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Ronald Fisher needed to develop elaborate 
models of genetic effects in order to set the 
foundations of Quantitative Genetics in 
his 1918 paper “The correlation between 
relatives on the supposition of Mendelian 
inheritance”. Since then, many significant 
implementations have been made to 
model genetic effects. However, at the 
verge of one century after Fisher’s kick-off, 
models of genetic effects keep on being 
discussed and implemented. Indeed, the 
relatively recent advent of QTL analyses 
challenged the state of the art of this field 
by providing researchers the opportunity 
to obtain and analyze estimates of genetic 
effects from real data. In this context, the 
development of this field was not exempt 
of some polemics, like the debate about 
the convenience of the functional and 
the statistical epistasis approaches. This 
research topic is meant to provide recent 
developments in models and estimation of 

genetic effects and to enrich the discussion about how and why models of genetic effects 
must be further developed and applied.

The articles in this Research Topic shall thus extend, refine and/or provide a refresh look at 
Fisher’s original models of genetic effects and their application to genetic effects estimation 
and to improve our understanding of evolutionary processes and breeding programs.
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The foundation of genetics as a scientific field at the beginning of
the twentieth century was not free from controversy. It meant no
resolution that the advocates of the Biometric and the Mendelian
schools agreed in one thing: the inheritance laws Mendel inferred
by studying meristic (discrete) traits did not seem to be compat-
ible with the findings the biometricians had been reporting for
continuous (quantitative) variation since the nineteenth century
(see Provine, 1971). For providing conclusive evidence against
that paradigm, Fisher (1918) developed the foundations of the
mathematical models of genetic effects that remain pertinent
today, an endeavor in which he developed statistical tools that
soon became broadly used beyond genetics.

The genetic effects comprised the core of that theory, but they
were initially implemented in those expressions as parameters
neither to be estimated nor to actually take any defined numerical
values. The most parsimonious hypothesis about genetic effects at
that time proposed that the genetic basis of quantitative traits is
dominated by the effects of large numbers of genes at which allele
substitutions have very small (infinitesimal) and independent
(additive) effects on phenotype. This was eventually called the
infinitesimal model (see e.g., Bulmer, 1980). Despite the accumu-
lation of evidences suggesting more complex genetic architectures
(e.g., Dobzhansky, 1970), the infinitesimal model proved to be a
useful paradigm to guide investigation of practical quantitative
genetics.

At the time when mapping genetic architectures has moved out
the domains of pure fiction (see e.g., Rifkin, 2012), new possibil-
ities for reassessing the adequacy of the infinitesimal model not
only reawaken our thirst of knowledge but shall also enable a leap
in applicability. It is thus not surprising to witness an increased
research effort in updating mathematical and statistical tools for
analysing genetic effects, aiming to typify all possible kinds of
genetic architectures and their evolutionary implications. We feel
grateful for having been able to gather a stimulating account of
that update within the current Frontiers Research Topic Issue on
Models and Estimation of Genetic Effects.

In the first work in this volume, Gjuvsland et al. (2013)
analyse epistasis in genetic networks by focusing on monotonic-
ity as a (correlated) alternative to additivity. Their approach
further illustrates that population-referenced (statistical) and
non-population-referenced (physiological, functional) genetic
parameters are complementary tools in quantitative genetics
analyses. The next work, by Le Rouzic (2014), stresses that the
evolutionary implications of epistasis are conditioned on whether

the interactions follow patterns. He uses the multilinear model to
provide practical tools for the detection of such patterns (partic-
ularly, directionality) in real data, as well as conceptual keys for
aiding the interpretation of the results.

We then move to imprinting, through a work by Álvarez-
Castro (2014), who extends the NOIA model to account for that
phenomenon and discusses the mathematical properties of the
resulting theory in comparison with previous models of imprint-
ing. Further, general procedures for advanced implementation of
models of genetic effects are presented in that work. NOIA is
also used by Álvarez-Castro and Yang (2012) in the next com-
munication for clarifying the interpretation of the genetic effects
defined as average excesses by Ronald Fisher. The interest raised
by the publication of that work in Frontiers in Genetics actually
triggered the current Research Topic Issue.

A group of papers follows that explicitly account for the
environment. Yang (2014) analyses experimental datasets with
non-linear functions and addresses some common constraints of
the use of linear models to gene by environment interactions. He
shows that even under largely linear genotypic responses, strong
gene by environment interactions occur because of differences
in positions and effects of quantitative trait loci (QTL) between
poor and good environments. Marigorta and Gibson (2014) per-
form simulation studies to tackle the particularities of genome
wide association (GWA) human studies. They show that for a
wide range of scenarios, cumulative risk of alleles is highly sig-
nificant despite the lack of evidence for gene by environment
interactions, and that increased phenotypic variance after envi-
ronmental perturbation lowers the statistical power to detect risk
alleles in mixed cohorts. The environment of one species may
be conditioned by the genome of another, like in the following
study by Kodaman et al. (2014) on host-pathogen interactions.
They illustrate how pathogens and their human hosts have inter-
acted and coevolved to reduce antagonism and they endorse such
information to be incorporated into genetic models to account
for the heterogeneity of disease pathology and to avoid dubious
conclusions about disease etiology.

The last two communications offer new insights into statis-
tical issues commonly encountered in QTL mapping and GWA
studies. Loredo-Osti (2014) provides a bootstrapping procedure
to estimate the p-values under the mixed-model framework that is
applied to QTL mapping when the mapping population consists
of recombinant congenic strains, which overcomes a problem
concerning the Type I error that had been pointed out in previous
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approaches. To conclude our compilation, Dai et al. (2014)
address the classic issue of multiple hypothesis tests in the current
era of high throughput genomics. They advocate a new (modified
Lancaster) procedure that improves the control of the Type I error
as compared to the Fisher’s combination test as well as to the orig-
inal Lancaster procedure, whilst maintaining statistical power to
detect signals related to biomarkers in pathways.

We also find it worth noting that a couple of interesting works
addressing genetic effects have been released during the prepa-
ration of this editorial. Wang (2014) provides new developments
leading to the same genetic variance decomposition of multiallelic
loci under departures from the Hardy-Weinberg proportions that
we obtained using NOIA (Álvarez-Castro and Yang, 2011; inci-
dentally, we hereby thank Dr. Wang for pointing out a misprint in
one of the values of the applied case we provided in our paper).
Varona et al. (2014) also use NOIA for dissecting genetic covari-
ances between individuals in the context of genomic selection.
Although this kind of analysis was originally developed under
the paradigm of the infinitesimal model, and was specifically
designed for accounting for any putative infinitesimal additive
genetic signal, it is encouraging that it effectively utilizes innova-
tive models of genetic effects. Finally, we commend the coming
publication of a volume devoted to a specific (and important)
instance of genetic effects, “Epistasis. Methods and Protocols”
Edited by Jason H Moore and Scott M Williams, which can be
viewed as a new instalment of the already classical “Epistasis and
the Evolutionary Process” (Wolf et al., 2000) and whose author
list overlaps with that of this Frontiers Research Topic Issue on
Models of Genetic Effects.

We hope the papers in this volume provide a useful
compendium of theoretical and statistical developments, data
analyses, simulation studies, conceptual contributions and dis-
cussion that collectively advance knowledge of genetic archi-
tectures and environmental interactions, and their broad
implications in evolutionary and population genetics. To bet-
ter contextualize the consequence of this volume, we recall
that the recent Frontiers Specialty Grand Challenge Article of
Evolutionary and Population Genetics identifies the integration
of genomics, modeling and experimentation as both the most
critical challenge and exciting opportunity in advancing our field
(Cushman, 2014). We feel that the papers presented in this vol-
ume, by showing strong linkages and synergies among modeling,
experimentation, genomics and bioinformatics, demonstrate the
importance of this kind of integrative research. Updating mod-
els of genetic effects is critical to take advantage of the stunning
burst of molecular techniques and computing capabilities we
are witnessing. Obtaining more general formulations of those
models shall enable us to more efficiently characterize genetic
architectures and to formulate hypothesis that could better guide
experimental and simulation studies. Ultimately, evolutionary
and population genetics benefits from the integration of differ-
ent perspectives, methodologies and scopes of research within it,
which in its turn accelerates its integration into a fully-fledged
science of evolutionary quantitative genetics.
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It was recently shown that monotone gene action, i.e., order-preservation between
allele content and corresponding genotypic values in the mapping from genotypes to
phenotypes, is a prerequisite for achieving a predictable parent-offspring relationship
across the whole allele frequency spectrum. Here we test the consequential prediction
that the design principles underlying gene regulatory networks are likely to generate
highly monotone genotype-phenotype maps. To this end we present two measures
of the monotonicity of a genotype-phenotype map, one based on allele substitution
effects, and the other based on isotonic regression. We apply these measures to
genotype-phenotype maps emerging from simulations of 1881 different 3-gene regulatory
networks. We confirm that in general, genotype-phenotype maps are indeed highly
monotonic across network types. However, regulatory motifs involving incoherent
feedforward or positive feedback, as well as pleiotropy in the mapping between genotypes
and gene regulatory parameters, are clearly predisposed for generating non-monotonicity.
We present analytical results confirming these deep connections between molecular
regulatory architecture and monotonicity properties of the genotype-phenotype map.
These connections seem to be beyond reach by the classical distinction between additive
and non-additive gene action.

Keywords: genotype-phenotype map, gene regulatory networks, epistasis, variance component analysis, genetic

modeling, systems genetics, genetic variance, monotonicity

INTRODUCTION
Quantitative genetics is the major theoretical foundation for
genetic studies in production biology, evolutionary biology, and
biomedicine. A core concept in quantitative genetics is the geno-
typic value, the mean observed phenotype for a given genotype.
It constitutes the basis for the genotype-to-phenotype (GP) map
concept. The shape of a given GP map is typically described
by the classical gene action terms: additivity, dominance, and
epistasis. Together with genotype frequencies in a given pop-
ulation, the GP map is the basis for decomposing observed
phenotypic variance into environmental variance and genetic
variance components including additive variance, dominance
variance and epistatic variance. This provides the basis for a
very successful theory when it comes to predicting selection
response and breeding values (Falconer and Mackay, 1996; Lynch
and Walsh, 1998) and more recent statistical genetics meth-
ods for mapping Quantitative Trait Loci (QTL) (Neale et al.,
2008). Quantitative genetics thus provides a mature machin-
ery for predicting the population level consequences of a given
GP map, but in order to understand several generic genetic
phenomena there is a stated need for new tools for disclos-
ing how the shape of the GP map is determined by underly-
ing biology (Jaeger et al., 2012; Moore, 2012; Gjuvsland et al.,
2013).

One such phenomenon is the resemblance between parents
and offspring. An explanation in quantitative genetic terms is
that the additive variance (VA) makes up a substantial part of

the phenotypic (VP) and genetic variance (VG). Hill et al. (2008)
showed that in populations with extreme allele frequencies, high
VA/VG ratios will arise regardless of the shape of the GP map.
However, for populations with intermediate allele frequencies a
much wider range of VA/VG ratios is observed (Wang et al., 2013).
In such populations, high VA/VG ratios cannot be fully accounted
for without considering properties of the GP map. Gjuvsland
et al. (2011) showed that a key feature of GP maps that give
high ratios of additive to genotypic variance (VA/VG), is a mono-
tone (or order-preserving) relation between gene content (the
number of alleles of a given type) and phenotype. This led to
the hypothesis that the regulatory circuitry of sexually reproduc-
ing organisms predominantly predisposes for highly monotone
genotype-phenotype maps.

Here we address the above hypothesis by a two-step approach.
First we provide methods and software tools for measuring
monotonicity of generic GP maps (i.e., sets of genotypic values).
Then we use these tools on the data generated by an extensive
simulation study of a broad collection of gene regulatory net-
work models. In these network models the steady state expression
levels serve as phenotypes and genetic variation is introduced
through parameters describing maximal production rates and
the shape of the gene regulation function. Such causally cohe-
sive genotype-phenotype (cGP) models [see Gjuvsland et al. (2013)
and references therein] allow us to identify relationships between
regulatory network architecture and properties of the resulting
GP maps.
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Our results confirm the prediction that the GP maps arising
from a wide range of gene regulatory network motifs are in gen-
eral highly monotone. In addition we show through numerical
as well as mathematical analysis that regulatory motifs involv-
ing incoherent feed-forward or positive feedback stand out in
their capacity to generate non-monotonicity. These relationships
between molecular regulatory architecture and properties of the
genotype-phenotype map—of substantial relevance to functional
genomics in general—are beyond reach by the standard distinc-
tion between additive and non-additive gene action.

Our approach can be applied to cGP models of a wide range of
biological systems at any level of model complexity. It opens for
a systematic study of the monotonicity properties of molecular
regulatory structures underlying the whole spectrum of physio-
logical regulation. This suggests that the concept of monotonicity
of GP maps can be used to build theory about heredity phrased
in terms of molecular mechanism, something which standard
genetic concepts and approaches appear to be incapable of.

MODELS AND METHODS
BACKGROUND ON MONOTONICITY OF GP MAPS
To ease understanding we provide a brief recapitulation of
the concept of monotonicity (or order-preservation) in GP
maps introduced in (Gjuvsland et al., 2011). We consider a
diploid genetic model with N biallelic loci (alleles indexed 1
and 2) underlying a quantitative phenotype. A genotype at a
single locus k is denoted by gk ∈ {11, 12, 22}. In the case of
two loci k and l there are 9 possible genotypes gkl = gkgl ∈
{1111, 1112, 1122, 1211, . . . , 2212, 2222}. The general N loci
genotype space � contains 3N genotypes g1g2 · · · gN (in con-
densed notation g1:N ) constructed by concatenating single locus
genotypes, � = {g1g2 · · · gN | gk ∈ {11, 12, 22}, k = 1, 2, . . . , N}.

For any locus k, the genotypic background, i.e., the allele com-
position of all loci except k, is g(k) = g1g2 . . . gk − 1gk + 1 . . . gN =
g1: k − 1gk + 1: N . For example, if N = 4 then g(2) = 112212
means that the genotypes of locus 1, 3, and 4 are 11,
22, and 12, respectively. We use the straightforward nota-
tion g1g2 . . . gk − 111gk + 1 . . . gN = g1:k − 111gk + 1: N to indicate a
genotype where gk = 11 while the background genotype is arbi-
trary. We will also use the compressed notation 11g(k)(or gener-
ally gkg(k)).

We use the 2-allele content (i.e., the number of 2-alleles) of
genotypes to define a partial order on the genotype space � (see
Figure 1, left panel for an illustration). For a particular locus k we
order the three genotypes sharing the same background genotype
g1: k − 1gk + 1: N as follows,

g1: k − 111gk + 1: N < g1: k − 112gk + 1: N < g1: k − 122gk + 1: N (1)

We call this the partial genotype order relative to locus k, and it
defines a strict partial order on �.

A genotype-phenotype map is a mapping G that assigns to
each genotype g ∈ � a real-valued genotypic value G(g) (the
mean trait value for a given genotype). We define monotonicity of
G in terms of how it transforms the partial genotype order to the
algebraic order of the genotypic values G(g). Without loss of gen-
erality we assume that the allele indexes at each locus have been
chosen such that G(1111 · · · 11) is the smallest of all homozygote
genotypic values. We call a genotype-phenotype map G monotone
or order-preserving with respect to locus k if it preserves the partial
genotype order relative to locus k, i.e., if,

G(g1: k − 111gk + 1: N) ≤ G(g1: k − 112gk + 1: N)

≤ G(g1: k − 122gk + 1: N) (2)

FIGURE 1 | Examples of partial genotype order and

genotype-phenotype maps. Left panel: The allele content defines a partial
order on genotype space. A two-locus example is shown. The plot at the
top displays the genotype at locus 1 (x-axis) and locus 2 (color) vs. the total
number of 2-alleles (y-axis) in the two-locus genotype. The resulting partial
ordering of genotypes is shown below. Right panel: Each lineplot shows
the 9 genotypic values (y-axis) for a single GP map, coding of genotype are
the same as in the left panel. GP maps that preserve the partial order of

genotypes are called monotone. Examples shown are an intra- and
interlocus additive map (A), a map showing partial dominance at both loci
(PD), and duplicate dominant (DD) epistasis (see Table 1 in Phillips, 1998).
GP maps that break the partial order of genotypes are called non-monotone,
examples shown are pure overdominance at both loci (OD),
additive-by-additive epistasis (A × A) and dominance-by-dominance epistasis
(D × D). The rightmost plot shows a GP map that is monotone w.r.t. locus
1, but non-monotone w.r.t. locus 2.
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for all genetic backgrounds of locus k. By allowing non-strict
inequalities we include GP maps showing complete dominance
and complete magnitude epistasis (Weinreich et al., 2005) in
the class of order-preserving GP maps. Conversely we call a GP
map non-monotone or order-breaking with respect to locus k if it
does not preserve the partial genotype order relative to locus k
for all backgrounds. Figure 1 (right panel) shows classical dom-
inance and epistasis patterns, categorized into monotone and
non-monotone GP maps.

STATISTICAL DECOMPOSITION OF GENOTYPE-PHENOTYPE MAPS
Given a genotype-phenotype map G as described above and
a corresponding vector of genotype frequencies f in a pop-
ulation, quantitative genetic provides methods for orthogonal
decomposition of genotypic values and resulting genetic vari-
ance in the population into additive and non-additive (dom-
inance and epistasis) components (Lynch and Walsh, 1998).
We performed such statistical decomposition with the func-
tion linearGPmapanalysis in the R package noia (http://
cran.r-project.org/package=noia; Le Rouzic and Alvarez-Castro,
2008) version 0.94.1. We assumed an idealized population where
all genotype frequencies are equal (1/3N ). In such a hypothetical
population the NOIA (Alvarez-Castro and Carlborg, 2007) statis-
tical and functional formulations and the unweighted regression
model proposed by Cheverud and Routman (1995) are equiv-
alent. Furthermore, the decomposition of genotypic values is
equivalent to decomposing G into a sum of additive and non-
additive GP maps, and the genetic variance in this case is simply
the variance of the 3N genotypic values in G. We used the NOIA
statistical formulation to decompose a GP map G into its addi-
tive and non-additive components, and computed the ratio of
additive to total genetic variance VA/VG as a measure of how
well the additive component describes the original GP map. In
case of the illustrative GP maps depicted in Figure 1, this gives
VA/VG = 1 for the fully additive GP map A, and VA/VG = 0 for
the pure overdominance (OD) and the pure epistasis (Cheverud
and Routman, 1996) maps A × A and D × D.

GENE REGULATORY NETWORK MODELS
Gene expression in eukaryotes is controlled through gene regu-
latory networks involving numerous regulatory mechanisms [see
e.g., Latchman (2005), for details]. Modeling of such gene regula-
tory networks is well-established, and available modeling frame-
works range from coarse-grained descriptions of the topology
of genome-wide networks to very detailed mechanistic models
describing the dynamics of small networks (De Jong, 2002; Schlitt
and Brazma, 2007; Karlebach and Shamir, 2008). In line with
a large number of authors we used ordinary differential equa-
tions (ODEs) to study a family of generic gene regulatory network
models containing three diploid genes X1, X2, and X3, organized
as a regulatory system where the rate of expression of each gene
can be regulated by the expression level of one or both of the other
genes. The wiring of the system is described by a 3 × 3 connec-
tivity matrix A with elements Akl ∈ {−1, 0, 1}. The signs of the
elements of A describe the mode of regulation, Akl = 0 indicates
that Xl is not a regulator of Xk, if Akl = 1 then Xl is an activa-
tor of Xk, and if Akl = −1 then Xl is a repressor of Xk. Gene

regulatory systems are often laid out visually as signed directed
graphs. There is a one-to-one correspondence between a con-
nectivity matrix and a signed directed graph, two examples are
illustrated in Figure 4. We used the sigmoid formalism (Mestl
et al., 1995; Plahte et al., 1998) in the diploid form (Omholt et al.,
2000) where the expression the two alleles of gene k is described
by the following ODEs,

ẋk1 = αk1Rk1(y1, y2, y3) − γk1xk1, (3)

ẋk2 = αk2Rk2(y1, y2, y3) − γk2xk2,

yk = xk1 + xk2, k = 1, 2, 3.

Here αki is the maximal production rate for allele i of gene Xk,
γki is the decay rate, while Rki is the gene regulation function
(dose-response function). If Xk has no regulators, we assume pro-
duction is always switched on i.e., Rki = 1. If Xk has a single
regulator Xl, the gene regulation function is given as Rki(yl) =
S(yl, θlki, plki), where S(y, θ, p) = yp/(yp + θp) if Xl is an activa-
tor and S(y, θ, p) = 1 − yp/(yp + θp) if it is a repressor. In both
cases the parameter θlki gives the amount of regulator needed
to get 50% of maximal production rate, and plki determines the
steepness of the response. In the case of two regulators Xl and
Xj we set Rki(yl, yj) = S(yl, θlki, plki)S(yj, θjki, pjki), corresponding
to the Boolean AND function. Modeling transcription regulation
by means of Hill functions and Boolean composition has a long
tradition in modeling of gene regulation and is widely used.

With three genes and up to two regulators per gene the number
of possible connectivity matrices is 6859. We further required that
the system is connected, and that X3 is downstream to both X1

and X2 so either X1 and X2 both regulate X3 directly (A31A32 �=
0), or one of them regulates X3 directly and the other one indi-
rectly (A31A12 �= 0 or A32A21 �= 0). This reduces the number of
distinct connectivity matrices to 3724. Finally, we identified pairs
of matrices that are symmetric with respect to interchanging X1

and X2 and picked just one matrix from each pair. The result-
ing 1881 connectivity matrices were used for our gene regulatory
simulations.

IDENTIFYING FEEDBACK LOOPS AND FEEDFORWARD MOTIFS
Feedback and feedforward motifs appear recurrently as regu-
latory building blocks in transcription networks across all liv-
ing organisms. These network motifs have several characteris-
tic features (Alon, 2007), negative feedback can for example
accommodate fast transcriptional responses and homeostasis,
while positive feedbacks are utilized as biological switches. We
went through all 1881 gene regulatory models and extracted
information about their feedback and feedforward loop charac-
teristics from their connectivity matrices. For each system we
computed three autoregulatory feedback loop products FL1 =
A11, FL2 = A22, FL3 = A33, three two-gene feedback loop prod-
ucts: FL12 = A21A12, FL13 = A31A13, FL23 = A23A32 and two
three-gene feedback loop products: FL123 = A32A21A13, FL213 =
A31A12A23. Non-zero loop products indicate that the system con-
tains the corresponding feedback loop, and the sign of the loop
product gives the sign of the feedback loop. We also computed
the products for two feedforward motifs: FFL32 = A32(A31A12),
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FFL31 = A31(A32A21). Again non-zero products indicate that the
system contains the corresponding feedforward motif, a positive
value corresponds to a coherent feedforward while a negative
value indicates incoherent feedforward. Figure 4 depicts the con-
nectivity matrix and the signed digraphs of a system with a
positive feedback loop as well as a system with incoherent feed-
forward. Spreadsheet S1 contains adjacency matrices and loop
products for all 1881 motifs.

GENE REGULATORY NETWORK SIMULATIONS
The simulation were performed with the Python package
cgptoolbox (http://github.com/jonovik/cgptoolbox), using
the sigmoidmodel submodule, which contains an implemen-
tation of the gene regulatory network model (Equation 3) and
the connectivity matrix A. A similar simulation setup is found
in Gjuvsland et al. (2011) together with a discussion of gene
regulation functions and the genotype-parameter map in molec-
ular terms. We compared two different types of genotype-to-
parameter maps:

• Genotype to parameter map without pleiotropy: biallelic geno-
typic variation for all three loci was introduced through
the maximal production rates αki. For each Monte Carlo
simulation the allelic parameter values were sampled from
U(100, 200).

• Genotype to parameter map with pleiotropy: allelic parameter
values were sampled for maximal production rates αki (sam-
pled from U(100, 200)), regulation thresholds θlki (sampled
from U(20, 40)), and regulation steepnesses plki (sampled from
U(1, 10)).

All decay rates γki were set equal to 10. We assembled param-
eter sets for all 27 diploid genotypes, and for each genotypic
parameter set the system of Equation 3 was integrated numer-
ically until convergence to a stable state. The equilibrium value
of y3 was recorded as phenotype. Datasets where the system
failed to converge for one or more genotypes were discarded.
For each of the 1881 motifs we performed 1000 Monte Carlo
simulations.

Some Monte Carlo simulations lead to very little phenotypic
variation, in the sense that the span between the largest and small-
est of the 27 genotypic values was small. In order to avoid artifacts
arising from the numeric ODE solver tolerance, these essentially
flat GP maps were discarded. Further analysis of monotonic-
ity and variance components were only performed on GP maps
where the absolute range (maximum genotypic value – mini-
mum genotypic value) and relative range (absolute range/mean
genotypic value) were both > 0.01.

RESULTS
MEASURING MONOTONICITY OF GP MAPS
In the following we present two numerical measures for quan-
tifying monotonicity in a GP map G with N biallelic loci. The
first quantifies the monotonicity for individual loci by comparing
negative and positive allele substitution effects before weighting
the individual loci into an overall measure. The second utilizes
isotonic regression to quantify the distance between G and the
closest fully monotone GP map.

Measure 1: quantifying non-monotonicity by substitution effects
We first develop a measure of monotonicity based on the effects
of substituting a single allele at locus k,

s1(g(k)) = G(g1: k − 122gk + 1: N) − G(g1: k − 112gk + 1:N), (4)

s2(g(k)) = G(g1: k − 112gk + 1: N) − G(g1: k − 111gk + 1: N),

while keeping the background genotype g(k) = g1: k + 1gk + 1: N

fixed. Monotonicity as defined by Equation 2 is equivalent to
si(g(k)) ≥ 0 for i = 1, 2 across all genetic backgrounds of locus
k. By taking into account also the magnitude of the substitution
effects we can quantify the deviation from strict monotonicity. We
start with the set Sk = {si(g(k))} of single allele substitution effects
for locus k for i = 1, 2 and across all genotypic backgrounds g(k).
The total number of elements in Sk thus becomes 2 · 3N−1, and we
split the set into two disjoint subsets reflecting their sign; Sk+ =
{si(g(k)) ∈ Sk|si(g(k)) > 0} and Sk− = {si(g(k)) ∈ Sk|si(g(k)) < 0}.
We compute the sum of positive substitution effects and the sum
of absolute values of negative substitution effects,

Pk =
∑

Sk+

si(g(k)), (5)

Nk =
∑

Sk−

∣∣∣si(g(k))

∣∣∣ ,

and let Tk = Pk + Nk denote the overall sum of absolute substi-
tution effects. We then define the degree to which the GP map G
is monotone with respect to locus k by,

mk = |Pk − Nk|
Tk

=

∣∣∣∣∣
∑

g(k)

(
s1(g(k)) + s2(g(k))

)
∣∣∣∣∣

∑

g(k)

(|s1(g(k))| + |s2(g(k))|) . (6)

The absolute value in the numerator ensures that the measure mk

is invariant with respect to the choice of indexes for the two alle-
les of locus k. Interchanging the numbering of the alleles leads to
the mappings s1(g(k)) �→ −s2(g(k)), s2(g(k)) �→ −s1(g(k)), which
leaves the value of mk unchanged. By the triangle inequality
mk ≤ 1. If mk = 1, then G is monotonic with respect to locus k,
whereas mk < 1 implies that G is order-breaking w.r.t. locus k. If
mk = 0, then the positive substitution effects equal the negative
substitution effects in magnitude and we say that G is completely
order-breaking w.r.t. locus k. This measure distinguishes well
between the monotone and non-monotone maps in Figure 1.
Clearly m1 = m2 = 1 for the additive map (A) and GP maps
showing partial dominance and duplicate dominance epistasis. In
contrast, m1 = m2 = 0 for the maps showing pure OD and pure
epistasis (A × A and D × D).

In order to quantify the overall monotonicity of the GP map G
we introduce the degree of monotonicity (m) which is a weighted
mean of all mk, where the weights reflect the relative effect size of
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the loci in terms of Tk,

m =

N∑
k = 1

mkTk

N∑
k = 1

Tk

. (7)

As shown in Figure 3A, the degree of monotonicity is accordingly
1 for the monotone maps in Figure 1 while it is 0 for the pure OD
and pure epistasis maps. This definition of degree of monotonic-
ity allows us to establish a vocabulary that is analogous to the
classification of single locus dominance; i.e., a GP map is called
monotone if m = 1, (partially) non-monotone if m < 1 and purely
non-monotone if m = 0.

For example, the degree of monotonicity of the GP map
published by Cheverud and Routman (1995), with two loci
underlying 10-week body-weight (in grams) at 10 weeks in a
mouse F2 cross, may be computed as follows. After renaming the
two loci (B →1, A →2) and indexing alleles to conform to our
notation, the nine genotypic values (Table 1 in (Cheverud and
Routman, 1995)) are G(1111) = 31.23, G(1112) = 34.13,
G(1122) = 33.82, G(1211) = 34.89, G(1212) = 35.90,
G(1222) = 36.53, G(2211) = 34.12, G(2212) = 37.95, and
G(2222) = 36.84. From the line plot of this GP map (Figure 2,
left panel) we find that the GP map is non-monotone with
respect to both loci. Locus 1 shows marginal OD for the 11
genotype of locus 2 and locus 2 shows marginal OD for the
11 and 22 genotypes of locus 1. To compute the degree of
monotonicity, we start with the set of single allele substitution
effects for locus 1, S1 = {3.66,−0.77, 1.77, 2.05, 2.71, 0.31},
and divide this into sets of negative S1− = {−0.77} and pos-
itive effects S1+ = {3.66, 1.77, 2.05, 2.71, 0.31}. The sum N1

of elements in S1+ is 10.50 and P1 the sum of absolute values
of elements in S1− is 0.77, which gives T1 = P1 + N1 = 11.27.
From Equation 6 it follows that m1 = 0.86. Similarly, the sets
of substitution effects for locus 2 are S2− = {−1.11,−0.31} and
S2+ = {3.83, 0.63, 1.01, 2.90}. This gives, N2 = 1.42, P2 = 8.37,
T2 = 9.79, and m2 = 0.71. Inserting values for both loci into
Equation 7, the degree of monotonicity (m) of this GP map
is calculated to be 0.79. This value concords well with the

visual observation (Figure 2, left panel) that it does not deviate
substantially from a purely monotone map.

For random GP maps (randomly sampled genotypic values
as in (Gjuvsland et al., 2011)) there is a strong positive corre-
lation between the degree of monotonicity and the size of the
additive component (VA/VG) (Figure 3A). A similar relationship
was observed for three-locus random GP maps (Figure A1A).
All GP maps in Figure 3A with m < 0.1 have VA/VG < 0.1. At
the other end of the spectrum there is much more variation,
for instance the most extreme completely monotone map (the
duplicate dominant factors DD) has VA/VG as low as 0.375.

Measure 2: quantifying monotonicity by isotonic regression
This measure quantifies the monotonicity of a particular GP map
G in terms of the least-squares distance to the closest monotone
map. We build on the mathematical notation introduced in sec-
tion “Background on monotonicity of GP maps” where � is the
genotype space for N biallelic loci and a GP map is a function
that assigns a real-valued genotypic value G(g) to each genotype

A B

FIGURE 3 | Measures of monotonicity vs. additivity of GP maps.

Scatterplots showing VA/VG from unweighted regression vs. (A) degree of
monotonicity (m) and (B) R2

mono from isotonic regression. Black dots
correspond to the maps shown in Figure 1 together with
additive-by-dominance epistasis (A × D), a map with two loci showing
complete dominance (CD) and two classical epistasis types from Table 1 in
Phillips (1998); duplicate recessive genes (DR) and recessive epistasis (RE).
Red dots show 1000 random two-locus GP maps, while blue dots show the
same 1000 GP maps after rearranging genotypic values to introduce
order-preservation for 1 locus [see Model and Methods in Gjuvsland et al.
(2011)].

FIGURE 2 | Decomposition of genotype-phenotye map into

monotone and non-monotone components. Left panel:

Genotype-phenotype map G for two loci underlying 10-week
body-weight at 10 weeks in a mouse F2 cross. The GP map shown
here is equivalent to the one in the original publication [see Figure

3A in Cheverud and Routman (1995)], but we have changed indexing
of loci and alleles for consistency with the notation used here. The
GP map G is decomposed with isotonic regression into a (middle

panel) monotone component GM and a (right panel) non-monotone
component GN .
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g in �. For any particular GP map G, we identify the monotone
component of G as the map GM which minimizes the residual vari-
ance var(G − GM), i.e., GM is the monotone GP map which is
closest to G in the least-squares sense. For a given G the mono-
tone component GM is unique (Barlow and Brunk, 1972) and
can be computed numerically by isotonic regression (Leeuw et al.,
2009) of G subject to the partial ordering of genotypes defined
in Equation 1. Furthermore, the residual GN is orthogonal to
GM in the sense that

∑
g ∈ � GM(g)GN(g) = 0. This allows the

orthogonal decomposition,

G = GM + GN , (8)

of a genotype-phenotype map into a monotone component
GM and a non-monotone component GN such that var(G) =
var(GM) + var(GN). The orthogonality property allows us to
measure monotonicity of G in terms of the coefficient of deter-
mination R2

mono of the isotonic regression given by the ratio
R2

mono = var(GM)/var(G). In the case that G itself is monotone
for all loci we have R2

mono = 1, while order-breaking for one or
more loci will result in R2

mono < 1.
The isotonic regression approach can be illustrated in a

straightforward way on the two-locus GP map provided by
Cheverud and Routman (1995) (see text above and left panel of
Figure 2). The partial ordering of genotypes defined by Equation
1 is illustrated in Figure 1 (left panel). By isotone regression
(Leeuw et al., 2009) on this partial genotype ordering, the original
GP map is decomposed into a monotone and a non-monotone
component (Figure 2, middle and right panels), and the coeffi-
cient of determination (R2

mono) is 0.97.
Our simulation results for random GP maps show that R2

mono
is positively correlated to the size of the additive component
(Figure 3B for two-locus GPs maps and Figure A1B for three-
locus GP maps) and that for a given VA/VG the lower bound for
R2

mono is close to a straight line from (0, 0.2) to (1, 1). However,
due to the search for the closest monotone GP map, R2

mono will
not become zero even for purely overdominant or purely epistatic
maps. As shown in Figure A2, the two monotonicity measures are
highly correlated.

An R package for studying monotonicity in GP maps
We developed an R package gpmap for studying functional prop-
erties of GP maps. The package takes GP maps in the form of
vectors of genotypic values as input, and provides functions for
(i) determining whether the map is order-breaking or order-
preserving w.r.t. any given locus, (ii) the degree of monotonicity
m, (iii) R2

mono using isotonic regression from the isotone pack-
age (Leeuw et al., 2009), and (iv) plots of the original and
decomposed GP maps. Code example 1 (Box 1) below illustrates
the usage and functionality of the gpmap package. The package is
available from CRAN http://cran.r-project.org/package=gpmap
under GPLv3.

MONOTONICITY IN GP MAPS ARISING FROM GENE REGULATORY
NETWORKS
To search for generic relationships between monotonicity and
regulatory network structure, we used the above measures of

monotonicity to characterize GP maps emerging from the gene
regulatory network models (see Models and Methods). Based on
earlier results (Gjuvsland et al., 2007, 2011; Wang et al., 2013) we
hypothesized that incoherent feed forward (Figure 4, right panel)
or positive feedback (Figure 4, left panel) would be necessary in
order to obtain highly order-breaking GP maps, and we charac-
terized all 1881 networks in terms of these two properties. Table 1
shows the number of motifs falling into the resulting four cate-
gories. We summarized the number of Monte Carlo simulations
where all genotypic parameter sets gave convergence to a stable
steady state, and where the resulting GP maps were not essentially
flat (see Models and Methods for details). Motifs with less than
100 usable GP maps were discarded from further analysis. For
the genotype-to-parameter maps without pleiotropy (in the sense

Box 1 | Code example 1.

Code example for quantifying and visualizing monotonicity for
the two-locus GP map published in [14] using the R package
gpmap.

> library(gpmap) #load package
> data(GPmaps) #load dataset
> gp <- mouseweight #GP map from reference

[14]
>

> ## Tabulate genotypic values
> cbind(gp$genotype,gp$values)
>

> ## Plot the GP map
> plot(gp)
>

> ## Compute degree of monotonicity
> gp <- degree_of_monotonicity(gp)
> gp$degree.monotonicity.locus
> print(gp)
>

> ## Quantify monotonicity by isotonic
regression

> gp <- decompose_monotone(gp)
> print(gp)
>

> ## Plot decomposed GP map
> plot(gp,decomposed=TRUE)

FIGURE 4 | Connectivity matrices and signed directed graphs.

Connectivity matrix A and the corresponding signed directed graph for two
of the 1881 systems in the simulation study. The left panel depicts the
connectivity matrix and the signed digraph of a system with a positive
feedback loop between X1 and X2 while the right panel shows a system
with incoherent feedforward from X1 to X3.
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Table 1 | Frequencies (proportion of row total in parenthesis) of incoherent feedforward and positive feedback loops in subsets of the 1881

studied motifs.

Dataset Number of motifs Motifs containing

Incoh. feedforward No incoh. feedforward

Positive feedback No positive feedback Positive feedback No positive feedback

All motifs 1881 287 (0.153) 48 (0.026) 1294 (0.688) 252 (0.134)

GENOTYPE-TO-PARAMETER MAP WITHOUT PLEIOTROPY

Discarded motifs 868 152 (0.175) 0 715 (0.824) 1 (0.001)

Analyzed motifs 1013 135 (0.133) 48 (0.047) 579 (0.571) 251 (0.248)

GENOTYPE-TO-PARAMETER MAP WITH PLEIOTROPY

Discarded motifs 791 124 (0.157) 0 667 (0.84) 0

Analyzed motifs 1090 163 (0.149) 48 (0.044) 627 (0.575) 252 (0.231)

that genetic variation at one locus influences only a single param-
eter, see Model and Methods) 868 motifs were discarded, while
for the genotype-to-parameter map with pleiotropy (genetic vari-
ation at one locus influences three parameters) 791 motifs were
discarded. All (but one) discarded motifs contained at least one
positive feedback loop (Table 1). A plausible explanation for this
is that many motifs with positive feedback loops have a stable
steady state at, or very close to 0 for one or more state variables
regardless of parameter values, and this leads to essentially flat GP
maps.

The introduction of pleiotropy in the genotype to parame-
ter map has a marked effect on the monotonicity characteristics
of the associated GP map (Figure 5). When genetic variation
at a locus Xi affects only its maximal production rate the GP
maps come out as highly monotone (Figure 5A), with a large
majority being fully monotone or order-breaking for just a single
locus. When genetic variation at locus Xi affects the threshold and
steepness of the dose-response curve in addition to the maximal
production rate (pleiotropy in the genotype-to-parameter map),
the majority of GP maps still show order-breaking either for no
loci or just one locus (Figure 5B). But a considerable number of
GP maps are in this case order-breaking for two or three loci.
Furthermore, by dividing the motifs into the four groups given
in Table 1 it is evident that the regulatory anatomy of a network
determines its predisposition for non-monotonicity in its asso-
ciated GP map. Presence of incoherent feedforward or positive
feedback loops appears to be prerequisites for the majority of the
observed non-monotonic GP maps.

The class of motifs lacking both incoherent feedforward and
positive feedback contains very few order-breaking GP maps,
and with no pleiotropy in the genotype-to-parameter map we
observe only fully order-preserving GP maps for this class (cyan
in Figure 5A). In the Appendix we generalize this to an arbitrary
number of nodes and formally prove that without pleiotropy in
the genotype-to-parameter map, the presence of incoherent feed-
forward or positive feedback is indeed a necessary condition for
non-monotone GP maps to arise from networks with monotone
gene regulation functions.

The introduction of pleiotropy in the genotype-to-parameter
map increases the frequency of order-breaking GP maps substan-
tially (Figure 5B). Motifs lacking both incoherent feedforward

A B

FIGURE 5 | Order-breaking in motifs containing a single feedforward

loop. Summary of order-breaking for all motifs for which at least 100 (out of
1000) Monte Carlo simulations lead to GP maps with non-negligible
variation (see Models and Methods section “Gene regulatory network
simulations,” for detailed criteria). Results are shown for 1013 motifs with a
genotype-to-parameter map without pleiotropy (A) and 1090 motifs with a
genotype-to-parameter map with pleiotropy (B). Colors indicate classes of
motifs based on the presence/absence of incoherent feedforward and
positive feedback loops, see Table 1 for the number of motifs in each class.
A single boxplot summarizes, for all motifs in the given class, the proportion
of the GP maps (y-axis) that are order-breaking with respect to a given
number of loci (x-axis). For example, consider the red box at x = 0 in panel
(A). This boxplot contains results for motifs with both incoherent
feedforward and positive feedback and from Table 1 we find that the red
boxplot summarizes results for 135 motifs. From the y-axis we find that at
least half (box median at y = 1) of these 135 motifs result in only monotone
GP maps, while for the most extreme (end of whisker) of the 135 motifs
only 25% of the GP maps are monotone. Similarly, the cyan box is
compressed into a line at x = 0, y = 1 indicating that all 251 motifs that
lack both incoherent feedforward and positive feedback result in only
monotone GP maps.

and positive feedback may in this case lead to GP maps that are
order-breaking for one or two loci, but never for all three loci.
Using isotonic regression to quantify the overall monotonicity
of the GP maps reinforces the finding that incoherent feedfor-
ward and positive feedback predispose for non-monotonicity
(Figure 6). Figure 6 also shows that for all classes of motifs
the majority of GP maps are fully monotone, while the most
non-monotone GP maps (lowest R2

monovalues) are observed for
motifs with positive feedback. The differences between classes
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A B

FIGURE 6 | Empirical distribution functions for R2
mono. Summary of

R2
mono values from isotone regression for all motifs for which at least

100 (out of 1000) Monte Carlo simulations lead to GP maps with
non-negligible phenotypic variation (see Models and Methods section
“Gene regulatory network simulations,” for detailed criteria). Results are
shown for 1013 motifs with a genotype-to-parameter map without

pleiotropy (A) and 1090 motifs with a genotype-to-parameter map with
pleiotropy (B). Each panel is divided into 4 subplots containing classes
of motifs based on the presence/absence of incoherent feedforward
and positive feedback loops, see Table 1 for the number of motifs in
each class. Each curve shows, for a single motif, the empirical
distribution function value (y-axis) of R2

mono for all GP maps (x-axis).

of motifs are also evident when inspecting the additivity of
GP maps (Figure A3), but since monotone GP maps can still
be non-additive, the patterns are much more blurred than for
monotonicity.

DISCUSSION
Fisher’s (1918) regression on gene content and the concepts
derived from this, such as additive effects and dominance devia-
tion, provide the theoretical basis for most of quantitative genetics
(Falconer and Mackay, 1996; Lynch and Walsh, 1998). By regress-
ing on gene content, including the extensions by Cockerham
(1954), the genotype-phenotype map is decomposed into addi-
tive, dominant, and epistatic components. The use of gene con-
tent or the number (0, 1, or 2) of alleles with a particular index
in a genotype implies the same partial ordering of genotype
space as defined in Equation 1. Thus, our proposed definition
of monotonicity of GP maps, and in particular the use of iso-
tonic regression to quantify monotonicity, may be viewed as a
relaxation of the linearity assumption underlying current quan-
titative genetics theory. In this perspective the positive correlation
between monotonicity and additivity (Figure 3) is expected.

We have addressed GP maps with 2 and 3 loci as we consid-
ered an in-depth study of the properties of GP maps with higher
number of loci to be outside the scope of this study. Some general
observations can be made, though. Since m is a weighted aver-
age, the mk of major loci (i.e., for which Tk is large relative to∑

Tk) will tend to dominate. For instance, in a case with a single
major locus showing monotone gene action and several minor
loci showing order-breaking, the GP map will overall be close
to monotone (m close to 1). Conversely, order-preservation in a
number of minor loci would have little influence on m if major
loci have strongly non-monotone gene action. Isotonic regres-
sion gives an overall measure of monotonicity of a GP map, but
provides no locus-specific measures corresponding to mk. Similar

to the case for m, the gene action of major loci will have high
influence on the value of R2

mono.
The observation that monotonicity is an important prop-

erty of GP maps is in principle not new. For a single locus,
non-monotone gene action appears in the form of over- or
under-dominance, while complete and partial dominance as well
as additivity exemplify monotone gene action. Weinreich et al.
(2005) distinguished between sign epistasis and magnitude epista-
sis and showed that sign epistasis limits the number of mutational
trajectories to higher fitness. As sign epistasis reflects a non-
monotone GP relationship and magnitude epistasis reflects a
monotone one, this insight concords with our results. A similar
distinction has been proposed (Wang et al., 2010) for statisti-
cal interactions where removable interactions are those that can
be removed by a monotone transformation of the phenotype
scale, while non-monotonicity in the GP map leads to essential
interactions. Wu et al. (2009) developed a method to screen for
and test the significance of essential interaction in genome-wide
association studies. Isotonic regression has also recently been
applied to link genotype and phenotype data (Beerenwinkel et al.,
2011; Luss et al., 2012). Our treatment of monotonicity is more
general than these earlier works in three major ways. First, we
deal with monotonicity of the GP map as a whole rather than
either intra-locus (dominance vs. overdominance) or inter-locus
(magnitude vs. sign epistasis and removable vs. essential inter-
actions). Second, where the earlier treatments have focused on
classifying the type of gene action, we make use of quantitative
measures of monotonicity. Third, our approach combining the
concept of monotonicity with cGP models opens a direct link
between genetics and the theory of dynamical systems in the wide
sense.

Monotonicity is a property of the GP map separate from
the allele frequencies, making it a physiological (Cheverud and
Routman, 1995) or functional (Hansen and Wagner, 2001)
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descriptor rather than a statistical one. The distinction between
physiological and statistical epistasis has lead to much debate
(Phillips, 2008). Zeng et al. (2005) argued the distinction was
unnecessary and potentially misleading. Although their argu-
ments around orthogonality and variance components are valid,
our results demonstrate very clearly that describing the properties
of the GP map without reference to any particular study popula-
tion is essential if we want to connect quantitative genetics with
regulatory biology.

It is clear from our results that positive feedback and incoher-
ent feedforward promote non-monotonicity. The clear-cut dif-
ferences in monotonicity between different classes of regulatory
networks, combined with the strong correlation between mono-
tonicity and additivity of GP maps, appear therefore to explain the
findings that regulatory systems with positive feedback give con-
siderably more statistical epistasis than those without (Gjuvsland
et al., 2007; Wang et al., 2013). Even though both incoherent feed-
forward and positive feedback predispose for non-monotone GP
maps, the underlying mechanisms are different for the two reg-
ulatory motifs. In the case of incoherent feedforward the sum of
direct and indirect effects may result in a non-monotone dose-
response relationship (Kaplan et al., 2008). That positive feedback
loops can give non-monotonicity is intuitively less clear, but in
the Appendix we show both results analytically. Positive feedback
predisposes for multiple steady states, and order-breaking might
also emerge from different genotypes corresponding to different
states. It should be noted, however that positive feedback is only
a necessary condition for multistationarity (Plahte et al., 1995),
and a positive loop in the connectivity matrix A of a system is
not necessarily active at any point during the time course of the
system.

Without any restrictions on the connectivity of a three-
gene system there are 39 = 19, 683 possible distinct networks.
The main restriction we imposed (see Models and Methods
for details) was a maximum of two regulators per gene, which
allowed us to use Boolean gene regulation functions already
established in the sigmoid formalism (Plahte et al., 1998). Other
model formalisms allowing an arbitrary number of regulators
are also available (Wagner, 1994, 1996; Siegal and Bergman,
2002) and could be extended to diploid forms and used in later
studies.

Although this study has focused on gene regulatory net-
works, the concept of monotone gene action applies to the
propagation of genetic variation across the whole physio-
logical hierarchy. One may therefore systematically use the
concepts and methods presented here to study the order-
preserving and order-breaking properties of genotype-phenotype
mappings that are associated with any regulatory structure
amenable for mathematical modeling. Through this it will be
possible to make a wide-ranging survey of which regulatory
anatomies promote monotonicity and which promote non-
monotonicity. We foresee that this classification may become
instrumental for predicting how phenotypic effects of genetic
variation propagate across generations in sexually reproducing
populations.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fgene.2013.00216/
abstract
Spreadsheet S1 | Excel spreadsheet with connectivity matrices and loop

products for all 1881 gene regulatory networks.
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APPENDIX
In this appendix we complement the simulation studies in the
main text with some analytic results for GP maps emerging from
ODE models of gene regulatory networks. We study a general-
ization of the gene network model in Equation (3) with an arbi-
trary number of loci and monotone gene regulation functions,
but restrict the analysis to genotype-parameter maps without
pleiotropy. In particular, we show that (i) if there are no posi-
tive feedback loops and no incoherent feedforward loops in the
network, the resulting GP maps are always monotone, (ii) a posi-
tive feedback loop or an incoherent feedforward loop may lead to
non-monotone GP maps. The results hold for phenotypes given
as the stable concentration of the product of one of the genes,
and under certain restrictions also for phenotypes given as a func-
tion of one or several stable gene product concentrations that is
monotonic with respect to each of its arguments.

GENE NETWORK MODEL
We consider a dynamic system consisting of n mutually inter-
acting diploid loci Xj, j ∈ N = {1, . . . , n}, regulating each other’s
expression. The time dependent output of Xj is denoted zj, and we
define z = [z1, z2, . . . , zn]. It goes without saying that zj in gen-
eral depends on the genotypes of all the genes even though we will
not always state this explicitly.

For a given genotype g = gjg(j) = ajbjg(j), where
gj ∈ {11, 12, 22} denotes the genotype and aj, bj ∈ 1, 2 denote
the indexes of the two alleles of locus Xj, the equations of motion
for Xj are

ż1
j = α

aj

j r
aj

j (z) − γ
aj

j z1
j ,

ż2
j = α

bj

j r
bj

j (z) − γ
bj

j z2
j ,

zj = z1
j + z2

j ,

(A1)

where z1
j and z2

j are the time-dependent outputs of the two

homologous copies of Xj. The two allele rate functions r1
j (z) and

r2
j (z) have range [0, 1] so that α1

j and α2
j represent the max-

imum production rates of the two alleles. We assume that all
dose-response functions in Equation (A1) are differentiable and
monotonic with respect to each of its arguments, and that for each
j, k, the signs of ∂r1

j /∂xk and ∂r2
j /∂xk in the stable point x are

equal. This model generalizes Eq. (3) to an arbitrary number of
loci and a broader class of gene regulation functions.

In the following we are only concerned with the steady states
of Equation (A1), and assume for simplicity that they have just
a single stable equilibrium point. Solving the equilibrium condi-
tions of Equation (A1) with respect to z1

j and z2
j and adding gives

fj(x) = μ
aj

j r
aj

i (x) + μ
bj

j r
bj

j (x) − xj = 0, j ∈ N, (A2)

where x = [x1, . . . , xn] is the stable point, μ
ai
j = α

aj

j /γ
aj

j and

μ
bj

j = α
bj

j /γ
bj

j . Since our definition of monotonicity of GP maps
does not depend on the numbering of alleles, we will without loss
of generality assume μ1

j ≤ μ2
j for all j.

The network architecture can be read out from the structure
of the system’s Jacobian matrix in the stable state x. We define the
elements of the Jacobian J for the set of functions fj defined in
Equation (A2) by

Jjk = Jjk(g) = ∂fj(x)

∂xk
, j, k ∈ N. (A3)

To the Jacobian J it is customary to assign a signed directed graph
G in which each locus Xk is represented by a node Xk, and in
which there is an arc from Xj to Xk if and only if Jkj �= 0, its sign
given by the sign of Jkj. A chain from Xj to Xk is a set of arcs in G
leading from Xj to Xk in which all intermediate nodes are visited
only once. The sign of a chain is equal to the product of the signs
of the Jij corresponding to the arcs in the chain. If there is a chain
from Xi to Xj and also a chain from Xj to Xi through a disjoint set
of nodes, the two chains constitute a proper feedback loop (FBL).
To each FBL is associated a loop product L which is the product
of the Jacobian elements corresponding to all the arcs in the loop.
The sign of the loop is given by the sign of L. Two chains from Xj

to Xi, i �= j, with only the endpoint nodes in common, constitute
a feedforward loop (FFL). If the two chains have opposite signs,
the FFL is incoherent (IFFL), otherwise it is coherent (CFFL).

The system’s phenotype could be any scalar quantity defined
by its equilibrium value x. In the following we assume the
genotype-phenotype map G(g) = xq(g), q ∈ N, for a given and
fixed q, and investigate the monotonicity properties of G(gkg(k))

with respect to genetic variation in any locus Xk for different back-
grounds g(k). In the following sections we analyse the causes of
order-breaking in G in the restricted case in which there is only
genetic variation in μ1

k and μ2
k , not in the shape of the dose-

response functions r1
k and r2

k , implying r1
k(x) = r2

k(x) = rk(x).
This is what we mean by a genotype-to-parameter map without
pleoitropy.

In the next sections we prove the following result:

Proposition 1. Assume all rate functions in Equation (A1) are
monotonic and that G is the mapping from g to xq for some fixed q
so that xq(g) is the phenotype. If there is no feedback loop (FBL) and
no feedforward loop (FFL) anywhere in the network corresponding
to the system Equation (A1), then necessarily mk = 1 for all k. If the
system contains either a single FFL or a single FBL, then G may be
non-monotone for some xk if the FFL is positive or the FBL is inco-
herent, but if the FBL is negative or the FFL is coherent, no order
breaking can occur for any xk.

At the end of this note we show that under some reasonable
conditions this result is also valid for more general phenotypes
depending on more than one xq.

NETWORKS WITHOUT LOOPS
We first consider networks containing no feedforward loop and
no feedback loop. In these networks there is at most one chain
from one node to another, and of course no autoregulatory loops.
If there is a chain from Xj to Xk, there is no chain from Xk to
Xj. Any node is either unregulated (constitutively expressed) or
regulated by one or several other nodes.
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We first prove a useful lemma.

Lemma 1. If xl(11g(j)) ≤ xl(12g(j)) ≤ xl(22g(j)) for any j and l
and there is an arc Xl → Xm with positive sign and no other chain
from Xl → Xm, then also xm(11g(j)) ≤ xm(12g(j)) ≤ xm(22g(j)).
If the sign of the arc is negative, then xm(11g(j)) ≥ xm(12g(j)) ≥
xm(22g(j)).

Proof. Suppressing the explicit dependence on other genes that
are not affected by genetic variation in Xj, we have

xm(11g(j)) = 2μ1
mrm(xl(11g(j))),

xm(12g(j)) = (μ1
m + μ2

m)rm(xl(12g(j))),

xm(22g(j)) = 2μ2
mrm(xl(22g(j))).

(A4)

Now, rm is monotonic by assumption. If it is monotonically
increasing,

xm(12g(j)) ≥ (μ1
m + μ2

m)rm(xl(11g(j))) ≥ xm(11g(j)),

xm(22g(j)) ≥ 2μ2
mrm(xl(12g(j))) ≥ xm(12g(j)),

(A5)

from which the assertion follows. If rm is monotonically decreas-
ing, we find the same relations with the inequality signs
reversed.

If there is no chain from Xj to Xq, genetic variation in Xj will

not be reflected in G, i.e. G(11g(j)) = G(12g(j)) = G(22g(j)), and
by definition does not give order-breaking. Then assume Xj is
upstream relative to Xq and that the chain from Xj to Xq is posi-
tive. We first let Xj be an unregulated node with no predecessor.
Then

xj(11g(j)) = 2μ1
j ,

xj(12g(j)) = μ1
j + μ2

j ,

xj(22g(j)) = 2μ2
j ,

(A6)

because r1
j = r2

j = 1. From this it follows that xj(11g(j)) ≤
xj(12g(j)) ≤ xj(22g(j)).

Repeated use of Lemma 1 leads eventually to xq(11g(j)) ≤
xq(12g(j)) ≤ xq(22g(j)), irrespective of the genotypic background
of Xj. If the chain from Xj to Xq is negative, the argument goes

in the same way, but then xq(11g(j)) ≥ xq(12g(j)) ≥ xq(22g(j)).
The above argument can be carried out in the same way if Xj

is not top-stream. It follows that in a network without FFBs
and FFLs and where genetic variation is restricted to μ1

k and
μ2

k , the genotype-phenotype map G(g) = xq(g) cannot be order-
breaking.

NETWORKS WITH A FEEDBACK LOOP
In this section we investigate the effects of feedback loops on
the degree of monotonicity. Assuming monotonic dose-response
functions and non-pleiotropic genetic variation, we show that a
positive feedback loop may lead to order breaking, while negative
feedback loops never do. We consider a network in which there is

no FFL and a single FBL with Xq as one of its members and Xk is
upstream of the loop.

Lemma 2. Consider a network with n nodes for which all dose-
response functions are monotonic and there is only genetic variation
in μ1

k and μ2
k. Asssume there is a chain from Xk to X1, that X1,

but not Xk, is member of a FBL with m nodes, and that there is no
other FBL and no FFL in the system. If Xq is in the loop, let the
loop be X1 → X2 → . . . → Xq → . . . → Xm → X1. If the FBL is
positive, there may be order-breaking in Xq due to genetic variation
in Xk, but no order-breaking can occur if the loop is negative. If Xq

is downstream of the loop, the same result applies.

Proof. With a single FBL and no FFL there is at most one directed
path from any node Xi to any other node Xj, and if there is a path
from Xi to Xj, there is no return path from Xj to Xi if either Xi

or Xj is not part of the FBL. We first consider the dependence
of x1 on xk. The direct regulators of node X1 are Xm and Xl, the
latter being the last but one node in the chain from Xk to X1. In
Plahte et al. (2013) we introduced the propagation functions xj =
pjk(xk) which express the effect on xj of genetic variation in Xk.
An important property of pjk is that it can be derived from all
the equilibrium conditions Equation (A2) except the equation for
fk. This implies that the effects on Xj of genotypic variation in
Xk are only expressed in terms of the variations in xk, while the
parameters expressing the genotype of Xk do not enter into the
function pjk .

We then have xl = plk(xk) and xm = pm1(x1). To make it easier
to use the results in Plahte et al. (2013) we rewrite the equilibrium
condition Equation (A2) as

Rj(x) − γjxj = 0, (A7)

where γj > 0. In the following, the Jacobian refers to this set
of equations, which has the same root and the same functional
dependencies between the variables as the original set. The signs

of the partial derivatives of Rj are the same as for r
aj

j and r
bj

j . The
equilibrium condition for X1 is then

γ1x1 = R1(plk(xk), pm1(x1))). (A8)

This equation defines x1 as a function of xk in an open domain
around the equilibrium point and with a derivative that can be
computed by implicit differentiation, i.e.

γ1
dx1

dxk
= ∂R1

∂xl
qlk + ∂R1

∂xm
qm1

dx1

dxk
, (A9)

where qij = p′
ij is the derivative of pij for all i, j.

From Lemma 1 it follows that there is no order breaking in Xl,
in other words, qlk has a fixed sign. Consider then qm1. There is
just a single chain from X1 to Xm, and Equation (13) in Plahte
et al. (2013) gives

qm1(x1) = (−1)m − 1 DVV CU

D(11)
. (A10)

Here U is the set of nodes in this chain, CU is its chain prod-
uct, i.e. the product of the Jacobian elements corresponding to
the arcs in the chain, V = N \ U , D(11) is the subdeterminant of J
with row 1 and column 1 deleted, and DVV is the subdeterminant
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of J composed of the rows and columns V . Because there is
no feedback loop among the nodes represented in D(11) and
DVV , only the diagonal degradation terms contribute to these
two determinants. Hence D(11) = (−1)n − 1 ∏

i �= 1 γi. Similarly,

DVV = (−1)n − m ∏
i∈V γi, giving qml = γ1CU/�U , where �U =∏

i∈U γi. Finally, we note that P = (∂R1/∂xm)CU is the loop
product of the loop.

Solving Equation (A9) with respect to dx1/dxk and using all
these expressions lead to

γ1
dx1

dxk
= �U

�U − P

∂x1

∂xl
q1k. (A11)

The sign of ∂x1/∂xl is independent of the genotype of Xk and the
sign of q1k is fixed. Genotypic variation in Xk may change the
magnitude of P, but its sign is fixed because all Jacobi elements
have fixed sign independent of the system parameters. Thus,
genotypic variation in Xk does not alter the sign of dx1/dxk if
the loop is negative (P < 0), while for a positive loop the sign
of �U − P may switch. In the latter case, an increase in xk due to
genetic variation in Xk may increase x1 in some cases and decrease
it in others, leading to order breaking. As there is only a single
chain from X1 to Xq, no order breaking in X1 implies no order
breaking in Xq, while order breaking in X1 may propagate to Xq.
The same result follows if Xq is downstream a node in the loop
because order breaking in this node may propagate to Xq.

FEEDFORWARD LOOPS (FFLS)
A feedforward loop (FFL) is a motif in the network in which there
are two different chains C1 and C2 from one particular node to
another particular node. To each chain Ci is associated a chain
product Pi defined as the product of the Jacobian elements corre-
sponding to the arcs in Ci. If P1 and P2 have equal signs, the FFL
is coherent, otherwise it is incoherent.

In a network with a single feedforward loop and no feedback
loops we now investigate the effect on G(g) = xq(xk(g)) of genetic
variation in Xk for varying background g(k). Our starting point
is again Equation (A7). We first let Xk and Xq be the initial and
terminal nodes in the FFL. The two chains C1 and C2 leading
from Xk to Xq comprise ρ1 and ρ2 nodes including Xk and Xq,
respectively. Let the set of nodes in C1 and C2 be XU1 and XU2 ,
respectively, where U1 and U2 are the corresponding subsets of
N, and let V1 and V2 be their complements.

Roughly speaking, the derivative of the propagation function
pqk(xk) can be expressed as a sum of terms, each term correspond-
ing to one of the chains leading from Xk to Xq (Plahte et al., 2013).
To the chain Ci is assigned the chain weight wi given by

wi = (−1)ρi−1 DViVi

D(kk)
, i = 1, 2, (A12)

where DViVi is the Jacobian subdeterminant for the nodes not
included in Ci, and D(kk) is the Jacobian subdeterminant for all
nodes except Xk. Because there are two chains from Xk to Xq, the
derivative of pqk is a sum of two terms:

dpqk

dxk
= w1P1 + w2P2, (A13)

where P1 and P2 are the two chain products, and w1 and w2 their
weights (Plahte et al., 2013). When there is no feedback loop in
the system, only the diagonal elements in J stemming from the
term −γixi in Equation (A7) contribute to the determinants DViVi

and D(kk):

DViVi = (−1)n−ρi
∏

j∈Vi

γj,

(A14)
D(kk) = (−1)n−1

∏

j �=k

γj.

Altogether this gives

dxq

dxk
= dpqk

dxk
= γk

�1
P1 + γk

�2
P2, (A15)

where �1 and �2 are the products of the γj in the two chains,
respectively. The chain products P1 and P2 depend on the geno-
type gk of Xk as well as on the genotypic background g(k), but
their signs S1 and S2 are invariant under genotypic variation. It
is easy to see that a negative autoregulatory loop, which is a com-
mon feature in gene regulatory networks, would not invalidate
the conclusion, but a positive autoregulatory loop might.

If the FFL is incoherent, P1 and P2 have opposite signs, imply-
ing that the sign of dxq/dxk may vary. If the FFL is coherent,
however, no order-breaking can occur.

If Xk is upstream relative to the initial node Xinit of the FFL,
it follows from the above section on networks without loops that
there will be no order-breaking in Xinit, and the above argument
is still valid.

MORE GENERAL PHENOTYPES
In real life, relevant phenotypes are not direct gene products,
but rather functions of the concentrations of one or several gene
products. Let the phenotype G(g) be a function of xU(g), G =
h(xU(g)), where U is a subset of N, and assume that for any
u ∈ U , ∂h/∂xu has fixed sign for all genotypes. To analyse this
case we extend the original system Equation (A2) to

μ
ai
i rai

i (x(g)) + μ
bi
i rbi

i (x(g)) − xi(g) = 0, i = 1, . . . , n,

h(xU(g)) − xn + 1 = 0,

(A16)

and apply our above results to this system, in which G(g) =
xn + 1(g), i.e. q = n + 1. If there are two nodes among XU which
have a common predecessor Xk, then there will exist two chains
from Xk to Xn + 1. These two chains constitute a feedforward loop
with Xn + 1 as final node. If this FFL is incoherent, order breaking
due to genetic variation in Xk may occur even if there is no order
breaking in the original system comprising the nodes X1, . . . , Xn.
If the FFL is coherent, order breaking only occurs if it occurs in
the original system.
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A B

FIGURE A1 | Measures of monotonicity vs. additivity of GP maps with

three loci. Scatterplots showing VA/VG from unweighted regression vs. (A)

degree of monotonicity (m) and (B) R2
mono. Red dots show 1000 random

three-locus GP maps, blue dots show the same 1000 GP maps after sorting
to introduce order-preservation for 1 locus while green dots show the same
1000 GP maps after sorting to introduce order-preservation for 2 loci [see
Model and Methods in Gjuvsland et al. (2011)].

FIGURE A2 | Comparing measures of monotonicity GP maps.

Scatterplots showing degree of monotonicity (m) vs. R2
mono. Black dots

correspond to the maps shown in Figure 1. Red dots show 1000 random
two-locus GP maps, while blue dots show the same 1000 GP maps after
sorting to introduce order-preservation for 1 locus [see Model and Methods
in Gjuvsland et al. (2011)].
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A B

FIGURE A3 | Empirical distribution functions for additivity of GP maps.

Summary of VA/VG from unweighted regression for all motifs for which at
least 100 (out of 1000) Monte Carlo simulations lead to GP maps with
non-negligible phenotypic variation (see Models and Methods section “Gene
regulatory network simulations,” for detailed criteria). Results are shown for
1013 motifs with a genotype-to-parameter map without pleiotropy (A)

and1090 motifs with a genotype-to-parameter map with pleiotropy (B). Each
panel is divided into 4 subplots containing classes of motifs based on the
presence/absence of incoherent feedforward and positive feedback loops,
see Table 1 for the number of motifs in each class. Each curve shows, for a
single motif, the empirical distribution function value (y-axis) of VA/VG from
unweighted regression for all GP maps (x-axis).
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Epistasis, i.e., the fact that gene effects depend on the genetic background, is a
direct consequence of the complexity of genetic architectures. Despite this, most
of the models used in evolutionary and quantitative genetics pay scant attention to
genetic interactions. For instance, the traditional decomposition of genetic effects models
epistasis as noise around the evolutionarily-relevant additive effects. Such an approach
is only valid if it is assumed that there is no general pattern among interactions—a
highly speculative scenario. Systematic interactions generate directional epistasis, which
has major evolutionary consequences. In spite of its importance, directional epistasis is
rarely measured or reported by quantitative geneticists, not only because its relevance is
generally ignored, but also due to the lack of simple, operational, and accessible methods
for its estimation. This paper describes conceptual and statistical tools that can be used to
estimate directional epistasis from various kinds of data, including QTL mapping results,
phenotype measurements in mutants, and artificial selection responses. As an illustration,
I measured directional epistasis from a real-life example. I then discuss the interpretation
of the estimates, showing how they can be used to draw meaningful biological inferences.

Keywords: epistasis, genetic effects, estimation, statistics, evolution, multilinear model

1. INTRODUCTION
An ability to understand and predict how genes affect morpho-
logical, physiological, and behavioral characteristics is of crucial
importance in biology. This also poses a considerable challenge,
given the complexity of the genetic architecture of quantitative
traits (Flint and Mackay, 2009). This complexity is not only due
to the large number of genetic, environmental, and physiolog-
ical factors involved, but also to their multiple and nonlinear
interactions. In particular, it was noticed very early in the his-
tory of genetics that the same genetic change often produces
differing effects depending on the genetic background of the
experimental species, population, or individual (Phillips, 1998;
Wade et al., 2001; Phillips, 2008). The biological consequences of
this phenomenon, known as “epistasis,” have triggered a consid-
erable amount of discussion. A whole century of active research
in genetics and molecular biology has revealed the ubiquity of
epistatic interactions associated with the organization of biologi-
cal systems as networks of interacting molecules (Omholt et al.,
2000). However, we are still far from being able to integrate
epistasis into a consensual, explicit, and predictive theoretical
framework.

In the classical analysis of genetic variance (Fisher, 1918), epis-
tasis is considered as a source of noise. Most epistatic effects are
not transmitted from parent to offspring, and therefore, are not
involved in the response to natural or artificial selection. Epistatic
variance—the contribution of epistasis to genetic variance in a
population—can be calculated (Cockerham, 1954; Kempthorne,
1954; Lynch and Walsh, 1998; Álvarez-Castro and Carlborg, 2007;
Gjuvsland et al., 2007), but is almost meaningless in terms of pre-
dicting the genetic properties of a population (Barton and Turelli,
2004; Hansen, 2013; Álvarez-Castro and Le Rouzic, 2014), and

may be negligible compared to evolutionarily-relevant additive
genetic variance (Hill et al., 2008; Hemani et al., 2013).

Another idea, which has become popular only in recent
decades, is that epistasis matters because of its capacity to
affect additive variance rather than because of its contribution
to interaction variance (Cheverud and Routman, 1995). In an
epistatic genetic architecture, the effects of alleles on the pheno-
type depend on the genetic background. Accordingly, changes in
the genetic background promoted by genetic drift (Goodnight,
1987, 1988; Barton and Turelli, 2004; Turelli and Barton, 2006;
Álvarez-Castro et al., 2009; Jarvis and Cheverud, 2009) or by
selection (Carter et al., 2005; Hansen et al., 2006; Hallander
and Waldmann, 2007; Le Rouzic et al., 2013) may reveal, hide,
or revert allelic effects, and thus significantly affect the genetic
variance.

1.1. DIRECTIONAL EPISTASIS
Epistasis can only exert a significant long-term influence on
populations if individual epistatic effects do not tend to can-
cel out each other, i.e., if a general pattern emerges. The most
obvious pattern is the directionality of epistasis, the fact that
genetic interactions can be biased toward either high or low phe-
notype values. Estimates of directional epistasis allow to make
useful predictions about the evolutionary potential of popula-
tions: if additive genetic variance is a measure of evolvability
(Houle, 1992; Hansen et al., 2011), then the directionality of epis-
tasis is a measure of genetic architecture asymmetry, i.e., how
evolvability is influenced by the direction of evolution. When
epistasis is positive, evolution is easier in the direction of high,
rather than low, phenotypic values (because additive genetic vari-
ance tends to increase with the phenotypic value). In contrast,
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negative epistasis favors evolution toward low phenotypic
values.

In spite of its predictive and descriptive value, directional epis-
tasis is rarely reported for quantitative characters (Pavlicev et al.,
2010). This can be attributed to two main factors: (i) many (if
not most) quantitative geneticists are used to measuring epista-
sis via epistatic genetic variance, in spite of its marginal interest,
and (ii) very few statistical or computational tools have been
devised for measuring directional epistasis. The aim of this article
is to present several methods for estimating directional epista-
sis from genetic and phenotypic data, and to propose accessible
statistical procedures for computing epistasis. Several such meth-
ods will be illustrated from a real-life biological example, the
genetic architecture of bodyweight in chicken, which displays a
clear and consistent signal of positive epistasis. The data is based
on a long-term artificial selection experiment on chicken body
weight, and features (i) times series of the phenotypic response to
selection, (ii) Quantitative Trait Locus (QTL) mapping data from
a cross between the divergent lines, and (iii) minimal line-cross
information (means of F1 and F2 populations) from the QTL
setting.

1.2. GENETIC MODELS
In general, measuring the directionality of epistasis requires a
model of genetic effects, i.e., a mathematical description of the
relationships between the data (for instance, individual genotypes
or phenotypes) and parameters to be estimated. The desirable
properties for a “good” model of genetic effects depend on both
the biological question and the nature of the data, and have
resulted in rewarding (and sometimes conflictual) discussions
(Cheverud and Routman, 1995; Hansen and Wagner, 2001b; Kao
and Zeng, 2002; Yang, 2004; Zeng et al., 2005; Wang and Zeng,
2006; Álvarez-Castro and Carlborg, 2007; Aylor and Zeng, 2008;
Hansen, 2014).

Genetic models can be conveniently divided into physiolog-
ical and statistical models (Cheverud and Routman, 1995). In
physiological (or functional: Hansen and Wagner, 2001b) mod-
els, genetic effects are described relative to a reference genotype,
which can be arbitrary (for instance, one of the parental strains
in an intercross) or conventional (typically, the wild genetic
background). Functional models are generally rooted in tradi-
tional Mendelian genetics, in which a limited number of geno-
types are experimentally generated and compared to reference
strains. In contrast, statistical models quantify genetic effects in
polymorphic populations across multiple genotypes. They are
derived from the classical decomposition of genetic variance.
Statistical genetic effects depend on allelic frequencies, and thus
change when populations evolve; they provide a population-
specific description of the genotype-to-phenotype map. In spite
of obvious historical and conceptual divergences, it is sometimes
possible to express both functional and statistical models in com-
mon mathematical frameworks, and to transform functional into
statistical estimates (and vice versa) by means of “change of ref-
erence” operations (Hansen and Wagner, 2001b; Álvarez-Castro
and Carlborg, 2007; Le Rouzic and Álvarez-Castro, 2008).

With respect to epistasis, another useful distinction can be
made between unidimensional and multidimensional models

(Kondrashov and Kondrashov, 2001; de Visser et al., 2011).
Unidimensional epistasis describes the general curvature of the
genotype-phenotype map, and can be interpreted as the average
effect of allelic substitutions that would be observed if all loci
were exchangeable. Multidimensional epistasis accounts for the
complexity of the genotype-phenotype relationship, by charac-
terizing all pairs of loci that have a specific epistatic effect. While
directional epistasis is unidimensional by definition, it can be
measured based on either unidimensional or multidimensional
models.

Several models of directional epistasis will be reviewed below,
starting from the multilinear model of epistasis, originally func-
tional and multidimensional, which has been extended toward
statistical and unidimensional formulations. I will then present
and discuss alternative functional unidimensional models that are
commonly used to measure epistasis for fitness, and show how
they can be applied to quantitative characters.

2. MULTILINEAR EPISTASIS
2.1. THE MULTILINEAR MODEL OF GENETIC INTERACTIONS
2.1.1. General framework
The multilinear model of genetic interactions developed by
Hansen and Wagner (2001b) extends and makes explicit the con-
cept of directional epistasis in quantitative genetics, and makes
it possible to build genotype-to-phenotype maps implementing
directional epistasis. In its original multidimensional form, the
model expresses the phenotype z as a multilinear function of the
genotype G of an individual. For two loci, labeled “1” and “2”
respectively,

zG = zR + y1R + y2R + y1R y2Rε12. (1)

Genetic effects are measured relative to an arbitrary reference
genotype for which y1 = y2 = 0, associated with a reference phe-
notype zR. The effect of substituting the genotype of interest at
locus 1 in the reference genotype R is y1R , and conversely, y2R is
the effect at locus 2. When introducing the genotype of interest
at both loci, in the absence of epistasis, the phenotype is expected
to change by y1R + y2R . Any deviation from this expected additive
outcome is attributable to epistasis. The originality of the multi-
linear model is to assume that this deviation is proportional to the
product of allelic effects, the proportionality coefficient ε12 quan-
tifying the strength and directionality of epistasis between loci 1
and 2.

The multilinearity arises from the fact that any change in
the genotype of a locus when keeping the genetic background
constant leads to a proportional change in the phenotype. For
instance, Equation (1) can be reformulated as zG = a + fy1R (with
a = zR + y2R and f = 1 + y2Rε12), illustrating that the genotype-
phenotype map is always linear with respect to single genotypes
(Figure 1).

The epistatic coefficient, ε12, is expressed in terms of inversed
phenotypic units (e.g., if the trait is measured in cm, ε will
be in cm−1), which is not intuitive and does not allow com-
parisons between traits. Hansen and Wagner (2001b) suggest
measuring epistasis by computing epistatic factors, f1 = 1 + y2ε12

and f2 = 1 + y1ε12, which quantify how much locus 1 is affected
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by locus 2, and vice versa; f = 1 implies no epistasis, f < 1
negative (antagonistic) epistasis, and f > 1 positive (synergistic)
epistasis.

2.1.2. Statistical formulation
The multilinear model is built as a functional model, since it
defines genetic effects relative to a reference genotype, but a
“change of reference” tool can be used to recompute genetic
effects in any genotype or weighted combination of genotypes.
When genetic effects are calculated relative to the average geno-
type of a population, the marginal contributions of individual loci
coincide with additive effects, and the model can be considered to
be statistical.

The multilinear model can also be used as a local approxima-
tion on a non-multilinear genotype-phenotype map. There are
various ways of generating genotype-phenotype maps, which are
multidimensional mathematical functions g(y1, y2, . . . , yn) that
provide a deterministic phenotypic value for a series of genotypic
values yi at n loci. Such mathematical maps are often defined
in theoretical work intended to explain the evolution of popu-
lations in complex genetic landscapes. Furthermore, even if the
lack of large empirical genotype-phenotype data sets means that
it is not yet realistic to attempt to do so, it is in principle possi-
ble to fit smooth surfaces (such as multidimensional splines) to
experimental measurements, and thus generate models of genetic
landscapes that could be analyzed mathematically (and tested
empirically).

In any case, the multidimensional directional epistasis coef-
ficients εij, which measures the curvature of the genotype-
phenotype function between loci i and j, can be directly quantified
as εij = D2

ij/DiDj, where Di = ∂g/∂yi is the value of the first par-
tial derivative of function g taken at the reference point, and
D2

ij = ∂2g/∂yi∂yj is the mixed partial derivative (the curvature of
the function g across both loci). This result illustrates the fact
that the multilinear model is similar to a Taylor expansion of

the genotype-phenotype map that ignores intra-locus curvature
(Hansen and Wagner, 2001b) (see Appendix I and Figure 2).

2.1.3. Composite directional epistasis
The original multilinear model is multidimensional, as it involves
as many εij parameters as pairs of loci. A unidimensional (and

FIGURE 2 | The multilinear model (blue surface) is a local

approximation of the interlocus curvature in a complex

genotype-phenotype map. When the average genotype is chosen as the
reference (red point), the multilinear approximation is able to predict the
evolutionary properties of the population in a more precise way than the
additive model.

FIGURE 1 | Multilinear genotype-phenotype maps for two loci,

illustrating positive (synergistic) and negative (antagonistic) epistasis.

y1 and y2 represent the genotype values at both loci. The red lines

highlight the multilinearity of the model: if the genetic background is kept
constant, phenotype change depends linearly on the genotype at each
locus.
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statistical) version of the model was proposed in Carter et al.
(2005), with the composite directional epistasis coefficient εc cal-
culated as the average εij coefficient weighted by the additive
genetic variance explained by each pair of loci:

εc =
∑

i

∑
j �= i VAi VAjεij∑

i

∑
j �= i VAi VAj

. (2)

Both uni- and multi-dimensional versions of the model can be
extended to higher orders of interactions and to multiple traits
(Hansen and Wagner, 2001b).

2.2. DIRECTIONAL EPISTASIS FROM PHENOTYPIC DATA
2.2.1. Response to artificial selection
Directional epistasis affects evolution, as it changes the amount of
genetic variation available depending on the direction of pheno-
typic change (Hansen et al., 2006). For instance, selection in the
direction of positive epistasis tends to increase the frequency of
synergistic genetic interactions, thus enhancing the effect of selec-
tion. In contrast, selection in an antagonistic system decreases
the genetic variance, and thus decreases the selection response.
These effects can be experimentally observed, especially with bidi-
rectional artificial selection responses, since they are expected to
generate asymmetric responses in up- and down-selected lines.

2.2.1.1. Theoretical framework. It is possible to model the
expected impact of directional epistasis on genetic variance and
to predict the difference between up- and down-selected lines as
a function of the epistatic coefficients. Using a series of simplify-
ing assumptions detailed in Appendix II, the selection response
under a constant selection gradient after t generations is expected
to be:

μt � μ0 − log (1 − 2�μ0εt)

2ε

≈ μ0 + �μ0 t + ε�2
μ0

t2 + . . . , (3)

where μ0 is the initial mean phenotype, �μ0 is the initial selection
response (after the first generation), and ε is the directionality
of epistasis. The second part of the equation is the second-
order Taylor approximation around t = 0, illustrating the linear
selection response expected by the traditional breeder’s equa-
tion (�μ0 t), and how directional epistasis appears as a quadratic
term. Here, ε is the unidimensional directional epistasis, and thus
corresponds to εc in Equation (2).

A convenient way to estimate directional epistasis from bidi-
rectional selection responses is to compute the up/down asym-
metry through the average selection response, A(t) = 1

2 (up(t) +
down(t)) (Figure 3). If epistasis is directional and relatively weak
(�μ0ε � 1), A(t) changes approximately with t2, such that
A(t) � ε�2

μ0
t2. It is thus possible to estimate �μ0 as the slope at

origin of the selection response, and then ε through a quadratic
regression on the average up/down response. Including the effects
of e.g., inbreeding, linkage disequilibrium, or canalization, is pos-
sible, but requires to numerically maximize the likelihood of
complex models. This can be done with the software package sra
for R, described in Le Rouzic et al. (2011).

FIGURE 3 | Top: Theoretical response to bidirectional constant selection
under positive directional epistasis (ε = +0.005, �μ0 = 1). Bottom: the
selection response is asymmetric, and the up-down average increases
almost quadratically with time, the quadratic coefficient being ε�2

μ0
.

2.2.1.2. Example: artificial selection on body weight. For more
than 50 years, two chicken (Gallus gallus) lines were selected for
high and low body weight at 56 days, respectively (Siegel, 1962;
Liu et al., 1994; Dunnington and Siegel, 1996). The experiment is
still ongoing; here, I consider the latest phenotypic results avail-
able (54 generations, Dunnington et al., 2013). For simplicity,
only the time series of mean phenotypes are considered, although
some variance estimates were also available in this case.

The impact of artificial selection was considerable (Figure 4).
In the high-selection line, the body weight at 8 weeks rose
from 800 g (male-female average) to 1650 g. In the low-selected
line, the average body weight decreased to around 150 g, lead-
ing to an impressive order-of-magnitude difference between
high- and low-selected lines, well beyond the differences usu-
ally observed between closely-related species, and spanning more
than one third of the relative weight diversity in the entire 20
Myr-old Galliformes order. The selection response was asymmet-
ric: although the selection strength was identical in both lines,
progress was slower in the low line. This can easily be attributed
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FIGURE 4 | Top: male-female average experimental selection response on
chicken bodyweight, digitalized from Figures 1, 2 in Dunnington et al.
(2013). The initial selection response �μ0 , estimated by a linear regression
over the first 20 generations (dashed segments), was 25.6 g per generation
in the high line, and −19.6 g per generation in the low line. Bottom:

quadratic regression on the up- and down-selection average, illustrating the
cumulative effect of directional epistasis. The quadratic coefficient (which is
an approximation of �2

μ0
ε), estimated by a non-linear, least-square

regression, was 0.033 g per generation squared.

to epistasis, given the expected differences in the genetic back-
grounds of 1500 vs. 150 g birds.

Using the procedure described in Equation (3), the strength
of directional epistasis could be estimated from a quadratic
regression over the high-low asymmetry. Estimating the initial
selection response at around |�μ0 | = 22.6 g per generation on
average, directional epistasis is ε � +6.6 × 10−5 g−1. Although
apparently small, this figure is statistically significant and gener-
ates cumulative effects on genetic architectures: Any phenotypic
change corresponding to the initial (first-generation) selection
response induces an increase of allelic effects of 0.15% in the

high line, and decreased accordingly in the low line. The same
allele is thus expected to display a >10% difference in the
two extreme genetic backgrounds, representing weak, but non-
negligible, epistasis.

Of course, this estimate relies on major assumptions about the
underlying process. Several genetic or non-genetic factors other
than epistasis could affect the available genetic variance, and thus
bias ε. For instance, the quadratic approximation relies on the
hypothesis that the selection gradient is constant over the entire
time series, whereas in fact we know from e.g., Dunnington et al.
(2013) that the selection intensity actually increases with time.
Meanwhile, the reduced population size in the experiment nec-
essarily generated a significant amount of inbreeding (even with
a carefully-designed breeding scheme), which decreases the vari-
ance due to genetic drift. However, these mechanisms are unlikely
to generate misleading estimates of ε, since (i) they affect both the
up and down lines in the same way, and so cannot generate any
asymmetry, and (ii) they tend to offset each other, as the selection
strength increases while the genetic variance decreases.

More worrisome is the possibility of uncontrolled natural
selection in the low line. A fraction of the smallest birds appeared
to be sterile or unviable, which could contribute to the slowing-
down of the response. Such a mechanism could generate an
asymmetric response, and thus spurious positive estimates of the
epistatic coefficient. Nevertheless, this seems rather unlikely, given
the behavior of the twelve relaxed selection lines presented in
Dunnington et al. (2013). Indeed, when selection was stopped in
both lines, the populations did not tend to evolve back to the orig-
inal phenotype, as would have been expected if natural selection
was preventing the population from responding to artificial selec-
tion. The phenotypic data therefore seems to be compatible with
a genetically-driven asymmetry, due to smaller allelic effects in
low-weight chickens (i.e., positive epistasis).

2.2.2. Line-cross analysis
With the improvement in sequencing and genotyping technolo-
gies, the phenotype-based methods developed and used by quan-
titative geneticists for most of the 20th century to investigate
genetic architectures without resorting to genotype data are cur-
rently losing popularity. However, they are still both elegant and
informative, especially when used to estimate general properies
of populations such as unidimensional directional epistasis. One
of the most powerful (and simple) of these biometric methods
consists of crossing individuals or strains of interest in order to
generate hybrid and backcross populations, from which the phe-
notypic means and variances can be determined. The knowledge
of the transmission mechanisms of genetic factors from parents
to offspring makes it possible to disentangle the impact of addi-
tive, dominance, and epistatic effects on the genetic differences
between the original individuals (Lynch and Walsh, 1998 p. 205).

A set of equations that can be used to compute additive, dom-
inance, and directional epistatic effects from parental, intercross,
and backcross populations are provided in Hansen and Wagner
(2001b) (see Demuth and Wade, 2005, for an alternative model).
Directional epistasis is unidimensional, and thus corresponds
to the εc parameter of Equation (2). Below, a slightly different
parameterization will be used, in which both parental populations
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are separated by four additive effects, so that the model is identi-
cal to a 2-locus QTL effect model in a diploid species. The model
was set up so that genetic effects cancel out in the F2 population,
but a different reference point can be chosen (using the genetic
effect matrices provided in, e.g., Álvarez-Castro and Carlborg,
2007). Average phenotypes for both parental populations (P1 and
P2) and the first two intercross populations F1 and F2 can be
express as functions of four parameters: a reference μ (arbitrar-
ily, the mean F2), additive and dominance effects A and D, and
the directional epistasis coefficient ε.

P1 = μ − 2A − D + ε(A2 + AD + 1

4
D2)

P2 = μ + 2A − D + ε(A2 − AD + 1

4
D2)

F1 = μ + D + 1

4
εD2 (4)

F2 = μ.

This simple model can be illustrated by the data from the exper-
imental cross between the two chicken strains (Dunnington and
Siegel, 1996; Marquez et al., 2010). In this experiment, the two
generations of crossing necessary to generate a polymorphic F2

population for QTL mapping makes it possible to sketch a min-
imal line-cross analysis. Both parental populations as well as F1

and F2 individuals were raised in the same location, with the same
food, and at the same density; their average weights at 8 weeks
were 170 and 1412 for both parental chicken populations respec-
tively, 650 g for the F1, and 624 g for the F2. Both F1 and F2 are
below the parental arithmetic average (791 g), suggesting the pres-
ence of dominance and/or epistatic effects (Álvarez-Castro et al.,
2012).

Although not perfect, this setting makes it possible to estimate
up to four genetic parameters. Two models, with and without
dominance, were tested, and gave very similar results (Equation 4
and Table 1). The dominance effect, when estimated, was an
order of magnitude below the additive contribution. Epistasis was
positive, and of similar magnitude in both models.

2.3. DIRECTIONAL EPISTASIS FROM QTL DATA
Nowadays, data sets often consist of individuals in which both the
phenotype and the genotype at loci of interest are known. This is
for instance the case after the mapping of Quantitative Trait Loci
(QTLs), either by linkage or association methods. Such data sets
represent a valuable source of information about epistasis, and in

Table 1 | Epistatic line-cross analysis of the chicken lines.

Effect No dominance Dominance

Reference μ 637 g 624 g

Additive A 310 g 318 g

Dominance D - 26 g

Directional epistasis ε 1.6 × 10−3 g−1 1.9 × 10−3 g−1

The full model (involving dominance) has no degree of freedom, so that

statistical errors cannot be estimated.

particular about multidimensional epistasis, which can hardly be
estimated from phenotypic data.

2.3.1. Linear and multilinear models of genetic effects
In most cases, QTL mapping procedures only focus on marginal
(additive and dominance) effects, and do not explicitly consider
genetic interactions (Carlborg and Haley, 2004). However, epis-
tasis may be of major interest, both for improving QTL detection
(Carlborg et al., 2003, 2004, 2006), and for the biological inter-
pretation of the genotype-phenotype relationship (Malmberg
and Mauricio, 2005; Le Rouzic et al., 2007, 2008). Mapping
procedures accounting for epistasis generally rely on compo-
nents of the interaction variance (Cockerham, 1954; Kempthorne,
1954; Lynch and Walsh, 1998), which makes it necessary to
estimate four genetic effects for each pair of loci (additive-
by-additive, additive-by-dominant, dominant-by-additive, and
dominant-by-dominant statistical effects). More recently, “vari-
ance QTL” approaches have been proposed to map loci involved
in various kinds of interactions, including gene-gene and gene-
environment interactions (Rönnegård and Valdar, 2012). Until
recently, there was no QTL mapping method based on direc-
tional epistasis (Slatkin and Kirkpatrick, 2012), and estimation
from genotype-phenotype data usually relied on model fitting on
a predefined set of candidate loci (Cheverud et al., 2001; Le Rouzic
et al., 2008; Shao et al., 2008; Pavlicev et al., 2010; Jarvis and
Cheverud, 2011).

The traditional genetic regression model, ignoring dominance
(and dominance-related epistatic components), can be written as:

Py1,y2 = μ + α1S1 + α2S2 + αα12S12. (5)

This model has 4 parameters for a pair of loci: μ is the inter-
cept of the model (reference point), α1 and α2 are the additive
effects for both loci, and αα12 — a traditional (and proba-
bly unfortunate) notation, not to be confused with the product
α × α12 — is the additive-by-additive effect. The S coefficients
determine the genetic model, i.e., the weights of the genetic
effects for each genotype. For instance, consider a haploid two-
locus two-allele system with the reference genotype (arbitrar-
ily) set to A1B1. In the reference genotype, all S coefficients
are set to 0 (μ, the reference point, thus corresponds to the
intercept of the model). For genotype A1B2, S1 = 0, S2 = 1
(because 1 effect α2 has been added to the model, given the
substitution of a B2 allele), and S12 = 0. In genotype A2B2,
S1 = 1, S2 = 1, and S12 = 1, reflecting the possibility of an
interaction between A2 and B2 alleles. Of course, different ref-
erence points can be chosen, including mixtures of genotypes
in specific frequencies (such as in the F2 model, considering
even allelic frequencies and Hardy-Weinberg proportions). The
models becomes more complex with diploid genotypes (which
include dominance effects), but the principle remains the same.
Below, I used the model “NOIA” proposed by Álvarez-Castro
and Carlborg (2007), which has some interesting statistical fea-
tures. In particular, the model is orthogonal (provided there
is no linkage disequilibrium) even if the population is not at
Hardy-Weinberg proportions. In “NOIA,” the S coefficients are
stored as a genetic design matrix, and the model can be extended
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(to include more alleles and/or more loci) using simple matrix
algebra.

It is possible to modify the above framework to estimate direc-
tional epistasis. The strategy proposed by Le Rouzic and Álvarez-
Castro (2008) is based on a non-linear, least-square regression,
very similar to the framework proposed in Equation (4) for
the analysis of line crosses: the model explicitly decomposes
the epistatic parameter as a multilinear combination of additive
effects, assuming that ααij = αi × αj × εij:

Py1,y2 = μ + α1S1 + α2S2 + α1α2ε12S12. (6)

This setting can easily be extended to account for dominance
and higher-order epistasis (Álvarez-Castro and Carlborg, 2007;
Le Rouzic and Álvarez-Castro, 2008; Pavlicev et al., 2010). When
εij is estimated for each pair of loci, the model describes mul-
tidimensional epistasis. There are two distinct ways to estimate
unidirectional epistasis from this setting. The first method is to
assume that ε is identical between loci, i.e., replacing εij by a
constant ε in Equation (6). The second strategy is to estimate
independent εij values for each pair of loci, and to compute
the composite epistasis εc using Equation (2). This last strategy
is more theoretically-grounded than the former, but it rapidly
becomes impractical when the number of loci increases: the num-
ber of interactions increases quadratically with the number of
loci, which reduces the precision of pairwise interaction estimates.

2.3.2. Application to QTLs for body weight
Individuals from both the high and low chicken lines were inter-
crossed at generation 46, to form the F1 and F2 populations
described above. The 795 surviving individuals from the F2 pop-
ulation were phenotyped for various characters and genotyped
for 145 genetic markers on 25 chromosomes. The QTL mapping
analysis identified 6 significant loci (four major loci and two of
lesser effect). These significant loci combined explained around
10% of the phenotypic variance, and strong epistatic interactions
have been reported among them (Carlborg et al., 2006; Le Rouzic
et al., 2007; Álvarez-Castro et al., 2012). For the sake of both
simplicity and statistical power, only the four major QTLs are
considered in the subsequent analyses.

There are 24 second-order epistatic interactions between four
loci (6 additive-by-additive, 6 dominance-by-dominance, and 12
additive-by-dominance interactions). It is possible to estimate
all of them using a model performing the traditional decom-
position of genetic effects (here, I used the software package
noia for R, Le Rouzic and Álvarez-Castro, 2008), but interpret-
ing these 24 independent epistatic estimates is complicated: in
spite of the large sample size (around 800 individuals), only 4
(out of 24) epistatic estimates reached the 5% p-value thresh-
old, and none remained statistically significant after correction
for multiple-testing. There were no obvious signs of directional
epistasis (11 positive estimates out of 24), even when focusing on
additive-by-additive epistasis (3 positive estimates out of 6).

Fitting a unidimensional multilinear model of epistasis leads
to a much more conclusive analysis. The estimated constant ε

coefficient is positive (ε = +0.057 g−1). The weighted compos-
ite parameter, calculated from Equation (2), is also positive and

of the same order of magnitude (εc = +0.020 g−1). The multi-
linear model fits better than the traditional genetic-effects model
with pairwise epistasis, outperforming it by 13.5 AIC units (�AIC
scores >10 can be considered to be conclusive, Burnham and
Anderson, 2002). The multilinear model is also considerably
better than models without epistasis (�AIC = 18.5). The undis-
putable statistical superiority of the multilinear model translates
into a substantial gain in explanatory power: the four-locus model
without epistasis explains only 5.4% of the total phenotypic
variance, while the multilinear model explains 7.8%.

3. REGRESSIONS AGAINST THE NUMBER OF MUTATIONS
While it is particularly rare to find estimates of directional epis-
tasis for quantitative characters in general (Pavlicev et al., 2010),
the sign of epistasis has been frequently estimated for fitness. The
importance of directional epistasis for the logarithm of fitness
has now been fully acknowledged by evolutionary biologists, as
it affects the evolution of sex, recombination, mutation rates, and
other related phenomena (Phillips et al., 2000). Here I will review
two models frequently used in this context, and show how they
can be modified to fit other quantitative traits. According to the
previous definitions, these models are both functional and unidi-
mensional, as they estimate directional epistasis with reference to
the “wild type” with no mutations.

3.1. MODEL DESCRIPTION
A common way to estimate directional epistasis for (log) fitness
is a “power” (or “multiplicative”) model W = αnβ (illustrated in
Figure 6), where W stands for the log-fitness, α is the effect of a
single mutation, n is the number of mutations, and β measures
directional epistasis. The model is based on the fact that the fit-
ness of the reference individual or strain (n = 0) is 1, so that the
intercept of the model is log (1) = 0 by construction. Fitness in
single mutants (n = 1) is not affected by epistasis, which makes
it possible to estimate α. Epistasis appears for n ≥ 2, generat-
ing deviations from linearity. β > 1 represents positive epistasis,
while β < 1 stands for negative epistasis. The parameters of
the model are usually estimated through non-linear regressions
(least squares) or by non-linear generalized model approaches
(maximum likelihood).

An alternative setting is the quadratic model W = −(αn +
1
2β ′n2) (Elena and Lenski, 1997; Kouyos et al., 2007) (for con-
sistency with the literature, I have retained the same notation,
although it should be noted that β and β ′ have different units,
and β ′ > 0 means positive epistasis). This latter model has some
interesting theoretical properties associated with the Gaussian fit-
ness function, and is more firmly grounded in classical population
genetics theory (Charlesworth, 1990; Otto, 2007).

Alternative parameterizations of the above models appear in
the literature (e.g., estimating −α instead of α, or β − 1 instead
of β, which provides a more straightforward interpretation of
“positive” and “negative” epistasis). This framework is gener-
ally used in two different experimental contexts: estimating the
directionality of deleterious mutations (in which case, α < 0, and
negative epistasis means that the deleterious mutations act syn-
ergistically to decrease fitness), or estimating epistasis among the
beneficial mutations accumulated during an artificial evolution
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experiment (α > 0, and negative epistasis represents the antago-
nistic effects of mutations) (Lenski et al., 1999; Wilke and Adami,
2001; Maisnier-Patin et al., 2005). These symetric interpretations
are arguably confusing, and the literature is not always consistent
with regard to the association between the sign of directional epis-
tasis and the synergistic or antagonistic properties of mutations
(e.g., Szathmáry, 1993).

3.2. MODEL FITTING
These models are clearly not suited for fitting traditional quan-
titative genetics data, in which there are no “wild type” or
“mutants.” However, it is still possible to define the following con-
tinuous function for a phenotype P, which behaves in a similar
fashion as the power model:

P(m) =

⎧
⎪⎨
⎪⎩

μ + αmβ, if m > 0

μ, if m = 0

μ − α|m|1/β, if m < 0,

(7)

where m is a real number analogous to the “number of muta-
tions” compared to the reference genotype, α and β have the
same meaning as in the power model (α is the average effect of
the first mutation, and β is the epistatic coefficient, with β = 1
standing for no epistasis). μ is the intercept of the model, i.e., the
phenotype of the “reference genotype.” This function is not dif-
ferentiable at m = 0, but this is unlikely to affect the estimates.
In order to obtain a proper analogy with traditional quantitative
genetics, the mean F2 (same number of alleles from both parental
lines) was chosen as the reference. m, the “number of mutations”
parameter, thus stands for the number of additional “high-line”
(H) alleles in a genotype compared to the reference. Considering
the 4 significant QTLs, m = 0 for the reference (mean F2) geno-
type (which has 4 low-line alleles and 4 high-line alleles), m = −4
in the full low-line genotype (8 alleles from the low-line), and
m = +4 in the full high-line genotype. An equivalent formulation
(P(m) = μ + αm + 1

2β ′m2) can also be defined for the quadratic
model.

Fitting the “continuous power model” of Equation (7) to the
data by a non-linear, least-square procedure leads to the follow-
ing estimates (estimate ± std. err.): α = 13.0 ± 5.8 g; β = 2.18 ±
0.41 (Figure 5). This is indicative of strong (and statistically sig-
nificant) positive epistasis. The first allelic substitution in the
reference background (average F2 individual) is thus expected to
have an effect of 13 g, the second substitution will affect the phe-
notype by 45.9 g (two “high” substitutions) or 4.9 g (two “low”
substitutions). The epistatic effect is extreme for the fourth sub-
stitution, which is predicted to have an effect of 124 g in the
“high” direction (i.e., 10 times the estimated effect in the aver-
age genetic background) but only 3 g in the “low” direction. The
estimate of directional epistasis in the power model is heavily
influenced by the few “extreme” genotypes: the 7 individuals with
eight “H” alleles are all far above the average, which contributes
to the excessive curvature of the genotype-phenotype relation-
ship (Figure 5). Yet, epistasis is still present when all extreme
genotypes (full homozygotes LL and HH) are removed, with an
estimate of β = 1.83 ± 0.50.

FIGURE 5 | The continuous version of the power model (Equation 7,

solid line) and the quadratic model of epistasis (dashed line) applied

to the chicken QTL data. The reference genotype contains as many “low”
(L) alleles as “high” (H) alleles. The x-axis scales from −4 (LL genotype at
all loci) to +4 (HH genotype at all loci). Intermediate numbers of mutations
are due to genotype uncertainties when QTLs are not in total linkage
disequilibrium with markers.

Estimates from the quadratic model are α = 23.1 ± 4.7 g, and
β ′ = 8.3 ± 4.0 g. In spite of the similar notation, β ′ is not on the
same scale as β, and directional epistasis, although significantly
positive, is smaller here (the two first allelic substitutions in the
direction of higher phenotypes have an effect of 27.3 and 35.6 g
respectively, vs. 19.0 g and 10.7 g for one and two substitutions
toward lower phenotypes).

4. DISCUSSION
4.1. MODEL COMPARISONS
Although they all provide an estimate of unidimensional direc-
tional epistasis, the models reviewed in this paper have been
designed to address different questions, and based in different
sub-fields of population and quantitative genetics.

The multilinear model provides an explicit description of epis-
tasis between a set of loci, as in classical quantitative genetics
models, and can be extended to fit to phenotypic data. On the
opposite, both “regression” models suppose that epistatic pat-
terns follow a general function. This incompatibility between
models of directional epistasis for fitness and traditional quan-
titative genetics models is probably an important factor in the
lack of experimental measurements of directional epistasis for
quantitative traits (Hansen and Wagner, 2001a; Pavlicev et al.,
2010).

In addition to the fact that models are not designed to be
applied to the same kind of data (the need to compare geno-
types to an arbitrary wild type or the assumption of constant
mutational effect size are difficult to overcome for quantitative
genetics data), models also carry conceptual differences about the
nature of epistatic interactions. For instance, the power model
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necessarily involves highly complex epistatic interactions (Hansen
and Wagner, 2001a). Quantitative genetics rely on linear models
of genetic effects, in which interactions are calculated iteratively as
the deviation between mutant phenotypes and the sum of lower
effect interactions. The multilinear model follows this tradition,
and is built as a sum of effects involving one locus (marginal
effects), two loci (pairwise interaction effects), three loci, etc.
For instance, second-order epistasis is the difference between the
double mutant and twice the single mutant effect (Figure 6).
In contrast, in the power model, there are as many interaction
effects as there are mutations, which leads to very complex epista-
sis. For most realistic values of β (0 < β < 2), the second- and
third-order interactions have opposite effects—in other words,
if combining two mutations has antagonistic effects, combining
three of them will have synergistic effects (the triple mutant is
closer to additivity than predicted by the sum of second-order
interactions). Moreover, the magnitude of high-order epistatic
effects can represent a substantial fraction of lower-order effects
(Figure 6), suggesting that combined mutant phenotypes are
heavily impacted by the emergent properties of specific combi-
nations of allelic substitutions, and thus difficult to predict from
experimental results.

This issue is avoided with the quadratic model, which is lim-
ited to interactions between pairs of loci. However, this quadratic
model implies that mutational effects can switch signs depending
on the genetic background (sign epistasis). This property, which
is sometimes perceived as undesirable when considering epistasis

FIGURE 6 | Illustration of high-order epistatic effects in the power

model (here with negative epistasis, αnβ with α = 0.1 and β = 0.8).

The second-order epistatic effect is negative (the power model is always
below the additive prediction), but the third-order effect is positive (the
power model is always above the quadratic model). The sign of the
interactions thus alternates when β < 2, and their relative size does not
decrease rapidly. As a result, the effect of combining several mutants
cannot be properly inferred from simpler combinations—for instance, the
prediction for four mutants is not much better for the second-order epistatic
model than for the additive model, and can even be worse with more
substitutions.

for fitness (Wilke and Adami, 2001), could explain the persistence
of alternative models. Another side effect of most unidimensional
models of epistasis for fitness is that mutations are assumed to be
of constant size. Relaxing this assumption significantly alters the
evolutionary properties of the system (Butcher, 1995; Otto and
Feldman, 1997), casting doubts on the operational meaning of β

(or β ′) parameters.

4.2. FULL-GENOME EPISTASIS
For most of the 20th century, the concept of genotype-to-
phenotype map was mostly virtual, and mainly used for the-
oretical purposes. The possibility to access complete individual
genomes for a reasonable price has not really been anticipated
by quantitative geneticists, and we are now in the uncomfort-
able situation of not being able to properly translate the massive
amount of data collected experimentally into ground-breaking
theoretical insights. Indeed, it is widely acknowledged that the
revolutionary improvement in the quality and quantity of geno-
typic information has not generated a proportional improvement
in our ability to describe the genetic architecture of quantitative
traits from genome-wide association studies. This “missing her-
itability” problem might be partly due to our inability to detect
properly epistatic interactions (Maher, 2008; Zuk et al., 2012;
Hemani et al., 2013).

Identifying interacting pairs of loci from a genotype-
phenotype dataset schematically follows two strategies: (i) com-
bine epistatic and marginal effects while mapping loci, with
the hope to increase the genetic signal (Carlborg and Haley,
2004), or (ii) first map loci based on their marginal effects, and
estimate epistasis a posteriori between pairs of significant loci.
Although theoretically elegant, the first strategy generally col-
lapses with high-quality sequencing data because there are so
many pairwise combinations to be tested that statistical noise
overcomes the genetic signal by orders of magnitude. So far,
the second strategy is thus unavoidable for estimating epistasis
from high-throughput sequencing data. On the one hand, some
epistatic loci will not be detected (in particular, those involved
in sign epistasis, which may have no marginal effect). On the
other hand, we know from Equation (2) that the impact of
loci on the composite epistatic coefficient is weighted by their
(marginal) genetic variance, meaning that the loci with no addi-
tive effects will not affect directional epistasis. Consequently, esti-
mating epistatic noise in general remains a complex task, and may
require further statistical development. When it comes to direc-
tional epistasis, focusing on major loci is much less problematic
and ensures a proper estimation of this biologically meaningful
parameter.

4.3. CONSISTENCY ACROSS ESTIMATES
This paper illustrates the estimation of epistasis directionality by
several methods, using independent data describing the same bio-
logical system. The various estimates are reported in Table 2. The
units and the meaning of the epistatic coefficients differ according
to the method. In order to facilitate the comparison, an epistatic
factor f100 is provided. This factor corresponds to the coefficient
by which genetic effects change when body weight increases by
(arbitrarily) 100 g.
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Table 2 | Summary of the directional epistasis estimates from

different sources of data and different methods.

Source of data Method Estimate f 100

Selection response Quadratic
approximation
(Equation 3)

ε = 6.6 × 10−5 g−1 1.007

Line cross Line cross analysis
(Equation 4)

ε = 1.9 × 10−3 g−1 1.19

QTL Multilinear
regression

ε = 5.7 × 10−2 g−1 6.7

QTL Power model
(Equation 7)

β = 2.18 6.6

QTL Quadratic model β ′ = 8.3 g 2.0

Estimates can be compared with the f100 factor.

Directional epistasis estimates are consistently positive, and
in most cases statistically significant. This provides strong con-
firmation that the genetic architecture of the weight differences
between the high and low chicken lines is characterized by positive
epistasis. However, the epistatic coefficients vary by several orders
of magnitude in the different experiments; two categories of esti-
mates can be defined: epistasis is strong when measured from
the genotype data (increasing the phenotype by 100 g multiplies
the allelic effects by 2 to almost 7), but weaker when measured
from phenotype data (increasing the phenotype by 100 g increases
allelic effects by 0.7 to 19%).

These measures are not necessarily contradictory, because
epistasis can be restricted to a specific subset of the genetic
architecture. As the epistatic coefficient measures the “average”
curvature of the genotype-phenotype map, it is strongly affected
by the nature of the data (and more specifically, the span of the
data in terms of number of loci and phenotype range), as it seems
to be the case for the chicken bodyweight (Figure 7). The extreme
epistatic factors measured from the QTL data can be attributed to
several factors. The four large-effect QTLs are not a random sam-
ple of loci, their effect is statistically inflated by detection bias (the
Beavis effect: Beavis, 1994; Xu, 2003), and their strong epistatic
interactions remain atypical (Carlborg et al., 2006). Their inter-
action pattern involves sign epistasis (Le Rouzic et al., 2007), so
that additive effects vanish in some genetic backgrounds: increas-
ing a small effect by a large factor does not necessarily mean that
the absolute interaction effect is huge. In any case, even if posi-
tive epistasis is very strong for the 4 major loci, these QTLs only
explain 7% of the total phenotypic variance, and the F2 popu-
lation covers only 50% of the phenotype range of the parental
lines. If directional epistasis is not a property of the whole genetic
architecture, but merely reflects specific interactions between a
few loci, data involving more loci and more genetic backgrounds
would be expected to reveal less directional epistasis, which seems
to be the case here with a striking regularity among the three
independent data sources (Figure 7).

5. CONCLUDING REMARKS
Unidimensional directional epistasis measures how the properties
of genetic architectures change with the phenotype. It has often

FIGURE 7 | Negative relationship between the span of the phenotypes

in the data set and the directional epistasis coefficient.

been confused with scaling. Scale transformation is a common
operation in biology, often motivated by the need to make the
data suitable for a particular statistical analysis (e.g., enforcing
normality). Changing the scale of the phenotype measurement
impacts on directional epistasis (Pavlicev et al., 2010), and it
is possible to find an arbitrary scale transformation on which
directional epistasis becomes negligible (or even is canceled out)
in a data set. Applying such ad hoc mathematical operations to
phenotypes prior to analysis could hardly be considered good
practice. First, it has been repeatedly pointed out to biologists
that, according to measurement theory, scales do actually have
a meaning, and are thus not interchangeable (Wagner et al.,
1998; Houle et al., 2011). One of the best examples is fitness,
which is essentially multiplicative (Wagner, 2010). Epistasis on fit-
ness thus has to be measured as the deviation from log-linearity,
which justifies models of directional epistasis presented above.
Obviously, directional epistasis following the power model can-
cels out on a log scale, but such a double log transformation
would be meaningless, and should not be seriously considered.
A second reason why scale change does not solve the problem
of directional epistasis is that one should not necessarily expect
consistent directionality. As exemplified by the chicken example,
and illustrated in Figure 2, directionality is a local measure of
the interlocus curvature of the genotype-phenotype map. It is
thus likely that directionality could itself evolve as the phenotype
changes (in the presence of third-order epistasis and higher-
order interactions, directionality could even change when the
phenotype remains constant). Therefore, comparing the proper-
ties of genetic architectures across populations or species requires
measuring directional epistasis on a common scale.

Recent conceptual and theoretical advances have convincingly
demonstrated that what matters in epistasis is not its direct con-
tribution to genetic variation (interaction variance), but rather
its propensity to (indirectly) influence the evolution of additive
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genetic variance. This propensity can be estimated by looking
for specific patterns among epistatic interactions. The direction-
ality of epistasis may be the most obvious, but other patterns
are also emerging as candidate contributors to the evolvabil-
ity of genetic architectures, such as the monotonicity of the
genotype-phenotype relationship (closely linked to sign epistasis)
(Gjuvsland et al., 2011, 2013), and the robustness or canalization
of genetic architectures (Hermisson and Wagner, 2004; Draghi
et al., 2010; Fraser and Schadt, 2010; Le Rouzic et al., 2013).

In quantitative genetics and breeding, correctly describing
epistasis can improve the prediction of selection responses.
In evolutionary genetics, epistasis determines the structure of
genetic diversity and variability. At the phylogenetic scale, direc-
tional epistasis could contribute to biased anagenesis patterns and
affect evolutionary trajectories. Most molecular mechanisms do
not simply add up, and the genotype-phenotype relationship has
to be curved to some extent. Is the observed curvature (quanti-
fied with one or several of the methods described here) consistent
with predictions from system-biology models? To what extent is
it constrained by the physical properties of the phenotypic trait?
Does it vary depending on the trait, on the species? Does it evolve
rapidly? The importance of determining directional epistasis for
a wide diversity of traits in many organisms has probably been
underestimated in the past, but now appears to be a key toward
obtaining a better understanding of the general properties of
genetic architectures.
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APPENDIX I: MULTILINEAR EPISTASIS ON A CONTINUOUS
GENOTYPE-PHENOTYPE MAP
TWO LOCI
The multilinear model of Hansen and Wagner (2001b) is defined
based on a reference genotype, and proposes a change-of-
reference operation to recompute the genetic effects in a different
genotype, assuming a multilinear genotype-phenotype map. In
an arbitrary genotype-phenotype relationship, the multilinear
model can be considered to be a local approximation of the mul-
tilocus curvature, and epistatic coefficients can be calculated from
Taylor polynomial coefficients.

Let g(y1, y2) be a continuous and differentiable (at least
twice) two-dimensional Genotype-Phenotype function associat-
ing a phenotype value P to any genotype combination (y1, y2)
at two loci. The gradient vector at a particular genotype � =
(�1, �2) is D (Di = ∂g(y1, y2)/∂yi|�1,�2 ), and the Hessian matrix
is D2 (D2

i,j = ∂2g(y1, y2)/∂yi∂yj|�1,�2 ). The second-order Tailor
series around this genotype � is:

P(y1, y2) � g(�1, �2) + D1(y1 − �1) + D2(y2 − �2)

+ 1

2
D2

1,1(y1 − �1)2 + 1

2
D2

2,2(y2 − �2)2

+ D2
1,2(y1 − �1)(y2 − �2). (A1)

Rescaling as y′
1 = D1(y1 − �1) and y′

2 = D2(y2 − �2) and
neglecting the quadratic terms leads to a multilinear approxima-
tion taking the genotype � as a reference point:

P(y′
1, y′

2) � g(�1, �2) + y′
1 + y′

2 + y′
1y′

2

D2
1,2

D1D2
, (A2)

where it appears clearly that the directionality coefficient of
Hansen and Wagner (2001b) is εij = D2

i,j/DiDj. The quadratic

terms 1
2 D2

1,1y′ 2
1 and 1

2 D2
2,2y′ 2

2 disappear from the equation as a
consequence of the multilinear approximation.

SEVERAL LOCI
The previous approximation can be extended to several loci in a
straightforward way:

εij = ∂2g

∂yi∂yj

∣∣
�

/ ∂g

∂yi

∣∣
�

∂g

∂yj

∣∣
�
. (A3)

Developing the third-order Taylor series and neglecting all
quadratic terms, the third-order epistatic coefficients can be writ-
ten as follows:

εijk = ∂3g

∂yi∂yj∂yk

∣∣
�

/ ∂g

∂yi

∣∣
�

∂g

∂yj

∣∣
�

∂g

∂yk

∣∣
�
. (A4)

The multilinear approximation can thus be easily extended to
any number of loci and any order of epistasis, with the nth order
epistasis coefficient being the nth mixed partial derivative of the
genotype-phenotype function scaled by the product of the first-
order derivatives of this function for all loci involved in the
interaction.

APPENDIX II: EFFECT OF DIRECTIONAL EPISTASIS ON
ARTIFICIAL SELECTION RESPONSE
The impact of directional epistasis on the response to direc-
tional selection is rather complex to predict precisely for arbi-
trary time periods (Carter et al., 2005). Nevertheless, useful
approximations can still be derived by making realistic assump-
tions about the properties of genetic architectures. For instance,
Le Rouzic et al. (2011) proposed a model that can be simplified as:

μt + 1 = μt + VAt βt (A5a)

VAt + 1 = VAt + 2βtεV2
At

(A5b)

Equation (A5a) is the traditional breeder’s equation, formu-
lated as in Lande and Arnold (1983), where VA is the addi-
tive genetic variance, and β the selection gradient, i.e., the
slope of the regression between phenotype and relative fitness.
Equation (A5b) approximates the impact of directional epistasis
on additive variance, summarized by the directionality coeffi-
cient ε.

This model requires 3 parameters: μ0, the initial phenotype,
the initial additive variance VA0 , and the epistatic parameter ε.
Fitting the model by maximizing its likelihood for phenotype
times series including means and variances provide convincing
estimates of epistasis, especially when the data include bidirec-
tional artificial selection (Le Rouzic et al., 2011).

Unfortunately, variance time series are not always available
from historical data, because either they were measured but not
reported in the corresponding publications, or simply because
they were not computed, as only the mean phenotype was the cen-
ter of interest. Moreover, fitting such a complex multidimensional
non-linear model can be tricky, and requires significant computer
programming input (and possibly having to solve numerical con-
vergence issues). Proposing simpler formulas could therefore be
helpful, as they may allow any biologist with basic statistical
knowledge to report the strength of directional epistasis based on
average phenotype data.

The following calculation is based on several approximations,
the main ones being that selection is expected to be constant
(βt = β), and that linkage disequilibrium can be ignored. If direc-
tional epistasis is the only phenomenon affecting the selection
response, the additive genetic variance is expected to change as in
Equation (A5b). Approximating the discrete process by a contin-
uous function leads to the ordinary differential equation dVA

dt =
2βεV2

A, which can be solved as:

VAt = VA0

1 − 2βVA0εt
. (A6)

Assuming that directional epistasis is not very strong
(εβVA0 � 1), the expected phenotype at time t results
from the product between the (supposedly constant) selection
gradient β and the cumulative change in VA, which can be
calculated as:

μt = μ0 + β

∫ t

0
VAτ dτ = μ0 − log (1 − 2βVA0εt)

2ε
. (A7)
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Models of genetic effects are mathematical representations of a genotype-to-phenotype
(GP) map that, rather than accounting for a raw map assigning phenotypes to genotypes,
rely on parameters with deliberate evolutionary meaning—additive and interaction effects.
In this article, the conceptual particularities of genetic imprinting and their implications on
models of genetic effects are analyzed. The molecular mechanisms by which imprinted
loci affect the relationship between genotypes and phenotypes are known to be singular.
Despite its epigenetic nature, the (parent-of-origin-dependent) way in which the alleles of
imprinted genes are modified and segregate in each generation is precisely determined,
and thus amenable to be represented through conventional models of genetic effects. The
Natural and Orthogonal Interactions (NOIA) model framework is here extended to account
for imprinting as a tool for a more thorough analysis of the evolutionary implications of
this phenomenon. The resulting theory improves and generalizes previous proposals for
modeling imprinting.

Keywords: imprinting, individual-referenced models of genetic effects, population-referenced models of genetic

effects, NOIA, genetic variance decomposition

INTRODUCTION
Classical models of genetic effects were established almost
one century ago for assembling biometric observations with
Mendelian genetics (Fisher, 1918; Provine, 1971). This way,
mechanistic explanations were provided for interesting proper-
ties of quantitative traits that had been revealed in the nineteenth
century, particularly the regression toward mediocrity (Galton,
1886). A key concept in this theory is the split of effects of
allele substitutions into additive and non-additive components,
since the population variance of the additive components was
shown to determine the resemblance between relatives within that
population (see e.g. Falconer and Mackay, 1996).

The practicality of that rule keeps on being of huge importance
nowadays. By assessing the resemblance between relatives for a
trait within one generation of a population (which requires track-
ing relatedness and phenotype scores) it is possible to estimate the
additive variance of that trait at that population. That estimate
may in its turn be used to predict the resemblance between par-
ents and their offspring and hence the response to selection in the
forthcoming generation. Thus, although the theory behind relies
on genetic effects, no direct information about the genes under-
lying a trait in a population is necessary in practice for estimating
parameters with convenient predictive power.

With time, molecular, statistical and computational tools have
enabled mapping experiments to be performed even in non-
model species (see e.g. Rifkin, 2012). The need to update models
of genetic effects for making the most of this new source of infor-
mation was soon pointed out (Cheverud and Routman, 1995),
leading to the development of models of genetic effects depict-
ing the GP map as effects of allele substitutions from individual
genotypes (Hansen and Wagner, 2001). This is the context in

which the Natural and Orthogonal Interactions (NOIA) model of
genetic effects was developed (Álvarez-Castro and Carlborg, 2007;
Álvarez-Castro and Yang, 2011).

NOIA is a generalization of models of genetic effects that
unifies the individual-based formulations mentioned right above
with the aforementioned classical approaches, which depict the
GP map in terms of effects of allele substitutions averaged over
populations. As an example, this approach has enabled analyses of
the role of epistatic interactions during the artificial selection pro-
cess leading to the domestication of chicken (Álvarez-Castro et al.,
2008). The classical population-referenced models are convenient
for obtaining genetic effects of growth rate from the data gener-
ated in quantitative trait loci (QTL) experiments. But, next, those
have to be transformed into individual-based genetic effects for
analyzing how allele substitutions could have occurred in genes
underlying growth rate from the reference of the genotype of
the wild ancestors of current domestic chicken. In general, being
able to transform between the individual- and the population-
referenced approaches opens new opportunities of analyses of
gene effects and interactions, as reviewed by Álvarez-Castro
(2012).

QTL analyses eventually focussed also on the quest for
imprinted genes and the estimation of imprinting effects (Knott
et al., 1998). The traditional scheme of either maternal or paternal
allele-effect silencing is known not to be universal—the callyp-
ige phenotype in sheep being a remarkable counterexample for
this (Cockett et al., 1996). Indeed, several alternative patterns of
imprinting have been described more recently (e.g. Wolf et al.,
2008; Xiao et al., 2013). In general, a gene is imprinted for a trait
when heterozygotes with different parent-of-origin of their alleles
are associated to different phenotypes. Hence, imprinting always
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involves some kind of dominance (since at least one of the two
cases will depart from the mid-homozygote expectation).

New models of genetic effects, involving also epistasis, have
recently been proposed to detect and analyze imprinted genes
(Wolf and Cheverud, 2009). Here, the discussion on how to
model genetic effects in the presence of imprinting is resumed
with emphasis on the conceptualization (and thus the biologi-
cal meaning) of all genetic effects involved. Two different options
of extending NOIA to imprinting are developed and pondered
in order to stress that the meaning of the genetic effects with
imprinting must be considered with particular caution.

INDIVIDUAL- AND POPULATION-REFERENCED GENETIC
EFFECTS
First, let us recall the most basic expressions and facts of NOIA
(from Álvarez-Castro and Carlborg, 2007; Álvarez-Castro et al.,
2012). The effects of allele substitutions can be expressed in terms
of additive (a) and dominance (d) effects in matrix notation as G
= SE, which, for one non-imprinted locus with two alleles (A1,
A2) and using the homozygote for the first allele as reference,
expands to:

⎛
⎝

G11

G12

G22

⎞
⎠ =

⎛
⎝

1 0 0
1 1 1
1 2 0

⎞
⎠
⎛
⎝

R
a
d

⎞
⎠ (1)

In this expression, E is the vector of genetic effects (including
also the reference point R), G is the vector of genotypic values
(accounting for the expected phenotype for each of the geno-
types), and S is the genetic-effect design matrix, which determines
how the genetic effects are defined as a reparameterization of
the genotypic values. This point is easier to visualize through the
equivalent expression E = S−1G:

⎛
⎝

R
a
d

⎞
⎠ =

⎛
⎝

1 0 0
−½ 0 ½
−½ 1 −½

⎞
⎠
⎛
⎝

G11

G12

G22

⎞
⎠ (2)

Since a = (G22 − G11)/2 is half the distance between the geno-
typic values of the two homozigotes, adding two additive effects
from the genotypic value of the reference genotype A1A1 (G11)
brings us to the genotypic value of the other homozygote (G22).
Thus, adding one only additive effect brings us to the midpoint
between the two homozygotes, from which further adding the
dominance effect brings us to the genotypic value of the het-
erozygote (G12). Indeed, the dominance effect d = G12 − (G11 +
G22)/2 measures the deviation of the heterozygote from its addi-
tive expectation.

More general expressions, enabling the use of any genotype
as reference point, have been developed. In any case, the split
of effects of allele substitutions from the reference of an indi-
vidual genotype into additive and interaction components has
direct evolutionary meaning. Indeed, assuming that the geno-
typic values reflect fitness, a quick comparison of the additive and
dominance effects provides the equilibrium properties of the sys-
tem (either one stable or one unstable polymorphic equilibrium,
or fixation of a particular allele, which may occur asymptotically

with complete dominance). For the simple case of one locus with
two alleles, this information can also be retrieved visually from the
representation of the raw genotypic values—the genetic effects
become more useful for systems of increasing complexity.

On the other hand, the classical additive and interaction
population-referenced genetic effects are useful for analyzing
properties of particular populations, with given genotype fre-
quencies (pij, with pi = pii + 1/2p12 being the allele frequencies
and μ the phenotype mean). They are average effects of allele
substitutions over populations and they can be obtained by a
regression of the genotypic values on the allele content. The
general expression for two alleles can be written as:

⎛
⎝

G11

G12

G22

⎞
⎠ =

⎛
⎜⎜⎝

1 −2p2 − p12p22

2p1p2 − ½p12

1 p1 − p2
p11p22

p1p2 − ¼p12

1 2p1 − p11p12

2p1p2 − ½p12

⎞
⎟⎟⎠

⎛
⎝

μ

α

δ

⎞
⎠ (3)

The parameters of this model are summarized in Table 1. The link
between expression (3) and the previous ones comes easy, by just
taking into account that the genotypic values remain the same.
From any two expressions of this kind, G = S1E1 and G = S2E2,
the genetic effects can be transformed into each other directly as:

E2 = (S2)−1S1E1 (4)

INTERACTIONS MAKE A DIFFERENCE
Using expression (4), it is easy to derive that a GP map in
which d = 0 fulfills δ = 0 and α = a, regardless of the geno-
typic frequencies. However, the presence of interactions makes
the relationship between individual- and population-referenced

Table 1 | Summary of the parameters of the models in this article.

All models Imprinting models

All formulations G11 G12 G22 G21

p11 p12 p22 p21

Individual-referenced R a d d12, d21 |i

Population-referenced μ α δ δ12, δ21 |ι

Gij are the genotypic values (expected phenotype of each genotype), with G 12

for the only heterozygote without imprinting and for one of the two heterozy-

gote options with imprinting (in which case G 21 stands for the other option).

The genotype frequencies (whose subscripts follow the same logic) are pij and,

following the standard notation, the allele frequencies not included in the table

are pi = pii + 1/2p 12, i = 1, 2. The parameters pij can also stand as indexes

of individual genotypes in the individual-referenced formulation—when one of

them equals one and the others equal zero. In the individual-referenced formula-

tion, R stands for the reference point (which is an individual genotype), a for the

additive genetic effect and d for the dominance genetic effect. With imprinting,

there is an additional imprinting effect, i (in the imprinting-effect model), or two

alternative dominance effects, d 12 and d 21 (in the two-dominance model; for a

justification of the use of the superscripts see Álvarez-Castro and Yang, 2011).

In the population-referenced formulation (last row), the corresponding parame-

ters are taken from the Greek alphabet instead of the Latin one (e.g. μ is the

population phenotype mean).
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genetic effects to be far from trivial—and, indeed, far more inter-
esting (Álvarez-Castro and Le Rouzic, 2014). This is illustrated
by two simple examples in Figure 1. These graphs show the lin-
ear regression (solid line) of the genotypic values (discs) on the
allele content (horizontal axis) for a particular population (with
specific allele frequencies), as well as the decomposition of the
genetic variance (curves) for any allele frequencies.

The first example (Figure 1A) shows a case in which the
individual-referenced additive genetic effect is nil (the genotypic
values of the homozygotes are equal) whereas the dominance
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FIGURE 1 | Genotypic values (discs) and variance decomposition

(curves) of one-locus, two-allele (A1 and A2), non-imprinted genetic

systems with overdominance assuming Hardy–Weinberg proportions

for all possible allele frequencies (represented by the frequency of A2,

p2). The variances (black solid curve for additive, gray dashed curve for
dominance) are actually plotted as trait units squared. The size of the discs
marking the genotypic values are scaled according to p1 = 0.625
(approximately, p11 = 0.14, p12 = 0.47, p22 = 0.39). (A) The genotypic values
are G11 = 0, G12 = 5, G22 = 0, leading to individual-referenced genetic
effects (from the reference of A1A1) a = 0, d = 5. At p2 = 0.375 (p1 = 0.625,
marked by the vertical dashed line), the regression of the genotypic values
on the proportional allele content (solid line) is an increasing function with
slope (and thus population-referenced additive effect) α = 2.5, indicating that
p2 would increase under directional selection (toward the equilibrium point,
p1 = p2 = 0.5). (B) The genotypic values are the same as in (A) but for
G11 = 2, leading to individual referenced genetic effects of a = −1, d = 4. At
p2 = 0.375 (p1 = 0.625, marked by the vertical dashed line), the regression
of the genotypic values on the proportional allele content (solid line) has
α = 0 slope, indicating a polymorphic equilibrium point.

effect is not (the genotypic value of the heterozygote is different
from them). The slope of the weighted regression of the genotypic
values on the allele content provides the population-referenced
additive genetic effect, α. In that figure, such regression is shown
for a Hardy–Weinberg population with p1 = 0.625, marked with
a vertical dashed line. Since the slope of the regression is pos-
itive, so it is α. The second example (Figure 1B) still shows a
case of overdominance (the genotypic values of the homozy-
gotes are lower than the one of the heterozygote, i.e., d > |a|),
although in this case the individual-referenced additive effect is
not nil. However, the regression at p1 = 0.625 has a slope of zero,
indicating that this is a (polymorphic) equilibrium point.

In the context of a population, the decomposition of the geno-
typic values into additive and interaction effects has its parallel at
the level of variances. Indeed, in the second example (Figure 1B),
the additive variance is nil at p1 = 0.625. Coming back to the first
example (Figure 1A), the additive variance is not nil at p1 = 0.625
(where the regression slope is not either nil) and, more in general,
the additive variance, which determines the selection response,
dominates the extremes of the graph (40% of the possible fre-
quencies), indicating very efficient selection response of those
populations (toward the equilibrium point, with p1 = 0.5, where
the additive variance is nil).

Thus, throughout these examples it becomes evident that
interaction makes it possible both to have nil individual-
referenced with non-nil population-referenced additive effects
and vice versa. Overall, the presence of interactions unveils that
individual- and population-referenced genetic effects have dif-
ferent meanings. The later ones reflect properties of populations
(the additive effect and the additive variance are nil at equilib-
rium frequencies) whereas the former ones are effects of allele
substitutions from individual references (the additive effect is nil
when the homozygotes have equal genotypic values). Keeping this
in mind aids interpretation of the subsequent developments and
discussion.

MODELING IMPRINTING: HOW MANY ADDITIVE AND
DOMINANCE EFFECTS?
When considering one imprinted locus with two alleles, we could
be tempted to try to fit it into a one-locus four-allele genetic
model, since each of the two alleles (with different nucleotide
sequences) may be expressed at the level of the phenotype in two
ways (each has two possible methylation stages), thus leading to a
total of four variants with potentially different effects on the phe-
notype. One evident issue coming from this scheme arises when
considering how segregation is assumed in a one-locus four-allele
model, which does not at all consider transformations of the vari-
ants into one another through generations (as it is the case of
alleles in imprinted genes). Moreover, even if we dismissed any
analyses involving segregation, we could not possibly use the mul-
tiallelic model for depicting the differences between phenotypes
due to allelic variants, as explained below.

Let the two alleles be A1 and A2, just as in the cases with-
out imprinting above. Due to imprinting there now also exist
the modified variants Ā1 and Ā2, summing up to a total of
four variants as mentioned just above. In a four-allele model of
genetic effects, there are six additive effects, three of which can be
retrieved from the other three (see e.g. Álvarez-Castro and Yang,
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2011). These parameters account for effects of allele substitutions
between any possible pair of homozygotes, which in our case
would be A1A1, A2A2, Ā1Ā1, and Ā2Ā2. However, none of these
genotypes will be present in any of the individuals of our analy-
ses. More to the point, we cannot easily think of those genotypes
as putative artificial constructs, since imprinted loci preclude via-
bility under unbalanced dosages of modified alleles (Kono et al.,
2004; Kawahara et al., 2007).

Indeed, the two “homozygotes” of our imprinted biallelic
locus actually are A1Ā1 and A2Ā2—they are allele-wise homozy-
gotes, although not variant-wise homozygotes. Only substitutions
implying the pairs A1-A2 and Ā1-Ā2 are allowed. Thus, one only
additive effect of allele substitutions makes sense in this genetic
system, involving substitutions of alleles A1 and A2 in each of
their variants. In the context of the individual-referenced frame-
work, that effect can be measured in a way analogous to the
non-imprinted loci as a = (G22 − G11)/2, just considering that
with imprinting the “homozygotes” bear two differently modified
allelic variants.

Thus, although properly conceptualizing the additive effects
of an imprinted locus may require some reflection, they in the
end can be modeled in a way that brings no additional complex-
ity as compared to modeling the non-imprinted case. It is the
modeling of the dominance effects that will make the difference.
It has been discussed just above that from genotype A1Ā1 there
is one only way of performing two allele substitutions, which
leads to genotype A2Ā2. There are however two possible ways of

performing one only allele substitution from that genotype, lead-
ing to either A1Ā2 or A2Ā1. Consequently, considering two pos-
sible dominance effects (one for each parent-of-origin of the two
alleles in the heterozygote) emerges as a sensible solution.

To begin with the development of this two-dominance set-
ting, an expression of the genotypic values as a sum of genetic
effects of allele substitutions from one reference genotype is
firstly provided—as it was done in expression (1) above for a
non-imprinted locus. This way (following the same logic as in
Álvarez-Castro and Carlborg, 2007; Álvarez-Castro and Yang,
2011), the expression of NOIA from the reference of homozygote
A1Ā1 can be obtained as:⎛

⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1 1 1 0
1 1 0 1
1 2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R
a

d12

d21

⎞
⎟⎟⎠ (5)

All parameters are summarized in Table 1. The genotypic value
of A2Ā2 is here expressed as the sum of two additive effects from
the reference whilst the genotypic values of the heterozygotes
involve one additive plus one dominance effect each. The differ-
ence between (5) and (1) is that in (5) each heterozygote involves
a different dominance effect. By equating the vector of genetic
effects in (5) we obtain an extension of expression (2) to imprint-
ing, providing how each of the genetic effects is defined in terms
of the genotypic values:

⎛
⎜⎜⎝

R
a

d12

d21

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
− 1/2 0 0 1/2

− 1/2 1 0 − 1/2

− 1/2 0 1 − 1/2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ (6)

Thus, for instance, the second dominance effect is defined as
d21 = G21 − 1/2(G11 + G22). Expression (6) also entails the gen-
eral individual-referenced formulation of NOIA for one biallelic
imprinted locus, by just replacing the first row of the matrix by
(p11, p12, p21, p22), so that any genotype may be chosen as refer-
ence (e.g. A2Ā2 is the reference when p22 = 1 and the remaining
pij = 0).

For describing the potential response of the imprinted
genetic system to one-generation step of selection, a population-
referenced formulation [as expression (3) for a non-imprinted
locus] is required. Following the same approach as by Álvarez-
Castro and Carlborg (2007, Appendix C; see Supplementary
Material), such expression can be obtained as:

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2p2 − 2p12p22(
p11 + p22

) (
p12 + p21

) − 2p21p22(
p11 + p22

) (
p12 + p21

)

1 p1 − p2

(
4p11 + p21

) (
p11 + p22

)− 4p2
11(

p11 + p22
) (

p12 + p21
) − p21(

p12 + p21
)

1 p1 − p2 − p12(
p12 + p21

)
(
4p11 + p12

) (
p11 + p22

)− 4p2
11(

p11 + p22
) (

p12 + p21
)

1 2p1 − 2p11p12(
p11 + p22

) (
p12 + p21

) − 2p11p21(
p11 + p22

) (
p12 + p21

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

μ

α

δ12

δ21

⎞
⎟⎟⎠ (7)

Using the procedure for inspecting orthogonality of models of
genetic effects, also conveyed by Álvarez-Castro and Carlborg
(2007, Appendix C; see the Supplementary material), it fol-
lows that expression (7) entails an orthogonal decomposition
of the genotypic values into additive and dominance com-
ponents, thus leading to an orthogonal decomposition of the
genetic variance. The two dominance effects are however not
orthogonal to each other. Overall, it is possible to model a bial-
lelic imprinted locus using one additive and two dominance
genetic effects, which makes it straightforward to keep track of
the biological meaning of the parameters, in analogy with the
non-imprinted case.

IMPRINTING AS A GENETIC EFFECT
The previous setting can be used for detecting imprinting by just
developing a procedure for testing whether the two dominance
effects are significantly different. To this aim, it seems however
more convenient to design a model in which a parameter accounts
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for the difference between the two heterozygotes, thus leading
to a more direct test for imprinting—consisting in just check-
ing whether that parameter is significantly different from zero.
Actually, this is in general terms the approach commonly cho-
sen to model imprinting (see e.g. Wolf et al., 2008). Hereafter,
NOIA is extended following that approach and thus implemented
with a parameter to account for the putative difference between
the heterozygotes with different parent-of-origin. As in the pre-
vious section, an expression of effects of allele substitutions from
the reference of homozygote A1Ā1 is here provided in the first
place, as: ⎛

⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1 1 1 −1
1 1 1 1
1 2 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

R
a
d
i

⎞
⎟⎟⎠ (8)

This model is designed for using the midpoint between the two
heterozygotes to define the dominance effect and the deviations
of the two heterozygotes from that point as the imprinting effect.
A graphical comparison explaining how the three models shown
in this article (the non-imprinted model, the two-dominances
model and the imprinting-effect model) decompose the geno-
typic values is shown in Figure 2. By equating the vector of genetic
effects in (8) it follows:

⎛
⎜⎜⎝

R
a
d
i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
− 1/2 0 0 1/2

− 1/2 1/2 1/2 − 1/2

0 − 1/2 1/2 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ (9)

From this expression it immediately follows that indeed d =
1/2(G12 + G21) − 1/2(G11 + G22) (i.e., the dominance effect mea-
sures the distance of the midpoint between the two heterozygotes
and the additive expectation) and i = 1/2(G21 − G12) (i.e., the
imprinting effect measures the distance of the heterozygotes from
the midpoint between them). Expression (9) provides a gen-
eral individual-referenced formulation, analogously to (6) for the
two-dominances model in the previous section. Also in an analo-
gous way as in that section, an orthogonal population-referenced
formulation of the imprinting-effect model can be obtained as:

⎛
⎜⎜⎝

G11

G12

G21

G22

⎞
⎟⎟⎠ =

⎛
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2p12

p12 + p21

1 2p1 − p11(p12 + p21)
2p1p2 − 1/2(p12 + p21)

0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

μ

α

δ

ι

⎞
⎟⎟⎠

(10)
In this case, the three genetic (additive, dominance and
imprinting) effects are fully orthogonal. The independence of
the parameters makes this expression to resemble expression
(3). Indeed, the decomposition of the genotypic values of the
homozygotes into additive and dominance effects in (3) holds
in (10), since p12 in (3) is equivalent to (p12 + p21) in (10).
Concerning the heterozygotes, in the imprinted case we have two
instead of one, leading to an extra row in the genetic-effects design
matrix in (10), and there is an extra (imprinting) term in the

FIGURE 2 | Individual-referenced genetic effects proposed in the text

for a one-locus, two-allele, imprinted genetic system. As in the previous
figure, the alleles are A1 and A2, with the variants due to imprinting being
Ā1 and Ā2. Although no population frequencies are considered in this
figure, the notation of the axes is kept consistent with the other figures,
with p2 = 0.5 indicating the heterozygotes. Also the genotypic values (black
discs) are mostly kept, with the one of the heterozygote of Figure 1 (A1A2,
G12 = 5) being the midpoint between the ones of the two heterozygotes in
this figure (A1Ā2 and A2Ā1, G12 = 4 and G21 = 6, respectively). (A) The
two-dominances model is a natural extension of the non-imprinted case
that consists in introducing two dominance parameters, one for each
heterozygote. As well as in the non-imprinted case, the dominance effects
measure departures of the heterozygotes from their additive expectation
(gray disc). (B) The imprinting-effect model keeps one only dominance
effect that accounts for the departure of the midpoint between the two
heterozygotes (upper gray disc) and the midpoint between the
homozygotes (lower gray disc), and adds up an imprinting effect for
accounting for the distance between the heterozygotes and their midpoint
(upper gray disc). Thus, the dominance effect in this model coincides with
that of a non-imprinted model (i.e., the one that would be obtained if
imprinting was just disregarded).

decomposition, coming from the fourth column of that matrix.
That term actually makes the only difference of the decompo-
sition of the genetic effects of the heterozygotes as compared
with the decomposition of the heterozygote in the non-imprinted
case (3).

VARIANCE DECOMPOSITION WITH IMPRINTING
The previous expressions and arguments can be extended to
the decomposition of the genetic variance with an imprinting
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variance component, which can easily be obtained from the
model in matrix notation above (10) by following the formu-
lae provided by Álvarez-Castro and Yang (2011). In expressions
(12) and (13) of that article, the additive and the dominance
variance have been obtained as VA = PT

G (αG ◦ αG) and VD =
PT

G (δG ◦ δG), respectively. In an analogous way (by means of anal-
ogous intermediate definitions; see Supplementary Material), a
general expression for the imprinting variance can be provided
simply as:

VO = PT
G (ιG ◦ ιG) (11)

Since VI traditionally stands for the epistatic variance, the
subscript O is here chosen for the imprinting variance, ulti-
mately coming from a differential effect of the alleles depend-
ing on their parent-of-origin. In any case, it is also possible
to obtain the decomposition of the genetic variance by getting
all three variance components at the same time, by just fol-
lowing expressions (14) and (15) in Álvarez-Castro and Yang
(2011). Indeed, the imprinting variance component emerges
from that formulae as a new term due to feeding them with
expression (10).

By obtaining the variance decomposition in any of the ways
described above (each individually or all simultaneously), it
is easy to check that the additive and the dominance vari-
ances actually remain the same as for a non-imprinted biallelic
locus. Assuming for simplicity the Hardy–Weinberg proportions,
they are VA = 2p1p2[a + d(p1 − p2)]2, VD = (2dp1p2)2 (see e.g.
Falconer and Mackay, 1996)—, whilst the imprinting variance
component can be expressed simply as:

VO = 2i2p1p2 (12)

Figure 3 shows the decomposition of the genetic variance for
two cases of imprinting. The genotypic values in Figure 3A
are the same as in Figure 2, and thus they also fit the non-
imprinted case in Figure 1B, in which the genotypic value of the
heterozygote (A1A2, G12 = 5) is the midpoint between the geno-
typic values of the two heterozygotes in Figure 3A (A1Ā2 and
A2Ā1, G12 = 4 and G21 = 6, respectively). Therefore, the addi-
tive effects coincide in both cases and the dominance value of the
imprinting-effect model in Figure 3A coincides with the simpler
non-imprinted model in Figure 1B. Hence, the additive and the
dominance variances coincide in both graphs. In Figure 3A there
is, though, an extra (imprinting) term of the genetic variance
decomposition.

As it is the case for dominance, the imprinting variance
is higher for intermediate frequencies. In Figure 3A, the rela-
tively small imprinting effect (relatively short distance between
the two heterozygotes) leads to a small imprinting variance
for all allele frequencies. In Figure 3B, however, it is shown
that with larger differences between the two heterozygotes the
imprinting variance may dominate the variance decomposi-
tion at almost any allele frequencies. And this actually occurs
in practice, since this case fits to the callypige pattern men-
tioned above (with equal or similar phenotype values of the
two homozygotes and one of the heterozygotes, relative to
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FIGURE 3 | Genotypic values (discs) and variance decomposition

(curves) of one-locus, two-allele, imprinted genetic systems assuming

Hardy–Weinberg proportions. The notation is in accordance with the
previous figures (with the addition of a black dashed curve for the
imprinting variance). (A) The genotypic values are G11 = 2, G12 = 4,
G21 = 6, G22 = 0, leading to individual-referenced genetic effects (from the
reference of A1Ā1) a = −1, d = 4, i = −1. Since the additive and the
dominance effects are the same as in Figure 1B, the additive and the
dominance variances coincide and the equilibrium point also remains at
p2 = 0.375. (B) The genotypic values are the same as in (A) but for G21 = 1
(at the midpoint between the two homozygotes), leading to individual
referenced genetic effects of a = −1, d = 2.5, i = −2.5. The equilibrium
point occurs here at p2 = 0.3.

a higher value of the remaining heterozygote). Imprinting is
thus—as well as other allele interactions (Álvarez-Castro and
Le Rouzic, 2014)—a phenomenon that may by itself condi-
tion little responses to selection in the face of high genetic
variances.

Incidentally, this particular claim could not be supported using
the two-dominances model alone. Indeed, that model does not
provide a separate term accounting for the variance explained
by the difference between the two heterozygotes. Instead, it leads
to a dominance variance that is different from the one of this
imprinting-effect model (and thus also from the one of the
non-imprinted case), and it actually equals the sum of the clas-
sical dominance variance VD and the imprinting variance VO as
expressed above (11, 12).
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COMPARISONS TO PREVIOUS MODELS
Xiao et al. (2013) have recently proposed a model of imprinting
based on the (non-imprinted) NOIA model. They take the option
of implementing an explicit imprinting parameter, which in their
mathematical construction is closely related to the additive effect,
rather than to the dominance effect as in the imprinting-effect
model developed above (8–10). Since it is in this article acknowl-
edged that modeling imprinting requires some improvisation as
compared to other facts of genetic architecture, several different
solutions could be possible—it is not intended here to pose any
objective criticism on that choice by itself.

The developments by Xiao et al. (2013) are indeed
inspired in the NOIA model and they provide both statisti-
cal (i.e., population-referenced) and functional (which are not
population-referenced) formulations. However, their models are
difficult to be considered as pure extensions of the NOIA model.
A very simple counterexample for this can be shown through
their expression (12), from which it follows that they define
the functional additive effect as r1 = G22 − G11, whereas in the
NOIA model it is defined as a = (G22 − G11)/2. This can be eas-
ily derived e.g. from (2) for the non-imprinted case, and also
from (6) and (9) for the extensions to imprinting provided in this
article.

Xiao et al. (2013) carried out simulations to prove that their
statistical models are more appropriate (due to orthogonality)
for detecting allelic effects than their functional developments.
This effort seems to be rather futile since the functional for-
mulations are in general not developed with that motivation in
mind, but mainly for representing the GP map as effects of allele
substitutions from individual references (Hansen and Wagner,
2001; Álvarez-Castro and Carlborg, 2007; Álvarez-Castro, 2012;
and also summarized above). In any case, the statistical mod-
els of imprinting by Xiao et al. (2013) are admittedly not fully
orthogonal as the imprinting-effect model provided above (10),
but only under certain conditions e.g. (but not only) under the
Hardy–Weinberg proportions.

Wolf and Cheverud (2009, Appendix 2) had also provided a
model with an explicit imprinting parameter that is orthogonal
under the Hardy–Weinberg proportions. As well as Xiao et al.
(2013), they make the point that, also with imprinting, exten-
sions to multiple loci with epistasis come naturally using the
Kronecker product of genetic-effect design matrices (following
Tiwari and Elston, 1997), which incidentally applies directly also
to the models of imprinting provided in this article. However,
Wolf and Cheverud (2009) do not provide explicit expressions for
performing variance decompositions.

Neither they discuss an explicit link of their statistical setting
to a functional formulation, although their expressions (4) and
(5) fit to an extension of the physiological model (Cheverud and
Routman, 1995, which is an alternative to statistical formulations
with the unweighted population mean as reference point) rather
than to the F2 model they initially follow in their developments.
More to the point, in their previous work on imprinting (Wolf
et al., 2008) they made an extension of the F∞ model, another
alternative to the classical statistical formulations.

There is also a previous work in which a two-dominance
strategy has been chosen to model imprinting, by Santure and

Spencer (2011). They have adapted several standard quantitative
approaches to derive quantitative genetics parameters in the pres-
ence of imprinting, which is implemented as in this article, in the
form of one dominance effect for each heterozygote. The differ-
ent approaches considered in that article lead to different results,
but none of them enables an orthogonal decomposition of the
genetic variance into additive and dominance (due to the two
dominance effects) components. For several of those approaches,
expressions of the covariances due to lack of orthogonality could
not be derived.

DISCUSSION
Since models of genetic effects are mathematical expressions
aimed to enable the estimation of parameters with particular bio-
logical interpretations, their development is often directed to a
predefined target. The difficulties of these developments often
consist in reaching the mathematical properties that are in accor-
dance with the desired biological meanings. With imprinting,
there appears an extra layer of issues to be solved, ultimately
coming from the fact that many combinations of alleles or allele
variants will never occur (not even artificially). For solving that
issue, modeling that A2Ā2 can be reached by performing two
equal allele substitutions from A1Ā1 entails a very sensible and
practical solution (even acknowledging that this is not in reality
the case).

Standing from this point, and facing the presence of two differ-
ent heterozygotes (and their genotypic values), it appears natural
to think of accounting for two different dominance effects, analo-
gous to the one dominance effect in the non-imprinted case. This
solution, here called the two-dominances model, is not only fea-
sible but, as shown in Figure 2A, rather clean by construction. It
indeed leads naturally to an orthogonal variance partition into
additive and interaction components. However, with this setting
it may not be completely straightforward to detach imprinting
as an effect either to test or to analyze in terms of evolutionary
properties.

Traditional models of imprinting have embraced the option of
implementing an explicit imprinting effect, which is here called
the imprinting-effect model. Dominance is modeled as a depar-
ture from an additive (non-dominance) expectation. For model-
ing imprinting in an analogous way, a non-imprinting reference
has to be considered. Due to the particularities of imprinting,
this reference has to be a construct. Indeed, as explained above,
we cannot just remove imprinting effects from our alleles and
expect that the resulting genotypes exist or could even be viable,
and there seems to be no biological justification for choosing one
of the heterozygotes as the non-imprinted reference against the
other one. Hence, the midway between the two of them is in this
article set as a non-imprinted fictitious reference. In Figure 2B it
can be seen that this leads for instance to a definition of the dom-
inance effect in terms of points (gray discs) that are not genotypic
values (black discs). In any case, several advantages come from
this choice.

The imprinting-effect model here provided leads to a fully
orthogonal setting, which entails a clear advantage over previous
models. This is optimal in the first place for testing for statisti-
cal significance of the imprinting parameter. Furthermore, this
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setting can be described as a pure extension of a non-imprinting
case with the heterozygote at the midpoint between the two
imprinted heterozygote options. The variance partition, in par-
ticular, remains equal to the non-imprinting case in what regards
all variance components except from the imprinting variance,
which is of course absent in the non-imprinting case. This enables
extremely convenient comparisons: the equilibrium points of the
two cases will be the same, with a slowed down speed of pheno-
type change along generations for the imprinted case, which shall
be more noticeable for increasing proportions of the imprinting
variance component in the genetic variance partition (since the
proportion of the additive component of the phenotypic variance
decreases accordingly).

Besides population-referenced orthogonal expressions,
individual-based formulations are in this article provided. When
using any expressions in this article, the choice of a formulation
and a reference point must be based on the mathematical prop-
erties and/or biological meaning that fits the particular question
to be addressed. Each choice leads to different numerical values
of at least some of the parameters in an applied case and thus not
paying enough attention to picking the correct expression may
be misleading. An illustration of such requisite of awareness on
the specific kind of genetic effects used in each case follows.

In their article on imprinting and epistasis, Wolf and Cheverud
(2009) claim, based on a previous work (Cheverud, 2000), that
“additive-by-dominance indicates that the additive effect of the
first locus depends on (i.e., changes as a function of) the geno-
type present in the second locus, while the dominance effect
of the second locus depends on the genotype present at the
first locus.” This is true when analyzing a genetic system with
the physiological model (that is, for physiological additive-by-
dominance genetic effects). Functional formulations are meant
to express genetic effects from the reference of individual geno-
types, i.e., as individual-based formulations. Mathematically, it is
straightforward to use those expressions also from other reference
points and, when doing so, it can be shown that they then coin-
cide with statistical (population-referenced) formulations under
certain conditions [Álvarez-Castro and Carlborg, 2007, expres-
sion (7)]. Both the F∞, the F2 and the physiological models are
instances of this situation: they thus may fit both to functional
and to statistical interpretations and this is why the afore-cited
sentence holds true within its particular context.

However, it is worthwhile noting that the referred sentence
is not true for additive-by-dominance genetic effects of any
model or formulation, and in particular it cannot be applied if
the genetic effects are orthogonal (in the context a population
under study) and conditions (7) of Álvarez-Castro and Carlborg
(2007) do not hold. Indeed, in those instances it may well be
that dominance-by-dominance interactions generate statistical
additive-by-dominance interaction at genetic systems for which
the latest equals zero under the physiological model. Such a phe-
nomenon is analogous to the simpler instance shown in Figure 1,
where the presence of dominance interaction is shown to generate
additive variance in a genetic system where there are no difference
between the homozygotes (i.e., nil functional additive effects).
Interestingly, this hierarchical behavior works in a different way
when it comes to imprinting. Indeed, the imprinting-effect model

developed above is structured such that functional imprinting
alone (with neither functional dominance nor functional addi-
tive effects) generates neither dominance nor additive variance,
as it can be seen by the fact that these variances do not depend on
the imprinting effect.

Overall, it is in general crucial to mind the biological mean-
ing of the models in order to make the choice of the particular
expression to be used in each particular case. In relation with this,
NOIA conveniently provides expressions that work as a change-
of-reference tool so that the genetic effects required to a particular
question can be obtained from any others. The scope of that
tool applies to transformations between the two-dominances and
the imprinting-effect models developed above, which differ in
the presence/absence of an explicit genetic imprinting effect. The
choices of formulations are therefore not excluding, but poten-
tially informative about different aspects in the analysis of a
particular situation under study as long as the resulting values of
the genetic effects (or variance decompositions) are interpreted in
the light of the particular form of the genetic model used.

This article stands on recent advances in genetic modeling for
carrying out new theoretical developments to the aid of the anal-
ysis of genetic imprinting. The models here developed improve
previous proposals by providing both functional and statistical
formulations that enable an orthogonal partition of the genotypic
values and the genetic variance with a separate component for
imprinting, which enables both better estimation of, and insight
on, imprinted genes. Besides, imprinting may here be conceived
also as an excuse or a challenge in order to elaborate on the log-
ics behind the development of models of genetic effects—what
are they intended for, which difficulties condition their stage of
development, how to face them. Overall, one more step in the
generalization of models of genetic effects is here provided, as well
as keys about the way models of genetic effects may keep on being
developed.
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Appendix 

Regression approach for developing orthogonal genetic effects 

This approach consists in computing the genetic effects from the regression of genotypic values to the 

allele content, as Fisher (1918) proposed (see e.g. Falconer and Mackay (1996)). Álvarez-Castro and 

Carlborg (2007) expressed the genotypic values as G(N)=E(G)+N, where N stands for the number of A2 

alleles. The intercept of the regression, E(G), is the expectation of the genotypic values and the regression 

coefficient is )(Var),(Cov NNG . The additive effects come from the linear regression itself, 

whereas the interaction terms come from the departures—the distances between the regression and the 

original genotypic values (for further details, see Álvarez-Castro and Carlborg 2007). In the two-

dominance model, each heterozygote determines one dominance effect (as represented in Figure 2A), 

whereas in the imprinting-effect model, the dominance effect is defined as in the non-imprinting case by 

taking the midpoint between the two heterozygotes as the one heterozygote required for making that 

definition. The imprinting effect is defined afterwards from the departures of the real heterozygotes from 

that midpoint (as represented in Figure 2B). 

A genetic-effect design matrix, S, is orthogonal for a set of genotype frequencies when S
 T

DS is diagonal, 

with D=Diag[(pij)] i.e. the diagonal matrix with the genotypic frequencies at its diagonal. 

Variance components from the decomposition of the genotypic values 

Following Álvarez-Castro and Yang (2011), the decomposition of genotypic values into additive and 

interaction terms that is implicit in an expression of the type G=SE can be made explicit as 

Gdec=SDiag[E]. From here, the decomposition of the genetic variance takes the form of a vector (with the 

variance components) by just computing V=  decdecG GGP T
, with 

T

GP =(pij). For computing the 

imprinting variance separately in the context of a one-locus two-allele model, the imprinting vector can be 

defined as ιG=SDiag[(0,0,0,1)]E, to then apply expression (11). 
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INTRODUCTION
Since Fisher (1918), partitioning of the genotypic values at a locus
into additive and dominance effects has been used for conventional
quantitative genetic analyses and recently for mapping quantita-
tive trait loci (QTL; see, e.g., Lynch and Walsh, 1998). Numerous
statistical models have been proposed for such partitioning. Some
of them are restricted to populations under Hardy–Weinberg equi-
librium (HWE; see, e.g., Falconer and MacKay, 1996), including a
special case of gene frequency being one half (Mather and Jinks,
1982). Others also adequately account for Hardy–Weinberg dis-
equilibrium (HWD; e.g., Cockerham, 1954; Yang, 2004; Álvarez-
Castro and Carlborg, 2007). Regardless of whether a population
is in HWE or HWD, Fisher (1918) and others have shown that
the additive and dominance genetic effects are simply the coeffi-
cient of a linear regression of the genotypic values on the gene
content and the deviation from that regression, respectively. The
regression coefficient is commonly known as the average effect of
substituting one allele by the other in a diploid genotype (Falconer
and MacKay, 1996).

As another measure of the additive effect, Fisher (1941) defined
the average excess of an allele as the difference by which the average
of genotypes carrying that allele exceeds the average of genotypes
carrying the alternative allele. Fisher (1941) also pointed out that
the average effect is equal to the average excess if the population is
in HWE, but it is less than the average excess if inbreeding occurs.
Such relationships between average effect and average excess have
been subsequently confirmed and elaborated (e.g., Kempthorne,
1957; Falconer, 1985; Templeton, 1987; Lynch and Walsh, 1998).

In this note, we further clarify the relationship between the
average effect and the average excess of a gene substitution based
on a new set of general contrasts that entail both the average effects
and the average excesses as particular cases. We provide a common
conceptual and graphical interpretation for both parameters and

further dissect how they are related to the decomposition of the
genetic variance.

MODEL
Additive and dominance contrasts are commonly used to build
and interpret models of genetic effects (e.g., Cockerham, 1954;
Li, 1976; Zeng et al., 2005). Such contrasts enter the regression
model as:

Gij = μ + α̃wij + δ̃vij , (1)

where Gij are the genotypic values, μ is the population mean, α̃

and δ̃ are the additive and dominance genetic effects, and wij and
vij are, respectively, the coefficients for the additive and dominance
contrasts.

In this context, the values 0 and 1 can naturally be used to
indicate the presence of alleles A1 and A2 in the genotypes, lead-
ing to the genotype indicator variable zij taking the values z11 = 0,
z12 = 1, and z22 = 2 for A1A1, A1A2, and A2A2, respectively, and
to the coefficients for the additive effects through wij = zij − E(z),
where E(z) is the expectation of z (see, e.g., Zeng et al., 2005). This
indicator variable has thus a clear biological meaning – the gene
content of one of the alleles, A2. When using this indicator vari-
able, the additive parameter is the average effect, i.e., α̃ = α, and
the dominance parameter is the dominance genetic effect δ̃ = δ.

On the other hand, the average excesses of alleles in a population
under HWD were proffered to further entail the effects of alleles
due to correlations with other alleles in that population (Fisher,
1941). Aiming to allow for such correlations in our derivations,
we here consider more general indexes. In particular, we intro-
duce a constant c as the ratio of the average effect over the average
excess (cf. Eq. 3 of Fisher, 1941). Multiplying zij by this constant
leads to a new genotype indicator variable with z11 = 0, z12 = c,
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and z22 = 2c. This new genotype indicator variable will serve to
indicate the effective content of allele A2 in the three genotypes, as
it will be further illustrated below.

The use of effective gene contents for obtaining orthogonal
contrasts under HWD is summarized in Table 1. Obtaining the
coefficients for the orthogonal additive contrast, wij, as zij − E(z),
warrants that Σpijwij = 0, where pij, ij = 11, 12, 22, are the geno-
typic frequencies of the population (see, e.g., Cockerham, 1954).
The coefficients for the orthogonal dominance contrasts, vij, are
obtained to fulfill Σpijvij = 0 and Σpijwijvij = 0 (Álvarez-Castro
and Carlborg, 2007). These are the deviations of the observed
genotypic values from the expected values as predicted from the
regression of the genotypic values on the effective gene contents.

Additive and dominance contrasts (e.g., the ones built in
Table 1) can be conveniently expressed in matrix notation. This
allows for a straightforward extension of the one locus model to
and arbitrary number of loci with arbitrary epistasis under link-
age equilibrium (LE; Tiwari and Elston, 1997). It has also been
shown that the matrix notation enables straightforward transfor-
mations between parameters that have previously been expressed
using appropriate contrasts (Álvarez-Castro and Carlborg, 2007).

Let thus G be the vector of genetic effects, E be the vector
entailing the population mean and the additive and dominant
parameters and S be the genetic-effect design matrix entailing the
contrasts that allow for a transformation between vectors G and
E. Then, just using the contrasts in Table 1 we obtain the matrix
expression G = S·E as:

⎛
⎜⎜⎜⎜⎝

G11

G12

G22

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1 −2p2c − p12p22

2p1p2 − 1/2p12

1 (p1 − p2)c
p11p22

p1p2 − 1/4p12

1 2p1c − p11p12

2p1p2 − 1/2p12

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

μ

α̃

δ̃

⎞
⎟⎟⎟⎟⎠

, (2)

where pi, i = 1, 2, are the frequencies of the alleles, pi = pii + 1/2pij,
j �= i.

A UNIFIED FRAMEWORK FOR AVERAGE EFFECTS AND
AVERAGE EXCESSES
As mentioned above, the contrasts in Table 1 provide the average
effects of allele substitutions when c = 1. It is thus not surpris-
ing that in this case Eq. 2 reduces to Álvarez-Castro and Carlborg
(2007) Eq. 8 – for the average (additive and dominance) effects.
For analyzing how (2) relates to the average excesses, we first

Table 1 | Coefficients of orthogonal contrasts for the average effects

and the average excesses for two allels at a locus.

Genotypes Frequencies zij wij = zij − E (z) vij

A1A1 p11 0 −2 p2 c − p12p22

2p1p2 − 1/2p12

A1A2 p12 c (p1 − p2) c
p11p22

2p1p2 − 1/4p12

A2A2 p22 2c 2 p1c − p11p12

2p1p2 − 1/2p12

The non-zero constant c is introduced for accounting for effective gene contents.

recall their definition for one biallelic gene (following Fisher, 1941;
Kempthorne, 1957):
⎧
⎨
⎩

α∗
1 = p11

p1
G11 + 1

2
p12
p1

G12 − μ

α∗
2 = 1

2
p12
p2

G12 + p22
p2

G22 − μ
(3)

By inverting expression (2), it is easy to see that α̃ =
α∗

2 −α∗
1.when c = 1/(1 + F), with F = 1 − p12/2p1p2 being Wright’s

(1965) fixation index. F, with the range of −1 ≤ F ≤ 1, reflects any
departure from the HWE, toward either an excess or a deficiency
of heterozygotes. We can thus rename α̃ = α∗, δ̃ = δ∗ when
c = 1/(1 + F). That is to say, Eq. 3 restores the definition of aver-
age excesses of the alleles for a biallelic locus. We will consequently
refer to (2) with c = 1/(1 + F) as the average-excess formulation
of NOIA.

From the general expression (2), we have thus retrieved both
the average effects and the average excesses as particular cases of
the contrasts in Table 1, specifically with c = 1 and c = 1/(1 + F),
respectively. Therefore, by implementing the effective gene con-
tent c we have actually made our model to capture the correlation
between alleles that the average excesses account for. Further, using
the relationship between the two values of c (1 and 1/(1 + F)) we
are also retrieving the relationship between average effects and
average excesses reported by Kempthorne (1957), αi = α∗

i/(1+F),
which actually applies to the case of multiple alleles (see also
Templeton, 1987).

Evidently, the possible values of the function 1/(1 + F) depend
on those of the fixation index, F. In particular, c = 1/(1 + F) must
always be positive and within the range 1/2 ≤ c < ∞ for the allow-
able values of F ranging from complete homozygosity (F = 1)
to complete heterozygosity (F = -1). When F = 0 (i.e., c = 1) we
have the well-known case where the average effect and average
excess are the same, that is under HWE. Since c = 1/(1 + F) must
always be positive, α and α* will always have the same sign and
will verify |α| = c |α*|. Taking all this into account, Table 2 sum-
marizes how the fixation index affects the relationships between
average excesses and additive genetic effects under three situations:
heterozygote deficiency (F < 0), HWE (F = 0) and heterozygote
excess (F > 0). Within that table, we also stress that the mathemat-
ical relationship between average excesses and average effects does
not depend upon which one(s) of all potential biological features is
(are) underlying a particular set of observed genotype frequencies.

Table 2 | Summary of some relevant mathematical and biological

features associated to different statuses of the heterozygosity of a

population.

Heterozygotes

deficiency

Observed

heterozygotes fit HWE

Heterozygotes

excess

0 < F ≤ 1 F = 0 −1 ≤ F < 0

1/2 ≤ c < 1 c = 1 c > 1

|α*| > |α| α* = α |α*| < |α|

Assortative mating

or homozygotes

favored or population

structure

Random mating and either

no selection or geometric

fitnesses

Dissassortative mat-

ing or heterozygotes

favored or gene dupli-

cation
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PARTITIONING THE GENOTYPIC VALUES AND THE GENETIC
VARIANCE
The average-excess formulation [expression (2) with c = 1/(1 + F)]
comes from a linear regression (1) and it can thus be expressed by
means of its intercept, μ, and its regression coefficient, α*, as:

Ĝ(w) = μ + α∗w (4)

This regression entails a decomposition of the genotypic values
in which the predictions from the regression are the additive com-
ponents and the deviations of the regression – due to dominance
interactions – are the dominance components. For instance, the
predicted [by (4)] value for genotype A1A1 is α∗

11 = Ĝ(−c). Now,
both Table 1 and expression (2) show that the dominance con-
trasts, vij, do not depend upon the scaling factor c and, hence, they
are equal for the statistical and the statistical excess formulations.
This implies that the dominance deviations are the same in both
cases, i.e., δ∗

ij = δij and that, therefore, α∗
ij = αij = αi + αj . That

is to say, both formulations lead to the same decomposition of
genotypic values,

Gij = μ + αij + δij ≡ μ + α∗
ij + δ∗

ij . (5)

This is illustrated in Figure 1, where we show the graphical
interpretation of the decomposition of genotypic values com-
ing from the average excesses and compare it with the classical
decomposition coming from the average effects (Fisher, 1918).
Note, particularly, that the decomposition of genotype A1A1 into
additive and dominance parts is the same regardless of which
linear regression is used. Interestingly, although for the average
effects formulation (with c = 1) the predictions of the regres-
sion can be obtained by just summing up the appropriate average
effects (see, e.g., Álvarez-Castro and Carlborg, 2007), this does not
hold for the average-excess formulation [with c = 1/(1 + F)], i.e.,
α∗

ij �= α∗
i + α∗

j , unless the genotypic frequencies are under HWE.

The reason for this is also noted in Figure 1, where it can be seen
that α∗

i and α∗
ij associated to different values for the regression inde-

pendent variable (α∗
11 = Ĝ(−c) whereas α∗

1 + α∗
1 = Ĝ(−1)). The

exact relationship between these values under HWD is straight-
forward from α∗

ij = αij = αi + αj and αi = cα∗
i (Kempthorne,

1957), which lead to:

α∗
ij = c

(
α∗

i + α∗
j

)
. (6)

The decomposition of genotypic values being the same for the
average effects and the average excesses (5) necessarily implies that
they also lead to the same decomposition of the genetic variance.
We have confirmed this result by substituting the average-excess
additive contrasts (Table 1, with c = 1/(1 + F)) in the equation for
the additive variance (see, e.g., Cockerham, 1954). When doing
so, a common factor c2 can be simplified from both the numer-
ator and the denominator of that expression so that the original
expression for the additive variance is retrieved.

The additive variance coming from the average excesses is the
variance of the values α∗

ij . Thus, the average excesses of the alleles

enter the computation of the additive variance by just applying

FIGURE 1 | Graphical interpretation of the decomposition of the

genotypic values (5) through the statistical excess (in black) and the

statistical (in gray) formulations of NOIA for one locus with two

alleles. For simplicity, a case with equal allele frequencies (p1 = p2 = 1/2) is
shown. The specific genotypic values (circles; G11 = 1, G12 = 3, G22 = 2)
displaying overdominance and a fixation index (F = − 2/5) have been chosen
for facilitating the visualization of the parameters of interest. The size of the
circles represents the frequency of the genotypes. Horizontal dashed lines
emphasize coincident arrow edges, the upper one corresponding to the
population mean phenotype, μ = 2.55. The regression independent variable
of the statistical formulation is the gene content, whereas the one of the
statistical excess formulation is scaled by c = 1/(1 + F ) = 5/3 and it works as
an effective gene content. For both cases, the independent variable, w, is
rescaled by its expectation as shown inTable 1.

(6). Although a common way to express and compute the additive
variance under HWD entails both the average (additive) effects
and the average excesses [see, e.g., expression (4.23a) in Lynch and
Walsh, 1998], here we have shown that either formulation alone
suffices to provide the additive variance under HWD. We recall
that this is true as long as the formulations are built using con-
trasts that are appropriate to HWD – as the ones we are providing
in this communication for both the biallelic case.

EFFECTIVE GENE CONTENT
Hardy–Weinberg disequilibrium implies that alleles become
(either positively or negatively) correlated in zygotes as compared
to the expected genotype frequencies under HWE. A deficiency
of heterozygotes, for instance, causes alleles to become positively
correlated, leading to their effective additive contribution to the
genotypes of a population to be more extreme (i.e., further away
from their expectation) than under HWE. Fisher (1941) noted that
this is accounted for by the average excesses. We note that this is
not in contradiction with the interpretation of the average excesses
of one allele as the conditional average genotypic deviation of the
individuals that received that allele from at least one parent (see,
e.g., Templeton, 2006).

For the biallelic case, we can trace Fisher’s (1941) remark in our
graphical interpretation (Figure 1). We first recall that although

www.frontiersin.org March 2012 | Volume 3 | Article 30 | 48

http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Architecture/archive


Álvarez-Castro and Yang Average excesses and average effects

both the average effects and the average excesses are linear regres-
sions of the genotypic values (the regression dependent variable)
as expressed in (1), each of them is regressed on a different inde-
pendent variable. The independent variable of the formulation
of average effects is the actual content of allele A2 (which is
in Figure 1 shown as rescaled by its expectation) whereas the
independent variable of the average-excess formulation is the
effective content of allele A2 measured by a factor c. This fac-
tor being greater than one in our example (c = 5/3) reflects an
excess of heterozygotes (particularly with F = − 2/5) and makes
the slope of the regression for the average excess, α*, to be less
steep than the one on the actual gene content, α, as noted in
Table 2. Conversely, a deficiency of heterozygotes would make
the slope of the average-excess regression to become steeper
than the one of the regression for the average effects. Thus, the
effective gene content c leads to the average excesses to reflect
the effective contributions of the alleles to the genotypes of a
population.

CLOSING PERSPECTIVE
In conclusion, we have showed here that Fisher’s (1941) defini-
tion of average excesses can be phrased within a new regression
framework that also generalizes the average effects. This has

enabled us to clarify the significance of the average excesses in dif-
ferent ways. First, we have expressed the average excesses in terms
of matrix notation within the NOIA framework, which entails
the extension of that theory to multiple loci with arbitrary epis-
tasis under LE and allows us to easily transform between average
excesses and other genetic parameters. Second, we have fully inte-
grated the average excesses into the theory for the decomposition
of the genotypic values and the genetic variance into additive and
dominant components. Third, we have provided a graphical inter-
pretation of the average excesses that is analogous to the one of
the average effects. Finally, we interpret the factor determining the
relationship between average effects and average excesses as the
effective gene content of individuals, accounting not only for the
effects of their alleles but also for how pairs of alleles are correlated
in a particular population.
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The usual analysis of genotype × environment interaction (G × E) is based on the
linear regression of genotypic performance on environmental changes (e.g., classic
stability analysis). This linear model may often lead to lumping together of the non-linear
responses to the whole range of environmental changes from suboptimal and super
optimal conditions, thereby lowering the power of detecting G × E variation. On the other
hand, the G × E is present when the magnitude of the genetic effect differs across the
range of environmental conditions regardless of whether the response to environmental
changes is linear or non-linear. The objectives of this study are: (i) explore the use of four
commonly used non-linear functions (logistic, parabola, normal and Cauchy functions) for
modeling non-linear genotypic responses to environmental changes and (ii) to investigate
the difference in the magnitude of estimated genetic effects under different environmental
conditions. The use of non-linear functions was illustrated through the analysis of one
data set taken from barley cultivar trials in Alberta, Canada (Data A) and the examination
of change in effect sizes is through the analysis another data set taken from the North
America Barley Genome Mapping Project (Data B). The analysis of Data A showed that the
Cauchy function captured an average of >40% of total G × E variation whereas the logistic
function captured less G × E variation than the linear function. The analysis of Data B
showed that genotypic responses were largely linear and that strong QTL × environment
interaction existed as the positions, sizes and directions of QTL detected differed in poor
vs. good environments. We conclude that (i) the non-linear functions should be considered
when analyzing multi-environmental trials with a wide range of environmental variation
and (ii) QTL × environment interaction can arise from the difference in effect sizes across
environments.

Keywords: barley, environmental index, estimation, genotype × environment interaction, non-linear functions,

quantitative trait loci

INTRODUCTION
Inconsistent performance of genotypes over different environ-
ments known as genotype × environment interaction (G × E)
remains to be a major impediment to genetic improvement of
biological species in Canada and elsewhere. G × E is particularly
important for plant species (e.g., agricultural crops and forest
trees) because they spend their entire life at the same locality. Over
the past decades, the assessment of G × E has been done with the
data obtained from testing of the same genotypes over multiple
environments (locations or years), i.e., multi-environmental trials
(Yang, 2007).

The G × E effect has been incorporated into quantitative
genetic models (Falconer and Mackay, 1996) through the use
of genetic correlations within and between individual geno-
types (e.g., Crossa et al., 2004; Burgueño et al., 2008). The
basic idea behind such an approach is to predict genetic val-
ues through borrowing information among individuals from
genetic relationships, and within individuals (across environ-
ments) from genetic and environmental correlations. The analysis

of such correlation structure has been performed to obtain the
parsimony description of G × E variation using different ver-
sions of linear-bilinear models based on a mathematical tech-
nique known as singular value decomposition (SVD) (Golub
and Reinsch, 1970). One popular use of the SVD technique
is the biplot analysis of G × E based on the two commonly
used rank-two linear-bilinear models: the additive main effects
and multiplicative interaction (AMMI) model and the genotype
main effects and genotype × environment interaction effects
(GGE) model (i.e., fitted to residuals after removal of environ-
ment main effects) (for review, see Yang et al., 2009). Recently,
Burgueño et al. (2008) and Cullis et al. (2010) described a sim-
ilar biplot analysis under a mixed-model framework using a
series of rank-two factor-analytic (FA) model. Apart from the
adequacy of the rank-two models and other statistical issues,
Yang et al. (2009) pointed out that the biplot analysis has con-
tributed little to our understanding of the nature of G × E
variation because it is a descriptive analysis with little predictive
power.
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Baker (1988) and others (e.g., Scheiner, 1993; Lindgren and
Ying, 2000) have suggested the use of predictive models based on
linear and non-linear response functions for studying G × E. The
classic stability analysis based on simple linear regression model as
pioneered by Yates and Cochran (1938) is a special case of the gen-
eral non-linear predictive models. In addition, linear functions
would usually account for a small portion of G × E variation
if a wide range of environmental conditions are tested. On the
other hand, for quantitative traits such as crop yield or human
complex diseases (Franks et al., 2013), the G × E is manifested
when the magnitude of the genetic effect differs across the range
of environmental conditions regardless of whether the response
to environmental changes is linear or non-linear. For this reason,
many recent genome-wide association studies (GWAS) in human
(Kilpelainen et al., 2011; Qi et al., 2012) have focused on deter-
mining the effect sizes of causal variants (e.g., SNPs) over different
environmental conditions (e.g., different lifestyle behaviors).

The objectives of this paper are two folds. First, we investigate
the use of different non-linear functions for modeling genotypic
response to environmental changes or gradients. In this case,
G × E is present when the response curves fail to be parallel
(Baker, 1988). Similar concept has been used in evolution and
ecology but under different names [e.g., phenotypic plasticity
(robustness), reaction norm] (e.g., Via et al., 1995). Second, we
examine whether there are differences in estimated genetic effects
under different environmental conditions. It is generally expected
that a larger effect is more likely found in the environmental con-
dition where the expression of a gene is facilitated than in the
environmental condition where the expression of a gene is not
facilitated.

MATERIALS AND METHODS
DESCRIPTION OF NON-LINEAR FUNCTIONS
As a starting point, we provide a brief description of the clas-
sic stability analysis that is based on a linear regression function
(Yates and Cochran, 1938; Finlay and Wilkinson, 1963; Eberhart
and Russell, 1966; Perkins and Jinks, 1968):

yij = ai + bixj (1)

Where yij is the performance (say yield) of the ith genotype tested
in jth environment, xj is the mean yield of all genotypes tested in
the jth environment (known as environmental index), the inter-
cept ai is the yield of the ith genotype at the worst environment,
and the slope bi measures the stability of the ith genotype.

According to Finlay and Wilkinson (1963), all genotypes can
be conveniently classified into three groups: (i) genotypes with
average stability (bi = 1.0); (ii) genotypes with low stability or
high sensitivity to environmental changes (bi > 1.0) and (iii)
genotypes with high stability or low sensitivity to environmental
changes (bi < 1.0). Eberhart and Russell (1966) further refined
this definition by suggesting that a stable genotype would be the
one with average stability, low variance due to deviations from
regression and high mean yield.

However, linear response usually accounts for only a small por-
tion of the G × E variation and the responses are most often
non-linear in practice (Knight, 1973; Jinks and Pooni, 1988). This

occurs because when individuals of the same genotype are evalu-
ated at different levels of an environmental factor ranging from
suboptimal, optimal to super-optimal levels, their performance
(i.e., yield) often shows a continuous non-linear relationship with
the environment. The response curve can rise from near zero
performance at extreme suboptimal levels of the environmen-
tal factor to some asymptotic value at optimal levels, and then
decrease to near zero value at extreme super-optimal levels. If a
small portion of the environmental range is evaluated, only the
linear response could possibly be observed within this limited
range of environmental conditions.

Here we briefly describe some well-known non-linear func-
tions that have been used to model relationships of yield or
growth with a single more defined environmental variable (for
details, see Baker, 1988; Ratkowsky, 1993). The most obvious
non-linear function is a quadratic function (parabola function)
and it is often used to describe the relationship between grain
yield and field water availability (e.g., McKenzie et al., 2004):

yij = ai + bixj + cix
2
j (2)

The quadratic function has been also used to describe the genetic
response to climate variables in forest trees (Rehfeldt et al., 1999).
Another non-linear function is the reciprocal of the quadratic
function used to describe the relationship between yield and
planting density (Baker, 1988):

y−1
ij = ai + bixj + cix

2
j (3)

This general expression can take several special forms, one of
which is known as Cauchy function,

yij = ki[
1 + (xj−x max)

2

r2
i

] (4)

Where Ki is a parameter that scales yield from zero to one (i.e.,
0 ≤ Ki ≤ 1), xmax is the x value at which the maximum yield is
achieved and γi is the scale parameter which measures the range
of genotypic response to environmental changes. This Cauchy
function has been used to delineate breeding zones in forest trees
(Raymond and Lindgren, 1990; Lindgren and Ying, 2000). The
logistic curve:

y−1
ij = ai + bic

xj

j (5)

is often used to describe the plant growth with age, but it can also
be useful for the response to the environmental changes (Baker,
1988; West et al., 2001; Zuo et al., 2012). Roberds and Namkoong
(1989) proposed the use of the Gaussian function to model the
genotypic response to an environmental gradient:

yij = ki√
2πr2

i

e

⎡
⎣
(

xj−xmax
)2

2r2
i

⎤
⎦

(6)

When Ki = 1, Equation (6) becomes the normal probability den-
sity function. These non-linear functions are graphed in Figure 1.
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FIGURE 1 | Four different non-linear functions for studying

genotype-environment interaction (normal, Cauchy, parabola, and

logistic).

It should be noted that the y-axis and x-axis in Figure 1 are
rescaled in standardized units. For example, the standardized
Cauchy function is given by:

y′
ij = 1

1 + x′2
ij

(7)

Where y ′
ij = yij

ki
and x ′

ij = xj−xmax

ri
Thus, y′

ij becomes a rela-
tive measure of the performance within the range of 0 (0%)–1
(100%). All non-linear functions are indistinguishable at or near
the optimum x′

ij = 0. For example, the Cauchy function can be
well approximated by a quadratic function at the rescaled axises
because of the following mathematical relationship:

1

1 + x′2
ij

→ 1 − x′2
ijwhenx′

ij → 0 (8)

but the approximation becomes less desirable at the extreme
environmental conditions (i.e.,

∣∣x′
ij

∣∣ >> 0).

ANALYSIS OF EMPIRICAL DATA
We will describe the analysis of two empirical data sets. The first
data set (Data A) is taken from Yang et al. (2006) who analyzed
324 replicated barley cultivar trials sown at 84 sites across three
provinces (Alberta, Saskatchewan and Manitoba) in the Canadian
prairies during 1995–2003. Here we illustrate the use of non-
linear G × E analysis of the data taken from the trials in the
province of Alberta only. The data set for the analysis is briefly
recapitulated now. In each year, there were 16 (1995)–22 (2000)
trials planted at different locations across Alberta. Each trial con-
sisted of 39–44 barley cultivars. It should be pointed that in a
given year, the same cultivars were usually included in each and
every trial but over different years, at least some cultivars were dif-
ferent in the same and different test sites either due to a turnover

to newly registered cultivars or to unavailability of pedigree seed
of older cultivars. The same check cultivars were used across
the different years. All trials were conducted using a randomized
complete block design with three or four replications. Cultural
practices such as fertility, tillage and pest control varied from site
to site but were considered to be the most appropriate for the
individual sites.

Following the procedure of Yang et al. (2006), the usual anal-
ysis of variance partitioned the total sum of squares in each year
into components due to the site effects (E), the cultivar effects (G)
and the interaction between cultivar and site effects (G × E) using
SAS PROC MIXED (Sas Institute Inc, 2012). Further partitioning
of the G × E variation under different non-linear functions was
carried out using appropriate data transformations that enabled
the analysis of non-linear G × E under the mixed-model frame-
work. The different non-linear functions were compared interms
of their ability to capture the amount of G × E variation.

The second data set (Data B) is a publicly available data set
that we previously analyzed using single-marker analysis (Ham
et al., 2010) and genome-wide prediction (Yang and Ham, 2012).
The data set consisted of 150 doubled haploid (DH) lines that
were developed from a cross between two malting barley vari-
eties (Steptoe × Morex) for the North American Barley Genome
Mapping Project (NABGMP) (http://wheat.pw.usda.gov). These
DH lines were tested in 16 environments over North America for
yield and seven other agronomic and malt quality traits. A total
of 223 restricted fragment length polymorphism (RFLP) mak-
ers mapped over the seven chromosomes of the barley genome
with 37, 37, 31, 33, 29, 22, and 34 makers being mapped on chro-
mosomes 1, 2, 3, 4, 5, 6, and 7, respectively. The effects of these
RFLP markers were estimated using a R package, GLMNET/R,
at three representative environments: poor (minimum environ-
mental index), average (mean environmental index) and good
(maximum environmental index) environments. GLMNET/R
implemented an efficient procedure for fitting the entire elastic-
net regularization path for super-saturated linear regression as
in genome-wide association studies (GWAS) (Friedman et al.,
2010; R Core Team, 2012). The elastic-net penalty (Pα) is a com-
promise between the ridge-regression penalty (α = 0) and the
LASSO penalty (α = 1), where α is related to the degree of shrink-
age of marker effects. Two shrinkage methods, elastic net with
α = 0.5 and α = 1 (i.e., LASSO), were used for genome-wide esti-
mation of marker effects on response at poor, average and good
environments.

RESULTS
DATA A
We (Yang et al., 2006) previously partitioned the total variabil-
ity into components due to genotypes (G), environments (E) and
G × E, and G × E accounted for 6.6% (2003)–23.9% (2000) of the
total variability across different years. Here we further partitioned
the G × E variability into a component that could be explained
by different linear and non-linear models described above and
a residual (Table 1). This further partitioning was based on lin-
ear or non-linear regression of yield on the environmental index
(calculated as the mean of all cultivars at each and every test loca-
tion). It is evident from Table 1 that different non-linear models
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Table 1 | Percentages of genotype × environment interaction

variation explained by linear function and four non-linear functions

in barley cultivar trials in Alberta tested in 1995–2003.

Year Linear Logistic Parabola Normal Cauchy

1995 8.49 7.52 11.10 11.47 20.17

1996 8.84 7.32 14.14 13.06 25.28

1997 6.72 5.88 11.81 9.97 12.54

1998 8.40 7.70 13.15 15.12 26.54

1999 14.70 15.75 20.41 20.85 36.56

2000 5.91 8.34 8.67 14.30 32.39

2001 6.95 11.77 13.16 35.04 86.45

2002 23.60 13.17 40.08 33.46 84.87

2003 17.71 14.06 22.51 18.88 37.69

Average 11.26 10.17 17.23 19.13 40.28

captured different amounts of the total G × E variation, ranging
from an average of 10.2% for logistic model to 40.3% for Cauchy
model. It is somewhat surprising that some non-linear models
(e.g., logistic model) actually captured less G × E variation than
the linear model. For a given model, there was also a large amount
of year-to-year variation in the percentages of the G × E variation
being captured. For example, Cauchy model captured 12.5% in
1997 and 86.5% in 2001. This result suggests that G × E variation
is more predictable in some “good” years than in other “poor”
years. In good years, stable and non-extreme weather or other
agroclimatic conditions are available for optimal performance of
individual genotypes whereas in poor years, such conditions do
not exist.

DATA B
Responses of the DH lines to environmental index were exam-
ined under different linear and non-linear models. The responses
of most DH lines were linear (Figure 2). Furthermore, the varia-
tion in such linear response was greater in “good” environments
(i.e., the locations with higher environmental index values) than
in “poor” environments (i.e., the locations with lower environ-
mental index values). It is evident from Figures 3, 4 that Elastic
net (α = 0.5) detected more marker effects than LASSO (α = 1.0)
but LASSO gave much sharper resolution of marker effects. Under
both estimation methods, marker effects were more pronounced
in good environment than in poor environment.

DISCUSSION
Differential responses of genotypes to environmental conditions
(G × E interactions) can be linear or non-linear. Most current
analyses of such responses are limited to the use of linear models.
In this study, we explore the use of different non-linear mod-
els for characterizing and dissecting G × E interaction. This
was done by extending the linear regression on environmental
indexes (the means of all genotypic values at individual envi-
ronments) or the classic stability analysis (Yates and Cochran,
1938; Finlay and Wilkinson, 1963; Eberhart and Russell, 1966;
Perkins and Jinks, 1968) to the non-linear regression analy-
sis. In the past, several non-linear functions including logistic,

FIGURE 2 | Responses of 150 doubled-haploid lines of barley from a

cross between two malting barley cultivars (Steptoe × Morex) for the

North American Barley Genome Mapping Project (NABGMP). The
range of the environmental index values runs from low (poor environment)
to high (good environment).

quadratic (parabola), Cauchy and normal functions have been
individually used to describe genotypic responses to environ-
ments (e.g., Knight, 1973; Jinks and Pooni, 1979; Roberds and
Namkoong, 1989; Raymond and Lindgren, 1990; Van Tienderen
and Koelewijn, 1994; Lindgren and Ying, 2000). For example,
Van Tienderen and Koelewijn (1994) found that the quadratic
function was “statistically significantly better” than the linear
function. In this study, our comparison of these representative
non-linear functions (Figure 1) reveals the following character-
istics. First of all, when the parameters are appropriately chosen
or rescaled, the response curves of different non-linear func-
tions near the optimum are indistinguishably similar, but their
differences become increasingly evident when the environmen-
tal condition is not good (suboptimal) or too good (super-
optimal). Second, should the true response be non-linear but
be treated as linear, it would be difficult to tell the difference
between non-linear responses to suboptimal and super-optimal
conditions because in the linear analysis, both suboptimal and
super-optimal conditions are lumped together to represent a
deteriorated environment (Figure 5). Thus, the linear analysis
would cause the reduced range of environmental variation when
non-linear response is present but its presence unknown to the
researcher or simply ignored! Third, including responses to both
suboptimal and super-optimal conditions provides more oppor-
tunities to characterize the nature of G × E interaction. For
example, differences in the rate of increase in response at subop-
timal levels would reflect differences in efficiency but differences
in the rate of decrease in response at super-optimal levels would
reflect differences in tolerance.

It may not totally surprising from this study that the Cauchy
function is the best in capturing the G × E variation because
it may be best representative of how different genotype respond
to the whole range of environmental conditions. Each genotype
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FIGURE 3 | Genome-wide scan of QTLs responsible for barley yield in poor, average, and good environments using the ridge regression analysis.

FIGURE 4 | Genome-wide scan of QTLs responsible for barley yield in poor, average, and good environments using the LASSO analysis.

would have its own optimal growing environment. Any deviation
from such optimum, either super-optimal or sub-optimal con-
ditions, would cause a reduced performance or adaptation. The
reduction must be very gentle for relatively mild super-optimal
or sub-optimal conditions. For the extremely poor environments,
the reduction asymptotically approaches a nonzero minimum.

This scenario is best described by the Cauchy function which has a
gentle decline at the regions close to the optimum (the center) and
it has very long, flat tails at either side of the center but never con-
verges. Comparing to the other non-linear functions, the Cauchy
function is more sensitive to the values close to the optimum but
less sensitive to the values at extreme environments which are of
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FIGURE 5 | A demonstration of masking true (non-linear) responses to

environmental changes if a linear function is used.

little practical interest (Raymond and Lindgren, 1990; Lindgren
and Ying, 2000). Thus the Cauchy should be considered in future
plant and animal breeding and evolution studies.

Our analysis of Data A shows that different non-linear func-
tions captured different amounts of G × E interaction variation
with Cauchy function capturing an average of 40% of the total
G × E variation which is twice the amount captured by the second
best model (normal function). This striking capability of Cauchy
function was also observed in Raymond and Lindgren (1990) and
Lindgren and Ying (2000). It is evident from Figure 1 that all
non-linear functions are similar and indistinguishable when envi-
ronmental conditions are close to the optimum but they become
markedly different when environmental conditions move toward
the extremes. Our results suggest that the actual range of envi-
ronmental conditions as represented by all test locations over the
years is too extended to be accommodated by all the functions
except for the Cauchy function which can accommodate the envi-
ronmental conditions at some distance away from the optimum.
Thus, in practical applications, the choice of a non-linear function
should be done after examining the actual distributions of envi-
ronmental conditions either from previous experiences or from
empirical data. It should also be reminded that a sufficient num-
ber of environments (e.g., ∼40 locations in our study) are needed
so that the true distribution of environmental conditions can be
well approximated by the empirical data.

The results from the analysis of Data B reveal that responses
of 150 DH lines to environmental indexes were largely linear
(Figure 2). The 16 environments (essentially 12 locations in 2
years) at which these DH lines were tested would hardly be con-
sidered sufficient for covering the whole environmental range.
Thus, the linear responses may be reflective of the response to a
limited range of environmental indexes. The possibility of non-
linear responses could not be ruled out particularly if the whole
environmental range is available. Even within this limited envi-
ronmental range, our analysis revealed some interconnected and
interesting features. First of all, the variation in the responses

of DH lines was greater in good environment than in poor
environment. Second, the contrast between good and poor envi-
ronments correspondingly led to the difference in the estimated
positions, sizes and directions of QTL effects between these envi-
ronments and this occurred irrespective of which method was
used (Figures 3, 4). Third, inconsistency in the positions, sizes
and directions of QTLs across the environmental range is a direct
evidence of strong QTL × environment interaction.

As just mentioned above, there is increase in the effect size of
detected QTLs in good environment in comparison to poor envi-
ronment (Figures 3, 4). Similar observations have recently been
made in many human GWAS particularly with respect to GWAS-
discovered causal SNPs controlling the susceptibility of obesity.
For example, Kilpelainen et al. (2011) showed that the risk effect
of FTO (fat mass and obesity associated) alleles was about 100%
and larger in physically inactive individuals than in active indi-
viduals from North America. Similar increase in the effect size
was observed when individuals with ≥1 serving sugar-sweetened
beverage per day were compared to those with sugary beverage
intake <1 serving per month (Qi et al., 2012). Such increase in
the effect size occurs because there are causal variants that lead
to more phenotypic variation in the inactive lifestyle than in the
active lifestyle. While generally being ignored in the past, our
study and those other recent studies raise an important point that
the genetic effects must not only be defined and estimated under a
reference population, but also under an appropriate environment.

In conclusion, this paper calls for the attention to the use of
non-linear functions for studying G × E interaction. We illustrate
that the portion of G × E variation due to non-linear responses
can be substantial if the correct non-linear function is used. We
also emphasize that the correct identification of non-linear func-
tions depends critically on how close the estimated environmental
range is to the true range.
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The switch to a modern lifestyle in recent decades has coincided with a rapid increase in
prevalence of obesity and other diseases. These shifts in prevalence could be explained
by the release of genetic susceptibility for disease in the form of gene-by-environment
(GxE) interactions. Yet, the detection of interaction effects requires large sample sizes,
little replication has been reported, and a few studies have demonstrated environmental
effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We
performed extensive simulations of a quantitative trait controlled by 2500 causal variants to
inspect the feasibility to detect gene-by-environment interactions in the context of GWAS.
The simulated individuals were assigned either to an ancestral or a modern setting that
alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of
perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of
realistic scenarios, highly significant GRSxE is detected despite the absence of individual
genotype GxE evidence at the contributing loci. Second, an increase in phenotypic
variance after environmental perturbation reduces the power to discover susceptibility
variants by GWAS in mixed cohorts with individuals from both ancestral and modern
environments. We conclude that a pervasive presence of gene-by-environment effects can
remain hidden even though it contributes to the genetic architecture of complex traits.

Keywords: gene-by-environment, environmental perturbation, modern lifestyle, complex disease, genetic risk

score, decanalization, GWAS, obesity

INTRODUCTION
Diseases such as diabetes, cardiovascular disease, and obesity have
become highly prevalent in the developed world in a period of
just a few generations. For example, more than one third of U.S
Citizens are obese (Ogden et al., 2007). The incidence of these
“modern” diseases is now also rising in developing countries
(Abegunde et al., 2007). Recent changes in lifestyle are thought to
be the main drivers of the emergence of these diseases, because
genetic changes at the population level only occur after many
generations.

Paradoxically, the rapid increase in prevalence of these diseases
coincides with large heritability values. There is increasing evi-
dence that the heritability of several traits has increased in the
last 50 years. Obesity serves to illustrate this point. An analysis
of Swedish military conscripts born from 1951 to 1983 showed
an increase in the heritability along with a marked increase in the
genetic variance for obesity (Rokholm et al., 2011b). A further
study of Danish twins showed that one percentage point increase
in the prevalence of obesity accompanies a ∼3.3% increase in
the genetic variance for the trait (Rokholm et al., 2011a). Thus,
the increased influence of the current “obesogenic” environment
exerts its effects through a large alteration in the overall con-
tribution of genetic factors to the susceptibility for obesity. The
two most likely explanations for this phenomenon consist of (i)
uncovering of new cryptic susceptibility variants that did not pre-
viously participate in the genetic architecture of the trait (Gibson

and Dworkin, 2004), or (ii) an increase in the effect size of
variants already associated with obesity before the emergence of
the current “obesogenic” environment (Hermisson and Wagner,
2004).

In the last 5 years, thanks to the detection of genetic vari-
ants robustly associated by GWAS, the presence of gene-by-
environment interactions (GxE) has been confirmed for several
traits. However, the discovered GxE effects explain just a minor
fraction of variance, suggesting that most interaction effects
remain hidden. The poor availability of reliable environmental
data constitutes one the major hurdles to detect GxE interac-
tions. Genetic variation of common nature can be interrogated
systematically with commercial genotyping arrays, but the avail-
ability of counterpart environmental information is often patchy
and inconsistent, impeding a systematic interrogation of GxE
effects (Patel et al., 2010, 2013). Moreover, the lack of high-
throughput environmental data makes it difficult to replicate
consistently GxE findings across datasets (Patel and Ioannidis,
2014). A second obstacle lies in the large sample size that is
required to discover interaction effects univocally. For example,
an early report observed that physical activity and diet mod-
ulate the effects of FTO variants on obesity (Demerath et al.,
2011), but the evidence remained unclear in subsequent studies
(Hubacek et al., 2011; Van Vliet-Ostaptchouk et al., 2012) until a
large meta-analysis of 45 studies of ∼240,000 samples confirmed
this interaction. Specifically, this meta-analysis established that
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the risk effect of FTO alleles was ∼100 and 40% larger in phys-
ically inactive relative to active individuals from North America
and Europe, respectively [Odds Ratio: 1.43 vs. 1.22 and 1.27 vs.
1.21, respectively (Kilpelainen et al., 2011)].

Additionally, synergistic interactions between causal alleles
and environmental factors are being detected through genetic risk
scores (Franks et al., 2013). The calculation of GRS involves gen-
eration of a weighted sum of the risk due to several variants into
a single figure, thus overcoming the limitation of statistical power
for individual SNPs. For example, the interaction between risk
alleles and sugar-sweetened beverage intake has been confirmed
by means of a predisposition score for obesity based on 32 GWAS-
discovered obesity variants. Specifically, the risk in BMI per 10
risk alleles increased by 77% in individuals with ≥1 serving per
day compared to sugary beverage intake <1 serving per month
(Qi et al., 2012). Similar examples of GRSxE detection have been
described for fried food consumption and adiposity (Qi et al.,
2014), cigarette use polygenic risk and neighborhood social cohe-
sion (Meyers et al., 2013) and Western dietary patterns and type
2 diabetes (Qi et al., 2009; Nettleton et al., 2013).

In order to quantify how prevalent this GRS-by-environment
(GRSxE) contribution may be, we have performed a simulation
study of a quantitative trait under “ancestral” and “modern” envi-
ronments. Our main aim was to define the range of realistic
conditions in which GRSxE interaction effects can be detected in
the absence of evidence for individual GxE for the contributing
alleles. The environmental perturbation and genetic architecture
of the trait are based on recent inferences from human GWAS
data. We demonstrate that a wide range of perturbation effects is
consistent with current observations from GxE studies, although
our investigations also show that these effects may heavily reduce
the power to detect causal alleles by GWAS.

MATERIALS AND METHODS
GENETIC ARCHITECTURE OF THE SIMULATED TRAIT
We performed simulations of a polygenic quantitative trait to
study the feasibility to detect gene-by-environment effects in the
context of GWAS studies. We considered a trait partially con-
trolled by genetic variants in the context of a total phenotypic
variance of 1 (VP = 1). In all simulations, we approximate the
genetic architecture based on two recent inferences regarding the
genetic basis of complex traits in humans. First, the trait is con-
trolled by 2500 causal SNPs of common nature (minor allele
frequency >5%). This number of genes resembles the number
of susceptibility variants inferred for several complex traits [e.g.,
from ∼1700 to 2900 for myocardial infarction and type 2 dia-
betes, respectively (Stahl et al., 2012)]. Second, we assign the
percentage of variance explained by each causal SNP (genetic
variance of the trait, gv) based on the inferences from a large
meta-analysis on normal height variation (Lango Allen et al.,
2010). This study discovered 180 loci associated with height, each
explaining from 0.012 to 0.28% of the variance in the trait. The
contribution of 701 variants of similar effect size (accounting for
16% of the VP) was inferred. We thus assigned the inferred distri-
bution to 701 randomly selected variants from the 2500 simulated
SNPs (gathered from Supplementary Table 4 in Lango Allen et al.,
2010). Each of the remaining 1799 alleles was assigned to explain

0.012% of the variance. Hence, the 2500 simulated common SNPs
individually explain from 0.012 to 0.28% of the variance, and the
total genetic component of the trait accounts for 36% of the VP

(heritability = 36%). Importantly, note that we assign the allelic
effects as a percentage of variance that each SNP explains, with
the corollary that the actual effect size per allele will depend on
the frequency of the causal allele (see next paragraph).

The number of SNPs and g of the trait are fixed. Then,
for each simulation we re-assign the effect allele frequencies
(EAF) and effect sizes (β) at each of the 2500 causal SNPs. To
mimic the ascertainment bias of GWAS arrays, EAF values were
drawn from a uniform distribution with boundaries 0.05 and
0.95 [U(0.05,0.95)]. Genotypes were simulated assuming Hardy-
Weinberg equilibrium. For example, for a SNP with EAF = 0.4
in a simulation of 10,000 samples, we would assign a value of
0, 1, and 2 phenotype-increasing alleles to ∼1600, 4800, and
3600 individuals, respectively. At this point of each simulation,
we know the number of alleles that every individual carries at each
site, as well as the total genetic variance each SNP explains. We can
then easily calculate the effect size (β) of each SNP. The effect of
the ith SNP on the trait is given by its contribution to the genetic
variance of the trait (Park et al., 2010):

gvi = 2 ∗ β2 ∗ EAFi ∗ (1 − EAFi)

For example, a variant that explains 0.28% of the VP with an
effect allele frequency of 0.4 would increase the simulated pheno-
type by 0, 0.076, and 0.153 in individuals with 0, 1, and 2 causal
alleles at that position, respectively. We consider an additive poly-
genic architecture. Thus, for each simulated individual the effects
are added additively per allele copy, and summed independently
across all 2500 causal loci. After assigning the effects to all SNPs,
the additive genetic variance component (VA) equals ∼0.36. To
achieve the desired phenotypic variance (VP = 1), we assigned
a random environmental component (VE) to every individual,
drawn from a normal distribution with mean 0 and variance 0.64
(VE = 1 − VG). In summary, we simulated a quantitative trait
with heritability 36% that results from the additive gene action
over 2500 independent causal SNPs of common frequency.

MODELING A SHIFT IN ENVIRONMENT THAT PERTURBS THE GENETIC
EFFECT SIZES
The genetic architecture explained above assumes that all indi-
viduals experience the same environment. This study investigates
the consequences of a change in the environment that also mod-
ifies genetic contributions to disease or traits. Consequently, for
convenience we call the baseline situation the “ancestral” envi-
ronment, and postulate a new “modern” environment in which
genetic effects are perturbed at some fraction of the 2500 causal
SNPs. We also suppose that in contemporary society, some indi-
viduals have a lifestyle more close to the “ancestral” one (simplis-
tically, low caloric intake, high activity) while others have a more
“modern” lifestyle (they consume sugary beverages and engage in
other obesogenic behaviors). In reality there will be a gradation,
but the dichotomous model serves for purposes of illustration of
the potential consequences for disease for contemporary societies
of the transition to a western lifestyle, that may have induced GxE
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effects (Gibson, 2009). Specifically, we considered the situation
in which some or all individuals in the population live in a new
environment that provokes a scaling effect (perturbation) in the
genetic effect size at a fraction of the 2500 causal SNPs. Thus, sim-
ulated individuals can be classified into two binary “unperturbed”
and “perturbed” categories, according to the environment they
live in. The ancestral and modern environments aim to model
a situation in which the genetic susceptibility to disease may
have been altered in modern societies as a consequence of the
transition to a western lifestyle (Gibson, 2009), that may have
induced GxE through scaling effects. Specifically, the “modern”
environment alters the genetic architecture of the trait by causing
a multiplication of the effect size (β) by a constant factor (e.g.,
with a 1.5-fold change, a SNP with βANCESTRAL = 0.06 trans-
forms to βMODERN = 0.09). The strength of the GxE interaction
is proportional to, first, the factor of perturbation and, second,
the proportion of SNPs that become perturbed in the “modern”
environment. For example, physical activity was shown to atten-
uate the association between rs9939609 in FTO and body mass
index (BMI) by ∼30 to 95% (Andreasen et al., 2008; Kilpelainen
et al., 2011). Another recent study on the interaction of sugar-
sweetened beverages and BMI described an increase of 77% in
the genetic risk per 10 causal alleles for individuals who drink >1
beverage serving per day, which would translate into an ∼8%
increment in the effect size per variant under the “modern” envi-
ronment (Qi et al., 2012). In our simulations, we explored the
parameter space that ranges from 5 to 100% increase in the
genetic effect size (1.05–2-fold change, respectively). Regarding
the proportion of SNPs perturbed, we explored the outcomes
after perturbing from a minimum of 1% to a maximum of 20%
of the causal variants (25 and 500 of the 2500 simulated SNPs,
respectively).

SELECTION OF SNPs THAT BECOME PERTURBED IN THE “MODERN”
ENVIRONMENT
All causal SNPs do not account for the same proportion of genetic
variance in the simulated trait. Therefore, the degree of GxE we
induce also depends on the actual effect size of the perturbed
SNPs. We explored two different models of SNPs that become
perturbed. In model 1, the SNPs were chosen at random, whereas
in model 2 they were chosen from those explaining most of the
variance (e.g., the 250 SNPs with highest explained variance in
simulations if 10% of the variants were perturbed). Importantly,
the random environmental component (VE) was drawn equally
in both “ancestral” and “modern” environments. In other words,
the “modern” environment induces an increase in the VP after
perturbation that is entirely dependent on the genetic compo-
nent of the trait, thus increasing the VG and heritability. Models
entailing an increase in VE could be similarly explored, but we do
not do so here. Moreover, we note that although we only simu-
late scaling effects (at the SNP level), since only a small portion
of variant effects is perturbed, there are also rank effects at the
phenotype level.

THREE SCENARIOS OF SNP DISCOVERY IN A GWAS SETTING
For both perturbation models 1 and 2 explained above, we set up
three different scenarios to perform a “SNP discovery” process to

ascertain the variants that were subsequently tested for the pres-
ence of GxE effects (see a workflow summary in Figure 1). In
the first scenario, “scenario A,” we act as if all perturbed SNPs
were known, and forward them directly to GxE analysis (see next
section). “Scenario A” avoids the GWAS discovery step and thus
constitutes an ideal situation to establish an upper bound for the
range of perturbation effects that can be detected under models 1
and 2.

However, in reality we do not know in advance which SNPs
may have undergone environmental perturbation in effect size.
Usual practice consists on testing GxE effects for variants that
have been previously associated by GWAS. To mimic the situa-
tion, we developed two further scenarios in which we added a
preliminary GWAS step to discover SNPs. In “scenario B,” we per-
formed a GWAS in which 100% of the samples were selected from
the “modern” perturbed environment. In “scenario C” we per-
formed GWAS upon a sample that is drawn equally from each
of the two environments (50% of the individuals come from
the “ancestral” and “modern” settings, respectively). In other
words, “scenario C” corresponds to a situation in which half of
the society lives in an “ancestral” environment (e.g., extensive
physical activity in daily life and low fat diet), whilst the other
half follows a “modern” lifestyle that increases the effect size of
perturbed alleles. Importantly, we do not “know” which environ-
ment each individual lives in, in the sense that this information
is not included in the discovery GWAS. For both scenarios, we
performed a two-stage genome-wide screen in which the quan-
titative phenotype is regressed against the allele dosage at each
SNP. In the discovery screen, we assay the 2500 simulated SNPs
in a sample of 50,000 individuals. SNPs that achieve P < 10−5

in the discovery GWAS are then assayed in a meta-analysis with
100,000 individuals after joining the 50,000 samples from the dis-
covery GWAS with a new simulated replication sample of 50,000
individuals. Finally, SNPs associated with the quantitative trait at
P < 5 × 10−8 in the meta-analysis are then forwarded to a novel
sample of 40,000 individuals for the GxE analysis described in the
next section.

TESTING FOR GENE-BY-ENVIRONMENT EFFECTS AFTER
PERTURBATION
A central focus of our study lies in the evaluation of the power to
detect the GxE effects in our simulated trait. We aimed to evaluate
the performance of two different approaches, namely (i) power of
detection through the examination of individual SNPs and (ii) by
means of unweighted genetic risk scores (GRS) that sum up the
number of causal alleles for each individual (without weighting
each allele by its effect size). To do so, for each scenario we sim-
ulated two cohorts of 20,000 individuals each that are sampled
from the “ancestral” and “modern” environments, respectively.
For each simulated individual, we know its phenotype, the num-
ber of causal alleles at each SNP (coded as “0,” “1,” and “2”), the
total number of causal alleles over all selected loci (GRS) and the
environment it belongs to (coded as “0” and “1” for “ancestral”
and “modern” environments, respectively). In each simulation
of 40,000 individuals, we tested the interaction between genetic
component and environment by means of a multiple linear
regression: Yj = β0 + βG ∗ χ(G) + βE ∗ χ(E) + β(G∗E) ∗ χ(GE)
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FIGURE 1 | Summary of the steps followed in the study.

to estimate the regression coefficient β(G∗E), with Yj, χ(G)i,
and χ(E)i recording the phenotype, allele dosage (or GRS) and
environment of the individual j, for individuals 1, . . . , 40, 000.

In summary, we explored two different ways to select SNPs that
undergo perturbation and three different procedures to choose
the actual variants upon which we test for gene-by-environment
interactions. For each of the six resulting combinations (models 1
or 2, and scenarios A, B, or C), we explored 400 combinations of
parameters. Specifically, the percentage of SNPs that experienced
perturbation ranged from 1 to 20% (20 steps of 1%), and the fac-
tor of perturbation ranged from a 1.05–2-fold change in effect

size (20 steps of 0.05-fold increments). We performed five differ-
ent replications for each of the 400 combinations, and thus 2000
simulations for each of the six combinations. Results are summa-
rized as heat maps that interpolate relevant parameters across a
continuous range of values (Figures 2, 4–7, and Supplementary
Table 1).

STATISTICAL ANALYSIS
All the analyses were performed using the R software v.3.0 (R Core
Team, 2013). Associations between the simulated phenotype and
allele dosage, as well as the GxE interactions, were tested with the
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FIGURE 2 | Distribution of effect sizes and phenotypes before and after

perturbation. From left to right, outcomes after perturbing the effect size of
1, 5, and 20% of the SNPs by 1.5, 1.5, and 1.2-fold, respectively. Top and
bottom panels have been simulated under models 1 and 2, respectively.
Major plot: the effect size (β) of the 2500 causal SNPs is shown in y-axis.
SNPs are ranked in x-axis according to the percentage of variance explained
by each variant in the “ancestral” environment (from left to right). Gray dots
correspond to the effect size in the “ancestral” environment. The scaling

effect among environments is shown in black and red. Specifically, the black
and red dots in main panel indicate, respectively, the effect size before and
after (in “ancestral” and “modern” environments). Minor plot: distribution of
phenotypes in a cohort of 10,000 simulated individuals. Black and red curves
show the histogram of phenotypes for the same individuals, before and after
perturbation. The curve in the background represents the histogram of
phenotypes if the two simulated samples are joined into a cohort of 20,000
individuals.

lm function. Heatmap plots were generated using the fields and
akima R packages.

RESULTS
We simulated an environmental perturbation in genetic effect
sizes to explore the feasibility of detecting gene-by-environment
interactions. In the “ancestral” environment, the 2500 causal vari-
ants explained from 0.012 to 0.28% of the phenotypic variance.
In the “modern” setting a percentage of variants ranging from 1
to 20% underwent perturbation, and their effect sizes increased
by a constant factor that ranged from 1.05 to 2-fold. We applied
two different models to select the causal SNPs that become per-
turbed in the second “modern” environment, and built three
scenarios to select the SNPs upon which we investigated the fea-
sibility of detecting gene-by-environment interactions following
the workflow in Figure 1. A detailed summary of the results for
each simulation is available in Supplementary Table 1.

EFFECTS OF THE “MODERN” ENVIRONMENT IN THE DISTRIBUTION OF
EFFECT SIZE AND PHENOTYPES
The actual effect size of each causal allele depends on the fre-
quency and variance explained by the causal variant. For example,
we set the strongest contribution in the “ancestral” environment
at ∼0.3% of the variance explained. If that allele has a frequency
of 0.5, it would present an effect size of 0.075 (βANC), increas-
ing the phenotype by 0, ∼0.075 and 0.15 in individuals with zero,
one and two causal alleles, respectively. If it becomes perturbed
in the “modern” environment by the strongest perturbation pos-
sible (2-fold change; βMOD = 2 ∗ βANC), the effect size would
increase from ∼0.075 to 0.15. Thus, the variant would increase
by 4-fold the percentage of phenotypic variance it accounts for,
hiking from ∼0.3 to 1.2% (see Materials and Methods).

The differences in the distribution of phenotypes under
each environment not only depend on the strength but on the
proportion of variants that become perturbed in the “modern”
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setting. The same perturbation inducing a 2-fold increment in
the effect size, but acting upon 20% of the SNPs, would result
in a distribution of phenotypes that do not overlap extensively.
We illustrate the resulting distribution of phenotypes under the
“ancestral” and “modern” environments for a range of pertur-
bation effects in Figure 2 (black and red lines, respectively). For
instance, the average phenotype under “modern” conditions after
perturbing 20% of the causal SNPs by 1.2-fold is two standard
deviations above the average phenotype under the “ancestral”
environment. Overall, perturbation leads to a flattened distribu-
tion of phenotypes when individuals from both environments
are combined, and the increase of phenotypic variance is pro-
portional to the percentage of people that live in the “modern”
environment. The differences are strengthened under model 2,
because the SNPs that already present the largest effect sizes in
the “ancestral” environment are chosen for perturbation in the
“modern” setting. Indeed, the most extreme simulated perturba-
tion, such as multiplying the effect of 20% of the variants by two,
results in bimodal distributions that can be easily distinguished
and are probably biologically unrealistic. However, the differences
are much subtler for most of the parameter space, and in next
sections we refer to the parameter space that results in a change in
the distribution of phenotypes that resembles that of typical traits
such as contemporary BMI (see Figure 3 for a real example based
on the change in BMI shown by North American males).

The perturbation in genetic effect sizes prompted by the “mod-
ern” environment leads to an increase in the heritability of the
quantitative trait (Figure 4). The phenotype presents a basal her-
itability of 36% in the “ancestral” environment, but it easily
boosts in the “modern” setting. For instance, a 1.2-fold increase
in the effect size of 20% of the causal SNPs leads to a heritabil-
ity of ∼80%, and a similar effect is achieved with a 1.3 and

FIGURE 3 | Shift in BMI in U.S males from 1971–1975 to 1988–1994.

Distribution of BMI in North American males (20–55 age) studied in the
NHANES I and III health and nutritional surveys (adapted from Figure 1 in
Cutler et al., 2003).

1.6-fold change acting upon ∼10 and 5% of the causal variants,
respectively. This happens because the “modern” environment
induces a hike in VP that is entirely due to a higher VG (we
keep VE constant, see Material and Methods). Again, the effect
is more pronounced under Model 2 (Figure 4B). For instance,
2-fold increments in the effect size inevitably lead to unrealistic
heritability values above 90% in the “modern” environment.

We illustrate the effects of the “modern” environment on
(i) the genetic effect sizes of perturbed SNPs (major graphs
in Figure 2), (ii) the differences in the distribution of pheno-
types between the “ancestral” and “modern” lifestyles (small
graphs in Figure 2), and (iii) the heritability of the simulated
trait (Figure 4). We next describe the ability to detect gene-by-
environment interaction effects induced by the “modern” setting.
We compare the ability to detect GxE interactions at the SNP
level with that of GRSxE analyses. Overall, we consider three dif-
ferent scenarios to ascertain candidate SNPs, and examine for
GxE effects in cohorts of 40,000 individuals in which half of the
samples come from the “ancestral” and “modern” environments,
respectively.

DETECTION OF GxE EFFECTS WHEN ALL PERTURBED VARIANTS ARE
KNOWN (SCENARIO A)
Even if the analyses include all variants that are perturbed (that
is, known from the model, without a GWAS discovery step),
GxE effects tend to remain undetected at the SNP level (see
Figure 5). Specifically, under Model 1 only 32 out of 2000 simula-
tions (1.6%) achieved genome-wide significance (P < 5 × 10−8)
for any SNP in the GxE analyses, and all of these required a >1.5-
fold change in the effect size (Figure 5B). Indeed, at most a single

FIGURE 4 | Heritability of the simulated trait in the “modern”

environment. Color map showing the heritability in cohorts perturbed
under model 1 (A) and model 2 (B), according to the percentage of SNPs
perturbed (x-axis) and the factor of perturbation in effect size (y-axis).
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FIGURE 5 | GxE analyses under scenario A. For scenario A, color
maps showing the results of the gene-by-environment interaction
analyses according to the percentage of SNPs perturbed (x-axis) and
the factor of perturbation in effect size (y-axis). (A) P-value of the
GRSxE interaction under model 1. (B) Number of SNPs at

genome-wide significance levels (P < 5 × 10−8) for GxE under model
1. (C) P-value of the GRSxE interaction under model 2. (D) Number
of SNPs at genome-wide significance levels (P < 5 × 10−8) for GxE
under model 2. Panels (B,D) record the largest number observed
out of five permutations.

variant was detected in each simulation, even if we tested for
GxE individually for all perturbed SNPs (e.g., 500 tests for GxE
when 20% of the variants were perturbed). Furthermore, only
14% of the 100 simulations with a 2-fold change in the effect size
harbored a variant that passed the threshold for genome-wide
significance (Figure 5B). Conversely, there was a wide range of
perturbation parameters for which genetic risk scores, the sum of
the total number of causal alleles each individual carries, consti-
tuted a powerful tool to detect interaction effects induced by the
“modern” environment (Figure 5A). For instance, GRSxE inter-
action terms using GRS calculated over 250 perturbed SNPs (10%
of causal variants) showed extremely low p-values (P < 10−10)
for all the ranges from 1.3 to 2-fold change in the genetic
effect size. Indeed, tiny increments in the effect size, such as a
1.2-fold change, resulted in ∼100% of the simulations detect-
ing GRSxE effects at the P < 0.05 significance level (notice that
we performed a single GRSxE test per simulation, because the
allelic count of all tested variants were collapsed into a single

number). Only the parameter space correspondent to <1.1-fold
changes for <5% of the causal variants consistently resulted in
non-significant GRSxE interaction terms (Figure 5A).

The same patterns were observed under the environmental
perturbations of Model 2, although an overall increased ability to
detect interaction effects was noticed (Figures 5C,D). Specifically,
12.8% of the simulations (255 out of 2000) led to significant GxE
effect at the SNP level, although 74.1% of those showed a sin-
gle variant being genome-wide significant (189 out of 255). It
was necessary to perturb genetic effects by 1.8–2-fold to achieve
several variants being significant at the SNP level (Figure 5D).
The interaction effects induced by the “modern” environment are
almost universally detected through GRSxE analyses (Figure 5C).

DETECTION OF CAUSAL ALLELES BY GWAS AFTER MODERN
ENVIRONMENTAL PERTURBATION
In “scenario A,” the environmental perturbation in effect sizes can
be easily detected with GRSxE analyses. These results establish
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an upper bound for the ability to detect gene-by-environment
effects induced by the “modern” lifestyle, because the analyses
are restricted to the truly perturbed variants. Yet, for real traits
it is uncertain which SNPs may present GxE effects. Usual prac-
tice consists of prioritizing variants unequivocally associated to
the trait of interest, such as the alleles discovered by GWAS. To
mimic this procedure, we perform a preliminary GWAS study to
ascertain variants for GxE analyses.

GWAS meta-analyses of 100,000 individuals entirely drawn
from the “ancestral” environment detected ∼90 genome-wide
significant variants, accounting for ∼15% of the heritability
(data not shown). GWAS on cohorts with 100% of the indi-
viduals being “perturbed” under model 1 led to an increased
ability to detect variants associated to the trait (Figure 6A). The
number of detected variants oscillated from 100 to 150 for the
most realistic range of perturbation parameter space, and hiked
to ∼300 when GWAS was performed upon 100,000 very heav-
ily “disturbed” individuals (e.g., 2-fold change in the effect size
for ∼20% of the causal variants). A progressively larger number of

the associated variants that are detected correspond to perturbed
variants (Figure 6B). The tendency to detect increasing propor-
tions of perturbed variants becomes exacerbated under model 2.
Specifically, and even if similar numbers of significant variants are
detected by GWAS (Figure 6C), the increment in SNP detection
corresponds to perturbed variants (Figure 6D).

Highly divergent patterns were observed when we perform a
preliminary GWAS upon a mixed sample of individuals drawn
equally from the “ancestral” and “modern” environment (“sce-
nario C”). Under Model 1, the number of variants detected by
GWAS still remained close to ∼90 only if the 50% of GWAS indi-
viduals coming from the “modern” environment had only been
perturbed slightly (e.g., <1.2-fold for <5% of the causal SNPs,
bottom-left corner in Figure 6E).The ability to detect causal alle-
les dropped when more extensive perturbations were simulated.
For instance, ∼60 variants were detected at genome-wide sig-
nificance levels when 7% of the variants had their effect size
multiplied by 1.3-fold, and almost no variants are discovered if
the same percentage of SNPs underwent a 1.8-fold change in

FIGURE 6 | Number of SNPs discovered by GWAS under scenarios B and

C. Color maps showing the results of the GWAS upon cohorts of 100,000
individuals with (i) 100% of the samples drawn from the “modern”
environment (scenario B; top panels, A–D) and (ii) 50% of the samples drawn
from each “ancestral” and “modern” environments (scenario C; bottom
panels, E–H). Specifically: (A,E) Under model 1, number of variants

discovered by GWAS at genome-wide significance levels (P < 5 × 10−8).
(B,F) Under model 1, percentage of the genome-wide significant variants that
have undergone perturbation. (C,G) Under model 2, number of variants
discovered by GWAS at genome-wide significance levels (P < 5 × 10−8).
(D,H) Under model 2, percentage of the genome-wide significant variants
that have undergone perturbation.
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the effect size, or with a 1.3-fold increase for 20% the causal
SNPs. Interestingly, the increasingly reduced number of variants
discovered by GWAS under “scenario C” corresponded to per-
turbed SNPs (top-right corner in Figure 6F). Similar patterns
were observed for “scenario C” under model 2 of perturbation
(Figures 6G,H). As discussed below, we attribute these effects
to the increase in phenotypic variance being greater than the
individual genetic effects of each SNP.

DETECTION OF GENE-BY-ENVIRONMENT INTERACTIONS WITH SNPs
DETECTED BY GWAS
The enhanced power to discover SNPs under “scenario B”
resulted in patterns of GxE interaction detection that are
similar to those observed for “scenario A,” in which only
perturbed variants were used (Figures 7A–D). SNP-by-SNP
tests rarely resulted in significant GxE interaction coefficients
(Figure 7B). By contrast, a wide range of the parameter space
led to significant GRSxE evaluations, starting from ∼1.4-fold

change for ∼5% of the variants to any stronger perturba-
tion, Figure 7A). Similarly, under model 2 the tendency toward
significant GRSxE detection was exacerbated (Figure 7C), and
GRSxE interactions were significant for the whole range of sim-
ulated parameters. In these analyses, only GWAS performed
upon strongly perturbed individuals (1.8–2-fold change in
β) permitted detection of perturbed SNPs that were consis-
tently significant at the individual level in the GxE analysis
(Figure 7D).

A reversed pattern was observed under “scenario C.” The
proportion of perturbed SNPs among the detected variants
was higher as perturbation strengthened, but it became neg-
ligible in absolute terms because almost no variants were
detected by GWAS. Thus, the overall poor performance of mixed
GWAS to detect perturbed SNPs rendered almost impossible
the task of detecting GxE effects with GWAS SNPs, even at the
GRSxE level (Figures 7E,F). The compromised detection power
under “scenario C” does not however preclude the detection

FIGURE 7 | GxE analyses with SNPs discovered in a preliminary GWAS

(scenarios B and C). Color maps showing the results of the
gene-by-environment interaction analyses according to the percentage of
SNPs perturbed (x-axis) and the factor of perturbation in effect size (y-axis).
Results for scenario B are shown in top panels (A–D). Specifically: (A) P-value
of the GRSxE interaction under model 1. (B) Number of SNPs at
genome-wide significance levels (P < 5 × 10−8) for GxE under model 1.

(C) P-value of the GRSxE interaction under model 2. (D) Number of SNPs at
genome-wide significance levels (P < 5 × 10−8) for GxE under model 2. The
corresponding results for scenario C are shown in bottom panels (E–H).
Panels (B,D,F,H) record the largest number observed out of five
permutations. White areas in top right corners in panels (E,G) correspond to
parameter space with no SNPs detected by GWAS and thus missing GRSxE
analyses.
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of gene-by-environment effects through GRSxE analyses under
model 2 (Figures 7G,H).

DISCUSSION
In this study we performed a series of simulations to inquire
under what conditions gene-by-environment effects can be
detected. We applied an environmental perturbation upon
cohorts of individuals that live in either an “ancestral” environ-
ment, or a “modern” setting that leads to an increment in the
genetic effect sizes of a percentage of the causal alleles. For a wide
range of the explored parameter space, gene-by-environment
effects mostly remain unnoticed when interaction is examined
at the SNP level. Conversely, GxE analyses are well powered to
detect significant interactions when the genetic component of
each individual is summarized through genetic risk scores (GRS)
that sum up the total number of causal alleles in a single figure.
Moreover, we find that the ability to detect perturbed SNPs in a
GWAS preliminary to the GxE analysis depends on the mixture of
samples coming from each environment. Genome-wide screens
performed upon homogeneous cohorts of perturbed individuals
show increased power to detect significant gene-by-environment
interaction effects. In contrast, GWAS upon heterogeneous mix-
tures of “unperturbed” and “perturbed” individuals present a
decreased ability to detect significant SNPs, thus inhibiting the
task of detecting GxE effects.

FEASIBILITY OF THE ENVIRONMENTAL PERTURBATION UNDER THE
“MODERN” ENVIRONMENT
The validity of the insights gained from this study depends on
the plausibility of our model of environmental perturbation,
and the extent to which we mimic the reality faced by current
GWAS studies. Certainly, it is difficult to evaluate the conse-
quences of the “modern” perturbation in the case of actual
human phenotypes because the heritability and phenotype distri-
butions correspondent to the “ancestral” lifestyle are unknown.
However, there is increasing evidence that the switch to a west-
ern lifestyle may have been coupled with a change in the genetic
effects of causal alleles (Gibson, 2009). Human complex traits
result from the assemblage of multiple physiological dimensions,
which may lead to a canalization of phenotypes whereby genetic
effects are minimized following long-term stabilizing selection
(McGrath et al., 2011). Under such a theoretical model, the “mod-
ern” human standard of living may have uncovered the activity
of previously silent, or almost silent, cryptic genetic variability
(Hermisson and Wagner, 2004). For example, this could have
been the case for polymorphisms lying in genes that partici-
pate in pathways involved in neural regulation of appetite (Heber
and Carpenter, 2011). These variants may have played a small
role in the genetic etiology of weight throughout the history of
our species, but may explain a larger proportion of the indi-
vidual susceptibility to obesity in the modern environment of
unrestricted access to processed food. A variety of other simi-
lar situations could be imagined, such as the interplay between
addiction, tobacco use and lung cancer (Amos et al., 2008).
In our simulations, we explore a range of parameter space in
which the “modern” environment perturbs from 1 to 20% of
the causal variants. Such a change can be easily framed in a

pathway perspective. Specifically, one or several physiological
pathways participating in the genetic architecture of complex
traits may respond differently under the “modern” environment.
In the context of a common disease, the environmental per-
turbation we explore would plausibly amount to an increase
in the proportion of the population at risk (as in Figure 3 for
real BMI).

Our model postulates one of the simplest instances of GxE
in which individuals are assigned to a binary environmental
state that would roughly correspond to “ancestral” and “modern”
lifestyles. A more realistic scenario of environmental perturba-
tion should summarize the varying fraction of “modern lifestyle”
followed by each person into an individual-specific measure, or
“exposome” (Patel and Ioannidis, 2014). More complex simula-
tions could be tuned to incorporate more realistic settings. For
instance, the extent of exposure to modern lifestyle could be more
finely determined (e.g., degree of sedentary behavior, diet pat-
terns, stress at work. . . ) to explore threshold-dependent models
of GxE. Our simulations are necessarily a simplification of the
almost infinite array of GxE interactions that could arise in the
presence of multi-layered and continuous environments that can
perturb the genetic effects of causal variants (Luan et al., 2001;
Wong et al., 2003). However, the qualitative environmental states
in our simulations resemble the practice of recent studies that
have confirmed GxE effects after categorizing the environment
into binary categories, as has been the case for example in stud-
ies of sugar-sweetened beverage consumption and overall diet
patterns (Do et al., 2011; Qi et al., 2012).

In addition to the mechanism of perturbation and the binary
nature of the simulated environment, the realism of our pertur-
bation model also depends on the likelihood that the explored
parameter space is realistic. We chose to approximate this by
checking whether the range of simulated effects results in pheno-
typic distributions that approximate real observations. In the con-
text of BMI, for instance, western urban women have been shown
to present an average BMI value that is ∼4 standard deviations
larger than the corresponding figure for Hadza hunter-gatherer
women (see Table 1 in Pontzer et al., 2012). These differences
are similar to the average horizontal shift between “ancestral”
and “modern” environment that we observe in our simulations
(e.g., depending on the percentage of perturbed SNPs, changes
in effect sizes by <1.4-fold lead to ∼1 to 4 standard deviations
of difference in the average phenotype). Furthermore, we also
examined the shape of the phenotype distributions. Indeed, we
observe significant GRSxE analyses for simulations with param-
eter combinations that result into more flattened but unimodal
distributions of phenotypes, such as those observed in U.S men
(Figure 3). Nonetheless, the actual phenotypic variance of a com-
bined population depends on the mixture proportions and even
extreme situations in which half of the individuals are raised in
each environment do not lead to a bimodal phenotypic distri-
bution in a combined simulation population. The heritability of
the trait is also kept within a reasonable range. It can severely
hike to 90% in the context of the most severe perturbations,
but the actual heritability would lie from 36 to 80% accord-
ing to the exact proportion of “unperturbed” and “perturbed”
individuals.
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DETECTION OF GENE-BY-ENVIRONMENT EFFECTS WITH GENETIC RISK
SCORES
We observe a substantial parameter space in which gene-by-
environment effects can be easily detected with genetic risk scores
while remaining hidden in individual SNP analyses, even after
testing exclusively those variants that were detected in popu-
lations perturbed by the “modern environment.” SNP-by-SNP
analyses provide anecdotal evidence for significant GxE, and only
when extreme perturbations are assayed (e.g., >400 SNPs per-
turbed by 2-fold in the effect size are necessary to detect a single
genome-wide significant variant). Conversely, GRSxE analyses are
always significant when β-s are multiplied by 1.3-fold or more,
or for the whole range of perturbation parameters when the
“modern” environment affects the SNPs that explain most of the
variance in the trait (i.e., model 2). These results confirm that a
widespread presence of GxE effects is not at odds with the lack
of evidence when individual variants are assayed, despite of a
substantial presence of interaction effects.

An important aspect of our simulations lies in the choice of
variants that are perturbed by the “modern” environment. We
observe that it is easier to detect GxE effects when the variants
that are perturbed coincide with the alleles that explain most of
the genetic basis of the trait, as in model 2. This makes sense
considering that these perturbed variants not only present the
largest effect sizes, but also have multiplied it in the “modern”
environment. The same mechanism explains the increment in
the number of variants detected by GWAS when the genome-
wide screen is performed entirely upon perturbed individuals,
as in “scenario B.” For real traits with widespread GxE effects, it
may be key to perform GWAS selecting for perturbed individuals.
The selection of those individuals following a “modern” lifestyle
would unravel specific pathways that respond badly in face of per-
turbation, thus enabling a more detailed understanding of the
etiology of the diseases of affluence. Nonetheless, it may be inher-
ently complex to design “perturbed-only” GWAS, owing to the
difficulty in defining what exactly constitutes the perturbed envi-
ronment. The sampling of individuals could also be confounded
by the fraction of cases that are entirely due to purely environ-
mental causes without any major role of gene-by-environment
interactions linked to “modern” life.

MIXTURE OF ENVIRONMENTS COMPROMISES GWAS DISCOVERY
POWER
The simulations in which the preliminary GWAS is performed
upon cohorts with a mixed environmental exposure (“sce-
nario C”) show a remarkable trend regarding SNP discovery. The
combination of “ancestral” and “modern” environments does
not compromise the detection of causal variants when pertur-
bation effects are tiny or restricted to a small fraction of the
causal SNPs. However, larger perturbations decrease the ability
to detect new variants, and statistical power eventually collapses
for the strongest range of effects in our simulations. This result
makes sense because gene-by-environment interactions add vari-
ance and heterogeneity in the estimates of SNP effects. We show
the results for a causal variant that explains 0.3% of the vari-
ance in an “ancestral” population (Figure 8). This allele achieves
P < 10−12 when assayed in a GWAS with 20,000 individuals that

follow the “ancestral” lifestyle. In contrast, the significance wors-
ens (P < 10−7) when this variant is assayed upon a mixture of
10,000 “ancestral” individuals and 10,000 individuals in which
10% of the SNPs have increased their effect size by 1.5-fold.
Eventually, the variant remains completely unnoticed in a mixed
GWAS when the effect size increases by 2-fold in the individ-
uals following “modern” lifestyle (P∼10−4). As a consequence,
these variants are not found among the top candidate list in our
simulated meta-analysis GWAS.

It is difficult to evaluate the extent to which pervasive gene-
by-environment effects have compromised the power to discover
associated variants by GWAS. The number of discovered variants
correlates with sample size (Visscher et al., 2012), but some other
differences among studies can be remarked upon. For instance, a
large meta-analysis of ∼180,000 individuals reported 180 differ-
ent loci associated to height, whereas a similarly powered study
with >250,000 individuals only described 32 loci for BMI (Lango
Allen et al., 2010; Speliotes et al., 2010). This may be explained
simply by a difference of narrow sense heritability. On the other
hand, the SNP-based heritability in these studies explains a
notably greater proportion of the total heritability for height,
implying a reduced missing heritability concern. We propose that
this difference might be attributed to environmentally-induced
heterogeneities in genetic effect size being more prevalent in the
case of BMI, in turn explaining the lack of power to detect obesity-
related loci. Arguably, this limitation can be avoided in real GWAS
through the inclusion of covariates (e.g., variables that capture
nutrition and physical activity levels per individual in a GWAS
for obesity). However, the potential covariates to be included are
often unknown or not available for all the cohorts, as in for exam-
ple the largest meta-analyses for height and BMI (Lango Allen
et al., 2010; Speliotes et al., 2010).

We explore a genetic architecture and a range of perturbation
parameters that are based on empirical data, which strengthens
the validity of our observations. However, the present study is
not devoid of weaknesses. Among others, we have used the same
sample size in all the simulated GWAS and GxE studies. This
comes at a price, since the range of perturbations that result
in significant GRSxE would certainly change if larger studies
were performed. Second, we performed simulations of random
mating populations with genotypic proportions following strict
Hardy-Weinberg equilibrium (HWE). This procedure follows the
usual practice consisting of screening polymorphisms for HWE.
Nonetheless, confounding of population structure with environ-
mental variability, further complicating the detection of GxE in
real studies, remains a possibility. Third, we explored the presence
of interactions through unweighted GRS that do not take into
account the effect size of each variant. Since only a few variants
present notably large effects (Figure 2), in reality weighted and
unweighted risk scores are very highly correlated once more than
a few dozen loci are incorporated, which minimizes the loss of
power to detect GRSxE effects compared to weighted risk scores.
Finally, it should be noted that we only simulate causal variants
instead of tagging SNPs, which effectively over-estimates effect
sizes relative to those discovered in true GRS.

In summary, the present study constitutes a preliminary eval-
uation of a realistic mechanism by which gene-by-environment
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FIGURE 8 | Environmental perturbation in genetic effect sizes decreases

the power of GWAS. Association results and P-value for the same variant
under five different GWAS with 20,000 individuals. Left boxplot: a variant
explaining 0.3% of the phenotypic variance achieves genome-wide

significance in a GWAS with 100% of the samples being drawn from the
“ancestral” environment. Successive boxplots: the same variant drops in
statistical significance when tested in GWAS in which the allele has
undergone a 1.25, 1.5, 1.75, and 2-fold perturbations in 50% of the individuals.

interactions may have altered the genetic etiology of human traits.
A widespread presence of realistic GxE effects could only be
detected by genetic risk scores calculated upon all variants discov-
ered by GWAS. The extent to which these effects have shaped real
human traits remains as an open question, and should be studied
in future research.
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A major goal in infectious disease research is to identify the human and pathogenic
genetic variants that explain differences in microbial pathogenesis. However, neither
pathogenic strain nor human genetic variation in isolation has proven adequate to explain
the heterogeneity of disease pathology. We suggest that disrupted co-evolution between a
pathogen and its human host can explain variation in disease outcomes, and that genome-
by-genome interactions should therefore be incorporated into genetic models of disease
caused by infectious agents. Genetic epidemiological studies that fail to take both the
pathogen and host into account can lead to false and misleading conclusions about disease
etiology. We discuss our model in the context of three pathogens, Helicobacter pylori,
Mycobacterium tuberculosis and human papillomavirus, and generalize the conditions
under which it may be applicable.
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INTRODUCTION
Human response to infectious agents is known to be highly herita-
ble, but identifying the genetic variants responsible for differences
in disease susceptibility has proven difficult. Pathogenic variation
has, in some cases, become a better predictor of disease outcome,
but it too does not sufficiently predict whether a given individual
or class of individuals will present with disease. Thus far, genetic
epidemiological studies of infectious disease have typically sought
to explain the inter-individual variation in disease phenotypes by
assessing genetic factors in humans or pathogens alone, under
the implicit assumption that these factors have effects that are
essentially independent of each other. Here, we argue that genome-
by-genome interactions between host and pathogen are likely to
play a major role in infectious disease etiology, and as such, should
be incorporated into genetic epidemiological models. In short,
insofar as host and pathogen jointly determine disease pheno-
types, no genetic variant in either should be considered harmful
without taking the context of the other into account.

The term “interaction” has two related but distinct meanings
in the context of infectious disease, one molecular, and one statis-
tical. Here we refer mainly to the statistical meaning of the term.
At the individual level, all aspects of pathogenesis involve molecu-
lar interactions of varying importance, e.g., between a pathogenic
epitope and a host receptor. Such interactions can be detected
statistically, however, only when multiple variants exist in a popu-
lation and when specific pairings lead to different effects. In some
cases, pathogenic variants may function independently of host
variation, and vice versa. However, because many pathogens have
co-existed with their human hosts for millennia and have likely
co-evolved with them, we argue here that statistical interactions,
where appropriately sought, will often be found, with profound
biomedical implications.

Recent advances in genomics have provided both the
impetus and the means to evaluate human–pathogen co-
evolutionary hypotheses directly. Whole-genome sequencing of
many pathogenic species has substantially improved the resolu-
tion with which we classify strains, and facilitated the detection of
potentially virulent genetic variants. A clearer picture of microbial
evolution has also emerged, marked by selective mechanisms such
as rapid gene gain/loss and horizontal gene transfer (Pallen and
Wren, 2007). Overlaying human genetic variation onto this emerg-
ing evolutionary picture of microbial diversity offers the potential
to make the pathogenic process more transparent.

The past few decades have also seen an explosion in studies
seeking to identify human susceptibility loci for infectious dis-
eases (Rowell et al., 2012). Candidate gene and family based linkage
studies have identified several common polymorphisms with clin-
ical significance at the population level, such as the CCR5 deletion
that protects against HIV (Samson et al., 1996; Picard et al., 2006;
Casanova and Abel, 2007). However, most human susceptibility is
in fact polygenic, with individual polymorphisms conferring small
marginal effects (Hill, 2001). Where infectious disease phenotypes
deviate from the “one susceptibility locus – one infection” model,
elucidating the genetic architecture underlying inter-individual
variation has proven elusive.

While genome-wide association studies (GWAS) may be bet-
ter designed to accommodate multifactorial phenotypes, those
performed thus far on infectious diseases have typically been
less informative than GWAS performed on complex non-
communicable diseases (Jallow et al., 2009; Hill, 2012; Ko and
Urban, 2013). A major challenge facing the GWAS of infectious
disease has been the recruitment of a sufficient number of cases
and matched controls to achieve adequate statistical power (Hill,
2012; Ko and Urban, 2013). Another potential drawback, and the
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one that concerns us here, is the fact that many infectious disease
phenotypes depend on complex interactions between host and
pathogen genomes. In such cases, the pooling together of human
samples infected with even subtly different pathogenic strains can
obscure genetic associations (Hill, 2012; Ko and Urban, 2013). A
problem common to all GWAS is that the statistical effect sizes of
biologically meaningful polymorphisms are often too small to pass
significance thresholds after correction for multiple testing. This
problem is exacerbated, however, when human polymorphisms
(or networks of polymorphisms) (Wilfert and Schmid-Hempel,
2008) confer variable, or even opposite effects in the context of
different pathogenic strains within the same study cohort. In this
regard, it is perhaps telling that the most successful GWAS per-
formed on infectious disease susceptibility to date have been on
leprosy; the signal-to-noise ratios in these association studies may
be higher because Mycobacterium leprae exhibits substantially less
genetic heterogeneity than many other pathogens (Monot et al.,
2009; Hill, 2012).

There is in fact strong empirical and theoretical justification
for the hypothesis that the effects of susceptibility and virulence
alleles in the respective gene pools of humans and pathogens are
often contingent upon each other. The evolution of virulence is
a dynamic process, easily perturbed by extrinsic variables over
space and time, and therefore unlikely to follow the same tra-
jectory in every population. For example, a spike in the density
of hosts available for transmission can select for increased viru-
lence, by reducing the cost of lethal harm (Anderson and May,
1982). If a pathogen is transmitted vertically (parent to child),
the genetic factors that affect pathogenicity are “co-inherited” by
host and pathogen, often promoting commensalism (Frank, 1996;
Messenger et al., 1999). Even in these cases, the adventitious intro-
duction of a microbial competitor can induce a commensal species
to evolve a defensive toxin that harms the host, if only incidentally
(Blaser and Kirschner, 2007; Frank and Schmid-Hempel, 2008).
The evolution of defenses against pathogenic harm must also navi-
gate fitness tradeoffs that vary with population, including tradeoffs
pertaining to the correlated nature of complex traits (Lambrechts
et al., 2006). As pathogens evolve rapidly, exerting strong selec-
tive pressures on different human populations, host phenotypes
will respond in the ad hoc manner typical of evolution, limited
by the available genetic variation at hand (Jacob, 1977). Whether
the result is a steady-state equilibrium due to a perpetual “arms
race” or a commensal detente, the same genes and pathways are
unlikely to be involved in every population. As a consequence,
when humans and pathogens migrate to new environments or
admix, the ensuing disruption of co-evolutionary equilibria and
loss of complementarity between host and pathogen genotypes
may yield unpredictable and potentially deleterious biomedical
consequences.

Our emphasis on the significance of mismatched traits is con-
sistent with the genetic mosaic theory of co-evolution, which
aims to account for why virtually all co-evolutionary interac-
tions observed in natural populations show spatial variation in
outcomes (Thompson et al., 2002; Thompson, 2014). The theory
posits that co-evolution occurs in the context of geographically
distinct“selection mosaics,” each characterized by a unique genetic
and environmental profile, where environmental variables can

include both biotic and abiotic factors. Every selection mosaic
progresses toward its own co-evolutionary equilibrium, while gene
flow between selection mosaics ensures that patterns of maladap-
tation will be common and detectable where properly studied
(Thompson et al., 2002; Ridenhour and Nuismer, 2007).

Despite the likely etiological importance of human–pathogen
co-evolution, attempts at empirical confirmation have been rare.
Indeed, “proof” of co-evolution poses a formidable challenge,
requiring a demonstration of increased reproductive fitness in
each species driven by reciprocal changes in two genomes over
time (Woolhouse et al., 2002). Although these criteria have
been met in laboratory studies and in some natural popula-
tions (Lenski and Levin, 1985; Little, 2002; Little et al., 2006), a
similarly rigorous assessment of human–pathogen co-evolution
must accommodate long generation times and the genetic and
phenotypic complexity of the human traits under selection.
Nonetheless, substantial phenomenological evidence consistent
with human–pathogen co-evolution now exists, including evi-
dence of spatial patterns of parallel genetic variation between
species, and of correlated functional changes at the molecu-
lar level (Kraaijeveld et al., 1998; Lively and Dybdahl, 2000;
Funk et al., 2000; Woolhouse et al., 2002). The collection of
high-density genomic data in paired human–pathogen samples
and improvements in phenotypic data, as well as advances in
pathogen genomics, should soon enable more explicit tests of the
concept.

Our aim here is to summarize the growing body of evidence
in favor of the hypothesis that genetic interactions driven by host
and pathogen co-evolution can have significant implications for
genetic epidemiological studies and biomedicine. While this is
not a novel hypothesis, it remains understudied. We also under-
score how recent advances in genomic technology provide new
opportunities to test for genome-by-genome interactions, and
offer suggestions on how to incorporate them into more accurate
genetic models of disease.

HELICOBACTER PYLORI
Studies of Helicobacter pylori provide perhaps the best evidence in
favor of human–pathogen co-evolution, and distinctly illustrate
the power of the modern genetic toolkit to investigate it. H. pylori
chronically infects the gastric epithelia of half the world’s pop-
ulation, causing peptic ulcers in 10–20% of those infected, and
distal gastric carcinoma in ∼1% (Peek and Blaser, 2002; Jemal
et al., 2011). The majority of individuals infected, however, suffer
only from superficial gastritis in adulthood, while likely gain-
ing protection against diseases such as esophageal cancer and
reflux esophagitis, and more controversially, childhood asthma
and diarrhea (Rothenbacher et al., 2000; Vaezi et al., 2000; Blaser
et al., 2008). That H. pylori should have a largely innocuous and
potentially symbiotic relationship with its host follows from co-
evolutionary theory, based on its vertical mode of transmission, its
long-term colonization of a single host, and its ∼50,000 year asso-
ciation with Homo sapiens (Rothenbacher et al., 2002; Moodley
et al., 2012). Why a fraction of individuals develop life-threatening
clinical disease, on the other hand, requires explanation, with one
possibility being the disruption of long-standing co-evolutionary
relationships.
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Although H. pylori-mediated diseases often advance to the clin-
ical stage in late adulthood, their onset typically occurs during
reproductive years (Correa et al., 1976; Susser and Stein, 2002).
Importantly, a disease need not have an especially large selection
coefficient to shape allele frequency distributions in populations,
especially over thousands of years (Ewald and Cochran, 2000). In
fact, the historical fitness load of peptic ulcers, obtained by mul-
tiplying prevalence by selection coefficient, has been estimated
to be similar to those for infectious diseases such as menin-
gitis and rubella (Cochran et al., 2000). Also consistent with
co-evolutionary theory is the fact that H. pylori-mediated gastric
diseases occur disproportionately in men (Susser and Stein, 2002;
Engel et al., 2003); H. pylori is usually, but not necessarily, trans-
mitted by the mother, such that female fitness has likely exerted a
stronger constraint against H. pylori virulence.

Some H. pylori virulence factors appear to increase the risk
of serious clinical outcome regardless of host genotype. The cag
pathogenicity island, present in some strains, encodes a type IV
secretion system, and VacA encodes a pore-forming cytotoxin.
Both have been implicated as carcinogenic risk factors, though
neither is a necessary nor sufficient one (Wroblewski et al., 2010).
Other virulence factors released by H. pylori include urease, which
facilitates neutralization of the otherwise forbidding acidity of the
gastric mucosa; NAP, which enables iron uptake; and arginase,
which helps H. pylori subvert host macrophages. These, like most
H. pylori virulence factors, operate to create a basal inflammatory
state without generating an excessive immune response. Serious
clinical disease reflects a disturbance of this balance (Baldari et al.,
2005; Blaser and Kirschner, 2007; Salama et al., 2013).

The maintenance of this balance also depends partly on
human genetic factors (Lichtenstein et al., 2000; Chiba et al.,
2006; Mayerle et al., 2013a). Candidate gene studies on H. pylori-
mediated diseases have implicated several gene polymorphisms
that appear to affect risk, most notably in the interleukin-1 (IL-1)
family of cytokines (Schneider et al., 2008). Recently, two GWAS
assessing susceptibility to gastric cancer and H. pylori infection
identified SNPs with odds ratios ranging from 1.3 to 1.4, mostly
of uncertain biological function (Shi et al., 2011; El-Omar, 2013;
Mayerle et al., 2013b, Table 1). These polymorphisms account for
only a small proportion of the estimated heritability of disease
phenotypes.

Studies of human or H. pylori genetics in isolation have gener-
ally failed to explain why populations with similar rates of H. pylori
infection exhibit strikingly different susceptibilities to gastric can-
cer. For example, in many African and South Asian countries,
the low incidences of gastric cancer in the presence of almost
universal rates of H. pylori infection remain a source of much
speculation, and have been referred to collectively as the “African
enigma”and the“Asian enigma”(Holcombe, 1992; Campbell et al.,
2001; Ghoshal et al., 2007). In Latin America, where H. pylori
strains native to Amerindian populations have been largely dis-
placed by European strains (Dominguez-Bello et al., 2008; Correa
and Piazuelo, 2012), the predominantly Amerindian populations
living at high altitudes suffer disproportionately from gastric can-
cer relative to other populations with similar infection rates (de
Sablet et al., 2011; Torres et al., 2013). These and other points of
evidence raise the possibility that the pathogenicity of a given H.

pylori strain may vary with human genomic variation, and that
some individuals may be better adapted to their infecting strains
than others.

Modern genomic techniques have made the assessment of such
hypotheses feasible. Over the past two decades, a comprehensive
phylogeography of H. pylori has been constructed using multilocus
sequence typing (MLST), a procedure by which polymorphisms in
fragments from housekeeping genes are used to characterize bacte-
rial isolates (Maiden et al., 1998). Analyses of samples from around
the world have revealed a strong concordance between H. pylori
phylogenetic clusters and the geographical locations from which
they are derived (Falush et al., 2003; Moodley and Linz, 2009;
Moodley et al., 2009). Ancestral H. pylori sequences inferred using
MLST data also correspond to geographically defined human
populations (Falush et al., 2003; Moodley et al., 2012). The typ-
ical modern H. pylori chromosome is now understood to be an
amalgam of fragments from multiple ancestral sequences, a con-
sequence of H. pylori’s high recombinogenicity (Suerbaum et al.,
1998; Falush et al., 2003). The genome of an H. pylori isolate can
thus be quantitatively resolved into ancestral proportions, which
correlate with proportions of human ancestry in admixed popu-
lations (Kodaman et al., 2014). In some cases, the ancestries of H.
pylori isolates outperform human mitochondria in differentiating
ethnic groups (Wirth et al., 2004).

These shared patterns of ancestry are unlikely to have arisen
merely from parallel divergence due to founder effects or neutral
drift. Certainly, the well-documented evolvability of functional
loci within H. pylori strains, even within single individuals over
a 6 year span, argues for the importance of adaptive microevolu-
tion (Israel et al., 2001; Dorer et al., 2009). Furthermore, at least
25% of known genes, including genes involved in mucosal adher-
ence and the evasion of host immunity, are absent in some H.
pylori strains isolated from different ethnic groups (Salama et al.,
2000; Gressmann et al., 2005). In at least one case, variants of
an H. pylori gene (babA2) encode adhesion proteins that exhibit
host-specific effects, a hallmark of co-evolution. BabA binds to
blood group antigens, triggering the release of proinflammatory
cytokines. Notably, Amerindians, who almost all carry blood
group O, harbor strains with a BabA variant that has up to a 1500-
fold greater binding affinity to blood group O (Aspholm-Hurtig
et al., 2004).

If we conclude from these patterns of genetic covariation that
co-evolution between humans and H. pylori has occurred and that
it has promoted commensalism, then we may ask whether individ-
uals who develop serious clinical disease have inherited mutually
ill-adapted sets of host and pathogen alleles. Under this hypothesis,
we should expect to find significant interactions between specific
pairs of host and pathogen loci in disease models. Toward this
end, candidate pairs of loci can be tested based on biochemical
evidence of protein–protein interactions, such as those between
the adhesin BabA and the Lewis(b) antigen, its epithelial recep-
tor (Backstrom et al., 2004). However, the effect size of any single
two-locus interaction may be relatively small, as gastric disease eti-
ology is phenotypically heterogeneous, and likely to be influenced
by a large number of human and H. pylori genes (El-Omar, 2013).
Thus, characterizing the relevant loci in a biologically meaningful
way will ultimately require a systems biological approach.
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Table 1 | Genetic variants identified by GWAS for phenotypes related to infection by H. pylori, M. tuberculosis, and human papillomavirus.

Disease/trait Gene SNP Cases/controls Population p-value OR1 95% CI2 Reference

Gastric cancer ZBTB20 rs9841504 1006/2273 Chinese 1.7E-09 0.76 [0.69–0.83] Shi et al. (2011)

Gastric cancer PRKAA1 rs13361707 1006/2273 Chinese 7.6E-29 1.41 [1.32–1.49] Shi et al. (2011)

H. pylori serologic

status

TLR10 rs10004195 2623/7862 European 1.4E-18 0.70 [0.65–0.76] Mayerle et al. (2013b)

H. pylori serologic

status

FCGR2A rs368433 2623/7862 European 2.1E-08 0.73 [0.65–0.85] Mayerle et al. (2013b)

Tuberculosis RCN1–WT1 rs2057178 2127/5636 African 2.6E-09 0.77 [0.71–0.84] Thye et al. (2012)

Tuberculosis RPS4XP18–UBE2CP2 rs4331426 2237/3122 African 6.8E-09 1.19 [1.13–1.27] Thye et al. (2010)

Cervical cancer EXOC1 rs13117307 1364/3028 Chinese 9.7E-09 1.26 [1.16–1.36] Shi et al. (2013)

Cervical cancer HLA-DPB2 rs4282438 1364/3028 Chinese 4.5E-27 0.75 [0.71–0.79] Shi et al. (2013)

Cervical cancer ZPBP2–GSDMB rs8067378 1364/3028 Chinese 2.0E-08 1.18 [1.11–1.25] Shi et al. (2013)

Cervical cancer – rs9277952 1364/3028 Chinese 2.3E-09 0.85 [0.81–0.90] Shi et al. (2013)

Cervical cancer MICA rs2516448 2174/5002 European 1.6E-18 1.42 [1.31–1.54] Chen et al. (2013)

Cervical cancer HLA-DRB1–HLA-DQA1 rs9272143 2174/5006 European 9.3E-24 0.67 [0.62–0.72] Chen et al. (2013)

Cervical cancer HLA-DPB2 rs3117027 2171/4986 European 4.9E-08 1.25 [1.15–1.35] Chen et al. (2013)

1OR, odds ratio.
2CI, confidence interval.

We recently took a broad-based view to assess the impact
of human – H. pylori co-evolution on gastric disease, using
ancestry estimates from both humans and their H. pylori iso-
lates in the absence of knowledge of specific interacting loci
(Kodaman et al., 2014). Our study participants were recruited
from two Colombian populations with highly different rates of
gastric cancer, despite a nearly universal prevalence of H. pylori
infection in both. We found that the low-risk human, coastal
population was of admixed African, European, and Amerindian
ancestry, whereas the high-risk, Andean population was mainly
of Amerindian ancestry, with a minority of European ances-
try. Severity of gastric disease correlated with the proportion of
African H. pylori ancestry in patients with primarily Amerindian
ancestry. On the other hand, patients with a large proportion
of African human ancestry infected by African H. pylori strains
had the best prognoses, consistent with ancestral coadaptation,
and likely pertinent to the “African enigma.” The interaction
between Amerindian human ancestry and African H. pylori ances-
try accounted for the difference in disease risk between mountain
and coastal populations, whereas even the well-known viru-
lence factor, CagA, did not. These findings are thus consistent
with the idea that neither human nor H. pylori genetic varia-
tion confers susceptibility or virulence per se, but only in context
(Figure 1).

These findings also bring to light how understanding co-
evolutionary interactions can inform and improve public health
measures. It has been suggested that because H. pylori dominates
the gastric microbiome in infected persons and has been shown
to confer some beneficial effects, large-scale antibiotic eradica-
tion programs may not be warranted (Bik et al., 2006; Hung and
Wong, 2009). Simply estimating ancestry from human samples
and H. pylori isolates may help to identify individuals at greatest

FIGURE 1 | Gastric histopathology as a function of Amerindian human

and African H. pylori ancestry in a Colombian population (N = 121,

age > 39). Histopathology was scored on a continuous scale, with 2 (blue)
representing gastritis and 5 (red) representing dysplasia. Data from
Kodaman et al. (2014). Reference samples from the 1000 Genomes Project
(Abecasis et al., 2012), HapMap (The International HapMap Consortium,
2005), and the Human Genome Diversity Project (Cavalli-Sforza, 2005)
were used to calculate human ancestry, and from the MLST database
(Maiden et al., 1998) to calculate H. pylori ancestry.

risk for gastric cancer, for whom antibiotic treatment may be most
appropriate.

MYCOBACTERIUM TUBERCULOSIS COMPLEX
Another interesting candidate to study from a co-evolutionary per-
spective is Mycobacterium tuberculosis (Mtb) and closely related
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species, believed to have co-existed with anatomically modern
humans for ∼70,000 years (Comas et al., 2013). Since the advent
of antibiotics, tuberculosis (TB) has ceased to be as common a
cause of human mortality as it once was, but it remains among the
most deadly infectious diseases worldwide, with immunocom-
promised individuals at particularly high risk (Dye and Williams,
2010; Fenner et al., 2013). As with H. pylori, the majority of Mtb
infections do not develop into clinical disease: 90% of cases are
asymptomatic with only latent infection. However, 10% of indi-
viduals with latent infections develop TB over their lifetime, for
mostly unknown reasons (Barry et al., 2009).

In contrast to H. pylori, Mtb is transmitted horizontally, and
must cause active disease to be transmitted (e.g., via coughing
or sneezing). Because Mtb transmission increases with virulence,
evolutionary theory predicts that strong selective pressures should
favor increased virulence until the number of transmissions per
infected host reaches a fitness-reducing limit (Knolle, 1989; Frank
and Schmid-Hempel, 2008). Such a limit necessarily depends on
population-specific parameters, of which host density is proba-
bly the most important (Comas et al., 2013). Thus, the limited
pathogenicity and chronicity of Mtb likely reflect its historical
adaptation to isolated, low-density human populations. These his-
torical conditions remain relevant in part because Mtb reproduces
clonally and without lateral gene transfer; evolution only through
point mutations and irreversible gene deletions limits a pathogen’s
ability to shift virulence strategies rapidly in response to changing
population parameters (Achtman, 2008; Galagan, 2014).

Before advances in genotyping technology improved strain
classification, the apparent genetic homogeneity of Mtb led inves-
tigators to believe that variation in disease outcome depended
primarily on environmental and human genetic factors (Galagan,
2014). Twin and adoption studies provided compelling evidence
for the involvement of human genetic variation as a risk modi-
fier (Comstock, 1978). The most recent analyses have calculated
the heritable component of Mtb-related immune response phe-
notypes to range from 30 to 71% (Moller and Hoal, 2010). These
findings have motivated a large number of linkage and candidate
gene association studies seeking to identify relevant susceptibility
loci, but results have often been inconclusive or, worse, contradic-
tory. Many biologically plausible genes, such as those that encode
vitamin-D-binding protein (Lewis et al., 2005; Gao et al., 2010),
the phagolysomal membrane protein NRAMP/SLC11A1 (Hoal
et al., 2004; Velez et al., 2009), and the dendritic adhesion molecule
DC-SIGN (Barreiro et al., 2006; Olesen et al., 2007), appear to
associate with TB in some human populations, but not others.
Inconsistent replication across ethnic groups has also beset the
handful of GWAS performed on TB (Chimusa et al., 2014). The
few loci that have passed genome-wide significance thresholds
also lack clear biological interpretability and fail to explain more
than a trivial portion of the estimated heritable component of TB
susceptibility (Thye et al., 2010, 2012, Table 1).

Since the advent of PCR-based genotyping techniques, it has
become increasingly clear that Mtb genetic variation is non-trivial
and clinically consequential (Malik and Godfrey-Faussett, 2005;
Nicol and Wilkinson, 2008). Most notably, strains now recognized
as part of the “Beijing family,” first genotyped in the 1990s follow-
ing several drug-resistant outbreaks, have been found to exhibit

greater efficiency of transmission and to cause more severe disease
phenotypes in many animal models (Glynn et al., 2002; Reed et al.,
2004; Parwati et al., 2010). Whole-genome sequencing of a large
number of clinical Mtb isolates has since revealed over 30,000 Mtb
SNPs, a large proportion of which are non-synonymous (Comas
et al., 2013; Stucki and Gagneux, 2013). It has been shown that
even a few such SNPs can shift a strain from avirulent to virulent
(Reiling et al., 2013).

High-throughput sequence data have also enabled the con-
struction of a robust phylogenetic tree, the major branches of
which parallel human mitochondrial phylogeny (Comas et al.,
2013). Seven major human-adapted Mtb lineages have now been
identified, which can be classified as “ancient” or “modern”
(Hershberg et al., 2008; Comas et al., 2013). The Beijing family
of strains, which causes 50% of infections in East Asia and 13%
worldwide, belongs to the most modern lineage. In contrast,
Mycobacterium africanum, which causes up to half of TB cases
in West Africa, belongs to the most ancient Mtb clade, its diver-
gence predating the human migration out of Africa (de Jong et al.,
2010). Although strains within all major Mtb lineages induce an
overlapping range of immune responses, clade-specific patterns of
virulence are emerging. For example, evolutionarily modern lin-
eages appear to induce a less severe early inflammatory response,
which possibly increases the efficiency of transmission (Moller and
Hoal, 2010; Portevin et al., 2011). A large number of studies in
experimental models have also confirmed that diverse Mtb strains
reflect substantial functional diversity (Coscolla and Gagneux,
2010).

It is thus likely that genetic factors in both Mtb and humans
influence a wide range of TB phenotypes, including those per-
taining to infectivity, progression from latent to active disease,
and effectiveness of treatment (de Jong et al., 2008; Comas and
Gagneux, 2011). However, whether Mtb genetic variation influ-
ences disease outcome independently of human genetic variation,
and vice versa, is a question that has only recently been addressed
(Gagneux, 2012). The mirrored pattern of human and Mtb phy-
logeography indicates that co-evolution has likely occurred, and
consequently, that genome-by-genome interactions may be signif-
icant. However, identifying these interactions and assessing their
clinical relevance requires the demonstration of heterogeneous
outcomes in paired human and Mtb samples of multiple geno-
typic backgrounds. A small number of published studies to date
have met this criterion, assessing previously implicated loci (e.g.,
in immunogenicity pathways). A study in a Vietnamese cohort
found that a variant of the Toll-interleukin 2 receptor (TLR2),
known to trigger a cytokine cascade upon recognition of Mtb,
increased TB susceptibility only in patients infected with a Beijing
strain (Caws et al., 2008). In a Ghanaian cohort, a polymorphism
in the immunity-related GTPase M (IRGM) gene conferred pro-
tection against the European lineage of M. tuberculosis, but not
M. africanum (Intemann et al., 2009). Perhaps of consequence,
a gene deletion in the European Mtb strains increases their vul-
nerability to the autophagy pathway, mediated by IRGM. Thus,
the high frequency of the human IRGM polymorphism in West
Africa has been proposed to explain the competitive advantage of
M. africanum there (Intemann et al., 2009). The innate immunity-
related genes ALOX5 and MBL have also been shown to influence

www.frontiersin.org August 2014 | Volume 5 | Article 290 | 74

http://www.frontiersin.org/
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Kodaman et al. Human–pathogen co-evolution and disease

the infectivity of M. africanum, but not other strains, in Ghanaian
populations (Herb et al., 2008; Thye et al., 2011).

Despite being an ancient strain with ample opportunity
to spread beyond West Africa, M. africanum has not done
so, possibly indicating host-specific adaptation (de Jong et al.,
2010; Gagneux, 2012). Other Mtb lineages also appear to asso-
ciate preferentially with particular human populations, though
not as exclusively. A study of ethnically diverse, US-born
patients in San Francisco showed that such preferential asso-
ciations with Mtb lineages persisted even in a cosmopolitan
setting (Gagneux et al., 2006). Interestingly, when TB trans-
mission in non-sympatric populations did occur, patients were
significantly more likely to be immunocompromised, indicat-
ing that non-sympatric Mtb lineages may require some degree
of host immunosuppression to compete with sympatric lin-
eages. Mechanisms of Mtb immune evasion, therefore, may have
been shaped by population-specific variation in human immune
response.

While the above discussion has focused mainly on pulmonary
TB, we note here that extra-pulmonary TB, a less common and
more severe form of disease, may be especially amenable to anal-
yses guided by co-evolutionary hypotheses. This form of the
disease leads more quickly to fatality and results in fewer trans-
missions than the pulmonary form (Sharma and Mohan, 2004),
which probably represents a non-optimal outcome in terms of
Mtb fitness. However, data on extra-pulmonary TB to support
co-evolutionary hypotheses – especially historical data pre-dating
the antibiotic era and the HIV epidemic – are at present lacking
(Tiemersma et al., 2011).

HUMAN PAPILLOMAVIRUS
Human papillomavirus (HPV) is the most common sexually trans-
mitted infectious agent in the world, and the second most common
infectious cause of cancer after H. pylori (de Martel et al., 2012).
Cervical cancer is the major source of mortality associated with
HPV, but the virus also causes cancers of the anus, vagina, penis,
and oropharynx (zur Hausen, 1989; zur Hausen, 1991; Carter et al.,
2001; de Martel et al., 2012). Although over 100 types of papillo-
maviruses infect humans, only a fraction of them are carcinogenic
(Bernard et al., 2010). Infection with two specific types, HPV 16
and HPV 18, account for approximately 70% of cervical cancer
cases worldwide, with the remainder of cases largely attributable to
14 other types (Bernard et al., 2010). Nevertheless, the great major-
ity of infections with even carcinogenic HPV types are ultimately
benign, demonstrating that HPV infection, although necessary, is
not sufficient to cause of cervical cancer (Schiffman et al., 2005;
Plummer et al., 2007).

Papillomaviruses (PVs) are notable for their slow rate of evo-
lution relative to other pathogens – only an order of magnitude
higher than humans, in the case of HPV (Ong et al., 1993; Rector
et al., 2007; Shah et al., 2010). This is commonly attributed to their
use of high-fidelity host replication mechanisms (Van Doorslaer,
2013). A slow evolutionary rate precludes rapid adaptation to new
hosts, and PV strains correspondingly show little evidence of inter-
species transmission or related horizontal gene transfer (Herbst
et al., 2009; Shah et al., 2010; Van Doorslaer, 2013). All carcino-
genic types of HPV belong to a single genus of papillomaviruses

that diverged from a common ancestor about 75 million years ago,
predating the primate lineage (Rector et al., 2007; Van Doorslaer,
2013). By the emergence of H. sapiens, the common ancestor of
HPV 16 and HPV 18 had diverged into separate species, and in
fact HPV 16 and HPV 18 had already diverged from all other
HPV types within their respective species clades (Lewin, 1993;
Ong et al., 1993). Given this combination of early divergence, slow
evolution, and strict host specialization, we would expect variants
within HPV types independently to have similar phylogeographic
patterns to that of H. sapiens. Global data collected for the two
most frequently sexually transmitted types, HPV 16 and 18, reflect
such a pattern (Bernard, 1994). The subtypes and variants of HPV
16 cluster into five major branches of a phylogenetic tree: Euro-
pean (E), Asian/American (AA), East Asian (As), and two African
(Af1 and Af2) (Ho et al., 1993; Ong et al., 1993). Subtypes and
variants of HPV-18 clustering into three major branches: African
(Af), European (E), and Asian + American Indian (As+AI) (Ong
et al., 1993).

Biochemical and bioinformatic analyses indicate that HPV evo-
lution has not been entirely neutral. Viral genes expressed early
during a PV infection, for example, appear to have evolved at dif-
ferent rates than those expressed late (Garcia-Vallve et al., 2005;
Rector et al., 2007). Although most PV genes show signs of strong
purifying selection, the exceptions appear to be important (DeFil-
ippis et al., 2002; Chen et al., 2005; Carvajal-Rodriguez, 2008). Two
genes under diversifying selection, E6 and E7, are essential for
viral replication. They induce cell cycle progression in host cells,
and encode proteins that, in the high-risk HPVs, are oncogenic
(White et al.,1994; Doorbar,2006; Klingelhutz and Roman, 2012).
Of note, E6 and E7 interfere with the human tumor sup-
pressor proteins, pRB and p53 (Dyson et al., 1989; Huibregtse
et al., 1993a,b; Storey et al., 1998; Munger et al., 2004; Door-
bar, 2006). In turn, polymorphisms in the human p53 gene
were shown to modulate the tumorigenicity of HPV 16 and
18 (Storey et al., 1998). Patients homozygous for the p53Arg
mutation were seven times more likely to develop cervical can-
cer than individuals with 1 or 2 p53Pro alleles (Storey et al.,
1998). Other human polymorphisms, such as those in the genes
RPS and TYMS, influence HPV transmissibility. In a study of
high-risk HPV infections in Nigerian women, variants in these
genes were shown to modulate risk of infection with HPV 16
and 18. Despite the effects described above, genetic variation
in neither the host nor the pathogen has been successful in
explaining most heritable risk of HPV-associated disease, when
considered in isolation (Magnusson et al., 2000; Hildesheim and
Wang, 2002; Wheeler, 2008; Chen et al., 2013; Shi et al., 2013,
Table 1).

Because the integration of the HPV genome within the human
genome is permanent, death of the host ends all possibility of
viral multiplication and transmission. Even strains that damage
the health of the host sufficiently to reduce human-to-human
sexual contact can suffer a competitive disadvantage. Therefore,
both host and pathogen should cooperate to prevent severe dis-
ease. As with H. pylori and MTB, there is some empirical evidence
supporting the idea that humans and HPV types co-evolved to
limit tumorigenesis, and that evolutionarily mismatched strains
may be driving severe clinical outcomes. A study of high-grade
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cervical intraepithelial neoplasia (CIN) and invasive cervical can-
cer in an Italian cohort of Caucasian women demonstrated that
non-European variants of HPV16, Af1 and AA, were found at an
increased frequency in invasive lesions (Tornesello et al., 2004).
A separate study of mostly Caucasian (81%) female university
students in the United States showed that those infected with non-
European HPV 16 variants were 6.5 times more likely to develop
high-grade CIN than those with European variants (Xi et al., 1997).
The same study demonstrated a similar HPV 16-related risk profile
(4.5 relative risk) in a predominantly Caucasian (79%) population
of women presenting at a sexually transmitted disease clinic (Xi
et al., 1997). Finally, at the molecular level, there is some evidence
that variants of the HPV 16 E6 protein, described above, may
be better adapted for replication within specific hosts (DeFilippis
et al., 2002).

DISCUSSION
Taken together, the three examples above illustrate how co-
evolution can promote a reduction in antagonism between
pathogen and host, and in doing so leave discernible signatures on
the genomes of both species. If, as we argue here, the disruption
of historical co-evolutionary relationships can explain many dif-
ferences in disease outcomes, knowledge of the conditions under
which such relationships arise and dissolve will be helpful in defin-
ing genetic architecture of disease etiology. The applicability of
this model depends, to a large extent, on the degree of integra-
tion between host and pathogen genomes, which can take many
forms.

A long-standing association between humans and pathogens
may be a necessary factor for cross-genomic integration, as with
the three pathogens we have discussed. In contrast, many infec-
tious diseases that occur epidemically are caused by zoonotic
pathogens for which the human host is an evolutionary dead end,
such as Salmonella enterica and Borrelia burgdorferi (Sokurenko
et al., 2006; Falush, 2009). Other pathogens have had limited
occasion to co-evolve with humans, because they cause disease
primarily on an opportunistic basis (e.g., Streptococcus pneu-
monia or Clostridium difficile) or over a broad range of hosts
(e.g., Toxoplasma gondii) (Ajzenberg et al., 2004; Sokurenko et al.,
2006). The epidemic outbreaks caused by these pathogens may
leave detectable signatures on the human genome, but reciprocal
evolution in the pathogen need not occur.

For human-specific pathogens that cause endemic diseases and
are not recent, the likelihood that severe disease is the outcome
of a co-evolutionary mismatch should increase with the overlap
between host and pathogen fitness. The pathogenicity of vertically
transmitted pathogens, for example, should decrease over time,
because such pathogens often depend on host survival (and pos-
sibly reproduction) for transmission. However, a strong overlap
between host and pathogen fitness can also exist in the absence of
vertical transmission. A horizontally transmitted pathogen, such
as HPV, can evolve to be largely benign insofar as it depends on a
healthy host for transmission.

When a pathogen’s fitness depends on its ability to cause
damage to its human host, as with Mtb, attenuated antagonism
becomes a special case, and its disruption becomes more difficult
to detect and requires more evidence to confirm. While Mtb

strains that increase the duration of a transmissible state will
generally have a competitive advantage, the optimal duration can
be expected to vary based on many population-level parameters,
such as host density. This probably explains why modern Mtb lin-
eages that are more common in high-density urban populations
exhibit greater virulence. On the other hand, if horizontal transfer
is confined to small, isolated populations, it may be considered
effectively vertical. With such pathogens, a better understanding
of the co-evolutionary history will be necessary to infer whether
severe disease is caused by disrupted co-evolution or by another
factor, such as infection by a universally more virulent strain or an
opportunistic infection in an immunosuppressed patient.

The life history of the pathogen is also important in assessing
the possibility and nature of co-evolution. A pathogen typi-
cally faces a tradeoff between fecundity and longevity. Increased
fecundity within a host increases the probability (or rate) of
transmission, but may negatively affect host lifespan or mobility
(Frank and Schmid-Hempel, 2008). Therefore, a pathogen’s posi-
tion on the continuum between greater fecundity and increased
longevity will often reflect the degree to which its fitness depends
on the health of the host. The case of HPV is somewhat of an
exception in this regard. Host immune responses can induce
diverse strategies, creating HPV types that are highly fecund, or
less fecund with few virions per host. Whereas highly fecund
types are more likely to transmit, they are also more likely to
induce a vigorous immune response leading to clearance. Low
fecundity types on the other hand, are more likely to persist as
subclinical infections that can lead to prolonged inflammation
and eventually cancer (DeFilippis et al., 2002). However, human
populations that co-evolved with specific variants of these per-
sistent types may be less likely to develop cancer, as described
above.

Another factor influencing the applicability of the model we
propose is a pathogen’s recombinogenicity. In theory, a pathogen
that recombines freely is more likely to be panmictic, and hence
less likely to co-evolve with a particular human host population
(Bull et al., 1991). In fact, epidemic disease outbreaks often fol-
low recombination events, and the pathogens responsible for the
epidemics often appear superficially clonal, likely reflecting the
rapid proliferation of especially successful recombinant strains
(Grigg et al., 2001; Heitman, 2006). A case in point is Neisseria
meningitides (Falush, 2009), as well as the eukaryotic parasites
Toxoplasma gondii and Plasmodium falciparum, which though
able to recombine sexually, exhibit surprisingly limited genetic
diversity (Grigg et al., 2001). On the other hand, the strict clon-
ality of Mtb and HPV has likely favored co-evolution, leading to
reduced antagonism, while recombination in H. pylori can disrupt
the co-evolutionary relationship favored by vertical transmission.

Recombination can also occur via horizontal gene transfer, as
among species within the microbiome (Smillie et al., 2011; Ravel
et al., 2011; Liu et al., 2012). This would suggest that co-evolution
might be a relatively weak force in shaping microbiotal genetic
variation. However, data possibly supporting human–microbiome
co-evolution exist; for example, the strongest correlate of an
individual’s microbiotal identity is ethnicity (Benson et al., 2010;
Human Microbiome Project Consortium, 2012). The extent to
which this correlation is driven by mutual genetic factors is unclear,
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as recurring environmental exposure and frequent vertical trans-
mission may also account for most, if not all of it (Turnbaugh
et al., 2009). Assessing whether the genomes of the microbiome
and humans are integrated will be a key area of research, as
it relates to co-evolution and disease risk (McFall-Ngai et al.,
2013).

CONCLUSION
While the prospect of introducing co-evolutionary interactions
into genetic epidemiology models may appear to add a new layer
of complexity to an already difficult problem, a co-evolutionary
perspective should help us construct more precise and accurate
hypotheses, improving our ability to find real and reproducible
results. Importantly, co-evolved genes will not be neutral in either
species, which may make their identification easier. Although
many methods exist to find loci that are candidates to have
evolved under selection (Aguileta et al., 2009; Karlsson et al.,
2014), and these methods can assess the strength, timing, and
direction of selection (e.g., balancing or positive), they are
not at present well adapted to the study of joint patterns of
selection.

If the ultimate goal is to find interacting genes that have
co-evolved to be benign and are subsequently disrupted in dis-
ease, we will need to identify differential patterns of concerted
selection in paired human and pathogenic loci from different
populations. The limiting factor to the development of appro-
priate methods toward this end has probably been the lack
of prospectively collected paired genetic data for humans and
pathogens. Once these data are available, existing methods to
detect epistasis within a species can be adapted for cross-species
analyses in the absence of a priori biological hypotheses. Where
evidence for selection exists, genetic variants can be filtered
prior to analyses to detect epistasis. Framing hypotheses in the
context of biochemical and bioinformatic functional evidence
or pre-existing evidence for association can hone study design
even further. For example, using paired data and pathogenic
genetic variation as the outcome variable, novel epitopes have
been discovered in association studies (Bartha et al., 2013). Such
data can be used to mitigate the immense multiple testing bur-
den incurred by a hypothesis-free approach to detecting genetic
interactions.

Finally, we should note that the ultimate impact of this
approach may extend beyond infectious diseases to what are tra-
ditionally considered non-communicable diseases. For example,
we now recognize that both gastric and cervical cancers, as well as
atherosclerosis, may have origins in infection (Libby et al., 2002;
Porta et al., 2011). The number of such examples will certainly
expand.
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In gene mapping, it is common to test for association between the phenotype and the
genotype at a large number of loci, i.e., the same response variable is used repeatedly
to test a large number of non-independent and non-nested hypotheses. In many of these
genetic problems, the underlying model is a mixed model consistent of one or very few
major genes concurrently with a genetic background effect, usually thought as of polygenic
nature and, consequently, modeled through a random effects term with a well-defined
covariance structure dependent upon the kinship between individuals. Either because the
interest lies only on the major genes or to simplify the analysis, it is habitual to drop the
random effects term and use a simple linear regression model, sometimes complemented
with testing via resampling as an attempt to minimize the consequences of this practice.
Here, it is shown that dropping the random effects term has not only extreme negative
effects on the control of the type I error rate, but it is also unlikely to be fixed by resampling
because, whenever the mixed model is correct, this practice does not allow to meet some
basic requirements of resampling in a gene mapping context. Furthermore, simulations
show that the type I error rates when the random term is ignored can be unacceptably
high. As an alternative, this paper introduces a new bootstrap procedure to handle the
specific case of mapping by using recombinant congenic strains under a linear mixed
model. A simulation study showed that the type I error rates of the proposed procedure
are very close to the nominal ones, although they tend to be slightly inflated for larger
values of the random effects variance. Overall, this paper illustrates the extent of the
adverse consequences of ignoring random effects term due to polygenic factors while
testing for genetic linkage and warns us of potential modeling issues whenever simple
linear regression for a major gene yields multiple significant linkage peaks.

Keywords: misspecified genetic models, bootstrapping mixed models, recombinant congenic strains, ignoring

random effects, mapping quantitative trait loci

1. INTRODUCTION
For more than four decades, linear mixed models have been
used in a wide range of applications because of their conceptual
simplicity and flexibility to accommodate correlated sources of
variation as well as fixed regressors. A generic linear mixed model
can be written as

y = Xβ + Zγ + e (1)

where X and Z are known incidence matrices, β is a vector of
unknown fixed regression coefficients, γ is a vector of random
effects, and e is the vector of errors. It is also common to assume
that γ and e are independent and both have null expectation and
finite variances. In many situations, either intentionally or unin-
tentionally, the statistical analysis is carried out ignoring the term
Zγ in the model. This practice, although recognized as inefficient,
has been thought to be harmless whenever the interest resides
solely on a subset of the regression coefficients with the remain-
ing parameters of the model deemed as nuisance. This thought
seems to be mostly based on the fact that βo = (X′X)−1X′y is

still an unbiased and consistent estimator of β. However, it is well
known that ignoring Zγ and using ordinary least squares, results
in an estimator of Var

(
βo) that is biased and inconsistent as well

as non-independent of βo (Dhymes, 1978). Of course, this will
affect the distribution properties associated with βo under nor-
mality or, otherwise, the asymptotic properties of its distribution.
It has been suggested that this problem can be mitigated if testing
is done through resampling. However, the adverse consequences
of dropping the random term from the mixed model is unlikely
to be fixed by the use of resampling methods. In this paper, a spe-
cific application to genetic mapping via recombinant congenic
strains (RCS) of experimental animals is used to illustrate this.
Briefly speaking, genetic mapping can be seen as a problem in
which the association of one dependent variable (the phenotype)
with a large number of potential explicative variables (the marker
genotypes) is tested one-by-one or by taking a very small num-
ber of markers at once. An RCS panel is a replicable mapping
population for which animals within the same strain are con-
sidered to be genetically identical and related to different degrees
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with animals from other strains. Such an inter-strain relationship
results in what is known as the genetic background effect and,
whenever this effect is understood as the result of the addition of
many components of minuscule effect, the inclusion of a random
effects term in the model would be the natural way to account
for it.

A mouse panel of RCS is obtained by mating mice from two
genetically distinct inbred strains (a donor strain and a recipient
strain) followed by two or more rounds of backcrossing to the
recipient strain and subsequent sister × brother mating without
selection for particular markers or phenotypes for a minimum
of 20 generations. The genetic resolution of the panel is con-
trolled by the number of backcrossing rounds. Because of this
construction, each strain of an RCS panel can be thought of as
an inbred strain in which segments of random length from the
genome of a recipient strain have been replaced with the corre-
sponding segments from a donor strain. The main consequence
of this breeding scheme is that non-linked genes controlling the
same trait are separated and fixed in haplotypes of different
strains, allowing the possibility of studying them individually. The
standard RCS panel uses two backcross generations and, conse-
quently, the total length of the segments from recipient strain
constitute on average the 87.5% of the genome of each strain;
the remaining 12.5% represents the total expected length of the
replaced genome segments. Without loss of generality, this is the
type of RCS considered in this paper. For a more comprehensive
description of the RCS and their use in gene mapping see Démant
and Hart (1986), Moen et al. (1992), and Fortin et al. (2001b,
2007). Once the RCS panel have been established, the whole panel
is genotyped to obtain full characterization of the genome of each
strain. Each genotype data set can then be used for the anal-
ysis of all individuals of the same strain; this is an important
money-saving feature of the design since it does not require of re-
genotyping each individual because, except for de novo mutations,
all pups from the same strain are genetically identical.

Although most mouse geneticists agree that RCS are a power-
ful resource to map loci associated with complex traits, there is
some disagreement on how to do the analysis. Originally, when
the use of RCS for genetic mapping was proposed, the core idea
was to look into the stain distribution pattern with respect to a
phenotype of interest and identify the strain that exhibited the
largest deviation from the other strains in the RCS panel and sub-
sequently cross it with the recipient strain to obtain F1 and F2

progenies to be analyzed by standard methods (Démant and Hart,
1986; Fortin et al., 2001b). Two examples of the application of
this approach are reported in Fortin et al. (2001a) and Müllerová
and Hozák (2004). The problem is that contrasting phenotypes
from F1 mice versus the ones from the recipient strain will only
be effective for dominant traits, while the power for additive traits
will be diminished and lost completely for recessive traits. On the
other hand, the analysis of the F2 mice requires new genotyp-
ing, which not only defeats the economic advantages of having
developed RCS, but more importantly, because every F2 individ-
ual has different genotype, this approach is not suited for complex
quantitative traits when a single measurement may not be reli-
able enough to determine the phenotype (Moen et al., 1992).
Alternatively, there is a designs consisting of taking a sample of

mice from each strain and analyzing the whole panel together.
Although this approach does not require additional genotyping
and has the potential for making more efficient use of the pheno-
typic variation, also opens more room for analysis pitfalls if the
proper model is not used. For example, Joober et al. (2002) uses
a QTL mapping procedure equivalent to simple linear regression
at the markers ignoring genetic background which, as pointed by
Palmer and Airey (2003), it may result in false positive rates far
in excess of the nominal value, even when Bonferroni corrections
are used. Another common way to address the problem is to use
strain averages as the phenotype and treat the panel of means as
a backcross dataset for analysis purposes. This is essentially the
“interval mapping” procedure proposed by Shao et al. (2010) and
equivalent to the one used by Thifault et al. (2008). This approach
may substantially reduce the power for RCS panels with reduced
number of strains and it does not deal with the fact that the
strains, related because their background, may not have the same
kinship degree at genomic level and consequently the phenotype
means may be not only non-independent but heteroscedastic, as
well. Lee et al. (2006) and Camateros et al. (2010) extend the
simple linear regression to account for the genetic background
by adding a fixed factor (“background proportion” in the first
paper; “background indicator” in the second). Although better
than ignoring the background, from the genetics standpoint, it is
difficult to justify the plausibility of a fixed effects model under
the assumption that the background effect is the result of the
additive action of many genes of minuscule effect. In fact, I argue
that the natural way to model such a background effect consis-
tent with the principles outlined by Fisher (1919) is through the
inclusion of a random effects term in the model as implemented
in Di Pietrantonio et al. (2010). In this paper, I describe in detail
a procedure for the analysis of a quantitative trait locus (QTL)
that models the genetic background (assumed to be of polygenic
nature) as a random effect term and use this to show how the
omission of such a term in the model leads to conclusions that
are wrong and inconsistent with the data.

2. MODELS
2.1. THE NAIVE QTL MODEL FOR AN RCS PANEL
In its simplest form, at each marker position m, m = 1, 2, . . . , M,
the RCS/QTL model for the ith individual, i = 1, 2, . . . , n, can be
written as

yi = μ + qim ξm + ei (2)

where yi denotes the phenotype for the ith individual, ξm denotes
the major locus effect associated with the mth marker, qim is the
indicator of the BB genotype at the mth position which is deter-
mined by the RCS data, and the eis are a set of independent
random variables with distribution N (

0, σ 2
)

(AA and BB are
the genotypes of the donor and recipient parental strain, respec-
tively). Of course, under an oligogenic model, at most, a handful
of ξms should be different from zero. In fact, it is common prac-
tice that at the first screening, the estimation is carried out by
regression at each marker under the assumption of only one
major gene. When the presumption of a dense enough genotyp-
ing marker panel is not correct, procedures like modified interval

Frontiers in Genetics | Evolutionary and Population Genetics April 2014 | Volume 5 | Article 68 | 83

http://www.frontiersin.org/Evolutionary_and_Population_Genetics
http://www.frontiersin.org/Evolutionary_and_Population_Genetics
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Loredo-Osti Bootstrapping a quantitative trait mixed model

mapping can be used instead. Variations of the problem include
conditioning on a given set of markers. The salient feature of this
design is that, at the mth marker position, one looks across the
RCS panel and classifies each strain as either AA or BB, since
under the model (Equation 2), this is the only source of genetic
variation when estimating ξm. However, this model ignores the
fact that individuals from the same strain are genetically iden-
tical (assuming no new mutation at the locus under scrutiny),
and strains with the same ancestral background share large por-
tions of their genome so that even without the involvement of a
major gene, there is more likely to be reduced variation within
strains. In a nutshell, regression mapping works by testing the
association of the phenotype with the observed genotype at each
marker location so that finding significant linkage at any position
implies testing the M null hypotheses, ξm = 0. Clearly, most of
these hypotheses as well as their test statistics are not indepen-
dent. This may lead to problems in the control of the type I error
rate if multiple testing is not addressed properly. Another irregu-
larity results from the fact that with a dense genotyping panel the
number of tested hypotheses can by far exceed the sample size.
Because of these considerations, p-value estimation by resampling
of residuals has been seen as a plausible alternative. For this paper,
the problem is addressed through bootstrap.

2.1.1. Computation of p-values
The estimation of genome-wide corrected p-values by resam-
pling requires that under the null hypothesis: (i) each resample
is taken from an exchangeable distribution, (ii) the variation of
the original sample is preserved through all resamples, and (iii)
the genome-wide baseline for the test statistics at each position
is the same. The first two requirements are standard for resam-
pling in regression (Davison and Hinkley, 1997; Anderson and
Ter Braak, 2003). The last requirement is imposed to ensure that
the uncorrected p-values across the genome are comparable (this
is particularly important when there are missing genotype data).
One way to estimate corrected p-values is to select an ensemble
of test statistics whose marginal distribution is the same when the
model does not contain any major locus.

Since under model (Equation 2) and the hypothesis of no
major gene, the distribution of y = (y1, y2, . . . , yn)

′ is exchange-
able, resampling from the raw observations will also preserve the
variation through the pseudo-observations. This means that in
the absence of non-genetic regressors or other non-oligogenic
factors, resampling the raw phenotypes either by permutation
or through bootstrap will produce similar results. Furthermore,
under these premises, basic sampling and hypothesis testing prin-
ciples indicate that a permutation based procedure will be more
efficient and powerful. However, this is not necessarily the case
when the premises are removed. Should the model also con-
tain fixed non-genetic regressors, resampling from the leverage-
adjusted residuals under the null hypothesis would be a procedure
that approximates exchangeability while preserving the original
variation of the data. However, under this situation, resam-
pling from leverage-adjusted residuals results in a procedure
with acceptable properties only in the bootstrap case (Davison
and Hinkley, 1997), while this is not longer guaranteed when
resampling via permutation. The main issue is that sampling

without replacement magnifies the effects of modest departures
from exchangeability. Then, permuting leverage-adjusted residu-
als may not be good enough (even worst, it may not be valid)
and we would require of a much more elaborate and computer
intensive procedure to obtain residuals guaranteed to be at least
weakly exchangeable so that permutation works properly (see,
for example, Kherad-Pajouh and Renaud, 2010). To complete
the requirements listed above regarding the possibility of miss-
ing genotypes, we propose to use the test statistic defined by the
expression

zm = tm

(
1 − 1

4νm

)(
1 + t2

m

2νm

)− 1
2

where tm = |ξ̂m|
σ̂

ξ̂m

(3)

and ξ̂m is the ordinary least squares estimate of ξm, m =
1, 2, . . . , M, i.e., zm is just tm, our familiar t-statistic with νm

degrees of freedom, transformed into a z-score (νm may vary
slightly from marker to marker due to missing data). Another
option would be a modified t-statistic t′m in which the mth esti-
mate of variance s2

m used to compute σ̂ 2
ξ̂m

is replaced by s2
0, the

estimate under the null hypothesis. With no missing genotypes
the use of any of zm, t′m, and tm would yield approximately the
same p-value estimates.

2.1.2. Bootstrap procedure for simple linear regression at the
markers

The following bootstrap procedure computes the genome-wide
corrected p-values for model (Equation 2) with the test statistic
(Equation 3):

STEP 1. At each marker position, m, fit the simple linear regres-
sion at the markers model (Equation 2), use (Equation 3)
to compute the test statistic zm, and obtain the genome-
wide set of statistics ZM = {zm, m = 1, 2, . . . , M}. Also,
set the genome-wide acceptance count vector to zero.

STEP 2. Sample with replacement from the raw vector of phe-
notypes, y ∈ R

n, to obtain y∗ ∈ R
n, a bootstrapped full

replica of y, and use this vector to compute z∗
max =

max {z∗
m}, where z∗

m, m = 1, 2, . . . , M, is the test statis-
tic at the mth locus, computed by using y∗, the vector of
the pseudo-observations, instead of the original vector of
phenotypes.

STEP 3. For each zm in ZM , if zm ≤ z∗
max, add a unit to the mth

entry of the acceptance count vector.
STEP 4. Repeat steps 1 and 2 R times and then compute the esti-

mate of the vector of p-values by dividing the acceptance
count vector by R.

This resampling scheme can be seen as an adaptation of a reg-
ular regression residuals bootstrapping procedure (Davison and
Hinkley, 1997), coupled with Roy’s union-intersection principle
(Roy, 1953) to control for the genome-wide type I error rate.
When applied to the analysis of the RCS panel, this procedure is
valid when there is only one observation per strain or when the
within-strain variation is negligible. Otherwise, a random term
in the model has been neglected and, regardless of ξ̂m being an
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unbiased estimator of ξm, the exchangeability requirement can-
not be met and the most likely consequence would be an inflated
type I error rate. In fact, as per arguments given by Churchill
and Doerge (1994) and Churchill and Doerge (2008), this state-
ment is correct not only for the bootstrap and RCS, but also for
permutation test procedures applied to any study design involv-
ing replicable mapping populations because, as for bootstrap, the
Fisher (1935) principle of permutation also relies on exchange-
ability. For simple experimental designs such as an intercross or a
backcross mating, the individual units can safely be assumed to be
exchangeable. However, it would be wrong to assume exchange-
ability for more complicated designs, like advanced intercross,
heterogeneous stocks and RCS.

2.2. THE QTL MIXED MODEL FOR AN RCS PANEL
The previous simple linear model (Equation 2) generalizes to a
model of the form:

y = Xβ + Zγ + qmξm + e (4)

where y represents the phenotype vector, qm is a vector with
each entry being an indicator variable of the genotype BB at the
marker position m with ξm being its associated effect (major gene
effect), γ is a random effects vector associated with the genetic
background with E(γ ) = 0 and Var(γ ) = σ 2

γ �1, with σ 2
γ > 0

and �1, a positive-definite matrix, both assumed to be constant,
although unknown, X is a matrix of fixed covariates and its corre-
sponding parameter vector β, e is a vector of independent and
identically distributed random variables representing the error
term with E(e) = 0 and Var(e) = σ 2 I. Up to a multiplicative con-
stant, �1 is a function of the length of the segments identical
by descent shared amongst strains. For an established RCS panel
there are only two possible identity states between pairs of strains
at a given locus: either (i) all four alleles are identical by descent
(�1 is the matrix holding the pairwise probabilities for this state),
or (ii) the strains have different allelic forms and thus identical by
descent only amongst themselves. So an estimator of �1 with “a
high degree of precision” can be reached. Such an estimator uses
only genomic information and does not involve y, so when esti-
mating the parameters, one can assume that �1 is given. Another
option is to take the entries of �1 as the expected value of the
proportion of the genome shared identical by descent between
the respective strains under the RCS panel construction described
above, i.e.,

δ1ij =

⎧
⎪⎪⎨
⎪⎪⎩

1 if i = j

15
16 if i and j have the same background

1
16 if i and j have different backgrounds.

(5)

This option, although not the most efficient, does capture the
main features of the design and yields a variance structure for the
random effects vector that can be exploited in the implementa-
tion of the resampling algorithm. For example, if all the strains
in the panel under scrutiny have the same background and the
simplified expectation-based �1 is used, then the distribution of
the vector of random effects is exchangeable. Nonetheless, replac-
ing a genomic-based �1 estimate by its theoretical expectation

(Equation 5) implies ignoring important information regarding
the correlation of the additive polygenic effects associated to the
genetic background.

2.2.1. Estimation
The estimation for the mixed linear model has been extensively
discussed in the literature (Harville, 1977; Henderson, 1986).
Here we develop an application of these standard methods to the
RCS design. Without loss of generality, let us consider the linear
mixed model (Equation 1) with Var(γ ) = σ 2

γ �1 and Var(e) =
σ 2I. Thus

E
(

y
) = Xβ and Var

(
y
) = σ 2 (ZGZ′ + I

) = σ 2 �

where G = λ�1 and λ = σ 2
γ

σ 2 , i.e., λ represents the signal-to-noise
ratio. Under the assumption of no major gene and only polygenic
background, λ is related to the heritability coefficient. When G is
known, the best linear unbiased estimator of β and the best linear
unbiased predictor of γ (also known as a shrinkage estimator) can
be written as

β̃ = (W′W)−W′v and γ̂ = GZ′�− 1
2 (v − Wβ̃),

respectively, where W = �− 1
2 X and v = �− 1

2 y. Also

σ̂ 2 = 1

N − rank(W)
(v − Wβ̃)′(v − Wβ̃)

σ̂ 2
γ = 1

rank(G)

(
γ̂ ′G−1γ̂ + σ̂ 2tr(G−1C)

)

with

C = (Z′MZ + G−1)−1 and M = I − X(X′X)−1X′.

Notice that the previous expressions cannot be computed unless
the signal-to-noise ratio, λ, is known. A situation of a more prac-
tical interest is an iterative procedure on which λ is replaced by
its estimate and, once that the estimates of σ 2 and σ 2

γ have been
updated, a refinement of the estimate of λ is obtained and so on.
This iterative procedure will result in a β̃ and γ̂ that are no longer
linear, nonetheless, they preserve most of the desirable properties
present in their linear counterpart (Jiang, 1998).

2.2.2. Mixed model resampling scheme
Let us now focus our attention toward a resampling scheme
appropriate for RCS data under a mixed model. By now, it is
obvious that the bootstrap procedure described in the previous
section will not work for the mixed model (Equation 4). A crude
extension to this procedure would consist of computing

ê = y − Xβ̃ − Zγ̂

and resampling from γ̂ and ê to obtain γ ∗ and e∗ so that the
pseudo-observation y∗ could be recovered as

y∗ = Xβ̃ + Zγ ∗ + e∗.
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However, it is straightforward to see that these residuals are not
exchangeable and they are biased toward zero. Thus, they may
not adequately represent the hypothesis tested nor reflect the true
variation of the model.

Alternatively, note that when β and λ are known, it follows
from the model under the null hypothesis that E(v) = Wβ and
Var(v) = σ 2 I which implies that the distribution of the vec-
tor of residuals, ε = v − Wβ, is exchangeable. This suggests the
following residuals resampling scheme:

(1) given λ̃ and β̃ obtained under the mixed model without a
major gene, i.e., under the null hypothesis, compute �̃, W̃ by
replacing λ with λ̃ and �1 with its genomic-based estimate;
then, obtain the leverage-adjusted residuals

ε̃ = D(�̃− 1
2 y − W̃β̃)

where D is a diagonal matrix with each of the non-zero
elements given by (1 − hii)

−1 and hii is the ith leverage
coefficient;

(2) with replacement, resample from ε̃ ∈ R
n to obtain ε∗ ∈ R

n,
its bootstrapped replica, and construct the vector of pseudo-
observations as

v∗ = W̃β̃ + ε∗.

If instead of a bootstrap procedure based on leverage-adjusted
residuals we want to use a residuals-based permutation proce-
dure, then we need to extend the method of Kherad-Pajouh and
Renaud (2010) to get weak exchangeability of residuals. However,
when λ is estimated from the data, such an extension is not possi-
ble and we would have to rely on approximations. More research
is needed to explore this direction.

Outside of a genetics context, there is a number of permuta-
tion and bootstrap procedures for mixed models whose objective
is testing the components of variance (for example, Fitzmaurice
et al., 2007; Sinha, 2009; Lee and Braun, 2012; Samuh et al.,
2012). However, they cannot be applied in our case because we
are interested in the regression coefficients (or a subset of them)
and the variance of the random effects is just nuisance parameter.
Incidentally, when testing the components of variance, bootstrap
has the edge over most permutation procedures (Samuh et al.,
2012).

2.2.3. Bootstrap procedure for the mixed linear model
According to the foregoing argument, generalization to the previ-
ous bootstrap procedure to compute the genome-wide corrected
p-values for the mixed model (Equation 4) goes as follows:

STEP 0. Compute �1 from the genotype data of the RCS panel,
and under the null hypothesis, obtain λ̃, β̃, �̃, W̃ and ε̃

as described in (i) above.
STEP 1. At each marker position, m, fit the model

ṽ =
(

W̃ �̃
− 1

2 qm

)(
β

ξm

)
+ ε. (6)

Of course, this model is equivalent to model
(Equation 4), the RCS/QTL mixed model, with λ

replaced by λ̃. Compute the model parameter estimates
with the outlined mixed model procedure as well as the
test statistic set Z = {zm, m = 1, 2, . . . , M} by using
Equations (6) and (3); set the acceptance count vector to
zero.

STEP 2. Draw a pseudo-observation v∗ by using the proposed
resampling scheme in (ii) above and fit the major gene
model in model (Equation 6) with ṽ replaced by v∗ to
obtain the set of bootstrapped test statistics {z∗

m} and its
associated critical value z∗

max = max {z∗
m}.

STEP 3. For each zm in Z , if zm ≤ z∗
max, add a unit to the mth

entry of the acceptance count vector.
STEP 4. Repeat steps 2 and 3 R times and compute the p-value

estimates by dividing the acceptance count vector by R.

To my knowledge, this bootstrap procedure for the analyzing a
panel of RCS has not been proposed before Di Pietrantonio et al.
(2010) and this paper contains the first detailed derivation and
study of its properties. In fact, the resampling methods (mostly
conditional permutation) applied to analyze RCS have not used
mixed models, but consider the strain effect as fixed which is
inconsistent with the hypothesis of a genetic background of poly-
genic nature or discard information by using only the estimated
strain means (for example, Gill and Boyle, 2005; Thifault et al.,
2008; Camateros et al., 2010).

3. RESULTS
One straightforward way to show the effect of ignoring the ran-
dom effects term in a mixed model is by simulation. The idea
is to generate a dataset from a model that includes a random
term for genetic background and noise, but is free of any major
locus. Then compare the p-value profiles (actually, − log10 p pro-
files) obtained by the use of the naive model (Equation 2) as well
as the mixed model (Equation 4). For this simulation study, the
genotypes of an RCS panel of 36 strains that were described in
Fortin et al. (2001b) were used. The panel originally had 37 lines
and 625 microsatellite markers; since then, one line has died out
and six markers were removed for reliability reasons. Although a
much larger set of single nucleotide polymorphism markers for
this RCS panel is also available, I think that this set of 619 mark-
ers is enough to show the harmful effects of fitting the wrong
model on the inference. Of course, more markers will only exac-
erbate the problem. For this simulation experiment, six different
values for the signal-to-noise ratio parameter λ were chosen (0,
1
8 , 1

4 , 1
2 , 1, and 2). Under a standard additive polygenic model,

i.e., a model without major genes, the signal-to-noise parameter
is a function of the heritability coefficient (the chosen values cor-
respond to the heritability proportions of 0, 1

9 , 1
5 , 1

3 , 1
2 , and 2

3 ,
respectively). In every simulation run, a sample of seven individ-
uals from each strain was simulated under the assumption of no
major gene, i.e., under model (Equation 4) with ξm = 0 for all
markers, m = 1, 2, . . . , M. The value of σ 2 was fixed for all sim-
ulations to 1.175, while Xβ was fixed as a vector with 7 in all its
entries. Simulations for each value of λ were run 1000 times and
both methodologies, the mixed model as well as the bootstrapped
naive regression at the markers were applied to the simulated
datasets with 10, 000 as the number of resamples for every dataset.
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In gene mapping studies, a significant peak is defined as the most
extreme point of a region beyond the p-value threshold according
to some pre-specified genome-wide type I error rate (Churchill
and Doerge, 1994). For this study, we use a value of 0.01 or equiv-
alently, a threshold value of 2 on a − log10 p-scale. Tables 1–3
summarize the results of these simulations. As expected, when-
ever there is not a polygenic term in the model (i.e., λ = 0), both
methodologies produce identical results. However, the picture
changes when λ > 0. In this case, it is quite obvious that ignor-
ing the random effects term has pernicious consequences even for
modest levels of λ, the signal-to-noise ratio, while the proposed
mixed model method keeps the genome-wide type I error rate
relatively close to the nominal value. However, the empirical type
I error rates obtained by the proposed procedure seem to increase
slightly with λ (Table 3). This phenomenon may be due to the fact
that the makers used for mapping purposes are also used to esti-
mate the probability of identity by descent between strains and, to
a lesser extent, the fact that the the bootstrap procedure is based
on residuals computed with λ and β estimated from the same
data. Nonetheless, the moral of this exercise is that whenever sim-
ple regression of a major gene model produces many significant
peaks, a warning flag about the model validity should be raised.

Table 1 | Percentage of declared significant peaks with a bootstrap

genome-wide adjusted significance level of 0.01 when the proposed

mixed model methodology is used.

% Signal-to-noise ratio (λ)
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s 0 99.2 98.7 98.9 98.3 98.5 98.4

1 0.8 0.5 0.5 0.7 0.7 0.4

2 0 0.2 0.1 0.2 0.5 0.3

3 0 0.1 0 0.4 0.1 0.3

4 0 0 0.3 0.1 0.1 0.1

5 0 0.1 0.1 0.1 0 0.1

6+ 0 0.2 0.1 0.3 0.1 0.4

Estimates based on 1000 simulated datasets for each λ.

Table 2 | Percentage of declared significant peaks with a bootstrap

genome-wide adjusted significance level of 0.01 when a naive

regression at the markers is used.

% Signal-to-noise ratio (λ)

0 1
8

1
4

1
2

1 2

N
um

be
r

of
si

gn
ifi

ca
nt

pe
ak

s 0 99.2 61.1 47.3 38.8 23.9 17.2

1 0.8 3.9 5.1 5.2 8.1 7.1

2 0 3.7 4.1 5.1 4.9 6.0

3 0 1.5 3.5 3.1 3.0 5.3

4 0 2.5 4.6 3.3 2.1 4.1

5 0 2.1 5.3 3.2 2.9 2.4

6+ 0 25.2 30.1 41.3 55.1 57.9

Estimates based on 1000 simulated datasets for each λ.

The histogram of a typical dataset obtained by simulation from
a model with polygenic effects only would look like the one shown
in Figure 1. Nonetheless, for this histogram I chose a dataset
for which simple linear regression produces a very large num-
ber of significant peaks. If a major locus were at play, one would
expect to have a well-defined bimodal distribution, so this his-
togram seems consistent with the generating model of no major
gene. However, when we look into the p-value profiles obtained
through the model that ignores the genetic background term,
instead of profiles consistent with the model we will have some-
thing extreme as shown by dashed lines in Figure 2. According to
the profiles on this figure, one might conclude that all chromo-
somes have at least one significant peak, fact that does not appear
to be supported by the histogram of the data, and more conclu-
sively, this is in conflict with the generating model. If anything, it
can be argued that the data distribution may seem a bit skewed,
but one may expect that estimation of p-values via bootstrapping
of residuals should not be too sensitive to this. Of course, as for
bi-modality, skewness may also be caused by a mixture of distri-
butions. However, a very strong peak, as any of the ones spotted
on every chromosome, is difficult to conceive without a conspic-
uous bimodal distribution. Even with the use of robust regression
estimates instead of the obtained by regular least squares to min-
imize the potential impact of outliers on the estimation, these
profiles change very little (data not shown). When the missing
random effects term is introduced into the model (solid blue

Table 3 | Empirical genome-wide type I error rates obtained via

bootstrap in the simulation study (0.01 is the nominal value and the

number of simulated datasets for each λ is 1000).

Signal-to-noise ratio (λ)

0 1
8

1
4

1
2

1 2

Naive regression 0.008 0.389 0.527 0.612 0.761 0.808

Mixed model 0.008 0.013 0.011 0.017 0.015 0.016

FIGURE 1 | Typical histogram of simulated data. The p-value profiles of
the data on this histogram were computed and plotted in Figure 2.
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FIGURE 2 | Bootstrap genome-wide corrected p-value profiles. Dashed line for naive model (Equation 2) and solid line (sometimes hardly distinguishable
from the x-axis line) for the mixed model (Equation 6). Note that both profiles have been corrected for multiple testing.

lines in Figure 2), p-value profiles become consistent with the
generating model. Repetition of this exercise on any other simu-
lated datasets yields similar results, although the specific resulting
profiles most likely are not be the same.

4. DISCUSSION
This paper proposes a bootstrapping procedure to estimate the p-
values under a mixed model applied to gene mapping when RCS
are used. The method can be easily adapted for other replicable
mapping population/designs. This procedure is a generalization
of the linear regression bootstrap of residuals coupled with the
union-intersection principle aimed to control the genome-wide
type I error rate. A simulation study with different values of the
signal-to-noise ratio unequivocally shows that when a panel of

RCS is used for mapping, ignoring one random effects term in a
mixed linear model can have pernicious consequences, resulting
in inflated type I error rates and leading to the declaration of sig-
nificant linkage peaks were no such peaks should be found. The
simulation study also shows that the proposed bootstrap proce-
dure seems to produce slightly inflated type I error rates as the
signal-to-noise ratio increases. This problem is likely due to the
fact that the markers used for mapping are also used to estimate
the length of the segments shared identical by descent but also
it can be associated with a stronger departure from exchange-
ability as the ratio increases. In any case, the problem deserves
further scrutiny. The proposed bootstrap procedure for mixed
models is quite general and can easily be adapted to non-genetic
problems.
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Rapid developments in molecular technology have yielded a large amount of high
throughput genetic data to understand the mechanism for complex traits. The increase
of genetic variants requires hundreds and thousands of statistical tests to be performed
simultaneously in analysis, which poses a challenge to control the overall Type I error
rate. Combining p-values from multiple hypothesis testing has shown promise for
aggregating effects in high-dimensional genetic data analysis. Several p-value combining
methods have been developed and applied to genetic data; see Dai et al. (2012b) for a
comprehensive review. However, there is a lack of investigations conducted for dependent
genetic data, especially for weighted p-value combining methods. Single nucleotide
polymorphisms (SNPs) are often correlated due to linkage disequilibrium (LD). Other
genetic data, including variants from next generation sequencing, gene expression levels
measured by microarray, protein and DNA methylation data, etc. also contain complex
correlation structures. Ignoring correlation structures among genetic variants may lead
to severe inflation of Type I error rates for omnibus testing of p-values. In this work,
we propose modifications to the Lancaster procedure by taking the correlation structure
among p-values into account. The weight function in the Lancaster procedure allows
meaningful biological information to be incorporated into the statistical analysis, which
can increase the power of the statistical testing and/or remove the bias in the process.
Extensive empirical assessments demonstrate that the modified Lancaster procedure
largely reduces the Type I error rates due to correlation among p-values, and retains
considerable power to detect signals among p-values. We applied our method to reassess
published renal transplant data, and identified a novel association between B cell pathways
and allograft tolerance.

Keywords: generalized Fisher method (Lancaster procedure), weight function, correlated p-values, multiple

hypothesis testing, high dimensional genetic data

INTRODUCTION
Rapid developments in molecular technology have created high
throughput data in search of genetic variants associated with
complex traits. As the cost of experiments goes down, the amount
of data that can be generated, and the resulting complexity of
statistical analysis required to interpret the data goes up. The
increase of genetic variants requires more statistical testing to
be performed simultaneously, which poses a challenge to control
the genome wide Type I error rate. False discovery rate (FDR)
and its extended methods have been proposed to adjust p-values
in multiple tests in order to control the genome wide Type I
error (Benjamini and Hochberg, 1995; Cheng and Pounds, 2007).
However, in large-scale hypothesis testing, these methods often
require very a large sample size to maintain power of detecting
risk factors.

The global test (also named omnibus test) of p-values can com-
bine evidence and turn dimensionality from a curse into rich
information. From a systems biology perspective, genes, cells,

tissues, and organs function as a system through metabolic net-
works and cell signaling networks. In non-Mendelian inheritance
patterns, such as complex disorders, a subset of genetic vari-
ants may jointly confer moderate effects in mediating molecular
activities. As a result, signals may not be significant in single
marker-single trait analysis, but many such values from related
genes might provide valuable information on gene function and
regulation. For instance, in pathway analysis (Khatri et al., 2012)
and gene set enrichment analysis (Subramanian et al., 2005), mul-
tiple genes that work together to serve a particular biological
function are often analyzed jointly as a gene set. Several path-
way repositories, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2004), PANTHER classifi-
cation system for protein sequence data (Nikolsky and Bryant,
2009), and Reactome pathways in humans (Matthews et al., 2009)
have been established, and are continually being updated. For
non-Mendelian diseases and complex traits, identification of iso-
lated genetic variants is insufficient to summarize the complex

www.frontiersin.org February 2014 | Volume 5 | Article 32 | 90

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/journal/10.3389/fgene.2014.00032/abstract
http://community.frontiersin.org/people/u/31547
http://community.frontiersin.org/people/u/19962
http://community.frontiersin.org/people/u/33255
mailto:hdai@cmh.edu
http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Population_Genetics/archive


Dai et al. Correlated Lancaster procedure

association with disease. The “most-significant SNPs/genes”
approach often detects variants with small effect sizes and odds
ratios ranging between 1.3 and 2 (Wacholder et al., 2004).
Therefore, integrating information from pathways, gene sets, and
networks will provide useful information in understanding the
gene regulation mechanism. Furthermore, filtration techniques
can be integrated with global testing of p-values to remove sets of
genetic variants that are not related to traits, and thereby reduce
the dimensionality of the data (Dai and Charnigo, 2008; Dai et al.,
2012a).

The global test of p-values evaluates the pattern (distribution)
of p-values instead of selecting p-values less than an arbitrary
threshold. Therefore, this method has the potential to identify
multiple genes with small effects. If we assume that all individ-
ual tests are independent and arise from genetic variants with
no effects, then p-values are identically and independently dis-
tributed as Uniform (0, 1). Taking this as a null hypothesis for
the pattern of p-values in the global test, one can assess whether
p-values, especially small p-values, are generated by chance. The
global test of p-values is robust and can be applied to p-values
from varying statistical models including t-tests, analysis of vari-
ance (ANOVA), linear mixed models, and so forth. Multiple
simulation studies and case studies have demonstrated that this
approach usually has sufficient power to detect signals of genetic
association from a group of genes. For instance, Peng et al. (2010)
has assessed Fisher’s combination test and Sidak’s combination
test, Sime’s combination test and the FDR method using 13 pub-
lished genome wide association studies (GWAS), and the results
indicate that combined p-value approaches can identify biologi-
cally meaningful pathways associated with the disease susceptibil-
ity. A review of methods of global test of p-values, developmental
trends and their application to genetic data analysis has been
presented by (Dai et al., 2012b).

One category of global tests of p-values involves combining
p-values in the form of

∑
i H(pi), where p-values might first be

transformed by a function H. So far, several statistical methods
have been developed to combine p-values. Let pi(i = 1, 2, . . . , n)

be independent p-values obtained from n hypothesis tests.
Under the null hypothesis (H0) that p-values follow a Uniform
(0, 1) distribution, Fisher (1932) shows that −2

∑n
i = 1 ln(pi)

follows a chi-square distribution with 2n degrees of freedom.
For a one sided test with a nominal error rate of α, one can
reject the null hypothesis when the test statistics exceeds the
(1 − α)∗100% percentile of χ2

2n. Stouffer (Stouffer et al., 1949)
proposed a z-test by transforming p-values to standard nor-

mal variables, i.e.,
∑n

i = 1
�−1(1 − pi)√

n
, where �−1 is the inverse

Cumulative Distribution Function (CDF) for N(0, 1). Under the
null hypothesis, the z-test statistic follows N(0, 1).

Although there is no consensus regarding the most powerful
method of combining p-values, Littell and Folks (1971, 1973)
demonstrated that the Fisher’s method of combining indepen-
dent tests is asymptotically Bahadur efficient (Bahadur, 1967).
Subsequently, weighting schemes have been incorporated into
the Fisher’s method and the z-test. Lancaster (1961) gener-
alized the Fisher method by converting independent p-values
to chi-square variables with wi degrees of freedom and he

showed that
∑m

i = 1 γ−1
(wi/2,2)(1 − pi) ∼ χ2

d, d = ∑
i wi under H0,

where γ−1
(wi/2,2) is the inverse CDF of Gamma distribution.

Mosteller and Bush (1954) proposed a weighted z-test,
∑

i wi�
−1

(1 − pi)/

√∑
i w2

i , which follows N(0, 1) under H0.

In a separate paper, we have proved that the Lancaster
procedure achieves the optimal Bahadur efficiency. We further
demonstrated that the Lancaster procedure yields higher Bahadur
efficiency than the weighted z-test. The Bahadur efficiency ratio
gives the limiting ratio of sample sizes required by two statistics
to attain an equally small significance level. Thus, Bahadur effi-
ciency is an important method to compare test statistics. From
the perspective of Bahadur efficiency, the Lancaster procedure
asymptotically requires a relatively smaller sample size than other
weighted p-value combining methods. This prompted us to focus
on modification of the Lancaster procedure for correlated genetic
data in this work.

Although the Fisher’s method and Lancaster procedure both
achieve the optimal Bahadur efficiency, the Lancaster procedure is
more general and can be viewed as a generalized Fisher’s method
with weighting functions. There are three advantages to care-
fully select appropriate weight functions in genetic data analysis.
Firstly, weight functions allow incorporation of prior biological
information. Genetic data are complex and can be measured from
different sources. Thus, weight functions can be used as a tool
to incorporate meaningful information from different sources
in order to interpret and derive biological insight from gene
expression profiles. (Wu and Lin, 2009) provides a review of
statistical methods for analysis of microarray data by incorpo-
rating prior biological knowledge using gene sets and biological
pathways, which consist of groups of biologically similar genes.
They show that the use of prior knowledge has led to a better
understanding of the biological mechanisms underlying pheno-
typic responses. Secondly, weight functions can be used to remove
bias. For instance, larger genes may contain more probes and/or
SNPs. Therefore, larger genes will exert a stronger influence on the
p-value combining methods as compared to smaller genes (Wang
et al., 2007). To avoid this bias, one can consider a weight function
to adjust for gene size when combining p-values. We will illus-
trate this approach in sections Empirical Assessments and Case
Study: Renal Transplant Tolerance Data. Thirdly, as suggested by
Benjamini and Hochberg (1997), Genovese et al. (2006), proce-
dures that assign weights positively associated with the underlying
alternative hypotheses will usually improve power. Therefore,
one needs to carefully choose an appropriate weight func-
tion, either based on the biological knowledge, or by statistical
hypotheses. An arbitrary weight is inappropriate for the Lancaster
procedure.

In this work, we will provide modifications to the Lancaster
procedure to accommodate correlation structures among
p-values. The proposed method provides a generalization to
the Fisher’s method with a weight function and can be used
in pathway analysis and gene sets enrichment analysis for a
variety of genetic data including microarray gene expression data,
GWAS data, and next generation sequencing data. In essence,
investigators first dissect genetic variants by biological functions
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or prior knowledge, then combine the p-values from these gene
sets to identify whether a proportion of genetic variants are
associated with traits.

CORRELATED LANCASTER PROCEDURES
In this section, we allow p-values to be correlated. Consider a
Lancaster test statistic T = ∑n

i = 1 γ−1
(wi/2,2)(1 − pi) where γ−1

(wi/2,2)

is the inverse CDF of Gamma distribution with a shape param-
eter wi/2 and a scale parameter 2. This transformation converts
pi ∼ Uniform(0, 1) to a chi-square distribution, i.e., γ−1

(wi/2,2)

(1 − pi) ∼ χ2
wi

where χ2
wi

is a chi-square distribution with wi > 0
degree(s) of freedom. The parameter wi serves as a weight func-
tion to adjust the individual p-values. When p-values are inde-
pendent, T has an exact chi-square distribution with

∑n
i = 1 wi

degrees of freedom.
For correlated p-values, T = ∑n

i = 1 γ−1
(wi/2,2)(1 − pi) does not

follow χ2∑n
i = 1 wi

. The distribution of T does not have an explicit

analytical form. To address this issue, we consider a Satterthwaite
approximation by approximating a scaled T statistic with a new
chi-square distribution (Li et al., 2011). Let cT ≈ χ2

v where c > 0
is a scalar and v > 0 is the degree of freedom for the approximated
chi-square distribution. Note that

E(T) = E

(
n∑

i = 1

γ−1
(wi/2,2)

(
1 − pi

)
)

=
n∑

i = 1

wi and

Var(T) = var

(
n∑

i = 1

γ−1
(wi/2,2)

(
1 − pi

)
)

=
n∑

i = 1

var
(
γ−1

(wi/2,2)

(
1 − pi

))

+ 2
∑

i < j

cov
(
γ−1

(wi/2,2)

(
1 − pi

)
, γ−1

(wi/2,2)

(
1 − pj

))

= 2
n∑

i = 1

wi + 2
∑

i < j

ρij,

where ρij = cov
(
γ−1

(wi/2,2)(1 − pi), γ
−1
(wi/2,2)

(
1 − pj

))
takes the

correlations among p-values into account.
We propose the following five approaches to approximate the

distribution of T. In approximation (A), we use the Satterthwaite
method to match the mean and variance of cT and χ2

v , and then
solve the equations to derive c and v. Koziol (1996) have pro-
posed multiple methods to approximate the Lancaster procedure,
but these approximations require the assumption of indepen-
dence. In approximation (B)–(E), we extend the work of Koziol
(1996) to correlated data by first approximating cT with χ2

v then
approximating χ2

v using varying methods.

• TA approximation.
Correlation among p-values is taken into consideration, and
then Satterthwaite’s approximation is used (Patnaik, 1949) to
derive new degrees of freedom:

TA = cT ≈ χ2
v, where c = v

E(T)
and v = 2

[E(T)]2

var(T)
.

• TB approximation.
cT is first approximated by χ2

v , followed by Fisher’s approxima-
tion (Fisher, 1922) to χ2

v :

TB =
√

2
vT

E(T)
≈ N(

√
2v − 1, 1).

• Tc approximation.
After approximating cT by χ2

v , the Wilson–Hilferty approx-
imation is performed (Wilson and Hilferty, 1931) to derive
χ2

v .

Let Tc = 3

√
T

E(T)
, then Tc ≈ N

(
1 − 2/(9v),

√
2/(9v)

)
.

• TD approximation.
Approximate cT by χ2

v , followed by the Cornish–Fisher expan-
sion (Fisher and Cornish, 1960) to χ2

v . Let xα denote the
α-percentage point of the standard normal distribution, that is,
�(xα) = α. It follows that the corresponding percentage point
for TD = vT

E(T)
is given by

v + √
2vxα + 2

3
(x2

α − 1) + x3
α − 7xα

9
√

2v
− 6x4

α + 14x2
α − 32

405v

+ 9x5
α + 256x2

α − 433xα

4860v
√

2v
.

• TE approximation.
Approximate cT by χ2

v then perform saddle point
approximation (Lugannani and Rice, 1980) to χ2

v . Let

TE = T
E(T)

. Then Pr(YE ≤ y) = �(ay) − φ(b−1
y − a−1

y )

for y �= 1 and Pr(YE ≤ 1) = 0.5 − (3
√

πv)−1, where

ay = √
2v(yty − K(ty))sign(ty), by = ty

√
vK ′′

(tx) and

K(t) = −0.5 log(1 − 2t), and ty = (y − 1)/2y.

When the covariance ρij is unknown, one can use the permuta-
tion approach to estimate ρij by shuffling the phenotype variable
among subjects. For the kth permutation (k = 1, 2, . . . , m), we
keep the genetic variants within the subject to preserve the cor-
relation structure, then randomly assign the phenotype variable
to subjects. Individual hypothesis testing can be done on all n
genetic variants separately to generate the p-value vector pk =
(pk

1, pk
2, . . . pk

n)
t . The permutation is repeated m = 1000 times,

and ρij is estimated from (p1, p2, . . . pm).
The accuracy of the five approximate distributions to the

correlated Lancaster procedure is then assessed using p-values
with varying correlation structures. We consider six different
types of correlation structures, including fixed and random com-
pound symmetric as well as random positive definite variance-
covariance structures for �. Let I be an identity matrix, 	1 be
a vector of 1 s, ⊗ be the Kronecker product, and superscript t
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be the transposition. In Cases I–V, let � = Block ⊗ I20 be com-
pound symmetric variance matrices with 20 blocks of size 5 where
Block = 	15	1t

5ρ + (1 − ρ)I5. We vary ρ over two fixed values with
ρ = 0.3 for moderate dependence and ρ = 0.6 for strong depen-
dence. In addition, we simulate random correlation coefficients
from beta and uniform distributions, i.e., ρ ∼ β(0.3, 1.5) and
ρ ∼ uniform(−0.2, 0.2), which ensures that 20 variance blocks
have distinct correlation coefficients ρ within �. More generally,
we consider random positive definite correlation matrices � that
vary across samples and simulation runs.

The quantile-quantile (Q-Q) plot assessing the accuracy of
the proposed methods when the correlation coefficient ρ = 0.3
is shown in Figure 1. For clarity, the Lancaster statistic T that
combines n p-values is renamed as TLancaster

n in Figure 1. For the
original Lancaster procedure under the independence assump-
tion, the general trend of the Q-Q plot is flatter than the reference
line y = x, indicating the limiting distribution for the test statistic
in the original Lancaster procedure is less dispersed than the
distribution of TLancaster

n under correlation structures. As a result,
the original Lancaster procedure will have severely inflated Type
I errors. In contrast, the five approximations (TA, . . . , TE) match
the underlying distribution of TLancaster

n . For data with stronger
internal correlation, TA, TD, and TE better approximate TLancaster

n .
The Q-Q plots under other correlation structures are similar to

Figure 1. To save space, these similar results are not shown, but
can be provided upon request.

EMPIRICAL ASSESSMENTS
We assess the Type I error rates and power for the proposed
correlated Lancaster procedures and compare them to the inde-
pendent Lancaster procedure (Lancaster, 1961). SNPs from a
pathway of haploid GWAS are simulated using linkage dise-
quilibrium (LD) (Li et al., 2011). Let q1 and q2 be the minor
allele frequencies (MAFs) at loci 1 and 2. Assuming Hardy–
Weinberg equilibrium, the genotype at locus 1 can be randomly
generated using a binomial distribution. Given the distribution
of SNP at locus 1, one can simulate the genotype at locus 2.
To do so, let D be a measure of LD. Then the conditional
probability for the genotype at locus 2 given the genotype at
locus 1 can be expressed as P(A|B) = [qAqB + D]/qB, P(a|B) =
[(1 − qA)qB − D]/qB, P(A|b) = [qA(1 − qB) − D]/(1 − qB), and
P(a|b) = [(1 − qA)(1 − qB) + D]/(1 − qB) where A and B rep-
resent the minor alleles at the two loci. For a diploid genome,
similar idea can be applied and the simulation details can be
found at Cui et al. (2008). We simulate a pathway with 5 genes
with varying numbers of SNPs in each gene listed in parenthesis
i.e., G1(12), G2(8), G3(5), G4(3), G5(2). The MAF of each SNP
was set to be 0.3. We simulate different levels of LD for SNPs from

FIGURE 1 | Q-Q plots for distributions of the Lancaster statistic when p-values are correlated with correlation coefficient ρ = 0.3.
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the same gene with D = 0, 1.5, 2, and uniform(0, maximum of
LD). The variable D = 0, 1.5, and 2 suggests no LD, moderate LD,
and very strong LD among SNPs with the corresponding correla-
tion R = 0, 0.71, and 0.95. Six scenarios for disease susceptibility
(p) are simulated

• Case I: ln(p/(1 − p)) = β1G1, 2 + β2G1, 5 + β3G1, 7 +
β4G1, 8 + β5G1, 12.

• Case II: ln(p/(1 − p)) = β1G2, 2 + β2G2, 4 + β3G2, 6 +
β4G3, 2 + β5G3, 3.

• Case III: ln(p/(1 − p)) = β1G3, 2 + β2G3, 4 + β3G4, 1 +
β4G4, 3 + β5G5, 1.

• Case IV: ln(p/(1 − p)) = β1G1, 1 + β2G1, 3 + β3G1, 7 +
β4G1, 8G1, 10G1, 11 + β5G1, 12.

• Case V: ln(p/(1 − p)) = β1G3, 1 + β2G3, 3 + β3G4, 2 +
β4G3, 2G3,4 + β5G4, 3G5, 1.

• Case VI: ln(p/(1 − p)) = β1G1, 2 + β2G2, 2 + β3G3, 3 +
β4G5, 2 + β5G1, 5G1,7 + β6G3, 3G5, 1.

Table 1 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 200 and linkage disequilibrium D = 0.15.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.101 0.038 0.042 0.039 0.039 0.038

β = 0.4 0.999 0.995 0.995 0.995 0.995 0.995

β = 0.6 1 1.000 1 1 1 1

CASE II

β = 0 0.1 0.037 0.041 0.038 0.038 0.037

β = 0.4 0.947 0.863 0.875 0.864 0.865 0.863

β = 0.6 0.997 0.995 0.995 0.995 0.995 0.995

CASE III

β = 0 0.078 0.038 0.038 0.038 0.038 0.038

β = 0.4 0.735 0.506 0.522 0.508 0.507 0.506

β = 0.6 0.961 0.864 0.876 0.866 0.866 0.863

CASE IV

β = 0 0.107 0.046 0.051 0.046 0.047 0.046

β = 0.4 0.997 0.997 0.997 0.997 0.997 0.997

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.084 0.036 0.038 0.037 0.037 0.036

β = 0.4 0.884 0.71 0.724 0.71 0.711 0.71

β = 0.6 0.989 0.952 0.957 0.953 0.953 0.952

CASE VI

β = 0 0.084 0.036 0.038 0.037 0.037 0.036

β = 0.4 0.741 0.57 0.585 0.572 0.572 0.568

β = 0.6 0.953 0.898 0.904 0.898 0.898 0.898

A weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*A weight function wi = 2/

√
ni is applied to each test to adjust for the size

of gene.

Weight functions can be used to remove potential bias when
combining p-values. Wang et al. (2007) and others have
noted that larger genes contain more probes and/or SNPs.
Therefore, larger genes may exert a stronger influence on the
p-value combining methods compared to smaller genes. To
avoid this bias, we set the weight function wi = 2/

√
ni where

ni is the number of SNPs in the ith gene. When ni = 1,
γ−1

(wi/2, 2)(1 − pi) transforms p-value into a variable with χ2
2

distribution.
We simulate data with sample sizes n = 200 (Tables 1, 4) and

n = 400 (Tables 2, 3), respectively. For simplicity, we assume the
same effect size for all of the regression coefficients. For each set of
data, we perform the original and modified Lancaster procedures
to assess the pathway data by combining p-values from individ-
ual tests. We set nominal error rate to be 0.05. The simulation is
repeated 1000 times.

Due to LD, SNPs from the same gene are correlated. We first
assess the Type I error rate of the test statistics by testing H0 :

Table 2 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 400 and linkage disequilibrium D = 0.20.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.13 0.051 0.052 0.051 0.051 0.051

β = 0.4 1 1 1 1 1 1

β = 0.6 1 1 1 1 1 1

CASE II

β = 0 0.134 0.05 0.051 0.05 0.05 0.05

β = 0.4 0.999 0.997 0.998 0.998 0.998 0.997

β = 0.6 1 1 1 1 1 1

CASE III

β = 0 0.116 0.045 0.048 0.045 0.045 0.045

β = 0.4 0.986 0.908 0.915 0.908 0.908 0.908

β = 0.6 1 0.998 0.998 0.998 0.998 0.998

CASE IV

β = 0 0.109 0.046 0.047 0.046 0.046 0.046

β = 0.4 1 1 1 1 1 1

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.135 0.04 0.043 0.041 0.041 0.041

β = 0.4 0.994 0.971 0.974 0.971 0.971 0.971

β = 0.6 1 1 1 1 1 1

CASE VI

β = 0 0.135 0.04 0.043 0.041 0.041 0.041

β = 0.4 0.986 0.939 0.948 0.939 0.939 0.939

β = 0.6 1 0.999 0.999 0.999 0.999 0.999

A Weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*A weight function wi = 2/

√
ni is applied to each test to adjust for the size

of gene.
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β1 = . . . = β6 = 0. As shown in Tables 1, 2, the Type I error
rate for the original Lancaster procedure is inflated (>0.05) for
all of the six cases. In contrast, five modified Lancaster procedures
(TA − TE) have well controlled Type I error rates (<0.05).

The power of all test statistics was compared for regression
coefficient values set at β = 0.4 and β = 0.6, respectively. The
results in Tables 1, 2 suggest strong and comparable power among
the modified Lancaster procedures. In most simulated cases, the
proposed methods have more than 80% power to detect β = 0.4.
When the effect size increases to β = 0.6, the power of proposed
methods increases to 90% or above. Also the power of these tests
improves as sample size increases from n = 200 to n = 400.

We simulate different levels of LD for SNPs with D = 0, 1.5,
2, and uniform(0, maximum of LD). To save the space, we only
show the results for D = 1.5 (Table 3) and D = 2 (Tables 1, 2).
Our findings show that the inflation of Type I error rate for
the original Lancaster procedure gets severe when LD is strong
(Tables 1, 2). The modified Lancaster procedures (TA − TE) have

Table 3 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 400 and linkage disequilibrium D = 0.15.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.066 0.043 0.045 0.043 0.044 0.043

β = 0.4 0.991 0.978 0.978 0.978 0.978 0.978

β = 0.6 1 1 1 1 1 1

CASE II

β = 0 0.059 0.031 0.035 0.031 0.031 0.031

β = 0.4 0.978 0.964 0.967 0.964 0.964 0.964

β = 0.6 1 1 1 1 1 1

CASE III

β = 0 0.053 0.029 0.034 0.029 0.03 0.029

β = 0.4 0.898 0.836 0.844 0.837 0.837 0.836

β = 0.6 0.999 0.996 0.997 0.996 0.996 0.996

CASE IV

β = 0 0.072 0.041 0.045 0.041 0.041 0.041

β = 0.4 0.977 0.962 0.964 0.962 0.962 0.962

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.072 0.041 0.045 0.041 0.041 0.041

β = 0.4 0.946 0.899 0.905 0.9 0.901 0.899

β = 0.6 0.999 0.996 0.996 0.996 0.996 0.996

CASE VI

β = 0 0.072 0.041 0.045 0.041 0.041 0.041

β = 0.4 0.807 0.732 0.045 0.733 0.733 0.732

β = 0.6 0.978 0.965 0.045 0.965 0.965 0.965

A weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*A weight function wi = 2/

√
ni is applied to each test to adjust for the size

of gene.

well-controlled Type I error rates and power for both moderate
and strong LD (Tables 1–3).

In Table 4, we assess the performance of all tests without
a weighting function. We then compare the results in Table 4
(without a weight function) vs. Table 1 (with a weight func-
tion). All other simulation parameters are held the same in
Tables 1, 4. We note that the original Lancaster procedure with-
out a weighting function (Table 4) tends to have higher Type I
error rates than the original Lancaster procedure with a weight-
ing function (Table 1). For modified tests (TA − TE), the power
is increased when a weighting function is used. This confirms
that an appropriate weight function is beneficial to the Lancaster
procedure.

CASE STUDY: RENAL TRANSPLANT TOLERANCE DATA
We revisited a kidney transplant data first collected and ana-
lyzed by Newell et al. (2010). Data were downloaded from the
GEO website with ID = GDS4266 (http://www.ncbi.nlm.nih.

Table 4 | Type I error and power for independent Lancaster Procedure

and five approximations to correlated Lancaster Procedures when

sample size = 200 and linkage disequilibrium D = 0.20.

Independent TA TB TC TD TE

Lancaster

procedure

CASE I

β = 0 0.106 0.027 0.03 0.027 0.027 0.027

β = 0.4 1 0.997 0.997 0.997 0.997 0.997

β = 0.6 1 1 1 1 1 1

CASE II

β = 0 0.1 0.029 0.03 0.029 0.029 0.029

β = 0.4 0.935 0.801 0.812 0.801 0.803 0.801

β = 0.6 0.998 0.976 0.98 0.976 0.977 0.976

CASE III

β = 0 0.118 0.041 0.042 0.041 0.041 0.041

β = 0.4 0.608 0.307 0.32 0.307 0.307 0.307

β = 0.6 0.881 0.663 0.679 0.665 0.666 0.663

CASE IV

β = 0 0.115 0.037 0.04 0.038 0.038 0.037

β = 0.4 1 0.994 0.994 0.994 0.994 0.994

β = 0.6 1 1 1 1 1 1

CASE V

β = 0 0.115 0.037 0.04 0.038 0.038 0.037

β = 0.4 0.78 0.487 0.5 0.488 0.489 0.487

β = 0.6 0.977 0.869 0.882 0.869 0.87 0.869

CASE VI

β = 0 0.115 0.037 0.04 0.038 0.038 0.037

β = 0.4 0.782 0.579 0.589 0.579 0.58 0.579

β = 0.6 0.964 0.885 0.888 0.885 0.885 0.885

No Weight function is applied to adjust for the gene size*.
*The nominal error rate is set to be 0.05. Type I error rates are listed when β = 0.

Power is listed when β > 0. Inflated Type I error rates are italicized.
*These are the un-weighted tests with wi = 2 for all genes. We do not adjust

the size of genes.
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gov/sites/GDSbrowser?acc=GDS4266). A group of tolerant renal
transplant recipients (Tolerant, n = 19), as defined by stable graft
function in the absence of immunosuppression for more than 1
year, were compared to subjects with stable graft function who
were receiving standard immunotherapy (SI, n = 27) as well as to
a group of healthy controls (Control, n = 12). Gene expression
profiles of whole-blood total RNA from all subjects were mea-
sured by microarray. The goal of the study was to identify genetic
variants associated with long-term allograft survival without the
requirement for continuous immunosuppression, a condition
known as allograft tolerance. Newell et al. (2010) performed sta-
tistical analysis to identify differentially expressed genes between
the SI group and the Tolerant group. The results revealed a crit-
ical role for B cells in regulating alloimmunity, and provided a
candidate set of genes for wider-scale screening of renal trans-
plant recipients. However, no comprehensive pathway analysis
was conducted by this group (Newell et al., 2010).

To further understand molecular mechanisms underlying
renal allograft tolerance, we have applied the modified Lancaster

procedure to this dataset to identify candidate cellular pathways.
Gene expression levels were normalized using Robust Multichip
Average (rma) preprocessing methodology, which included back-
ground subtraction, quantile normalization, and summarization
via median-polish.

Gene expression levels were summarized for a total of 54,675
probes from 21,049 genes. Expression levels were compared
among three groups using the Bioconductor “Limma” package.
Three pair wise comparisons were conducted, including: SI vs.
Control, SI vs. Tolerant, and Tolerant vs. Control. Then three
comparisons were combined into one F-test. This is equivalent to
a One-Way ANOVA for each gene except that the residual mean
squares have been moderated across genes. P-values from mul-
tiple hypothesis testing were adjusted by FDR (Benjamini and
Hochberg, 1995). Our results of differentially expressed genes are
consistent with the previous published work. See Newell et al.
(2010) for the gene analysis findings.

Although (Newell et al., 2010) identified a set of differentially
expressed genes, our analysis demonstrates that these significant

Table 5 | Top 10 significant pathways detected by the modified Lancaster procedure (TA).

GO accession Pathway name Gene ontology URL #Gene #Probe Adjusted

P-value

GO:0030183 B cell differentiation Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/B_CELL_ DIFFERENTIATION

12 29 0.003541

GO:0042113 B cell activation Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/B_CELL_ ACTIVATION

20 45 0.003541

GO:0003823 Antigen binding Molecular function http://www.broadinstitute.org/
gsea/msigdb/cards/ANTIGEN_ BINDING

23 51 0.003541

GO:0004709 Map kinase kinase
kinase activity

Molecular function http://www.broadinstitute.org/
gsea/msigdb/cards/MAP_KINASE_
KINASE_KINASE_ACTIVITY

10 32 0.003541

GO:0017148 Negative regulation
of translation

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/NEGATIVE_REGULATION_
OF_TRANSLATION

23 36 0.003541

GO:0042493 Response to drug Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/RESPONSE_ TO_DRUG

20 35 0.004669

GO:0001772 Immunological
synapse

Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/IMMUNOLOGICAL_
SYNAPSE

10 18 0.006603

GO:0030098 Lymphocyte
differentiation

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/LYMPHOCYTE_
DIFFERENTIATION

26 53 0.007986

GO:0042036 Negative regulation
of cytokine
biosynthetic
process

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/NEGATIVE_REGULATION_
OF_CYTOKINE_BIOSYNTHETIC_PROCESS

12 21 0.008582

GO:0009890 Negative regulation
of biosynthetic
process

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/NEGATIVE_REGULATION_
OF_BIOSYNTHETIC_PROCESS

30 48 0.008582
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genes have small effect sizes with fold changes <1.5. Therefore, a
limited number of individual genes in the absence of a biologi-
cal context is inadequate to explain the total variation of allograft
tolerance among renal transplant patients.

To address this issue, we performed the modified Lancaster
procedure (TA) as described in Section Correlated Lancaster
Procedures to combine p-values from pathways. Combining
p-values allows us to integrate small effects in pathway and gain
the power of statistical testing. A total of 1454 Gene Ontology
human pathway gene sets were analyzed. The size of pathways
ranged from 9 genes to 2131 genes, with a median of 27 genes per
pathway. Also, the number of probes per gene was highly variable.
In order to map genes to pathways, we removed genes without
gene symbols from the analysis. Among 21,049 genes with gene
symbols, approximately 48% (n = 10161) of genes were interro-
gated with a single probe, 26% (n = 5389) of genes were queried
using 2 probes, 14% (n = 2842) of genes were assessed by 3
probes. There were 3 or more probes for each on the remaining
genes (range: 4–17). This finding indicates that larger genes would
have more p-values and a stronger impact to pathway analysis. To

prevent this bias, we set the weight function as wi = 2/
√

ni where
ni is the number of probes for the ith gene.

We performed pathway analysis for the One-Way ANOVA test
and three pair wise comparisons. The top 10 significant path-
ways based on the One-Way ANOVA test are listed in Table 5.
The top two pathways, B cell differentiation (GO:0030183) and
B cell activation (GO:0042113), confirm the signature of B cell
involvement described by Newell et al. (2010). Furthermore, we
identified other pathways related to B cell activation and func-
tion. These include antigen binding (GO:0003823), map kinase
kinase kinase activity (GO:0004709) and lymphocyte differenti-
ation (GO:0030098). These pathways are biologically consistent
with the proposed role of B-lymphocytes in renal transplant tol-
erance reported by Newell et al. In contrast, when we performed
the traditional Fisher’s method without considering correlation
structures (LD) within pathways or applying a weighting func-
tion to compensate for variability in the number of probes per
gene, the result was a list of larger pathways, some containing
>1000 genes, describing more general cellular processes and not
specifically related to immune functions (See Table 6, #gene and

Table 6 | Top 10 significant pathways detected by the traditional Fisher’s method.

GO accession Pathway name Gene ontology URL # Gene # Probes Adjusted

P-value

GO:0005737 Cytoplasm Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/CYTOPLASM

2078 4986 0.E+00

GO:0005634 Nucleus Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/NUCLEUS

1393 3588 0.E+00

GO:0043283 Biopolymer
metabolic process

Biological process http://www.broadinstitute.org/
gsea/msigdb/cards/BIOPOLYMER_
METABOLIC_PROCESS

1653 4240 0.E+00

GO:0016020 Membrane Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/MEMBRANE

1954 4395 3.E−307

GO:0006139 Nucleobase,
nucleoside,
nucleotide, and
nucleic acid
metabolic process

Biological process http://www.broadinstitute.org/gsea/msigdb/
cards/NUCLEOBASENUCLEOSIDENUCLEOTIDE_
AND_NUCLEIC_ACID_METABOLIC_PROCESS

1217 3112 6.E−305

GO:0007165 Signal transduction Biological process http://www.broadinstitute.org/gsea/
msigdb/cards/SIGNAL_TRANSDUCTION

1604 3826 1.E−296

GO:0044425 Membrane part Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/MEMBRANE_PART

1638 3670 4.E−251

GO:0019538 Protein metabolic
process

Biological process http://www.broadinstitute.org/gsea/
msigdb/cards/PROTEIN_METABOLIC_PROCESS

1205 3022 2.E−245

GO:0044422 Organelle part Cellular component http://www.broadinstitute.org/
gsea/msigdb/cards/ORGANELLE_PART

1173 2934 1.E−230

GO:0044446 Intracellular organelle
part

Cellular component http://www.broadinstitute.org/gsea/
msigdb/cards/INTRACELLULAR_ORGANELLE_
PART

1168 2923 4.E–230
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#probe). Furthermore, when comparing the SI group and the
Control group, the traditional method identified 1078 significant
pathways while our proposed method narrowed the list down to
64 significant pathways (adjusted p-value <0.05). The increase
in number of significant pathways identified by the traditional
approach is primarily due to false positive discovery, and is consis-
tent with the inflation of Type I error rate as presented in Section
Empirical Assessments. Thus, by accounting for correlation struc-
tures (LD) within pathways and the number of probes per gene,
our proposed method minimized identification of larger, non-
specific cellular processes pathways, and instead revealed more
focused and functionally relevant biological pathways implicat-
ing a role for a humoral immune response in immunotolerance
to renal transplants (See Table 5, #gene and #probe).

DISCUSSION AND CONCLUSIONS
Modifications to the Lancaster procedure are proposed to take
correlations among p-values into account. Extensive simula-
tion studies show that the original Lancaster procedure has
inflated Type I error rates due to correlation among p-values. By
using permutation approach to estimate the correlation among
p-values, the proposed methods have well-controlled Type I error
rates and maintain strong power to detect signals related to SNPs
in pathways.

Among five proposed approximation methods (TA, . . . , TE),
the Satterthwaite approximation (TA) is the most computation-
ally efficient. Other approximation methods (TB, . . . , TE) are
based on the Satterthwaite approximation. Therefore, we recom-
mend using the Satterthwaite approximation (TA) as the stan-
dard procedure to modify the Lancaster procedure. Among other
approximation methods, simulation results in Section Correlated
Lancaster Procedures show that, for data with stronger internal
correlation, TD and TE have better approximation than TB and
TC . Our simulation study and the case study further provide
evidence that TD tends to have slightly higher power than the
Satterthwaite approximation TA. The R code for five approxima-
tion is posted at http://d.web.umkc.edu/daih/.
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