MERRA2 Summer −11.01 36.05 29.55 0.17 53.48 55.26 53.48 0.19
Winter −9.00 34.60 26.89 0.39 34.24 37.78 34.34 0.84

ERA5 Summer 9.23 33.84 28.14 0.26 48.22 50.77 48.24 0.39
Winter 2.78 31.67 25.78 0.46 13.50 22.61 17.82 0.84

HAR v2 Summer −11.69 41.32 32.94 0.16 10.80 18.14 15.32 0.16
Winter 3.20 40.78 32.86 0.25 5.70 14.20 11.42 0.82

JRA55 Summer 12.22 37.08 31.05 0.16 41.39 43.17 41.39 0.26
Winter 12.01 34.69 29.14 0.44 34.18 37.18 34.26 0.82

NCEP/CFSR Summer −37.49 73.71 58.34 0.01 0.22 51.99 44.65 0.01
Winter 36.85 67.31 52.73 0.08 56.35 71.84 60.79 0.12
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sources. In the abovementioned results, the four sets of
reanalysis datasets, except NECP/CFSR, can roughly fit the
variation characteristics of downward shortwave radiation,
upward shortwave radiation, downward longwave radiation,
and upward longwave radiation. This finding is attributed
mainly to the production of MERRA2 using the GEOS
5.12.4 model, which reduces certain spurious trends and
jumps in the observing system and updates in the CIS
scheme (Rienecker et al., 2011; Gelaro et al., 2017; Wu
et al., 2019). JRA-55 uses the 4D-Var datasets assimilation
system with variable component bias correction (VarBC) for
satellite radiation and adds a new source of observed datasets
(Kobayashi et al., 2015). The better performance of HAR v2 is
attributed to the notion that it is generated for dynamical
downscaling using ERA5 driving WRF 4.1, with a horizontal
maximum of 10 km (Orsolini et al., 2019). ERA5 performs best
because it uses the 4D-Var dataset assimilation and prediction
model in Integrated Forecasting System (IFS) CY41R2, has 137
mixed pressure levels in the vertical direction and at the top of
0.01 h Pa, and has available surface and single layer datasets
(Hersbach et al., 2020).

Second, cloud cover is an important factor that affects the
wireless signal received by the sensor and that further affects the
dataset accuracy. The five sets of reanalysis radiation datasets
underestimate upward shortwave radiation with significantly
lower accuracy, possibly due to inaccurate estimates of
subsurface type by the respective models, inaccurate estimates
of atmospheric transparency and cloudiness, and biases in surface
reflectance simulations. The worse fit of the five reanalysis
datasets to downward longwave radiation may be caused by
inaccurate model estimates of cloudiness. In summer, the LHG
basin is influenced by the western wind band, with concentrated
precipitation and increased cloud cover, as well as clouds with a
less longwave radiation effect than shortwave radiation, making
the reanalysis radiation data more applicable to longwave
radiation than shortwave radiation. Third, the type of
underlying surface can also cause errors in the reanalysis
datasets. The applicability of the five reanalysis radiation
datasets is significantly higher in winter than in summer. The
high radiation values and temperatures above 0°C in the LHG
basin are mainly concentrated between June and August, whereas
temperatures are largely below 0°C from September to May. The
basin is in the ablation period from June to August, with rapid
changes in albedo, and reanalysis datasets have produced
inaccurate subsurface estimates, causing bias (Gueymard et al.,
2019).

There are many factors that affect the accuracy of reanalysis
datasets, but ERA5 is the optimum radiation reanalysis dataset for
LHG in the western Qilian Mountains. Possible main reasons are
listed as follows: ERA5 provides data for 240 variables with high
spatial and temporal resolution and updates the IFS cycle from
31r2 to 41r2 with the 4DVARmethod, absorbing a larger number
of observations and satellite data (Hersbach & Dee, 2016;
Hersbach et al., 2020). Furthermore, ERA5 assimilates
historical observations based on the data assimilation
ensemble (EDA) system developed by ECMWF to account for
errors in observation and forecast models, making ERA5 more

applicable (Meng et al., 2018). The HAR v2 reanalysis datasets are
formed by WRF4.1 power downscaling with ERA5 as the driving
data, and its horizontal resolution of 10 km is significantly higher
than those of the other four reanalysis datasets, making it second
only to ERA5 in terms of applicability (Wang et al., 2020b).

Therefore, to reduce the error of different assimilation
methods, many researchers have attempted to combine
multiple reanalysis datasets based on different merging
methods (Shi and Liang, 2013; Xu et al., 2020; Davison et al.,
2021). However, the accuracy of merged datasets cannot be suited
to regional scales to some extent, especially in alpine mountains.
To fundamentally solve the problem of errors in reanalysis
datasets, the main ideas should be to improve the sensor and
to eliminate the effect of clouds.

CONCLUSION

This article evaluates five sets of reanalysis radiation datasets
(ERA5, JRA55, MERRA2, HARv2, and NCEP/CFSR) at different
time scales based on 2010–2015 observed radiation datasets in the
4,550-m glacial ablation zone of the LHG basin. The conclusions
are presented as follows:

(1) For shortwave radiation, ERA5 has the best performance
compared with the other reanalysis datasets on different time
scales. For downward shortwave radiation, HAR v2 is better
than ERA5 on only two timescales, 3 months and half-year.
The upward shortwave radiation, ERA5, outperforms the
other reanalysis datasets on all 12 timescales. Therefore,
ERA5 is recommended first in regions without shortwave
radiation observations.

(2) For downward longwave radiation, ERA5 also performs
significantly better, with only MERRA2 outperforming
ERA5 on the daily and annual scales. For upward
longwave radiation, HAR v2 is better than the other
reanalysis datasets on all timescales, except for ERA5,
which has a better R2 of 0.92 on the annual scale.

(3) All the reanalysis datasets can show the variation trend of the
four radiation parameters in different seasons. They have
better performance in winter and worse performance in
summer because of much cloud cover. However, ERA5 is
still the most recommended dataset.
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An Assessment of Glacier Inventories
for the Third Pole Region
Xia He1,2 and Shiqiao Zhou1,2*
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A glacier inventory contains data that are important for understanding the hydrology, water
resources, and impacts of climate change in glaciated regions. Ten glacier inventories have
been created for the Third Pole Region (TPR) or high-mountain Asia, but they vary largely in
spatial coverage area and data quality. Therefore, it is necessary to assess the data quality
to help potential users choose the right glacier inventories for their research. Using the
analytical hierarchy process, this study selects eight assessment factors and quantifies the
quality of eight glacier inventories of the TPR. The eight glacier inventories that we
assessed are the Randolph Glacier Inventory (RGI), the Glacier Area Mapping for
Discharge in Asian Mountains (GGI18), the Second Chinese Glacier Inventory (CGI-2),
the Glacier Inventory of the Hindu Kush–Himalayan Region (HKHGI), the Glacier Inventory
for the Western Himalayas (WHGI), the Glacier Inventory for the Karakoram and Pamir
Region (KPGI), the Second Glacier Inventory of Pakistan (PGI-2) and the Glacier Inventory
for the Southeastern Tibetan Plateau (SETPGI). The assessment results indicate that the
overall quality of the small-scale glacier inventories of WHGI, KPGI, PGI-2, and SETPGI is
higher than that of the large-scale inventories of RGI, GGI18, CGI-2, and HKHGI. For the
large-scale inventories, the quality-ranking order from high to low is CGI-2, GGI18, RGI,
and HKHGI. However, the comprehensive quality of CGI-2 and GGI18 is comparable over
the area covered by CGI-2. The comprehensive quality of CGI-2, GGI18, and RGI exhibits
clear spatial differences. Overall, the data quality is higher for the inner TPR than for the
surrounding areas. By merging the products of the eight glacier inventories, a new glacier
inventory product of the best comprehensive quality was derived for the entire TPR. This
new product resembles the spatial distribution of the best-quality glacier inventories of the
regions where the different products overlap. In terms of specific regions, the CGI-2 and
GGI18 are the best products for most parts of the TPR in China, except for an area of
southeastern Tibet where the highest-quality data are from the SETPGI. The other main
distributions of the best products are the WHGI for the western Himalayas, the GGI18 and
HKHGI for the Hindu Kush and the middle and eastern Himalayas, the PGI-2 for Pakistan,
the KPGI for the Karakorum–Pamir area, and the GGI18 and CGI-2 for the Tianshan
Mountains. The new data product greatly promotes the quality of a single glacier inventory
for the entire TPR. This database will meet the needs of a variety of potential researchers,
including those who prefer to get information for a particular parameter from a single glacier
inventory (http://data.tpdc.ac.cn/en/data).
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1 INTRODUCTION

Glaciers are significant solid water resources and are extensively
developed in the polar regions and high mountains of the middle
and low latitudes. According to the Randolph Glacier Inventory
(RGI) Consortium 2017 (RGI Consortium 2017), approximately
215,000 glaciers are distributed in the high-mountain regions
around the world. It is critical to study mountain glaciers, as their
mass balance and meltwater amount are very sensitive to climate
change, and they are often located in close proximity to human
residential areas (Immerzeel et al., 2013). Determining the
number, area, distribution, and rate of change to glaciers is
crucial for the development of regions where sources of water
are scarce. Quantifying these glacial parameters, especially for
large regions, is generally based on a glacier inventory. A glacier
inventory contains standardized information about the attributes
of individual glaciers, including longitude, latitude, length, area,
elevation, slope, aspect, etc. This information provides a basis for
research related to glacier change (Sorg et al., 2012), ice volume
estimates (Radić and Hock, 2010; Grinsted, 2013; Bahr et al.,
2015; Farinotti et al., 2019), hydrological modeling (Radić and
Hock, 2011), regional water resource planning, and prediction of
global sea level change (Gardner et al., 2013).

Glacier inventory databases have been established with the
development of remote-sensing technology in recent decades
(Raup et al., 2007; Sakai, 2019). In the past, glaciers were
investigated primarily by field observations or using
topographic maps and low-altitude aerial photography (Shi
et al., 2009). As most glaciers are distributed in remote regions
with harsh climates that are difficult to access, only 1% of global
glaciers were regularly monitored before the 1970s (Shi et al.,
2009; WGMS, 2021). In recent decades, the accumulation of
satellite image data, such as from Landsat (MSS/TM/ETM+),
ASTER, SPOT, ALOS PALSAR, and Sentinel-2, has allowed for
the development of glacier inventory databases. To date, more
than one hundred glacier inventories of different scales have been
created by different organizations and individual researchers
(Raup et al., 2007; Paul et al., 2009b; Cogley, 2009; Ohmura,
2009; Bajracharya and Shrestha, 2011; Frey et al., 2012; Williams,
2013; Bajracharya et al., 2014; Fischer et al., 2014; Guo et al., 2015;
Nuimura et al., 2015; Smiraglia et al., 2015; Ke et al., 2016; Ye
et al., 2017; Mölg et al., 2018; Sakai, 2019). These glacier
inventories provide vital data for a variety of research
objectives (Immerzeel et al., 2010; Nuimura et al., 2012; Huss
and Hock, 2015; Dehecq et al., 2019; Naegeli et al., 2019; Shannon
et al., 2019). However, these data inventories vary in many
aspects, including their spatial coverage, remote-sensing data
source, mapping method, interpretation, and intended use
(Racoviteanu et al., 2009; Ojha et al., 2017; Paul et al., 2017).
These differences raise the question of how to choose an
appropriate inventory or product for a specific application.
Therefore, it is necessary to assess the quality of glacier
inventories to provide information for people to choose the
best glacier inventory for their research.

The Third Pole Region (TPR) refers to high Asia (25–45°N,
65–105°E), including the Tibetan Plateau and its surrounding
high-altitude areas of the Himalayas, the Hindu Kush, the Pamirs,

and the Tianshan Mountains. The TPR corresponds to the
regions of Central Asia, South Asia West, and South Asia East
in the RGI (Pfeffer et al., 2014). With an average height of more
than 3,000 m above sea level, the TPR has a total number of
95,536 glaciers, covering 97,606 km2 (RGI Consortium 2017). In
the context of global warming, significant glacier change has
occurred in the TPR in recent decades (Bolch et al., 2012; Jacob
et al., 2012; Yao et al., 2012; Zemp et al., 2015; Brun et al., 2017).
Glacier inventory data are essential to accurately quantify how
glaciers are changing. We investigated glacier inventories and
found that there are ten available for the TPR (Table 1). These
glacier inventories partly or entirely overlap each other in terms
of their spatial extent. There are often significant differences in
glacier number and area between overlapping inventories. For
example, for an area of the Tianshan Mountains (Area A in
Figure 1), the Second Chinese Glacier Inventory (CGI-2) gives a
total glacier number and area of 160 and 1,219.3 km2, respectively
(Guo et al., 2015), while the updated version of the Glacier Area
Mapping for Discharge in AsianMountains (GAMDAM, GGI18)
gives values of 191 and 938.9 km2, respectively (Nuimura et al.,
2015; Sakai, 2019). Therefore, the data quality of glacier
inventories needs to be assessed, and no attempt has been
made on this work so far. This study performs a
comprehensive assessment of the quality of glacier inventories
in the TPR using a multi-factor index method.

2 DATA AND METHODS

Among the current ten glacier inventories of the TPR (Table 1),
two are hard to assess due to the lack of necessary information.
One is the World Glacier Inventory (WGI) (Cogley, 2009), and
the other is the Tibetan Plateau glacier data product (TPGI) by Ye
et al. (2017). The WGI is a tabular dataset that lacks glacier
outlines, and the TPGI is missing the recording dates of remote-
sensing images. The following eight inventories were assessed in
this study: the RGI (version 6.0); the GGI18; the CGI-2; the
Glacier Inventory of the Hindu Kush–Himalayan Region
(HKHGI); the Glacier Inventory for the Western Himalayas
(WHGI); the Glacier Inventory for the Karakoram and Pamir
Region (KPGI); the Second Glacier Inventory of Pakistan (PGI-
2); and the Glacier Inventory for the southeastern Tibetan Plateau
(SETPGI). Among these inventories, the RGI is somewhat special,
as it directly adopts and merges other inventories into one
database. As the RGI is a commonly used inventory on a
global scale, it is included in this study. Key information about
each glacier inventory is listed in Table 1. The eight glacier
inventories vary in their spatial extent, and the coverage overlap
of their products generates nine regions, with each covered by a
group of different overlapping products (Figure 1; Table 2).

Glacier area is the most crucial attribute because it is a
fundamental parameter for many research applications. This
study identified the primary factors that influence the quality
of glacier area data and established a grading index system of
these factors based on the analysis of possible error sources in
mapping glacier outlines. The weight of each factor was calculated
using the analytic hierarchy process (AHP). Using the grading
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indices and weights of the factors, an assessment value was
obtained for each of the assessment units. All of the
assessment values were subsequently graded, and the grade of
each assessment unit was identified. The assessment unit was
determined to be 185 × 185 km2, which corresponds to one scene
of a Landsat remote-sensing image.

2.1 Selection and Indexing of Assessment
Factors
Data of glacier areas collected in a glacier inventory are
primarily obtained from satellite images. According to Paul
et al. (2017), this area-obtaining process generally includes
four stages: image selection, pre-processing, image
interpretation, and post-processing. The assessment factors
were screened and selected from the possible error sources
involved in these four stages.

2.1.1 Factors Related to Image Selection
The remote-sensing images used by glacier inventories are mainly
sourced from Landsat 5, 7, 8, ASTER, IKONOS, SPOT, and ALOS
PALSAR. (Pfeffer et al., 2014; Sakai, 2019). Factors related to
image selection can be classified into two types: the image
resolution and scene conditions of seasonal snow cover,
shadows, and cloud cover.

The image resolution directly affects glacier mapping.
Generally, outlining the area of glaciers becomes increasingly
difficult as the image resolution decreases (Paul et al., 2016). The
image resolution was therefore selected as an assessment factor
(F1). Seasonal snow cover and shadows, especially those at glacier
boundaries, cause uncertainties in the mapping of glacier
outlines. These uncertainties, which generally increase with
increasing area of snow cover or shadows, are hard to
eliminate even in the highest quality images (Bolch et al.,
2010; Paul et al., 2011; Paul et al., 2017). Therefore, seasonal

TABLE 1 | Key information about the ten glacier inventories for the TPR.

Name Period Note Data/method Source

WGI
(version 2)

1900–2003 Tabular dataset only; rescued inventories that have
been lost in version 1 and added new inventories of
Canada and the sub-Antarctic, including 133,000
glaciers and covering ~48% of global glaciers

Based primarily on aerial photographs and
Landsat scenes

http://nsidc.org/data/G01130

RGI
(version
6.0)

1999–2010 Released in July 2017, improved coverage of the
conterminous US, Scandinavia and Iran, including
~215,000 glaciers with an area of 700,000 km2

Merged glacier inventory of other datasets;
principally Landsat 5 TM, Landsat 7 ETM+;
automatic or semi-automatic methods, based on
the distinctive spectral reflectance signatures of
snow and ice in simple and normalized band ratio
maps

http://www.glims.org/RGI/

GGI18 1990–2010 ~134,770 glaciers covering an area of 100,693 ±
11,790 km2 in high Asia mountains

Updated from its old version of GGI15; 453
Landsat TM and ETM + scenes; manually
delineated glacier outlines

Nuimura et al. (2015), Sakai (2019)

CGI-2 2006–2011 Updated ~42,000 glaciers, covering 43,087 km2 Landsat scenes; partial data from its old version
of CGI-1; band ratio segmentation methods

http://data.tpdc.ac.cn/en/

HKHGI 2005 ± 3 Includes ~54,000 glaciers, 60,000 km2 in Hindu
Kush–Himalayan region except China

Landsat images; object-based image analysis
approach

http://geoportal.icimod.org/

WHGI 2000–2002 Supplemented glaciers not included in GLIMS Seven Landsat Thematic Mapper (TM) scenes
for the Himalayan region and ALOS PALSAR
data; band ratio method and InSAR coherence
technique

http://Globglacier.ch/

KPGI 1998–2002 Mapped more than 27,800 glaciers, covering
35,520 km2

Landsat TM, ETM + scenes, ALOS and PALSAR
data, improved mapping quality by 15 m
panchromatic bands; semi-automatic band ratio
method and InSAR coherence technique

https://doi.pangaea.de/10.1594/
PANGAEA.894707

PGI-2 2013–2015 Updated 6,668 glaciers, covering 13,214 km2 24 scenes Landsat OLI, partial SPOT 5–7 and
Sentinel-1, 2 data; semi-automatic normalized
difference snow index method and InSAR
coherence technique

Published by Pakistan Space &
Upper Atmosphere Research
Commission

SETPGI 2011–2014 Updated glaciers in the Southeastern Tibetan
Plateau

Landsat OLI, TM/ETM+ and L-band PALSAR
data; semi-automatic normalized difference
snow index method and InSAR coherence
technique

http://www.sciencedb.cn/
dataSet/handle/376

TPGI Mid-1970s/
2000/2013

Mapped glaciers of three separate periods,
covering 44,366 ± 2,827 km2 in mid-1970s,
42,210 ± 1,621 km2 in 2001, and 41,137 ±
1,616 km2 in 2013

Landsat MSS, Landsat 7 TM(ETM+), Landsat 8
OLI and HJ 1A/1B; manually delineated glacier
outlines

http://data.tpdc.ac.cn/en/

WGI, World Glacier Inventory; RGI, Randolph Glacier Inventory; GGI18, Updated GAMDAM (Glacier AreaMapping for Discharge in Asian Mountains) Glacier Inventory; CGI-2, the Second
Chinese Glacier Inventory; HKHGI, Glacier Inventory of the Hindu Kush–Himalayan Region compiled by ICIMOD (International Centre for IntegratedMountain Development);WHGI, Glacier
Inventory for the Western Himalayas established by the GlobGlacier project; KPGI, Glacier Inventory for the Karakoram and Pamir region; PGI-2, the Second Glacier Inventory of Pakistan;
SETPGI, Glacier Inventory for the Southeastern Tibetan Plateau; TPGI, Glacier Inventory for the Tibetan Plateau for the mid-1970s, 2000, and 2013.
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snow cover (F2) and shadows (F3) were both selected as
assessment factors. A certain distance around the glacier
boundary is known as the “buffer zone” and was determined
to be 150 m by Guo et al. (2015). The factor of seasonal snow
cover was then quantified in terms of the fraction of snow cover in
the 150 m wide buffer zone. The factor of shadows is somewhat
different, as shadows also cause uncertainties in the inner part of a
glacier. The shadow factor was quantified in terms of the fraction
of shadow both on the glacier and in the buffer zone. As the cloud
cover can be removed by combining scenes from different dates
(Paul et al., 2017) or using microwave remote-sensing technology
(e.g., synthetic aperture radar (SAR)), this factor was excluded.

The snow cover fraction in the buffer zone at the time of image
acquisition was calculated using the daily cloud-free snow
product of MODIS in the northern hemisphere (Huang, 2018)
from 2000 to 2016. A small portion of the RGI, GGI18, and KPGI
was created using remote-sensing images taken prior to 2000, and
so, the F2 values for a portion of the data could not be directly
calculated due to the lack of snow products. Using MODIS daily
data, the data gap of F2 values for the pre-2000 years was filled
with the mean F2 values in the same data window of every year

from 2000 to 2016. The data window was 9 days and was centered
on the pre-2000 imaging day. This data gap filling would not
contribute a large error from temporal snow cover changes as the
long-term variability of snow cover over the Tibetan Plateau is
minimal (Qin et al., 2006; Li et al., 2017).

The shadows, both on the glacier and in the buffer zone, can be
obtained from remote-sensing optical data or digital elevation
models (DEM). The former method is time-consuming and
requires the original remote-sensing data and calculations. Du
(2014) compared the two methods and found that the DEM-
based method can reduce misinterpretations and is more accurate
than the former. This study uses the SRTM (Shuttle Radar
Topography Mission) DEM version 4.1, combined with the
data about solar altitude angle and azimuth at the time of
image acquisition to generate terrain shading images with the
ArcGIS Shaded Relief Map (Hillshade).

2.1.2 Factors Related to Pre-Processing
The pre-processing generally includes radiation calibration and
geometric calibration. As these two calibrations had been
performed using the same method for all of the satellite

FIGURE 1 |Overlap of the glacier inventory products generates nine regions, with each covered by a group of different overlapped products. The three areas with
dashed lines, A, B, C are those of overlapped inventories that have a same timestamp for each area. See Table 2 and the text for details.

TABLE 2 | Spatial coverage of the glacier inventory products, in accordance with the regions where the different products overlap.

Region/glacier
inventory

RGI GGI18 CGI-2 HKHGI WHGI KPGI PGI-2 SETPGI

1 × × × × × - - -
2 × × - × - - × -
3 × × - × × - - -
4 × × × × - - - -
5 × × - - - × - -
6 × × - × - - - -
7 × × - - - - - ×
8 × × × - - - - -
9 × × - - - - - -

× covered; - uncovered.
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images used in glacier inventories, they were excluded in the
factor selection. However, the Scan Lines Corrector (SLC) on
Landsat 7 experienced a permanent mechanical failure in 2003,
and the malfunction caused scan line overlaps, stripes on the
image, and a loss of imagery data, which hampers the normal use
of the data and brings large uncertainties to glacier area data
(Bajracharya and Shrestha, 2011; Paul et al., 2017). Therefore,
stripe processing was selected as an assessment factor (F4).

2.1.3 Factors Related to Image Interpretation
Image interpretation includes the identification and outline
mapping of a glacier. During this step, the uncertainties
originate mainly from the digitization of debris-covered
glaciers. While different glacier mapping methods have
little influence on the accuracy of clean glacier outlines
(Paul and Kääb, 2005; Paul et al., 2015), the mapping of
debris-covered glaciers is more complex, and various
methods exist using optical and thermal remote-sensing
data. The use of optical data often makes it challenging to
differentiate between moraines with and without underlying
ice (Paul et al., 2004; Smith et al., 2015). The thermal method
is also subject to the limitation of spatial resolution (Alifu
et al., 2015; Paul et al., 2015). In recent years, an increasing
number of studies have combined optical image classification
with Interferometric Synthetic Aperture Radar (InSAR) data
(coherence images) to identify debris-covered glaciers (Frey
et al., 2012; Ke et al., 2016; Lippl et al., 2018; Mölg et al., 2018).
This combination of methods has been reported to be more
robust than the optical or thermal remote-sensing methods
alone (Brenning et al., 2012; Zbyněk et al., 2012). In addition
to the method, the debris-covered extent of a glacier also
determines the uncertainty of a measured glacier area. A
larger debris-covered fraction of a glacier could lead to a
higher uncertainty. Therefore, both the method of glacier
outline mapping (F5) and the debris-covered extent of a
glacier (F6) were selected as assessment factors. The
debris-covered fraction of a glacier was computed using
the RGI individual glacier dataset developed by Herreid
and Pellicciotti (2020), which was demonstrated to be
more accurate than the data from Scherler et al. (2018)
(Herreid and Pellicciotti, 2020).

2.1.4 Factors Related to Post-Processing
Binary images of glaciers and non-glaciers obtained from
automated classification techniques require post-processing to
produce the final glacier outlines. The post-processing includes a
filtering or morphological opening-and-closing operation, a
smoothing process, setting a threshold for the minimum
glacier size, quantifying glacier complex segmentation, and
manual corrections.

Filtering is primarily used to eliminate small snow patches or
fill internal debris and shadow gaps on glaciers. This process has
little influence on the ultimate glacier areas (Paul et al., 2017). The
process of smoothing sawtooth outlines is performed to improve
the aesthetics of glacier boundaries. This is considered to have a
very minimal impact on the glacier area due to the minor

revisions (Guo et al., 2015). Therefore, both filtering and
smoothing were not considered as assessment factors.

After smoothing the glacier outlines, small snow cover patches
need to be removed. This process is usually achieved by setting a
minimum glacier area threshold and is different for different
glacier inventories, generally ranging from 0.01 to 0.05 km2.
Setting a larger minimum glacier area threshold (e.g.,
0.05 km2) can more likely omit small glaciers, and under good
conditions, glaciers of 0.01 km2 can be identified in imagery with
15–30 m resolution (Paul et al., 2009a). Therefore, the minimum
glacier area threshold was selected as an assessment factor (F7).

Glacier complex segmentation refers to the segmentation of
an acquired glacier complex into individual glaciers. This
process does not impact the total glacier area, although it
may influence the glacier number. This was not considered as
an assessment factor.

The manual correction primarily corrects incorrectly
identified snow/shadows and the boundary of debris-covered
glaciers (Racoviteanu et al., 2009). This correction is
influenced by data features and the personal expertise and
judgment of researchers (Andreassen et al., 2008; Paul et al.,
2013; Guo et al., 2015; Romshoo et al., 2021). As personal
expertise is complex and hard to quantify, only the data
features were considered. Of the data features, the glacier size
is considered to be a key factor affecting the manual correction, as
the larger the size of the glacier, the less the area uncertainty is
(Paul et al., 2013; Nagai et al., 2016; Romshoo et al., 2021).
Therefore, the manual correction related to the glacier size was
selected as an assessment factor (F8).

Glacier size was indexed in relation to the glacier area
uncertainty. Paul et al. (2013) investigated the differences of
glacier area quantified by different researchers by measuring
the same glaciers of different sizes using the same images and
under the same conditions. They found that the relative area
difference of a glacier tends to be smaller with increasing glacier
size. The relative standard deviations are <5% for glaciers larger
than 1 km2 and 1%–15% for smaller glaciers. Based on these data,
it is assumed that the uncertainty of area for glaciers larger than
1 km2 is one-third of that for smaller glaciers. Following this, the
relative uncertainty of area of an assessment unit is determined in
terms of the sum of the weighted areal ratios for glaciers both
larger and smaller than or equal to 1 km2, which equals (a+(1/3)
*(1-a)), where a is the areal ratio of glaciers smaller than or equal
to 1 km2 in an assessment unit.

2.1.5 Summary of the Selected Factors and Their
Indexing
Eight assessment factors were determined using the screening and
selection process described above (Table 3). The eight factors
were divided into two groups. One group contained the
quantifiable factors F2, F3, F6, and F8, whose values were
directly normalized to 0–100. The other group contained the
factors F1, F4, F5, and F7, which could not be quantified or whose
values are discontinuous. These factors were then classified into
2–4 categories, and each category was assigned an index value
(Table 3).
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2.2 Determining the Weights of Assessment
Factors Using the AHP
The weight for each factor was calculated using the analytic
hierarchy process (AHP), which is a multi-criteria decision-
making technique developed to analyze complex problems by
combining qualitative and quantitative analysis (Saaty, 1990).
The AHP enables people to make the most appropriate decision
from various criteria by mathematically estimating the relative
importance of factors to an event through pairwise comparison
and expert judgment. Pairwise comparison of factors allows for
the assessment of the significance of a contributing factor
compared with other factors and determines the value for each
of these factors. A pairwise comparison matrix is generated by
assigning a value of 1–9 to each pairwise comparison. A value of 1
in the pairwise comparison matrix means that both factors are
equally important, 3meansmoderate importance, 5 means strong
importance, 7 means very strong importance over the other, and

9 means that one of the factors is extremely important compared
with the other. Values of 2, 4, 6, and 8 express intermediate
importance values on a scale of 1–9.

The pairwise comparison matrix of this study is shown in
Table 4 and was derived based on literature data and expert
consultation. In the Glaciers_cci project, Paul et al. (2017)
determined that the dominant sources of uncertainty and
error for glacier outlines are clouds, seasonal snow, debris
cover, and shadow. They found that ice-covered steep
mountain flanks might not be included, and glacier extents,
including perennial snowfields, can easily be 30% larger or
smaller than the data suggests. The potential area differences
resulting from interpretations of debris cover can exceed 50% of
the total area. On average, a 10%–20% uncertainty for the area of
debris-covered glaciers has to be considered (Paul et al., 2017).
Nuimura et al. (2015) found a difference of 24% in the total
glacier area of high-mountain Asia between GGI15 and RGI and
suggested that the difference was probably due to glacial area
change, the inclusion or exclusion of shaded glacier areas,
seasonal snow cover, and upper steep headwalls. This study
also made a comparison between the GGI15 and WHGI and
found a glacier area difference of 15% due to differing
interpretations of upper steep headwalls. Bolch et al. (2010)
estimated an error of ±3% for scenes that have late-lying
snow, based on tests where they visually compared
automatically derived and manually improved outlines from
TM scenes in glacial inventories from western Canada. In the
glacier inventory for North Asia, the uncertainty from the
manual correction of automatically classified outlines was
estimated to be 5.3%, and the uncertainty from image
conditions was assigned as 5%, after greatly reducing the

TABLE 3 | Assessment factors and their indexes.

Working stage Factor Index Category Normalized index
value

Image selection Image resolution (F1) Resolution size 15 m (panchromatic band) 19
30 m (TM, ETM+, OLI) 38
78 m (MSS) 100

Seasonal snowcover (F2) Snowcover fraction in the buffer zone — 0–100
Shadow (F3) Fraction of shadow both on the glacier and in

the buffer zone
— 0–100

Pre-processing Stripe processing (F4) Stripe processing SLC-on 0
SLC-off, corrected 50
SLC-off, uncorrected 100

Image
interpretation

Method for the outline mapping of debris-
covered glacier (F5)

Robustness of method Combined with InSAR technique 0
Combined with morphometric
parameters

25

Optical remote-sensing method
alone

50

Non-special treatment 100
Debris-covered extent of glacier (F6) Debris-covered fraction of the glacier — 0–100

Post-processing Minimum glacier area threshold (F7) Threshold value of the minimum glacier area 0.01 km2 20
0.02 km2 40
0.05 km2 100

Manual correction (F8) a + 1
3 *(1 − a) — 0–100

a denotes the areal ratio of glaciers not larger than 1 km2 in an assessment unit.

TABLE 4 | Pairwise comparison matrix of the factors used in the AHP and the final
weights of the factors. See Table 3 for the factors.

Factor F1 F2 F3 F4 F5 F6 F7 F8 Weight

F1 1 2 3 4 3 3 4 3 0.29
F2 1/2 1 2 3 2 2 3 2 0.18
F3 1/3 1/2 1 2 2 2 2 2 0.13
F4 1/4 1/3 1/2 1 1/2 1/2 1/2 1/2 0.05
F5 1/3 1/2 1/2 2 1 1/2 2 1/2 0.09
F6 1/3 1/2 1/2 2 2 1 2 2 0.11
F7 1/4 1/3 1/2 2 1/2 1/2 1 1/2 0.06
F8 1/3 1/2 1/2 2 2 1/2 2 1 0.09
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effects of image conditions through the manual selection and
comparison with Google Earth images (Earl and Gardner, 2016).
In Paul et al. (2013), the standard deviation of the difference in
the glacier areas of the same glacier derived by different people
was 1.6%–30.1% for individual glaciers, with average values of
5.7%, 3.4%, and 3.6% for the three test regions of Alaska, Otztal
Alps, and Switzerland, respectively. Using the RGI data from the
TPR, glacier areas less than or equal to 0.05 km2 were calculated
to be 0.3% of the total glacier area. This value provides a basis for
estimating the relative importance of the minimum glacier area
threshold factor.

The weights of the eight factors were calculated using the
pairwise comparison matrix (Table 4) by following the AHP
calculations (Saaty, 1990) and are shown in Table 4.

The consistency ratio was calculated based on the eigenvalues
of the factors’matrix to evaluate the consistency of the judgments.
A consistency ratio of <0.1 is considered to be acceptable. If the
consistency ratio is >0.1, then serious inconsistencies occur, and
the AHP may not give meaningful judgments (Prakash and
Nagarajan, 2017). The consistency ratio for the comparisons
in Table 4 was calculated to be 0.03, indicating good
consistency of the judgments.

2.3 Grading of Assessment Units
The weighted index value of each factor for an assessment unit
was computed by multiplying the factor weight with the
normalized index value. The integrated index value of each
assessment unit was then calculated by adding the weighted
index values of the eight factors. Figure 2 shows the frequency
distributions of the integrated index values for all assessment
units of the eight glacier inventories. The frequencies show a
roughly normal distribution. According to the characteristics of
the frequency distributions, the integrated index values ranging
from 29.1 to 51.3 were equidistantly divided into four grades: ＜
36, 36―41, 41―46, and S46 for grades 1, 2, 3, and 4,
respectively. Grade 1 represents the highest comprehensive
quality or lowest uncertainty, while grade 4 represents the
lowest quality and highest uncertainty. The cumulative

frequencies were then derived to be 18.4%, 39.4%, 30.1%, and
12.1%, respectively, for grades 1, 2, 3, and 4 (Figure 2).

3 RESULTS

3.1 Key Results
Figure 3 shows the results of the comprehensive quality
assessment for each of the eight glacier inventories. Overall, it
is clear that the comprehensive quality of small-scale glacier
inventories (WHGI, KPGI, PGI-2, and SETPGI) is generally
higher than that of the large-scale glacier inventories (RGI,
GGI18, CGI-2, and HKHGI). The small-scale glacier
inventories are dominated by grades 1 and 2, except for the
PGI-2, where grade 3 makes up a large portion of the data. In
contrast, grades 3 and 4 account for a large proportion of the
grades in the large-scale glacier inventories. This difference is
mainly due to the fact that the small-scale glacier inventories were
completed more recently using new satellite data and advanced
technology than the large-scale inventories. For example, InSAR
data was applied in the development of WHGI, KPGI, and
SETPGI (Frey et al., 2012; Ke et al., 2016; Mölg et al., 2018).
In addition, the workload of small-scale inventories is much
smaller than that of large-scale inventories, which allows for more
detailed work.

The quality of the large-scale products of RGI, GGI18, CGI-2
exhibits clear spatial differences. Grades 1 and 2 are mainly
distributed in the inner part of the TPR, while grades 3 and 4
are largely on the periphery (Figure 3). Overall, the quality of the
glacier inventories of the inner TPR is higher than that of the
surrounding areas. This pattern is primarily due to the lower
proportion of debris-covered glacier area (Figure 4A) and snow
cover (Figure 4B) in the inner TPR. The statistical results of the
assessment (Figure 5) indicate that the ranking order of
comprehensive quality, from high to low, is CGI-2, GGI18,
and RGI. However, it should be noted that the coverage area
of the CGI-2 is smaller than that of the GGI18 and RGI
(Figure 3). In addition, one portion of the CGI-2 in the
southeast Tibetan Plateau (27–31°N, 90–94°E), with a total
glacier area of 8,753 km2, is not included in the assessment as
it was simply inherited (i.e., not updated) from the CGI-1 and the
previous version lacks necessary information such as the imaging
date for assessment. For the CGI-2 area of this study, namely all
areas in China excluding the area of the southeast Tibetan Plateau
mentioned previously, the areal proportion of grades 1–4 is 8.5%,
53.5%, 27.6%, and 10.4%, respectively, for the CGI-2, and 10.1%,
51.1%, 30.8%, and 8.0% for the GGI18. These data indicate the
comparable comprehensive quality of these two glacier
inventories.

Table 5 presents the comprehensive quality-grading results of
the eight glacier inventories in terms of the nine regions where the
different products overlap (Figure 1) and the areal percentages of
the different grades for each inventory. Each region is covered by
a different group of overlapping glacier inventories, and each
glacier inventory is different in the areal percentage of grades,
except for the GGI18, the CGI-2, and the RGI in Region 8, where
the areal percentages of grades are comparable. The comparable

FIGURE 2 | Frequency distributions of the integrated index values for all
assessment units of the eight glacier inventories.
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grading results of CGI-2 and RGI are due to the fact that the RGI
for this region was almost entirely adopted from the CGI-2. Based
on these results, the best-quality glacier inventory for each region
was identified (Table 5).

3.2 A New Merged Product and Database
A new glacier inventory product of the best comprehensive
quality was derived for the entire TPR (Figure 6) by merging
products of the eight glacier inventories using the best-quality
assessment units or scenes of the overlapped products. This new

product largely resembles the spatial distribution of the best-
quality glacier inventories of the overlapping regions (Figure 1;
Table 5), as most of the best-quality assessment units belong to
the best-quality inventories of the regions. The CGI-2 and GGI18
are the best products for most parts of the TPR in China, except
for a partial area of southeastern Tibet, where the best is the
SETPGI. The other main distributions of the best products are the
WHGI for the western Himalayas, the GGI18 and HKHGI for the
Hindu Kush, and the middle and eastern Himalayas, the PGI-2
for Pakistan, the KPGI for the Karakorum–Pamir area, and the

FIGURE 3 | Comprehensive quality-grading results of the eight glacier inventories (Grades 1 to 4 represent high to low quality). See Table 1 for the abbreviations.

FIGURE 4 | The spatial distributions of (A) the debris-covered ratio of glacier area calculated using individual glacier datasets by Herreid and Pellicciotti (2020), (B)
snow cover fraction in the buffer zone of a glacier calculated using the GGI18 and the daily cloud-free snow products of MODIS in the northern hemisphere (Huang, 2018)
from 2000 to 2016.
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GGI18 and CGI-2 for the Tianshan Mountains. In the merged
product, grades 1 and 2 amount to 74.0% of the total TPR glacier
area, which is much higher than the value for the RGI and GGI18
(Figure 5). Grades 3 and 4 only account for 23.8% and 2.2%,
respectively, of the total TPR glacier area. A total number of
109,460 glaciers with an area of 101,250 km2 are included in the
merged product.

On the basis of the above work, an open-access database was
created (http://data.tpdc.ac.cn/en/data). The database provides
the following data: (1) glacier information inherited from the
original inventories, including longitude, latitude, length, area,
elevation, slope, aspect, and acquisition time of the remote-
sensing data; (2) information of the data assessment, including
the normalized index values of the eight assessment factors,
integrated index values and the grade of scenes for all eight
inventories, recorded for individual glaciers. This database will
meet the needs of potential users who wish to know the best
glacier inventory of comprehensive quality for a specific region or
prefer to get information for a particular parameter (e.g., seasonal
snow cover) from a single glacier inventory.

4 DISCUSSION

The AHP-based approach of glacier inventory assessment is
inevitably somewhat subjective, since it is built on a semi-
quantitative basis (Prakash and Nagarajan, 2017). In some
cases, it is a little difficult to determine the importance of one
assessment factor relative to another using pairwise comparison,
although substantial literature data were reviewed and expert
consultations were conducted. An example is the comparison of
the two factors of stripe processing and the minimum glacier area
threshold. Nevertheless, these factor pairs are the less important
assessment factors, and more data is available for the more
important factors.

The cloud cover and/or snow cover removal in glacier
inventorying sometimes results in a collage of images with
different imaging times for a single scene or assessment unit

(Paul et al., 2017). This time difference or time range, which can
exceed 10 years (e.g., in GGI18), leads to uncertainty in the glacier
area for a specific year due to glacier change (Ye et al., 2017).
Strictly, this glacier change should also be selected as an
assessment factor, considering that the assessment unit
corresponds to the scale of one scene of a Landsat image.
However, all glaciers are time-stamped, which excludes the
impact of glacier change from the perspective of an individual
glacier, and so glacier change was not selected as an assessment
factor.

For the factor of seasonal snow cover, the resolution of the
applied MODIS product (500 m) may be too low for individual
glaciers. However, this resolution is high enough for the
assessment unit of 185 × 185 km2 used in this study, and a
product of higher resolution is not available at present. A
comparison was made to assess the data gap filling of partial
snow cover, which is a method that is commonly used in
meteorology. The comparison was conducted between the F2

FIGURE 5 | Statistical comprehensive quality-grading results of the eight
glacier inventories in terms of the areal proportion of the grades.

TABLE 5 | Comprehensive quality-grading results of the eight glacier inventories
for the nine regions of different product overlaps and the areal percentages of
grades for each inventory. See Figure 1 for the regions.

Region Glacier inventory Grades

1 2 3 4

1 RGI 1.4 80.5 18.1 0.0
GGI18 1.9 50.3 47.8 0.0
CGI-2 1.4 80.5 18.1 0.0
HKHGI 0.0 6.5 67.2 26.3
WHGIa 70.8 29.2 0.0 0.0

2 RGI 0.0 4.1 68.7 27.2
GGI18 0.0 4.9 94.0 1.1
HKHGI 3.7 12.8 83.5 0.0
PGI-2a 2.9 42.9 54.2 0.0

3 RGI 0.0 17.3 82.7 0.0
GGI18 0.1 70.0 29.9 0.0
HKHGI 0.0 14.0 65.0 21.0
WHGIa 29.9 65.3 4.8 0.0

4 RGI 1.7 27.8 24.5 46.0
GGI18a 0.9 48.2 37.2 13.7
CGI-2 0.3 28.5 23.4 47.8
HKHGI 0.0 18.3 42.1 39.6

5 RGI 0.0 19.0 44.6 36.4
GGI18 0.2 21.1 50.7 28.0
KPGIa 85.0 14.9 0.1 0.0

6 RGI 0.0 18.9 60.0 21.1
GGI18a 1.5 28.0 58.5 12.0
HKHGI 0.0 21.0 39.1 39.9

7 RGI 0.1 76.8 23.1 0.0
GGI18 0.0 99.6 0.4 0.0
SETPGIa 64.9 35.1 0.0 0.0

8 RGI 11.4 51.1 26.5 11.0
GGI18 14.3 50.5 27.4 7.8
CGI-2 12.7 51.4 28.8 7.1

9 RGI 0.0 7.7 32.8 59.5
GGI18a 0.0 31.9 68.1 0.0

aindicates the best-quality inventory for each region.
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values of assessment units or scenes at the time of image
acquisition and those of the same assessment units that used
the method of data gap filling. The latter contains the average
values from 2000 to 2016, and the former are from post-2000
data, as no pre-2000 data are available. The two datasets are in
good agreement (Figure 7). The data gap filling of snow cover is
considered to be acceptable as the data gap mainly occurred in
1998–1999, although it does extend back to 1990.

Using the SRTM DEM to calculate shadows might result in an
underestimation as the steep mountain ridges causing the
shadows are often smoothed in this DEM. However, this
underestimation is difficult to determine as the smoothness is
unknown.

A lower minimum glacier area threshold is determined to be
better and is given a lower index value (Table 3), as it would
include more small glaciers. However, a lower threshold might
also increase the potential of including more seasonal snow. This
uncertainty is hard to estimate, but its impact on the assessment
results should be very limited as the weight value for the
minimum glacier area threshold factor is only 0.06 (Table 4).

In terms of how the glacier size can affect the manual
correction, only a glacier size of 1 km2 is indexed to grading.
Other glacier sizes should also have similar effects on the accuracy
of the manual correction, although some of the effects (e.g., for
sizes larger than 1 km2) could be weaker. However, no data is
available for other glacier sizes. In addition, manual correction
also depends on snow conditions and the mapping method (Paul
et al., 2017). When there is no seasonal snow, and automated
mapping is used, small debris-free glaciers (<1 km2) are
automatically mapped very precisely, whereas manual mapping
tends towards generalization and higher uncertainties. This
potential bias is difficult to determine statistically.

All glacier outlines of the GGI18 were manually delineated
(Sakai, 2019), while the automated band ratio method combined
with manual correction was primarily used in the mapping of
other inventories (Pfeffer et al., 2014; Guo et al., 2015; Mölg et al.,
2018). Direct comparisons of glacier outlines between the
inventories were performed, as this difference between
methods is hard to assess due to the uncertain nature of
manual work. After screening for all overlapping inventories
with the same timestamp, three areas (A, B, C) were identified
in the TPR (Figure 1). Information for each of the three areas is
listed in Table 6. Not all glaciers in the three areas are included in
the table, as not all of them overlap with the same timestamp. A
small “snapshot” of overlapping glacier outlines taken from each
area is shown in Figure 8. The corresponding false-color (bands
5, 4, 3 as RGB) composite Landsat images and Sentinel-1A InSAR
coherence images are also shown in Figure 8 for comparison.

FIGURE 6 | A merged glacier inventory product of the best comprehensive quality data from the eight glacier inventories. See text for details.

FIGURE 7 | Comparison of the F2 values of the assessment units or
scenes at the time of image acquisition, with those of the same assessment
units calculated using the data gap filling method.
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TABLE 6 | Comparison of overlapping glacier inventories with the same timestamp for each of the three areas. Note that not all glaciers in the three areas overlap with the
same timestamp and only part of the data is included in the table.

Area Inventory Glacier number Glacier area (km2) Overlapping ratio

A GGI18 191 938.9 —

CGI-2/RGI 160 1,219.3 0.83 (GGI18 vs. CGI-2)

B GGI18 2,431 1,892.3 —

WHGI 1,476 1,918.8 0.83 (GGI18 vs. WHGI)

C GGI18 2,902 2,199.6 0.88 (GGI18 vs. CGI-2)
CGI-2/RGI 3,007 2,483.0 0.99 (CGI-2 vs. HKHGI)
HKHGI 2,787 2,428.6 0.87 (GGI18 vs. HKHGI)

FIGURE 8 | Comparison of glacier outlines between overlapping glacier inventories with the same timestamp. The three row pairs are the small “snapshots” of
overlapping glacier outlines taken from each of the three areas A, B, C in Figure 1. Also shown are the false-color (bands 5, 4, 3 as RGB) composite Landsat images
taken on (A) 24 August 2007, (C) 2 August 2002, (E) 8 September 2005, and the InSAR coherence images created by two Sentinel-1A image pairs taken on (B) 7 June
2015 and 13 July 2015, (D) 13 July 2015 and 18 August 2015, and (F) 25 August 2015 and 18 September 2015. A debris-covered glacier is considered to be well
reflected by the dark coherence image. The white rectangles with numbers represent differences in image interpretation related to (1) steep headwall, (2) debris-covered
glaciers, (3) bare rock or seasonal snow cover, and (4) moraine. Note that the outlines of both the RGI and the HKHGI completely overlap with those of the CGI-2 due to
the fact that their inventory data were directly adopted from the CGI-2 in these areas.
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Clear differences in glacier outlines can be seen between the
overlapping glacier inventories. The outlines for the GGI18 were
delineated with more detail compared to those for the CGI-2,
RGI, or HKHGI (Figures 8A,B,E,F). Differences in image
interpretation are also apparent. Some ice-covered steep
headwalls in shadow (Figures 8A,B-1) and part of a debris-
covered glacier (Figures 8A,B-2,E,F-2) were not identified in the
GGI18, while some bare rocks or seasonal snow cover (Figures
8A,B-3,E/F-3) andmoraine (Figures 8A,B-4) were interpreted as
a glacier in the CGI-2/RGI/HKHGI. These findings and the data
in Table 6 suggest that glacier areas tend to be slightly
underestimated for the GGI18 and overestimated for the CGI-
2, RGI, or HKHGI, although all of the inventories were identically
graded in accordance with the same Landsat images and grading
indexes. The glacier outlines of the GGI18 and the WHGI agree
relatively well with each other (Figures 8C,D). A clear difference
between these inventories is the identification of debris-covered
glacier areas (Figures 8C,D-2), where more debris-covered
glacier areas were determined in the WHGI due to the use of
InSAR data. When looking at data for the entire Area B (Table 6),
the most remarkable difference between the two inventories is in
the glacier number rather than the glacier area. This large
difference in glacier number is due to the different thresholds
of minimum glacier area that are used. The minimum glacier area
threshold in the GGI18 is 0.01 km2 (Sakai, 2019), and the value in
the WHGI is 0.02 km2 (Frey et al., 2012). This threshold
difference leads to a larger glacier area in the GGI18 and
reduces the gap in glacier area between the two inventories in
Area B.

Both precision and the workload of the study were considered
when determining the area size of the assessment unit. In general,
setting a smaller area size of the assessment unit would lead to
more precise assessment results and a larger workload. However,
in this study, the situation is somewhat different for a variety of
reasons. First, four of the eight assessment factors, F1, F4, F5, and
F7, are independent of the area size of the assessment unit,
meaning that only the four other factors (F2, F3, F6, and F8)
could form more precise result if we used a smaller assessment

unit. Second, as data of the four relevant factors are all based on
individual glaciers, a differing area size of the assessment unit
would only mean a difference in the area size of the statistics.
This, being essentially a matter of spatial averaging on different
scales, means that even if a smaller area size of assessment unit
was applied, the results for the size of 185 × 185 km2 would
remain unchanged, although the results for assessment units of a
smaller size are more precise. In other words, an F2/F3/F6/F8
value for a larger assessment unit is essentially the average value
of all F2/F3/F6/F8 values of the smaller assessment units (i.e., sub-
units) within the larger assessment unit.

A sampling analysis was carried out to assess how large this
difference could be. Table 7 presents F2 values of the assessment
units on two scales for each of the three areas (A, B, C) in Figure 1
using the GGI18 inventory. The two scales are the area sizes of
185 × 185 km2 (UL) and 92.5 × 92.5 km2 (US), meaning that the
former contains four of the latter. The differences in the F2 values
between UL and US are relatively small, with the largest difference
being only 13.7% in Area C2. Therefore, adopting a smaller area
size of the assessment unit would result in very limited
improvement of precision and no change in the results but
cause a much larger workload. On the other hand, the F2/F3/
F6/F8 values of some large assessment units can be very precise.
This precision is due to the fact that different assessment units of
the same area size, such as US or UL in Table 7, contain different
glacier areas and numbers. These different glacier areas and
numbers lead to variable precisions, as the assessment units
with smaller glacier areas and numbers tend to have higher
precision due to the statistical nature of downscaling or
upscaling. For these reasons, the area size of the assessment
unit of 185 × 185 km2 is considered to be suitable and precise
enough for the purposes of this study.

Although InSAR technology is used to outline debris-covered
glaciers in the TPR, this method has only been applied for small-
scale inventories (Table 1). The imaging time is different between
InSAR data and the other images used, as the former was
developed more recently. This time difference can exceed
10 years (Frey et al., 2012; Mölg et al., 2018) and could

TABLE 7 | F2 values of the assessment units on two scales for each of the three areas A, B, and C in Figure 1 using the GGI18 inventory. The corresponding glacier areas
and the number of glaciers in each assessment unit are also shown.

Area F2 value of UL F2 value of US Glacier area (km2) Glacier number

A 55.7 57.4 1,877.1 1,336
56.9 2,184.6 1,462

B 40.0 40.5 876.6 1,189
41.4 1,290.3 1,470
36.5 609.7 941
41.5 373.4 1,138

C C1 57.2 52.7 37.6 231
60.4 838.6 1,057
64.0 1,089.9 1,189

C2 54.5 47.0 164.3 699
61.3 473.1 913

UL: assessment unit with the size of 185 × 185 km2; US: assessment unit with the size of 92.5 × 92.5 km2. Note that Areas A and B each contain only one UL while Area C contains two. All
four USs in Area B contain glaciers, while only two or three USs contain glaciers in each of the other areas of A, C1, and C2. See also Figure 1.
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introduce uncertainties in final glacier areas due to glacier change.
More work is needed to accurately identify debris-covered
glaciers in the TPR, potentially by combining GaoFen high-
resolution optical data with Sentinel-1A-derived InSAR
coherence images.

5 CONCLUSION

A comprehensive quality-grading assessment was conducted on
eight glacier inventories of the TPR using the AHP method. In
general, the comprehensive quality of the small-scale glacier
inventories of WHGI, KPGI, PGI-2, and SETPGI is higher
than that of the large-scale glacier inventories of RGI, GGI18,
CGI-2, and HKHGI. The quality-ranking order from high to low
for the large-scale glacier inventories is CGI-2, GGI18, RGI, and
HKHGI. The comprehensive quality of the CGI-2 and GGI18 is
comparable for the CGI-2 area of this study, as the coverage area
of the CGI-2 is smaller, and one portion with relatively low
quality is not included due to missing information. The quality of
the CGI-2, GGI18, and RGI exhibits clear spatial differences.
Overall, their comprehensive quality is higher for the inner TPR
than for the surrounding areas. A new glacier inventory product
containing the best-quality data was derived for the entire TPR by
merging the products of the eight glacier inventories. This new
product largely resembles the spatial distribution of the best-
quality glacier inventories of inventory-overlapping regions. In
terms of specific regions, the CGI-2 and GGI18 are the best
products for the majority of glaciers in China, except for a partial
area of southeast Tibet, where the best is the SETPGI. The other
main distributions of the best products are the WHGI for the
western Himalayas, the GGI18 and HKHGI for the Hindu Kush
and the middle and eastern Himalayas, the PGI-2 for Pakistan,
the KPGI for the Karakorum–Pamir area, and the GGI18 and
CGI-2 for the Tianshan Mountains. The new open-access
database created in this study greatly increases the quality of a

single glacier inventory for the entire TPR and contains full
assessment information.
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Analyzing climate change impacts on hydrology and future water supply projections is
essential for effective water resource management and planning in the large river basins of
Asia. In these regions, streamflow and glacier melt remain subject to significant
uncertainties due to the lack of confidence in climate change projections and modeling
methods. In this study, a glacier dynamics model (the Open Global Glacier Model was
coupled with a glacio-hydrological model [the Glacio-hydrological Degree-day Model
(GDM)] to predict possible hydrological changes in the head watershed of the Urumqi
River under three shared socioeconomic pathways SSP2-4.5, SSP3-7.0, and SSP5-8.5.
The GDM was calibrated and validated against in situ observed discharge data for the
2007–2011 and 2012–2018 periods. The resulting Nash–Sutcliffe efficiency (NSE) values
were 0.82 and 0.81, respectively. The GDM was driven with an ensemble of five
downscaled CMIP6 datasets to examine the potential impacts of climate change on
hydrologic processes in the basin. Four runoff components were simulated with the GDM:
base flow, rainfall, ice melt, and snow melt. It was determined that rainfall constituted the
predominant source of runoff, followed by baseflow and icemelt. During the calibration and
validation periods, snow and ice melt contributed 25.14 and 25.62%, respectively, to the
total runoff. Under all SSP scenarios, the projected runoff decline indicated that the peak
runoff time had passed. It was revealed that a 2°C increase in the monthly average
temperature could result in a 37.7% increase in the total discharge of the basin. Moreover,
the GDM was more responsive to changes in air temperature than to changes in glacier
extent.
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INTRODUCTION

Glaciers are magnificent natural landscape features that take
decades to hundreds of years to form. In mountainous regions,
glaciers are not only essential contributors to streamflow and
water budgets but are also important from the perspective of
the natural ecological environment (Brun et al., 2017; Gentili
et al., 2020; Pelto et al., 2020). The pace at which glaciers
respond to climate change is dependent on their size; the
smaller a glacier is, the faster its response speed to climate
change is (Huss and Fischer, 2016). According to climate
projections, future increasing temperatures and variations in
precipitation may impact the majority of glaciated regions and,
eventually, the world’s rivers and streams (Didovets et al.,
2021; Mengistu et al., 2021). Runoff records in glacierized
basins can be used to determine how climatic and glacial
factors interact with one another (Li et al., 2010). In
general, rivers that receive substantial amounts of glacier
melt are less vulnerable to droughts and floods than rivers
that receive smaller amounts of glacier melt; this is due to the
regulating influence of glaciers on runoff (Rai et al., 2019;
Kneib et al., 2020; Wang et al., 2021). On the one hand, climate
change may result in increased annual precipitation and
surface runoff; on the other hand, as a result of increasing

global temperatures, glaciers are experiencing accelerated
retreat (Guido et al., 2016).

The effects of climate change on runoff variation are complex,
especially in glacierized watersheds (Shrestha et al., 2020). Several
studies have noted that the annual runoff in glacierized
watersheds could increase to reach a certain maximum level
and then decline with glacier retreat (Sunde et al., 2017;
Laurent et al., 2020). The peak runoff timing depends on
watershed location, climatic conditions, etc. (Farinotti et al.,
2012). As suggested by Gaudard et al. (2014) the timing or
magnitude of peak discharge should be considered
individually. Changing climatic conditions and glacier
evolution may distinctly affect water outflow from various
watersheds due to the complexity of hydrological climatic
regimes (Bhatta et al., 2019; Muñoz et al., 2021). Hydrological
models are considered a modern technique to better understand
long or short-term runoff changes under different climate
conditions (Bolch et al., 2012). As a result, it is critical to
integrate hydrological models with climate forecasts to
determine the extent of runoff changes in watersheds of
various sizes (Kling et al., 2014; Yang et al., 2020; Mengistu
et al., 2021).

To estimate future climate change, regional climate models
(RCMs) or general circulation models (GCMs) are generally used;

FIGURE 1 | Study area description: (A) the map showing the basin (solid black line), Daxigou meteorological station (red star), and Zongkong hydrological station
(red dot); (B) the geographical location of the study area.
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however, the spatial resolutions of RCMs and GCMs are quite
coarse. Despite the fact that many downscaling approaches have
been employed, the ability of these models to capture complex
spatial precipitation in Central Asian mountains remains limited,
posing additional hurdles predicting runoff variations in such
regions (Huang et al., 2014; Yu et al., 2018). It is particularly
crucial to examine hydrological process changes in basins that are
adjacent to residential areas because these runoff changes directly
impact human health and well-being (Anand et al., 2018; Santos
et al., 2021). Possible changes in the seasonal distribution may
affect the water availability even when the changes in the total
runoff are not notable (Etter et al., 2017). The water contained in
the Urumqi River basin supplies water resources supporting the
livelihoods of over four million people in the downstream capital
city of Urumqi, as well as for agricultural irrigation in the
surrounding countryside. Rapid population growth has
resulted in an increase in water consumption and is
exacerbating the difficulties caused by global warming.

Due to the geopolitical and socioeconomic importance of
the basin, various studies have been conducted to assess
potential climate change and its impacts on the hydrology

of the Urumqi Basin. Previous studies in this region have
mostly been based on historical runoff data; some studies have
examined interannual variations, while others have
investigated diurnal flow variations and their links with
temperature and precipitation (Sun et al., 2015; Jia et al.,
2020). In this study, we employed an ensemble of five
downscaled Coupled Model Intercomparison Project 6
(CMIP6) GCM datasets and coupled two models to assess
the impacts of projected climate change on water resources in
the headwaters of the Urumqi River. The Open Global Glacier
Model (OGGM) has been successfully applied to estimate past
and future glacier evolution trends (Pelto et al., 2020; Dixit
et al., 2021). The Glacio-hydrological Degree-day Model
(GDM) is a gridded distributed model and has been
implemented in certain basins with a satisfactory
performance (Khadka et al., 2020). This model only
requires a few inputs [daily precipitation and temperature,
digital elevation model (DEM), and land use] and can estimate
the contribution of hydrological components to discharge (ice
melt, snowmelt, rain, and baseflow). Here, we aimed to 1)
assess present and future runoff changes and 2) evaluation of

FIGURE 2 | Location of Urumqi Glacier No. 1 (UGN1), which is considered an illustration; the OGGM derived outline (A), flowline (B), catchment width (C), and ice
thickness (D).
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the sensitivity of runoff to temperature, precipitation, and
glacier area changes in the study basin.

STUDYAREAANDFIELDMEASUREMENTS

Study Area
The Urumqi River originates from the eastern Tianshan
Mountains, which contained more than 15,000 glaciers in the
1970s (Wang et al., 2020). Our study basin comprises the head
watershed of the Urumqi River; this watershed is surrounded by
high mountains and is far from the sea, with a catchment area of
nearly 30 km2 and seven glaciers within the basin, as shown in

Figure 1 [in the Randolph Glacier Inventory (RGI), these glaciers
are considered 12 glaciers]. To maintain consistency with past
research (Li et al., 2010), we consider them as seven glaciers (as
marked in Figure 1). This basin is approximately 120 km away
from the capital city Urumqi; the length of the stream inside the
basin is approximately 12 km, and the percentage of glacierized
area is approximately 18.5%. Among the seven glaciers, Urumqi
Glacier No. 1 (UGN1) is the largest. In 1993, UGN1 was split into
two parts, the west and east branches. Surrounded by high
mountains and far from the sea, the basin has a typical
continental climate. Winters are dry and cold, and summers
are rainy and cool. The annual precipitation is low and
concentrated and is mainly sourced from Atlantic water vapor

TABLE 1 | Calibration parameters employed in the GDM and respective values.

Parameter Symbol Value

Runoff coefficient Critical temperature Tcrit 2°C
Temperature lapse rate Γ 0.65°C/100 m
Recession coefficients x and y 0.9 and 0.018
Land use class1 c1 0.14–0.50
Land use class2 c2 0.08–0.25
Land use class3 c3 0.1–0.3
Land use class4 c4 0.7–0.95
Rain Cr 0.05–0.4
Snow Cs 0.1–0.5

Degree-day factor (mm/(0C · day)) Snow ks 2–8
Clean ice (below 4000 m) kb 3–9
Clean ice (above 4000 m) kb 4–8

Baseflow (Luo et al., 2012) Delay time for overlying geological formation for shallow aquifer percolation ΔGW ,sh 10d
Recession constant for shallow aquifer αGW ,sh 0.8
Delay time for overlying geological formation for deep aquifer percolation ΔGW ,dp 40
Recession constant for deep aquifer αGW ,dp 0.4
Seepage constant for deep water percolation βdp 0.1

Initial recharge Wini 0

FIGURE 3 | Flowchart of the models applied in this paper.
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carried by the westerly circulation system to this region.
According to meteorological data retrieved from the Daxigou
meteorological station for the period from 1959 to 2018, the
annual average temperature is −4.9°C, with seven to eight
negative-temperature months. The average temperature in the
coldest month (January) reaches −15°C, while that in the hottest
month (July) is 5°C. The annual average precipitation reaches
466 mm. Precipitation mainly occurs from May to August,
accounting for 77% of the total annual precipitation. The
precipitation type mainly includes wet snow, hail, and graupel.

The glaciers in this region are of the summer accumulation type.
The land use predominantly includes alpine meadows and barren
land, and the elevation ranges from 3,391 to 4,459 m a.s.l.

Model Input Data
Climate Data
Monthly time series of the temperature and precipitation were
obtained from the regional-scale ERA5 reanalysis dataset and
employed to calibrate the temperature index model in the
OGGM. These series cover the period from 1979 to 2018

FIGURE 4 | The time series plot for the glacier area (A) and volume change (B) from 2021 to 2100 under SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.

FIGURE 5 | Observed and simulated total discharge represents by blue and red line respectively for the calibration period (2007–2011) (A) and validation period
(2012–2018) (B).

TABLE 2 | Nash–Sutcliffe efficiency (NSE), volume difference (VD), and Pearson correlation coefficient (CC) values, and mean annual contributions of snow melt, ice melt,
rainfall, and baseflow to river discharge during the calibration and validation periods.

Year Nash-sutcliffe
efficiency (NSE)

Volume
difference (VD) (%)

Pearson correlation coefficient
(CC)

Contribution (%)

Snow melt Ice melt Rain Baseflow

2007–2011 (calibration period) 0.82 2.31 0.91 10.75 14.39 52.23 22.63
2012–2018 (validation period) 0.81 1.42 0.9 9.98 15.64 52.74 21.64
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(Maussion et al., 2019; Hersbach et al., 2020). Five CMIP6
datasets were selected to run the OGGM and GDM. These five
CMIP6 datasets include CESM2, CESM2-WACCM,
CanESM5, BCC-CSM2-MR, and NorESM2-LM. These
models were chosen for their optimal performance in the
Tianshan mountain region of Central Asia (Guo et al., 2021).

Spatial Data
A DEM was obtained from Shuttle Radar Topography Mission
(SRTM) data with a 30-m resolution (Farr et al., 2007). The
SRTM data are available on the website of the United States
Geological Survey (USGS) (https://earthexplorer.usgs.gov/). The
land use data were obtained from the Xinjiang and Central Asia
Data Center, National Earth System Science Data Sharing
Infrastructure, National Science and Technology Infrastructure
of China (http://midasia.geodata.cn/).

There are six primary land use classes (forestland, grassland,
wetland, cultivated land, artificial surface, and others) and thirty-
eight secondary classes. We merged the datapoints indicating
similar topography into six land classes to meet the requirements
for the GDM to run (Khadka et al., 2020). The six land classes
included agricultural lands and grasslands (class 1), forests and
shrublands (class 2), barren lands (class 3), artificial surfaces and
water bodies (class 4), clean-ice glaciers (class 5), and debris-
covered glaciers (class 6).

Gauged Hydrometeorological Data
The daily discharge data recorded at the Zongkong hydrological
station at an elevation of 3,404 m a.s.l were used to calibrate and
validate the GDM. Daily temperature and precipitation data were
obtained from the Daxigou meteorological station, which is at an
elevation of 3,539 m a.s.l.

METHODS

The OGGM and GDM were integrated in this study to analyze
future runoff change in the study basin. The OGGM is a glacier
dynamics model that comprises several modules. The OGGM
used in this study is primarily applied to predict future glacier
evolution processes. Specifically, the simulated glacier area
changes obtained from the OGGM were used as inputs for the
hydrological simulations conducted with the GDM. In the GDM,
the land cover data and DEM were used to generate grids for
further calculation. The GDM is a gridded distributed glacier
hydrological model with a temperature index module that
calculates snowmelt using the degree-day factor, followed by

an exposed ice melt module. The total discharge is calculated
from the sum of runoff from all grids, including the contributions
from snow melt, ice melt, rainfall and base flow. With the future
glacier area changes estimated by OGGM and downscaled future
climate data (daily temperature and precipitation), the GDM can
provide us with future discharge simulations. The detailed
workflow of how these two models are integrated is shown in
this study and is the same as that applied in (Khadka et al., 2020).

Open Global Glacier Model
The OGGM is an open-source numerical model written in
Python applied and can explicitly simulate glacier dynamic
evolution worldwide (Maussion et al., 2019; Pelto et al., 2020;
Dixit et al., 2021). There are seven glaciers in our study area. We
adopted UGN1 as an example to demonstrate the process by
which the OGGM simulates glacier dynamic evolution changes.

Following specification of the glacier RGI number, the model
automatically retrieved glacier outlines and projected them onto a
local gridded map (Figure 2A). Simultaneously, the necessary
topographical data were automatically downloaded, and the
spatial resolution of these data were depended on the glacier
size. Flow lines were computed with the method established by
Kienholz et al. (2014), as shown in Figure 2B. The geometrical
width was acquired by normally intersecting each grid point
containing glacier outlines, and the catchment width was derived
by normally intersecting each grid point containing flow lines
(Figure 2C). To determine the ice thickness, it was necessary to
first calculate the mass balance of each glacier. The mass balance
model applied in the OGGM is a temperature index model
(Marzeion et al., 2012). Here, monthly climate data, extracted
from the nearest ERA5 dataset, were considered to calculate the
mass balance. The ice thickness was then computed throughmass
conservation with estimated ice velocity and ice flux values
(Figure 2D).

Moreover, future glacier changes were simulated under
preselected climate time series (from the CMIP6 GCM
datasets) with a dynamical flowline model. The future
evolution of glaciers in the basin was simulated based on
individual glacier calculations.

Glacio-Hydrological Degree-Day Model
The GDM is a gridded distributed glacio-hydrological model
that can simulate the daily river discharge and contributions of
hydrological components (snowmelt, ice melt, rain, and
baseflow) to river discharge (Kayastha et al., 2020; Khadka
et al., 2020). A DEM and land cover data are required to
initialize the model. The daily temperature and precipitation

TABLE 3 | Comparison of the changes in temperature and precipitation simulated with the GCM for the four future periods to the baseline period (1997–2016).

SSP2-4.5 SSP3-7.0 SSP5-8.5

Temperature (°C) Precipitation (%) Temperature (°C) Precipitation (%) Temperature (°C) Precipitation (%)

2021–2040 −1.6 −13.4 −2.2 −11.8 −2.5 −11.5
2041–2060 −0.3 −1.8 −1 −2.9 −1.2 −5.8
2061–2080 +0.5 +2.9 +0.9 +0.7 +0.8 +1.6
2081–2100 +1.5 +4.9 +2.7 +6.6 +3.3 +5.8
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datasets are preliminary inputs. Initially, the study area is
divided into multiple grids (300 m × 300 m). There are two
modules in the GDM: the melt module and the baseflow
module. The melt module is the main algorithm in the GDM
platform for simulating glacio-hydrological processes. The

module uses a temperature index model to estimate snow
melt and clean-ice melt separately using the degree-day
factors approach (Braithwaite and Olesen, 1989; Hock, 2005;
Kayastha et al., 2006). In each grid, the melt estimates are
calculated as follows:

FIGURE 6 | Comparison of the average monthly temperature (A–D) and precipitation (E–H) with baseline period (dashed black) and SSPs (green–SSP2-4.5,
blue–SSP3-7.0, red–SSP5-8.5).
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M � { (ksorkb) × T, T> 0
0 T≤ 0 (1)

where M is the snow or ice melt (mm/day), T is the daily air
temperature (°C), ks and kb are the degree-day factors
(mm/(0C · day)) for snow and clean ice, respectively. Each
grid’s snow and ice melt discharges are estimated to obtain the
melt component, which is then totaled to obtain the surface
runoff. The baseflow module uses the Soil and Water Analysis
Tool (SWAT) to calculate the baseflow contribution to discharge
(Luo et al., 2012). The algorithm is based on a two-reservoir
system including contributions from shallow and deep aquifers to
river runoff:

QB � ∑n
G�1

Qb (2)

whereQB is the total baseflow contribution to runoff andQb is the
baseflow contribution within each grid, that is, the sum of the
baseflow contributions from the deep and shallow aquifers.

The total surface discharge is the sum of the runoff values
calculated from each grid and is calculated as follows:

QR � ∑n
G�1

Qsr (3)

In each grid, snow melt, ice melt, and precipitation are
contributors to runoff:

Qsr � Qr · Cr + Qs · Cs + Qi (4)
where Qr, Qs and Qi are the discharge attributed to rain, snow
melt, and ice melt, respectively (m3s−1), Cr and Cs are rain and
snow coefficients, respectively.

The total surface discharge, QR, is then routed along with the
total baseflow contribution QB toward the outlet of the basin
through the following equation:

Qd � QR × (1 − k) + QR(d−1) × k + QB (5)
where Qd is the river discharge on the dth day at the basin outlet
(m3s−1) and k is the recession coefficient. The temperature lapse
rate and precipitation gradient were considered to determine the
temperature and precipitation, respectively, in each grid based on
the station elevation. The critical temperature was employed to
discriminate rain and snow in precipitation. Degree-day factors
(snow and ice) are the most important parameters to determine
melt components based on snow and ice, respectively. We should
first obtain the best parameters for the calibration periods
(2007–2011) and then assess the obtained result with these
parameters for the validation period (2012–2018). The best
parameters are listed in Table 1.

FIGURE 7 |Monthly average simulated total discharge trend for 2021–2040 (A), 2041–2060 (B), 2061–2080 (C), and 2081–2100 (D) periods. The baseline period
is indicated by the black dashed line, whereas solid green, blue, and red line represents SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenario, respectively.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8578548

Yang et al. Glacio-Hydrology Model Under CMIP6 Scenarios

98

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


A flowchart of the model coupling process and future
discharge prediction is shown in Figure 3.

RESULTS

Glacier Area and Volume Changes
The glacier area and volume changes simulated with the OGGM
under SSP5-8.5 declined the fastest, whereas a small difference
was obtained under the other two scenarios (SSP2-4.5 and SSP3-
7.0) (Figure 4). All seven glaciers are expected to disappear by
approximately 2070 except UGN1. The simulation started in
2007, since the glacier outlines used in this study (RGI v6.0) were
generated in 2007. On average, from 2007 to 2021 (15 years), the
glacier area decreased by 11%. The glacier area decreased by
55.8% by 2040 and by 89.6% by 2060 compared to their
corresponding areas in 2007. The volume changes during the
corresponding periods were −28.9%, −73.3%, and −91.3%. By
2080, the estimated area had decreased by 98%, and the average
glacier volume had decreased by 99%. To obtain future discharge
predictions, the analysis was performed from 2021 to 2100.

GDM Calibration
The calibration and validation steps conducted for the study basin
are shown in Figure 5. Five years of data (2007–2011) were used
for the model calibration, and 7 years of data (2012–2018) were
used for the model validation. The Nash-Sutcliffe efficiency
(NSE), volume difference (VD), and Pearson correlation
coefficient (CC) were used to evaluate the model performance
during the calibration and validation periods. We assume that if
the NSE is greater than 0.7 and the VD varies within 10%, the
model is accurate and reliable (Khadka et al., 2020). The detailed
results of the performance scores are shown in Table 2.

When a high precipitation event occurs, the model fails to
effectively represent runoff, as shown in Figure 5. In general, we
can say that the GDM effectively explains the hydrological process
of the head watershed of the Urumqi River basin. Moreover, the
GDM estimated the contributions of snowmelt, ice melt, rain, and
baseflow to river discharge during the simulation periods. The
rainfall was the largest contribution to runoff, followed by baseflow
and ice melt in the basin, as indicated in Table 2.

Changes in Projected Climate
Climate change projections are available from general circulation
model (GCM) outputs at coarse scales (with grids usually larger
than 100 × 100 km2). In general, products with this resolution
cannot be used in research directly (Wilby et al., 2004). Thus,
different downscaling techniques have been developed to obtain
finer-resolution products, and these techniques can be divided into

two general categories: statistical and dynamical downscaling. Both
methods have advantages and disadvantages. Compared to
dynamical downscaling, statistical downscaling models are
simple and effective and have fewer computational costs
(Gebrechorkos et al., 2019; Salehnia et al., 2019). In addition,
statistical downscaling can produce site-specific climate projections
that cannot be achieved by dynamical downscaling methods. In
this study, we utilized the bias correct delta change method
(Salehnia et al., 2019) among statistical downscaling approaches.
The GCM outputs and observed daily temperature and
precipitation data were used for the statistical downscaling
training and predictions. Here, we employed an ensemble of
five CMIP6 GCM datasets due to their optimal performance in
the Tianshan region of Central Asia (Guo et al., 2021). These five
CMIP6 datasets include CESM2, CESM2-WACCM, CanESM5,
BCC-CSM2-MR, and NorESM2-LM, and observation data were
obtained from the Daxigou meteorological station (AWS in
Figure 1), which is located approximately 3 km from UGN1.
The data recorded at the Daxigou meteorological station show
an increase in the annual average temperature, especially after
1996.We chose two periods, before and after 1996 (1976–1995 and
1997–2016) to compare climate conditions. In terms of these two
periods, the average temperature increased by 1.03°C (from
−5.27°C to −4.24°C), and the precipitation increased by 17.8%.

The future period, 2021–2100, was divided into four periods
(2021–2040, 2041–2060, 2061–2080, and 2081–2100). In each of
these periods, the annual average temperature and precipitation
values under three scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) were
simulated; these values (after ensembled) are shown inTable 3 along
with the baseline period (1997–2016) values for comparison.

Compared to the baseline, during the first period (2021–2040),
the temperature under all three scenarios (SSP2-4.5, SSP3-7.0, and
SSP5-8.5) indicated a declining trend, while the temperature
decreased the least under SSP2-4.5 and exhibited similar
magnitudes between SSP3-7.0 and SSP5-8.5. After the first
period, the temperature under all three scenarios began to slowly
rise and exceeded the baseline temperature after 2060. The
precipitation trend was similar to that of the temperature, and all
scenarios exhibited decreasing trends to different degrees during the
first period (2021–2040). The precipitation decreased the most
under SSP2-4.5 and exhibited similar magnitudes under the other
two SSP scenarios (SSP3-7.0 and SSP5-8.5). After the first period, the
predicted precipitation exhibited an increasing trend under all SSP
scenarios and exceeded the baseline precipitation after 2060.

Comparisons of the monthly average temperature and
precipitation distributions simulated under three SSPs with the
baseline period (1997–2016) are shown in Figure 6.

All SSP scenarios predicted a in future temperature decline
followed by a continuous increase. The precipitation trend was

TABLE 4 | Changes in the discharge compared to the baseline period (1997–2016) for the four future periods under the three SSP scenarios.

2021–2040 (%) 2041–2060 (%) 2061–2080 (%) 2081–2100 (%)

SSP2-4.5 −36.9 −23.6 −20 −15.4
SSP3-7.0 −45.6 −31.8 −20 −7.8
SSP5-8.5 −52 −34.8 −18.5 −4.6
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consistent with the temperature trend. Notably, the temperature
changes in all months were almost the same, while precipitation
changes mainly occurred during the ablation season.

Future Discharge
To simulate future runoff, the GDM was applied. The GDM was
forced through the use of downscaled climate and land cover data.
To analyze the simulated runoff, the future period was separated into
four periods: 2021–2040, 2041–2060, 2061–2080, and 2081–2100. In
contrast to the observed meteorological dataset, our runoff
observation data (observed at the Zongkong hydrology station)
do not contain more than 40 years of data. There was an abrupt
change in temperature after 1996, and runoff data for 1996 were
missing due to floods. Hence, we choose 1997–2016 as our baseline
period for comparison with the simulated future runoff. The
monthly average simulated discharge totals during the four future

periods (2021–2040, 2041–2060, 2061–2080, 2081–2100) under
three SSPs relative to the baseline discharge are shown in Figure 7.

Under all SSP scenarios, the runoff exhibited an initial
decreasing trend and s subsequent increasing trend, and the
decrease extent during the first period was the greatest.
Combined with the changes in temperature and
precipitation during this period, the temperature indicated a
decreasing trend under all three scenarios, while the
precipitation exhibited a declining trend. Overall,
temperature and precipitation reduction, in addition to
glacier retreat, led to a reduced runoff during this period.
This further demonstrated that the turning point of runoff in
the basin had passed (Table 4). Thereafter, the runoff
increased during the next three periods, mainly
concentrated in the ablation season, accompanied by a
rising temperature and increasing precipitation. However,
the runoff never again exceeded the baseline period level,
even after 2060, but both the temperature and precipitation
exceeded the baseline period levels. After 2070, all glaciers in
the basin, with the exception of UGN1, are expected to
disappear, with ice melt no longer constituting the primary
runoff component.

Components of Future Discharge
We simulated the future discharge under three SSP scenarios
(Figure 8). For the contributions of the discharge components,

FIGURE 8 | Monthly diagram illustrates the contribution from the baseflow, rain, ice melt, and snow melt during the different periods under the SSP3-7.0.

TABLE 5 | Contributions of the runoff components to the future discharge under
the SSP3-7.0 scenario.

Year Contribution (%)

Snow melt Ice melt Rain Baseflow

2021–2040 10 16.6 50.9 22.5
2041–2060 10.4 12.4 48.9 28.3
2061–2080 11.8 3.9 48.4 35.9
2081–2100 11.6 0 48.3 40.1
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we considered only SSP3-7.0 as an example to examine the changes
in the components as the glacier area decreased with time (Figure 8).

In the basin, runoff was mainly concentrated from May to
August. The largest contribution to runoff was rainfall. Small but
consistent declines in the contribution of rainfall were observed.
Upon glacier retreat, the contribution of ice melt had small
increase in the first period then showed a decline in the
contribution. The contribution of ice melt decreased
significantly decreased after 2060. The contribution of
snowmelt showed no significant change. Moreover, the
proportion of baseflow constantly increased. The contribution
rate is provided in Table 5.

DISCUSSION

Peak Water
Previous studies have noted that dramatic warming has occurred
after 1996 (Li et al., 2010). We compared 20 years of temperature
and precipitation data before and after 1996. It was determined that,
the average temperature increased by 1.03°C (from −5.27°C to
−4.24°C), and the precipitation increased by 17.8%. In this study,
we employed the latest CMIP6 data to project future runoff changes.

Ice melt and rainfall are both important elements in the
maintenance of river flows in the studied catchment region. The
study area will experience rapid glacier retreat (Figure 4). With
temperature and precipitation reduction, runoff in this basin was
predicted to go decline. The data indicated that the annual peak runoff
time had passed, shown in Figure 7. This result is consistent with a
previous study on the Tianshan Mountains (Xenarios et al., 2019).

Uncertainty and Sensitivity Analysis
The assessment of the future glacier area changes anticipated by
the OGGM reveals the first source of uncertainty. Using
monthly temperature and precipitation data, the model
creates global-scale model simulations and is free to use. Our
main purpose in this study was to predict future changes in
water resources. The most important parameter that the OGGM
can provide is future glacier area changes. Therefore, we

FIGURE 9 | Sensitivity test of the GDM for glacier area change (A), temperature change (B), precipitation change (C), and combination of temperature and
precipitation change (D) during 2017–2018.

TABLE 6 | Percentage of the runoff changes in the different sensitivity tests.

Parameter Experiment Runoff change (%)

Glacier Area −20% −6.4
−40% −11.2

Temperature +2°C +37.7
−2°C −39.7

Precipitation +20% +10.5
−20% −13.5

Temperature and precipitation +2°C, +20% +53.5
+2°C, -20% +20.4
−2°C, +20% −31.7
−2°C, -20% −47.3

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 85785411

Yang et al. Glacio-Hydrology Model Under CMIP6 Scenarios

101

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


changed the glacier area value (RGI) between 2007 and 2018 by
decreasing the area by 20% and by 40%, respectively, to see what
specific changes would occur in discharge after the glacier area
changes (Figure 9A). Moreover, two parameters, temperature
and precipitation, were chosen for the sensitivity analysis. We
chose different combinations of temperature and precipitation
(temperature fluctuations of 2°C and precipitation increases or
decreases of 20%) to test the sensitivity of the model. Figures
9B–D shows the results of the sensitivity analysis. The changes
in percentage discharge obtained through different sensitivity
tests are shown in Table 6.

The analysis revealed that among the three parameters, the
simulated runoff changes were most sensitive to temperature,
followed by precipitation and glacier area. Temperature and
precipitation are both positively correlated with runoff, and
temperature plays a leading role in influencing runoff changes.
When the temperature increases (+2°C), even if the precipitation
decreases (−20%), the runoff increases (+20.4%). When the
temperature decreases (−2°C), even if the precipitation
increases (+20%), the runoff decreases (−31.7%). Moreover,
the combination of increased temperature and precipitation
(+2°C, + 20%) caused runoff to increase the most (+53.5%),
and the combination of decreased temperature and precipitation
(−2°C, −20%) caused runoff to decrease the most (−47.3%).
Therefore, when using this model, the quality of the
temperature dataset can affect the uncertainty of the watershed
runoff simulations to the greatest extent.

CONCLUSION

This paper integrated glacier dynamics and glacio-hydrological
models to estimate potential hydrological changes driven by
downscaled future climate projections obtained with an
ensemble of five CMIP6 GCMs under three SSPs in the head
watershed of the Urumqi River. Both models have been
successfully applied in different study areas (Kayastha et al.,
2020; Pelto et al., 2020; Eis et al., 2021). The OGGM is a
global-scale glacier dynamics model that can simulate
contemporary and future glacier changes. The main purpose
of this study was to assess the future water resources in this
area, and the OGGM was implemented herein to provide future
glacier changes. We performed an uncertainty (sensitivity)
analysis of the GDM to temperature, precipitation, and glacier
area changes and concluded that compared to the temperature
and precipitation, the runoff in this basin was less dependent on
changes in the glacier area.

We employed an ensemble of five CMIP6 GCM datasets
(Eyring et al., 2016) to predict future glacier changes. These
datasets were adopted due to the optimal performance in the
Tianshan mountain region of Central Asia (Guo et al., 2021). The
bias-correcting statistical downscaling method was applied in this
study to obtain future climate conditions in this study area. Our
main findings are summarized below.

• As simulated with the OGGM, glacier area and volume
changes exhibited some differences between the different

climate scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5). The
glaciers in the study basin are experiencing intense retreat,
and this retreat is expected to become especially intense over
the next 20 years. The OGGM estimated that the glacier area
and volume could decrease by 55.8 and 73.3% by 2040,
respectively, compared to the corresponding values in 2007.
All glaciers in this basin will disappear completely by
approximately 2070 except UGN1.

• The GDM, when calibrated, provided satisfactory discharge
simulations. The NSE, VD, and CC values were 0.82, 2.31%,
and 0.91, respectively, during the calibration period
(2007–2011), and the values were 0.81, 1.43%, and 0.9,
respectively, during the validation period (2012–2018).

• Climate change scenarios were considered to examine
future temperature and precipitation changes. The results
indicated that the temperature will first decrease and then
rise under the different scenarios at varying rates. Compared
to the most recent baseline period, precipitation indicated
decreasing trends under all scenarios.

• Discharges will begin to decline, indicating the runoff peak
has passed.

• The contributions of discharge components were
investigated. Snowmelt maintained a rather consistent
value, and baseflow yielded a gradually increasing
contribution to runoff.
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A Fast Quality Control of 0.5Hz
Temperature Data in China
Rongwei Liao1, Ping Zhao1,2*, Huaiyu Liu3, Xiaoyi Fang1, Fei Yu1, Yujing Cao4*,
Dongbin Zhang5 and Lili Song1

1State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, 2Collaborative
Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and
Technology, Nanjing, China, 3China Meteorological Administration Training Centre, Beijing, China, 4CMA Institute for
Development and Programme Design, Beijing, China, 5National Meteorological Information Center, Beijing, China

Fast quality control (FQC) is important to deal with high-frequency observation records at
meteorological station networks in time, and may check whether the records fall within a
range of acceptable values. Threshold tests in the previous quality control methods for
monthly, daily, or hourly observation data do not work well for 0.5 Hz data at a single
station. In this study, we develop an algorithm for the automatic determination of maximum
andminimumminute thresholds for 0.5 Hz temperature data in the data collection phase of
the newly built stations. The fast threshold test based on the percentile threshold
(0.1–99.9%) and standard deviation scheme is able to efficiently identify the incorrect
data in the current minute. A visual graph is generated every minute, and the time series of
the data records and the thresholds are displayed by the automated graphical procedures.
The observations falling outside the thresholds are flagged and then a manual check is
performed. This algorithm has the higher efficiency and lower computational requirement in
identifying out the obvious outliers of 0.5 Hz data in real or near-real time observation.
Meanwhile, this algorithm can also find problems in observation instruments. This method
is applied to the quality control of 0.5 Hz data at two Tianjin experiment stations and hourly
data at one Shenyang experiment station. The results show that this fast threshold test
may be a viable option in the data collection phase. The advantage of this method is that
the computation requires less memory and the computational burden is reduced for real or
near-real time observations, so it may be extended to test other meteorological variables
measured by high-frequency measurement systems.

Keywords: fast threshold method, quality control, graphical examination, surface air temperature, automatic
determination

INTRODUCTION

Observation data at meteorological surface stations are important to understanding weather and
climate features and their evolutions, and to carry out meteorological services (Chen et al., 2011),
scientific research, meteorological forecast, etc., (Xu et al., 2013). With the progress of meteorological
observation technology, the observation accuracy and frequency of meteorological elements are
increasing. The upload frequency of meteorological observation data ranges from once an hour to
once a minute, and even reaches several times per second. This high-frequency sampling results in a
large number of observation records with an increase of newly built stations. To ensure the
completeness and accuracy of the observation records, their quality has to be checked (Ren
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et al., 2005; Hasu and Aaltonen, 2011). In addition, it is also
important to develop a quality control (QC) procedure for the
high-frequency original observation records (Houchi et al., 2015)
in some specific situations. The major goal of QC is to identify
incorrect data among the original observations. In QC
techniques, thresholds are used for the identification of the
abnormal records (Ren et al., 2005; Hasu and Aaltonen, 2011).
The QC procedures for the current Automatic Surface Weather
Observation System (AWS) include the station information
check, the missing value and eigenvalue check, the climate
extreme value behavior check, the climatological threshold
check, the time consistency check, the spatial consistency
check, and the interior consistency check among different
variables (such as hourly, daily, monthly, and yearly
temperature, humidity, pressure, wind direction and speed,
and precipitation records) (e.g., Ren et al., 2005; Ren et al.,
2007; Ren and Xiong, 2007; Wan et al., 2007; Wang et al.,
2007; Tao et al., 2009; Jiménez et al., 2010; Wang and Liu,
2012; Xu et al., 2012; Roh et al., 2013; Houchi et al., 2015;
Ren et al., 2015; Cheng et al., 2016; Kuriqi, 2016; Qi et al.,
2016; Lopez et al., 2017; Ditthakit et al., 2021). These QC
procedures can efficiently identify incorrect records.

Many studies have discussed QC techniques for
meteorological observation data (e.g., Shafer et al., 2000;
Fiebrich and Crawford, 2001; Qin et al., 2010; Liu et al., 2014;
Oh et al., 2015; Xiong et al., 2017a; Xiong et al., 2017b; Ye et al.,
2020). For example, one of the basic QC tests is to check whether
the observational records fall within a range of acceptable values.
This test proposes an algorithm for the automatic determination
of daily maximum and minimum thresholds for new
observations (Hasu and Aaltonen, 2011; Wang et al., 2014).
Some studies used monthly threshold values that are
determined on the basis of 30 years of climatic data (Hubbard
et al., 2005; Hubbard and You, 2005; Hubbard et al., 2007).
Thresholds and step change criteria were designed for the review
of single-station data to detect potential outliers (Houchi et al.,
2015). Xu et al. (2013) divided the national stations into eight
parts according to the geographic and climatic characteristics,
and proposed a QCmethod based on the extreme value, temporal
consistency, and spatial consistency checks for surface pressure
and temperature data at newly meteorological stations.

The above methods can identify outliers in the observations,
paving the way for developing QC methods of high-frequency
data (Vickers and Mahrt, 1997; Zhang et al., 2010; Li et al., 2012;
Lin et al., 2017; Ntsangwane et al., 2019; Cerlini et al., 2020). The
threshold methods are work by flagging suspicious observation
values for further inspection. In addition, the flagged details have
been discussed and the QC classes have been described (Vejen
et al., 2002). Most of previous studies are focused on threshold
methods on hourly or multiple time scales (Ye et al., 2020).
However, a uniform QC method for high-frequency raw records
is impractical (Hasu and Aaltonen, 2011), and also difficult. The
threshold methods require more computation or depend on the
observation record length. The high-frequency sampling
(minutes or 0.5 Hz) data at a new station (with a short time
series) are not easy to apply accurately for the current QC
operation. Because of the large uncertainties of estimation

related to the small samples (Hasu and Aaltonen, 2011; Ye
et al., 2020), these QC methods cannot identify false records
rapidly and well. Hence, it is necessary to develop an efficient
method for the high-frequency observation data at some stations
with short records for initial inspection of the data collection
phase before the data are transmitted to the central server.

In recent years, some high-frequency observation stations
have been established in China. Due to the cumulative amount
of the acquired data, we need to develop a new QCmethod for the
high-frequency data in advance and to find a simple and easily
method which can rapidly isolate and flag outliers in the data
collection phase before the data are transmitted to the central
server and are checked with a strict QC operational procedure.
This study proposes a simple and fast QC (FQC) algorithm to
calculate maximum and minimum thresholds for short-time raw
high-frequency (0.5 Hz) records gathered from newly
meteorological stations. This algorithm has the higher
efficiency in identifying outliers and isolating the maximal
unrealistic instrumental records. Moreover, this algorithm
offers a lower computational requirement and a graphical
display. Thus the study’s novelty is that we demonstrate the
effectiveness and feasibility of this algorithm in rapidly detecting
and flagging outliers and instrumental problems for 0.5 Hz real or
near-real time observations data. This algorithm may be used in
the data collection phase before the data enters into the QC
system and in these data processed locally on a remote data logger
of an automatic and power-limited station.

This article is organized as follows. The details of the algorithm
are given in Materials and Methods section. The application
examples of the algorithm using the data at three newly built
experiment stations and hourly data at one experiment station are
given in Results section. Discussions and Conclusions section are
given in the end. The appendix table is given in the end of the text
(Table A1).

MATERIALS AND METHODS

Data
We utilize surface (2-m) air temperature (SAT) raw observation
records with a temporal resolution of 2 s at newly-built Shenyang
experiment station (SA) and two Tianjin experiment stations (TA
and TB) from 30 April to 29 May 2016 (when the data is
continuous) (Table 1). These stations were in operation for a
few months in 2016, and the raw data were collected for
1–2 months during the test. SA is the single surface
meteorological operational station and has no information
available about the neighboring stations for reference; and TA
and TB are independent test sites, with a distance of
approximately 10 km. The long-term (2002–2018) hourly SAT
observation data at Shenyang station (with the station number
54342; SB) come from the National Meteorological Information
Centre (NMIC), referred to as hourly data from surface
meteorological stations (SMS) in China. Table 1 shows the
related information. All 0.5 Hz observations are the original
observation experimental data and have not been processed by
standard QC systems at NMIC, but these data have subjected to a
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manual data integrity check and an extreme value check by using
hourly climatic extremes based on the neighboring national
climatological station. The hourly temperature data at
Shenyang station have been checked with a strict QC
operational procedure at NMIC, that is, they are reliable, and
are used to evaluate the QC method developed in this study.

Description of the Fast Threshold Method
For 0.5 Hz data at Shenyang and Tianjin experiment stations, we
develop a QC method, that is, the fast threshold test method on
the basis of the percentile threshold technique (e.g., Hasu and
Aaltonen, 2011; Bonsal et al., 2001; Zhai and Pan, 2003) and the
standard deviation at a given bin for a given moving time
displacement interval (an updated threshold interval) (e.g.,
Houchi et al., 2015; Vickers and Mahrt, 1997; Zhang et al.,
2010; Li et al., 2012). In this method, the maximum and
minimum thresholds are used as the upper and lower limits of
the test criteria at a given bin of the high-frequency records,
respectively, and are calculated by tracking the time series of data
in each bin. On the basis of the following two assumptions. One is
that the descriptive statistics such as mean, standard deviation,
and so on are possible to estimate at the given bin, and another is
that the values are changing in time, the maximum andminimum
thresholds can be calculated and cannot be the same, which
enables a temporal averaging in the statistic determination (Hasu
and Aaltonen, 2011).Themaximum andminimum thresholds are
calculated as follows.

ximax � xm + aσ, a � 0, 1, 2, 3, . . . (1)
ximin � xn−m − aσ, a � 0, 1, 2, 3, . . . (2)

ximax ≥xi ≥ximin, (3)

σ �
�����������∑n

i−1(xi − �x)
n

,

√
(4)

p � m − 0.31
n + 0.38

, (5)

where ximax and ximin are the upper and the lower limits,
respectively; σ is the standard deviation; �x is the mean value;
a is the magnification coefficient (a � 0, 1, 2, 3, . . .). In this study,
a is set to 1. p is the given percentage; n is the number of samples
in a bin; 0.5 Hz temperature data for each bin is first ranked in
ascending order x1, x2, . . . , xn; m is the record number within
the sample size n; xm, xn−m are the initial values of the upper and
the lower limits that are specified by percentile ranks p (Bonsal
et al., 2001; Li et al., 2008); and the probability p that a random
value is less than or equal to the rank of xm is estimated by Eq. 5.
The percentile value is defined through a linear interpolation

between the closest ranks (Houchi et al., 2015). For example, if a
bin contains 900 values, the temperature representing the 99.9th
percentile is linearly interpolated between the 900th-ranked value
(x900 , p = 99.9234%) and the 899th-ranked value (x899 , p =
99.8123%). In Eq. 3, xi is accepted when the value falls within a
range from ximax to ximin; otherwise, xi will be classified as
“flagged” data and flags will be assigned to records (Højstrup,
1993; Vickers andMahrt, 1997). Meanwhile, the visual inspection
will be displayed on a PC device simultaneously and the flagging
data will further enter into a manual check. The reason for
choosing Eq. 5 to estimate the percentiles (as opposed to
fitting a statistical distribution such as gamma) include
simplicity, as well as avoiding any assumptions of the
underlying distribution (Jenkinson, 1977; Bonsal et al., 2001;
Zhai and Pan, 2003).

The threshold values (ximax and ximin) should be designed
strictly, and the potential instrument problems or outliers will be
highlighted during the visual inspection. In this study, we use the
small and large percentages for the minimum and maximum
thresholds respectively, when the observation history is short
(Hasu and Aaltonen, 2011). The percentile levels (0.1–99.9%) are
sufficient to remove the most unrealistic outliers from the
statistics in the short-term observations (Houchi et al., 2015);
and here the threshold values are defined as the 0.1th (p = 0.1%)
or the 99.9th (p = 99.9%) percentile values minus (plus) 1.0
standard deviation (a � 1) within a given bin. Considering the
experiment observation history length used in this study, the bin
size may be modified and adapted to obtain the desired amount of
data in each bin for QC statistics at stations in a given time period.
The threshold values are statistically dependent on both the data
volume in each bin and the width of the percentiles (Houchi et al.,
2015). Therefore, we test the sensitivity of the bin size in the range
of 24 to 90 min.

It should be noted that the last step in our QC method is a
manual check (that is, a visual inspection). The visual inspection
of the raw data and the “flagged” records by the automated
graphical procedures aims to identify an instrumental recording
problem or a plausible physical behavior and may assess the
accuracy of the flagging variable with simultaneously
measurement from other instruments (Vickers and Mahrt,
1997). Moreover, the “flagged” records will be removed from
the bin; otherwise, we do not update the subsequent thresholds
(Hasu and Aaltonen, 2011). This is to make sure that false values
do not affect the subsequent bin. The raw high-frequency
sampling data at Shenyang and Tianjin experiment stations
are used to verify the feasibility of the fast threshold test
method, and the results may further reflect the accuracy of the
instrument in the data collection phase. The fast threshold test

TABLE 1 | The temperature records at Shenyang and Tianjin stations.

Variable Station Date Unit Data Volume per hour Longitude (°E) Latitude (°N) Elevation (m)

Temperature Shenyang(SA) 29 April to 29 May 2016 °C 1800 124.0017 40.9278 53
Tianjin(TA) 30 April to 29 May 2016 °C 1800 117.3964 39.1091 5
Tianjin(TB) 30 April to 29 May 2016 °C 1800 117.4708 39.0306 3
Shenyang NO.54342(SB) 1 January 2002 to 31 December 2018 °C 1 123.4500 41.7333 44.7
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method has a lower computational requirement that minimizes
the rejection of physically real behavior and isolates the
maximum unrealistic instrumental records in the data
collection phase (Vickers and Mahrt, 1997; Wang et al., 2014).
It reflects the efficiency of this method in the operation and
resource occupancy.

In the following application of the fast threshold test method,
we do not discuss the flagging rates in detail because of the lack of
QC information, and we consider these data (after the manual
data integrity check and the extreme value check) as “truth
values”. Our purpose is to examine the functionality of the
algorithm, to verify the feasibility of the combination scheme
(Table 2) to newly built stations, to compare the operation
efficiency of the different combination schemes, and to find
out which combination scheme has smaller amounts of flagged
data than others.

RESULTS

Test Examples
In this section, the fast threshold test is applied to the QC of both
0.5 Hz temperature data at three experiment stations and hourly
data at one experiment station. The main results are shown as
follow.

The Fast Threshold Test for 0.5Hz Data
0.5 Hz observations are gathered at SA station from 29 April to 30
May 2016. The updated thresholds can be derived from the following
tests, in which the number of data in each bin is determined by the
given percentage (p � 99.9%, n � 690 /23min). On the other hand,
the adopted bin size is divided by 1,440min with no remainder (that

is, BS ≥ 24min). Hence, the bin size may bemodified and adapted to
obtain the desired data amount in each bin for the FQC statistics,
and the combination schemes are easy to be computed at SA station
in a given period. Here, we test it in the range of 24 min (30 × 24 =
720 values; x720 corresponds to p = 99.9042%) to 90min (30 × 90 =
2,700 values; x2698 corresponds to p = 99.9004%). In our tests, we
obtain the maximum and minimum thresholds from 15
combination schemes. In addition, we adopt the threshold check
schemes used in the previous studies based on 3 or 3.5 standard
deviations and themean valuemethod to compute the thresholds for
six combination schemes (Zhang et al., 2010; Li et al., 2012). On the
basis of the flagged values, we finally choose the optimal
combination scheme for further tests. The results are given in
Table 2.

As shown in Table 2, the average flagging percentage of
thresholds is 0.257%, which is significantly higher than the
statistical expectation of 0.1% per threshold. The average
flagging percentage of our method is 0.280%. At a 60-min bin
size, scheme 3 has 0.870% of the maximum values. At a 30 min
bin size, scheme 9 has 3.000% of the maximum values flagged.
Scheme 8 has 0.231% of the maximum values flagged. On the
contrary, schemes 1, 2, and 7 have 0.007, 0.051, and 0.000% of the
corresponded maximum values flagged at 30 or 60 min bin sizes,
respectively, schemes 13–15 have the same of the maximum
values flagged as scheme 7, and the flagging percentages of
schemes 13–21 are lower than the statistical expectation of
0.1% per threshold. The above results indicate that the
thresholds derived from these schemes (e.g., scheme 3, scheme
9, etc.) are not updated frequently enough for 0.5 Hz data, i.e., the
thresholds have not fully covered the time series, and thus more
frequent updates are required. The results may be avoided by
using a shorter given time displacement interval for the estimated

TABLE 2 | The results of threshold tests at different bins and time displacement for raw temperature data at SA on 29 April 2016, in which TDI is for a time displacement
interval (minutes), BS is for a bin size (minutes), and SD is for standard deviation.

Combination scheme
number

TDI (minutes) BS (minutes) SD Flagging Flag percentage
(%)

1 1 60 1 3 0.007
2 2 60 1 22 0.051
3 5 60 1 379 0.870
4 60 60 3.0 62 0.144
5 60 60 3.5 43 0.099
6 1 60 3.5 132 0.306
7 1 30 1 0 0.000
8 2 30 1 100 0.231
9 5 30 1 1,298 3.000
10 30 30 3.0 114 0.264
11 30 30 3.5 6 0.014
12 1 30 3.5 159 0.368
13 1 24 1 0 0.000
14 1 32 1 0 0.000
15 1 36 1 0 0.000
16 1 40 1 1 0.002
17 1 45 1 1 0.002
18 1 48 1 1 0.002
19 1 72 1 3 0.007
20 1 80 1 6 0.014
21 1 90 1 6 0.014
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thresholds. Accordingly, schemes 1, 7, 13–19 may update the
thresholds more frequently, and the flagging percentages reach
the minimal in all schemes. In contrast, when we apply the
threshold test method in the previous studies, the average
flagging percentage of thresholds is 0.199%. Scheme 5 has
0.099% of the maximum values flagged at a 60 min size, and
scheme 11 has 0.014% of the maximum values flagged at a 30 min
bin size. Compared to the result of our method, the difference in
the flagging percentage is −0.092% between schemes 1 and 5 and
is −0.014% between schemes 7, 13–15 and 11. It is evident that the
flagging percentages of the new method are significantly lower
than those of the previous threshold test method.

The selected scheme needs to provide easy and continuous
computation and a graphical display conveniently when available,
requires less memory, and can reduce the computational burden
of the computer system. A further analysis shows that scheme 1
requires 1800 (30 × 60) values, scheme 7 requires 900 (30 × 30)
values, scheme 13 requires 720 (30 × 24) values, scheme 14
requires 960 (30 × 32) values, scheme 15 requires 1,080 (30 × 36)
values, scheme 16 requires 1,200 (30 × 40) values, scheme 17
requires 1,350 (30 × 45) values, scheme 18 requires 1,440 (30 ×
48) values, and scheme 19 requires 2,160 (30 × 72) values for each
given bin. These schemes have the same time displacement
interval. The result indicates that the flagging percentages are
0–0.007% for schemes 1, 7, 13–19, and that there is only small
differences between them. The memory savings are significant
and the computational efficiency is higher for the computer
system for schemes 7 and 13. Since the 30 min bin size is
more conducive to make a calculation, and scheme 7 is
selected in the subsequent tests.

Figure 1 shows a comparison of the thresholds test results
between scheme 7 (Figure 1A) and scheme 11 (Figure 1B) at
the same given bin. When temperature drops from 19 to 15°C
within 15 min at 2–3 pm local time, scheme 7 has no flagging,
but scheme 11 has six flagging. Then, which scheme is correct?
The minutes-level precipitation this day are further
investigated (figure not shown). We find that there is

0.1 mm precipitation at 2:57 pm local time (BJT). This
temperature falling is likely caused by the occurrence of
precipitation. Hence, scheme 7 avoids unnecessary false
error flagging that is, type I flagging errors. Thus we may
preliminarily judge that the temperature falling is a plausible
physical behavior. On the other hand, the thresholds derived
from scheme 11 are not updated frequently enough for 0.5 Hz
data, so the thresholds have not covered the full time range at
3 pm local time.

To investigate whether the bin size affects the feasibility of
the fast threshold test, we adopt schemes 7 and 11 to inspect
0.5 Hz data from 30 April to 29 May 2016. Figure 2 shows the
difference between the maximum/minimum threshold and
the temperature based on the above two schemes. In Table 3,
it is seen that the flagging percentage of thresholds is 0.000%
for scheme 7 and is 0.054% for scheme 11. In Figure 2A and
Table 3, no value (red line or blue line) goes through zero for
scheme 7, and there are 703 values (red line or blue line) going
through zero for scheme 11. After examing the minutes-level
precipitation data (figure not shown), it is seen that most of
the 703 flagging data are likely caused by precipitation. The
other reasons need further investigation. We may also
preliminarily judge that the temperature change is a
plausible physical behavior. These threshold test examples
show the advantages of this new algorithm, and the thresholds
are statistically meaningful (Hasu and Aaltonen, 2011).

Furthermore, we randomly change three values beyond the
threshold for the time series in 30 days (from 30 April to 29 May
2016), and use scheme 7 to inspect them. As shown in Figures
3A–C, this scheme can flag the three artificial outliers exactly in
the raw data series from the observations in the 30 day period.
The flagging data exceed the thresholds at 1 May (Figure 3A), 9
May (Figure 3B), and 26May (Figure 3C) 2016, respectively, and
the visual inspection may further assess the accuracy of the
flagging variable.

To investigate whether the fast threshold test method can be
applied to the data at different stations, we use scheme 7 to

FIGURE 1 | The fast threshold test results for raw temperature data at SA station on 29 April 2016 (Unit: °C). (A) Scheme 7; and (B) scheme 11 (The 0.5 Hz
temperature data (green line); the upper limits per minute (the maximum thresholds, red line); and the lower limits per minute (the minimum thresholds, blue line)).
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inspect the 30 days data (from 30 April to 29 May 2016) at TA
station. As a reference, we inspect the data at the neighboring TB
station at the same time. It is seen from Figures 4A,B that the
data at both stations pass the QC inspection, there is no value (red
or blue line) going through zero when adopting scheme 7 at TA
station as well as at TB station, which implies the suitability of the
fast threshold test method at different stations. Scheme 7 verifies
the feasibility of the fast threshold test method at these new
stations, which demonstrates the efficiency of the QC scheme.

The Fast Threshold Test for Hourly
Temperature Data
This new algorithm is further applied in the hourly temperature
data at SB station from 1 January 2002 to 31 December 2018,
which indicates a change from seconds to hour level. As shown in
Figure 5, the hourly data have passed to the strict quality control
before our inspection. We test the hourly data by using the new
algorithm to explore the possibility of misjudged or unrealistic
observations existing in this dataset. Here, we still use small (p =
0.1%) and large (p = 99.9%) percentile values minus (plus) 1.0
standard deviation (a = 1) for the respective minimum and
maximum thresholds within a given bin. In view of the
history length of the hourly temperature observation data, it is
necessary to re-determine the bin size. For this purpose, a 30-days
bin size (30 × 24 = 720 values) and a 1 h time displacement
interval are used to test schemes. Meanwhile, we also adopt the

threshold test method in the previous studies for the same bin size
based on 3.5 standard deviations and themean valuemethod. The
result indicates that our algorithm may be practically
implemented for the temperature data. It is seen from
Figure 5A that all data fall within the range of acceptable
thresholds with the percentile levels of 0.1 and 99.9%. The
thresholds derived from the previous method are not updated
frequently enough for the data, i.e., the threshold series is not
sufficiently smooth (Figure 5B).

DISCUSSION

Our algorithm can successfully identify outliers for the high-
frequency observation records in the data collection phase of the
newly built meteorological stations. This method is based on
three assumptions. The first one is that the descriptive statistics
are possible to estimate for a given bin, the second one is that the
values in each bin change with time (Hasu and Aaltonen, 2011),
and the third one is that the majority of the 0.5 Hz data are “good”
data (Long and Shi, 2008). Because of periodic variations of
temperature measurement records, we need to know how the
appropriate statistics for each moment are chosen. Moreover,
when the history includes only a small number of samples of the
assumed distribution, we need to know how the descriptive
statistics are computed (Hasu and Aaltonen, 2011). In this
study, we deal with these problems using Eq. 5 for estimating
the percentiles, including the simplicity and avoiding any
assumptions of the underlying distribution in the given bin
(Jenkinson, 1977; Bonsal et al., 2001; Zhai and Pan, 2003).

Since this method is based on the statistics (such as data
percentiles, the standard deviation, and a moving box filter),
especially at new stations, we have not long observation series.
Furthermore, because of the large estimation uncertainties in
the small samples (Hasu and Aaltonen, 2011), we use a
suitable percentile value minus (plus) standard deviation
for the respective maximum and minimum thresholds

FIGURE 2 | The difference between the maximum/minimum threshold and the temperature at SA station from 30 April to 29 May 2016 (Unit: °C), in which the
maximum thresholds minus 0.5 Hz temperature (red line) and 0.5 Hz temperature minus the minimum thresholds (blue line).(A) Scheme 7; and (B) scheme 11.

TABLE 3 | The results of the fast threshold test method for raw temperature data
at SA station from 30 April to 29 May 2016, in which TDI is for a time
displacement interval (minutes), BS is for a bin size (minutes), and SD is for
standard deviation.

TDI (minutes) BS (minutes) SD Flagging Flag percentage (%)

1 30 1 0 0.000
30 30 3.5 703 0.054
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within a given bin. Obviously, the minimum threshold is set
according to a percentile related to a very small percentage (p
= 0.1%), and the maximum threshold is set using a very large
percentage (p = 99.9%). This may avoid unnecessary false
error flagging (type I flagging errors). Of course, the

percentages may also be determined according to the user’s
preference or the different types of sensors (e.g., sensor
specifications, time response, resolution, etc.).

This FQCmethod is effective and feasible to rapidly detect and
flag outliers and instrumental problems for 0.5 Hz real or near-

FIGURE 3 | Same as in Figure 1, but for scheme 7 (Unit: °C) at SA station on 1 May, 9 May, and 26 May, 2016.

FIGURE 4 | Same as in Figure 2, but for scheme 7 at TA (A); and TB (B) stations from 30 April to 29 May 2016.

Frontiers in Earth Science | www.frontiersin.org April 2022 | Volume 10 | Article 8447227

Liao et al. Fast Quality Control

111

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


real time records in the data collection phase before the data enter
into the QC system. It is also useful to perform the data QC locally
on a remote data logger of automatic and power-limited stations.
The advantages of this method are as follows. Firstly, it does not
need a priori knowledge of the climate, and therefore it enables
the generation of statistically meaningful thresholds for newly
built stations. Secondly, the approach enables the use of
observation statistics for fast checking (Hasu and Aaltonen,
2011). Thirdly, this method does not need a lot of computing
resources. Furthermore, the method splits data into fewer bins,
which reduces the memory requirements for the computer
system. The main computations are used in determining the
thresholds and the thresholds can be updated more frequently
(every minute). Updating more frequently thresholds is also an
obvious advantage of this method. However, it is also noted that
this method only describes the expected behavior of the
measurement within a given bin period. When real or near-
real time observation records have a systematic deviation, this
method is inapplicable. Therefore, an accurate check at least a few
days after using this method and a manual check for the flagged
records are needed (Hasu and Aaltonen, 2011; Houchi et al.,
2015). Otherwise, the thresholds are not reliable enough, this also
implies that the automated algorithms should be under human
supervision in the initial stages.

Because of differences in themeteorological measurements, not all
similarly determined thresholds are meaningful to all measurements
(Hasu andAaltonen, 2011). Therefore, there is no one threshold value
that cleanly separates all instrumentation problems from unusual
physical situations. The manual checks (visual inspection) of
individual flagged records are always required (Vickers and
Mahrt, 1997), which can be implemented by investigation of the
synoptic meteorological conditions occurring around the time of the
flagged observations (Shulski et al., 2014).

Procedurally, the operation time control is also an
important issue in QC for high-frequency observation data
because the fast threshold test method needs to be performed
in a short period. Our method is only a primary

implementation that can help to screen out obvious outliers
promptly in the data collection phase (Cheng et al., 2016).
Since this method is developed based on the statistics, some
uncertainties also exist. The short-term observational records
are possibly not reliable enough when only using a basic
threshold test method (Shulski et al., 2014). Thus, the data
checked by this method should be further checked with a more
strict QC operational procedure. Moreover, to handle
unexpected problems such as misjudged observations in our
method, more studies are needed (Houchi et al., 2015).

CONCLUSION

We propose an algorithm through the automatic determination
of the maximum and minimum minute thresholds for the high-
frequency meteorological observation data in the data collection
phase of the newly built stations, and present an efficient
statistical scheme to isolate and flag non-negligible outliers
and instrumental problems from a large amount of 0.5 Hz
raw data before they are introduced into the QC system (e.g.,
Houchi et al., 2015; Vickers and Mahrt, 1997; Zhang et al., 2010;
Li et al., 2012). This method is based on the percentile threshold
(0.1–99.9%) and standard deviation, which can identify the
incorrect data in the current minute with a 30 min bin size
and a 1 min time displacement interval. A visual graph is
generated every minute, and the time series and the
thresholds are displayed by the automated graphical
procedures. Those observations that fall outside the
thresholds are flagged and then a manual check (visual
inspection) is performed (Cheng et al., 2016). The optimal
thresholds will be derived from the corresponding tests
(Houchi et al., 2015). This method is developed for the raw
high-frequency (sampled every 2 s) surface temperature
observation data. We demonstrates the effectiveness and
feasibility of this algorithm in rapidly detecting and flagging
outliers for an initial inspection of 0.5 Hz real or near-real time

FIGURE 5 | The results of the threshold test method for temperature (Unit: °C) at SB station (A) from 1 January 2002 to 31 December 2018 and (B) from 1 January
2014 to 31 December 2014.(The hourly temperature data (green line); the upper limits per hour (the maximum thresholds, red line) and the lower limits per hour (the
minimum thresholds; blue line) obtained from our algorithm, the upper limits per 30 days (the maximum thresholds; the red dotted line) and the lower limits per 30 days
(the minimum thresholds; the blue dotted line) obtained from the previous threshold test method).
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data in the data collection phase. A comparison at different
experiment stations indicates that this fast threshold test may be
a viable option in the data collection phase. Meanwhile, this
method may also be applied to other high-frequency
observation variables such as pressure, relative humidity (the
beta-distributed, Yao 1974), wind speed (Weibull-distributed,
Pang et al., 2001), and so forth .
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TABLE A1 | THE LIST OF ACRONYMS.

Number Appellation Acronyms

1 Fast Quality Control FQC
2 Quality Control QC
3 Shenyang experiment station SA
4 Tianjin experiment stations A TA
5 Tianjin experiment stations B TB
6 Shenyang NO.54342 SB
7 National Meteorological Information Centre NMIC
8 Surface Meteorological Stations in China SMS
9 Time Displacement Interval TDI
10 Bin Size BS
11 Standard Deviation SD
12 Automatic Surface Weather Observation System AWS
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Glacier Mass Balance Changes Over
the Turgen Daban Range, Western
Qilian Shan, From 1966/75 to 2020
Song Xu, Yetang Wang*, Yuzhe Wang*, Shanzhong Qi and Min Zhou

College of Geography and Environment, Shandong Normal University, Jinan, China

Extensive efforts for quantifying regional glacier mass balance in the Qilian Mountains have
been made using the geodetic method, but these estimations were rarely extended back
to the period before 2000. This study presents glacier mass budgets in the Turgen Daban
Range, over the western Qilian Mountain, from 1966/75 to 2020 by means of the digital
elevation models generated by the topographic maps and ASTER images. The results
show that the glacier mass decreased by −18.79 ± 12.48m w.e. during the past 50 years.
The average mass loss rate is estimated to be −0.19 ± 0.08 m w.e.a−1 for the 1966/75-
2006 period and −0.45 ± 0.17 m w.e.a−1 during 2006–2020, respectively, suggesting a
remarkable acceleration of glacier mass loss. This may be attributable to the significant
increase in air temperature and the insignificant precipitation increase which cannot offset
glacier melting caused by increased temperature. Due to the melting and shrinking of
glaciers, the area of glacial lakes increases by 2.83 km2 from 1987 to 2020.

Keywords: glacier mass balance, geodetic method, Turgen Daban range, climatic forcing, glacial lake

1 INTRODUCTION

As the products of climate changes, glaciers are highly sensitive to climatic variations and widely
considered as a natural climatic indicator (Oerlemans and Reichert 2000). Under the background of
global warming, almost all global glaciers are experiencing considerable ice loss, with a large
contribution to the current sea level rise (IPCC 2021), and a significant influence on local water
resources and hydrological processes in many regions (Gardelle et al., 2013; Kääb et al., 2015; King
et al., 2017). Furthermore, the increased glacier ablation raises the risk of glacier-related hazards such
as ice avalanche (Gilbert et al., 2018), outbursts of glacier lakes (Kapitsa et al., 2017; Georg et al.,
2020), and downstream flooding (Shangguan et al., 2017), which often result in massive economic
loss and even life deaths. Thus, it is essential to carefully monitor glacier changes.

Glacier extent and mass balance changes at a certain time span represent quantitative response of
glaciers to climatic fluctuations (Zhang et al., 2010). There is a time lag of a decade or longer between
climate change and glacier extent (Winkler et al., 2010). Compared with glacier extent, glacier mass
balance is a three-dimensional parameter reflecting the change of ice storage and is more sensitive to
climate changes (Zemp et al., 2009). Thus, many attempts have been made for monitoring glacier
mass balance.

The traditional glaciological method for the determination of mass balance is to observe the
deviation between surface accumulation and melting at specific sites by snow stakes or snow pits
several times per year, and then to calculate the mass balance of the whole glacier by interpolating
these point values (Zemp et al., 2009). This method is simple and highly accurate but cannot be
suitable for the estimation of glacier mass balance at the regional or even larger scale, due to the
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difficulty of field observations in harsh climatic conditions and
rugged terrain. The gravimetry method is also used to measure
the glacier changes through the determination of gravity
anomalies caused by the Earth’s mass variability. In particular,
Gravity Recovery and Climate Experiment (GRACE) twin
satellites provide the measurements of gravity field at the
global scale. It has been confirmed that GRACE-determined
gravity changes are sufficient to examine seasonal or
interannual mass balance of the ice sheets (Velicogna 2009;
Bamber et al., 2018). However, due to their coarse resolution
(~300 km), a very high uncertainty occurs when they are used to
calculate mass changes of mountain glaciers (e.g., Jacob et al.,
2012). The geodetic method for the estimation of the glacier mass
balance is based on the ice elevation changes during different
periods from digital elevation models (DEMs) generated by field
investigations and aerial and spaceborne observations. With the
rapid development of remote sensing technology, a large amount
of DEMs are increasingly available, and as a result, the geodetic
method is widely used for the calculation of glacier mass balance
(Paul et al., 2015; Brun et al., 2017).

Glaciers over the Qilian Mountain are the resource of most
rivers over the Hexi Corridor, providing water supplies for
more than 4.5 million population, and thus, their variations
have caused widespread concern. Various glacier inventories
have been performed by means of in situ measurements and
remote sensing-based observations (Sun et al., 2014; Chen
et al., 2018). However, the current existing studies focused on
the estimation of glacier length or area changes, and
quantifications of local or regional mass balance variations
are still very limited, especially for the temporal coverage
(mostly from 2000 onward). The Turgen Daban Range is
located at the southwestern Qilian Mountains. While glacier
extent changes on this range have recently been investigated, to
our knowledge, variability in the overall glacier mass balance is
still undocumented. Glacial lakes replenished by meltwater
and meteoric water are widely developed at the glacier
terminus of the study area. The glacial lakes expand
continuously with the inflow of meltwater. Changes in the
total area and counts of glacial lakes are as a function of glacier
mass balance. Thus, based on the existing topographic maps,
ASTER images, Landsat images, and the first and second
Chinese Glacier Inventories (CGIs), we use the geodetic
method to explore the glacier elevation and mass balance
changes in the Turgen Daban Range between 1966/75 and
2020, and their relationship with climate changes are also
discussed.

2 STUDY AREA

The Turgen Daban Range (95°14’ ~ 96°39′E, 37° 54’ ~ 38° 36′N) is
located in the western branch of the Qilian Mountains, the
northeast edge of the Tibetan Plateau (Figure 1). It is about
120 km in width and stretches in the northwest–southeast
direction, with an average altitude of 4,694 m a.s.l. The highest
point of the range is Chaidan Mount, and its elevation reaches
5,656 m a.s.l. Mountain glaciers are intensively developed at the

top of the mountain, which is a center of glaciation over the
Qilian Mountains (Shi 2005). Mainly controlled by the westerlies,
this region is characterized by the plateau continental climate,
with an annual average temperature of −3.5°C and an annual
precipitation of 223 mm, respectively. According to the first
Chinese Glacier Inventory, there are 285 glaciers covering an
area of 389.01 km2, and they belong to the extreme continental
type. More than 70% of the glaciers are smaller than 1 km2, and
the resulting mean glacier area is only 1.36 km2. The largest
glacier is Dunde ice cap, located at the eastern end of the
mountain, with an area of about 60 km2 and a mean ice
thickness of 140 m (Guo et al., 2015). Its elevations range
from 4,580 m. a.s.l to 5,290 m. a.s.l.

3 DATA AND METHODS

3.1 Data
3.1.1 Topographic Maps
We used twenty-one topographic maps at a scale of 1:50,000,
which were produced from aerial stereo pairs during 1966–1975
obtained by the Chinese Military Geodetic Service (CMGS). The
references of these maps were the Beijing Geodetic Coordinate
System 1954 (BJ54) in horizon and the Yellow Sea 1956 datum
(the mean sea level at the Qingdao Tidal Observatory in 1956) in
verticality, respectively. The coordinate system of topographic
maps was converted toWorld Geodetic System 1984 (WGS 1984)
and Earth Gravity Model 1996 (EGM96) by using the seven-
parameter transformation method. The digitalized contours and
elevation points were used to construct a triangulated irregular
network (TIN), which was then interpolated to a DEM at a
resolution of 30 m, called TOPO DEM.

As reported by the Standardization Administration of the
People’s Republic of China (General Administration of Quality
Supervision Inspection and Quarantine, 2008), the
topographic maps have a vertical accuracy of ± 3 m for the
regions with a slope of <2°, ± 5 m for the regions with a slope of
2°–6°, ±8 m over the regions with a slope of 6–25°, and ±14 m
over the regions with a slope of >25°, with respect to the
measured elevation of ground control points (GCPs). We
calculated the mean slope of glacierized areas in the Turgen
Daban Range (~15.9°) by means of the TOPO DEM, and thus,
the vertical accuracy of the TOPO DEM is considered to
be ±8 m.

3.1.2 Advanced Spaceborne Thermal Emission and
Reflection Radiometer Digital Elevation Model
The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) is a multispectral imager launched on
the NASA Terra satellite in December 1999. The ASTER
sensor covers a spectral range of 14 bands from visible light to
thermal infrared. The ASTER sensor provides multispectral
imagery between 83°N and 83°S, covering nearly 99% of the
global land surface. The visible and near-infrared telescope
(VNIR) subsystem includes two independent telescopes, which
have the 3N (nadir) and 3B (backward) bands to facilitate the
generation of stereo images for creating DEMs.
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We use ASTER Level 1A images in 2006/2020 with a resolution of
15m to generate ASTER DEMs (Table 1). The ASTER Level 1A
images consist of instrument data without geometric and radiometric
corrections, maintaining the original resolution. These images are
accompanied by relevant correction coefficients without map
projections. The Level 1A data product also consists of metadata,
cloud coverage table, auxiliary data, VNIR data group, SWIR data
group, and TIR data group. In order to obtain DEMs from
stereoscopic images of ASTER Level 1A, we first extract 3N and
3B band images fromASTERHDF file, and the projection coordinate
system is defined as AsiaNorthAlbers Equal Area Conic. The control
points and tie points are collected to generate epipolar images, which
are used to automatically extract DEM. The DEMs generated from
ASTER stereoscopic pair in the study areawere highly consistent with
the TOPODEM for the stable terrain, which suggests a relatively high
accuracy of the produced ASTER DEM.

3.1.3 Landsat Images
Since the first Landsat satellite was launched in 1972, the Landsat
Program has provided abundant satellite image data for the
investigation of glacier changes (Jiang et al., 2013). To reduce
the interference of snow and cloud cover, we tried to select the
images with less cloud and snow, and small mountain shadow
over the snow melting period. At last, five Landsat-TM/ETM+/
OLI images were selected to extract glacier boundaries during
different periods, which are 1 TM image in 1987; three ETM +
images in 1999, 2006, and 2011, respectively; and one OLI image
in 2020. Their spatial resolutions are 30 m. The product has high
accuracy through systematic radiation, geometric, and terrain
corrections. We also co-register these images to topographic
maps using 20–35 GCPs. Before extracting the glacier
boundaries, the coordinates of topographic maps and images
are normalized, and their coordinate systems are defined in Asia

FIGURE 1 | Map showing the study area and the distribution of glaciers.

TABLE 1 | List of data for the glacier change assessment over the Turgen Daban Range.

Data Date Pixel size/scale Purpose Resource

Topographic maps 1966/1975 1:50,000 DEM/base image CMGS
ASTER October 2006 15 m DEM LP DAAC
ASTER April 2020 15 m DEM LP DAAC
SRTM 4.1 February 2000 90 m References DEM CGIAR-CSI
Landsat TM September 1987 30 m Base image GLCF
Landsat TM September 1999 30 m Base image GLCF
Landsat ETM+ September 2006 30 m Base image GLCF
Landsat ETM+ October 2011 30 m Base image GLCF
Landsat 8/OLI September 2020 30 m Base image USGS
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North Alberts Equal Area Conic projection and WGS 84
ellipsoid. Glacier boundaries in 1966 are digitized from the
topographic maps. These images are combined using bands 4,
5, and 7, and the glacier field is indicated by blue color after band
combination. By means of visual interpretation, the area and
boundary of glaciers in 2006 and 2020 are extracted and corrected
by comparing with the first Chinese Glacier Inventory to improve
interpretation accuracy. When extracting glacier boundaries by
manual visual interpretation, the accuracy of all image
interpretations is limited to one pixel.

3.1.4 Meteorological Data
The meteorological records are derived from the weather stations
of Tolle (38.80°N, 98.42°E; 3,368.3 m a.s.l), Dachaidan (37.85°N,
95.37°E; 3,174.2 m a.s.l), and Delingha (37.37°N, 97.37°E;
2,982.4 m a.s.l). In this study, we use the daily air temperature
and precipitation data, spanning from 1961 to 2018.

3.2 Methods
3.2.1 DEM Co-Registration
Due to the differences between the acquisition methods and
processing processes of DEMs, there are errors caused by the
horizontal and vertical offsets between different DEMs. In order
to ensure the accuracy of the DEM differencing results, it is
necessary to correct the spatial matching errors of DEMs from
different sources. We first perform the co-registration of DEM
data sets before calculating the glacier elevation change. Nuth and
Kaab (2011) noted that there is an obvious trigonometric
relationship between elevation difference and topographic
slope and aspect:

dh

tan(α) � a · cos(b − φ) + c, (1)

c � dh

tan(α), (2)
X � ap sin(b), (3)
Y � ap cos(b), (4)
Z � cp tan(α), (5)

where dh and dh (Table 2) are the elevation difference of the off-
glacier areas between different DEMs and overall elevation
difference, respectively, and α and Φ are the topographic slope
and aspect of the DEM, respectively. Least square minimization is
used to solve the regression parameters a, b, and c, and they
represent horizontal shift, direction of shift, mean bias divided by
mean slope tangent of the terrain, respectively. The horizontal
shift in the X-direction, Y-direction, and mean vertical bias is
represented by X, Y, and Z, respectively.

Considering the zoning problem of Mercator projection, all
DEMs are converted to the Albers projection ofWGS84 reference
ellipsoid and are resampled to 30 m resolution. Before co-
registration, elevation deviations of 5 and 95% in quantile are
limited to eliminate the most extreme outliers. TOPODEM and
ASTER DEM are co-registered using SRTM4.1. The offset of the
stable off-glacier terrain is calculated by the minimum standard
deviation of elevation difference between the two DEMs (Berthier
et al., 2006). In order to minimize the spatial matching error, the
process is iterated to achieve the final solution until the standard
deviation of dh decreasing by less than 2% or the offset less
than 1 m.

3.2.2 Correction of Terrain Curvature
The difference in original resolution of DEM data sets leads to
vertical deviation between data. Gardelle et al. (2013) have shown
that vertical biases caused by resolution strongly correlate with
the maximum curvature, and the biases exist no matter whether
the terrain is covered with glaciers or not. Therefore, the robust
relationship between the vertical biases in off-glacier terrain and
the maximum curvature of terrain are used to correct the vertical
biases of glacial regions caused by terrain curvature in this study.

3.2.3 Outlier Filtering and Data Gap Filling
Elevation, pixel, low image contrast, terrain slope, aspect and
curvature, image noise, and interpolation methods affect the
quality and accuracy of remote sensing data (Carlisle 2005;
Hoehle and Hoehle 2009; Gardelle et al., 2012). In order to
reduce the uncertainty of the calculation of elevation changes,
the outliers should be excluded before the determination of the
glacier surface elevation changes. First, we exclude the pixels
with absolute elevation change over 100 m, which may be
stereo matching errors caused by cloud cover and low
radiometric contrast (Maurer et al., 2016). Second, steep
slopes and shadows often result in stereo matching errors
(Pieczonka et al., 2011; Maurer and Rupper 2015), and the
deviation is positively correlated with slope changes.
Therefore, the pixels with slopes >30° are omitted following
Pieczonka et al. (2011), and this also removes the nunataks and
rock cliffs in the accumulation regions, which were easily
wrongly defined as glacier ice (Maurer et al., 2016). Third,
the pixels with absolute elevation change values of more than
three standard deviations in each 100 m altitude band are
excluded. Due to low radiation contrast, the DEMs created
by topographic maps have errors and gaps in the accumulation
regions. According to Holzer et al. (2015), we only include the
pixels within the quantile range of 31.7 and 68.3% elevation
changes in the accumulation area.

TABLE 2 | Offsets in X, Y, and Z directions of the DEM dataset and the uncertainty in DEMs before and after co-registration.

Offsets in X, Y, and Z directions Before co-registration After co-registration

X(m) Y(m) Z(m) dh (m) SD(m) dh (m) SD(m)

TOPO-DEM 9.1 11.2 1.1 1.2 9.9 1.2 9.5
ASTER DEM 2006 −4.5 6.6 8.3 12.3 21.8 12.2 21.7
ASTER DEM 2020 10.6 −13.6 10.1 15 13.8 15 13.5
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As outlier filtering results in a large number of data gaps, it is
necessary to fill the data gaps when assessing the volume changes
over the entire glacier field. Some methods have been used to fill
in missing elevation change data, such as linear interpolation
method, a polynomial fit of the elevation changes by the elevation
band, and filling with an average value from a surrounding
neighborhood. McNabb et al. (2019) compared these methods
and concluded that linear interpolation and the local mean
hypsometric method are more suitable for filling the voided
data when estimating regional glacier total volume changes.
The missing data is filled with the average value of elevation
changes of the appropriate 100 m elevation band.

3.2.4 Glacier Extent Delineation and Geodetic Mean
Elevation Change Calculation
The glacier outlines are extracted by visual interpretation to ensure
the accuracy. We visually interpret the glacier outlines in 1966 by
using the topographic maps corrected by aerial images, and the
interpretation results are corrected in combination with the data of
the first China Glacier Inventory to reduce the interpretation error
caused by mountain shadow and seasonal snow. Glacier boundaries
in 2006 and 2020 are manually revised by visual interpretation using
Landsat ETM+/OLI and ASTER images.

To estimate the mass balance of the glaciers, the elevation
change value of each grid pixel was multiplied by the pixel area of
DEM and then summed. Then the variation in the glacier surface
elevation was determined by dividing the obtained change in
glacier volume by the glacier area. The conversion of elevation
change to mass balance needs to consider the combined ice and
snow density. We used a constant density of 850 ± 60 kg m−3 to
convert the glacier elevation changes to glacier mass balance
(Huss 2013).

3.2.5 Uncertainty Assessment
The uncertainty of elevation change comes from data source errors
and DEM elevation relative error. The standard deviation (SD) of
mean elevation change in off-glacier areas can be used as an estimate
of the uncertainty, which overestimates the actual uncertainty by SD
due to ignoring of the influence of spatial autocorrelation between
DEMs. Therefore, the uncertainty of elevation change is estimated by
the standard deviation of the non-glacierized area, the number of
pixels with independent elevation change measurements (Paul et al.,
2015) (considering spatial autocorrelation) and the mean absolute
difference (Braun et al., 2019) (MAD) between the median elevation
changes on and off-glacier:

UΔh � SDh��
nz

√ +MAD. (6)

The nz value represents the number of independent pixel
measurements. As the adjacent pixels have strong spatial
autocorrelation, the spatial autocorrelation distance should be
set in the calculation to eliminate its influence on error evaluation
by the following formula:

nz � nbpr2

πpd2
, (7)

where nb represents the total number of independent
measurements in the given altitude band, r is the pixel
resolution (~30 m), and d is the distance of spatial
autocorrelation. The spatial autocorrelation distance may be
different with different spatial resolution. Koblet et al. (2010)
and Bolch et al. (2011) assumed that the spatial auto-correlation
of 20 pixels is negligible. Gardelle et al. (2013) identified auto-
correlation distances of 492 ± 72 m for DEMs with 40 m spatial
resolution, determined using Moran’s I autocorrelation index,
corresponding to nine study sites in the
Pamir–Karakoram–Himalaya. Koblet et al. (2010) chose a
decorrelation length of 100 m for the DEMs with 5 m spatial
resolution. In this study, a conservative value of 600 m was used
as the spatial autocorrelation distance, which was determined by
semi-variogram analysis (Rolstad et al., 2009; Paul et al., 2015).

Error resulting from the missing pixel is filled by the
extrapolation method. The uncertainty of extrapolation (Ue) is
also calculated. Maurer et al. (2016) and Maurer et al. (2019)
regarded the maximum of the SDs of glacier elevation change in
any 100 m elevation band as Ue.

Glacier boundary error cannot be ignored in the estimation of
glacier elevation changes, and the uncertainty of glacier extent is
estimated according to the formula proposed by Braun et al.
(2019):

Ua � P/A
P/A(Paul et al.)

p0.03, (8)

whereUa is the error of glacier area and P/A is the perimeter-area
ratio. Paul et al. (2013) made a comparative analysis of the
accuracy of glacier boundary extraction from the remote-
sensing image and found that the parameter of perimeter area
ratio was a constant value of 5.03 km−1. Then, this parameter was
applied to the estimation of uncertainty in glacier areas by Braun
et al. (2019). During the conversion from volume to mass, we
assume an error of ±60 kg m−3 on the density conversion factor
(Huss 2013), that is ±7% of the elevation changes, which was also
considered in the overall uncertainty estimate.

The final uncertainty of glacier mass balance is calculated
based on systematic and random uncertainty in glacier elevation
changes (Uh), the extrapolation uncertainty (Ue), the area
uncertainty (Ua), and the ice density error (Ud):

U � ΔMp

����������������������������������������
(UΔh

Δh )2

+ ( Ue�����
Neff

√ )2/Δh2 + (Ua/a)2 + (Ud/ρi)2
√√

,

(9)
where △M represents the mass balance estimate, △h is the
estimated elevation change, a is the glacier area, and −ρi is the
glacier ice density.

4 RESULTS

There are 285 glaciers with total area of 389 ± 7.9 km2 over the
Turgen Daban Range in 1966/75, and they have shrunk to 327.2 ±
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6 km2 until 2020, with the shrinkage rate of 0.29% a−1. The area
shrinkage rate is estimated to be 0.26% a−1 during 1966–2006, and
0.38% a−1 during 2006–2016, respectively. This suggests an
accelerated shrinkage of glaciers from 2006 onward.

We calculate the changes of the surface elevation and mass
balance of glaciers over the Turgen Daban Range during the past
50 years through DEM differencing. The glaciers experience
significant surface lowering during the period of 1966/75-2020
(Figure 2, Figure 4). The average surface elevation decreases by
-12.62 ± 10.08 m from 1966/75 to 2006, and the resulting average
elevation change rate is -0.30 ± 0.25 m a−1 (Figure 3A, Figure 4).
The mean elevation of glacier surface decreases by −7.65 ± 5.12 m
over 2006-2020, and the mean surface lowering rate increases to
−0.51 ± 0.34 m a−1 (Figure 3B). This indicates that the glacier
surface lowering rate has accelerated since 2006. We estimate that
the glacier mass changes are −10.73 ± 8.70 m w.e. and −6.50 ±
4.45 m w.e. for the periods of 1966/75-2006 and 2006-2020,
respectively, corresponding to annual mass loss rates of
−0.26 ± 0.21 m w.e. and −0.43 ± 0.30 m w.e. for these two periods.

The DEM differencing for the three time spans 1966/75 to
2006, 2006 to 2020, and 1966 to 2020 show spatiotemporally
heterogeneous glacier surface elevation changes in the Turgen
Daban Range. The strongest negative elevation change occurs in
the lower ablation area (Figure 5). The mean elevation of glacier
terminus increases by 142 m from 1966/75 to 2020. For the same
period, 77% of the glacier surface lowers. The mean mass loss rate
of north-facing glaciers (−0.28 ± 0.21 m w.e.a−1) is slightly higher
than that of south-facing glaciers (−0.22 ± 0.21 m w.e.a−1) during
the period 1966–2006. However, during 2006–2020, the mean
mass loss rate of north-facing glaciers (−0.39 ± 0.30 m w.e.a−1)
becomes much lower than that of south-facing glaciers (−0.53 ±
0.30 m w.e.a−1). In recent 15 years, the glacier mass loss has been
further intensified, and the glacier changes of the north- and
south-facing glaciers are obviously different.

As the largest flat-topped glacier in the Qilian Mountains,
Dunde ice cap experiences a mass loss of −0.28 ± 0.23 m w.e.a−1

during 1966–2020, which is slightly lower than the averaged mass

loss of the glaciers. Different from the accelerating loss of the
overall glacier mass since 2006, the mass balance for Dunde ice
cap is estimated to be −0.30 m w.e.a−1 for the 1966-2006 period,
higher than that of the 2006-2020 period (−0.21 m w.e.a−1).

5 DISCUSSION

5.1 Climate Changes
Air temperature and precipitation are the main meteorological
factors affecting glacier changes. Similarly, the observed glacier
mass loss on the Turgen Daban Range during 1966–2020 may be
associated with regional air temperature and precipitation
changes. Here we collected the data of three meteorological
stations, i.e., Tolle, Dachaidan and Delingha, which are close
to glacier filed, to analyze the climate changes from 1961 to 2018
in the study area (Figure 6). The averaged records from the three
meteorological stations show a warming trend during 1961–2018,
with the increasing rates of 0.40°C decade−1, 0.52°C decade−1, and
0.45°C decade−1 at the stations of Tolle, Dachaidan, and Delingha,
respectively. In summer (June-August), the warming rates of the
three meteorological stations are 0.37°C decade-1, 0.45°C decade-
1, and 0.26°C decade-1 (p < 0.05), respectively, which are lower
than the corresponding decadal trends of mean annual air
temperature. In winter (December-February), the averaged air
temperature showed a more significant warming trend, with
warming rates of 0.58°C decade-1, 0.74°C decade-1, and 0.82°C
decade-1 (p < 0.05), respectively (Figure 6A). Rising temperature
causes enhanced melting of glaciers, and increased snowfall leads
to mass accumulation. Under the background of rising
temperature, the surface elevation of glaciers over this
mountain range decreased continuously and the mass loss
intensified. As winter air temperature increases, the glacier
active layer warms up quicker, resulting in the prolonged
melting period of glacier surface. Due to elevated temperature
of glacier surface layer, it takes less energy to melt the same
amount of ice and snow than before, which enhances the thinning
of glaciers (e.g., Wang et al., 2009). From 1961 to 2018, annual
precipitation presents the upward trends at the Tolle
(16.4 mm decade−1, p > 0.05) and Delingha (25.3 mm decade−1,
p > 0.05) Stations, but the trends are not significant. No
significant trend is observed at Dachaidan (5.09 mm decade−1,
p > 0.05) for the same period (Figure 6B). According to the study
on mass-balance sensitivity experiment at Laohugou No. 12
Glacier, if the temperature increased by 1.5°C, which requires
a 30% increase in total precipitation to offset the glacial ablation
caused by temperature rising (Chen et al., 2017). Furthermore,
temperature is considered to be an important factor controlling
the precipitation type. Within a certain air temperature range,
rising temperatures can result in decrease in snowfall, and some
snow is converted into rain. Under the warmer climate,
precipitation and amount of rainfall generally show increasing
trends in the Tibetan Plateau over 1960-2014, but the snowfall has
decreased in the eastern and northeastern Tibetan Plateau (Deng
et al., 2017). The decrease in snowfall causes the decline in the
glacier’s surface albedo (Wang et al., 2016), which can speed up
glacier melting. Thus, over the Turgen Daban Range, glaciers are

FIGURE 2 | Scatterplot of slope standardized elevation differences
between TOPODEM and SRTM DEM after co-registration.
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more sensitive to regional warming, and the snow accumulation
caused by increased precipitation cannot compensate for the
melting from increased temperature. Relative to the 1966-2006
period, glacier mass loss from 2006 to 2020 is higher, which may
be mainly related to increased summer temperature of 1.21°C,
1.58°C, and 1.12°C over 2006-2020 than over 1966-2006 at Tolle,
Dachaidan, and Delingha Stations, respectively.

5.2 The Relationship Between Glacier
Surface Mass Balance and Terrain Factors
Terrain factors affect the distribution of water and heat, and cause
the redistribution of mass and energy, thus affecting the melting
and accumulation of glaciers. In this study, elevation, slope, and

aspect data are extracted from SRTM DEM. Then, we calculate
the glacier mass balance for the eight orientations: north,
northeast, east, southeast, south, southwest, west, and
northwest for the 1966/75-2006 and 2006-2020 periods. We
also estimate the glacier mass balance in the bins of 5° slope
and 500 m elevation, respectively.

Figure 7 shows the glacier mass loss in each aspect over 1966/
75-2006, 2006-2020, and 1966-2020, respectively. Obviously, the
glaciers in the eight aspects are in a state of mass loss for three
periods. Furthermore, the higher mass loss rate happened over
2006-2020. During 1966/75-2006, the loss rates of glaciers in the
east and north aspects were higher than those in the west and south
aspects, and the highest rate (−0.31 ± 0.21m w.e.a−1) occurred in
the north aspect (Figure 7A). For the 2006-2020 period, the loss

FIGURE 3 | Surface elevation changes of glaciers over the Turgen Daban Range between 1966 and 2006 (A) and from 2006 to 2020 (B).
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rates in all aspects showed an accelerated trend, especially in the
south, southwest, and west, reaching −0.56 ± 0.30 m w.e.a−1,
−0.83 ± 0.30m w.e.a−1, and −0.58 ± 0.30 m w.e.a−1, respectively
(Figure 7B). From 1966 to 2020, the glacier elevation in each slope
direction is declining, and the glacier reserves are constantly losing,
but the loss degree is different. The mass losses in the east,
southeast and south aspects are the strongest, which are

−0.38 ± 0.23 m w.e.a−1, −0.41 ± 0.23m w.e.a−1, and −0.37 ±
0.23m w.e.a−1, respectively (Figure 7C). The aspects of glacier
mass loss vary obviously. On the whole, the mass loss of the glacier
centered on the southeast is the strongest. This distributionmay be
due to the strong solar radiation on the southeast slope and more
precipitation on the northwest slope affected by the westerly
circulation (Li 2018).

FIGURE 4 | Surface elevation changes of glaciers over the Turgen Daban Range from 1966 to 2020.

FIGURE 5 | Averaged glacier elevation change rate for each 100-m elevation band.
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Glaciers in the Turgen Daban Range are mainly distributed in
the slopes below 45° and peak at 5–20°. There are similar patterns
of glacier mass loss in different slopes for the 1966-2006, 2006-
2020, and 1966-2020 periods. Glacier mass balance positively
correlates with slope. With the increase in slope, the glacial mass
loss rate gradually decreases, and the mass loss is strongest
between 0° and 30°.

5.3 Changes in the Glacial Lakes
In the process of glacier retreat, a lake basin is easily formed at
glacier terminus, which is replenished by ice melt water and
glacier ice collapse, and hence, a glacier lake is formed (Figure 8).
The glacial lake connected with glacier terminus accelerates the
melting of the glacier due to the interaction between the lake
water and the glacier ice, and meltwater flows into the glacial lake
to expand its area. Some glacial lakes lose supply of meltwater due
to the rapid retreat of glacier terminus, and the area of the glacial
lake will gradually shrink. In this study, the boundary of glacial
lake is manually drawn by visual interpretation based on Landsat
images, and the changes of the glacial lake area in different

periods are analyzed. The glacial lake area is only 0.24 km2 in
1987. Due to the rapid glacier melting, there are 20 glacier lakes
covering 1.33 km2 in area in 1999. From 1997 to 2007, in spite of
the decrease in the count of glacier lakes, the total area still
increases, and reaches 1.64 km2. In 2011, the glacier area slightly
decreases to 1.51 km2. However, from 2011 to 2020, the count and
total area of glacial lakes rise rapidly. Until 2020, the count and
total area reach 58 and 3.07 km2, respectively. From 1987 to 2020,
both the total area and quantity of glacial lakes show the
increasing trends (Figure 9). Glacial lakes are highly sensitive
to climate change and glacier change, under the background of
the increase in meltwater caused by temperature rise, the glacial
lake in Turgen Daban Range shows an expanding trend. The
increase in the number and area of glacier lakes reflects that
glaciers on the Turgen Daban Range have been losing their mass
over the last 50 years.

5.4 Uncertainty Analysis
Based on the analysis of the mass balance estimation results of the
Turgen Daban Range, we find that the uncertainty of glacier mass

FIGURE 6 | Time series of (A) summer, winter and annual mean air temperature and (B) annual precipitation from the three meteorological stations nearest to the
Turgen Daban Range from 1966 to 2020.
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balance estimation varies greatly among different data sources in
the same region. We analyze the impact of uncertainty on the
estimation of glacier mass balance. There are many source of
uncertainty, such as the difference of spatial resolution of
different data, noise in remote sensing imagery, errors

generated in extraction of glacier boundary and co-
registration, and selection of uncertainty estimation methods.

ASTER DEMused in this study is optical stereo imagery. Steep
slopes surrounding this glacier and clouds cover affect the data
accuracy and the estimation results. Since the vertical
deviation of the ice-free region cannot fully reflect the
vertical deviation of glacier, we add the average absolute
difference (ADD) between the median elevation change on-
and off-glacier into the uncertainty estimation (Berthier and
Brun 2019). DEM outlier filtering and null interpolation
methods also lead to errors in glacier mass balance
estimation. When calculating the final uncertainty, the
uncertainty of the final mass balance is the root of the sum
of each squared error term, including systematic and random
uncertainties in the glacier elevation changes, as well as the
uncertainty of the ice density hypothesis.

6 CONCLUSION

In this study, topographic maps and ASTER DEMs are used to
examine variability in the surface elevation and mass balances

FIGURE 7 | Changes in mass balance in different aspects for the (A)
1966/75-2006, (B) 2006-2020 and (C) 1966/75-2020 periods.

FIGURE 8 | Distribution of glacial lakes in the Turgen Daban Range
in 2020.

FIGURE 9 | Variations of the counts and areas of glacial lakes in the
Turgen Daban Range.
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of glaciers in the Turgen Daban Range of Qilian Mountains
over the past 50 years by using the geodetic method. The
results show that the mass loss of glaciers during 1966/75-
2020 is −22.10 ± 14.53 m w.e., indicating a significant glacier
mass loss. The glacial mass loss rate has increased recently,
from the mean glacier mass change rate of −0.26 ± 0.21 m
w.e.a−1 over 1966/75-2006, and −0.43 ± 0.30 m w.e.a−1 over
2006–2020. The significant glacier mass loss is closely
associated with the rising summer air temperature in the
study area, which results in glacier melting. Despite the
increased annual precipitation, it is not enough to offset
the glacier mass loss caused by temperature increase.
Furthermore, local terrain and development of glacier lakes
also contribute to the negative glacier mass balance during
1966/75-2020.
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Glacier mass balance is a key idea in understanding the relationship between glaciers and
climate. In this study, Landsat images, Shuttle Radar Topography Mission, and Advance
Land Operation Satellite digital elevation models, and ground observation records for
2000–2010 and 2019–2020 were used to analyze a mass balance of the Baishui River
Glacier No. 1 (BRG1) in Yulong SnowMountain, southeastern Qinghai–Tibet Plateau. Both
glaciological and geodetic methods were used to understand the spatial pattern of the
mass balance. A mass balance contour line map of the glacier was created for the first
time. From 2000 to 2010, the mean annual mass balance of the BRG1 was calculated to
be -0.99 m w.e., -1.01 m w.e., and −1.18 m w.e. using the contour line, profile curve, and
geodetic methods, respectively. In addition, the analysis revealed that strong melting of the
glacier occurred from July 27 to 15 September 2019, with an averaged glacier mass
balance of -1.75 m w.e. and a mean daily melting rate of 35 mm w.e. The annual mass
balance was assessed to be −1.31 m w.e. during 2019/20 using the contour line method.
In addition, the spatial patterns on the mass balance contour maps for 2000–2010 and the
summer of 2019, and the climate change in this region were analyzed. The results indicate
that the increased air temperature was the main cause of the accelerated glacial melting.

Keywords: mass balance, geodetic method, profile curve method, Yulong Snow Mountain, Qianghai–Tibet plateau

1 INTRODUCTION

Glaciers located in the high mountains of Asia serve as indispensable water reservoirs and are widely
referred to as the “Asian Water Tower” (Immerzeel et al., 2010; Kaser et al., 2010; Muhammad and
Tian, 2020). The local meteorological conditions and terrain control glaciers act as natural indicators
of climate change due to their sensitivity to climate fluctuations, and thus, they can provide
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important feedback and data (Shi, 1990; Ding and Qing, 2009;
Mortezapour et al., 2020). The Sixth Assessment Report of the
International Panel on Climate Change documented a consistent
overall shrinking trend of mountain glaciers and a significant
increase in the rate of glacial mass loss over time (Zhong et al.,
2021). Although mountain glaciers account for only a small
proportion of all glaciers, they make a significant contribution
to the sea level rise. For example, one recent study reported that
the mass loss from mountain glaciers has contributed 25%–30%
to the total sea level rise in recent decades (Zemp et al., 2019).
Knowing the mass balance of a glacier is an important factor in
understanding the relationship between climate and glaciers
because of its direct and immediate response to changes in
atmospheric conditions (Zemp et al., 2009).

The Hengduan Mountain region, located on the southeastern
edge of the Qinghai–Tibet Plateau (QTP), is affected by the Indian
and East Asian monsoon systems (Yao et al., 2012). Many of the
modern glaciers in this region are well developed and have recently
exhibited a significant trend of retreat (Liu et al., 2015; Che et al.,
2017; Wang et al., 2021). In particular, the mass of the glaciers on
Yulong SnowMountain (YSM) decreased by 64.02% from 1957 to
2017. These glaciers are located in the southernmost glaciated
region of theHengduanMountains and are part of the QTP (Wang
et al., 2020b). Based on the observational records for the Baishui
River Glacier No. 1 (BRG1), the terminus elevation of the glacier
retreated from4,100 to 4,300 m a.s.l. during 1982–2006 (Pang et al.,
2017). Then, the glacier continuously retreated to 4,395 m a.s.l. by
2017 (Wang et al., 2020b). The summer ablation rate at 4,600 m
a.s.l. increased from 6.47 cm/d in 1982 to 9.2 cm/d in 2009 (Du
et al., 2013). In addition, the annual mass balance ranged from
−1.94m w.e. to 2.26m w.e. during the period of 1952–2017, and
the cumulative mass balance of the BRG1 was −27.45 m w.e. (Du
et al., 2013; Wang et al., 2020b). These results were mainly assessed
from the ground observation records and a degree-day model.
Based on repeated photogrammetry collected using unmanned
aerial vehicles, the mean daily velocity of the surface of the BRG1
was 0.14 m/d ± 0.05m/d during the summer in 2018, with a mean
mass balance of −5.92m w.e. ± 3.33 m w.e. in the glacier ablation
area (Che et al., 2020). However, the traditional method used to
calculate the mass balance of glaciers still includes field glaciology
methods that use mass balance stakes and snow pits on the glacier
surface (Zemp et al., 2013). In addition, the geodetic method has
also been recommended for use in calibrating the mass balance
every few years. Although the mass balance of the BRG1 has been
calculated using the traditional glaciology and degree-daymethods,
the mechanism involved in the spatial pattern of the melting of the
glacier remains unclear. For example, a contour map of the glacier
mass balance has not yet been published, and our understanding of
the spatial pattern of the glacier mass balance is limited.

This study aimed to provide a unified pattern of the glacier
mass balance for the BRG1. The geodetic method was used to
reveal the spatial pattern of the glacier mass balance using two
digital elevation model (DEM) datasets and Landsat images
acquired during different periods. A method involving creating
profile curves of the glacier mass balance was developed and
applied to this glacier. In addition, the glaciological mass balance
was also calculated using an on-site dataset for the glacier surface

mass balance. By comparing these three methods, a mass balance
calculation plan for the glaciers with different observation
conditions was developed.

2 STUDY AREA

Yulong Snow Mountain (27°10′–27°40′N, 100°9′−100°20′E),
located on the southeastern edge of the QTP (Figure 1), is the
glaciated area located closest to the equator in a temperate area of
the Eurasian continent. The climate of this region is controlled by
both the Indian and Southeast Asian monsoons. Under global
warming, the air temperature in this region increased
significantly by 0.19°C/decade during 1951–2017, with a mean
annual air temperature of 13.33°C over the past 2 decades (Wang
et al., 2020b). The mean annual precipitation was 950 mm during
the period with no significant change trend. There are 13 glaciers
in this region, with a total area of 4.48 km2. The BRG1 is the
largest of these glaciers, with a length of 1.90 km and a total area
of 1.32 km2 (Wang et al., 2020b). The elevation of the glacier
ranges from 4,395 m a.s.l. to 5,361 m a.s.l. In addition, monitoring
work in this area has been very difficult due to the strong melting,
large surface velocity, and wide crevasses in the glacier.

3 DATASETS AND METHODS

3.1 Remote Sensing Images and Ground
Observations
Serial Landsat images were used, including Landsat 5 Thematic
Mapper (TM) images acquired in 2000, Landsat 7 Enhanced
Thematic Mapper (ETM+) images acquired in 2008, and Landsat
8 Operational Land Imager (OLI) images acquired in 2019, to
extract the glacier boundaries (Table 1). Several data gaps
occurred in the ETM + images due to failure of the Landsat 7
Scan Line Corrector, which were dealt with using the Scan Line
Corrector Gap-Fill Methodology of landsat gapfill.sav
(Scaramuzza et al., 2004; Wang et al., 2020b). In addition, a
DEM of the glacier surface in 2000 was derived from the Shuttle
Radar Topography Mission (SRTM) DEM (https://lta.cr.usgs.
gov/SRTM1Arc), which is regarded to provide the basic
elevation information of the glacier surface. In this study, an
SRTM DEM with a spatial resolution of 30 m was used. The
Advanced Land Operation Satellite World 3-D (ALOS 3D) 30 m
digital surface model (DSM) of the study area was produced by
the Japan Aerospace Exploration Agency (JAXA) using several
images from 2005 to 2010 (https://www.eorc.jaxa.jp/ALOS/en/
aw3d30/index.htm). The time span of the DSM on YSM was
denoted as 2008 to conveniently calculate the mass balance of the
glacier. Therefore, the DSMwas used as the DEM of the glacier in
2008 due to a lack of obstructions on the glacier. Finally, the
SRTM DEM for 2000 and the ALOS DEM for 2008, which had
the same spatial resolution of 30 m were used to assess the
changes in the elevation of the glacier surface.

Mass balance stakes and snow pits have been widely used to
measure and record in situ glacier mass balance (Østrem and
Brugman, 1991; Zemp et al., 2013). This method usually has
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enough flexibility to resolve the details of small glaciers and allows
researchers to measure short-term glacial variations (Ai et al.,
2019). To further understand the melting and accumulation
processes involved in the mass balance of the BRG1, we
adjusted the observation network of the glacier mass balance
in 2019 relying on data from the Yulong Snow Mountain Glacier
and the Environment Observation and Research Station. A total
of 12 stakes and seven snow pits were set up on the surface of the
glacier. The stakes were used to record glacial melting, and snow
pits were mainly used to observe the glacier accumulation. In
addition, we made observations every 7–10 days in the summer of
2019 to obtain high-frequency glacial melt records.

3.2 Meteorological Observations
Precipitation and air temperature are the primary climatic factors
controlling glacier mass balance; therefore, meteorological
observations in glacial areas are an important part of studying
changes in glaciers (Radić and Hock, 2014). In fact, several
meteorological stations have been set up near the BRG1 since
2005 to monitor and record meteorological data, including the
Lijiang meteorological station, the records for which began in
1951 (Wang et al., 2020a). The Lijiang meteorological station,
near Lijiang city in Yunnan Province, China, was built by the
China Meteorological Administration to record the climatic
conditions in the Lijiang region. It is located in the southern
region of the YSM and is located nearly 26 km from Lijiang city.
The dataset was obtained from the China Meteorological Data
Service Center (http://data.cma.cn/).

3.3 Glacier Mass Balance
3.3.1 Mass Balance of Observation Position
The monitoring of a glacier field is important and is widely used
to obtain glacial mass balance data (Vincent et al., 2017; Vincent
et al., 2021). In this study, the point mass balance of the glacier
surface was recorded and evaluated using stake and snow pit
measurements. The single-point mass balance is the sum of the
balance of the snow (or firn) (bf), spur ice (bsp), and ice (bi)
(Eqs. 1–4).

b(1−2) � bf(1−2) + bsp(1−2) + bi(1−2), (1)
bf(1−2) � ρf(2)hf(2) − ρf(1)hf(1), (2)
bsp(1−2) � ρsp(hsp(2) − hsp(1)), (3)

bi(1−2) � ρi[(m1 + hf(1) + hsp(1)) − (m2 + hf(2) + hsp(2))], (4)
where i, sp, and f are the glacier ice, super ice, and snow or firn,
respectively; 1 indicates the records of the former observation,
and 2 indicates the records of the latter observation. In addition,
ρs is the density of snow/firn (g/cm

3), ρsp is the density of super ice
(0.85 g/cm3), and ρi is the density of glacial ice (0.9 g/cm3).

3.3.2 Mass Balance of a Glacier
Accumulation, c, refers to the solid water collected by glaciers,
including snowfall, condensation, and refrozen rainwater, on
the glacier surface, as well as any accumulation of blown snow
and avalanche snow redistributed by wind and gravity.
Ablation, a, refers to the expended portion of the glacial

solid water, including runoff from the melting of ice and
snow, evaporation (sublimation), the disintegration of ice
bodies, wind-blown snow transported off of the glacier,
and snow lost due to avalanches. On cold glaciers, part of
the meltwater is refrozen in the granular snow layer, on the ice
surfaces, and in crevasses. This process is generally referred to
as internal recharge, and this part of the meltwater cannot
strictly be counted as ablation because it does not leave the
glacier. However, since internal recharge is not easy to
observe and calculate, all of the melted snow and ice are
generally counted as ablation in general mass balance
observations, and calculations are conducted using
meteorological methods.

Accumulation minus ablation is defined as the mass balance,
that is, b in Eq. 5:

b � c − a. (5)

1) Contour line method of glaciology

The mass balance contour line method was used to
calculate the net mass balance (Østrem and Brugman,
1991). The net mass balance at two adjacent contour lines
is defined as the specific net mass balance, and the annual net
mass balance value for the entire glacier is calculated using
Eq. 6:

bn � ∑n
1

s′ib
′
i/S, (6)

where s′i and b′i are the projected areas between two adjacent
contours and the average net balance, respectively; n is the
number of areas between the contour lines, and bn is the net
mass balance of the entire glacier.

2) Geodetic method

The geodetic method has traditionally been used to
calculate the glacial mass balance (Andreassen et al.,
2002; Cogley, 2009; Andreassen et al., 2016). In this
study, DEMs from SRTM and JAXA, with spatial
resolutions of 30 m, were used in the geodetic mass
balance estimation. Because these DEMs were obtained
from two different sources using different image
acquisition techniques, horizontal or vertical offsets may
exist (Kumar et al., 2017). Thus, it was necessary to compare
the two phases of the glacial DEMs (Nuth and Kääb, 2011).
We used the geodetic method to indirectly calculate the
mass balance of the BRG1, in which two of the DEMs of the
glacial surface were subtracted to calculate the changes in
the volume, which was then converted to the mass balance
using a density conversion (Cogley et al., 2011). The change
in the total volume ΔV was determined by summing the
change in the elevation Δhi at an individual pixel r during a
specified time period:

ΔV � ∑N

i�1rΔhi, (7)
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where N is the number of pixels covering the glacier at its
maximum extent and r is the pixel size (30 m × 30 m).

The calculated change in the volume can be converted to a
geodetic mass balance (m w.e.) using Eq. 8.

B � ΔV
�S

· ρ

ρwater
� ΔV

St1+St2
2

· ρ

ρwater
, (8)

where ρ is the average density of 850 ± 60 kg m−3, S is the mean
glacier area of the BRG1, and t1 and t2 are the two acquisition
dates.

(3) Profile curve method

The principle of the profile curve method is similar to that
of the contour line method. Due to objective reasons,
sometimes the ground mass balance stakes and snow pits
collapse or are missing, so less observation information than
is desirable is available. For example, only a few limited
points were documented within a certain elevation range.
Therefore, the curve pattern of the mass balance can be
plotted using only a few observation sites, and then, the
mass balance of the corresponding elevation zone can be
calculated by combining the results with the glacier area of
the elevation zone (Andreassen et al., 2016). That is, the
regional mass balance between adjacent contour lines within
each elevation interval (50 m or 100 m) was integrated using
the profile line method to calculate the total amount of
accumulation and ablation for each elevation interval in
order to obtain the glacier mass balance. Therefore, in this
study, the profile curve method for the mass balance
calculation was tested on the BRG1 for the first time.

4 RESULTS

4.1 Comparison of the Spatial Consistency
Between the Shuttle Radar Topography
Mission and Advance L and Operation
Satellite Digital Elevation Models
The SRTM and ALOS DEMs were used to extract the elevation of
the ice surface of the BRG1 during two phases in order to analyze
the changes in the elevation of the glacier surface in this region.
Glaciers tend to be in constant motion due to their own physical

FIGURE 1 | Location of the study area and the distribution of the stakes and snow pits on the Baishui River Glacier No. 1 (BRG1). (A) Aerial photo of the observation
network on the Baishui River Glacier No. 1; (B)map showing the location of the study area on the Qinghai–Tibet Plateau; (C) observers inserting a mass–balance stake
into the glacier surface; and (D) photo of a snow pit on the glacier surface.

FIGURE 2 | Comparison of selected validation points in the Shuttle
Radar Topography Mission (SRTM) and Advance Land Operation Satellite
(ALOS) digital elevation models (DEMs).
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properties and gravity, but the bare rock surrounding a glacier
remains comparatively unchanged. To ensure a good spatial
match between the two phases of the DEMs, 13 fixed points
were selected, mainly in the mountainous areas or peaks without
glaciers, to validate the consistency of the two phases in the DEM
space (Figure 1). As is shown in Figure 2, the elevations of the
selected points that did not change position were statistically
tested. The results show that r and R2 values were 0.98 and 0.96,
respectively, and they passed the significance test (p < 0.0001).
We also found that some differences in the fixed points were
occurred, which was mainly due to the geographic coordinate
system and resampling of the elevation raster. Therefore, the
elevations of these selected validation points were consistent.
That is, the SRTM and ALOS DEMs can be used to assess the
changes in the elevation of the glacier surface due to their good
spatial matching.

4.2 Surface Mass Balance of Baishui River
Glacier No. 1 Using the Glaciology Method
During the Periods of 2000–2010 and
2019–2020
To understand the mass balance of the BRG1, the annual mass
balance estimates from 2000 to 2010 were obtained (Wang et al.,
2020b). As is shown in Figure 3, the glacier mass balance
fluctuated and changed during the period of 2000–2010. The
average mass balance was -0.63 m w.e., and it exhibited a
significant decreasing trend of 0.16 m w.e./a during this
period. The mass balance of the BRG1 was initially positive
and reached a maximum of 0.92 m w.e. in 2002. The mass
balance of the BRG1 was negative from 2003 to 2010, that is,
the glacier underwent mass loss after 2002. The largest mass loss
occurred in 2003, with a mass balance of -1.77 m w.e.

To deepen our understanding of the glacial melting and
accumulation processes, an enhanced observation network was
established on 27 July 2019, and in situ data were recorded weekly

until 15 September 2019. During this period, the glacier underwent
strong melting and mass loss. The total glacial melting at the
observation positions ranged from 1.60m w.e. to 2.00m w.e., with
an average glacier mass balance of −1.75m w.e. (Figure 4A). The
mean daily glacialmeltingwas at 35mmw.e., and the strongest glacial
melting occurred inAugust. Themass balance of the entire glacier was
−1.41m w.e. In addition, the annual mass balance of the glacier was
also calculated based on the observational records until September
2020. From September 2019 to the beginning of September 2020, the
winter mass balance ranged from 1.09m w.e. to 3.51m w.e., with an
average accumulation of 2.06m w.e. (Figure 4B). The annual net
mass balance at the observation points ranged from −0.88m w.e. to
−3.44mw.e., with an annualmass balance of−1.95mw.e. The annual
mass balance increased significantly (i.e., decreased melting) with
increasing elevation above 4,700m a.s.l. Finally, using the contour line
method, the annual mass balance of the entire glacier was determined
to be −1.31m w.e. in 2019/2020.

4.3 Spatial Distribution of Mass Balance
During the Period of 2000–2009 and in
Summer 2019
The spatial variation in the glacier mass balance can clearly reflect
the spatial variation trend of a glacier. To understand the spatial
mass balance of the BRG1, the spatial mass balance was calculated
using the geodetic method based on the SRTM and ALOS DEMs.
A contour line map of the mean annual mass balance was drawn
for the 2000–2009 period (Figure 5A). The pattern of the glacier
mass balance was not the same as that of other glaciers. In general,
the largest glacier accumulation occurred in the firn zone on the
upper surface of the glacier at the highest elevation. However, the
largest accumulation on the BRG1 occurred on the glacier surface
in the central glacier zone, which was significantly affected by hill
shadows. The mass balance at the glacier front was less than -3.0 m
w.e., indicating very significant mass loss. To further validate and
understand the pattern of the glacier mass balance, the contour
lines of the glacier mass balance in summer 2019 were also drawn
using mass balance records with high-frequency observations
(Figure 5B). The spatial characteristics of the contour line map
were similar to those of the annual mass balance during the period
of 2000–2009. Therefore, we found that the glacier mass balance
increased with increasing elevation, while it decreased at elevations
of greater than ~4,800 m a.s.l. Although the spatial patterns of the
glacier mass balance were very similar, a significant difference was
observed. For example, accumulation did not occur on the glacier
surface during the period of 2000–2009, and it was completely
absent during the summer of 2019, that is, the glacier mass loss was
more significant than before. In addition, the spatial pattern did not
remain stable indefinitely, which was predominantly dependent
upon the glacier size and surface features, the surrounding terrain,
and the local climate.

4.4 Mass Balance Based on the Profile
Curve Method
The mass balance at different elevations on the glacier surface
was related to the elevation and exhibited a pattern containing

FIGURE 3 | Changes in the mass balance of the Baishui River Glacier
No. 1 from 2000 to 2010.
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specific elevation zones. To explore the spatial pattern of the
mass balance and elevation on the glacier surface, the surface
was divided into 11 zones using an elevation interval of 100 m.
The extracted glacier area was 1.47 km2 based on Landsat 7
ETM + images acquired in 2008. Then, this area was divided
into the corresponding intervals (Figure 6). We found that the
glacier area was mainly concentrated in the elevation range of
4,600 m a.s.l. to 5,000 m a.s.l., and the largest glacier area was
located at 4,800 m a.s.l. First, the mass balance of the
individual grid cells was statistically analyzed. In addition,
the mass balance was statistically counted using an interval of
100 m. Next, the average mass balance in each elevation band
was calculated. A profile curve of the change in the mass
balance with elevation was obtained (Figure 6). In addition, we
also found that the pattern of the glacier mass balance was
similar to the pattern of the contour line map. The mass
balance of the entire glacier was obtained according to the
weighted sum of the average mass balance along the profile
curve multiplied by the area in each corresponding elevation
band. According to the final calculations, the mean annual

mass balance of the BRG1 from 2000 to 2010 calculated using
the contour method was -0.99 m w.e., and that calculated using
the profile curve method was -1.01 m w.e. The mean annual
mass balance of the glacier was calculated to be -1.18 m w.e.
during the period of 2000–2010 using the geodetic method.
The results obtained using the three methods were consistent.
In addition, the equilibrium line elevation was ~4,800 m a.s.l.
according to the profile curve of the mass balance of the BRG1
during the period of 2000–2010.

5 DISCUSSION

5.1 Changes in Air Temperature and
Precipitation on Yulong Snow Mountain
To understand the local climate change on Yulong Snow
Mountain, air temperature and precipitation were analyzed
using the records from the Lijiang meteorological station.
The annual air temperature ranged from 11.8 to 14.2°C
during the period of 1951–2019 (Figure 7A). The mean

FIGURE 4 | Mass balance at observation points on the Baishui River Glacier No. 1 from 2019 to 2020: (A) summer of 2019; and (B) 2019 to 2020.

FIGURE 5 | Spatial distribution of the contour line for the mass balance of the Baishui River Glacier No. 1 during (A) 2000–2010 and (B) July 27 to 15
September 2019.
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annual air temperature was 12.9°C in the study area. A
significant increasing trend (0.20°C/decade, p < 0.0001)
occurred during this period. The annual precipitation ranged
from 648 to 1,283 mm during the period of 1951–2019,
exhibiting strong fluctuations with time (Figure 7B).
Although the annual precipitation exhibited an increasing
trend of 4 mm/decade, the trend was not significant (p >
0.1). Therefore, the amount of precipitation did not change
significantly or fluctuate significantly during the study period,
with a mean annual precipitation of 954 mm. An increase in air
temperature tends to accelerate glacial melting.

5.2 Relationship Between Summer Mass
Balance and Local Climate Change
The glacial melting was mainly controlled by the local air
temperature. Based on the daily records for Lijiang
meteorological station from July 27 to 15 September 2019, the
change in the daily air temperature at an elevation of 4,800 m a.s.l.
was calculated, with a rate of decrease of 0.6°C/100 m. As is shown
in Figure 8, the daily air temperature ranged from 0.8 to 7.3°C
during the observation period in the summer of 2019, with an
average daily air temperature of 4.0°C. Precipitation occurred on
35 of 51 days. Rainy weather also significantly affected the glacial

FIGURE 6 | Relationships between (A) elevation, (B) mass balance, and (C) area for the Baishui River Glacier No. 1.

FIGURE 7 | Changes in (A) the annual air temperature and (B) the precipitation at Lijiang meteorological station, near Yulong Snow Mountain and Lijiang city,
Yunnan, China, from 1951 to 2019.
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melting process (Figure 8). In particular, glacial melting was very
significant on days with a warm air temperature and without
precipitation, such as during the period of August 16–26 and
September 5–15. However, from August 26 to September 5,
precipitation occurred frequently. The daily air temperature
was low on rainy days, and the lowest daily air temperature
was 0.8°C. In addition, fresh snow was observed during the
fieldwork conducted in this specific time period. Accordingly,
the glacial melting was relatively weak on rainy days compared
with that on other days. In general, the melting of the BRG1
mainly resulted from high air temperatures, but it was also
significantly affected by precipitation.

5.3 Glacier Mass Balance on the
Southeastern Qinghai–Tibet Plateau
Glacial melting varied across the Qinghai–Tibet Plateau based on
variations in the local climatic circulation and the terrain conditions.
To understand the different impacts of climate change on the behavior
of glaciers, several glaciers have been observed since 2000, including
Parlung River Glaciers Nos. 04, 10, 12, 94, and 390, as well as the
Demula Glacier (Yang et al., 2011; Yang et al., 2013; Zhu et al., 2018;
Wang et al., 2021). The average annual mass balances of the Demula
Glacier, Parlung River Glacier Nos. 04, 10, 12, and 94, and the BRG1
were -1.02m w.e. for 2007–2010, -0.37m w.e. for 2006–2007, -0.78m
w.e. for 2006–2009, -1.70m w.e. for 2006–2010, -0.92m w.e. for
2006–2010, and -1.16m w.e. for 2008–2010 (Figure 9). The average
annualmass balance of the BRG1 during the period of 2000–2010 was
calculated to be -1.18m w.e., -0.99m w.e., and -1.01m w.e. using the
geodetic, profile curves, and contour line methods, respectively. The
mean annual mass–balance of the BRG1 was -1.56m w.e. from 2011
to 2019, and that of Parlung River Glacier No. 94 was -0.95m w.e.
from 2011 to 2018. In addition, the mass balance of the Demula
Glacier ranged from -1.67 to 0.17m w.e. during the period of
2006–2010, that of the Parlung River Glacier No. 94 ranged from

-1.93mw.e. to 0.16mw.e. during the period of 2006–2018, and that of
the BRG1 ranged from -1.87m w.e. to -0.91m w.e. during the period
of 2008–2019. Thus, themass balance results for the BRG1 obtained in
this study using the different calculation methods are reliable. In
addition, the mass balance fluctuations of these glaciers were similar
and exhibited an increased melting trend with time.

5.4 Glacier Mass Balance Calculated Using
Different Methods
We acknowledge that some differences exist among the results
obtained using the contour line, geodetic, and profile curve
methods due to their uncertainties (Zemp et al., 2013). The
contour line method is a glaciological method, and its uncertainty

FIGURE 8 |Changes in the air temperature, precipitation, and glacier mass balance during the period from July 27 to 15 September 2019. The red line denotes the
daily air temperature at an elevation of 4,800 m s.l., the green bars denote the daily precipitation, and the boxes denote the mass balance at the stake points during the
periods July 27–August 4, August 4–16, August 16–26, August 26–September 5, and September 5–15, 2019.

FIGURE 9 | Mass balances of glaciers with in situ records on the
southeastern Qinghai–Tibet Plateau from 2000 to 2019. In plots, PRG04, 10,
12, 94, and 390 denote Parlung River Glaciers Nos. 04, 10, 12, 94, and 390,
respectively. The BRG1 denotes the Baishui River Glacier No. 1.
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is mainly derived from the uncertainties of the point measurements,
spatial integration, and glacier reference area. The uncertainty of the
geodeticmethod ismainly due to the uncertainties of the digital terrain
models (DTMs) and the density conversion used to convert the glacier
surface area to the water equivalent. The results obtained using the
profile curvemethodwere determined from the profile line of themass
balance with a change in elevation. In general, continued geodetic
surveys every 10 years are needed to measure the overall changes and
provide data for calibrating the glaciological mass balance (Zemp et al.,
2013; Andreassen et al., 2016). For example, Oerlemans (2013)
estimated an even higher dissipative melting rate of −0.23m w.e.
per year in Nigardsbreen, which indicated that the accumulative mass
balance was very sensitive to systematic biases and generic differences
between the geodetic and glaciological methods. Andreassen et al.
(2016) discussed the differences and uncertainties of the geodetic and
glaciological methods, and they reanalyzed and calibrated 10 glaciers
with long-term mass balance series using the profile method. The
glaciological method measures the glacier surface mass balance, while
the geodetic method measures the glacier surface, internal, and basal
mass balances. In addition, relatively small mountain glaciers with
negative cumulative balances are easier to measure correctly than
maritime glaciers (Andreassen et al., 2016). The accumulation and
ablation patterns are needed for use in the statistical analysis to reduce
the amount of field work, expenses, and personnel required
(Rasmussen and Andreassen, 2005). The profile curves provided
some important information about the mass changes related to
ignoring the areas of the glacier surface for which no observation
data were available, for example, ice falls, crevasses, and unusual
phenomena in the firn/accumulation zone. The combination of the
profile curve and geodeticmethods providesmore accurate results and
can be used to calculate the mass balances of maritime glaciers
(Andreassen et al., 2015; Andreassen et al., 2016). These methods
can also be used to calculate the mass balance of the BRG1 in the
future.

6 CONCLUSION

Relatively small glaciers are easier to measure, and their mass balances
are easier to calculate than those of large glaciers, in particular for
maritime glaciers. In this study, the mass balance of the BRG1 was
assessed during the periods 2000–2010 and 2019–2020 using the
contour line, geodetic, and profile curve methods. From 2000 to 2010,

the mean annual mass balance of the BRG1 was calculated to be
-0.99m w.e., -1.01m w.e., and -1.18m w.e. using the contour line,
profile curve, and geodetic methods, respectively. Although these
results are very similar, the errors among the three methods cannot
be eliminated due to the systematic biases and generic differences in
the different methods. To further understand and validate the spatial
pattern of the mass balance of the BRG1, the field observation work
was enhanced in the summer of 2019. The glacier underwent a period
of strong melting from July 27 to 15 September 2019, and its mass
balance ranged from -2.00m w.e. to -1.60m w.e. Its average glacier
mass balance was -1.75m w.e., with a mean daily melting rate of
35mm w.e. during this period. The annual mass balance was
calculated to be -1.31m w.e. during 2019/20 using the contour line
method. In addition, we also found that the central zone of the glacier
was significantly affected by terrain shading, and a lowglaciermass loss
valuewas observed in this zone. In addition, a significant increase in air
temperature (0.20°C/decade) was observed but no significant change
trend in the annual precipitation occurred. Themass loss of the BRG1
was mainly due to the increase in air temperature Table 1.
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TABLE 1 | Image type, file name, and acquisition date of the remote sensing
images used in this study.

Image type File name Date

Landsat 5 TM LT51310412000105BJC00 14 April 2000
Landsat 7 ETM+ LE713104120080311SGS00 11 March 2008
Landsat 8 OLI LC81310412019333LGN00 29 November 2019
SRTM DEM N27E100.hgt February 2000
ALOS DSM N027E100_AVE_DSM 2006–2010
Global image/Pléiade Export11-55-03. tif 21 Novrmber 2015

Note: ALSO, Advance Land Operation Satellite; DEM, digital elevation model; ETM + -
Enhanced Thematic Mapper; OLI, Operational Land Imager; SRTM, Shuttle Radar
Topography Mission; TM, Thematic Mapper.
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Cirque Floor Altitude of the Gangdise
Mountains and its Controlling Factors
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The cirque floor altitude (CFA) was used to indicate the patterns of paleoprecipitation,
paleocloudiness, palaeoglaciation, and paleo-equilibrium line altitude (ELA). However, CFA
is also affected by non-climatic factors, which limits its efficacy of being a paleoclimatic
indicator. This study focuses on the Gangdise Mountains with an aim to investigate the
controlling factors on CFA and test the CFA efficiency as an indicator of paleoclimate. A
total of 1652 cirques were identified, and their CFAs were analysed in this study. The
results show that the lowest CFA is in the eastern part of the Gangdise Mountains, followed
by the western and central parts. This spatial distribution is in contrast with that of
precipitation. This means that the development of the cirque is favoured by high
precipitation. The high CFA values on southern and western slopes are due to effects
of solar radiation and wind. The weak correlation between the cirque height and CFA and
their different spatial distributions imply that cirque deepening is not the main factor
affecting CFA. Various bedrocks of cirques manifest different CFA values, while the spatial
patterns of the CFAs in the western, central and eastern parts can be partly explained by
their bedrock types. The CFA values of the Gangdise Mountains are higher than those of
the central Tibetan Plateau (TP). The CFA spatial distribution of the central TP is in contrast
with that of precipitation, highlighting that precipitation is the primary control of the CFA.
The relief and glacier type significantly control the CFAs. These findings lead to the
conclusion that CFA is not always an actual indicator of paleoclimate on a large
regional scale.

Keywords: cirque floor altitude, glaciation, Gangdise Mountains, topography, climate

INTRODUCTION

Cirque floor altitude (CFA) is the minimum floor altitude or the minimum cirque threshold altitude
(Barr and Spagnolo, 2015a). The CFA is regulated by paleoclimate and is believed to serve as a
paleoclimatic indicator (Linton, 1959; Davies, 1967; Principato and Lee, 2014). For example, as
precipitation controls the glacier development, CFA has been used to reflect paleoprecipitation
patterns during the period of glaciations (Peterson and Robinson, 1969; Hassinen, 1998; Principato
and Lee, 2014; Barr and Spagnolo, 2015b); aspect-related CFA variations reflect the level of
paleocloudiness, as aspect-related solar radiation contrast is greatest under clear skies (i.e., low
cloudiness), and thus produces a significant CFA aspect asymmetry (Evans, 2006); the glacial
asymmetry decreases as the glacial coverage increases (Evans, 1977), therefore, aspect-related CFA
variations indicate the extent of paleoglaciation (Barr and Spagnolo, 2015a). The CFA has also been
used as an indicator for paleo-equilibrium line altitude (ELA) and can indicate the characteristics of
the paleoclimate (e.g., Porter, 1964; Williams, 1975; Porter, 1989; Pelto, 1992). As 1) cirque has
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developed over several glacial-interglacial cycles and 2)
determining the age of a cirque is a challenge (Barr and
Spagnolo, 2015a), it is difficult to assign CFA values to any
specific period (Principato and Lee, 2014). As a result, the CFA
can be used as the ‘paleo-ELA composite’ produced by several
glacial cycles (Flint, 1957; Porter, 1964; Barr and Spagnolo, 2015a).
However, 1) CFA is also ruled by non-climatic factors, e.g., geology
and topography (Barr and Spagnolo, 2015a), and 2) different
climates may play different roles in CFA, as a comparison of
cirques in the GangdiseMountains and the central Tibetan Plateau
(TP) revealed that a reinforced monsoon promotes the expansion
of cirques, but also limits their enlargement when the strength of
the monsoon exceeds a certain range (Zhang et al., 2021). One
possible reason for this is that a strong monsoon promotes cirque-
type glaciers change to valley-type glaciers (Zhang et al., 2021). This
process leads to glacial erosion focusing downvalley beyond the
cirque boundary and makes the glacial ELA lower than the CFA
(Barr and Spagnolo, 2015a). These findings imply that in some
cases, the CFA may not adequately indicate the information on
paleoclimate. A study in the Kamchatka Peninsula disclosed that
moisture level is the main control on CFAs, whilst the effects of
non-climatic factors (e.g., aspect, topography, geology and neo-
tectonics) are limited (but not insignificant) (Barr and Spagnolo,
2015b). The Kamchatka Peninsula is located in the Northwest
Pacific Ocean and is dominated by the Siberian High in winter and

the North Pacific High in summer. Ocean humidity plays an
important role in cirques on the Kamchatka Peninsula (Barr
and Spagnolo, 2015b). No such studies have been conducted in
other regions, so it is unclear whether CFA is an appropriate
paleoclimatic indicator in a different climate. This research focuses
on the CFA patterns in the Gangdise Mountains. The eastern and
central parts of the Gangdise Mountains are dominated by the
Indian summer monsoon (ISM) whereas the continental climate is
dominant in the western part (Figure 1, Section 2), which is
different from the one on the Kamchatka Peninsula (Barr and
Spagnolo, 2015b). The purpose of this study is to 1) analyse the
CFA controlling factors in the Gangdise Mountains; and 2) test the
efficiency of CFA as an indicator of paleoclimate by comparing our
results with those of the central TP.

STUDY AREA

The Gangdise Mountains are situated in the south of the TP
(Figure 1), extending ~1200 km from NW to SE. They are one of
the earliest locations on the TP to reach the cryosphere, having
been raised to 3000–4000 m above sea level (asl) by Late
Cretaceous (Liu et al., 2016). There are currently 4188 modern
glaciers in the Gangdise Mountains, the majority of which are
cirque/hanging glaciers (accounting for 67.9%) (Zhang et al.,

FIGURE 1 | Map of the study area: (A) Atmospheric circulations domains of the eastern (E), central (C) and, western (W) parts of the Gangdise Mountains
(Thompson et al., 2018; Zhang et al., 2020), and the central Tibetan Plateau (TP) (Zhang et al., 2021); and (B) Cirque floor altitudes (CFAs) in the Gangdise Mountains’
western, central (C), and eastern (D) parts.
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2018). From the eastern and southern parts (~5670–5880 m asl)
to the central and northwest parts (>5950 m asl), modern ELA
increases (Zhang et al., 2018). A total of 1,652 cirques in the
western, central and eastern parts of the Gangdise Mountains
were considered in the study. The ISM, which originates in the
Bay of Bengal, dominates the central and eastern parts of the
Gangdise Mountains (Figure 1). The transition zone between the
ISM and the Westerlies is where the western part is located. The
monsoonal moisture that reaches the Gangdise Mountains is
limited due to the rain shadow effect of the Himalayas
Mountains. In the Gangdise Mountains, the temperature is
lowest in the central part and increases in the eastern and
western parts (Figures 2A–C). The reason for this
phenomenon is the highest elevation of the central part
(Table 1) and the difficulty of the Indian monsoon zone of
influence reaching the central part. Whilst the annual

precipitation decreases from the eastern part (~233–413 mm)
to the central (~136–305 mm) and western parts (~84–833 mm)
(Figures 2D–F).

Zhang et al. (2020) looked at 1652 ice-free cirques in the
western, central, and eastern parts of the Gangdise Mountains.
The study noticed that moisture promoted glaciers change to
valley-type glaciers and limited cirque enlargement. The cirque
growth is also influenced by the non-climatic elements, such as
slope, aspect, lithology and mountain orientation.

DATA AND METHODS

In this study, the cirque floor is defined as the basin within the
cirque with a slope of ≤27° (Evans and Cox, 1974). Due to the
existence of sediments in cirques, extracting the CFAs (m asl)

TABLE 1 | Statistics of the CFAs (m asl) of the Gangdise Mountains.

Number Min Max Mean Median SDa Skewness

Total dataset 1652 4377 5984 5485 5502 204.86 −0.874
Western part 562 4377 5890 5509 5570 231.30 −1.743
Central part 454 4829 5984 5613 5646 158.28 −0.883
Eastern part 636 4827 5658 5372 5389 137.72 −0.761

aSD: standard deviation.

FIGURE 2 | Annual temperatures and precipitations in the Gangdise Mountains’ western (A,D), central (B,E) and eastern (C,F) parts. Cirque locations are shown
by black dots. Data from https://www.worldclim.org/data/worldclim21.html (Fick et al., 2017)
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directly from the digital elevation model (DEM) may lead to
overestimations (Barr and Spagnolo, 2015a). As a result, the CFA
in this study was defined as the cirque floor’s minimal altitude.
The dataset of Zhang et al. (2020) obtained cirque height (the
difference between the highest and lowest elevation of the cirque;
H in m), mean altitude (Zmean; in m asl), profile closure (the
difference between max and min slopes that can explain the
development degree of the cirque; in °) and mean aspect. The
global digital elevation model (GDEM) v2 (~30 m grid; https://
www.usgs.gov/) of the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) was used for all calculations.

On the basis of downscaled 30-s temperature and precipitation
data (Fick et al., 2017; https://www.worldclim.org/data/
worldclim21.html), the climatic controls on the CFA were
investigated (Figure 2). Zhang et al. (2020) classified fifteen
forms of bedrock types, while the effect of lithology on CFA
was analysed using the Welch’s test, a reliable alternative to the
traditional analysis of variance (ANOVA) (Reed and Stark, 1988).
In this study, the Welch’s test was used to analyse the effect of
lithology on CFA.

RESULTS

The elevation of the CFA varies from 4377 to 5984m asl (mean is
5485m asl). The CFAs range from 4377 to 5890m asl (mean is
5509m asl), 4829 to 5984m asl (mean is 5613m asl) and 4827 to
5658m asl (mean is 5372m asl) for the western, central and eastern
parts of theGangdiseMountains, respectively (Figure 1 andTable 1).

Cirque Floor Altitude Variations With
Temperature and Precipitation
The highest CFA values are found in the central part of the Gangdise
Mountains, where both temperature and precipitation are low. CFA
values decrease further westward and eastward, but temperature and
precipitation increase (Figures 2, 3). The topography of the western
part is defined by a low feature surrounded by two high mountain
ranges from northwest to southeast. The southernmost part of the

westernGangdiseMountains, as well as the low altitudes in themidst
of the two mountain ranges, has low CFA values (Figure 1B). Their
spatial distribution corresponds to a relatively high degree of
precipitation. The north-eastern region of the western Gangdise
Mountains has a number of low CFA values. These figures coincide
with high temperatures. In the central part, low CFA values in the
southernmost area coincide with high temperature and
precipitation. High CFA values are generally located along the
ridgeline of the mountain ranges, where low temperature and low
precipitation dominate. In the eastern part, high CFA values are
present along the mountain ridges and these places are characterised
by low temperatures and low precipitations (Figures 2D–F and
Figure 3).

Cirque Floor Altitude Variations With
Location and Topography
CFAs are highest in the central Gangdise Mountains and decline
eastward and westward. CFAs peak at ~80.4°E, ~84.8°E and ~89.5°E
in the three parts (Figure 4A). The CFAs of the cirques in the
western and central parts decrease to the north and south, with peaks
at ~31.7°N and ~30.1°N (Figure 4B), respectively. CFAs in the
eastern part tend to increase northward. Regression models can be
used to describe these spatial tendencies (p < 0.01; Figure 4 and
Table 2).

Regardless of the western, central and eastern parts, CFA is
negatively correlated with cirque height. The eastern part (r =
−0.55, p < 0.05) has the strongest correlation, followed by the
central part (r = −0.54, p < 0.05) and the western part (r = −0.28,
p < 0.05) (Table 3). CFA and cirque mean elevation have a
substantial positive correlation (r = 0.96, p < 0.05) (Table 3). In
the western Gangdise Mountains, profile closure is positively
connected with CFA (r = 0.26, p < 0.05), whereas in the central
part, profile closure is negatively correlated with CFA (r = −0.16,
p < 0.05). Profile closure has no association with CFA in the
eastern part (r = 0.002, p > 0.05) (Table 3).

The CFA is lowest when facing north (mean is 5429 m asl),
and the highest when facing southeast (mean is 5518 m asl)
(Figure 5A), considering the complete dataset. In the western

FIGURE 3 | Maps showing the western CFA (A), central CFA (B) and eastern CFA (C) using a standard kriging interpolation.
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part of the Gangdise Mountains, the CFA is the highest when the
aspect is southwest (mean is 5574 m asl) and lowest when the
aspect is south (mean is 5452 m asl) (Figure 5B). In the W-E
direction, the CFA on the eastern slope is higher than that on the
western slope. The cirques facing E have the highest CFA values
(mean is 5649 m asl) in the central part, while those facing SW
have the lowest values (mean is 5531 m asl). In the central part,
those facing S have higher CFA values than those facing N and
those facing E have higher CFA values than those facing W
(Figure 5C). The CFA of the north slope is the lowest in the
eastern part (mean is 5326 m asl), followed by the northwest
aspect (mean is 5327 m asl), while the southeast aspect is the
highest (mean 5426 m asl), and the CFA is much higher on the
south slope than it is on the north slope (Figure 5D).

Cirque Floor Altitude Variations With
Bedrock Types
Fifteen bedrock sets have been identified. The CFA Welch
statistic between bedrock types is 27.827 (p = 0.000),

indicating that the CFA differences among various bedrock
types are statistically significant. The cirques on porphyry have
the highest CFA (mean is 5695 m asl) in the Gangdise Mountains,
followed by those on syenite (mean is 5572 m asl) and slate (mean
is 5570 m asl). The lowest CFA is found in monzonite cirques
(mean is 5298 m asl), followed by cirques on dacite (mean is
5343 m asl) and mudstone (mean is 5346 m asl) (Table 4).

DISCUSSION

Climatic Controls on CFAs
A previous study demonstrated that CFA is substantially
governed by the regional or climatic snow line and entirely
influenced by the climatic gradient (Peterson and Robinson,
1969). The low CFA in the eastern part of the Gangdise
Mountains is due to the relatively high precipitation of the
ISM, compared to the central and western parts. Zhang et al.
(2018) discovered this feature while researching glacier changes
in the Gangdise Mountains since the Little Ice Age. The low CFA
near the valley in the eastern part may be attributed to the
abundance of water vapor (Figure 1B). Nonetheless, the ISM
diminishes as it reaches the central part, resulting in a higher CFA
value. More precipitation in the southwest of the western part of
the Gangdise Mountains may be related to a few valleys and low
passes in the Himalayas south of the Gangdise Mountains,
allowing monsoonal moisture to reach the west of the
Gangdise Mountains (Zhang et al., 2018, 2020). This leads to
lower CFA values in several regions in the west. The high
temperature usually does not support the extension of glaciers

FIGURE 4 | Scatter plots of longitude (A) and latitude (B) and CFA. Green, blue and purple represent the western, central and eastern parts of the Gangdise
Mountains, respectively.

TABLE 2 | The CFA variations against latitude (ϕ; °) and longitude (λ; °) in the western, central, and eastern parts of the Gangdise Mountains.

Region Variation with
latitude

R2 p Value Variation with
longitude

R2 p Value

Western part CFA = −938.702ϕ2 + 59648.296ϕ − 941980.573 0.112 0.000 CFA = −440.864λ2 + 70969.774λ− 2.851 0.108 0.000
Central part CFA = −1224.555ϕ2 + 73809.842ϕ − 1.1065E6 0.378 0.000 CFA = −1348.875λ2 + 228917.328λ− 9.707 0.111 0.000
Eastern part CFA = −591.129ϕ2 + 35730.027ϕ − 534487.724 0.070 0.000 CFA = −651.122λ2 + 116533.438λ − 5.2087E6 0.020 0.001

TABLE 3 | Pearson′s r between CFA and used factors in the study area.

H (m) Zmean (m asl) Profile closure (°)

Total −0.29 0.96 0.009
Western −0.28 0.97 0.263
Central −0.54 0.95 −0.160
Eastern −0.55 0.92 0.002
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or cirques to low altitudes. Low CFAs, however, seem to occur at
higher temperatures, according to this study. For instance, the
eastern part of the Gangdise Mountains is warmer than the
central and western parts, and its CFAs are lower (Figures 2,
3). Low CFAs are also associated with relatively high
temperatures in the north-east of the western part and the
southernmost point of the central part (Figures 1, 2). One
argument for this is that low altitudes result in high
temperatures, which coincides with low CFA. Another
explanation is that high temperatures intensify freeze-thaw,

and cirque is eroded to accelerate development, leading to
low CFA.

Cirque aspect can influence the amount of precipitation and
solar radiation received at the surface of the glacier (Qureshi et al.,
2017; Zhang et al., 2018). The higher CFAs for the S-facing cirques
in the Gangdise Mountains may be due to their elevated solar
radiation. The CFA is higher on the eastern slope than on the
western slope in the western and central parts. Moreover, in the
eastern part, the CFA on the southeast slope is significantly higher
than on the northwest slope. Because snow on the windward slope
can be moved to the leeward slope, cirques tend to form on the
leeward slope (Evans, 1990; Zhang et al., 2020). This is in line with
the interpretation of Zhang et al. (2020). The southwest slope has
the highest CFA in the western part, which may be due to the
combined effect of solar radiation and ISM, which crosses the low
valleys and passes of Himalayas Mountains.

Non-climatic Controls on CFAs
The negative correlations between CFA and H suggest that cirque
deepening has an impact on CFA value. However, there are two
findings that contradict this claim. First, there is a weak relation
between CFA and H for the western part cirques (r = −0.28, p < 0.05)
(Table 3). This implies that cirque deepening is not a main control on
CFAs (at least in the western part). The average cirque H in the
western and central parts are about identical (367 and 365m,
respectively), while the eastern part has a small cirque H (330m)
(Zhang et al., 2020). However, the central part has the highest CFA
values, followed by thewestern and eastern parts (Table 1). The spatial
patterns of cirque H and CFA are different, implying that cirque
deepening may not be significantly determining the CFA pattern.

The effect of slope gradient on glacier dynamics may vary due
to distinct glacier evolution (Li et al., 2016). Glaciers with smaller
surface slopes were more sensitive to climate change than glaciers
with steep slopes according to studies by Oerlemans (1992) and
Chinn (1996). Haeberli (1995) and Kirkbride and Winkler
(2012), on the other hand, claimed that a steeper slope
resulted in a shorter response time. Other studies revealed that
there is no link between slope and glacier change (Granshaw and
Fountain, 2006; Paul and Andreassen, 2009). In this study, the
impact of profile closure (i.e., slope gradient) on CFA varied in the
eastern, central and western parts, indicating that profile closure
is not the primary factor affecting CFA.

The bedrock types of cirques are mainly slate (n = 158), clastic
(n = 115), syenite (n = 99) and diorite (n = 92) in the western
Gangdise Mountains. The primary rock types in the central part
are conglomerate (n = 145), limestone (n = 143) and glutenite
(n = 72), whereas the central and western parts are predominantly
“hard” rocks. Limestone (n = 309), mixed rock (n = 80),
mudstone (n = 50) and conglomerate (n = 50), as relatively
“soft” rocks, prevail in the eastern part (Table 5). Soft bedrock is
more prone to erosion than hard bedrock in general. Softer
bedrock of the eastern part is one of the reasons for the lower
CFA than on the central and western parts. In contrast, the lowest
CFA occurs in monzonite and dacite, which are rather “hard”
rocks. This means that combination of lithological and non-
lithological factors influences CFA.

FIGURE5 |Cirque aspects for (A) the entire dataset, (B) the western (n =
562), (C) central (n = 454) and (D) eastern (n = 636) parts of the Gangdise
Mountains.

TABLE 4 | CFA against bedrock.

Bedrock type Number Percentage (%) CFA (m asl)

limestone 452 27.36 5484
conglomerate 211 12.77 5554
slate 182 11.02 5570
clastic 158 9.56 5462
mixture 130 7.87 5372
diorite 125 7.57 5488
syenite 106 6.42 5572
glutenite 87 5.27 5490
granite 57 3.45 5398
dacite 43 2.60 5343
mudstone 68 4.12 5346
monzonite 13 0.79 5298
volcanics 7 0.42 5391
porphyry 7 0.42 5695
schist/gneiss/granulite 6 0.36 5543
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The Efficacy of Cirque Floor Altitude as a
Paleoclimatic Indicator by a Comparison
With the Cirque Floor Altitude of the Central
Tibetan Plateau
The central TP is located in the climatic transitional region, and its
climate type is similar to that of the western Gangdise Mountains. A
total of 70 cirques in the central TP were mapped and analysed by
Zhang et al. (2021). They found that the CFAs of the central TP range
from 4803 to 5742m asl, with a mean value of 5352m asl. In the
central TP, themean value of CFAs is lower than that of the Gangdise
Mountains, but its standard deviation is higher (231.206 vs. 204.86),
indicating that the CFAs of central TP have a wider range. The CFAs
of the central TP are declining from northwest to southeast, contrary
to the spatial distribution of precipitation (Zhang et al., 2021). This is
in line with the finding of the Gangdise Mountains. It was argued by
Barr and Spagnolo (2015a) that regional variations of CFA can
represent the paleo-precipitation levels from previous glacial
periods. The distribution of CFA is highest in the central part of
the GangdiseMountains, second in the western part and lowest in the
eastern part (Table 1), which could reflect the fact that former
precipitation was the highest in the eastern part, second in the
western part, and lowest in the central part. Paleoclimate
reconstructed by Zhang et al. (2021) in the central TP shows that
the precipitation of the Last Glacial period decreased from southeast
to the northwest. This suggests that CFA can represent the paleo-
precipitation levels throughout previous glacial times. However, non-
climatic elements (crest altitude, lithology, etc.) also have an impact
onCFA. For example, CFAhas a strong correlationwith crest altitude
(r = 0.86, p < 0.05) (Zhang et al., 2021). This indicates that CFA
cannot adequately represent the precipitation of former glacial
periods in some cases. In both regions, the CFA of the southern
slope is higher than that of the northern slope, indicating that the
aspect has a considerable effect on CFA, regardless of their climate.
The asymmetry of the cirque aspect can reflect the information of
paleo-cloud cover (Barr and Spagnolo, 2015a). There are significant
differences in the presence of CFA on different aspects in the
Gangdise Mountains (Figure 5), indicating that there was less
cloud cover during the former glacial periods. This is consistent

with the findings of Zhang et al. (2020). The CFA is highest in SE and
lowest in SW in the central TP, reflecting the asymmetry of the aspect
and indicating that the central TP was sunny during the former
glacial periods. This means that the CFA could provide information
on paleo-cloud cover. Monsoons, on the other hand, can have a
variety of effects on CFA. ISM comes from southeastern slope to
northwestern slope in the Gangdise Mountains, resulting in lower
CFA on the northwestern slope (Figure 1). This demonstrates that
the CFA does not always accurately reflect the paleo-cloud cover.
Different bedrock types also have similar impacts on CFA in both
regions, i.e., ‘softer’ rocks are more favourable to CFA growth, but
their effect on CFA is limited. Cirque height and CFA did not have a
significant correlation in the central TP (r = 0.017, p > 0.05), which
supports this study’s conclusion that cirque deepening is not a main
control on CFA. Despite the fact that the western Gangdise
Mountains and the central TP have a continental climate, their
mean CFA differs by 218m (5570m asl vs. 5352m asl). The eastern
part of the Gangdise Mountains, on the contrary, has a similar mean
CFA to the central TP (5389m asl vs. 5352m asl), while having a
greater average temperature and annual precipitation than the central
TP. As a result, CFA is also determined by local factors and may not
always reflect regional climatic patterns, which controls the patterns
of ELAs. This implies that the CFAs are not always appropriate for
usage as ELAs. We propose three possible explanations for this: 1)
CFAs are strongly correlated to crest altitudes in the Gangdise
Mountains and the central TP, which indicates that CFA is
heavily influenced by its relief. Relatively low relief, with altitudes
ranging from 4400 to 6200m asl, is typical for the central TP (Zhang
et al., 2021), but the Gangdise Mountains reach up to ~7000m asl.
Since cirques tend to form near the summits, the CFAs of Gangdise
Mountains are higher than those of central TP. This has no relations
with the climate; 2) Cirque formation occurred during the times
when cirque-type glaciers were present (Barr and Spagnolo, 2015a).
Glaciers may extend beyond cirque boundaries in a cold and wet
climate. As a result of this process, the ELAs of glaciers are reduced,
but cirque development is restricted (and thus lowers the CFAs). In
this circumstance, CFA is not an adequate indicator of ELA; and 3)
Cirques formed during several glacial eras of the Quaternary (Flint,
1957; Porter, 1964). The CFAs of different regions do not reflect the
glacial patterns of the same period; hence they should be considered
with caution when indicating paleoclimate on a regional scale.

CONCLUSION

To explore the patterns of CFA and its regulating factors, we looked at
1652 cirques in the Gangdise Mountains and extracted their CFA.
The CFAs are highest in the central part of the Gangdise Mountains,
followed by the western and eastern parts, which is in contrast with
the spatial distribution of precipitation. This implies that precipitation
stimulates cirque development. The presence of high CFA values on
southern and western slopes is due to the effect of solar radiation and
wind. Cirque H and CFA have weak correlations, and their spatial
distributions differ, implying that cirque deepening is not a main
factor affecting CFA. The correlations between cirque profile closure
(slope gradient) and CFA in the western, central, and eastern parts
show different characteristics, which implies that the effect of slope

TABLE 5 | Statistics of cirque bedrock types in the western, central, and eastern
parts of the Gangdise Mountains.

Bedrock type Western Central Eastern

limestone 0 143 309
conglomerate 16 145 50
slate 158 24 0
clastic 115 24 19
mixture 47 3 80
diorite 92 0 33
syenite 99 7 0
glutenite 15 72 0
granite 2 29 26
dacite 0 0 43
mudstone 18 0 50
monzonite 0 0 13
volcanics 0 0 7
porphyry 0 7 0
schist/gneiss/granulite 0 0 6
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gradient on cirque development is controlled by the local
topoclimatic factors. Cirques tend to develop on soft bedrocks,
and the spatial patterns of CFAs in the western, central and
eastern parts can be partly explained by their bedrock types.
However, this effect may be limited because the low CFA values
are from the cirques developed on relatively hard bedrocks. The CFA
values of the GangdiseMountains are higher than those of the central
TP. In these two regions, the spatial distribution of CFAs is in contrast
to precipitation. This emphasises the fact that precipitation is a main
control on CFA. Relief and glacier type also have a significant impact
on CFA. Because of these factors, the CFA is not necessarily a reliable
indicator for paleoclimate on a large regional scale.
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Mesoscale eddies are abundant over the Antarctic continental slope, with the potential to
regulate the water masses transport, mixing, and energy transfer. Over the relatively cold
and fresh shelf regions around the Antarctic margins, in the absence of dense overflows,
the baroclinic instability of the Antarctic Slope Current is still favorable in the generation of
mesoscale eddies. However, mesoscale eddies are barely observed over the fresh shelf
regions due to the sparsity of in situ hydrographic observations. Based on an idealized
eddy-resolving coupled ocean-ice shelf model, this study investigates the characteristics
of mesoscale eddies and corresponding influences on the local hydrographic properties
over the continental slope, East Antarctica. With the aid of an automated eddy detection
algorithm, bowl-shaped eddies are identified from the simulated velocity vector geometry.
The Cyclonic Eddies (CE) has a barotropic vertical structure extending to more than
2,500 m depth, while the vertical shear of the Anticyclonic Eddies (AE) velocity is strong at
the upper 200 m layer. Mesoscale eddies can trap the cold and fresh water in the southern
flank of the Antarctic slope front and flow offshore to the relatively warm and saline region.
Therefore, the influences of eddies on the hydrographic properties are not only governed
by the eddy polarities but also the eddy-induced heat and salt transport.

Keywords: mesoscale eddies, idealized model, spatial structure, hydrographic properties, Antarctic continental
slope

1 INTRODUCTION

Mesoscale eddies are ubiquitous in the World Ocean (Mcwilliams, 2008), with unique features in the
Antarctic marginal sea. Based on the sea-surface height constructed from the merged TOPEX/
Poseidon (T/P) and ERS-1/2 altimeter datasets, the observed mesoscale eddies account for more than
50% of the variability of the sea-surface height over much of the World Ocean (Chelton et al., 2007),
with the time-scale ranging from just a few days to several months and the spatial-scale ranging from
a few kilometers to more than 100 km (Mcwilliams, 2008; St-Laurent et al., 2013; Gunn et al., 2018).
According to the direction of rotation, mesoscale eddies are classified as Cyclonic Eddies (CE) and
Anticyclonic Eddies (AE). In the southern hemisphere, mesoscale eddies with larger amplitude and
stronger rotational speeds are preferentially cyclonic (Chelton et al., 2011). The horizontal spatial-
scale of mesoscale eddies is largely determined by the first baroclinic Rossby radius of deformation
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R1, which is the ratio of the long gravity wave speed to the Coriolis
frequency. Since R1 can be less than 10 km around the Antarctic
continental slope (Chelton et al., 1998), mesoscale eddies intend
to have a relatively small spatial-scale in the Antarctic
marginal sea.

Around the Antarctic marginal sea, the westward Antarctic
Slope Current (ASC) almost encircles the Antarctic continent
(Thompson et al., 2018), coupled with a sharp frontal zone, the
Antarctic Slope Front (ASF). Over the steep continental slope, the
isopycnal tilting of the ASF is typically largest at the shelf break,
acting as an effective potential vorticity barrier to prevent the
cross-slope exchanges of water masses (Bower et al., 1985).
Meanwhile, as an extensive and coherent current, the ASC
also has the potential to mediate the exchanges of water
masses across the ASF. The onshore heat transport across the
ASF can increase the heat content of shelf waters and accelerate
the basal melting of the ice shelves (Shepherd et al., 2004;
Pritchard et al., 2012; Rignot et al., 2013), whereas the
offshore export of dense shelf water directly sets the
production and properties of Antarctic Bottom Water that
supplies the deep branch of the global overturning circulation
(Moffat et al., 2009; Nøst et al., 2011). In addition, the ASC can
regulate the cross-slope transport of nutrients and phytoplankton
in the Antarctic continental slope area (Prézelin et al., 2000;
Prézelin et al., 2004; Heywood et al., 2014; Wadley et al., 2014).
Such cross-slope exchanges of water masses are closely associated
with the structure and variability of the ASC. The ASC features a
turbulent frontal current, with its abundance of jets and
mesoscale eddies (Stern et al., 2015; Stewart and Thompson,
2015; Peña-Molino et al., 2016; Stewart and Thompson, 2016;
Azaneu et al., 2017). The jets in the ASC are generally constrained
by the gradient of the slope, yet these jets can be very unstable and
drift northward when the vertical velocity shear reaches the
critical condition for the baroclinic instability (Stern et al.,
2015). The energetic mesoscale eddies over the shelf break are
closely associated with the dense shelf water outflows across the
ASF and substantially contribute to the Antarctic overturning
circulation in theWeddell and Ross Seas (Stewart and Thompson,
2015; Stewart and Thompson, 2016).

The formation and migration of mesoscale eddies can trap the
source water in their interior and transport the water
downstream, with great significance in the cross-slope
exchanges around the Antarctic margins. In the Southern
Ocean, mesoscale eddies are a prevalent feature in the
Antarctic Circumpolar Current (ACC) regime (Rintoul et al.,
2001), with Circumpolar Deep Water (CDW) retained and
transported southward across the ocean fronts to higher
latitudes (Phillips and Rintoul, 2000). As warm CDW
approaches the Antarctic continental slope, mesoscale eddies
are favorable in the onshore advection of CDW onto the
continental shelf (Moffat et al., 2009; Martinson and McKee,
2012; St-Laurent et al., 2013; St-Laurent et al., 2013). Meanwhile,
mesoscale eddies also favor the offshore overflows of dense shelf
water from the Antarctic continental shelf (Stewart and
Thompson, 2012; Stewart and Thompson, 2013; Su et al.,
2014; Dufour et al., 2017). The residual-mean theories suggest
a leading-order balance between wind-induced and eddy-induced

overturning circulations in the Southern Ocean (Marshall and
Speer, 2012), and such a structure is also active at the Antarctic
marginal seas (Nøst et al., 2011; Stewart and Thompson, 2013;
Hattermann et al., 2014). Based on the hydrographic observations
from ocean gliders, the eddy-induced overturning circulation is
almost comparable to the wind-forced overturning cell in the
northwestern Weddell Sea (Thompson et al., 2014). Therefore,
the eddy-resolving horizontal resolution of numerical models is
needed to simulate the contribution of mesoscale eddies to cross-
slope exchanges of water masses (St-Laurent et al., 2013).

The rotations of mesoscale eddies can laterally stir the nearby
waters and result in significant mixing and energy transfer. The
lateral stirring of mesoscale eddies is expected to play a role in
eroding the ocean fronts, e.g., the ASF, converting the available
potential energy to kinetic energy. The cyclonic (anticyclonic)
rotational eddies also contribute to the vertical mixing by giving
rise to the upwelling (downwelling), and thereby eddies can
enhance the primary production by bringing nutrient-rich
water from the deeper layer to the sea surface (Kahru et al.,
2007; Gaube et al., 2014; McGillicuddy, 2016). Generally, the
energy cascade is from large scales to small scales, yet mesoscale
eddies can also transfer energy from high baroclinic mode to low
baroclinic and barotropic modes (Charney, 1971; Ferrari and
Wunsch 2009). The eddy kinetic energy stems from the mean
kinetic energy and the eddy potential energy by the barotropic
conversion and baroclinic conversion (Lorenz, 1955; Kang and
Curchitser, 2015). Over the Antarctic continental slope in Prydz
Bay, the source of eddy kinetic energy is found to be provided by
the baroclinic conversion rather than the barotropic conversion
(Liu et al., 2018).

Mesoscale eddies mostly arise from the barotropic and baroclinic
instabilities (Charney 1947; Eady 1949). In the western Weddell Sea,
the observed dense overflows on the continental slope are found to be
responsible for the generation of eddies (Baines and Condie 1998),
and such effects of the dense fluid descending on a slope have been
replicated in a variety of laboratory experiments (Lane-Serff and
Baines 1998). High-resolution regional models have subsequently
captured the periodic formation of eddies induced by dense water
plumes over the Antarctic continental slope by resolving the
mesoscale processes (Wang et al., 2009; Nakayama et al., 2014).
Therefore, both observational and modeling studies have
documented the energetic mesoscale eddy field hosted by the
Antarctic continental slope. However, despite the baroclinic
instability induced by dense overflows (Stewart and Thompson,
2016), the ASC may evolve in a baroclinically unstable state
(Stern et al., 2015). As a frontal current steered by the steep
continental slope, the velocity field of the ASC has strong lateral
and vertical shear in facilitating the genesis of mesoscale eddies (Nøst
et al., 2011; Hattermann et al., 2014). Compared to the mesoscale
eddies induced by the dense overflows, our understanding of the
mesoscale eddies directly fueled by the baroclinic instability of the
ASC remains remarkably unknown.

In order to investigate the mesoscale eddies generated by the
baroclinic instability of the ASC, we intend to focus on the Antarctic
marginal sea where there are no dense water plumes over the
continental slope. Based on the hydrographic properties, a
classification of the ASC/ASF structure has been introduced as
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three cases: (I) Fresh Shelf, (II) Dense Shelf, and (III) Warm Shelf
(Thompson et al., 2018). The mesoscale eddies induced by dense
overflows over the slope are concentrated over the Dense Shelf
regions where the Antarctic Bottom Water are produced (Orsi
et al., 1999; Whitworth and Orsi, 2006). To exclude the influences
of such dense overflows, this study focuses on the mesoscale eddies
over Fresh Shelf regions. Over Fresh Shelf regions, the ASF is
characterized by the intense lateral density gradient over the slope,
and such a strong frontal structure can effectively separate the warm
deepwater from the cold shelf water. The strongASF over Fresh Shelf
regions stems from a combination of weak cross-slope exchange,
Ekman downwelling, and the presence of cold shelf waters
(Thompson et al., 2018). Therefore, the Fresh Shelf can exhibit
the influences of ASC baroclinic instability and corresponding
eddy generation, without the influences of dense overflows.

The spatial structure of mesoscale eddies and corresponding
influences on the hydrographic parameters reveal the dominant
characteristics of mesoscale eddies. Three different types of
mesoscale eddies are classified based on the vertical shapes: (I)
bowl-shaped eddies with the maximal radius at the surface, (II)
lens-shaped eddies with the maximal radius at the middle depth,
and (III) cone-shaped eddies with the maximal radius at the eddy
bottom (Dong et al., 2012). The analysis of the eddy spatial
structure has been extensively used in both observational studies
and numerical simulations, and bowl-shaped eddies are widely
prevalent (Martin et al., 1998; Qiu and Chen, 2010; Zhang et al.,
2014; Lin et al., 2015). However, due to the limited hydrographic
observations and the relatively small R1 over the Antarctic
continental slope, it is not easy to directly uncover the spatial
structure of mesoscale eddies based on in situ observations. For
example, over the continental shelf of the Ross Sea, the simulated
spatial-scale of mesoscale eddies can have a minimum of ~5 km
(Mack et al., 2019). So far, Williams et al. (2010) documented a
bowl-shaped eddy observed within the Prydz Bay Gyre region
that is a typical Fresh Shelf case in East Antarctica. High-
resolution numerical models shed light on the details of the
dynamic structure of mesoscale eddies. With the aid of an
idealized eddy-resolving model, this study intends to delineate
the spatial structure of mesoscale eddies generated by the
baroclinic instability of the ASC over Fresh Shelf regions.

In this study, an idealized eddy-resolving model is designed for
a fresh shelf case in an effort to characterize the mesoscale eddies
and associated hydrographic properties over the Antarctic
continental slope. In Section 2, we describe the model
configuration and the methods. The characteristics of
mesoscale eddies and the eddy-induced anomalies in the
hydrographic properties are illustrated in Section 3.
Conclusions and discussions are provided in Section 4.

2 MODEL CONFIGURATION AND
METHODOLOGY

2.1 Model Configuration
Based on the Massachusetts Institute of Technology General
Circulation Model (Marshall et al., 1997; Losch et al., 2010),
our experiments are conducted with an idealized eddy-resolving

coupled ocean-ice shelf model. The idealized topography
configuration consists of a deep ocean area, a steep continental
slope, a shallow continental shelf, a submarine trough, and an ice
cavity (Figure 1A), with the geographic coordinate representing a
typical Fresh Shelf region in East Antarctica. The orange boxes in
Figure 1B show the locations of Prydz Bay (60°E–90°E) and the
Sabrina Coast (110°E–125°E) that are the typical Fresh Shelf cases
around East Antarctica (Figures 1C,D). The model horizontal
resolution is 0.0125° and 0.005° in the zonal and meridional
directions, respectively. Accordingly, the averaged zonal grid
spacing is ~554 m, and the meridional grid spacing is ~555 m.
Although R1 could be less than 10 km over the continental slope,
this high horizontal resolution is still able to properly resolve the
mesoscale eddies. To capture the vertical structure of mesoscale
eddies over the continental slope, the model has 70 levels in upper
700 m depth, 20 levels from 700 m depth to 1,700 m depth, and 10
levels from 1,700 m depth to 3,000 m depth, with uniform
intervals of 10, 50 and 130 m, respectively.

The open boundary conditions are used to force the ocean by
prescribing the velocity, the potential temperature, and the
salinity fields on the eastern, western, and northern
boundaries (Figure 2). In order to focus on mesoscale eddies
generated by the ASC and exclude the sea surface influences, e.g.,
eddies generated by sea ice leads (Cohanim et al., 2021), the sea
ice model and the atmospheric forcing are not included. On the
zonal open boundaries, the ASC is represented by a westward jet
over the continental slope (Figure 2A). The jet velocity ranges
from −0.3 m s−1 at the surface layer to 0 at the bottom layer, and
the meridional extension of the jet is confined within the
continental slope. Such strong vertical and lateral shear of the
ASC is in accordance with the geostrophic balance with the ASF.
The ASF is represented by a sharp thermohaline front over the
slope, with the thermocline and the halocline intersecting the
upper slope. The values of the open boundary conditions are set
to represent the typical hydrographic characteristics of a Fresh
Shelf case on the basis of comprehensive observational data sets,
including the mooring observations (Heywood et al., 1999; Peña-
Molino et al., 2016), the instrumented southern elephant seal data
(Treasure et al., 2017), and the Conductivity-Temperature-Depth
vertical profile stations (Williams et al., 2010).

The model is integrated for 3 years with the open boundary
forcing that is held constant, denoted the CTRLRUN. In the
CTRLRUN, the initial conditions are zonally uniform for each
depth level, with values equal to that on the zonal open
boundaries. After integration of 2 years, the simulation reaches the
quasi-equilibrium status, and we use the 6-h mean outputs in the
third year to investigate the structure of mesoscale eddies over the
slope. A sensitivity experiment is initialized from the final output of
the CTRLRUN, denoted by the SEASONRUN, with the same open
boundary conditions for the potential temperature and salinity. In the
SEASONRUN, a sinusoidal pulsing with a yearly period is added to
the original zonal velocity to represent the seasonal cycle of the ASC
on the basis of mooring observations (Heywood et al., 1999; Mathiot
et al., 2011; Peña-Molino et al., 2016). The amplitude of the sinusoidal
pulsing is half of the original zonal velocity in the CTRLRUN, and the
maximal magnitude of the ASC is set on June 30th. The
SEASONRUN is integrated for 3 years and reaches the quasi-
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equilibrium status in the second year, and the 6-h mean outputs in
the third year are saved to investigate the influences of the ASC
seasonality on mesoscale eddies. The simulated results during the
period from June to July in the SEASONRUN are used to represent
the strong ASC in winter, denoted by the SEASONRUN-Strong, and
the period from Dec to Jan in the SEASONRUN is used to represent
the weak ASC in summer, denoted by the SEASONRUN-Weak
(Figure 2B).

The presence of mesoscale eddies can be directly revealed via
the eddy eroding effects on the ASF. The ASF in this idealized
model is characterized by a sharp front separating the warm and
saline modified Circumpolar DeepWater (mCDW) from the cold
and fresh Shelf Water (SW). The lateral eddy stirring between the
mCDW and SW is clearly visible from the snapshots of the
potential temperature and the salinity, with cold and fresh eddy
boluses of SW in the northern flank of the ASF (Figures 2C,D).

2.2 Eddy Detection Scheme
In this study, we adopt an automated eddy detection algorithm that is
based on the vector geometry method (Nencioli et al., 2010). This
algorithm has been extensively used to detect eddies in the open
ocean and marginal seas (Couvelard et al., 2012; Peliz et al., 2013;

Dong et al., 2014; Sun et al., 2017; Sun et al., 2021a, 2021b). From the
perspective of an observer moving with the temporal-averaged
current, an eddy can be recognized as a flow structure that the
relative velocity vectors encircle a center of the minimummagnitude.
Within such a circle, the tangential velocity should increase with
distance from the eddy center and then decays after reaching a
maximum.

To be in accordance with the characteristics of the eddy velocity
field, four constrains are proposed by the vector geometrymethod: (I)
the minimal velocity magnitude should be located in the eddy center;
(II) along a zonal cross-section, the meridional velocity should have
opposite signs over the different sides of the eddy center; (III) along a
meridional cross-section, the zonal velocity should have opposite
signs over the different sides of the eddy center, with the same
rotational direction as the meridional velocity; (IV) the rotational
direction of the velocity vector should be constant around the eddy
center, and the two neighboring velocity vectors should point to the
same or two adjacent quadrants. Two parameters need to be specified
for the application of the vector geometry method. The first
parameter, a, determines the grid numbers that will be checked
away the increases in the magnitude of the zonal velocity along the
meridional axis and the meridional velocity along the zonal axis. The

FIGURE 1 | (A) Topographical features of the idealized coupled ocean-ice shelf model. The black lines are the seafloor depth (at 50 m intervals from 500 to
1,000 m, and 500 m intervals from 1,000 m to 3,000 m), and the grey lines are the ice shelf draft in contour intervals of 50 m. (B) The orange boxes in the map show the
typical Fresh Shelf regions around East Antarctica, corresponding to (C) and (D), respectively. (C) The topography (m) in Prydz Bay, with the coastal line (black line) and
the 500 m isobath (blue line). (D) Same as (C), but for the Sabrina Coast.
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parameter a also determines a counter alongwhich the changes in the
velocity vector direction are checked. The second parameter, b,
determines the dimension of a domain used to locate the local
minimal velocity magnitude. Optimal values for a and b are
largely dependent on the spatial resolution of the dataset. In order
to reduce the failure and excess rate of the eddy detection, we conduct
a series of sensitivity tests and specify a = 7 and b = 6 for an optimal
algorithm performance. When an eddy center is located, the
boundary of the eddy is computed as the largest local stream
function counter encircling the eddy center. The eddy radius is
computed as the averaged distance from the outmost boundary
points to the eddy center. Compared with the Okubo–Weiss and
Winding Angle methods (Nencioli et al., 2010), this vector geometry
method has a better successful identification rate and a lower
excessive identification rate.

2.3 Eddy Composition and Statistical
Analysis
In order to reveal the typical characteristic of mesoscale eddies over
the continental slope, the composite analysis method is used to derive

a uniform eddy structure (Sun et al., 2018). According to the polarity,
mesoscale eddies are classified as two different types: the CE and the
AE. Based on the eddy detection results, the detected eddy domain is
converted from the geographic coordinate (∇x, ∇y) to a normalized
coordinate system (∇X, ∇Y) as:

∇X � ∇x

Re
(1)

∇Y � ∇y

Re
(2)

where ∇x and ∇y are the zonal and meridional geographic
distance of the grid to the eddy center, ∇X and ∇Y are the
normalized distance of the grid to the eddy center, and Re is the
corresponding eddy radius. The resolution for the normalized
coordinate is set as 0.05 in this study. As the eddy centers are all
placed at the origin point of the normalized coordinate, we can
construct a composite eddy field for the CE/AE by averaging the
values at the same normalized location. By conducting such a
composite analysis for every vertical level, a composite spatial
structure of mesoscale eddies can be derived for the CE/AE.

FIGURE 2 | (A) The cross-section of the zonal open boundary conditions in the CTRLRUN. The color shading is the zonal velocity (negative westward/into the
page); white lines are the potential temperature (°C) in contour intervals of 0.2°C; blue lines are the salinity (psu) in contour intervals of 0.05. (B)Cross-shelf variation of the
vertical integrated zonal transport (Sv). (C) A snapshot of the potential temperature (°C) in the CTRLRUN, the top layer is at 100 m depth. (D) Same as (C), but for the
salinity (psu).

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 9163985

Zhang et al. Eddies Over Antarctic Cotinental Slope

151

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


In order to have a clear statistical analysis of the eddy field, we also
calculate the averaged values along a set of concentric circles around
the composite eddy center as follows: (I) the composite eddy domain
is further discrete by a set of concentric circles with a uniform increase
of 0.1 in the radius; (II) the grids in a track bounded by two adjacent
concentric circles are selected for every track; (III) the averaged value
over the selected grids in a track is calculated and assigned to the
corresponding track. Such a statistical analysis of the eddy field serves
to smooth out the local disturbances and preset the more
straightforward horizontal structure of a composite eddy.

The study uses the anomalies of the simulated outputs for the
eddy detection and composition. The anomalies of the
CTRLRUN are derived by the deviation from the annual
mean. The anomalies of the SEASONRUN-Strong are derived
by the deviation from the temporal average from December and
January, and the anomalies of the SEASONRUN-Strong are
derived by the deviation from the temporal average from June
and July.

3 RESULTS

3.1 Eddy Detection
From the snapshots of the potential temperature and the salinity,
mesoscale eddies are mostly active in the northern flank of the

ASC over the lower continental slope (Figures 2C,D). For a Fresh
Shelf case where there are no dense overflows, it is reasonable to
expect that the mesoscale eddies are less evident over the upper
continental slope due to the suppression of the strong
topographic vorticity gradient (Isachsen, 2011; Stewart and
Thompson, 2013). Since the mesoscale eddies generated by the
baroclinic instability of the ASC are concentrated along the
northern flank of the ASC (Figures 2C,D), the alternatively
positive and negative values dominate the horizontal velocity
over the lower slope (Figures 3A,B), resulting in the water
swirling around the eddy center. In good agreement with the
velocity field, the potential temperature (salinity) also shows
alternatively warm (saline) and cold (fresh) water boluses over
the lower slope, implying the eddy-induced cross-front transport
(Figures 3C,D).

With the aid of the eddy detection scheme, energetic
mesoscale eddies are identified from the surface velocity fields
(Figure 4A), and the sea surface height also shows a quite good
congruence with the polarities of mesoscale eddies, with negative
(positive) anomalies corresponding to the CE (AE). For a specific
identified mesoscale eddy (Figure 4B), the detection scheme
provides the location of the eddy center, the eddy shape, the
eddy lifetime from its generation to termination, and the eddy
trajectory.

FIGURE 3 | (A) A snapshot of the zonal cross-section (65.7°S) of the
zonal velocity anomalies (m s−1) at the lower continental slope (seafloor depth
is 2,610 m). (B–D) Same as (A), but for the meridional velocity anomalies
(m s−1), the potential temperature anomalies (°C), and the salinity
anomalies (psu), respectively.

FIGURE 4 | (A) A snapshot of eddy centers detected by the vector
geometrymethod. The black diamonds are the detected CE, and themagenta
diamonds are the detected AE. The color shading is sea surface height
anomalies. The thin black lines denote the isobaths of 500, 700, and
3,000 m from south to north. The black star denotes an anticyclonic eddy
shown in (B). (B) The snapshot of an anticyclonic eddy with sea surface
velocity vectors in units of m s−1. The black line denotes the boundary of the
detected anticyclonic eddy.
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3.2 Spatial Structures of Composite Eddies
Based on the eddy composition method, the spatial structures of
the composite eddies are derived from all the CE and the AE
detected by the vector geometry method. Both the composite CE
and AE show bowl-shaped structures in the CTRLRUN, with an
almost symmetric structure to the eddy center (Figures 5A,B).
Both the composite CE and AE have a similar thickness of
~2,500 m. However, the composite eddy velocity of the CE
almost does not change from the sea surface to more than
2,500 m depth, while the composite eddy velocity of the AE
rapidly decreases in the upper 200 m layer. As expected, the
minimal velocity magnitude is still located at the composite eddy
centers from the surface layer to the bottom layer (Figures 5A,B).
At the sea surface layer, the magnitude of the composite velocity
vectors gradually increases with the distance to the eddy center to
a maximum and then decreases toward the eddy boundary
(Figures 5C,D). The averaged radius of CE is ~8.5 km, and
the averaged radius of AE slightly larger than that of CE, with
an averaged value of ~9.8 km.

3.3 Hydrographic Anomalies Associated
With Composite Eddies
Mesoscale eddies can induce significant changes in the potential
temperature, the salinity, and the potential density of water
masses. Since the rotation of mesoscale eddies can lead to
local upwelling or downwelling, the vertical structure of
hydrographic properties should change in response to the
polarity of mesoscale eddies. As the deep water is warmer,
saltier, and denser than the water in the upper layer over the
continental slope (Figures 6A–C), the composite eddy of CE is

expected to be associated with the positive potential temperature
and salinity anomalies, while the composite eddy of AE is
expected to be associated with the negative anomalies.
However, the transport of the water masses trapped within the
eddy can also induce hydrographic anomalies downstream.
Therefore, it is reasonable to find that hydrographic properties
may have complex changes in response to mesoscale eddies,
especially near a sharp frontal zone.

Within the composite eddy of the CE from the CTRLRUN,
a cooling peak of ~−0.17°C presents at 200 m depth
(Figure 6D), with a maximal salinity change of ~−0.14 ×
10−1 psu at 190 m depth (Figure 6E). Accordingly, the
maximal potential density change of ~−0.5 × 10−2 kg m−3

also presents at 180 m depth (Figure 6F). Compared to the
CE, the composite eddy of AE has two cooling peaks
(Figure 6D). The maximal potential temperature change of
~−0.14°C is at 110 m depth (Figure 6D), with a maximal
salinity change of ~−0.14 × 10−1 psu at 100 m depth
(Figure 6E). The second cooling peak of ~−0.6 × 10−1°C is
at ~280 m depth (Figure 6D), with a maximal salinity change
of ~0.6 × 10−2 psu at ~280 m depth (Figure 6E). Two negative
peaks of the potential density anomalies are also present at 80
and 260 m depths (Figure 6F), closely consistent with the
potential temperature and the salinity anomalies. As the
transport of the ASC decreases in the SEASONRUN-Weak,
for the composite eddy of CE, a warm peak of ~0.28°C presents
at ~110 m depth (Figure 6G), with a maximal salinity change
of ~0.27 × 10−1 psu at ~100 m depth (Figure 6H).
Accordingly, the maximal potential density change of 0.14
× 10−1 kg m−3 presents at ~90 m depth (Figure 6I). For the
composite eddy of AE from the SEASONRUN-Weak, the

FIGURE 5 | (A) The zonal cross-section of composite meridional velocity anomalies of the CE across the eddy center in the CTRLRUN. (B) Same as (A), but for the
composite eddy of AE. (C) Horizontal distribution of composite velocity vector anomalies of the CE at the surface layer in the CTRLRUN. (D) Same as (C), but for the
composite eddy of AE.
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negative peaks of the potential temperature, salinity, and
potential temperature in the deeper layer vanish. An
intensified cold peak of ~−0.23°C presents at ~110 m depth
(Figure 6G), with a maximal salinity change of ~−0.22 × 10−1

psu at 100 m depth (Figure 6H). The maximal potential
density change of ~−0.1 × 10−1 kg m−3 presents at 80 m
depth (Figure 6I). As the transport of the ASC increases in
the SEASONRUN-Strong, a cooling peak of ~−0.33°C presents
at 210 m depth (Figure 6J), with a maximal salinity change of
~−0.3 × 10−1 psu at 200 m depth (Figure 6K). Accordingly,
the maximal potential density change of ~−0.12 × 10−1 kg m−3

also presents at 180 m depth (Figure 6L). For the composite
eddy of AE in the SEASONRUN-Strong, two negative peaks
are present in the anomalies of the potential temperature, the

salinity, and the potential density (Figures 6J–L). The
maximal change of potential temperature is ~−0.32°C is at
120 m depth (Figure 6J), with a maximal salinity change of
~−0.33 × 10−1 psu at 110 m depth. The second peak of
~−0.14°C is at ~310 m depth (Figure 6K), with a maximal
salinity change of ~0.13 × 10−1 psu at ~300 m depth
(Figure 6K). Two negative peaks of the potential density
anomalies are present at 90 and 280 m depths (Figure 6L),
with a maximal of ~−0.16 × 10−1 kg m−3 at 90 m depth.

Since the influences of the composite eddies on
hydrographic properties are almost negligible below 500 m
depth (Figure 6), we show the vertical structure of the
composite eddies in the upper 500 m layer (Figure 7). In
the CTRLRUN, the zonal cross-sections across the composite

FIGURE 6 | (A–C) Vertical profiles of the temporal averaged potential temperature (°C), salinity (× 10−1 psu), and potential density (× 10−2 kg m−3) in the CTRLRUN
over the lower continental slope. Vertical profiles of the anomalies within the composite eddies in the CTRLRUN, for the potential temperature (D), the salinity (E), and the
potential density (F). (G–I) Same as (D–F), but for the composite eddies in the SEASONRUN-Weak. (J–L) Same as (D–F), but for the composite eddies in the
SEASONRUN-Strong. Blue lines are the anomalies of the composite eddies of the CE, and red lines are the anomalies of the composite eddies of the AE.
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FIGURE 7 | (A) The zonal cross-section of the potential temperature (°C) anomalies of the composite eddy of the CE across the eddy center in the CTRLRUN. (B)
Same as (A), but for the salinity (psu) anomalies. (C) Same as (A), but for the potential density (kgm−3) anomalies. (D–F)Same as (A–C), but for the composite eddy of the
AE at 100 m depth in the CTRLRUN. (G–L) Same as (A–F), but for the composite eddies of the CE and the AE in the SEASONRUN-Weak. (M–R) Same as (A–F), but for
the composite eddies of the CE in the SEASONRUN-Strong.
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FIGURE 8 | (A) The averaged values of potential temperature anomalies (°C) along a set of concentric circles around the composite eddy center of CE at 200 m
depth in the CTRLRUN. (B) Same as (A), but for the salinity anomalies (psu). (C) Same as (A), but for the potential density anomalies (kg m−3). (D–F) Same as (A–C), but
for the composite eddy of AE at 100 m depth. (G–L) Same as (A–F), but for the composite eddies at 100 m depth in the SEASONRUN-Weak. (M–R) Same as (A–F), but
for the composite eddies in the SEASONRUN- Strong.
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eddy centers show that the influences of mesoscale eddies on
hydrographic properties are mainly limited to the upper
300 m layer (Figures 7A–F). In consistent with the vertical
profiles shown in Figure 6, the composite negative centers of
the CE are located around the 200 m depth (Figures 7A–C),
while the composite anomalies of the AE have double negative
centers sitting at ~100 and ~300 m depths for all hydrographic
properties (Figures 7D–F). The horizontal extensions of these
anomalies are mainly confined with 1 radius of the composite
eddies for both the CE and the AE. In the SEASONRUN-
Weak, the remarkable warmer, saltier, and denser anomalies
are present in the composite eddy of the CE at ~100 m depth
(Figures 7G–I), with upward-pointing triangle structures. In
contrast, the remarkable colder, fresher, and lighter anomalies
present in the composite eddy of AE at ~100 m depth (Figures
7J–L), with downward-pointing triangle structures. The
horizontal extension of the AE is still confined with 1
radius, yet the composite influences of the CE can reach 2
radii. In the SEASONRUN-Strong, the composite negative
anomalies of the CE dominate the maximal changes of
potential temperature, the salinity, and the potential
density at ~200 m depth, with downward-pointing triangle
structures (Figures 7M–O). Similar to the composite eddy of
AE in the CTRLRUN, double negative centers are present in
the composite anomalies of the AE in the SEASONRUN-
Strong, with downward-pointing triangle structures centered
at ~100 and ~300 m depths (Figures 7P–R). The spatial
structures of the eddy-induced anomalies in the
SEASONRUN-Strong are analogous to that in the
CTRLRUN, but the responses of hydrographic
properties are more significant when the transport of the
ASC is stronger.

Based on the statistical analysis that averages the values along a set
of concentric circles around the composite eddy center at a constant
depth, the local disturbances are smoothed out to further depict the
horizontal structure of the composite eddies (Figure 8). Generally,
the influences of the composite eddies should weaken with the
increasing distance from the eddy centers and almost vanish at
the eddy boundaries; however, the anomalies may not decay
linearly from the composite eddy center to the eddy boundary.

For the composite eddies of the CE and the AE in all the
experiments, we intend to show the vertical levels where the
anomaly peaks are identified (Figure 6). In the CTRLRUN,
the analytical anomalies of CE still have relatively large values
at ~0.5 radius at 200 m depth (Figures 8A–C). Positive
anomalies are only present in the composite eddy of the
CE in the SEASONRUN-Weak (Figures 8G–I), with strong
influences extending to ~0.5 radius at 100 m depth. Compared
to the CE in the CTRLRUN and the SEASONRUN-Weak, the
analytical influences of the composite eddy of the CE in the
SEASONRUN-Strong are more concentrated around the eddy
center (Figures 8M–O). The analytical anomalies of all AE
show that the influences of the composite eddies tend to decay
linearly with the increasing distance from the eddy centers,
regardless of the CTRLRUN (Figures 8D–F), the
SEASONRUN-Weak (Figures 8J–L), or the SEASONRUN-
Strong (Figures 8P–R).

4 CONCLUSION WITH REMARKS

In this study, we focus on mesoscale eddies generated by the ASC
over a Fresh Shelf case, East Antarctica. Based on an idealized
eddy-resolving coupled ocean-ice shelf model, we conducted two
sensitivity experiments to reveal the spatial structure and
hydrographic properties of mesoscale eddies formed over the
continental slope. The first experiment, the CTRLRUN, is driven
by a constant transport of the ASC, and the simulated results are
used to show the general characteristics of mesoscale eddies and
the corresponding influences on the hydrographic properties of
the local water masses. The second experiment, the
SEASONRUN, is driven by the ASC with a seasonal cycle.
The simulated results from the SEASONRUN are used to
study the changes of mesoscale eddies in response to the ASC
seasonality and the corresponding anomalies in the hydrographic
properties. Two typical periods from the SEASONRUN are
selected to represent the conditions of a strong ASC in winter
and a weak ASC in summer, respectively.

Since this idealized coupled ocean-ice shelf model has not
simulated the dense overflows over the continental slope, we can
study mesoscale eddies generated by the baroclinic instability of
the ASC over the lower slope by excluding the potential influences
of dense overflows. With the aid of an eddy detection algorithm
based on the vector geometry, the simulated mesoscale eddies are
identified from the surface velocity fields. According to the
rotational direction, the detected mesoscale eddies are
classified as the CE and the AE. For mesoscale eddies with the
same polarity from an experiment, we use the composite analysis
to derive the typical spatial structure and the anomalies of
hydrographic properties, including the potential temperature,
the salinity, and the potential density. In addition, we
calculated the spatially averaged anomalies of hydrographic
properties along a set of concentric circles over the composite
eddies to assess the horizontal extension of the influences of
mesoscale eddies.

Over the continental slope, the upper layer is the cold and
fresh Antarctic Surface Water, and the lower layer is the warm
and saline modified Circumpolar Deep Water. Therefore, the
rotation of the CE can induce the upwelling associated with the
warmer and saltier anomalies at the thermocline and the
halocline, and the AE should contribute to the colder and
fresher anomalies by the downwelling effects. However, such
responses of hydrographic properties within the CE and the AE
are only present in the SEASONRUN-Weak. When the transport
of the ASC is strengthened in the SEASONRUN-Strong and the
CTRLRUN, the composite eddy of the CE results in colder and
fresher anomalies in the potential temperature and the salinity,
respectively. The negative anomalies of potential density indicate
the dominant role of salinity in determining the potential density
at higher latitudes. Furthermore, two colder and fresher peaks are
present in the anomalies induced by the AE at ~100 and ~300 m
depths in the CTRLRUN and the SEASONRUN-Strong, with
decreasing in the potential density. Indeed, the anomalies of
hydrographic properties are not only determined by the
rotation of mesoscale eddies but also the discrepancy of the
properties between the eddy-trapped water and the local water
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mass. Since mesoscale eddies are generated from the sharp ASF,
the complex responses of the hydrographic properties within the
composite eddies are also regulated by the eddy-induced heat and
salt transport.

Compared to the relative deep extension of the anomalies of
velocity fields, the anomalies of hydrographic properties are
confined above 500 m depth. The vertical shapes of
hydrographic anomalies are characterized by triangular cores.
In addition, a sandwich structure presents in the anomalies
induced by the AE in the CTRLRUN and the SEASONRUN-
Strong, with two colder, fresher, and lighter cores at ~100 and
~300 m depths. The horizontal structures of the composite eddies
show that the centers of the CE have relatively larger influences
than that of the AE, with relatively uniform anomalies of
hydrographic properties to ~0.5 radius, while the composite
anomalies of the AE generally decrease linearly with the
distance from the eddy centers.

The mesoscale eddies induced by the dense overflows are
found to be favorable in the generation of Antarctic bottom water
(AABW). As the dense overflows occur over the continental
slope, the generation of mesoscale eddies is accompanied by
bringing warm deep water onto the continental shelf. Thus,
such eddy activities are characterized by cross-slope warm
CDW intrusions. Mesoscale eddies directly fueled by the
baroclinic instability of the ASC are expected to be more
active in the northern flank of the ASC, without significant
contribution to the cross-slope exchanges. Consequently, the
cold and fresh water in the southern flank of the ASC are
expected to be trapped by mesoscale eddies and transported
offshore, and thereby the ASC may be eroded by the eddy-
induced lateral mixing.

It is worth noting that the upward-pointing triangle structures
of the composite anomalies of the CE in the SEASONRUN-Weak
closely resemble the vertical structure of an observed eddy in
Prydz Bay (Williams et al., 2010), with warmer, saltier, and denser
anomalies in the potential temperature, the salinity, and the
potential density. The in situ observation of this eddy was
conducted in January–March 2006, coinciding with a weak
transport of the ASC represented by the SEASONRUN-Weak
in the astral summer. The good agreement between the in situ
hydrographic observations and the simulated results indicates
that this idealized eddy-resolving model is qualitatively robust to
capture the typical characteristics of mesoscale eddies over the
lower continental shelf slope, East Antarctica. Since the simulated

mesoscale eddies intend to travel offshore from the southern flank
of the ASC, mesoscale eddies generated over the lower
continental slope are not expected to play an important role in
the onshore cross-slope volume or heat transport over Fresh Shelf
regions. However, to our knowledge, mesoscale eddies over Fresh
Shelf regions are barely captured in observations except that in
Williams et al. (2010). Therefore, it will be interesting to revisit
mesoscale eddies over Fresh Shelf regions by more
comprehensive in situ observations focused on the continental
slope, East Antarctica.
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Accelerated Shrinkage of Glaciers in
the Altai Mountains From 2000 to 2020
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Mountain glaciers are an important component of the global hydrological cycle. Existing
research about glacier changes in the Altai focused on limited regions. Study about recent
glacier changes in the entire Altai Mountains is still lacking. We presented a consistent
method for identifying glacier margins. The two new glacier inventories in 2000 and 2020
were derived from Landsat satellite imagery. Glacier surface elevation change and mass
balance were obtained by comparing the 2000 Shuttle Radar Topography Mission (SRTM)
and 2020 Digital Elevation Models (DEMs) generated from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) images. The spatial pattern of glacier
changes was discussed in conjunction with climate trends. We mapped a total area of
1,096.06 ± 53.32 km2 around 2020, which amounts to 1,927 glaciers in the Altai
Mountains. That was 12.02 ± 3.01% (or 0.60 ± 0.15%·a−1) less than the 1,245.75 ±
58.52 km2 around 2000. The geodetic mass balance of the monitoring glaciers in the Aktru
basin for the period 2000–2011 was used to validate the geodetic survey. The average
geodetic mass balance of -0.32 ± 0.09 m w. e.·a−1 on monitoring glaciers was slightly
exaggerated than the observed mass balance of -0.26 m w. e.·a−1, but it was proved that
the geodetic mass balance could reflect glacier changes in the Altai Mountains. An average
mass loss of 14.55 ± 1.32 m w. e. (or 0.74 ± 0.07 m w. e.·a−1) was found during
2000–2020 in the Altai Mountains. Although the glacier area changes and mass
balance were characterized by spatial heterogeneity, the glaciers in the Altai had
experienced an accelerated shrinkage from 2000 to 2020 compared to the 20th
century. The rising temperature is the foremost reason for glacier area shrinkage and
mass loss according to the Climatic Research Unit (CRU) reanalysis data.

Keywords: glacier inventory, mass balance, Altai Mountains, manual delineation, accelerated shrinkage

INTRODUCTION

As an important freshwater resource and a sensitive indicator of climate change, mountain
glaciers play a pivotal role in regional hydrological cycles and ecological environment (Kaser
et al., 2010; Gardner et al., 2013). Glaciers collect solid precipitation in the accumulation season
and release it as meltwater in the ablation season. Meltwater from glaciers provides water
resources for rivers and downstream populations, especially during the dry seasons. In recent
decades, nearly worldwide glacier shrinkage and mass loss have been observed (Gardner et al.,
2013; Hugonnet et al., 2021). Glacier changes can induce glacier hazards such as landslides,
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glacier lake outburst floods, and debris flows, which affect the
security of the downstream areas (Benn et al., 2012; Rankl et al.,
2014; Brun et al., 2017; Yao et al., 2019). In the context of climate
fluctuation, mountain glaciers have received extensive attention,
and timely investigation and study of glacier changes are necessary.

For the high mountain areas which are difficult to reach, the
studies on glacier areas with the help of satellite imagery have
been extensively experimented and achieved good results. Glacier
area change can be obtained by comparing the areas in glacier
inventories of two periods. The ongoing glacier changes require
the frequent update of glacier inventories to provide accurate
information about glaciers. The frequent update of glacier
inventories are also critical to outline environmental policies
for glacier protection and monitoring programs, as well as for
developingmitigation and adaptation strategies in response to the
impact of climate changes on future glacier development (Pfeffer
et al., 2014; Huss et al., 2017).

The Altai Mountains are one of the concentrated glacier areas in
North Asia. Meltwater from glaciers in Altai supplies some rivers in
North Asia, and it accounts for approximately 11% of the freshwater
in Mongolia (Kamp and Pan, 2015). Many types of research, based
on satellite imagery or aerial photographs, have shown glacier
shrinkage in Altai over the last 50 years or longer period.
According to the RCP4.5 (the Representative Concentration
Pathway) and RCP8.5, by the end of this century, the shrinkage
rate of glacier area in the Altai Mountains will reach 26 ± 10% and
60 ± 15%, respectively (Zhang et al., 2016). Despite the dramatic
glacier changes and great interest in them, research on glacier
changes focused on limited regions, leaving a gap in the
systematic study on glacier changes in the entire Altai
Mountains. Part of the research studied glacier changes in the
Altai Mountains by country (Shi et al., 2010; Wang et al., 2013;

Kamp and Pan, 2015), and some articles reported glacier changes by
region (Wang et al., 2011a; Lv et al., 2012). The majority of existing
research focused on glaciers in Katun (Narozhniy and Zemtsov,
2011; Kotlyakov et al., 2014), Turgen (Lehmkuhl, 1999; Tsutomu
and Gombo, 2007; Lehmkuhl, 2012; Kamp et al., 2013), Tavan Bogd
(Revyakin, 1986; Krumwiede et al., 2014; Ganyushkin et al., 2018),
North Chuya (Narozhniy and Zemtsov, 2011; Kotlyakov et al.,
2014), and Mongolia Altai (Kamp and Pan, 2015). The published
research about glacier changes in the Altai Mountains can be seen in
Supplementary Table S1 and Supplementary Table S2. Different
methods in the overlapped regions have resulted in discrepancies in
glacier changes. Glacier changes in the entire Altai Mountains
cannot be analyzed due to the different times and different
methods of sub-regions research.

The Randolph Glacier Inventory 6.0 (RGI 6.0) provided a
glacier inventory for the entire Altai Mountains, with source data
from 2006 to 2011. But the quality of RGI is variable. One of the
poorest quality regions is North Asia, where explicit glacier
outlines are missing in many areas (Earl and Gardner, 2016).
To promote more comprehensive knowledge of the ongoing
glacier changes, a complete and methodology-consistent
glacier inventory is essential. Therefore, we worked on the
entire Altai Mountains by 1) completing the new glacier
inventory 2000 and glacier inventory 2020 with a consistent
method; 2) estimating glacier area change and mass balance
during 2000–2020.

STUDY AREA

The Altai Mountains (85°E-94°E, 46°N-52°N) span Russia, China,
Mongolia, and Kazakhstan and are a mountain range in North

FIGURE 1 | Location of glaciers in the Altai Mountains.
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Asia. It extends more than 2000 km and is usually divided
into North Altai and South Altai due to its long span of
latitude. The Katun massif, North Chuya massif,
South Chuya massif, and Tavan Bogd massif are the
concentrated areas of glaciers, and amounts of small
glaciers have developed in Ikh Turgen massif, Turgen
massif, Kharkhiraa massif, Tsambagarav massif, and
Munkh Khairkhan massif. The glacier elevation ranges
from 2000 to 4500 m. According to glacier meltwater
runoff, the glaciers in the Altai Mountains are divided into
three major drainage basins, namely, the Irtysh River, the Ob’
River, and the Inland River (Figure 1).

The weather pattern in the Altai Mountains is dominated by
westerly in summer and polar air mass in winter. The westerly brings
abundant precipitation from the west toward the east, and the polar
air mass penetrated the Altai Mountains along the Irtysh River
valley, which contributes to low temperature and snowfall. About
70% of the precipitation occurs in summer from June to August
(Tsutomu and Gombo, 2007), and winter generally lasts for
5–6 months in the Altai Mountains (Shi et al., 2010). The

average annual temperature ranges from -8 to 4.1°C; the annual
precipitation amounts to 75–700 mm in the Altai Mountains
(Tsutomu and Gombo, 2007; Yao et al., 2012). The maximum
elevation of the Katun massif, North Chuya massif, and Tavan
Bogd massif in the Central Altai ranges from 4045 to 4506 m,
and the elevation decreases in the southeast part. The favorable
conditions of topography, temperature, and precipitation in the
Altai Mountains make it the glacier center in North Asia. The
subcontinent glaciers in the Altai Mountains are characterized
by accumulating in the cold season, ablating in the warm
season, high ice temperature, and fast movement speed (Shi,
2008).

DATA

Satellite Imagery
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images and
Landsat-8 Operational Land Imager (OLI) images have a spatial
resolution of 30 m. Landsat series images with limited snow and

TABLE 1 | Landsat images and ASTER images.

Images used to delineate glacier margins in 2000 Images used to delineate glacier margins in 2020

Image ID Date Cloud (%) Image ID Date Cloud (%)

LE71400272000160SGS00 2000/06/08 3.00 LC81400272020207LGN00 2020/07/25 5.44
LE71400272000240SGS00 2000/08/27 0.00 LC81410252020214LGN00 2020/08/01 44.86
LE71410262000151SGS00 2000/05/30 5.00 LC81410262018208LGN00 2018/07/27 2.00
LE71410272001217SGS00 2001/08/05 5.00 LC81410262020246LGN00 2020/09/02 0.39
LE71420252000254SGS00 2000/09/10 1.00 LC81410272019211LGN00 2019/07/30 1.22
LE71420262000254SGS00 2000/09/10 1.00 LC81420252019266LGN00 2019/09/23 1.04
LE71420271999235SGS00 1999/08/23 4.00 LC81420262018215LGN00 2018/08/03 19.90
LE71420272000254SGS00 2000/09/10 1.00 LC81420262018231LGN00 2018/08/19 28.94
LE71430252000197BJC00 2000/07/15 4.00 LC81420272018215LGN00 2018/08/03 9.05
LE71430252001247SGS00 2001/09/04 0.00 LC81420272019266LGN00 2019/09/23 3.25
LE71430262001247SGS00 2001/09/04 1.00 LC81430252019225LGN00 2019/08/13 1.26
LE71440252000220SGS00 2000/08/07 14.00 LC81430262019241LGN00 2019/08/29 0.83
LE71440252001206SGS00 2001/07/25 40.00 LC81440252019184LGN00 2019/07/03 2.99
LE71440262000220SGS00 2000/08/07 5.00 LC81440262019184LGN00 2019/07/03 5.22
LE71450252001229SGS00 2001/08/17 3.00 LC81450252019239LGN00 2019/08/27 0.57
LE71450252002200SGS00 2002/07/19 1.00 LC81450262019239LGN00 2019/08/27 0.24
LE71450262000179EDC00 2000/06/27 1.00 LC81460252020201LGN00 2020/07/19 3.67
LE71450262001229SGS00 2001/08/17 5.00 LC81470252019237LGN00 2019/08/25 1.43
LE71460252000250SGS00 2000/09/06 0.00 -- -- --

ASTER images
Image ID Date Cloud (%) Region

ASTER_L1A#00309232011151718_
09242011024122

2011/09/23 9.00 Monitoring region (Aktru basin)

ASTER_L1A#00309022021051418_
09032021084329

2021/09/02 8.00 Katun

ASTER_L1A#00310032020050547_
10042020083601

2020/10/14 10.00 Ikh Turgen

ASTER_L1A#00308122019051817_
08132019095235

2019/08/12 2.00 Tavan Bogd

ASTER_L1A#00308142019050555_
08152019090806

2019/11/14 1.00 Tsambagarav

ASTER_L1A#00309152021044406_
09162021084617

2021/09/15 1.00 Sutai Uul

ASTER_L1A#0030816
2018052540_08172018102049

2018/08/16 1.00 South Chuya
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cloud cover at the end of the ablation season were employed to
manually delineate glacier margins. All employed Landsat images
were listed in Table 1. All Landsat images are downloaded
from the United States Geological Survey website1 and

undergone USGS radiation correction and ground control
point correction.

DEMs
SRTM (Shuttle Radar Topography Mission) was jointly
measured by NASA (National Aeronautics and Space
Administration) and NIMA (the National Survey and

FIGURE 2 | (A) Anomaly of average summer temperature in CRU and Altai meteorological station for 1981–2020. (B) Annual precipitation of CRU and Altai
meteorological station for 1981–2020.

FIGURE 3 | Manual delineation of glacier outlines. (A) Manual delineation of clear ice areas using false-color composite Landsat image. (B) Manual delineation of
debris-covered glacier outlines using false-color composite Landsat image. (C)Google Earth image of clear ice areas. (D)Google Earth image of debris-covered glaciers.

1https://www.usgs.gov/.
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Mapping Agency of the Department of Defense) in February 2000
using the synthetic aperture radar repeated orbit differential
interferometry method, with the horizontal accuracy of ±20 m
and the vertical accuracy of ±16 m. We used a 30m SRTM 1 Arc-
Second Global elevation data to derive the geomorphometric
parameters (elevation, slope, aspect, etc.), which are necessary
for glacier mapping and detecting glacier surface elevation changes.

The 3N and 3B bands in the ASTER L1A images could generate
DEMsby the stereo-pairmethodwith an accuracy of 7–20m (Iwasaki,
2011). Since the heavy clouds in ASTER images or inappropriate
acquisition time, we choose 7 ASTER images with few clouds and
snow in the glacierized area to generate DEMs. Comparison between
geodetic mass balance and observed mass balance was performed on
monitoring glaciers in the Aktru River basin using theDEMgenerated
from an ASTER L1A image acquired in 2011. The other six ASTER
images acquired around 2020 with minimal cloud and snow in the
glacierized areas cover approximately 67.06% of the glacierized area
andmainmountain ranges in the AltaiMountains. All ASTER images
were downloaded from the Earthdata website2.

Other Glacier Inventories
The RGI6.0 (Randolph Glacier Inventory version 6.0), released by
the RGI Consortium in July 2017, is a globally complete inventory of
glacier outlines except for the Greenland and Antarctic ice sheets
(Rgi and Nosenko, 2017). Glacier data in Altai in RGI6.0 are mainly
acquired around 2006 and 2011. The RGI6.0 is freely available from
GLIMS3. The SCGI (Second Chinese Glacier Inventory) includes
glacier outlines in China’s Altai around 2010. It was downloaded
from the Cold and Arid Regions Scientific Data Center4. GGI 18
(Global Glacier Inventory) fixes the problems that existed in GGI 15,
and it was downloaded from the PANGAEA (Sakai, 2019). All the
glacier inventories are used to validate glacier margins.

Monitoring Glacier Data
The World Glacier Monitoring Service (WGMS) conducts field
monitoring of worldwide glaciers and reports glacier mass balance
changes annually. The observed mass balances derived from
WGMS were used to validate the geodetic survey. The observed
mass balance of monitoring glaciers (September to August) in the
Aktru basin was downloaded from the WGMS website5.

Meteorological Data
CRUv4.05 meteorological data, covering all land with a resolution of
0.5° latitude * 0.5° longitude, is a monthly data of climate elements by
interpolation. CRUv4.05meteorological data of 1981–2020was used
to analyze the climate background due to themeteorological stations
are rare and far from glacierized areas in the Altai Mountains, and it
was downloaded from the NOAA Physical Science Laboratory6. We
compared the anomaly of average summer temperature and annual
precipitation in CRU and Altai meteorological station (47.73°N,
88.08°E) to verify the availability of CRU. As shown in Figure 2, the
difference in the anomaly of average summer temperature ranges
from -0.83 to 1.16°C, and the difference in annual precipitation
amounts from −77.84 mm to 125.83mm, indicating that the CRU
can express the change tendency of temperature and precipitation
accurately. The meteorological station data were downloaded from
the National Centers for Environmental Information7.

METHODOLOGY

Delineation of Glaciers and Uncertainty
Assessment
In this study, glacier margins in 2000 and 2020 were delineated
manually with the criteria and approach reported by Nuimura
(Nuimura et al., 2015) and Sakai (Sakai, 2019). To map glacier
margins, a series of preprocessing needs to be prepared. First,
we used the Gram-Schmidt spectral sharpening method in
ENVI 5.1 to fuse the multispectral and panchromatic bands
into the 15 m resolution images. Also, then true-color
composite images (bands 3, 2, 1 as RGB for ETM+/OLI)
were used to preliminarily confirm glacierized areas, and
false-color composite images (bands 7, 2, 3 as RGB for
ETM+/OLI) were used to delineate glacier margins. We
used the same criteria and method when mapping glacier
margins. We only revised and changed parts to complete
2020 glacier margins after delineating 2000 glacier margins.
'As can be seen in Figures 3A,B, the clean ice areas were easily
delineated with pixel-level accuracy due to the obvious color,
texture, and hue differences between the clean glacier and non-
glacierized areas (Nuimura et al., 2015; Sakai, 2019). Several
glaciers are covered with debris in the Altai Mountains. For
debris-covered glaciers, we identified glacier margins with

TABLE 2 | Original and adjusted errors between SRTM DEM and ASTER DEMs.

Region Item Original (m) Adjusted (m) N SE (m) σ (m)

MED STDV MED STDV

Katun SRTM-ASTER DEM 5.19 57.06 0.28 26.95 237 1.75 1.77
South Chuya SRTM-ASTER DEM 39.26 52.57 −0.08 27.00 674 1.04 1.04
Tavan Bogd SRTM-ASTER DEM 71.92 63.79 −0.74 20.96 335 1.14 1.36
Ikh Turgen SRTM-ASTER DEM −7.59 109.68 0.32 21.99 324 1.22 1.26
Tsambagarav SRTM-ASTER DEM 110.11 66.51 −0.39 16.71 406 0.83 0.92
Sutai Uul SRTM-ASTER DEM 52.01 27.88 −0.51 25.57 226 1.70 1.78
Monitoring region SRTM-ASTER DEM 50.85 22.08 0.53 17.79 396 0.89 1.04

2https://search.earthdata.nasa.gov/.
3http://www.glims.org/RGI/.
4http://westdc.westgis.ac.cn.
5https://wgms.ch/.

6https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html/.
7http://www.ncei.noaa.gov/.
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features such as exposed ice cliffs, small ponds, and stream
outlets (Molg et al., 2018). As shown in Figures 3C,D, the
high-resolution historical images in Google Earth helped to
determine debris-covered glacier margins (Tielidze et al.,
2020). Adjacent glaciers are divided by ridgelines. Glaciers
with areas less than 0.01 km2, the recommended minimum of
the WGI, are removed (Pfeffer et al., 2014). The glacier
margins were defined as the Albers’ equal area projection
before calculating the area.

The uncertainty of manual-delineated glacier margins is
related to various factors such as the resolution of images,
snow cover, clouds, and shadows (Bolch et al., 2010). The
delineation uncertainty (EA) can be evaluated by counting the
number of pixels passed by the glacier margins:

EA � Npλ2/2, (1)
where N is the number of pixels passed by the glacier margins
(excluding the ridgelines used to divide adjacent glaciers); λ is the
resolution of images (15 m). The delineation uncertainties of

Altai glaciers in 2000 and 2020 were ±58.52 km2 and ±53.32 km2,
respectively, accounting for 4.70% and 4.86% of glacierized areas
in 2000 and 2020, respectively.

The uncertainty of the changed glacier area for 2000–2020
(EB) is calculated as follows (Zhang et al., 2018):

EB �
���������������
(E2000)2 + (E2020)2

√
, (2)

where E2000 and E2020 are uncertainties in glacier areas of 2000
and 2020, respectively. We just considered the changed parts of
glacier margins in the calculation due to the unchanged parts do
not affect the glacier area change.

ASTER DEMs
ASTER Level 1A stereoscopic images with minimal cloud and
snow cover in the glacierized areas were used to generate DEMs.
ENVI 5.1 provides the “DEM Extraction” tool for generating the
30 m DEMs. In the generating process, at least 80 tie points (TPs)
in each sub-region were identified. The tie points distributed
evenly and the density increased in the glacierized areas to

FIGURE 4 | (A)Original elevation difference of monitoring region from 2000 to 2011. (B) Adjusted elevation difference of monitoring region from 2000 to 2011. The
white part (null value) is over high elevation differences caused by clouds, which were removed by threshold. (C) Observed mass balance of monitoring glaciers during
2000–2011. (D) Observed accumulation mass balance and geodetic mass balance of monitoring glaciers during 2000–2011.
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improve accuracy. All DEMs were georeferenced into the co-
ordinate system of WGS84/EGM96.

DEM Co-Registration and Errors
The elevation difference between SRTMDEM and ASTER DEMs
is approximately equal to the change of glacier surface elevation
during the study period, which is vital for estimating surface
elevation change and mass balance. The SRTMDEMwas selected
as the reference DEM to assess the accuracy of ASTER DEMs.
Glacier margins in 2000 were chosen to distinguish the terrain of
non-glacierized areas since glacier areas have shrunk in 2020. The
terrain in non-glacierized regions is basically unchanged, which is
used to test the error of adjusted multi-source DEMs.

Horizontal biases caused by different spatial resolutions between
multi-DEMs can be adjusted using the statistical relationship
between maximum curvature and elevation differences. The
vertical bias can be removed using the relationship among
elevation difference, slope, and aspect in the non-glacierized areas
(Nuth and Kaab, 2011). Studies have shown that the SRTM C-band
penetrates ice and snow to a depth of 0–10m (Gardelle et al., 2012;
Pieczonka et al., 2013), and the penetration depth should be deeper
in low temperature and thick snow (Shi, 2008). The SRTM X-Band
was used to correct the penetration depth of the SRTMC-Band since
both were acquired simultaneously, and the penetration depth of the
SRTM X-Band was smaller. This work adopted the calculated
penetration depth of 7.2 m in the Altai Mountains (Wei et al., 2015).

The errors of elevation difference in multi-source DEMs (σ)
were estimated as follows:

SE � STDVnonglacier/ ��
N

√
,

σ �
�����������
SE2 +MED2

√
, (3)

where STDVnonglacier is the standard deviation of the elevation
difference in the non-glacierized areas; N is the number of
included pixels; this study choose a de-correlation length of
600 m for 30 m spatial resolution in this study (Bolch et al.,
2011); SE is the standard error; and MED is the mean elevation
difference in non-glacierized areas. The errors of multi-source
DEMs are listed in Table 2.

Mass Balance and Uncertainty Assessment
Glacier mass balance (M) was estimated as follows:

M � ρ

S
p∑n

i�1ΔhipSi, (4)

where ρ is the transition density from glacier volume to mass
balance; this study used the 850 kg/m−3 proposed by Huss (Huss,
2013); S is the glacier area; n is the number of pixels in glacierized
areas; Δhi is the elevation difference of a single pixel; and Si is the
area of a single pixel.

The uncertainty of glacier mass balance (E) during the study
period was calculated as follows:

FIGURE 5 | (A) Glacier areas of different size classes in 2000 and 2020. (B) Glacier areas and the number of different aspects in 2000 and 2020. (C) Glacier areas
within different altitude zones in 2000 and 2020.
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E �

����������������������
(Δh

t
+ Δρ

ρw
)2

+ (σ
t
+ ρ1
ρw

)2

√√
, (5)

where Δh is the average elevation difference in glacierized areas; t
is the study period; Δρ is the uncertainty of ice density
(60 kg m−3); ρw is the water density (1000 kg m−3); and ρ1 is
the conversion density (850 kg m−3).

Comparison of Geodetic Mass Balance and
Observed Mass Balance
The geodetic mass balance derived from this study is validated
against the observed mass balance on Leviy Aktru (87°42′E,
50°04′N, 5.71 ± 0.15 km2), Maliy Aktru (87°45′E, 50°03′N,
2.78 ± 0.09 km2), and Vodopadniy Aktru (87°47′E, 50°03′N,
0.82 ± 0.02 km2), which are located at the north slope of

North Chuya (Aktru basin). This allows evaluation of the
availability and accuracy of the geodetic survey. After co-
registration between multi-DEMs, the horizontal offsets of
-11.0 m on the X-axis and +10.1 m on the Y-axis indicate an
extremely subtle offset in the monitoring region. As can be seen in
Figure 4A, the elevation difference between multi-DEMs is
mainly derived from vertical residuals. In Figure 4B, the
abnormal values after removing vertical bias are caused by the
quality of ASTER DEMs, which cannot be eliminated. The
adjusted mean elevation difference was 0.53 m in the non-
glacierized area, indicating the errors in multi-DEMs were
removed. The Vodopadniy Aktru has a minimum area of
0.82 ± 0.02 km2. The abnormal values account for a large
proportion, which makes a large deviation against the
observed mass balance. The large glacier has better co-
registration and its geodetic mass balance is in good
agreement with the observed mass balance.

The observed mass balance and geodetic mass balance can be
seen in Figures 4C, D. The geodetic mass balances of Leviy Aktru,
Maliy Aktru, and Vodopadniy Aktru were -2.92 ± 0.97 m w. e.,
-3.40 ± 0.99 m w. e., and -4.26 ± 1.04 m w. e. during 2000–2011,
respectively; the observed accumulation mass balances were
-2.85 m w. e., -2.45 m w. e., and -2.43 m w. e. for 2000–2011,
respectively. The average geodetic mass loss was 0.32 ± 0.09 m w.
e.·a−1, and the average observed mass loss was 0.26 m w. e.·a−1,
which indicates a slight exaggeration in geodetic mass balance.
The difference in mass balances is related to observed monitoring
time and method, multi-DEMs accuracy, and estimation method.
Geodetic mass balances are close to observed accumulation mass
balances in monitoring glaciers, especially on large glaciers. In
general, the geodetic mass balance was proved that it could
represent the mass change in the Altai Mountains.

RESULTS

Glacier Inventory 2020
Over the entire Altai Mountains, we mapped a total glacier area of
1,096.06 ± 53.32 km2 (1927 glaciers) in 2020. From this, 197.52 ±
10.37 km2 (18.02 ± 0.95%) of glacier area was mapped in the
Irtysh River, 516.12 ± 25.50 km2 (47.09 ± 2.33%) in the Ob River,
and 382.41 ± 17.45 km2 (34.89 ± 1.59%) in the Inland River
(Supplementary Table S3).

Based on the glacier area in 2000, glaciers in 2020 were
divided into eight grades (≤0.1 km2, 0.1–0.5 km2, 0.5–1 km2,
1–2 km2, 2–5 km2, 5–10 km2, 10–20 km2, and 20–50 km2). The
largest number of glaciers with 0.1–0.5 km2 (815 glaciers)
accounts for 42.29% of the total number of glaciers. The
glaciers smaller than 0.1 km2 (645 glaciers) account for
33.47% of the total glacier number. Glaciers with a size
class of 2–5 km2 (240.15 ± 7.36 km2) accounted for the
largest share of total glacier area (21.91 ± 0.67%). Only 8
glaciers (146.29 ± 2.82 km2) were larger than 10 km2,
accounting for 13.35 ± 0.26% of the total glacier area.
About 67.94% of the glacier area was distributed within
3,000–3,800 m, and the largest percentage of glacier area
(21.55%) was between 3,000–3,200, which was consistent

FIGURE 6 | Glacier area changes for 2000–2020 in the Altai Mountains.
(A) Glacier area change. (B) Glacier area change rate. The glacier area in the
map represents the glacier area in 2000; we set a threshold (glacier areas in
grid > 1 km2) to establish the grid.
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with the height of the snow line (Xie and Liu, 2010). Most
glacier numbers (1473) and glacier area (769.77 ± 39.01 km2)
belong to the northeast slope (N, NE, and E). While glacier
number (91) and glacier area (70.75 ± 3.24 km2) of S- and WS-
orientation were much small (Figure 5).

Glacier Area Changes in 2000–2020
From 2000 to 2020, the total glacier area in the Altai
Mountains decreased from 1,245.75 ± 58.52 km2 to
1,096.06 ± 53.32 km2, with a reduced area of 149.70 ±
37.45 km2 (-12.02 ± 3.01% or -0.60 ± 0.15%·a−1). The

FIGURE 7 | Mass balance from 2000 to 2020 in the Altai Mountains. (A) Spatial distribution of mass balances and surface elevation changes for DEMs-covered
glaciers. (B)Glacier mass balances andmean elevation changes of different aspects. (C)Glacier mass balances andminimum elevation changes of different size classes.

TABLE 3 | Comparison with other glacier inventories.

RGI 6.0 GGI 18 2000 inventory 2020 inventory

Images Landsat Landsat Landsat Landsat
Delineation methods Automatic delineation and manual correction Manual delineation Manual delineation Manual delineation
Acquisition date 2011–2013 1996, 1998–2002, and 2008 1999–2002 2018–2020
Minimal area (km2) 0.01 0.01 0.01 0.01
Number 2,140 2,750 2049 1927
Number difference (%) +4.44 +34.21 -- −5.95
Area (km2) 1,121.54 1,204.81 1,245.75 1,096.06
Area difference (%) −9.97 −3.29 -- −12.02
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largest reduction of glacier area occurred in the Inland River,
with a reduction of 76.84 ± 17.20 km2 (-16.73 ± 3.75% or
-0.84 ± 0.19%·a−1). The shrinkage rate in the Irtysh River
(-0.58 ± 0.17%·a−1) was close to that of total glaciers. Glacier
area changes for all drainage basins are shown in
Supplementary Table S3.

Glaciers smaller than 0.1 km2 have the largest shrinkage rate
(-30.99 ± 8.99% or -1.55 ± 0.45%·a−1). The shrinkage rates
decreased as glacier size increased. The number of glaciers
smaller than 0.1 km2 has increased by 50 from 2000 to 2020,
nevertheless, the number of larger glaciers has decreased. The
reduced area of 114.23 ± 28.35 km2 on the northeast slope (N, NE,
and E) accounted for 76.31 ± 18.94% of the total reduced area. A
small reduced area was found on S-, WS-, and W-orientation
(15.36 ± 3.59 km2), with a shrinkage rate of 10.72 ± 2.51%.
Glaciers below 2400 m had the largest shrinkage rate
(-20.58%) due to their low elevation and sensitivity to climate
change. The shrinkage rates decreased as altitude increased
(Figure 5).

The grid with 0.5° latitude * 0.5° longitude was mapped with
glacier margins in 2000 to visualize the spatial pattern of
glacier area change. In Figure 6A, large shrinkage areas
were found in Tavan Bogd, Katun, North Chuya, South
Chuya, and Tsambagarav, which have large glacier areas.
Also, small glaciers in the west and southeast parts had a
small shrinkage area. However, in Figure 6B, the regions with
large shrinkage areas have small shrinkage rates, but large
shrinkage rates occurred in the regions where small glaciers
clustered. The largest glacier area was near the Tavan Bogd.
The glacier area decreased the most (44.42 ± 12.16 km2) while
the shrinkage rate (16.93 ± 5.28%) was low. Glacier areas in Ikh
Turgen and Sutai Uul in 2000 were 33.62 ± 1.89 km2 and
13.85 ± 0.42 km2, respectively, but the area shrinkage rates
amount to 21.26 ± 5.33% and 26.78 ± 3.79%, respectively.
Large glaciers have a larger shrinkage area but a smaller
shrinkage rate, which is consistent with the law of the
glacier change.

Mass Balance Change in 2000–2020
Studies have shown that the continental glaciers in the Altai
Mountains continue to melt under the background of global
climate change (Kamp and Pan, 2015; Pan et al., 2018). The
average mass balance for regional glaciers from 2000 to 2020
is shown in Figure 7A. We calculated a mean mass loss of
14.55 ± 1.32 m w. e. (or -0.74 ± 0.07 m w. e.·a−1) for DEMs-
covered glaciers during 2000–2020. Due to the widely
distributed glaciers and different local climates, the rates
of mass changes differ in sub-regions. Mass loss was the
highest in the southeast part and much lower in the
northwest part. Mass loss in Sutai Uul was the highest
with -0.99 ± 0.07 m w. e.·a−1 from 2000 to 2020, but it was
the lowest with -0.44 ± 0.05 m w. e.·a−1 in Katun massif.
Glacier mass loss was relatively high in Central Altai with
0.75–0.91 m w. e. a−1.

The mass balances vary in different aspects (Figure 7B).
Glaciers in NW-orientation have the largest mean mass loss
with 14.35 ± 1.24 m w. e. (0.72 ± 0.06 m w. e.·a−1). Mean mass
loss in E- and SE-orientation were similar with ~ 12 ± 1.25 m w.
e., which was slightly smaller than that in S-orientation (13.50 ±
1.27 m w. e.). Glaciers in other aspects had a relatively low mass
loss with 0.35–0.47 m w. e. ·a−1. Figure 7B also showed the
relationship between mass loss and mean elevation. Glaciers
with high mass loss had a large increase in mean elevation and
lowmass loss with a slight increase. Mean mass loss and changes
in the minimum elevation of different size classes of glaciers
during 2000–2020 are shown in Figure 7C. Glaciers smaller
than 0.1 km2 experienced the largest mass loss (0.66 ± 0.06 m w.
e. a−1), which was extremely close to that of glaciers with
1–2 km2 (0.65 ± 0.06 m w. e. a−1). Glaciers with the size class
of 10–20 km2 had the lowest mass loss (0.27 ± 0.05 m w. e. a−1).
The minimum elevation had a large increase when the high
mass loss occurred. Though the average mass loss of smaller
than 0.1 km2 glaciers and 1–2 km2 glaciers were close, the
minimum elevation of glaciers with 1–2 km2 had increased
by 62.22 m, while it was 54.82 m for glaciers smaller than
0.1 km2.

FIGURE 8 | (A) Spatial distribution of mean elevation for glaciers larger
than 0.5 km2 in 2020. (B) Change of mean elevation for glaciers larger than
0.5 km2 during 2000–2020.
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DISCUSSION

Comparison With Other Glacier Inventories
We compared the 2000 inventory and 2020 inventory derived
from this study with other glacier inventories in the Altai
Mountains (Table 3). We choose 2000 inventory as the
reference inventory. Glacier area in 2000 inventory is 9.97%
higher, but the glacier number is 4.44% lower than RGI 6.0,
which used images acquired around 2013. As mentioned earlier,
explicit glaciers are missing in many areas in RGI6.0. Glacier
area in 2000 inventory is 3.29% slightly higher, but the glacier
number is 34.21% lower than GGI 18, in which acquisition time
of employed-images was close to that in 2000 inventory. The
difference in glacier area of less than 5% is an acceptable range.
The delineation method of glacier margins, different acquisition
dates, and glacier change contribute to the difference in glacier
area. Glacier margins derived from automatic delineation used
by RGI 6.0 were characterized by sawtooth, which affects glacier
area calculation. The difference in glacier number is concerned
with divisions for large ice masses and glacier change.

Glacier Elevation Changes
The mean elevation for glaciers larger than 0.5 km2 ranged from
2,432 to 4,055 m with a mean value of 3,234 m in 2000, and it was
2,564m–4,093 mwith a mean value of 3,265 m in 2020. As shown
in Figure 8A, the mean elevation for glaciers larger than 0.5 km2

obviously rose from northwest to southeast. The mean elevation of

glaciers is largely driven by the local climate. The southeastern part
of the Altai Mountains is deep inside the continent and has a more
arid climate (Figure 11), which determines the glaciers developing
at higher altitudes. A plot of glacier size vs. min-elevation and max-
elevation (Figure 9A) showed that the elevation ranges enlarged as
glacier size increased. For glaciers smaller than 10 km2, the max-
elevations were ~ 4200 m and the elevation ranges were within
2000m; the glaciers with size classes of 10–30 km2 have the largest
elevation ranges (~2500 m), and themax-elevation reached 4500 m.
The mean elevations of glaciers with an aspect of 100–300° were
obviously higher than glaciers in other aspects (Figure 9C). For the
majority of glaciers in 0–100° and 300–360°, the mean elevations
were within 3,000–3,400 m. The color-coded dots in Figure 9C also
revealed that the mean elevation of glaciers differs in sub-regions.
The mean elevations of glaciers in Katun were the lowest and they
were highest in Sutai Uul, which is consistent with the spatial
distribution of mean elevation (Figure 8A).

We mapped the spatial distribution of the mean elevation
change for glaciers larger than 0.5 km2 (Figure 8B). Most glaciers
have a rising mean elevation within 50 m, but it was higher than
50 m or more in Central Altai and the southeast part. A scatter
plot of glacier size vs. change of mean elevation (Figure 9B)
showed that the rising mean elevation diminished as glacier size
increased. High rising of mean elevation occurred on small-scale
glaciers (smaller than 5 km2), which account for approximately
98% of glacier total number. The mean elevations of the eight
glaciers larger than 10 km2 have risen by ~20 m. In the context of

FIGURE 9 | (A) Glacier size vs. min-elevation and max-elevation in 2020. (B) Glacier size vs. changes of mean elevation for 2000–2020. (C) Aspect vs. mean
elevation over glaciers in the main mountain ranges in 2020. (D) Change of minimum elevation vs. change of mean elevation for 2000–2020.
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glacier shrinkage, the changes in min-elevation and mean
elevation of glaciers are not equal. The rising minimum
elevation was larger than that of the mean elevation for each
glacier (Figure 9D).

Glacier Area Changes
We compared glacier change rates derived from this study with
the results in Altai from published references, whose study
periods span from the mid to late 20th century. For glaciers in
the main mountain ranges (Katun massif, North Chuya, South
Chuya, and Tavan Bogd) in Altai, glacier area shrinkage rates
during the period of 2000–2020 were higher than the results from
published research. We concluded that the glaciers in the Altai
Mountains during 2000–2020 have experienced an accelerated
shrinkage. Large accelerated shrinkages were found in the Katun
massif and South Chuya. For glaciers in the Katunmassif, the area

shrinkage rates during 2000–2020, 1850–2003, and 1952–2008
were 0.37 ± 0.12%·a−1, 0.12%·a−1, and 0.16%·a−1, respectively. The
glaciers in South Chuya have experienced the shrinkage of 0.45 ±
0.10%·a−1, 0.15%·a−1, and 0.17%·a−1 in 2000–2020, 1850–2003,
and 1952–2008. Shrinkage rates of glacier area of sub-regions in
the Altai can be seen in Supplementary Table S4).

We also compared glacier area changes in other mountain
ranges around the world, whose study periods are generally
consistent with the present study period. Glaciers in the Altai
Mountains with a shrinkage rate of 0.60 ± 0.15%·a−1 is the
medium level compared to that in other mountains around
the world. High shrinkage rates were found in the Alps
(2003–2016) and Greater Caucasus (2000–2020) with -1.2%·
a−1 (Paul et al., 2020) and -1.16%·a−1 (Tielidze et al., 2022b),
respectively. The area shrinkage rate in West Kulun Mountain
(2005–2016) and Qilian Mountain (2001–2018) were -0.75%·a−1

FIGURE 10 | (A)Glacier mass balance from 2000–2020 and average slope with different altitude zones. (B) Fitting of observedmass balances and simulated mass
balances for 1981–2012. (C) Observed mass balances and simulated mass balances of Leviy Aktru from 1981–2020.
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(Zhang et al., 2016) and 0.87%·a−1 (Wang et al., 2020), which were
close to that in the Altai. Glaciers in Pamir (2000–2017) and
Southern Tianshan (2000–2020) have experienced the minimum
shrinkage rates of -0.07%·a−1 (Li Z. et al., 2022) and -0.26%·a−1
(Wang et al., 2021). The area shrinkage rates of different
mountains in the world are shown in Supplementary Figure S1.

Mass Balance
The glacier mass balances in different altitude zones show that
glacier thinning became weaker as elevation increased (Figure 10A).
The sudden decrease of mass balance in 3,600–4,000m was due to
the steep topography, which leads to glacier collapse. Glacier mass
gain above 4,000m was due to the glacier accumulation. The
geodetic mass loss in Tavan Bogd was 0.43 ± 0.03 m w. e.·a−1
from 1959 to 2008 (Wei et al., 2015), and it is smaller than that of
0.74 ± 0.07 m w. e.·a−1 during 2000–2020 in this study. The surface
elevation decreased by 0.44 m·a−1 in Friendship Peak during
1959–2008 (Wang et al., 2015), which is smaller than the mean
surface elevation changes of -0.87 ± 0.07m·a−1 during 2000–2020 in

this study. From 1910 to 2010, the glacier surface elevation in Turgen
decreased by 70m (Kamp et al., 2013), and the average rate of
0.7 m·a−1 is smaller than that of 1.08 ± 0.06m·a−1 in this study. The
mass loss was 0.69 m w. e.·a−1 in the entire Altai Mountains for
1990–2011 by the temperature index-based glacier mass balance
model (Zhang J et al., 2017), which is slightly smaller than the
average mass loss of 0.74 ± 0.07 m w. e.·a−1 for 2000–2020 in this
study. The mass change rates of existing research in the Altai were
smaller than those in this study, indicating an accelerated mass loss
in Altai.

We used the observed mass balance of Leviy Aktru to further
demonstrate glacier mass loss. Since the observed mass balances of
Leviy Aktru reported by WGMS were missing in 2010 and
2013–2018, we employed the multiple regression analysis with
the average temperature in summer (June to August), annual
precipitation (September to August), and existing-observed mass
balances to model the missing mass balances. The average summer
temperature and annual precipitation were derived from the KARA
TJUREK weather station (RSM00036442, 86.42°E, 50°N, 2601m),
which is 110 km far from the Leviy Aktru. The average summer
temperature and annual precipitation were used as independent
variables, and the existing mass balances were used as the dependent
variable, and the regression equation was determined by multiple
regression analysis. The missed mass balances were simulated by a
multiple regression equation and we compared the observed mass
balances and simulated mass balances. As shown in Figure 10B, the
fit of observed mass balances and simulated mass balances showed
linearity, indicating that the multiple regression equation can
simulate the missed mass balances well. As shown in Figure
10C, the accumulated mass balance derived from observed mass
balances and simulatedmass balances was -8.72 mw. e. from 2000 to
2018, which was close to the geodetic mass balance of -10.67 ±
1.18m w. e. in this study from 2000 to 2018. The accumulated mass
balance of -1.86m w. e. for 1981–2000 was much smaller than that
for 2001–2018, demonstrating that the glaciers in this region
experienced accelerated mass loss from 1981 to 2020.

Glacier mass balance in other mountains around the world,
whose study periods are generally consistent with the present
study period, was compared with that in Altai. Glaciers in the
Altai Mountains with a mass loss of 0.74 ± 0.07m w. e.·a−1 is the
most dramatic compared to that in other mountains around the
world. Large mass loss was found in the Caucasus (2000–2019),
Eastern Tianshan (2011–2017), and Qilian Mountain (1990–2016)
with 0.53 m w. e.·a−1 (Tielidze et al., 2022a), 0.62 m w. e.·a−1 (Li H.
et al., 2022), and 0.60 m w. e.·a−1 (Zhang et al., 2021), respectively.
The mass loss in Svalbard (2000–2019) and Western Himalaya
(2010–2018) was similar with 0.36m w. e.·a−1 (Schuler et al., 2020)
and 0.39 m w. e.·a−1 (Zhu et al., 2021). Glaciers in the Pamir
(2000–2017) have the slightest mass loss of 0.05 m w. e.·a−1 (Li
Z. et al., 2022). Mass balance changes of different mountains in the
world are shown in Supplementary Figure S2.

In this article, we did not analyze the area change and mass
balance of debris-covered glaciers separately for several reasons: 1)
Almost all glaciers in the Altai Mountains are clear ice, and only
several glaciers have trace debris in glacier tongue. 2) It may bemore
accurate to study the changes of debris-covered glaciers over a longer
period, while the study period in this article is short (20 years).

FIGURE 11 | (A) Change of mean temperature in summer, and (B)
change of annual precipitation.
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Causes of Glacier Changes
Climate is the most important factor affecting the development
and evolution of glaciers (Xie and Liu, 2010). The mean
temperature in summer (June-August) increased at a rate of
0.5°C/10a in the Altai Mountains based on CRUv4.05
meteorological data, which is greater than the rising
temperature of 0.34°C/10a in Tianshan, and it is consistent
with the phenomenon that smaller rising temperature in the
south but larger in the north in Xinjiang (Su et al., 2003). The
annual precipitation increased by 1.8 mm/10a on average in the
Altai Mountains, which is smaller than that in the Tianshan
(Wang et al., 2011b). The change in precipitation is in accordance
with the phenomenon that larger increasing precipitation in the
south but smaller in the north in Xinjiang (Shi et al., 2002; Liu
et al., 2010). The change tendency of mean temperature in
summer and annual precipitation showed that the climate in
the Altai Mountains changed from warm and dry to warm and
humid, which agreed with the climate change tendency in
northwest China (Shi et al., 2002).

However, the change of mean temperature in summer and
annual precipitation were characterized by spatial
homogeneity. We mapped the spatial change patterns of
mean temperature in summer and annual precipitation with
a spatial resolution of 0.5° latitude * 0.5° longitude based on
CRU meteorological data. As shown in Figure 11A, the mean
temperature in summer increased in the entire Altai, which
was higher in the southeastern Altai and lighter toward the
northwestern part. In Figure 11B, the annual precipitation
decreased in most areas, although the annual precipitation
increased slightly overall. The annual precipitation decreased
in the southeastern Altai and Central Altai but increased
slightly in the northwestern part. Existing studies (Raper
et al., 2000; Oerlemans, 2005) show that solid precipitation
needs to increase by 25% or 35% to maintain the mass balance
of glaciers for a 1°C rise in temperature, and even more than
40% in high Asian regions (Kang, 1996). The mean
temperature in summer increased by 0.7°C/10a and annual
precipitation decreased by 4mm/10a in Sutai Uul, which
explains the dramatic mass loss and glacier area shrinkage.
The warmer temperature is the reason for glacier area
shrinkage and mass loss in the Altai Mountains.

CONCLUSION

This study presents two new glacier inventories for the Altai
Mountains using Landsat ETM+/OLI images acquired around
2000 and 2020. The mass balance during 2000–2020 was
estimated by comparing 2000 SRTM DEM and 2020 DEMs
generated from ASTER images. In total, 1,927 glaciers covering
an area of 1,096.06 ± 53.32 km2 around 2020 were mapped. A
reduction of 149.70 ± 37.45 km2 was found from 2000 to 2020, with
a shrinkage rate of 12.02 ± 3.01% (or 0.60 ± 0.15%·a−1). The regions

with large glacier areas have larger shrinkage areas but smaller
shrinkage rates. An average mass loss of 0.74 ± 0.07m w. e.·a−1 was
found from 2000 to 2020 by geodetic survey, and the glacier surface
elevation was decreased by 0.87 ± 0.07m·a−1. Glaciers experienced
the worst mass loss in the Southeast Altai, and the mass loss was
mitigated from the southeast toward the northwest part. Thewarmer
temperature was the primary reason for glacier area shrinking and
mass loss in the Altai Mountains.
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Biases of the Mean and Shape
Properties in CMIP6 Extreme
Precipitation Over Central Asia
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The global climate models (GCMs) are indispensable for accurately simulating the
climate variability and change, and numerous studies have assessed climatic extreme
events globally and regionally. However, the shape properties of GCM precipitation
extreme simulations, such as measures of asymmetry (e.g., skewness coefficient) and
measures of tail heaviness (e.g., kurtosis coefficient), have received far less attention.
Here, we address this issue by comparing the performance of 22 GCMs from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing the statistical
properties of ground observations for the period 2001–2014 over typical arid and
semiarid Central Asia. We evaluated the performance of the CMIP6 models using novel
methodologies to assess biases not only in mean and variation but also in higher order
L-moments which involved less bias and variance than the conventional moment
approach, including 1) summary statistics as expressed by univariate analysis of
L-moments and 2) the bivariate kernel densities of (mean, L-variation) and
(L-skewness, L-kurtosis) using the application of the highest probability region
(HPR) and applying the Hellinger distance as a measure of agreement. The results
show that CMIP6 simulations can reproduce the shape properties of precipitation
extremes with the observational datasets and that biases are observed when the mean
and variation are examined bivariate. An ensemble mean of the CMIP6models does not
improve the performance of the variation and skewness of the simulated precipitation
extremes, while it only slightly constrains the mean and kurtosis error of most metrics.
Our results could provide guidance for climate research and improve the statistical
properties of CMIP6 models in relation to ground observations.

Keywords: CMIP6, evaluation, extreme precipitation, L-moment, Central Asia

1 INTRODUCTION

Evidence reveals that the global climate has experienced significant changes characterized by
warming over the past century (IPCC 2014). It is widely accepted that extreme precipitation will
intensify as our climate warms (Allen and Ingram, 2002; Utsumi et al., 2011), given the truth that the
moisture absorption capacity of the atmosphere increases exponentially with rising temperature
(−7% °C−1) (Trenberth et al., 2003). Extreme events have such severe impact on human health,
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ecology, biodiversity, and the economy. For example, floods
caused more than 500,000 deaths worldwide and affected
more than 2.8 billion people globally from 1980 to 2009
(Doocy et al., 2013). Therefore, it is of great importance to
analyze and predict the behavior of extreme events.

Global climate models (GCMs) are widely used to simulate the
dynamics and state of the present-day climate before predicting
future climate (You et al., 2010; Eyring et al., 2016), as knowledge
of the ability of GCMs to simulate historical extreme precipitation
events is essential for constraining climate model predictions
(Allen and Ingram, 2002). Recently, state-of-the-art global
climate models involved in the Coupled Model
Intercomparison Project Phase 6 (CMIP6) have undergone
remarkable improvements compared to previous generations,
including higher resolutions and improved parameterization
schemes for microphysical cloud processes and climate system
biogeochemical processes compared to CMIP5 models (Eyring
et al., 2016; Eyring et al., 2019), and thus better simulation
capabilities are expected in the CMIP6 model to reproduce
historical climate. Indeed, recent studies reported generally
improved climate model performance in capturing the
spatiotemporal patterns of extreme precipitation in
northeastern Iran (Zamani et al., 2020), the Indian
subcontinent (Gusain et al., 2020), southwestern South
America (Rivera and Arnould, 2020), and East Africa (Ayugi
et al., 2021). In addition, some results suggest that CMIP6models,
which generally reflect observed patterns of global and regional
extreme events, show limited improvement over the CMIP5

model (Kim et al., 2020). However, most model evaluation
studies focused on global or monsoon regions (e.g., You et al.,
2008; Akinsanola et al., 2020; Dong and Dong, 2021; Tang et al.,
2021; Vicente-Serrano et al., 2021), while efforts addressing
precipitation extremes in arid and semi-arid regions are
limited (Qin et al., 2021), especially in the Central Asia
(hereafter CA) region (Figure 1). Guo et al. (2021) addressed
the ability of CMIP6 models to simulate annual precipitation
patterns and suggested that the simple ensemble mean based on
all models may not be a wise choice for climate change studies in
the CA region. Therefore, it is important to quantify how well
each CMIP6 model simulates the variability of extreme
precipitation in the CA region and to determine which CMIP6
models can be considered the most skillful models in simulating
the extreme precipitation indices over the CA region based on a
set of model performance metrics.

The magnitude, frequency, and duration of precipitation
extremes are typically investigated by using the extreme
precipitation indices defined by the Expert Team on Climate
Change Detection and Indices (ETCCDI) (Zhang et al., 2011). In
previous studies, the comparison of observed and modeled
extreme precipitation indices was mainly conducted by using
measures such as correlation coefficients, root means square
errors, percentage biases, or trend slopes of precipitation
magnitude (Hu et al., 2015; Hu et al., 2019; Ayugi et al., 2021;
Tang et al., 2021). However, much less attention has been paid to
shape properties (related to the frequency and magnitude of
extremes), such as measures of asymmetry (e.g., the skewness

FIGURE 1 | Topographic map illustrating the geographical location and overview of Central Asia.
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coefficient) and measures of tail heaviness (e.g., the kurtosis
coefficient). Here, we employ a novel approach to evaluate the
performance of individual models in reproducing extreme
precipitation and indices, based on robust statistical measures
(e.g., L-moments) and probability similarity measures (e.g., the
Hellinger distance). Comparisons based on L-moments go
beyond commonly used methods and help evaluate the
characteristics of extreme precipitation events. Abdelmoaty
et al. (2021) proposed the aforementioned approach and used
it to evaluate the performance of CMIP6 models in reproducing
the statistical properties of the observed annual maxima of daily
precipitation worldwide and revealed that the statistical shape
properties of the CMIP6 simulations agree well with the observed
data. However, there is a lack of further research to support the
application of this method at the regional scale, and in particular
research on the mean and shape properties of extreme
precipitation in arid regions, such as the region CA.

The main objective of this study was to quantitatively
evaluate the performance of CMIP6 models in simulating
the variance and sharp properties of present-day extreme
precipitation over CA using a novel approach and various
skill score metrics. The CMIP6 simulations are evaluated
using three approaches: 1) one-dimensional analysis
focusing on the comparison of individual L-moments of
extreme precipitation over time series, 2) two-dimensional
analysis focusing on the combined behavior of L-moments,
and 3) probabilistic evaluation by comparing the simulated
and observed distributions of extreme precipitation and
indices.

2 DATA AND METHODS

2.1 Data
Gridded observational precipitation datasets have been widely
used in recent research to evaluate and assess CMIP models
(Mehran et al., 2014; Booth et al., 2018). Here, we select three
state-of-the-art gridded precipitation datasets from different
sources as observations. The Global Precipitation Climatology
Project (GPCP) blends data from rain gauge stations, satellites,
and sounding observations to provide complete global
precipitation estimates with 1° spatial resolution from 1996
to the present (Huffman et al., 2001). Global Precipitation
Measurement Version 6 (GPM V6) is an advanced
international satellite mission that provides global
precipitation estimates at 0.1° resolution from June 2000 to
the present (Hou et al., 2014). Bias-adjusted ERA5 reanalysis
data from WATCH Forcing Data (WFDE5) provide bias-
corrected precipitation derived from the European Centre
for Medium-Range Weather Forecasts (ECMWF) fifth-
generation atmospheric reanalysis (ERA5) at 0.5° spatial
resolution and is available from 1979 to 2018 (Cucchi et al.,
2020). These three gridded products were well qualified and
made as homogeneous as possible (Sun et al., 2018). To
maintain consistency in the assessment process, this study
focused on the 2001–2014 period, which is common between
CMIP6 historical simulations and observations.

We collected the most commonly used r1i1p1f1 ensemble
members from 22 CMIP6 models to evaluate their performance
in simulating extreme precipitation and indices. Basic
information about each model is briefly presented in Table 1,
including the model name, modeling center, atmospheric
resolution, and references. To facilitate the grid-to-grid
comparisons between the CMIP6 model simulations and
gridded observations at different resolutions (from 0.1° to 2°),
we re-gridded all these data to a uniform spatial resolution (2° ×
2°) using the bilinear remapping technique.

2.2 Methods
2.2.1 Extreme Precipitation Indices
This article aims to robustly analyze the performance of CMIP6
models in characterizing historical extreme precipitation events
using the indices defined in Table 2, which can detect, attribute,
and project changes in extreme precipitation in multiple ways
(Donat et al., 2016; Ou et al., 2013). Details on each index can be
found at ETCCDI (http://etccdi.pacificclimate.org/indices_def.
shtml). In early spring and late winter, heavy rains could fall
on the snowpack, causing flash flooding as temperatures rise
(Vionnet et al., 2020). Melting snowpack can exacerbate flooding
in rivers fed by snowmelt over CA (e.g., the Syr Darya and the
Amu Darya rivers) (Kure et al., 2013). In summer, increased
precipitation combined with massive glacier melt at high
elevations can lead to massive flooding in mountainous
regions (Olsson et al., 2010). Therefore, to gain insight into
the performance of the model on a seasonal scale, the analyses
and calculations presented here are based on three seasons: spring
(March-May, MAM), summer (June-August, JJA), and winter
(December-February, DJF).

2.2.2 L-Moments
We adopted new approaches following Abdelmoaty et al. (2021)
to provide a comparative assessment of the ability of CMIP6
models to reproduce the spatial distribution of observed total
precipitation and extreme precipitation indices. In this study, we
described the difference between the observations and CMIP6
simulations with four-ordered statistics based on L-moments,
including 1) mean (μ), 2) L-variation (τ2), 3) L-skewness (τ3), and
4) L-kurtosis (τ4). L-moments are a set of statistics used to
summarize the shape of a probability distribution, which offer
numerous advantages over product moments in describing a
sample or distributional characteristics (Sankarasubramanian
and Srinivasan, 1999). The main advantage of L-moments
over conventional moments is that L-moments are less
sensitive to the effects of sampling variation and outliers in
the data, allowing one to draw more reliable conclusions about
the underlying probability distribution from small samples.
Because of these properties, L-moments are better suited to
characterize the distributional properties of highly skewed
data, such as extreme precipitation events which generally
exhibit moderate to strong skewness (Hosking, 1990; Hosking
and Wallis, 1997).

L-moment is based on the linear combinations of probability-
weighted moments (PWMs), and L signifies the linearity. PWMs
defined by Greenwood et al. (1979) are given in the following:
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br � 1
n
∑n
j�r+1

(j − 1)(j − 2) . . . (j − r)
(n − 1)(n − 1) . . . (n − r)xj, (1)

where n = sample size and xj = jth element in ascending order.
Univariate analysis reveals the differences in L-moments

between observations and simulations (Abdelmoaty et al.,
2021). The first L-moment refers to the location and is known
as L-mean (l1). The second L-moment is a measure of scale and
dispersion and termed L-scale (l2). The third and fourth
L-moments are measures of symmetry and peakedness,
respectively. The first four L-moments have the following
relevancy with PWMs:

l1 � b0, (2)

l2 � 2b1 − b0, (3)
l3 � 6b2 − 6b1 + b0, (4)

l4 � 20b3 − 30b2 + 12b1 − b0. (5)
The L-moment is a linear combination of the PWMs in Eqs.

2–5. L-moment ratios can be obtained by dividing the higher-
order L-moments by the dispersion measure as follows:

L − variation: t2 � l2/l1,where 0≤ t2 < 1, (6)
L − skewness: t3 � l3/l2, where − 1≤ t3 ≤ 1, (7)
L − kurtosis: t4 � l4/l2, where − 1≤ t4 ≤ 1. (8)

The ratio l2/l1 is termed the L-coefficient of variation (τ2) and the
ratio l3/l2 is referred to as L-skewness (τ3), while the ratio l4/l2 is

TABLE 1 | Information on the 22 CMIP6 global climate models used in this study.

Model name Institution, country Resolution
(°lat × °lon)

Reference

1 ACCESS-CM2 CSIRO, Australia 1.25 × 1.88 Dix et al. (2019)
2 ACCESS-ESM1-5 CSIRO, Australia 1.25 × 1.88 Ziehn et al. (2019)
3 BCC-CSM2-MR BCC-CSM, China 1.13 × 1.23 Wu et al. (2018)
4 CMCC-CM2-SR5 CMCC, Italy 0.94 × 1.25 Lovato and Peano, (2020)
5 CMCC-ESM2 CMCC, Italy 1.25 × 0.94 Lovato et al. (2021)
6 EC-Earth3 EC-Earth-Consortium 0.70 × 0.70 EC-Earth (2019b)
7 EC-Earth3-Veg EC-Earth-Consortium 0.70 × 0.70 EC-Earth (2019a)
8 EC-Earth3-Veg-LR EC-Earth-Consortium 1.13 × 1.13 EC-Earth (2020)
9 FGOALS-g3 IAP-CAS, China 2.25 × 2 Li (2019)
10 GFDL-ESM4 NOAA-GFDL, United States 1.25 × 1.00 Krasting et al. (2018)
11 IITM-ESM CCCR-IITM, India 1.9 × 1.9 Panickal et al. (2019)
12 INM-CM4-8 INM-RAS, Russia 1.5 × 2 Volodin et al. (2019a)
13 INM-CM5-0 INM-RAS, Russia 1.5 × 2 Volodin et al. (2019b)
14 KACE-1-0-G NIMS-KMA, Korea 1.25 × 1.88 Byun et al. (2019)
15 KIOST-ESM KIOST, Korea 1.9 × 1.9 Kim et al. (2019)
16 MIROC6 JAMSTEC, Japan 1.41 × 1.41 Takemura (2019)
17 MPI-ESM1-2-HR MPI-M, Germany 0.94 × 0.94 Jungclaus et al. (2019)
18 MPI-ESM1-2-LR MPI-M, Germany 1.86 × 2.5 Brovkin et al. (2019)
19 MRI-ESM2-0 MRI, Japan 1.13 × 1.13 Yukimoto et al. (2019)
20 NESM3 NUIST, China 1.88 × 1.88 Cao and Wang, (2019)
21 NorESM2-MM NORCE, Norway 0.94 × 1.25 Bentsen et al. (2019)
22 TaiESM1 RCEC, China 0.94 × 1.25 Tsai et al. (2020)

TABLE 2 | Definitions of the extreme precipitation indices used in the study.

Index Index Definition Unit

PRCPTOT Total wet-day precipitation Let RRij be the daily precipitation amount on day i in period j. If N represents the number of days in j,
then: PRCPTOTj � ∑N

n�1RRj

mm

SDII Simple daily intensity index Let RRwj be the daily precipitation amount on a wet day w (RR ≥1.0 mm) of period j. If W represents the
number of wet days in j, then: SDIIj � (∑W

w�1RRwj)/W
mm
day−1

CDD Consecutive dry days Let RRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days
where RRij ≤1 mm

day

CWD Consecutive wet days Let RRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days
where RRij ≥1 mm

day

Rx5day Maximum consecutive 5-day
precipitation

Let RRkj be the precipitation amount for the five-day interval ending k for period j. Then, maximum 5-day
values for period j are: Rx5dayj = max (RRkj)

mm

R95Ptot Very wet-day precipitation Let RRwj be the daily precipitation amount on a wet day w (RR ≥1.0 mm) in period j and let RRwn95 be the
95th percentile of precipitation onwet days in the 2001–2014 period. If W represents the number of wet days
in the period, then: R95Ptotj � 100p (∑W

w�1RRwj)/RRj , RRwj > RRwn95

%

R10mm Heavy precipitation days Let RRij be the daily precipitation amount for day i of period j. Count the number of days where PRij ≥10 mm days
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referred to as L-kurtosis (τ4). Note that the relative error (%) was
used to describe the difference between μ and τ2. In contrast, the
absolute error was used to describe the difference between τ3 and
τ4 to avoid misleading large or small errors when these two values
are particularly close. L-moment methods have less estimation
bias than the conventional method and its asymptote are closer to
a normal distribution in finite samples. However, it does not
reveal whether the L-moments coincide. Therefore, we treated (u,
τ2) and (τ2, τ3) as bivariate variables and compared the bivariate
kernel density estimation (KDE) between observations and CMIP
simulations (Terrell and Scott, 1992). Finally, we estimated the
Hellinger (H) distance between the observed and CMIP6
simulated bivariate L-moment densities as an overall similarity
measure between densities. The H-distance is a robust technique
for quantifying the similarity between two probability
distributions (Hellinger, 1909). When the H-distance is 0, the
two distributions are identical, and when it is 1, they are the
farthest apart.

3 RESULTS

3.1 Seasonal Precipitation and Indices
In this section, we assess the similarities and differences among
the gridded observations (i.e., GPCP, GPM, and WFDE5) for
precipitation spatial and frequency distributions over the CA. In
spring (Figure 2) and winter (Supplementary Figure S3), all
three observations show that PRCPTOT is mainly concentrated
on wind-facing slopes (e.g., Tajikistan and surrounding
mountains, Figure 2), as the westerlies prevail in most areas
of CA (Schiemann et al., 2008), and is accompanied by the highest
values of SDII, CWD, Rx5day, and R10mm and the lowest values

of CDD (defined in Table 2), whereas the regions with the lowest
total precipitation are mainly found in northern Xinjiang, with
the highest CDD and the lowest Rx5days and R10mm.
Differently, the total precipitation in summer (Supplementary
Figure S2) is quite abundant on the leeward slopes of the CA
mountains (e.g., eastern Tien Shan), mainly due to Tien Shan’s
blocking effects which enhances subsidence over this region and
essentially increases east summer precipitation (Baldwin &
Vecchi, 2016). The extreme precipitation indices SDII, Rx5day,
and R10mm generally follow the spatial pattern of the total
precipitation while this is not the case for the CWD,
indicating that the total precipitation is affected more by the
intensity of precipitation events rather than the length. The ability
of the CMIP6 ensemble mean to represent the spatial
characteristics of total precipitation and extreme precipitation
indices of observations over CA is also evaluated here. The
CMIP6 ensemble means share similar spatial distributions of
extreme events with all three observations on regional scales for
the most part, except for CWD and R95pTOT. Although the
three observations do not show significant differences in spatial
distributions of the total precipitation and extreme precipitation
indices at the regional scale, biases may be evident in the
frequency distributions. Then, our assessment focused on
comparing the area-averaged precipitation frequency
distributions of the three gridded observations (GPCP, GPM,
and WFDE5) and CMIP6 ensemble mean to evaluate the
simulated precipitation intensity over CA from a different
perspective (Supplementary Figure S1). The three
observations generally agree on the distribution of
precipitation frequency in spring and summer, while
differences are evident in winter. The GPCP and WFDE5
exhibit higher frequency in light (<2 mm) and heavy

FIGURE 2 | Spatial distribution of spring (MAM) total precipitation and extreme precipitation indices from three observations (GPCP, GPM, and WFDE5) and the
CMIP6 multi-model ensemble mean over Central Asia for 2001–2014.
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(>10 mm) precipitation events while showing a much lower
frequency in medium (2–10 mm) precipitation events
compared with the GPM in winter. Furthermore, the ability of
the CMIP6 ensemble means to reproduce precipitation frequency
varies among the three seasons. In spring, the ensemble mean
substantially underestimates (>60%) the light and middle
precipitation (<10 mm), while it produces too frequently heavy
precipitation (>10 mm). In winter, the ensemble mean generally
matches well with the GPM, exhibiting similar bias with the other
observations as in the spring, but to a lesser extent. In summer,
the ensemble mean generally agrees well with the three
observations, with a slight overestimation (<20%) of the light
and heavy precipitation events and a slight underestimation
(<23%) of the moderate precipitation events. Therefore, the
differences in the precipitation frequency among the three
observations are relatively small, mainly reflected in the light
frequency during winter. However, this is acceptable since light
rates do not generate a substantial precipitation amount over CA
(Lai et al., 2020). Moreover, the pattern of the frequency
distribution of GPM on the seasonal scale with the ensemble
mean is much narrower compared to other observations.

Overall, the three observations generally are consistent
regarding the spatial and frequency distribution patterns of the
total precipitation and extreme precipitation indices. Here, we
choose GPM as the reference to evaluate the bias of the CMIP6
models. The good performance of the GPM was also reported in
other studies (Sun et al., 2018; Zhang et al., 2018). For example,
Zhang et al. (2018) concluded that the GPM can reproduce
precipitation events incredibly well, especially light and
moderate precipitation events, possibly due to the newly added
Ka-band and high-frequency microwave channels.

3.2 L-Moments One-Dimensional Analysis
3.2.1 Means (μ) and Variations (τ2)
We presented the differences in extreme precipitation indices
means (μ) of CMIP6 models and GPM; none of the models can
sufficiently reproduce the means of all the metrics
simultaneously, with a high variability of 90% empirical
confidence (Supplementary Figure S4). Fluctuations in the
simulation of the mean of the total precipitation and extreme
precipitation indices of CMIP6 models indicate a trade-off effect
that partly explains the generally good agreement between the
regional precipitation frequency from the ensemble mean and the
observations (Supplementary Figure S1). In particular, these
models performed relatively better at the CDD median of all
extreme indices, with nearly 30%–50% of the models having a
relative error within 10% over the entire period. However, the
performance of the other indices is relatively poor. Most CMIP6
simulations (>65%) tend to underestimate the medians of SDII,
Rx5day, and R10mm by 10%–109% for all three seasons, while
they tend to overestimate CWD by 4%–109%. Seasonal
differences are also observed for the same indicator. For
example, an opposite trend is observed for R95PTOT in
different seasons, with almost half of the models tending to
overestimate R95PTOT medians in spring and winter (>15%)
while tending to underestimate them in summer (>20%).
Notably, an ensemble mean of the CMIP6 models only slightly

constrains the mean error of most metrics and does not reduce
the empirical confidence interval by 90%. This suggests that most
models have consistency errors in most regions of CA.

Furthermore, the biases in the variation of the total
precipitation and extreme indices as quantified by the
L-moment coefficient of variation (τ2) are investigated
(Supplementary Figure S5). In general, variation (τ2) and
mean (μ) behaved mostly similar in terms of changes in
extreme precipitation metrics but showed some discrepancies
in seasons and indices. Fluctuations in individual CMIP6 models
in simulating extreme precipitation metrics are still noticeable
across the seasons. Nevertheless, the CMIP6 models also perform
relatively well at the CDD median among all extreme indices
variations (τ2), but uncertainty increases relative to the mean (μ).
SDII has more reasonable ranges of values with a general
underestimate that more than 50% of the models have a
relative error greater than 20% over the entire period.
However, the performance of the other indices is relatively
poor. Most CMIP6 simulations (>70%) tend to underestimate
the variation (τ2) medians of Rx5day, R95pTOT, and R10mm by
20%–100%, while they tend to always overestimate CWD all
alone. There is a substantial difference in the ability of individual
models to simulate extreme precipitation events that EC-Earth3-
based models seriously overestimate the R95pTOT for both mean
(μ) and variation (τ2) while other models tend to underestimate
them. Seasonal patterns were also observed. For example,
variation (τ2) of SDII, Rx5day, and R10mm median in winter
are underestimated by all CMIP6 models, and 13.6% of selected
models overestimate winter R95pTOT variation. The %diff of
PRCPTOT in summer and CDD in spring by most models are
close to zero, indicating that these models simulate the variation
of summer PRCPTOT and spring CDD better than variation in
another two seasons. However, an ensemble mean of the CMIP6
models performs poorly on the variation error of most metrics,
with all being severely underestimated. This suggests that an
ensemble mean has a problem characterizing the individual mode
variations of CMIP6 over CA.

3.2.2 Skewness (τ3) and Kurtosis (τ4)
To investigate the shape properties of CMIP6 models in
simulating extreme precipitation, we used the simple
difference in analyzing skewness coefficient (τ3) and kurtosis
coefficient (τ4). Good agreement with GPM is observed for the
L-Skewness (τ3) and L-Kurtosis (τ4) of extreme precipitation
indices (Figures 3, 4), indicating that the CMIP6 simulations
reproduce the shape properties of extreme precipitation well. The
median of the differences is within 10% for τ3 and τ4 in the vast
majority of scenarios among models. In terms of τ3 reflecting
skewness, most simulations show a more skewed distribution of
the PRCPTOT in summer than in spring and winter. Meanwhile,
the %diff of more than half of the models is closer to zero in
spring and winter, that is, these models are more accurate in
simulating skewness (τ3) in spring and winter (Figure 3). For
SDII, CWD, and R95pTOT, most models simulate their skewness
well in all three seasons. The %diff between the CMIP6 and GPM
over the seasons is slight. Also, models simulate skewness for SDII
and CWD best in spring, while models simulate skewness for
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R95pTOT best in summer and winter. Most models overestimate
the skewness of CDD and R10mm in spring while
underestimating Rx5day in the same season. In addition, most
models also overestimate the skewness of CDD and R10mm in
winter. However, an ensemble mean of the CMIP6 models does
not improve the skewed distribution of extreme precipitation,
and all metrics are slightly underestimated. This is similar to the
percentage difference in extreme precipitation indices variation
and suggests that an ensemble mean is difficult in characterizing
the individual mode variations of CMIP6 over CA.

In all seasons, the shape feature kurtosis (τ4) of the
simulations for total precipitation and extreme precipitation
indices is close to the observations (Figure 4), and the medians

of PRCPTOT, SDII, CWD, R95pTOT, and R10mm perform
well. The kurtosis for the Rx5day median of most model
simulations is slightly underestimated in each season. The
kurtosis of the simulation of CDD in summer is closest to
the observation, while the kurtosis of the simulation in spring
and winter overestimates and underestimates the observation,
respectively. From the comparison of the two shape features
(τ3 and τ4), the simulations of all indices of kurtosis of the
CMIP6 model are generally better than those of skewness, e.g.,
%diff is closer to zero for τ4 (Figures 3, 4). Meanwhile, an
ensemble mean of the CMIP6 models only slightly constrains
the kurtosis error of most metrics and does not reduce the %
diff of the median.

FIGURE 3 | Percentage difference in L-skewness (τ3) of total precipitation and extreme precipitation indices between the GPM and CMIP6 models (including the
multi-model ensemble mean) in spring (MAM), summer (JJA), and winter (DJF). The total precipitation and SDII, CDD, CWD, Rx5day, R95pTOT, and R10mm are shown
from top to bottom. The point represents the median, and the error bar indicates the 90% empirical confidence interval. The triangle in the graph indicates a bias greater
than 150%.
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3.3 L-Moment Two-Dimensional Analysis
Comparing the separate behavior of each L-moment can be
helpful, yet it is more robust and comprehensive to compare a
wider scale of the total precipitation and extreme indices
behaviors. First, we used non-parametric kernel bivariate
densities to describe the simultaneous behaviors of the total
precipitation and extreme indices L-moments to assess CMIP6
simulations. EC-EARTH3 is the best-performed model,
according to the kernel bivariate density analysis, and then we
choose EC-EARTH3 for the detailed description, others see
supplementary (Supplementary Figures S6–47). The density
distributions (the blue area in Figures 5, 6) for GPM and EC-
Earth3 were calculated and compared with the simulations.
Bivariate densities show high variability between models for

the mean (μ) and variation (τ2) pairs, and in most cases do
not match observations from GPM (examples are shown in
Figure 5), including SDII, CWD, and Rx5day, especially for
the intensity of extreme precipitation indices R95pTOT and
R10mm. In contrast, total precipitation performed relatively
well in the density distributions between simulations and
GPM observations. Seasonality, SDII, and CWD in summer
and CWD and Rx5day in spring also show high mismatching
for μ and τ2 pair between simulation and observation, indicating
high variability among CMIP6 simulations. Then, the highest
probability region (HPR, red cross in Figures 5, 6) for GPM was
calculated and compared with simulations. In summer, the (μ, τ2)
peaks generated from CMIP6 simulations match with
observations (Figure 5B). In contrast, the peak points of

FIGURE 4 | Percentage difference in L-kurtosis (τ4) of total precipitation and extreme precipitation indices between the GPM and CMIP6 models (including the
multi-model ensemble mean) in spring (MAM), summer (JJA), and winter (DJF). The total precipitation and SDII, CDD, CWD, Rx5day, R95pTOT, and R10mm are shown
from top to bottom. The point represents the median, and the error bar indicates the 90% empirical confidence interval. The triangle in the graph indicates a bias greater
than 150%.
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simulations differ from the observational peaks in spring and
winter (Figures 5A,C). For example, there are some differences
between the observations and simulations of R95pTOT, SDII, and
Rx5day for highest probability regions (HPR), which means that
the model has a poor simulation effect on these indices on the
bivariate distribution of (μ, τ2). Although there exists the good
matching in μ and τ2 for total precipitation individually (Figures
3, 4), simultaneous behavior mismatches.

Second, unlike the striped distribution of the (μ, τ2) kernel
bivariate density, the distribution of the higher order L-moments
(τ3, τ4) in Figure 6 tends to be round. Bivariate densities for (τ3,
τ4) generated from the CMIP6 simulations agree with
observations for most indices in all seasons, especially for total
precipitation. However, the bivariate densities of R95pTOT show

high variability between simulations and GPM observations. For
(τ3, τ4), Figure 6 exhibits a good agreement of the peak points of
HPR between simulations and GPM observations for most cases,
including PRCPTOT in winter, CDD in spring and summer, and
CWD in spring. Among all extreme precipitation indices,
R95pTOT shows more different shape features between
simulations and observations in all seasons. Therefore, the
results reveal a matching in the shape properties of total
precipitation and extreme precipitation indices, with
simultaneous behavior of the higher order L-moments (τ3, τ4)
matches.

Third, the Hellinger distance (H) is used to calculate the
overall difference between bivariate densities of CMIP6 models
simulations and GPM (Figures 7, 8). H distances for the mean (μ)

FIGURE 5 |Kernel bivariate densities for a simulation of EC-Earth3 and GPMwith the highest probable region of mean and L-variation densities in (A) spring (MAM),
(B) summer (JJA), and (C) winter (DJF). The red cross represents the highest probability region.
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and L-variation (τ2) are calculated for each model (Figure 7). For
mean (μ) and L-variation (τ2) densities of total precipitation, all
CMIP6 models have H >0.3, with EC-Earth3 having the smallest
H (0.35). For most models, H distances of R95pTOT and R10mm
are higher than other indices which can reach up to 0.6–0.8,
showing that the simulating performance in winter is poor for the
two indices. The H distance of R95pTOT is quite special which
obtained by each model varies greatly, and CMCC-ESM2 and
TaiESMI perform best in all three seasons for R95pTOT. For
CDD and R95pTOT, the H distance of most results shows that H
distance in summer is lower than in spring and winter. H distance
in summer for Rx5day of more than half models is higher than in
spring and winter. For CWD and Rx5day, the higher summer H
distance indicates that the IITM-ESMmodel is poor at simulating

observations in summer. In terms of H distance in spring, EC-
Earth-based models show the lowest value among CMIP6 models
on PRCPTOT, CDD, and CWD.

For L-skewness (τ3) and L-kurtosis (τ4) densities of total
precipitation and indices, most CMIP6 models have H < 0.35
(Figure 8). The H distances of τ3 and τ4 bivariate densities for
PRCPTOT and Rx5day are the lowest (H < 0.3) among indices,
while H distances for R95pTOT and R10mm are the highest.
CMIP6 models can simulate well the shape characteristics of
PRCPTOT, CWD, and R10mm in summer but have difficulty in
simulating the shape characteristics well of CDD in winter and
R95pTOT in spring.

On the whole, there are significant differences between the
performance between H distance of τ3 and τ4 bivariate densities

FIGURE 6 | Kernel bivariate densities for a simulation of EC-Earth3 and GPMwith the highest probable region of L-skewness and L-kurtosis densities in (A) spring
(MAM), (B) summer (JJA), and (C) winter (DJF).The red cross represents the highest probability region.
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(shape characteristics) and μ and τ2 densities (mean and variation
characteristics). The result shows that a good representation of
higher-order L-moments’ joint behavior can be found in
L-skewness (τ3) and L-kurtosis (τ4) densities rather than mean
(μ) and L-variation (τ2).

4 DISCUSSION

Although global climate models have improved in the recent
decade (Kim et al., 2020; Ayugi et al., 2021), it seems not to
appear to be the case for arid and semi-arid regions such as CA
(Mehran et al., 2014; Guo et al., 2021; Qin et al., 2021). The
uncertainties for CMIP6 in assessing precipitation extremes arise
from our limited knowledge of the key physical processes for

circulation changes. For example, the increase in precipitation
would be accompanied by the increase in water vapor but offset
by the weakened circulation (Chen et al., 2020). CMIP models
generally overestimate total precipitation in regions with steep
topography (Mehran et al., 2014; Ji et al., 2015). The topographic
correction could improve the performance of gridded
precipitation. However, the effect of topography has not been
fully considered in CMIP6 models due to their coarse resolution
(Eyring et al., 2016). Meanwhile, even when a higher resolution
model is used, the difference between observed and simulated
precipitation can be large and strongly dependent on the
methods (Freychet et al., 2016). A group of CMIP model
simulations typically have large differences that can vary
widely (Dong and Dong, 2021; Tang et al., 2021). It is the
case for our study that most of the evaluations show good

FIGURE 7 | Hellinger distance in mean and L-variation between the bivariate empirical densities of CMIP6 models and the GPM.
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performance, but the results of individual models vary. Although
an ensemble mean of 22 models is used in our study to evaluate
the extreme precipitation results to reduce uncertainty, it
appears that significant information is lost for some indices
and features (Supplementary Figure S5). This study supported
the view of Abdelmoaty et al. (2021) and concluded that CMIP6
simulations reproduce shape properties of the extreme
precipitation index distributions better than the mean and the
variability. Interestingly, the simultaneous behavior of higher
order L-moments (τ3 and τ4) generated from the model
simulations performed better on a global scale than in the CA
region. Moreover, the scatter due to seasonal variability is
comparable to the scatter among the 22 CMIP6 models,
indicating the remarkable influence of seasonal variability on
the simulations. Further efforts should be devoted to seasonal

climate simulations, which can improve the simulation of
precipitation extremes.

Previous analysis of CMIP models evaluated the mean and
variance but not the shape properties of the climate variables.
Since skewness is suitable for assessing asymmetry and kurtosis is
suitable for assessing volatility and uncertainty, higher moment
assumptions associated with higher-order central moments
should be explored more than univariate L-moments to play a
more central role in the assessment (Serfling and Xiao, 2007). The
popularity of the L-moments method is due to its robustness to
outliers in the data (El-Magd, 2010), but the L-moments method
is not very efficient for predicting events with large return periods
(Zakaria et al., 2012). Zakaria et al. (2012) believe that direct
visual inspection of the L-moment diagram (skewness and
kurtosis) is subjective, which may also be an aspect of the

FIGURE 8 | Hellinger distance in L-skewness and L-kurtosis between bivariate empirical densities of CMIP6 models and the GPM.
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uncertainty of the L-moment method. However, in our study, we
introduce %diff to make the comparison quite objective. To
improve the evaluation ability and applicability, researchers
improved trimmed L-moment methods and partial L-moment
methods based on L-moment (Elamir and Seheult, 2003). In the
future, TL-moment and PL-moment methods could be used in
our follow-up work for comparison with current methods or
other aspects of assessment.

5 CONCLUSION

In this work, we quantitatively evaluated the performance of 22
CMIP6 models in simulating total precipitation and extreme
precipitation indices over CA on a seasonal scale for the period
2001–2014 using quality-controlled gridded observations (GPCP,
GPM, and WFDE5), and the benchmark set is GPM. The study
evaluated the performance of CMIP6 models using novel
methodologies to assess biases not only in mean and variation
but also in higher-order L-moments and bivariate properties,
including 1) summary statistics as expressed by univariate
analysis of L-moments and 2) the bivariate kernel densities of
(mean, L-variation) and (L-skewness, L-kurtosis) by applying
HPR and using Hellinger distance as a measure of agreement.
We have highlighted the mean and sharp properties of the
distributions of CMIP6 models that perform well or poorly.
Fluctuations in the simulation of extreme precipitation indicators
across CMIP6 models are also evident among seasons. The main
findings of this study can be summarized as follows:

1) CMIP6 simulations reproduce the shape properties skewness
(τ3) and kurtosis (τ4) of the distributions of precipitation
extremes better than the mean (μ) and variability (τ2) over
CA. An ensemble mean of the CMIP6 models does not
improve the performance of the variation and skewness of
the simulated precipitation extremes, while it only slightly
constrains the mean and kurtosis error of most metrics.

2) There are simultaneous behavior mismatches in L-moments
(μ and τ2) of the bivariate densities, while the higher order
L-moments (τ3 and τ4) generated from the model simulations
match with observations, suggesting that the CMIP6

simulations can better reproduce the shape properties of
the precipitation extremes than their mean and variance.

3) Among all assessment models, EC-Earth3 appears to perform
very well in all systematic assessment methods, with a small
percentage difference in total precipitation means (~15%) and
low Hellinger distance (H = 0.38) for mean and bivariate
density.

This study lays the foundation for improving the performance
of sharp properties of extreme precipitation events over CA.
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Changes in the Runoff of Urumqi
Glacier No. 1 Under Climate Change:
From Historical Observation to Future
Prediction
Pei Jiang1, Zemin Wang1, Boya Yan1*, Songtao Ai1 and Shuang Jin1,2

1Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China, 2State Key Laboratory of Cryospheric
Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China

This study explores the ice volumes of Urumqi Glacier No. 1 from 2013 to 2112 to examine
the changes in the runoff of the glacier. Based on the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC), the changes of the glacier were
predicted under three hypothetical climate scenarios: SSP1-1.9, SSP2-4.5, and SSP5-8.5
scenarios. The results derived from the Elmer/Ice ice-flow model showed increasing runoff
till 2040 in the SSP2-4.5 and SSP5-8.5 scenarios and gradually decreasing runoff in the
SSP1-1.9 scenario. The glacier areas and ice volumes of the two branches will keep
declining under all the climate scenarios, including fast reductions until 2080 and slow
reductions by the end of the ablation period. Moreover, the east branch (EB) will disappear
at the end of the 21st century under the SSP2-4.5 and SSP5-8.5 scenarios. With much
mass loss of the EB under all the climate scenarios, the runoff will increase in the early 100-
year period and decrease until it is being infinitely close to the precipitation, which is similar
with that of the west branch (WB). Since 2070, the ice volumes of the WB will contribute
more than 50% of the whole glacier volumes under all the climate scenarios. The WB ice
volume percentage will reach 100% in 2080 for the disappearance of the EB under the
SSP5-8.5 scenario. As the fast retreat of the EB before 2080, the variations of the total
runoff will be consistent with that of the EB runoff, and the EB runoff will account for more
than 60% of the total runoff before 2070 under all the climate scenarios. Even if the
meltwater of Urumqi Glacier No. 1 is stable from the late 21st century (after 2090), it will
decline to approximately 15% of that in 2013. It will greatly influence the runoff of Urumqi
River, hence human life and biodiversity.

Keywords: Urumqi Glacier No. 1, Elmer/Ice, climate change, glacier meltwater, glacier runoff, ice volume

1 INTRODUCTION

Mountain and polar glaciers are committed to continue melting for decades or centuries under the
unequivocal warming of the climate system, and five representative climate scenarios in the Sixth
Assessment Report of IPCC are shown in Table 1 (IPCC, 2021). Glaciers in high mountain regions
are expected to lose substantial mass by the end of the 21st century (Zemp et al., 2015; Kraaijenbrink
et al., 2017; Pörtner et al., 2019), though the accelerating trend of mass loss has appeared during the
past two or three decades (Haeberli et al., 2000; Barry, 2006; Li et al., 2011a). As a small glacier will
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typically respond faster than a larger glacier to climate change
(Bahr et al., 1998), studying mass balances of high-mountain
glaciers much smaller than the polar ice sheets is of great value.
Moreover, the meltwater from glaciers on high mountains is the
lifeline for local and downstream residents, which can influence
local economy and ecosystems (Ding et al., 2006; Immerzeel et al.,
2010; Li et al., 2010; Ren et al., 2017; Gao et al., 2018).

Urumqi Glacier No. 1 is a reference glacier with a long data
series, important location, and significant local water supply in
the Word Glacier Monitoring Service (WGMS) network
(Zemp et al., 2009; Li et al., 2011b). The glacier is located
in the Tianshan mountains in the arid and semi-arid regions of
Eurasia (Figure 1), which is surrounded by vast deserts and the
Gobi (Yue et al., 2021). The acceleration of mass loss occurred
in 1985 and 1996, mainly due to the increases in temperature
during the melting period, the ice temperature augment, and
the decrease in the albedo of glacier surfaces (Li et al., 2011b).
Furthermore, the enhanced glacier melting by summer climate
warming and annual precipitation augmenting made the
annual basin runoff significantly increase in the past
45 years (Ye et al., 2005; Sun et al., 2013). In 1993, Urumqi
Glacier No. 1 separated to the EB and WB, but the two

branches of the Glacier still experienced the same warming
scenario. However, WB was considered to be more sensitive to
the recent climate change for its larger slopes and smaller
glacier areas (Xu et al., 2011).

In-situ measurements were used to study the changes of
Urumqi Glacier No. 1. The mass balance of Urumqi Glacier
No. 1 has been measured since 1959 by the glaciological method
using ablation stakes and snow pits except during the 1967–1979
period when the observations were interrupted (Wang et al.,
2014). Terrestrial laser scanning measurements were used to
monitor glacier boundaries, annual elevation changes, and
geodetic mass balance in Urumqi Glacier No. 1 from 2015 to
2017 (Xu et al., 2019). The ice thickness of the glacier was detected
by the ground penetrating radar (GPR) and the maximum
thickness was on the mainstream line, more than 100 m in
2001 (Sun et al., 2003). Moreover, the max ice-flow velocity of
Urumqi Glacier No. 1 could reach 0.75 m·m−1 from May to July
in 2017, and the velocity variations were influenced by glacier
thickness, glacier slopes, terrains of bedrocks, and glacier ice
temperatures (Zhou et al., 2009).

How Urumqi Glacier No. 1 will evolve in the future under
climate change can affect the amount of the headwaters of the
Urumqi River, because the melt water fromUrumqi Glacier No. 1
accounts for about 70% of the water that feeds the headwaters
(Yang, 1991; Jia et al., 2019). Therefore, the Elmer/Ice ice-flow
model was used to simulate the evolution of Urumqi Glacier No. 1
to the end of the 21st century, which could project the changes in
runoff at the headwaters of the Urumqi River.

2 DATA AND METHODS

2.1 Data
2.1.1 DEMs of Urumqi Glacier No. 1
The DEMs included the surface DEM and the bedrock DEM of
Urumqi Glacier No. 1 in 2012. A radar dataset along the
mainstream and seven (six) transverse lines of the EB (WB)
was collected to get the ice thickness by using a pulseEKKO PRO
GPR system with a high frequency of 100 MHz, and this GPR
system was made by Sensors & Software Inc. (Canada). The
surface DEM was obtained from real-time kinematic
measurements by interpolation, and the bedrock DEM was
obtained by subtracting the ice thickness from the surface
DEM. The pixel resolutions of DEMs were 10 m, shown in
Figure 2.

TABLE 1 | The climate scenarios in the Sixth Assessment Report of IPCC.

Scenario Near term, 2021–2040 Mid-term, 2041–2060 Long term, 2081–2100

Best estimate
(°C)

Very likely
range (°C)

Best estimate
(°C)

Very likely
range (°C)

Best estimate
(°C)

Very likely
range (°C)

SSP1-1.9 1.5 1.2–1.7 1.6 1.2–2.0 1.4 1.0–1.8
SSP1-2.6 1.5 1.2–1.8 1.7 1.3–2.2 1.8 1.3–2.4
SSP2-4.5 1.5 1.2–1.8 2.0 1.6–2.5 2.7 2.1–3.5
SSP3-7.0 1.5 1.2–1.8 2.1 1.7–2.6 3.6 2.8–4.6
SPP5-8.5 1.6 1.3–1.9 2.4 1.9–3.0 4.4 3.3 –5.7

FIGURE 1 | Geographic location of Urumqi Glacier No. 1, Tianshan
mountain, and the black triangle in the map of Xinjiang indicated the location of
the study area. The image of the glacier was obtained by field measurement.
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2.1.2 In-situ Measured Data
The surface ice-flow velocities were acquired by repeated GPS
measurement via stakes, with 22 stakes in EB and 19 stakes in
WB (Figure 3). To reduce the impact of accident errors, we
calculated the averages of ice-flow velocities from 2010 to 2016
as the initial velocities in the simulation (Table 2), and the
maximum ice-flow velocity was found along the mainstream
lines at the point E2 (EB) and the point F2 (WB). The

measurements of the glacier mass balance were also derived
from these stakes.

The stakes on the glacier were also taken in the use of
measuring the net surface mass balance (SMB) of the glacier
(Li and Wang, 2016) from 2006 to 2012 (Figure 4). The net
mass balance increased with elevation, and the gradients in
Figure 4 varied in different elevations. Moreover, the
gradients with the net mass balance larger than 0 were
close to 0.

Being sensitive to the air temperature, the equilibrium line
altitude (ELA) was an important parameter of the SMB.
According to the observations and the researches about the
ELA of Urumqi Glacier No. 1, the initial ELA (ELA0) of the EB
was selected as 4,075 m (Dong et al., 2012; Li et al., 2013), and
the initial ELA of the WB was about 45 m higher than that of
the EB (Xu et al., 2011; Xia et al., 2012; Li and Wang, 2016).

FIGURE 2 | (A) Surface and (B) bedrock DEMs of Urumqi Glacier No. 1 and the contour intervals both are 50 m.

FIGURE 3 | The locations of stakes on the glacier surface.

TABLE 2 | The averages of measured ice-flow velocities from 2010 to 2016 of
Urumqi Glacier No. 1.

Points Velocity (m/a) Points Velocity (m/a)

C1 3.62 G3 2.77
C2 3.66 H1 1.63
C3 3.52 H2 2.14
D1 3.32 H3 1.97
D2 3.63 e2 3.05
D3 3.11 e3 3.33
E1 3.08 f2 3.46
E2 3.97 f3 3.39
E3 3.82 g2 3.24
F1 2.56 g3 3.28
F3 2.40 h2 2.50
G1 1.80 h3 2.84
G2 2.35
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The SMB gradient is shown in Figure 4 by dividing into
ablation area and accumulation area based on the
observations.

The borehole ice temperatures were detected from the 50 m
deep borehole at 3,850 m on EB during January 2010 to October
2011. The active layer was obvious within the 16 m depth where
the ice temperature was −4.39°C in Figure 5.

The precipitations were observed at the Daxigou
meteorological station from 1959 to 2019 (Figure 6), which
were used to calculate the future runoff in our simulations.

2.2 Methods
2.2.1 Ice Volume
Glacier was the resource and “solid reservoir” that reflected the
capacity of water storage. The ice volume changes in the future
could be analyzed by the ice thickness, and the ice volume of
Urumqi Glacier No. 1 could be computed by multiplying the
thickness by the area as follows:

Volumei � ∑(depthi × S) (1)
where depthiwas the glacier depth every pixel of the ith year from
2012 and S was the pixel resolution.

2.2.2 Glacier Runoff
The glacier runoff consisted of the annual precipitation and the
meltwater. The annual precipitation was obtained by multiplying
the total precipitation by the glacier area, and the precipitation in
the future was assumed to increase according to the curve in
Figure 6, while the meltwater was the mass loss of the glacier in
a year.

The mass loss of the glacier was a part of the SMB which was
the algebraic sum of the accumulation from the solid
precipitation and the ablation from glacier melt in the glacier
surface at unit time (Qin et al., 2016). The sensitivity of ELA to
temperature, α, was 61.7 m/°C, that meant the glacier ELA
ascended (descended) 61.7 m when the air temperature
increased (decreased) by 1°C (Dong et al., 2012), hence, the

FIGURE 4 | The mass balance measurements of Urumqi Glacier No. 1’s
(A) EB and (B) WB from 2006 to 2012, where the line is the fitted value in
ablation or accumulation area.

FIGURE 5 | The borehole ice temperatures from a depth of 50 m. The
points showed the average ice temperature during January 2010 to October
2011, the shadow showed the fluctuation ranges of annual ice temperature,
and the dashed line is the local average air temperature.

FIGURE 6 | The annual precipitation data from the Daxigou
meteorological station. The solid line denotes the measured annual
precipitation from 1959 to 2019. The dashed line is the linear fit of the annual
precipitation.
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ELA in the ith year from 2012 and the meltwater were calculated
as below (Ai et al., 2019):

ELAi � ELA0 + αΔTi (2)
Meltwateri � ∑[(Zsi − ELAi) × SMB(Zs) × S] (3)

where ΔTi was the temperature change of the ith year relative to
2012, Zsi was ice surface elevation, ELAi was the ELA of the ith
year from 2012, and S was the pixel resolution.

Therefore, taking the precipitation into consideration, the
glacier runoff could be calculated:

Runoffi � Meltwateri + Precipitationi (4)

2.2.3 Elmer/Ice Ice-Flow Model
Elmer/Ice is a full-Stokes, finite element, and ice-sheet/ice-flow
model, which can be used to simulate the evolution of the
mountain glacier and Antarctic ice sheet (Zhao et al., 2014;
Zhang et al., 2017).

Ice is incompressible fluid and its flow meets with Stokes
equations:

div u � 0 (5)
div τ − gradp + ρg � 0 (6)

where u is the ice-flow velocity, τ is the deviatoric stress tensor, p
is the ice pressure, g is the gravitational acceleration, and ρ is the
ice density.

The deviatoric stress τ and the strain rate _ε equation satisfy
Glen’s law:

τ � 2η _ε (7)
where the effective viscosity η is defined as:

η � 1
2
(EA)−1

n _ε(1−n)/ne (8)

where _ε2e � tr( _ε2) is the square of the second invariant of the
strain rate, E is the Glen enhancement factor, and n is the Glen
exponent. A is a rheological parameter depending on the ice
temperature relative to the pressure melting point, T′:

A(T′) � A0e
− Q(RT′) (9)

where A0 is the rate factor, Q is the creep activation energy, and R
is the gas constant.

There is a basal sliding of the Urumqi Glacier No. 1 and the
basal boundary condition can be expressed as follows:

τb � βub (10)
where τb is the basal shear stress, β is the basal friction parameter,
and ub is the basal tangential velocity.

The equation of Zs changes with time as follows:

zZs

zt
+ ux

zZs

zx
+ uy

zZs

zy
− uz � SMB (11)

where ux, uy, and uz are the three components of ice-flow velocity
in the three directions x, y, and z, respectively.

The parameters of the ice-flow model in this study are shown
in Table 3 (Wang et al., 2019).

2.2.4 Simulation Process
There were two phases of the simulation process: the steady-state
simulation (diagnostic simulation) constrained by GPS data was
performed and mainly obtained two important parameters: the
basal friction parameter β and the Glen enhancement factor E;
and the transient simulation mainly predicted the evolution of
Urumqi Glacier No. 1 using the steady-state simulation result as
the initial condition.

In the steady-state simulation, the stakes with secure GPS
records were chosen to calculate to horizontal ice-flow velocities,
and the measured velocities were used to constrain the simulation
velocities by adjusting two important parameters in the model—β
and E. In the model, β was the basal friction parameter and E was
the Glen enhancement factor.

Our adjustment of the parameters was in four processes
(Figure 7A).

① E was assigned an appropriate value when β took a
certain value, and the combination of β and E was used to
make simulated velocity match well with the maximum
measured velocity at point E2. According to the minimum
of the residual sum of squares in Table 4, we chose β = 0.01
and E = 0.003.
② As the parameters we chose indicated that the simulated
velocities above 3,950 m were much higher than the measured
velocities, we adjusted the β above 3,950 m to be larger than
0.01; thus, the basal friction parameter β above 3,950 m was
defined as β2 and the β in other palaces was β1. As the β2 larger
than 0.03 made the simulated velocities much lower than the
measured velocities, we chose β2 = 0.02 or β2 = 0.03 to do
further adjustment.
③ When β2 was 0.02 or 0.03, all the simulated velocities were
lower than the measured velocities, so we made E larger than
0.003 and found that the value of 0.05 made the simulated
velocities closer to the measured results.
④ In the third process, with β1 = 0.01, β2 = 0.03, and E = 0.05,
the simulated velocities below 3,950 m were much higher than
the measured velocities, so we adjusted β1 to 0.02 and 0.015.
Comparing the results in the fourth process, we chose the best
result—β1 = 0.015, β2 = 0.03, and E = 0.05.

TABLE 3 | The parameters of the ice-flow model.

Symbol Description Value Unit

ρ Ice density 910 Kg·m−3

g Gravitational acceleration 9.81 m·s−2
n Exponent in Glen’s flow law 3 —

A0 Flow law parameter
when T ≤ −10°C 2.89 × 10−13 Pa−3·s−1
when T > −10°C 2.43 × 10−2 Pa−3·s−1

Q Creep activation energy
when T ≤ −10°C 60 KJ·mol−1

when T > −10°C 115 KJ·mol−1

R Universal gas constant 8.31 J·mol−1·K−1
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Taking the aforementioned parameters, we got the
simulated velocities matching well with the measured
velocities in the EB (Figure 7A, Figure 8A). As for the two
parameters of the WB, the value of elevation, 4,050 m, was
used to differentiate β and E, and the simulated velocities
matched well with the measured velocities, too (Figure 7B,
Figure 8B).

FIGURE 7 | Simulated results of the EB and theWB for the sliding states. (A)Measured velocities, full sliding, no sliding, and partial sliding at the glacier base results
of the EB, and the black dashed line denotes the elevation of 3,950 m; (B) Measured velocities, partial sliding at the glacier base simulation results of the WB, and the
black dashed line denotes the elevation of 4,050 m.

TABLE 4 | Residual sum of squares of the difference between the measured and
simulated velocities below 3,950 m.

Full sliding No sliding

β 0.01 0.02 0.03 ∞

E 0.003 0.034 0.247 1.413
Residual sum of squares 1.277 1.491 5.121 34.135

FIGURE 8 | Error graphs of (A) the EB and (B) the WB using the best estimates of the model parameters. The black points denote ice-flow velocities at the stakes
depicted in Figure 3. The dashed line denoted the states when the measured ice-flow velocities were equal to the simulated ice-flow velocities.
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In the transient-state simulation, three warming scenarios
in IPCC were chosen (SSP1-1.9, SSP2-4.5, and SSP5-8.5) in
Table 1. In the three climate scenarios, the air temperature
would increase 0.014°C·a−1, 0.027°C·a−1 and 0.044°C·a−1,
respectively (Table 5). The ELA of the glacier was also
increased per year based on the Eq. 2 and the SMB gradient
was shown in Figure 4 based on the observations. Under the
three hypothetical climate scenarios, we predicted the
evolution of the glacier in 100 years (2013–2112).

The ice temperature of the polythermal glacier changes with
the depth of ice, hence the temperature of the glacier was set as the
observed date in Figure 5:

{T � T0 + 0.08 × (d − d0)
max(T) � 0

(12)

where d was the depth, d0 was the depth at the lower boundary of
the active layer, and T0 was the average ice temperature at the
lower boundary of the active layer, which was changed with the
climate scenarios in IPCC. This relationship was assumed to be
constant over time in the model.

3 RESULTS

3.1 The Glacier Area
The glacier area would continue to retreat strongly under all the
climate scenarios until its disappearance (Figure 9). In the early
100-year period, the two branches began to retreat from the
glacier terminus due to lower elevations and higher temperatures.
In 2042, glacier melting was similar under all the climate

TABLE 5 | The increased air temperature per year.

Scenarios SSP1-1.9 SSP2-4.5 SSP5-8.5

The increased air temperature per year 0.014°C·a−1 0.027°C·a−1 0.044°C·a−1

FIGURE 9 | Simulated glacier area and thickness results in different years: the 30th year (2042), the 60th year (2072), the 80th year (2092), and the 100th year
(2112) in the SSP1-1.9, the SSP2-4.5, and the SSP5-8.5 scenarios.
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scenarios, with little difference in thickness and area. In 2072, the
areas of the glacier varied greatly under the three climate
scenarios, and the remaining glacier area under the SSP1-1.9
scenario was three times that in the SSP5-8.5 scenario. Under the
SSP5-8.5 scenario, the EB totally disappeared in 2092, while a part
of the EB still existed under the other two climate scenarios.
Despite the fact that the whole glacier kept retreating, the ice in
the upper areas of the WB was thicker than the initial in 2013,
where ice accumulated during the 100-year period under all the
climate scenarios.

Though there was no large difference in areas of the glacier in
the three climate scenarios before 2025 (Figure 10C), the areas
varied a lot in the three climate scenarios after 2040, and the
changes were also obvious in the EB and the WB (Figures
10A,B). In the SSP1-1.9 climate scenario, the area of the
glacier decreased slowly, while in the other two climate
scenarios, the areas decreased fast after 2040 and then
decreased slowly from about 2075 and about 2080,
respectively. Reducing half of the glacier area, the glacier took
about 68, 58, and 48 years, respectively, in the three climate
scenarios, which meant the fastest melting was in the SSP5-8.5
climate scenario.

More ice melted in the EB compared with that in the WB
(Figures 10A,B). As for the EB, the glacier area was about 100 ×
104 m2 at the beginning and reduced to less than 20 × 104 m2 at
the end of the simulation period in all the climate scenarios,
whereas the maximum of the area loss was less than 50 × 104 m2

in the WB, in the SSP5-8.5 climate scenario. The difference
between the two branches was derived from the difference in
the elevations, and the average elevation of the EB was about
124 m lower than that of the WB.

3.2 The Glacier Ice Volume
In Figure 11C, the volumes of the glacier decreased quickly till
2075 and 2080 in the SSP2-4.5 and the SSP5-8.5 climate
scenarios, while the volumes of the glacier remained about
1,000 × 104 m3 after 2100 in the SSP1-1.9 climate scenario. In
the SSP5-8.5 climate scenario, after 63 years, the ice volume of the
glacier became only 7% of that in 2013, while in the SSP1-1.9
climate scenario, 23% of the ice volume still remained. Thus, from
2013 to 2075, the average loss of the ice volume was −93.1 ×
103 m2·a−1 in the SSP5-8.5 climate scenario (−87.1 × 104 m3·a−1 in
the SSP2-4.5 scenario and −76.9 × 104 m3·a−1 in the SSP1-1.9
scenario).

FIGURE10 | Simulated area of the glacier as a function of time in the three climate scenarios: (A) the area of the entire glacier; (B) the area of the EB; and (C) the area
of the WB.

FIGURE 11 | Simulated ice volume of the glacier as a function of time in the three climate scenarios: (A) the ice volume of the entire glacier; (B) the ice volume of the
EB; and (C) the ice volume of the WB.
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The melting in the EB was much more severe than that in the
WB (Figures 11A,B). At the beginning of the simulation
period, the volume of the EB was twice the volume of the
WB, but at the end of the simulation period, the volumes of the
EB were nearly zero, while the volumes of the WB still retrained
about 200 × 104 m3·a−1 to 650 × 104 m3·a−1 in the three climate
scenarios.

3.3 The Glacier Meltwater
In the study, the annual glacier meltwater was the mass loss of the
glacier in a year.

The glacier meltwater did not decrease during the whole
100-year period (Figure 12A), because the peak meltwater
happened in 2035 and 2038 in the SSP2-4.5 and the SSP5-8.5
climate scenarios, respectively. In the SSP1-1.9 climate
scenario, the meltwater decreased and kept about 10 ×
104 m3 after 2100; in the SSP2-4.5 climate scenario, the
peak meltwater in 2035 was about 131.76 × 104 m3; in the
SSP5-8.5 climate scenario, the peak meltwater in 2038 was

FIGURE 12 | Simulated meltwater of the glacier as a function of time in the three climate scenarios: (A) the meltwater of the entire glacier; (B) the meltwater of the
EB; and (C) the meltwater of the WB.

FIGURE 13 | Simulated glacier runoff in the three climate scenarios that compared with measured runoff.

FIGURE 14 | The meltwater percentage to the entire glacier runoff. The
dashed line denotes that the meltwater accounted for half of the entire glacier
runoff.
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about 155.89 × 104 m3. Even if, the meltwater decreased
without peak value in the SSP1-1.9 climate scenario during
the 100 years, the values of meltwater became larger than those
in the other two climate scenarios after 2070 for the slower
reduction in values of the meltwater. The meltwater was
approximately 80 × 104 m3 around 2065 in the three climate
scenarios, and the value of meltwater was half of the peak
meltwater in the SSP5-8.5 climate scenario, besides, the
time—2065, was in the middle of time when the EB did not
disappear in the SSP1-1.9 climate scenario.

The peak meltwater of the EB and the WB occurred in different
time (Figures 12B,C). In the SSP1-1.9 climate scenario, there was no
peak meltwater in Figure 12B, while the peak meltwater in

Figure 12C was in 2025. In the SSP2-4.5 climate scenario, the
peak meltwater of the EB was in 2036, and the peak meltwater of the
WB was in 2027. In the SSP5-8.5 climate scenario, the peak
meltwater of the EB was in 2044, and the peak meltwater of the
WB was in 2033.

4 DISCUSSIONS

4.1 The Glacier Runoff in the Future
Accounting for about 70% of the replenishment to Urumqi
River headwaters, the runoff of Urumqi Glacier No. 1 is
significant to the Urumqi River. The glacier runoff included

FIGURE 15 | The (A) area, (B) ice volume, and (C) meltwater percentage of the EB (WB) to the entire glacier in the three climate scenarios.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 92076810

Jiang et al. Elmer/Ice Model Under Climate Change

201

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the precipitation in the glacier area and the glacier meltwater,
which is shown in Figure 13.

70% of the measured runoff from 1959 to 2019 is shown in
Figure 13, with an upward trend. Although the precipitation
from 1959 to 2019 also showed an increasing trend, the trend line
slope of the precipitation was much smaller than that of 70% of
the measured runoff, which implicated that the glacier meltwater
kept increasing faster than the precipitation from 1959 to 2019.
Compared with the sum of annual precipitation and annual
simulated glacier meltwater from 2012 to 2019, the 70% of the
measured runoff matched the upward trend of the sum. Hence,
the simulation results from 2012 to 2019 were consistent with the
measured data well.

From 2020 to 2070, the glacier runoff was mainly from the
glacier meltwater, and the changes in the runoff were similar to
those of the glacier meltwater. In the SSP1-1.9 climate scenario,
the runoff decreased gently with no peak runoff. In the SSP2-4.5
climate scenario, the peak runoff occurred in 2040, and the year
was 5 years later than the peak-meltwater year (2035). In the
SSP5-8.5 climate scenario, the peak runoff was in 2039, this year
was only 1 year later than the peak-meltwater year (2038) in this
climate scenario.

After 2070, the runoff was mainly influenced by the
precipitation except the runoff in the SSP1-1.9 scenario. As
the annual glacier meltwater after 2070 in the SSP2-4.5 and
SSP5-8.5 scenarios was less than 10 × 104 m3, and the
precipitation was more than 80 × 104 m3 from 2070, the
runoff would increase with the increment in the precipitation.
However, the glacier meltwater decreased to 10 × 104 m3 from
2100 in the SSP1-1.9 scenario, so from 2070 to 2100, the runoff in
this climate scenario was mainly from the glacier meltwater.

With the combination of the projected precipitation and the
simulated glacier meltwater from 2013, the meltwater percentages
of the whole glacier runoff are displayed in Figure 14. It occurred
in 2056 (SSP1-1.9), 2060 (SSP2-4.5), and 2062 (SSP5-8.5) when
the amount of meltwater was the same as precipitation, and then
precipitation played a dominant role. Based on the simulated
results, the contribution of glacier meltwater to the total glacier
runoff gradually decreased.

4.2 The Disappearance of the East Branch
According to the percentages of the EB, the EB nearly disappeared
at the end of the simulated period in all the climate scenarios. The
area percentages, ice volume percentages, and meltwater
percentages of the EB to the whole glacier were not affected
by the climate scenario in the first 5 decades. With different ice
temperatures set in the climate scenarios under climate change,
the percentages of the EB reduced fastest in the SSP5-8.5 climate
scenario, and the percentages of the WB gradually increased.

As for the area percentages (Figure 15A), the contribution of
the EB hardly changed until 2062 but rapidly decreased after that,
especially in the SSP5-8.5 scenario. The area percentages of the
EB did not change under all the climate scenarios before 2062,
and it was over 60% of the whole glacier areas. After 2062, the area
percentages of the EB rapidly decreased until its disappearance,
and it was only about 30 years from 60% to zero under the SSP5-
8.5 scenario.

With the glacier rapidly retreated, the EB ice volume
percentages to the whole glacier of Urumqi Glacier No. 1
continued to decrease (Figure 15B). The ice volume
percentages under all the climate scenarios from 2013 to 2052
maintained similar. Subsequently, the EB ice percentages showed
the significant differences after 2052. In the SSP5-8.5 scenario, the
EB disappeared first and the EB ice volume percentage was zero.
However, under the SSP1-1.9 scenario, the EB ice volume
percentage was still 35%. It took about only 15 years for the
ice volume percentages to decrease from 60% to 20% in the SSP5-
8.5 scenario, while it took 25 and 50 years under the climate
scenarios of SSP2-4.5 and SSP1-1.9, respectively.

The EB meltwater percentages almost did not change under all
the climate scenarios (Figure 15C), remaining at about 70%–65%
before 2072. With the glacier rapidly retreating, the WB meltwater
gradually became the main part of the total meltwater, and the
meltwater percentages were over 90% in 2090 and in 2080 under the
climate scenarios of SSP2-4.5 and SSP5-8.5.

With the climate warming, the accumulation area quickly
reduced with the increasing ELA. The EB was under full melting
from the glacier terminus to the head area when its accumulation
area reduced to zero, while the WB still remained a little
accumulation area at the end of the 100-year period.
Therefore, only the EB almost disappeared at the end of the
100-year period.

Outside the Elmer/Ice three-dimensional model which was
used to Urumqi Glacier No. 1, previous one-dimensional and
two-dimensional simulation works also projected that the glacier
would retreat and disappear in the future and the EB would
disappear earlier than the WB (Li, 2010; Duan et al., 2012; Gao
et al., 2018). Compared with the previous simulation works,
though changes of the EB were similar in different models, the
important values of the glacier in the Elmer/Ice three-
dimensional model, especially the ice volume and runoff, were
much more accurate than the values in the one-dimensional or
two-dimensional models.

5 CONCLUSION

This study used the Elmer/Ice ice-flow model to simulate the
evolution of Urumqi Glacier No. 1, which combined the glacier
geometry, measured ice-flow velocity, mass balance, and borehole
ice temperature, based on the climate scenarios of SSP1-1.9,
SSP2-4.5, and SSP5-8.5 in the Sixth Assessment Report of IPCC.

The ice volume of Urumqi Glacier No. 1 will be less than 10%
at the end of the ablation, which is all the contribution from the
glacier of the WB. Under all the climate scenarios, the ice volume
curve recedes linearly before 2080; the glacier area retreats rapidly
in the early 100-year period and slowly by the late ablation; the
glacier runoff peaks are most likely to occur in 2040 under the
climate scenarios of SSP2-4.5 and SSP5-8.5 and then decrease
rapidly until they infinitely close to the precipitation curve.

The ice volume and area of the EB decrease more rapidly than
that of the WB under the unequivocal warming of the climate
system, while the peak runoff time of the WB is much earlier. The
ice volume, area, and runoff of the EB contributed more to the
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entire glacier in the early 100-year period, while WB contributed
more by the late ablation.

Urumqi Glacier No. 1 is a typical continental glacier and is
also important headwaters of the Urumqi River. The glaciers
with similar properties to Urumqi Glacier No. 1 might
gradually disappear under all the climate scenarios in IPCC,
which is an inevitable trend of glacier evolution under the
climate change and impacts the changes in runoff at the
headwaters of the river that originated in the mountains
and local economy and ecosystems.
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A Quick Detection of Lake Area
Changes and Hazard Assessment in
the Qinghai–Tibet Plateau Based on
GEE: A Case Study of Tuosu Lake
Te Sha, Xiaojun Yao*, Yu Wang and Zhijuan Tian

College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, China

Under the background of global warming, lake changes in the Qinghai–Tibet Plateau and
their impacts have been widely concerned. To avoid downloading and preprocessing
numerous remote sensing images, we used JavaScript to preprocess the Landsat OLI and
Sentinel-2 MSI images based on the Google Earth Engine (GEE) platform and extract the
water area of Tuosu Lake by combining NDWI, MNDWI, and SVM methods. The area
changes of Tuosu Lake in 2000–2021, and their impact on the surrounding infrastructure
were further analyzed. The results show that 1) in different methods of surface water
extraction, the segmentation based on NDWI is the most efficient for delineating the Tuosu
Lake, and the optimal threshold is 0.15 ± 0.03. 2) During 2000–2021, the area of Tuosu
Lake increased by about 45.79 km2, which can be roughly divided into a slow growth
period (2000–2013, 1.20 km2/a), a stable period (2013–2016, 0.49 km2/a), slow
expansion period (2016–2017, 1.97 km2/a), and rapid expansion period (2017–2021,
7.43 km2/a). In particular, in 2019–2020, the lake area increased sharply by 9.22 km2. 3)
Affected by the expansion of Tuosu Lake, the highway along the northern lake had been
seriously threatened, and about 19.17 km (83.28%) of it was submerged by 2021. In
addition, the distance between Tuosu Lake and the Qinghai–Tibet Railway has been
shortened year by year, with the shortest distance of 0.85 km in 2021.

Keywords: lake change, remote sensing, GEE, Tuosu Lake, Qinghai–Tibet Plateau

1 INTRODUCTION

Lakes are an important part of the terrestrial hydrosphere, and their change can indirectly explain the
response of the regional environment to climate change (Williamson et al., 2009; Zhang et al., 2015).
Affected by global warming, inland lakes are changing dramatically (Abd Ellah, 2020). As a water
tower in Asia, the Qinghai–Tibet Plateau is the birthplace of many glaciers, lakes, and rivers
(Pritchard, 2019). The lakes on the plateau are less affected by human activities, which can better
reflect the relationship between natural environmental factors and lake evolution (Shao et al., 2008).
It was suggested that in recent years, most lakes’ area in the Qinghai–Tibet Plateau has shown an
accelerated expansion trend, and the main factors are precipitation increase and more glacier
meltwater runoff input due to temperature rise (Wang et al., 2013; Lei et al., 2014; Siyang et al., 2014;
Jiang et al., 2017; Li et al., 2017; Lv, 2019; Zhu et al., 2019; Wang et al., 2020). The expansion of some
lakes in the Qinghai–Tibet Plateau not only led to the drainage reorganization and physical-chemical
property change of lake water but also posed a serious threat to the surrounding human facilities
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(Yao et al., 2014; Yan et al., 2016; Yao et al., 2017; Liu et al., 2018).
Several major disasters caused by glacial lake outburst floods
(GLOFs) have been previously reported and studied in detail,
such as the Luggye Tsho in Bhutan Himalaya (Watanbe and
Rothacher, 1996), Tam Pokhari in the Mt. Everest region (Osti
and Egashira, 2009), and RanzeriaCo in the Nyainqentanglha
Range (Sun et al., 2014). Many studies focus on glacial lakes and
their outburst floods due to their high potential energy and large
areas of destruction (Bajracharya et al., 2007; Chen et al., 2010;
Hewitt and Liu, 2010; ICIMOD, 2011; Jain et al., 2015a; Jain et al.,
2015b). However, the influences of lake changes in the plateau
interior region where residents and infrastructures are mainly
concentrated have received little attention.

Remote sensing (RS) provides an ideal approach to quickly
monitoring lake changes. The common way of lake boundary
extraction based on RS includes downloading images covering the
lake, processing them such as atmospheric radiation correction,
registration, and ortho-rectification, and delineating lakes using
manual, semi-automatic, or automatic methods (Mcfeeters, 1996;
Liao and Liu, 2008; Landmann et al., 2010; Liu et al., 2010). If all
processes are carried out locally, they will occupy a lot of human
and material resources. Therefore, an approach to quickly
obtaining and processing data is very necessary for the long-
time series of water changes. The Google Earth Engine (GEE)
platform was jointly developed by Google, the U.S. Geological
Survey, and Carnegie Mellon University in 2010 (Zhou, 2017).
With the advantages of massive data and cloud processing, GEE
has been widely applied in data fusion (Mateo-García et al., 2018),
multi-temporal image classification (Tsai et al., 2018), change
detection (Zurqani et al., 2018), and dynamic monitoring of land
use (Liu et al., 2018). Previously, some authors adopted GEE to
obtain a lake water body (Li et al., 2021; Liao et al., 2021; Peng
et al., 2021). However, there is a lack of comparison of lake
extraction methods. This study aimed to 1) implement the
operations of online data acquisition, data process, and surface
water extraction based on the GEE platform; 2) compare different
methods of lake surface water extraction and propose the most
appropriate method to delineate Tuosu Lake and apply the Otsu
algorithm to the GEE platform for efficient surface water
extraction; and 3) explore the spatiotemporal change

characteristics of the Tuosu Lake and evaluate its potential on
surrounding infrastructures.

2 STUDY AREA

Tuosu Lake (37°04′-37°13′N, 96°50′-97°03′E, 2808 m a.s.l) is
located at the Qaidam Basin in the northeastern
Qinghai–Tibet Plateau, 45 km away from the Delingha city in
Qinghai province (Figure 1). In addition to runoff from the Keluk
e Lake upstream [mainly recharged by groundwater (Tan, 2014)],
Tuosu Lake is mainly supplied by precipitation. The water area of
Tuosu Lake is about 181.793 km2, and the maximum depth is
about 25 m. Its shape presents a triangle with several islands in
the north of the lake center (Zongyan et al., 2020). Tuosu Lake is a
saltwater lake with a salinity of 35.74 g/L, dissolved oxygen of
105.64 mg/L, and a pH value of 8.38 (Fu et al., 2016; Long et al.,
2017). The study area belongs to the sub-basin named Bayan Gol
River, which belongs to a plateau desert and semi-desert climate
area. The average temperature of the hottest month is 16.7°C, the
extremely high temperature can reach 33.1°C, and the annual
average temperature is 4.0°C. The sunshine is abundant, and the
annual sunshine duration is 3127.9 h. The frost-free period is
about 84–99 days. Water resources are extremely scarce, with an
average annual rainfall of 176.8 mm, and the annual evaporation
is 2102.1 mm (Yan et al., 2012). The main vegetation surrounding
the lake are Ephedra, Nitraria, and Compositae (Zhao et al.,
2010).

3 MATERIALS AND METHODS

3.1 Materials
As a planetary-scale and cloud-based platform, the GEE provides
strong computing power and abundant multi-source data. In this
study, the optical remote sensing images used mainly include
Landsat ETM+(2000), Landsat OLI (2013–2020), and Sentinel-2
MSI (2021). All images covering Tuosu Lake were first cleaned
and screened on the GEE platform to obtain those with less than
5% cloud cover frommid-August to the end of October each year,

FIGURE 1 | Overview of Tuosu Lake (the right is the Sentienl-2B MSI image acquired on 22 July 2021).
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which are then used to extract the vector boundary of the water
area. The meteorological materials adopted are ERA5 data that
can be directly called by the GEE platform. Band
“temperature_2m,” band “total_precipitation,” and band
“potential_evaporation” denote temperature, precipitation, and
evaporation, respectively. The AW3D30 (ALOSWorld 3D) DEM
data produced by JAXA were called by the GEE platform as well.
In the vector data provided by the GEE platform, the road data
were missing. Therefore, we manually drew the Qinghai–Tibet
Railway and two unnamed roads around the study area based on
the remote sensing images (combined with Sentinel 2 MSI and
Landsat ETM+ and OLI). The specific data introduction and GEE
platform function call notation are listed in Table 1.

3.2 Methods
3.2.1 Surface Water Extraction
Water index and machine learning are two common methods of
quickly extracting surface water. Based on the spectral curve
characteristics of water bodies, a variety of water body indexes
have been used to extract lake water bodies, such as the
Normalized Difference Water Index (NDWI) (Mcfeeters,
1996), Modified Normalized Difference Water Index
(MNDWI) (Xu, 2005), Enhanced Water Index (EWI) (Yan
et al., 2007), New Water Index (NWI) (Ding, 2009), and
Automated Water Extraction Index (AWEI) (Feyisa et al.,
2014). The machine learning method to extract water bodies
can be mainly divided into the unsupervised classification
method (Macqueen, 1967) and the supervised classification
method (Platt, 1998; Platt, 1998; Ronneberger et al., 2015;
Abeywickrama and Cheema, 2017). Based on the GEE cloud
platform, we selected NDWI, MNDWI, and support vector
machines (SVMs) to extract the water body of Tuosu Lake on
the same remote sensing images. It is worth mentioning that the
rivers are also extracted as water bodies in several methods
compared. We used the “connectedPixelCount” function
provided by GEE to count the adjacent pixels of the target
pixel online and took 15 as the threshold to remove the rivers
and wetlands in the state of debris. For relatively complete rivers,
we deleted them locally

The NDWI takes advantage of the strong absorption of water
in the near-infrared band and the strong reflection characteristics
in the blue-green band to extract the water body. The specific
principle is shown in Formula 1. Like NDWI, the MNDWI
mainly uses the strong absorption characteristics of water in mid-
infrared to extract water, as shown in Formula 2.

NDWI � (ρGreen − ρNIR)/(ρGreen + ρNIR), (1)

where ρGreen denotes the reflectance of the green band, and ρNIR
denotes the reflectance of the near infrared band.

MNDWI � (ρGreen − ρMIR)/(ρGreen + ρMIR), (2)
where ρGreen is the reflectance of the green band, and ρMIR is the
reflectance of the mid-infrared band.

The SVM is a very classical kernel method. Its main idea is to
realize the separability of linear inseparable problems bymapping
from low dimensions to high dimensions. Here, we conducted
random sampling in the lake area by fixing the “seed” parameter
of random sampling. The sample size is 15 by 20 pixels, and the
spatial resolution is 30 m. The distance from the hyperplane to
the sample point is shown in Formula 3.

r � |wTx + b| / ||w||, (3)
where r is the distance from the sample point to the hyperplane,
and ||w|| is the length of the vector w; x is the coordinate of the
support vector sample point.

3.2.2 Threshold Determination
In NDWI and MNDWI methods, the appropriate threshold is
usually dependent on artificial experiments, which are time-
consuming and laborious. Therefore, the water body segmentation
method proposed by Otsu (1979) is carried out based on GEE in this
study. Otsu’smethod divides the water area and another region in the
image into background and foreground according to the gray
characteristics of the image. Its main principle is that variance is a
measure of gray distribution uniformity. The greater the inter-class
variance between background and foreground, the greater is the
difference between the two parts of the image; the expression of
interclass variance is shown in Eq. 4. When part of the foreground is
misclassified as background or part of the background is wrongly
divided into the foreground, the difference between the two parts will
become smaller. Therefore, the segmentation that maximizes the
variance between classes means the minimum misclassification
probability.

σ � w0(u0−u)2/w1(u0−u)2, (4)
where σ is the variance between classes, w0 is the proportion of
target pixel in the total image, and u0 is the average gray value; w1

is the proportion of background points in the image, and u1 is the
average gray value.

3.2.3 Accuracy Evaluation
In order to evaluate the three surface water extraction methods
mentioned earlier, the Intersection over Union (IoU) proposed by

TABLE 1 | Data used in this study.

Data source Time Spatial resolution Calling code in GEE

Landsat ETM+ 2000 30 m “LANDSAT/LE07/C01/T1_RT”
Landsat OLI 2013–2020 30 m “LANDSAT/LO08/C01/T1_RT”
Sentinel-2 MSI 2021 10 m “COPERNICUS/S2”
ERA5 2000 and 2013–2021 0.1° “ECMWF/ERA5_LAND/HOURLY”
AW3D30 DEM 2006–2011 30 m “JAXA/ALOS/AW3D30/V3_2”
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Rahman and Wang (2016) was selected as the accuracy
evaluation, and the program running time (t) was used as the
time evaluation. The IoU is a very common method for accuracy
evaluation of the classification results in segmentation and
classification tasks. It is obtained by calculating the
intersection of the ground truth and the predicted result
divided by the union of the ground truth and the predicted
result. The formula is shown as follows:

IoU � (Pred ∩ True)/(Pred ∪ True) (5)
where Pred represents the water body value extracted according
to different methods, and True represents the true value of the
water body from artificial visual interpretation.

In this study, the water area of Tuosu Lake was interpreted
manually based on a Sentinel-2 MSI image. Taking the artificially
interpreted lake boundary as the true value, the IoU was
calculated with the results extracted by different surface water
extraction methods, and the final IoU value is used as the
measurement standard of the results obtained by different
surface water extraction methods.

4 RESULTS

4.1 Accuracy of the Surface Water
Extraction Model
Based on the GEE cloud-based platform, three methods
including NDWI, MNDWI, and SVM were applied to
extract the water area of Tuosu Lake. To evaluate
advantages in accuracy and efficiency, we calculated the
IoU value of each method for the prediction result and the

total time in extracting the water body of Tuosu Lake for the
same image. Otsu’s algorithm was used to automatically
calculate the optimal threshold for the single-band water
index results. According to the distribution characteristics
of the histogram, the optimal solution for a water body is
obtained when the pixel value of NDWI and MNDWI is
greater than 0.15 ± 0.03. The comparison of the results
extracted by three methods has been visualized in Figure 2
(during the mapping process, the part identified as a water
body outside the lake area was manually deleted for the sake of
aesthetics), in which SVM makes the internal comparison by
selecting three different sample numbers. When the
thresholds are at the optimal threshold, there is little
difference between NDWI and MNDWI in the extraction
of water areas. However, MNDWI is more sensitive to
wetlands and vegetation coverage areas, which leads to the
misidentification of many non-water pixels outside Tuosu
Lake as water bodies and low accuracy. The effect of
extracting water bodies by NDWI is obviously the best
among several experimental methods. Although some
wetlands and vegetation were recognized as water bodies as
well, the number of misclassified pixels is significantly less
than MNDWI. The accuracy of SVM is greatly affected by the
quality and quantity of training samples. When the number of
training samples of SVM is 15, the visualized classification
result is significantly worse than that of the water index
method. With the increase in the number of training
samples, the classification effect is getting better and better.
When the number of training samples reaches 50, the
extraction effect of SVM on the water body of Tuosu Lake
is almost the same as that of the water index method.

FIGURE 2 | Comparison of surface water extraction results by NDWI, MNDWI, and SVM. The base map is the Sentinel-2 MSI image acquired on 26 August 2021.
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The statistical results of the IoU value and time t are shown in
Table 2. The calculation methods of NDWI (5.5 s) and MNDWI
(5.7 s) are almost the same, so the difference in running time is
not significant, both within 10 s. The calculation time of SVM is
longer than that of the water index method, and with the increase
in the amount of training data, the time that the program needs
training data also increased, and the training sample is shown in
Figure 3. When the number of training samples is 50, the running
time of the program is around 18.1 s. In terms of accuracy, the
maximum IoU value of NDWI is 0.97, followed by SVM
(0.87–0.96) and MNDWI (0.87). The IoU value of SVM
increases with the increase in the number of training samples.
When the number of samples is 50, the IoU of SVM reaches about
0.96. According to the changing trend of the IoU value of
experimental results and the algorithm principle of SVM,
when the quality and quantity of samples are improved again,
the IoU value of SVM will be greater than that of NDWI, but it
also means the increase in operation time. Therefore, NDWI is
selected as the method of surface water extraction, according to
the two evaluation criteria of comprehensive accuracy and
efficiency. Figure 4 shows the boundary of Tuosu Lake over

the years extracted by the NDWI method based on the GEE
cloud-based platform.

4.2 Lake Area Change
From 2000 to 2021, Tuosu Lake showed a significant trend of
expansion. The total area increased by nearly 46 km2 in the past
22 years, which is about 34% of the water coverage area of Tuosu
Lake in 2000. Due to the influence of cloud cover, our experiment
on the monthly area change of Tuosu Lake did not go well.
Although the specific area value of the lake cannot be calculated
in some months, it can be seen from the statistical results of
2015–2020 (Figure 5) that the maximum area value of the lake
usually appears from October to December. Therefore, we
selected the image data within this period to extract the
maximum area value of the lake every year. The specific
change trend of lakes over the years is shown in Figure 6 in
which the minimum area in 2000 was 136 km2 and the maximum
area in 2021 was 181.78 km2. From 2000 to 2013, the lake area
increased by 15.66 km2 in total, with an average annual expansion
of 1.11 km2/a, i.e., a slow growth period. The average annual
expansion rate in 2014–2016 was less than 1 km2/a, and the lake
was in a stable period. From 2017 to 2021, Tuosu Lake showed an
obvious expansion trend. In recent four years, the area increased
by more than 25 km2, which was 5.4 times that of the previous
four years (2013–2017). During this period, the average annual
growth rate of the lake area was more than 2 km2/a, and the lake
was in a period of rapid expansion.

Affected by the topography, the expansion of Tuosu Lake is
heterogeneous in all directions. Figure 7A demonstrates the
water boundary of Tuosu Lake at 10 different moments from
2000 to 2021. The experimental results showed that the water
area of Tuosu Lake mainly extends to the northwest,
southwest, and east, especially in the northwest and
southwest. To highlight the visuality of lake expansion, we
zoomed in on the rectangular box area in Figure 7A at two

TABLE 2 | IoU value and running time of the Tuosu Lake water body extracted by
different models.

Method NDWI MNDWI SVM_15 SVM_25 SVM_50

IOU value 0.97 0.87 0.87 0.93 0.96
Time 1 (s) 6.2 7.3 11.0 12.7 24.5
Time 2 (s) 4.6 4.4 8.2 11.6 15.0
Time 3 (s) 4.9 6.8 9.8 11.1 18.8
Time 4 (s) 7.5 5.6 9.8 14.6 16.5
Time 5 (s) 4.6 4.6 11.2 14.0 15.8
Average time (s) 5.5 5.7 10.0 12.8 18.1

SVM_15, SVM_25, and SVM_50 denote the results of SVMwhen the numbers of training
samples are 15, 25, and 50, respectively.

FIGURE 3 | Schematic diagram of SMV training sample selection.
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different moments. Figures 7B–E show the remote sensing
images of the local area of Tuosu Lake collected by Landsat
ETM+ and Landsat OLI in August 2000 and 2021, respectively.
As shown in Figures 7B,C, the expansion of Tuosu Lake has
inundated a large land area in the northwestern part. Under
the influence of topographic conditions, two individual islands
higher than the lake surface have been formed in the center of
the lake. With the continuous expansion of Tuosu Lake, the
area of the islands in the middle of the lake is shrinking year by
year, and the northwest island has been almost submerged by
the lake. As shown in Figures 7D,E, the expansion toward the
southwest of the lake is very intense. Many low-lying
depressions were swallowed by the lake water and became a
part of Tuosu Lake.

FIGURE 4 | GEE platform-based extraction of the boundaries of Tuosu Lake. The base map is the Landsat OLI image (RGB) acquired in 20 September 2021.

FIGURE 5 | Bar plots of monthly area variation of Tuosu Lake.

FIGURE 6 | Annual area variation of Tuosu Lake in 2000–2021.
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4.3 Influence of Tuosu Lake Expansion on
Traffic
There is a road along the north of Tuosu Lake, with a length of
about 24 km. Although the expansion speed in the north of the
lake is slow, it still poses a serious threat to this road. The
experimental results show that there was no road being

submerged in 2000, but due to the continued expansion of the
lake in recent years, the part of the road more than 19 km had
been submerged by the lake water by August 2021. As shown in
Figures 8, 9, from 2000 to 2016, the road was less affected by the
expansion and erosion of the lake, and just 1.52 km of the road
was submerged in the past 16 years. From 2016 to 2020, the
length of roads affected by lake expansion increased significantly.
In particular, from 2018 to 2019, 8.44 km of roads around the lake
were swallowed and blocked by lake water in a year, accounting
for about 35% of the total length. It can be inferred that the lake
expanded near the subgrade in 2016, so a large part of the road
will be impacted and inundated by the lake every year with the
increase in lake water coverage.

The expansion of Tuosu Lake not only inundates the road
around the lake but also poses a serious threat to the Qinghai-
Tibet Railway. As shown in Figure 8, the shortest distance
between Tuosu Lake and the Qinghai–Tibet Railway in the
north was shortened year by year. The distance between both
was shortened from 1.06 km in 2000 to 0.85 km in 2021. Based on
the distance between Tuosu Lake and the Qinghai–Tibet Railway,
the expansion of the lake to the QinghaiTibet Railway can be
divided into three stages: 2000–2013, 2013–2017, and after 2017.
More than 40% of the distance shortening occurred after 2017,
and the average rate of distance shortening after 2017 is twice that

FIGURE 7 |Comparison of area changes of Tuosu Lake. (A) Scene of the whole lake. (B) and (D) show the local scene of Tuosu Lake in 2000. (C) and (E) show the
local scene of Tuosu Lake in 2021. The base map of (A) and (C)–(E) is the Landsat OLI image (RGB); (B) is the Landsat ETM+ image (RGB).

FIGURE 8 | Length change of the road submerged and the distance
change between Tuosu Lake and the Qinghai–Tibet Railway.
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of 2013–2017 and four times that of 2000–2013, which means the
expansion of Tuosu Lake to the Qinghai–Tibet line is
accelerating.

5 DISCUSSION

5.1 Driving Factors of the Lake Change
The expansion of the enclosed lake mainly depends on the water
supply components such as lake surface precipitation, surface
water runoff into the lake, and groundwater runoff into the lake,
as well as the water consumption part such as lake surface
evaporation (Zhang et al., 2013). There is an increasing trend
in temperature and precipitation in the Qaidam basin in recent
years. The temperature change range gradually decreases from
west to east. The precipitation increases as a whole, but the
change rate in the central and western regions is much lower than
that in the eastern region (Gegen et al., 2020).

Due to the harsh environment, there are few human activities in
the Tuosu Lake area, so the expansion of its water area is mainly
related to natural factors. To explore the relation between climate
change and area change of Tuosu Lake, we selected meteorological
data including temperature, precipitation, and potential evaporation
provided by ERA5 data obtained by the GEE cloud-based platform.
The average annual temperature of the Qaidam Basin in 2000–2021
is about 5.06°C, the average annual precipitation is about 92.64mm,
and the average potential evaporation in the Tuosu Lake area is
643.69mm water equivalent. The overall trend from 2000 to 2021
shows that the temperature and precipitation in the Tuosu Lake area
are increasing, whereas evaporation is decreasing. Comparedwith the
change in the lake area mentioned in the previous section, it can be
inferred that the change in the lake area is positively related to
temperature and precipitation and negatively related to evaporation.
However, there is no glacier in the Tuosu Lake basin, so the

temperature affecting the melting of glaciers and snow can be
excluded. In the band “potential evaporation” provided by ERA5
data, negative values represent evaporation, and positive values
represent condensation. It can be seen from Figure 10 that the
change in precipitation and evaporation from 2013 to 2016 is
relatively gentle, so the change in the lake area is also relatively
moderate; from 2016 to 2018, precipitation increased, evaporation
decreased, and the lake experienced a rapid expansion period. After
2018, both precipitation and evaporation fluctuate, and their joint
action makes the lake continue to expand. Undoubtedly, a
combination of the increased precipitation and the decreasing
evaporation led to the expansion of Tuosu Lake.

5.2 Lake Expansion Control Measures
During 2000–2021, the area of Tuosu Lake expands by nearly
46 km2. From a dialectical point of view, the impact of the
expansion of Tuosu Lake has two sides. The Qaidam Basin

FIGURE 9 | Road inundation in 2000, 2013, 2018, 2019, 2020, and 2021.

FIGURE 10 | Change in temperature, precipitation, and evaporation
from 2000 to 2021.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9340338

Sha et al. GEE-Based Lake Change Monitoring

212

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


has high evaporation, low precipitation, and an arid climate.
Water is the most precious natural resource for ecological
protection and regional sustainable development in this area.
The expansion of Tuosu Lake can improve the surrounding arid
environment, increase the humidity of the air, and enhance the
self-healing ability of the ecological environment. Meanwhile, the
pumping from Keluke Lake, a freshwater lake upstream of Tuosu
Lake, not only decelerates the expansion of the latter but also
supplies agricultural irrigation and residential water in the
surrounding area.

Currently, the main potential hazard of the expansion of
Tuosu Lake is the threat to the road along the north bank and
the Qinghai–Tibet Railway in the northwestern part. The former
was partly destroyed and will be easily submerged with the rise in
the water level. If the road is reconstructed, the filling of high
subgrade or the overall diversion to the higher altitude on the
north side should be adopted, which will spend a huge cost. The
other alternative is to strengthen the mending and the
maintenance of roads from the eastern Tuosu Lake, which will
connect the famous tourist attraction, i.e., the Mar Base. One
viaduct of the Qinghai–Tibet Railway passes through the low
altitude area near the lake area. According to the change in Tuosu
Lake, the lake expands rapidly toward the northwest direction.
Therefore, the bridgehead embankment should be taken for risk
avoidance. Due to the importance of the Qinghai–Tibet Railway,
the intensive monitoring of Tuosu Lake will need to strengthen in
the future.

6 CONCLUSION

This study mainly monitors the area change of Tuosu Lake based on
the GEE remote sensing big data platform. The conclusions are as
follows: 1) compared with the three surface water extractionmethods
of NDWI, MNDWI, and SVM, and combined with the prediction
accuracy and operation efficiency of the model, it is concluded that
the NDWI method is more suitable for extracting the water body of
Tuosu Lake. 2) During 2000–2021, the area of Tuosu Lake increased
by about 45.79 km2, which can be roughly divided into a slow growth
period (2000–2013, 1.20 km2/a), a stable period (2013–2016,
0.49 km2/a), a slow expansion period (2016–2017, 1.97 km2/a),
and a rapid expansion period (2017–2021, 7.43 km2/a). In
particular, in 2019–2020, the lake area increased sharply by
9.22 km2. The change in the Lake area is positively correlated with

temperature and precipitation and negatively correlated with
evaporation. 3) The expansion of Tuosu Lake has affected the
surrounding traffic lines. In 2021, the road around the lake has
been submerged for 19.17 km, and the water body is only 0.85 km
away from the Qinghai Tibet line. Therefore, we suggested that the
relevant departments should strengthen the monitoring of Tuosu
Lake and adopt some measures including controlling the upper
stream water supply and digging out the water outlet to mitigate
its expansion.
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Understanding the Eastward Shift and
Intensification of the ENSO
Teleconnection Over South Pacific
and Antarctica Under Greenhouse
Warming
YaWang1,2,3, Gang Huang1,2,3*, Kaiming Hu1,4*, Weichen Tao1, Hainan Gong4, Kai Yang1 and
Haosu Tang1

1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of
Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 2Laboratory for Regional Oceanography and Numerical
Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, 3University of Chinese Academy of
Sciences, Beijing, China, 4Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing, China

The Pacific–South America (PSA) teleconnection pattern triggered by the El Niño/Southern
Oscillation (ENSO) is suggested to be moving eastward and intensifying under global
warming. However, the underlying mechanism is not completely understood. Previous
studies have proposed that themovement of the PSA teleconnection pattern is attributable
to the eastward shift of the tropical Pacific ENSO-driven rainfall anomalies in response to
the projected El Niño-like sea surface temperature (SST) warming pattern. In this study, we
found that with uniform warming, models will also simulate an eastward movement of the
PSA teleconnection pattern, without the impact of the uneven SST warming pattern.
Further investigation reveals that future changes in the climatology of the atmospheric
circulation, particularly the movement of the exit region of the subtropical jet stream, can
also contribute to the eastward shift of the PSA teleconnection pattern by modifying the
conversion of mean kinetic energy to eddy kinetic energy.

Keywords: El Niño/Southern oscillation, Global Warming, Subtropical Jet Stream, Pacific–South American
teleconnection pattern, ENSO teleconnection

INTRODUCTION

The El Niño/Southern Oscillation (ENSO), as the primary interannual air-sea coupled mode in the
tropical Pacific, has significant effects on the global climate variability (Hoerling et al., 1997; Horel
and Wallace 1981; Hu et al., 2021; Liu and Alexander 2007; Trenberth et al., 1998; Xie et al., 2016;
Straus and Shukla 2002; Yang et al., 2018; Sun et al., 2019; Sun et al., 2022). The ENSO has a three-
pronged effect on the climate variability in the extratropics of the Southern Hemisphere. To begin, El
Niño events warm the tropical atmosphere at all longitudes, resulting in the strengthening and
equatorward movement of the subtropical jet stream (STJ) and descending branches of the Hadley
circulation (Rind et al., 2001; Seager et al., 2003; Lu et al., 2008). Second, ENSO can affect the
Southern Hemisphere Annular Mode by influencing the propagation and intensity of transient
eddies (Fogt et al., 2011; L’Heureux and Thompson 2006; Lau and Lau 1992; Lau et al., 2005; Seager
et al., 2003). Third, the ENSO signal is capable of propagating to mid- and high-latitudes, as well as to
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Antarctica, via stationary waves generated by the anomalous
tropical convection in the tropical Pacific (Held et al., 2002;
Schneider et al., 2012). In the Southern Hemisphere, the
ENSO teleconnection resembles the Pacific–South American
(PSA) wave train characterized by alternating pressure centers
east of New Zealand, near the Amundsen Sea and South America,
curving poleward and eastward toward Antarctica, highly
impacting the depth of the Amundsen Sea Low (Karoly 1989;
Mo and Higgins 1998; Mo and Paegle 2001; Schneider et al.,
2012). The variability of the Amundsen Sea Low could further
modulate the temperature and sea ice anomalies over Antarctica
(Yuan and Martinson 2000; Yuan 2004; Li et al., 2015; Wang
et al., 2020; Wang et al., 2022).

The PSA teleconnection pattern triggered by ENSO events
is strongly seasonally dependent and is zonally asymmetric
during El Niño and La Niña years (Jin and Kirtman 2009;
Hitchman and Rogal 2010; Ding et al., 2012; Schneider et al.,
2012; Li et al., 2021). The seasonality of the PSA being more
pronounced in austral winter and spring is primarily
attributable to the seasonal variation in the STJ. A
stronger and more equatorward STJ in austral winter and
spring favors the formation of the Rossby wave source
(Sardeshmukh and Hoskins 1988) in the subtropical
Pacific, resulting in a more pronounced PSA
teleconnection pattern (Jin and Kirtman 2009; Scott Yiu
and Maycock, 2019). The asymmetric impacts between the
warm and cold phase of ENSO, which exhibit a more
eastward PSA wave train during El Niño than La Niña,
can be attributable to the shift of the anomalous tropical
convection and the discrepancy of the STJ (Hoerling et al.,
1997; Wang et al., 2021; Wang et al., 2022).

Under global warming, Pacific–North American (PNA)
and the PSA teleconnection pattern triggered by ENSO
events are both projected to move eastward and intensify
(Zhou et al., 2014; Cai et al., 2021). Previous studies have
proposed that the movement of the teleconnection pattern is
attributable to the eastward shift of the ENSO-driven rainfall
anomalies over the tropical Pacific in response to the
projected El Niño-like warming pattern (Zhou et al., 2014;
Cai et al., 2021; Hu et al., 2021). As a result of the overall
reduction of the tropical circulations due to the increased

static stability in the tropics under greenhouse warming, the
tropical Pacific sea surface temperature (SST) change features
an El Niño-like warming pattern (Held and Soden 2006;
Huang and Xie 2015; Yeh et al., 2018). The background
warming pattern, in turn, results in the intensification and
the eastward movement of the ENSO-driven rainfall
anomalies in the tropical Pacific (Power et al., 2013; Huang
and Xie 2015). In response to the changes in the ENSO-driven
rainfall anomalies, the extratropical Rossby wave trains, as the
PSA and PNA teleconnection pattern, are projected to shift
eastward and strengthen in previous studies (Cai et al., 2021;
Zhou et al., 2014; Yeh et al., 2018).

In addition to tropical heating anomalies, the PSA
teleconnection pattern is modulated by the extratropical
circulation (Meehl et al., 2007; Muller and Roeckner 2008).
Several early (Simmons et al., 1983; Ting and Yu 1998) and
recent studies (Wang et al., 2021; Wang et al., 2022) have
suggested that the STJ is critical in determining the position of
extratropical ENSO teleconnections. Here, we showed that the
eastward shift of the PSA teleconnection pattern is presented even
without the impact of the uneven SST warming pattern, in which
the future change of climatological circulation plays an
important role.

The remainder of this study is organized as follows:
Section 2 introduces data and methods. Section 3 presents
the results involving the changes in the teleconnection
pattern and the underlying mechanisms. Section 4
provides a summary.

TABLE 1 | AMIP models from CMIP6 used in this study.

Model Institute

BCC-
CSM2-MR

Beijing Climate Center, China

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada
CESM2 National Center for Atmospheric Research, USA
CNRM-CM6-1 Centre National de Recherches Meteorologiques, France
GFDL-CM4 National Oceanic and Atmospheric Administration, Geophysical

Fluid Dynamics Laboratory, USA
IPSL-
CM6A-LR

L’Institut Pierre-Simon Laplace, France

MRI-ESM2-0 Meteorological Research Institute, Japan
MIROC6 The University of Tokyo, National Institute for Environment

Studies, and Japan Agency for Marine-Earth Science and
Technology, Japan

FIGURE 1 | Regression of the 200-hPa geopotential height (m) during
austral winter on the Niño3.4 index in (A) ERA-I and (B) AMIP. Stippling in
(A,B) suggests passing the 95% confidence level, and more than 70% of
models agree on the sign of the multi-model ensemble (MME),
respectively.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9166242

Wang et al. ENSO Teleconnection

217

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


DATA AND METHODS

a. Reanalysis and model data

To investigate the future change of the ENSO-triggered
PSA teleconnection pattern under global warming, a set of
atmospheric-only experiments from the phase 6 of the
Coupled Model Intercomparison Project (CMIP6) is
utilized. The experiments, namely, AMIP, AMIP-p4K with
uniform warming, and AMIP-future4K with patterned
warming, are simulated by the atmospheric general
circulation models. AMIP is forced by the observed
monthly sea ice and SST; the latter two are forced by the
observed SST anomalies and the uniform SST, and patterned
climatological SST obtained from CMIP5 ensemble mean
SST changes at 4 × CO2, respectively. The details of the
models are listed in Table 1.

In this study, the July–August (JJA) mean geopotential
height is derived from the European Centre for Medium-
Range Weather Forecasts Interim Reanalysis (ERAI;
Berrisford et al., 2011) at a resolution of 2.5° × 2.5° from
1979 to 2014. The Niño 3.4 index is from the
climate prediction center of NOAA (https://www.cpc.ncep.
noaa.gov/), and the principal component of the first
empirical orthogonal functional mode of the SST over the

tropical Pacific (120°E–80°W, 15°S–15°N) is defined as the Niño
index in the AMIP simulations. Regression analysis is used,
and the statistical significance of this study is evaluated by the
two-tailed Student’s t-test.

b. Linearized Baroclinic Model (LBM)

The LBM used in this study is based upon the
primitive equations linearized at a given state with a
horizontal resolution of T42 and 20 sigma levels and
schemes for horizontal and vertical diffusion, Rayleigh
friction, and Newtonian damping. This model is
widely used and has an irreplaceable role in the study of
climate dynamics (Xie et al., 2009; Hu et al., 2019).
More details of the model are presented in Watanabe
and Kimoto (2000). To produce a stable atmospheric
response to the heating forcing, the model is integrated
for 50 days, and the average from the 20th to 50th day is
used for analysis.

c. Kinetic energy conversion

As stated by Kosaka and Nakamura (2006), the barotropic
growth of the local kinetic energy associated with perturbations
from the basic state is given by

FIGURE 2 |Simulated ENSO-driven rainfall anomalies (mm/day, left column) and ENSO-driven geopotential height anomalies (m, right column) in (A,B) AMIP, (C,D)
AMIP-future4K, and (E,F) AMIP-p4K MME. The precipitation anomalies in (C,E) denote the precipitation change compared to AMIP. Stippling denotes that more than
70% of models agree on the sign of the MME.
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Here, u′ and v′ are the anomalous zonal and meridional
winds, respectively. �u and �v denote the zonal and meridional
climatological winds, respectively. KEH is horizontal
perturbed kinetic energy, and CK (the sum of CKx and
CKy) is the conversion of local kinetic energy from the
basic state to atmospheric anomalies.

RESULTS

a. Evaluation of the AMIP simulations of the ENSO-triggered
PSA teleconnection pattern.

The atmospheric anomalies triggered by ENSO during austral
winter are depicted in Figure 1 in observations and AMIP. In the

tropical Pacific, the anomalous convective heating excites a Gill-
like response (Figure 1A). The extratropical teleconnection
pattern resembles the PSA wave train, characterized by an
anomalous low-pressure center east of New Zealand, a high-
pressure anomaly near the Amundsen Sea in the Pacific sector.
The structure of the atmospheric responses to ENSO in the AMIP
is comparable to that observed with a pattern correlation
coefficient between atmospheric anomalies in ERAI and AMIP
(0–90°S; 0–360°) of up to 0.79. The resemblance shows that the
AMIP models are capable of simulating the ENSO teleconnection
in the Southern Hemisphere. It should be noted that the intensity
of the PSA teleconnection pattern in AMIP is weaker than
observed, suggesting that there may be some common bias in
AMIPmodels, but this inaccuracy does not affect our conclusions
as we mainly made comparisons between different AMIP
experiments. As a result, it is feasible to undertake subsequent
investigations using these simulations.

b. Results in AMIP-p4K and AMIP-future4K

FIGURE 3 |MME of the JJA climatological zonal wind (contour lines; m/s) and CK (shading in a–c; m2/s3) and CKx (shading in d–f; m
2/s3) in (A,D) AMIP, (B,E) AMIP-

future4K, and (C,F) AMIP-p4K. The dots indicate that more than 70% of models agree on the sign of the MME. The navy dot denotes the central position of the CK in the
mid-latitudes in AMIP, and the red dots in (B,C) denote the central position of the CK in the mid-latitudes in AMIP-future4K and AMIP-p4K, respectively. (C) Role of
the STJ.
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Figure 2A presents the ENSO-driven rainfall anomalies in the
tropical Pacific in AMIP. Positive responses are distributed in the
eastern and central Pacific, whereas negative responses are found
on the north flank of the equatorial eastern Pacific which is
mainly contributed by the anomalous dry advection (Su and
Neelin 2002). In comparison to AMIP, ENSO-driven
precipitation anomalies increase in the central and eastern
Pacific in the AMIP-future4K and decrease in the western
tropical Pacific, resulting in an overall eastward shift and
amplification of the precipitation anomalies in the tropical

Pacific (Figure 2C). The changes between AMIP-future4K and
AMIP are consistent with prior results based on the future
simulations in CMIP5/6, which suggest that the El Niño-like
warming pattern leads to an eastward shift and intensification of
ENSO convective anomalies in the tropical Pacific (Huang and
Xie 2015).

Compared with the PSA teleconnection pattern in AMIP, the
experimental result from AMIP-future4K displays a more
eastward and more intense PSA teleconnection pattern
(Figures 2B,D). The concurrent intensification and the
eastward movement of the ENSO-driven rainfall anomalies in
the tropical Pacific and the PSA teleconnection pattern in AMIP-
future4K are consistent with earlier studies (Zhou et al., 2014; Cai
et al., 2021). When only the climatological SST differs between
AMIP and AMIP-future4K, this discrepancy brings several
additional changes, including changes in the water vapor, the
position of ENSO-driven precipitation anomalies, and the
background atmospheric circulation. Previous studies have
suggested that all these factors may have an effect on the
ENSO teleconnection pattern (Held and Soden 2006; Huang
and Xie 2015; Hu et al., 2021).

To disentangle the above factors and examine the causal
relationship between each factor and the future changes in the
PSA teleconnection pattern, the AMIP-p4K experiment is further
introduced for comparison. AMIP-p4K results show a minor
increase in ENSO-driven rainfall anomalies over the northeastern
tropical Pacific and a decrease in the central and southwestern
Pacific relative to that in the AMIP experiment (Figure 2E). The
amplitude of ENSO-driven rainfall anomalies over the tropical
Pacific in AMIP-p4K is significantly smaller than that in AMIP-
future4K and is insufficient to cause the eastward shift and
intensification of ENSO-driven precipitation anomalies relative
to that in AMIP.

By further comparing the circulation changes in AMIP-p4K
and AMIP-future4K, we found that the El Niño-like warming
pattern significantly intensifies the PSA wave train (Figures
2D,F). Corresponding to more intense precipitation anomalies
in AMIP-future4K with the El Niño-like warming pattern, the
strength of the PSA teleconnection pattern is significantly
stronger than that in AMIP, whereas the PSA teleconnection
pattern in AMIP-p4K is comparable to that in AMIP. The result
demonstrates that the future climatological warming pattern
contributes to the intensification of the ENSO-triggered PSA
teleconnection pattern.

In terms of the movement of the PSA teleconnection pattern,
despite the substantial difference in the climatological SST between
the two experiments, the PSA teleconnection pattern shifts a
comparable distance. This finding suggests that the causal link
between the movement of the ENSO-driven rainfall anomalies in
the tropical Pacific and the shift of the PSA wave train may be
insufficiently robust, and other causes may potentially contribute to
the shift of the PSA teleconnection pattern.

The STJ is critical in the development of the subtropical
disturbance via barotropic energy conversion (Simmons et al.,
1983), acting as an anchor for the location of the ex-tropical wave
train triggered by the tropical heating (Ting and Yu 1998). The
variation of the STJ plays an important role in the asymmetric

FIGURE 4 | JJA climatology of the zonal wind (contour lines; m/s) and
the MME of z�uzx (shading; s

−1) in (A) AMIP, (B) AMIP-future4K, and (C) AMIP-
p4K. The dots indicate that more than 70% of models agree on the sign of the
MME. The navy solid circle denotes the central longitude of z�uzx in the mid-
latitudes in AMIP, and the red circle in (B,C) denotes the central longitudes of
z�u
zx in the mid-latitudes in AMIP-future4K and AMIP-p4K, respectively.
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impacts of ENSO on the PSA teleconnection pattern by altering
the barotropic energy conversion (Wang et al., 2021). In the
following study, the movement of the PSA teleconnection pattern
under global warming is investigated from the perspective of
energy conversion.

Figure 3 presents the climatological zonal winds and the CK in
three experiments. In AMIP, the positive CK at the exit of the STJ
is consistent with the position of the atmospheric anomaly east of
New Zealand (Figures 2B, 3A), indicating the importance of the
CK in the development of the disturbance. The majority of the

FIGURE 5 | (A) Horizontal distribution and (B) vertical profile of imposed atmospheric diabatic heating (K day−1) in the central Pacific in the two LBM experiments.
The climatological zonal wind (contour lines, m/s) and the 200-hPa geopotential height (shading, m) responded to the heating sources in (C) EXP1 and (D) EXP2. CKx

(contour lines; m2/s3) and z�u
zx (shading, s

−1) in (E) EXP1 and (F) EXP2. Adapted from Wang et al. (2022). © American Meteorological Society. Used with permission.
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positive CK at the exit of the STJ is contributed by CKx (Figures
3A,B). According to Eq. 1, the zonally elongated (u’>v’)
atmospheric anomaly east of New Zealand is eager to extract
barotropic energy (CKx) from the basic mean flow (Figure 3A)
and develops at the exit region of the STJ where the mean zonal
flow is confluent (z�uzx< 0; Figure 4A).

In AMIP-future4K, the exit region of the STJ with substantial
confluence shifts eastward at about 10° longitudes (Figure 4B). As
the exit region of the STJ moves eastward (see the navy and red
solid circles in Figure 4B), the strong positive CK favorable to the
development of atmospheric anomalies move eastward in
lockstep (see the navy and red solid circles in Figure 3B).
Similar to AMIP-future4K, the eastward shift of the PSA
teleconnection pattern in AMIP-p4K is accompanied by the
movement of the STJ exit and the positive CK in the
subtropical Pacific (Figures 3C, 4C).

The aforementioned result illustrates that the movement of the
climatological STJ exit region contributes to the shift of the PSA
teleconnection pattern. To further confirm the effect of STJ
changes on the PSA teleconnection pattern, a set of LBM
experiments are utilized for investigation, following Wang
et al. (2022). The first LBM experiment (EXP1) is forced by
the heating source centered at 150°W (Figures 5A,B) and the JJA
climatological mean flow. The prescribed heating source has a
cosine elliptical pattern, with a peak of −3 K day−1 at the 0.45
sigma level. The horizontal distribution and the vertical profile of
the heating source are presented in Figures 5A,B, respectively.
The second experiment (EXP2) utilizes the same heating source
but shifts the mean flow 20° longitude westward, mimicking the
movement of the STJ exit region. In EXP1, the atmospheric
response to the tropical heating in the subtropical Pacific is
centered at the exit of the STJ, where the climatological zonal
flow is significantly confluent (Figures 5C,D). Similar to the
experimental results in AMIP experiments, the strong positive
CK which contributes to the development of the disturbance is
detected at the exit of the STJ in EXP1. However, in EXP2, with
the same tropical heating source, the strong positive CK in the
mid-latitudes moves westward, paralleling the change of the exit
of the climatological STJ (Figure 5D). The consistent movement
of the positive CK and disturbance in the subtropical Pacific
(Figures 5E,F) demonstrate that the movement of the STJ exit
region causes a shift in the position of the PSA teleconnection
pattern by modifying the conversion of mean kinetic energy to
eddy kinetic energy.

CONCLUSION AND DISCUSSION

In this study, the underlying mechanisms of the eastward shift
and intensification of the ENSO-triggered PSA teleconnection
pattern under global warming are investigated based on a set of
AMIP experiments from CMIP6.

By comparing the AMIP-p4K and AMIP-future4K, it is found
that the El Niño-like warming significantly intensifies the PSA
wave train. Corresponding to more intense precipitation
anomalies over tropical Pacific in AMIP-future4K with
patterned warming, the strength of the PSA teleconnection

pattern is significantly stronger than that in AMIP, whereas
the PSA teleconnection pattern in AMIP-p4K with uniform
warming is comparable to that in AMIP.

We found that the PSA teleconnection pattern triggered by
ENSO will still shift eastward under global warming with the
absence of El Niño-like SST warming. Despite the significant
difference in the climatological SST between AMIP-p4K and
AMIP-future4K, the PSA teleconnection pattern shifts a
comparable distance in the two experiments relative to that in
AMIP. Further investigation reveals that changes in the
climatological STJ, particularly the movement of the exit
region of the STJ, can significantly affect the position of the
PSA teleconnection pattern by influencing the conversion of
mean kinetic energy to eddy kinetic energy. The eastward shift
of the exit region of the Pacific STJ in both experiments
causes the position where the disturbance is most likely to
develop to move eastward, which in turn leads to the eastward
shift of the PSA teleconnection pattern. Our results,
therefore, emphasize the importance of the climatological
circulation change on the projected eastward shift of the PSA
teleconnection pattern.

The mechanism proposed in this study complements the
previous mechanism (Cai et al., 2021; Kug et al., 2010; Meehl
et al., 2007; Muller and Roeckner, 2008; Zhou et al., 2014), and
taken together, they may collectively contribute to the eastward shift
of the PSA teleconnection pattern. This study is based on AMIP
experiments which do not incorporate air–sea coupling processes;
further research using the coupledmodel should be conducted in the
future to better understand the issue and quantify the contributions
of the STJ, SST warming pattern, and the CO2 direct radiation to the
eastward movement and the intensification of the ENSO-triggered
PSA teleconnection pattern.
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Reanalysis temperature products are important datasets for temperature estimates over high-
elevation areas with few meteorological stations. In this study, surface 2m air temperature
data from 17 meteorological stations from 1979 to 2017 in the Qilian Mountains (QLM) are
used for comparison with the newest reanalysis product: ERA5-Land derived from the
European Centre for Medium-Range Weather Forecasts (ECMWF). In general, the ERA5-
Land temperature product can reproduce the observation variation at different time scales
very well. A high monthly correlation coefficient that ranges from 0.978 to 0.998 suggests that
ERA5-Land reanalysis temperature could capture the observations very well. However,
attention should be paid before using ERA5-Land at individual sites because of the
average root-mean-square-error (RMSE) of 2.2°C of all stations. The biases between
ERA5-Land temperature and observations are mainly caused by the elevation differences
between ERA5-Land grid points and meteorological sites. The annual mean temperature
shows a significant warming trend (0.488°C/decade) from 1979 to 2017 based on the
observations. ERA5-Land reanalysis temperature captures the increasing trend very well
(0.379°C/decade). The biggest positive warming trends of observations and ERA5-Land are
both found in summer with values of 0.574°C/decade and 0.496°C/decade, respectively. We
suggest that ERA5-Land generally reproduces the temperature trend very well for
observations and is reliable for scientific research over the QLM.

Keywords: reanalysis, air temperature, ERA5-Land, Qilian Mountains, warming trend

1 INTRODUCTION

The Qilian Mountains (QLM) comprise an important ecological protection barrier and one of the
most important sources of water to northwestern China. The mountain range is extremely important
for assessing climatic and environmental changes across China (Lin et al., 2017; Wang et al., 2019).
The QLM system not only is the source of many rivers but also hosts a unique desert oasis ecosystem
(Sun and Liu, 2013; Wang et al., 2019). However, most glaciers in the QLM exhibit accelerated
degradation because of recent climate warming (Qian et al., 2019).

In general, previous studies about temperature change characteristics in the QLMwere completed
by using observations. However, surface meteorological stations are spare in the QLM, especially
above 3000 m. Thus, limited observations or remote sensing products are the commonly used data
resources in previous studies about climate change in the QLM. Jia (2012) used observational data
and found that the extremes of seasonal high temperature in the QLM showed a significantly
increasing trend, and the extremes of seasonal low temperature showed a significantly decreasing

Edited by:
Domenico Capolongo,

University of Bari Aldo Moro, Italy

Reviewed by:
Weijun Sun,

Shandong Normal University, China
Antonella Belmonte,

National Research Council (IREA-
CNR), Italy

*Correspondence:
Zhibin He

hzbmail@lzb.ac.cn

Specialty section:
This article was submitted to

Interdisciplinary Climate Studies,
a section of the journal

Frontiers in Earth Science

Received: 30 March 2022
Accepted: 16 June 2022

Published: 08 August 2022

Citation:
Zhao P and He Z (2022) A First

Evaluation of ERA5-Land Reanalysis
Temperature Product Over the

Chinese Qilian Mountains.
Front. Earth Sci. 10:907730.

doi: 10.3389/feart.2022.907730

Frontiers in Earth Science | www.frontiersin.org August 2022 | Volume 10 | Article 9077301

ORIGINAL RESEARCH
published: 08 August 2022

doi: 10.3389/feart.2022.907730

225

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.907730&domain=pdf&date_stamp=2022-08-08
https://www.frontiersin.org/articles/10.3389/feart.2022.907730/full
https://www.frontiersin.org/articles/10.3389/feart.2022.907730/full
https://www.frontiersin.org/articles/10.3389/feart.2022.907730/full
http://creativecommons.org/licenses/by/4.0/
mailto:hzbmail@lzb.ac.cn
https://doi.org/10.3389/feart.2022.907730
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.907730


trend. Zhang et al. (2009) used observational data and found that
temperature changes in the QLM were well synchronized with
those in the entire northwestern region and that temperature
changes in the western part of the QLM were more significant
than those in the eastern and middle sections. Wang et al. (2019)
studied the temperature variability at annual and seasonal scales
during 1960–2016 using monthly observational data in the QLM,
results found that the changes in winter temperature made the
greatest contribution to the annual temperature changes. Lin et al.
(2017) used observational data and found that temperature
extremes in the QLM exhibited a significant warming trend,
consistent with global warming. Warming trends in autumn and
winter were greater than in spring and summer. Cao et al. (2018)
analyzed the temporal variability and spatial distribution of air
temperature in the south slope of QLM from 1960 to 2014 by
using observational data, and the results showed that the
increasing trends of mean annual air temperature, minimum,
and maximum temperatures in the QLM are 0.35°C/decade,
0.27°C/decade, and 0.47°C/decade, respectively. Fu et al. (2018)
used observational data and found that the temperature mutation
of multiannual, maximum, and minimum temperatures in the
QLM occurred in 1991, 1995, and 1990, respectively. Wang et al.
(2019) analyzed the annual and seasonal variability in
temperature during 1960–2016 using monthly data from
meteorological stations in the QLM, and the results showed
that temperature in the whole regions, oasis, and mountains
increased at the rate of 0.32°C/decade, 0.32°C/decade, and 0.33°C/
decade, respectively. Cao et al. (2018) analyzed the variability of
air temperature in the south slope of the QLM by using
observational data from 1960 to 2014, and the results showed
that the mean annual air temperature exhibited a unanimously
fluctuating increasing trend with the rate of 0.35°C/decade.

Compared with varied reanalysis products, some shortages exist
in the observations from meteorological stations, such as shorter
time series and low spatial density, especially in high-elevation
areas. Various interpolation methods often cause large biases
because of the limitations of the spatial interpolation itself, such
as the density and uneven distribution of stations (Gao et al., 2018).
Reanalysis products have been commonly applied in previous
studies because of their high spatial resolution and long-time
series (Gao et al., 2018; Zhang et al., 2021). However, there
some biases may exist between reanalysis data and observations,
which suggest that caution is needed before using reanalysis data.
For example, Wang et al. (2018) evaluated the reliability of ERA-
Interim reanalysis precipitation and temperature data in mainland
China, and the results indicated that caution should be paid when
using ERA-Interim precipitation and temperature in areas with
complex orography. Jiao et al. (2021) showed that the accuracy of
the ERA5 reanalysis precipitation products was strongly correlated
with topographic distribution and climatic divisions in China.
Therefore, it is still a necessity to assess the quality and bias of
reanalysis data, especially in areas with complex topography.

Many studies are concentrating on the evaluation of ERA5-
Land in different regions. Xin et al. (2021) evaluated and compared
the ability of two ERA5 precipitation products, ERA5-Land and
ERA5-HRES, in the Guangdong-Hong Kong-Macao Greater Bay
Area (GBA) using observations from over 3000 rain gauges in a

high-density network during 2018, and the results showed that
ERA5-Land data with finer spatial resolution fail to deliver any
preferable results than ERA5-HRES. Zou et al. (2022) evaluated the
ERA5-Land air temperature data in the GBA by using the
observations of 1080 automatic weather stations in 2018, and
the results showed that ERA5-Land underestimates temperature
(an average bias of 0.90°C) and performs better at low temperatures
than at high temperatures. The spatial pattern of ERA5-Land is
generally consistent with that of stations but relatively poor in
urban areas. In addition, ERA5-Land properly captures daily and
monthly variations, as well as intraday temperature fluctuations
(Zou et al., 2022). Chen et al. (2021) found that the high-resolution
ERA5-Land and ERA5 datasets well present the observed spatial
pattern of precipitation but with a generally overestimated amount
in the southern slope of central Himalaya. Hong et al. (2021) found
that ERA5 and ERA5-Land precipitation products have similar
spatiotemporal error characteristics, and ERA5-Land performs
better than ERA5 over Jiangxi Province in 2019. Wu et al.
(2021) evaluated the ERA5-Land soil moisture (SM) datasets in
China, and the results indicated that ERA5-Land showed a larger
bias in (semi-) humid areas (0.06 m3/m3 on an average) and had
higher temporal precision in the southern areas inChina, which are
mostly determined by their SM climatology. Cao et al. (2020)
concluded that ERA5-Land soil data are not well suited for
informing permafrost research and decision making directly.

In the QLM, there were some evaluations of the reliability of
reanalysis data in previous studies. For example, Zhao et al. (2020)
evaluated the reliability of ERA-Interim temperature data over the
QLM, and the results showed that ERA-Interim temperature is
generally reliable for climate change research over the QLM. Huai
et al. (2021) evaluated the applicability of ERA5, JRA-55, ERA-
Interim, and HAR reanalysis in the QLM, and the results showed
that ERA5 outperforms for most variables in correlation
coefficients, especially for wind speed, but is not significantly
improved than ERA-Interim of other variables. ERA5-Land is a
state-of-the-art global reanalysis data set for land applications.
However, there is very little research on the evaluation of the
reliability of ERA5-Land reanalysis data in the QLM, indicating
that the capabilities of land-surface climate in the QLM are
unknown. Thus, this evaluation results of ERA5-Land products
could provide a reference when using reanalysis data in the QLM.

This study uses 17 meteorological stations in the QLM during
the period of 1979–2017 to assess the monthly 2 m air temperature
in ERA5-Land products. This important evaluation could help
understand the reliability of ERA5-Land reanalysis for the local
climate studies. The structure of this study is divided into three
aspects. Section 1 introduces the ERA5-Land monthly average
temperature reanalysis data and observations as well as the
evaluation methods. The results and discussion are given in
Section 2, and finally, the conclusions are presented in Section 3.

2 DATA AND METHODS

2.1 ERA5-Land Reanalysis Data (Te)
ERA5-Land is the ECMWF’s newest reanalysis data set, which is a
state-of-the-art global reanalysis data set for land applications
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(Joaquín et al., 2021). ERA5-Land has a higher resolution than
ERA-Interim and ERA5. The spatial resolution and horizontal
resolution of ERA5-Land are 0.1° × 0.1° and 10 km, respectively.
The time series of ERA5-Land covers the period 1950 to the
present. The ERA5-Land dataset includes hourly and monthly
dynamic data representing 50 indicators from 1950 to the present
(A. and G.B., 2021; The Alexander and Gregor, 2020; Cao et al.,
2020; Jiang et al., 2020; Jiao et al., 2021; Joaquín et al., 2021;

Konstantinos et al., 2021; Luis and Johannes, 2020; Pelosi et al.,
2020; Wu et al., 2021; Pelosi and Chirico, 2021; Xu et al., 2022).

In this study, ERA5-Land monthly averaged 2 m air
temperature data were used. The period ranged from January
1979 to December 2017, and the geographical locations ranged
from 35.8 to 40.0°N and from 93.5 to 104.0°E. The ERA5-Land
grid point covers all of the QLM region (Figure 1). The grid-point
altitude information was extracted from digital elevation model

FIGURE 1 | Spatial distribution of ERA5-Land grid points and meteorological stations over the QLM.

TABLE 1 | Meteorological stations information.

No Site Name Latitude (°) Longitude (°) Altitude (m) HERA (m) HERA-HObs (m)

1 Jiu Quan 39.67 98.72 1470 1397 −73
2 Gao Tai 39.38 99.72 1357 1342 −15
3 Zhang Ye 38.92 100.58 1550 1500 −50
4 Shan Dan 38.78 101.08 1760 1801 41
5 Yong Chang 38.23 101.97 1987 2022 35
6 Wu Wei 38.08 102.92 1525 1498 −27
7 Wu Shaoling 37.2 102.87 3045 3431 386
8 Gao Lan 36.55 103.67 2032 2033 1
9 Leng Hu 38.75 93.58 2762 3244 482
10 Tuo Te 38.87 98.37 3460 3621 161
11 Ye Niugou 38.62 99.35 3200 3575 375
12 Qi Lian 38.18 100.3 2800 3098 298
13 Da Chaidan 37.83 95.28 3000 3257 257
14 De Lingha 37.25 97.13 2762 2914 152
15 Gang Cha 37.33 100.17 3100 3275 175
16 Men Yuan 37.45 101.62 2800 4109 1309
17 Min He 36.23 102.93 1900 2144 244

HERA is the ERA5-Land grid-point height (m).
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data downloaded from Geospatial Data Cloud (https://www.
gscloud.cn) for the QLM (Table 1).

2.2 Observations (To)
We obtained observational temperature data and altitude
information for this study from the China Meteorological
data-sharing service system (http://cdc.cma.gov.cn/index.jsp).
The quality of temperature data was controlled and verified by
the provider. After strict quality control, the quality and
completeness of temperature data are significantly improved,
so that it can be applied directly in climate change research.
Temperature data for 1979 to 2017 from 17 ground observational
stations in the QLM were extracted and sorted into seasonal
and annual scales. Among the 17 meteorological stations in
the QLM, nine stations were from Qinghai Province and the
other eight stations were from Gansu Province. The 17 stations
are located within altitude ranges from 1000 to 3500 m; in
that, five stations were higher than 3000 m, of which station
No.10 (station Tuo Le) is the highest with an elevation of
3460 m. A detailed description of the information and spatial
distribution of 17 stations is shown in Figure 1 and Table 1.
ERA5-Land grid points nearest to each meteorological station
were selected for comparison based on the longitude and
latitude coordinates of 17 meteorological stations, which can
avoid the error caused by multigrid spatial interpolation (Zhao
et al., 2020). Seasons were identified for the purpose of this study
as follows: spring (March to May), summer (June to August),
autumn (September to November), and winter (December to
February).

2.3 Evaluation Methods
To evaluate the quality of the ERA5-Land data set, correlation
coefficient (r), bias, and root-mean-square-error (RMSE) were

computed for comparison of the ERA5-Land and observed
temperatures at the 17 meteorological stations at monthly,
seasonal, and annual temporal scales.

3 RESULTS AND DISCUSSION

3.1 Spatial Analysis of Average Annual and
Seasonal Mean Temperature
We analyze the spatial distribution characteristics of
temperature using 1983 ERA5-Land grid points within the
QLM from 1979 to 2017. In general, the climatology is
reflected by interpolating observations. However, this process
is completed by the density of observational stations. Just a few
stations are suited at the high-elevation areas within QLM
(especially above 3000 m), which causes an inaccuracy for the
plateau-wide temperature climatology. Figure 2 shows the
spatial distribution of annual mean temperature over the
QLM based on the ERA5-Land reanalysis. The green part
represents the low-temperature area, and the red part
represents the high-temperature area. The annual
temperatures in the central QLM are below 0°C (Figure 2).
The annual mean temperature ranged from −12°C to 6.6°C, with
an average temperature of 2.4°C/year. Furthermore, the mean
temperature of ERA5-Land decreases from the edge area to the
interior area, which demonstrates that ERA5-Land could
capture the climatology difference derived from topographic
features. Figure 3 shows the spatial distribution characteristics
of average seasonal mean temperatures across the QLM for
1979–2017 based on the ERA5-Land reanalysis. In the whole
QLM, the average mean temperatures in winter are below 0°C.
The temperatures in central QLM are lower than in the
surrounding regions. The temperature for the four seasons

FIGURE 2 | Spatial distribution of annual mean ERA5-Land temperature in the QLM.
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followed the order of summer > spring > autumn > winter. The
temperature changes show a strong spatial variance across the QLM.

3.2 Monthly Temperature Comparisons
Table 2 shows the comparison results of ERA5-Land monthly
temperature and observations in the corresponding period. The

correlation coefficient (r) ranged from 0.978 to 0.998 at all stations
with an average r of 0.993, which reveals that Te could capture the
observations annual cycle very well. The biases change from −5.6 to
1.6°C with an average of −1.3°C for all stations. Nine meteorological

FIGURE 3 | Spatial distribution of seasonal mean ERA5-Land temperature in the QLM.

TABLE 2 | Comparison of ERA5-Land monthly averaged temperatures with
observations at all 17 stations.

No r Bias (°C) RMSE (°C)

1 0.997 0.0 0.9
2 0.996 1.6 1.9
3 0.997 0.6 1.3
4 0.998 −0.7 1.0
5 0.997 −0.6 1.0
6 0.997 0.5 1.0
7 0.993 −0.4 1.5
8 0.995 −1.6 2.1
9 0.998 −1.2 1.6
10 0.983 −2.3 3.0
11 0.982 −4.6 4.9
12 0.982 −4.4 4.8
13 0.994 −2.3 2.6
14 0.997 −0.1 0.8
15 0.997 0.0 0.9
16 0.978 −5.6 6.0
17 0.995 −1.5 1.8

FIGURE 4 | Scatter plots of comparison of ERA5-Landmonthly temperature
with observations at station No. 16 in 1979–2017. The solid line is 1:1 line.
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sites have a bias from −1°C to 1°C. The positive values of bias
represent that Te is warmer than To, and the negative ones indicate
that Te is cooler than To. The largest negative bias (−5.6°C) happens
at station No.16, namely, station Men Yuan in the southeastern
QLM with an elevation of 2800m. However, the ERA5-Land grid
height at station No.16 is 4109m. Figure 4 shows the comparison of
ERA5-Land with observations for station No.16 (largest negative
bias) in their corresponding periods. ERA5-Land obviously
underestimates observations for station No.16. The largest RMSE
is also found at station No.16, whereas the smallest one is found at
station No.14. The RMSE changes from 0.8°C to 6.0°C with an
average of 2.2°C for all stations, which suggests that Te could not be
used directly in scientific research.

3.3 Seasonal and Annual Temperature
Comparisons
The high seasonal and annual r reflect the good consistency
between Te and To. However, it does not reflect the consistent

interannual and seasonal variability. Table 3 shows the r, bias,
and RMSE between Te and To at a seasonal scale. The averaged
values of r for all stations in spring, summer, autumn, and winter
are 0.874, 0.943, 0.739, and 0.786, respectively. Thirteen stations
have correlation coefficients of more than 0.8 in spring, whereas
8 and 10 stations meet this standard during autumn and winter,
respectively. All stations have a correlation exceeding 0.8 in

TABLE 3 | Comparison of ERA5-Land seasonal mean temperature with observations at all 17 stations.

No. r Bias (°C) RMSE (°C)

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

1 0.977 0.964 0.938 0.914 −0.8 −0.3 0.1 1.0 0.8 0.4 0.4 1.1
2 0.931 0.856 0.822 0.857 1.1 2.1 1.7 1.5 1.2 2.1 1.8 1.7
3 0.973 0.962 0.842 0.851 −0.3 −0.1 0.9 2.0 0.4 0.3 1.0 2.1
4 0.956 0.959 0.844 0.863 −0.7 −0.8 −0.8 −0.4 0.8 0.8 0.9 0.8
5 0.939 0.942 0.810 0.842 −1.0 −0.1 −0.8 −0.5 1.0 0.3 1.0 0.9
6 0.927 0.893 0.765 0.895 0.3 1.1 0.3 0.0 0.6 1.2 0.8 0.7
7 0.912 0.980 0.806 0.768 −0.1 0.7 −0.2 −1.9 0.5 0.7 0.8 2.1
8 0.950 0.908 0.781 0.890 −2.6 −2.2 −1.7 0.1 2.6 2.2 1.8 0.5
9 0.931 0.940 0.921 0.898 −1.5 −2.4 −0.8 −0.1 1.5 2.4 0.9 0.5
10 0.604 0.953 0.332 0.569 −3.3 −3.0 −2.4 −0.3 3.4 3.0 2.9 1.1
11 0.617 0.970 0.544 0.773 −6.2 −3.8 −5.0 −3.4 6.3 3.8 5.2 3.5
12 0.772 0.967 0.521 0.559 −6.1 −3.1 −4.5 −4.0 6.1 3.1 4.7 4.1
13 0.778 0.922 0.604 0.742 −2.9 −2.9 −1.6 −1.9 3.0 2.9 1.8 2.0
14 0.917 0.945 0.851 0.836 −0.4 0.4 0.3 −0.7 0.6 0.5 0.5 1.0
15 0.871 0.971 0.779 0.753 −1.6 −0.3 0.0 −0.6 1.6 0.4 0.5 1.1
16 0.854 0.952 0.628 0.439 −7.6 −3.9 −5.7 −5.2 7.6 3.9 5.8 5.4
17 0.949 0.945 0.780 0.912 −2.1 −1.0 −1.4 −1.5 2.1 1.1 1.6 1.7

TABLE 4 | Comparison of ERA5-Land annual mean temperature with
observations at all 17 stations.

No r Bias RMSE

1 0.953 0.0 0.2
2 0.900 1.6 1.6
3 0.936 0.6 0.7
4 0.931 −0.7 0.7
5 0.873 −0.6 0.7
6 0.863 0.5 0.7
7 0.881 −0.4 0.5
8 0.894 −1.6 1.6
9 0.918 −1.2 1.2
10 0.632 −2.3 2.4
11 0.783 −4.6 4.6
12 0.745 −4.4 4.5
13 0.788 −2.3 2.4
14 0.906 −0.1 0.3
15 0.844 −0.6 0.7
16 0.749 −5.6 5.6
17 0.917 −1.5 1.5

FIGURE 5 | Average annual mean temperature from station time series
and ERA5-Land in the 1979–2017 period for QLM.

TABLE 5 | Temperature warming trends (°C/decade) in all seasons from station
time series and ERA5-Land reanalysis in 1979–2017.

Temperature Spring Summer Autumn Winter Annual

To 0.538 0.574 0.447 0.393 0.488
Te 0.459 0.496 0.328 0.235 0.379
To-Te 0.079 0.078 0.119 0.158 0.109
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summer. The r of Te is varied from different stations in general.
For instance, stations No.1 and No.3 perform the best correlation
coefficient in spring. However, for stations No.7 and No.15, the
best correlation is found in summer. It indicates an important
spatial variance across the QLM. The largest negative bias for all
seasons is also found at station No.16, which is consistent with the
monthly bias. Station No.16 performs the largest RMSE in all
seasons. The averaged values of RMSE for spring, summer,
autumn, and winter are 2.4°C, 1.7°C, 1.9°C, and 1.8°C for all
17 stations, respectively. The r, bias, and RMSE of annual mean
temperature between the two data sets are shown in Table 4. The
value of r between Te and To changes from 0.632 to 0.953 with an

average r of 0.854 for all meteorological sites. Twelve stations
have r greater than 0.8. Just station No.10 has a lower r than 0.7.
Station No.16 also performs the largest negative bias (−5.6°C) and
the largest RMSE (5.6°C). The smallest RMSE (0.2°C) happened at
station No.1. The average RMSE of annual mean temperature
over all stations reaches 1.8°C.

3.4 Warming Trends of ERA5-Land
Temperature and Observations
The annual and seasonal temperature-increasing trends of Te and
To during the period of 1979–2017 over the QLM are shown in

FIGURE 6 | Average seasonal mean temperature from station time series and ERA5-Land in the 1979–2017 period for QLM.

FIGURE 7 | Relationship of bias and elevation differences between
monthly observations and ERA5-Land during the 1979–2017 period.

FIGURE 8 | Relationship of bias and elevation differences between
annual observations and ERA5-Land during the 1979–2017 period.
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Figure 5 and Figure 6. The linear warming rate of To reaches
0.488°C/decade from 1979 to 2017. The linear warming rate of Te

is 0.379°C/decade, which suggests that ERA5-Land reanalysis
temperature can capture the warming trend well in general
(Table 5). The difference in annual mean temperature-
increasing trends between Te and To reaches 0.109°C/decade.
Winter temperature performs the largest trend difference
between Te and To (0.158°C/decade). ERA5-Land can capture
the temperature trends in other seasons very well, with values of
0.079°C/decade in spring, 0.078°C/decade in summer, and
0.119°C/decade in autumn. This trend difference between Te
and To may be caused by the sparse observations in the high-
elevation regions in the QLM, especially above 3000 m. In
general, Te is reliable for capturing the temperature-increasing
trend over the QLM for its averaged trend difference of 0.109°C/
decade against To. However, Te should attract attention to reduce
its bias with To before applying it to scientific research because of
the averaged RMSE (2.2°C) (i.e., bias correction).

3.5 Bias Analysis
The results of Figure 5 and Figure 6 show that the reanalysis
underestimated temperature over the QLM, which is similar to the
previous studies (Zhao et al., 2020; Huai et al., 2021). Station
No.16 performs the largest negative bias, and the larger difference
in altitude between the reanalysis and the actual altitude at station
No.16 causes errors in temperature. Correcting the temperature of
the reanalysis based on the elevation difference may reduce the
error of the temperature reanalysis and improve the accuracy (Gao
et al., 2018). The linear relationship between monthly biases and
elevation differences between Te and To is shown in Figure 7.
Please note that bias and elevation difference between Te and To

were calculated by Te minus To. The monthly biases are caused by
the elevation differences between Te andTo, because the correlation
of determination (R2) measuring the fit reaches 0.535. Thus, there
exists a possibility to reduce the bias between Te and To by using a
bias correction model, to improve the applicability of ERA5-Land
(Gao et al., 2014). Figure 8 and Figure 9 show that the R2 value of
annual correlation reaches 0.542, and the R2 values for spring,
summer, autumn, and winter are 0.500, 0.345, 0.492, and 0.633,
respectively, which indicates again that the altitude differences
between Te and To cause the biases. Moreover, in winter
temperature, the elevation difference is the main factor that
affects biases, which suggests that it is possible to reduce the
bias by using an elevation correction model and further
strengthen the reliability of ERA5-Land products. Other errors,
such as in assimilation data, model system, and interpolation, are
also possible factors that affect the bias (Zhao et al., 2020). The 2 m
temperature in high altitude areas will be affected by the underlying
surface, such as terrain complex, glaciers, and lakes, which also lead
to errors. After analyzing the bias, correlation coefficients, and
RMSE at all stations, we learn that smaller correlation coefficients,
bigger bias, and bigger RMSE were found in those stations located
within the QLM. In other words, the error between reanalysis data
and observations is higher within the QLM than that in the oasis
regions, which may be caused by the terrain complex within
the QLM.

4 CONCLUSION

In this study, ERA5-Land temperatures (Te) are compared with
observations (To) from 17 individual meteorological stations (To)

FIGURE 9 | Relationship of bias and elevation differences between seasonal observations and ERA5-Land during the 1979–2017 period.
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over the QLM of China at different temporal scales. High
monthly correlations from 0.978 to 0.998 indicate that ERA5-
Land could capture the cycle for the individual sites very well. The
biases changing from −5.6°C to 1.6°C are mainly caused by the
elevation differences between the ERA5-Land grid points and the
individual meteorological sites (R2 = 0.535). The results of this
comparison suggest that Te could not be used directly in scientific
studies because of the larger average RMSE of 2.2°C for all
stations.

The seasonal and annual results of the comparison are similar to the
monthly results. The average correlation coefficients for spring,
summer, autumn, and winter are 0.874, 0.943, 0.739, and 0.786,
respectively, indicating that ERA5-Land can capture the interannual
variability of observations over the QLM. The averaged values of RMSE
for spring, summer, autumn, and winter for all stations reach 2.4°C,
1.7°C, 1.9°C, and 1.8°C, respectively, which also suggests that caution
should be taken seriously before using ERA5-Land temperature in
scientific studies in the QLM. The biases in temperatures are mainly
attributed to altitude differences between ERA5-Land grid points and
observational sites, especially during the winter (R2 = 0.633). This
indicates that errors between ERA5-Land and observations can be
reduced by using the elevation correctionmethod and further improved
the quality of ERA5-Land reanalysis. The R2 values between bias and
elevation differences in spring, summer, and autumn are 0.500, 0.345,
and 0.492, respectively. An average correlation betweenTe andTo on an
annual scale for all stations reaches 0.854. The average annual RMSE
betweenTe andTo on an annual scale for all stations is 1.8°C, which also
indicates that Te could not be used directly in scientific research. Zhao
et al. (2020) found that the average RMSE between observational
temperature and ERA-Interim temperature is 2.7°C in the QLM,
which is larger than that of ERA5-Land in our study. Huai et al.
(2021) found that ERA5 temperature products exhibit higher
correlations with R values of >0.97 at all stations in the QLM,
which is better than the results in our study.

A significant temperature-increasing rate (0.488°C/decade) is
found over the QLM based on the To during 1979–2017. ERA5-
Land can capture the warming trend well (0.379°C/decade). The
largest warming rates are both found in summer for the
observations (0.574°C/decade) and ERA5-Land (0.496°C/
decade). In general, ERA5-Land is reliable for capturing the
warming trend over the QLM.

Up to now, this evaluation has been limited to 17 meteorological
stations ranging from 1000 to 3500m. Further comparisons can be
analyzed by using more meteorological stations located in the
surrounding regions. It would be a meaningful attempt to
evaluate other meteorological elements of ERA5-Land reanalysis
data sets (e.g., precipitation and humidity) over the QLM.
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Based on the in situ data of the soil moisture-observation networks established

atMaqu, Naqu, Ali, and Shiquanhe (Sq) on the Tibetan Plateau (TP), and using five

evaluation indices [Pearson correlation coefficient (R), root mean square error

(RMSE), mean deviation (bias), standard deviation ratio (SDV), and unbiased

RMSE (ubRMSE)], the applicability of soil moisture datasets [COMBINED,

ACTIVE, PASSIVE, ERA5, ERA5-Land (LAND), ERA-Interim (INTERIM), CLSM,

and NOAH] was comprehensively evaluated. The results showed that, at the

observation-network scale, ACTIVE exhibited the best applicability in Maqu (R =

0.704, ubRMSE = 0.040m3/m3), COMBINED performed best in Naqu (R =

0.803, bias = 0.016 m3/m3), LAND displayed the best consistency with

observations in Ali (R = 0.734, bias = −0.035 m3/m3), and ERA5 not only

showed the best performance in Sq (R = 0.793, bias = −0.037 m3/m3) but

also exhibited good results in the other three observation networks (R >0.6). In a

smaller-scale evaluation in Maqu, ACTIVE performed best, followed by ERA5.

The COMBINED and PASSIVE products had serious gaps in Ali and Sq, and had

the worst applicability in the western TP. In conclusion, considering the

correlation results and temporal and spatial continuities, ERA5 is the most

suitable soil moisture dataset for the TP.

KEYWORDS

soil moisture, Tibet plateau, comprehensive evaluation, multi-source satellite data,
reanalysis data

1 Introduction

Soil moisture is not only an important variable in Earth’s climate system (Wu and

Dickinson, 2004), but it is also a key parameter regulating the exchange of energy and

water between the atmosphere and land surface (Liu et al., 2019). It is widely used in global

climate system simulations, numerical weather forecasts, climate predictions, land surface
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runoff forecasts, hydrological modeling, and drought/flood

monitoring (Massari et al., 2014; Hunt and Turner, 2017).

However, these practical applications require soil moisture

data with a high spatial and temporal resolution as well as

great accuracy (Zheng et al., 2018a). There are few global soil

moisture-observation stations, since it is unpractical to build a

high-density global soil moisture-observation network over a

short time. In addition, due to the strong spatial heterogeneity of

land surfaces, soil moisture observational data can only represent

information at a very small spatial scale, and cannot accurately

reflect large-scale soil moisture information (Crow et al., 2012).

To bridge the gap, researchers have exerted great efforts on the

development of various alternative soil moisture data methods,

including re-analysis data, land surface model data, and satellite

remote sensing products.

The global atmospheric re-analysis dataset published by the

European Centre for Medium-Range Weather Forecasts

(ECMWF Reanalysis, or ERA) is commonly known as ERA-

Interim (hereafter, INTERIM). The dataset has a high spatial and

temporal resolution with atmospheric dynamics and physical

characteristics (Zhang et al., 2018), and contains four layers of

soil moisture. Previous evaluations have claimed that the

INTERIM soil moisture performed better in deep soil than in

surface soil, and that it generally overestimated surface soil

moisture (Albergel et al., 2012; Albergel et al., 2013; Jing

et al., 2018). In 2018, the ECMWF released ERA5, the global

fifth-generation atmospheric re-analysis dataset, followed by the

ERA5-Land (hereafter, LAND) land re-analysis dataset in 2020,

both of which contained four layers of soil moisture with a higher

spatiotemporal resolution. The Global Land Data Assimilation

System (GLDAS) data published by the National Aeronautics

and Space Administration (NASA) are among the most

representative of the land surface model soil moisture data

(Zheng et al., 2015; Zheng et al., 2018b). With driving land

surface models, the GLDAS uses validated precipitation datasets

as inputs, which reduces many uncertainty errors caused by

observed precipitation. However, the accuracy of the GLDAS soil

moisture data is affected by the defects in the land surface models

(Chen et al., 2013). More recently, NASA has updated the

GLDAS dataset (GLDAS v2), which now contains three sets

of soil moisture data, although the quality of these needs to be

verified.

Satellite remote sensing is considered to be the most

promising method for spatiotemporal monitoring of soil

moisture (Ulaby et al., 1982; Li et al., 2018; Yang et al., 2020).

Over the past few decades, researchers have developed many soil

moisture products based on satellites or sensors, such as those

from the Advanced SCATterometer (ASCAT) and the Soil

Moisture and Ocean Salinity (SMOS) satellite (Gloersen, 1981;

Wagner et al., 1999; Paloscia et al., 2001; Bindlish et al., 2003;

Kawanishi et al., 2003; Gaiser et al., 2004; Bartalis et al., 2007;

Naeimi et al., 2009; Wagner et al., 2012; Al-Yaari et al., 2014;

Zheng et al., 2018c; Liu et al., 2019; Zhu et al., 2019). In general,

passive microwave soil moisture products have a greater

temporal resolution and are less influenced by surface

roughness disturbances, while active microwave products are

more sensitive to soil moisture (Jiang et al., 2017; Li et al., 2018;

Ruqing Zhang et al., 2021). In order to combine the advantages of

both active and passive microwave products, the European Space

Agency’s soil moisture climate change initiative (ESA CCI soil

moisture) uses a fusion algorithm to integrate soil moisture

retrieved from various satellites into a soil moisture climate

dataset (Alexander et al., 2019); ESA CCI soil moisture

product v4.7, released in 2020, was used in this article.

It is very important to assess the accuracy and reliability of

these datasets before use (Zeng et al., 2015). Previous assessments

have been mainly conducted in Europe (Albergel et al., 2013; Al-

Yaari et al., 2014), Australia (Draper et al., 2009), and the

United States (Pan et al., 2012; Leroux et al., 2014). However,

fewer verification activities have been conducted in the Tibetan

Plateau (TP) region (Su et al., 2011). The TP, also known as the

“third pole,” is one of the most important geographical

components of the Earth’s climate system (Qiu, 2008). Soil

moisture regulates the variation of water and heat between

land and atmosphere over the TP, which has an important

impact on the climate in East Asia and even the global

monsoon (Charney and Eliassen, 1949; Xu et al., 2008; Wu

et al., 2012). Due to the restrictions of its geographical

conditions, there is a shortage of observation data of the soil

moisture in the TP (Crow et al., 2012). As a result, very few

evaluation activities have been conducted in this region. There is

an urgent need to evaluate the new data, with the expectation that

the evaluation results can help users better understand the status

of the products and hence improve their practical application, as

well as provide a reference for product developers to develop or

improve data from the TP or similar areas.

In this article, using TP soil moisture observation network

data (Su et al., 2011), the applicability of the INTERIM,

ERA5, LAND, GLDAS v2, and ESA CCI v4.7 soil moisture

products is evaluated. The TP soil moisture observation

networks are located at Maqu, Naqu, Ali, and Shiquanhe

(Sq), which cover different climate and land surface

conditions across the TP. The observation data have been

widely used in the past decade to validate satellite- and

model-based soil moisture products (Zheng et al., 2015),

and the in situ data used are from 2013 to 2016, nearly

twice the length of the data used in previous evaluations

(Chen et al., 2013; Li et al., 2018; Cheng et al., 2019), which

greatly enhances the credibility of the evaluation results. The

structure of this article is as follows. Section 2 introduces the

data and methods. In Section 3, the evaluation results at the

observation-network scale are presented, and then the

applicability of alternative data at a smaller scale

within one network (Maqu) is analyzed. In Section 4,

the evaluation results are discussed, with a summary in

Section 5.

Frontiers in Earth Science frontiersin.org02

Dong et al. 10.3389/feart.2022.872413

236

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.872413


2 Materials and methods

2.1 In situ observations

The four soil moisture observation networks located at

Maqu, Naqu, Ali, and Sq (Figure 1) represent the four typical

underlying surfaces of the TP. The Maqu observation network is

located in the east of the TP, which belongs to the alpine and

humid climate zone, and the underlying surface is grasslands.

The Maqu network has a total of 20 stations and its range is

approximately 40 km (south to north) by 80 km (west to east)

(Figure 2A). The Naqu observation network is located in the

middle of the TP, which belongs to the semi-arid and alpine

climate region. There are five sites in the Naqu network and its

underlying surface is mainly alpine grasslands (Figure 2B). The

Ali and Sq observation networks are located in the semi-arid

climate region of the western TP, and the underlying surface is

mainly composed of sparse vegetation, desert, or bare land. There

are four stations in the Ali network (Figure 2C) and 16 stations in

the Sq area (Figure 2D). The aforementioned observation

networks use capacitive detectors to measure the dielectric

permittivity of the soil, with a probe observation frequency of

15 min. Through the Topp equation (Topp et al., 1980), the soil

dielectric permittivity can be converted to the volumetric soil

moisture at depths of 5–80 cm (Rogier et al., 2008; Su et al., 2011;

Ikonen et al., 2016; Jiang et al., 2017; González-Zamora et al.,

2018; Pei Zhang et al., 2021). Due to the different installation and

maintenance dates at the observation stations, the time range of

the in situ data at each station is also different. Furthermore,

owing to the different data quality from different observation

stations, we first carried out some quality control procedures on

the data from these different observation stations. Specifically, for

each station, we deleted the times of data anomalies (soil

moisture >1 or <0 m3/m3) and instrument anomalies

(instrument voltage alarms). For each observation network,

those stations with serious cases of missing data were

discarded (the sample size of non-missing data was less than

50% of the whole comparison period). Ultimately, for the Maqu

observation network, 12 observation stations were selected, with

the time of the in situ data from July 2013 to June 2016; the Naqu

observation network had four selected stations, with data from

July 2014 to August 2016; three stations were selected from the

Ali observation network, with data from August 2014 to August

2016; and the Sq observation network had seven stations selected,

with the data from December 2013 to July 2016 (Table 1).

2.2 Re-analysis data

2.2.1 INTERIM soil moisture
INTERIM is a set of global atmospheric re-analysis

datasets released by ECMWF, covering the period from

1 January 1979 to August 2019. It is based on a variational

data assimilation system that includes satellite- and ground-

based measurements in a consistent framework (Makama and

Lim, 2020). The INTERIM data provide four layers of soil

moisture (0–7, 7–28, 28–100, and 100–289 cm) four times per

day. The spatial resolution of the INTERIM is 0.7° × 0.7°.

ECMWF stopped updating the INTERIM data in October

2019, but still provides a download service for existing data.

FIGURE 1
Location and topographic height of the plateau and soil moisture-observation networks. Red rectangles represent observation networks and
black marks represent observation points. Topographic height unit: meters.
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We used the INTERIM soil moisture of the upper layer

(0–7 cm) for comparison and evaluation in this study. It

can be downloaded from https://apps.ecmwf.int/datasets/

data/.

2.2.2 ERA5 soil moisture
As the successor to INTERIM, and using advanced four-

dimensional data assimilation methods, ERA5 merges more

ground and satellite observation data into re-analysis data.

FIGURE 2
Site distribution and underlying surface characteristics of the TP soil moisture-observation networks: (A) Maqu, (B) Naqu, (C) Sq, and (D) Ali.
Black hollow triangles represent soil observation points. Dashed lines represent grid lines that replace data resolution. Numbered red circles in Panel
(A) represent nine small regions in Maqu.

TABLE 1 Soil moisture data of the TP observation networks.

Observation network Sampling frequency
(min)

Data range Soil depth
(cm)

Land cover In-situ points

Maqu 15 2013.7–2016.6 5 Grassland 20

Naqu 15 2014.7–2016.8 5 Grassland 5

Ali 15 2014.9–2016.8 5 Sparse vegetation, bare land 4

Sq 15 2013.9–2016.7 5 Sparse vegetation, bare land 16
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The soil moisture data of ERA5 follow the INTERIM soil depths,

with the vertical depth divided into four layers. However, the

temporal resolution of ERA5 is increased to 1 h, the spatial

resolution is adjusted to 0.25° × 0.25°, and the unit of soil

moisture is volumetric water content (Gualtieri, 2021; Jiang

et al., 2021). It can be downloaded from https://cds.climate.

copernicus.eu/.

2.2.3 LAND soil moisture
LAND is a re-analysis dataset providing a consistent view of

the evolution of land variables over several decades at an

enhanced resolution compared to ERA5. LAND has been

produced by replaying the land component of the

ERA5 climate re-analysis (Nefabas et al., 2021; Ruqing Zhang

et al., 2021). It combines the model data with observations from

across the world into a globally complete and consistent dataset

using the land surface model, which is based on the laws of

physics and mathematical formulas. LAND uses atmospheric

variables, such as temperature and humidity, as inputs to control

the simulated land fields of ERA5. Without the constraint of

atmospheric forcing, the model-based estimates can rapidly

deviate from reality. Therefore, while observations are not

directly used in the production of the LAND data, they have

an indirect influence through the atmospheric forcing used to

run the simulation. The LAND resolution is increased to 1 h, and

the spatial resolution is increased to 0.1° × 0.1°. Its soil moisture

unit, like ERA5, is the volumetric water content. It can be

downloaded from https://cds.climate.copernicus.eu/.

2.3 Satellite soil moisture products

The ESA CCI soil moisture product is a merged product,

integrating active and passive satellite retrieval of soil moisture

(González-Zamora et al., 2018). In essence, the product merges

the soil moisture retrieval products of various satellites with

limited life and significantly different instrument characteristics

(frequency, spatial resolution, time coverage, polarization, revisit

time, etc.), into three long-term datasets: an active-microwave-

based-only product (hereafter referred to as ACTIVE); a passive-

microwave-based-only product (hereafter, PASSIVE); and a

combined active–passive product (hereafter, COMBINED)

(Alexander et al., 2019). The generation process of the ESA

CCI soil moisture product mainly includes, first, the

observational times of multiple level 2 active and passive

satellite remote sensing data matched to the same time

and, second, the cumulative distribution function used to

calibrate the level 2 product, with the Advanced Microwave

Scanning Radiometer for EOS (AMSR-E) soil moisture used

as the scale reference. The PASSIVE and ACTIVE products

were obtained by fusing the passive and active microwave

products. The COMBINED dataset was obtained by using

ACTIVE and PASSIVE data for scaling evaluation and

weighted calculation. The ESA CCI released its first-

generation soil moisture product (ESA CCI v0.1) in 2012.

Since then, the ESA CCI has continuously updated its soil

moisture products by improving the data fusion algorithm

and satellite sensor calibration, expanding the scope of the

spatiotemporal coverage of data. The ESA CCI v4.7 soil

moisture product was released in February 2020.

Compared with previous versions, ESA CCI v4.7 integrated

a new soil moisture sensor and extended the dataset to

31 December 2019. Three sets of ESA CCI soil moisture

include the global surface soil moisture data with a spatial

resolution of 0.25° × 0.25° and a temporal resolution of 24 h. A

more detailed description of the ESA soil moisture data is

available in Cheng et al. (2019). The ESA CCI data can be

downloaded from https://cds.climate.copernicus.eu/.

2.4 Land surface model soil moisture
products

GLDAS ingests satellite- and ground-based observational

data products, using advanced land surface modeling and

data assimilation techniques, to generate optimal fields of

land parameters (Zheng et al., 2017). GLDAS drives multiple,

offline (not coupled to the atmosphere) land surface models,

integrates a huge quantity of observation-based data,

executes globally at high resolutions, and is capable of

producing results in near real-time. Observation-based

atmospheric and radiation products from atmospheric data

assimilation systems are used to force the land surface

models. Recently, the GLDAS-driven Noah land surface

model and CLSM have developed GLDAS2-Noah and

GLDAS2-CLSM data. In the Noah dataset, soil moisture is

divided into four vertical layers (0–10, 10–40, 40–100, and

100–200 cm) and CLSM soil moisture is divided into two

layers (0–2 and 2–100 cm) (Han et al., 2020; Rzepecka and

Birylo, 2020). GLDAS data are archived and distributed in the

website of the Goddard Earth Sciences Data and Information

Services Center (http://disc.sci.gsfc.nasa.gov/hydrology/

data-holdings). In this study, the 3-h soil moisture data of

GLDAS-Noah (hereafter NOAH) and GLDAS-CSLM

(CLSM) v2.1 with a 0.25° resolution were used.

We also used the land cover classification gridded maps

released by the ESA CCI with a spatial resolution of 300 m to

draw Figure 2 (Kobayashi et al., 2014). This dataset provides

global maps dividing the land surface into 22 classes, which have

been defined according to the United Nations Food and

Agriculture Organization’s (UN FAO) Land Cover

Classification System (LCCS). The digital elevation data from

the Shuttle Radar Topography Mission (SRTM) (Chen et al.,

2020), which are jointly compiled by NASA and the German and

Italian space agencies with a spatial resolution of 10 m, were used

to draw Figure 1.
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2.5 Methods

Since the ESA CCI provides only surface soil moisture

data, the evaluation depth in this article is the surface layer.

The evaluation time of each set of alternative data is

consistent with the length of the observation data. The

unit of the ACTIVE soil moisture product is soil

saturation (%); the unit of the NOAH soil moisture is

relative soil moisture (kg/m2); and the unit of other

alternative data is volumetric water content (m3/m3)

(Table 2). The NOAH soil moisture unit can use soil depth

to convert to volumetric water content, and the ACTIVE

product unit can use soil porosity for the same conversion

(Chen et al., 2019). The soil porosity data come from

supporting data L3 V1 (LANDMET_ANC_SM) in the

LANDMET Ancillary Soil Moisture data from

land–atmosphere boundary interactions. The data can be

downloaded from NASA’s Goddard Earth Science Data

and Information Service Center (GES DISC, https://disc.

gsfc.nasa.gov/datasets).

The observed soil moisture represents the content of

water in the soil, while the alternative data represent the

total water content. Therefore, to achieve an accurate

evaluation between the soil moisture observation data and

alternative data, the non-freezing period (April to October)

was selected as the comparison period in the TP region (Yuan

et al., 2019; Yuan et al., 2020; Pei Zhang et al., 2021). As

shown in Table 2, the temporal and spatial resolutions of the

alternative data and the observation data are inconsistent. In

this article, the daily average method is used to convert the

temporal resolution of all the data into 24 h. The observed

value represents the soil moisture within the limited range of

the station, and the grid value of the alternative data

represents the average state in the minimum resolution

space (0.25° × 0.25°). The natural neighborhood method

(Watson, 1992) was used to interpolate the alternative

datasets for each station and to calculate the average value

of all stations in each network, representing the average soil

moisture of the observation network. Neighborhood

interpolation uses the weight of the proportional area to

calculate the target value, not the distance from the target

point, so that the characteristics of the original data can be

preserved as far as possible. The proportional area of the

Voronoi polygon where the grid point is located is used as the

weight. Since the area of the Voronoi polygon is different, the

contribution of each grid point to the target point is different.

Using the five indices of correlation coefficient (R), mean

deviation (bias), root mean square error (RMSE), standard

deviation ratio (SDV), and unbiased RMSE (ubRMSE)

(Kovačević et al., 2020), the applicability of alternative

data in the TP region was quantitatively evaluated. The

Student’s t-test was used to test the significance of

correlation coefficients. The specific calculation formulas

are as follows:

R � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√ (1)

bias � 1
n
∑n
i�1
(xi − yi) (2)

RMSE �

����������∑n
i�1
(xi − yi)2

n

√√
(3)

SDV �

����������
1
n ∑n
i�1
(xi − �x)2

√
�����������
1
n ∑n
i�1
(yi − �y)2√ (4)

ubRMSE �
�����������������������
1
n
∑n
i�1
{[(xi − �x) − (yi − �y)]2}√

(5)

where n denotes the number of data samples, x denotes the

sequence of the alternative data, y denotes the sequence of the

observation data, and �x and �y denote the average values of the

alternative data and the observation data in the comparison

period, respectively.

TABLE 2 Details of the multisource satellite and re-analysis data used in this article.

Data name Data range Time resolution
(h)

Spatial resolution Soil depth Unit

COMBINED 1978.11.1–2016.12.31 24 0.25°×0.25° 0–2 cm m3/m3

ACTIVE 1991.8.5–2016.12.31 24 0.25°×0.25° 0–2 cm %

PASSIVE 1978.11.1–2016.12.31 24 0.25°×0.25° 0–2 cm m3/m3

ERA5 1979.1.1–2016.12.31 1 0.25°×0.25° 0–7 cm m3/m3

LAND 1979.1.1–2016.12.31 1 0.1°×0.1° 0–7 cm m3/m3

INTERIM 1979.1.1–2016.12.31 6 0.7°×0.7° 0–7 cm m3/m3

NOAH 2000.1.1–2016.12.31 3 0.25°×0.25° 0–10 cm kg/m2

CLSM 2000.1.1–2016.12.31 3 0.25°×0.25° 0–2 cm m3/m3
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3 Results

In this section, we evaluate each observation network. Firstly, we

analyzed the spatial heterogeneity of soil moisture reflected by the in

situ data. For each network, we compared the dynamic characteristics

of observation and alternative soil moisture data over the entire

period. This can reveal the performance of soil moisture products

over daily, monthly, and seasonal timescales. Five evaluation

indicators (R, bias, RMSE, SDV, and ubRMSE) were calculated

separately in each network, and these were used to quantify the

performance of the eight soil moisture products, summarized in

Table 3, Table 4, Table 5, and Table 6. Scatterplots of soil moisture

showing the observational and alternative data were drawn to display

their consistency more clearly, as shown in Figure 5. To further

TABLE 3 Statistical results of the evaluation indexes in the Maqu network (observation sample size: 635 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 635 0.675* 0.104 0.721 0.131 0.041

LAND 635 0.606* 0.116 0.565 0.168 0.044

INTERIM 635 0.607* 0.061 0.427 0.084 0.045

COMBINEDD 635 0.676* 0.005 0.783 0.043+ 0.041

ACTIVE 635 0.704*+ 0.072 0.844+ 0.119 0.040+

PASSIVE 635 0.445* 0.067 1.494 0.126 0.077

NOAH 635 0.432* −0.003+ 0.653 0.051 0.051

CLSM 635 0.461* 0.034 0.328 0.052 0.050

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index.

TABLE 4 Statistical results of the evaluation indexes in the Naqu network (observation sample size: 339 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 399 0.751* 0.114 1.473 0.122 0.045

LAND 399 0.593* 0.169 0.781 0.173 0.038

INTERIM 399 0.688* 0.105 0.616 0.111 0.034+

COMBINED 399 0.803*+ 0.016 1.277 0.039+ 0.035

ACTIVE 399 0.698* 0.083 1.779 0.102 0.060

PASSIVE 399 0.801* 0.075 2.491 0.113 0.084

NOAH 343 0.575* 0.005 1.063+ 0.041 0.041

CLSM 399 0.525* 0.045+ 0.564 0.061 0.040

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index.

TABLE 5 Statistical results of the evaluation indexes in Ali (observation sample size: 403 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 403 0.708* −0.048 1.904 0.073 0.055

LAND 403 0.734*+ −0.035+ 2.151 0.068+ 0.059

INTERIM 403 0.121 0.101 1.131 0.113 0.053

COMBINED 128 — — — — —

ACTIVE 403 −0.683* 0.043 2.494 0.144 0.142

PASSIVE 33 — — — — —

NOAH 353 0.701* 0.056 1.095 0.071 0.021+

CLSM 403 −0.162* 0.065 0.938+ 0.844 0.053

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index; — indicates not counted.
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analyze the real performance of each alternative dataset, we carried

out a small-scale evaluation of the Maqu data.

3.1 Soil moisture heterogeneity

As described in Methods (Section 2.5), we adopted a site-

average approach to represent the average state of the

observation networks as much as possible. However,

considering the significant impact of soil moisture

heterogeneity on the spatial average, it is necessary to analyze

whether there is a consistent change among stations. For this

reason, we calculated the correlation coefficient between stations

within each observation network (Figure 3). The heterogeneity of

the soil moisture in the Maqu network was relatively strong

(Figure 3A). Although some correlation coefficients exceeded 0.5,

the correlations of the stations were significantly different,

ranging from −0.07 to 0.96. Some of the correlation

coefficients were lower than 0.4, or even negative, which

indicated that the soil moisture changes were different at

some stations in the Maqu network. This may be due to the

large range of the Maqu observation network and the different

characteristics of the stations, such as land cover, soil texture,

instrument installation slope, and so on, leading to differences in

short-term changes of soil moisture.

The spatial heterogeneity of the Naqu and Ali networks is

relatively small, especially Naqu, and the correlation coefficient

between stations was more than 0.77 (Figure 3B). This indicates

that the stations of these two observation networks are fairly

representative and can reflect the average state of soil moisture in

their respective observation networks. In the Sq network

(Figure 3D), the correlation coefficients were all over

0.66 except for one station, indicating that there was

heterogeneity in this network, but that it was very weak. The

possible reason for these differences is that the Naqu and Ali

observation networks are small, the distribution of the stations is

concentrated, and the external factors affecting soil moisture

change at each station are similar. As a result, the stations of the

Naqu, Ali, and Sq networks are more representative. It is worth

noting that the resolution of the alternative data should be

considered when evaluating them using these in situ data.

Data with resolutions that are too coarse cannot reflect the

spatial heterogeneity and may not be suitable for Maqu.

3.2 Maqu network

Figure 4A shows the daily variation curves of the observed

and alternative soil moistures. The observed soil moisture had

little inter-annual variation but a significant daily variation. The

sample size of the observed and all alternative data was 635 days

(excluding missing data). Both of the GLDAS datasets failed to

capture the main dynamic changes of soil moisture. In many

periods, the daily variation trend reflected by NOAH was

contrary to the observations, and CLSM almost remained at

0.27 m3/m3, so their R results were only 0.432 and 0.461,

respectively (Table 3). The scatter points of NOAH and

CLSM are more concentrated and closer to the reference line

(Figure 5A), indicating that NOAH and CLSM have weak

volatility and low error. The bias and RMSE rank in the top

three among the eight sets of alternative data.

The performance of the three sets of satellite products varied

greatly. Both the COMBINED and ACTIVE data captured the

dynamic change characteristics of soil moisture well (R > 0.67).

ACTIVE reflected the dynamic change closest to the observations

and had the optimal R and SDV, of 0.704 and 0.844, respectively;

however, strong volatility also increased its relative bias, with bias

and RMSE values of 0.072 m3/m3 and 0.119 m3/m3, respectively.

In terms of the R and SDV index, COMBINEDwas slightly worse

than ACTIVE, and the weak fluctuation should reduce the error

relative to the observations, as confirmed in Figure 5A. The

COMBINED scatter was located below ACTIVE and closer to the

reference line; its RMSE (0.043 m3/m3) was optimal, and its bias

(0.05 m3/m3) was also ranked in the top three. The dynamic

change reflected by PASSIVE was poor, with a correlation

coefficient of only 0.445.

TABLE 6 Statistical results of the evaluation indexes in the Sq network (observation sample size: 447 days).

Name Sample size R Bias SDV RMSE ubRMSE

ERA5 447 0.793*+ −0.037 2.398 0.063+ 0.051

LAND 447 0.741* -0.027+ 2.485 0.072 0.061

INTERIM 447 0.562* 0.128 1.565 0.132 0.034

COMBINED 77 — — — — —

ACTIVE 447 −0.182* 0.098 2.471 0.134 0.094

PASSIVE 82 — — — — —

NOAH 373 0.274* 0.091 1.769 0.094 0.024+

CLSM 447 0.365* 0.125 1.005+ 0.121 0.031

Bold are the top three for each index; *indicates significance at the 0.01 confidence level; + is the best index; — indicates not counted.
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The performances of the three sets of the re-analysis data were

similar, showing good temporal variation of soil moisture (R > 0.6).

The correlation coefficient of ERA5 reached 0.675, second only to the

ACTIVE result. The scatter points of the three sets of the re-analysis

data are all above the reference line, indicating that they all have

different overestimations of soil moisture. Comparing the RMSE and

ubRMSE results, the ubRMSE values of ERA5 and LAND were

smaller, indicating that a large part of the overestimation of soil

moisture by these products came from systematic errors.

3.3 Naqu network

As described previously, the climate and surface

vegetation types of the Naqu network are similar to those

of Maqu, so, it is speculated that the variation characteristics

of the soil moisture in Naqu and Maqu will be similar.

Compared with Maqu, the daily fluctuation range of the

soil moisture in Naqu was weakened (Figure 4B), and the

seasonal differences between dry (low values) and wet (high

FIGURE 3
Correlation coefficients between stations in the networks of (A) Maqu, (B) Naqu, (C) Ali, and (D) Sq (* indicates significance at the
0.01 confidence level). Black open circles indicate data mismatch.
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values) periods increased. The high-value period was from

June to August and the low-value period was from October to

April. In general, the eight sets of data captured the main

dynamic characteristics of soil moisture (R > 0.5) (Table 4).

NOAH and CLSM scatter were very concentrated

(Figure 5B), with correlation coefficients of 0.575 and

0.525, respectively.

The COMBINED data can capture the fluctuation of soil

moisture well, and their R (0.803), RMSE (0.039 m3/m3), and

SDV (1.227) were the best results. The correlation coefficient of

PASSIVE (R = 0.801) was significantly better than that of

ACTIVE (R = 0.698), which was contrary to the evaluation

results in Maqu. ACTIVE and PASSIVE overestimated the

fluctuation range of the soil moisture (Figure 5B), with SDV

results of 1.779 and 2.491, respectively, and caused a large error

(RMSE >0.1 m3/m3).

ERA5 showed the best dynamic change of soil moisture (R =

0.751). INTERIM underestimated the daily fluctuations of soil

moisture (SDV = 0.616). Three sets of the re-analysis data are all

above the reference line (Figure 5B), they all overestimated soil

moisture. Their ubRMSE were relatively small

(ubRMSE <0.045 m3/m3), indicating that their error relative to

the observations was mainly due to systematic error.

3.4 Ali network

The Ali observation network is located in the western part of the

TP, with climate and surface characteristics that are quite different

from those of Maqu, which may indicate different a applicability of

alternative data between the two networks. Daily changes of soil

moisture were gradual in Ali (Figure 4C). The difference between the

dry and wet seasons was enhanced, with the duration of the dry

season becoming longer and the change between the dry and wet

seasons becoming faster. The performance of the eight sets of data

varied greatly in Ali, with the satellite products performing very

poorly. COMBINED and PASSIVE datasets had serious cases of

missing data; their sample sizes were less than 30% of the

observations (Table 5), so their evaluation indicators were not

calculated. Although the ACTIVE set had no missing data, it

failed to capture the dynamic change of the soil moisture

(R = −0.683), with a large error (SDV = 2.494, RMSE > 0.14 m3/m3).

ERA5 and LAND both showed outstanding performances.

Specifically, they could grasp the dynamic changes of the soil

moisture and reflect the differences between the dry and wet

seasons well. The weak fluctuation in dry seasons and the strong

fluctuation in wet seasons were well reflected, as was the rapid

change of the dry and wet seasons (R > 0.7), which meant that

their errors were small. These results are confirmed by Figure 5C.

LAND was closest to the observations, and not only captured the

dynamic change of the soil moisture (R = 0.734), but also had the

smallest error relative to the observations, with bias and RMSE

values of −0.035 and 0.068 m3/m3, respectively. Unexpectedly,

the performance of the INTERIM was significantly worse, and its

correlation was only 0.121, possibly due to the overly gradual

change reflected by the INTERIM.

NOAH better grasped the dynamic change of soil moisture

(R = 0.701), reflecting the fluctuation difference and rapid

transition process of soil moisture from dry to wet seasons

(SDV = 1.095). Although it had some small degree of error

FIGURE 4
Daily variations of soil moisture in the four observation
networks on the TP: (A) Maqu, (B) Naqu, (C) Ali, and (D) Sq. Soil
moisture unit: m3/m3.
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from the observations, this may have been caused by the

decreased total number of samples, due to a lack of

measurements in 2016. CLSM was worst at reflecting the

dynamic changes of soil moisture (R = −0.162), and did not

reflect the obvious difference between dry and wet seasons or the

rapid transition process between the seasons.

3.5 Sq network

Sq is close to the Ali network, and their climatic conditions

and underlying surface characteristics are similar. Compared

with Ali, the dry season in Sq is longer and the variation is more

gentle (Figure 4D). The performances of the eight sets of data in

Sq were similar to those in Ali. The measurements of the

COMBINED and PASSIVE datasets had serious gaps, and the

number of samples was less than 20% of the observations

(Table 6). The ACTIVE dataset did not capture the main

variation of the soil moisture, and its correlation coefficient

was only −0.182. ACTIVE overestimated the fluctuation

intensity of soil moisture (SDV = 2.471) and caused a large

error (RMSE = 0.134 m3/m3).

The three sets of the re-analysis data showed the best

performance in Sq (R > 0.56). ERA5 was closest to the

observations, and its R (0.793) and RMSE (0.063 m3/m3) were

the best. Compared with ERA5, LAND had an R of 0.741, and its

FIGURE 5
Scatterplots of the soil moisture observation data and alternative data in four observation networks on the TP: (A)Maqu, (B)Naqu, (C) Ali, and (D)
Sq. Soil moisture unit: m3/m3. The diagonal line is the reference line. Scatter points parallel to the reference line indicate better correlation, and those
closer to the reference line mean less errors relative to the observations.
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bias was the smallest (−0.027 m3/m3). The performance of

INTERIM was the worst among the re-analysis data, but it

maintained the advantage of gradual change, resulting in an

optimal SDV (1.156). As shown in Figure 5D, the scatter points of

ERA5 and LAND are not concentrated, indicating that they

reflect a relatively high intensity of daily fluctuation (SDV >2.39).
However, it was unexpected that both the error of ERA5 and

LAND relative to the observations was the best, which was

different from the conclusion reached in other areas of the

TP. This may be because ERA5 and LAND underestimated

soil moisture at low values and overestimated it at high

values, making the overall error smaller.

The performances of the two GLDAS datasets in Sq were

similar to those in Ali, and their correlation with the observations

was weak (R < 0.37). They reflected a gentle variation of the soil

moisture, especially CLSM, which was closest to the observations

(SDV = 1.005). NOAH also had a small error relative to the

observations, just as the analysis results in Ali showed, whichmay

be because the number of samples was smaller than for

other data.

3.6 Maqu small-scale evaluation

In the previous sections, the applicability of eight sets of

alternative data at the observation network scale was evaluated.

However, in those evaluations we used the station average to

represent the soil moisture average level of the observation

network. The advantage of this simple method is that the

ground observational and alternative data are matched in

space, but the deficiency is also very obvious: the strong

heterogeneity of the soil moisture in the observation network

will be ignored. Therefore, it is necessary to further analyze the

performance of alternative data on a smaller spatial scale to find

any more significant advantages or disadvantages of the various

products.

In order to carry out such a small-scale survey, the evaluation

field needs to have certain characteristics, such as strong spatial

heterogeneity of the soil moisture, a large observation network,

and many, relatively scattered observation points. The main

reason for this screening is that if the spatial heterogeneity is

too weak, it cannot achieve the purpose of the evaluation. If the

observation network is too small and the stations are too

concentrated, the observation network can only match one or

two grid points, which may result in the same assessment results

as the observation network scale. Therefore, the Maqu soil

moisture observation network was selected as the evaluation

field. According to the minimum spatial resolution of the

alternative data and the distribution characteristics of the

observation stations in Maqu, the Maqu network was divided

into 15 small regions, of which only nine had observation

stations. We chose these nine small regions, and the average

value of observation stations in each was used as ground

observations to discuss the performance of alternative data

(Figure 2A).

Figure 6 shows the time-varying curve of the observed soil

moisture in the nine regions of the Maqu observation network. It

can be seen from Figure 6 that the soil moisture values in the

different small regions were significantly different at the same

time. The soil moisture of Reg6 was highest, at more than 0.4 m3/

m3 in most periods, and the average soil moisture of Reg9 was

lowest, at less than 0.1 m3/m3 in most periods. On the other hand,

the daily variation trends and amplitudes of the soil moisture in

different regions were also significantly different. For example, in

May 2014, there was no obvious daily variation of soil moisture in

Reg6, but the soil moisture in the other regions had a strong daily

variation, which indicated that different stations in the Maqu

observation network represented different dynamic changes of

the soil moisture.

Figure 7 shows the correlation coefficients between the

alternative and the observed soil moisture in the nine small

regions. It can be seen that there are significant differences in the

correlation between each set of alternative data and observations.

In the nine small regions, the ACTIVE, ERA5, and COMBINED

results have good correlation with the observations, and for each

of those sets of data, five small regions had a correlation

coefficient of more than 0.6. ACTIVE performed best, with a

correlation coefficient greater than 0.5 in eight small regions, and

greater than 0.6 in seven of them. The performance of ERA5 was

second only to ACTIVE, with the correlation coefficient of eight

small regions greater than 0.5, and five of them greater than 0.6.

The performance of COMBINED was similar to that of ERA5.

The performances of INTERIM and LAND were average, with

four and five regions, respectively, exceeding 0.6. The PASSIVE

performance was poor, and the correlation coefficient of only

three small regions exceeded 0.5. NOAH and CLSM performed

the worst, with most of their small regions at less than 0.4.

In general, the performances of ACTIVE, ERA5, and

COMBINED were better, mainly because the high resolution

of the data better reflected the spatial heterogeneity. However, it

is not just down to the higher resolution as, for example, the

performance of LAND was inferior to that of ERA5. The possible

reason for this is that the forcing field does not have

corresponding high-resolution data, and thus improving the

model resolution alone cannot achieve the expected results.

LAND uses ERA5 outputs as the meteorological forcing field,

including wind, temperature, precipitation, and other variables.

Note that these fields are interpolated from the

ERA5 resolution of about 31 km to the LAND resolution of

about 9 km via a linear interpolation method based on a

triangular mesh (Muñoz-Sabater et al., 2021). Although the

meteorological forcing field after interpolation meets the input

requirements of the LAND model, the numerical change of the

forcing field after interpolation is similar to that of ERA5, and the

interpolation process may produce errors. Therefore, the

performance of the LAND data has not significantly improved
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compared with that of ERA5. The performance of each set of data

in Reg3, Reg5, Reg7, and Reg9 is better than in Reg4, Reg6, and

Reg8, which may be because the latter has more water body

coverage (Figure 2A). Studies have pointed to the performance of

numerical models and satellite products being unsatisfactory for

underlying surfaces containing water, as the calculations of the

soil moisture in these areas are susceptible to land cover

classification (Chen et al., 2013; Zheng et al., 2015). The

station average method may have affected the results of the

small-scale evaluation. Reg6 has three stations: NST04, NST05,

and CST02. NST04, which was a severe case of missing data, was

discarded. Because CST02 and NST05 do not match in time

(Figure 3A), the Reg6 sequence is actually a splicing of the data of

two stations with different variation characteristics, and this

FIGURE 6
Time series of the soil moisture in nine regions of Maqu from July 2013 to June 2016. Soil moisture unit: m3/m3.

FIGURE 7
Correlation coefficient distribution of the alternative data in nine small regions of Maqu (* indicates significance at the 0.01 confidence level).
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caused the low correlation of the alternative data in Reg6. At the

same time, the interpolation process can also affect the evaluation

result. In Reg1, the CST04 in situ data only represent the

variation characteristics of the station, but the interpolation

point data do not. When the alternative data were

interpolated to the CST04 station, the grid points around it

were used to calculate the interpolation point, and the variation

characteristics were the combination of multiple points, which

may have caused the low correlation of the alternative data

in Reg1.

4 Discussion

Through the aforementioned analysis, we found that the

performance of the eight sets of soil moisture data differed greatly

in the TP region. Some datasets could capture the dynamic

characteristics of soil moisture, while others could not provide

the accuracy we expected. Meanwhile, any one set of data could

have good applicability in some regions and poor performance in

others. It is necessary to explore the sources of error of data, and

analyze the causes of performance differences of alternative data,

especially in the TP region where the underlying surface is highly

complex. The possible sources of error are as follows:

1) Mismatches between observation stations and alternative data

on the spatial scale: At present, there is no soil moisture

observation network that can accurately represent the spatial

scale of alternative data. In order to reduce the impact of this

well-known problem (Qin et al., 2013), we interpolated the

alternative data to the stations, and used the average of the

stations to represent the average soil moisture of the

observation network. However, the interpolation process

can still bring some errors, especially in the complex

topography of the TP. Some studies have pointed out that

it is difficult for in situ data to describe the spatial

characteristics of regional soil moisture, and that sparse

observations can only reflect the temporal change of soil

moisture and cannot reproduce the numerical absolute

change (Koster et al., 2009; Wagner et al., 2013).

Therefore, evaluation results should focus more on

correlation rather than RMSE or bias.

2) Mismatch of the soil depth: In this study, the surface soil

depth of the observation network was 5 cm, the surface soil

moisture of the three sets of the satellite products was

0.5–5 cm, and the surface soil moisture of the three sets of

re-analysis data was 0–7 cm. NOAH used 0–10 cm, and the

surface soil depth of CLSM was 0–2 cm. It should be noted

that the observed value refers to soil moisture at the depth of

5 cm, whereas the alternative soil moisture is an average in the

vertical direction.

3) Mismatch of the soil moisture unit: NOAH uses the unit of

soil depth to convert to volumetric water content, which

causes relatively small errors in the calculation process.

However, the unit of ACTIVE is soil saturation, which

requires soil porosity data to convert to volumetric water

content. The accuracy of porosity data has an important

influence on the evaluation results, which may be the

reason for the large error of the ACTIVE product.

4) Inaccuracy of the input data (such as soil texture, land use

type, observation, and satellite data) in the numerical model

calculation and satellite inversion: These errors in the input

data will be carried into the soil moisture product by the

model or algorithm, and may even be magnified, eventually

making the error of the product even bigger.

Passive microwave products are widely used throughout the

world. This is due to the fact that passive microwave detectors

work in the L band: the longer the wavelength, the better the

penetration, so they are less affected by surface roughness (Zheng

et al., 2019). However, in the Maqu network, the performance of

the ACTIVE soil moisture data is significantly better than that of

PASSIVE, which is different from our usual understanding and

may be related to the underlying surface characteristics of Maqu.

Located in the eastern part of the TP, Maqu has a long rainy

season and is mainly covered by grasslands and low shrubs with

dense vegetation. ACTIVE microwave products have advantages

in regions of greater vegetation density and stronger soil moisture

change, mainly because active microwave detectors have a higher

sensitivity to soil moisture, and low sensitivity to vegetation

coverage. This means that they can separate the short

timescale changes in soil moisture contained in backscattering

signals from seasonal vegetation cycles, thus making it easier to

detect dynamic changes in the surface soil moisture (Qin et al.,

2013). The COMBINED products demonstrated an excellent

performance in Maqu and Naqu, not only capturing dynamic

changes in the soil moisture, but also with low error. This shows

that this is a very effective method to invert soil moisture by

integrating the advantages of active and passive remote-sensing

products, which is consistent with the evaluation results of

previous research (Dorigo et al., 2017). The results confirm

the validity of the COMBINED soil moisture products over

the TP. However, there was a serious issue with missing data

for the COMBINED and PASSIVE products in Ali and Sq, which

may be related to climate and surface features. The Ali and Sq

observation networks are located at high altitudes and belong to a

cold and arid climate zone. The soil is mostly sandy loam, with

the dry season exceeding half a year, and almost no daily

variation of soil moisture. The microwave detectors can barely

scan the changes of the soil moisture on the surface, and will even

judge the microwave signal from the soil as noise (Pei Zhang

et al., 2021). When producing COMBINED data, many of the

PASSIVE products are integrated, so the gaps are also a problem

with this product.

The three sets of re-analysis data can accurately reflect the

dynamic changes of the soil moisture. This is mainly because re-
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analysis data use an advanced assimilation technology to

integrate large amounts of precipitation, temperature, and

other data from ground and satellite observations, which have

been verified by multiple climate regions, making the re-analysis

data close to observations in long-term climate trends (Jing et al.,

2018). This indicates that the quality of ground and satellite data

should be taken into consideration in the assimilation model,

because the uncertainty error of the observation data will be

brought into the model and may be further magnified.

Meanwhile, compared with INTERIM, the performances of

the ERA5 and LAND data were greatly improved, indicating

that the quality of the re-analysis data can be enhanced by

optimizing the numerical model and parameterization scheme,

as well as the resolution, and incorporating more high-quality

observation data. The variation of the surface vegetation can

affect soil moisture by affecting soil-–water storage properties,

land–atmosphere water exchange, canopy interception, and so

on. Although dynamic vegetation data have been introduced into

LAND, the data are on the seasonal scale (Li et al., 2020), which

do notmatch well with the hourly output of LAND, and thusmay

be an important factor affecting LAND’s performance.

The two sets of GLDAS data did not reflect the dynamic

changes of soil moisture in the TP region well. The surface soil

moisture responds quickly to short-term meteorological forcing

variables; when precipitation variability is strong, soil moisture

variability increases (Chen et al., 2013). GLDAS-2 does not

couple the atmospheric module and uses the Princeton

Meteorological Forcing Dataset, which is a re-analysis product

using observational products for the period 1948–2010, as the

sole source of forcing data for deviation correction. The deviation

correction process greatly reduces the deviation of GLDAS-2

precipitation data, but at the same time reduces the ability to

describe precipitation variability (Sheffield et al., 2006). When

GLDAS drives NOAH and CLSM by verified atmospheric

forcing data, it makes NOAH and CLSM have a weak ability

to simulate the dynamic changes of soil moisture in the TP

region, but the error is lower.

In summary, the soil moisture dynamic changes of the

COMBINED products in the Maqu and Naqu observation

networks are consistent with the ground observations, and the

error is relatively low. The performance of the active–passive

fusion products has been verified in the central and eastern parts

of the TP. However, as the evaluation of the ACTIVE and PASSIVE

data shows, the performance of satellite products varies from place to

place. The ACTIVE soil moisture performance is best in Maqu, with

its dense vegetation, while the PASSIVE products are closer to the

observations in Naqu, with its sparse grasslands. The three sets of

satellite products showed an obvious inapplicability in the Ali and Sq

areas, because the COMBINED and PASSIVE products had serious

gaps in these regions, while the ACTIVE set failed to capture the

main variation characteristics of soil moisture. NOAH and CLSM

seemed to have a weak ability to reflect the dynamic changes of soil

moisture, and their simulated soil moisture changes were too gradual.

Compared with INTERIM, the performances of the ERA5 and

LAND data showed significant improvements, and the

correlations of both the ERA5 and LAND data in Ali and Sq

were good, with the smallest relative error. Meanwhile, in Maqu

and Naqu, ERA5 was consistent with the observations, and the

correlation was only slightly worse than that of the satellite products.

Therefore, relatively, ERA5 has the best applicability in the TP region.

5 Conclusion

The applicability of the COMBINED, ACTIVE, PASSIVE,

ERA5, LAND, INTERIM, NOAH, and CLSM data products was

studied during the non-freezing periods in the TP region using

the in situ data of the Maqu, Naqu, Ali, and Sq soil moisture

observation networks. The results showed that:

1) The applicability of the eight sets of data differed obviously in

different regions of the TP, and the applicability of any one set

of data also differed among the regions. In general, the

applicability of the eight sets of data was better in the

Maqu region than in the Ali and Sq areas.

2) At the observation-network scale, the COMBINED, ACTIVE,

and ERA5 products had a better correlation with the

observations in Maqu and Naqu, with correlation

coefficients of over 0.65. The COMBINED, NOAH, and

CLSM data had small errors relative to the observations. In

terms of trend and amplitude of temporal change, the

COMBINED, ACTIVE, and ERA5 data products were

closer to the observations. In the Ali and Sq areas on the

western TP, the COMBINED and PASSIVE data had serious

gaps. The ERA5 and LAND datasets in the Ali and Sq regions

had a high correlation, with correlation coefficients above 0.7.

3) At the small scale of Maqu, it was found that the correlation of

no one set of data was best in all nine regions. Among the

datasets, ERA5, COMBINED, and ACTIVE had good

correlation with observations of the small regions, and the

correlation coefficient of seven small regions was more

than 0.5.

This article comprehensively evaluates the overall

performance of eight sets of alternative data on the TP, with

emphasis on the correlations between the alternative data and the

observations and temporal continuity, which are the important

factors affecting the results of climate assessments. This work

found that ERA5 is the most suitable dataset for studying soil

moisture on the TP.
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https://data.tpdc.ac.cn/en/. The combined, active, and passive

soil moisture products of ESA CCI v4.7 can be downloaded from

https://www.esa-soilmoisture-cci.org. The ERA5 and ERA5-land

soil moisture data are available at https://cds.climate.copernicus.

eu. The ERA–INTERIM soil moisture data are available at

https://apps.ecmwf.int/datasets/data/. The NOAH and CLSM

soil moisture data of GLDAS v2.1 can be downloaded from

https://disc.gsfc.nasa.gov/datasets/. The ESA land cover data are

available at http://maps.elie.ucl.ac.be/CCI/viewer/download.php.

The SRTM digital elevation data can be downloaded from

https://srtm.csi.cgiar.org/srtmdata/.
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The Northeast Greenland Ice Stream (NEGIS), the largest basin in Greenland, is

undergoing rapid and sustained dynamic change. However, the ice-flow

behaviours over decadal timescales and the impacts of ice geometry and

hydrology remain poorly understood. Here, we investigated the spatial and

temporal characteristics of ice motions of three branches in NEGIS between

1985 and 2018 in response to bed topographic features and surface meltwater

runoff based on 33 years of annual ice velocities derived from the satellite image

of Landsat series. Spatial heterogeneities in ice velocity were found in three

glaciers and were correlated with subglacial topography. Specifically, the peak

velocities of both Nioghalvfjerdsfjorden and Zachariæ Isstrøm glaciers occur

near the grounding line zone, where tidewater acts as a crucial force causing ice

retreat, subglacial melting, and further acceleration. While for the

Storstrømmen glacier, changes in the slope of the ice bed might cause an

increase in ice motion in its inland segment. The temporal variability of ice

velocity for both Nioghalvfjerdsfjorden and Zachariæ Isstrøm glaciers shows a

clear regional speedup, with a mean increase of 14.60% and 9.40% in

2001–2018 compared to 1985–2000, but a widespread slowing of

Storstrømmen glacier with a mean of 16.30%, which were related to a 184%

surface runoff increase. This hydrodynamic coupling on ice motion over

decadal timescales in these three glaciers is in line with previous studies on

short-term acceleration in NEGIS induced by surface melt, not in agreement

with negative feedback between enhanced surface meltwater production and

ice motion previously reported in the southwest Greenland ice stream. Our

work highlights crucial roles of subglacial topography and surface runoff on ice

motion, which helps to promote understanding of dynamic changes of NEGIS

response to changing atmospheric circumstances.

KEYWORDS

ice motion, landsat, surface runoff, subglacial topography, Northeast Greenland ice
stream
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Introduction

The Greenland ice sheet (GrIS), the second largest ice sheet in

the world, has experienced marked acceleration in loss of mass

and ice velocity linked to atmospheric and ocean warming since

the beginning of the 21st century (Bevan et al., 2012; Straneo

et al., 2013; Cook et al., 2014; Kjeldsen et al., 2015; Rignot et al.,

2017). It has been the major contributor to sea level rise since the

early 1990s with a 1991–2015 average annual mass loss of

approximately 0.47 ± 0.23 mm sea-level equivalent (SLE) and

a peak contribution of 1.2 mm SLE in 2012, and the loss is

substantially attributed to the dynamic changes of outlet glaciers

(King et al., 2020; Shepherd et al., 2012; van den Broeke et al.,

2016; Noël et al., 2019).In Greenland, the glaciers are more active

in northwest and southeast sectors as most of the glaciers are in

contact with the ocean and shown strong mass loss (Abdalati

et al., 2001; Khan et al., 2014). However, it is worth noting that

the Northeast Greenland Ice Stream (NEGIS) contains many

marine-terminating glaciers, and is also a region of high climatic

sensitivity, but received relatively little attention (Hoejmark

Thomsen et al., 1997; Nick et al., 2012; Larsen et al., 2018).

The NEGIS consists of an ice stream that is approximately

600 km long, drains 12–16% of the interior GrIS, and is home to

three major glaciers including: Nioghalvfjerdsfjorden (79N),

Zachariæ Isstrøm (ZI), and Storstrømmen (SG). The 79N

glacier formed a large (80 km long) floating tongue confined

in a wide (20 km) valley (Mayer et al., 2000; Mayer et al., 2018),

which flowed at approximately 1.2 km/yr within a few

kilometers of the ice front and exhibited the sustained

stability with few variations until 2012 (Rignot and

Kanagaratnam 2006; Bevan et al., 2012; Rosenau et al.,

2015). The ice shelf near the grounding line thinned by 30%

from 1999 to 2014 (Mouginot et al., 2015), and its northern

branch was calved in July 2020. After losing a large part of the

ice shelf during 2002, the ZI glacier accelerated to a speed

greater than 0.6 km/yr between 2001 and 2011 (Rignot and

Kanagaratnam 2006; Joughin et al., 2010). Since then, the

glacier has continued retreating, thinning, and accelerating,

and reached a velocity of 2 km/yr near its calving front in 2015

(Khan et al., 2014; Mouginot et al., 2015). The dynamic

variations of these two glaciers highlight the vulnerability of

the NEGIS to climate change. The SG glacier surged with a

velocity of 1.5–2 km/yr at the front during 1978–1984 and has

been static ever since (Reeh et al., 1994; Hill et al., 2018;

Mouginot et al., 2018). Previous studies have suggested that

rapid flow during the active phase is controlled by either basal

temperature (Fowler et al., 2001) or hydrology (Kamb et al.,

1985). However, the response of ice motion and hydrology over

long time series in SG glacier remains unclear. Although several

recent studies have revealed the dynamic changes of individual

glaciers in the NEGIS, they have focused on short-term seasonal

ice motion as well as thinning and retreat attributed to ocean

thermal forcing (Khan et al., 2014; Mouginot et al., 2015;

Rathmann et al., 2017; Neckel et al., 2020; An et al., 2021).

The ice motion anomaly and its links with ice geometry and

hydrology in this region have received limited attention at long-

term and basin scales for more than 2 decades.

In general, the acceleration of marine-terminating glaciers is

primarily driven by processes at the ice-ocean interface (Joughin

et al., 2020; Wood et al., 2021). Ocean warming is likely to increase

the rates of submarine melting and discharged meltwater plumes,

which may exacerbate the rate of melting (Slater et al., 2016).

Additionally, the reduction of sea ice may promote calving,

allowing more ice to break off the ice sheet, this forcing can

cause rapid glacier retreat and acceleration (McFadden et al., 2011;

Cook et al., 2014). However, local topographic factors affect the

extent to which individual glaciers respond to these forcing at the

ice-ocean interface (Moon and Joughin 2008; Carr et al., 2015). For

example, reverse bed slopes may make glaciers more prone to

acceleration and increase ice retreat (Thomas et al., 2009; DeConto

and Pollard 2016). The local topographic variability underlines the

importance of targeted glacier surveys, which are crucial for

accurately predicting the response of the glaciers in NEGIS to

climate change (Hill et al., 2017).

Rising atmosphere temperature increase surface melting and

has a significant influence on glaciers dynamic changes

(Mouginot et al., 2015). One hypothesis is that increased

meltwater runoff enhances the thermohaline circulation and

submarine melting in terminus, thus drives a stronger ice

motion (Xu et al., 2013). Another hypothesis is that enhanced

runoff contributes to glaciers motion via hydrofracturing and

increasing basal water pressure (Pollard, DeConto, and Alley

2015). However, the mechanism behind the behavior of marine-

terminating glaciers is complex and the subglacial discharge

induced by increased meltwater runoff and hydrodynamic

coupling has not well understood and link to glacier dynamics

in recent years. In Greenland, some previous studies indicated

that the exact mechanism of enhanced runoff effects on glacier

velocity is highly controversial across different regions and time

scales. For example, increased meltwater inputs lead to short-

term velocity increases in Jakobshavn glacier, which has been

attributed to the drainage of surface meltwater to the subglacial

zone. Increased basal water pressure alters the effective pressure

(defined as the difference between the overburdened ice and basal

water pressure) and reduces friction at the ice bed interface,

thereby promoting faster sliding (Zwally et al., 2002; Hoffman

et al., 2011). However, several studies found that increased

meltwater production results in a net annual deceleration of

ice-flow motion owing to drainage channels evolving from

inefficient to efficient and therefore the faster draining of

high-pressure water (Schoof 2010; Cowton et al., 2013;

Tedstone et al., 2015). In recent years, the expansion of

ablation area in north Greenland is almost twice as much as

in the south response to recent warming, amplifying runoff

production in north Greenland (Noël et al., 2019). However,

little is known about the effect of runoff input on ice velocity in
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NEGIS, especially on a long-term scale (Hill et al., 2017; Williams

et al., 2020).

In this study, we investigated the spatial and temporal

characteristics of ice motion in the 79N, ZI, and SG glaciers

in NEGIS over the last 33 years, using annual ice velocity data

products derived from satellite remote sensing between 1985 and

2018.We then linked subglacial geometry to ice dynamic changes

to estimate the influence of basal topography features on the

heterogeneous spatial distributions of three individual glaciers.

Finally, we investigated the relationship of the surface meltwater

runoff and decadal variations of glacier velocities, thus estimating

the impacts of hydrothermal conditions on long-term ice

dynamic changes in NEGIS.

Datasets and methods

Ice velocity

To assess annual changes in ice motion over decadal

timescales, we employed the annual ice velocity of The

Inter-Mission Time Series of Land Ice Velocity and Elevation

FIGURE 1
Study area of the catchment in NEGIS divided into separate glaciers by the bold black line (Mouginot and Rignot 2019). Average glacier velocities
(m/yr) between 1985 and 2018 derived from ITS_LIVE are shown (Gardner et al., 2018). The short dash black lines show the central flow lines of each
glacier.The thin gray lines are 400–1600 m contour line of ice surface elevation, and the yellow lines are the ground line locations of 79N and ZI
glaciers (Morlighem et al., 2017). Asterisks indicate the two closest automatic weather stations (AWS) in the Programme for Monitoring the
Greenland Ice Sheet (PROMICE) project (Fausto and Van as 2019).
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(ITS_LIVE), which was created using the method of feature

tracking and error-weighted average of all image-pair velocity

fields derived from Landsat images, and available from 1985 to

2018 with a spatial resolution of 240 m (Gardner et al., 2018;

Gardner et al., 2019a). Preprocessing includes the normalization

of local variability in image radiance caused by shadows,

topography, sun angle, and the removal of Landsat 4 and

5 along track artifacts and SLC-OFF of Landsat 7. The errors

were corrected by setting the rock surface velocity to zero and

setting the slow-moving area to the median reference velocity of

the MEaSURE data (Gardner et al., 2019b).

Following the method of Tedstone et al. (2015), we computed

the median percentage change in ice velocities over the study area

(Figure 1) between 1985–2000 and 2001–2018. We then

calculated the distribution of the median percentage change

over the three glacial catchments below 1,600 m.a.s.l. For each

200 m-elevation band, we presented the median percentage

change and median deviation of each glacier velocity.

We then explored the temporal variability in glacier velocities

along the central flow lines of the three glaciers according to the

streamline of NEGIS region provided by Krieger et al. (2020) and

Nagler et al. (2015), and the points with velocity values were

separated by 1 km and extracted by bilinear interpolation. To

avoid the effect of null values or large errors on the analysis of

temporal variation of velocity, we excluded points with velocity

values with errors greater than 30%. Additionally, central flow

line segments with relatively complete velocity values were

selected to ensure the comparability of the time series

variability. The velocity maps of 1996, 2002, and 2003 could

not represent the mean ice velocity because of the large amount

of missing data in the whole basin and were not considered

during the time series analysis.

Previous studies have shown that the velocity magnitude has

a biased mean that increases with the standard deviation of the

components (Dehecq et al., 2019). The absolute magnitude of ice

velocity may cause an artificial negative velocity trend,

particularly where the signal-to-noise ratio of ice velocity is

low in slow-flowing sectors (Williams et al., 2020). Therefore,

in the comparisons process with the factors such as air

temperature, we calculated the anomaly to analyze the

temporal variation trends. We defined the velocity anomaly as

the difference between the annual velocity and the mean velocity

from 1985 to 2018, using the method of Williams et al. (2020).

This method concentrates the noise distribution symmetrically

around zero and removes any artificial slowing trends resulting

from changes in the noise magnitude between different sensors.

Air temperature and runoff

Climate warming can cause an increase in meltwater and

affect glacier movement, so we employed the ERA5 monthly

averaged reanalysis temperature of air 2 m above the surface of

glaciers from 1979 to 2019 to calculate the air temperature

change anomaly (Wang et al., 2019). For validation, we also

calculated the average annual temperature anomaly from 2009 to

2018 using monthly averages of near-surface air temperatures

acquired by the AWS KPC_L and KPC_U of PROMICE (Fausto

and Van as 2019).

To explore the relationship between runoff and ice velocity in

three glaciers from 1985 to 2019, we investigated the changes in

surface meltwater runoff provided by PROMICE (Mankoff et al.,

2020). Previous studies have shown a statistical relationship

between ice movement and annual melt volume and

accounted for 50% of the ice movement by including 3 years

of antecedent melt volume (Tedstone et al., 2015). Therefore,

following this study, we performed the regression analysis of the

glacier velocity anomalies and surface meltwater runoff

(averaged over the first N years) for each glacier. R2 is

coefficient of determination from 0 to 1, using to quantify the

strength of the relationship between glacier velocity change and

the antecedent runoff. p value represents significance and is used

to judge whether R2 is statistically significant, with a general

standard of 0.05. If the value is less than 0.05, R2 is significant.

Ice bed topography and surface elevation

We used IceBridge Bedmachine Greenland, Version 3 data

with 150 m resolution to acquire bed elevation, ice surface

elevation, and ice thickness (Morlighem et al., 2017). These

were extracted along the central flow lines of the three glaciers

and sampled over 1 km. The distance between the ice bed and

lower surface of the glacier was calculated by subtracting the ice

thickness from the ice surface elevation.

To assist the analysis of the impact of runoff on ice motion,

we investigated the 5-year average changes in glacier surface

elevation from 1992 to 2020 provided by CCI (Simonsen and

Louise, 2017; Sørensen et al., 2018). We also computed the

median percentage change in surface elevation over the study

area between 1992–2000 and 2001–2018.

Results

Spatial pattern of ice motion variation

The spatial variation in ice velocity in the NEGIS showed

distinct differences for each glacier (Figure 2A). The

catchments of 79N and ZI glaciers experienced a larger area

of ice-flow acceleration in 2001–2018 than in 1985–2000, with

78.77% (16,039 km2) of the total surface area in the 79N glacier

and 92.50% (9,138 km2) of the total surface area in the ZI

glacier exhibiting increased velocity. The mean acceleration

was approximately 14.60% and 9.40%, respectively (Figure 2B).

In contrast, the SG glacier displayed a widespread ice-flow
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deceleration of approximately 81.37% (9,118 km2) between

1985–2000 and 2001–2018, with a mean deceleration of

16.30%.

The areas with the strongest velocity increase were in

different sectors of the 79N and ZI glaciers, and the

acceleration percentages varied according to the contour

interval (Figure 2C). The acceleration in the 79N glacier was

approximately 20% greater at higher surface elevation of

1,200–1,600 m.a.s.l., and approximately 5% at lower

elevations (Figure 2C). Glacier velocity showed an

accelerating trend with an increase in surface elevation. For

the ZI glacier, between 1985 and 2018, its higher velocity sectors

(approximately 20%) occurred near the terminus at a low

surface elevation of 0–200 m.a.s.l., and the percentage of

velocity increase decreased as the surface elevation increased

(Figure 2C).

The deceleration in the SG glacier was greatest

(20–50%) below 800 m.a.s.l. (Figure 2C). The glacier also

shows that the percentage of velocity variations changed

with the surface elevation, which decreased as it

approached the interior and was similar to the pattern

of long-term velocity change in southwest Greenland

(Williams et al., 2020).

Temporal variability in glacier velocity

To explore the temporal characteristics of ice motion, we

compared the variations of two specific periods of glacier velocity

along the central flow lines (Figure 3). The velocities of the 79N and

ZI glaciers showed limited change between 1985 and 2000, but

gradually increased after 2000, especially near their grounding line

(Figures 3A,B). In contrast, the SG glacier continued to slow between

1985 and 2000 and approached a static state after 2000 (Figure 3C).

Specifically, the time evolution of ice velocity in the upper

areas of 79N is not significant, and it has not accelerated

significantly in the past 33 years (Figure 3Ai). Starting 30 km

upstream of the grounding line, the characteristics of the velocity

variation with time become apparent, especially near the

grounding line (Figure 3A). The ice velocity accelerated rapidly

between 2000 and 2015, followed by decreased acceleration.

Within 14 km of the glacier terminus, the ice velocity gradually

decreases (Figure 3Aii), but again showed distinctive temporal

evolution characteristics. Unlike the area near the grounding line,

the ice velocity in this area has been accelerating slowly since 1985.

Similar to the 79N glacier, the upstream velocity of the ZI

glacier changed little before 2000 (Figure 3Bi). From 30 km

upstream of the grounding line to the terminus, the glacier

FIGURE 2
(A) Spatial pattern of velocity change of three glaciers in NEGIS between 1985–2000 and 2001–2018. The colour scale shows the median
percentage change in ice velocities during 2001–2018 compared with the 1985–2000 reference period, the short dash lines represent the central
flow lines, the yellow lines indicate the grounding lines of the 79N and ZI glaciers (Morlighemet al., 2017), the thin gray lines are 400–1600 mcontour
lines representing ice surface elevation (Morlighem et al., 2017). (B) Median percentage velocity changes for each glacier sampled at 240 m
intervals between 0 m.a.s.l. and 1,600 m.a.s.l. (C) Median percentage velocity changes for eachglacier in each 200 m contour interval between
0 m.a.s.l. and 1,600 m.a.s.l. The error bar shows the median absolute deviation.
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velocity showed an apparent characteristic of time evolution

(Figure 3B). Since 2000 to 2015, the velocity rapidly accelerated,

followed by slowed acceleration for the next 3 years. The velocity

reached 3,200 m/yr near the terminus of ZI glacier in 2018,

compared to the peak velocity of only 1400 m/yr in 79N.

The ice velocity of SG is was small (Figure 3C). Unlike the

other two glaciers, SG decelerated from 1985 to 2018. The ice

velocity changed little over time upstream of approximately

120–170 km from the grounding line. In the rest of the

segment, the glacier slowed rapidly before 2000, but the

deceleration began to slow after 2000 and appeared to move

slightly around 2016.

Discussions

Glacier movement related to bed
topography

Each individual glacier in the NEGIS has distinct geometric

variability (Figure 4), which is an important factor in

determining the response of glaciers to ocean and atmosphere

warming (Thomas et al., 2009; Cowton et al., 2018). Our results

show that glacier velocity is related to the position of the

grounding line near the terminus.

For the 79N glaciers with floating ice tongue, we found that the

velocity increased rapidly approaching the grounding zone and the

peak velocity generally occurred near the grounding zone

(Figure 4A). Generally, the state of floating ice tongues

downstream of the grounding line affects glacier movement

(Hill et al., 2017). The glacier with floating ice provides less

base/lateral resistance than those without, which makes the

glacier insensitive to the retreat at terminus and its acceleration

after retreat is negligible (Hill et al., 2018). However, the

acceleration of the 79N glacier as it retreated in the early 21st

century was inconsistent with the general pattern that glacier

velocities with floating ice tongues are not sensitive to retreat,

and occurred mainly in the grounding zone (Khan et al., 2014;

Mouginot et al., 2015). This was related to the steep and unstable

bed slope in the grounding zone in the 79N glaciers, which

exacerbate the continued acceleration and retreat of glacier

(Khan et al., 2014; Mouginot et al., 2015; Hill et al., 2018). In

addition, a more than 70 km long and 1,200 m deep cavity

underneath the 79N ice shelf and its northern branch facilitate

the intrusion of warmwater and the erosion to the underside of the

ice shelf, which associated with the spatial distribution of ice

FIGURE 3
(A) Temporal characteristic of the velocity variations of three glaciers along their central flow lines. The velocity of the 79Nglacier at -30 to -53 km
along the central flow line. 0 in the X axis indicates the grounding line position of 79N glacier as shown in Figure 1, and the negative values point to the
direction of internal extension of the ice sheet. (Ai) The velocity of 79Nglacier at -110 to -30 km along the central flow line. (Aii) The velocity of the 79N
glacier at 53 to 67 km along the central flow line. (B) The velocity of ZI glacier at -30 to 5 km along the central flow line (Bi) The velocity of ZI
glacier at -140 to -30 km along the central flow line. (C) The velocity of SG glacier along the central flow line.
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velocity in the grounding zone (Wilson and Straneo 2015). Several

previous studies have also identified the critical role of warming

seawater in the acceleration and dynamic thinning of marine-

terminating glaciers (Joughin et al., 2004; Howat et al., 2005; Nick

et al., 2009; Joughin et al., 2010; Vieli and Nick 2011).

For the ZI glacier, the grounding zone near its terminus contact

with the seawater directly, where the ice motion is fastest (Figure 4B).

In 2002, its floating ice tongue broke off and the glacier gradually

accelerated (Khan et al., 2014; Mouginot et al., 2015). Although the

glacier with floating ice was insensitive to the retreat at terminus, while

once the tongue fully collapses and the terminus becomes grounded,

basal resistance becomes an important control and basal topography

becomes even more important (Hill et al., 2018). Therefore, the

acceleration different from the general pattern in ZI glacier still

related to the steep and unstable bed slope in the grounding zone.

In contrast to the other two glaciers, the grounding line of SG

glacier on the smooth ice bed above sea level near the terminus

(Figure 4C), the ice flow barely contacts seawater and the variations

in ice velocity are not extensively affected by seawater and bed slope.

In the upstream of the SG glacier, the ice bed suddenly dipped

downward and accompanied by the fluctuated surface velocity. This

indicates that undulations in the bed slope may induce the local

movement of the glacier through the patterns of basal stress

(Figure 4C).This consistent with previous studies which found

that the dynamic changes of the inland glacier movement was

related to the bedrock topography (Sergienko and Hindmarsh 2013;

Sergienko et al., 2014; Hvidberg et al., 2020).

Positive response of ice flow to enhanced
runoff production

From 1985 to 2018, the time series of ice velocity anomalies

revealed mean acceleration in the 79N (R2 = 0.5) and ZI glaciers

(R2 = 0.77) and deceleration in the SG glacier (R2 = 0.85). However,

the two most statistically distinct periods were identified in each

glacier through several best-fit tests and showed similar positive

changes since 2000 (Figures 5A–C). Varying degrees of ice flow

deceleration trends were found from 1985 to 2000 in the three

glaciers, among which 79N and ZI were relatively stable (-0.75 ±

0.25m/yr2 and -0.25 ± 1.28 m/yr2), whereas SG experienced a steep

deceleration in ice velocity (-4.97 ± 0.5 m/yr2). In contrast, from

2000 to 2018, 79N and ZI glaciers experienced substantial ice flow

acceleration of 1.95 ± 0.45 m/yr2 and 24.1 ± 2.87 m/yr2,

respectively. Over this period the deceleration trend of the SG

glacier gradually flattened (-1.22 ± 0.16 m/yr2) compared to its

previous rate between 1985 and 2000.

The mean surface air temperature anomaly in three glaciers

from the ERA5 dataset, which was well verified by the in-situ

measurements of two weather stations, shows a clear increase of

0.47 ± 0.007 K and exceeded the average temperature in 2000

(Figure 5D). The runoff anomaly was relatively stable before 2000,

with only a small rise of 1.08 ± 1.82 m3/s per year. After 2000, a

sustained increase in the runoff anomaly (1.99 ± 2.56 m3/s per year)

was observed which exceeded the average in 2000 similar to the air

temperature, and increased by 184% between 1985–2000 and

2000–2019 based on the median runoff production for each

period (Figure 5E). Overall, the rapid increase in runoff

production since 2000 has coincided with the acceleration of the

ice motion of the 79N and ZI glaciers, which indicates that runoff

changes might modulate the movement of the three glaciers.

During our study period, the ice motion pattern was different in

the SG glacier as it decelerated continuously (Figure 5C). The

glacier surged between 1978 and 1984, and its floating ice tongue

began to advance in the 1970s and continued until 1985, with the

overall thickening and decelerating inland, thinning and

accelerating near the terminus, and the glacier remained

stationary ever since (Reeh et al., 1994; Hill et al., 2018;

Mouginot et al., 2018). However, our results show that the

increases in temperature and runoff might have impeded the

deceleration since 2000, leading to a stabilization trend in the ice

flow deceleration of the SG glacier.

FIGURE 4
For each glacier, 79N (A), ZI (B) and SG (C), the average ice velocity from 1985 to 2018 is shown in red lines, the surface topography is shown in
bright blue, and bedrock is shown in black for each glacier along its central flow line. The vertical black lines indicate the respective grounding line
position of the 79N and ZI glaciers.
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Figure 5 shows that the temporal variation of glacier velocity lags

behind the increase in runoff, as runoff experienced a long-term

increase from 1985 while glacier velocities only started to increase in

2000. Previous studies also have concluded that there is a certain

relationship between antecedent runoff and ice velocity (Tedstone

et al., 2015; Williams et al., 2020). Therefore, we calculated the

FIGURE 5
Time series of the velocities anomaly in the 79N (A), ZI (B), and SG (C) glacier along their respective central flow lines, R2 is the indicator of how
well the trend line fits. (D) Air temperature anomaly derived from automatic weather station and ERA5 datasets along the respective central flow lines
of the three glaciers. (E) Runoff variation anomaly in each basin of the three glaciers.

FIGURE 6
Statistical relationship between runoff anomaly preceding N years and three glacial velocity anomalies for the glaciers 79N (A), ZI (B) and SG (C).
The line with the red dot indicates R2, the grey bar indicates p value. The black vertical line indicates themaximum value of R2 on each glacier before it
starts to decrease.
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statistical relationship of glacier velocity anomaly and the antecedent

0–30 years of runoff anomaly. TheR2 values between runoff anomaly

and glacial velocity increased when more antecedent melt years are

included (Figure 6). AlthoughWilliams et al. (2020) suggests that this

significant relationship may be constructed as more antecedent

runoff are included and the data became smoothed. However, the

correlation in this study between ice velocity anomaly and runoff

anomaly reached the maximum (0.66, 0.81, and 0.74) in six, five, and

8 years for the three glaciers, which did not continually increase due

to the gradual smoothing of runoff. Our findings indicate a strong

correlation between the antecedent runoff and ice velocity variations

and underline the positive response of ice flow to enhanced runoff

production, but there is a delay of approximately five to 8 years for

glacier movement. This may be due to the fact that surface meltwater

can be trapped and stored in the bed of the ice sheet, thus forming

multi-year effects (Willis et al., 2015). Karlsson and Dahl-Jensen

(2015) also showed the possibility for far field controls on the

subglacial water system of NEGIS, and that the variations in

subglacial water outflux at the outlets of three glaciers may be

caused by changes in several hundred kilometers upstream. Thus,

observed changes in ice-flow velocity at the margins are not

necessarily caused by processes in the same spatial and temporal

scale.

Subglacial drainage systems play key roles in controlling the

glacier dynamics in GrIS through the drainage of surface

meltwater runoff to the subglacial area, especially for the land-

terminating glaciers (Nienow et al., 2017; Davison et al., 2019).

However, our study indicates the possibility that long-term

velocity changes in marine-terminating glaciers are also

influenced by subglacial drainage systems. The continuous

increase in surface meltwater runoff for many years causes

gradual pressure buildup in the subglacial drainage system,

which accelerates or retards deceleration in the glacier. Some

studies have attributed the deceleration of ice motion in

southwest Greenland to the channeling action of subglacial

drainage systems, which increased drainage efficiency and

reduced subglacial water pressure, and slowed the ice motion

(Tedstone et al., 2015; Williams et al., 2020). In other words,

more effective drainage led to the reduction of basal pressure and

thus result in the deceleration of inter-annual changes. However,

the glacier has been accelerating (retarding deceleration)

following the continuous increase of runoff since 2000, and

the change from inefficient to high-efficiency drainage in the

hydrological system does not appear to be significant, or limited

in NEGIS (Neckel et al., 2020). Davison et al. (2019) show that

the efficient channels can form along principal water flow paths

beneath large areas of the ablation area (up to at least ~40 km

from the margin), but their formation and persistence appears to

be suppressed and may even be precluded with increasing ice

thickness and distance from the margin. Northeast Greenland is

FIGURE 7
Median surface elevation changes across the study area between 1992 and 2000 (A) and between 2001 and 2018 (B). The values showed in the
boxes are the changes of runoff (m3/s) in the basins of each glacier. The yellow lines indicate the grounding line of 79N and ZI glaciers (Morlighem
et al., 2017). The short dash lines show the central flow lines. The thin gray lines are 400–1600 m contour line of ice surface elevation.
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clearly larger than the southwest, and as the largest basin in

Greenland, its subglacial drainage path extends further inland

than the southwest. This indicates that even if there is channeled

efficient drainage in NEGIS, it only occurs in the downstream.

However, in the larger upstream un-channelized area, the basal

pressure keeps increasing after the runoff input increases. The

upstream meltwater input and the increased basal pressure may

have a greater impact on the ice velocity than the downstream

channelization at a small scale. Therefore, we propose that weak

channelization in NEGIS may be responsible for the differences

with the southwest Greenland. It is worth mentioning that

marine-terminating glacier dynamics are complex and related

to ice-ocean interactions, such as fjord water and calving (Howat

et al., 2005; Cowton et al., 2018). Therefore, increased runoff may

not be a dominant factor in the acceleration of glaciers in NEGIS,

but the surge of runoff on the long-term scale is correlated with

the changes of glacier velocity in this region.

Surface elevation change vs. ice-flow
velocity

Generally, ice surface melting results in an increase in ice

runoff and a decrease in ice surface elevation (Gilbert and Kittel

2021). To further estimate the relationship between runoff and ice

velocity, we compared the changes in glacier surface elevation and

ice velocities between 1992 and 2018. The thinning of 79N and ZI

glaciers significantly accelerated and expanded to a greater area and

magnitude after 2000, and the thickening of the SG glacier

decreased (Figure 7). During the same period, the runoff of the

three glaciers increased two to six times, went from a negative to a

positive rate of increase for the SG glacier.We found that significant

thinning areas of the surface elevation for the three glaciers spatially

corresponded with greater changes in ice velocity (Figure 3),

indicating that large amounts of runoff were generated in the

significant change areas of ice velocity after 2000. Recent studies

have suggested that some supraglacial lakes forming in these areas

drain rapidly beneath the ice in a short time, further demonstrating

the process of runoff discharge into ice bed in areas with significant

ice velocity variations. (Neckel et al., 2020; Turton et al., 2021).

Conclusion

By analyzing annual ice velocity data from 1985 to 2018,

derived from satellite remote sensing images, we found that the

79N, ZI, and SG glaciers in the NEGIS experienced spatially

heterogeneous variations in ice motion over decadal timescales,

which are generally related to the subglacial topographic features.

Our results revealed a clear regional ice-flow speedup in both the

79N and ZI glaciers, with a mean increase of 14.60% and 9.40% in

2001–2018 compared to 1985–2000, but a widespread

deceleration of the SG glacier with a mean of 16.30%. The

184% increase in surface runoff was strongly correlated with

the ice velocity changes in the three glaciers.

Our statistical analysis showed that surface runoff has a significant

positive effect on glacier movement over decadal time scales in this

basin, which is supported by previous studies on supraglacial lake

dynamics (Neckel et al., 2020; Turton et al., 2021). However, the

influence of several other driving forces (such as basal melting (Rignot

et al., 1997) and mélange buttressing (Khan et al., 2014)) could not be

excluded because of the complexity of marine-terminating glacier

dynamics. This study highlights the crucial roles of subglacial

topographic features and surface runoff dynamics on the ice

motion of the marine-terminating glacier in NEGIS. This improves

our understanding of the dynamic changes occurring in NEGIS in

response to changing atmospheric circumstances. Future research is

necessary to elucidate the underlying dynamic mechanisms driving

hydrodynamic coupling processes on ice motion across the NEGIS.
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A 35-year daily global solar
radiation dataset reconstruction
at the Great Wall Station,
Antarctica: First results and
comparison with ERA5,
CRA40 reanalysis, and ICDR
(AVHRR) satellite products

Zhaoliang Zeng1,2, Xin Wang1*, Zemin Wang2, Wenqian Zhang1,
Dongqi Zhang1, Kongju Zhu1, Xiaoping Mai3, Wei Cheng4 and
Minghu Ding1*
1State Key Laboratory of SevereWeather, Chinese Academy ofMeteorological Sciences, Beijing, China,
2Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China, 3Key
Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Center,
Ministry of Natural Resources, Beijing, China, 4Beijing Institute of Applied Meteorology, Beijing, China

Solar radiation drives many geophysical and biological processes in Antarctica,

such as sea ice melting, ice sheet mass balance, and photosynthetic processes

of phytoplankton in the polar marine environment. Although reanalysis and

satellite products can provide important insight into the global scale of solar

radiation in a seamless way, the ground-based radiation in the polar region

remains poorly understood due to the harsh Antarctic environment. The

present study attempted to evaluate the estimation performance of

empirical models and machine learning models, and use the optimal model

to establish a 35-year daily global solar radiation (DGSR) dataset at the Great

Wall Station, Antarctica using meteorological observation data during

1986–2020. In addition, it then compared against the DGSR derived from

ERA5, CRA40 reanalysis, and ICDR (AVHRR) satellite products. For the DGSR

historical estimation performance, the machine learning method outperforms

the empirical formula method overall. Among them, the Mutli2 model (hindcast

test R2, RMSE, and MAE are 0.911, 1.917 MJ/m2, and 1.237 MJ/m2, respectively)

for the empirical formula model and XGBoost model (hindcast test R2, RMSE,

and MAE are 0.938, 1.617 MJ/m2, and 1.030 MJ/m2, respectively) for the

machine learning model were found with the highest accuracy. For the

austral summer half-year, the estimated DGSR agrees very well with the

observed DGSR, with a mean bias of only −0.47 MJ/m2. However, other

monthly DGSR products differ significantly from observations, with mean

bias of 1.05 MJ/m2, 3.27 MJ/m2, and 6.90 MJ/m2 for ICDR (AVHRR) satellite,

ERA5, and CRA40 reanalysis products, respectively. In addition, the DGSR of the

Great Wall Station, Antarctica followed a statistically significant increasing trend

at a rate of 0.14 MJ/m2/decade over the past 35 years. To our best knowledge,

OPEN ACCESS

EDITED BY

Susana Barbosa,
University of Porto, Portugal

REVIEWED BY

Babak Mohammadi,
Lund University, Sweden
Xueyuan Tang,
Polar Research Institute of China, China
Zhiqiang Gong,
Beijing Climate Center (BCC), China

*CORRESPONDENCE

Xin Wang,
xwang@cma.gov.cn
Minghu Ding,
dingminghu@foxmail.com

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing,
a section of the journal
Frontiers in Earth Science

RECEIVED 05 June 2022
ACCEPTED 20 July 2022
PUBLISHED 01 September 2022

CITATION

Zeng Z, Wang X, Wang Z, Zhang W,
Zhang D, Zhu K, Mai X, Cheng W and
Ding M (2022), A 35-year daily global
solar radiation dataset reconstruction at
the Great Wall Station, Antarctica: First
results and comparison with ERA5,
CRA40 reanalysis, and ICDR (AVHRR)
satellite products.
Front. Earth Sci. 10:961799.
doi: 10.3389/feart.2022.961799

COPYRIGHT

© 2022 Zeng, Wang, Wang, Zhang,
Zhang, Zhu, Mai, Cheng and Ding. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 01 September 2022
DOI 10.3389/feart.2022.961799

265

https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://www.frontiersin.org/articles/10.3389/feart.2022.961799/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.961799&domain=pdf&date_stamp=2022-09-01
mailto:xwang@cma.gov.cn
mailto:dingminghu@foxmail.com
https://doi.org/10.3389/feart.2022.961799
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.961799


this study presents the first reconstruction of the Antarctica Great Wall Station

DGSR spanning 1986–2020, which will contribute to the research of surface

radiation balance in Antarctic Peninsula.

KEYWORDS

DGSR, empirical formula, machine learning, CRA40 reanalysis product, ICDR (AVHRR)
satellite product

Highlights

• The high-precision and long time series DGSR dataset for

the Great Wall Station in Antarctica spanning

1986–2020 was first constructed.

• Among all models, the XGBoost model shows the highest

performance of hindcast estimated DGSR, with the results

of hindcast test R2, RMSE, and MAE are 0.938, 1.617 MJ/

m2, and 1.030 MJ/m2, respectively.

• The monthly DGSR of ICDR (AVHRR) satellite, ERA5,

and CRA40 reanalysis products differ significantly from

observations during the austral summer half-year, with a

mean bias of 1.05 MJ/m2, 3.27 MJ/m2, and 6.90 MJ/m2,

respectively.

• DGSR showed a significant increasing trend (0.14 MJ/m2/

decade) over the past 35 years at the Great Wall Station,

Antarctica.

1 Introduction

Solar radiation, as the basic driving force of various weather

phenomena and all physical processes in the Earth’s atmosphere,

has a very important impact on weather and climate (Che et al.,

2005; Wild, 2009). Accurate and reliable surface solar radiation

information and its spatial–temporal variation have a profound

influence on research fields such as solar energy, global warming,

hydrological cycle, and ecosystems (Thornton and Running,

1999; Yang et al., 2001; Tang et al., 2011; Ma and Pinker,

2012; Prăvălie et al., 2019; He et al., 2021). Antarctica, a key

area for examining climate change, is closely linked to other

components of the global climate system (Lachlan-Cope, 2005;

Brook and Buizert, 2018; Pattyn and Morlighem, 2020). To our

best knowledge, ground-based solar radiation at automatic

weather stations and yearly-round stations remain the

primary source for providing the most accurate data and

monitoring surface radiation balance in Antarctica (Stanhill

and Cohen, 1997; Braun and Hock, 2004). However, high-

quality ground-based surface solar radiation observations are

very sparsely distributed in Antarctica.

The problem of poor data coverage in time and space can be

partly remedied by the use of satellite measurements. But the

satellite-based surface solar radiation data need to be calibrated

and validated against local ground measurements (Pinker et al.,

2005; Sanchez-Lorenzo et al., 2017). This is even far more

relevant at high latitudes, where conditions make satellite

measurements difficult and less ground truth data are

available (Jaross and Warner, 2008; Zhang et al., 2019; Zeng

et al., 2021b). In particular, the Satellite Application Facility on

Climate Monitoring (CM SAF) developed high-quality satellite-

derived products from the Interim Climate Data Record (ICDR)

group (Urraca et al., 2017), namely, ICDR (AVHRR). This

product, based on CLARA-A2 methods, is a new satellite

(~40 years) global database of daily and monthly-averaged

solar irradiation on a 0.25° * 0.25° grid system (Karlsson et al.,

2017; Babar et al., 2018; Wang et al., 2018; Tzallas et al., 2019).

The surface solar radiation dataset from the ICDR (AVHRR) is

validated against surface measurements obtained from the global

Baseline Surface Radiation Network (BSRN) (Krähenmann et al.,

2013; Carrer et al., 2019). However, due to the scarcity of ground

observation sites, there is still a large uncertainty of ICDR

(AVHRR) product in polar regions.

A third source of “observed” radiation data are the reanalysis

products, such as the fifth generation ECMWF atmospheric

reanalysis of the global climate (ERA5) (Hersbach et al., 2020;

Muñoz-Sabater et al., 2021). It is worth to note that the National

Meteorological Information Center (NMIC) of the China

Meteorological Administration (CMA) recently developed a

40 years global reanalysis (CRA40) dataset (Li et al., 2021;

Zhang et al., 2021). The CRA40 dataset represents China’s

first generation of a global atmospheric reanalysis product.

Although some intercomparisons between instruments or

model data, such as satellite, BSRN, and ERA-interim

reanalysis, have been previously conducted and yielded good

consistency in seasonal and spatial variation (Che et al., 2007;

Scott et al., 2017; van den Broeke et al., 2004; Wild et al., 2005; Yu

et al., 2019). Whether ERA5 and CRA40 reanalysis products are

sufficient to quantify regional changes in surface solar radiation

in Antarctica remains unknown. Therefore, the assessment of

ERA5 and CRA40 reanalysis products is essential.

The Antarctic Peninsula has been subjected to intense

warming since the 1950s (Hock et al., 2009), but the warming

was reversed to cooling since the beginning of 2000 (Oliva et al.,

2017; Turner et al., 2020). Feedback factors such as sea ice retreat,

cloud water changes, and warming process, in particular, are

mainly influenced by radiation in this region. The Great Wall

Station is located on the King George Island near the Antarctic

Peninsula and has a typical sub-Antarctic maritime climate

(Ding et al., 2020; Sentian et al., 2020). The station’s

observation data have proven to be representative of the local

Frontiers in Earth Science frontiersin.org02

Zeng et al. 10.3389/feart.2022.961799

266

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961799


environment. However, ground-based meteorological

observations on the King George Island are very sparse,

especially radiation observations (Soares et al., 2019). To sum

up, a comparative analysis of the basic climatic characteristics

(especially radiation) and its trends at the Great Wall Station can

improve the knowledge of the frequency and processes of

extreme weather and climate events in a warming context,

and provide a reference for interpreting the causes of

warming in the Antarctic Peninsula (Stanhill and Cohen, 1997).

Here, a reconstruction of the Antarctica Great Wall Station

daily surface solar radiation (also referred to as daily global solar

radiation, DGSR) spanning 1986–2020 is presented, and

comparisons among ERA5, CRA40 reanalysis, and ICDR

(AVHRR) satellite products have been conducted. The trend

of long-term DGSR at this station is also analyzed. The rest of the

study is organized as follows. The descriptions of site data,

reanalysis and satellite data, and the empirical formula and

machine learning method are given in Section 2. Section 3

presents the accuracy of historic estimated DGSR by various

models, comparison with other reanalysis and satellite products,

and the characteristics and trends of DGSR. A brief conclusion is

finally outlined in Section 4.

2 Data and method

2.1 Site data

The ground observation data used in this study are collected

from the Great Wall Station (62°13′S, 58°58′W, 10 m) in

Antarctica, and the ground meteorological observation

instruments and methods are constructed and operated in

accordance with the WMO and CMA ground meteorological

observation specifications (Ding et al., 2020). The site is

characterized by high humidity, high cloudiness, and low

sunshine (Yang et al., 2010, Yang et al., 2013). The Great

Wall Station was built in 1985 and began observing the

conventional meteorological elements (wind, temperature,

relative humidity, and barometric pressure) four times a day

on 13 January of that year, and in 2002 began continuous 24-h

automatic observations. Cloud cover, visibility, and precipitation

were observed four times a day starting in December 1985.

Among them, cloud cover and visibility are from manual

observation. Sunshine duration was observed continuously

24 h a day from January 1986.

Since the establishment of the Great Wall Station, only short-

term observation and research on solar radiation have been

carried out from May 1993 to December 1994. Operational

observations of surface solar radiation began in February

2008. As shown in Figure 1, the radiation observatory is also

within the Great Wall Station meteorological observatory, which

is largely snow-free with brown pebbles on the ground from

November to March each year, and maintains snow on the

ground from April to November. The instrument used for

radiation observation is the TBQ-2-B-I total radiation meter

produced by Beijing Huachuang Company. The instrument

measures wavelengths in the range of 0.3–3 μm, with a

sampling resolution of hours. The instrument is installed in

the meteorological field, and its sunrise and sunset orientation

without obstacles with an altitude angle of more than 5°.

Meanwhile, to ensure the accuracy of observation data, the

TBQ-2-B-I total radiation meter has passed the verification

and calibration of the China Meteorological Administration

before installation.

2.2 Reanalysis and satellite products

2.1.1 ERA5
The ERA5 dataset is the latest reanalysis from the European

Centre for Medium-Range Weather Forecasts (ECMWF) based

on its previous generation ERA-Interim dataset. Compared with

the previous ERA-Interim dataset, the ERA5 dataset has longer

time coverage, a more accurate data assimilation system, and

finer spatial resolution (Hersbach et al., 2020). ERA5 currently

provides the data from 1950 to the present. The dataset chosen

for the study is the monthly product (ERA5 monthly averaged

data on single levels from 1959 to present), which mainly uses its

downward shortwave radiation data.

2.1.2 CRA40
In May 2021, Chinese first generation of global atmospheric

and land surface reanalysis (CRA) products were officially

released, filling the gap in the field of global atmospheric

reanalysis in China and providing comprehensive applications

for various industries through the China Meteorological Data

Website (http://data.cma.cn/CRA). The product is a reprocessing

and analysis of historical meteorological observations using

mature numerical prediction models and assimilation analysis

to reproduce past atmospheric conditions, which has important

applications in the fields of weather, climate, environment, ocean,

and hydrology (Yu et al., 2021). This product reproduces the

global three-dimensional atmospheric status from the ground to

55 km altitude since 1979. The dataset selected for this study is

the daily surface radiation product with a spatial resolution of

34 km (Li et al., 2021).

2.1.3 ICDR (AVHRR)
The Climate Monitoring Satellite Application Facility (CM

SAF) centers of the EUMETSAT member countries, mainly

operated by the German Federal Meteorological Institute,

aimed to create long time series of Climate Date Record

(CDR) datasets that make CDRs applicable for climate change

analysis and prediction (Urraca et al., 2017). The CLARA-A2

dataset is one of the CDRs of CM SAF. It is mainly generated by

the data collected by different types of AVHRR sensors on board
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NOAA series satellites and MetOp polar series satellites. The

CLARA-A2 dataset mainly includes cloud products, surface

radiative flux products, and surface albedo products (Karlsson

et al., 2017). It provides data at both daily and monthly average

temporal resolutions, and the daily product is used for the surface

radiation products in this study, with a spatial resolution of

0.25°*0.25°. The product is currently updated to the latest,

namely, ICDR (AVHHR).

FIGURE 1
Location of the Great Wall Station in Antarctica (upper right), regional overview map (upper left), meteorological observation site (bottom left),
and radiation instruments (bottom right).

TABLE 1 Full list of predictor variables for estimating the global solar radiation

Model Empirical formula Reference

SSD1 DGSR � Q(a + bS) Prescott (1940)

SSD2 DGSR � Q(acos(φ) + bS) Glover and McCulloch, (1958)

SSD3 DGSR � Q(a + bS + cS2) Ögelman et al. (1984)

SSD4 DGSR � Q(a + bS + cS2 + dS3) Bahel et al. (1987)

SSD5 DGSR � aQebS Elagib and Mansell, (2000)

SSD6 DGSR � Q(a + beS) Bakirci, (2009)

T1 DGSR � aQ(ΔTb) Hargreaves and Samani, (1982)

T2 DGSR � Q(a + b
���
ΔT

√ ) Hargreaves et al. (1985)

T3 DGSR � aQ
���
ΔT

√ + b Hunt et al. (1998)

T4 DGSR � Q(aTmax + bTmin + c) Li et al. (2010)

T5 DGSR � aTmax + bTmin + cQ + d Almorox et al. (2013)

Multi1 DGSR = Q(a + b√ΔT + cTa + dPt) Wu et al. (2007)

Multi2 DGSR = Q(a + bS + cS2 + dS3 + e√ΔT + fln(P + 1) + gTa + hRH) Feng Y. et al. (2020)
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2.3 Methods

2.3.1 Empirical formula models
Meteorological elements are important factors that influence

and reflect the variation of surface solar radiation (Wang et al.,

2016; Zhang et al., 2017). Establishing the relationship between

one or more meteorological elements as a function of surface

solar radiation is the main idea of solar radiation estimation

(Zeng et al., 2020; Huang et al., 2021). Several meteorological

factors (such as sunshine duration, clouds, temperature, relative

humidity, precipitation, water vapor content, and atmospheric

turbidity) have been used in the estimation of global solar

radiation, among which sunshine duration, clouds, and

temperature are the most widely used meteorological factors

(Wang et al., 2016; Zou et al., 2019; Mohammadi and

Moazenzadeh, 2021; Mohammadi et al., 2022). However, since

the physical parameters of clouds are very complex and difficult

to measure, global solar radiation estimation methods based on

sunshine duration and temperature data are the two most

commonly used methods with high accuracy (He et al., 2018;

Feng andWang, 2021a, Feng andWang, 2021b). The daily global

solar radiation estimation models based on sunshine duration,

temperature-based, and multi-meteorological parameters used in

this study are shown in Table 1.

In the table, DGSR is daily global solar radiation (MJ/m2), Q

is daily extraterrestrial radiation (the radiation received by the

horizontal plane at the top of the atmosphere, unit: MJ/m2), S is

the sunshine percentage (%), φ is the geographical latitude (rad),

a, b, c, d, e, f, g, and h are empirical coefficients, Δ T is the daily

temperature difference (°C), p is daily precipitation, Pt is

converted precipitation data, p>0, Pt =1; p<0, Pt =0. Here, Q

can be calculated by the following formula:

Q � T
πd

2
mS0(w0 sinφ sin δ + cosφcosσδsinw0), (1)

where T=86,400 s, S0 =1367 W/m2, d2m is the solar-terrestrial

correction distance, w0 is the solar hour angle, and δ is the

declination.

2.3.2 Machine learning models
Random forest (RF) is an extended variant of bagging. Based

on the categorical regression tree as the base learner to build

bagging integration, random forest further introduces the

selection of random features in the training process of the

decision tree (Wei et al., 2019; Zeng et al., 2020). The gradient

boost regression tree (GBDT) is a boosting algorithm in which

the base learner in GBDT is a categorical regression tree and each

sub-model is trained based on the performance (residuals) of the

trained learner (Chen et al., 2019). And a new model is built in

the direction of the gradient where the residuals are reduced.

GBDT can be used for most linear and nonlinear regression

problems, can handle out-of-space anomalous data, and is

adaptable to various types of data without requiring complex

feature engineering (Chen et al., 2019). XGBoost (eXtreme

TABLE 2 Statistical information for multiple empirical formula models.

Variable Unit Selecteda Description

Geographical factors Q MJ/m2 Y Extraterrestrial radiation

S % Y Sunshine percentage

Time factor Month — N Month of year

DOY Day Y Day of year

Estimated factor DGSR MJ/m2 Y Global solar radiation

Meteorological factors PRS-mean hPa Y Daily average atmospheric pressure

RH % Y Daily average relative humidity

SSD H Y Daily sunshine duration

PRE-0820 Mm Y Precipitation from 8:00 a.m. to 20:00 p.m.

Ta °C Y Daily average air temperature

Tmax °C Y Daily maximal air temperature

ΔT °C Y Tmax minus Tmin

WS m/s Y Daily average wind speed

Tmin °C Y Daily minimal air temperature

TCC — N Daily total cloud cover

LCC — N Daily low cloud cover

VIS Km N Daily visibility

PRE-2020 Mm N Precipitation from 20:00 p.m. to 20:00 p.m.

aY: Included in the model after variable selection.
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Gradient Boosting) is a machine learning algorithm

implemented in the gradient boosting framework. It is

implemented by the gradient boosting machine and improved

on the original one, which greatly improves the model training

speed and prediction accuracy (Xiao et al., 2018; Xu et al., 2018;

Gui et al., 2020). In the modeling process, the model may need to

perform thousands of iterations for more complex data. This

problem is well solved by the XGBoost model, which enables

parallel operations on the regression tree. LightGBM is a decision

tree-based gradient boosting framework that models complex

non-linear functions. LightGBM offers distributed and high-

performance advantages in sorting, classification, and

regression (Zeng et al., 2021a). Other machine learning

models are shown in Supplementary Text S1.

The stacking model involves the process of training a high-

level learner to find the optimal combination of base learners,

rather than simply fusing the results of several primary learners.

Compared with bagging and boosting frameworks, which use the

same type of base learners for construction, the stacking model is

built by combining different types of base learners (Feng L. et al.,

2020), because different types of base learners differ significantly

in learning the data space and structure. Different types of base

learners can observe the data features from different perspectives

and learn the data more comprehensively to obtain a more

accurate result (Chen et al., 2019). The core idea was to train

the base learner with cross-validation, and then construct

secondary features for training the meta learner based on the

output of the base learner (Huang et al., 2021). Ridge regression,

in essence, is a biased regression method dedicated to handling

covariance data by improving the least squares method by

abandoning the unbiased nature of least squares to produce

biased estimates, allowing for more realistic and reliable

regression coefficients at the cost of losing some information

and reducing accuracy (McDonald, 2009).

In this study, the regression methods of random forest,

XGBoost, and LightGBM are used as one of the base learner

models for building the stacking model, and the results of the first

layer are retrained and predicted using ridge regression as the

second layer.

2.4 Steps of DGSR reconstruction and
comparison with other products

Step 1: Data pre-processing and time matching. The daily values

of the meteorological variables were obtained by averaging the

four daily observations at 0000, 0600, 1200, and 1800 UTC. Daily

sunshine duration and daily global solar radiation as a

cumulative value for 24 h per day are obtained. The final

available data include conventional meteorological observation

(see Table 2) for the period 1986–2020, with radiation

observations from February 2008 to December 2020.

Step 2: Model construction. Empirical formula models and

machine learning models are constructed based on matched

samples. These empirical models include sunshine-based

models (six in total), temperature-based models (five in total),

and multivariate models (two in total). As in the study by

Mohammadi et al. (2022), the empirical formula models were

calibrated (the matched samples from 2011 to 2020 were used in

this study) to obtain the empirical coefficients, and the remaining

samples are then used to test the accuracy of the model (matched

samples from February 2008 to December 2010 were used in this

study). Machine learning models include RF, LightGBM, MLP

neural networks, SVM, MLR, and stacking models. In this study,

TABLE 3 Coefficients and model accuracy of the empirical formula model.

Model Empirical formula Performance

R2 RMSE MAE

SSD1 a=0.2637, b=0.6072 0.896 2.073 1.327

SSD2 a=0.5658, b=0.6072 0.896 2.073 1.327

SSD3 a=0.2531, b=0.9249, c=−0.5541 0.900 2.028 1.298

SSD4 a=0.2474, b=1.3008, c=−2.1947, d=1.5923 0.900 2.028 1.296

SSD5 a=0.2782, b=1.3170 0.881 2.219 1.425

SSD6 a=−0.1607, b=0.4323 0.887 2.163 1.388

T1 a=0.2500, b=0.2233 0.739 3.283 2.034

T2 a=0.1860, b=0.0756 0.737 3.294 2.041

T3 a=−0.1827, b=−0.0012 0.746 3.238 2.043

T4 a=0.0144, b=-0.0158, c=0.2689 0.731 3.335 2.066

T5 a=0.4365, b=−0.4661, c=0.3675, d=−2.2335 0.713 3.439 2.346

Multi1 a=0.2834, b=0.0631, c=−0.0015, d=−0.1076 0.776 3.041 1.913

Multi2 a=0.0780, b=1.2497, c=−2.0761, d=1.4781,e=0.0173, f=−0.0329, g=−0.0049, h=0.0017 0.911 1.917 1.237
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data from 2011 to 2020 were used for training and tested using a

10-fold cross-validation method (Zeng et al., 2021b). The

performance of the machine learning model for historical

DGSR estimation was also evaluated using data from February

2008 to December 2010. The 10-fold cross-validation method is

given in Supplementary Text S2 in Supplementary Information.

Step 3: Historical dataset reconstruction. The meteorological

observations of the Great Wall Station in Antarctica were

used to estimate the DGSR from 1986 to 2020 in combination

with the optimal model obtained in Step 2.

Step 4: Comparison with other reanalysis and satellite products.

Because of the large sample size of the multi-year daily value data,

we averaged the DGSR data on a monthly basis in order to

visualize and explore more clearly the differences between the

different DGSR products. The monthly products of the reanalysis

and satellites were interpolated and time-matched to the Great

Wall Station site, and then compared with the estimated DGSR,

observed DGSR. Based on this reconstructed data, the annual,

monthly, and seasonal variation characteristics of the DGSR at

the Great Wall Station are analyzed, and the trends and their

possible influencing factors are further explored.

3 Results and discussion

3.1 Empirical formula model results

Meteorological parameters (e.g., sunshine duration,

temperature, and precipitation) during 2011–2020 were used as

model input elements to the selected models for calculating the

empirical constants. Table 3 shows that the empirical constants

estimated from the SSD4 model are a=0.2474, b=0.1.3008, c=-

2.1947, and d=1.5923. The empirical constants also estimated from

the T3 model are a=−0.1827 and b=−0.0012. Multi2 model’s

empirical constants are a=0.0780, b=1.2497, c=−2.0761,

d=1.4781, e=0.0173, f=−0.0329, g=−0.0049, and h=0.0017.

Details of the other model’s empirical constants are statistically

provided in Table 3. The empirical constant values from different

empirical formulas were used to estimate DGSR at the Great Wall

Station from February 2008 to December 2010, and then a

comparison between estimated DGSR and observed DGSR

was made.

The correlation (R), standard deviation (STD), and centered

root mean square difference (RMSD) between observed and

estimated DGSR are plotted in Taylor diagrams (Figure 2).

Figure 2 indicates temperature-based models gave relatively

larger model errors than sunshine-based models. Among

sunshine-based models, the SSD4 model has the highest

accuracy, with the corresponding R, RMSE, and MAE of

0.949, 2.028 MJ/m2, and 1.296 MJ/m2, respectively. The

SSD5 model had the lowest accuracy, with the values of R,

RMSE, and MAE of 0.939, 2.219 MJ/m2, and 1.425 MJ/m2,

respectively. For the temperature-based model, the T3 model

had the highest accuracy (R=0.864, RMSE=3.238 MJ/m2, and

MAE=2.043 MJ/m2), while the T5 model had the lowest accuracy

(R=0.844, RMSE=3.439 MJ/m2, and MAE=2.346 MJ/m2). Other

results of temperature-based models and sunshine-based models

are shown in Table 3.

The Multi1 model discussed solar radiation calculation with

precipitation (Pt = 1) and no precipitation (Pt = 0). The model

(parameters only include ΔT) was still a temperature-based

model, so the low accuracy of this model can be explained in

this study. The hybrid model based on multiple meteorological

parameters has the highest accuracy (e.g., Multi2 with R, RMSE,

andMAE are 0.955, 1.917 MJ/m2, and 1.237 MJ/m2, respectively),

followed by the sunshine-based model, and the temperature-

based model has the lowest accuracy. In general, the results

showed that all empirical models were able to estimate the daily

global solar radiation with high coefficients of determination and

the smallest values of RMSE, MAE, and MB.

3.2 Machine learning models results

3.2.1 Variables selection and model tuning
results

The RF model can select the optimal variables according to

the importance of variables, thus simplifying the model. Based on

“feature_importances_” parameter of the RF model in scikit-

learn, the importance values of all variables can be calculated

(Pedregosa et al., 2011). First, the 10-fold cross-validation results

(CV R2, CV RMSE, and CVMAE), hindcast test results (hindcast

test R2, hindcast test RMSE, and hindcast test MAE), and the

importance of all variables are obtained by training the RFmodel.

FIGURE 2
Taylor diagram of historical estimation performance for
multiple empirical formula models.
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Second, the variables were sorted according to the variable’s

importance from small to large, and the variable with the least

importance was removed. Then, the RF model was trained again

and the training results were recorded. Repeat these steps until

only two input variables were left in the model.

The estimation performance of the model was evaluated

according to the recorded results of each model training.

When the model CV accuracy and historical prediction

accuracy are both high, the corresponding training variable is

determined as the final variable of the model, that is, the variable

selection result. Figure 3 shows the results of model performance

(CV R2, CV RMSE, and CVMAE) and hindcast ability (hindcast

test R2, hindcast test RMSE, and hindcast test MAE) of the RF

model during the variable selection process. It should be noted

that steps 13 and 15, where RMSE and MAE increase

dramatically, are not shown in the figure. After the sixth

variable was removed (at step 6), Figure 3 indicates that the

R2 (CV R2=0.949, hindcast test R2=0.929) was the highest, the

RMSE (CV RMSE=1.500 MJ/m2, hindcast test RMSE= 1.752 MJ/

m2) and MAE (CV MAE=0.930 MJ/m2, hindcast test

MAE=1.079 MJ/m2) were the lowest. Therefore, the remaining

11 variables were used as the final predictors, namely, Tmax, WS,

PRS-mean, ΔT, S, Tmin, PRE-0820, RH, DOY, SSD, and Q. In

addition, according to the results of meteorological variables

correlations with DGSR (Supplementary Figure S1) and variable

selection by machine learning (Figure 3), we find that the

observation quality of the input variables affects the accuracy

of the machine learning models because the LCC, TCC, VIS, and

PRE-2020 are manually observed (which leads to human errors)

at the Great Wall Station. Therefore, these variables are excluded

in the variable selection process by the random forest model. This

variable selection results (see Table 2) is also consistent with our

previous studies (Zeng et al., 2020; Zeng et al. 2021b).

Grid-search is a basic hyperparameter tuning technique,

which is similar to the method of manual tuning (Siji George

and Sumathi, 2020). It permutates and combines all the

hyperparameter values in the model, and then builds the

model according to the number of combinations. The optimal

model was evaluated and selected according to the cross-

validation score, and the corresponding hyperparameter

combination value of the optimal model was given. The grid-

search method is time-consuming and inefficient because it tries

every combination of hyperparameters. The random-search

method is to randomly select the hyperparameter combination

from the hyperparameter space, which cannot guarantee the best

parameter combination (Bergstra and Bengio, 2012). Since the

machine learning model contains multiple hyperparameters, we

first used the random-search method to find the potential

FIGURE 3
Model performance (CV R2, CV RMSE, and CV MAE) and hindcast ability (hindcast test R2, hindcast test RMSE, and hindcast test MAE) of the RF
model during the variable selection process. The predictor variables are removed one at a time in the following order: 1) month, 2) TCC, 3) LCC, 4) VIS,
5) PRE-2020, 6) Ta, 7) Tmax, 8) WS, 9) PRS-mean, 10) ΔT, 11) S, and 12) Tmin. It should be noted that steps 13 and 15, where RMSE increases
dramatically, are not shown in the figure.
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TABLE 4 Final selection value of the main parameters in each model.

Model Parameter Hyperparameter range Final value

RF 1. n_estimators [50–3,000 within an interval of 60] 1,450

2. max_features [’auto’, ’sqrt’] sqrt

3. max_depth [10–500 within an interval of 50] 60

LightGBM 1. n_estimators [50–3,000 within an interval of 40] 130

2. num_leaves [50–100 within an interval of 5] 65

3. learning_rate [0.01, 0.05, 0.08, 0.1, 0.15, 0.25] 0.1

4. susample [0.6, 0.7, 0.8, 1.0] 0.7

5. max_depth [3–8 within an interval of 1] 3

XGBoost 1. max_depth [2–30 within an interval of 5] 4

2. learning_rate [0.01, 0.05, 0.07, 0.1, 0.2] 0.01

3. susample [0.6, 0.7, 0.8, 0.9] 0.8

4. n_estimators [50–2,000 within an interval of 40] 550

GBDT 1. n_estimators [50–1,000 within an interval of 40] 970

2. Loss [’ls’, ’lad’, ’huber’, ’quantile’] lad

3. susample [0.5, 0.6, 0.7, 0.8, 0.9] 0.7

4. Learning_rate [0.01, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 0.8] 0.01

5. max_depth [3–14 within an interval of 2] 7

MLP 1. solver [’adam’, ’sgd’, ’lbfgs’] adam

2. alpha [0.001, 0.0001, 0.00001] 0.0001

3. hidden_layer_sizes [(100), (100, 30), (1,000, 500, 100)] (1,000, 500, 100)

SVM 1. tol [0.01, 0.001, 0.0001, 0.00001] 0.01

2. c [1, 10, 100, 1,000] 10

MLR -- --

--: Indicates the model parameter value set as the default.

TABLE 5 Fitted, CV, and estimated results of different machine learning models.

Model
name

Model fitted Model CV Model historic estimated

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

RF 0.981 0.933 0.562 0.949 1.502 0.931 0.930 1.744 1.051

LightGBM 0.965 1.249 0.789 0.951 1.473 0.925 0.929 1.735 1.083

XGBoost 0.965 1.247 0.782 0.952 1.464 0.909 0.938 1.617 1.030

GBDT 0.955 1.413 0.852 0.949 1.492 0.928 0.927 1.768 1.112

BPMLP 0.961 1.341 0.837 0.952 1.473 0.916 0.931 1.829 1.129

SVM 0.927 1.805 1.180 0.926 1.810 1.185 0.912 2.023 1.289

MLR 0.929 1.777 1.208 0.928 1.783 1.213 0.913 1.938 1.289

Stacking — — — — — — 0.932 1.715 1.058

Bold values indicates that the model is optimal.
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combination of hyperparameters, and then used the grid-search

method to select the optimal hyperparameters from the potential

combination of hyperparameters. The range of hyperparameter

tuning and the final hyperparameter combination of each

machine learning model are shown in Table 4.

3.2.2 Comparative results of machine learning
models

For the performance of machine learning models, the CV R2,

CV RMSE, and CV MAE of seven machine learning models are

between 0.926–0.952, 1.464–1.810 MJ/m2, and 0.909–1.185 MJ/

m2, respectively (Table 5). It shows that all models have good

estimation performance. The XGBoost model had the highest

overall accuracy, the CV R2 value was 0.952, and the estimation

uncertainty was the least. The MLP model has the same CV R2

value as XGBoost, but the estimated uncertainty is relatively large

(CV RMSE=1.473 MJ/m2, CVMAE=0.916 MJ/m2), so the overall

accuracy is lower than XGBoost. The overall accuracy of SVM

was the lowest (CV R2=0.926, CV RMSE=1.810 MJ/m2, and CV

MAE=1.185 MJ/m2). On the fact of model performance, the

model overall accuracy from high to low is as follows:

XGBoost, MLP, LightGBM, GBDT, RF, MLR, and SVM.

For the historical estimation performance of machine

learning, hindcast test R2, hindcast test RMSE, and hindcast

Test MAE are between 0.912–0.938, 1.617–2.023 MJ/m2, and

1.030–1.289 MJ/m2, respectively. All models show good

historical estimation capability. Similarly, the XGBoost model

outperforms the other six models and stacking models in

historical estimation performance. The RF model and

LightGBM model are second only to the stacking model,

while SVM has the worst historical estimation performance. It

is worth noting that compared with the RF model and LightGBM

model, the MLP model and GBDT model have larger historical

estimated uncertainty values. Compared with its own CV RMSE

and CV MAE, hindcast test RMSE and hindcast test MAE are

significantly larger, indicating the stability bias of the MLPmodel

and GBDT model. Therefore, in the stacking model, we chose

XGBoost, RF and LightGBM models as the first layer and ridge

regression as the second layer. The results show that the stacking

model has a high historical estimation capability (hindcast test

R2=0.932, hindcast test RMSE=1.715 MJ/m2, and hindcast test

MAE=1.058 MJ/m2), but not the highest, second only to the

XGBoost model.

Furthermore, we present XGBoost model fitting results, 10-

fold CV results, and historical estimation ability results in

Figure 4. Figures 4A,B shows that the XGBoost had higher R2

values of 0.965 (0.952) and lower RMSE and MAE values of

1.247 MJ/m2 and 0.782 MJ/m2 (1.464 MJ/m2 and 0.909 MJ/m2)

in the model fitted (model 10-fold CV) process. The results show

that the XGBoost model has high estimation accuracy and stable

performance. The matched samples from February 2008 to

December 2010 were used (not used in the model training

and cross-validation process) to evaluate the historical

estimation performance of the machine learning models, and

the result of the hindcast estimated is also shown in Figure 4C.

We found that the model hindcast estimated that DGSR presents

a good consistency with observed DGSR (R2 = 0.938, RMSE =

1.617 MJ/m2, and MAE=1.030 MJ/m2). In addition, the slope

(0.95, 0.94, and 0.96) and intercept (0.32, 0.38, and 0.51)

corresponding to the fitted, 10-fold CV, and historical

estimation ability result (R2, RMSE, and MAE) have few

changes, indicating that the model has good stability and

generalization. Also, the XGBoost is sufficient to reconstruct

the DGSR of the Great Wall Station, Antarctica.

At the same time, the time series, frequency distribution, and

difference distribution of DGSR of the Great Wall Station from

February 2008 to December are also presented in Figure 5.

Figure 5A shows that the time series of observed DGSR and

the estimated DGSR are very consistent. Meanwhile, Figure 5B

shows that the difference between the two values mainly occurs

FIGURE 4
Scatterplots density of the (A) fitted model, (B) 10-fold CV model, and (C) hindcast estimation results of the XGBoost model at the Great Wall
Station, Antarctica.
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in the range of ±2 MJ/m2, accounting for 83.7% of the total.

Figure 5C shows that the larger the DGSR value is, the greater the

difference is. Also, the samples with obvious differences are all

distributed in the austral summer, which may be related to the

sunshine duration, solar altitude angle, and precipitation in

summer. As shown in Figure 5D, when DGSR values range

from 0 to 3 MJ/m2, the historical estimation performance of the

model is good. With the increase of DGSR value, the historical

estimation capability of the model first overestimates and then

turns to underestimates. Overall, the mean difference of DGSR is

0.28 MJ/m2 (very small), which also indicates that the model has

extremely high historical estimation performance.

By comparing with the previous empirical formula models

(Tables 4, 5), we found that the SVM (hindcast test R2=0.912,

hindcast test RMSE=2.023 MJ/m2, and hindcast test

MAE=1.289 MJ/m2) and MLR (hindcast test R2=0.913,

hindcast test RMSE=1.938 MJ/m2, and hindcast test

MAE=1.289 MJ/m2) models have comparable historical

estimation performance to the Multi2 model (hindcast test

R2=0.911, hindcast test RMSE=1.917 MJ/m2, and hindcast test

MAE=1.237 MJ/m2). Other machine learning models (especially

the XGBoost model) have much higher historical estimation

capacity than empirical formula models. Other studies results

also show that the accuracy of estimated DGSR by machine

learning models is generally higher than that of empirical

formula models (Mohammadi et al., 2022).

In conclusion, the XGBoost model has stronger historical

estimation ability and can be used to reconstruct the historical

long time series DGSR dataset of the Great Wall Station, which is

of great significance for studying the characteristics and long-

term variation of surface solar radiation of the Antarctica, and

exploring and understanding the reasons for its trend evolution.

3.3 Comparison with other products

To better understand the differences between the estimated

DGSR and other reanalysis and satellite information, the

FIGURE 5
(A) Observed versus estimated DGSR, (B) probability distribution and (C) time series of the difference, and (D) DGSR bias in 2008–2010 at the
Great Wall Station, Antarctica.

FIGURE 6
Monthly time series variation of DGSR for the Great Wall Station from February 2008 to December 2020 from multiple data sources.
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monthly values of DGSR for each product are given in Figure 6. It

can be seen that the various DGSR follow a relatively consistent

trend in the time series of monthly values with the observed

DGSR, both being larger in austral spring and summer and

smaller in austral winter and autumn. The correlation

coefficients between the estimated, ERA5, CRA40, and ICDR

(AVHRR) DGSRs and the observed DGSR are 0.994, 0.982,

0.977, and 0.936, respectively. For the austral summer half-

year, the estimated DGSR was agreed very well with the

observed DGSR, with a mean bias of only −0.47 MJ/m2. The

other DGSR monthly products differ significantly from

observations, with a mean bias of 3.27 MJ/m2, 1.05 MJ/m2,

and 6.90 MJ/m2 for ICDR satellite products, ERA5, and

CRA40, respectively. The findings indicate that there is a high

degree of uncertainty in the region for these products. The

differences between them should be noted and appropriately

corrected when using this information.

The inter-year and differences (Figure 7) analysis of the

DGSR for different products from 2009 to 2020 shows that the

different products reflect inter-year variations in DGSR with a

small range of fluctuations. From 2009 to 2020, the observed,

estimated, ERA5, and CRA40 DGSRs range from 6.09 to

7.48 MJ/m2, 6.30–7.15 MJ/m2, 8.24–9.44 MJ/m2, and

10.41–10.95 MJ/m2, respectively. Figure 7B shows that the

estimated DGSR differs very little from the observed values,

with a negative bias (except for 2010) and a multi-year mean

bias of –0.27 MJ/m2. Both ERA5 and CRA40 show positive

bias and large multi-year mean bias values of 1.80 MJ/m2, and

3.76 MJ/m2, respectively. Correspondingly, the annual relative

errors of DGSR [the calculation formula of relative errors is

given in Section 3.3 from Zeng et al. (2021a)] from estimated,

ERA5, and CRA40 are 5.4%, 26.5% and 54.3%, respectively. It

is notable that the ICDR satellite products have not been

included in the DGSR annual mean comparison as the satellite

has more missing measurements during the austral winter

half-year.

The aforementioned results show that the annual and

monthly products of all the data can better reflect the

characteristics of the DGSR variation at the Great Wall

Station, Antarctica. Among them, the estimated DGSR in this

study has a very small bias and the highest accuracy, which is

sufficient to replace the observed values when the station is out of

measurement. However, the DGSR of the austral summer half-

year for other products [ERA5, CRA40, and ICDR (AVHRR)]

deviate significantly from the observed values, and the annual

averages of the DGSR deviate equally significantly. These DGSR

products should be considered with caution and corrected in

studies such as long-term trend evolution.

3.4 The characteristics and trends of DGSR

Annual and seasonal mean changes and trends of DGSR and

multi-year monthly mean changes for the Great Wall Station,

Antarctica, from 1986 to 2020 are given in Figure 8. As shown in

Figure 8F, DGSR showed a decreasing and then increasing trend

from January to December, with monthly average DGSR values

of 13.06, 9.44, 5.47, 2.38, 0.84, 0.41, 0.59, 2.18, 5.85, 10.29, 13.57,

and 15.23, respectively (Units: MJ/m2). The monthly average

DGSR value (12.58 MJ/m2) was highest in austral summer

(December, January, and February) and lowest (1.06 MJ/m2)

in austral winter (June, July, and August). The monthly

average DGSR value in austral spring (September, October,

and November) was 9.90 MJ/m2 and in austral autumn

(March, April, and May) it was 2.90 MJ/m2.

Figure 8E shows an increasing trend in the annual mean

DGSR at the Great Wall Station over the period 1986–2020, with

a trend value of 0.14 MJ/m2/decade. During the period

FIGURE 7
Yearly time series variation (A) and differences (B) of DGSR for the Great Wall Station during 2009–2020 from multiple data sources.
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1990–2004, the annual mean DGSR showed an increasing trend

of 0.46 MJ/m2/decade, while after 2005 the DGSR started to

show a decreasing trend, which is more consistent with the

trend of the Zhongshan Station, Antarctica (Zeng et al., 2021a).

The annual mean DGSR value decreases slightly with a value of

-0.2 MJ/m2/decade for the period 2005–2020. the reason for this

phenomenon may be related to the increase in the number of

precipitation days and clouds at the Great Wall station. To

reveal the characteristics of the seasonal mean DGSR at Great

Wall Station, we calculated the mean DGSR in spring, summer,

autumn, and winter each year, and established a time series

(Figures 8A–D). It can be seen that the inter-annual

fluctuations in the seasonal average DGSR are large and the

trend is toward an increasing trend in all four seasons. The

trends in summer and winter are 0.29 MJ/m2/decade and

0.03 MJ/m2/decade, respectively, and both are statistically

significant (p<0.05).

4 Conclusion

A reconstruction of the Antarctica Great Wall Station

daily global solar radiation spanning 1986–2020 was

presented, and is available upon request. The long-term

DGSR data have the highest accuracy that agrees with the

observed DGSR, and can describe the radiation

characteristics and trend changes at the Great Wall

Station, Antarctica. In addition, direct comparisons among

ERA5, CRA40 reanalysis, and ICDR (AVHRR) satellite

products were also performed in this study. The main

conclusions are as follows.

Among the empirical equation models, the multi-

meteorological variable model (hindcast test R2, RMSE, and

MAE of Multi2 are 0.911, 1.917 MJ/m2, and 1.237 MJ/m2,

respectively) has the highest accuracy in estimating the

historic DGSR at the Antarctica Great Wall Station,

followed by the sunshine-based model, and the

temperature-based model has the lowest accuracy (hindcast

test R2, RMSE, and MAE of T5 are 0.713, 3.439 MJ/m2, and

2.346 MJ/m2, respectively).

In the variable selection of the machine learning model,

the manually observed meteorological variables have a certain

impact on the model accuracy. This is mainly due to the fact

that different observation crews can cause human observation

errors, which in turn lead to a reduction in model accuracy.

This suggests that it is important to do quality control and

FIGURE 8
Trends in (A) spring, (B) summer, (C) autumn, (D) winter, (E) annual mean DGSR, and (F) DGSR monthly changes during 1986–2020. Star
superscripts represent that the trend values of DGSR are statistically significant (p<0.05).

Frontiers in Earth Science frontiersin.org13

Zeng et al. 10.3389/feart.2022.961799

277

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.961799


remove variables with poor data quality before constructing

the model. All machine learning models show good historical

estimation capability. The XGBoost model (hindcast test R2,

RMSE, and MAE are 0.938, 1.617 MJ/m2, and 1.030 MJ/m2,

respectively) outperforms the other six models and stacking

models in historical estimation performance. The RF model

and LightGBM model are second only to the stacking model,

while SVM has the worst historical estimation performance.

In conclusion, the estimation performance of empirical

formula models is generally lower than that of machine

learning models. In addition, the empirical coefficients of

the empirical formula model vary over time and space,

require calibration using long-term radiation observations

in certain regions, and cannot be generalized to other

uncalibrated regions. In contrast, the machine learning

model has a simple computational process, short time

consumption, high simulation accuracy, and also has

migration capability.

The most important result is that we found ERA5,

CRA40 reanalysis, and ICDR (AVHRR) satellite products

generally overestimate the DGSR, with a mean bias of

3.27 MJ/m2, 6.90 MJ/m2, and 1.05 MJ/m2 during the austral

summer half-year. The estimated DGSR, which agrees very

well with the observed DGSR, has a mean bias of

only −0.47 MJ/m2.

In addition, the annual mean DGSR at the Great Wall

Station, Antarctica over the period 1986–2020 followed a

statistically significant increasing trend at a rate of 0.14 MJ/

m2/decade. During the period 1990–2004, the annual mean

DGSR showed an increasing trend at a rate of 0.46 MJ/m2/

decade, while after 2005 the DGSR started to show a

decreasing trend, which is more consistent with the trend of

the Zhongshan Station, Antarctica.
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Variations in annual accumulated snowfall over the Antarctic ice sheet have a

significant and direct impact on mean sea-level change. The interannual

variability of the precipitation over coastal Antarctica adjacent to the

southern Indian Ocean (SIO) cannot be totally explained by the dominant

mode of atmospheric variability in the Southern Hemisphere. This study

explores the possible contributions from sea surface temperature (SST)

anomalies in SIO on the precipitation over East Antarctica. The results

suggest that the winter precipitation in the Lambert Glacier basin (LGB) is

closely related to the autumn SST variability in SIO without the influence of

El Niño–Southern Oscillation. It is shown that the positive autumn SIO dipole

(SIOD) of SST anomalies is usually followed by reduced precipitation in the

following winter over the LGB region and vice versa. The positive (negative)

autumn SIOD can persist into the winter and excite cyclonic (anticyclonic)

circulation and deepen (weaken) SIO low in high latitude, corresponding to an

enhanced northward (southward) wind anomaly in LGB and central SIO. This

mechanism prevents (promotes) the transportation of warm and moist marine

air to the LGB region and hence decreases (increases) the precipitation during

the following winter.
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1 Introduction

Global sea levels are rising, mainly due to warmer water

taking up more space and increased melting of glaciers and ice

sheets. The mass balance of the ice sheet surface affects the global

sea level directly and indirectly through its contribution to

freshwater storage on the ice sheet surface and increased ice

flow to the ocean. Changes in the mass balance of the Antarctic

ice sheet, mainly caused by differences between snow

accumulation rates and ice loss, are an important driver of

climate change and sea-level rise. Due to the extremely low

atmospheric moisture content and low local moisture flux

from the ice sheet surface, the formation of precipitation over

the Antarctic ice sheet mainly relies on water vapor transport

from the surrounding oceans (Tietäväinen and Vihma, 2008) and

the mid- to low-latitudes of the Southern Hemisphere. The water

vapor falls to the surface of the ice sheet as solid precipitation due

to low temperatures. Although some recent studies have found

that rainfall occurs in the Antarctic Peninsula region (Han et al.,

2018; Yang et al., 2021), precipitation type in the continental and

coastal regions of East Antarctica remains in snowfall (Yang

et al., 2021). Snowfall is the primary input to the Antarctic ice

sheet, and its variability and change have an impact on the ice

sheet mass balance and, therefore, have important implications

for the sea level on both short- and long-term time scales

(Wingham et al., 2006; Shepherd and Wingham, 2007; Medley

and Thomas, 2019). Evidence from observing and modeling

suggests that the Antarctic ice sheet surface mass balance

increases in a warm climate due to increased precipitation as

snowfall (Van Wessem et al., 2014; Frieler et al., 2015; Zwally

et al., 2015; Lenaerts et al., 2016; Medley and Thomas, 2019).

Proxy reconstructions further suggested that increases in snow

accumulation rates since 1901 have slowed the 20th century sea-

level rise by ~10 mm (Medley and Thomas, 2019), with the

increase in snowfall occurring mainly in the Antarctic Peninsula

and the Princess Elizabeth Land region in East Antarctica since

the mid-20th century (Ding et al., 2017; Yang and Xiao, 2018;

Medley and Thomas, 2019).

The increase in snowfall on the Antarctic Peninsula was

linked to atmospheric warming and Southern Annular Mode,

associated with the location of the Amundsen Sea low, with rising

temperatures increasing the moisture content of the atmosphere

(Medley and Thomas, 2019; Ding et al., 2020). Krinner et al.

(2014) suggested that while changes in atmospheric circulation

have a large impact on Antarctic precipitation, thermodynamic

processes associated with Southern Ocean warming will play a

more important role in the projected increase in Antarctic

precipitation. Wang et al. (2020) showed that the sea surface

temperature (SST) changes around Antarctica influence the

precipitation stem both from the thermodynamic impact on

the source of moisture and from the dynamics of the different

internal variability of its patterns. From the perspective of the

teleconnection between the tropical and Antarctic, accumulated

evidence has shown that the El Niño–Southern Oscillation

(ENSO) events, SST anomalies in the southern Pacific Ocean,

modulate the variability of seasonal precipitation (Zhang et al.,

2021) and rain or snow days (Ding et al., 2020) in the high

latitudes of the Southern Hemisphere by altering the surface-

pressure distribution and moisture transport (Cullather et al.,

1996; Sasgen et al., 2010) on the interannual time scales (Ding

et al., 2020; Zhang et al., 2021).

The previous studies have focused on precipitation

anomalies in the Antarctic Peninsula and West Antarctic

ice sheet. However, precipitation changes in East Antarctica

have received limited attention, and the mechanisms are not

clear yet. Recent studies reported that the southern Indian

Ocean (SIO) and South Atlantic play a dominant role in

winter precipitation over East Antarctica (Wang et al.,

2020). Zhang et al. (2021) showed that the interannual

precipitation in the East Antarctic ice sheet was negatively

correlated with ENSO events, which contradicts the views of

Bromwich et al. (2000), and the latter showed an insignificant

effect from ENSO on the precipitation in East Antarctica. Yu

et al. (2018) also reported that the annual precipitation at the

Progress Station showed no significant relationship with the

Southern Annular Mode, ENSO, and zonal wave 3 indices.

Little attention has been paid on the influences of SST

variations in the Southern Ocean on the precipitation over

the adjacent East Antarctic continent. Here, we investigate a

possible dynamic linkage between the SST anomalies in the

SIO and the changes in precipitation over coastal East

Antarctica. The objective of this study is organized as

follows: the datasets and methodology are described in

Section 2. The relationship between the SST in SIO and

precipitation in East Antarctica is discussed in Section 3.

The circulation and moisture transport anomalies related to

the anomalous SST are also presented to support in detail the

physical mechanisms responsible for this relationship. Finally,

the main conclusions are summarized and outstanding issues

are presented in Section 4.

2 Data and methodology

2.1 Datasets

The data used in this study involved total precipitation,

zonal and meridional wind, geopotential height, mean sea level

pressure (MSLP), specific humidity, vertical velocity, and SST

from 1979 to 2019. The monthly data of precipitation and

atmospheric variables with a resolution of 0.25 × 0.25 were

obtained from the European Centre for Medium-Range

Weather Forecasts (ECMWF) reanalysis (ERA5; Hersbach

et al., 2020: https://cds.climate.copernicus.eu/#!/search?text=

ERA5&type=dataset). The monthly mean SST data were

extracted from the NOAA Extended Reconstructed SST

Frontiers in Earth Science frontiersin.org02

Yang et al. 10.3389/feart.2022.920245

282

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.920245


(ERSST) version 3b (ERSST v3b) dataset (Smith et al., 2008)

gridded at 2.0 × 2.0 (https://psl.noaa.gov/data/gridded/data.

noaa.ersst.v3.html). Four additional SST datasets derived

from ERSST v4 (Huang et al., 2015), ERSST v5 (Huang et al.

, 2017), HadISST (Rayner et al., 2003), and COBE SST2

(Hirahara et al., 2014) were also used to verify the analysis.

Even though the regional bias existed between the different

datasets due to insufficient in situ measurements in the

Southern Ocean (Huang et al., 2018), most of them showed

good consistency (not shown). All datasets performed in high

agreement with autumn, but ERSST v5 had a visible difference

from the other datasets in winter. ERSST v3b was ultimately

selected because it showed the most significant coupling of SST

and precipitation in both seasons and had a high agreement

with other datasets. The variability of the El Niño–Southern

Oscillation (ENSO) is described by the Niño 3.4 index which is

available at https://www.cpc.ncep.noaa.gov/data/indices/ersst5.

nino.mth.91-20.ascii. To calculate anomalies, the climatology of

1979–2019 was removed from the original series. The autumn

(March, April, and May) and winter (June, July, and August)

refer to the austral seasons in this study.

2.2 Methods

We employed the singular value decomposition (SVD;

Bretherton et al., 1992) analysis to identify covariability of

spatial associations between SST anomaly (SSTA) patterns

over the SIO (30°–80°S and 30°–120°E) and precipitation

anomalies over adjacent Antarctica (60°–80°S and

50°–100°E) for the 41-year period from 1979 to 2019. This

statistical technique can identify pairs of spatial patterns

with the maximum temporal covariance between

precipitation and SST. More details about the SVD

method can be seen in Bretherton et al. (1992) and

Wallace et al. (1992).

The correlation analysis methods were applied to explore the

possible physical mechanism. Two-tailed Student’s t-test with the

appropriate number of degrees of freedom (Neff) was conducted

to statistically test the correlation coefficients of a highly auto-

correlated variable. This is based on Li et al. (2013) and Sun et al.

(2015), and Neffis given as

1
Neff

≈
1
N

+ 2
N

∑N
i�1

N − i
N

ρXX(i)ρyy(i),

where N is the sample size and ρXX(i) and ρyy(i)are the

autocorrelation of two-time series X and Y at time lag i,

respectively.

To exclude the signal of the ENSO on the linkage between the

SST in SIO and the precipitation over East Antarctica, the partial

correlation is employed. For two variables x1 and y, the partial

correlation after removing the effect of x2 (as the Niño 3.4 index

in this study) is calculated as follows:

rx1y,x2 �
rx1y − rx2yrx1x2�����������������(1 − r2x2y)(1 − r2x2x1)√ .

Before SVD and correlation analyses, we first removed the

linear trend from 1979 to 2019 in all data to eliminate the impact

of long-term trends and focus on the interannual variations.

3 Results

3.1 Coupled connection between the
austral autumn sea surface temperature
anomaly pattern in the southern Indian
Ocean and winter precipitation in the
Lambert Glacier basin

Figure 1 presents the loading vectors for thefirst leadingmode of

detrended autumn SSTA in the SIO and winter precipitation pattern

in East Antarctica from 50°E~100°E longitudes. It can explain 71.33%

of the total covariance meaning that there is a clear covariability

between the two fields on an interannual time scale. There is a positive

SSTA in the mid-latitude of western SIO and a negative SSTA in the

south-eastern SIO in the austral autumn, which is characterized by a

dipole-like structure. In the following winter, the precipitation field

displays a significant negative correlation with the SSTA pattern,

which covers the Princess Elizabeth Land and Macrobertson Land

around the Lambert Glacier basin and the adjacent ocean areas

(hereafter referred to as the LGB region). This suggests a tight

coupling between the austral autumn SSTA in SIO and following

winter snowfall in the LGB region.

The leading mode time series obtained by the SVD analysis

presents a strong interannual variability (Figure 1C). In this

study, the first expansion coefficient of SSTA was normalized and

defined as the autumn SIOD index (Figure 1C, blue line). The

normalized average precipitation anomaly for the LGB region is

defined as the winter precipitation index (Figure 1C, red line).

Correlation analysis suggests that the winter precipitation index

in LGB is significantly correlated with the autumn SIOD index

(r= −0.59, over the 99% confidence level) (Figure 1C; Table 1).

The tight coupling between the SIOD and precipitation implies

that the austral autumn dipole-like SSTA pattern in the SIO may

be a crucial factor influencing the following winter precipitation

variability in the LGB region.

3.2 Mechanism of how autumn southern
Indian Ocean dipole affects the winter
precipitation in the Lambert Glacier basin

3.2.1 Persistence of the influence of the austral
autumn southern Indian Ocean dipole

We further investigate the physical processes that might

be responsible for the linkage between autumn SIOD and
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winter LGB precipitation. The results from SVD analysis

between the winter SST and winter precipitation show a

similar dipole-like pattern of SSTA over the western Indian

Ocean and south-eastern SIO (Figure 2). The leading mode

of SVD explains more than 51.07% of the total covariance.

From autumn to winter, the warm center of SSTA over the

western SIO extends northward and the cold center over the

south-eastern SIO extends eastward (Figure 2A).

Correspondingly, the precipitation in the LGB region still

displays a significant negative correlation with this SSTA

pattern, and the anomaly center extends from the coast to

inland (Figure 2B). The correlation map between the winter

SSTA and autumn SIOD index also shows a prominent

dipole-like pattern with out-of-phase variations in the

SSTA (Figure 3A). The first expansion coefficient of the

SSTA field from winter SVD analysis is further normalized

and defined as the winter SIOD index, which shows a close

relationship with the autumn SIOD index (r = 0.43, over the

99% confidence level) and winter LGB precipitation index

(r = −0.47, over the 99% confidence level) (Table 1). This is

probably contributed by the “memory” characteristics of

SST that persist the anomalous signal over a long period and

FIGURE 1
Spatial properties of the leading singular value decomposition (SVD) mode of the detrended sea surface temperature (SST) in the southern
Indian Ocean (SIO) during austral autumn (March, April, and May) (A) and precipitation in the Lambert Glacier basin (LGB) during austral winter (June,
July, and August) (B). The dotted areas show the correlation coefficients significant over the 90% confidence level. (C) Time series of the austral
winter precipitation index in LGB (red line) and autumn southern Indian Ocean dipole (SIOD) index (blue line) from 1979 to 2019.

TABLE 1 Correlation coefficients between the detrended indices of winter precipitation in the LGB region and SIOD. Values in brackets indicate the
partial correlation coefficient excluding the ENSO signal.

Autumn SIOD index Winter SIOD index

Winter precipitation index −0.59a(−0.58a) −0.47a(−0.47a)

Autumn SIOD index 0.43a(0.43a)

aSignificant at the 99% confidence level.
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impact the climate in the following season through the

atmosphere–ocean interaction (Li 2016).

Further analysis demonstrated that the correlation coefficient

between the autumn SIOD index and winter LGB precipitation

index reduced from −0.59 to −0.49 when the winter SST index

signal was excluded by the partial correlation analysis. The

correlation coefficient between the winter SIOD index and

winter LGB precipitation index reduced from −0.47

(significant over the 99% confidence level) to −0.3 (significant

at the 90% confidence level) when the autumn SIOD index signal

was excluded. The results implied that the autumn SSTA signal is

critical and can be prolonged into the following winter via the

oceanic memory, and the winter SSTA is the “bridge” that links

cross-seasonal propagation of the autumn SSTA signal.

Earlier studies indicated that ENSO has the potential to

modulate the climate over East Antarctica (Li et al., 2015;

Zhang et al., 2021). We further conducted the partial

correlation analysis to investigate the individual effect of SSTA

by eliminating the linear effect of the Niño 3.4 index during

1979–2019. The correlation patterns between the autumn SIOD

FIGURE 2
Spatial properties of the leading SVD mode of the detrended SST in SIO (A) and precipitation in LGB (B) during the winter season from 1979 to
2019.

FIGURE 3
(A) Correlation map between the detrended autumn SIOD index and winter SSTA from 1979 to 2019. (B) Partial correlation map between the
detrended autumn SIOD index and winter SSTA excluding the ENSO signal. The dotted areas show the correlation coefficients significant over the
90% confidence level.
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index and winter SSTA (Figure 3B), and both season SIOD

indices and winter precipitation (Figure 4) are still robust

after removing the ENSO signal. This suggests that the

autumn SSTA could greatly affect the variability of winter SST

and LGB precipitation even in the year with the strong ENSO

signal. It was verified by the significant correlation coefficients

between the indices after removal of the ENSO signal (Table 1).

The correlation coefficient between the time series of the SIOD

index and precipitation index can still be up to −0.58 (over the

99% confidence level, Table 1). The aforementioned results

confirm the stable contribution of SIOD in SIO and the weak

modulation of ENSO in the linkage between SIOD and

precipitation over the LGB region. Thus, it is inferred that the

SSTA in SIO is a more important factor that influences the

interannual changes in winter precipitation over LGB during

1979–2019. Therefore, the ENSO signal has been removed from

the results suggested in the following sections.

3.2.2 Atmospheric response to the southern
Indian Ocean dipole in austral winter

The glacial air mass over the Antarctic inland is very dry, and

the marine air intrusions from the surrounding Southern Ocean

into Antarctica play a key role in East Antarctic precipitation

(Kurita et al., 2016). In this process, large-scale atmospheric

circulation anomalies and the coastal cyclones are thought to

directly affect the poleward moisture transport. Next, we

investigate the physical process responsible for the influence

of the winter SIOD on the winter precipitation in the LGB region.

As shown in Figures 2 and 3, the SIOD performs ameridional

seesaw pattern, which can increase the meridional SST gradient,

having the potential to modulate the local baroclinicity, stimulate

the eddy activity, and regulate the westerlies jet and meridional

circulation (Marshall and Connolley, 2006; Liu et al., 2015; Liu

et al., 2020) in the high latitudes over the Southern Hemisphere.

The response of the circulation to the extratropical thermal

forcing associated with the SIOD can extend to Antarctic

coastal and inland areas in terms of atmospheric rivers

(Gorodetskaya et al., 2014).

Figure 5A reveals that the positive SIOD causes the

strengthened westerlies throughout the troposphere and lower

stratosphere between 40°–55°S, relating to the enhanced mid-

latitude jet. Accompanying with the positive SIOD, anomalous

air rising (sinking) in high (mid-) latitudes (Figure 5B) will

increase local baroclinicity and enhance cyclogenesis (Marshall

and Connolley, 2006). The 500 hPa geopotential height is

characterized by positive anomalies in mid-latitudes and

negative anomalies in high latitudes of SIO (Figure 6A). The

MSLP anomalies show an almost identical spatial pattern, but the

location of the negative center shifts eastward (Figure 6B)

compared to 500 hPa anomalies. The negative MSLP anomaly

across 55°–70°S and 90°–120°E was previously used to consider

SIO low, a quasi-stationary climatological feature located to the

north of Prydz Bay (Xiao et al., 2005; Yang et al., 2019). The SIO

low is likely a part of the large zonal-wavenumber-three

circulation pattern that affects the surface winds and

meridional heat transport across the Southern Ocean

(Raphael, 2004; Raphael, 2007; Eayrs et al., 2021). The

aforementioned analysis suggests that the positive SIOD tends

to enhance the cyclogenesis in high latitudes and deepen the

SIO low.

FIGURE 4
Partial correlation map between the detrended winter precipitation anomalies and autumn SIOD index (A) and winter SIOD index (B) excluding
the ENSO signal during 1979–2019. The dotted areas show the correlation coefficients significant over the 90% confidence level.
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Figure 7A confirms that the dipole pattern of the SSTA in SIO

excites the generation of local eddy activity and creates a seesaw

pattern in the circulation fields. In detail, a positive SIOD favors

an anomalous anticyclonic circulation over mid-latitudes of SIO

and an anomalous cyclonic circulation from 60°–120°E over the

high latitudes of SIO. The cyclonic circulation associated with the

strengthened SIO low induces an anomalous northward air flow

on the western flank (50°–90°E) and southward air flow on the

eastern flank (110°–120°E) of the SIO low. Generally, southward/

northward winds associated with cyclonic circulation tend to

transport/prevent marine moisture to Antarctica (Xiao et al.,

2005; Kurita et al., 2016; Yu et al., 2018; Wang et al., 2020; Yang

et al., 2021). Figure 7B further verifies that the positive (negative)

phase of SIOD corresponds to the northward (southward)

transport of the moisture flux in LGB. In this region,

anomalous northward air flow could strengthen the local

katabatic wind which favors more frequent dry and cold wind

from the inland and prevents incursions of warm and wet air

mass from the mid-latitudes of SIO to the coastal region. In

contrast, the negative SIOD pattern prefers to transport warm

and wet marine air to the LGB region. Therefore, the

configuration of anomalous atmospheric circulation and

moisture transport induced by the winter positive (negative)

SIOD decreases (increases) winter snowfall in the LGB region.

The results indicate that the winter SIOD could excite the

atmospheric circulation anomalies to generate anomalous

meridional wind over SIO and East Antarctica. The

strengthened northerly (southerly) winds may conduce to

suppress the moisture transport from open water to the East

Antarctic continent, determining the winter snowfall amount

in LGB.

FIGURE 5
Partial correlation map between the detrended winter SIOD
index and winter zonal wind (A), vertical velocity (shading), and
vertical wind (vectors) (B) averaged over 30°–120°E without the
ENSO signal from 1979 to 2019. The dotted areas show the
correlation coefficients significant over the 90% confidence level.
The white contours represent the climatology of wind in winter.

FIGURE 6
Partial correlation maps between the detrended winter SIOD index and winter geopotential height at 500 hPa (A) and mean sea-level pressure
(B) without the ENSO signal from 1979 to 2019. The dotted areas show the correlation coefficients significant over the 90% confidence level.
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4 Conclusion

In this work, we have investigated the influence of the

austral autumn SST anomalies in SIO on the winter

precipitation over the LGB region in East Antarctica.

Positive (negative) SIOD in autumn is usually associated

with decreased (increased) winter snowfall in the LGB

region. The possible mechanism of the cross-seasonal

impact can be explained by the “coupled

oceanic–atmospheric bridge” process (Nan and Li 2005a;

Nan and Li 2005b; Liu et al., 2015; Liu et al. 2016; Liu et al.

2018; Li et al., 2019; Liu et al., 2020; Liu et al., 2021) in the

SIO. The results suggest that the SIOD serves as a

“memorizer” to preserve the information of the autumn

SSTA and prolong it into the winter season, a process that

relies on the large thermal inertia of the ocean. Also, the

positive (negative) winter SIOD can induce anomalous eddy

activity and anomalous meridional wind in high latitude

over SIO, which favors the development of cyclonic

(anticyclonic) circulation and deepening (weakening) of

SIO low in the high-latitude SIO. The anomalous

northward (southward) air flow on the western flank of

the SIO low tends to prevent (transport) marine moisture

from mid-latitude SIO and eventually results in decreased

(increased) snowfall in the LGB region in winter. Thus, the

SIOD acts as an “ocean bridge,” and the responsive

atmospheric circulation in the mid-high SIO acts as an

“atmospheric bridge,” which allows the cross-seasonal

propagation of autumn SIOD to influence the LGB

precipitation during the following winter.

Such teleconnection and cross-seasonal influences of the ocean

and atmosphere signals from the SIO provide an additional source of

predictability for the East Antarctic climate, especially for the LGB

region. This study suggests that the autumn SIODprovides a source of

prediction for the forecast of winter precipitation in the LGB region.

However, how to build a predictionmodel based on the autumnSIOD

and improve the skill of the prediction of winter precipitation in East

Antarctica are still a problem and therefore need further study. Few

studies (Zhang et al., 2021) suggested that ENSO has a significant

effect on surface mass balance in the East Antarctic ice sheet, but our

results suggest that the effect of ENSO on winter snowfall in the LGB

region is not significant which agrees with Bromwich et al. (2000) and

Yu et al. (2018). This is probably due to the huge area and complex

topography of the East Antarctic region. Future studies should

therefore investigate the relative contributions of SIOD and ENSO

to climate variability in different regions of the Antarctic continent

through model simulations to provide more insights into Antarctic

climate predictability.

Data availability statement
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data can be found at: ERA5 reanalysis data can be downloaded from
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dataset. TheNOAAExtended Reconstructed SST (ERSST) version 5

(ERSST v5) dataset can be downloaded from https://psl.noaa.gov/

data/gridded/data.noaa.ersst.v5.html. The time series of the Niño 3.

4 index can be found at https://www.cpc.ncep.noaa.gov/data/

indices/ersst5.nino.mth.91-20.ascii.

FIGURE 7
Partial correlation map between the detrended winter SIOD index and winter stream (shading) and horizontal wind (vectors) (A), meridional
moisture flux (shading), and horizontalmoisture transport (vectors) (B) at 850 hPawithout the ENSO signal from 1979 to 2019. The dotted areas show
the correlation coefficients significant over the 90% confidence level.
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In the Arctic, air temperatures are increasing and sea ice is declining, resulting in

larger waves and a longer openwater season, all of which intensify the thaw and

erosion of ice-rich coasts. Climate change has been shown to increase the rate

of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing

industrial, military, and civil infrastructure, as well as changes in nearshore

biogeochemistry. Numerical models that reproduce historical and project

future Arctic erosion rates are necessary to understand how further climate

change will affect these problems, and no such model yet exists to simulate the

physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic

storm surge model to a simplified physical erosion model of a permafrost

coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step

toward a physical parameterization of Arctic shoreline erosion for larger-scale

models. It is forced by wind speed and direction, wave period and height, sea

surface temperature, all of which are masked during times of sea ice cover near

the coastline. Model tuning requires observed historical retreat rates (at least

one value), as well as rough nearshore bathymetry. These parameters are

already available on a pan-Arctic scale. The model is validated at three study

sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3)

Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK

respectively (169 and 170 m) over the time periods studied at each site

(2007–2016, and 1995–2018) are found to the same order of magnitude as

observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have

small observed cumulative retreat rates (0.05 m over 2014–2016), and our

model was also able to reproduce this same order of magnitude of retreat

(0.08 m). Given the large differences in geomorphology between the study

sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be

applied on very different permafrost coastlines. ArcticBeach v1.0 provides a

promising starting point to project retreat of Arctic shorelines, or to evaluate

historical retreat in places that have had few observations.
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1 Introduction

Due to warmer temperatures and reduced sea ice protection

from bigger waves (Overeem et al., 2011; Casas-Prat and Wang,

2020), especially as freeze-up becomes delayed further into the fall

storm season, Arctic coastlines are becoming increasingly vulnerable

to the erosion of sandy beaches and destabilization of permafrost

cliffs (Biskaborn et al., 2019; Sinitsyn et al., 2020). Large-scale

atmospheric patterns have been recently attributed to driving the

variability of ice-rich Arctic shoreline erosion (Nielsen et al., 2020)

and statistical methods can show promising results to simulate

erosion rates (Nielsen et al., 2020). However, current statistical

relationships of coastal erosion to other climate variables will

change in the future because changes in the Arctic are happening

in a non-linear fashion and changes in how tightly certain

environmental processes are coupled to erosion is also changing.

For example, wave action in the Arctic is increasing nonlinearly,

leading to variability of how vulnerable Arctic coastlines are to

erosion in the future (Casas-Prat and Wang, 2020). Therefore,

understanding the most important root causes of Arctic shoreline

change can be only gained through careful evaluation of the physical

processes involved. Although extensive process-based models exist

(Hoque and Pollard, 2009; Ravens et al., 2017, 2012; Barnhart et al.,

2014; Bull et al., 2020) these have only been designed for very specific

stretches of coastline and mostly focused on the quickly eroding

Drew Point and greater southern Beaufort coastline. These models

require extremely detailed initialization data and only pertain to their

respective stretch of coastline. These types of models are thus not

designed for use on a pan-Arctic level where detailed data on

geomorphological characteristics and bathymetry are not

available. In addition, notch erosion (undercutting of a steep bluff

bywater orwaves) is a key aspect in their formulation of the coastline

retreat process. While this process is important in some

geomorphologies along the Arctic, notch erosion does not apply

on a pan-Arctic scale (Lantuit et al., 2012). Further, most existing

erosion models are computationally expensive and require long run

times, not suitable for efficient physical modelling on pan-Arctic

erosion scale. Therefore, the need remains to form a physics-based

numerical model that can be applied across all partially frozen

shorelines. We present, for the first time, a general numerical

erosion model that can serve as a starting point for a physics-

based parameterization of Arctic shoreline erosion in Earth system

models.

The processes involved in Arctic shoreline erosion are different

from their mid- and low-latitude counterparts due to the cold

temperatures and presence of ice and frozen soils. Shorelines

along the Arctic can be frozen and connected to landfast sea ice

(Mahoney, 2018), protecting the bluffs and beaches from abrasive

wave action. However, strong winds and storm surges can also push

ice roughly onto shore, causing erosion, debris influx, and significant

destruction of infrastructure and cultural sites (Bogardus et al., 2020).

Mitigation measures are necessary in order to protect future

disappearance of historical arctic cultural sites in areas impacted

by erosion (Nicu et al., 2021). In addition to cultural sites being

impacted, erosion will also be detrimental in terms of travel between

communities (Irrgang et al., 2019). During the summer, the open

water period allows for relatively warmer water to thaw the

submerged part of the beach, and warmer air temperatures to

thaw the exposed part of the shoreline. Thawing shorelines are

especially vulnerable to erosion (Aré, 1988), and climate change

accelerates this process due to the lengthening openwater season and

higher sea and air surface temperatures (Barnhart et al., 2014). Social

and economic costs of erosion are high, with entire villages having to

relocate (Hamilton et al., 2016; Albert et al., 2018). Nearshore

biogeochemistry is also heavily impacted by nutrient-laden

sediment supplied into the Arctic Ocean, with roughly one third

of the Arctic Ocean primary production supported by riverine and

coastal sediment inputs (Terhaar et al., 2021). Further, thawing and

eroding coastlines can exacerbate climate change by releasing

previously sequestered carbon from the soil into the atmosphere

(Vonk et al., 2012; Fritz et al., 2017).

The paper set-up is defined as follows. In Section 2, we

describe the erosion model and the physical mechanisms and

associated initialization parameters included for simulating the

erosion of a partially frozen cliff and beach. Next, we describe the

water level model, and how it uses wind forcing to generate a time

history of relative water levels at the coastline, which are then

used to drive the erosion model. Data used for the validation of

both the erosion and storm surge model components are also

provided. In Section 3, model results and validation are given,

along with model sensitivity to critical parameters. Section 4 and

Section 5 provide a discussion of the results and conclusions.

2 Materials and methods

We have coupled the framework of an existing 1-D Arctic

coastline erosion model (Kobayashi et al., 1999) with a

bathystrophic storm surge model (Freeman et al., 1957),

forced by wind speed and direction, and initialized using

existing bathymetric information of our study sites. The

idealized set-up of the erosion model (Figure 1) includes a

beach and cliff profile, assuming uniform conditions

alongshore. Conceptually, the model simulates thawing of the

beach and cliff sediments according to convective heat transfer

controlled by water level and temperature. Thawed material is

assumed to be prone to erosion depending on water level and

wave action. The process of mass transfer is simulated by

emulating a cascade of cliff erosion, beach deposition, and

beach erosion. According to the resulting mass balance, the

beach and cliff profiles are adjusted assuming constant beach

and cliff inclination. A schematic of the main processes and

modules of ArcticBeach v1.0 are illustrated in Figure 2.

Small scale processes such as niche formation are accounted

for in a bulk tuning parameter (Section 2.5) in this coarse-scale

approach. We would like to point out that the model is not
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aiming for reproducing individual years and erosional events at a

specific point, but to deliver large spatial scale and long term

(decadal) approximations of coastal erosion related to the

physical environmental conditions. This is also the reason

why we restricted model tuning to only a single offset

parameter. Further description of the beach and cliff model

parameters are given in Section 2.1.

2.1 Erosion model

The erosionmodel used in this study is constructed from heat

and sediment volume balances in order to predict horizontal cliff

retreat and vertical erosion of a fronting beach. A full description

of the framework for this model can be found in Kobayashi et al.

(1999), but we provide an overview of the main driving

mechanisms here and in the subsequent sections below. Wave

action and water levels drive convective heat transfer, and thaw

ice-bonded sediments comprising the cliff and beach. When cliff

sediment, with its initially prescribed coarse sediment fraction, is

released via melting ice between grains of sediment, this coarse

sediment is deposited onto the beach, while the remaining

fraction of cliff sediment (the fine sediment) is assumed to be

transported offshore by the seawater. The amount of coarse

sediment (defined by a grain size threshold) that remains on

the beach is determined by a volume balance. The volume

balance is defined as follows: the rate of coarse sediment

transport transported away from the beach cannot exceed a

so-called potential sediment transport rate that is determined

largely by the beach angle and water level. In general, steeper

beach angles and higher water levels lead to higher potential

FIGURE 1
Model sketch illustrating basic physical model parameters
(black) and processes (red). Wind forcing, masked during times of
sea ice cover, is taken from the ERA-Interim reanalysis (Dee et al.,
2011) dataset to force a coupled storm surge model. This
provides water level data to the erosion model, driving the bluff
retreat and beach erosion through a heat and volume balance. Sea
surface temperature, wave height, and wave period are also taken
into account, as well as the prescribed cliff and beach parameters
of volumetric ice content, sediment grain size, cliff height, thaw
depth, and cliff and beach angle.

FIGURE 2
A conceptual flow chart summarizing the main inputs (purple) and processes (grey) of ArcticBeach v1.0. Climate forcing and rough bathymetry
are used to drive a storm surge module (Freeman et al., 1957). The resulting water levels are then used to drive the erosion module (Kobayashi et al.,
1999). A schematic of the erosionmodule is given in Figure 1. Under times of sea ice cover at the coast (assumedwhen sea ice concentration exceeds
15%), erosion is assumed to be negligible and neither module is activated.
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coarse sediment transport rates away from the beach and

offshore. Flat beaches and low water levels will result in a low

amount of coarse sediment that could be transported offshore.

More detail of modelled mechanisms driving cliff and beach

erosion are given in the subsequent sections (Section 2.1.1 and

Section 2.1.2) and also in Kobayashi et al. (1999).

2.1.1 Cliff erosion
The rate of the cliff retreat is determined by the heat transfer

into the exposed frozen cliff face assuming isothermal frozen

sediments at freezing temperature (assumed in this study to be

0°C, but can also be adjusted using salinity data near the

coastline). The rate of cliff retreat (zRzt) is, thus, defined by the

rate of melting of interstitial ice and subsequent release of cliff

sediment determined by the energy supplied divided by the

energy required to thaw the part of the cliff face that is

exposed to seawater. This expression is given by

zR

zt
� lchc Tw − Tm( )

Lc H − Bc( ) for dc > 0, (1)

where H is the cliff height [m], dc is the depth of the water

level at the cliff toe [m], lc is the length of the cliff exposed to the

water [m], Lc is the volumetric latent heat of fusion [J/m3], Bc is

the initial thaw depth on top of the cliff [m], Tw [°C] is the

temperature of the seawater, and Tm [°C] is the thawing

temperature of the frozen sediment. The parameter h is a

convective heat transfer coefficient [J/(s m2 °C] between the

thawing cliff (hc) or beach (hb, Section 2.1.2) surface and

warmer seawater. It estimates transfer of heat for a turbulent

boundary layer in a unidirectional flow above a flat plate

(Schlichting, 1968; Kobayashi and Aktan, 1986) and is given by

hc,b � αfwCwUb

1 + F
�����
0.5fw

√ , (2)

where α is an empirical parameter included for wave-induced

thawing with α = 0.5 for unidirectional flow, fw is a wave friction

factor at the thawing surface that is dependent on equivalent sand

roughness of either the cliff or beach, Cw is the volumetric heat

capacity of seawater, and Ub is the representative fluid velocity

just outside of the boundary layer and takes into account wave

height, wave period, and wave depth. F is a parameter that

changes according to thresholds imposed on the Reynolds

number, which is directly proportional to the shear velocity

accompanying the shear stress on the thawing surface, and

changes depending on whether there are hydraulically smooth

or fully rough conditions. More detailed information on the

convective heat transfer coefficient and relevant parameters

including Ub and F are provided by Eqs 10, 11 in Kobayashi

et al. (1999). The volume of cliff coarse sediment, per unit width

and unit horizontal length, is given by

PcBc + vc H − Bc( ), (3)

where Pc is the coarse sediment volume per unit volume of

unfrozen cliff sediment [m3/m3], and vc is the coarse sediment

volume per unit volume of the frozen cliff sediment [m3/m3]. The

rate of the coarse sediment supplied to the fronting beach is

assumed equal to the offshore coarse sediment transport rate per

unit width at the cliff toe. Note that this does not allow for

accumulation of sediment directly at the base of the cliff. The

sediment supply from the eroding cliff (assumed to be zero if

water does not reach the cliff), is taken into account when

calculating the rate of vertical beach erosion and sediment

transported from the beach offshore.

2.1.2 Beach erosion
The potential coarse beach sediment transport rate

(i.e., sediment transport from the beach towards offshore)

mentioned in Section 2.1 is estimated using available

empirical formulas for cross-shore sediment transport on ice-

free sandy beaches (Kriebel and Dean, 1985) and adjusted to

accommodate a coarse sediment fraction (Kobayashi, 1987).

Long-shore transport also defines erosion on sandy beaches

but is currently neglected in this 1-D approach. The potential

rate of beach sediment is the upper limit for the rate of transport

of sediment away from the beach. When the actual sediment

transport rate supplied to the beach from the retreating cliff

exceeds the potential beach sediment transport rate, then coarse

sediment is allowed to accumulate on the beach. However, if

insufficient sediment is supplied by the cliff to the beach to

accommodate a greater potential transport away from the beach,

then no sediment will accumulate on the beach. The balance of

both of these processes controls the change in unfrozen coarse

sediment on the beach. The change in thickness of unfrozen

coarse sediment on the beach is not only determined by the actual

transport rate away from the beach and the sediment supply onto

the beach from the cliff, but also is influenced by the release of

sediment from thawing the beach itself. If the cliff is not

providing enough sediment to keep up with the sediment

being transported away by the seawater, then the frozen beach

is exposed to thaw by the seawater. This results in vertical beach

thaw rate defined as zD
zt , as given by

zD

zt
� hb Tw − Tm( )

Lb
, (4)

where hb is the convective heat transfer coefficient on the

exposed frozen beach sediment [J/(s m2 °C] and is given by Eq. 2,

Tw is the temperature of the seawater [°C], Tm is themelting point

of the interstitial ice between the sediment grains (which can be

adjusted for salinity) [°C], and Lb is the volumetric latent heat of

fusion [J/m3]. As long as there is coarse sediment available on top

of the frozen part of the beach, the beach is assumed to be

protected from thaw and vertical beach erosion does not occur

(zDzt � 0).
To summarize, the change in thickness of unfrozen coarse

sediment on the beach is determined by a sediment volume
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balance controlled by the three major sediment fluxes: 1) the

potential offshore beach sediment transport largely determined

by beach angle and water level, 2) cliff sediment supply onto the

beach, and 3) the release of previously-frozen beach sediment

now available for offshore transport due to an increase in beach

thaw depth. The change in thickness of unfrozen coarse sediment

on the beach, zBzt � 0, is given by

zB

zt
� qc + qmelt − qb

PbW
, (5)

where qc is the coarse sediment supply rate from the eroding

cliff [m2/s] (volume of cliff coarse sediment from Eq. 3 times rate

of cliff retreat from Eq. 1), qmelt is the coarse sediment supply rate

due to beach thaw [m2/s] over beach width W [m], qb is the

offshore transport rate of unfrozen coarse sediment at the

offshore model boundary [m2/s], and Pb is the coarse

sediment volume per unit volume of frozen beach sediment.

Consistent with the chosen erosion module in ArcticBeach

v1.0, Kobayashi et al. (1999), conductive heat transfer and solar

radiation are not directly included. Solar radiation can be

partially accounted for in the sea surface temperature input

and sea ice cover (see Section 2.3). Conduction effects are

much smaller than effects of solar radiation over long time

periods and are neglected. However, the opportunity to

include effects of solar radiation can be implemented in later

versions of the model, to include processes such as thaw

slumping and 1-D heat-transfer permafrost models as

described in Section 4.2.1.

2.1.3 Validation sites
The validation sites for ArcticBeach v1.0 are Mamontovy

Khayata (MK), Bykovsky Peninsula, Siberia, Drew Point (DP),

Alaska, United States, and the Veslebogen Cliffs (VC) in

Hornsund, Fjord, Svalbard (Figure 3). These sites were chosen

because they: 1) involve specialized processes that are, at this

time, purposely excluded from ArcticBeach v1.0, and 2) are

coastline segments that are very different from each other. We

chose not to include the specialized processes of these sites in our

simple model because our goal is to establish one general

numerical model that represents a first step at simulating

diverse types of Arctic coastline, efficient enough to be

incorporated into a greater Earth system model. So, to

establish this initial model v1.0, we chose these specialized

places of MK, DP, and VC in order to test whether or not

our model could simulate observed retreat, while, at the same

time, not including all of the associated special site-specific

processes.

The differences between the validation sites are highlighted

by two main aspects. Firstly, the validation sites differ from each

other in terms of their primary erosional processes. At MK, the

primary mechanism for erosion is sub-aerial erosion,

thermodenudation, and thaw slumping (Günther et al., 2015;

Overduin et al., 2016). Coastline retreat at DP, on the other hand,

is strongly driven by block erosion (Ravens et al., 2012; Jones

et al., 2018). The block erosion occurring at DP is a specialized

process that only occurs on very short stretches of Arctic

coastline compared to the Arctic coastline as a whole (Lantuit

et al., 2012). Unlike the other two sites, the rocky cliffs of VC are

not ice-rich because they are not made of soil. While increases in

the open water season and storm intensity have been attributed

to increased erosion rates in ice-rich permafrost (Barnhart et al.,

2014), the erosion processes of rocky cliffs is more complex (Lim

et al., 2020). Another reason these validation sites are so different

is that they are physically located far away from each other

(Figure 3), such that the environmental forcing (sea ice cover,

winds, sea surface temperature) are pointedly different. This

allows for the model framework of ArcticBeach v1.0 to be

tested because it does incorporate all of these forcing variables

(which are also readily available from CMIP model output

(Meehl et al., 2000) and reanalysis datasets). In this case, these

variables were taken from reanalysis data mentioned in

Section 2.3.

2.1.4 Cliff and beach parameters
The cliff and beach are each initialized with values for slope,

coarse sediment fraction per unit volume for each unfrozen and

frozen sediment, sand roughness length (assumed to be 2.5 times

the median sediment diameter (Nielsen, 1992)) and initial thaw

depth. The beach width and cliff height are also specified at the

start of the model run. Default values and reasonable ranges for

many of these parameters, taken from referenced literature, were

FIGURE 3
Locations of study sites, Mamontovy Khayata, Siberia, Drew
Point, Alaska, United States, and the Veslebogen Cliffs in Svalbard.
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tested in a sensitivity analysis (see Section 2.6). These values, their

ranges, and associated references are given in Table 1 for DP and

MK. In the case of VC, the cliff height is set to 8 m and ice content

is 0.1%. Available parameters from Lim et al. (2020) were used for

the reference run.

2.2 Bathystrophic storm surge model

Due to the extremely limited number of tide gauges spaced

across Arctic coastlines, we provide water level to our erosion

model by coupling a bathystrophic storm surge model (Freeman

et al., 1957; Dean and Dalrymple, 2004) forced by globally-

available reanalysis winds (Dee et al., 2011). This model

provides water level data based on wind speed, wind

direction, coastline angle, and bathymetry. Coastline angle and

bathymetry are assumed to remain constant alongshore. The

model is quasi-static, and solves reduced equations of motion for

storm surge, induced by wind stress and the Coriolis force. The

governing equations are given by

g h + η( ) zη
zx

� h + η( )fV + τsx
ρ

(6)
zV

zt
� τsy − τby
ρ h + η( ) (7)

where x and y are directed onshore and alongshore, respectively,

g is gravitational acceleration [m/s2], h is mean water depth [m], η is

the deviation frommean water depth [m], f is the Coriolis frequency

[1/s], τs and τb are surface wind and bottom stresses respectively [kg/

(m s2)], and ρ is density of seawater [kg/m3]. In the first equation,

hydrostatic forces from the storm surge (also referred to in this study

as relative water level) in the x-direction (onshore) are balanced by

flow V in the y direction (alongshore), and also the wind shear stress

component in the onshore direction. In the second equation, the

inertial force in the alongshore direction are balanced with

alongshore wind surface and ocean bottom shear stresses, which

are found using a drag law (Dean andDalrymple, 2004). Quasi-static

conditions are assumed, such that zV
zt � 0 and onshore flow U is

neglected (set to zero). The above equations are solved using a finite

difference scheme, and essentially produce a time history of relative

water level elevation as a function of changing wind stress.

2.3 Model forcing

The forcing for the storm surge model and erosion model

comes from the ERA-Interim reanalysis dataset (Dee et al., 2011).

Specifically, the 10 m east and west wind speed vectors are used to

force the storm surge model, and the sea surface temperature,

peak wave period, and significant wave height are used. Winds

and sea surface temperature have a 3-hourly temporal resolution.

Wave period and significant wave height have a 12-hourly and 6-

hourly resolution, respectively. All of these variables were

interpolated into hourly timesteps. Changes in wave height,

wave period, and sea surface temperature are accounted for

when convective heat transfer between the ocean and cliff/

beach is calculated by the erosion model (Kobayashi et al., 1999).

When the winds force the storm surge model, it provides

water levels on the beach and at the cliff toe for the coupled

erosion model. The vector averages of wind speeds and direction

over the open water season were also calculated to help analyze

the output of the model. The ERA-Interim variables were

extracted from the grid cell nearest to each study site.

Since most Arctic erosion occurs during the summer when

the coasts are exposed to thermal abrasion by wave action, we use

only forcing data over the open water season. Tomask the forcing

over the ice-covered period, we extracted sea ice concentration

from the same grid cells offshore the study sites (Figure 3). When

the sea ice concentration had a value of 15% or more, the winds,

wave, and sea surface temperature information were masked.

Winter storms can occur over less than 15% sea ice cover, so

when this happens, erosion is still simulated during winter.

2.4 Validation data

Observations of water level were used to validate the storm

surge model output. The observed water levels at the MK study

site were collected in the summer of 2007, 2008 every 15 min by a

TABLE 1 Parameters used in the Monte-Carlo sensitivity studies to initialize the erosion model are given as “low,” “default,” and “high” values.

Parameter Low Default High References

Initial unfrozen beach sediment thickness [m] 0.5 1 2 Kobayashi et al. (1999)

Cliff height [m] 5 (MK), 1 (DP) 10 (MK), 3 (DP) 20 (MK), 10 (DP) Overduin et al. (2007), Jones et al. (2018)

Cliff angle [degrees] 45 60 90 Overduin et al. (2007), Jones et al. (2018)

Initial unfrozen cliff sediment thickness [m] 0.1 0.2 0.5 Günther et al. (2015)

Coarse sediment volume per unit volume unfrozen cliff
sediment [%]

5 10 20 Kobayashi et al. (1999), Overduin et al.
(2014)

Ice volume per unit volume frozen cliff sediment [%] 60 80 90 Overduin et al. (2007), Kanevskiy et al.
(2013)
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water level gauge (Scheller, 2012). The water levels were averaged

to a 3 h mean, and the mean of the total time series was

subtracted from each timestep value, so that the variability

oscillated around 0 m (representative of mean sea level).

Monthly tide gauge values are available at nearby Tiksi, but

the monthly temporal resolution is not frequent enough to

provide meaningful validation of water level values or force

ArcticBeach v1.0. However, tide gauge data of a higher

frequency (hourly) is available at Prudhoe Bay, Alaska, which

is near the other case study site of DP, Alaska (NOAA, 2022). The

raw tide gauge data is recorded roughly every 6 min and was

downloaded as hourly averages. The tide gauge data were further

averaged to a 3 hourly mean to correspond with the 3-hourly

mean ERA-Interim wind forcing, and then compared to the

modelled water level data. To validate the retreat rates,

observations of bluff erosion at DP were used (Jones et al.,

2018), as well as observed retreat rates at MK on Bykovsky

Peninsula (Grigoriev, 2019). Observations of cliff erosion at VC

for the period of 2014–2016 were taken from Lim et al. (2020).

No tide gauge data is available at VC, but was not required

because sufficient validation of the storm surge model was

performed from the observed water levels at the other two sites.

2.5 Model calibration

The beach profile along even short stretches of coastlines are

highly variable (Overduin et al., 2014), and changes in beach

profile directly influence how much water reaches the backing

cliff face. Cliff retreat is not activated in the model unless the

water level reaches the cliff. Therefore, retreat rates are highly

dependent on the water levels reaching the cliff. We have

calculated a so-called ‘water level offset’ that is required for

the coupled erosion-storm surge model to reproduce observed

erosion rates at each site. This offset is required for two main

reasons. The first is that the absolute water depth at the cliff toe

(Figure 4) is not known at the study sites, only the water depth

relative to local tide gauge datums (where tide gauges are

available) are known. The storm surge model calculates water

levels relative to still water (no winds) only, which is a reference

point that does not exist in reality. The second reason we

calculate a water level offset is that it acts as a bulk correction

parameter since the model so far only includes primary drivers of

Arctic coastal erosion, while secondary physical processes remain

to be added, such as thaw slumping and sub-aerial erosion

(Overduin et al., 2014). Aside from compensating for the

unknown absolute water level depth, the water level offset can

be interpreted as a proxy for the unresolved physical processes

driving erosion of Arctic shorelines.

The water level offset was calibrated from annual observed

retreat rates for each study site, using a non-linear numerical

solver (SciPy.org, 2022) with a relatively low initial guess of

0.2 m. The offset values were calculated for each year, and the

median of the offset from the yearly time series was saved. This

median offset value for each site was added to the water levels

calculated by the storm surge model. This sum (water level offset

plus modelled water level variability) was then used as the time

series of water level forcing for the erosion model. When the

annual water level offset exceeds the median of the entire water

level offset timeseries, it follows that the modelled retreat will be

underestimated for that year, and vice versa. This is due to the

calibrated summed water level that is applied to simulate erosion

being lower than the annual water level necessary to reproduce

the exact erosion rate for the given year.

2.6 Monte Carlo sensitivity tests

In order to test the sensitivity of the modelled retreat rates, a

Monte Carlo approach was used with varying beach and cliff

parameters. Each parameter was assigned a realistic range of

values, and randomly assigned a value that was within a uniform

distribution of this range. We chose a uniform rather than a central

distribution because it provides amore comprehensive assessment of

error, given that observations are relatively few and so we cannot

confidently assess prior probability distributions. The Monte Carlo

sensitivity studies were only performed for the sites of DP and MK

because the centimeter scale of erosion at the rocky VC site was

deemed too small for meaningful results. For each year,

500 simulations were performed, with the randomly assigned

parameter kept constant across all years examined, for each study

site during its respective simulation. When the sensitivity of the

parameter was not being tested, it was assigned its default value, set

FIGURE 4
Schematic of a reference level for a tide gauge while
indicating the water level depth at cliff toe remains unknown due
to unknown bathymetry on scales of less than 0.5 m. In this
approach, extremely detailed bathymetry information, as well
as tide gauges along the entire Arctic coastline, would be required
to know the water depths at the cliff toe, which is not feasible. To
calibrate ArcticBeach v1.0, our water level offset approach using
simulated water level values in response to changing wind speed
and direction integrates this issue.
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according to literature. The default values of these parameters and

the referenced ranges that were tested are provided for MK and DP

in Table 1. To further illustrate ourMonte Carlomethod, we will use

the example of how changes within a uniform distribution of

observed ice content can be expected to change the modelled

retreat rates. We ran ArcticBeach v1.0 a total of 500 times for

each site, and for eachmodel run, a certain percentage of cliff ice was

assigned to a different value each time but within the observed range

of 60–90% (given in Table 1). In this example, since all other

parameters remained unchanged except ice content, this resulted

in a distribution of retreat rates caused by changes in cliff ice content.

3 Results

3.1 Modelled and observed retreat

Observed retreat rates vary from 1.3–11.0 m/year at MK,

6.7–22.6 m/year at DP, and only 0.01–0.019 m/year at VC

(Figures 5A–C respectively). The retreat rates shown in a

cumulative form (Figures 5D–F for MK, DP, and VC

respectively) give a good overview of general model

performance on longer timescales, and have been calculated

for those years annual observed retreat rates are available.

Over the period where annual observations exist, the

cumulative retreat rates for the ice-rich coasts agree better

with the cumulative modelled retreat at DP (within a few

meters) than at MK (roughly 40 m). However, good

performance (within a few meters) of individual years can be

found for both sites. The frequency of when the model

overestimated or underestimated observed retreat followed

somewhat of a pattern in MK, where it did not at DP. This

over- and underestimation is expected when we examine the

annual water level offset values in comparison with the median

water level offset value that was used in model calibration

(Section 2.5). For example, during the early years of the data

record at MK (1997–2001), the model agrees well with the

observations (error less than 1 m), but in the middle period of

FIGURE 5
Observed (orange) and simulated (blue) annual bluff retreat rates (A–C) and cumulative retreat rates (D–F). Values for Mamontovy Khayata are
given in (A,D), Drew Point in (B,E), and Veslebogen (C,F). Note the different scale for the y-axis for the Veslebogen site. The years when the observed
retreat rates are under (over)-estimated are the same years when the annual values of the so-called “water level offset,” a proxy for the physical
processes at this point unresolved by the model, are above (below) the median values. These years are indicated where the red star is above
(below) the red dashed line in Figure 9.
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the time series (2002–2008), the model underestimates

observations, and in the later years (2009–2018) the model

overestimates observed retreat. This causes cumulative

simulated retreat time series to resemble an exponential curve,

while the observed cumulative retreat has a more linear curve

(Figure 5C). To further illustrate how we can expect when the

model will over or underestimate observed retreat, we will take

the example of the underestimation of coastline retreat at MK

during the period of 2002–2008 (Figure 5A). This

underestimation of retreat is caused by the annual water level

offsets calculated for 2002–2008 being above the median water

level offset used in the model forcing (see red stars above the red

dashed line for 2002–2008 in Figure 9A). This means that the

calibrated water level required to reproduce the observed retreat

for 2002–2008 is higher than the median of the calibrated water

level to reproduce the observed retreat across the entire

timeseries. While bulk calibration inevitably leads to errors for

individual years, we find this approach is still able to capture

cumulative retreat over a long timeseries well (Figures 5C,D). The

root mean square error (RMSE) of simulated coastline retreat for

MK is 7.84 and 7.23 m for DP (Table 2).

For the rocky site of VC, the cumulative retreat for the time

period of 2014–2016 is 0.046 m, while the modelled retreat is

0.075 m, leaving the difference at 0.029 m. This shows that

ArcticBeach v1.0 is able to reproduce the same order of

magnitude for this small amount of erosion of the rocky cliffs

on the scale of 1 cm but also on the order of 10 m for the ice-rich

permafrost cliffs of DP and MK. The RMSE of the simulated

rocky cliff retreat is 0.029 m (Table 2).

3.2 Storm surge model performance
compared to tide gauge data

The storm surge model, providing the water levels due to

changing wind conditions to our erosion model, reproduces the

observed water level variability relatively well at both locations

(Figure 6). Unlike the simulated water levels, the reference

baseline for Prudhoe Bay tide gauge data (blue line in

Figure 6B) is mean sea level. Mean sea level does not

correspond to a water depth with no winds (which is the

reference for our simulated water levels) because mean sea

level is also influenced by local currents and larger-scale ocean

circulation (e.g., the Alaska coastal current (Talley, 2011) and the

Beaufort Gyre at DP). Observed water levels at MK (blue line in

Figure 6A) were taken from a depth relative to where the water

depth sensor was deployed, which was around 11 m from the

surface (Scheller (2012) and Section 2.4). To compare the

variability between the simulated and observed water levels at

MK, the baseline of the water level sensor has been set equal to

the baseline (relative to 0 m) of the simulated water levels.

Bathymetries with a very high spatial resolution are not

required for water level simulations. This could prove

advantageous for use in areas where nearshore bathymetry

must be approximated due to insufficient data. In MK, the

water level model is able to reproduce the pattern of observed

water level, with the exception of very high peaks and very low

troughs (Figures 6A,C) The range of the modelled water levels is

1.2 m and the range of observed water levels is 2.7 m, with a

significant correlation of 0.40. In contrast, at Prudhoe Bay,

3 hourly means of available tide gauge data (recorded roughly

every 6 min, averaged over every hour) from

2007–2016 consistently gave less extreme highs and lows

compared to the simulated data (Figure 6D). Since the

Prudhoe Bay tide gauge provides values relative to mean sea

level, and the storm surge model provides water level values

relative to still water depth, an offset between the two datasets is

expected. For example, in 2007, the simulated water level values

were consistently lower than the observed water level values, but

the 3-hourly variability was still well captured. The range of the

modelled and observed water levels are similar, at 1.1 and 1.0 m,

respectively, with a significant correlation of 0.64 (Figure 6B).

The RMSE for the storm surge model at the MK is 0.35 m. For

Prudhoe Bay, the RMSE was calculated after removing the mean

offset caused by a different relative baselines described above and

was found to be 0.16 m (Table 2).

3.3 Coastal winds and modelled water
levels

The storm surge model is primarily driven by changes in

wind stress. In the Northern Hemisphere, when winds are

primarily directed toward the left (as observed from the

beach) alongshore or directly offshore during the open water

season, a relatively low water level is expected due to the Coriolis

force and wind stress working to push water offshore. This effect

becomes apparent during the 2007 open water season at the

north-facing coastline of DP, when the winds were most

frequently directed offshore (Figure 7A, left panel). This

TABLE 2 The root mean square error (RMSE) of simulated coastline
retreat and water levels for the study sites. At DP, no observed
water levels are available, so the water levels from the nearby tide
gauge at Prudhoe Bay were used, as described in Section 2.4. Prior to
calculating the RMSE ofmodelledwater levels at Prudhoe Bay, the
mean offset between the modelled and observed water level was
first removed because the water level observations and water
level model correspond different baselines (see Section 2.5). Tide
gauge data is not available at VC but not necessary since
validation of the storm surge model is provided by the other two
sites.

Coastline retreat [m] Water level [m]

7.84 (MK) 0.35 (MK)

7.23 (DP) 0.16 (Prudhoe Bay)

0.029 (VC) NA
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offshore wind pushed the water away from the coast, resulting in

an average water level negative relative to what it would have

been in calm conditions (Figure 6B and left panel of Figure 7B).

In the 2009 open water season at DP, offshore winds were less

frequent, while more frequent and stronger north-northeasterly

winds (Figure 7A, right panel) allowed some water to accumulate

closer to the beach, but still produced a mean negative value

(Figure 7B, right panel). Winds coming from northeasterly

directions in 2009 is more typical of DP than offshore

southeasterly winds that were observed during the open water

season in 2007. Both years had roughly the same open water

season, but unlike the “clean” and well-defined open water period

of 2009, 2007 had a false break-up in mid July, as well as a false

freeze-up near the end of October (black line in Figure 7B, left

panel). A false break-up occurs when ice melts out or breaks off

the coast, and then forms or drifts in again before the longer open

water season. A false freeze-up is similar, when the ice forms or

drifts in at the coast but then returns to open water before the

longer ice-covered season (Rolph et al., 2018).

The MK coastline faces northeast. So, northeasterly winds

should generally push water towards shore, raising the water

levels near the coast. Onshore winds are more frequent at MK

(Figure 8A), compared to winds at north-facing DP (Figure 7A).

Consequently, water levels simulated at MK forced under these

winds are higher than at DP (compare red mean water level lines

in Figures 7B, 8B). The 1999 open water season was roughly twice

as long compared to 2002. The open water season was relatively

well-defined in 1999 except for 1 false break-up event at the end

of June, while 2002 had 14 short false break-up and freeze-up

events scattered throughout its short open water season (black

lines in Figure 8B).

3.4 Variability of water level offsets over a
changing open water season

Variability of the open water season during the years with

observed retreat rates is higher at MK than at DP (blue bars in

Figure 9). At MK, the open water season ranges from

52–133 days, and at DP, from 86–133 days. Similar to the

duration of the open water period, the variability of the

derived water level offset is found to be higher at Mamontovy

FIGURE 6
Comparison of modelled (red) and measured (blue) water levels. The forcing for the modelled water levels is masked based on sea ice
concentration (resulting in a different time period analyzed at each site) and is from the respective offshore ERA-Interim grid cell closest to where the
water level validation data was measured near each study site. The modelled water levels have an offset applied such that the mean modelled water
level is equal to the observed water level for a,c, and d. In (A) The observed water levels near the MK site are taken from a one-time deployment
of a water depth gauge at 71.53°N, 129.56°E in 2007 (Scheller, 2012). In (B) the observed water levels (blue line) are from the Prudhoe Bay tide gauge
(near DP), with data from the year 2007 relative to mean sea level given here as an example, with the corresponding modelled 2007 water levels (red
line) relative to a theoretical still water depth. (C) shows the frequency of the modelled and observed water levels for MK (comparison only available
for 2007) and (D) the full erosion period studied for DP (2007–2016).
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Khataya than at DP (red stars in Figure 9). The range of the water

level offset for MK is -0.2–2.2 m, and 0.2–1.0 m for DP. Due to

the more positive skew of water level offsets at MK, the median

water level offset (the final calibration value used to force the

model) is further from the mean water levels at MK in

comparison to the nearly equal median and mean water level

offsets at DP (compare distances between the black solid and red

dashed lines at each of the two sites in Figure 9).

3.5 Sensitivity to critical model parameters

The sensitivity of the model was analyzed regarding

uncertainties for individual parameters including cliff height,

cliff angle, and ground ice content. Furthermore, a full

uncertainty test was performed within which multiple model

parameters (see Table 1) were varied within physically reasonable

ranges.

The simulations for DP showed a higher sensitivity of retreat

rates to changes in cliff height than the simulations for MK

(Figure 10). In general, higher sensitivity of retreat rates to

changes in cliff height occurs in the location with the lower

initially-prescribed cliff height (DP). At MK, years with higher

retreat rates simulated during typical conditions (defined in

Section 2.6) show a higher sensitivity of retreat rate to a

changing cliff height (1995, 2009–2018 in Figure 10A) than

years with lower simulated retreat rates during typical

conditions (1996–2008). At both locations, there are

noticeably more outliers overestimating retreat rates than

outliers underestimating retreat rates. At DP, the average

interquartile range of retreat rate sensitivity to changes in cliff

height (Figure 10B) was roughly 10 m and relatively consistent

across all years tested, with the exception of 2007 which had a low

modelled retreat rate under default parameters. Sensitivity of

retreat rate changes in cliff angle is smaller than that of change in

cliff height for both study sites (Figure 11). When the simulated

retreat rates using default parameters were low (e.g.,

1996–2008 at MK, and 2007 at DP, indicated by the blue dots

in Figure 11), then the sensitivity to the cliff angle is also low.

Sensitivity of retreat rates changes in cliff ice content is similar to

that of cliff angle for both sites (Figure 12). While still within the

same order of magnitude, the observed retreat rates mostly lie

FIGURE 7
Frequency of wind speed and direction (A)with corresponding modelled water levels and sea ice concentrations (B) for selected years at Drew
Point. Wind directions are vector-averaged over the openwater season. The openwater season is definedwhen the sea ice cover (black line) is below
15% (black dashed line). Wind and sea ice data are taken from ERA-Interim reanalysis.
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FIGURE 8
Frequency of wind speed and direction (A) with corresponding modelled water levels and sea ice concentrations (B) for selected years at MK.
Wind directions are vector-averaged over the open water season. The open water season is defined when the sea ice cover (solid black line) is below
15% (dashed black line). Wind and sea ice data are taken from ERA-Interim reanalysis.

FIGURE 9
The number of open water days (number of days sea ice concentration is below 15%) for (A) Mamontovy Khayata and (B) Drew Point. The
average (black line) and median (red line) of the water level offsets for (A) Mamontovy Khayata and (B) Drew Point, required for the model to
reproduce observed retreat rates. When the annual water level offsets (red stars) exceed the median water level offset (red dashed line), the model
predictably underestimates observed retreat rates (see corresponding years in Figure 5) and vice versa.
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outside of the interquartile range given by all sensitivity tests.

This is also true for the full uncertainty runs, where cliff height,

cliff angle, unfrozen cliff sediment thickness, coarse sediment

volume per unit volume of unfrozen cliff sediment, and cliff ice

content were allowed to vary (Figure 13, Table 1).

4 Discussion

4.1 Effects of calibration on simulated
retreat rates

The simulated retreat rates of DP and MK (Figure 5) are

highly sensitive to the calculated water level offset forcing

(Section 2.5 and red stars in Figure 9). The variability of the

simulated water levels and open water season length directly

influence model performance of reproducing observed retreat

rates. This agrees well with the results of Barnhart et al. (2014)

and Islam et al. (2020) such that Arctic erosion rates of ice-rich

coasts are highly sensitive to ocean water level. An important

tuning parameter of our erosion model is the median of the so-

called water level offsets that were calculated from a yearly time

series (see Section 2.5). A higher skewness of the yearly offset

value will naturally result in a median value less representative of

the individual yearly points. This is demonstrated, for example,

by the median value (red dashed line in Figure 9A) being less

representative of individual offsets (red stars in Figure 9A) at MK

than at DP, where the median value matches the yearly offsets

well (Figure 9B). Essentially, since this median value (Section 2.5)

is then added to the simulated water level variability driven by

FIGURE 10
Erosion rate sensitivity from changes in cliff height for (A)Mamontovy Khayata and (B)Drew Point. Blue dots indicate the retreat rates simulated
under fixed model parameters. Orange dots indicate retreat rates based on observations.

FIGURE 11
Erosion rate sensitivity to changes in cliff angle for (A) Mamontovy Khayata and (B) Drew Point. Blue dots indicate the retreat rates simulated
under fixed model parameters. Orange dots indicate retreat rates based on observations.
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changes in wind speeds and direction (Section 2.2), how well the

median matches the individual, yearly calibrated values will

directly reflect model performance during individual years.

Indeed, we can see that the retreat rates modelled for DP (the

location where the median offset is closer to the mean of the

calibrated offset values of individual years) match observed

retreat better than at Mamontovy Khayta (Figures 5C,D). The

water level offset for VC was very small (order of centimeters)

and this is due to the ice content of the cliffs being low and so not

as sensitive in the model to water level forcing.

4.1.1 The impact of wind direction on modelled
water level and erosion

Unchanging wind vectors result in a constant modelled water

level. Given similar open water season lengths, low annual

variability in wind speed and direction will result in similar

simulated water levels. The water level offset, a tuning parameter

used in this model (Section 2.5), is a function of observed retreat

rate and wind vectors over a changing open water season. Since

the same tuning value (the median of the annually calculated

water level offset, per study site) is used across all years, we can

expect ArcticBeach v1.0 to perform better in locations where the

median and mean of the annual values used to calculate the

tuning parameter are similar. In other words, the skewness of the

annual water level offset time series can be a predictor of how well

ArcticBeach v1.0 will perform at a given location. At DP, for

example, the lower variability of the open water season compared

to MK (Figure 9) results is a less positive skew of the water level

offset, causing ArcticBeach v1.0 to simulate observed retreat rates

better at DP (Figure 5). Causes for low skewness in the annual

FIGURE 12
Erosion rate sensitivity to changes in cliff ice content for (A) Mamontovy Khayata and (B) Drew Point. Blue dots indicate the retreat rates
simulated under fixed model parameters. Orange dots indicate retreat rates based on observations.

FIGURE 13
Erosion rate sensitivity to changes in cliff height, angle, unfrozen sediment thickness, coarse sediment volume per unit volume of unfrozen
sediment, and ice content for (A) Mamontovy Khayata and (B) Drew Point. Blue dots indicate the retreat rates simulated under fixed model
parameters. Orange dots indicate retreat rates based on observations.
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water level offset time series could be a more consistent open

water season, along with persistent wind speeds and directions, as

well as low variability in observed retreat rates. Therefore,

ArcticBeach v1.0 will perform best at a coastline that meets

these conditions. However, since the tuning parameter is a

function of all these different conditions, changes in one

aspect can be compensated for by changes in another. For

example, given the same observed retreat rate, a similar water

level offset would be calculated for a short open water season but

strong winds pushing water onshore as a season with a longer

open water duration but calmer winds. To describe this idea in

more detail, we now analyze the performance of ArcticBeach

v1.0 using the examples of individual years at our two study sites,

taking into account the length of the open water season, wind

direction, and mean modelled water levels.

ArcticBeach v1.0 simulated the observed retreat rates almost

exactly in 2009, while underestimating retreat rates by roughly 23 m

in 2007 (Figure 5B). Taking a closer look at the wind directions

during these years, the primarily southeasterly winds during the

open water season in 2007 (left panel, Figure 7A) push water away

from the DP coast more effectively than the stronger, primarily

northeasterly winds of 2009 (right panel, Figure 7A). Given that the

duration of the open water season is similar in both 2007 and 2009

(Figure 9B), the differences in wind direction explain why the

average modelled water levels in 2007 are lower than in 2009

(Figure 7B). Since the median of the annual time series of the

water level offset (Figure 9B) is closer to the average modelled water

level value in 2009 than it is in 2007, this results in a better

performance of ArcticBeach v1.0 in 2009 compared to 2007.

At MK, the erosion model underestimates the observed retreat

rate of 7 m in 2002 by roughly 6 m, while successfully reproducing

the observed retreat of roughly 4 m in 1999 (Figure 5A). In contrast

with the similar openwater season length at DP in our example years

of 2007 and 2009 described above, the length of the open water

season at MK for 1999 is slightly less than half of the open water

season of 2002. Also, in contrast with our example years at DP, the

wind directions in 1999 and 2002 over the open water season are

similar atMK in both speed and direction (Figure 8A). This results in

a similar modelled mean water level in 1999 and 2002, and therefore

a similar difference to the median water level offset added to the

modelled water level variability used to force the erosion model.

However, due to the significantly shorter open water season in 2002

(Figure 8B), the cumulative water level reaching the cliff and

therefore available to cause erosion during the open water season

is much less in 2002 than in 1999. The much shorter open water

season understandably leads to a higher required water level offset

for the model to reproduce observed retreat, much higher than the

median of the offsets over all years (Figure 9A). This large difference

between themodelled average water level andmedian requiredwater

level offset result in an underestimation of observed erosion in

2002 at MK. These examples illustrate how ArcticBeach

v1.0 performs under years of variable open water seasons, and

suggest that under a more uniform open water season length,

ArcticBeach v1.0 will simulate observed retreat closer to reality.

With a pack ice cover retreating to the north, including the area of

partial sea ice cover (Rolph et al., 2020), we can expect the openwater

season to become more uniform in duration, and subsequently

expect the current setup of ArcticBeach v1.0 to perform better under

projected climate conditions.

4.2 The impact of geomorphological cliff
and beach parameters on modelled
erosion retreat rates

Due to the computationally inexpensive and fast nature of

ArcticBeach v1.0, our model can provide a quick and useful tool

about which parameters (e.g., cliff height, ice content) are the

most important in influencing the rate of cliff retreat. This can be

particularly useful to help design experiments for physical wave

tank models of partially frozen beach erosion (Korte et al., 2020).

Sensitivity of erosion rates to changes in cliff parameters is high

(Figures 10, 11, 12, 13). At VC, the very low ice content in the

cliffs resulted in very small retreat rates (Figure 5). Sensitivity of

retreat rate to changes in ice-rich cliff height is also

understandably influenced by the ratio of water level change

to total cliff height. This is shown by the lower sensitivity to

changes in cliff height at the prescribed higher cliffs at MK

(Figure 10A), compared with the higher sensitivity of retreat of

shorter bluffs found at DP (Figure 10B). Given short bluff heights

and high water level forcing, the rate of retreat will tend to

increase, as expected by Eq. 1 and shown in Figure 10. During

years where the median water level offset of the full time series is

higher than the annual offset (e.g., in 1995, 2009, 2010, and

2012–2018 at MK, Figure 9A), the cliff length exposed to

seawater (distance of the cliff submerged in seawater from the

cliff toe upwards) is overestimated in the final model forcing

(Section 2.5). Therefore, changes in cliff height (H) will result in a

greater change in zR
zt when the cliff length exposed to seawater (lc)

is larger (Eq. 1). This length is directly proportional to the level of

convective heat transfer and thaw of the cliff itself, resulting in

retreat (See Section 2.1.1 and Eq. 1). Indeed, the highest

sensitivities of retreat due to changes in cliff height occur

during those years where the median water level is higher

than the annual water level offset at Mamontovy Khayta

(1995, 2009, 2010, and 2012–2018, Figure 9A).

Cliff angle is important in our simulations of erosion rates

because the angle of the cliff (given the same water depth at the

cliff toe) determines the length of the cliff exposed to the

relatively warmer seawater, influencing the level of convective

heat transfer and subsequent cliff thaw. Similarly, the ice content

of the cliff is also directly proportional to how effective the

convective heat transfer applied to the cliff is at thawing the cliff

sediment, releasing it onto the beach for subsequent transport

offshore (Eq. 1). This process is particularly apparent at DP,

where changes in cliff ice content are more influential on erosion
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rates than at MK (Figure 12) because seawater covers a greater

fraction of the shorter cliffs prescribed at DP than at the higher

cliffs MK (Table 1). As found in Hequette and Barnes (1990), cliff

and beach parameters alone cannot explain the observed erosion

rates, which agrees with our sensitivity test results in this study.

Sea ice gouging, for example, can play an important role in

nearshore erosion and accretion (Hequette and Barnes, 1990).

4.2.1 Water level offsets as a proxy for
unresolved processes

The variability and magnitude of the water level offset

(Figure 9) is also a proxy for how much the processes that are

not included in the model (e.g., sub-aerial erosion and thaw

slumping) play a role in determining the observed retreat rate. A

thermal heat flux model, such as CryoGrid (Westermann et al.,

2016), can be used to identify the changing thaw depth of the

bluff which is currently a constant in the model. Further

investigation is required to derive either an empirical or

physical estimate of thaw slumping rates as a function of

changes in thaw depth. However, calibration from existing

slumping observations (Lantuit and Pollard, 2008) in

conjunction with CryoGrid output over the same time periods

could lead to such a result. This empirical or physical function

would then be incorporated into the rest of the physical processes

represented within ArcticBeach v1.0 to give a more complete

overview of thermal denudation erosional processes at play at

permafrost coasts. Further, our goal is not to explicitly represent

some site-specific processes such as notch erosion, but rather

indirectly calculate the effects of seawater on retreat by using Eq.

1. This approach leaves the opportunity to utilize ArcticBeach

v1.0 on a range of coastlines that have different erosional

processes which do not include notch erosion as a primary

mechanism for retreat (see Section 2.1.3). Notch erosion is

thus indirectly calculated in Eq. 1 with the terms dc (water

depth at the cliff toe, which must be positive for the erosion

module to be activated, see also Figure 2) and lc which refers to

the length of cliff exposed to the seawater.

4.3 From proof-of-concept to pan-Arctic
application

There are two routes we can take in the move from

applying ArcticBeach v1.0 at the three proof-of-concept

study sites as was presented here, to using this model on a

pan-Arctic level. The first approach would be to calibrate the

water level offset on the rest of the Arctic coastlines, and run

the model the same way it was implemented in this study. The

second approach would be to calculate the absolute water level

depth at the base of the cliff instead of calibrating a water level

offset. Assuming that cliff and beach parameters listed in

Table 1 remain constant, future permafrost coastline retreat

can be projected with projected forcing data (wind speed and

direction, sea temperature, and sea ice coverage) available

through global climate models.

Nutrient and carbon contents in sediments along the Arctic

shoreline are available from databases, so that historical and projected

coastline retreat rates can be used to calculate biogeochemical fluxes

from land to sea due to erosion (Dunton et al., 2006; Tanski et al.,

2016). Using the order of magnitude of erosion rates (Figure 5)

provided byArcticBeach v1.0, in combinationwith information about

how much nutrients are contained in the eroding material (Tanski

et al., 2016), changes in nearshore biogeochemistry could theoretically

be estimated. Such dynamic estimation of nearshore biogeochemistry

would be an improvement to using estimates of coastline retreat and

static coastal carbon content (Lantuit et al., 2012;Wegner et al., 2015).

ArcticBeach v1.0 can supply sediment masses deposited in the

nearshore zone in an automated fashion to a coupled to a

nearshore biogeochemical model, or a biogeochemical module

within a greater Earth system model such as HAMOCC (Ilyina

et al., 2013). Further development of ArcticBeach v1.0 should

consider such biogeochemical applications on an equal or rather

higher priority than applications concerning threats to existing

infrastructure due to the nature of these two very different

applications. Assessing threats to either existing or planned

infrastructure generally requires a site-specific model and

approach, with very detailed site-specific information and

processes. We would like to make it clear that the design of

ArcticBeach v1.0 lends itself to more pan-Arctic use for regional

estimates of retreat rates and associated volume transport of nutrient-

rich sediments into the nearshore zone.

The next step demands the exploitation of pan-Arctic

datasets such as Lantuit et al. (2012) which might be used as

baseline tuning data as described in Section 2.5. This potential

path that remains to be explored in-depth in future work is to

apply the same methods presented in this study to the rest of the

Arctic coastline. Even if we have very coarse temporal resolution

retreat rate data, if covered over a long enough time period (for

example, a decade or more) it would theoretically be sufficient to

calibrate the median water level offset (Section 2.5). Such datasets

of observed retreat rates are available in Lantuit et al. (2012) as

well as a geomorphological classification scheme for 101,447 km

of the Arctic coastline. Using this classification scheme, we could

potentially assign the input parameters of ArcticBeach v1.0 (e.g.,

cliff heights, ice contents, Section 2.1.4). These initialization

parameters, as well as the varying forcing data along the

coastline, could then be used to calibrate the model and

calculate retreat rates for the entire coastline. However,

whether or not the model will reproduce a climatology of

observed retreat rates remains to be tested, which would

provide further insight on the feasibility of using projected

forcing data to assess pan-Arctic erosion rates under climate

warming scenarios.

The second approach to apply ArcticBeach v1.0 on a pan-

Arctic level is to eliminate the need to calibrate the modelled

water levels to observed retreat rates. A main reason we must
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calibrate our model is that we do not know the absolute water

depth at the eroding cliff toe. Anywhere along the Arctic

coastline, we are able to calculate a time history of the

changes in water level attributed changing wind speeds and

directions. However, these calculated changes in water level

are relative to the purely theoretical baseline of water without

winds, and remain to be superimposed on local absolute water

levels. Promising results show that nearshore bathymetry of 10 m

can be achieved using satellite data (Caballero and Stumpf, 2019).

There is potential to use geo-referenced water level

measurements (SciPy.org, 2022) in combination with methods

that provide very high resolution Arctic coastline bathymetry

data (Caballero and Stumpf, 2019) such that calibrating the water

levels to observed retreat rates could be avoided.

4.3.1 Benefit over statistical modelling
In terms of forecasting retreat rates, ArcticBeach v1.0 has

advantages over the existing Digital Shoreline Analysis System

(DSAS) (Himmelstoss et al., 2018) in that physical processes

relevant to specific sites can be added. Since DSAS is a purely

statistical tool, important physical processes are not taken into

account. These physical processes are going to become

increasingly important as the climate continues to warm.

Nonlinear effects of the consequences from the warming

(coastline thaw, lengthened open water period, fetch, and

increased wave height) have unexpected relationships that

cannot be captured by a statistical model. While more

development would be required in the next version of

ArcticBeach to represent specific coastline systems (as

mentioned in Section 4.2.1), ArcticBeachv1.0 provides a solid

framework for developing such physically-modelled systems.

5 Conclusion

We demonstrate that coupling a reduced order storm surge

model to a one dimensional permafrost coastal erosion model

produces realistic coastline erosion rates for three very different

locations along the Arctic coastline. The model is solely forced with

globally-available climate reanalysis data, but any type of wind

forcing can be used (e.g., coupled to a stand-alone atmospheric

model, meteorological station data, etc.). Our final retreat rates are

within the same order of magnitude as the observed retreat rates for

both proof-of-concept study sites. In this sense, the model represents

the processes dominating permafrost coastline erosion well. More

complex processes controlling spatial and temporal variability in

coastline erosion such as thaw slumping and sub-aerial erosion are

not yet implemented but can be added. Although calibrating this

model requires knowledge of past retreat rates, this calibration data

can be of a low temporal resolution and already exists in published

literature at the pan-Arctic scale. The requirement for water level

calibration can be removed in future work. Since ArcticBeach v1.0 is

computationally inexpensive, it can be used for quick sensitivity

studies to evaluate which physical processes and morphological

properties of the cliff and beach are most important in

simulating retreat rates of a partially frozen coastline. The

simulations performed here demonstrate that water level on the

cliff face is one of the most important aspects driving bluff retreat,

supporting the findings of other studies. Further application to

forecast erosion rates using the physical principles applied here is

possible through use of projected climate data. Such projected retreat

rates from ArcticBeach v1.0 should not be used for infrastructure

planning. The model is only capable to deliver first order

approximations on how far the coastline will retreat, providing a

basis for which associated impacts on already existing infrastructure

and nearshore biogeochemistry might be better constrained.
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